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Preface

With dramatic increases in on-chip packing densities, routing congestion has
become a major problem in integrated circuit design, impacting convergence,
performance, and yield, and complicating the synthesis of critical intercon-
nects. The problem is especially acute as interconnects are becoming the
performance bottleneck in modern integrated circuits. Even with more than
30% of white space, some of the design blocks in modern microprocessor and
ASIC designs cannot be routed successfully. Moreover, this problem is likely
to worsen considerably in the coming years due to design size and technology
scaling.

There is an inherent tradeoff between choosing a minimum delay path for
interconnect nets, and the need to detour the routes to avoid “traffic jams”;
congestion management involves intelligent allocation of the available inter-
connect resources, up-front planning of the wire routes for even distributions,
and transformations that make the physical synthesis flow congestion-aware.
The book explores this tradeoff that lies at the heart of all congestion man-
agement, in seeking to address the key question: how does one optimize the
traditional design goals such as the delay or the area of a circuit, while still
ensuring that the circuit remains routable? It begins by motivating the con-
gestion problem, explaining why this problem is important and how it will
trend. It then progresses with comprehensive discussions of the techniques
available for estimating and optimizing congestion at various stages in the
design flow.

This text is aimed at the graduate level student or engineer interested
in understanding the root causes of routing congestion, the techniques avail-
able for alleviating its impact, and a critical analysis of the effectiveness of
these techniques. The scope of the work includes metrics and optimization
techniques for congestion at various stages of the VLSI design flow, including
the architectural level, the logic synthesis and technology mapping level, the
placement phase, and the routing step. This broad coverage is accompanied
by a critical discussion of the pros and cons of the different ways in which one



viii Preface

can minimize the ill-effects of congestion. At the same time, the book attempts
to highlight further research directions in this area that appear promising.

Although this book is not meant to be an introductory text to VLSI CAD,
we have tried to make it self-contained by providing brief primers that go over
the classical techniques in routing, placement, technology mapping and logic
synthesis, before diving into discussions on how these techniques may be mod-
ified to mitigate congestion. Our coverage focuses on congestion issues dealing
primarily with standard cell based designs. In particular, the models and opti-
mization methods that pertain specifically to field-programmable gate arrays
(FPGAs) have not been explicitly addressed in this book.
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Part I

THE ORIGINS OF
CONGESTION



1

AN INTRODUCTION TO ROUTING
CONGESTION

A traditional standard cell design contains wires that implement the power
supply network, clocks, and signal nets. All these wires share the same set
of routing resources. With the number of cells in a typical design growing
exponentially and the electrical properties of metal wires scaling poorly, the
competition for preferred routing resources between the various interconnects
that must be routed is becoming more severe. As a consequence, not only is
routing congestion increasing, but it is also becoming more damaging to the
quality of the designs.

Most conventional design flows synthesize the power supply and clock net-
works prior to the signal routing stage. The power supply and clock nets do
not perform any logical operation, but provide crucial logistical support to the
circuits that actually implement the desired logical functionality. The power
supply network is designed accounting for several factors such as the current
requirements of the design, acceptable bounds on the noise in the supply volt-
age, and electromigration constraints. This network is designed in the form of
a grid which may or may not be regular. Typically, the power supply network
is created first and has all the routing resources to choose from. The clock
nets are routed next and still have relative freedom, since only the power sup-
ply grid has used up some of the routing resources when the clocks are being
routed. The clocks, which synchronize the sequential elements in the design,
have strict signal integrity and skew requirements. Although they are usually
designed as trees in mainstream designs, high-end designs often use more so-
phisticated clocking schemes such as grids in order to meet their stricter delay
and skew requirements (even though such schemes can consume significantly
more routing resources). Furthermore, the clock wires are typically shielded
or spaced so that the signals on the neighboring wires do not distort the clock
waveform; the shielding and spacing also consume some routing resources.
The signal nets are routed last and can only use the routing resources that
have not been occupied by the power supply and clock wires. Therefore, these
are the nets that face the problem of routing congestion most acutely.



4 1 AN INTRODUCTION TO ROUTING CONGESTION

In this chapter, we will first introduce the terminology used in the context
of routing congestion in Section 1.1, reviewing the basic routing model along
the way. Then, we will motivate the need for congestion awareness through
a discussion of the harmful effects of congestion in Section 1.2. Next, in Sec-
tion 1.3, we will try to understand why the problem of routing congestion is
getting worse with time. Finally, we will lay out a roadmap for the rest of this
book in Sections 1.4 and 1.5 by overviewing the metrics and the optimization
schemes, respectively, that are used for congestion.

1.1 The Nature of Congestion

A design is said to exhibit routing congestion when the demand for the routing
resources in some region within the design exceeds their supply. However,
although this simple intuitive definition suffices to determine whether some
design is congested or not, one has to rely on the underlying routing model
in order to quantify the congestion and compare its severity in two different
implementations of a design.

1.1.1 Basic Routing Model

The routing of standard cell designs follows the placement stage, which fixes
the locations of all the cells in rows of uniform height(s) as shown in Fig. 1.1(a).
In today’s standard cell designs, there is usually no explicit routing space
between adjacent rows, since the wires can be routed over the cells because of
the availability of multiple metal layers. The entire routing space is tessellated
into a grid array as shown in Fig. 1.1(b). The small subregions created by the
tessellation of the routing region have variously been referred to as grid cells,
global routing cells, global routing tiles, or bins in the literature. The dual
graph of the tessellation is the routing graph G(V,E), an example of which is
shown in Fig. 1.2(a). In this graph, each vertex v ∈ V represents a bin, and
the edge e(u, v) ∈ E represents the boundary between the bins u and v (for
u, v ∈ V ).

In the routing graph shown in Fig. 1.2(a), the vias and layers are not
modeled explicitly. On the other hand, the graph in Fig. 1.2(b) explicitly
models bins on two horizontal and two vertical layers, as well as the vias
between the different routing layers. The horizontal line segments in this figure
represent the boundaries of bins on the same horizontal routing layer, the
vertical line segments correspond to vias between adjacent horizontal and
vertical routing layers, and the remaining line segments denote the boundaries
between the bins on the same vertical routing layer. The process of routing a
net on such a graph, therefore, implicitly determines its layer assignment as
well.

A routing graph that models each layer explicitly consumes considerably
more memory than one that bundles all the layers together. It is possible to
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Cell boundary Row boundary

(a) (b)

Fig. 1.1. (a) The placement of standard cells in rows of uniform height. (b) Tessel-
lation of the routing area into bins.

retain most of the benefits of the layer-specific routing graph and yet reduce
its memory footprint by grouping together layers that have similar electrical
properties and wire widths. Today’s process technologies offer up to nine metal
layers [TSM04]. The lowermost one or two layers typically have the smallest
wire widths and heights and are therefore the most resistive (although they
can accommodate a larger number of tracks in each bin); these layers are
appropriate for short, local wires. Minimum width wires on the middle rout-
ing layers are somewhat wider (and therefore, somewhat less resistive); these
layers are used for the bulk of the global routing. The uppermost one or two
layers are often reserved for very wide and tall wires that can provide low
resistance paths for extremely critical signal nets and the global clock and
power supply distributions.

Typically, most of the wires in a given layer are routed in the same direction
(namely, either horizontal or vertical)1, since this orthogonality of the layers
simplifies the routing problem and allows for the use of the routing resources
in a more effective manner. However, the lowermost layer is often allowed
to be non-directional, since the flexibility to use both horizontal and vertical
wires without needing a via between them facilitates pin hookups. Adjacent
layers are usually oriented orthogonally to each other.

The bins are usually gridded using horizontal and vertical gridlines, re-
ferred to as routing tracks, along which wires can be created. The routers that
use such grids are called gridded routers, whereas those that do not are said
to be gridless. Although the use of the grid may appear to reduce the design
freedom during routing, it allows for a simpler representation of the rout-

1 Some process technologies do support diagonal wires in addition to the horizontal
and vertical ones [XT03], but such routing architectures are not yet common in
mainstream designs.



6 1 AN INTRODUCTION TO ROUTING CONGESTION

(a) (b)

Fig. 1.2. (a) A routing graph that does not model vias and layers explicitly. (b)
A routing graph for a four-layer routing architecture with explicit via and layer
modeling.

ing configuration that can permit a more extensive exploration of the search
space than would otherwise be possible. In particular, no special handling is
required to handle via stacks across different layers, since the tracks in the
grid automatically line up across the layers.

A bin can accommodate only a finite number of routing tracks, which may
be contributed by several different layers if all the layers and vias have not
been modeled explicitly in the routing graph. The number of tracks available
in a bin denotes the supply of routing resources for that bin; this number is
also known as the capacity of the bin. Similarly, the number of tracks crossing
a bin boundary is referred to as the supply or the capacity of the routing
graph edge corresponding to that boundary. A route passing through a bin
or crossing a bin boundary requires a track in either the horizontal or the
vertical direction. Thus, each such route contributes to the routing demand
for that bin and edge.

Because of the complexity and the level of details involved in the routing,
it is usually divided into two major stages, namely, global routing and detailed
routing. The responsibility of the global routing stage is to generate routing
topologies and embeddings for all the nets at the granularity of the bins. The
layers in which a net is routed is determined by the layer assignment step.
In today’s routers, this step is usually performed simultaneously with the
global routing. In other words, the regions through which a net is routed and
the layers that it uses are determined concurrently. The subsequent detailed
routing stage refines the global routing by assigning specific locations to all
the wires within the bins, and legalizes the routing solution by eliminating
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routing design rule violations. Some routers use an explicit track assignment
stage between the global and detailed routing stages [BSN+02], even though
this step has traditionally been merged with detailed routing. Global and
detailed routing algorithms are discussed in more depth in Sections 4.1 and 4.2,
respectively, in Chapter 4.

A net Ni denotes the logical connectivity between its pins (also referred
to as its terminals) that are located in some of the bins, and may be repre-
sented as {vi,1, vi,2, · · · , vi,ki} ⊆ V , where ki is the number of terminals of Ni.
Usually, one2 of the pins of the net represents its driver or source, and the
remaining pins represent its receivers or sinks. For every net Ni, the objective
of the global routing stage is to find an additional subset of vertices VSi ⊂ V
(referred to as its Steiner nodes) and a set of edges Ei = {ei,1, ei,2, · · · } ⊂ E in
the routing graph so as to form a rectilinear spanning tree Ti = (Vi, Ei), where
Vi = Ni ∪ VSi , that minimizes some cost metric (such as the total wirelength
of the net, the delay to its most critical sink, or the maximum congestion
along the route of the net). When the global routing of all the nets has been
completed, the demand for routing tracks is known for each bin as well as
for each bin boundary. One of the objectives of the global routing stage is to
route all the nets such that the demand for tracks in any bin does not exceed
the supply of the tracks in that bin.

The global routing stage is followed by the detailed routing. The detailed
router typically handles small regions consisting of a few bins at a time, and
focuses on generating a clean routing that does not violate any design rules.
This is in contrast to global routing that operates on the entire routing area,
and can abstract away many of the detailed design rules. The success of de-
tailed routing depends heavily on the quality of the results obtained during
the preceding global routing. For instance, if the global routing has assigned
more nets to a bin than the number of available tracks, then the successful
detailed routing of all the nets in that bin may not be possible. When more
wires than can be accommodated on the tracks in a bin compete to pass
through that bin (even after attempting to find alternative global routes for
the nets routed through that bin through uncongested bins), the routing may
remain incomplete with either opens or shorts on the wires, or some of these
wires may be detoured. The occurrence of such a scenario is referred to as
routing congestion; it hints at the unavailability of sufficient routing resources
in particular regions to successfully route the wires assigned to those regions.

Figure 1.3 depicts some of the steps involved in the routing of a net con-
necting terminals pin1 and pin2. The selection of the bins for the global rout-
ing of the net is shown in Fig. 1.3(b). Most detailed routers perform track

2 A few nets can have multiple parallel drivers if the total capacitive load of the
net and its sinks is too large for a single driver. Moreover, some nets (such as
bidirectional buses) can have multiple drivers, at most one of which may be active
at any time, with the remaining drivers being cut off using the high impedance
state in tristate logic.
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assignment either independently or along with the creation of the wire seg-
ments and vias in the final layout of the net. As shown in Fig. 1.3(c), the
track assignment step chooses the tracks for a net, typically optimizing cost
functions such as delay, number of vias, crosstalk noise, etc.. Finally, as shown
in Fig. 1.3(d), the detailed router completes the layout by creating wires of
appropriate length and by generating vias where required, while taking into
account all the design rules.

Fig. 1.3. (a) Tessellation of a routing area into bins for global routing. (b) The
global routing of a net connecting pin1 and pin2. (c) Selection of horizontal and
vertical tracks during track assignment. (d) Creation of the final routing that obeys
all design rules.
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1.1.2 Routing Congestion Terminology

Fig. 1.4. (a) An example of a global routing. (b) A corresponding detailed routing
showing a short in an overflowing bin. (c) The congestion and track overflow in each
bin.

The existence of routing congestion is often manifested as detoured wires,
poor layer assignment, or incomplete routes containing opens and shorts. As
an example, consider Fig. 1.4, which depicts nine nets routed through four
adjacent bins. Let us assume that each bin in the figure accommodates three
vertical tracks and four horizontal tracks. The global routing of the nets is
shown in Fig. 1.4(a), where one can observe that four nets are assigned to
vertical tracks in the top left bin. Since this bin can accommodate only three
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vertical tracks, one of the nets there cannot be detailed routed successfully
unless it is rerouted through some other bin. If no rerouting can be found, it
may create a short, as shown in Fig. 1.4(b). The remaining bins do not show
any routability problems, since the demand for horizontal or vertical routing
tracks never exceeds their supply in any of those bins. In other words, all the
bins in the figure except for the top left one are uncongested.

One of the metrics commonly used to gauge the severity of routing conges-
tion is the track overflow that measures the number of excess tracks required
to route the wires in a bin. It can be defined formally as follows:

Definition 1.1. The horizontal (vertical) track overflow T v
x (T v

y ) for a given
bin v is defined as the difference between the number of horizontal (vertical)
tracks required to route the nets through the bin and the available number of
horizontal (vertical) tracks when this difference is positive, and zero otherwise.

In other words,

T v =

{
demand(v) − supply(v), demand(v) > supply(v),
0 otherwise.

Throughout this book, whenever the routing direction is left unspecified in
some equation or discussion, it is implied that the equation or discussion is
equally applicable to both the horizontal and the vertical directions. Thus,
for instance, usage of the notation T v (for the track overflow) in a statement
implies that the statement is equally applicable to both T v

x and T v
y . In the

same vein, if the bin to which a congestion metric pertains is clear from the
context, it may be dropped from the notation (as is the case with Tx and Ty

in the following paragraph).
If we assume that a route segment that enters a bin and then terminates

inside that bin consumes half a routing track within that bin, it is easy to
verify that Ty = 0.5, Tx = 0 for the top left bin, and Ty = Tx = 0 for all other
bins in Fig. 1.4.

The formal definition of the congestion metric is as follows:

Definition 1.2. The horizontal (vertical) congestion Cv
x (Cv

y ) for a given bin
v is the ratio of the number of horizontal (vertical) tracks required to route the
nets assigned to that bin to the number of horizontal (vertical) tracks available.

Thus, the congestion in a given bin is simply the ratio of demand for the
tracks to their supply in that bin, and can be written as:

Cv =
demand(v)
supply(v)

.

Figure 1.4(c) also shows the horizontal and vertical routing congestion in
each bin. The first element in each congestion 2-tuple associated with a bin
denotes the horizontal routing congestion Cx, whereas the second represents
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the vertical congestion Cy. For instance, the bottom left bin has a congestion
of (0.25, 1.0), since the horizontal demand and supply for that bin are one and
four routing tracks, respectively, whereas the vertical demand and supply are
both three tracks each. One can observe that the top left bin has a congestion
of 1.16 in the vertical direction, indicating that the demand for vertical routing
tracks in that bin exceeds their available supply.

The overflow and congestion metrics can be defined similarly for the bin
boundaries (or equivalently, for the routing graph edges). These definitions
can also be further extended to consider each routing layer individually.

The notion of a congestion map is often used to obtain the complete picture
of routing congestion over the entire routing area. The congestion map is a
three-dimensional array of congestion 2-tuples indexed by bin locations and
can be visualized by plotting congestion on z-axis while denoting bins on
x- and y-axes. Such a visualization helps designers easily identify densely
congested areas (that correspond to peaks in the congestion map).

Some other commonly used metrics that capture overall routability of the
design rely on scalar values (in contrast to three-dimensional congestion map
vectors). These metrics include the total track overflow, maximum congestion,
and the number of congested bins, and are defined as follows:

Definition 1.3. The total track overflow (OF ) is defined as the sum of the
individual track overflows in all of the bins in the block.

In other words,
OF =

∑
∀v∈V

T v.

Definition 1.4. The maximum congestion (MC) is defined as the maximum
of the congestion values over all of the bins in the block.

In other words,
MC = max{Cv : ∀v ∈ V }.

Definition 1.5. The number of congested bins (NC) is defined as the number
of bins in the block whose congestion is greater than some specified threshold
Cthreshold.

It can be written as:

NC = |{v : v ∈ V and Cv > Cthreshold}|

Note that the number of congested bins in a design is a function of the value
of the selected threshold congestion. The designer may choose Cthreshold to
be 1.0 to find the number of bins where the demand exceeds the supply, or
may select some slightly smaller value (such as 0.9) to identify the bins where
the nets are barely routable.
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1.2 The Undesirability of Congestion

Designers attempt to minimize the routing congestion in a design because
congestion can lead to several serious problems.

• It may worsen the performance of the design.
• It may add more uncertainty to the design closure process.
• It may result in degraded functional and parametric yield during the man-

ufacturing of the integrated circuits for the design.

We discuss each of these issues in detail in the following subsections.

1.2.1 Impact on Circuit Performance

With wire delays no longer being insignificant in modern process technologies,
an unexpected increase in the delay of a net that lies on a critical path can
cause a design to miss its frequency target. The most common reason for such
an unexpected increase in the delay of a net is routing congestion. Congestion
can affect the delay of a net in several ways (that are listed next and then
elaborated upon in the remainder of this section):

• The routing of the net may be forced to use the more resistive metal layers,
resulting in an increase in the delay of the net.

• The routing of the net may involve a detour created to avoid passing
through congested regions. This detour will increase the delay of the net
as well as that of its driver.

• The routing may include a large number of vias generated when the router
attempts to find a shortest path route through (or complete the detailed
routing in) a congested region containing numerous obstructions corre-
sponding to the nets routed earlier, leading to an increase in the delay of
the net.

• Wires routed in a congested region may be more susceptible to interconnect
crosstalk, leading to a greater variation in the delays of the nets.

A good timing-driven global router will attempt to route long or timing-
critical nets on the less resistive upper layers, where the improved wire delays
can amortize the via stack penalties involved in accessing those layers. How-
ever, if those preferred layers have already been occupied by other nets (that
are presumably also critical), then the lower layers that are usually more re-
sistive may also have to be used for some of the critical nets that are routed
later. The resulting increase in the delays of the critical nets routed on the
lower layers can cause timing violations on the paths passing through those
nets.

If a net is detoured to avoid a congested region, the detour can increase
the delay not only of the net but also of its driver. Even if we use a very
simple (lumped parasitic) delay model, it is easy to show that the delay of
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an unbuffered net increases quadratically with its length. Under this delay
model, the delay Dw(l) of a wire of length l can be written as:

Dw(l) = (rl)(cl) = rcl2, (1.1)

where r and c are, respectively, the per unit length resistance and capacitance
of the wire. In other words, an increase in the wirelength of a net caused due
to a detour results in its delay growing quadratically with that increase. (A
similar relationship can also be shown using more sophisticated delay models).
Furthermore, the increased wirelength also raises the total capacitive load
seen by the driver of the net, increasing its switching time. This additional
capacitance also results in an increase in the dynamic power dissipation in the
net. If the driver of the net needs to be sized up to drive the increased wire
load, or if the detour is large enough to require the insertion of buffers, the
leakage power may also increase.

Shortest route

Detoured route

Congested region

Fig. 1.5. A wire detoured because of congestion.

For example, Fig. 1.5 illustrates a scenario in which a congested region
forces a net to detour significantly. Let us assume that the length of the
shortest possible route for the net is 300μ, whereas that of the actual route is
700μ. Using representative values of 1.6Ω/μ for the resistance and 0.2fF/μ
for the capacitance of the wire, the delays of the wire based on the shortest
possible and actual routes (as per Equation (1.1)) are 300 × 1.6 × 300 × 0.2
ps = 28.8 ps and 700 × 1.6 × 700 × 0.2 ps = 156.8 ps, respectively. Thus, in
this case, even if we ignore the resistance of the larger number of vias that
the detoured routing is likely to require, the delay of the net increases by a
factor of more than five because of its detour.
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The resistance of vias is scaling across process generations even more
poorly than the resistance of wires. Vias in modern process generations can
be significantly resistive, often being equivalent in resistance to as much as
several tens of microns of minimum width wiring on one of the middle lay-
ers. Each via inserted into the routing of a net adds a significant resistance to
that net, thus increasing its delay. Furthermore, most process technologies use
landed vias for purposes of manufacturability; these vias are wider than the
corresponding minimum width routing tracks. Therefore, these vias present
additional blockages to the router, worsening the congestion even further.

In all the above cases, a secondary effect that can further aggravate the
critical paths passing through nets that obtain a poor routing due to conges-
tion is the worsened delays of the logic stages downstream from these nets.
The increased resistance of these nets causes a degradation in the transition
times for the rising and falling signal edges at their sinks. Consequently, the
cells at the sinks of these nets also slow down3.

Another potential problem that is aggravated in congested regions is that
of interconnect crosstalk. A signal switching in a net driven by a strong driver
can affect neighboring victim nets significantly. This interaction may result
in a functional failure (if the coupled noise causes the logic value stored in
a sequential element or at the output of some non-restoring logic element
such as a domino gate to flip), or in a widening of the switching windows in
the neighboring nets. The latter effect leads to an increased variation in the
delays of the victim nets, because their effective capacitance varies depending
on the switching state of their neighboring aggressor nets. Although gate sizing
and buffering can ameliorate some of the noise problems, other instances of
these problems are best fixed through the insertion of shields between the
aggressor and victim nets, or by spacing the victim nets farther away from
their aggressors. However, these techniques are difficult to apply in congested
layouts because of a shortage of routing resources.

1.2.2 Impact on Design Convergence

Routing congestion adds unpredictability to the design cycle. This unpre-
dictability of design convergence can manifest itself in two ways (that are
discussed in the remainder of this section):

• Congestion-oblivious net delay estimates may mislead the design optimiza-
tion trajectory by failing to correctly identify the truly critical paths.

• If a block cannot be successfully routed within its assigned area in a hi-
erarchical design flow, the block designer may need to negotiate with the
designers of neighboring blocks for more space, thus possibly necessitating
a redesign of those blocks also.

3 Note, however, that this dependence of the delay of a cell on its input slews is
not captured by first-order delay models.
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If the effects of congestion such as detours, unroutability and the selec-
tive delay degradation of some nets are not adequately modeled during logic
synthesis or physical synthesis, then the optimizations applied at these stages
can be easily misled by erroneous estimates for the design metrics. This may
lead the optimization trajectory to poor configurations in the design space,
recovering from which may require design iterations that are not only time-
consuming but also may not guarantee convergence.

As an illustration, if the placement is oblivious to the routing congestion,
the placer will not be able to position the cells so that the critical nets avoid
congested regions. This also has impact on the timing, as can be seen from
the example in Fig. 1.5. In this example, the placer may no longer try to
position the two depicted cells any closer if the net delay of 28.8 ps (computed
in Section 1.2.1) that it has estimated using the shortest route assumption
is acceptable, even though the actual delay of 156.8 ps results in a timing
violation.

As another example, consider the case of two nets N1 and N2 such that
the former lies in a very densely congested region that causes its actual delay
to be several times larger than its estimated delay, whereas the latter has full
access to preferred routing resources. Furthermore, let us assume that N2 is
slightly more critical than N1 on the basis of the estimated net delays. In
this scenario, a circuit optimization engine that does not comprehend routing
congestion will select a path through N2 for optimization, even though the
actual criticality (i.e., the criticality based on achievable net delays rather
than estimated ones) of some path through N1 may be considerably higher.

While computing net parasitics and net delays, several of today’s place-
ment engines use a length-layer table that attempts to mimic how a designer
or a good performance-driven router would ideally assign the layers to the
nets based on their lengths. For instance, long and timing-critical nets would
be assigned to upper layers, whereas short and non-critical nets would be al-
located to the lower layers. However, the wire delays based on such a table
quickly become invalid in congested designs, when the router is unable to route
nets on the layers to which they have been assigned by the placer because of
congestion. Again, this mismatch between the assumed and actual layers on
which a net is routed can invalidate many of the optimizations applied to the
net during physical synthesis.

Although the layer assignment and detour assumptions for a given net
can be enforced using the rip-up and reroute of other nets in its vicinity or
by changing the net ordering, this procedure may merely cause some other
nets to become critical because of their poor routes. Indeed, if the unexpected
detours are large, the nets may require buffering or significant driver upsizing.
Buffer insertion can aggravate the congestion because of the extra via stacks
required to access the buffers and the reduced flexibility in rerouting buffered
nets. Furthermore, both newly inserted buffers and upsized drivers can create
cell overlaps, whose resolution through placement legalization can cause more
nets to be rerouted, often invalidating their assumed delays in the process.
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If a design is unroutable or fails to converge timing because of unexpected
net delays, the design flow may need to revisit the global placement stage in
the hope of generating a more routable placement. If the placement stage is
not able to resolve the routability issue, it may become necessary to remap or
resynthesize either some or all of the logic. These additional design iterations
are not only expensive from a runtime perspective, but, more significantly,
may result in layouts whose congestion profile is no better than that obtained
in the original iteration, unless the design flow is congestion-aware.

The unroutability of a block can prove particularly problematic in the hi-
erarchical design methodologies that are used for large, complex designs. In
these designs, different blocks are independently designed in parallel by dif-
ferent designers. This ability to design the blocks in parallel crucially depends
on the designers obeying mutually negotiated physical, temporal, and logi-
cal interfaces for all the blocks. In high performance designs that use today’s
process technologies, blocks containing even a few tens of thousands of cells
may require more than 30% white space in order to ensure routability. In
such a scenario, the area required to route all the wires internal to a block is
very difficult to predict accurately without actually implementing the block4.
Therefore, late changes to the floorplan may be inevitable. If a block is found
to be unroutable within the area allocated to it in the floorplan for the design,
the need to increase its area or change its aspect ratio in order to accommo-
date the routing of its nets breaks the clean interface between the blocks,
possibly requiring the redesign of its neighboring blocks that may already be
in an advanced stage of implementation.

An example of this phenomenon is illustrated in Fig. 1.6, in which the area
for block P is expanded to include the shaded area. This expansion occurs at
the expense of the areas for its neighboring blocks Q and R, which now have
to ensure that they remain routable in their newly reduced areas while still
meeting all their design constraints.

When floorplan changes occur, all the affected blocks have to be resyn-
thesized and laid out with new pin locations and modified block areas. These
blocks are typically still required to meet the same delay constraints as they
did earlier, although some power goals for individual blocks may need to be
recomputed in the process of redistributing the overall power budget among
the blocks. Converging the design using the new floorplan presents a variety
of challenges for both types of blocks – the ones whose areas have grown, as
well as the others whose areas have shrunk. For example, the block P in the
floorplan in Fig. 1.6(b) may have longer wires, on the average, than those for
the same block placed in the smaller area shown in the original floorplan in
Fig. 1.6(a). The additional capacitance of the longer wires results in larger

4 Overestimating the white space for a block is undesirable, because it leads to an
unnecessary increase in die area, which in turn increases the manufacturing cost
and reduces the yield for the integrated circuits implementing the design. This
will be expanded upon in Section 1.2.3.
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Fig. 1.6. (a) Original floorplan. (b) Altered floorplan to alleviate routing congestion
in P by creating more space for the block P at the expense of the areas reserved for
the blocks Q and R.

net delays, which in turn leads to increased power as drivers are upsized or
extra buffers are added to the design. The blocks Q and R in the new floor-
plan face the challenge of placing and routing their logic in areas that are
smaller than those allocated to them in the original floorplan. If either of
the blocks Q or R cannot be converged in the new floorplan, more changes
to the areas and shapes of neighboring blocks may be required, the success
of which will not be known until those blocks have also been taken through
entire synthesis-to-layout flow.

Thus, ensuring the routability of the entire design through floorplan
changes involves a large cost, since it may involve many time-consuming iter-
ations. While some of these iterations may be required anyway for delay and
power budgeting across the blocks, routability adds one more factor that can
necessitate additional iterations during the process of design convergence.

1.2.3 Impact on Yield

A densely congested design is likely to result in a lower manufacturing yield
than a similar uncongested design. The yield of the integrated circuits imple-
menting a design is affected by the congestion of the design in three ways:

• Congestion typically results in an increased number of vias in the routes,
which can affect the yield.

• Congested layouts tend to have larger critical areas for the creation of
shorts and opens due to random defects.

• Any increase in the area of a congested design in order to accommodate
the routings of all its nets typically leads to some yield loss.

As mentioned in Section 1.2.1, routes in congested regions typically contain
a larger number of vias than similar routes in uncongested regions. When a
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router tries to find a shortest path route for a net passing through a congested
region, it may create numerous bends when it maneuvers around the obstruc-
tions created by other routings. Each of these bends results in additional vias.
Nets whose routes have been detoured in order to avoid congested regions also
tend to have more vias than nets that have more direct routes passing through
uncongested regions. Furthermore, during the process of detailed routing, if
a local region is heavily congested, the reduced flexibility of the router often
results in the routes having to change layers frequently in the process of being
maze routed to their pins (because direct routes with few layer changes may
not be possible). This too leads to an increase in the number of vias required
for the routing.

The existence of a large number of vias is problematic for two reasons.
Firstly, since vias are often wider than the minimum widths of the routing
tracks on the corresponding layers, a large number of vias may create rout-
ing blockages that may further aggravate the congestion (and consequently
result in the generation of yet more vias). Secondly, having a large number
of vias can lead to yield loss during manufacturing. Vias have traditionally
been undesirable from the manufacturability point of view because of the
mask alignment problem, which occurs because masks for two different metal
layers are required to align perfectly in order to create the vias as desired.
Although advances in manufacturing technologies have reduced the severity
of this problem, vias are still harder to manufacture than wire segments. Fur-
thermore, with the shrinking geometries of modern process technologies, vias
are often a factor in parametric yield loss (i.e., a reduction in the maximum
frequency at which the integrated circuit can operate). Ensuring perfect elec-
trical connectivity through a via requires the metal deposition to go all the
way down to the lower metal layer, without the creation of any void. However,
this is not very easy to enforce in practice. A void within a via can increase its
resistance dramatically, causing the delay of the net containing the via to also
grow appreciably. If this net lies on a critical path, it may lead to a parametric
yield loss for the integrated circuits implementing the design.

Many industrial detailed routers try to minimize the potential parametric
yield impact of vias by automatically inserting redundant vias in the routes
wherever possible. (This also has the collateral benefit of reducing the effective
resistance of the vias, leading to better net delays). However, this technique
is not very applicable in the congested regions of the layout, where there may
be little or no space available to insert additional vias.

The critical area of a layout is a metric that indicates the likelihood of
a random defect particle of a given size to cause an open or short in the
layout [Fer85,MD83]. Most of the wires in a congested layout are forced to
be routed with no more than minimum spacing between them. This increases
the critical area of the layout with respect to shorts, because a small deposition
of extra metal between two neighboring wires can cause a short, leading to
circuit failure and yield loss. In a sparsely congested layout, the wires can
have larger spacings between them, reducing the possibility of such shorts. The
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critical area with respect to opens depends primarily on the total wirelength of
the design (under the simplifying assumption that most of the signal nets are
routed using minimum width wires, as is usually the case in practice). We have
seen that routing congestion can result in an increase in wirelength because of
detoured routes. Therefore, the probability of a random dust particle leading
to an open on a wire also increases in such layouts.

Fig. 1.7. Die size increase due to routing congestion in the block P .

Another way in which the yield can be affected due to congestion is through
growth in the die size. As mentioned earlier, congestion can lead to a design be-
ing unroutable within its assigned area, if its nets cannot be routed completely
even after the application of routing, placement, and synthesis optimizations
targeted towards congestion minimization. In such a case, the die size may
have to be increased to spread the cells out and make a larger number of rout-
ing tracks available, as depicted in the example in Fig. 1.7. In this figure, let
us assume that the additional routing space required for the block P cannot
be obtained at the cost of the block areas for Q and R. As a result, the die
area for the chip is increased in both the horizontal and vertical directions to
accommodate the growth of the block area for P . This increase in die area
may, however, affect the yield adversely.

Many studies in the past have shown that the yield decreases with any
increase in the die area, since the probability of random defects affecting the
functionality of the circuit increases with the area. Several empirical models
have been proposed to capture the relationship between the yield and die
area, a typical example (based on a Poisson distribution for the occurrence of
defects) [War74,Ber78] being:

Y = Y0e
−AD,
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where Y is the yield for chips whose die size is A, D is the defect density that
depends on the clean room standards and the manufacturing process, and
Y0 is a constant. The above equation emphasizes the fact that any linear
growth in area may affect the yield exponentially. Similar conclusions may also
be drawn from most other yield models proposed in the literature. Thus, any
increase in the die area due to routing congestion usually decreases the yield.
A reduced yield translates into a rise in the per unit cost of the manufactured
integrated circuits.

1.3 The Scaling of Congestion

We have seen that the existence of routing congestion in a design can lead
to several serious problems. Unfortunately, an implication of today’s design
and process technology scaling trends is that the routing congestion problem
will become even more acute in the coming years. In this section, we will
build some intuition for this poor expected scaling of the routing congestion
problem.

1.3.1 Effect of Design Complexity Scaling

The primary reason for the increase in congestion with successive process
generations is design size scaling. With transistors getting smaller and cheaper
with each successive process generation, it becomes feasible to pack more of
them in a single design. Moore’s Law, whose commonly accepted version states
that the number of on-chip transistors is doubling every eighteen5 months, is
likely to continue to hold at least for the next decade (even if the rate of
doubling slows down) [Moo03]. The semiconductor industry has managed to
obey this law for the last four decades, enabling designers to integrate yet
more functionality in their designs at each successive process node.

However, with an increase in the number of transistors and cells in a design
comes a corresponding increase in the number of interconnections between
them. Furthermore, the routing complexity of the designs also increases with
an increase in the sizes of the designs. This can be illustrated by a simple
thought experiment. Consider an optimized design in some process generation
that is then shrunk to the next process generation without any change in logic
or layout. This shrink involves the reduction of each of the geometric features
of the original design by some scaling factor (that is typically 0.7×); these
features include the sizes of all its gates as well as the widths, spacings, and
lengths of all its wires. If one ignores the additional buffers that will be required
to re-optimize the design at the new process node, one can argue that the
5 Moore’s original observation and prediction in 1965 was that the number of com-

ponents in an electronic design was doubling every year [Moo65]. He later updated
his predicted rate of doubling to once every two years in 1975 [Moo75].
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routing complexity of the design has remained unchanged across the shrink;
the insertion of additional buffers can only worsen the routing complexity.
This is illustrated in Fig. 1.8, where the design shown in Fig. 1.8(a) is shrunk
to the block placed in the lower left corner of the design depicted in Fig. 1.8(b).

(a)

(b)

New circuitry for
extra functionality

Wires

A bin

Current generation
design

design
Next generation

New wires interfacing with the
shrunk version of original design

Shrink of current design

Shrunk wire

Fig. 1.8. (a) A bin with wires causing routing demand for a design in a given process
technology. (b) The corresponding routing demand in a scaled version of the design
that includes the original design as a shrunk block.

However, the new process node allows for the use of many more tran-
sistors, in accordance with Moore’s Law. For the sake of simplicity, let us
assume that the die size of the design and its cell density have remained con-
stant6 across the shrink. Therefore, the new design can accommodate twice
as many transistors as in the old design; these additional transistors can be

6 In practice, the die area usually grows slightly or remains unchanged across suc-
cessive process generations, while the cell density decreases slightly in order to
permit the successful routing of the wires in the shrunk design. As an example, the
die sizes for recent Intel microprocessors have grown at the rate of 14% every two
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used to integrate additional functionality, as shown in Fig. 1.8(b). However,
the communication between this added functionality and the original block,
which had earlier been implemented through off-chip interconnections (or not
implemented at all), must now be through on-chip wires in the integrated de-
sign. These wires are in addition to the original on-chip routing of the shrunk
block, and add to the routing complexity and congestion of that block. This
increase in routing complexity is illustrated in Fig. 1.8 using the example of
the wires passing through or connecting to a typical bin in the original design
block.

This simple example illustrates the increase in routing complexity result-
ing from design size growth. One approach to handling this increased routing
complexity could be through the introduction of new metal layers to accom-
modate the additional wires. However, each new metal layer involves signif-
icant additional mask generation costs. Furthermore, as will be discussed in
Section 1.3.2, the introduction of additional metal layers is a strategy of dimin-
ishing returns in terms of easing routing congestion, in spite of the apparent
extra routability afforded by these new layers. Consequently, the introduction
of new metal layers has not been keeping pace with the rate at which the
routing demands have been growing. Indeed, the number of routing layers has
grown at the average rate of one new layer every three years over the last
three decades, even though the number of transistors (and nets) in a design
has been doubling every two years during this period.

Thus, worsening routing congestion is one of the costs that designers must
pay in order to benefit from the increased integration made possible by process
scaling. As design sizes increase, the routing congestion in those designs also
becomes more severe. Since the introduction of additional routing layers does
not help much in alleviating this congestion, designers tend to decrease the cell
density and introduce more white space into their designs with each successive
process generation in order to accommodate the increased routing demands.

1.3.2 Effect of Process Scaling

Although design size scaling is the prime reason behind the worsening of the
routing congestion across successive process generations, the poor scaling of
wires also plays a significant role in aggravating this problem. Ideal technology
scaling [DGY+74] [Bak90] refers to the reduction of each dimension of the
wires and the devices in a design by a constant shrink factor s (that has
traditionally been 0.7×) while migrating a design from one process generation
to the next. It is illustrated for wires in Fig. 1.9, where each dimension of the
wire, i.e., its width W , height H, distance D between the wires in the same
layer, and interlayer dielectric thickness T shrinks by the constant scaling
factor of s.

years [Bor00], whereas the number of transistors in the processors have doubled
every two years during the same period.
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(a) (b)

W

H

D

T

sW
sH

sD

sT

Fig. 1.9. (a) Interconnects in a given process technology. (b) Ideally scaled inter-
connects in the next process generation.

The resistance r, line-to-ground capacitance c, and the coupling capaci-
tance cc for a unit length of the wire in the current process technology gener-
ation are given by:

r =
ρ

W × H
,

c =
ε × W

T
,

cc =
ε × H

D
,

where ρ is the resistivity of the metal (that was historically aluminum, but is
usually copper in modern processes) and ε is the permittivity of the insulator,
which is typically silicon dioxide. The corresponding quantities for the next
process generation, where the dimensions of the wires are scaled as shown in
the figure, are given by:

rnext =
ρ

sW × sH
,

cnext =
ε × sW

sT
,

cnext
c =

ε × sH

sD
.

The above equations imply that the per unit length resistance of the wire
doubles in each process generation, whereas the per unit length capacitances
of the wire remain unchanged, as shown below:
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rnext =
r

s2
=

r

0.7 × 0.7
≈ 2r,

cnext = c,

cnext
c = cc.

As a result, assuming no activity on the neighboring wires, the delay
Dnext

w (sl) for a wire of length sl obtained by shrinking a wire of length l
(whose delay is denoted by Ds(l)) is given by the following equation:

Dnext
w (sl) = rnext(sl) × (cnext + cnext

c )(sl)

=
r

s2
(c + cc)(sl)2

= Dw(l).

The above equation corresponds to the scaled delay of a local interconnect
whose length shrinks by the usual shrink factor s. It indicates that in spite
of the reduction in length, the delay of the wire does not decrease. This is in
sharp contrast to the delays through the transistors, that typically speed up
by a factor of s with every process generation.

The situation for global nets, whose length does not shrink with scaling
(because the die size does not shrink), is even more dire. The delay of a global
interconnect of length l is given by:

Dnext
w (l) = rnextl × (cnext + cnext

c )l

=
r

s2
(c + cc)l2

=
Dw(l)

s2
.

In other words, the delay of a global net doubles from one process generation
to the next. Even with optimal buffering, it can be shown that the delay of
these nets degrades by a factor of

√
s. Furthermore, the inter-buffer separation

in an optimally buffered wire shrinks much faster than the geometric shrink
rate (shrinking instead at the rate of s

√
s [Bak90]), resulting in a rapid increase

in the number of buffers inserted into the nets [SMC+04] (along with its
ramifications on congestion).

Consequently, wire delays become increasingly dominant with every process
generation. Furthermore, since these delays do not scale well as shown above,
much of the expected benefit of obtaining faster circuits on scaled process
nodes is lost. Therefore, process designers often use non-ideal scaling on the
wires in order to make them less resistive and improve their delay. This is done
by making them wider or taller than would be indicated by the ideal scaling
recipe; this is referred to as the reverse scaling of wires [SK99]. However, this
has other undesirable side effects:

• When the wires are made wide, the number of tracks available in a given
area decreases in a proportionate manner.
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• When the wires are made relatively tall, the coupling component of the
capacitance increases, which in turn results in increased crosstalk noise on
the interconnects, causing high uncertainty in timing and possible func-
tional failures.

Furthermore, tall or wide wires are also power hungry because of their in-
creased capacitance; not only do they result in increased switching power, but
they also require larger drivers.

The widening of the wires directly affects the supply of routing resources,
which in turn increases the routing congestion. In contrast, tall wires are
susceptible to interconnect crosstalk. As discussed in Section 1.2.1, intercon-
nect crosstalk not only widens the switching windows in the nets, but can
also result in functional failures. Many of the techniques used to counter this
problem, such as the insertion of shields or an increase in the spacing between
the signal nets, also consume routing resources that may be in short supply
in congested regions. On the other hand, noise optimization techniques such
as buffer insertion create additional routing blockages because of via stacks.
Furthermore, very tall wires with highly skewed aspect ratios are difficult to
manufacture. Thus, making the wires either tall or wide in order to counter the
poor scaling of the wires affects the supply of routing resources and worsens
the routing congestion.

One could hope that the increase in routing congestion due to design size or
process technology scaling may be countered by adding extra routing resources
in the form of new metal layers. However, there are several reasons why the
introduction of new routing layers is not a panacea for the routing congestion
problem. The via stacks required to access the top few layers create significant
blockages on each of the underlying layers. This can become an especially
severe problem on the bottommost few layers, since the via stacks from all
the layers lying above them create blockages on these layers. Furthermore, we
have seen that the resistance of wires increases rapidly with each successive
process technology generation, causing the delay of global wires to degrade
severely even as the gates speed up with scaling. Although buffer insertion
can help reduce the severity of this imbalance, these buffers, when inserted
in nets routed on the upper layers, result in yet more via stacks and their
consequent routing blockages.

Another consequence of the worsening resistance of the wires is that the
metal usage by the power grid and the global clock distribution is growing
rapidly in order to avoid excessive voltage droop and poor clock slews, delays
and skews. Indeed, most of the tracks on the topmost one or two layers are
often reserved largely for the global clock and power grid distributions along
with a handful of the most critical global signal nets.

The rapid reduction in the feature sizes with each successive process tech-
nology generation makes it increasingly difficult to obtain high yields during
integrated circuit manufacturing. As a result, there has been much work on
developing the so-called design for manufacturing techniques in recent years.
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However, even these techniques have their limitations. It is feared that they
will no longer be sufficient to ensure adequate yields at the 32 nm technology
node. Therefore, many semiconductor manufacturers have started develop-
ing restrictive design rules (RDRs) as a way of tackling this manufacturing
challenge. The RDRs impose many restrictions on the layout configurations
permissible for the devices and their local interconnections. These restric-
tions, in turn, may reduce the flexibility available to detailed routers, making
it harder for them to achieve successful route completion in congested designs.
Therefore, in the presence of the RDRs, it will become even more important to
address any expected congestion problems up front before handing the design
over to the layout tools.

Thus, as designs get larger and more complex and process technologies
descend yet deeper into the nanometer realm, routing congestion will become
even more severe a problem than it is today. Therefore, it will be important for
design flows to be able to predict the existence of routing congestion in some
region of the design as early as possible, and take meaningful optimization
steps to alleviate it with minimal impact to the primary design metrics such
as performance, power and area.

1.4 The Estimation of Congestion

Routing congestion can be measured accurately only after the routing has
been completed. However, if the design exhibits congestion problems at that
stage, mere rerouting of the nets may not be able to resolve these problems.
This may necessitate a new design iteration with changes being made to the
placement or the netlist. For those changes to be effective, the designer must
be able to judge whether the modified design is likely to have an improved
congestion profile after it has been fully routed. It is in order to make this
judgment that several congestion estimation metrics and schemes applicable
to different stages of the design flow have been developed over the years.

The congestion metrics, therefore, serve two purposes. They allow the
designer to predict the final routability of a point in the design space at
a given design stage without actually going through the entire downstream
flow. Secondly, they can guide the optimization techniques at that stage to
move the design point towards a more routing-friendly implementation. The
expectations from the metrics for these two purposes are slightly different from
each other. For the former goal, accuracy is paramount and long computation
times may be tolerated. However, for the latter purpose, good fidelity may be
sufficient, but the metric must be fast to compute, since it will be repeatedly
used to choose between different implementation choices during the course of
the design optimization.

Several metrics that serve these purposes, at different stages in the design
flow, have evolved over the last few years. At the routing stage, a number of
such metrics are defined on the congestion map. As we saw in Section 1.1, these
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metrics include the track overflow, the maximum congestion, and the number
of congested bins. The goal of most of the congestion metrics developed for
earlier stages in the design flow is to predict these routing-level congestion
metrics as accurately as possible. All these metrics are the subject of Part II
of this book.

At the placement stage, fast but relatively inaccurate congestion predic-
tors such as the Rent’s exponent, pin density, perimeter degree, and wire-
length can guide the optimization in early iterations, whereas accurate and
expensive techniques such as probabilistic congestion maps and fast global
routers can be invoked once the placement has stabilized. These metrics and
congestion estimation techniques are discussed in detail in Chapter 2. Some
of these metrics and techniques have also been extended to be applicable at
the preceding technology mapping stage, especially when that stage incorpo-
rates some placement information (as is the case with most modern physical
synthesis flows). Other proxies for congestion that are targeted for use dur-
ing technology mapping are independent of the placement and rely solely on
the structural, graph theoretic properties of the netlist. Congestion metrics for
the technology-independent logic synthesis stage rely almost exclusively on the
structural properties of the netlist. Congestion estimation metrics applicable
during technology mapping and logic synthesis are the subject of Chapter 3.

1.5 The Optimization of Congestion

The elimination of routing congestion in a typical design flow has tradition-
ally been the responsibility of the routing stage. However, with the severity of
the congestion problem increasing over the years, industrial tools have been
forced to build congestion awareness in upstream design stages also. Modern
congestion-aware physical synthesis flows usually model design routability at
the placement stage, and use various heuristics to improve the estimated con-
gestion profile of the design at that stage.

Indeed, routing congestion can be considered for optimization at various
stages in the design flow, as each stage offers different flexibilities. For ex-
ample, nets can be routed differently to avoid congested regions during the
routing stage. While performing placement, cells can be placed so that the
corresponding design has fewer and less severe congestion hot spots. The
technology-independent logic synthesis and technology mapping stages deter-
mine the structural properties of the underlying network and the individual
nets in the design, which are the sources of the routing demand. In general, as
the level of the abstraction of the design increases, so does the design freedom.
At any design stage, the designer has access not only to the flexibility at the
current stage but also to those at subsequent stages. Unfortunately, the ac-
curacy of the congestion metrics decreases with the increasing level of design
abstraction. This affects the overall effectiveness of this approach of fixing po-
tential congestion problems as early as possible, since this approach depends
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not only on the design flexibilities but also on the accuracy and fidelity of
the congestion metrics. Part III of this book is devoted to the optimization
techniques available at various stages in the design flow and their effectiveness
in improving the routability.

In the past, routing techniques such as rip-up and reroute or route spread-
ing using congestion-based cost functions often sufficed for route completion.
These are the topic of Chapter 4, which is dedicated to routing techniques
aimed at relieving congestion. This chapter also discusses recent developments
in the congestion-aware optimization of critical nets, as well as the interaction
between signal routing and the power grid. Recent years have seen a signif-
icant emphasis on congestion alleviation during the placement stage, since
relying solely on routing techniques for this purpose has often proven time-
consuming and unpredictable for many modern designs. Chapter 5 describes
the most important of these placement techniques in detail. Recent physical
synthesis offerings from commercial vendors permit limited logic transforma-
tions during the placement optimizations. These capabilities point partly to
the limitations of the placement-only techniques while optimizing the layout of
a design and partly to the effectiveness of the logic transformations when they
are guided by accurate placement information. Congestion-aware technology
mapping is one such logic transformation that has seen much research during
the last few years. This research has resulted in a few promising techniques to
alleviate routing congestion. Technology-independent logic synthesis target-
ing routability or wirelength has also been pursued, typically by employing
graph theoretic metrics. Although the effectiveness of such a transformation
is limited by the difficulty of predicting downstream congestion accurately at
this stage, this continues to feed an active area of research. Chapter 6 cov-
ers the current state-of-the-art in congestion-aware technology mapping and
logic synthesis optimizations. Finally, Chapter 7 briefly describes the impact
of behavioral and architectural choices on the final congestion in a design.

1.6 Final Remarks

Although routing congestion manifests itself only at the very end of the typ-
ical synthesis-to-layout flow, it can lead to unacceptable design quality and
lack of design closure. The surest way to avoid such unpleasant last minute
surprises is to improve the predictability of the design flow. With placement
already having been integrated with circuit optimization in modern physical
synthesis flows, one of the biggest obstacles to improving this predictability is
the behavior of the router on congested designs, that can lead to unexpectedly
large wire delays for some of the nets. Therefore, it is certainly desirable to
build congestion awareness into the optimization of a design.

In this chapter, we defined several metrics to capture various aspects of
routing congestion. We then looked at the impact of the routing congestion on
the performance, convergence, manufacturability, and yield of modern designs.
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We observed that the routing congestion in future circuits is expected to
be even more severe because of growing design complexity and continuing
technology scaling. Finally, we motivated the need for congestion metrics at
different stages in the design flow, along with optimization techniques that
can utilize these metrics to help mitigate the congestion.
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Part II

THE ESTIMATION OF
CONGESTION



2

PLACEMENT-LEVEL METRICS FOR
ROUTING CONGESTION

The minimization of routing congestion has traditionally been carried out
during the routing stage. However, given the severity of the congestion prob-
lem in many modern designs, it is often too late to resolve all congestion
issues during routing if the previous stages of the design flow have been obliv-
ious to congestion. Most industrial congestion-aware physical synthesis flows
rely heavily on improving the routability of a design during the placement
stage itself. Indeed, as will be discussed in Chapter 5, there have been nu-
merous theoretical and practical advances in recent years towards building
congestion awareness into most of the standard placement paradigms. The
placement stage is particularly appropriate for congestion mitigation because
it provides significantly more flexibility than the routing stage. At the same
time, congestion gains realized during placement are unlikely to be adversely
affected by any subsequent design optimization steps (in contrast to those
obtained during, say, technology mapping, that may be frittered away if the
subsequent placement is not congestion-aware), because placement is followed
immediately by the routing stage.

However, for a placement algorithm to be congestion-aware, it must first
be able to evaluate whether any given placement configuration is likely to be
congested after routing, as well as discriminate between any two placement
configurations based on their expected congestion. Although running a router
can certainly provide these capabilities, it is not practical to route the entire
design every time its congestion must be evaluated (which may happen re-
peatedly within the iterations of the placement engine). Therefore, in order to
develop congestion-aware placement, one must also develop methods that can
be used to predict the expected post-routing congestion in a design without
having to incur the significant runtime penalty involved in routing. Many such
metrics and techniques, representing different tradeoffs between accuracy and
efficiency, have been developed over the years for application during place-
ment. Indeed, some of these techniques can even be extended for use during
congestion-aware technology mapping, as will be discussed in Chapter 3.
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Different congestion metrics provide different tradeoffs between the com-
putational overhead required for their estimation and the accuracy that they
can provide. They range from “quick and dirty” proxies for congestion, such
as the total wirelength of the design, to expensive but accurate congestion
prediction techniques such as the use of a fast global router. The remainder of
this chapter discusses the pros and cons of the various methods that have been
proposed for congestion estimation at the placement stage. We begin with a
discussion of some of the simpler metrics in Section 2.1. This is followed in
Section 2.2 by a discussion of probabilistic methods for congestion estimation;
these techniques provide a good tradeoff between runtime and accuracy and
have proven valuable in several industrial tools. Finally, we explore the use
of fast global routers for congestion estimation in Section 2.3. Although fast
global routers are computationally the most expensive among all the tech-
niques that we discuss in this chapter, the significant correlation between
the predicted and actual congestion maps that is achievable with their use is
making them a popular choice in several modern physical synthesis flows.

Although the congestion of a placed layout can be approximated by a scalar
such as the total wirelength of a design, it is more informative to compute the
congestion individually in every bin that will subsequently be used for global
routing. This generates a two-dimensional congestion map, as was mentioned
in Chapter 1. The congestion within any given bin arises from three1 kinds of
nets, namely, (i) intra-bin nets, (ii) inter-bin nets with at least one pin within
that bin, and (iii) flyover nets which are inter-bin nets that are routed through
the bin but have no pin within the bin. For instance, net n1 in the example
in Fig. 2.1 is an intra-bin net, whereas the remaining nets are inter-bin nets.
Furthermore, net n3 is a flyover net from the perspective of the central bin in
the layout, as are n2 and n4 with respect to the rightmost bin in the middle
row and the bottom bin in the middle column of the layout, respectively.
Different congestion estimation techniques handle these three classes of nets
in different ways. The prerouting estimation of the congestion caused due to
the inter-bin nets, especially that caused by flyover nets, is considerably more
difficult than the estimation of the congestion caused due to the intra-bin
nets, since global nets may have several choices for their routings. Therefore,
their contribution to the routing demand in a given bin may not be clear a
priori.

2.1 Fast Metrics For Routing Congestion

In this section, we will discuss several fast but relatively inaccurate (or, “quick
and dirty”) metrics that have been used during global placement. These met-
1 Unfortunately, there is no standardized taxonomy of nets across the literature.

Some works, such as [HM02], refer to the nets with one or more pins in a given
bin as the nets local to that bin (independent of their physical span or wirelength)
and the ones with no pins in the bin as the global nets with respect to that bin.
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Fig. 2.1. Intra-bin and inter-bin nets.

rics range from scalars such as the total predicted wirelength of the design,
to spatially distributed metrics that enable a quick estimate of the congestion
expected in each bin, such as the pin density and the perimeter degree. We
will also look at the application of certain structural properties of the cir-
cuit graph, captured by a relationship known as Rent’s rule, to speed up the
computation of the metrics discussed in this section even further.

These metrics are best used by fast congestion analyzers embedded within
optimizers during the early stages of global placement. During these applica-
tions, their fidelity to the actual congestion can help choose between alterna-
tive optimization moves based on their expected congestion impact, without
creating a significant computation overhead. Since these metrics do not cap-
ture the entire congestion in any given region, they are not very effective at
determining whether a given placement is congestion-free, in order to decide
whether the design flow may proceed to the routing stage. More accurate (but
also more computationally expensive) metrics such as probabilistic or global
routing-based congestion maps, which are described in later sections, are more
appropriate to guide that decision process.

2.1.1 Total Wirelength

Traditionally, placers have targeted the minimization of cost functions involv-
ing wirelength in the belief that the optimization of the wirelength also leads
to a reduction in congestion. Indeed, after performing the routing, the to-
tal wirelength (TWL) of a design can be written as the weighted sum of its
congestion in each bin, summed over all the bins in its layout as follows:

TWL =
∑
n∈N

ln =
∑
B

d(B) =
∑
B

CBs(B).
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In the above equations, ln denotes the length of the net2 n, d(B), s(B) and
CB represent the demand for the tracks, the supply of the tracks and the
congestion in a bin B, respectively, N is the set of all the nets in the design,
and the summations of the demands and the supplies are carried out over all
the bins in the layout. If the track supplies in all the bins are identical, then
it is easy to observe that the TWL is proportional to the average congestion.

However, there are several fundamental problems with the use of the TWL
as a congestion metric. Different bins often have different supplies in practice,
so that their CB values may not be directly comparable with each other. More
significantly, the minimization of the average congestion may not necessarily
result in the least congested design possible. This is because the TWL does not
not capture the spatial aspects (i.e., the locality) of the congested regions. A
design can easily have very low average congestion and yet have a few densely
congested bins that may be very difficult to route successfully. For instance,
this would be the case if their congestion was largely the result of intra-bin
nets that cannot be rerouted to other bins.

Another problem with the use of the TWL at the placement stage is that
the actual wirelengths of the nets are not known, since the nets have not yet
been routed. Therefore, while computing the TWL, the wirelength of a net
is estimated using metrics such as the half-rectangle perimeter (HRPM) of its
bounding box or the length of the minimum spanning tree (MST) for the net.
These metrics are oblivious to congestion and do not account for any detours
that may subsequently occur while routing the net. Given this large source
of inaccuracy, the additional runtime overhead required for the use of better
netlength estimates such as rectilinear Steiner trees (RSTs) may often not be
justified during the computation of the TWL. Indeed, even MSTs are not used
very often during TWL computation. Instead, the TWL computation usually
relies on HRPM estimates for the nets.

However, although the HRPM metric is an exact measure for the mini-
mum wirelength of a net that contains two or three pins, it may significantly
underestimate even the best possible wirelength required to route a multipin
net. This limitation is overcome through the use of empirical compensation
factors for the HRPM of a net that depend on the number of pins in the net.
This approach, first proposed in the Risa congestion-aware placement en-
gine [Che94], has been widely adopted in many applications that require fast
netlength estimation. The work in [Che94] carried out an empirical analysis of
the optimal Steiner routes for a large number of randomly generated multipin
nets, to measure the average factor by which the wirelength of a Steiner tree
for a net with a given number of pins exceeds its HRPM estimate. Table 2.1
presents these compensation multipliers for several different pin counts.

2 Note that a net is a logical concept, whereas a wire is its physical implementation
obtained after the routing. Following the usual practice in the literature on place-
ment, we use the terms net and wire interchangeably; they can be interpreted
appropriately depending on the context.
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Pin Count 1–3 4 5 6 8 10 15 20 25 30 35 40 45 50

HRPM
Multiplier 1.00 1.08 1.15 1.22 1.34 1.45 1.69 1.89 2.07 2.23 2.39 2.54 2.66 2.79

Table 2.1. Multipliers for the HRPM measure of a net to compensate for multiple
pins [Che94].

In spite of the inaccuracies inherent in these fast congestion-oblivious
netlength estimates, they exhibit good fidelity with the routed wirelengths
of the nets, especially in designs that are not very congested. However, they
can be misleading in congested designs in which a significant fraction of the
nets are detoured during routing.

Thus, although the use of the TWL as a congestion predictor can involve
significant inaccuracies, its advantage is that it involves little computational
overhead. This overhead can be reduced further through the judicious applica-
tion of structural techniques such as those based on Rent’s rule, as discussed
in Section 2.1.4. However, modern congestion-aware placement engines usu-
ally rely on congestion metrics that can provide greater spatial discrimination
than that achievable through the scalar TWL metric.

2.1.2 Pin Density

The pin density (also known as the structural pin density) metric has been
employed by several placement algorithms to improve the routability of con-
gested regions in a design. It is defined for a bin as the ratio of the number
of pins in the bin to the area of the bin (or, alternatively, as the number of
the pins in the bin if each of the bins has the same area). Thus, for example,
the central bin shown in Fig. 2.1 has a pin density of 5/(WH) (where W and
H are the width and the height of the bin, respectively), since there are five
pins in the bin (namely, two belonging to the inverter and three belonging to
the two-input NAND gate).

This metric captures the contributions of the intra-bin nets and the inter-
bin nets at least one of whose pins lie within the bin. It, however, ignores the
flyover wires which are routed through the bin, even though they consume
routing resources within the bin. Thus, it models the congestion due to local
wires well, but can significantly underestimate the congestion caused due to
global wires. However, it has been empirically shown that around 75% of
the congestion in a bin is caused due to nets that have a pin in that bin
[HM02]. Given the ease of computation of this metric and its fidelity with the
actual routing congestion, it is a suitable candidate for congestion estimation
during early placement optimizations. Unlike the TWL metric which is a scalar
that characterizes the entire design, the pin density metric is quite good at
identifying the specific bins that are likely to suffer from congestion.
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2.1.3 Perimeter Degree

The perimeter degree of a bin is defined as the ratio of the number of inter-
bin nets that have at least one pin inside a bin to the perimeter3 of the bin.
As an example, the central bin shown in Fig. 2.1 has a perimeter degree of
1/(W + H), since there are two nets, n2 and n4, which have pins inside the
bin and are also connected to some cells outside the bin, and the perimeter of
the bin is 2(W + H).

This metric ignores the routing demand for all intra-bin nets (such as
net n1 in our example), as well as for flyover nets (such as net n3). Thus,
it ignores the congestion due to short, local nets completely and models the
global congestion partially. Therefore, it captures the expected congestion at
the boundary of the bin rather than that within the bin, in contrast to the
pin density metric. Furthermore, compared to the pin density metric, it tends
to accentuate the congestion problems in large bins (because the perimeter of
a large bin grows less rapidly than its area when compared to a small bin).

As we shall see in Section 2.1.4, this metric lends itself to very efficient
approximation through the application of Rent’s rule. The perimeter degree
has been used for congestion alleviation during placement in [SPK03].

2.1.4 Application of Rent’s Rule to Congestion Metrics

The so-called Rent’s rule [LR71] is an empirical observation about the re-
lationship between the number of terminals required by a design block to
interface with its environment and the number of circuit components within
the block. This relationship was first observed almost four decades back, and
has been shown to hold across a large spectrum of design styles, design sizes,
circuit families, and process generations. It can be represented by the following
equation:

E = AGr, (2.1)

where E is the number of terminals in a block that contains G cells, A is the
average number of terminals per cell within the block, and r (0 ≤ r ≤ 1) is a
constant known as the Rent’s exponent. Although the exact values of A and
r may differ from design to design, they appear to hold for any given design
across a wide range of block sizes within the design.

Equation (2.1) is found to be valid when the number of partitions of the
design is greater than five or so; for fewer partitions, the number of termi-
nals required is smaller than that predicted by Equation (2.1), and is given
by a more complex relationship. It has also been found that Rent’s rule un-
derestimates the number of interface terminals when the number of cells in

3 Using a different normalization, [SPK03] defines the perimeter of a bin as the
square root of its area, rather than the usual sum of the lengths of all four of its
boundaries.
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a block is small [Str01]. The domains where Rent’s rule over- and underesti-
mates the number of interface terminals are known as Region II and Region
III of the Rent’s rule curve, respectively, with Region I being used to refer to
the domain in which Rent’s rule holds. The intuitive explanation for Region
II is that designers typically attempt to minimize the number of external pins
on a package by time-multiplexing several signals on one pin or by encoding
them. In contrast, Region III appears because very small blocks may often
be dominated by complex, high fanin cells, or by simple cells such as inverters
and buffers that can drive large loads and therefore, have large fanouts.
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Fig. 2.2. The Rent’s rule curve E = 2.5G0.75 for a typical design.

An example of such a curve is shown in Fig. 2.2, where the number of cells
in partitioned blocks and the number of interface terminals are plotted on the
horizontal and vertical axes, respectively, using logarithmic scales. The Rent’s
rule depicted in the figure represents the equation E = 2.5G0.75, where 0.75
is the Rent’s exponent and 2.5 is the average number of pins per cell4. In this
figure, as the number of cells in a block increases along the horizontal axis, one
4 These values are typical for modern designs; the Rent’s exponent for most circuits

is greater than 0.50 [Str01], and today’s standard cell libraries contain many
complex cells with a large number of inputs. One way to obtain the Rent’s rule
curve for a given design is to partition the design successively to obtain blocks
of various sizes, counting the number of interface terminals for each block. The
average number of cells and interface terminals for each block size can be plotted
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moves from Region III to the main portion of the curve in Region I, and finally
to Region II. For this plot, Region II corresponds to the blocks in which the
number of cells varies from 105 to 106, whereas Region III represents blocks
containing at most ten cells.

Rent’s rule has been used widely for many applications such as a priori
wirelength estimation5, placement, and partitioning. Applying Rent’s rule,
several works such as [Don79, Dav98] have derived the relationship between
the total wirelength and Rent’s exponent; a good survey of this area of research
can be found in [Str01]. The relationship between the average netlength for a
partitioning-based placement of a given design in a square area and the Rent’s
exponent for that design has been shown to be as follows [Don79]:

l ∼Gr− 1
2 , r > 1/2,

l ∼ log G, r = 1/2,

l ∼f(r), r < 1/2,

where l is the average netlength and f(r) is a function that is independent of G.
Most real-world circuits are modeled by the first of the three cases described in
these equations. These equations indicate that the larger the Rent’s exponent
for a design, the higher is the average netlength (and therefore, the TWL)
in the design. Since a large value of the TWL metric usually corresponds to
increased congestion (as discussed in Section 2.1.1), the Rent’s exponent is
also an indirect measure of congestion. Indeed, once the Rent’s exponent has
been precomputed for a design or a family of designs, the approximation of
the TWL for any design block of known size requires constant time, with no
iteration being required over all the nets in the block.

The direct application of Rent’s rule can also be used to speed up the
computation of the perimeter degree metric. If the Rent’s exponent is known
for a given design, then the number of terminals for any cluster of cells can be
approximated in constant time. More specifically, given any bin, the number
of inter-bin wires that have at least one pin in that bin can be approximated
in constant time, without having to iterate over all the cells in the bin. As a
result, the perimeter degree metric can be computed for an entire design in
O(B) time, where B is the number of bins in the layout.

Of course, the price for the speed-up in the computation of the TWL or
the perimeter degree through the application of Rent’s rule is an increase in
the error inherent in the metric. However, this is usually not a serious concern
during the early stages of placement optimization. Indeed, the Rent’s exponent
has been used as a metric during early placement targeting the TWL or the
average congestion in [YKS02].

on a log-log plot, followed by curve fitting to obtain the Rent’s exponent for the
design.

5 Wirelength estimation schemes that rely solely on the connectivity of the cir-
cuit graph and do not use any placement information are referred to as a priori
schemes.
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2.2 Probabilistic Estimation Methods

The only way to obtain a perfectly accurate congestion map is to run the
global router on all the placed cells. However, this is an expensive operation.
Probabilistic estimation methods (also referred to as stochastic methods) have
been developed as a fast way to approximate the behavior of global routers.
Instead of attempting to find a unique route for each net, probabilistic es-
timation methods assume that all “reasonable” routes for a net are equally
likely, and consider all these routes while computing the congestion contri-
bution of a net to the bins that it may be routed through. Different flavors
of probabilistic congestion maps use different notions for what constitutes a
reasonable route, although most of them consider only those routes that do
not involve any detours.

Since probabilistic estimation techniques avoid choosing between the dif-
ferent routes possible for a given net or even enumerating these routes, they
also manage to avoid the combinatorial optimization problem that a global
router attempts to solve during the process of routing the nets. In partic-
ular, probabilistic estimation is independent of the order in which the nets
are considered. As a result, these techniques are considerably faster than the
global routing process (since they rely on closed form formulas for their con-
gestion computations). However, this computational efficiency is obtained at
the cost of accuracy; real-world global routers can diverge significantly from
the simple routing behavior that these techniques model (as shall be dis-
cussed in Section 2.2.7). Examples of router behaviors that are not modeled
by these techniques include the preferential routing of performance-critical
nets, and the ability of routers to avoid congested regions if alternative routes
through uncongested regions are available. Yet, in spite of all the inaccuracies
in congestion map estimation using probabilistic estimation, these techniques
are good candidates for application during the early stages of placement and
post-placement circuit optimization. Indeed, they have been used successfully
in several commercial physical synthesis tools.

Since routers typically try to route nets using shortest possible paths as far
as possible, it is reasonable for probabilistic estimation techniques to ignore
routes that involve detours. Furthermore, these techniques avoid the compli-
cations of topology generation by decomposing each multipin net into two-pin
segments using some simple heuristic model such as a clique, a minimum span-
ning tree or a rectilinear Steiner tree. In the same vein, the layer assignment
of the routes is also ignored. For any given net, a probabilistic estimation
technique considers all the valid routes for that net that satisfy the model-
ing assumptions for that technique. The congestion contribution of each such
route to every bin that it passes through is then weighted by the probability
of that route being selected, using some simple probability distribution such
as a uniform distribution.

Although several probabilistic estimation models have been explored, the
two that have received the most attention are distinguished by the number of
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bends that they allow in their routings. The more general model of the two
permits an arbitrary number of bends in the routes [LTK+02], in contrast
to the other model that considers only those routes that have at most two
bends [CZY+99] [WBG04]. Routes that involve just a single bend are said to
be L-shaped, whereas those that involve two bends are said to be Z-shaped, as
shown in Fig. 2.3. Routes whose source and sink pins lie in the same row or
column of bins are said to be flat. Given a choice of two routes having the same
wirelength but different numbers of vias, most routers will select the one with
the fewer vias (and consequently, fewer bends). Therefore, the probabilistic
estimation model that restricts its routes to those with at most two bends usu-
ally does a better job of modeling actual router behavior. We will next discuss
a probabilistic estimation technique that uses such a model, and subsequently
briefly explore the more general multibend model in Section 2.2.4.

(a) (b) (c)

Fig. 2.3. Examples of (a) L-shaped, (b) Z-shaped, and (c) multibend routes.

Given a two-pin net and a bin, the general procedure for probabilistic
congestion map generation attempts to obtain an expression for the expected
routing demand (also referred to as the utilization) of the net in that bin.
This is achieved by computing the fraction of valid routes for the net that
pass through the bin. More precisely, we weight the track usage within the
bin for some given route by the probability of that route being selected. All
these weighted track usages are then summed up over all the routes of the net
to obtain the routing demand of the net in the bin.

We illustrate this computation first for intra-bin nets and flat nets, and
then extend it to the case of general L-shaped and Z-shaped nets. Let the bins
created by the tessellation of the layout area be indexed by their column and
row indices, with the bin (1, 1) lying in the lower left corner of the layout.
Without loss of generality, we assume that the net whose contribution to
the congestion map is being computed has its pins in the bins (1, 1) and
(m, k). Let the utilization of the net in some bin (i, j) (which lies in the ith

column and the jth row) be denoted by U (i,j) (with U
(i,j)
x and U

(i,j)
y referring

to routing demands in the horizontal and vertical directions, respectively).
For the sake of simplicity, we assume that all bins have the same width and
height, denoted by W and H, respectively; the extension to bins of different
sizes is straightforward. Furthermore, we assume that the two pins of a net
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are denoted by a and b, and that these pins lie at locations whose coordinates
are (xa, ya) and (xb, yb), respectively. Let the horizontal (vertical) distance of
pin a from the right (upper) boundary of the bin (1, 1) that contains it be
denoted by da

x (da
y), and the horizontal (vertical) distance of pin b from the

left (lower) boundary of the bin (m, k) that contains it be denoted by db
x (db

y),
as illustrated in Figs. 2.5 and 2.6.

2.2.1 Intra-bin Nets

a(xa, ya)

b(xb, yb)

H

W

Fig. 2.4. An intra-bin net with pins at (xa, ya) and (xb, yb).

The shortest possible route for the intra-bin net in Fig. 2.4 requires a
horizontal track of length |xa − xb| and a vertical track of length |ya − yb|.
Therefore, the horizontal and vertical routing demands in the bin due to the
net are respectively given by:

U (1,1)
x =

|xa − xb|
W

and U (1,1)
y =

|ya − yb|
H

.

2.2.2 Flat Nets

As mentioned earlier, flat nets are inter-bin nets whose pins lie either in the
same row or in the same column of bins. A flat net is said to be horizontally
flat if its terminals lie in the same row; otherwise, it is said to be vertically
flat. Horizontally and vertically flat nets are illustrated in Fig. 2.5(a) and (b),
respectively. We assume that these types of nets are routed with at most one
bend. This can be accomplished using either of two L-shaped paths, shown by
the solid and dashed-dotted lines in the figure. Therefore, for a horizontally
(vertically) flat net, vertical (horizontal) demand may exist only in the first
and last bins.

As can be seen in Fig. 2.5(a), the horizontal track length required in the
first bin, namely (1, 1), equals the distance of the pin a from the right boundary
of the bin (i.e., da

x). Similarly, the horizontal track length required in the
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Fig. 2.5. Routing demand analysis for (a) horizontally flat and (b) vertically flat
nets.

last bin, (m, 1), is db
x, as shown in the figure. The net requires an entire

horizontal track in each of the middle bins that it passes through. Therefore,
the horizontal routing demand for this horizontally flat net is given by:

U (1,1)
x =

da
x

W
,

U (j,1)
x = 1, for j = 2, . . . ,m − 1, and,

U (m,1)
x =

db
x

W
,

where W is the width of a bin. For this net, vertical routing track demand
exists only in the first or last bins, each with probability 1/2, and is given by:

U (1,1)
y =

|ya − yb|
2H

,

U (j,1)
y = 0, for j = 2, . . . , m − 1, and,

U (m,1)
y =

|ya − yb|
2H

,

where H is the height of a bin.
Similarly, the horizontal and vertical routing demands for the vertically

flat net in Fig. 2.5(b) can be written as:
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U (1,1)
x =

|xa − xb|
2W

,

U (1,j)
x = 0, for j = 2, . . . , k − 1,

U (1,k)
x =

|xa − xb|
2W

,

U (1,1)
y =

da
y

H
,

U (1,j)
y = 1, for j = 2, . . . , k − 1, and,

U (1,k)
y =

db
y

H
.

2.2.3 Single and Double Bend Routes for Inter-bin Nets

In the routing model assumed in [WBG04], inter-bin routes that are not flat
are assumed to be routed with at most two bends, forming L-shaped or Z-
shaped routes. Let Up,(i,j) represent the routing demand in bin (i, j) obtained
by considering only p-bend routes for a net. Then, the overall utilization U (i,j)

in bin (i, j) for the net can be written as:

U (i,j) = α1U
1,(i,j) + α2U

2,(i,j),

where α1 and α2 are empirically chosen weights indicating the relative pref-
erences for single and double bend routes, respectively. Typically, α1 ≥ α2

(because, given a choice, routers prefer routes with fewer vias), α1 + α2 = 1,
and α1, α2 ≥ 0 (in order to allow the interpretation of these weights as prob-
abilities).

For a net with pins a(xa, ya) in bin (1, 1) and b(xb, yb) in bin (m, k), there
are two possible single bend routes, whereas the number of double bend routes
is (m + k − 4) (assuming m, k > 1). These routes lead to different routing
demands in different bins lying within the bounding box of the net. The
computation of the routing demand in all these bins can be covered by the
analysis of nine different cases, based on the location of the bin relative to the
pins of the net. These cases include the four bins located at the corners of the
bounding box, bins located along the four sides of the bounding box but not
at its corners, and the bins located in the interior of the bounding box.

Let us first consider the bin (1, 1), located at the lower left corner of the
bounding box of the net. In this case, all the routes to the destination bin
(m, k) leave either horizontally or vertically from this bin. The numbers of
routes leaving this bin horizontally and vertically are (m − 1) and (k − 1),
respectively, as shown in Fig. 2.6(a). Of these routes, one route in either
direction is L-shaped; these two single bend routes pass through the bins lying
along the edge of the bounding box of the net. The remaining (m + k − 4)
routes are all Z-shaped. As was discussed in Section 2.2.2, we can see that
the routes leaving the bin horizontally require a horizontal track of length da

x,
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Fig. 2.6. Routing demand analysis for bins located at the corners of the bounding
box of a net routed from bin (1, 1) to bin (m, k): (a) Bin (1, 1) at lower left corner,
(b) Bin (m, k) at upper right corner, (c) Bin (1, k) at upper left corner, and, (d) Bin
(m, 1) at lower right corner.

whereas routes departing vertically use a vertical track of length da
y. Therefore,

the contribution to the routing utilization due to the L-shaped paths is given
by:

U1,(1,1)
x =

da
x

2W
and U1,(1,1)

y =
da

y

2H
.

Similarly, the contribution due to Z-shaped paths is given by:

U2,(1,1)
x =

m − 2
m + k − 4

× da
x

W
, and,

U2,(1,1)
y =

k − 2
m + k − 4

×
da

y

H
.

These expressions can be combined to yield the overall routing demand in bin
(1, 1) as follows:

U (1,1)
x = α1U

1,(1,1)
x + α2U

2,(1,1)
x

U (1,1)
y = α1U

1,(1,1)
y + α2U

2,(1,1)
y .

The analysis of the routing demand for bin (m, k), located in the top right
corner of the bounding box and illustrated in Fig. 2.6(b), is analogous to that
for bin (1, 1) discussed above.
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The only routes that pass through the bins located in the upper left and
lower right corners of the bounding box (illustrated in Fig. 2.6(c) and (d)) are
the single bend routes. Therefore, the utilization for the bin in the upper left
corner can easily be shown to be:

U (1,k)
x = α1

da
x

2W
and U (1,k)

y = α1

db
y

2H
.

Similarly, the utilization for bin (m, 1), in the lower right corner, can be derived
as:

U (m,1)
x = α1

db
x

2W
and U (m,1)

y = α1

da
y

2H
.

(i, j)

1

1

1

1

Fig. 2.7. Routing demand analysis for a bin located within the interior of the
bounding box of a net.

Next, let us analyze the utilization in a bin (i, j) (with 1 < i < m and
1 < j < k) that lies in the interior of the bounding box of the net. As shown
in Fig. 2.7, one Z-shaped route enters the bin horizontally and one enters it
vertically; these two routes leave without any bends, using up one horizontal
and one vertical track in the process. Therefore, the horizontal and vertical
routing demand in the bin is given by:

U (i,j)
x = α2

1
m + k − 4

and U (i,j)
y = α2

1
m + k − 4

.

Now, consider the non-corner bins located in the leftmost column of the
bounding box of the net. In other words, let us derive the utilization for a
bin (1, j) with 1 < j < k. One of the two L-shaped routes passes through
this bin, entering and exiting vertically. Of the (k− 2) Z-shaped routes whose
middle segments are horizontal, (k − j) routes enter this bin, across its lower
boundary. One of these Z-shaped routes turns right and exits the bin hori-
zontally, whereas the remaining (k− j − 1) routes continue vertically (to turn
right at some bin (1, j′) with j < j′ < k). The Z-shaped route that enters the
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bin vertically and leaves it horizontally requires a horizontal track of length
da

x and half of a vertical track. The remaining routes passing through this bin
use up one full vertical track each. Therefore, the horizontal routing demand
is given by:

U (1,j)
x = α2

da
x

(m + k − 4)W
.

The vertical routing demand due to the L-shaped route passing through the
bin is given by:

U1,(1,j)
y =

1
2
,

whereas that due to the Z-shaped routes is given by:

U2,(1,j)
y =

1
2(m + k − 4)

+
k − j − 1
m + k − 4

.

Therefore, the total vertical routing utilization in the bin is given by:

U (1,j)
y = α1U

1,(1,j)
y + α2U

2,(1,j)
y

=
1
2
α1 + α2

2(k − j − 1) + 1
2(m + k − 4)

.

The analysis of the utilization in the non-corner bins located along the
remaining three edges of the bounding box of the net is analogous to the case
discussed above, and is omitted for brevity.

2.2.4 Multibend Routes for Inter-bin Nets

The method discussed in the previous section for single and double bend routes
can also be extended to consider all minimum length multibend routes. For
each bin within the bounding box of a net, the routing demand can be derived
by counting the multibend routes passing through that bin, as described in
[LTK+02]. The number of shortest possible multibend routes from bin (1, 1)
to bin (m, k) is

(
m+k−2

m−1

)
, in contrast to (m + k − 2) routes under the single

and double bend model. The demand due to multibend routes can be weighed
uniformly as in [LTK+02], or based on the number of bends as discussed in
Section 2.2.3.

Since the routing model that considers multibend routes explores a larger
space than one that considers single and double bend routes only, it leads
to a different distribution of the routing demands. Typically, for an inter-bin
net, estimates based on single and double bend routes predict high utilization
in bins lying along the edges of the bounding box of the net, whereas those
based on multibend routes show increased routing demand in the interior of
the bounding box. Moreover, the bins that are in the interior of the bounding
box have the uniform routing demand α2/(m + k − 4) under the single and
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Fig. 2.8. (a) L- and Z-shaped routes, and (b) the corresponding routing demands.
(c) Multibend routes, and (d) the corresponding routing demands.

double bend route model, whereas the consideration of multibend routes leads
to varying routing demands in these bins.

As an example, Fig. 2.8 illustrates the differences in the distributions of
the routing demands on a 3 × 3 grid obtained using probabilistic estimation
methods based on single and double bend routes only (in Fig. 2.8 (a) and
(b)) and multibend routes (in Fig. 2.8(c) and (d)). In this example, the values
of α1 and α2 for the former estimation model are taken to be 0.6 and 0.4,
respectively, whereas the multibend model uses uniform weighting for all the
routes. In the figure, single bend routes (namely, r1 and r4) are depicted using
solid lines, double bend routes (namely, r2 and r3) are shown using dashed
lines, whereas dotted lines are used for the remaining two routes (namely,
r5 and r6) that involve three bends each. The tuple (Ux, Uy) within a bin
represents the horizonal and vertical routing demand within that bin. It can be
seen that the single and double bend model yields the least routing demand in
the central bin (since only two routes pass through that bin, and these routes
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are non-preferred). In contrast, the least routing demand with the multibend
model shows up in the two non-pin corners of the bounding box. Thus, the
two routing models lead to different probabilistic utilizations, and therefore
different predictions about the locations of congested hot spots.

In layouts that are not very congested, the tendency of routers to minimize
the usage of vias makes the congestion maps predicted using only single and
double bend routes more representative of the actual post-routing congestion
map. On the other hand, although nets in congested regions are often routed
with more bends, the response of the router to existing congestion and the
increased occurrence of detours in such regions increases the error inherent
in probabilistic congestion map prediction irrespective of the routing model
used.

2.2.5 Routing Blockage Models

The modeling of routing blockages is one of the most challenging issues faced
by all probabilistic estimation methods. A routing blockage is an area where
the routing resources are either reduced or unavailable. Modern designs typi-
cally include many blockages due to the presence of custom macros or hard6

intellectual property (IP) blocks. If no routing tracks are available across the
blockage, then the blockage is said to be complete; otherwise, it is partial.
Partial blockages occur frequently due to prerouted signal and clock nets and
the power grid, and can be modeled with relative ease by reducing the rout-
ing supplies in the corresponding bins. The modeling of complete blockages
is much harder, and relies on various heuristics to mimic the behavior of a
typical router in the vicinity of such blockages. For the sake of convenience,
we refer to complete blockages merely as blockages in the remainder of this
chapter (since partial blockages do not require any special handling).

Since a router cannot use any tracks in a blocked bin, any probabilistic
utilization within such a bin should also be zero. For nets some of whose
minimum length routes pass through blocked bins, it is reasonable to assume
that a router would try to find a minimum length route through neighboring
unblocked bins if such a path exists. Therefore, for a net whose bounding box
includes one or more blocked bins but that also has some minimum length
route passing only through unblocked bins, the routing demand in the blocked
bins is distributed to their neighboring bins to reflect the expected behavior
of the router.

Consider the example depicted in Fig. 2.9(a), in which the central bin
is blocked, the blockage being represented by the hexagonal pattern. If this
blockage is ignored, the routing demand (assuming a single and double bend

6 IP blocks available only in layout formats such as GDSII that are not amenable
to any changes are said to be hard. In contrast, soft IP blocks are available at a
higher abstraction level, such as that of a register transfer level (RTL) description,
and designers have the freedom to implement or modify their layout.
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routing model) is as shown in Fig. 2.9(b) (which is the same as Fig. 2.8(b)).
The routing demand for the blocked bin can be distributed among its un-
blocked neighbors using some heuristic that weights this redistribution by the
distance between the bins [LTK+02,SY05]. For instance, it may be distributed
equally among the four bins that lie within one unit of Manhattan distance, as
shown in Fig. 2.9(c). However, it is easy to see that the only minimum length
routes possible in this case are the two L-shaped routes; the corresponding
routing demand is depicted in Fig. 2.9(d). Unfortunately, the price for the
increased accuracy obtained after determining that only the two L-shaped
routes are possible is an increase in computation time.

Fig. 2.9. (a) An example of a blocked bin. (b) Routing demand computed ignoring
the blockage. (c) Routing demand after heuristically distributing the routing de-
mand from the blocked bin to adjacent unblocked ones. (d) A more realistic routing
utilization.

However, if no minimum length route for a net can avoid blocked bins,
the router can be expected to try to complete the routing of the net with the
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shortest possible detour. Depending on the complexity of the blockage, the
detour can be modeled during probabilistic congestion map estimation either
by creating pseudo-pins on the net or by performing explicit routing.

Fig. 2.10. Modeling a detour due to a row blockage using pseudo-pins.

An example of such a detour is depicted in Fig. 2.10. In this example, one
row inside the bounding box is completely blocked, eliminating all minimum
length routes for the net. Such a blockage of an entire row (column) within
the bounding box can be handled by expanding the bounding box in the
horizontal (vertical) direction until an unblocked bin is found in the blocked
row (column), and then inserting pseudo-pins on the net to route it through
this unblocked bin. Figure 2.10 shows pseudo-pins p1 and p2 created after
expanding the bounding box to the left; as a result, the net is decomposed into
three distinct segments. The estimation of probabilistic routing utilization is
performed individually on each of these segments and added to the respective
bins. This heuristic typically has a faster runtime than maze routing. However,
it may not be applicable to more complicated blockage configurations, leaving
no option but explicit routing to handle such blockages.

In general, heuristics for modeling routing blockages are effective at allow-
ing reasonably accurate congestion estimates without excessive computation
overhead only when the blockages are simple and few. In the presence of a large
number of complicated blockages, however, probabilistic estimation methods
are highly inaccurate because of the modeling of the blockages; a (fast) global
router is the only known reliable alternative in such a case.

2.2.6 Complexity of Probabilistic Methods

The pseudocode for a generic probabilistic congestion estimation procedure
is shown in Algorithm 1. It begins with the computation of the supplies of
routing tracks for all the bins in the layout. This step requires O(b) time,
where b is the number of bins in the layout. This is followed by the estimation
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Algorithm 1 Congestion estimation using probabilistic methods
1: for all bins B in the layout do
2: Compute the routing track supply in B
3: end for
4: for all nets N in the design do
5: if there are blocked bins in the bounding box of N then
6: Apply blockage modeling heuristics to compute utilization for N
7: else
8: Decompose N into two-pin segments
9: for all segments s of N do

10: for all bins B in the bounding box of s do
11: Compute probabilistic routing utilization for s in B
12: Add utilization for s in B to the total utilization of B
13: end for
14: end for
15: end if
16: end for
17: for all bins B in the layout do
18: Divide the probabilistic routing utilization of B by its available track supply
19: end for

of routing demand due to all the nets in the design. Nets involving blocked
bins are handled heuristically. All nets are decomposed into two-pin segments,
and the probabilistic demand is computed for each of these segments in each
of the bins within their bounding boxes.

The decomposition of multipin nets into two-pin segments can be achieved
by constructing a minimum spanning tree (MST) or rectilinear Steiner tree
(RST). Although RST construction is closer to the actual topology genera-
tion used during routing, the runtime overhead for RSTs cannot always justify
the additional accuracy, if any, given the errors already inherent in the proba-
bilistic estimation process. Furthermore, the use of the RST may even worsen
the accuracy if the RST topologies assumed during congestion estimation and
constructed during routing are very different. Therefore, the use of a MST al-
gorithm usually suffices for the decomposition of a net. A MST for a net with
p pins can be constructed in O(p2) time using Prim’s algorithm implemented
with a Fibonacci heap.

The computation and addition of the probabilistic routing demand for a
two-pin net requires O(b) time, since the bounding box of a net may span the
entire layout area in the worst case. Therefore, assuming MST construction
and a fast heuristic to handle blockages, the for loop in lines 4–16 of the
pseudocode requires O(n(bp+ p2)) time, where n is the number of nets in the
design. The subsequent division of the utilizations by the track supplies to
compute the expected congestion in each bin requires O(b) time. Therefore,
if the maximum number of pins in a net is assumed to be a constant (as is
usually true in practice because of fanout constraints during circuit optimiza-
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tion), the overall complexity of probabilistic congestion estimation is O(nb).
Thus, in the presence of a few, relatively simple blockages, this complexity is
linear in the number of nets. However, if a large number of complicated block-
ages are present, the overall time complexity for probabilistic estimation may
trend towards that of global routing, since many nets may require routing to
compute the utilization.

2.2.7 Approximations Inherent in Probabilistic Methods

The price that probabilistic methods pay for efficiency when compared to
routing-based congestion estimation methods is an inability to capture the
behavior of routers on nets that are difficult to route. This includes approx-
imations in the handling of blockages, limited or non-existent modeling of
detours, layer assignment and blockages due to via stacks, as well as approx-
imations in the topology generation for multipin nets. Another significant
source of error is the failure of these schemes to model the response of a
router to existing congestion, as discussed next.

Routers typically are congestion-aware. In other words, when a router finds
that the routing demands in certain bins in the bounding box of a net are
approaching or exceeding the available supply, it avoids such bins and selects
uncongested bins as much as possible. In contrast, most probabilistic con-
gestion estimation schemes ignore any prior congestion, adding the routing
demand for a new net to already congested bins also, even though a route
may exist through uncongested bins within the bounding box of the net. This
behavior is illustrated by an example in Fig. 2.11. Assume that the horizontal
and vertical supply in each bin consists of five tracks each. In this example,
Fig. 2.11(a) depicts the prior congestion in each bin within the bounding box
of the net. In such a scenario, most routers will route the net through the
uncongested bins as shown in Fig. 2.11(b). However, probabilistic routing de-
mand estimation techniques distribute the routing demand for this net among
all the bins, even if they are congested; the congestion map obtained from such
a scheme using a single and double bend model is shown in Fig. 2.11(c).

This example illustrates how the probabilistic estimates can be pessimistic
in densely congested regions. This pessimism in probabilistic congestion maps
has the following implications on design convergence strategies:

• If the probabilistic estimation reports no congested areas, then a detour-
free global routing solution definitely exists, and one can proceed to the
routing stage with the existing placement rather than attempting to im-
prove the congestion further at the placement stage.

• If the probabilistic methods report congested regions, then a detour-free
routing solution may still be possible, since the methods overestimate the
routing demands in the congested regions. One may proceed to the routing
stage if the reported congestion is not too high or if there are only a few,
small congested regions.
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Fig. 2.11. (a) The existing congestion map within the bounding box of a net, before
this net is processed. (b) A routing for the net that passes through uncongested bins,
and the updated congestion map. (c) Congestion map predicted by a probabilistic
congestion estimation scheme after processing this net. (d) Congestion map obtained
after congestion redistribution.

The pessimism in the probabilistic congestion maps can be reduced by ap-
plying post-processing techniques that redistribute the routing demand from
the densely congested bins to the sparsely congested ones [KX03,SY05]. Fig-
ure 2.11(d) shows the effect of such a congestion redistribution heuristic pro-
posed in [SY05]. This heuristic buckets the bins within the bounding box of
a net into partitions obtained through a breadth-first traversal from one of
the pins, such that every minimum length route for the net will pass through
exactly one bin in each partition. It then redistributes the routing demand in-
dividually within each partition, moving it greedily from overcongested bins to
sparsely congested ones. The resulting congestion map is a better approxima-
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tion of the actual post-routing congestion map (such as the one in Fig. 2.11(b))
than the original map. However, any post-processing heuristic that improves
the accuracy and lessens the pessimism in probabilistic congestion estimates
comes at the cost of an increase in runtime.

Fig. 2.12. (a) A three-terminal net with a clique on it. (b) An MST with length of
9. (c) An RST with length of 7.5.

The inaccuracies in a probabilistic congestion map that arise because of the
modeling of multipin nets can be illustrated through an example. Consider
the three-pin net illustrated in Fig. 2.12; the figure depicts three possible
decompositions for this net. Assume for the sake of simplicity that each bin
is a square whose side is of unit length. It can be seen that the clique model
yields the largest netlength (of fifteen units), whereas the RST decomposition
results in the shortest netlength, of 7.5 units. The netlength of the MST
model of the net is nine units. In general, a congestion map obtained using
MST decompositions will point to more congestion in the layout than one
that relies on RST decompositions.

2.3 Estimation based on Fast Global Routing

As we observed in Section 2.2.7, probabilistic congestion estimation suffers
from several significant sources of errors. For instance, the only viable alter-
native to deal with complicated blockages is to carry out routing in their
vicinity. It is natural to investigate whether the more extensive use of routing
can help improve the accuracy of the predicted congestion maps. Of course, it
is not practical to invoke a full-fledged global router inside a placement opti-
mization loop to alleviate the congestion, because of large runtime overheads.
However, if the global routing can be carried out in a “low effort” mode, it
may help generate a congestion map prediction that is more accurate than
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one obtained using probabilistic estimation. This has motivated the recent
development of “fast” global routing techniques targeted primarily towards
congestion estimation.

Typically, in modern process technologies, which provide up to nine metal
layers at the 90 nm technology node, global routing and layer assignment is
performed simultaneously, even though performance-driven global routing in
the presence of blockages and performance-driven layer assignment are indi-
vidually intractable problems [HS01,SL01]. As was discussed in Section 1.1.1,
the simultaneous exploration of the layer and bin spaces results in better
routes than those obtained by searching these spaces sequentially. However,
the price for this simultaneous exploration is paid in high runtimes. Rout-
ing graphs in modern routing architectures have an order of magnitude more
nodes and edges due to the increased number of metal layers as compared
to those from a couple of decades ago. Most global routers still use some
version of maze routing or Dijkstra’s shortest path algorithm, although often
augmented with fast search algorithms, to find routes having the least cost
(which may be delay, congestion, wirelength, or some combination of these).
When global routing is employed for congestion estimation purposes, some
inaccuracy in the predicted routes for the nets (as compared to their actual
routes) can be tolerated, especially if it leads to a significant gain in com-
putation time. Therefore, efforts to apply global routing to the problem of
congestion estimation have focused primarily on two strategies, namely:

• the reduction of the search space through a coarsening of the routing graph,
and,

• the extensive use of fast search algorithms.

2.3.1 Search Space Reduction

The availability of a growing number of routing layers causes the routing graph
to be large. Its size can be reduced significantly by collapsing all the horizontal
layers and all the vertical layers into two orthogonal layers. This results in a
significant reduction in the size of the routing graph. The horizontal (vertical)
track supplies for a bin in this collapsed routing graph are obtained by adding
the respective contributions due to each horizontal (vertical) layer.

Of course, routes on the collapsed routing graph require far fewer vias
than they would in the full multilayer routing graph. Therefore, congestion
predictions based on the collapsed routing graph underestimate the effect of
blockages created due to via stacks. Another source of inaccuracy in these pre-
dictions is the effect of layer assignment on the delays of nets in performance-
driven routing. Since the electrical characteristics of different layers can differ
significantly in modern process technologies, lumping them together in the
collapsed routing graph can cause the router behavior to differ significantly
from that on the original routing graph.
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Another technique for reducing the size of the routing graph is to impose a
coarser tessellation on the layout area than the one used to generate the bins
for the actual global routing. Although this reduces the spatial resolution of
the congestion measurements, this loss of resolution may be a small price to
pay for a significant speedup in the global routing when used for congestion
estimation.

2.3.2 Fast Search Algorithms

Given a routing graph, the routing of a net involves the generation of a topol-
ogy for it, and the embedding of each of the two-pin segments in that topology
into the routing graph. The congestion estimation mode can use much simpler
and faster topology generation algorithms than those used during the actual
global routing process, even if it results in topologies whose embeddings into
the routing graph have poorer wirelengths and critical sink delays. Further-
more, even while routing the two-pin segments of the topologies, there are
at least three basic techniques that have been used to speed up the global
routing process for the purpose of congestion estimation. They are:

• a significantly reduced application of rip-up and reroute heuristics,
• the use of fast routers that do not guarantee shortest routes, and,
• the use of fast search algorithms that guarantee shortest routes.

As will be discussed in Section 4.1 in Chapter 4, most industrial global
routers rely heavily on finely tuned rip-up and reroute heuristics for route
completion. However, the repeated rip-up and rerouting of a net can add sig-
nificantly to the runtime of the router. When used for congestion estimation,
these heuristics are used much more sparingly in a “low effort” mode of the
router. As a consequence, although the runtime of the router is improved
significantly, the quality of the routing, as measured by the minimization of
routing overflows in the bins, degrades significantly, becoming much more
dependent on the order in which the nets have been routed. Therefore, the
predicted route for a net as obtained during the congestion estimation mode
can be quite different from its actual route generated during the routing stage.
This can lead to inaccuracies in the predicted congestion map, with routable
designs being identified as congested because of insufficient exploration of the
search space through rip-up and reroute strategies.

Unlike global routing that relies heavily on search algorithms that guar-
antee shortest paths, one can also use the faster but often suboptimal line
probe search [Hig69] and its variants to route the nets during the congestion
estimation mode. Although these algorithms are much faster than the usual
breadth-first search used for routing and are often close to optimal in sparsely
congested regions that have few or no blockages, they can perform very poorly
in congested regions or regions that are fragmented by numerous complicated
blockages. In such regions, they may fail to find a route even if it exists, or
find one with a length that is much larger than the optimal length for that
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routing. Therefore, in scenarios where a line probe search has failed or found
a route that is much longer than the bounding box of the net, it may be useful
to fall back upon a standard search algorithm that guarantees shortest routes.
As long as this falling back does not occur frequently in practice, the use of a
line probe router can offer significant speedups to the operation of the global
router when used for congestion estimation, with tolerable deterioration in
routing quality (even though this deterioration may be unacceptable for the
actual global routing process). Of course, as with the reduced application of
rip-up and reroute heuristics, the use of fast but non-optimal routers may
cause the predicted route of a net to differ from its actual route.

The standard optimal shortest path algorithm used in global routers is
based on Dijkstra’s algorithm [Dij59] and has O(|E| + |V | log |V |) time com-
plexity7 (when implemented using Fibonacci heaps), where |E| and |V | are the
number of edges and nodes in the routing graph. This algorithm can be sped
up significantly during the congestion estimation mode by applying fast search
techniques such as best first search and A* search [HNR68]. These techniques
rely on an estimate for the distance to the destination, and are therefore not
always easily applicable during the regular global routing process in which it
may be difficult to estimate the cost of the unexplored portion of a route if
the cost function includes components for delay or congestion. In contrast,
the cost function used for routing during the congestion estimation mode is
almost always the wirelength, which can be approximated at any arbitrary
bin by the Manhattan distance between that bin and the destination bin.

The pseudocode in Algorithm 2 shows the general procedure for congestion
estimation using a fast optimal search algorithm. It differs from the generic
probabilistic congestion estimation scheme described in Algorithm 1 only in
(i) the method used for the computation of routing demands, and, (ii) in
avoiding any explicit modeling of the blockages. In order to determine the
routing demands for a net, it applies fast search algorithms for finding the
routes instead of distributing the probabilistic demands in the bounding box
of the net.

Typically, in order to find a path from a source bin to a destination bin in
a graph, global routers use breadth-first search either through some variant
of Lee’s maze routing algorithm [Lee61] or through some form of Dijkstra’s
shortest path algorithm. The primary limitation of these algorithms is that
the paths optimizing a given cost are searched in all directions without any
bias. Therefore, the search may visit a large number of bins before finding
the shortest path. As an example, Fig. 2.13(b) shows the wavefront of bins
being expanded in all directions while finding a path between the source and
the sink pins, p1 and p2, depicted in Fig. 2.13(a). In this figure, the numbers
in the bins represent the distance from the source. The breadth-first search
begins with the source bin, visits its neighbors, and adds them to a queue;

7 In a typical routing graph, |E| is O(|V |), so that the effective complexity of
Dijkstra’s algorithm on such graphs is O(|V | log |V |).
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Algorithm 2 Congestion estimation by global routing based on fast search
algorithms
1: for all bins B in the layout do
2: Compute the routing track supply for B
3: end for
4: Create a routing graph of bins
5: for all nets N in the design do
6: Generate a topology for N using some fast topology generation algorithm
7: for all segments s of the topology for N do
8: Use best first or A* search to find a route for s
9: for all bins B that lie along the route for s do

10: Update the routing demand in B with that arising from the route for s
11: end for
12: end for
13: end for
14: for all bins B in the layout do
15: Divide the routing demand for B by its available track supply
16: end for

the process continues until the destination bin is reached. In this example, at
least twelve bins, excluding the source and the destination, must be visited
before reaching the destination bin, i.e., the bin containing p2.
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Fig. 2.13. (a) Source and sink pins in different bins. (b) Wavefront expansion using
breadth-first search.

The search can be sped up by expanding the wavefront preferentially in the
direction of the destination. This can be accomplished by the use of fast search
techniques such as A* and best first search. A* search has been employed in
the past for delay-oriented routing [PK92] (although it is slightly harder to
use for this purpose with modern interconnect delay models); more recently,
it has been proposed for congestion estimation purposes [WBG05].

The difference between the A* and best first search techniques is that A*
considers the distance from the source as well as from the destination while
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Algorithm 3 Finding a route using A* search
1: cost[s] ← 0
2: Add source s to the queue Q
3: while Q is not empty and the destination t is not reached do
4: u ← top[Q]
5: if u != t then
6: for all v adjacent to u and v is not visited yet do
7: cost [v] ← cost [u] + 1 + estimated distance(v, t)
8: parent[v] ← u
9: Insert v into Q

10: end for
11: Remove u from Q
12: Sort Q on cost
13: else
14: Trace-back the path from t to s
15: end if
16: end while
17: Return path if t is reached; otherwise, report failure
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Fig. 2.14. Wavefront expansion in A* search: (a) after exploring the source bin,
and, (b) after exploring the best bins from the first wavefront.

expanding the wavefront, in contrast to best first search that expands only
at a bin with the best distance remaining to the destination. Note that one
can only estimate the distance remaining to the destination (until the routing
has completed, finding a path to the destination in the process). At any given
bin, the Manhattan distance to the destination is a natural choice for the
estimation of the remaining distance.

The pseudocodes for route finding with A* and best first search are shown
in Algorithms 3 and 4, respectively. The resulting wavefronts due to the appli-
cation of these procedures on the previous example (depicted in Fig. 2.13(a))
are shown in Figs. 2.14 and 2.15, respectively. In these figures, a number in
any given bin indicates the estimated distance of the best route from the
source to the destination through that bin in the case of A* search, and the
estimated remaining distance from the given bin to the destination bin in the
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case of best first search. At each stage, bins adjacent to the shaded bins are
added to the wavefront.

One can observe that both A* and the best first search find the destination
bin after visiting fewer bins than plain breadth-first search. As compared to
the twelve bins visited by the breadth-first search, A* search visits nine bins
and the best first search visits seven bins before reaching the destination.
Thus, although the asymptotic time complexity for all three search algorithms
is the same (namely, O(|E|+|V | log |V |), when implemented using a Fibonacci
heap), the two fast search schemes visit far fewer bins than the breadth-first
search, resulting in a significant speed-up in practice.

Algorithm 4 Finding a route using best first search
1: Add source s to the queue Q
2: while Q is not empty and the destination t is not reached do
3: u ← top[Q]
4: if u != t then
5: for all v adjacent to u and v is not visited yet do
6: cost [v] ← estimated distance(v, t)
7: parent[v] ← u
8: Insert v into Q
9: end for

10: Remove u from Q
11: Sort Q on cost
12: else
13: Trace-back the path from t to s
14: end if
15: end while
16: Return path if t is reached; otherwise, report failure
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Fig. 2.15. Wavefront expansion in best first search: (a) after exploring the source
bin, and, (b) after exploring a best bin from the first wavefront.
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2.4 Comparison of Fast Global Routing with
Probabilistic Methods

Fast global routing techniques can predict the congestion more accurately than
probabilistic congestion estimation methods, but tend to be somewhat slower.
A comprehensive quantitative comparison of some specific implementations of
fast global routing and probabilistic congestion estimation methods has been
reported in [WBG05].

Probabilistic congestion estimation is known to be pessimistic, especially
when it does not include post-processing to consider detours or to model
rip-up and reroute, as it is not congestion-aware. As a result, the maximum
congestion, total track overflows, or the number of congested bins predicted by
probabilistic estimation are overestimates for the corresponding post-routing
metrics; these metrics may cause a circuit to be deemed unroutable even if it
can be routed successfully. In such cases, the placement optimizations using
these estimates may ignore the routable design implementation and attempt to
optimize it further, which may or may not improve its routability. Fast global
routing, on the other hand, tends to overestimate the congestion to a much
lesser degree, since it finds routes that avoid congested bins. Consequently,
it distributes the congestion evenly in a manner similar to the behavior of
real routers. Although probabilistic congestion maps can be post-processed to
reduce the pessimism in their prediction, this reduction comes at the cost of
additional runtime.

Design blockages too are handled more naturally in fast global routing
techniques than in probabilistic methods, since fast routers simply try to find
a route around them just like real routers. In contrast, probabilistic methods
may employ heuristics such as redistribution of the routing demands from
the blocked bins, or pseudo-pin insertion. Although these heuristics may work
well for simple blockages, the more complicated blockages require some form of
maze routing in their vicinity, so that the probabilistic congestion estimation
method starts resembling global routing on such designs. In the same vein,
fast global routing based methods automatically handle detoured routes in
congested regions in the process of routing the nets, whereas probabilistic
methods usually do not model detours.

Typically, the probabilistic congestion estimation method based on the as-
sumption of single and double bend routes is two to three times faster than the
fast global routing technique. Probabilistic congestion prediction employing
multibend routes has higher runtimes than the one based on single and double
bend routes, since the routing demands for bins inside the bounding box vary
significantly and require the use of binomial coefficients for their computa-
tion. Therefore, the runtime difference between the probabilistic congestion
estimation method based on multibend routes and the fast global routing may
not be significant. Furthermore, the use of only single and double bend routes
is a better approximation of the behavior of real routers, at least on designs
that are not very congested.
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The asymptotic complexity to compute the routing demands for a given
net using the probabilistic method is O(b), whereas the same for the fast
global routing technique is O(b log b), where b is the number of bins in the
entire routing area (assuming the same tessellation of the routing area for the
two methods). Even though the asymptotic time complexity is worse for fast
global routing than for the probabilistic technique, the use of fast search algo-
rithms such as A* or best first search often improves the runtime of fast global
routing in practice. Furthermore, if post-processing techniques are employed
in probabilistic estimation methods to improve the accuracy (at the cost of
a runtime overhead), the difference in overall runtimes between probabilistic
methods and fast global routing may no longer be significant.

Because of the relatively good accuracy that is achievable with these tech-
niques, both probabilistic estimation and fast global routing have been used
for congestion prediction in commercial physical synthesis tools.

2.5 Final Remarks

In this chapter, we reviewed several placement-level metrics for routing con-
gestion that can be used to drive layout optimizations. These metrics vary
in their accuracy, fidelity, the required computation time, and their typical
application. The simple, crude but computationally fast metrics are used to
guide the placement during early stages, whereas the more accurate but com-
putationally expensive metrics are used to alleviate the congestion during the
later stages of placement or to decide when to proceed to the routing stage.
Although it is already quite fast, the computation of simple metrics can some-
times be sped up even further by the use of structural information such as
Rent’s rule, enabling the application of such metrics within the inner loops of
placement-based circuit optimizations.

In contrast, probabilistic and fast global routing based schemes require
much more computation runtime, since they attempt to model the behavior
of real routers. However, they use several techniques to reduce the runtime as
compared to real global routers, trading off accuracy for speedup. This allows
them to be invoked repeatedly during the later stages of placement (although
not at a granularity as fine as that possible with the simple metrics). They
generate a high resolution congestion map with a good degree of accuracy,
although they tend to suffer from pessimism in their predictions; the problem
of pessimism is especially acute during probabilistic congestion estimation. In
general, probabilistic and fast global routing based methods tend to do well in
sparsely congested designs, but can be more error-prone in congested regions
(where the behavior of the global router diverges from its generic behavior
more significantly).

Many of these congestion estimation techniques have also been extended
for use with layout-aware netlist optimizations, as will be discussed in the
next chapter.
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3

SYNTHESIS-LEVEL METRICS FOR
ROUTING CONGESTION

Building congestion awareness into any given stage of a design flow requires
metrics to quantify congestion estimates during that stage in order to discrim-
inate between the congestion impact of various optimization choices. There is
an inherent conflict between the accuracy and extent of the layout information
available during a design stage and the level of flexibility available during that
stage to modify the circuit to alleviate congestion problems. Stages that are
further upstream in the design flow usually have more flexibility available to
fix congestion problems, but have to deal with larger errors in congestion pre-
diction. Congestion metrics that are appropriate to a particular design stage
may not be equally applicable to other design stages, since the amount of
layout information available during different stages is different.

Chapter 2 discussed several metrics used to estimate the routing congestion
at the placement level, when the netlist is fairly well-established. Most of
these metrics relied extensively on the locations of the cells. However, such
detailed location information is not available during the technology mapping
and (technology-independent) logic synthesis stages that precede placement.
During these stages, the precise structure of the netlist has not yet been
finalized, and the placement of the nodes in the netlist (loosely corresponding
to cells) is either non-existent or approximate. On the other hand, these steps
offer a great deal of freedom to alter the netlist to ameliorate congestion hot
spots. Unlike placement, where the set of wires in the netlist is fixed, these
steps can absorb wires within logic gates or split logic functions into smaller
gates, providing additional degrees of freedom. Therefore, it is useful to also
add congestion-awareness to this part of the design flow. These optimizations
can be guided only by congestion metrics that can operate under greater
uncertainty than placement-level congestion metrics. This chapter provides an
overview of such metrics. Some of them extend the metrics at the placement
level to the synthesis level, whereas others exploit graph theoretic properties
of the netlist in the absence of any placement information.
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3.1 Motivation

Fig. 3.1. Synthesis choices and routing demand: the suboptimal network in (a)
may have smaller routing demand than its area- and delay-optimal equivalent in
(b). (Reprinted from [SSS+05], c©2005 IEEE).

As an example, consider the two logically equivalent implementations of
the and-or-invert (AOI) functionality shown in Figs. 3.1(a) and 3.1(b). The
layout is tessellated into global routing bins, represented by dashed boxes in
the figures. Assume that both the implementations receive the primary inputs
c, d, and e from the top left bin, and the primary inputs f , g, and h from the
bottom left bin, whereas the primary output, o, of the circuit leaves from the
central bin on the right. Furthermore, let us assume that all primary inputs
arrive at the same time, and that the total number of transistors that lie on
the pull-up or pull-down chains on the worst delay path in an implementation
is a metric for the delay of that implementation.

The implementation in Fig. 3.1(a) has nine literals in all, and the corre-
sponding Boolean equations are shown below:

i1 = cde,

i2 = fgh,

i3 = i1i2,

o = i3.

This implementation requires eighteen transistors for its realization using sta-
tic CMOS logic. For this circuit, the worst-case delay path goes through
five transistors. An alternative implementation of the circuit is shown in
Fig. 3.1(b), where the Boolean equation can be written as:

o = cde + fgh.

This alternative realization requires twelve transistors, and the most critical
path contains three transistors. Clearly, this alternative realization is better
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in terms of both gate area and delay, and a conventional technology mapper
is likely to choose this realization. However, if we add congestion considera-
tions to the picture, we find that the former choice is likely to have better
routability than the latter. Assume that each internal (horizontal or vertical)
bin boundary permits only one track to be used for the nets in the implemen-
tation. Then, the former implementation is routable, whereas the latter one
cannot be routed irrespective of the placement of the AOI33 cell. If we mea-
sure congestion as the track demand in terms of the number of bin-boundary
crossings, then the former realization has a demand of twelve, whereas the
latter has a demand of at least fifteen. Note that the track demand of fifteen
in the latter case corresponds to the best possible placement; if the AOI33
cell were to be placed in the second or third column, the track demand would
have been even higher.

The above example highlights several observations about congestion-aware
synthesis [SK01,PPS03,SSS+05,LAE+05], namely:

• Logic synthesis choices that are area- or delay-optimal may not be optimal
from the point of view of congestion or routing demand, and may even lead
to unroutable circuits.

• Congestion optimization requires the use of additional metrics that mea-
sure congestion, since the literals or gate-area alone cannot capture the
routing demand.

• Area- or delay-optimal synthesis solutions may be unroutable even with
the best possible placement, thus pointing to the futility of relying only
on placement (and subsequent routing) to alleviate the congestion.

This inability of the traditional synthesis cost functions and metrics to capture
the routability and congestion of an implementation of a circuit necessitates
the development of new metrics for congestion that can be used in conjunction
with the traditional metrics during synthesis. Any such congestion metric
should have the following two capabilities:

• Given two logically equivalent netlists, the metric should be able to dis-
tinguish between them on the basis of routability.

• Given a netlist, the metric should be capable of guiding synthesis opti-
mizations to improve its routability.

At the same time, the metric should be fast to compute. It should be ca-
pable of performing the above functions without actually going through the
time-consuming steps of placement and routing. This ease of computation
is essential for any such metric to be used extensively during logic synthe-
sis transformations, since these transformations are applied repeatedly during
traditional logic synthesis [SSL+92].

For the purposes of this chapter (and the remainder of this book), we dis-
tinguish between technology-independent logic synthesis and technology map-
ping. In a departure from the common practice of considering both steps to
be ingredients of logic synthesis, we use the phrase “logic synthesis” to refer
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specifically to technology-independent logic synthesis, and refer to technol-
ogy mapping explicitly where needed. This distinction between (technology-
independent) logic synthesis and technology mapping is relevant because the
congestion estimation metrics proposed for the two stages are quite different
from each other. Most modern physical synthesis flows interleave the process
of technology mapping with that of the placement of the evolving netlist. Al-
though some placement-oblivious congestion metrics have been proposed for
use during technology mapping, any partial placement information available
at that stage can help considerably in the fast estimation of congestion (as
discussed in Section 3.2). Unfortunately, this placement information is usu-
ally either not available or very inaccurate during logic synthesis. Therefore,
most of the congestion metrics proposed for use during logic synthesis rely
exclusively on structural features of the netlist. Congestion metrics targeted
towards logic synthesis are discussed in Section 3.3.

3.2 Congestion Metrics for Technology
Mapping

The goal of the technology mapping stage has traditionally been to map the
logic network on to a given cell library, with the aim of obtaining a good trade-
off between area, delay, and power considerations. In typical design flows,
technology mapping is carried out subsequent to the decomposition of the
network into a subject graph consisting of primitive gates such as two-input
NAND gates and inverters, and comprises of the pattern matching and cov-
ering of this subject graph using gates from the library. Technology mapping
is typically implemented using some dynamic programming based procedure
whose principles are rooted in [Keu87].

Conventionally, technology mapping has been guided by wire-load models,
as illustrated in Fig. 3.2(a). A wire-load model is a table that lists, for dif-
ferent fanouts, the average netlength and capacitive load obtained after the
placement of a mapped netlist. Although such approaches sufficed for older
technologies that did not have significant wire resistances and wire delays,
their effectiveness has been decreasing with each successive process technol-
ogy node since the 250 nm node. In designs at today’s technology nodes,
wire-load models can be highly erroneous (because two different wires having
the same fanout can have dramatically different wire delays because of their
differing netlengths), and can result in numerous iterations between the map-
ping and placement stages without any guarantee of convergence or design
closure [SN00,GOP+02].

To get around the inadequacy of wire-load models, modern technology
mapping algorithms often employ placement information to guide the map-
ping choices [Dai01, SK01, LJC03]. This can be achieved either through the
use of a companion placement during mapping, or through iterations between
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Fig. 3.2. A typical technology mapping flow (a) using wire-load models, and (b)
using placement information.

mapping and placement. Although the concept of associating placement in-
formation with the primitive gates during the mapping that evolves into a
companion placement for the mapped netlist has been around for more than
a decade [PB91], it has gained wider acceptance only in the last few years. Al-
ternatively, technology mapping and placement can be performed iteratively,
as in [LJC03], so that the netlengths, and therefore the capacitive loads and
delays of the nets, are estimated with improved accuracy in each successive
iteration. A typical modern physical synthesis flow is shown in Fig. 3.2(b).

Since the placement information is already extracted for net delay calcu-
lation by modern physical synthesis flows as described above, it is natural
to apply the same information to compute routing congestion also. This can
be achieved by extending the congestion metrics at the placement level to
compute routing congestion during the technology mapping optimizations.
Indeed, many of the congestion-aware technology mapping approaches in the
literature [SK01, PPS03, SSS+05, SSS06] extend placement-level congestion
metrics such as netlength and probabilistic congestion maps to guide map-
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ping choices. At the same time, a few a priori1 congestion estimation schemes
such as mutual contraction [HM02] have also been used to drive congestion-
aware technology mapping.

3.2.1 Total Netlength

As observed in the previous chapter, the total netlength of the nets in a de-
sign correlates well with the average congestion. Therefore, minimizing the
netlength is often consistent with the goal of improving the congestion. How-
ever, since it is a gross global metric, it cannot capture the spatial and local-
ity aspects of routing congestion. In other words, the total netlength cannot
predict what the congestion will be in a particular bin, or where the bins
with high local congestion will be located. Furthermore, just like all other
placement-based congestion estimation schemes, the netlength metric can be
somewhat inaccurate if the placement assumed during the mapping is sub-
stantially different from the final placement. Another major problem with this
metric is that it does not capture the discrete relationship between routability
and congestion. As an example, the nets in a design may be routable when
the congestion is less than some threshold, but may become unroutable or
require significant detours (along with the associated delay penalties) when
that threshold is crossed. Unfortunately, this behavior is not captured by the
total netlength metric.

The major advantage of the netlength metric is that it is easy to com-
pute, requiring O(n) time2 for a net with n pins. This efficiency of com-
putation makes it an attractive choice that does not affect the asymptotic
computational complexity of technology mapping algorithms. Consequently,
this metric has been used in several congestion-aware technology mapping
approaches [SK01, PPS03]. These approaches apply the netlength metric to
reduce congestion by combining it with other traditional objectives such as
area and delay. However, they achieve limited success in congestion mitigation,
primarily due to the inherent limitations of this metric, as discussed above.
Further details on these optimization techniques can be found in Chapter 6.

1 Schemes used for individual or statistical netlength prediction that do not rely
on any placement information are referred to as a priori schemes.

2 For nets with more than two terminals, a minimum spanning tree (MST) estimate,
which requires O(n2) time for a net with n pins, may be used. Although this
is usually more accurate than the “half-rectangle perimeter of bounding box”
(HRPM) estimate for the wirelength of a given net, most technology mapping
approaches either use the bounding box estimate for the net (often accounting for
the pin count of the net using compensation factors as discussed in Section 2.1.1),
or decompose the net into two-pin nets using a star or clique model, because of
the dominance of other sources of errors such as the inaccuracies inherent in the
placement information at the mapping stage.
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3.2.2 Mutual Contraction

The mutual contraction metric was originally proposed to make placement
more congestion-aware [HM02], and has also recently been extended to con-
gestion mitigation during technology mapping [LM05]. Mutual contraction is
an a priori metric that uses the structure of the netlist in the topological
neighborhood of a net to predict its final netlength, without relying on any
placement information. At an intuitive level, it measures the tendency of the
endpoints of a net to resist being pulled apart because of their connectivity
to other cells. Nets whose endpoints are only weakly connected to other cells
tend to have a large mutual contraction value. Since all reasonable placement
engines try to place strongly connected cells together, the value of this metric
for a net correlates well with the expected netlength for that net, with large
mutual contraction values corresponding to short netlengths.

Given a circuit graph G = (V,E) for a netlist, where the vertices in V
correspond to the cells of the netlist and the edges in E are used to model the
nets, the mutual contraction metric can be defined on each of the edges in E.
For the purpose of this metric, multipin nets are modeled using cliques. Thus,
a net connecting n cells is modeled using n(n−1)/2 edges corresponding to all
possible pairs among the n pins of the net. For simplicity, let us consider the
case of traditional placement that minimizes wirelength. In this case, all nets
are weighted equally in the cost function for the placement (with the weight of
each net being, say, one). The weight of a net is distributed equally among all
the edges that are used to model that net. Thus, the contribution of an edge
e(u, v) from a clique denoting a connection between n vertices that includes
u and v to the weight w(u, v) is given by 2/(n(n − 1)). Note that an edge
e(u, v) can simultaneously belong to several different cliques (corresponding
to different multipin nets that share two or more pins). In such a case, the
total weight of an edge is the sum of the contributions from each of the cliques
that contain that edge.

The relative weight wr(u, v) of the edge e(u, v) is now defined as the ratio
of the weight w(u, v) to the sum of the weights of all the edges incident on u.
Observe that although w(u, v) = w(v, u) for any edge e(u, v) ∈ E, the relative
weights wr(u, v) and wr(v, u) may not be the same.

Definition 3.1. The mutual contraction of an edge e(u, v) is defined as the
product of relative weights wr(u, v) and wr(v, u).

In other words, the mutual contraction mc(e(u, v)) for edge e(u, v) is given
by:

mc(e(u, v)) =
(w(u, v))2∑

z:e(z,u)∈E w(z, u)
∑

z:e(z,v)∈E w(z, v)
. (3.1)

The example shown in Fig. 3.3 illustrates the computation of the mutual
contraction metric. Assuming that each edge represents a single fanout, the
relative weight wr(u, v) for the edge e(u, v) in Fig. 3.3(a) is given by:
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Fig. 3.3. The mutual contraction for the edges e(u, v) in (a) and e(x, y) in (b) is
1/9 and 1/14, respectively.

wr(u, v) =
w(u, v)∑

z:e(z,u)∈E w(z, u)
=

1
3
.

Similarly, wr(v, u) is also 1/3. Therefore, the mutual contraction for the edge
e(u, v) is given by:

mc(e(u, v)) = wr(u, v) × wr(v, u) =
1
9
.

Similarly, in Fig. 3.3(b), the relative weights wr(x, y) and wr(y, x) can be easily
computed as 1/2 and 1/7 respectively, resulting in a mutual contraction of
1/14 for the edge e(x, y).

The mutual contraction metric can be used to estimate the netlength as-
sociated with an edge; the greater the value of the metric, the smaller is the
expected separation between the two cells corresponding to the endpoints of
the edge in the final placement. In the above example, since e(u, v) has greater
mutual contraction than e(x, y), it is also likely to have the shorter netlength.
The intuitive justification for this correlation can be explained in the context
of the example. The number of edges that compete against a short netlength
for e(u, v) is four, these nets being the net driven by v and the three fanin
nets of the cells u and v other than the net (u, v). However, the corresponding
number of competing edges for the edge e(x, y) is seven. Therefore, the cells
u and v are likely to be placed closer to each other than the cells x and y.

As with all structural metrics that ignore placement information, the mu-
tual contraction metric is not very effective at predicting the netlength for
any given net with high accuracy. However, the work in [HM02] empirically
demonstrates a high negative correlation3 (typically in the (−0.9,−0.6) range)
between the mutual contraction and the average netlength for nets at the
placement level. In other words, the higher the mutual contraction for an

3 A statistical correlation value that is close to +1.0 (−1.0) means that the cor-
responding variables are strongly positively (negatively) correlated, whereas a
correlation value close to zero implies that the corresponding variables are inde-
pendent of each other.
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edge, the shorter is its expected netlength. Since the total netlength is a mea-
sure of the average congestion, employing mapping choices with higher mu-
tual contraction is likely to lead to a netlist that has a shorter total netlength.
This has motivated the congestion-aware technology mapping work in [LM05].
However, although this work has shown some promising results in congestion
mitigation, the use of this metric suffers from the same problems as the use
of the total netlength to measure congestion, in addition to the inaccura-
cies inherent in the use of placement-oblivious structural netlength prediction
metrics. Furthermore, the mutual contraction metric is not very effective at
predicting the netlength for multipin nets. Therefore, technology mapping
based on mutual contraction proposed in [LM05] requires the application of
additional metrics such as the net range (discussed in Section 3.3.3).

Computationally, mutual contraction is more expensive than netlength
computations. The computation of the mutual contraction of an edge e(u, v)
requires O(deg(u) + deg(v)) time, where deg(u) and deg(v) correspond to the
degrees of the nodes u and v. In contrast, the netlength computation for a
two-pin net can be performed in constant time.

Although mutual contraction is the only a priori structural metric that
has been used for congestion-aware technology mapping to date, it is worth
pointing out that several other such metrics have been proposed for total
and individual netlength prediction. These metrics are briefly discussed later
in Section 3.3.5. Among these metrics, mutual contraction has been shown
in [LM04] to exhibit better correlation with average netlengths than connec-
tivity and edge separability. However, the recently proposed intrinsic shortest
path length metric [KR05] yields even better correlation than the mutual con-
traction metric, and is likely to be a good candidate for congestion-aware
technology mapping driven by structural metrics.

3.2.3 Predictive Congestion Maps

An alternative approach to estimating routing congestion is the use of post-
placement probabilistic congestion maps to guide technology mapping. How-
ever, as illustrated in Fig. 3.4(a), this approach poses a “chicken-and-egg”
problem in conventional design flows because the congestion map is available
only after the placement of the mapped netlist, whereas the placement step
requires a solution from the technology mapping step. Predictive congestion
maps have been proposed in [SSS+05] as a way to overcome this problem.

The construction of these predictive congestion maps is illustrated in
Fig. 3.4(b). It involves the use of the subject graph, which is a netlist contain-
ing only primitive gates such as two-input NANDs and inverters on which the
technology mapping is performed. The subject graph, which is also known as
a premapped netlist, is placed within a specified block area. Next, this place-
ment is used to construct the probabilistic congestion map by applying the
probabilistic estimation methods involving either unlimited bends or L- and
Z-shapes for wires [LTK+02,WBG04] (discussed in Section 2.2 in Chapter 2)
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Fig. 3.4. Construction of (a) conventional and (b) predictive congestion maps.

to the edges in the placed subject graph. The resulting congestion map is
referred to as a predictive congestion map. The work in [SSS+05] showed that
there is a good correlation4 between the congestion map predicted prior to
technology mapping and actual congestion map obtained after placement.

The intuitive justification for this correlation is that the premapped and
mapped netlists share the same global connectivity. This is because technology
mapping merely subsumes a subset of wires in the subject graph as internal
connections within the standard cells, thus retaining the similarity in the
connectivity between the premapped and the post-mapped netlists. Since the
connectivity and other constraints such as block area and I/O locations are
the same, most reasonable placement algorithms (including partitioning-based
approaches such as [CKM00] as well as analytical methods such as [EJ98], to

4 A statistical correlation of greater than 0.6 between the predicted and actual
congestion maps has been reported in [SSS+05] across different circuit families,
logic synthesis scripts, technology mapping algorithms, and placement techniques.
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be discussed briefly in Section 5.1 in Chapter 5) generate placements with
similar congestion distributions for both the netlists.

0
5

10
15

20
25

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

(a)

0
5

10
15

20
25

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

(b)

Fig. 3.5. Horizontal congestion of a typical benchmark circuit: (a) congestion map
for the mapped netlist (optimized for gate area), and, (b) congestion map for the
premapped netlist. (Reprinted from [SSS+05], c©2005 IEEE).
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As an example, Figs. 3.5(a) and (b) depict the horizontal congestion maps
for the mapped and premapped netlists, respectively, for a benchmark cir-
cuit consisting of an arithmetic logic unit (ALU) and some associated control
logic. (The vertical congestion maps, omitted for brevity, exhibit a similar
correlation). In these figures, the horizontal (XY ) plane denotes the block
area and the vertical (Z) axis shows the congestion. This circuit has been
technology-mapped using an industrial library used in high performance mi-
croprocessor design at the 90 nm process technology node, and the placement
of premapped as well as mapped netlists has been carried out using an in-
dustrial force-directed placer. The similarity in congestion maps is readily
observable, even though the placer is allowed to use a pin-bloating technique
to alleviate local congestion. In particular, one can see that the location of
the peak congestion correlates quite well across the two congestion maps, even
though this location is offset from the center of the block (that tends to show
the peak congestion in most designs).

In this scheme, multipin nets are first decomposed into a set of equivalent
two-pin nets using a clique or star model prior to estimating their contribution
to the congestion map. The worst-case time complexity for the computation
of congestion contribution for a two-pin net is O(b), where b is the number
of bins in the entire layout area (since the bounding box of the net may span
the entire layout area in the worst case). Thus, predictive congestion maps
are computationally more expensive than the netlength or mutual contraction
metrics.

As with the netlength metric, another overhead associated with the com-
putation of a predictive congestion map is the cost of placing the subject
graph. Subject graphs typically contain many more nodes than the mapped
netlists for the corresponding circuits, so that the cost of placing them may
also be much higher than that of placing the final netlist. However, the legal-
ization of this placement may be omitted without any adverse effects. Indeed,
a case may be made that continuing the placement of the subject graph to
a granularity finer than that of the tessellation of the layout area provides
no additional accuracy to the congestion map, which is discretized at the
granularity of the bins. This coarse placement is usually much faster than a
full-fledged placement of the subject graph. Any errors due to cell overlaps
in this placement are anyway likely to be dominated by the inaccuracies in-
troduced due to the displacement of the cells relative to the placement of the
subject graph when the mapped netlist is placed.

Another consequence of the fact that the subject graph typically contains
many more nodes than the final netlist is that it requires a larger area for
a legal placement than the final netlist. This necessitates a scaling of the
dimensions of the primitive gates corresponding to the nodes in the subject
graph, in order to fit the subject graph into the layout area for the final netlist.
A simple way to carry out this scaling is to decrease the cell area for the nodes
in the subject graph by a factor equal to the ratio of the expected area of an
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implementation based on the subject graph to the area available for the final
layout.

Predictive congestion maps suffer from a few sources of errors. If the place-
ment techniques applied after the technology mapping produce a significantly
different placement, then the predicted congestion mitigation achieved during
technology mapping based on the predictive congestion map may not materi-
alize. Moreover, the predictive congestion map is independent of the mapping
algorithm, since it is generated purely on the basis of the subject graph. This
insensitivity of the predictive congestion map to the actual mapping solution
can introduce additional errors in the congestion prediction. The constructive
congestion maps discussed next in Section 3.2.4 avoid this source of error.

In general, in spite of these errors, predictive congestion maps, as well
as the constructive congestion maps to be introduced in the next section,
capture a much richer level of detail in the spatial distribution of estimated
congestion in the final placement than a priori structural metrics or the total
netlength. This spatial information can be exploited by technology mapping
algorithms to choose between conventional or congestion-aware modes, so that
the gate area or delay overheads associated with congestion-optimal choices
occur only where absolutely necessary [SSS+05]. In contrast, structural and
netlength metrics do not offer these flexibilities since they are oblivious to spa-
tial and locality information about congestion. Therefore, technology mapping
algorithms that use congestion maps are typically more effective at congestion
optimization than those that rely on structural or netlength metrics.

3.2.4 Constructive Congestion Maps

Although predictive congestion maps provide a coarse level of accuracy in
congestion prediction, they have some inherent limitations. Specifically, pre-
dictive congestion maps are unable to discriminate between the congestion
maps corresponding to different technology mapping solutions obtained from
the same subject graph, since each such solution would be associated with an
identical map. This problem is remedied by the use of constructive conges-
tion maps [SSS06] that retain the level of spatial detail provided by predictive
congestion maps while increasing its accuracy.

Constructive congestion maps are created dynamically and propagated
during the technology mapping process. The essential idea behind the gen-
eration of these maps is best illustrated by an example. Figure 3.6(a) shows
a small subject graph in which a match M1 is being considered for a node
N1. The technology mapping step is performed by extending the conventional
matching and covering phases with an additional step that determines the
congestion map corresponding to each candidate solution. Thus, whenever a
node is mapped, the congestion maps associated with all of its predecessors
are known and can be used to generate the congestion map associated with
that node. For our example, the congestion maps due to solutions at N2 and



80 3 SYNTHESIS-LEVEL METRICS FOR ROUTING CONGESTION

Fig. 3.6. Constructive congestion map generation: (a) Subject graph during match-
ing process in technology mapping with match M1 at node N1. (b) Horizontal track
demand due to solutions at N2. (c) Horizontal track demand due to solutions at
N3. (d) Horizontal track demand due to fanin nets to the match M1. (e) Overall
horizontal track demand due to the mapping solution because of M1. (Reprinted
from [SSS06], c©2006 IEEE).

N3 are as shown in Fig. 3.6(b) and Fig. 3.6(c), respectively. Only the hor-
izontal routing demand is shown in our example for the sake of simplicity.
These congestion maps are constructed probabilistically [LTK+02,WBG04],
as discussed in Section 2.2 in the previous chapter.

For the circled match M1 at node N1, where a two-input NAND gate is
chosen, Fig. 3.6(d) shows the congestion map associated with this match only,
accounting for the nets due to two fanins of the match. This computation is
straightforward; as an example, the bins in the top-right corner in Fig. 3.6(d)
have a track demand of 0.25, since only one out of the two possible routes
passes through it and this requires only half a track. Note that the bins in the
first column in the figure show zero routing demand values, since the bounding
boxes of the nets that feed the match M1 do not contain those bins. Finally,
Fig. 3.6(e) shows the congestion map representing the mapping solution due to
the match M1 at N1. It is obtained by the bin-wise addition of the congestion
maps in Figs. 3.6(b), 3.6(c), and 3.6(d).
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The congestion map for the mapping solution due to a match is propagated
across a multifanout point by distributing the congestion equally among all
the fanouts. The matching process continues in topological order, so that the
congestion maps due to all the wires in the mapping solutions are available
at the primary outputs when the process finishes. As with the predictive
congestion map, the constructive map also requires the subject graph to be
placed prior to the technology mapping. Whenever a new node is generated
during the matching process, it can be placed at the center of gravity of
the nodes that it subsumes (since their locations are already known at that
stage). Note that different mapping solutions represent different set of wires.
Unlike predictive congestion maps that are static regardless of the match that
is chosen, the constructive map captures the congestion impact of different
matches dynamically.

The worst-case time complexity for the computation of the constructive
congestion map for a two-pin net is the same as that of the predictive one,
namely, O(b), where b is the total number of bins for the entire layout area.
Constructive maps, however, require more memory than predictive maps, since
different (partial) congestion maps due to selected matches at different pri-
mary outputs may be required to create these maps for the final mapping solu-
tion. Specifically, the constructive congestion maps require O(bnpo

M ) memory,
where npo

M is the sum of the number of different matches at all the primary
outputs. There are several heuristics suggested in [SSS06] that can help in
substantially reducing this memory overhead.

3.2.5 Comparison of Congestion Metrics for Technology
Mapping

The main features of the routing congestion metrics for technology mapping
discussed so far are summarized in Table 3.1. The metrics are listed in Col-
umn 1 and their major properties are shown in Column 2. For each metric, the
time complexity for the computation of the value of the metric for a two-pin
net (u, v) is listed in Column 3; in this column, deg(x) represents the degree
of the node x, whereas b denotes the number of bins in the layout.

Except for mutual contraction, all of the remaining metrics discussed above
depend on placement information. While they tend to be better at predict-
ing congestion than purely structural metrics like mutual contraction, they
can suffer from inaccuracies if the initial placement does not reflect the fi-
nal placement well. This can sometimes be a problem in physical synthesis
flows that iterate between technology mapping and placement. In contrast,
there are other flows that allow the placement of the subject graph or the
netlist during the early stages of mapping to evolve into the final placement,
using techniques of incremental placement and legalization to map netlist
changes into the layout. In such flows, the congestion gains obtained using
the placement-based metrics are likely to be retained.
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Metric Properties Time
complexity

Netlength • Placement dependent
• Correlated with average congestion Constant
• Does not capture spatial aspects

Mutual • Placement independent
contraction • Correlated with mean netlengths deg(u) + deg(v)

• Does not capture spatial aspects

Predictive • Placement dependent
congestion map • Captures spatial aspects O(b)

• Considers subject graph nets

Constructive • Placement dependent
congestion map • Captures spatial aspects O(b)

• Considers actual nets

Table 3.1. A comparison of routing congestion metrics for technology mapping.

Mutual contraction or other structural metrics are best used when the
placement of the mapped netlist is likely to be very different from any place-
ment of preliminary versions of the netlist. In such cases, there is little corre-
lation between the predictive or constructive congestion maps and the actual
congestion map obtained after the final placement. However, structural met-
rics suffer from their own sources of inaccuracies, as discussed earlier.

The netlength metric is easy to compute, but employing it to alleviate
congestion requires changing the constants in the cost function K1 × Area +
K2 × Delay + K3 × Netlength during the mapping procedure, depending
on the severity of congestion; however, this severity is not known until the
mapping procedure is complete [PPS03]. Furthermore, this metric cannot dis-
criminate between congested and uncongested regions in a layout. Therefore,
the (usually small) regions of peak congestion determine the severity of the
gate area and delay penalty for the entire netlist. In contrast, predictive and
constructive congestion maps overcome this limitation and allow the selection
of congestion-optimal matches in congested regions and area-optimal or delay-
optimal matches in uncongested regions. Constructive maps are the most ac-
curate of all these metrics, since they capture the congestion due to only the
relevant set of wires that actually exist in the final netlist, and exclude the
effects of the wires that are absorbed within the mapped gates.

Typically, the computational complexity as well as the memory require-
ment of any congestion estimator increases with the desired accuracy and
effectiveness. For a two-pin net, the netlength metric requires constant mem-
ory and computation time independent of the routing of the net. However, the
runtime of an overall congestion-aware flow using this approach may be more
than that of a conventional flow that ignores congestion constraints, since
the placement of the subject graph requires additional runtime. Employing
mutual contraction for technology mapping does not require subject graph
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placement, but the time complexity of the mapping algorithm worsens, since
the computation of this metric for a two-pin net is more expensive than that
of the netlength. Even then, this timing complexity remains independent of
the routing of the net. In practice, the runtime penalty of congestion-aware
technology mapping using mutual contraction is seen to be negligible [LM05].

The overhead for the subject graph placement generation applies to all
placement dependent metrics, including predictive and constructive conges-
tion maps. The time complexity for computing the contribution of a two-pin
net to either of these congestion maps depends on the span of the net (i.e.,
its bounding box), since large, spread-out nets impact a larger number of
placement bins. Constructive maps provide the best accuracy, but require
considerably more memory than the other approaches (although this memory
limitation may be largely overcome by the use of efficient heuristics).

A study of how these metrics are employed within congestion-aware tech-
nology mapping algorithms is presented in Sections 6.2.3 and 6.2.4 in Chap-
ter 6.

3.3 Routing Congestion Metrics for Logic
Synthesis

Technology-independent logic synthesis has traditionally aimed at minimizing
the number of literals or the number of logic levels in a multilevel Boolean
network obtained from the register transfer level (RTL) description of a de-
sign, since these metrics have historically correlated well with the area and
delay, respectively, of the final implementation of the network. Although this
correlation is not always good, especially with the increasing dominance of in-
terconnect delays in modern process technologies, these metrics sufficed in the
era when the gate delay dominated the overall delay of the circuits (namely, in
technologies with feature sizes greater than 250 nm). Furthermore, poor inter-
connect scaling is resulting in a large increase in the number of buffers required
for the alleviation of poor delays and slews in resistive wires [SMC+04]. In
such a scenario, these traditional metrics for logic synthesis are no longer as
effective as in the past. The number of literals merely captures the number of
transistors required for the static CMOS implementation of the specified log-
ical functionality as discussed in Section 3.1, ignoring the transistors required
for the buffers necessary to achieve the expected performance. In addition,
although the transistor area does correlate well with the leakage power dis-
sipation, it is not necessarily a good indicator of the total design area in
wire-limited designs that may require considerable “white space” (as will be
discussed in Chapter 5). Similarly, the number of logic levels at the logic syn-
thesis stage has become inaccurate as a delay metric, since it does not capture
the delay of buffered interconnects or the impact of sizing the gates. The de-
velopment of alternative reliable metrics to drive logic synthesis, however,
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requires further research. Therefore, the number of literals and the number of
logic levels are still used as proxies for area and delay, respectively, in many
of today’s logic synthesis tools.

There have been several attempts to develop interconnect-aware metrics
for logic synthesis. Most of these have been placement-oblivious, relying in-
stead on the structural properties of various nets in the netlist to predict
the behavior of the downstream mapping and layout tools on those nets.
Placement-aware techniques such as the use of iterations between synthe-
sis and placement or of a companion placement, that have proven so effec-
tive at the technology mapping stage in modern physical synthesis flows,
are usually not as successful when applied to logic synthesis. Several works
[GNB+98,SK01,CB04] have attempted to use placement information during
logic synthesis, but have had limited success for the following reasons:

• The predictive accuracy and fidelity of the placement of a netlist keeps
decreasing as one moves farther upstream in the synthesis flow. While the
congestion map errors are still tolerable at the technology mapping stage,
the errors in the congestion values of placement bins at the logic synthesis
stage are often of the same order of magnitude as or even larger than
the congestion values themselves, because of which the congestion maps
can be very misleading at this stage. Indeed, the impact of the synthesis
transformations at this stage is often so large that it is difficult to maintain
any consistency in the placement information.

• The nodes in the Boolean network available during logic synthesis usually
show much greater variance in the area required by them in the final imple-
mentation than nodes in the subject graph or the partially mapped netlist.
This is because RTL is usually written from a logical perspective, with lit-
tle attention being paid to the layout aspects of the Boolean network. In
contrast, nodes in the subject graph are quite uniform in area.

• The nature of the subsequent technology mapping is such that only a
subset of nets from the network optimized at the logic synthesis stage
appear in the mapped netlist, since many of the nets are subsumed as
internal connections inside the cells.

Consequently, there does not seem to be much benefit in capturing the rout-
ing congestion predicted at the logic synthesis stage in a two-dimensional
congestion map. In contrast, several simpler metrics that can help discrim-
inate between two different implementations of a netlist in terms of their
likely netlength and congestion have been studied for use during logic syn-
thesis. These metrics rely on structural properties of graphs, and include
the literal count, adhesion [KSD03], fanout range [VP95], net range [LM05]
and neighborhood population [HM96b]. Other metrics such as edge separabil-
ity [CL00], closeness [SK93], connectivity [HB97], and intrinsic shortest path
length [KR05], which also rely on graph structure and are typically used to
drive the placement towards minimizing the total netlength or for a priori
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netlength prediction, can also be extended to guide the synthesis transforma-
tions.

3.3.1 Literal Count

As discussed previously, the traditional area metric used at the logic synthesis
stage is the number of literals. It has been observed that when a Boolean
network is mapped on to a trivial library containing only two-input NAND
gates and then placed using a partitioning-based algorithm, there is a strong
linear relationship between the number of literals and the peak congestion
[KSD03]. Intuitively, the number of literals correlates with the number of nets
in the circuit; in two equivalent Boolean network representations of a given
circuit, the network with the smaller number of literals is likely to have fewer
nets and therefore, potentially better routability.

However, as pointed out earlier, the number of literals does not represent
all the nets that will be in the circuit, since the technology mapping stage
decides which connections actually become wires, and which remain internal
to the gates. In fact, only a subset of nets from the technology-independent
representation may appear in the mapped netlist. This is because the network
is first decomposed into primitive gates, followed by matching and covering
with the library cells during the technology mapping. The decomposition stage
introduces new nets and then the matching and covering stages subsume many
of the newly created and original nets. This results in a set of nets in which only
a fraction may be survivors from the technology-independent representation.

The number of literals can be computed in time that is linear in the size of
a network. Traditional synthesis transformations require only the computation
of the literal gain, which too can be measured in time that is linear in the
number of affected nets. Thus, the literal count is a fast, albeit crude, metric
for estimating routing congestion.

3.3.2 Adhesion

The connectivity of the graph representing a Boolean network encodes consid-
erable information about its layout-friendliness. For instance, it is easy to see
that networks that form non-planar graphs5 are likely to result in greater rout-
ing congestion. Similarly, a more “entangled” graph is likely to have greater
routing congestion than a less entangled one. An attempt to capture this no-
tion of entanglement in Boolean networks involved a comprehensive study
of several metrics such as literal count, cell count, average fanout, leveliza-
tion, and adhesion [KSD03]. Among these, adhesion was found to be the most

5 A graph is non-planar if and only if it contains a subgraph that is a subdivision
of one of the two Kuratowski subgraphs K5 (the clique on five vertices) and K3,3

(the complete bipartite graph on six vertices partitioned into two sets of three
vertices each) [Kur30] [Har94].
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promising candidate for the a priori prediction of peak routing congestion.
The remaining candidate metrics, except for the literal and cell counts, were
found to exhibit poor correlation with peak routing congestion.

Definition 3.2. The adhesion of a network is defined as the sum of the min-
cuts between all pairs of nodes in the network.

The adhesion of a network displays a good correlation with maximum con-
gestion after mapping the network using a simple library and placing it. For
a number of designs obtained from the MCNC and ISCAS benchmark suites,
a plot of the adhesion versus the peak congestion has been shown to have a
least square linear fit with an R2 value6 of 0.643 [KSD03]. The adhesion met-
ric can be used to build congestion awareness into synthesis transformations.
For example, given two equivalent Boolean networks with different adhesion
values, the one with the lower adhesion would be likely to have smaller peak
congestion. Adhesion can also be used to guide logic synthesis transformations
such as extraction, as described in Chapter 6.

We have seen that the adhesion metric does not capture the routing con-
gestion completely by itself. Another possible metric is a weighted sum of the
adhesion, the number of literals, and the number of cells. The value of R2 for a
linear fit between the peak congestion and this new metric has been found to
be significantly better than that with the adhesion metric alone (although the
experiments assumed that a simple library containing only two-input NAND
gates is used for the mapping) [KSD03]. Indeed, the usefulness of this metric
for logic synthesis followed by technology mapping using realistic libraries is
currently unknown.

The computation of adhesion is expensive, since an exact algorithm re-
quires O(nF (n, m)), where F (n, m) is the time required for solving the max-
imum flow problem in a network with n vertices and m edges [ACZ98]. The
Edmonds-Karp implementation of the Ford-Fulkerson algorithm to solve the
maximum flow problem requires O(|V ||E|2) time, where |V | (|E|) is the car-
dinality of the set of vertices (edges) in the network [EK72]. More efficient
algorithms such as [GT88] still require O(|V ||E| log(|V |2/|E|)) time. Thus,
the overall time complexity is at least cubic in the number of nodes. With
approximation algorithms, it is possible to compute adhesion in time that is
linear in the size of the network with some error. Even with these approxima-
tions, the linear time complexity of adhesion makes it an expensive overhead
within synthesis transformations.

6 The R2 metric, also known as the coefficient of determination, measures
the fraction of the variance in an observed data set that can be explained
by a regression. More formally, given an observed set of n data points,
{(x1, y1), (x2, y2), · · · , (xn, yn)}, and the regression line ŷi = a + bxi obtained

by, say, least square fitting, the R2 metric is computed as
∑n

i=1(ŷi−y)2∑n
i=1(yi−y)2

, where y is

the mean over the observed values of yi. The closer the value of this metric is to
1.0, the better is the fit [Mee99].
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3.3.3 Fanout and Net Range

The fanout range metric has been proposed as a candidate to guide the ex-
traction process during logic synthesis to improve the routability [VP95], and
has also been extended further to create a new congestion metric called the
net range [LM04]. Assuming that the depth of each node in a circuit graph is
computed using a topological traversal, these metrics are defined as follows:

Definition 3.3. The fanout range of a node is the range of circuit depths (i.e.,
the number of topological levels) spanned by its fanout terminals.

Definition 3.4. The net range of a node is the range of circuit depths spanned
by all of its terminals.
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Fig. 3.7. An example of fanout and net range computation.

Figure 3.7 shows an example of fanout and net range computations for a
circuit. In this figure, the depth associated with each cell is shown next to it.
For instance, the depth of cell u is one, whereas that of y is five. The fanout
range of the net driven at the output of gate u is three, since the minimum
depth of any of its fanouts is two (corresponding to cells v and x), whereas
the maximum is five (corresponding to y); the difference between these is the
fanout range. The net range for the same net, however, considers the driver
u as well, resulting in a value of four. It is obvious that for single fanout
net, the fanout range is always zero, whereas the net range has a non-zero
value that depends on the depth of the driver and receiver. For instance, the
fanout range is zero for each of the two-pin nets (v, w) and (x, y). However,
the net range values for these nets are one and three, respectively. Thus, the
net range is more discriminatory than the fanout range because, unlike the
latter metric, it can also identify nets whose drivers are topologically distant
from their receivers, potentially leading to long routes.

The fanout and net range metrics try to capture, in a graph theoretic
sense, how far the fanouts or all cells connected by a net are likely to be
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placed, in the absence of any actual placement information. Intuitively, the
greater the fanout or net range, the larger is the expected netlength, since
the corresponding cells are likely to be placed far apart. Of course, this is
not strictly true, since, in real circuits, even two-pin nets with small net range
values can correspond to long wires, especially if they do not lie on any critical
path. Reducing the fanout or net range also implies that the connections
are localized merely in a topological sense; the actual netlength or routing
congestion may not be reduced in all cases.

The time complexity for the computation of either of these metrics for a
net is linear in the degree of the net. Therefore, it can be easily incorporated
into various cost functions during synthesis. The fanout range metric has been
used to guide fast extraction procedures during logic synthesis to improve the
wirelength in [VP95], whereas the net range metric has been used for fanout
optimization in [LM05].

3.3.4 Neighborhood Population

Another way to measure the local routing congestion caused by a cell is to
measure the number of topologically connected cells that are likely to be
placed in its vicinity, since the nets connected to a cell compete for routing
resources with nets of all the other cells in its neighborhood. The neighborhood
population metric attempts to capture this expected congestion in a graph
theoretic sense, using the notion of the distance between two cells, defined
as the number of cells on the shortest path between them. This distance is
computed on the undirected graph that underlies the (directed) circuit graph,
so that pairs of cells that do not have any path passing through both of them
can contribute to the distance metric for one another. Note that this notion
of distance is different from that of the depth ranges for different cells that
was discussed in Section 3.3.3; computation of the depth ranges relied only
on edges in the directed circuit graph.
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Fig. 3.8. An illustration of the neighborhood population metric.

As an illustration of the computation of the distance metric, consider the
example in Fig. 3.8. In this example, let us ignore the inputs and outputs of
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the circuit for the sake of simplicity. Then, there are two cells at a distance
of one from cell s, namely, cells v (across r) and o (across y). Similarly, there
are six cells at a distance of one from cell r, namely, y (across s) and t, u, x,
p and o (all across v).

The neighborhood population metric was first introduced to estimate the
wirelength and layout area for logic netlists implemented in a two metal layer
process technology [PP89a, PP89b]. It was further parameterized based on
distance and used to predict the yield on metal layers as a function of to-
tal estimated netlength and critical area for a given netlist without actually
performing any layout [HM96b,HM96a,HKM+97]. While the neighborhood
population metric had originally been defined for nets, it was subsequently
extended to cells and applied to routability enhancement.

Definition 3.5. The neighborhood population at a distance i for a given cell
c, Ngh(c)i, is the number of cells at a distance i from the cell.

Thus, for the example in Fig. 3.8, Ngh(s)1 = |{v, o}| = 2 and Ngh(r)1 =
|{t, u, x, p, o, y}| = 6.

The neighborhood population definition can be further extended to com-
pute the total and average neighborhood populations over any subcircuit by,
respectively, summing and taking the average of the corresponding values over
all cells in the subcircuit.

The notion of the neighborhood population has been used to modify the
cost functions in logic synthesis transformations such as substitution in an at-
tempt to improve the routability of the circuit [KK03]. This work also presents
some evidence that the application of other transformations such as fast ex-
traction and speed-up [SSL+92] also results in netlists with differing values
for the neighborhood population metric, which is expected to correspond to
different levels of congestion in the final layout.

The computation of the neighborhood population metric is more expensive
than that of the fanout and net range metrics. Specifically, if the metric is
used as a congestion discriminator between two logically equivalent netlists
being explored during synthesis, it requires a traversal of the entire network to
compute the total and average neighborhood populations. Even during local
synthesis optimizations, this metric takes longer to compute than the fanout or
net range estimations, since its value depends on all the nodes within distance
i, and not just on the fanin and fanout nodes.

3.3.5 Other Structural Metrics for Netlength Prediction

In this section, we will briefly review some other metrics that have been pro-
posed either for the a priori estimation of individual netlengths or the aver-
age netlength in a design, or for the purpose of guiding placement algorithms
to generate more routable designs. While these metrics have not been used
during logic synthesis to date, they are candidates for such an application
just like the other structural metrics discussed earlier. These metrics include
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edge-separability [CL00], connectivity [HB97], closeness [SK93] and intrinsic
shortest path length [KR05]. Each of these metrics attempts to capture the
tendency of tightly connected groups of cells or clusters to be placed close to
each other.

Definition 3.6. The edge-separability for an edge e(u, v) in graph G(V,E) is
defined as the minimum cut size among the cuts separating u and v.

For example, the edge-separability for the edge e(v, r) in the example depicted
in Fig. 3.8 is two, since edges e(v, r) and e(r, s) form a minimum cut-set
separating v and r. Similarly, the edge separability for the edge e(t, v) is one.

Definition 3.7. The intrinsic shortest path length (ISPL) of a net e(u, v) in
the graph G(V,E) is defined as the shortest path length between u and v in
the graph G′(V,E − {e(u, v)}).

In the above example, ISPL(e(r, s)) is four, corresponding to the path r −
v − o − y − s.

Definition 3.8. The closeness between two cells or clusters of cells is defined
as the ratio of number of nets connecting them to the minimum of the degree
of either of the two cells or clusters.

Continuing further with our example of Fig. 3.8, one can verify that the close-
ness between cells v and r is 1/2, since the number of edges connecting v
and r is one, while min(deg(v), deg(r)) = min(6, 2) = 2. Note that the net
(u, v, x, p, o) is modeled using a clique, resulting in edges between all pairs of
cells connected by the net.

Definition 3.9. The connectivity between two cells or clusters of cells u and
v is given by:

connectivityuv =
bwuv

sizeu × sizev × (fou − bwuv) × (fov − bwuv)

where bwuv is the sum of weights of all edges between u and v, size is the
measure of the area of a cell or cluster, and fo represents the degree of a cell
or cluster.

This metric attempts to capture the relative strengths of the tendency of two
cells or clusters to be pulled together because of the net(s) connecting them
and their tendency to be pulled away from each other because of the nets
connecting them to their other neighbors. In our ongoing example, if the size
of each cell and the weight of each edge is one, the connectivity of the edge
e(r, s) is one (because both r and s each have only one additional neighbor).

There has been some work [HM02] that demonstrates that mutual con-
traction is a better metric than connectivity or edge separability in terms of
its ability to discriminate between short and long nets. More recently, [KR05]
has shown that the ISPL metric outperforms both mutual contraction and
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edge separability in terms of the correlation between the predicted and ac-
tual netlengths (although it is comparable to the mutual congestion metric
in its ability to predict which of a pair of nets will be longer). Therefore,
it is a promising candidate for use in congestion-aware logic synthesis and
technology mapping.

3.3.6 Comparison of Congestion Metrics for Logic
Synthesis

In summary, the metrics that have been used to estimate routing congestion
at the logic synthesis stage include the number of literals, adhesion, fanout
and net range, and neighborhood population. The literal count metric is com-
putationally the least expensive. However, it does not capture congestion well,
although it is better at estimating the cell area. The adhesion metric is the
most expensive of all the proposed metrics, and is best used to capture the
routing congestion in conjunction with additional metrics such as the number
of literals and the number of cells. The correlation of these metrics with the
peak congestion has been demonstrated after technology mapping using a triv-
ial library, but is unknown for realistic libraries that include many complex
gates. The neighborhood population metric is less expensive than adhesion
and has shown some promise when used with synthesis transformations. The
fanout and net range metrics are computationally less expensive than even the
neighborhood population. Unlike the net range metric, fanout range cannot
distinguish between short and long two-pin nets. Net range has shown encour-
aging results when applied to fanout optimization after technology mapping.

However, the correlation of all these metrics has been studied only against
average netlengths, and therefore, average congestion. It is unclear whether
these metrics will be able to predict local congestion hot spots. It is, thus,
apparent that the metrics for routing congestion at the logic synthesis stage
require further research to be truly effective for synthesis optimizations.

3.4 Final Remarks

In this chapter, we have reviewed several routing congestion metrics for tech-
nology mapping and logic synthesis. Technology mapping often employs place-
ment dependent metrics such as netlength and congestion maps, although
graph theoretic measures such as mutual contraction can also be applied.
Among these, constructive congestion maps are the most accurate and ef-
fective, especially when the assumed placement is preserved, but are compu-
tationally expensive. In contrast, the netlength is computationally the least
expensive, but is also inaccurate and therefore, less effective. Furthermore, as
with mutual contraction and the structural metrics proposed for congestion



92 3 SYNTHESIS-LEVEL METRICS FOR ROUTING CONGESTION

estimation during the logic synthesis stage, the netlength metric suffers from
the inability to identify locally congested regions.

All the congestion metrics that have been applied at the logic synthesis
stage are graph theoretic measures, since the logic synthesis transformations
cause such large perturbations to the network structure that maintaining con-
sistent placement information is a challenge. Among the metrics such as lit-
erals, adhesion, fanout and net range, and neighborhood population, it is not
yet clear which has the best correlation with the post-mapping and post-
placement routing congestion for realistic designs and libraries. Indeed, there
is still much scope for further research in the quest for a good congestion
metric applicable at the logic synthesis stage.
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Part III

THE OPTIMIZATION OF
CONGESTION



4

CONGESTION OPTIMIZATION DURING
INTERCONNECT SYNTHESIS AND
ROUTING

Traditionally, the fundamental goal of routing has been route completion,
which translates directly to congestion management. Over the years, there
has been considerable work on the routing problem with the goal of improving
route completion on difficult test cases. As discussed in Section 1.1, the most
popular routing paradigm consists of a two stage routing process. The first
stage, namely, global routing, involves route planning at the granularity of
coarsely defined regions called global routing cells or bins that ignores the
actual pin hookups; the goal of this stage is to avoid or minimize routing
overflows in the bins. This is followed by track assignment and detailed routing,
during which pin hookups within and in the neighborhood of each bin are
completed and the routing is legalized.

However, the challenges faced by routers have become more diverse in
recent process generations. Since interconnect delays scale much worse than
device delays, good design of signal interconnects can have a significant impact
on the delay of critical paths in modern designs. Interconnect design includes
not only the generation of tree topologies for multipin nets and the manage-
ment of detours in the routing, but also layer assignment, wire sizing and wire
spacing, as well as buffer insertion and shielding for some of the nets. The
increasing number of layers in modern process technologies, the heterogeneity
of these layers (in terms of the parasitics of minimum-width wire segments
routed on them), and the increasing resistance of vias are making layer as-
signment an integral part of performance-driven routing. Similarly, the choice
of appropriate wire sizes, tapers and spacings for long wires can improve their
delay significantly. The increasing resistance of wires is leading to a rapid in-
crease in the fraction of signal nets that require buffering in order to meet
delay and signal slew constraints. The via stacks and routing detours required
by the signal nets to access the buffers inserted within them can cause sig-
nificant congestion deterioration. Furthermore, the embedding of buffers into
the layout cuts down the rip-up and reroute flexibility for the buffered nets
significantly. In high-end designs, many signal nets require shielding in order
to control injected noise or avoid signal slowdown due to cross-coupling with
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neighboring nets. These shields also consume valuable routing resources. At
the same time, the fraction of routing resources required for adequate power
delivery is also increasing. Moreover, routers may also be required to minimize
the number of irredundant vias as much as possible, since vias are typically
difficult to manufacture and can lead to functional or parametric yield loss.
Thus, the performance-driven routing required in modern designs involves not
only the traditional responsibility of route completion, but also the complex
allocation of the different routing resources in a way that the required perfor-
mance constraints can be met. Furthermore, each of these allocation decisions
has an impact on the routing congestion.

4.1 Congestion Management during Global
Routing

As mentioned earlier, the primary goal of global routing is to plan global
routes in a way that avoids (or bounds) any overflows of routing demand in
the global routing cells. Although this does not fully capture the local routing
complexity caused due to pin accessibility issues, good global route planning
goes a long way in ensuring that the design can be routed successfully, by
presenting the subsequent detailed routing phase with local switchboxes that
are not too difficult, and allowing that phase to focus exclusively on local
route completion issues.

In order to carry out global routing, the routing region is overlaid with
a coarse grid that divides it into the routing bins (as was discussed in Sec-
tion 1.1). These bins may be uniform or non-uniform in size, and the grid
that creates these bins may be complete, or may omit some edges over routing
blockages. The routing bins imply a routing graph, with each bin correspond-
ing to a routing graph node that is located at the center of that bin. The
nodes corresponding to two adjacent bins are connected by a routing edge
whose capacity equals the number of routing tracks that cross the common
boundary of the two bins. The global routing process maps the nets in the
design to the edges of the routing graph, with the goal of minimizing the
overflows along these edges.

The biggest challenge faced by global routers is that of net ordering, as
illustrated in Fig. 4.1. This figure depicts three nets n1, n2 and n3, routed in
a region where the horizontal capacity of each routing bin is two tracks. The
circled numbers in the figure indicate the order in which the nets are routed.
If net n3 is routed last (as shown in the upper figure), it will require a detour
if the first two nets are routed as shown (since all the horizontal tracks in its
row would already have been used up). In contrast, if n3 is routed earlier, all
the nets can obtain minimum length routings (as shown in the lower figure),
thus reducing the total wirelength of the design.
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Total wirelength: 18
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Fig. 4.1. The impact of net ordering on global routing. (The circled numbers denote
the order in which the nets are routed).

Although techniques for finding a good route for a given net in the presence
of a given set of blockages are well understood, the design of a scheme that can
do so for all the nets in a design is still an art because of the reduced flexibility
available for nets that are routed late. Thus, the design of a good global router
involves getting around this net ordering problem in some way so that the nets
routed late do not become the bottlenecks for route completion or performance
due to excessive usage of the preferred routing resources by the nets that are
routed early. Techniques that attempt to minimize or avoid the impact of
net ordering on the layout quality include rip-up and reroute based schemes
(discussed in Section 4.1.2), hierarchical methods (discussed in Section 4.1.3),
multicommodity flow based schemes (discussed in Section 4.1.4), simulated
annealing and other move-based heuristic schemes (discussed in Section 4.1.5),
iterative deletion (discussed in Section 4.1.6), network flow based schemes
[HS00], and dynamic area quotas [SL01]. Today’s industrial global routers rely
largely on heavily tuned sequential routing and rip-up and reroute algorithms,
often augmented with hierarchical routing and other techniques.

In general, given the high complexity of the search space explored during
global routing, the various approaches to global routing represent different
tradeoffs between simplicity and computation. Thus, for example, although
rip-up and reroute heuristics are usually quite simple, they can be tuned ex-
tensively to specific design styles to achieve high solution quality. In contrast,
although multicommodity flow based approaches are more sophisticated and
offer theoretical guarantees on solution quality, their implementations are usu-
ally more difficult to scale to very large designs or tune for particular design
styles. Furthermore, these sophisticated formulations are often harder to adapt
to real-world constraints such as crosstalk and non-default routing rules. This
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tradeoff between quality and computation also holds true within many of the
commonly used global routing paradigms; permitting a rip-up and reroute or
simulated annealing based global router to run longer will usually result in
improved solution quality.

A good description of the various techniques commonly used for global
routing can be found in [HS01] or in any of the several existing textbooks on
physical design; in this section, we present merely a brief overview of these
techniques.

4.1.1 Sequential Global Routing

Sequential routing is perhaps the oldest and simplest of the techniques used
for global routing. It refers to the strategy of choosing some ordering for the
nets, and then routing them sequentially in that order. Thus, at the time
any given net is being routed, the blockages and congestion created due to
nets routed earlier are known, allowing the use of any shortest path algorithm
to determine the routing for the current net. Even if the current net is a
multipin net, its decomposition into two-pin subnets can benefit from the
available congestion map that includes the effect of all previously routed nets.

On the other hand, the biggest weakness of this technique is that the
quality of the layout is very sensitive to the ordering of the nets. Although
good routings are easily found for the nets routed early, the nets that are
processed late can end up being unroutable or routed with very large detours
or poor layer assignments. Finding a good ordering of the nets for the purpose
of sequential routing is a very hard problem.

This strategy originated in an era when wire delays were insignificant, so
that the detours in the routing of a net had no impact other than increasing
metal track usage, thus leaving fewer routing resources for nets that were yet to
be routed. In contrast, some of the nets in today’s designs that have significant
delays and lie on timing-critical paths cannot afford poor routings; these nets
are natural candidates for early routing in any sequential scheme. However,
even a previously non-critical net that is being routed late may end up with
a detour or poor layer assignment, causing it to become timing-critical.

Global routers that spread routing congestion rather than greedily find
the shortest possible path usually produce better quality layouts [NHL+82].
This can be achieved by the use of a dynamic weight for each edge in the
underlying routing graph to model the current or predicted routing congestion
along that edge. Examples of such a weight include u(e)/s(e) and (u(e)/s(e))2,
where u(e) is the current number of used tracks along routing edge e that has
a total supply of s(e) tracks1. Another weight function that is even more
effective at spreading congestion (although at the cost of introducing greater
routing detours) is given by u(e)+1

s(e)−u(e) for u(e) < s(e) and ∞ for u(e) ≥ s(e).

1 The notions of demand and supply along the edges in a routing graph were
discussed in Section 1.1.
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The weight function can also have a coarser granularity, as in [CWS94] that
partitions the routing space into regions using the Hanan grid2 induced by the
nodes of the current net and the corners of each (rectilinear) blockage within
the routing space. Each region is assigned a weight that reflects the routing
complexity and congestion within that region.

Given any weight function, the routing of a two-pin net is straightfor-
ward; the router merely finds the shortest weighted path using Dijkstra’s
algorithm for maze search [Lee61] or a faster but often suboptimal line probe
search [Hig69]. However, routing a multipin net while spreading congestion is
more complicated, since it involves the construction of a Steiner tree. Many
global routing algorithms (such as [CWS94], as well as many commercial tools)
use approximation algorithms that minimize the weighted wirelength of the
Steiner tree for the net.

Another interesting formulation for congestion-aware Steiner tree con-
struction uses the concept of a Steiner min-max tree (SMMT). A SMMT
minimizes the maximum weight (i.e., minimizing the congestion along the
most congested edge) among all the edges in the tree, and can be constructed
using an algorithm presented in [CS90]. However, such a tree provides no
guarantees on the wirelength of the net. Therefore, [CS90] imposes explicit
wirelength bounds on every SMMT. The algorithm iterates over the entire
netlist in increasing order of the size of the bounding box of each net, until
all the nets have been routed. The routing of nets within each iteration is
controlled by a wirelength limit ratio ρ specifying the extent of wirelength
degradation permissible within that iteration. More specifically, if the wire-
length of the SMMT of a net Ni is greater than ρ times the semiperimeter
of the bounding box of Ni, the SMMT is discarded in the current iteration.
Thus, at the end of the iteration, some nets may be left unrouted. The value
of ρ is initialized to a small value (usually between one and two), and relaxed
in each successive iteration, so that all the nets are eventually routed. Thus,
this scheme ensures that, even as the congestion is being spread, the nets that
can be routed with little wirelength degradation actually do get such routings
(although the total wirelength of the design may be rather large, and some
critical nets may have poor routings).

4.1.2 Rip-up and Reroute

Rip-up and reroute schemes began as a feedback mechanism to ease the net
ordering problem of sequential global routing. Today, these schemes are the
primary workhorse of most commercial global routers. The standard approach
is to route each net in a congestion-oblivious fashion, identify the congestion
hot spots, and then locally reroute the segments of the nets contributing to

2 The Hanan grid induced by a set of points lying in a region is the non-uniform grid
generated by adding a horizontal and a vertical line extending to the boundary
of the region at each of the points.
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these hot spots through less congested regions. This causes the routing of a net
to degrade only if the degradation is essential for congestion relief. However,
rip-up and reroute can also be used to post-process any global routing to
improve the overall congestion (or even individual nets that currently have
poor routings or large delays).

One of the early strategies for rip-up and reroute was proposed in [TT83].
This work focuses on identifying a set of congested global routing bin bound-
aries, as well as a set of nets crossing these boundaries that would be ripped up
and rerouted in order to relieve congestion across the selected bin boundaries.
One of their observations is that if some set of congested bin boundaries forms
a closed loop, then no rerouting of a net that crosses that loop exactly once
can help reduce the total routing overflow along that loop. This is because at
least one of the terminals of such a net lies inside the loop and at least one of
its terminals lies outside the loop, as illustrated for nets n2 and n5 in Fig. 4.2.
Therefore, any route for the net will have to cross the loop at least once. Only
those nets that cross such loops two or more times are suitable candidates for
rerouting, as is the case with nets n1 and n3 in our example.

Overflowing bin boundary

n1

n2

n3

n4

n5

Fig. 4.2. Congestion along overflowing bin boundaries that form a loop.

Once such loops have been fixed, the algorithm of [TT83] next selects the
k most congested bin boundaries. It then constructs a bipartite graph con-
sisting of vertices corresponding to these boundaries bi in one partition and
vertices corresponding to the nets nj crossing these boundaries in the other
partition. For each such net nj , the vertex corresponding to nj is connected
to each of the vertices corresponding to the selected bin boundaries that nj
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crosses. Next, the algorithm finds a minimum cardinality cover of the vertices
corresponding to the nets that has the following property. If the routing over-
flow of the boundary bi is denoted by oi, then, for each selected boundary
bi, the number of times that the vertex corresponding to bi is included in
the cover is oi. This yields the smallest possible set of candidates for rip-up
and reroute that has the potential of resolving the congestion problems of
the selected bin boundaries. This process is repeated iteratively until all over-
flows are eliminated from the bin boundaries, or there is no further congestion
improvement.

Another similar strategy for rip-up and reroute is presented in [SK87].
Although this formulation is applicable only to two-pin nets and represents
the problem as a multicommodity flow, the algorithm to select the next net for
rip-up is largely independent of the network flow formulation. All nets are first
routed in a congestion-oblivious fashion using a shortest path algorithm. Let
φ be the resulting maximum overflow among all the routing edges. Then, the
cost of all edges that have an overflow of φ or φ−1 is set to infinity. Next, each
of the nets that was earlier routed along some maximum congestion edge is
rerouted by a shortest path algorithm on the updated routing graph, keeping
all nets unchanged except for the one being currently rerouted. The rerouting
that involves the smallest cost increase is accepted, and the entire process is
repeated (until no net can be rerouted with finite cost or all routing overflow
is eliminated).

In contrast to the schemes described above that rip up nets passing through
the most congested routing edges, the rip-up and rerouting scheme presented
in [Nai87] proposes to rip-up and reroute every net in the same constant order
iteratively, routing each net based on the (dynamically updated) congestion
map available at that time. The intuition behind this approach is that the
initial routing of nets selected for early routing is based on poor congestion
estimates, in contrast to the routing of nets routed later. Therefore, the early
selected nets should also be the ones corrected first through rip-up and reroute.

Other schemes to select routes for rip-up are ordered by the increase in
the wirelength of the rerouted nets, rather than by the overflow in the routing
edges. Thus, for instance, a scheme described in [LS91] orders the candidates
for rip-up (i.e., the nets or Steiner tree edges passing through at least one
congested routing edge) by whether they can be rerouted through uncongested
edges using a single bend (“L”) route, followed by those that can be routed
using a two bend minimum length (“Z”) route, and then those that require
a two bend detour (i.e., a “U” route) sorted by the length of the detour.
Any remaining nets that require rerouting are handled using a standard maze
router.

The rip-up schemes described so far reroute entire nets (or two-pin sub-
nets). However, this is not necessary; it is possible to design a rerouting scheme
in which an alternative routing is found only for that portion of a net that cur-
rently lies along a congested routing edge. A good example of such a scheme
is a network flow based rerouting described in [ML90]. For any node v in the
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routing graph, this scheme selects nets that have either a sink or a Steiner
node (of degree at least three) at v and rips up their routing edges that con-
nect their node at v to the next sink or Steiner node in their routing tree,
as shown for two nets in the example in Fig. 4.3. This leaves behind partial
routing trees for these selected nets. In our example, let these trees be T1

and T2, respectively. The formulation in [ML90] models the case where each
selected net contains a single partial routing tree that is to be reconnected to
the source node v.

(a) (b)

(c) (d)

vv

vv

z

t1

t1

t2

t2

Fig. 4.3. A network flow formulation for the concurrent completion of partial rout-
ing trees for two nets routed through a selected vertex v: (a) Initial routing. (b)
Partial routing trees and network flow edges. (Edge pairs corresponding to the orig-
inal routing graph edges are not shown for simplicity). (c) Selected flow. (d) Final
routing.

The problem of completing the routes for the selected nets is formulated
as a network flow problem. A pseudo-node is created for each selected net and
connected with edges having zero cost and unit capacity to each of the vertices
on the partial routing tree for that net, as well as to a newly created pseudo-
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node that acts as a super sink of the network flow. Thus, in our example, we
connect the pseudo-nodes t1 and t2 to each of the vertices along T1 and T2,
respectively, as well as to the super sink z. The node v serves as the source
of the network flow. Each undirected edge in the routing graph is mapped
to a pair of (forward and backward) directed edges with cost equal to their
edge length and capacity equal to the number of routing tracks available along
the undirected edge. Then, a minimum cost flow of s units is found through
the network, where s is the number of selected nets. Such a flow minimizes
the wirelength of the rerouting while completing all the partially routed trees
without creating routing overflows. Since there are only s in-edges incident to
the super sink, the flow can never be larger than s units. On the other hand,
since each partial net corresponds to a single unit capacity edge incident on
the super sink, a flow of less than s units implies that the routing of some
partial net cannot be completed without creating an overflow.

This entire process is repeated for each node in the routing graph. Al-
though this scheme is sensitive to the order in which nodes in the routing
graph are selected, this ordering problem is usually easier than the net or-
dering problem. At any selected node of the routing graph, the partial trees
belonging to different nets are completed concurrently, thus avoiding the net
ordering problem locally.

So far, we have seen many examples of heuristics to decide which nets to
rip up and how to reroute them. Indeed, the choice of these strategies can have
a huge influence on the effectiveness of a rip-up and reroute scheme at route
completion, as well as on the time required for the route completion. Thus, this
choice has a significant impact on the overall quality of a global routing tool.
Commercial global routers often use sophisticated, highly tuned strategies for
rip-up and reroute that yield route completion rates and runtimes superior to
most other competing global routing approaches.

4.1.3 Hierarchical and Multilevel Routing

These approaches rely on the use of a hierarchy of routing grids. Thus, they
are a natural extension of the traditional two stage decomposition of routing
into global and detailed routing.

In most hierarchical schemes, the global routing is first carried out on a
very coarse grid composed of “super-cells”, and is then refined recursively by
embedding the routes into successively finer routing grids, as illustrated in
Fig. 4.4. The routing of all the nets on a coarse grid allows the generation
of an approximate congestion map while still retaining some flexibility in the
embedding of the nets on the final global routing grid. This helps overcome
some of the problems inherent in net ordering, since the nets routed early still
retain some flexibility of responding to a congestion map that captures all the
nets, without requiring any rip-up and reroute. However, the routing of a net
at a previous hierarchical level does constrain the embedding choices available
to it at subsequent levels.
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Fig. 4.4. Hierarchical global routing.

Another advantage of hierarchical schemes is that they help increase the
capacity of the global router. Since the top level grid is much coarser than
the final global routing grid, and super-cells at subsequent routing levels are
not very dependent on each other (and can therefore be parallelized), a hier-
archical global router can handle much larger designs than a corresponding
flat router.

The first hierarchical global routing scheme was presented in [BP83]. The
core of this algorithm is a scheme to refine the routing from one hierarchical
level to another. In particular, [BP83] proposes two heuristics, based on divide-
and-conquer and on dynamic programming respectively, to refine the routes
in a row (column) of the original grid, represented as a 1×N (N ×1) array of
cells, to a 2×N (N × 2) array of cells at the next routing level, as illustrated
in Fig. 4.5. This work has been followed by many other variants for top-
down hierarchical global routing over the years. These variants have relied
upon maze routing, integer linear programming (as in [BP83] and [HL91]) or
network flows (as in [CS98]) to carry out the routing at any given level of the
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hierarchy, proposing different schemes to refine the routes from one level of
the hierarchy to the next.

Fig. 4.5. Refining the routes in a row of super-cells across one routing level.

Since the routing decisions at the coarse levels of any top-down hierarchical
global routing scheme are made with little visibility into the underlying global
routing cells, these decisions can lock the routes into poor embeddings. This
problem is avoided in bottom-up hierarchical schemes such as that proposed
in [Mar84]. In this scheme, the routing grid is successively coarsened until the
entire layout can be represented by a single super-cell. At any level of the
hierarchy, only the nets that lie entirely within the super-cells of the current
routing grid are routed. Therefore, when the routing grid is coarsened to the
next level, many of the nets that previously crossed super-cell boundaries
now become available for routing. Although this approach captures the local
congestion well, it suffers from a lack of global visibility during the early
routing decisions, potentially resulting in poor routes for the long global nets.

The problems inherent in pure top-down or bottom-up hierarchical schemes
have encouraged researchers to develop several hybrid schemes such as [LHT90]
and [HT95]. The approach in [LHT90] proposes parameter-controlled top-
down refinement of the coarse grid, allowing some portions of the routing
graph to become finer than others. In contrast, [HT95] embeds a top-down
hierarchical loop inside a bottom-up hierarchical loop. All nets are first de-
composed to two-pin subnets. At any level of the hierarchy, the only nets (or
subnets) that are considered are those whose endpoints lie in super-cells lying
adjacent to or diagonally across each other, with a shared super-cell bound-
ary or corner. The routing of the nets at any given hierarchical level in the
outer bottom-up loop is followed by a top-down rip-up and rerouting of all
the nets that have already been handled at all the finer granularities of the
routing grid, using a maze router. This approach usually yields lower routing
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congestion than pure top-down hierarchical routing or pure rip-up and reroute
techniques.

In recent years, these hybrid approaches have been developed further into
true multilevel routing. The fundamentals of multilevel optimization schemes
will be discussed in Section 5.1.3 in Chapter 5 (since, so far, these techniques
have been more effective in the context of placement than in the context of
routing). The application of such schemes to multilevel routing, presented in
[CFX+05] and [CL04], uses a “V-shaped” flow that first coarsens the routing
grid in a bottom-up pass, and then refines it back to the granularity of the
global routing cells in a top-down pass. The initial coarsening pass is used to
estimate and reserve routing resources required locally for the current level of
the hierarchy. At each new level of the hierarchy, this estimate includes the
resources for nets lying at lower levels of the hierarchy as well as the nets
newly exposed at the current level. However, in contrast to pure bottom-up
approaches to hierarchical routing, the actual routing of these nets is deferred
to the end of the coarsening pass. Once the number of super-cells falls below a
certain threshold, the coarsening pass is terminated and all the nets are routed
using a multicommodity flow based algorithm. These initial routings are then
refined during a refinement pass of the routing grid using a modified maze
search. In contrast to traditional top-down hierarchical schemes, coarser level
routes do not act as hard constraints to finer level routes. Thus, finer level
routes can deviate from their coarser counterparts when the more detailed
information about the local congestion and resources warrants it. Because of
this flexibility, multilevel global routing usually yields better quality layouts
than hierarchical schemes.

4.1.4 Multicommodity Flow based Routing

A multicommodity flow problem involves the transportation of a given number
(say, k) of commodities from their respective sources to their respective sinks
in a given network. Each edge e in this network has a given capacity c(e),
which serves as an upper bound on its usage u(e) that is the sum of the
flows of all the commodities routed along that edge. In the context of global
routing, the commodities are the nets Ni (i = i, . . . , k) that are to be routed.
An advantage of multicommodity flow formulations for global routing is that
they can provide quality assurances on their solution, in contrast to the other
heuristics discussed earlier. In other words, they can be used to determine
whether a feasible routing exists at all for a given routing problem, as well as
to find a routing that is within a specified bound of the optimum routing (if
it exists).

Although the global routing problem can be formulated as a multicommod-
ity flow either in terms of edges or in terms of routing trees, it is the latter for-
mulation that is more widely used. In this formulation, let Ti = {Ti,1, . . . , Ti,ji}
refer to a list of candidate routing trees for net Ni. Furthermore, let the 0,1-
variable xi,j (i = 1, . . . , k, j = 1, . . . , ji) be defined as 1 if and only if tree Ti,j is
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selected for net Ni. Then, the multicommodity flow formulation of the global
routing problem can be expressed as an integer linear program as follows:

Minimize λ̂ (4.1)
subject to

∑
Ti,j∈Ti

xi,j = 1, i = 1, . . . , k,∑
i,j:e∈Ti,j

xi,j ≤ λ̂c(e), ∀e ∈ E,

xi,j ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . , ji.

This formulation is also referred to as the concurrent multicommodity flow
formulation; it seeks to minimize the maximum flow in the edges of the net-
work. In this formulation, the first family of constraints, also referred to as
the demand constraints, states that (flows equivalent to) exactly one routing
tree will be selected for each net. The second family of constraints is also
referred to as the bundle inequality, and captures the intuition that the total
usage of a routing edge for selected routing trees cannot exceed its capacity
(by requiring that λ̂ be at most one for a feasible routing). The third fam-
ily of constraints (i.e., the integer constraints) specifies that a routing tree
cannot be “partially” selected; instead, it must either be used fully or not at
all. Since the solution of an integer linear program is an NP-hard problem,
it is usually difficult to solve large multicommodity flow problems optimally.
Instead, a commonly used approach relies on relaxing the integer constraints
so that xi,j ∈ [0, 1], and then solving the resulting linear program. The result-
ing fractional flow is then rounded up to integer values of xi,j using various
heuristics.

Alternative formulations for global routing using multicommodity flows
associate a cost with each network edge, and then attempt to minimize the
total cost of all the commodity flows in the network. One of the earliest mul-
ticommodity flow based approaches to global routing [SK87] is an example of
this class of formulations; the rip-up and reroute scheme used in this approach
was briefly discussed in Section 4.1.2.

The first multicommodity flow algorithm for global routing that had a the-
oretical bound from the optimal solution was presented in [CLC96]. It uses
the concurrent flow formulation and is based on a two-terminal multicom-
modity fractional flow algorithm presented in [SM90]. In this approach, the
integer constraints in Program (4.1) are relaxed, and the resulting linear pro-
gram and its dual are solved. The theory of duality implies that a feasible
solution to the dual program (specified below as Program (4.2)) is a lower
bound to the optimal solution of the original program (4.1). This is exploited
by the algorithm of [SM90] that iteratively pushes the solutions to these two
programs closer. The final gap between these two solutions provides the the-
oretical bound on the quality of the solution. Finally, the fractional solution
obtained by the relaxed linear program is rounded up to integer values using
randomized rounding, with any remaining overflow resolved using rip-up and
reroute heuristics.
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The dual of Program (4.1) can be written as:

Maximize
∑

Ni
θi (4.2)

subject to
∑

e k(e)l(e) = 1,∑
i,j:e∈Ti,j

l(e) ≥ θi, ∀Ni, ∀Ti,j ∈ Ti,

l(e) ≥ 0 ∀e.

In this formulation, the dual variable l(e) is referred to as the weight of the
edge e and initialized to 1/c(e), and k(e) is the cost of pushing a unit flow
through that edge. The variable θi represents the throughput of the flow for
the net Ni.

The algorithm initially constructs Steiner trees for all the nets without
considering the bundle constraints; this usually results in a large initial value
of λ̂. This value is iteratively decreased by reweighting the edges (so that
congested edges have a higher weight) and reconstructing minimum weight
Steiner trees.

More recently, a faster and simpler multicommodity flow algorithm was
presented in [GK98] and applied to the global routing problem in [Alb00].
Unlike the algorithm in [CLC96] in which a fraction of the flow in a highly
congested tree is switched to a less congested tree, this algorithm adds an
incremental flow to a less congested tree in each iteration, without changing
any of the previously placed flows. Finally, the flow on each edge is scaled
back by the number of iterations. Just as with [CLC96], this approach also
provides a theoretical bound on the quality of the solution.

Although multicommodity flow based approaches to global routing have
shown good progress in recent years, it has been a challenge to scale them
up to today’s large global routing problems and yet obtain quality-versus-
runtime tradeoffs that are comparable in quality to the best rip-up and reroute
heuristics.

4.1.5 Routing using Simulated Annealing

Simulated annealing [KGV83] has been successfully applied to numerous com-
putationally difficult combinatorial optimization problems, including several
in the area of physical design (such as floorplanning and placement). It is a
means of reducing the likelihood of getting trapped in local minima within a
complex solution space. Given a candidate solution, potential moves leading to
a new candidate solution are generated and evaluated. Any move that reduces
the cost function is accepted. Furthermore, in contrast to greedy heuristics,
even a move that increases the cost function has a finite probability of accep-
tance. This probability is given by e−ΔC/T , where ΔC is the increase in the
cost and T is a parameter commonly referred to as the temperature. Thus,
the probability of the acceptance of a move decreases exponentially with the
extent of the increase in the cost. Furthermore, a reduction in the temperature
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also decreases the probability of the acceptance of a move that degrades the
cost function. As the exploration of the solution space proceeds, the temper-
ature is progressively reduced.

This approach was applied to the global routing problem quite early
[VK83]. Although the original formulation of global routing using simulated
annealing was restricted to two-pin nets and routings that had no more than
two bends, it was extended to generic global routing as part of the Timber-

Wolf layout system [SS86]. TimberWolf applies simulated annealing for
both placement and routing. A global routing move in this framework con-
sists of changing the routing of a net currently crossing some congested routing
edge, from one candidate routing to another. The cost function to be mini-
mized is the total routing overflow within the entire routing grid. Generating
all possible routings (and topologies) for all the nets up front is not practi-
cal. Therefore, it is possible to generate new routings for a net on the fly. As
is typical with most simulated annealing based algorithms, this approach to
global routing can involve large runtimes. However, the longer the algorithm
is run, the better is the quality of the resulting solution.

Other similar move-based approaches such as simulated evolution and ge-
netic algorithms have also been used to develop formulations for global rout-
ing, although they have not yet been demonstrated as competitive against
industrial tools.

4.1.6 Routing using Iterative Deletion

Iterative deletion, presented in [CP92], is a technique that inverts the tradi-
tional constructive paradigm of global routing in which one route after another
is added to the layout. Instead, iterative deletion conceptually begins with all
possible routings for all the nets, and then iteratively deletes the most expen-
sive Steiner segments from the routings, provided that they do not cause the
net they belong to, to become disconnected. This is continued until the route
for each of the nets has been reduced to a tree, with no redundant Steiner
segments. The generation of all possible routings up front enables the early
approximation of the final congestion map, theoretically allowing accurate
congestion costs to drive the selection of the Steiner segments to be deleted.
This helps ameliorate the net ordering problem to some extent. However, if
the number of alternative routings for each net is large, the congestion map
is no longer accurate.

Of course, constructing all possible routings for all the nets is prohibitively
expensive in practice. Therefore, impractical routings (such as those that in-
volve significant detours) are not considered. Even for a single net, given n
Steiner points, iterative deletion conceptually reduces the O(n2) Steiner seg-
ments possible for its routing down to some n − 1 segments forming a tree.
However, even the O(n2) iterations required for this process can be impracti-
cal. Therefore, heuristics are used to prune down the number of Steiner seg-
ments to O(n) by not generating segments that are unlikely to be retained.
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Although this pruning improves the runtime as well as the accuracy of the ini-
tial congestion map to some extent, it can have a significant impact on route
completion in congested designs (since detoured routes that may be required
in such designs are not a part of the pruned set of routing choices for iterative
deletion). As a result, iterative deletion has not found widespread acceptance
in industrial global routing tools.

4.2 Congestion Management during Detailed
Routing

Whereas the role of global routing is to perform route planning in a way that
the congestion due to global routes is spread uniformly across the chip and
the routing overflows in global routing bins are minimized, the responsibility
of legalizing the global routing and resolving all remaining routability issues
lies with detailed routing. In particular, detailed routing is the primary ve-
hicle for resolving local pin accessibility issues, as well as eliminating all the
routing overflows that remain after global routing. Furthermore, in contrast
to global routing that works with a simplified routing model, detailed rout-
ing must comprehend all the layout rules specified by the process technology.
As manufacturing technologies descend yet deeper into the sub-wavelength
realm, these layout rules become exponentially more complicated, with more
and more context-dependent and non-local rules being specified, leading to
the process of detailed routing becoming yet more compute-intensive. How-
ever, given the local scope of detailed routing, the primary objective for a
detailed router is legal route completion even in performance-driven designs,
in contrast to global routers whose behavior can differ significantly depending
on the delay, signal integrity and other constraints specified for the design.

Consequently, in contrast to global routing that operates upon the entire
chip or design block, detailed routing works on a very local three-dimensional
switchbox. It usually starts with a switchbox that is approximately the same
size as a handful of global routing bins. If it is not able to legalize the routing
within that switchbox, it then expands it to encompass parts of the surround-
ing bins also, in order to have a slightly larger scope for optimization. However,
the compute-intensive nature of detailed routing implies that the switchboxes
that it operates on can never become much larger than a few dozen global
routing bins. On the other hand, this local scope of detailed routing means
that it is easily parallelizable, in contrast to global routing. Another heuris-
tic that is sometimes helpful in cases of extremely localized, pin accessibility
caused hot spots is that of shrinking the corresponding switchboxes to a small
neighborhood of the hot spots, and then using more exhaustive switchbox
routing techniques on these shrunk switchboxes.

In order to legalize a switchbox, the detailed router first creates a “vir-
tual pin” at each boundary crossing where some route enters or leaves the
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Fig. 4.6. A simplified, two metal layer switchbox for detailed routing (with vias
and contacts omitted for simplicity), showing virtual pins created at the boundary
of the switchbox.

switchbox, as shown in the picture of a simplified two metal layer switchbox
illustrated in Fig. 4.6. Then, fixing these virtual pins at their locations, it
attempts to rip up and reroute all or part of the routing within the switchbox
in order to legalize it using various heuristics. However, the fixed locations
of the virtual pins can be a huge handicap to the successful operation of the
detailed router. Their adverse impact is minimized by creating overlapping
switchboxes, as shown in Fig. 4.7. Iterating over these overlapping switch-
boxes allows the virtual pins themselves to be easily ripped up, thus reducing
the adverse impact of the “boundary effect” due to poor initial virtual pin
positioning, as shown in Fig. 4.8. In the example depicted in this figure, the
overlapping of adjacent switchboxes allows the removal of the unnecessary wire
detour created to access the virtual pin at the original switchbox boundary.

Detailed routers also freely use non-preferred direction routing on different
metal layers (especially while accessing pins on the lower metal layers), if it
helps complete the routing inside the switchbox3. The creation of expanded,
overlapping switchboxes can also help resolve incidents of local routing over-
flows, by pushing some routes from an overflowing bin lying on the boundary
of a congested region into an adjacent uncongested bin.

3 The use of a non-preferred routing segment connected to a routing segment on
the same metal layer that is routed in the regular direction can help avoid the
use of a via or contact, thus easing the congestion inside the switchbox. In con-
trast, global routers rarely use non-preferred direction routing because it creates
a blockage across multiple tracks within that routing layer, that can potentially
impact the porosity of that layer for global routing significantly. This is a much
smaller problem for the detailed router since the scope of the router is limited to
a switchbox. Consequently, the routability impact of the non-preferred direction
route within the switchbox can be easily and accurately estimated.
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Fig. 4.7. Creation of overlapping and expanded switchboxes.

Different detailed routers available commercially differ in the strategies
they use to decide how and when to expand the switchboxes. In general, the
first pass of detailed routing goes over all the initial switchboxes (comprising
of small rectangular clusters of global routing bins covering the entire routing
area with little or no overlaps at their boundaries). In the next iteration, it
may try to fix more routability problems by creating larger overlaps among
the switchboxes. Subsequent iterations usually focus on the congestion hot
spots, employing various strategies for switchbox expansion, contraction or
overlap to try and complete legal routes in these regions. The selection of the
strategies for this switchbox manipulation can have a significant impact on
the effectiveness of the detailed router at legal route completion.

Various techniques have been proposed to solve the routing problem within
each switchbox taking into account the geometric design rule constraints. Al-
though the most effective techniques in industrial tools rely on various rip-up
and reroute heuristics, several other formulations have also been proposed
in the literature on this subject. These include mathematical programming
formulations, multicommodity flow based formulations, as well as formula-
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Fig. 4.8. Overlapping switchboxes can help reduce the adverse impact of poor initial
virtual pin positioning.

tions that use move-based heuristics such as simulated annealing and genetic
algorithms.

4.3 Congestion-aware Buffering

Since wires scale much worse than devices, an optimized interconnect often
requires additional buffers when shrunk to the next process technology node4.
Indeed, recent technology studies [Con97,SMC+04] have studied and quanti-
fied the rapid increase in the number and fraction of buffers in designs as they
scale across process nodes. As the number of buffers in a design block increases,
it begins to have a significant impact on the routability of the nets within the
block. As mentioned earlier in this chapter and illustrated in Fig. 4.9, this is
because of three reasons. Firstly, every inserted buffer implies two additional
via stacks to access the buffer from the layer that the net is routed on; these
via stacks use up valuable routing resources, especially on the lower layers that

4 Under first-order scaling assumptions, optimal inter-buffer distances shrink at
0.586× per generation, in contrast to the normal geometric shrink factor of 0.7×.
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are crucial to ensuring pin accessibility during detailed routing. Secondly, if a
buffer cannot be legally placed at its desired location, it may force a routing
detour (as well as additional vias), adding to the routing congestion. Finally,
since the placement of a buffer is equivalent to fixing the location of a Steiner
point in the routing of a net, inserting a buffer into a net and placing it cuts
down the router’s flexibility in ripping up and rerouting this net at a sub-
sequent stage in response to the evolving local congestion profile. Given the
important role that rip-up and reroute plays in route completion, this loss
of flexibility due to buffering can degrade the routability of a design signifi-
cantly. Therefore, it is important to carry out the buffering of nets in a holistic
fashion that understands the impact of the buffers on the routability of the
design.

Via stacks

Routing detour

Eliminated choices of min length routes

Fig. 4.9. The congestion impact of inserting a buffer into a net.

Many of today’s design methodologies use buffer blocks to provide the
buffering required by long nets. Furthermore, numerous algorithms have been
proposed for the synthesis of individual buffered nets. Several of these algo-
rithms can handle routing blockages, buffer insertion blockages, predefined
buffer locations, and routing congestion cost. However, the study of their ef-
fect on the overall routability of the design is a recent phenomenon. In this
section, we will discuss the routability-aware design of buffer blocks, as well
as the design of a more fine-grained buffering algorithm for nets that tries to
tradeoff between environmental considerations (such as blockages, congestion
and cell density) and performance considerations, without sacrificing runtime
(in order to make it scalable to a large number of buffered nets).

4.3.1 Routability-aware Buffer Block Planning

With a significant fraction of global nets requiring buffering, several design
methodologies in use today rely on buffer blocks to supply these buffers. These
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blocks are often fitted into the channels and other dead space between the
circuit blocks during the floorplanning stage (as illustrated in Fig 4.10), and
are then utilized during the global routing stage. Such methodologies are
especially appropriate for large, complex designs such as microprocessors that
are designed hierarchically (i.e., the circuit blocks are treated as impermeable
black boxes during the top-level chip assembly) or designs that involve a large
number of third-party cores that are provided as hard macros with immutable
layouts.

: Dead space: Buffer blocks

Fig. 4.10. Buffer blocks placed in routing channels and other dead space within
the floorplan of a chip.

The delay of a long buffered wire does not change appreciably under small
perturbations of its buffers from their optimal positions (especially if they can
be subsequently sized appropriately). This is because the signal propagation
speed versus the inter-buffer distance curve for a long buffered wire is rela-
tively flat around the optimum inter-buffer separation Lopt

buf , as illustrated in
Fig. 4.11, so that a small permissible delay degradation corresponding to Δd
in the figure can result in a considerable layout flexibility Δl in the positioning
of the buffers. The curve for the cross-coupled noise is also similar in shape.
This observation, long used by circuit designers to create layout flexibility, has
been used in [CKP99] to introduce the concept of a feasible region for each
buffer required for a net. A buffer placed within its feasible region is guaran-
teed to allow the net to meet its target delay, provided that the remaining
buffers (if any) on the net are placed optimally with respect to this buffer. For
a net that is not very timing-critical, the feasible region for each of its buffers
can be quite large, so that the likelihood of its overlapping with at least one
of the preplaced buffer blocks is quite high. Thus, each buffer required by a
global net in the design can be placed within a buffer block that overlaps with
its feasible region, without perturbing the circuit blocks within the design.
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Fig. 4.11. The variation of the signal propagation speed of a long uniformly buffered
wire as its inter-buffer distance is varied, for some given metal layer.

There are three problems with the feasible region approach described in
[CKP99]. Firstly, the feasible regions for the buffers on a single net are not
independent, so that the positioning of a buffer near the boundary of its
feasible region can substantially shrink the feasible regions for the remaining
buffers on that net. Secondly, the buffer blocks can act as hot spots for routing
congestion. Finally, a wire crossing a large block could have no buffers available
to it unless it detours significantly to the nearest buffer block, resulting in
degraded delay and wirelength for the net and increased congestion.

The first two of these problems have been addressed in a work on
routability-driven buffer block planning in [SK01] that enhances the feasible
region concept to that of independent feasible regions (IFRs). (In addition,
the third problem mentioned above is addressed in the fine-grained buffer
insertion approaches described in Section 4.3.2). The IFR of a buffer is the
region within which it can be placed while meeting the delay constraint on
the net, assuming that the remaining buffers required for that net are placed
anywhere within their respective IFRs (in contrast to the requirement of their
being placed optimally with respect to this buffer, that was used to define
feasible regions). Note that the IFR of a buffer on a net that requires a single
buffer is the same as its feasible region. Furthermore, the IFRs of the buffers
on a net with the fewest possible buffers must be disjoint (else, placing a buffer
within the intersection of two IFRs will reduce the buffer count of the net).

Assume that a two-pin net of length L when routed without any bends
on a particular metal layer with resistance per unit length given by r and
capacitance per unit length given by c requires n buffers. Then, assuming
that the route of the net spans the interval (0, L), the IFR for its ith buffer is
an interval given by:

IFRi = (x∗
i − WIFR/2, x∗

i + WIFR/2) ∩ (0, L),
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where x∗
i is the optimal location of the ith buffer and WIFR is the width

of each IFR. If the output resistance of the driver and a buffer is Rd and
Rb respectively, and the input capacitance of a buffer and the sink is Cb

and Cs respectively, then, under the assumption of the Elmore delay model
[Elm48, RPH83], the location x∗

i of the ith buffer along the net is given by
[AD97]:

x∗
i = (i − 1)v∗L + u∗

L

for i ∈ {1, . . . , n}, where:

u∗
L =

1
n + 1

(L +
n(Rb − Rd)

r
+

(Cs − Cb)
c

),

and,

v∗L =
1

n + 1
(L − (Rb − Rd)

r
+

(Cs − Cb)
c

).

With these buffer locations, the optimal Elmore delay Dopt for the buffered
net is given by:

Dopt = D(Rd, Cb, x
∗
1) + D(Rb, Cs, L − x∗

n) +
n−1∑
i=1

D(Rb, Cb, x
∗
i+1 − x∗

i ) + nTb,

where Tb is the intrinsic buffer delay. The term D(R, C, l) used in this expres-
sion stands for the usual Elmore delay of a wire segment of length l with sink
load C being driven by a gate with output resistance R that is being modeled
using the π-model, and is given by:

D(R, C, l) = R(cl + C) + rl(
cl

2
+ C) =

rcl2

2
+ (Rc + rC)l + RC.

Then, if the delay budget for the net is Dtgt (with Dtgt ≥ Dopt), the width of
the (one-dimensional) IFR is given by:

WIFR = 2 ·
√

Dtgt − Dopt

rc(2n − 1)
.

For a buffer on a two-pin net that is routed with bends, its two-dimensional
IFR is defined as the union of all the one-dimensional IFRs (computed as
described above) of that buffer on all the monotonic (i.e., minimum length)
Manhattan routes between the source and sink of the net. Therefore, two-
dimensional IFRs are convex octilinear polygons with boundaries that are
horizontal, vertical or diagonal (i.e., at ±45◦).

The route monotonicity requirement introduces a certain degree of depen-
dence between the IFRs of the different buffers inserted in a net whose routing
requires at least one bend. Consider the example in Fig. 4.12, that shows a net
requiring two buffers whose IFRs are shown as IFR1 and IFR2. If the selected
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buffer locations are b1 and b2, they introduce a non-monotonicity within the
routing as shown in the figure, even though both locations lie within their
respective IFRs. Therefore, their insertion cannot guarantee that the target
delay Dtgt will be met by the net. In order to avoid this problem, the IFRs
of buffers that have not yet been inserted within a net must be adjusted in
order to eliminate subregions resulting in non-monotonic routing, every time
a location is selected (or narrowed down) for a buffer on the net. Thus, for the
example in Fig. 4.12, the assignment of the first buffer to the location b1 will
result in the elimination of the shaded region of IFR2 in order to guarantee
a monotonic routing.

driver

sink

bl
b2

IFRl

IFR2

: Invalidated IFR subregion

Fig. 4.12. The dependence between the IFRs of the buffers to be inserted in a net,
caused due to non-monotonic routing, that results in the invalidation of location b2.

In order to accomplish a routability-driven assignment of buffers to specific
locations within their IFRs, a two-level tiling is constructed on the floorplan
as shown in Fig. 4.13, with the coarser level corresponding to the granularity
used for global route planning, and the finer level corresponding to specific
sets of buffer locations within each IFR. Note that the finer tiling is not
required outside of the IFRs of the buffers. Each fine-level tile is referred to as
a candidate buffer block (CBB). Now, a bipartite graph G can be constructed
to represent the set of all possible buffer assignments for all the buffers on all
the global nets that require buffering. If B is the set of all the buffers on all
the nets that must be assigned to specific CBBs, and Sb is the set of all the
CBBs, then the edge set E(G) of G is given by:

E(G) = {(b, c) : b ∈ B, c ∈ Sb}.
Each edge in this bipartite graph is costed using a combination of the

corresponding expected routing and buffer congestions. In particular, the im-
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Driver

Sink

Tiling for global route planning

Impermeable circuit block

covered with CBBs
IFR for the buffer,

Fig. 4.13. The two-level tiling of the floorplan in order to create CBBs, illustrated
for a single net requiring a single buffer.

plementation in [SK01] sets the cost of an edge e = (b, c) to CC(e)p1 ·BB(e)p2 ,
where CC(e) is the routing congestion cost of the buffer b and BB(e) is the
buffer congestion cost of the CBB c, and p1 and p2 are positive coefficients
summing up to 1 that allow a tradeoff between the two congestion costs. The
routing congestion cost of a buffer b is the maximum normalized congestion
cost (i.e., a supra-linear function of the ratio of the expected number of routes
passing through a routing bin to the routing capacity of that bin) among all
the routing bins lying along the one-bend routings of the two subnets at-
tached to b, assuming that b is to be placed at the current CBB c (and the
other terminal of the attached net is placed at the centroid of all its feasible
CBBs, in case it too is a buffer that has not yet been assigned to a CBB).
The supra-linear nature of the normalized congestion cost severely penalizes
routings that pass through areas of heavy congestion. The buffer congestion
cost of a CBB is infinite if all the buffers within it have already been allocated.
Otherwise, it is defined as 1/ min{Bc, Bmax}, where Bc is the number of IFRs
overlapping this CBB, and Bmax is the maximum number of buffers that can
be placed within this CBB.

Once the graph G has been set up, buffer assignment is done by iteratively
deleting the most expensive redundant edge from G (i.e., an edge whose re-
moval will not leave a buffer node unconnected). After each edge deletion
(which corresponds to the elimination of some buffer location candidates for
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some buffer that lies on, say, net N), the IFRs for the remaining unassigned
buffers on N are updated to eliminate any CBBs whose selection would re-
sult in non-monotonic routes. A fast scheme for this monotonicity update is
presented in [SK01]. The deletion of an edge can also affect the congestion
cost and the buffer cost of the edges remaining in the graph; these costs are
also updated after each edge deletion. When a node in G corresponding to a
buffer is left connected to exactly one CBB, it is considered assigned to that
CBB. This iterative deletion based assignment algorithm terminates when all
buffers have been assigned (or when no more assignments are possible). The
operation of this algorithm is summarized as Algorithm 5.

Algorithm 5 Iterative deletion based assignment algorithm for routability-
driven assignment of buffers to specific CBBs
1: Compute the IFR for each buffer b ∈ B
2: Build a fine-grained tiling structure of CBBs over the IFRs for the buffers in B
3: Obtain CBB set Sb for each b ∈ B
4: Generate the bipartite graph G and cost all its edges
5: while there exists an unassigned buffer, and further edge deletion is possible,

do
6: Delete the highest cost redundant edge e of G
7: Update all affected IFRs for monotonicity, deleting the invalidated edges from

G
8: Update the congestion matrix
9: Update edge costs

10: if buffer b′ has only one edge (say, to CBB c′), then
11: Assign buffer b′ to CBB c′

12: end if
13: end while

Feasible regions and IFRs are defined with respect to two-pin nets that are
routed monotonically. Thus, a multipin net must be broken down into two-pin
subnets and its delay budget must be distributed among these subnets, before
the IFR concept can be used for buffer insertion using buffer blocks in a way
that meets the delay budgets for the subnets.

4.3.2 Holistic Buffered Tree Synthesis within a Physical
Layout Environment

Although buffer blocks that are fitted into channels and other dead space
between design blocks are commonly used today to provide the buffering for
long nets, this methodology has limitations that make it difficult to scale to
future designs that will require considerably larger numbers of buffers. With
the rapidly decreasing inter-buffer distances in upcoming process technology
nodes, the utility of buffer blocks decreases as the detours required by nets in
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order to access these blocks become an increasingly large fraction of the desired
inter-buffer distance itself, leading to significant performance degradation5.
Additionally, since all the wires requiring buffering must access these blocks,
there is considerable contention for routing resources in their vicinity, leading
to heavy congestion and potential unroutability. Buffer blocks also tend to
become thermal and power grid voltage droop hot spots. Consequently, recent
research has focused on finer-grained buffer insertion approaches that try to
distribute buffers to their ideal locations along the nets requiring them.

One of the first works to present a methodology for integrated buffer and
wire planning on a given placement that allowed the buffers to be placed
anywhere in the design depending on the local cell density was [AHS+03]. The
global routing and buffering framework proposed in that work is as follows:

1. Use a fast, performance-driven heuristic (such as the C-Tree algorithm
from [AGH+02] for multipin nets and length-based buffering for two-pin
nets) to construct congestion-oblivious Steiner trees for all the nets.

2. Rip-up and reroute the nets iteratively to reduce the routing congestion.
3. For all the nets that require buffers, perform a fast buffer insertion driven

by dynamic buffer congestion costs.
4. Rip-up, reroute, and reinsert buffers on the nets to reduce both wire and

buffer congestion.

One of the major contributions of this work is the notion of the buffer con-
gestion cost of a global routing bin. For each bin, it compares the sum of the
number of buffers already assigned to that bin and the number of buffers ex-
pected to be required for the currently unrouted nets that may pass through
that bin, with the maximum number of buffers that can be accommodated by
that bin, to determine a buffer congestion cost analogous to the traditional
routing congestion cost used by global routers. This allows the buffers to be
embedded along the routings of the nets in bins that can accommodate them,
thus distributing them across the design without causing any large routing
detours.

This framework has served as the basis for several major improvements
such as [AGH+04], [SHA04] and [AHH+04]. One of the significant advances,
proposed in [AGH+04], allows the Steiner points of the tree embeddings ob-
tained after the routing congestion driven rip-up and reroute step to be moved
locally in response to the buffer congestion cost, as illustrated in Fig. 4.14 for
the Steiner points s′1 and s′2, thus providing a fast feedback loop from the
buffer insertion step to the earlier topology embedding step. However, since
this is achieved by propagating multiple candidate solutions for each node
5 Furthermore, the signal propagation speed versus inter-buffer distance curve il-

lustrated in Fig. 4.11 is also becoming less “shallow” with process scaling, even
in a normalized sense [Sax06], so that the performance degradation for the same
detour (normalized to the optimal inter-buffer separation for the relevant metal
layer and process generation) required to access a buffer block is worsening with
each process generation.
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Fig. 4.14. Local buffer congestion driven perturbation of Steiner points of the
embedding of a Steiner tree topology.

in a dynamic programming framework, the algorithm is not scalable to a
large number of nets without sacrificing tiling granularity (and hence, perfor-
mance). Furthermore, it does not distinguish between critical and non-critical
nets while deciding the extent of perturbation allowed on their tree embed-
dings in response to local congestion costs. A more effective algorithm for
integrated global routing and buffering under performance constraints that is
targeted for use on a large number of nets is put together in [AHH+04] and
is described next.

This algorithm, called Ben, is motivated by the observation that buffer
insertion in non-critical nets can be considerably more flexible than in critical
nets. Thus, regions with high buffer congestion (for instance, narrow channels
between large, impermeable blocks, the holes within such blocks, and the
boundaries of such blocks, or regions with high cell density, as illustrated
in Fig. 4.15) as well as regions with high routing congestion should be used
preferentially for the critical nets. This can be achieved by (re-)locating the
Steiner nodes for the embedding of a net appropriately depending on the
criticality of the net and the local buffer and routing congestion costs.

The basic framework for Ben is somewhat similar to that for the algorithm
in [AHS+03] that was briefly discussed earlier in this section. Specifically, for
any given placement, once a background cell density and routing congestion
map has been generated, the synthesis of each multipin interconnect tree
involves three main steps:

1. Use a fast, performance-driven heuristic (such as the C-Tree algorithm
from [AGH+02]) to construct a congestion-oblivious Steiner tree for the
net.
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Fig. 4.15. High buffer congestion cost regions created in the vicinity of impermeable
macro blocks or high cell density regions (Lopt

buf is the optimal inter-buffer distance).

2. Reroute the tree to preserve its topology even as its embedding is per-
turbed while navigating environmental constraints such as buffer conges-
tion and routing congestion, keeping the criticality of the net in mind.

3. Remove the buffers inserted in step 2, and then reinsert and size them
using a resource-aware variant (such as [LCL96]) of the dynamic program-
ming based van Ginneken algorithm [Van90] using accurate, higher-order
delay models.

The Ben algorithm targets Step 2 of the above framework. Since it is re-
quired to be fast in order to efficiently explore various embeddings of the tree
topology, it cannot use expensive delay models or propagate multiple candi-
date solutions as in Step 3 (which is carried out on a topology embedding
that is immutable). The primary innovation of Ben is a generalized costing
mechanism that can handle both critical and non-critical nets, increasing the
environmental awareness for the non-critical nets. This allows a traditional
maze router to be run for each edge of the Steiner tree to the neighborhoods
of the Steiner nodes that form its endpoints. The cost of routing a tree edge
through a global routing bin b is expressed as:

cost(b) = 1 + K · e(b) + (1 − K) · TDCdelay(B(b)) + TDCdrc(B(b)), (4.3)

where K (with 0 ≤ K ≤ 1) is a parameter capturing the criticality of the
net (with K being close to one for non-critical nets), e(b) is an environmental
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cost modeling the routing and buffer congestions of the bin b, and the two
TDC(B(b)) terms are costs modeling the maximum slew or load constraints (if
present) and the quadratic delay of long unbuffered wires (whose computation
will be discussed later). The parameter K can be reduced to some small value
such as 0.1 for the most critical nets6, which minimizes the impact of the
environmental costs e(b) for the bins used by the routes for these nets. On
the other hand, a value of K close to one for the non-critical nets prevents
them from using routing or buffer resources in regions where these resources
are scarce (as in the examples depicted in Fig. 4.15). The environmental cost
e(b) for a bin b is defined as:

e(b) = αd(b)2 + (1 − α)r(b)2,

where d(b) is the cell density of the bin (defined as the ratio of the total area of
the cells placed within b to the area of b itself), r(b) is the routing congestion
of b (defined as usual as the ratio of the number of used horizontal or vertical
tracks passing through b to the total number of corresponding tracks lying
over b), and α (0 ≤ α ≤ 1) is a parameter that allows these two congestion
metrics to be traded off against each other. While computing e(b) in order to
route a wire through the bin b, the appropriate value of r(b) corresponding
to the horizontal or vertical routing congestion is selected, depending on the
direction in which the wire is being routed. The congestion terms are squared
in the expression for the environmental cost in order to increase the penalty
as either of these congestion terms approaches full utilization (i.e., a value of
one). These congestion terms can be raised to even higher powers to make the
penalty for high utilization even more severe.

The first term (namely, one) in Equation (4.3) corresponds to the delay
contribution of bin b (under an assumption of linear length-based delay). This
assumption of linear delay is usually valid for nets that will be optimally
buffered and that lie in regions having no blockages or high cell density regions
(so that each inserted buffer can be placed optimally). On the other hand, large
blockages can force long unbuffered stretches on the net, where the delay grows
quadratically. In other words, the delay cost per bin grows linearly (instead of
remaining constant) along these stretches. This intuition is captured by the
third (TDCdelay) term in Equation (4.3). TDCdelay(x) is a function whose
definition is shown pictorially in Fig. 4.16. In this figure, if the number of
consecutively blocked bins in which no buffer can be inserted is smaller than
a threshold Ldelay, the delay of the net can be assumed to be linear, so that
the delay cost per bin is merely one. However, if the number of such bins
exceeds Ldelay, the linear cost per bin makes the overall delay of the portion
of the net routed through these bins grow quadratically. The threshold Ldelay

6 Reducing K to zero causes the environmental costs to be completely ignored,
which can result in wires passing through extremely congested regions as well
as in illegal buffer placements, whose legalization can degrade the performance
significantly.
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is usually the longest distance over which linear delay growth can be obtained
given the buffer library at hand. Note that this cost is relevant primarily to
critical nets, hence the (1 − K) multiplier associated with this term. This
multiplier reduces the impact of the delay penalty of long, unbuffered sections
of the routes for nets that are not timing-critical.

4

3

2

1

D
el

ay
co

st
p
er

b
in

B(b)
Ldelay Ldrc

TDCdrc

TDCdelay

2Ldelay 3Ldelay

Fig. 4.16. Computation of TDC(x) to model the delay cost due to bins blocked to
buffers (as shown by the solid line) or design rule constraints for maximum load or
slew (as shown by the dashed line).

The TDCdelay term can be easily computed by using a variable B(b) at
each bin b to keep track of the number of consecutive bins within which no
buffer can be inserted, that has been seen by a route passing through b. Thus,
if a route reaches a bin b′ where no buffer insertion is possible from a bin b,
B(b′) is set to B(b) + 1; on the other hand, if a buffer can be placed inside
b′, B(b′) is reset to 0. The only complication arises at branching points in the
net; if Tl and Tr are, respectively, the number of blocked bins seen by the left
and right children of a Steiner branch point located within the bin b, using
B(b) = max{Tl, Tr} ignores the delay cost and load of one of the two children,
whereas using B(b) = Tl + Tr overestimates the delay impact. A reasonable
compromise is using B(b) =

√
T 2

l + T 2
r in this case.

If slew and load constraints are present, they too can be captured by the
same mechanism of B(b), since they can be translated to length constraints
using either empirical or analytical methods7. In this case, the TDCdrc func-
tion will grow to infinity for values of B(b) that correspond to forbidden slews
or loads that will cause a design rule violation (as shown by the dashed line

7 Although [AHH+04] does not explicitly mention a TDCdrc term, the discussion
of this term here is extrapolated from the ideas proposed in that work.
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in Fig. 4.16). Furthermore, it is effective to have a region of supra-linear (say,
quadratic) cost in the region immediately preceding the forbidden region in
order to discourage routes whose inter-buffer separations are very close to
violating these design rule constraints. (This creates a margin against the ap-
proximations inherent in translating the load and slew constraints into length
constraints, as well as against subsequent design perturbations due to incre-
mental changes). On the other hand, the cost of this term for bins with values
of B(b) much smaller than the length constraint Ldrc is zero. Note that this
cost applies to all nets, irrespective of their criticality.

In addition to accumulating the costs of the bins that its routing runs
through, a timing-critical net also sees a cost because of its sinks, since they
may differ in criticality. The cost of a sink s is initialized using:

cost(s) = (K − 1) · RAT (s)/DpT,

where RAT (s) (< 0) is the required arrival time at sink s, and DpT is the
average delay of one bin in an optimally buffered two-pin net (i.e., a net with
linear delay). Thus, the more timing-critical sinks get a higher cost under this
metric, encouraging shorter paths to those sinks from the driver. The multi-
plier of (K − 1) causes this sink cost to be largely ignored for nets that have
no timing-critical sinks. Thus, the accumulated cost at any node represents
primarily the environmental costs for non-critical nets and the delay costs for
the timing-critical nets. Consequently, the propagation of the costs of the two
children when two branches are merged at a Steiner node should also be done
differently. For a timing-critical net, the worst delay should be propagated
upstream, whereas the two branch costs should be added up for a non-critical
net. This is achieved by using:

cost(b) = max{cost(L), cost(R)} + K · min{cost(L), cost(R)}

as the merging function at a Steiner node located within bin b and having
children L and R.

This algorithm is sensitive to the accurate characterization of nets as crit-
ical or non-critical (by choosing an appropriate value of K for each net).
Although the optimal selection of K for a net prior to its layout is very diffi-
cult (since the criticality of nets changes due to their delays after interconnect
synthesis and global routing usually being different from their pre-layout pre-
dicted delays), this characterization problem can be largely avoided by first
treating all nets as non-critical while laying them out with minimal use of the
routing resources in congested areas, and then resynthesizing the nets that
show up as timing-critical in this process. The suggested flow is to first gener-
ate congestion maps for buffer and routing congestion, and then lay out all the
nets that require buffering using K = 1 (that will ensure very restricted use
of buffers and routing tracks in congested regions). Next, nets that still have
negative slacks can be ripped up and resynthesized with a slightly smaller
value of K (such as K = 0.7). This process can be repeated for nets that still
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have a negative slack after the latest iteration with a yet smaller value of K,
all the way down to, say, K = 0.1.

Fig. 4.17. An example illustrating the operation of Ben. (a) The input Steiner
tree embedding. (b) A sample solution for a critical net. (The numbers at the sinks
represent the required arrival times). (c) A sample solution for a non-critical net.

As an example, consider the net illustrated in Fig. 4.17. For the input
Steiner tree embedding shown in Fig. 4.17(a), whose Steiner node s′ lies within
a congested region, the Ben algorithm can produce different embeddings and
routings depending on the criticality of the net. Two sample solutions are
shown for the cases when the net is critical and when the net is non-critical.
Observe that the Steiner node s′ can be moved from its original embedding in
response to the cost function. Also, note that although the critical net is routed
through the congested region because this routing improves the delay at the
critical sink s2, the non-critical net bypasses the congested region entirely.
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4.4 Congestion Implications of Power Grid
Design

One of the consequences of the increased device density and wire resistance
caused due to process scaling is that power networks must now consume a sig-
nificant fraction of the routing resources if they are to keep the voltage droop
small. Traditionally, power networks have been designed as regular grids prior
to signal routing (with coarse power network design being done even before
early block implementation). Although the regularity of the grid simplifies the
analysis of the power grid, and the early finalization of its design simplifies
the design methodology, these assumptions can lead to some overdesign in
the power grid, since the exact current requirements of a region cannot be
accurately predicted until after that region has been fully implemented. This
sometimes leads to more routing resource utilization by the power grid than
may be absolutely necessary. Although this has not been a serious problem
in the past, the increasing fraction of routing resources required by the power
grid as well as the increasing congestion encountered during signal routing
is leading to renewed research interest in the codesign of signal and power
networks. Such codesign can provide increased flexibility in managing con-
gestion, through choices such as a locally sparse power grid in regions where
either the local switching density is not very high or a larger voltage droop
can be tolerated, thus freeing up some additional routing resources for signal
routing.

Power network design is complicated by the need to accurately simulate
the network as a multiport RLC network - a task for which there are few
good alternatives to Spice-level simulations (although there has been much
recent work in speeding up these simulations through the use of hierarchi-
cal or region-based schemes and power grid macromodels). Although simple
delay abstractions such as lumped RC or Elmore delay models can be used
within the inner loops of routers, there are no such simplifications for power
network design. This makes the true codesign of signal and power networks
a challenging problem. There are several existing approaches to the codesign
problem, two of which are described in the remainder of this section. The
first [SG03] of these gets around the problem of power grid analysis complex-
ity by using a “guaranteed correct” power pitch abstraction while designing a
non-uniform power grid without any on-the-fly analysis, whereas the second
approach [SHS+02] adopts only a loose integration between power grid design
and signal routing.

4.4.1 Integrated Power Network and Signal Shield
Design

The work described in [SG03] is targeted towards high-end designs in which
a significant number of signal nets require shielding or spacing. Spacing con-
straints on nets can be further translated into equivalent shielding constraints;
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this translation results in no area overhead, improved noise characteristics and
delay predictability, and only a small delay penalty (due to the additional non-
switching capacitance of the shield). Although nets requiring shields have tra-
ditionally been routed opportunistically next to pre-existing power grid wires
in order to avoid the need for a separate shield (thus saving a routing track),
the work in [SG03] postpones the detailed implementation of the power grid
within a block until after the shields required within that block have been
laid out, and then tries to extract a viable non-uniform power grid from this
shield network using an adaptive power routing algorithm. This approach
thus creates additional flexibility in the design of the power grid, leading to
a reduction in the total number of tracks required for the shield and power
grid network. The effectiveness of this approach has been demonstrated on a
leading edge microprocessor in high volume production.

In order to avoid expensive on-the-fly analysis of the power grid, this work
relies on the abstraction of a power pitch, which is the maximum separation
between successive power lines that guarantees acceptable voltage droop, in-
ductive noise, and electromigration reliability. This pitch can be obtained for
each block in a preprocessing phase, and depends on the local switching den-
sity of the block. The input to the adaptive power routing algorithm is a placed
and partially routed block in which the major trunks of all the shielded signals
have been routed, along with their shields, with the track assignment having
been done so as to maximize the sharing of the shields among the shielded
signals. However, at this stage, no power routing or non-critical signal routing
has yet been done. Thus, the tracks which would have been used up for the
local power grid in traditional methodologies have instead been made avail-
able for critical signal routing, in the hope that the shields required by these
signals would take care of much of the power delivery requirements.

The adaptive power routing algorithm is described formally as Algo-
rithm 6. Starting from one end of the design block, this algorithm first looks
at the track one power pitch beyond the current track. Thus, in the example
depicted in Fig. 4.18, if the algorithm is currently at track a, it first looks at
track b that is P units beyond a (where P is the power pitch). If it is not
able to find a shield there that can be reused for the power grid, it searches
backwards until it finds a shield (at track b′ in the example) or reaches the
current track. If no shield is found, it then starts looking backward again for
a vacant track starting from the track one power pitch beyond the current
track and ending at the current track, and adds a power line to the first such
vacant track that it finds. Once a shield or a vacant track has been found,
the algorithm repeats the above procedure starting from the track P units
beyond the selected track (i.e., P units beyond track b′ (and not b) in the
example). The polarities of the shields that are reused for the power grid are
set to alternate between Vdd and Vss across the design block, whereas those
for the remaining shields are set arbitrarily. In spite of its simplicity, this al-
gorithm is provably optimal in the number of additional power lines that it
adds in order to complete the power grid with a specified power pitch.



132 4 INTERCONNECT SYNTHESIS AND ROUTING

a

b

b′

c

P

P

Fig. 4.18. Illustration of the operation of the adaptive power routing algorithm.

This adaptive power routing algorithm is applicable primarily to the de-
tailed implementation of the power routing on the mid-level metal layers for
design blocks that contain many signals that require shielding. The non-
uniformity of the grid implies that the power lines within adjacent blocks
may not match with each other. Since connecting them together through sin-
gle layer doglegs can have a significant adverse impact on the local routability,
these non-uniform local grids are left disconnected. This is usually not a prob-
lem since a large fraction of the current flow between these local mid-level layer
grids for different blocks is through the upper metal layers because of their
lower resistance, even if the local grids are connected together on the mid-level
layers. Furthermore, unlike the upper metal layers where the power lines are
quite wide, it is often preferable to keep the power grid on the mid-level layers
quite fine-grained, with power lines whose width is equal to or slightly larger
than the minimum permissible width for signal lines on that layer. Thus, the
shields can be wide enough to be reused as power lines without significant
area penalty. On the other hand, this approach does not yield large benefits
in designs that are not aggressive and do not require much shielding or spacing
of signal nets.

4.4.2 Signal and Power Network Codesign

The work described in [SHS+02] attempts a more comprehensive integration
of power and signal routing than [SG03], and is therefore applicable to a
wider class of designs. It starts with a dense power grid that is guaranteed to
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Algorithm 6 Adaptive power routing to extract a local power grid with
power pitch P from a given shield network
1: target ← P
2: while target < maxTrackIndex do
3: // Look for next shield or vacant track
4: track ← target
5: while no shield found and track > target − P do
6: if track contains a shield then
7: Reuse shield in track for power grid
8: else
9: track ← track − 1

10: end if
11: end while
12: if no shield found then
13: track ← target
14: while no vacant track found and track > target − P do
15: if track is vacant then
16: Add a power line to track
17: else
18: track ← track − 1
19: end if
20: end while
21: end if
22: if no shield or vacant track found then
23: Report local power grid failure around target and exit
24: end if
25: target ← track + P
26: end while

meet all the constraints on the power delivery network, and then iteratively
sparsifies it in high congestion regions, sizing the remaining power grid wires
to compensate for the deleted wires and meet the power delivery constraints,
generating a power grid similar to the example depicted in Fig. 4.19.

The algorithm begins with the generation of a congestion map under the
assumption of a dense and uniform power grid. This map can be obtained
using any of the various congestion estimation techniques discussed in Chap-
ter 2 (such as probabilistic congestion maps or fast global routers); the imple-
mentation in [SHS+02] uses the framework of [AHS+03], briefly discussed in
Section 4.3.2. More specifically, it first performs a coarse global routing for all
the signal nets in a congestion-oblivious fashion, generating Steiner topologies
for multipin nets using the hybrid Prim-Dijkstra algorithm from [AHH+95].
This is followed by an iterative congestion-driven rip-up and reroute stage
during which the cost of routing a wire through a boundary edge of a global
routing bin is inversely proportional to the dynamically updated routing ca-
pacity remaining on that edge, and the regeneration of congestion-aware tree
topologies is done using the Steiner min-max tree algorithm from [CS90] (that
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Fig. 4.19. Deletion of some power grid wire segments and sizing of others in response
to routing congestion.

was discussed in Section 4.1.1). This signal routing stage is used to identify the
high congestion regions, which are then used to direct the local sparsification
of the power grid in those regions.

However, not all power grid wires in congested regions are candidates for
deletion. Each segment of a power grid wire that lies within a single bin is
considered separately. If the worst-case voltage droop on some wire segment
is greater than some pre-specified threshold, it is marked as critical and is
not considered for deletion. For each of the remaining power wire segments, a
criticality metric is defined as the reciprocal of the root-mean-squared (RMS)
distance of that segment from power grid nodes with voltage droop greater
than some threshold, lying within a given neighborhood of the bin containing
that segment. Thus, if cb represents the center of bin b, the criticality Critp
of a vertical wire p crossing a horizontal bin boundary at xp is defined as:

Critp =
Kp,Δ√∑

i:critical,|xp−ci|<Δ(xp − xi)2
,

where Kp,Δ is the total number of noisy nodes lying within some Δ-neighbor-
hood of the bin containing p. The criticality of horizontal power grid segments
is computed in an analogous manner. (The implementation of [SHS+02] uses
a Δ of 1.5–2 bin lengths). Thus, wire segments that are close to voltage droop
hot spots end up with a larger criticality metric.

Next, the bin edges are sorted in terms of their routing overflow, and, for
each bin edge, the non-critical power grid wire segments crossing that edge
are sorted by their criticality metric. Deletion of wire segments is done by
selecting the least critical wire segments in the most congested bin edges first,
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Fig. 4.20. Computation of the power grid noise metric from [CHV98] at a node.

incrementally updating the routing overflows (and the sorted list of bin edges)
after each deletion. After a certain number of power grid wire segments have
been deleted, the remainder of the wires in the power grid are widened in order
to compensate for the deleted wires, and their criticalities are recomputed.
This sizing of the power grid is done by modeling it as a constrained nonlinear
program (NLP) as follows:

minArea =
Nwire∑
j=1

lj × wj ,

subject to:
Z(w1, . . . , wNwire) < ε,

wmin ≤ wj ≤ wmax,

for each j = 1, . . . , Nwire, where Nwire is the number of wire segments in the
power grid, wj and lj are, respectively, the width and length of the jth wire
segment, Z is the voltage droop metric from [CHV98] defined as the sum of
the individual node power grid noise values (zj ’s) computed by integrating
the power grid noise violation at each node (represented by the shaded area
in Fig 4.20), and ε is a small constant that bounds this metric. The met-
ric Z can be obtained by a transient analysis of the power grid circuit, and
its sensitivities with respect to the widths of the different power grid wire
segments can be obtained using the adjoint method as discussed in [CHV98].
The nonlinear program for power grid sizing can be solved using any standard
sequential quadratic programming solver; an approximate solution that can
be obtained quickly usually suffices. The overall flow of this signal and power
network codesign scheme is summarized in Algorithm 7.
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Algorithm 7 Congestion-driven codesign of the signal and power networks
1: while previous iteration improved congestion, but significant congestion over-

flow still exists do
2: Generate congestion map
3: Perform transient simulation of power grid, calculating sensitivities to wire

segment widths
4: while number of deleted power grid wire segments < αNwire do
5: e ← routing bin edge with maximum overflow
6: Delete the least critical wire segment crossing e
7: Update congestion overflow in e
8: end while
9: Set up and solve NLP to size remaining wire segments in power grid

10: end while

4.5 Congestion-aware Interconnect Noise
Management

With wires becoming increasingly resistive at each successive process tech-
nology node, process engineers have attempted to ameliorate the problem by
increasing the aspect ratio of the wires, since the resulting tall wires do not
degrade routability (because they do not require a wider pitch). However, as
was discussed in Chapter 1, tall wires aggravate the problem of interconnect
crosstalk. This manifests itself not only through functional failures causing
the inversion of data bits stored in sequential elements or produced at the pri-
mary outputs, but also in widened switching windows for the signals resulting
in a harder design convergence problem.

Although the optimization of interconnect noise has been studied exten-
sively, most of the early works in this area did not explicitly consider the
congestion impact of the various proposed noise fixes. Although some of these
fixes (such as net ordering and gate sizing) do not have a significant impact
on the routing congestion, the feasibility of many other important fixes such
as the shielding or spacing of the wires, buffer insertion, or the rerouting of
the problem nets has a strong dependence on the local congestion. Yet, just
like the early works on interconnect buffering, many of the early publications
on interconnect noise optimization also ignored the interdependence of this
problem with routing congestion, and focused on studying the problem in
isolation at the level of individual nets.

Most modern commercial global routers support rudimentary shield in-
sertion and spacing, as well as more explicit crosstalk control by prohibiting
the extended routing of pairs of mutually sensitive nets in adjacent tracks.
The integrated power network and signal shield design algorithm [SG03] dis-
cussed in Section 4.4.1 attempted a congestion-aware allocation of shields in
two ways, namely, (i) by maximizing the reuse of the local power grid for
shielding by making it non-uniform, and (ii) by maximizing the sharing of
shields during net ordering and track assignment. More recently, there have
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been a few approaches [XH05] [ZS04] that have incorporated shield allocation
and other noise fixes into full-fledged global routers.

4.5.1 Congestion-aware Shield Synthesis for RLC Noise

The work in [XH05] attempts to optimize the routing not merely for purely
capacitive crosstalk but also for the inductive noise between the nets. It relies
on the empirically fitted Keff model for inductive noise that allows the total
inductive noise Ki,t experienced by a net Ni in a particular routing region Rt

to be expressed as the weighted sum of its coupling coefficients with all the
other locally routed nets that it is sensitive to. This noise model is further
extended to a length scaled Keff model that allows the total inductive noise
experienced by a net Ni to be expressed as

∑
t Ki,tlt, where the summation

is over all t such that Ni is routed through the region Rt, and lt is the length
of the routing of Ni in Rt. The routing regions are defined in terms of the
power grid, so that each routing region guarantees local return paths for the
induced currents.The linear composition of the local noise in each segment of
a net to obtain its total noise using the Keff model allows for the budgeting
of the total noise slack at each sink of a net into local noise slacks for the net
within each of the regions that it is routed through.

Within each region, the number of shields required by the local nets is
estimated using an empirical closed form linear expression that models the
shielding requirements of the simulated annealing based Sino (Shield Inser-
tion and Net Ordering) algorithm for the optimization of RLC noise within
a routing region. The shield count estimation within a region allows for the
computation of the expected routing overflow in that region after taking the
subsequent shield synthesis into account, without having to actually synthesize
the shields. This procedure is embedded into a global router; the implemen-
tation in [XH05] uses a global router based on iterative deletion (discussed
in Section 4.1.6), although any other global routing scheme can be used as
well. The global router can then carry out the routing of all the nets, tak-
ing into account the routing demand not only from the signal nets but also
their shields (that are yet to be synthesized), dynamically updating the shield
count estimation (and therefore the routing congestion) in each region as the
global routing proceeds. Finally, once all the nets have been global routed,
their shields are synthesized and track assignment is carried out within each
routing region using Sino.

Although this work is interesting because it relies on a fast shielding over-
head estimator to compute local congestion during global routing, it suffers
from a somewhat simplistic model for the coupling between the nets. Further-
more, interconnect noise in today’s designs is usually dominated by capacitive
coupling, although inductive coupling may grow in importance for wide wires
at the higher frequencies of future designs.
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4.5.2 Integrated Congestion-aware Shielding and
Buffering

The more traditional capacitive interconnect crosstalk problem is tackled
within a global routing framework in [ZS04] through integrated shielding and
buffering. This work relies on the “Elmore noise model” proposed for coupled
interconnects in [Dev97]. Given a wire segment (i, j) of length lij , with i being
the upstream node, the noise current In(i) and noise margin NM(i) at the
node i can be computed using this noise metric as follows:

In(i) = In(j) + lijccsa,

NM(i) = NM(j) − rlij(
1
2
cclijsa + In(j)),

where cc and r are the coupling capacitance and resistance, respectively, of a
unit length of the wire, and sa is the rate at which the signal in the aggressor
net coupled to the wire segment (i, j) is switching. These equations allow
for the bottom-up computation of the coupled noise in a net starting from
its sinks. The net is considered to have a noise failure if the total induced
current In at its driver is greater than NM/Rd, where NM is the maximum
acceptable noise voltage threshold at the driver, and Rd is the effective driver
resistance.

Observe that the functional form of the above equations is very similar
to that of the Elmore delay model [RPH83] (with noise current in place of
downstream capacitance, noise margin in place of delay slack, and an extra
term for aggressor signal slew). This suggests the use of a procedure similar in
spirit to the well-known dynamic programming based van Ginneken algorithm
[Van90] for buffer insertion in a given net under the Elmore delay model,
in order to instead optimize for interconnect noise in a given net. Such an
algorithm for noise-aware interconnect buffering was presented in [ADQ99].

The algorithm proposed in [ZS04] extends that work to incorporate shield-
ing as well as routability concerns. It achieves this by traversing each problem
net bottom up, choosing whether or not to insert a buffer and whether to
provide single-sided, double-sided or no shielding at each node. At each node,
these choices result in six possible configurations at the parent edge of the
node, which can then be combined with the previously generated partial solu-
tions for the noise-optimized routing tree rooted at the node. A partial solution
at a node that is inferior to any other partial solution at that node is pruned
away, and the remaining solutions are propagated upstream. The algorithm
also enforces a maximum length constraint on the total interconnect length
that can be driven by a buffer, by bucketing the potential solutions at any
node by the distance to the closest downstream buffers (in a manner similar
to [AHS+03]). The cost of a partial solution captures the buffer congestion
cost of each global bin along the partial routing tree, in addition to the routing
congestion cost of any shields that may have been added.
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This procedure is preceded by congestion-driven global routing, imple-
mented in [ZS04] using a framework similar to that proposed in [AHS+03]
(which was briefly discussed in Section 4.3.2). This global routing is followed
by an iterative loop in which the simultaneous buffering and shielding pro-
cedure described above is followed by a local rip-up and reroute of nets that
still have noise violations, going through all the nets in a fixed order. The
iterations are continued until all noise and congestion problems are resolved,
or until there is no further improvement.

Although the noise model of [Dev97] is known to be pessimistic, the work
in [ZS04] demonstrates that this model exhibits good fidelity with Spice sim-
ulations. Furthermore, the pessimism of the noise model is countered by in-
flating the noise margin thresholds empirically at the gates.

4.6 Final Remarks

Since the primary goal of routing has traditionally been route completion,
there has been considerable work over the years on improving the route com-
pletion rate of routing algorithms. Global routing focuses on spreading the
congestion uniformly across the layout, so that routing overflows are min-
imized, whereas detailed routing cleans up any remaining routing overflows
and addresses pin accessibility issues, by looking intensively at a small piece of
the layout. In this chapter, we have seen that the biggest challenge to effective
global routing is the net ordering problem, and that the standard approach
to minimize its effect is through sophisticated rip-up and reroute heuristics,
often augmented with hierarchical schemes. This problem has also spurred
considerable research in more “concurrent” global routing techniques such as
those using multicommodity flows, but these approaches do not yet scale up
to today’s large problem sizes as well as the more standard methods.

With process scaling, the resistance of wires tends to increase, resulting
in the increasing importance of several electrical effects that have an indi-
rect effect on routing congestion. Thus, power grids require increased routing
resources in order to control the voltage droop, whereas signal nets require
shielding and buffering in order to avoid excessive wire delays, poor signal
slews, noise failures and large switching windows. As a consequence, the rout-
ing congestion problem becomes even more severe. The latest generation of
research in tackling these electrical problems does so within the context of
the physical environment, making the desired fixes locally without ignoring
their impact on the routability of the design. As more and more electrical
and manufacturing effects start becoming prominent, they too will need to be
addressed in a similar holistic fashion.
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5

CONGESTION OPTIMIZATION DURING
PLACEMENT

Building congestion awareness during placement is a very effective way of im-
proving the routability of a design, since the routing solution space available
during placement is considerably larger than the one that can be explored dur-
ing routing. Indeed, the optimization of routing congestion during placement
is what usually distinguishes congestion-aware versions of modern physical
synthesis flows from their congestion-oblivious versions. However, the metric
that has traditionally been optimized during placement is the sum of the (es-
timated) wirelengths of all the nets in the design. Even performance-driven
placement algorithms usually target merely a weighted sum of the wirelengths
of the nets. While this wirelength minimization also reduces the average rout-
ing congestion to some extent, congestion is inherently a local problem. The
thresholded nature of routing overflow (i.e., the lack of contribution of wires
passing through an uncongested global routing cell to the overall congestion)
often means that a minimal estimated wirelength design may not only have a
very high maximum congestion, but may also have a higher average congestion
than some other placement with a longer total estimated wirelength. Indeed,
it is quite possible that a placement with minimal estimated wirelength may
be unroutable, unlike some other congestion-aware placement with a longer
estimated wirelength.

As a toy illustration of the problem described above, consider Fig. 5.1. This
figure depicts a block containing two cells c1 and c2, each of which is to be
connected to two pins on the boundary of the block. The block also includes
a U-shaped blockage that divides the placement area into two regions, R1

and R2, that lie above and below the blockage, respectively. Let the channels
between the blockage and the boundaries of the block have a routing capacity
of one track each. Then, the placement which minimizes the total wirelength
(as estimated using the half-rectangle perimeters (HRPM) of bounding boxes
of the nets) will place both the cells c1 and c2 within the region R1 and will be
unroutable; however, moving either of the cells to the region R2 will permit
routing completion, albeit at an increased wirelength, as shown in Fig. 5.1(b).
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Fig. 5.1. A placement that minimizes wirelength may be unroutable.

Congestion-aware placement has been a fertile field of research over the last
decade, and numerous such techniques have been proposed in the literature
and implemented in commercial physical synthesis tools. However, based on
when they are applicable during the layout flow, most of these techniques can
be broadly classified into three categories, namely,

1. optimizing the routing congestion as a post-processing step after the global
placement (a step that is often integrated into the process of detailed
placement and legalization),

2. interleaving between global placement operations and routing congestion
estimation and optimization, and,

3. incorporating routing congestion optimization directly into the global
placement algorithm.

These three categories are discussed in depth in Sections 5.2, 5.3, and 5.4,
respectively.

As is usual with the optimization of any layout metric at different stages in
the physical synthesis flow, techniques applied further upstream can explore
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a richer optimization space but have to work with poorer estimates of the
metric. Thus, congestion estimates during early placement are inaccurate not
only because the locations of the cells have not yet been fixed, but also because
they do not capture the effect of subsequent netlist transformations such as
gate resizing, buffer insertion and local resynthesis, or layout transformations
such as clock tree layout, shield insertion, and wire sizing. On the other hand,
although the post-processing methods can rely on more accurate congestion
estimates (especially at fine granularities) than those integrated into the global
placement, they suffer from a somewhat decreased flexibility in the extent of
permissible design change and optimization headroom.

The other major concern in making placement congestion-aware is the run-
time overhead for estimating and optimizing congestion. Ideally, every global
placement move should be followed by a complete analysis of its impact on
the routing congestion map obtained by actually running the router on the
current placement of the design. However, this is unaffordable even with the
use of incremental routing. Therefore, different techniques try to reduce the
runtime overhead either through fast (albeit less accurate) congestion esti-
mation models (such as those discussed in Chapter 2), or through avoiding
the analysis of the congestion impact of individual placement moves by post-
poning this analysis until a certain number of moves has been carried out
or some predetermined placement convergence criteria have been met. As a
consequence, the actual congestion gains obtained due to some move carried
out during early global placement may be much smaller than anticipated.

Before we dive into the details of various placement-level techniques for
congestion mitigation (in Sections 5.2, 5.3 and 5.4), it is useful to digress
briefly for a quick overview of placement techniques currently in vogue.

5.1 A Placement Primer

While a detailed discussion of the theory and implementation of the various
placement methods proposed in the literature and applied in practice is out-
side the scope of this chapter, a brief synopsis of these techniques can help set
the context for our discussion of their modification for congestion awareness.
A more extensive survey of the current state of the art in placement can be
found in [CSX+05].

The problem of placing the cells in a netlist inside a specified region in
a way that the cells do not overlap with each other and some cost function
(usually, the total estimated wirelength of the design) is minimized has been
studied in depth for several decades. The established paradigm divides this
task into two stages: (i) global placement that tries to exploit the overall struc-
ture of the netlist to obtain a placement that minimizes the cost function, even
if the cells are not overlap-free, and (ii) legalization (also known as detailed
placement) that uses local moves to eliminate the overlaps between the cells
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in the global-placed design and arrange them into the underlying layout ar-
chitecture (such as fixed-height rows) while minimizing the deterioration in
the cost function.

While many optimization techniques have been proposed for placement,
most of these techniques1 can be classified into:

• Analytical methods,
• Top-down partitioning-based methods,
• Multilevel methods, and,
• Simulated annealing and other move-based methods.

Each of these classes of placement techniques have their own strengths and
weaknesses, that are discussed next. Most good placers combine techniques
from multiple classes in an attempt to achieve high quality, robust placements
within a reasonable computation time. Furthermore, most of today’s industrial
placers operate primarily in a timing-driven mode which allows the nets lying
on timing-critical paths to be weighted more heavily than other nets.

5.1.1 Analytical Placement

In its simplest version, analytical placement models the netlist as a system of
springs or resistors. First introduced in Proud [CK84,THK88], this technique
was refined in Gordian [KSJ+91]. The traditional objective function Φ used
in such approaches seeks to minimize the weighted sum of squared Euclidean
distances of connected cells and can be expressed in matrix notation as:

Φ =
1
2
pT Cp + dT p + k, (5.1)

where C is a 2n × 2n symmetric positive definite matrix (referred to as
the Laplacian of the netlist) that captures the connectivity of the netlist,
d is a 2n-dimensional vector representing the fixed pin connections, p =
(x1, . . . , xn, y1, . . . , yn)T is a 2n-dimensional vector representing the place-
ment of the circuit (n being the number of cells in the circuit, with cell ci

located at pi = (xi, yi)), and k is a constant. Φ can be minimized by setting:

�Φ(p) = 0,

where � is the gradient operator, resulting in the linear system:

Cp + d = 0. (5.2)

This formulation is equivalent to modeling the nets as springs using Hooke’s
Law and then calculating the state of equilibrium. Consequently, it is also
referred to as force-directed placement.
1 Other approaches to placement, such as those using linear programming, have

also been proposed, but have not been very successful in practice.
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While quadratic formulations for placement had been proposed earlier,
Gordian’s contribution was in using partitioning to spread cells rather than
to reduce the size of the mathematical program, thus reducing the penalty
due to poor choices during the early partitioning stages. This was achieved
by adding center of gravity constraints for the cells in each of the partitions,
namely,

1
nj

∑
ci∈Pj

pi = p(0)
j , (5.3)

where nj is the number of cells in partition Pj , and p(0)
j is the current center

of gravity for the cells in this partition. Embedding these constraints into the
unconstrained system reduces the number of cells that can be placed inde-
pendently. The unconstrained system on the remaining independent variables
(say, pI) can be expressed in vector notation as:

ΦI =
1
2
pI

T ZT CZpI + dI
T pI + k, (5.4)

using the matrix Z, and minimized by solving:

ZT CZpI + dI = 0, (5.5)

where,
dI

T = (Cp(0) + d)T Z,

and p(0) is an assignment of the dependent location variables that satisfies the
center of gravity constraints specified in Equation (5.3). Since all the equations
in this formulation are separable along the x and y dimensions, Gordian

alternates between adjusting the x-coordinates and the y-coordinates of the
placement in successive iterations.

This analytical approach was extended in GordianL [SDJ91] which im-
proved the wirelength further by optimizing for the (non-differentiable) “lin-
ear” sum-of-wirelengths objective function using nested iterations on the net
weights within the traditional quadratic framework. The next major con-
tribution was that of Kraftwerk [EJ98], in which the spring analogy was
extended further by iteratively creating a spreading force field, consisting of
additional springs required to effectively spread the cells to cover the place-
ment area. This formulation relied on certain mathematical conditions to en-
sure that the forces were easily computable, by recasting the formulation in
the form of Poisson’s equation. Recently, the quadratic objective function has
been replaced by the log-sum-exp model for wirelength, yielding significant
improvements in placement quality [NDS01,KW04]. On another front, Fast-

Place [CV04] has shown large runtime improvements by integrating several
simple local and global heuristics for cell moves into the iterative quadratic
programming framework for analytical placement.

Analytical placement techniques tend to be “stable”. In other words, small
changes in the input netlist usually do not result in dramatic changes in the
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resulting placement. This makes them an attractive option for real-world ap-
plications, where design convergence involves numerous small netlist changes
to an almost-converged netlist and layout.

5.1.2 Top-down Partitioning-based Placement

Placement using recursive top-down partitioning was first explored in [Bre77]
and [DK85]. Early works in this class of techniques relied on simple recursive
bisection with a cut size objective function. The cut size improvement at any
level of the recursion was carried out using variants of Fiduccia-Mattheyses
[FM82] iterations for moving nodes from one partition to the other. Recent
advances in fast hypergraph partitioning have helped create a new generation
of high quality top-down partitioning-based placers such as Capo [CKM00]
(discussed further in Section 5.4.2) and FengShui [YM01].

Given any region to be partitioned and a set of cells that have already been
assigned to that region, these techniques first select a horizontal or vertical
cut line for that region. Then, subsets of cells are moved across that cut line in
a way that reduces the total cut size (i.e., the total weight of the hyperedges
crossing the cut line) without violating a given area balance constraint. The
area balance constraint prevents one partition from becoming much smaller
than the other one. At any level of the recursion in the bisection approach,
each region is considered in isolation from the other regions, although nets
between regions are often modeled using terminal propagation [DK85]. In con-
trast, some placers extend bisectioning to multiway partitioning by allowing
the intermediate results from the bipartitioning of a region to influence the
final partitioning of additional regions at that level. Good examples of this ap-
proach include BonnPlace [Vyg97] (discussed further in Section 5.4.1) and
Dragon [WYS00b] (discussed in more detail in Section 5.2.3), each of which
uses recursive top-down quadrisectioning that divides each region being par-
titioned into four subregions, and FengShui which uses k-way partitioning.

Compared to analytical and other placement approaches that target wire-
length directly, partitioning-based placement is usually somewhat more effec-
tive at mitigating congestion. This is because the cut size across a local cut
line has a stronger correlation to the local congestion in the vicinity of the cut
line than does the total wirelength. Even so, it is still inadequate at capturing
the full two-dimensional nature of congestion. Furthermore, pure partitioning-
based placement is not used very widely in commercial applications because of
placement stability concerns. Indeed, today’s large design sizes and numerous
macro blockages often require explicit congestion mitigation techniques even
with partitioning-based placement approaches.

The major weakness of the top-down paradigm is that partitioning deci-
sions at early stages of the recursion cannot be undone even if subsequent
levels of the recursion indicate their undesirability. Thus, a cell that has been
moved into the left half of the layout during the top-level partitioning will
never be able to cross over to the right half later, even if all the cells connected
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to it end up in the far right of the region. This can lock the optimization down
into local minima, resulting in increased wirelength.

5.1.3 Multilevel Placement Methods

Multilevel placement algorithms are a recent development [SR99, CCK+00]
that remedies the main deficiency of pure top-down flows, which is the inability
to recover from the selection of poor moves at early stages of the recursion.
While they often rely on recent advances in algebraic multigrid methods, the
basic intuition underlying these methods is quite simple.

At the abstract level, these algorithms involve three kinds of operations,
namely, coarsening, relaxation, and interpolation. Coarsening refers to the
process of building a hierarchy in a bottom-up manner (using recursive clus-
tering) or top-down manner (using recursive partitioning). Relaxation refers
to localized optimizations at each level of the hierarchy, while interpolation
involves the transfer of an intermediate solution from one level of the hierar-
chy to the next. These operations can be organized in several different kinds
of flows; the most commonly used flows involve one or more V-cycles in which
the cells are first clustered together recursively to create a placement problem
with fewer instances. Subsequently, the aggregated clusters are unclustered
recursively, with local optimizations at each stage of the unclustering. These
optimizations during the unclustering pass offer an opportunity to recover
from poor choices made during the early stages of the clustering pass. This
entire V-cycle can be repeated if necessary. So-called W-cycles (also referred to
as backtracking V-cycles), in which the unclustering pass is interrupted after
a few levels in order to redo the recursive clustering of those levels, followed by
the recursive unclustering of all the levels, have also yielded good results. The
multilevel placement paradigm has been discussed further in Section 5.3.1.

Many heuristics have been proposed to drive the clustering phase in mul-
tilevel placement. However, experiments indicate that simple graph-based
greedy schemes such as First-Choice vertex matching [Kar99] may be more
effective than sophisticated schemes that attempt to exploit some more ex-
tensive connectivity information. Another feature worth noting is that this
paradigm merely provides a framework within which any kind of placement
optimization can be applied at a given recursive level. Indeed, different mul-
tilevel placers have used analytical programming, simulated annealing as well
as recursive partitioning in order to drive the relaxation at each level of their
hierarchy.

In addition to the ability to recover from poor early decisions, multilevel
placement approaches also offer the advantage of scalability. They can deal
with large designs by merely adding additional recursive levels to their coars-
ening passes. At the same time, the optimizations applied at the coarsest levels
of the hierarchy are good at exploiting the global structure of the netlist.
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5.1.4 Move-based Methods

This class of placement techniques includes both simulated annealing as well
as sequences of greedy moves. As discussed in Section 4.1.5 in Chapter 4, sim-
ulated annealing evaluates potential moves from any candidate solution. If a
move improves the objective function, it is accepted. On the other hand, if it
worsens the objective function, it still has a finite probability of acceptance
given by e−ΔC/T , where ΔC is the increase in cost, and T is the so-called tem-
perature parameter. This allows the optimization to escape from local minima
within the solution space. As the placement proceeds, the temperature is re-
duced, thus decreasing the probability of accepting a move that worsens the
cost function.

Simulated annealing can yield very high quality placements, but often re-
quires very long runtimes to do so. It is the primary optimization engine
within the TimberWolf placer [SS86]. Low temperature simulated anneal-
ing has been used for bin-swapping based refinement (in which entire blocks
within a given recursive level are interchanged) at all but the finest levels of
the Dragon [WYS00b] placer within a top-down recursive quadrisectioning
framework. The multilevel placer mPG [CCP+03] (discussed further in Sec-
tion 5.3.1) also uses simulated annealing for relaxation within each level of its
clustering and unclustering passes.

Other move-based heuristics have also proven quite successful when com-
bined with standard placement optimization techniques. These include greedy
cell swaps as well as ripple-move sequences that yield local improvements to
the layout at any stage. As an example, Dragon uses a detailed greedy
strategy for cell swapping to refine the placement at its finest level. How-
ever, perhaps the most dramatic application of local moves has been within
the quadratic programming framework employed by the FastPlace placer
[CV04], in which each iteration of unconstrained quadratic wirelength mini-
mization is followed by local cell shifts away from regions of high cell density
and greedy cell swaps for wirelength reduction. This allows FastPlace to
achieve extremely fast convergence of the layout without significant wirelength
degradation.

5.2 Congestion-aware Post-processing of
Placement

A given global placement can be post-processed to improve its congestion
profile. The post-processing techniques used to achieve this can be broadly
classified into three groups, namely,

• Find-and-fix methods (discussed in Section 5.2.1),
• Congestion-aware placement refinement methods (discussed in Sec-

tion 5.2.2), and,
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• White space management techniques (discussed in Section 5.2.3).

Find-and-fix congestion management techniques identify the locations of any
congestion hot spots and then try to fix them using small local perturba-
tions to the design without violating its convergence. The second class of
post-processing techniques listed above relies on compute-intensive techniques
to model the expected congestion directly into the objective function of the
placement in addition to the traditional placement metrics, and then refine
the given global placement further to yield a good, routable placement. Fi-
nally, the third class of post-processing techniques focuses on modifying the
distribution of white space in the design in an attempt to make the design
more routable.

5.2.1 Find-and-fix Techniques

The intuition behind this class of techniques is that the wirelength or cut size
minimization objective of traditional placement does a decent job of reducing
the average congestion, while generating a placement that is desirable with
respect to the primary metrics of wirelength and/or delay. Its local congestion
hot spots can be identified accurately and then improved effectively using only
relatively minor perturbations that do not destroy the overall desirability of
the placement. In contrast, incorporating inherently error-prone congestion es-
timation into the objective function that drives global placement may result
in a local minimum with very poor wirelength or delay, even if it has im-
proved congestion. Indeed, [WYS00a] studied various objective functions that
captured different models for routing congestion or combined them with the
wirelength within a simulated annealing based placer, and demonstrated that
the use of pure wirelength as the objective function usually yielded a better
starting placement even for subsequent congestion minimization than all their
congestion-aware objective functions. However, the more sophisticated recent
techniques for explicit congestion management during global placement (such
as those for white space allocation) seem to be able to generate good global
placements without significant deterioration of wirelength. But the congestion
of even these placements can often be improved further using post-processing
schemes.

The most widely used post-processing scheme employs simple trial-and-
error; it first identifies the congestion hot spots in the initial placement based
either on a probabilistic congestion map or by using a fast global router, and
then makes some sequence of greedy local moves using the cells and/or nets
lying within these congestion hot spots; a move is accepted only if it improves
the congestion without deteriorating the other metrics significantly. Thus, one
could attempt to swap a cell lying within a congestion hot spot with another
cell that lies in some nearby uncongested region, as depicted in Fig. 5.2. A
post-processing scheme of this kind is used to further improve the congestion-
aware placement obtained using cell inflation proposed in [HYH+01], and is
described along with that scheme in Section 5.4.1.
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: Congested Region

Fig. 5.2. Reducing congestion by moving cells lying within a congested region.

Alternatively, one could select the nets passing through highly congested
regions, and sort them by their contribution to the total routing overflow
within the design. Since any good global router will attempt to minimize
the peak congestion by trying alternate routings for nets passing through
congested regions (as discussed in Section 4.1 of Chapter 4), the mere rerouting
of such nets during post-processing is usually not very effective at reducing
the true congestion (although it can show benefits if the congestion profile
had been estimated without actually running a global router). However, one
can also move the cells that are connected to the pins of such nets, so that the
routings of these nets no longer pass through highly congested regions. This
is illustrated in Fig. 5.3.

The cell-centric scheme (that swaps out the cells lying in congested regions)
focuses primarily on the congestion arising from local interconnections and the
interconnects connected to local cells, while ignoring the congestion caused
due to long global nets. In contrast, the net-centric scheme addresses all the
sources of congestion. Three simple post-processing schemes have been studied
in [WYS00a] within a simulated annealing based framework; these are variants
of the greedy cell- and net-centric schemes described above, as well as a simple
network flow based cell-centric approach that allows multiple cells to move
simultaneously. Not surprisingly, they find that the net-centric approach yields
the best results. A typical scheme based on this approach is presented in
Algorithm 8.

The idea of post-processing a placement to improve its congestion charac-
teristics has been around for quite a while. For instance, [TCT92] proposed
the use of a congestion map based on a fast initial routing, in order to add a
congestion cost to the objective function used to evaluate cell moves and pin
assignments within a greedy iterative framework to post-process the place-
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: Congested Region

Fig. 5.3. Reducing congestion by moving cells connected to a net passing through
a congested region.

Algorithm 8 Greedy net-centric post-processing for congestion relief
1: Sort list N of nets by decreasing contribution to total routing overflow
2: for all nets n ∈ N do
3: for all cells c connected to n do
4: Evaluate potential moves and swaps for c
5: Accept move that yields largest reduction in total overflow without violating

timing constraints
6: end for
7: end for
8: Legalize placement

ment. In this approach, the congestion map is first generated from the initial
placement using a forest of minimum wirelength spanning trees for the nets
in the design (assuming that each of the two possible single bend embeddings
of a diagonal edge in a spanning tree is equally likely), and then updated by
iterating over the nets to choose congestion-aware embeddings for the edges
in their spanning trees. Then, various swaps between pairs of cells and pairs
of I/O pads, as well as their moves to unallocated cell slots and unused pad
locations, are evaluated using a linear combination of wirelength, timing cost
and congestion cost (by inspecting all the nets affected by any such move).
The congestion map is updated whenever a move is accepted. Because of its
greedy nature, the effectiveness of this approach depends on the order in which
the nets are embedded during the congestion map generation and the order
in which cell and pad moves are evaluated. It is also susceptible to getting
trapped within local minima of the objective function. Over the years, variants
of this approach have tried different heuristics to improve the performance of
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this approach by using more sophisticated ways to generate the initial con-
gestion map, decide the order in which cell and pad moves are evaluated, and
allow some moves that temporarily degrade the objective function or violate
some constraints, in the hope of escaping local minima.

Another factor involved in designing a good post-processing algorithm for
congestion alleviation is the extent of perturbation permitted in the design.
Ideally, a cell move should be accepted only if it does not violate any design
constraints such as path timing or clock skew. However, checking the validity
of each such candidate move can become expensive. Therefore, an acceptable
compromise can be the explicit checking of these constraints only for the cells
that lie on the most critical paths (or prohibiting the movement of these cells
completely), and merely bounding the extent of the moves for the remaining
cells. However, if the bound on the extent of a move is too small, it may make
the congestion alleviation problem unsolvable. There has been some work to
help determine how large a region around a congestion hot spot should be
permitted for cell moves [WYE+00, YWK+03]. In general, expanding each
hot spot to a constant size or by a constant factor is usually too restrictive; it
is better to allow somewhat larger expansion regions for the more serious hot
spots. A good rule of thumb is that the expansion region for a hot spot should
be somewhat larger than the smallest region such that the cumulative supply
of routing tracks across all the global routing cells within this region exceeds
the cumulative expected routing demand there. If the region is any smaller, the
congestion within the hot spot cannot be resolved without excessive detours.

The order-dependency of the moves can be countered by using a more
globalized formulation. For instance, an industrial network flow based formu-
lation briefly described in [KRV02] identifies all the placement bins that have
routing overflows, and sets up flow arcs from these bins to placement bins that
have routing resources available. The solution of the resulting network flow
problem instance moves cells from the congested bins to the sparsely routed
bins, allowing a simultaneous determination of cell moves to reduce the total
overflow. The flow arc costs and capacities within this formulation are set up
such that the solution tries to maintain the relative logic ordering of cells as
far as possible, in order to reduce the extent of the perturbation to the ex-
isting placement. This process of setting up network flow problem instances
from the congestion map is iterated until all the routing overflows have been
eliminated, or the iterations yield no further benefits. This formulation re-
lies on the correlation between cell density and the local routing congestion.
Consequently, it does not resolve congestion problems arising due to non-local
flyover routes.

For many years, find-and-fix post-processing schemes were used widely to
improve the routability of placements generated by commercial tools. How-
ever, the wiring complexity of modern designs requires that such schemes
be augmented by congestion awareness in upstream placement optimizations,
using, for instance, techniques described in Sections 5.3 and 5.4, because of



5.2 Congestion-aware Post-processing of Placement 157

insufficient flexibility available if the global placement has already been com-
pleted.

5.2.2 Congestion-aware Placement Refinement

This class of techniques relies on the direct modeling of the expected con-
gestion within the objective function to be optimized during placement. In
that sense, it is similar to the techniques described in Section 5.4. However, it
differs from those techniques in that it typically uses compute-intensive con-
gestion models or placement paradigms that make it unsuitable for use as a
primary engine for global placement.

Modeling Local Unroutability using Net Weights

A good example of a congestion-aware placement refinement technique is the
Sparse scheme presented in [HM02], in which a simulated annealing based
placer is used with an objective function consisting of the usual weighted
sum of expected netlengths, but with the weights dynamically capturing the
routability of the corresponding nets. This work is motivated by the authors’
empirical observation that around 75% of the routing resources within a global
placement bin are used up by nets that have a pin within that bin2. Thus,
moving the pins of nets out of bins that are likely to be congested and into bins
that do not show congestion problems usually improves the overall routabil-
ity of the design. Furthermore, it also usually helps with good white space
allocation, thus allowing the placement to be legalized more easily.

Given a design with nets {ni}i=1,2,....,N and a traditional placement ob-
jective function

∑
i wili, where wi is the weight associated with net ni (that

is often used to model the timing criticality of the net), and li is its expected
length (obtained using the same fast estimates that are used during global
placement), Sparse modifies the net weight wi to also reflect the predicted
routability problems in the bins containing the pins of the net ni. It does so by
2 Although this percentage may be somewhat lower for large industrial designs, a

significant proportion of the routability problems in a design can nevertheless be
root-caused to pin hookup issues. This is not surprising when one considers that a
net having a pin within a given bin requires a via stack to connect that pin to the
metal layer on which the net has been routed; this via stack creates a blockage
on all the layers lying between the pin and the route of the net. Furthermore,
the local switchbox routing carried out by detailed routers for the purpose of
route completion also often creates numerous small metal segments and vias in
the route of a net in the vicinity of its pins. In contrast, a net routed through a
bin that does not contain any of its pins often uses up merely a single routing
track on a single layer within that bin. Even if the route of the net has a Steiner
node involving multiple layers lying within the bin, the corresponding vias often
involve only the upper layers (whose routability is usually less degraded due to
short metal segments and via stack blockages than the lower layers).
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replacing each net weight wi with the corresponding weight wi

∑
B pB

di
, where

the summation is taken over all the global placement bins B that contain some
pin of ni, the number of such bins is di, and pB is a “congestion parameter” for
B. As shown in the right-hand side of Fig. 5.4, the congestion parameter for a
bin attempts to capture the likelihood of that bin having routability problems.
It does so by first computing a proxy DB for the expected routing demand
for that bin (as described in the next paragraph), and then transforming that
demand into a smooth approximation of a threshold function modeling the
routing overflow, via a fitted exponential function pB = αDβ

B + γ (where α,
β and γ are the parameters used for fitting). This exponential function cap-
tures the intuition that small values of DB are not likely to cause routability
problems; however, as DB grows beyond some threshold that corresponds to
the number of routing tracks available within the bin, the likelihood of the
corresponding bin having a routing overflow grows very rapidly. Given this
intuition behind pB , the

∑
b pB

di
multiplier for the weight wi corresponding to

net ni captures the average congestion parameter for all the bins that contain
its pins, creating a strong incentive for the placer to move cells out of bins
that are likely to be congested.

B l1

l2

l3

DB

pB

Dmin
B Dmax

B

pmin
B

pmax
B

Fig. 5.4. Computing the congestion metric pB for a bin B as in [HM02].

In order to compute the proxy DB for the demand of a bin, the estimated
wirelength lj of each net nj is distributed equally among all its pins, so that
the share of each pin is lj/|nj |, where |nj | is the number of pins in nj . Then,
for each bin B, DB is merely the sum of the (weighted) netlengths associated
with the pins lying in B (i.e., computed as

∑
j

wj lj
|nj | , where the summation is

carried out over all nets that have a pin in B).
An example of the computation of the congestion parameter pB for a bin

B is illustrated in Fig. 5.4. In this figure, let the estimated wirelengths for the
three nets with pins in B be l1, l2 and l3, respectively. Then, pB is given by
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αDβ
B + γ, where DB = l1

3 + l2
2 + l3

5 (assuming wi = 1, for i = 1, 2, 3), since
the three nets consist of three, two and five pins, respectively.

Interleaving of Cells and Wire Segments within a Row

Another sophisticated placement refinement approach presented in litera-
ture [JL04] incorporates the assignment of wire segments into a dynamic
programming based detailed placement framework that allows the optimal
interleaving of two sets of cells within a row of the layout [HL00]. In contrast
to greedy approaches, this approach allows the optimal search of an expo-
nential sized subset of the complete solution space within polynomial time.
Although this approach has been experimentally verified only in the context
of field-programmable gate arrays (FPGAs) and is limited to some extent by
the upfront need to partition the cells and wire segments within a row into
two sequences for interleaving, the underlying ideas are novel and promising,
and are also applicable to the detailed placement of (row-based) standard cell
designs.

Since this approach builds upon the Mongrel algorithm for relaxation-
based local search [HL00], it is useful to briefly review how Mongrel uses
interleaving for wirelength-driven detailed placement, before describing its
extensions to improve routability. Given a partitioning of the cells in a row into
two disjoint sequences A = (a1, . . . , am) and B = (b1, . . . , bn), such that, for
any valid i, the ith cell within a sequence precedes the (i+1)th cell within that
sequence in the given placement of the row, interleaving explores all possible
permutations for these cells that preserve the relative orders within each of
these two sequences. Thus, if a row is partitioned into A containing four cells
and B containing five cells, a permutation a1a2b1a3b2b3b4b5a4 is considered
valid, while another permutation a1a3b1a2b2b3b4b5a4 is not (because a3 and
a2 are reversed in the latter permutation). Each of the valid permutations
is evaluated for its corresponding wirelength. Let Si,j denote the optimal
interleaving of the sequences a1, . . . , ai and b1, . . . , bj , and C(Si,j) denote the
cost of this interleaving. Then,

S0,0 = ∅,

C(S0,0) = 0,

C(Si,j) = min{C(Si−1,jai), C(Si,j−1bj)}.

Stated simply, this recurrence states that the best interleaving of the first i
cells in A and the first j cells in B is obtained by appending one of ai and bj

to the best interleaving of the remaining i+ j−1 cells, with the better option
between ai or bj being selected.

Given this background for Mongrel, [JL04] extends it to include the wire
segments crossing the row vertically into the interleaving formulation. While
some vertical segments (such as s1 in Fig. 5.5) terminate at a cell and hence
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s1

s2

Fig. 5.5. Assignment of a free vertical net segment to either side of a cell can have
different costs.

Fig. 5.6. An example of an interleaving of some cells and vertical wire segments.

must move along with that cell whenever it is moved, others such as s2 in the
same figure have the flexibility of being assigned to either side of any given cell
(with differing congestion and possibly differing wirelength costs). Given an
initial assignment of cells and vertical segments to specific locations along a
row, let the cells be partitioned into two sequences A and B as before. Let the
vertical segments also be partitioned into two disjoint sequences P1 ∪ . . .∪Pm

and Q1 ∪ . . . ∪ Qn, where Pi = {pi,1, . . . , pi,|Pi|} and Qj = {qj,1, . . . , qj,|Qj |},
such that all segments belonging to Pi (respectively, Qj) precede any segment
in Pi+1 (respectively, Qj+1). Furthermore, let all the segments in Pi be routed
over or to the right of cell ai but to the left of ai+1, and all the segments in
Qj be routed over or to the right of cell bj but to the left of bj+1. Figure 5.6
presents an illustration of such a partitioning and of the notation introduced
here. Finally, let Si,j,k,l represent the sequence in which all cells a1, . . . , ai

and b1, , . . . , bj as well as vertical segments belonging to P1 ∪ . . . Pi−1 and
Q1∪ . . . Qj−1 have been placed in an optimal interleaving, along with the first
k segments from Pi and the first l segments from Qj . Let C(Si,j,k,l) be the
cost of this interleaving. Then, the recurrence for the cost of an interleaving
is given by:
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Algorithm 9 Optimal congestion-aware interleaving within the Mongrel

framework
1: Given sequences A : (ai, Pi) with 0 < i ≤ m and B : (bj , Qj) with 0 < j ≤ n,
2: S0,0,0,0 ← ∅
3: C(S0,0,0,0) ← 0
4: for all i = 1, . . . , m do
5: for all j = 1, . . . , n do
6: for all k = 0, . . . , |Pi| do
7: for all l = 0, . . . , |Qj | do
8: CA ← ∞
9: for all x = 0, . . . , l do

10: if C(Si−1,j,|Pi−1|,x)+C(ai)+C(pi,1, . . . , pi,k)+C(qj,x+1, . . . , qj,l) <
CA then

11: CA ← C(Si−1,j,|Pi−1|,x) + C(ai) + C(pi,1, . . . , pi,k) +
C(qj,x+1, . . . , qj,l)

12: end if
13: end for
14: CB ← ∞
15: for all y = 0, . . . , k do
16: if C(Si,j−1,y,|Qj−1|)+C(bj)+C(pi,y+1, . . . , py,k)+C(qj,1, . . . , qj,l) <

CB then
17: CB ← C(Si,j−1,y,|Qj−1|) + C(bj) + C(pi,y+1, . . . , py,k) +

C(qj,1, . . . , qj,l)
18: end if
19: end for
20: C(Si,j,k,l) ← min{CA, CB}
21: Record which of CA or CB is selected for Si,j,k,l, along with corre-

sponding value of x or y
22: end for
23: end for
24: end for
25: end for
26: Recover optimal interleaving Sm,n,|Pm|,|Qn| by backtracing the subsequences

used to derive the optimal cost (by following the recorded choices of CA or
CB and corresponding values of x or y at each stage)

S0,0,0,0 = ∅,

C(S0,0,0,0) = 0,

C(Si,j,k,l) = min{CA, CB},

where,

CA = min
0≤x≤l

{C(Si−1,j,|Pi−1|,x)+C(ai)+C(pi,1, . . . , pi,k)+C(qj,x+1, . . . , qj,l)},

CB = min
0≤y≤k

{C(Si,j−1,y,|Qj−1|)+C(bj)+C(pi,y+1, . . . , py,k)+C(qj,1, . . . , qj,l)}.
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In words, C(Si,j,k,l) is obtained by taking the best interleaving for the first
i + j − 1 cells as in Mongrel, but now it also includes the assignment for all
the vertical segments that precede the last cell in the interleaving for the first
i+j−1 cells. Then, the best possible way of arranging the remaining segments
around the last cell in the interleaving is selected. For instance, if the last cell
in the interleaving is ai, then all the segments in Pi must lie either over it or
to its right. However, there is no restriction on where the segments in Qj lie
in relation to this cell, as long as they obey their ordering within Qj . This is
exploited in the computation of CA above, by splitting this sequence on either
side of ai in the best possible way, by keeping the first x wire segments to
its left (for the best possible x). The computation of CB is analogous. This
process is summarized in Algorithm 9.

While this framework does not guarantee the absolute optimum for the
congestion cost over all possible configurations of placement and local routing,
it does explore a significant fraction of the solution space optimally in a very
efficient manner. Furthermore, it is targeted towards wirelength and routabil-
ity improvement through local perturbations during the detailed placement
stage after a pass of global routing has been carried out, resulting in an accu-
rate estimation of localized congestion costs and wirelengths.

5.2.3 White Space Management Techniques

The white space within a design block is defined as the area within the block
that is not occupied by cells in its final layout. In recent years, there has been
a surge of research interest in techniques to manage white space effectively
during placement. While some of this work is motivated by performance or
wirelength considerations, much of it targets the improvement of the routabil-
ity of the design. Some of the proposed white space management techniques
are applicable subsequent to the global placement and are discussed in this
section, while others operate concurrently with the global placement and are
described in Section 5.4.2. As with the Sparse [HM02] scheme discussed ear-
lier in Section 5.2.2, increasing the white space in a congested region helps if
the congestion is caused primarily due to pin accessibility problems for the
nets having at least one pin within that region.

Row-based White Space Allocation

The work presented in [YCS03] presents an extensive study of several white
space allocation schemes targeting routability improvements within the con-
text of the placer Dragon [WYS00b] that uses recursive quadrisectioning
interleaved with simulated annealing. This work includes the comparison of
various schemes for allocating white space to each placement bin at the end of
global placement, based on its congestion as measured by its estimated routing
overflow (with respect to some threshold). In particular, it studies variants of
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direct schemes that allocate white space at the bin level, and compares them
against variants of two-step schemes that first distribute white space among
the rows, and then within each row. These variants of direct and two-level
schemes include allocation schemes that are based on different thresholds for
overflow computation, as well as allocation schemes that use different (i.e.,
linear or quadratic) functions of the congestion to determine the extent of
white space allocation to a placement bin.

Direct schemes that operate at the bin level cannot control the amount of
white space available within a row. Consequently, the design can end up with
some rows that have no white space at all. Since the allocation of white space
usually causes some degradation in the primary placement metrics (i.e., wire-
length or delay), the white space allocation phase must usually be followed by
some local improvement of the placement in order to recover from as much of
the placement degradation as possible. However, a post-allocation modifica-
tion to a row that has no white space available can often cause a row length
violation, whose correction can result in a large perturbation to the design.
Therefore, two level schemes that ensure a minimum amount of white space
for each row are usually more amenable to good quality placements that are
also routable, than direct schemes.

Even among two-level schemes, one can distinguish between schemes that
ensure a minimum bound on the white space within each row, and those
that ensure both minimum and maximum bounds. While a lower white space
bound for a row helps the row to absorb post-allocation optimization per-
turbations, an upper bound is useful in ensuring that excessive white space
within a single row does not cause severe wirelength degradation. However,
the optimal values for these bounds vary from design to design, depending
on both the total available white space and the severity of congestion in the
design.

Another concern in designing a good white space allocation scheme relates
to the aggressiveness of the allocation, as depicted in Fig. 5.7. For the same
distribution of congestion among a given set of bins, an aggressive scheme will
allocate increased white space to the more congested bins at the cost of white
space allocated to the less congested ones. An allocation scheme can be made
aggressive by, say, using a quadratic function of the congestion of a bin to
determine the amount of white space to be assigned to it, instead of a linear
function. Alternately, an aggressive scheme can define the congestion as the
overflow with respect to the average congestion across the design, instead of
the minimum congestion. In general, aggressive schemes have a greater posi-
tive impact on the routability of a design (especially when the total available
white space is limited), but can also cause greater degradation of the primary
placement metrics. Thus, they are appropriate for highly congested, densely
placed designs, but degrade the placement quality without yielding a com-
mensurate routability benefit on sparse designs that are not very congested.

Let W be the total white space in the design, with n being the number
of rows in the design. Let the congestion of row j (as measured by the total
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Fig. 5.7. Aggressiveness of white space allocation strategy: (a) Linear versus
quadratic dependence on congestion. (b) Use of minimum overflow versus aver-
age overflow to decide white space allocation threshold (Linear curves are shown;
quadratic curves will also be similar).

overflow of the cells in the row with respect to some specified threshold) and
the white space to be allocated to row j be denoted by cj and wj , respectively
(so that

∑n
i=1 wi = W ). Then, if wmin is the minimum white space to be

allocated to a row, a linear allocation of the white space yields:

wj = wmin +
W − nwmin∑n

i=1 ci
cj .

Next, the white space allocated to a row is distributed among its bins. A linear
allocation here yields:

wij =
wjcij

cj
,

where wij is the white space allocated to the ith bin (with congestion cij)
belonging to row j (with

∑
k ckj = cj). Similarly, a quadratic allocation yields:

wij =
wjc

2
ij∑

k c2
kj

.

If the two-level row-based allocation is to also obey upper bounds (say,
wmax) on the white space allocated to each row, the allocation function must
assign wmin units of white space to the least congested row (with congestion
being, say, c1) and wmax units of white space to the most congested row (with
congestion being, say, cn), while still ensuring that the total white space allo-
cated across all the rows is W . All these constraints cannot be simultaneously
guaranteed by a linear allocation function, but a quadratic allocation function:
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wj = a1c
2
j + a2cj + a3

suffices. Here, a1, a2, and a3 are coefficients whose values can be obtained
by solving the three constraints mentioned above for wmin, wmax and W .
However, if c1 < − a2

2a1
< cn, the allocation function results in the extremum

lying inside [c1, cn] (so that it is not monotone within this range). In order to
make the function monotone again, one of the wmin or wmax constraints must
be relaxed. In this case, if a1 < 0, then the wmin constraint is relaxed and the
point (cn, wmax) is set as the extremum of the quadratic function by setting
cn = − a2

2a1
. On the other hand, if a1 > 0, then the wmax constraint is relaxed

and the point (c1, wmin) is set as the extremum of the quadratic function by
setting c1 = − a2

2a1
. Once the row white space allocation has been completed

using this quadratic function, the white space assigned to each row can be
distributed among its bins using a linear or quadratic function as described
previously.

Algorithm 10 Row-based white space allocation within Dragon

1: while global placement bin size not small enough do
2: Carry out a few iterations of recursive partitioning of the circuit and geometric

slicing of the layout area
3: Place the resulting clusters in their corresponding bins
4: Use wirelength-driven low temperature simulated annealing to improve the

clusters
5: end while
6: Adjust the global placement bins to match the row structure of the design
7: Estimate the routing overflow in each bin
8: Perform two-level row-based white space allocation
9: Carry out a wirelength-driven low temperature simulated annealing based local

optimization without degrading white space in each bin
10: Estimate the routing overflow in each bin
11: Perform two-level row-based white space allocation
12: Legalize the placement
13: Carry out a wirelength-driven low temperature simulated annealing based local

optimization without degrading white space in each bin or creating overlaps

The work described in [YCS03] proposes to use the row-based white space
allocation twice as a post-processing step after the Dragon global placement,
as summarized in Algorithm 10. More specifically, the global placement flow
consists of a top-down recursive partitioning phase during which the design is
partitioned into clusters that are placed into bins, interleaved with a low tem-
perature simulated annealing of the clusters that is driven by wirelength. Once
the clusters (and the corresponding bin sizes) are small enough, the detailed
placer first adjusts the bins to match them to the underlying row structure of
the design. Next, a wirelength-driven simulated annealing phase is followed
by legalization and local improvements. The white space allocation step in-
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tercepts the default Dragon flow first after the bin adjustment, and then
again just before the legalization phase. Each of these white space allocation
phases is followed by a low temperature simulated annealing phase involving
cell moves and swaps to improve the wirelength without changing the white
space allocation of each bin significantly. Overall, the congestion-aware ver-
sion of Dragon has proven to be quite effective at producing routable layouts
with good wirelengths. While the placement runtime for this algorithm is of-
ten significantly higher than several other competing approaches, it is usually
adequately compensated by considerable runtime improvements during the
routing phase due to the routing problem generated by the placement being
easier, resulting in an overall reduction in the total layout runtime.

Cut Line Adjustment

The white space allocation scheme presented in [LXK+04] is a post-processing
scheme that is applicable to any global or detailed placement produced using
any arbitrary placement engine. The primary operation within this scheme is
that of cut line adjustment. Given a placement of a design, this scheme recur-
sively partitions the layout based on the geometric locations of its cells. Each
bisection divides a partition into two equal sized partitions. This sequence of
recursive partitions can be represented by a binary slicing tree, as shown in
Fig. 5.8. In this tree, the root represents the top-level bisection cut. At any
level within the tree, the two child nodes of a node represent the two parti-
tions created by the corresponding cut. The leaf nodes of the tree represent
the final set of partitions obtained by the partitioning of the given placement.

Next, a bottom-up congestion analysis is carried out for each node of
the slicing tree. For a leaf node, the congestion is merely the total routing
overflow for the global routing bins corresponding to that node, while that
for an internal tree node is the sum of the congestion levels of its child nodes.
Once the congestion values have been estimated for each node in the slicing
tree, the cut lines corresponding to each node in the tree are adjusted on the
layout in a top-down fashion so as to make the amount of white space available
to the child nodes of a node linearly proportional to their congestion levels.
Consider a region with lower left corner at (xll, yll) and upper right corner
at (xur, yur) (so that its total area A = (xur − xll)(yur − yll)) and total cell
area C (so that its white space is A − C). If a vertical cut line originally at
(xll + xur)/2 divides the region into a left subregion with congestion level χ0

and cell area C0, and a right subregion with congestion level χ1 and cell area
C1 (with C0 + C1 = C), the redistributed white space allocated to the two
subregions is (A − C) χ0

χ0+χ1
and (A − C) χ1

χ0+χ1
, respectively. Consequently,

the updated location of the cut line is given by:

xcut = γxur + (1 − γ)xll,

where,
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Fig. 5.8. White space allocation through hierarchical cut line adjustment.

γ =
C0 + (A − C) χ0

χ0+χ1

A

is the ratio of the area of the left subregion to that of the original region
after the cut line adjustment. The location of horizontal cuts is computed
in a similar manner. The cells within each partition are constrained so that
their center of gravity is the updated center of the partition after the cut line
adjustment. The top-down cut line adjustment phase is followed by detailed
placement and legalization.

Thus, in the example depicted in Fig. 5.8, since the total congestion for
the A and B partitions is less than that of C and D (as indicated by the
“<” between the corresponding nodes in the figure), the top-level cut line is
shifted to the left in a way that distributes the total available white space
proportional to these congestion levels. The same process is repeated at the
next level of the partitioning, with the cut line between A and B being shifted
downwards, and that between C and D being shifted upwards. In this manner,
the white space available within a placement is redistributed so that regions
with routing problems are allocated more white space in the hope of easing
the congestion, at the cost of the white space in sparse regions that currently
have no routability issues.
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5.3 Interleaved Congestion Management and
Placement

Several of the find-and-fix and white space allocation post-processing tech-
niques for congestion management do not rely on the existence of a completely
placed design, and can be adapted to work even while the global placement
is still evolving. Since most of the techniques for global placement are iter-
ative, they can be intercepted after every few iterations in order to perturb
the approximate placement obtained so far to improve its congestion charac-
teristics. This improvement is obtained by first identifying the congestion hot
spots in the approximate placement by either using some congestion model
(such as a probabilistic estimate of the routing) or by running a fast global
router. Next, these hot spots are improved by either moving some cells ex-
plicitly or by influencing the metrics (such as net weights) that will drive the
next few iterations of the placer (using techniques such as those described in
Section 5.4), in a way that tends to reduce the congestion problems. Thus,
compared to pure post-processing approaches, potential congestion problems
are identified earlier and can be resolved while there is still sufficient flexibility
available in the evolving placement.

However, there are two potential problems with the interleaved approach
that a good congestion management flow must guard against. Firstly, during
the early stages of the global placement, the location of a cell is very approx-
imate, so that congestion hot spots may not be identified correctly or the cell
moves or metric modifications that are expected to resolve these hot spots may
not be very effective. Instead, these fixes may end up constraining the placer
in the optimization of its primary objective function (namely, wirelength or
timing) without getting any congestion benefits in return. This problem can
be alleviated to some extent by intercepting the placement iterations only
after the global placement has stabilized to some extent, and increasing the
frequency of these interceptions as the placement converges.

The second potential risk with this approach involves the tradeoff between
runtime overhead due to the interceptions and the extent of perturbation
caused due to each interception, that may make convergence more difficult. If
successive interceptions are separated by too many iterations, the placement
may have changed sufficiently from the last interception so that a large number
of new cell moves or metric modifications are required, thus jeopardizing the
convergence of the placement. On the other hand, if the interceptions are too
close to each other (so that the total number of interceptions is large), their
total runtime overhead may be prohibitive. To some extent, this problem can
be ameliorated by using low overhead congestion models explicitly within the
placement process itself without requiring explicit interleaving with congestion
estimation and optimization modules (as described in Section 5.4), although
the challenge here is usually the accuracy of these congestion models and
fidelity of the fixes. Furthermore, even a significant runtime overhead is often
acceptable during placement if it leads to an easier routing problem (since
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the total design implementation time for complex, congested designs is often
dominated by the router).

5.3.1 Interleaved Placement and Global Routing

One of the earliest works to introduce the idea of interleaving the placement
with the routing was [SK89], using quadrisection-based placement. In this
approach, routing topologies are generated for all the newly cut nets after
each quadrisection of a design block; each topology spans the current set of
design blocks that contain one or more terminals for the corresponding net.
This allows the topology of a net to evolve hierarchically as the quadrisection
progresses, as depicted in Fig. 5.9, ending with a complete tree spanning
all the cells connected to that tree. More significantly, the specification of the
spanning trees for the nets at any stage in the quadrisection process influences
the subsequent placement decisions by embedding the tree edges into specific
cuts of the partition (thus tracking the actual routing resource utilization
along each cut, and avoiding a spurious routing resource penalty for a net on
cuts between adjacent blocks containing pins of that net but not connected
directly to each other, such as the blocks containing terminals a and c in the
figure).

a

a

b

c

d

d

{a, b, c, d}

{b, c}

Fig. 5.9. Interleaved partitioning-based placement and interconnect topology gen-
eration.
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However, the overall approach of [SK89] suffers from an inability to recover
from poor early choices in cell partitioning or tree topology generation, po-
tentially leading to poor layout because of inaccurate early estimates for the
metrics of interest (such as wirelength or timing). Furthermore, for the con-
gestion estimates to be consistent with the final routing, the interconnect trees
generated during the placement are not allowed to be subsequently rerouted
during the route completion phase. This can lead to severe problems in route
completion in congested designs (since the rip-up and reroute technique is
one of the most powerful route completion methods available to routers, and
preventing its use can destroy the effectiveness of a router). Thus, while fixing
the route topology for a small number of critical nets during early placement
can be an effective way of making them predictable (although not of making
the congestion estimates more accurate), doing so for a significant fraction of
nets often leads to an infeasible routing problem.

Partitioning-based Quadratic Placement

Recently, [PBS98] has presented a scheme to integrate global routing with
quadratic placement in order to make the resulting placement more routable.
Their scheme is incorporated into the Gordian quadratic placement algo-
rithm [KSJ+91] discussed in Section 5.1.1. The scheme proposed in [PBS98]
intercepts Gordian after each partitioning iteration to run a fast global router
to estimate the routing congestion within each partition, and then adjusts the
area of each partition accordingly, as outlined in Algorithm 11. The routing
congestion estimate considers both inter-partition routes computed using a
region router operating at the granularity of the partitions, as well as intra-
partition routes computed using a fast single trunk Steiner tree heuristic for
multipin nets and single bend (“L”) routes for two-pin nets. (Thus, in con-
trast to the inter-partition congestion that is computed using an actual router,
the intra-partition congestion is an approximation based on fast congestion-
oblivious topologies for the local nets). The total routing demand within a
partition is then compared against the routing resources available within that
partition in order to determine the expected congestion. This is then trans-
lated to a partition weight:

wj = 1 − 1
Δj

(sj − dj)

for each partition Pj , where sj , dj , and Δj are, respectively, the routing supply,
routing demand, and size of the partition along the dimension (i.e., x or y)
being optimized in the current iteration, expressed in terms of routing tracks.
This adjusts the weights of the partitions linearly around 1, with congested
partitions getting larger weights, and all weights being positive (since sj ≤ Δj

and dj ≥ 0). These weights are then embedded into a diagonal matrix G
whose entry gii equals the partition weight of the independent cell ci. If we
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let p′
I = GpI and substitute for pI in the expression for ΦI in Equation (5.4),

we find that ΦI is minimized by solving:

(G−1Z)T C(ZG−1)pI + d′
I = 0,

where,
d′

I
T = (Cp(0) + d)T G−1Z.

Just as with Gordian, this is guaranteed to be a positive definite system.
Solving for ΦI automatically scales the cell locations by their corresponding
partition weights, thus expanding congested regions and shrinking regions
with sparse routing. More specifically, if a region appears to be, say, vertically
congested (i.e., if it has an insufficient number of horizontal tracks), a vertical
expansion or horizontal compression is performed, causing some of the internal
horizontal nets to become vertical and thus relieving some of the vertical
congestion.

Algorithm 11 Congestion relief through routing interleaved with quadratic
placement
1: while placement not converged do
2: Carry out quadratic placement iteration
3: Estimate inter-partition routing using region-based router
4: for all partitions Pj in current partitioning level do
5: Compute congestion-oblivious internal routing demand for Pj using single

trunk Steiner heuristic for multipin nets
6: Estimate partition weight for Pj based on internal and external routing

demands and available routing resources within Pj

7: end for
8: Set up partition weight diagonal matrix G
9: Compute new system matrix (G−1Z)T C(ZG−1) and vector (Cp(0) +

d)T G−1Z
10: end while

While Gordian has been superceded by more sophisticated analyti-
cal placement based approaches such as KraftWerk [EJ98] or APlace

[NDS01,KW04], the underlying idea proposed in [PBS98] of intercepting the
iterations of the analytical placer periodically to estimate the routing conges-
tion and then spreading out the congested regions is still an effective way of
reducing routing congestion.

Multilevel Placement

Another recent example of interleaving placement and routing was presented
in [CCP+03] in the context of a V-shaped multilevel framework for global
placement. As shown in Fig. 5.10 and discussed in Section 5.1.3, this frame-
work first includes a coarsening phase in which node clustering is used to
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recursively build coarser levels until the netlist is small enough to be placed
efficiently. This initial placement is followed by a refinement phase in which
each coarse level placement is unclustered recursively to obtain a finer level
placement. This framework is independent of the choice of placement para-
digm used for the initial placement at the coarsest level or for the placement
refinement at each refinement level (although [CCP+03] presents data in the
context of an implementation called mPG that uses simulated annealing).
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Fig. 5.10. Outline of a congestion-aware multilevel global placement framework.

The multilevel framework is applied to the congestion-aware placement
in [CCP+03] by interleaving the placement with a very fast incremental global
router. This interleaving is carried out at a very fine granularity, namely, that
of each placement move within the simulated annealing engine. The routing is
performed using a congestion-aware two-bend (“LZ”) router for two-pin nets,
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along with a fast incremental Steiner arborescence tree (A-tree) generator for
multipin nets. Periodically, layer assigment of the nets is also carried out based
on their criticality, with critical nets being assigned to higher layers.

At the coarse levels of the multilevel framework, the cost function for the
placement is merely the sum of the bounding boxes of the nets, because of
the difficulty of estimating the congestion accurately at these coarse levels.
In contrast, at the more refined levels, this wirelength-based cost function is
replaced by a congestion-based cost function that is computed as the sum of
the squares of the wiring usages for all the routing bins in the design. This
cost function is equivalent to the weighted sum of the wirelengths for all the
nets, with the weight of a segment of a net lying in a given bin being the
wiring usage of that bin.

The discontinuity in the cost function arising while moving from one level
of the multilevel framework to the next, more refined level is minimized using
a “density bin hierarchy”, formed by recursively merging adjacent bins at a
given level in order to generate the bins at the next level (thus eliminating
grid boundary mismatch errors across different levels). Furthermore, a cluster
is moved into a bin only if the cell area overflow in each of its ancestor bins (at
coarser levels in the multilevel framework) does not exceed a given bound as a
result of the move. Therefore, an overflowing bin always implies the presence of
some less congested bin(s) in its neighborhood (due to the overflow constraint
on the common ancestor of these bins). As a result, a coarse placement can
be refined all the way to the finest level without significant area overflow.

The placement refinement scheme at each level of the refinement stage
explores a large number of placement moves within its simulated annealing
framework, and is therefore somewhat slow. It has been improved in [LXK+04]
by the use of a greedy cell relocation scheme that considers only a small
number of local moves for each cell, similar in spirit to that described in
Algorithm 8. Specifically, the nets are ordered in decreasing order of the sum
of their routing demands in congested cells. Then, for each net in this sorted
list taken in order, cell moves are evaluated for each of the cells connected to
that net. A cell move is evaluated by attempting to move the cell to every
other bin within a predetermined neighborhood of the current bin of that cell,
invoking the congestion-aware LZ-router to evaluate the move.

The multilevel approach described above relies on very fast incremental
routing to make its fine-grained interleaving feasible from a runtime perspec-
tive. While its ability to evaluate every placement move for its congestion
impact does allow for the maintenance of an accurate congestion map within
a given level, the placement decisions can still be locally suboptimal because
of the error arising from the coarsening and refinement process, and because
of the approximations inherent in the fast interconnect topology generation.
In general, although a fast router that has fidelity with the final routing is
desirable within any interconnect-aware placement algorithm, the evaluation
of each placement move using actual routing is usually not very cost-effective.
It is often better to use fast approximations of the routing to keep an ap-
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proximate congestion map, periodically restoring the accuracy of the map by
invoking a fast global router.

5.3.2 Interleaved Update of Control Parameters in
Congestion-aware Placement

Strictly speaking, this class of techniques consists of hybrids between the in-
terleaved schemes discussed in Section 5.3 and the explicit congestion manage-
ment schemes described in Section 5.4. Even congestion management schemes
that manage congestion within the placement engine can benefit from a pe-
riodic update of the congestion model during the placement process. Since
congestion is managed continuously within these schemes, their congestion
modeling and update is rather simplistic, in order to keep the runtime over-
head manageable. It is usually achieved through proxies such as white space
allocation or net weights. Therefore, the periodic invocation of an accurate
congestion evaluation engine is useful to update these proxies to bring them in
line with the actual congestion that they are trying to capture. Furthermore,
if this interleaved invocation of the congestion evaluation engine is not too
frequent, the runtime overhead is also not excessive. Examples of this class
of techniques include white space management techniques such as [HYH+01]
and [BR03], and are discussed in more detail in Section 5.4.

5.4 Explicit Congestion Management within
Placement

The congestion management techniques discussed within this section attempt
to model and ameliorate congestion continuously during (all or part of) the
global placement process. This is achieved either by presenting a slightly mod-
ified, congestion-friendly placement problem to a standard global placer, as
with inflated cells or the addition of free cells, or by incorporating a fast con-
gestion estimate into the objective function that is optimized by the placer.
In order to avoid excessive overheads due to the accurate and continuous
estimation of congestion in the design, these schemes model and manipulate
congestion indirectly through fast proxies such as white space distribution, pin
density balance constraints, or net weights. Consequently, while they are effec-
tive at improving the overall congestion profile of a design, they cannot ensure
that the layout generated by them is entirely congestion-free. As a result, these
techniques can benefit from the application of some post-processing scheme
for congestion mitigation (as in [HYH+01]), or from the interleaved invoca-
tion of a more accurate and compute-intensive congestion estimation engine
that is then used to update the congestion proxies used by these schemes (as
in [HYH+01] and [BR03]).
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5.4.1 Cell Inflation

Approaches based on cell inflation, also known as cell bloating or padding, have
been used extensively for congestion relief in industrial placement engines.
They rely on the observation that much of the congestion problems within
a design are local and arise from difficulties in pin accessibility for the cells
lying in the congested region. In other words, the congestion impact of wires
having pins in a congested region is usually far more significant than that
of flyover wires that are merely routed over that region. This is because the
via stacks required by the local wires in order to reach their pins can create
significant blockages to routing. Furthermore, unlike local wires, flyover wires
can be rerouted through less congested regions. Consequently, reducing the
local pin density in a congested region can be an effective way of improving
its routability. Cell inflation approaches achieve this by artificially increasing
the “virtual” size of the cells in congested regions, so that fewer of those
cells can be placed there, resulting in a lower pin density (as depicted in
Figures 5.11 and 5.12). While similar techniques have been used by designers
for quite a while, they were first proposed in design automation literature
in [SST+97], albeit in the context of metal programmable gate arrays. They
were subsequently independently presented for standard cell based designs
in [HYH+01] and [BR03].

The work in [SST+97] proposed cell inflation for congestion relief within
a simulated annealing framework. A valuable insight in this work is the use
of a supra-linear, monotonically increasing function of the congestion as the
objective function for the placement improvement. In particular, they select
(max{0, c})2, where c is the difference between the routing demand and sup-
ply in any given region expressed in terms of routing tracks per unit area,
as the basis for their objective function. Another contribution is the deriva-
tion of a first-order expression to determine the congestion impact of a cell
move involving padded cells (using a blockage-aware net bounding box model
derived from [Che94]), although some of the underlying assumptions about
the uniform distribution of blockages are rather simplistic. This model allows
them to determine the extent of padding required for each cell. In contrast, the
subsequent cell inflation works, [HYH+01] and [BR03], rely on more empirical
schemes to determine the extent of inflation required for each cell.

The work in [HYH+01] embeds cell inflation into a Gordian-like [KSJ+91,
YHQ+98] partitioning-based quadratic placement algorithm (although the
center of gravity constraints described in Equation (5.3) are solved using La-
grangian relaxation rather than by reducing the rank of the system matrix
by embedding them directly as in [KSJ+91]). In order to estimate the con-
gestion, multipin nets are decomposed into two-pin Steiner segments using
a star model, with each of the two single bend (“L”) routes for a two-pin
net or Steiner segment being considered equally likely (with some adjustment
for overlapping Steiner segments belonging to the same net). The routing
demand thus computed is then compared against the routing supply (after
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Cell Inflation

Cell Spreading

Fig. 5.11. Cell inflation in the context of global placement.

compensating for routing blockages) in order to determine the congestion in
each partition. This congestion estimation is carried out for the first time at
the end of the partitioning iterations during the first pass of global place-
ment. Then, the cells in congested partitions are empirically inflated, and the
quadratic placement is repeated for the previous k iterations of the parti-
tioning using the inflated cell sizes (The implementation in [HYH+01] used
k = 6). The redoing of a few partitioning iterations with inflated cell sizes
in congested partitions tends to move cells out of these partitions and into
sparsely populated partitions, even as it optimizes the global objective of the
wirelength while obeying the cell spreading (i.e., center of gravity) constraints.
This process of cell inflation in congested partitions followed by the redoing
of the previous k iterations of the partitioning of the quadratic placement is
repeated a few times, until the congestion problem is solved (or a limit on the
number of repetitions is reached).
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Fig. 5.12. Cell inflation within a row in the context of detailed placement.

The cell inflation phase in [HYH+01] is followed by a post-processing phase
of greedy congestion optimization during which a series of ripple moves relo-
cates cells from congested partitions to sparse ones. A straight line trajectory
is drawn from the most congested global placement bin to the least con-
gested one, and cells are moved greedily to adjacent bins along the direction
of this trajectory starting from the most congested bin. This process of draw-
ing straight line trajectories and moving cells along them is repeated a few
times before the final legalization is invoked. This entire congestion-driven
placement approach is summarized in Algorithm 12.

The work in [BR03] uses cell inflation in the context of the quadrisectioning-
based quadratic placement algorithm BonnPlace [Vyg97]. It presents a de-
tailed empirical scheme to determine the extent of inflation required for each
cell. At any stage of the placement, the congestion due to the inter-partition
nets is estimated by constructing Steiner topologies for them, and then spread-
ing each two-pin net or Steiner segment probabilistically over all possible two-
bend (“LZ”) routes, while that due to the intra-partition nets is approximated
by the pin density of the cells within that partition.

Let the inflated size of cell c be (1+ b(c))s(c), where s(c) is the actual size
of the cell, and b(c) ≥ 0. For any partition P with size s(P ), the total inflated
size of the cells within P (i.e.,

∑
c∈P (1+b(c))s(c)) is upper-bounded by s(P ).

For any cell c, the initial value of b(c) is proportional to the pin density of
that cell (i.e., the number of pins in c divided by its area s(c)). These values
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Algorithm 12 Congestion-driven placement based on cell inflation as in
[HYH+01]
1: while further slicing partitioning desired do
2: Carry out quadratic placement iteration
3: end while
4: Estimate congestion in each global placement bin
5: while congestion still present and bound on cell inflation iterations not exceeded

do
6: Inflate cells in congested partitions
7: Redo the last k iterations of slicing partitioning for quadratic placement using

inflated cell sizes
8: Estimate congestion in each global placement bin
9: end while

10: if congestion still present then
11: while congestion still present and bound on greedy post-processing iterations

not exceeded do
12: Ripple-move cells along trajectory from most congested bin to least con-

gested bin
13: Estimate congestion in each global placement bin
14: end while
15: end if
16: Legalize placement

are normalized so that, over the entire design,
∑

c b(c) · s(c) = τ
4

∑
c s(c),

where τ is an input parameter controlling the extent of the inflation. In other
words, the total combined budget for the initial inflation of all the cells in
the design is obtained using a factor of τ/4. (The implementation in [BR03]
uses τ = 0.2). As the placement proceeds, the value of b(c) for each cell
c is updated depending on the local congestion of the partition containing
that cell. For each of the four bounding edges of the partition containing c
that is congested, b(c) is increased by min{1, 2(χ(e) − 1)} · τ

5 , where χ(e) is
the normalized congestion of the bounding edge e, defined as the ratio of its
expected demand to its capacity. This can lead to a maximum increase in b(c)
of 4τ/5 (if the congestion of each edge is at least 1.5). The remaining potential
increase of τ/5 in b(c) is determined by the pin density of the partition. More
specifically, if the pin density of the partition is greater than some threshold,
the value of b(c) is increased by a quantity proportional to the pin density and
upper bounded by τ/5. On the other hand, if each of the four bounding edges
for the partition containing the cell c show no congestion problems and the
pin density of the partition lies below the selected threshold, b(c) is reduced
by a quantity proportional to the pin density and congestion that is again
upper-bounded by τ . Observe that the values b(c) for all the cells within a
partition increase or decrease by the same amount.

In contrast to [HYH+01] that uses inflated cell sizes by redoing the last
few partitioning iterations of the quadratic placement using the inflated sizes,
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Algorithm 13 Congestion-driven placement based on cell inflation within
the BonnPlace framework
1: for all cells c in design do
2: Set b(c) proportional to pin density of c
3: end for
4: while further quadrisectioning desired do
5: Carry out quadratic placement iteration
6: for all 2 × 2 windows W of adjacent partitions in design do
7: Quadrisection W using wirelength cost function and inflated cell sizes
8: Compute congestion on each partition boundary within W
9: Compute pin density for each partition within W

10: for all cells c lying inside partitions within W do
11: Update b(c) based on partition congestion and pin density
12: end for
13: Redo quadrisectioning of W using wirelength cost function and updated

inflated cell sizes
14: end for
15: Sort all 2 × 2 windows of adjacent partitions in design by difference between

maximum and average partition congestion
16: for all 2 × 2 windows W of adjacent partitions in design, taken in sorted

order, do
17: Locally repartition W using weighted sum of wirelength and maximum

congestion within W as cost function
18: if local repartitioning accepted then
19: Update sorting key of all windows intersecting with W and reorder sorted

list of windows
20: end if
21: end for
22: end while
23: Legalize placement

the approach in [BR03] does not redo any of the prior global placement itera-
tions. Instead, it uses the inflated cell sizes in a local repartitioning step that
moves cells out of dense partitions (as measured using the inflated cell sizes)
and into adjacent partitions that are sparse. This step fits naturally into the
BonnPlace framework, since that algorithm also uses a repartitioning step
over all 2 × 2 windows in the design after each quadrisectioning iteration, for
local improvements to the placement. In the congestion-aware version, this
repartitioning step is also used to sort all the 2 × 2 windows that contain at
least one congested partition, in descending order of the difference between
the maximum and average congestions within the window (since a large value
of this sorting key implies a locally congested partition with sparse adjacent
partitions, so that the local congestion can be eased without large cell move-
ments). The objective function for the repartitioning is a weighted sum of
the wirelength and the maximum congestion within the window. Every time
a repartitioning of a window is accepted, the sorting keys for all the win-
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dows containing any of the updated partitions are also updated. This entire
congestion-driven placement approach is summarized in Algorithm 13.

5.4.2 White Space Management Techniques

As we have seen earlier in Section 5.2.3, the intelligent allocation of white
space in a design can improve its routability significantly. The techniques in
Section 5.2.3 focused on white space manipulations after the global placement
had been completed. In contrast, the white space management techniques de-
scribed here manage the white space continuously throughout (all or part of)
the global placement process. Although these techniques are quite effective at
mitigating congestion problems, they suffer from the same drawbacks as cell
inflation techniques, in that they ignore non-local flyover wires and use cell
density as a proxy for routability. Furthermore, they do not monitor the rout-
ing congestion continuously, and can therefore benefit from the subsequent ap-
plication of some post-processing scheme for congestion mitigation. Although
the cell inflation schemes described in Section 5.4.1 can also be thought of as
white space management schemes operating concurrently with global place-
ment, the techniques discussed in this section operate upon white space as an
entity by itself, without associating it with individual cells. In other words,
these schemes determine how much white space should be allocated to a given
region in a top-down fashion, rather than building up the white space profile
cell by cell in a bottom-up manner (as was the case with the techniques dis-
cussed in Section 5.4.1). Furthermore, the management of white space in these
techniques is explicit, in contrast to the interleaved quadratic placement and
routing scheme of [PBS98] discussed earlier in Section 5.3.1 that manipulates
the white space implicitly when it adjusts the partition sizes in response to
their congestion.

Some of the early white space allocation work concurrent with global place-
ment [CKM03] was carried out in the context of the widely used academic
placer Capo [CKM00], discussed in Section 5.1.2, that is based on the recur-
sive bisectioning paradigm using Fiduccia-Mattheyses style move heuristics
for min-cut hypergraph partitioning. While routability is not the sole focus of
this work, it provides a theoretical basis for the management of white space
in recursive partitioning based placers. For a given region, Capo uses hori-
zontal or vertical cuts depending on the aspect ratio of the region (with the
cut being made to partition its longest side). Vertical cuts are made with a
fixed relative tolerance τ (i.e., the difference between the upper and lower
bounds on the cell areas in a child subregion, divided by the total cell area
within the parent region), with the cut line being shifted after the partitioning
(when the total cell area in each partition is available) in order to equalize the
relative white space in each subregion. In contrast, since a horizontal cut line
cannot be arbitrarily shifted due to the fixed height row-based structure of
designs, horizontal cuts use a hierarchical white space allocation scheme that
is described next.
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The core concept in this work is that of white space deterioration during a
partitioning cut. Let a region with site area S and cell area C be partitioned
by a horizontal cut into two subregions with site areas S0 and S1 and core
areas C0 and C1, respectively (where S = S0 + S1 and C = C0 + C1). Then,
the absolute white space W of the parent region is given by max{0, S − C},
and its relative white space w is given by W/S.The absolute and relative
white spaces of the two child subregions (i.e., W0, W1, w0 and w1) are defined
in a similar manner. Then, this partition is said to involve a white space
deterioration of α (with 0 ≤ α ≤ 1) if both w0 ≥ αw and w1 ≥ αw. In other
words, each of the subregions must have a relative white space of at least
αw. The closer α is to 1, the more uniform is the distribution of white space
in the design. If the permissible white space deterioration is too tight (i.e.,
close to 1), it may not allow the partitioner to find any legal solutions, or may
result in poor optimization of the wirelength because of severe restriction of
the solution space (since moves of large cells may violate the local white space
deterioration constraints). On the other hand, if the permissible white space
deterioration is large, some partitions can end up with very little white space
leading to severe local congestion problems.

The concept of white space deterioration is closely tied to the balance
tolerances that the partitioner must respect. If Cmax

i and Cmin
i (i = 0, 1) are

the upper and lower bounds on the cell area Ci of the two child subregions
that the partitioner must obey, it can be shown that:

Cmax
i = min{C, (1 − α)Si + α

C

S
Si},

and,
Cmin

i = max{0, C − Cmax
1−i },

where i = 0, 1. Furthermore, the white space deterioration can be expressed
in closed form in terms of the relative white space w in a block with R rows
as:

α =
n+1
√

1 − w − (1 − w)
w n+1

√
1 − w

,

where n = �lg2 R�. Thus, the permissible white space deterioration increases
as the partitioner descends to lower levels (i.e., the number of rows in the block
being partitioned decreases). Coupled with the cut line shifting for vertical
cuts, this approach finds improved cut sizes while facilitating good use of
white space when it is scarce, and spreading it uniformly when it is abundant,
as compared to the case when the partitioning tolerance is constant across all
levels. As a corollary, this usually leads to routability improvements also.

We have seen in Section 5.2.3 that the intelligent manipulation of white
space can improve the routability of a design considerably. For placers such as
Capo that tend to distribute white space uniformly, some of these routabil-
ity improvements can be achieved by the introduction of a small number of
free cells, as proposed in [AML06]. Free cells are small, disconnected cells
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added to a design before placement and removed from it before the rout-
ing. They allow the placer to improve the wirelength of the placement by
increasing the “virtual tolerance” in the deviations from uniform white space
allocation. Free cells are even more effective in improving placement quality
without impacting routability when used with a congestion-driven placer such
as Dragon [YCS03]. However, if the free cells use up too large a fraction of
the available white space, they can constrain the placer excessively and lead
to unroutable layouts.

In general, white space allocation techniques used concurrently with the
global placement can improve the routability of the design. However, because
of the inaccurate congestion estimation available early in the global placement
phase, the routability impact of techniques that choose the control parameters
for their white space allocation strategy very early during placement is limited.
A natural research avenue would be to investigate concurrent global placement
and white space allocation techniques that dynamically adapt their white
space allocation strategy as the global placement proceeds. Such techniques
are expected to combine the large search space available to the white space
allocation techniques discussed above with the effectiveness of the techniques
discussed in Section 5.2.3.

5.4.3 Congestion-aware Objective Function or
Concurrent Constraints

Several techniques try to model some fast, dynamically updated proxy for the
congestion as part of the objective function that the global placement process
seeks to optimize, or as part of the set of constraints that the placer must obey.
Indeed, some of these techniques form a continuum of hybrids with interleaved
schemes (as discussed in Section 5.3) that update the dynamically modeled
proxies periodically with some more accurate and compute-intensive conges-
tion estimation engine. Thus, for instance, the interleaved quadratic place-
ment and routing scheme of [PBS98] models congestion into the net weights
(and thus, indirectly into the objective function which is the weighted sum
of the quadratic netlengths)3. In contrast, the multilevel placement scheme
of [CCP+03] models congestion as part of the objective function for simu-
lated annealing when operating in the congestion-driven mode (i.e., at the
finer levels of refinement).

There were several early efforts to model congestion continuously into the
placement process. For instance, [ML90] used a lookup table of precomputed
Steiner trees to quickly determine the congestion cost of each cell move within
a partitioning-based placer, thus constraining the set of feasible cell moves.
Within a preprocessing step, one or more “good” Steiner trees were computed

3 The modeling of the congestion using net weights is also used within the Sparse

[HM02] scheme discussed in Section 5.2.2, although this is done as a post-
processing step after global placement.
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for every possible distribution of the pins of a net across the partitions of some
given level of partitioning. However, this approach is not scalable because of
two reasons. Firstly, precomputed Steiner trees cannot be modified dynam-
ically in response to varying congestion profiles or performance constraints.
Secondly, because of its exhaustive nature, the size of the lookup table quickly
becomes prohibitive (the work in [ML90] restricts the total number of par-
titions in the design to sixteen – a granularity that is excessively coarse for
today’s typical flat placement problems that often involve more than 106 cells).
Another early yet influential work [Che94] introduced the Risa blockage-aware
net bounding box model4 for quick congestion computation in order to embed
it into the objective function of a simulated annealing based placer.

Congestion Control using a Temporary Constraint Relaxation
Framework

Another approach to handling congestion was presented in [ZD02] as part of
the Spade [ZD00] partitioning-based placement framework for systematic con-
straint optimization. In this work, different placement objectives are modeled
as different classes of constraints, whose temporary relaxation is permitted in
the intermediate global placement stages, as long as these violations can be
eliminated in the final placement solution. This intermediate relaxation of the
constraints is very effective at helping the placer escape from local minima in
the search space.

Constraints are classified into balance constraints and non-balance con-
straints, where balance constraints require the ratios of the metric values
modeled by the constraints for the two subpartitions created by the partition-
ing cut to lie within a small range. Thus, for instance, a balance constraint
on the sum of the cell sizes within the two partitions could require that these
sums be approximately equal (with the approximate equality being specified
formally as a set of tolerances). Formally, if the metric values for the con-
straint of interest are V , V0, and V1 for the original partition and the two
subpartitions, respectively, a balance constraint could require that:

V0/V ≤ r + t0,

and,
V1/V ≤ 1 − r + t1,

where r : (1− r) is the specified ratio between the values of the metric across
the two partitions, and t0 and t1 are the permissible tolerances for these values
with which the constraint must be satisfied.
4 An important contribution of this work, discussed in more detail in Section 2.1.1

in Chapter 2, was the empirical evaluation of the factor by which the actual
wirelength of a multipin net could be expected to exceed its simple half-rectangle
perimeter bounding box prediction. This factor grew slowly from 1.0 for two or
three pin nets to 2.7933 for fifty pin nets.
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Different classes of constraints are combined together using normalized cell
constraint weights or c-weights. Each cell has a vector of c-weights whose ith

element represents the change in the normalized metric values of the ith con-
straint as a result of a move of that cell across the current partitioning cut. A
temporary constraint relaxation is permitted only if (i) a legal solution can be
reached within a given number of steps even after the proposed violation, and
(ii) the best cost solution achievable without the violation is more expensive
than the best cost legal solution reachable after the relaxation. Furthermore,
in the context of multiple constraints, a new constraint violation is permitted
only if it does not worsen the currently relaxed constraint that is deemed most
critical (on the basis of the c-weights, although comparing the normalized im-
pact of different classes of constraints can be difficult). The work in [ZD02]
presents a mathematical framework for checking these conditions in order to
decide when a constraint relaxation can be permitted.

Cut

Nets: {a, b, c, d, e, f, g, h}

Nets: {a, b, c} Nets: {d, e, f, g, h}

Pins: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Pins: {1, 2, 3, 4}
Pins: {5, 6, 7, 8, 9, 10}

Fig. 5.13. Modeling congestion through balance constraints on pin density and
external net density.
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Congestion is modeled using two sets of balance constraints across each
partitioning cut, namely, pin density constraints and parallel external net con-
straints, as depicted in Fig. 5.13. The external nets are nets that do not cross
the cut, and include the flyover nets over the region. Their recursive alloca-
tion to one of the two newly created partitions at each partitioning cut is
equivalent to global route planning. Handling the external net balance con-
straint requires keeping track of the crossing points of all the nets across the
cuts, in a manner somewhat similar to the hierarchical net topology genera-
tion approach proposed in [SK89] (except that situations in which no single
net topology is clearly the best do not require premature commitment to a
single topology; instead, choice is preserved by assigning probabilities to each
of the topology options, with the congestion being computed by weighting
each of these options with their probabilities). The recursive balancing of the
structural pin densities and the external net densities across all the partitions
helps avoid local congestion hot spots.

5.5 Final Remarks

In this chapter, we have looked at a wide class of techniques for conges-
tion relief during placement. Placement is indeed the workhorse of congestion
mitigation in today’s industrial physical synthesis flows. While congestion is
almost never the primary metric driving placement, the placement phase still
remains the most effective stage during design implementation for improving
routability. Most of the congestion relief techniques in commercial use today
fall into the classes of post-processing techniques or interleaved techniques,
although cell inflation has also proven quite effective at relieving pin accessi-
bility problems in local congestion hot spots.

Many of the techniques described in this chapter were presented as case
studies in the contexts of the placement algorithms within which they have
been implemented. However, these techniques are often independent of their
specific implementation and can be easily adapted to other placement para-
digms also. Thus, for instance, the row-based white space allocation used in
Dragon is equally applicable to global placements produced by analytical
placers, while the region size adjustment scheme based on interleaved routing
and quadratic placement described in [PBS98] can be used for partition size
adjustment in partitioning-based placers also.

While much work has already been done in post-processing and interleaved
congestion mitigation schemes, there is still need for further research in the
area of congestion relief that operates concurrently with global placement
using fast, accurate congestion proxies, periodically updated in an interleaved
fashion, that are part of the objective function. A promising direction in this
context is the recent work on white space allocation; further exploration of
this area is likely to yield promising results on achieving enhanced routability
without degrading the primary placement metrics significantly.
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6

CONGESTION OPTIMIZATION DURING
TECHNOLOGY MAPPING AND LOGIC
SYNTHESIS

In Chapters 4 and 5, we have observed how the many theoretical and practical
advances in congestion alleviation during the layout stages form the basis for
congestion-awareness in modern physical synthesis flows. However, the con-
gestion problem in many of today’s design blocks is severe enough that these
congestion alleviation techniques do not suffice, resulting in several congested
blocks requiring multiple synthesis and layout iterations before their routabil-
ity problems can be resolved. Often, the problem can be traced back to the
synthesized netlists being suboptimal from the point of view of congestion.

As the example discussed in Section 3.1 of Chapter 3 demonstrated, syn-
thesis choices that are area- or delay-optimal may not be optimal from the
point of view of congestion, and may even lead to unroutable circuits. The
logic synthesis1 and technology mapping stages offer degrees of freedom that
are not available during layout. More specifically, unlike the layout stages
where the set of wires in the netlist is fixed, these stages can absorb wires
within logic gates or split logic functions into smaller gates, and can therefore
potentially have a large impact on the post-routing congestion. Consequently,
it is useful to perform congestion optimization during these stages also.

However, it is more difficult to predict the congestion impact of an opti-
mization choice during these stages than during placement, as was discussed in
Chapter 3. Although the metrics used for congestion estimation during tech-
nology mapping and logic synthesis are in general not as accurate as the ones
used during placement, there has still been much promising work in the de-
velopment of netlist transformations that can provide downstream routability
benefits using these metrics. This chapter reviews several such optimization
techniques.

A typical synthesis flow begins with a register transfer level (RTL) de-
scription of the logic that is to be implemented, which is then translated

1 As mentioned in Chapter 3, we will continue to use the term “logic synthesis” for
the technology-independent logic synthesis stage, and refer to technology mapping
explicitly when needed.
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into a Boolean network. Various sequential optimizations, such as retiming
and state encoding, are performed on the Boolean network. To the best of our
knowledge, no results published to date have targeted congestion during these
sequential optimizations, primarily because it is difficult to estimate routing
congestion at such a high level of design abstraction. The sequential transfor-
mations are followed by a set of combinational optimizations; these include
the application of multilevel logic synthesis operations such as substitution
and the extraction of common subexpressions. Recent research has focused on
making these transformations “congestion-aware” by modifying the underly-
ing cost functions to incorporate some appropriate congestion metric. These
transformations are followed by the technology decomposition step which con-
verts a given Boolean network into the subject graph, which is a network of
primitive gates such as two-input NANDs and inverters. Traditionally, this de-
composition has aimed at optimizing the delay or the area, and we will discuss
its extension to consider congestion as well, since the quality of the subject
graph affects that of the mapping solution. Finally2, the subject graph is im-
plemented as a netlist that uses only the cells available in some given library,
during the technology mapping stage.

Although optimizations at the more abstract levels in the design flow can
have greater impact than those applied later in the flow, the fidelity and ac-
curacy of the metrics driving these optimizations decreases as the abstraction
level of the design increases. This makes it harder to control optimizations
applied early in the design flow to achieve the desired end result. Although
technology mapping occurs after the logic synthesis stage in the design flow,
we will first focus on congestion-aware technology mapping, in Section 6.2,
and then study congestion alleviation during decomposition followed by the
enhancement of other logic synthesis techniques to improve routability, in Sec-
tion 6.4. In this way, we will continue our trend of discussing the congestion
optimization techniques applicable at a given design stage in order of increas-
ing design abstraction. This ordering is motivated by the sequence in which
these techniques have been adopted in practice. Furthermore, designers prefer
to fix congestion problems at the lowest level of abstraction possible, in order
to minimize the design perturbation.

6.1 Overview of Classical Technology Mapping

The technology mapping problem aimed at minimizing area is known to be
NP-hard for general graphs, but can be solved optimally in polynomial time
for special structures such as trees [Keu87, DeM94]. Most technology map-
ping algorithms such as [Keu87, CP95, SSL+92, KBS98, SIS99] use dynamic

2 An exception to the usual approach of having separate technology decomposition
and mapping steps is the work in [LWG+97], which explores the space of the
algebraic decompositions and technology mapping simultaneously.
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programming to optimize some given cost function, which has traditionally
been area, delay, power, or some linear combination of these metrics. These al-
gorithms proceed in two phases: matching and covering. During the matching
process, non-inferior choices for the mapped cells are stored at all the nodes
in a topological traversal of the circuit, whereas the covering phase proceeds
backwards in a reverse topological manner starting from the primary outputs
and selecting the best choice among the matches stored at each node.

The matching process can be explained using the example shown in
Fig. 6.1. The network shown in the figure represents an implementation of
the Boolean function defg. There are five nodes in the network, namely, N1,
N2, N3, N4, and N5. Each node represents a Boolean function computed on
its inputs. For instance, N2 denotes fg, whereas N4 represents N2. Let us
assume that the library contains only an inverter, a two-input NAND cell,
and a four-input NAND cell. The figure shows all the matches for every node
in the network. Thus, there is only one match at node N4, which is that of
an inverter3, whereas there are two matches at nodes N5 (namely, a two-
input NAND cell and a four-input NAND cell). The matches at a given node
are obtained by performing pattern matching between the subgraph rooted
at the node and the patterns corresponding to cells in the library. The pat-
tern matching can be performed either by graph isomorphism or using binary
decision diagrams (BDDs) [DeM94].
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Fig. 6.1. The matching phase in technology mapping.

6.1.1 Mapping for Area

For the optimization of a relatively simple cost function such as the cell area,
it suffices to store only the minimum area match at each node. The cell area
3 We ignore the trivial match of a NAND cell with all its inputs tied together, since

such a match is usually inferior to the inverter.
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A(Mi,Nj ) of the mapping solution due to a match Mi at a node Nj is simply
the sum of the area A(Mi) of the match (which is available from the library)
and the sum of the areas of the optimal mapping solutions at the fanins of
the match, and can be expressed as:

A(Mi,Nj ) = A(Mi) +
∑

f∈fanin(Mi)

A(f). (6.1)

The optimal mapping solution at a node Nj (with area denoted by, say, A(Nj))
is the minimum area solution among all the matches at the node, and is given
by:

A(Nj) = min
Mi:match at Nj

{A(Mi,Nj )}.

Since the matching proceeds in topological order, note that the areas of
the optimal mapping solutions at the fanins of the potential matches at a node
are already known when these matches are being evaluated. For instance, the
area of the optimal mapping solution at N1 in the example depicted in Fig. 6.1
is available before the mapping solutions at N3 are evaluated. For the sake of
illustration, let us assume that the areas of the inverter, the two-input NAND
cell, and the four-input NAND cell are one, two, and four units, respectively.
Then, the area A(N1) of the mapping solution at N1, obtained using the
match of a two-input NAND cell, is two units. As a result, the area of the
best solution at N3 is A(N1)+A(Minv) = 2+1, i.e., three units (where Minv

is the inverter matching at N3). There are two matches at N5, namely, M1

and M2, resulting in an area of eight and four units, respectively. Therefore,
only match M2 is stored as the area-optimal match at node N5.

6.1.2 Mapping for Delay

In contrast to simple cost functions like area, technology mapping for the
optimization of more complicated cost functions such as delay may require
multiple matches at each node during the matching phase. Delay-driven tech-
nology mapping typically uses either load-dependent or gain-based delay mod-
els. In the case of the load-dependent delay model, the area of a library cell
is considered fixed, whereas its delay varies with the load that it is driving4.
In contrast, under the gain-based delay model, the delay through the cell is
considered constant across a specified range of loads, as it is assumed that the
cell will be sized to meet this constant delay.

4 Although the delay through a cell depends on the slews of the inputs to the cell
as well as on the load being driven by the cell, the delay models used at the
technology mapping level often ignore the input slews for the sake of efficiency.
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Load-dependent Delay Models

Figure 6.2(a) shows typical load-delay curves specifying the load-dependent
delay models for the inverter, two-input NAND, and four-input NAND cells
used for the example in Fig. 6.1. The intercept on the delay axis shows the
intrinsic delay of the corresponding cell. Thus, for example, the intrinsic delay
of the inverter is one unit, whereas that of the two-input NAND cell is two
units. The slope of the curve is proportional to the effective driving resistance
of the cell; in our example, this slope is one, two, and four units for the inverter,
the two-input NAND cell, and the four-input NAND cell, respectively.
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Fig. 6.2. Computation of load-delay curves: (a) Typical load-delay curves for the
inverter, NAND2, and NAND4 cells. (b) The load-delay curve denoting the mapping
solution due to the match at node N3. (c) The load-delay curve representing solutions
due to non-inferior delay matches for solutions at N5.

The delay D(Mi,Nj , CL) of the mapping solution due to a match Mi at a
node Nj when driving a load CL is simply the sum of the delay D(Mi, CL)
of the match when driving CL and the maximum of the delays of the optimal
mapping solutions at the fanins of the match when driving the match, and
can be expressed as:

D(Mi,Nj , CL) = D(Mi, CL) + max
f∈fanin(Mi)

{D(f, Cg(Mi))}, (6.2)

where Cg(Mi) is the gate capacitance of the cell corresponding to the match
Mi. The best mapping solution (with delay D(Nj , CL)) at a node Nj when
driving a load CL is merely the best choice among all the mapping solutions
due to the matches available at that node. More precisely,

D(Nj , CL) = min
Mi:match at Nj

{D(Mi,Nj , CL)}.

In general, the load driven by a node consists of the gate capacitance of
the receiver(s) being driven by the node, and the capacitance of the wiring
required to connect to the receiver(s). Although this load is unknown dur-
ing the matching phase, it is available during the covering phase (since the
matches are selected in the reverse topological order while being covered). At
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that time, it can be computed using either a wire-load model or based on the
locations of the receiver(s). Therefore, the match that yields the minimum
delay can be chosen during the covering phase.

The computation of the load-delay curves for the mapping solutions at N3

and N5 is shown in Fig. 6.2(b) and (c), respectively. For the sake of simplicity,
we assume that the gate capacitances Cg of the three cells in the library are
proportional to their areas, and that the capacitances of the wires connecting
them are insignificant. There is only one match (namely, an inverter) at node
N3. So, the best delay D(N3, CL) at this node (which is due to the unique
mapping solution whose delay is denoted by D(Minv,N3 , CL)) when driving a
load CL is given by:

D(N3, CL) = D(Minv,N3 , CL)
= D(Minv, CL) + D(MNAND2,N1 , Cg(Minv))
= (1 + 1 × CL) + (2 + 2 × 1)
= 5 + CL,

as shown in the figure. Similarly, the delay D(N5, CL) of the best mapping
solutions at node N5 when driving a load CL is given by the piecewise linear
curve obtained by combining the delay curves for the mapping solutions due
to the matches M1 and M2, and is given by the following equation:

D(N5, CL) =
{

4 + 4 × CL, 0 ≤ CL ≤ 2.5,
9 + 2 × CL, 2.5 < CL < ∞.

The above equation indicates that the mapping solution due to M2 using the
four-input NAND cell is optimal for loads of up to 2.5 units, whereas the one
due to M1 (that uses the two-input NAND cell instead) is optimal for loads
greater than 2.5 units.

An implementation of a technology mapper based on the piecewise linear
curve propagation discussed above is part of the publicly available sequential
circuit synthesis package Sis [SSL+92].

Gain-based Delay Models

Using the gain-based delay model, the delay D of a cell is given by the following
equation [SSH99]:

D = g × h + p, (6.3)

where g is the so-called logical gain (also referred to merely as the gain) of
the cell, h is the so-called electrical effort, and p is the parasitic delay due
to capacitances internal to the cell. The gain of a cell is determined by the
topology of the transistor network within the cell. For a given cell, g and p
are constants, whereas h is given by:
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h = CL/Cg, (6.4)

where CL is the capacitive load driven by the cell and Cg is the gate capaci-
tance of the cell itself. If we fix h, then it implies that the cell will be sized to
the value Cg = CL/h such that the delay through the cell will theoretically
remain constant for all loads. The covering phase assigns a size to a matched
cell using Equation (6.4) when the load driven by the cell is known. The use
of gain-based delay models improves the runtime and memory complexity of
technology mapping with large libraries that include multiple sizes for each
cell (since multiple solutions corresponding to different sizes of the same cell
do not need to be stored separately).

In practice, each cell type still has some maximum size in the library,
which limits the load that can be driven by the cell. Therefore, the matching
phase of a technology mapping algorithm that uses gain-based delay models
may store a “delay vs. maximum load” curve [HWM03] at each node. These
delay models are also better suited for delay-driven DAG mapping than load-
dependent models, as discussed in the next section. More details on technology
mapping with gain-based delay models can be found in [SIS99,HWM03,KS04].

6.1.3 Tree and DAG Mapping

In general, a Boolean network or subject graph is a directed acyclic graph
(DAG). In this DAG, the primary inputs (outputs) have only outgoing (in-
coming) edges, whereas intermediate nodes are allowed to have both types
of edges (representing the fanins and fanouts from the nodes). Technology
mapping algorithms that operate on such a graph can be classified into tree
mapping and DAG mapping algorithms, depending on whether they permit a
match to subsume a multifanout point of the graph.

Tree mapping prohibits mapping across these multifanout points, and pro-
ceeds by first decomposing the DAG into trees. Each multifanout point is set
to be the root of a tree, and matching and covering are performed separately
on each of the trees. These decomposed trees are also called fanout-free re-
gions, since all non-root nodes in the trees have a fanout of one. The creation
of buffer trees may be required at the multifanout points in order to meet
the load constraints at their drivers; if so, this fanout optimization is usually
carried out during the covering phase or after the technology mapping.

Either of the load-dependent or the gain-based delay models can be used
with tree mapping for delay optimization. However, for area optimization un-
der delay constraints, it is usually more convenient to use the load-dependent
delay model. In this case, the matching phase stores the delay-optimal choices
using a piecewise linear curve and also associates the area with each of the
stored solutions. Then, during the covering, the minimum area choices from
among those that satisfy the delay constraints can be chosen at the primary
outputs and propagated backwards. In contrast, area optimization under de-
lay constraints is relatively difficult when used with gain-based delay mod-
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els, although heuristics such as the global gain can be used for this pur-
pose [HWM03].
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Fig. 6.3. (a) Matches across multifanout points in DAG mapping that can poten-
tially result in logic replication. (b) Tree mapping does not allow any matches across
multifanout points.

One of the disadvantages of tree mapping is that it introduces subop-
timality by prohibiting choices across the multifanout points. DAG mapping
overcomes this limitation by allowing matches to cross the multifanout points.
Figure 6.3(a) shows an example of DAG mapping, where matches such as M1

and M2 across the multifanout point driven by the two-input NAND gate t
are permitted. Such choices are stored during the matching phase and are
selected during the covering phase if they lead to optimal delays. This, how-
ever, may involve an area penalty due to logic replication. For example, if
both of the matches M1 and M2 are selected during the covering phase, then
the functionality of the gates u, v, and t is replicated in the two matches. In
the case of tree mapping, shown in Fig. 6.3(b), such matches are prohibited;
thus, there is only one possible match (namely, the two-input NAND gate) at
node x, since the matches are not allowed to cross multifanout points. This
can lead to a suboptimal delay solution, since the search space explored is
smaller when compared to that explored during DAG mapping.

The logic replication that can occur during DAG mapping creates another
complication if the mapping process relies on load-dependent delay models.
A single fanout node may become a multifanout one due to its receiver being
replicated. This creates a problem in the computation of the load-delay curves
during the matching phase. For example, let us assume that nodes driving
the inputs to the gates u and v have no other fanouts, and that the load-
delay curves for these nodes have already been constructed. Now, in order to
compute the load-delay curve for the match M1 at x, we need to know the load
driven by its fanins, as is evident from Equation (6.2). However, this load may
be unknown, since in DAG mapping, this load depends on the match M2 at y
also, which may not yet have been processed. To overcome this problem, it is
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usually more convenient to use gain-based delay models with DAG mapping
approaches [KBS98,HWM03,SIS99], since these models assume that the delay
of a match is constant, independent of its load.

6.2 Congestion-aware Technology Mapping

The classical technology mapping algorithms discussed in the previous sec-
tion have been extended to incorporate congestion awareness in several ways.
These extensions rely on placement-dependent congestion metrics such as the
netlength [PPS03,KS01] and congestion maps [SSS+05, SSS06], or on graph
theoretic ones such as the mutual contraction [LM05]; these metrics have been
discussed in detail in Chapter 3. Although the mapping algorithm that uses
mutual contraction does not require the prior placement of the subject graph,
those that rely on placement-dependent metrics derive the location of each
match in the circuit graph from the subject graph placement.

Subject

graph

Placement

Congestion-aware

technology mapping

Placement /

legalization

I/O

locations

Fig. 6.4. A congestion-aware technology mapping flow that uses the placement of
the subject graph to estimate the congestion during the technology mapping.

A typical design flow for an algorithm that uses the subject graph place-
ment to estimate the congestion is shown in Fig. 6.4. The dashed feedback
arrow represents the possibility of generating multiple mapped versions of the
netlist (by using different variants of the cost function), and then selecting
the best version for subsequent layout. The flow begins with the placement of
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the subject graph, which assigns a location to every node in the graph. The
subject graph typically contains many more nodes than the mapped netlist.
However, as was discussed in Section 3.2.3, the area of each node in the sub-
ject graph can be normalized in order to allow the subject graph to be placed
in the area designated for the mapped netlist.

The other major concern with subject graph placement is its runtime over-
head, given the large number of nodes in this graph. However, this runtime
can be reduced substantially by omitting the legalization of the placement.
Indeed, since the congestion map is discretized at the granularity of the bins,
it is reasonable to carry out the global placement of the subject graph only
to the same granularity. Thus, for instance, in a recursive partitioning based
placer, the placement iterations may be terminated once the size of the parti-
tions becomes comparable to that of the bins. It is acceptable to have merely a
coarse placement for the subject graph because the overlaps in this placement
do not introduce larger errors in the computation of the congestion metrics
than does the movement of cells during a fresh placement or legalization of
the mapped netlist. Therefore, having an overlap-free placement of the sub-
ject graph does not guarantee results superior to those obtained with a coarse
placement. On the other hand, carrying out the subject graph placement only
to the granularity of the bins or omitting its legalization reduces the runtime
for the subject graph placement significantly. The coarse placement heuristic
may be particularly effective at reducing the overhead for the subject graph
placement if the congestion map is also constructed on a coarse grid, as may
be the case for memory efficiency reasons with the constructive congestion
map based scheme discussed in Section 6.2.4.

If required, the subject graph placement may also be derived from that
of the mapped netlist using some heuristics during the later iterations of the
mapping, since each mapped cell can be decomposed into several primitive
gates. One such heuristic assumes that all the decomposed primitives of a
mapped cell are placed in the same location as the cell [LJC03].

After the placement of the subject graph, the matching phase in technol-
ogy mapping proceeds in the traditional manner, as described in Section 6.1.
During the matching process, each choice is assumed to be placed at the cen-
ter of gravity of its fanins and fanouts as in [PB91a], in order to estimate
its netlength or congestion cost or to create its constructive congestion map.
Since the matching proceeds in topological order, the fanins of a node have
already been processed at the time the node is processed, and the optimum
matches at these fanins (and therefore, their locations) are known. The fanouts
of the node, however, have still not been processed and therefore there are no
matches at the fanouts yet. In order to compute the center of gravity location
for the new match at the node, the locations of the fanin matches are used
for the fanins, while the fanout locations are derived from the subject graph
placement.

Consider the example depicted in Fig. 6.5, where the match Mp at node
p in Fig. 6.5(a) is shown in Fig. 6.5(b). The location (xMp , yMp) of the match
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Fig. 6.5. (a) Subject graph with match Mp that subsumes the wires n3 and n4. (b)
Placement of the match at the center of gravity of its fanins and fanouts.

is given by the following:

xMp =
xMr + xMs + xMt + xq

4
, and,

yMp =
yMr + yMs + yMt + yq

4
,

where Mn represents the best match at node n. Note that the location of the
fanout node q is taken directly from the subject graph placement, whereas the
locations of the fanin nodes are taken from the placements of the matches at
the respective nodes.

The covering phases of these mapping algorithms are either conventional
or they exploit the slack information to minimize the congestion. Details of
specific congestion-aware technology mapping algorithms are discussed in the
following sections. Sections 6.2.1 and 6.2.2 describe mapping using netlength
and mutual contraction, respectively, whereas Sections 6.2.3 and 6.2.4 explain
the mapping algorithms based on predictive and constructive congestion maps,
respectively.

6.2.1 Technology Mapping using Netlength

The netlength metric discussed in Section 3.2.1 has been used as a proxy for
routing congestion while performing technology mapping in several early ap-
proaches to congestion-aware technology mapping [PPS03,KS01]. The typical
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cost functions used by these algorithms are of the form:

K1 × Area + K2 × Delay + K3 × Netlength,

where K1, K2, and K3 are user-specified constants that allow different rela-
tive weights for the area, delay, and netlength of the design. At each node,
the matching phase of these algorithms stores the match that minimizes the
cost function being used. The covering phase, which is the same as that in
traditional mapping, creates the mapping solution by selecting among these
matches. The quality of the solution may be improved further by running the
entire mapping procedure multiple times with different values of K1, K2, and
K3 to generate multiple mapping solutions, and then selecting the best of
these solutions for subsequent layout.

The netlength metric has been employed as a proxy for congestion with
both tree mapping and DAG mapping algorithms. The tree mapping algo-
rithm in [PPS03] computes the total netlength of a mapping solution due to
a match, whereas the DAG mapping in [KS01] employs the local wiring cost
of a match instead. These computations of the total netlength and the wiring
cost in these approaches are explained in the following sections.

Computation of Total Netlength During Tree Mapping

The computation of the total netlength Nl(MN ) of the mapping solution due
to a match MN at node N is similar to that of area and is given by the
following equation:

Nl(MN ) =
∑

f∈fanin(MN )

(Nl(Mf , MN ) + Nl(Mf )), (6.5)

where Nl(Mf , MN ) denotes the Manhattan length of the net connecting the
output of the stored optimum match at fanin f and the corresponding input
pin of the match MN . In other words, Nl(Mf , MN ) is given by:

Nl(Mf , MN ) = |xMf
− xMN

| + |yMf
− yMN

|.

The Nl(Mf ) component in Equation (6.5) represents the Manhattan lengths
of all the nets in the transitive fanin cone of the mapping solution due to the
match Mf at f , that have been computed previously using Equation (6.5).

Thus, using the above equations, the netlength of the mapping solution
due to match Mp in the example depicted in Fig. 6.5 can be written as:

Nl(Mp) = (|xMp − xMr | + |yMp − yMr |) + (|xMp − xMs | + |yMp − yMs |)
+ (|xMp − xMt | + |yMp − yMt |) + Nl(Mr) + Nl(Ms) + Nl(Mt).

The netlength cost of the match at a node is then combined with the
costs for the area and the load-dependent delay (computed as described in
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Section 6.1) in the cost function; the match that results in the smallest cost
is stored at the node. At any given multifanout point, the overall cost (along
with its area and netlength components) is divided by the number of fanouts
at that multifanout point and then propagated forward; this heuristic, which
is similar to the one in [CP95], allows a meaningful computation of the overall
cost of the mapping solution at the primary outputs.

Computation of Wiring Cost During DAG Mapping

In the case of DAG mapping, a cost function like the total netlength of a
match cannot be propagated accurately in a single topological traversal, be-
cause some of the single fanout nets from the subject graph may have to drive
multiple copies of their receivers due to subsequent logic replication. For ex-
ample, in Fig. 6.3(a), if both the matches M1 and M2 are selected during the
covering, then the fanin nodes which initially have only a single fanout to u
and v, respectively, now drive two receivers each. Since the actual number of
fanouts is known only after the covering, the netlength propagation during
the matching phase can be highly erroneous. To overcome this problem, the
DAG mapping scheme proposed in [KS01] relies on the notion of the local
wiring cost which considers the netlength of only the nets affected by the
match while ignoring the effect of any subsequent logic replication during the
covering phase.

For instance, the match Mp in Fig. 6.5(a) can be thought of as one that
eliminates the wires n1, n2, n3, n4, n5, and n6, and creates new wires n′

1, n′
2,

n′
5 and n′

6. Therefore, the wiring cost WC(Mp) of the match can be computed
as:

WC(Mp) = [Nl(n′
1) + Nl(n′

2) + Nl(n′
5) + Nl(n′

6)]
− [Nl(n1) + Nl(n2) + Nl(n3) + Nl(n4) + Nl(n5) + Nl(n6)],

where Nl(ni) is the Manhattan netlength of the net ni. Thus, for instance,
while computing the cost of match Mp, the length of the net n1 is given by:

Nl(n1) = |xMr − xu| + |yMr − yu|,

whereas the netlength of the n′
1 is given by:

Nl(n′
1) = |xMr − xMp | + |yMr − yMp |,

with Mp assumed as being placed at the center of gravity of the location of q
and those of the matches at nodes r, s, and t.

This wiring cost represents the local improvement in the wiring require-
ment due to the match. It is then combined with the gain-based delay of
the mapping solution due to the match to determine the overall cost of the
match. At any given node, the match with the least cost is stored as the
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(a)

(b)

Fig. 6.6. Two different mapping solutions for the network in Fig. 6.5: solution (a)
has a larger netlength and wiring cost than the one in (b).

optimal match at that node. The covering phase proceeds in the traditional
manner to select among the choices stored during the matching.

Two possible solutions for the network in Fig. 6.5 are shown in Fig. 6.6(a)
and (b); each cell is assumed to be placed at the center of gravity of its
fanins and fanouts. One can observe that the three-input NOR implementa-
tion in Fig. 6.6(a) may have smaller cell area or cell delay than the solution
in Fig. 6.6(b), but may have larger netlength. Thus, unlike classical technol-
ogy mapping algorithms, those that use netlength or wiring cost during the
matching phase may prefer the solution in Fig. 6.6(b).

Limitations, Time Complexity, and Extensions

As was discussed in Section 3.2.1, the netlength metric suffers from an inability
to capture the spatial and locality aspects as well as the thresholded nature of
routing congestion. Moreover, even though minimizing the netlength may not
always lead to a reduction in congestion, it may yet result in significant area
or delay penalties. These penalties can be reduced if the congested regions
can be predicted accurately and the congestion-aware mapping mode applied
only in these regions, with area or delay optimal choices being selected in the
sparsely congested areas.

The tree mapping approach can be extended to minimize the netlength
under delay or area constraints (in contrast to minimizing a linear combination
of these metrics as discussed earlier in this section). This involves storing
multiple non-inferior choices along with their netlengths during the matching
phase. For example, consider the problem of minimizing the netlength under
an area constraint using tree mapping. In this case, the matching phase can be
allowed to store non-inferior choices on an area vs. netlength curve. Similarly,
the problem of netlength minimization under delay constraints during tree
mapping that uses the load-dependent delay model can be solved by keeping
the track of the netlength for all the non-inferior matches stored on the load-
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delay curve and choosing those matches at the primary outputs that have the
least netlength among all that satisfy the constraints.

The extension of DAG mapping to minimize the netlength under area
or delay constraints is not obvious, as the fanouts for a net (and therefore
its predicted netlength) may not be consistent across the matching and the
covering phases because of logic replication.

The time complexity of congestion-aware technology mapping algorithms
based on the netlength or the wiring cost is almost the same as that of con-
ventional mapping algorithms, since the additional netlength or wiring cost
computation for a match requires time that is linear in the degree of the
match, which is the same as the complexity of the computation time for the
area or the delay of the mapping solution due to the match. However, the
runtime for the overall flow may be larger than the traditional mapping flow
due to the extra overhead for the placement of the subject graph, as discussed
earlier in this section.

If the mapped netlist is placed again starting from scratch, it may lose
some of the netlength gains made during the technology mapping phase, since
those gains are based on the companion placement of the netlist. In contrast,
if the placement of the subject graph is allowed to evolve into the companion
placement of the mapped netlist, which is then legalized to remove overlaps,
it will not only lead to the preservation of more of the gains made during
mapping, but also reduce the runtime required for the final placement.

6.2.2 Technology Mapping using Mutual Contraction

As discussed in Section 3.2.2, mutual contraction is a structural metric that
does not rely on any placement information. Consequently, congestion-aware
technology mapping based on this metric does not require the placement of
the subject graph.

We have seen that mutual contraction is defined for two-pin nets as the
product of their relative weights. For instance, using the notation introduced
in Section 3.2.2, the mutual contraction mc(n′

1) for net n′
1 in Fig. 6.5(b) is

computed as follows (assuming unit weights for all the edges):

mc(n′
1) = wr(r,Mp) × wr(Mp, r) =

w(r,Mp)∑
i w(r, i)

× w(Mp, r)∑
i w(Mp, i)

=
1
2
× 1

4
=

1
8
.

The definition of mutual contraction can be extended to a match by adding
the mutual contractions of all its fanins. Thus, for our example,

mc(Mp) = mc(n′
1) + mc(n′

2) + mc(n′
5) =

1
8

+
1
8

+
1
8

=
3
8
.

It may be recalled that the mutual contraction of a net correlates inversely
with the expected length of the net. It has been shown that the average mu-
tual contraction computed over all the nets in a design is negatively correlated
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to its Rent’s exponent [LM05]. In other words, the higher the average mutual
contraction for a circuit, the smaller is its Rent’s exponent, resulting in re-
duced interconnect complexity and shorter total netlength.

Therefore, the technology mapping algorithm presented in [LM05] uses
the average mutual contraction of a circuit as a proxy for its congestion. This
algorithm is based on tree mapping (because the subsequent logic replication
possible with DAG mapping can complicate the accurate computation of the
mutual contraction of individual nets during the matching phase), and has
been formulated for the optimization of the area along with the congestion.
The matching phase of this algorithm assigns to each match a cost which
is a linear combination of the area and the average mutual contraction of
the mapping solution due to that match. The computation of the area is
performed as per Equation (6.1), whereas the estimation of the average mutual
contraction is carried out as explained next.

The number of nets Nnets(MN ) in the mapping solution due to some match
MN at node N is given by:

Nnets(MN ) = |{f : f ∈ fanin(MN )}| +
∑

f∈fanin(MN )

Nnets(f),

where Nnets(M) is the number of nets in the mapping solution due to a match
M . Then, the average mutual contraction, amc(MN ), of the mapping solution
due to the match MN can be computed as:

amc(MN ) =
1

Nnets(MN )
{mc(MN ) +

∑
f∈fanin(MN )

(Nnets(f) × amc(f))}.

Since the average mutual contraction is negatively correlated with the total
netlength, the overall cost of the mapping solution due to the match is given
by:

Cost(MN ) = (1 − K) × A(MN ) − K × amc(MN ),

where K is a user-specified constant such that 0 ≤ K ≤ 1, and A(MN ) is
the area of the mapping solution due to the match MN . The match with the
least cost is stored as the optimum one during the matching phase, whereas
the covering phase of the algorithm is similar to that of traditional technology
mapping algorithms.

Using the above equations, the number of nets in the mapping solution
due to the match Mp in our example, depicted in Fig. 6.5(b), is given by:

Nnets(Mp) = Nnets(Mr) + Nnets(Ms) + Nnets(Mt) + 3,

whereas the average mutual contraction, amc(Mp), of the mapping solution
due to the match Mp is given by:

amc(Mp) =
1

Nnets(Mp)
{Nnets(Mr) · amc(Mr) + Nnets(Ms) · amc(Ms)

+ Nnets(Mt) · amc(Mt) + mc(Mp)}.
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The overall asymptotic time complexity of this technology mapping algo-
rithm is slightly worse than that of traditional mapping, since the computation
of the mutual contraction of a match M requires O(

∑
f∈fanin(M) deg(f)) time,

where deg(f) is the degree of the node f . Note that this computation time
cannot be subsumed by the complexity of area or delay computation for the
match, which is linear in the number of fanins of the match. However, this
is not a significant drawback, since in practice such a runtime penalty may
be easily tolerated. More significantly, the time-consuming placement of the
subject graph is not required for this approach. Therefore, the overall runtime
for a flow based on this technology mapping algorithm may actually be much
smaller than one that relies on placement information for nodes in the subject
graph. On the other hand, the primary limitation of this approach lies in the
indirect relation between mutual contraction and the routing congestion, be-
cause of which an improvement in the mutual contraction metrics for a design
may not translate into commensurate gains in its congestion.

6.2.3 Technology Mapping using Predictive Congestion
Maps

Figure 6.7 shows a technology mapping flow that relies on a predictive conges-
tion map generated from the subject graph and its placement. As discussed in
Section 3.2.3, the subject graph shares structural similarities with the mapped
netlist. Therefore, when the same constraints are applied to the subject graph
and the corresponding mapped netlist during the placement, the resulting
congestion maps are likely to resemble each other [SSS+05].

A net passing through a highly congested region is more likely to be de-
toured than one traversing a sparsely congested area. For instance, of the two
nets net1 and net2 depicted in Fig. 6.8, the latter net is more expensive from
a routing perspective, because it passes through a more congested region. Un-
like, say, the netlength based mapping algorithm discussed in Section 6.2.1,
the use of a congestion map allows the mapping algorithm to treat nets in
a context-sensitive manner depending on the congestion levels of the regions
that they will be routed through.

Let us define the congestion cost cc(n) for a net n as:

cc(n) =
∑

B : cB>cth ∧B∈bbox(n)

UB(n),

where cB is the expected congestion in bin B, UB(n) is the probabilistic
routing demand (or utilization) of the net n in bin B (computed as discussed
in Section 2.2), and the summation is taken over all bins within the bounding
box of n whose expected congestion is greater than some threshold cth. This
notion of the congestion cost of a net captures its context sensitivity well, since
it penalizes the routing demand only in densely congested bins, and ignores
it in bins where a sufficient number of tracks is available.
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Fig. 6.7. A typical mapping flow that uses a predictive congestion map.

Figure 6.9 shows the computation of the congestion cost cc(n) for a net
n connecting pins p1 and p2, whose bounding box has sixteen bins, and each
bin has a predicted congestion value associated with it. As can be seen from
the figure, there are six single and double bend routes r1, . . . , r6 possible for
this net, each of which is assumed to have the same probability (namely, 1/6)
of being chosen by the router. If we further assume that cth is 1.0 for all the
bins, then the congestion cost of the net is the sum of its routing demands in
the two shaded bins (whose congestion is 1.1 and 1.2, respectively). Assume
for the sake of simplicity that the number of (horizontal or vertical) tracks
available in each bin is the same, and is given by Ntr. Since three routes
(namely, r1, r4, and r5) pass through the bin at location (3, 4) that has a
predicted congestion of 1.1, the routing demand of n in this bin is given by:

U (3,4)(n) =
1

Ntr
× 3

6
.

Similarly, the routing demand of this net in the bin (3, 3) that has a predicted
congestion of 1.2 is:
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Fig. 6.8. The cost of routing a wire depends on the congestion along its route.
(Reprinted from [SSS+05], c©2005 IEEE).
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Fig. 6.9. Congestion cost of a net. (Reprinted from [SSS+05], c©2005 IEEE).

U (3,3)(n) =
1

Ntr
× 2

6
.

Therefore, the overall congestion cost cc(n) for the net is given by:

cc(n) =
1

Ntr
(
1
2

+
1
3
).

The concept of the congestion cost of a net can be extended to matches also,
being defined as the difference between the congestion costs of the nets created
and eliminated by the match. Using this definition, the congestion cost cc(Mp)
for the match Mp in Fig. 6.5 can be written as:
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cc(Mp) = (cc(n′
1) + cc(n′

2) + cc(n′
5) + cc(n′

6))
−(cc(n1) + cc(n2) + cc(n3) + cc(n4) + cc(n5) + cc(n6)).

If the congestion cost of a match is positive, it implies that the nets created
due to the match require tracks in densely congested regions. Conversely, a
negative congestion cost of a match means that the match subsumes nets
passing through densely congested regions and therefore, lowers the overall
congestion. The congestion cost can be linearly combined with the area or
delay cost of the match, so that the mapper will be biased towards choices
that lower the congestion and improve the routability [SSS+05]. In particular,
for delay optimization, the congestion cost of the match can be weighed by
the slack available at that node, in order to favor the selection of matches that
reduce congestion only when sufficient slack is available.

In areas that are predicted to be sparsely congested, the congestion cost of
a match is zero, so that the overall cost is not unduly biased (unlike congestion-
aware mapping that uses the netlength or mutual contraction metrics). In
such regions, the area or delay-optimal choices are still selected, just as with
traditional mapping. Thus, the mapper effectively has two modes, namely,
(i) area- or delay-optimal mode in regions with sparse congestion, and (ii)
congestion-aware mode in densely congested areas. These two modes enable
the mapping algorithm to alleviate congestion with a relatively smaller area
or delay penalty as compared to the mapping approaches discussed in Sec-
tions 6.2.1 and 6.2.2.

This mapping algorithm must pay the overhead of the placement of the
subject graph, although this overhead can be reduced significantly by perform-
ing only a coarse placement and omitting legalization, as discussed earlier in
this section. Furthermore, for delay optimization, there is the added runtime
cost of an extra iteration of delay-optimal matching, required for the compu-
tation of the slacks. The estimation of the congestion cost for a net requires
O(b) time, where b is the number of bins in a given layout area. Therefore, the
computation of the congestion cost of a match requires O(νmb) time, where
νm is the maximum number of nets affected by a match. Since the congestion
cost computation is performed for all the matches, the time complexity for
the matching process is O(mb), where m is the total number of matches over
the entire network. In other words, the asymptotic time complexity of this
mapping algorithm has an extra factor of b as compared to classical mapping.

6.2.4 Technology Mapping using Constructive
Congestion Maps

As was discussed in Section 3.2.3, one of the major limitations of using a pre-
dictive congestion map is that it considers the routing demand due to all the
nets in the subject graph while identifying congestion hot spots, rather than
that due to only the relevant set of nets that actually exist in the mapped
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netlist. The constructive congestion maps described in Section 3.2.4 overcome
this limitation by being created individually in a bottom-up fashion for each
delay-optimal mapping solution. Moreover, the technology mapping approach
that uses these maps [SSS06] also extends the covering phase to exploit the
flexibility available in the form of delay slacks to reduce the congestion even
further. This is in contrast to all the other congestion-aware technology map-
ping schemes discussed earlier in this chapter; they limit themselves to biasing
the matching process only, leaving the covering phase untouched.

The following sections describe the matching and covering phases of this
approach in more detail.

Matching with Constructive Congestion Maps

As is the case with other mapping approaches that use placement-dependent
metrics, the matching phase in this approach assumes a prior placement of
the subject graph, as well as the center of gravity placement scheme for the
matches that has been described earlier. At any given node, a constructive
congestion map is created for every non-inferior delay match at that node;
this congestion map for the mapping solution due to that match accounts for
the routing demand because of all the nets in its transitive fanin cone. As
described in Section 3.2.4, this congestion map can be created incrementally
for a match by adding the congestion maps for the mapping solutions due to
the matches at the fanin nodes of the match to that for the fanin nets of the
match.

A multipin net at a multifanout point can be modeled using star or clique5

topologies; the star is usually preferred if the subsequent routing is going to
be timing-driven.

A constructive congestion map is propagated forward across a multifanout
point by dividing each congestion value in the map by the number of fanouts.
In effect, the congestion caused by the nets in the transitive fanin cone of the
mapping solution due to a match is distributed equally among its fanouts.
This heuristic, similar to one proposed in [CP95] for area minimization under
delay constraints, allows the construction of a complete congestion map for
the entire mapping solution through bin-wise addition of the congestion maps
corresponding to the matches selected at the primary outputs. For example,
Fig. 6.10 shows the congestion map for a match that has a fanout of two. The
congestion values in this map are halved during the forward propagation of
the map across the multifanout point during the matching phase. Thus, the
choices at nodes N2 and N3 (whose fanins include the net associated with
node N1) use the congestion map shown on the right.

Constructive congestion maps are stored for all the non-inferior delay
matches at a node. Note that the congestion map stored at an interior node
5 With a clique model, the congestion contributions of the resulting two-pin nets

are scaled down by a factor of 2/n, since the clique contains n(n − 1)/2 edges,
whereas only n − 1 edges are required to connect n pins.
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Fig. 6.10. Propagation of a congestion map across a multifanout point. (Reprinted
from [SSS06], c©2006 IEEE).

in the subject graph represents only a partial picture of the congestion in
the design, since it ignores the congestion contributions of nets that are not
in the transitive fanin of that node. A complete congestion picture can be
obtained only at the primary outputs. Therefore, the technology mapping al-
gorithm postpones evaluating the mapping solutions based on congestion to
the covering phase.

Thus, with the help of simple algebraic operations such as addition and
multiplication, distinct two-dimensional congestion maps can be constructed
and propagated forward for different mapping solutions during the match-
ing phase. These maps are utilized during the covering to decide a mapping
solution which reduces congestion.

Exploiting Slacks during the Covering Phase

During the traditional delay-oriented covering process, the match chosen at a
given node is the one that minimizes the delay for the (known) load at that
node. The load-delay curves constructed during the matching phase also as-
sume the same goal of delay minimization. However, observe that it is possible
to choose a suboptimal match at a node with positive slack and yet not violate
any delay constraints. The covering algorithm proposed in [SSS06] employs
this idea to minimize the congestion, while still guaranteeing delay optimality.

Consider the load-delay curve shown in Fig. 6.11, which has been con-
structed at some node during the matching phase. When the node is processed
during the covering phase, let us assume that it has a slack of 10 units and
has to drive a load of 15 units. The delays due to matches M1, M2, and M3

for this load are 95, 90, and 95 units, respectively. In this case, regular cov-
ering selects match M2, since it minimizes the delay. However, in order to
reduce the congestion, the covering should choose the match that minimizes
the congestion, as long as it does not violate the delay constraints. The choice
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Fig. 6.11. A piecewise linear load-delay curve with three matches. (Reprinted from
[SSS06], c©2006 IEEE).

of either M1 or M3 does not affect the delay-optimality of the overall solution,
because there is a slack of 10 units available at the node and the arrival times
due to M1 and M3 both satisfy this slack constraint.

Algorithm 14 Perform congestion-aware covering under delay constraints
(Reprinted from [SSS06], c©2006 IEEE)
Input: A Boolean network G(V, E), a set of primary outputs O ⊆ V , sets of non-

inferior matches Mv and their congestion maps CMv (∀v ∈ V )
Output: Assignment of congestion-optimal matches mopt

v ∈ Mv which satisfy the
delay constraints (∀v ∈ V )

1: for all oi ∈ O do
2: mDopt

oi
← DelayOptimalMatch(Moi , loadoi)

3: soi ← Dreq
oi

− D
m

Dopt
oi

4: end for
5: CM ←

∑|O|
i=1 CM

m
Dopt
oi

6: OF ← ComputeOverflow(CM)
7: for all v ∈ V , in reverse topological order, do
8: mDopt

v ← DelayOptimalMatch(Mv, loadv)
9: mCopt

v ← CongestionOptimalMatch(Mv, sv)
10: if OF Copt

v < OF then
11: mopt

v ← mCopt
v

12: CM ← CM − CM
m

Dopt
v

+ CM
m

Copt
v

13: OF ← OF Copt
v

14: UpdateSlacks(mCopt
v , sCopt

v )
15: else
16: mopt

v ← mDopt
v

17: UpdateSlacks(mDopt
v , sv)

18: end if
19: UpdateLoads(mopt

v )
20: end for
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The pseudocode for the covering that targets routing congestion under
delay constraints is shown in Algorithm 14. It begins with the computation of
the delay-optimal matches at the primary outputs, followed by the estimation
of slacks for all the outputs. The congestion map CM for this solution is built
by the bin-wise addition of the congestion maps due to delay-optimal matches
for all the primary outputs. The total track overflow OF corresponding to this
solution is estimated from the congestion map by adding the track overflow
values in all congested bins.

After this initialization, all the nodes (v ∈ V ) are processed in the reverse
topological order. First, for any given node v, the delay-optimal match mDopt

v

is determined for that node, followed by the computation of match mCopt
v that

satisfies the slack constraint and has the least congestion cost among all the
matches stored on the load-delay curve at that node. This match is selected
and the resulting slack and congestion map updates are propagated to the
nodes at the fanins of the match.

Optimality, Time Complexity, and Extensions

With the use of constructive congestion maps, the mapping algorithm dis-
cussed in this section can ensure the delay optimality of a mapping solution
(in contrast to the other congestion-aware technology mapping algorithms
proposed to date, that do not make any claims of delay optimality). However,
as with the other algorithms, it does not ensure the optimality of the track
overflow or the peak congestion.

This mapping algorithm requires O(mb) additional time over conventional
mappers, where b is the number of bins and m is the total number of matches
over the entire network. As with the mapping approach that uses predic-
tive congestion maps, the actual runtimes for this approach are usually a few
times that of the corresponding runtimes for classical delay-oriented technol-
ogy mapping in practice.

The memory requirement of technology mapping based on constructive
congestion maps can be significantly larger than that for conventional map-
pers, due to the storage of the congestion maps for all the non-inferior choices
preserved during the matching phase. This requirement may be reduced sub-
stantially, for instance, by storing only those bins that lie within the region
affected by a mapping solution, or by using a coarse grid. The use of a coarse
grid for the congestion map can also help reduce the runtime overhead for the
subject graph placement substantially, if that placement is carried out only to
the granularity of this grid (as described at the beginning of Section 6.2). An-
other option for improved memory efficiency is to store congestion maps only
along the “wavefront” of the nodes being processed at any time, as in [SIS99].

The extension of this mapping algorithm to DAG mapping is not obvious
because of the duplication of nets corresponding to replicated logic.
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6.2.5 Comparison Of Congestion-aware Technology
Mapping Techniques

In this section, we discussed four different congestion-aware technology map-
ping techniques, each of which uses a different metric. The comparison of these
techniques with respect to various criteria is reviewed next.
Time Complexity and Runtime : The asymptotic complexity of the tech-
nology mapping approaches that use the netlength as a metric for congestion
is almost the same as that of the conventional mapping algorithm. However,
the overall runtime for the design flow may suffer due to the overhead for
the placement of the subject graph (although this overhead may be reduced
significantly using heuristics discussed below). Technology mapping based on
the mutual contraction does not require such a placement and therefore its
overall runtime is usually comparable to conventional mapping, even though
the asymptotic time complexity of the matching phase is slightly worse. The
complexity of the mappers that use congestion maps is affected by O(mb) addi-
tional computation time as compared to conventional mappers. This overhead
affects only the matching phase in the mapper based on a predictive map, but
affects both matching and covering phases in the mapper that uses construc-
tive congestion maps. Moreover, these congestion map based approaches also
require the overhead of subject graph placement. Their runtime is typically a
few times that of conventional mappers.
Memory Complexity : The memory requirement of the mapping ap-
proaches based on netlength, mutual contraction, and predictive congestion
maps is almost the same as that of conventional mapping. In contrast, technol-
ogy mapping based on constructive congestion maps requires O(mb) memory
with a näive implementation, although this memory overhead can be substan-
tially reduced through various memory-efficient implementation techniques
and heuristics.
Placement of the Subject Graph : The subject graph must be placed for
all the mapping approaches discussed here except for the one based on mutual
contraction. This placement can claim a significant share of the runtime, since
the size of the subject graph is usually much larger than that of the corre-
sponding mapped netlist. However, this overhead can be reduced significantly
by performing a coarse placement merely to the granularity of the bins, or
even by omitting the legalization of the placement of the subject graph (as
discussed in the preamble to Section 6.2). Moreover, this placement also helps
improve the modeling of the parasitics and delays of the nets in the design.
Indeed, most of the modern physical synthesis tools rely on some placement
information to model the nets during delay-oriented technology mapping.
Effectiveness and Sources of Errors : Congestion-aware mapping algo-
rithms are affected by several sources of errors. For example, the ones based
on the netlength suffer from the limitation that the netlength is an indirect
global metric and may not capture the impact of congestion on the routability.
Moreover, under this approach, mapping choices are penalized equally in both
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densely and sparsely congested regions. Mismatches between the placements
of the subject graph and the mapped netlist also impact the accuracy of the
netlength computation. The mapping based on mutual contraction is affected
by the imperfect correlation between the mutual contraction and the routing
congestion, since this metric is a proxy for the netlength, which is itself only
an indirect measure of the congestion. The use of congestion maps allows the
mapper to operate in congestion-aware mode only in regions that are expected
to be congested, thus significantly reducing the area and delay penalties for
the congestion optimization. Constructive congestion maps are usually more
accurate than predictive ones, although the discrepancies between the place-
ments of the subject graph and the mapped netlist can affect the accuracy
of all congestion maps. However, if the placement assumed during the map-
ping is preserved by using legalization to obtain the placement of the mapped
netlist, the error due to the placement mismatches can be reduced substan-
tially. Additionally, the constructive map based technique maintains the delay
optimality of the mapping solution (unlike the other techniques discussed in
this section).

6.3 Overview of Classical Logic Synthesis

Logic synthesis optimizations, which have traditionally aimed at minimiz-
ing the number of literals or the number of levels in a multilevel Boolean
network, employ several transformations that are based either on algebraic
or on Boolean methods. Some of these include decomposition, extraction,
substitution, and elimination; these operations are described in detail in
[BHS90, DeM94]. There have been several attempts to extend these opera-
tions to consider congestion metrics such as netlength, adhesion, or the average
neighborhood population, which were discussed in Section 3.3 of Chapter 3.
From the perspective of congestion alleviation, the key to the efficacy of these
operations lies (i) in their ability to identify and subsume “bad” nets and pos-
sibly replace them with “good” ones, and, (ii) in preserving the resulting gains
through technology mapping and placement. The effectiveness of the former
depends on the employed metric and the underlying algorithm, whereas the
preservation of the gains is largely dependent on the remainder of the design
flow.

In this section, we review the conventional algorithms for technology de-
composition as well as those for multilevel logic synthesis, since these algo-
rithms have been extended to consider routing congestion; Section 6.4 dis-
cusses these extensions. In this chapter, we will not describe sequential op-
timizations, two-level sum-of-products (SOP) expression minimization meth-
ods, or Boolean operations aimed at optimizing combinational logic, since
these algorithms have not yet been explored from a congestion point of view;
any standard textbook on logic synthesis (such as [DeM94]) covers them well.
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6.3.1 Technology Decomposition

The technology decomposition step, which precedes the technology mapping,
converts a Boolean network into a subject graph containing only primitive
gates. The choice of the primitive gates, which are usually one or more of
EXORs, NANDs, NORs, and inverters, has a large impact on the quality of
results obtained after the technology mapping. Finding a subject graph that
yields optimum technology mapping results for a given network and library
has long been an open problem [BHS90]. In practice, Boolean networks are
often decomposed into subject graphs composed of two-input NANDs and
inverters [BHS90,SSL+92].

The Boolean function at a node in the network is often written either in
SOP form or using a factored form. The former has historically been more
widespread and represents an AND-OR cover for the function, whereas the
latter form can lead directly to a static CMOS realization. Given a function
expressed in one of these forms, it can be easily transformed into the other
form. Each product term in a SOP expression is also referred to as a cube. The
technology decomposition stage typically assumes Boolean functions to be in
SOP form and decomposes each node into a tree whose nodes represent only
the two-input NAND and inverter functionalities. This is facilitated by the
straightforward correspondence between an AND-OR cover and the equivalent
NAND-NAND network. The resulting multiple input NAND gates can be
decomposed further into two-input NANDs followed by inverters.
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Fig. 6.12. Various technology decompositions of a four-input AND gate.

A few different technology decompositions for a four-input AND gate are
shown in Fig. 6.12. These decompositions are usually created using a greedy
algorithm similar to the one used for Huffman encoding. This algorithm re-
turns optimal results for a cost function such as delay; at this technology-
independent level of abstraction, the delay is often measured using the unit
delay model that assumes a delay of one unit for each gate (and zero delay
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for the wires). Among the decompositions shown in the figure, the decompo-
sition in Fig. 6.12(c) is delay-optimal when all the inputs arrive at the same
time, whereas the ones in Fig. 6.12(b) and Fig. 6.12(d), although topologically
similar, are delay-optimal when s and p, respectively, are the latest arriving
inputs.

6.3.2 Multilevel Logic Synthesis Operations

The technology decomposition stage is traditionally preceded by algebraic
operations that are iteratively applied on a multilevel Boolean network to
optimize objectives such as the literal count or the number of logic levels.
A node in the multilevel network represents a Boolean function computed on
its inputs, whereas a (directed) edge denotes the input/output relationship
between two nodes. Typical algebraic operations re-express the functions by
eliminating some existing nodes or edges or by adding new ones, thus affecting
the structure of the network. Some of the widely used transformations such as
decomposition, extraction, substitution, and elimination are briefly explained
below.
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h

f = pqr + st

g = pqr

h = st

f = g + h

(a) (b)

Fig. 6.13. Decomposition of the function f shown in (a) in terms of new variables
g and h as shown in (b).

Definition 6.1. The operation of expressing a given Boolean function in
terms of new intermediate variables is known as decomposition.

Consider a function f = pqr + st. In a multilevel Boolean network representa-
tion, it is represented by a node with five inputs as shown in Fig. 6.13(a). It
can also be written as a disjunction of two functions g = pqr and h = st, which
introduces two new nodes, g and h, in the network, as shown in Fig. 6.13(b).
The second representation is referred to as the decomposition of the original
expression of f into the functions g and h. Note that this decomposition is
different from the technology decomposition discussed in Section 6.3.1, since it
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f = pqrst

g = pqrs + t
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Fig. 6.14. Extraction of the common subexpression pqrs from the functions f and
g in (a), resulting in the network in (b). The network in (b) can be transformed
back to the one in (a) by eliminating the node i.

allows arbitrary functions for the newly introduced nodes, rather than merely
the primitive ones.

Definition 6.2. The operation of expressing a set of Boolean functions in
terms of old and new intermediate variables is known as extraction.

As an example, consider the two functions f = pqrst and g = pqrs + t rep-
resented by the network in Fig. 6.14(a). A common expression pqrs can be
extracted from both the functions and implemented separately, so that the re-
sulting network, shown in Fig. 6.14(b), has two fewer literals than the network
in Fig. 6.14(a).

Definition 6.3. The operation of expressing the function associated with a
node in terms of other nodes in the network is known as substitution (or
resubstitution).

To illustrate this transformation, assume that two nodes existing in the net-
work represent the functions f = pr + ps + qr + qs + st and g = p + q,
respectively. Then, the substitution of g into f leads to the re-expression of f
as g(r + s) + st.

Definition 6.4. The operation of eliminating a given node from the entire
network is known as elimination (or collapse).

The elimination transformation can be thought of as the inverse of the sub-
stitution operation. It re-expresses the function in terms of the fanins of the
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nodes to be eliminated, which are then removed from the network. Thus, for
instance, the network in Fig. 6.14(a) can be obtained by eliminating the node
i from the network in Fig. 6.14(b).

Underlying these algebraic operations is the concept of division that allows
the expression of a function f as pq+r, where p is referred to as the divisor, q as
the quotient, and r as the remainder. For example, in the case of extraction or
decomposition, if the divisors of a function are known, then the function may
be expressed to reduce the number of literals. Similarly, for the elimination
and substitution operations, determining whether a given node is a divisor
enables the re-expression of the nodes based on the literal savings.

Primary divisors that cannot be divided evenly (i.e., without a remainder)
any further are known as kernels; kernels can be found by solving the rectangle
covering problem [BHS90]. This operation can be computationally expensive
if an arbitrary number of cubes is allowed in the kernels. Instead, if the search
space for the divisors is restricted to at most two cubes or single cubes with
two literals each, the divisors can be found in polynomial time [RV92]. For
example, in order to find the two-cube divisors of a function with n cubes, one
has to consider n(n − 1)/2 pairs of cubes and check whether the intersection
of the literals in the pairs is empty. The fast extraction procedure, available
in the widely used sequential synthesis package Sis [SSL+92], is based on
these algorithms; its pseudocode is shown in Algorithm 15. It begins with the
generation of two-cube and two-literal single cube divisors. Each divisor di

has a gain associated with it that represents the improvement in the cost of
the network if the divisor is substituted into the network. For example, if the
cost of the network is defined as the number of literals, the gain gi due to a
given divisor di is given by:

gi = n(l − 1) − l,

where n is the number of nodes in which di appears, and l is the number of
literals in di. In this equation, the first term represents the literal savings due
to the substitution of the divisor, whereas the second one denotes the cost of
implementing the divisor. The divisor with the maximum gain is selected and
substituted in the network. As a result, the gains due to other divisors may
change; some divisors may even cease to exist. Therefore, the gains of all the
remaining divisors are updated and the procedure is repeated until no more
improvement in the cost of the network is possible.

The substitution, elimination, and decomposition operation can also be ap-
plied iteratively. For example, applying substitution requires checking whether
a node can be expressed in terms of any other nodes in the network and if
so, whether the transformation leads to a reduction in the number of literals.
The elimination operation is performed similarly by evaluating whether the
collapse of a node can lead to an improvement in the cost of the network.
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Algorithm 15 Fast extraction
Input: A Boolean network N(V, E) with given cost C1

Output: An equivalent Boolean network with cost C2 < C1

1: Find all two-cube and two-literal single cube divisors di

2: Associate gain gi with each divisor di

3: while ∃ di with gi > 0 do
4: Choose a divisor with the best gain
5: Substitute the divisor di into the network
6: Update the gain of remaining divisors
7: end while

6.4 Congestion-aware Logic Synthesis

Congestion-aware logic synthesis techniques try to steer the output of the tech-
nology decomposition and multilevel synthesis operations towards regions of
the design space that are more friendly from a routing perspective, as defined
by some metric correlated with the eventual congestion of the design. Specif-
ically, technology decomposition can be guided by metrics such as netlength
or mutual contraction, whereas other multilevel logic synthesis operations can
rely on these and other structural metrics. As discussed in Chapter 3, at-
tempts to use placement-dependent congestion metrics at the logic synthesis
stage have not been very successful to date. Instead, simple graph theoretic
metrics that attempt to capture the local or global connectivity of the network
have been used during the logic synthesis stage as proxies for the post-routing
congestion of the circuit.

The congestion-aware extensions of the technology decomposition and mul-
tilevel synthesis operations are described next, along with their limitations.

6.4.1 Technology Decomposition Targeting Netlength
and Mutual Contraction

The algorithm for conventional technology decomposition, that was described
in Section 6.3.1, has been extended in [KS02] and [LM05] to minimize the
netlength and mutual contraction metrics, respectively. The pseudocode for
such a congestion-aware technology decomposition is shown in Algorithm 16.
In each iteration of the while loop, the algorithm reduces the pin-count of
the gate G, which is being decomposed, by one. This is achieved by finding a
pin pair with the least netlength or the highest mutual contraction between
the two pins, and creating a new two-input NAND gate to which the selected
pin pair serves as input. The output of this two-input gate is connected to
an odd number of inverters in order to preserve the logic functionality; the
output of the last inverter becomes an input to G. Thus, in each iteration,
the pin count of G is reduced by one. Therefore, n− 1 iterations are required
to convert an n-input gate into a tree of two-input gates and inverters.
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Algorithm 16 Congestion-aware technology decomposition minimizing
netlength or mutual contraction
Input: A NAND gate G with n inputs
Output: Decomposed network containing two-input NAND gates and inverters
1: while number of input pins to G > 2 do
2: Compute the distance or mutual contraction between all pin pairs
3: (p1, p2) ← Pin pair with the least distance or the highest mutual contraction
4: Create two-input NAND with (p1, p2), add an odd number of inverters at its

output, and place these new gates
5: Remove (p1, p2) from the input pins of G
6: Add the output of the last inverter from Step 4 as an input to G
7: end while

The algorithm can easily be made timing-aware by considering only those
pin pairs whose signal arrival times differ by no more than a given bound. Al-
though the pseudocode presents the decomposition of a multiple input NAND
node into a tree of two-input NANDs and inverters, the decomposition of
nodes with other functionalities and into different primitive gates such as
NORs and EXORs can also be carried out in a similar fashion. The opti-
mality of the solutions employing this greedy algorithm, however, cannot be
ensured for either of the two congestion-based cost functions. In the case of
decomposition aimed at optimizing the netlength metric, the two-input gates
and inverters created by decomposition are usually assumed to be placed in
the center of gravity of their fanins and fanouts even though many differ-
ent placements (that lead to different netlengths) are possible, leading to a
potentially inaccurate netlength estimation. Moreover, the decisions made in
the first few iterations based on the center of gravity placements affect the
choices of decompositions in later iterations. A similar argument applies to the
decomposition aimed at maximizing the mutual contraction. An exact algo-
rithm based on branch and bound technique may be used, but the runtime of
such an algorithm tends to be high, since in the worst case, n!(n − 1)!/2(n−1)

decompositions may have to be considered for an n-input node.
In general, it is observed that a technology decomposition algorithm that

considers the netlength or mutual contraction metrics often generates better
decompositions than one that is completely oblivious to the layout. However,
even with placement awareness, a technology decomposition algorithm may
make suboptimal choices if it does not comprehend congestion. As an example,
consider Fig. 6.15 that shows two different decompositions of a four-input
AND gate. In this case, the input drivers and the output receiver are assumed
to have fixed locations. Figure 6.15(a) shows a decomposition that can be
obtained by a greedy algorithm that optimizes the netlength metric. This
decomposition may lead to a technology mapping solution with small delays
when the regions in the neighborhoods of the nets in the solution are sparsely
congested. However, in the presence of congested regions (such as the shaded
area in the figure), greedily choosing the decomposition that minimizes the
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Fig. 6.15. Two technology decompositions of a four-input AND gate: (a) Decompo-
sition with minimum netlength based on Manhattan distance. (b) Congestion-aware
decomposition that can lead to a mapping solution with better delay.

netlength purely based on Manhattan distance may lead to poor mapping
solutions. Let us assume that there is only one horizontal track available in
the congested area, which will result in one of the two input nets p and q being
detoured (resulting in a delay penalty) if the decomposition in Fig. 6.15(a)
is chosen. Moreover, the greedy choice prevents the pairing of p with r and
q with s, even if it can lead to a mapping solution with small delays. On
the other hand, a truly congestion-aware decomposition that comprehends
the congested region and its impact on the netlength and the delay can pair
p with r and q with s, as shown in Fig. 6.15(b). Although this leads to a
slightly larger netlength based on Manhattan distance, it is likely to result in
smaller post-routing wirelengths and delays as compared to the decomposition
in Fig. 6.15(a).

6.4.2 Multilevel Synthesis Operations Targeting
Congestion

One can observe that multilevel synthesis operations affect the structure of
the network, as new nodes and edges are introduced and old ones are removed.
For instance, the decomposition operation shown in Fig. 6.13(b) adds two new
nets, represented by nodes g and h. This is desirable if these nets are likely
to be short and also reduce the lengths of the remaining five nets that exist
in the equivalent undecomposed network in Fig. 6.13(a). On the other hand,
this decomposition may be unacceptable if the newly created nets are long
or have to traverse congested regions. Thus, whether a given logic synthesis
transformation is good or bad partly depends on the placement context. In
congestion-aware logic synthesis, this evaluation and the subsequent decision
to accept or reject a transformation is guided by the synthesis-level metrics
discussed in Chapter 3.

A multilevel synthesis operation can be made “congestion-aware” by aug-
menting its traditional cost function (often, the literal count reduction) with
an additional congestion cost (as measured by one of the synthesis level conges-
tion metrics). As a result, the congestion metric will influence which divisors
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are chosen or filtered out during the divisor extraction process; however, the
underlying algorithms to extract divisors or substitute them into the network
remain unchanged.

Most of the multilevel synthesis approaches targeting congestion fall into
the category described above, except for an early work described in [SA93].
That work, on multilevel synthesis targeting routing area, does not use any
metric to guide kernel extraction. Instead, it relies on the notion of a lexi-
cographical order to filter out the divisors that are not compatible with the
given order of inputs. Although this approach showed promising results in
a 1.2 μ technology, it is not clear how effective such an approach will be
in modern technologies, in which the typical design sizes are large, multiple
metal layers are available for routing of input and intermediate signals, and
the nets connected to the input pins contribute only a small fraction of the
total wirelength of the network.

A design flow6 for congestion-aware multilevel logic synthesis optimizations
that uses the netlength as the congestion metric is shown in Fig. 6.16. It
begins with the creation of a subject graph placement for all the nodes in
the Boolean network. If the placement is created directly from the Boolean
network, each node is assigned an area, which is either the same for all nodes
or is proportional to the number of literals in the function associated with
the node. In subsequent design iterations, the subject graph placement may
also be derived from the companion placement of the mapped netlist with
the help of some heuristics (such as the one in [LJC03] that places all the
decomposed primitives of a mapped cell in the same location as the cell). It
is not necessary to eliminate all overlaps from the subject graph placement,
since they do not affect the quality of results significantly, as discussed in
Section 6.2. This placement can help evaluate the netlength or the change in
total netlength of the network due to the substitution of a given divisor. For
example, the netlength cost CNl(i) for the divisor i in Fig. 6.14(b) is merely
the sum of the lengths of the edges connecting i with its fanins and fanouts,
as shown in the following equation:

CNl(i) = Nl(p, i) + Nl(q, i) + Nl(r, i) + Nl(s, i) + Nl(f, i) + Nl(g, i), (6.6)

where Nl(x, y) is the netlength metric that measures the Manhattan distance
between two nodes x and y. This netlength cost of the divisor is used in [KS02]
to select the divisor with the least length from a set of divisors that result in
approximately equal literal savings. On the other hand, the kernel extraction
proposed in [PB91b] relies on the change in the total netlength as a proxy for

6 The wireplanning work in [GNB+98,GKS01] uses a similar flow with interleaved
synthesis and placement, but it does not specifically target the congestion prob-
lem. It applies filtering to the selection of divisors by either discarding the ones
that do not have good placements that can minimize the netlengths on the paths
between inputs and outputs, or by duplicating kernels and placing them such that
the paths have minimum netlengths.
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Fig. 6.16. The multilevel synthesis operations that use netlength as a metric require
the placement of a Boolean network.

the routing cost and the congestion while choosing a divisor that can maximize
the literal savings. The change in the total netlength of the network, ΔTNL,
can be computed by considering the nets that are affected by the divisor that
is being substituted. For example, the substitution of the divisor i in Fig. 6.14
removes the edges between the input nodes p, q, r, and s and the internal
nodes f and g, and adds new edges between the same input nodes and the
new node i, and between the nodes i and f as well as i and g. Therefore, the
node i results in the following change in netlength:
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ΔTNL(i) = {Nl(p, f) + Nl(q, f) + Nl(r, f) + Nl(s, f) (6.7)
+ Nl(p, g) + Nl(q, g) + Nl(r, g) + Nl(s, g)}

− {Nl(p, i) + Nl(q, i) + Nl(r, i) + Nl(s, i) + Nl(i, f) + Nl(i, g)}.

While carrying out the computation in Equations (6.6) and (6.7), the divisor
is assumed to be placed at the center of gravity of the locations of the fanins
and the fanouts of the new node. This is then used for congestion-aware fast
extraction in [KS02] and for arbitrary divisor extraction and elimination in
[PB91b].

Some recent work has shown that the optimum placement for a divisor that
is likely to result in the least increase in netlength lies inside the rectangle
bounded by the two horizontal (and the two vertical) medians obtained from
the sets of the edges of the bounding boxes of the fanins and the fanouts,
respectively, sorted by their x (y) coordinates [CB04]. Any location within
this rectangle will result in the minimum change in the total netlength of the
network. This placement is applied to the fast extraction of congestion-aware
divisors. In this framework, the gain Gi due to a divisor di is given by:

Gi = λgi + (1 − λ)Nli,

where 0 ≤ λ ≤ 1 determines the relative weights for the literal savings gi and
the netlength gain Nli. The netlength gain used here can be defined using
either Equation (6.6) or (6.7). In each iteration of the fast extraction, a node
with the best gain is selected, as shown in Algorithm 15, and the gains of the
remaining divisors are updated.

Multilevel synthesis operations that use graph theoretic metrics such as
the average neighborhood population and overlaps in fanout ranges to im-
prove the routability do not require the placement of a Boolean network
[KSD03, KK04, VP95]. The concepts of the fanout range and the neighbor-
hood population have been discussed in Sections 3.3.3 and 3.3.4, respectively.
A node that has a large average neighborhood population at small distances
is likely to have denser connectivity or entanglement as compared to other
nodes that have a low population. Regardless of the placement, such high
population nodes are likely to result in many connections competing for rout-
ing resources in the same areas, thus causing congested hot spots. The goal of
the congestion-aware versions of algebraic operations such as elimination, re-
substitution, and speed-up7 in [KSD03] and Boolean restructuring in [KK04]

7 The speed-up operation in multilevel synthesis aims to improve the overall delay of
the network [BHS90]. It involves the following steps: (i) determining the timing-
critical paths in the network, (ii) forming a cut-set of nodes such that reducing
the arrival times at these nodes improves the overall delay of the circuit, (iii)
applying elimination operation to the nodes so that they are expressed in terms
of primary inputs or other intermediate variables, and (iv) performing timing-
driven technology decomposition on the nodes to improve the arrival times.
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is to minimize the average neighborhood population at smaller distances. In-
tuitively, it means that the network with many short nets is likely to have im-
proved routability and is, therefore, desirable. The work in [KK03] empirically
demonstrates that algebraic operations such as elimination and extraction can
indeed have a significant impact on the average neighborhood population. For
instance, the elimination operation, that expresses a node in terms of the
fanins of the eliminated nodes, usually increases the neighborhood population
at small distances, but reduces the overall population. On the other hand, the
extraction operation, which substitutes common divisors to reduce the literal
count, often reduces the average neighborhood population at small distances
but increases the number of nodes and therefore, the average population at
large distances.

It has been conjectured [VP95] that reducing the overlap in the fanout
intervals over all nets in the network improves the routability, where the fanout
interval corresponds to the fanout range of the net. This work uses the function∑

ov n2
ovlov as a minimization objective during the logic extraction, where

nov denotes the number of overlapping fanout intervals having overlap length
lov, and the summation is taken over all the overlaps in the fanout intervals.
Minimizing this cost function implies that extractions that reduce the overlaps
and the fanout range are favored in the likelihood that this will create many
(short) nets that are mostly restricted to local regions. One of the problems
with this objective function is that fanout range is a poor metric for predicting
the netlengths of two-pin nets (since the length of the overlap is always zero
for such nets), and such nets may constitute a non-trivial fraction of the total
wirelength in the network.

6.4.3 Comparison of Congestion-aware Logic Synthesis
Techniques

Almost all multilevel logic synthesis operations that target congestion keep the
underlying traditional algorithms intact and modify the objective function by
adding a congestion cost, measured using some metric such as the netlength,
fanout range, or average neighborhood population, to the literal saving or the
number of levels. A candidate operation, such as extraction, resubstitution or
elimination, is evaluated for the change in the value of the modified objective,
and the change is either accepted or rejected. Additional computation is re-
quired for the estimation of the congestion metric; this cost may be subsumed
by the asymptotic cost of the evaluation of the conventional cost within the
operation, or it may result in an extra term proportional to the degree of
the node being processed. Moreover, approaches that use the netlength as a
metric require the placement of the Boolean network, which may result in ad-
ditional runtime penalties. The lexicographical extraction proposed in [SA93]
does not rely on any congestion metric, and merely filters out the divisors
that are not compatible with the given literal order; this check requires time
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that is linear in the number of literals in the divisor and can be subsumed by
the time complexity of the generation of the divisor itself.

The multilevel synthesis transformations discussed in this section affect
the structure of the network and improve the routability as measured by the
employed metric. However, whether the transformation has any effect on the
final result can be known only after the technology (re-)mapping and the
subsequent placement or legalization. The congestion gains obtained during
logic synthesis may not be preserved because the congestion metrics used
at this stage are not very accurate; finding a congestion metric with good
fidelity and computability at the logic synthesis stage remains an open research
problem. Furthermore, even though the logic synthesis transformations are
powerful, they can turn out to be ineffective if the subsequent steps fail to
preserve (or improve) on their gains.

Indeed, because of this second reason, it is necessary for technology decom-
position and mapping to be layout-aware, and incorporate congestion metrics
that correlate with the one that drives the preceding multilevel synthesis oper-
ations. Of course, the holy grail of congestion-aware logic synthesis algorithms
is the ability to create a structurally superior network that preserves the
routability gains independent of the subsequent decomposition and mapping
algorithms. Much of the research in this area has attempted to demonstrate
the superiority of networks obtained by modifying the cost functions in other-
wise traditional logic synthesis algorithms. Unfortunately, the empirical data
and conclusions in these efforts to date have often been specific to particular
design flows and test cases. Another promising possibility is to carry out alge-
braic decompositions and mapping simultaneously, as in [LWG+97]. However,
such an approach would still face the challenges of dealing with many possible
placements for any decomposition, as well as exploring an even larger search
space efficiently.

Thus, it is apparent that today’s multilevel logic synthesis algorithms tar-
geting routing congestion are inadequate and that there is scope for additional
research in core multilevel logic synthesis algorithms targeting congestion as
well as in finding good metrics that can guide such algorithms.

6.5 Final Remarks

In this chapter, we reviewed several technology mapping and logic synthesis
optimizations that target congestion. Congestion-aware technology mapping
techniques vary in the ease of implementation, runtime and memory over-
head, as well as in the effectiveness. They range from simple augmentations
to the traditional cost function used in mapping with a cost for the predicted
netlength, to sophisticated congestion map based schemes that can guaran-
tee delay optimality and minimize the area and delay penalty for congestion
awareness by operating in congestion-aware mode only in regions that are
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likely to be congested. Although congestion-aware technology mapping algo-
rithms have not yet made their way into industrial tools, they have yielded
very promising results on a wide variety of industrial and academic designs.

The decomposition that precedes the mapping has a significant impact on
the quality of the mapping solution. Although the work published so far in
this area uses simple scalar congestion metrics, it is possible to extend de-
composition to use congestion maps. However, it is not clear whether spatial
metrics such as congestion maps can be made accurate enough at this stage to
be able to provide consistent benefits. Other multilevel logic synthesis opera-
tions that precede technology decomposition include extraction, substitution,
elimination, decomposition, and speed-up. In the congestion-aware counter-
parts of these operations, the objective function is modified by including some
structural congestion metric. However, there is still significant scope for fur-
ther research in this area. Given the powerful structural transformations that
are available at this stage of the design flow, it is a promising direction for
further exploration, especially since the routing congestion problem is likely
to worsen with technology scaling and increasing design complexity.
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7

CONGESTION IMPLICATIONS OF HIGH
LEVEL DESIGN

The traditional approach to congestion optimization consists of identifying
routing congestion hot spots and then modifying the design locally so as to
reduce the congestion in these hot spots. For this approach to be effective, the
identification of congested areas in the design has to be reasonably accurate.
While such accuracy is achievable at the late stages of the synthesis and
layout, it is usually not an option early on during the design flow, when micro-
architectural decisions are made and the design is floorplanned. At that time,
few of the design blocks have been implemented. The only nets that exist in
the design are a handful of global signal nets whose wire delays are deemed
critical for accurate architectural performance simulations. Even the global
clock and power distributions may not yet have been implemented. Therefore,
any predictions of the amount of routing resources required in any particular
region of the design are likely to be of little use for downstream congestion
optimization. Indeed, while there have been numerous works on interconnect-
aware floorplanning in recent years, there has been no successful attempt to
date to model routing congestion during the floorplanning process.

However, many of the decisions made at these early stages in the design
flow can have a significant impact on the eventual congestion in the design.
The global wiring complexity of a design is heavily influenced by the micro-
architectural choices made during early design exploration. These choices help
determine the Rent’s parameters for the wiring distribution of the design, thus
determining the precise shape of the wiring distribution curve.

7.1 An Illustrative Example: Coarse-grained
Parallelism

Let us illustrate the impact of the architectural choices for a design on its
wiring complexity and congestion by considering the example of a hypothet-
ical microprocessor being scaled to the next process technology node, using
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very simple first-order scaling assumptions. Let the wiring histogram of the
processor at the current process node (drawn in solid lines in Figure 7.1(a))
be represented by the wiring histogram drawn in solid lines in Figure 7.1(b).
Let us assume that the unit size along the (linear) horizontal axis remains
unchanged across the two process nodes, but the unit size along the (logarith-
mic) vertical axis doubles at the scaled process node (so that a point (l, n)
represents twice as many wires lying within the length bucket containing the
wirelength l at the scaled node than at the original node).

Under classical scaling, in each technology generation, each of its linear
dimensions will shrink by a factor of s (traditionally, equaling 0.7). As a conse-
quence, the area required to implement logic equivalent to that existing at the
current node will halve (assuming unchanged row utilization1). Since classical
scaling does not change the shape of the wiring histogram of a design block
(when normalized to the edge length of the block), the shrunk dimensions
imply that the wiring histogram corresponding to the shrunk block (sketched
in dashed lines in Figure 7.1(a)) will be represented by the dashed curve in
Figure 7.1(b); observe that although the curve has shrunk along the horizontal
axis, it is not compressed along the vertical axis (since the number of gates
and nets is unchanged).

Fig. 7.1. Wiring histograms for the classical scaling of a generic processor across a
process node.

However, as was discussed in Section 1.3.1 in Chapter 1, historical trends
(as described by Moore’s Law) show that the availability of smaller transis-

1 In practice, the row utilization tends to reduce slightly with each process gener-
ation, primarily due to the increase in routing congestion with the growth in the
number of cells within a block (as was discussed in Chapter 1).
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tors and finer wiring architectures has invariably led to increased integration
rather than to reduction in the area of the chip (or its non-cache logic). There-
fore, it is reasonable to assume that the scaled processor will have the same
area as its current generation, but will implement increased functionality by
doubling its transistor count. In this scenario, the first-order scaling invari-
ance of the wiring histogram shape of the block implies that this histogram is
again represented by the solid lines in Figure 7.1(b) (even as it corresponds
to twice as many wires as before).

(a) (b)

Original block

Shrunk block (unchanged #nets)

#
N

et
s

Wirelength

Scaled dual core block

Fig. 7.2. Wiring histograms for the scaling of a generic processor to a dual core
version across a process node.

An alternative to performance improvement through the functionality en-
hancement (i.e.. increased netlist complexity) implicit in the classical scaling
picture is performance improvement through increased parallelism. Thus, in-
stead of making the original core more sophisticated, it can be replaced by two
loosely coupled cores each of which has the same complexity as the original
core. While there is some throughput (and frequency) overhead for increased
concurrency of this kind, it is often offset by the ease of implementation that
enables a faster time to market for the scaled design. In terms of the wiring
complexity, this approach corresponds to increasing the number of short, local
interconnections while reducing the number of semi-global and global inter-
connections. This is illustrated in Figure 7.2(b), in which the dashed line
represents the wiring histogram curve for a single scaled core, and the dotted
line represents the wiring histogram for the entire dual core design. Observe
that although the dual core alternative has approximately the same number of
nets (and gates) as the classically scaled alternative (represented by the solid
line in Figure 7.2(b)), the number of long wires (and consequently, the total
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wirelength) in the dual core version is significantly smaller; this translates to
reduced average congestion in the dual core design.

Moreover, this reduction in the total wirelength of the design (and, in
particular, in the number of long wires) has another significant benefit from
the perspective of congestion. As was observed in Section 4.3 in Chapter 4, the
length of a wire that can be driven by a typical buffer is shrinking much faster
than the rate at which feature sizes are shrinking due to process scaling2. This
leads to a rapid increase in the number and the fraction of buffers (and of nets
that require buffering) in a design as it is scaled from one technology node to
the next. We also observed that as the number of buffers in a design block
increases, the buffers begin to have a serious impact on the routability of the
nets within the block.

The number of buffers required for the wiring histogram depicted in
Fig. 7.2(b) is significantly smaller than that for the wiring histogram for the
scaled block shown in Fig. 7.1. This is primarily because the wiring distribu-
tion corresponding to the classically scaled design has a much larger number
of long wires that must be buffered, as compared to the dual core design. As
a result, the congestion caused by the buffers is also much more severe in the
classically scaled design.

7.2 Local Implementation Choices

Gross architectural choices of the kind discussed in Section 7.1 impact the in-
terconnection complexity by changing the shape of the wiring histogram of the
design. At a somewhat finer-grained level, one can often reduce the routing
complexity of a piece of logic by replacing the on-the-fly computation of a com-
plex function in hardware by a cache that has been loaded with precomputed
values of the function or by a lookup table implemented in hardware using a
content-addressable memory; this technique works well for hard-to-compute
functions that have a limited domain.

Indeed, most of the scheduling, binding and implementation choices made
during the high level synthesis of a design impact the local congestion. Each
of the alternative implementations of a functional unit results in a different
local congestion profile. Thus, for instance, the decision to select a pipelined
multiplier that requires three cycles instead of another one that can carry out
the same computation in two cycles will change the local congestion in the
physical neighborhood of the multiplier, since the interconnection complexities
of these two choices are different. However, the cost vectors that drive such
choices are usually limited to some combination of the predicted performance,
power, and gate area.

2 Under first-order scaling assumptions, optimal inter-buffer distances shrink at
0.586× per generation, in contrast to the normal geometric shrink factor of 0.7×.
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The routing complexity of these choices is sometimes known in isolation
(when these functional units have already been implemented, or have been
supplied as hard intellectual property (IP) by third-party vendors). Yet, it is
not clear that their congestion impact when integrated within their parent
block can be modeled accurately enough for the congestion to be usable as a
meaningful cost during high level synthesis. Part of the problem arises from
the thresholded nature of the congestion cost; a choice with a high intercon-
nect complexity may be acceptable if its neighborhood is not very congested,
but may not be routable if the wiring complexity in the neighborhood is higher
than some threshold. But this wiring complexity of the neighborhood cannot
be accurately determined until rather late in the design process, leading to
a chicken-and-egg situation. In an attempt to ease this routability problem,
some functional unit designers guarantee some routing porosity within their
blocks up front. This increases the likelihood that their blocks can be success-
fully integrated without resulting in an unroutable design.

7.3 Final Remarks

In this chapter, we have seen that the architectural and micro-architectural
decisions made during the early stages of a design can have a significant in-
fluence on the overall interconnection complexity (and therefore, the average
routing congestion) of the design. Factoring in the expected cost of imple-
menting the design (which includes the effort required for timing convergence
as well as that required for routing convergence) at the architectural design
stage itself can help avoid unpleasant downstream surprises. An architecture
with reduced interconnect complexity is not only easier to route, but is also
easier to converge timing on (because of smaller wire delays, fewer intercon-
nect buffers required to compensate for resistive wires, and fewer cases of delay
degradation due to unexpected route detours). Of course, an architecture with
a low interconnect complexity can unfortunately still have local regions of se-
vere routing congestion; however, the likelihood of such congestion hot spots
is reduced.

The congestion is also influenced by the various choices made during the
high level synthesis of the design. Yet, it is not easy to compute the local
congestion cost of a selected functional unit accurately, even if it has already
been fully implemented. This is because of the significant error involved in
estimating the routing demands of the physical context within which the func-
tional unit is to be integrated. Consequently, existing algorithms for high level
synthesis do not try to optimize for congestion. Improved congestion predic-
tion methods may make such optimization somewhat more feasible in coming
years.
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logic synthesis 217

fanout interval
congestion-aware logic synthesis 225

fanout range
congestion metric 87
congestion-aware logic synthesis 225
time complexity 88

fanout-free region
technology mapping 195

fast extraction
logic synthesis 218

fast global routing
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congestion estimation 56
fast search algorithm 57, 58
search space reduction 57

fast search algorithm
A* search 59
best first 59
fast global routing 58

feasible region 117
independent 118

Fiduccia-Mattheyses 150
white space management 180

find-and-fix
cell-centric scheme 154
congestion management 153
net-centric scheme 154

first-choice vertex matching 151
flat net

probabilistic congestion estimation
43

floorplanning 231
force-directed placement 148

congestion-aware 170
fractional flow 109
free cell 181
functional unit 234

gain-based delay model 194
generalized costing 125
global interconnect

delay scaling 24
global placement 148

multilevel framework 171
global router

capacity 106
global routing 7, 8, 97, 98

bottom-up hierarchical 107
hybrid 107
maze search 57
top-down hierarchical 107

global routing cell 4, 97
global routing tile 4
graph

bipartite 85, 102, 120
circuit 73, 88
directed acyclic 195
non-planar 85
routing 98

greedy congestion optimization 177
greedy local move

cell 153
net 153

grid
clock 3
coarse 105
Hanan 101
power 3, 130

grid cell 4

half-rectangle perimeter 36, 72, 145
Hanan grid 101
hierarchical design methodology 16
hierarchical routing 99, 105
hierarchy

routing grid 105
high level synthesis 234
holistic

buffered tree synthesis 122
hot spot

expansion region 156
HRPM 36, 72, 145

multiplier 37
hybrid global routing 107
hybrid Prim-Dijkstra algorithm 133

inaccuracy
probabilistic congestion estimation

56
independent feasible region 118
inflated cell size 177
inflation

cell 175
integer constraint 109
integrated shielding and buffering 138
integration

coarse-grained parallelism 233
intellectual property 235
inter-bin net

probabilistic congestion estimation
double bend route 45
multibend route 48
single bend route 45

inter-buffer distance 115, 234
interconnect capacitance scaling 23
interconnect delay 97
interconnect resistance scaling 23
interleaved update

congestion-aware placement
control parameter 174
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interleaving
placement and global routing 169
row 159

interpolation
multilevel placement 151

intra-bin net
probabilistic congestion estimation

43
intrinsic shortest path length

netlength metric 75, 90
iterative deletion 99, 111, 137

kernel
logic synthesis 218

Kuratowski subgraph 85

L route 103, 170, 175
Lagrangian relaxation 175
Laplacian 148
layer

congestion 25
layer assignment 6, 97
Lee’s algorithm

fast global routing 59
legalization 148
lexicographical extraction

congestion-aware logic synthesis 226
logic synthesis 226

limitation
congestion-aware technology mapping

netlength 202
technology decomposition

congestion-aware logic synthesis
220

line probe search 101
fast global routing 58

linear sum-of-wirelength objective
function 149

literal count
congestion metric 85

literal gain
logic synthesis 85

load-delay curve
technology mapping 194

load-dependent delay model 193
local interconnect delay scaling 24
local pin accessibility 112
local unroutability model

net weight 157

locally sparse power grid 130, 134
log-sum-exp wirelength objective

function 149
logic duplication 195
logic levels

logic synthesis 84
logic replication 195
logic synthesis

algebraic operation 216
congestion metric 83
congestion optimization 189
congestion-aware 219
decomposition 216
elimination 217
extraction 217
fast extraction 218
kernel 218
lexicographical extraction 226
multi-level 214
multilevel operation 216
overview 214
resubstitution 217
speed-up 224
substitution 217
technology decomposition 215
two-level 214

lookup table
precomputed function 234

LZ route 173

matching
first-choice vertex 151
technology mapping 191

congestion-aware 209
congestion-aware 198

maximum congestion 11
maximum flow problem

adhesion 86
maze search 101

global routing 57
memory 4
memory complexity comparison

congestion-aware technology mapping
213

micro-architectural decision 231
micro-architecture 231
minimum spanning tree 36, 72
model

routing blockage 50
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monotonic routing 120
Moore’s law 20, 233
move

ripple 177
mPG 152
MST 36

netlength
congestion metric 72

probabilistic congestion estimation
56

multicommodity flow
concurrent 109
routing 99, 108

theoretical bound 109
multifanout handling

constructive congestion map 209
multilevel logic synthesis 214
multilevel operation

congestion-aware logic synthesis 221
logic synthesis 216

multilevel placement 151, 171
multilevel routing 108
multiplier 234
multiport RLC network 130
mutual contraction

computation time 75
congestion metric

technology mapping 73
congestion-aware technology mapping

203
correlation 75
technology decomposition

congestion-aware logic synthesis
219

neighborhood population
computation time 89
congestion metric 88
congestion-aware logic synthesis 225

net
clock 3
definition 7
flat

horizontally 43
vertically 43

flyover 34
global 34
inter-bin 34
intra-bin 34, 43

local 34
multipin 36
power supply 3
signal 3

net delay
physical synthesis 71

net ordering 98
net range

congestion metric 87
time complexity 88

net-centric scheme
find-and-fix 154

netlength
congestion metric

technology mapping 72
time complexity 72

technology decomposition
congestion-aware logic synthesis

219
technology mapping 199

netlength metric
closeness 90
connectivity 90
edge-separability 90
intrinsic shortest path length 90

netlist
premapped

predictive congestion map 75
network flow

routing 99, 103
network flow based

cell-centric scheme 154
noise

buffering 14
crosstalk 14
optimization 25, 136
shield 14
spacing 14
switching window 25

non-balance constraint 183
non-planar graph 85
non-preferred direction routing 113
non-uniform power grid 131
normalized cell constraint weight 184

objective function
linear sum-of-wirelength 149
log-sum-exp wirelength 149

open 7, 9
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optimality
congestion-aware technology mapping

constructive congestion map 212
technology mapping 190

optimization
congestion 27
greedy congestion 177
noise 25

overflow 9
definition 10
total track 11

overlapping switchboxes 113
overview

detailed routing 112
global routing 98
logic synthesis 214
placement 147
technology mapping 190

padding
cell 175

parallel external net constraint 185
parallelism 233

coarse-grained 231
parallelization

detailed routing 112
global routing 106

partial routing blockage 50
partial routing tree 104
partitioning

quadratic placement 170
recursive 151
recursive top-down

placement 150
pattern matching

technology mapping 191
perimeter degree

congestion metric 38
Rent’s rule 40

pessimistic probabilistic congestion
estimation 54

physical synthesis
fast global routing 64
net delay 71
probabilistic congestion estimation

64
piecewise linear load-delay curve 194
pin

virtual 113

pin density 177
congestion metric 37
global wire 37
inter-bin net 37
intra-bin net 37
local wire 37

pin density constraint 185
pin hookup 97
pipelined multiplier 234
placement

analytical 148
companion

technology mapping 71, 203
detailed 148
force-directed 148
global 148
multilevel 151, 171
partitioning

recursive top-down 150
partitioning-based quadratic 170
quadrisection-based 169
stable 149

placement-aware logic synthesis 84
Poisson distribution 20
Poisson’s equation

placement 149
porosity

routing 235
post-processing

congestion-aware placement 147
probabilistic congestion map 55

power grid 130
local sparsification 130, 134
non-uniform 131

power pitch 131
power routing

adaptive 131
predictive congestion map

congestion-aware technology mapping
75, 205

correlation 76
error 79
probabilistic congestion estimation

75
spatial distribution 79
time complexity 78

premapped netlist
predictive congestion map 75

Prim-Dijkstra algorithm 133
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primitive gate 70
probabilistic congestion estimation 41

approximation 54
complexity 52
design convergence 54
error 54
flat net 43
inaccuracy 56
inter-bin net

double bend route 45
multibend route 48
single bend route 45

intra-bin net 43
multi-pin net

MST 53
RST 53

pessimism 54
post-processing 55
routing models 42
time complexity 54

propagation of constructive congestion
map 209

pseudo-pin
routing blockage model 52

quadratic delay 13
quadratic placement 149
quadrisection-based

placement 169
quadrisectioning 179
quotient

logic synthesis 218

recursive bisection 150
recursive bisectioning

white space management 180
recursive clustering 151
recursive partitioning 151
recursive top-down partitioning

placement 150
redundant via 18
refinement

multilevel placement 172
refinement pass 108
relative weight

mutual contraction 73
relaxation 151
remainder

logic synthesis 218

Rent’s exponent 38
Rent’s rule 38

average netlength 40
congestion metric 38
perimeter degree 40
Region II 39
Region III 39
regions 39
wirelength estimation 40

restrictive design rules 26
resubstitution

logic synthesis 217
reverse scaling 24

crosstalk noise 25
rip-up and reroute 99, 101
ripple move 177
RLC Noise

shield synthesis 137
routability impact

buffer 116
route

flat 42
L 42, 103, 170, 175
LZ 173
multibend 48
single bend 42, 103, 170, 175
Z 42, 103

router
gridded 5
gridless 5

routing
detailed 6, 7, 97, 112
global 6–8, 97, 98
monotonic 120
non-preferred direction 113
porosity 235
sequential 100
theoretical bound 109

routing architecture 6
routing blockage

complete 50
complicated 52
model 50
partial 50

routing congestion 7, 9
definition 10

routing direction 5
routing edge 98
routing graph 4, 98
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search space reduction
fast global routing 57

routing grid
hierarchy 105

routing layer 4–6
routing model 4
row utilization 232
RST 36

probabilistic congestion estimation
56

RTL 83, 189

scaling
global interconnect delay 24
ideal 22

coarse-grained parallelism 232
inter-buffer separation 24
interconnect 22

capacitance 23
coupling capacitance 23
resistance 23

local interconnect delay 24
reverse 24

sequential routing 100
shield insertion net ordering 137
shield synthesis for RLC Noise 137
shielding 130

constraint 131
short 7, 9
shortest path algorithm 103
shrink 20
shrunk switchbox 112
signal and power network codesign

132
signal integrity 3
simulated annealing

placement 152, 172
routing 99, 110

single bend route 45, 103, 170, 175
single trunk Steiner tree heuristic 170
skew 3
slack

covering 210
spacing 130

minimum 18
spatial distribution

predictive congestion map 79
speed-up

logic synthesis 224

stable placement 149
standard

clean room 20
standard cells 4
star model

multipin net 78
Steiner arborescence tree 173
Steiner min-max tree 101, 134
Steiner nodes 7
Steiner tree 101
Steiner tree heuristic

single trunk 170
SMMT 101

stochastic estimation
congestion metric 41

structural properties
congestion metrics 84

subject graph 70
subject graph placement 81, 198, 213
substitution

logic synthesis 217
sum-of-wirelength objective function

149
super-cell 105
supply

track 6
switchbox

expanded 112
overlapping 113
shrunk 112

switchbox for detailed routing 112
switching window 25
synthesis

high level 234
synthesis-level congestion metric 67

tall wire 136
technology decomposition

congestion-aware logic synthesis 219
logic synthesis 215

technology mapping
area minimization 191
congestion metric 70
congestion optimization 189
congestion-aware 28, 72, 197
DAG 195
delay minimization 192
logic duplication 195
logic replication 195
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netlength
congestion metric 72

optimality 190
overview 190
subject graph placement 198
tree 195

technology scaling
ideal 22

temperature
simulated annealing 110, 152

temporary constraint relaxation 183
terminal propagation 150
tessellation 4, 5

bin 42
search space reduction

fast global routing 58
tile

global routing 4
time complexity

A* search 62
best first search 62
comparison

congestion-aware technology
mapping 213

congestion-aware technology mapping
constructive congestion map 212
mutual contraction 205
netlength 203

constructive congestion map 81
fanout range 88
fast global routing 62
net range 88
netlength

congestion metric 72
predictive congestion map 78
probabilistic congestion estimation

54
technology mapping

predictive congestion map 208
top-down hierarchical global routing

107
total track overflow

definition 11
total wirelength

congestion metric 35
track 5

capacity 6
routing 6

track assignment 7, 8, 97

tree
A- 173
minimum spanning 36
partial routing 104
rectilinear spanning 7
rectilinear Steiner 36
Steiner 101
Steiner arborescence 173
Steiner min-max 134
technology mapping 195

TWL 36
two bend detour 103
two-bend route 173
two-level logic synthesis 214

U route 103
unit

functional 234
unpredictability

buffer insertion 15
design cycle 14
design iteration 16
detour 15
floorplan change 16
logic synthesis 15
physical synthesis 15
rip-up and reroute 15
unroutability 16

utilization
routing 42
row 232

V-cycle 108, 151
vertex

routing graph 7
via 4, 6

redundant 18
via stack 6, 97

congestion 25
virtual pin 113
voltage droop 134, 135

W-cycle 151
weight function 101
white space deterioration 181
white space management 162, 180

Dragon 162
allocation aggressiveness 163
cut line adjustment 166
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direct scheme 163
row-based allocation 162
two-step scheme 163

wire
minimum width 5
shielding 97
sizing 97
spacing 97
tall 136

wire-load model
technology mapping 70

wirelength
congestion metric 35
half-rectangle perimeter 36
minimum spanning tree 36
rectilinear Steiner tree 36

wirelength estimation

a priori 40
wireplanning 222
wiring histogram

coarse-grained parallelism 232

yield
critical area 17, 18
defect density 20
die size 19
impact 17
parametric 18
redundant via 18
via 17, 18

manufacturability 18

Z route 103
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