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Glossary of Matlab Terms

A list of Matlab terms used in this text. For a complete list, see Matlab docu-
mentation.

chol computes the Cholesky decomposition of a symmetric positive de�nite
matrix

diag returns the diagonal elements of a matrix as a vector
disp displays results on the screen
eps machine precision (the largest number that, added to 1, returns 1)
eye returns an order n identity matrix: In=eye(n)
feval evaluates a function referred to by name: feval(f,x,y)
�nd produces an index of values meeting a stated condition: find([-1 3 -

2 0]>=0) returns [2 4]
inline creates a function from a string that behaves like a function �le:

f=inline('x.^2+2*y','x','y')

inv matrix inverse
length the number of elements in a vector: length([0 5 2]) returns 3
norm vector or matrix norm (default is the 2-norm)
rand produces random uniformly distributed values on [0,1]: x=rand(m,n)
randn produces random standard normal (Gaussian) variates: x=randn(m,n)
realmax the largest real number representable in Matlab

reshape changes the size of a matrix without changing the total number of
elements: reshape([1 1;1 1;2 2;2 2],2,4]) returns [1 2 1 2;1 2 1 2]

sum sums the elements of a vector or columns of a matrix: sum([1 2 3]
returns 6

tril zeros the above diagonal elements of a matrix: tril([1 2;3 4]) returns
[1 0;3 4]

triu zeros the below diagonal elements of a matrix: triu([1 2;3 4]) returns
[1 2;0 4]



Preface

Many interesting economic models cannot be solved analytically using the standard
mathematical techniques of Algebra and Calculus. This is often true of applied eco-
nomic models that attempt to capture the complexities inherent in real-world in-
dividual and institutional economic behavior. For example, to be useful in applied
economic analysis, the conventional Marshallian partial static equilibrium model of
supply and demand must often be generalized to allow for multiple goods, interegional
trade, intertemporal storage, and government interventions such as tari�s, taxes, and
trade quotas. In such models, the structural economic constraints are of central inter-
est to the economist, making it undesirable, if not impossible, to \assume an internal
solution" to render the model analytically tractable.

Another class of interesting models that typically cannot be solved analytically are
stochastic dynamic models of rational, forward-looking economic behavior. Dynamic
economic models typically give rise to functional equations in which the unknown is
not simply a vector in Euclidean space, but rather an entire function de�ned on a
continuum of points. For example, the Bellman and Euler equations that describe
dynamic optima are functional equations, as often are the conditions that characterize
rational expectations and arbitrage pricing market equilibria. Except in a very limited
number of special cases, these functional equations lack a known closed-form solution,
even though the solution can be shown theoretically to exist and to be unique.

Models that lack closed-form analytical solution are not unique to economics.
Analytically insoluble models are common in biological, physical, and engineering
sciences. Since the introduction of the digital computer, scientists in these �elds have
turned increasingly to numerical computer methods to solve their models. In many
cases where analytical approaches fail, numerical methods are often used to success-
fully compute highly accurate approximate solutions. In recent years, the scope of
numerical applications in the biological, physical, and engineering sciences has grown
dramatically. In most of these disciplines, computational model building and analysis
is now recognized as a legitimate subdiscipline of specialization. Numerical analysis
courses have also become standard in many graduate and undergraduate curriculums
in these �elds.

xii
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Economists, however, have not embraced numerical methods as eagerly as other
scientists. Many economists have shunned numerical methods out of a belief that
numerical solutions are less elegant or less general than closed form solutions. The
former belief is a subjective, aesthetic judgment that is outside of scienti�c discourse
and beyond the scope of this book. The generality of the results obtained from
numerical economic models, however, is another matter. Of course, given an eco-
nomic model, it is always preferable to derive a closed form solution|provided such
a solution exists. However, when essential features of an economic system being stud-
ied cannot be captured neatly in an algebraically soluble model, a choice must be
made. Either essential features of the system must be ignored in order to obtain an
algebraically tractable model, or numerical techniques must be applied. Too often
economists chose algebraic tractability over economic realism.

Numerical economic models are often unfairly criticized by economists on the
grounds that they rest on speci�c assumptions regarding functional forms and param-
eter values. Such criticism, however, is unwarranted when strong empirical support
exists for the speci�c functional form and parameter values used to specify a model.
Moreover, even when there is some uncertainty about functional forms and parame-
ters, the model may be solved under a variety of assumptions in order to assess the
robustness of its implications. Although some doubt will persist as to the implications
of a model outside the range of functional forms and parameter values examined, this
uncertainty must be weighed against the lack of relevance of an alternative model
that is explicitly soluble, but which ignores essential features of the economic system
of interest. We believe that it is better to derive economic insights from a realistic
numerical model of an economic system than to derive irrelevant results, however
general, from an unrealistic, but explicitly soluble model.

Despite resistance by some, an increasing number of economists are becoming
aware of the potential bene�ts of numerical economic model building and analysis.
This is evidenced by the recent introduction of journals and an economic society
devoted to the sub-discipline of computational economics. The growing popularity
of computational economics, however, has been impeded by the absence of adequate
textbooks and computer software. The methods of numerical analysis and much
of the available computer software have been largely developed for non-economic
disciplines, most notably the physical, mathematical, and computer sciences. The
scholarly literature can also pose substantial barriers for economists, both because of
its mathematical prerequisites and because its examples are unfamiliar to economists.
Many available software packages, moreover, are designed to solve problems that are
speci�c to the physical sciences.

This book addresses the diÆculties typically encountered by economists attempt-
ing to learn and apply numerical methods in several ways. First, this book emphasizes
practical numerical methods, not mathematical proofs, and focuses on techniques
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that will be directly useful to economic analysts, not those that would be useful ex-
clusively to physical scientists. Second, the examples used in the book are drawn from
a wide range of sub-specialties of economics and �nance, both in macro- and micro-
economics, with particular emphasis on problems in �nancial, agricultural, resource
and macro- economics. And third, we include with the textbook an extensive library
of computer utilities and demonstration programs to provide interested researchers
with a starting point for their own computer models.

We make no attempt to be encyclopedic in our coverage of numerical methods
or potential economic applications. We have instead chosen to develop only a rela-
tively small number of techniques that can be applied easily to a wide variety of eco-
nomic problems. In some instances, we have deviated from the standard treatments
of numerical methods in existing textbooks in order to present a simple consistent
framework that may be readily learned and applied by economists. In many cases we
have elected not to cover certain numerical techniques when we regard them to be of
limited bene�t to economists, relative to their complexity. Throughout the book, we
try to explain our choices clearly and to give references to more advanced numerical
textbooks where appropriate.

The book is divided into two major sections. In the �rst six chapters, we develop
basic numerical methods, including solving linear and nonlinear equation methods,
complementarity methods, �nite-dimensional optimization, numerical integration and
di�erentiation, and function approximation. In these chapters, we develop appreci-
ation for basic numerical techniques by illustrating their application to equilibrium
and optimization models familiar to most economists. The last �ve chapters of the
book are devoted to methods for solving dynamic stochastic models in economic and
�nance, including dynamic programming, rational expectations, and arbitrage pricing
models in discrete and continuous time.

The book is aimed at both graduate students, advanced undergraduate students,
and practicing economists. We have attempted to write a book that can be used
both as a classroom text and for self-study. We have also attempted to make the
various sections reasonably self-contained. For example, the sections on discrete time
continuous state models are largely independent from those on discrete time discrete
state models. Although this results in some duplication of material, we felt that this
would increase the usefulness of the text by allowing readers to skip sections.

Although we have attempted to keep the mathematical prerequisites for this book
to a minimum, some mathematical training and insight is necessary to work with com-
putational economic models and numerical techniques. We assume that the reader is
familiar with ideas and methods of linear algebra and calculus. Appendix A provides
an overview of the basic mathematics used throughout the text.

One barrier to the use of numerical methods by economists is lack of access to
functioning computer code. This presents an apparent dilemma to us as textbook
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authors, given the variety of computer languages available. On the one hand, it is
useful to have working examples of code in the book and to make the code available
to readers for immediate use. On the other hand, using a speci�c language in the
text could obscure the essence of the numerical routines for those unfamiliar with the
chosen language. We believe, however, that the latter concern can be substantially
mitigated by conforming to the syntax of a vector processing language. Vector pro-
cessing languages are designed to facilitate numerical analysis and their syntax is often
simple enough that the language is transparent and easily learned and implemented.

Due to its facility of use and its wide availability on university campus computing
systems, we have chosen to illustrate algorithms in the book using Matlab and
have provided an toolbox of Matlab utilities and demonstration programs to assist
interested readers develop their own computational economic applications.

The CompEcon toolbox can be obtained via the internet at the URL:
http://?? All of the �gures and tables in this book were generated by Matlab

demonstration �les provided with the toolbox (see List of Tables and List of Figures
for �le names). Once the toolbox is installed, these can be run by typing the ap-
propriate �le name at the Matlab command line. For those not familiar with the
Matlab programming language, a primer in provided in Appendix B.

The text contains many code fragments, which, in some cases, have been simpli�ed
for expositional clarity. This generally consists of eliminating the explicit setting of
optional parameters and not displaying code that actually generates tabular or graph-
ical output. The demonstration and function �les provided in the toolbox contain
fully functioning versions. In many cases the toolbox versions of functions described
in the text have optional parameters that can be altered by the user user the toolbox
function optset. The toolbox is described in detail in ?? on page ??.

Our ultimate goal in writing this book is to motivate a broad range of economists
to use numerical methods in their work by demonstrating the essential principles
underlying computational economic models across sub-disciplines. It is our hope
that this book will make accessible a range of computational tools that will enable
economists to analyze economic and �nancial models that heretofore they were unable
to solve within the con�nes of traditional mathematical economic analysis.



Chapter 1

Introduction

1.1 Some Apparently Simple Questions

Consider the constant elasticity demand function

q = p�0:2:

This is a function because, for each price p, there is an unique quantity demanded
q. Given a hand-held calculator, any economist could easily compute the quantity
demanded at any given price.

An economist would also have little diÆculty computing the price that clears the
market of a given quantity. Flipping the demand expression about the equality sign
and raising each side to the power of �5, the economist would derive a closed-form
expression for the inverse demand function

p = q�5:

Again, using a calculator any economist could easily compute the price that will
exactly clear the market of any given quantity.

Suppose now that the economist is presented with a slightly di�erent demand
function

q = 0:5 � p�0:2 + 0:5 � p�0:5;
one that is the sum a domestic demand term and an export demand term. Using
standard calculus, the economist could easily verify that the demand function is
continuous, di�erentiable, and strictly decreasing. The economist once again could
easily compute the quantity demanded at any price using a calculator and could easily
and accurately draw a graph of the demand function.

1
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However, suppose that the economist is asked to �nd the price that clears the
market of, say, a quantity of 2 units. The question is well-posed. A casual inspection of
the graph of the demand function suggests that its inverse is well-de�ned, continuous,
and strictly decreasing. A formal argument based on the Intermediate Value and
Implicit Function Theorems would prove that this is so. An unique market clearing
price clearly exists.

But what is the inverse demand function? And what price clears the market?
After considerable e�ort, even the best trained economist will not �nd an explicit
answer using Algebra and Calculus. No closed-form expression for the inverse demand
function exists. The economist cannot answer the apparently simple question of what
the market clearing price will be.

Consider now a simple model of an agricultural commodity market. In this market,
acreage supply decisions are made before the per-acre yield and harvest price are
known. Planting decisions are based on the price expected at harvest:

a = 0:5 + 0:5E[p]:

After the acreage is planted, a random yield y is realized, giving rise to a supply

q = a~y

that is entirely sold at a market clearing price

p = 3� 2q:

Assume the random yield y is exogenous and distributed normally with a mean 1 and
variance 0.1.

Most economists would have little diÆculty deriving the rational expectations
equilibrium of this market model. Substituting the �rst expression into the second,
and then the second into the third, the economist would write

p = 3� 2(0:5 + 0:5E[p])~y:

Taking expectations on both sides

E[p] = 3� 2(0:5 + 0:5E[p]);

she would solve for the equilibrium expected price E[p] = 1. She would conclude that
the equilibrium acreage is a = 1 and the equilibrium price distribution has a variance
of 0.4.

Suppose now that the economist is asked to assess the implications of a proposed
government price support program. Under this program, the government guarantees
each producer a minimum price, say 1. If the market price falls below this level, the
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government simply pays the producer the di�erence per unit produced. The producer
thus receives an e�ective price of max(p; 1) where p is the prevailing market price.
The government program transforms the acreage supply relation to

a = 0:5 + 0:5E[max(p; 1)]:

Before proceeding with a formal mathematical analysis, the economist exercises a
little economic intuition. The government support, she reasons, will stimulate acreage
supply, raising acreage planted. This will shift the equilibrium price distribution to
the left, reducing the expected market price below 1. Price would still occasionally
rise above 1, however, implying that the expected e�ective producer price will exceed
1. The di�erence between the expected e�ective producer price and the expected
market price represents a positive expected government subsidy.

The economist now attempts to formally solve for the rational expectations equi-
librium of the revised market model. She performs the same substitutions as before
and writes

p = 3� 2(0:5 + 0:5E[max(p; 1)])~y:

As before, she takes expectations on both sides

E[p] = 3� 2(0:5 + 0:5E[max(p; 1)]):

In order to solve the expression for the expected price, the economist uses a fairly
common and apparently innocuous trick: she interchanges the max and E operators,
replacing E[max(p; 1)] with max(E[p]; 1). The resulting expression is easily solved
for E[p] = 1. This solution, however, asserts the expected market price and acreage
planted remain unchanged by the introduction of the government price support policy.
This is inconsistent with the economist's intuition.

The economist quickly realizes her error. The expectation operator cannot be in-
terchanged with the maximization operator because the latter is a nonlinear function.
But if this operation is not valid, then what mathematical operations would allow the
economist to solve for the equilibrium expected price and acreage?

Again, after considerable e�ort, our economist is unable to �nd an answer us-
ing Algebra and Calculus. No apparent closed-form solution exists for the model.
The economist cannot answer the apparently simple question of how the equilibrium
acreage and expected market price will change with the introduction of the govern-
ment price support program.

1.2 An Alternative Analytic Framework

The two problems discussed in the preceding section illustrate how even simple eco-
nomic models cannot always be solved using standard mathematical techniques.
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These problems, however, can easily be solved to a high degree of accuracy using
numerical methods.

Consider the inverse demand problem. An economist who knows some elementary
numerical methods and who can write basicMatlab code would have little diÆculty
solving the problem. The economist would simply write the following elementary
Matlab program:

p = 0.25;

for i=1:100

deltap = (.5*p^-.2+.5*p^-.5-2)/(.1*p^-1.2 + .25*p^-1.5);

p = p + deltap;

if abs(deltap) < 1.e-8, break, end

end

disp(p);

He would then execute the program on a computer and, in an instant, compute
the solution: the market clearing price is 0.154. The economist has used Newton's
root�nding method, which is discussed in Section 3.3 on page 35.

Consider now the rational expectations commodity market model with govern-
ment intervention. The source of diÆculty in solving this problem is the need to
evaluate the truncated expectation of a continuous distribution. An economist who
knows some numerical analysis and who knows how to write basic Matlab code,
however, would have little diÆculty computing the rational expectation equilibrium
of this model. The economist would replace the original normal yield distribution
with a discrete distribution that has identical lower moments, say one that assumes
values y1; y2; : : : ; yn with probabilities w1; w2; : : : ; wn. After constructing the discrete
distribution approximant, which would require only a single call to the CompEcon
library routine qnwnorm, the economist would code and execute the following elemen-
tary Matlab program:1

[y,w] = qnwnorm(10,1,0.1);

a = 1;

for it=1:100

aold = a;

p = 3 - 2*a*y;

f = w'*max(p,1);

a = 0.5 + 0.5*f;

if abs(a-aold)<1.e-8, break, end

end

disp(a);disp(f);disp(w'*p)

1The function qnwnorm, is discussed in Chapter 5.
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In an instant, the program would compute and display the rational expectations
equilibrium acreage, 1.10, the expected market price, 0.81, and the expected e�ective
producer price, 1.19. The economist has combined Gaussian quadrature techniques
and �xed-point function iteration methods to solve the problem.
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Exercises

1.1. Plot the function f(x) = 1� e2x on the interval [�1; 1] using a grid of evenly-
spaced points 0:01 units apart.

1.2. Consider the matrices

A =

2
4 0 �1 2
�2 �1 4
2 7 �3

3
5

and

B =

2
4 �7 1 1

7 �3 �2
3 5 0

3
5

and the vector

y =

2
4 3
�1
2

3
5 :

(a) Formulate the standard matrix product C = A � B and solve the linear
equation Cx = y. What are the values of C and x?

(b) Formulate the element-by-element matrix product C = A: � B and solve
the linear equation Cx = y. What are the values of C and x?

1.3. Using the Matlab standard normal pseudo-random number generator randn,
simulate a hypothetical time series fytg governed by the structural relationship

yt = 5 + 0:05t+ �t

for years t = 1960; 1961; : : : ; 2001, assuming that the �t are independently and
identically distributed with mean 0 and standard deviation 0.2. Using only
Matlab elementary matrix operations, regress the simulated observations of
yt on a constant and time, then plot the actual values of y and estimated trend
line against time.

1.4. Consider the rational expectations commodity market model of discussed on
page 2, except now assume that the yield has a simple two point distribution
in which yields of 0.7 and 1.3 are equally probable.
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(a) Compute the expectation and variance of price without government sup-
port payments.

(b) Compute the expectation and variance of the e�ective producer price as-
suming a support price of 1.

(c) What is the expected government subsidy per planted acre?



Chapter 2

Computer Basics and

Linear Equations

2.1 Computer Arithmetic

Some knowledge of how computers perform numerical computations and how pro-
gramming languages work is useful in applied numerical work, especially if one is to
write eÆcient programs and avoid errors. It often comes as an unpleasant surprise to
many people to learn that exact arithmetic and computer arithmetic do not always
give the same answers, even in programs without programming errors.

For example, consider the following two statements

x = (1e-20 + 1) - 1

and

x = 1e-20 + (1 - 1):

Here, 1e-20 is computer shorthand for 10�20. Mathematically the two statements are
equivalent because addition and subtraction are associative. A computer, however,
would evaluate these statements di�erently. The �rst statement would, incorrectly,
likely result in x = 0, whereas the second would result, correctly, in x = 10�20. The
reason has to do with how computers represent numbers.

Typically, computer languages such as Fortran and C allow several ways of rep-
resenting a number. Matlab makes things simple by only have one representation
for a number. Matlab uses what is often called a double precision oating point
number. The exact details of the representation depends on the hardware but it will
suÆce for our purposes to suppose that oating point numbers are stored in the form
m2e, where m and e are integers with �2b � m < 2b and �2d � e < 2d. For example,

8
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the number �3210:48 cannot be represented precisely as an ordinary double precision
number but is approximately equal to�7059920181484585�2�41. The value of the ap-
proximation, to 32 decimal digits, is equal to �3210:4800000000000181898940354586,
implying that the error in representing �3210:48 is approximately 2�42.

Consider now what happens when arithmetic operations are performed. If m12
e1

is multiplied by m22
e2 , the exact result is m1m22

e1+e2 . If m1m2 is outside the range
[�2b; 2b), it will need to be divided by powers of 2 until it is within this range and the
exponent will need to be adjusted accordingly. In the process of dividing m1m2, any
remainders will be lost. This means it is possible to perform the operation (x*y)/y

and have the result not equal x; instead it may be o� by 1 in its least signi�cant digit.
Furthermore, if e1+e2 (plus any adjustment arising from the division) is greater than
2d or less than �2d, the result cannot be represented. This is a situation known as
overow. In Matlab, overow produces a result that is set to inf or -inf. Further
operations may be possible and produce sensible results, but, more often than not,
the end result of overow is useless.

Addition is also problematic. Suppose e1 > e2; then

m12
e1 +m12

e2 =
�
m1 +

m2

2e1�e2

�
2e1:

The computer, however, will truncate m2=2
e1�e2, so the result will not be exact. It

is therefore possible to perform x+y, for y 6= 0 and have the result equal x; this will
occur if m2 < 2e1�e2 . Although odd, the result is nonetheless accurate to its least
signi�cant digit.

Of all the operations on oating point numbers, the most troublesome is subtrac-
tion, particularly when a large number is subtracted from another large number.
Consider, for example, what happens when one performs 1000000.2-1000000.1.
The result, of course, should equal 0.1 but instead equals (on Pentium processor)
0.09999999997672. The reason for this strange behavior is that the two number being
operated on cannot be represented exactly. On a Pentium processor, the oating
points numbers used are actually

8589935450993459� 2�33 = 1000000:0999999999767169356346130

and

8589936309986918� 2�33 = 1000000:1999999999534338712692261:

The result obtained from subtracting the �rst from the second is therefore

(8589936309986918� 8589935450993459)2�33 = 0:09999999997672

as we found above. The error is approximately �2:3283� 10�11, which is roughly the
same order of magnitude as 2�34.
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Although one's �rst impression may be to minimize the importance of �nite pre-
cision arithmetic, serious problems can arise if one is not careful. Furthermore, these
problems may result in strange behavior that is hard to track down or erroneous
results that may, or may not, be detected.

Consider, for example, the computation of the function

��(y; z) = y + z �
p
y2 + z2:

This function is used in solving complementarity problems and is discussed in Section
3.7 on page 53. Most of the time it can be computed as written and no problems will
arise. When one of the values gets large relative to the other, however, the obvious
way of coding can fail due to overow or, worse, can produce an incorrect answer.

Suppose that jyj > jzj. One problem that can arise is that y is so big that y2

overows. The largest real number representable on a machine can be found with
the Matlab command realmax (it is approximately 21024 � 10308 for most double
precision environments). Although this kind of overow may not happen often, it
could have unfortunate consequences and cause problems that are hard to detect.

Even when y is not that big, if it is big relative to z, several problems can arise.
The �rst of these is easily dealt with. Suppose we evaluate

y + z �
p
y2 + z2

when jyj is large enough so y + z is evaluated as y. This implies that
p
y2 + z2 will

be evaluated as jyj. When y < 0, the expression is evaluated as 2y, which is correct
to the most signi�cant digit. When y > 0, however, we get 0, which may be very far
from correct. If the expression is evaluated in the order

y �
p
y2 + z2 + z

the result will be z, which is much closer to the correct answer.
An even better approach is to use

��(y; z) = y
�
1� sign(y)

p
1 + �2 + �

�
;

where � = z=y. Although this is algebraically equivalent, it has very di�erent proper-
ties. First notice that the chance of overow is greatly reduced because 1 � 1+�2 � 2
and so the expression in ( ) is bounded on [�; 4]. If 1 + �2 is evaluated as 1 (i.e., if �
is less than the square root of machine precision), this expression yields 2y if y < 0
and y� = z if y > 0.

This is a lot better, but one further problem arises when y > 0 with jyj � jzj. In
this case there is a cancellation due to the expression of the form

z = 1�
p
1 + �2
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The obvious way of computing this term will result in loss of precision as � gets small.
Another expression for z is

z = �
�
1�p1 + �2

�2
+ �2

2
p
1 + �2

:

Although this is more complicated, it is accurate regardless of the size of �. As � gets
small, this expression will be approximately �2=2. Thus, if � is about the size of the
square root of machine precision (2�26 on most double precision implementations), z
would be computed to machine precision with the second expression, but would be
computed to be 0 using the �rst, i.e., no signi�cant digits would be correct.

Putting all of this together, a good approach to computing ��(y; z) when jyj � jzj
uses

��(y; z) =

8<
:

y(1 +
p
1 + �2 + �) if y < 0

y

�
�� (1�

p
1+�2)

2
+�2

2
p
1+�2

�
if y > 0

where � = z=y (reverse z and y if jyj < jzj).
Matlab has a number of special numerical representations relevant to this discus-

sion. We have already mentioned inf and -inf. These arise not only from overow
but from division by 0. The number realmax is the largest oating point number
that can be represented; realmin is the smallest positive (normalized) number rep-
resentable.1 In addition, eps represents the machine precision, de�ned as the �rst
number greater than 1 that can be represented as a oating point number. Another
way to say this is, for any 0 � � � eps=2, 1 + � will be evaluated as 1 (i.e., eps is
equal to 21�b).2 All three of these special values are hardware speci�c.

In addition, oating point numbers may get set to NaN, which stands for not-a-
number. This typically results from a mathematically unde�ned operation, such as
inf-inf and 0/0. It does not result, however, from inf/0, 0/inf or inf*inf (these
result in inf, 0 and inf). Any arithmetic operation involving a NaN results in a NaN.

Roundo� error is only one of the pitfalls in evaluating mathematical expressions.
In numerical computations, error is also introduced by the computer's inherent inabil-
ity to evaluate certain mathematical expressions exactly. For all its power, a computer
can only perform a limited set of operations in evaluating expressions. Essentially this
list includes the four arithmetic operations of addition, subtraction, multiplication
and division, as well as logical operations of comparison. Other common functions,

1A denormalized number is one that non-zero, but has an exponent equal to its smallest possible
value.

220 + 2�b = (2b + 1)2�b cannot be represented and must be truncated to (2b�1)21�b = 1.
20 + 21�b = (2b�1 + 1)21�b, on the other hand, can be represented.
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such as exponential, logarithmic, and trigonometric functions cannot be evaluated
directly using computer arithmetic. They can only be evaluated approximately using
algorithms based on the four basic arithmetic operations.

For the common functions very eÆcient algorithms typically exist and these are
sometimes \hardwired" into the computer's processor or coprocessor. An important
area of numerical analysis involves determining eÆcient approximations that can be
computed using basic arithmetic operations. For example, the exponential function
has the series representation

exp(x) =
1X
i=0

xn=n!:

Obviously one cannot compute the in�nite sum, but one could compute a �nite num-
ber of these terms, with the hope that one will obtain suÆcient accuracy for the
purpose at hand. The result, however, will always be inexact.3

For nonstandard problems, we must often rely on our own abilities as numerical
analysts (or know when to seek help). Being aware of some of the pitfalls should help
us avoid them.

2.2 Data Storage

Matlab's basic data type is the matrix, with a scalar just a 1 � 1 matrix and an
n-vector an n � 1 or 1 � n matrix. Matlab keeps track of matrix size by storing
row and column information about the matrix along with the values of the matrix
itself. This is a signi�cant advantage over writing in low level languages like Fortran
or C because it relieves one of the necessity of keeping track of array size and memory
allocation.

When one wants to represent an m � n matrix of numbers in a computer there
are a number of ways to do this. The most simple way is to store all the elements
sequentially in memory, starting with the one indexed (1,1) and working down succes-
sive columns or across successive rows until the (m;n)th element is stored. Di�erent
languages make di�erent choices about how to store a matrix. Fortran stores matrices
in column order, whereas C stores in row order. Matlab, although written in C,
stores in column order, thereby conforming with the Fortran standard.

Many matrices encountered in practice are sparse, meaning that they consist
mostly of zero entries. Clearly, it is a waste of memory to store all of the zeros,
and it is time consuming to process the zeros in arithmetic matrix operations. Mat-

lab supports a sparse matrix data type, which eÆciently keeps track of only the

3Incidently, the Taylor series representation of the exponential function does not result in an
eÆcient computational algorithm.
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non-zero elements of the original matrix and their locations. In this storage scheme,
the non-zero entries and the row indices are stored in two vectors of the same size.
A separate vector is used to keep track of where the �rst element in each column is
located. If one wants to access element (i; j), Matlab checks the jth element of the
column indicator vector to �nd where the jth column starts and then searches the
row indicator vector for the ith element (if one is not found then the element must
be zero).

Although sparse matrix representations are useful, their use incurs a cost. To
access element (i; j) of a full matrix, one simply goes to storage location (i� 1)m+ j.
Accessing an element in a sparse matrix involves a search over row indices and hence
can take longer. This additional overhead can add up signi�cantly and actually slow
down a computational procedure.

A further consideration in using sparse matrices concerns memory allocation. If
a procedure repeatedly alters the contents of a sparse matrix, the memory needed to
store the matrix may change, even if its dimension does not. This means that more
memory may be needed each time the number of non-zero elements increases. This
memory allocation is both time consuming and may eventually exhaust computer
memory.

The decision whether to use a sparse or full matrix representation depends on a
balance between a number of factors. Clearly for very sparse matrices (less than 10%
non-zero) one is better o� using sparse matrices and anything over 67% non-zeros
one is better o� with full matrices (which actually require less storage space at that
point). In between, some experimentation may be required to determine which is
better for a given application.

Fortunately, for many applications, users don't even need to be aware of whether
matrices are stored in sparse or full form. Matlab is designed so most functions work
with any mix of sparse or full representations. Furthermore, sparsity propagates in a
reasonably intelligent fashion. For example, a sparse times a full matrix or a spare plus
a full matrix results in a full matrix, but if a sparse and a full matrix are multiplied
element-by-element (using the \.*" operator) a sparse matrix results.

2.3 Linear Equations and the L-U Factorization

The linear equation is the most elementary problem that arises in computational
economic analysis. In a linear equation, an n � n matrix A and an n-vector b are
given, and one must compute the n-vector x that satis�es

Ax = b:
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Linear equations arise, directly or indirectly, in most computational economic ap-
plications. For example, a linear equation may be solved when computing the steady-
state distribution of a discrete-state stochastic economic process or when computing
the equilibrium prices and quantities of a multicommodity market model with linear
demand and supply functions. Linear equations also arise as elementary tasks in solu-
tion procedures designed to solve more complicated nonlinear economic models. For
example, a nonlinear partial equilibrium market model may be solved using Newton's
method, which involves solving a sequence of linear equations. And the Euler func-
tional equation of a rational expectations model may be solved using a collocation
method, which yields a nonlinear equation that in turn is solved as a sequence of
linear equations.

Various practical issues arise when solving a linear equation numerically. Digital
computers are capable of representing arbitrary real numbers with only limited preci-
sion. Numerical arithmetic operations, such as computer addition and multiplication,
produce rounding errors that may, or may not, be negligible. Unless the rounding
errors are controlled in some way, the errors can accumulate, rendering a computed
solution that may be far from correct. Speed and storage requirements are also im-
portant considerations in the design of a linear equation solution algorithm. In some
applications, such as the stochastic simulation of a rational expectations model, linear
equations may have to be solved millions of times. And in other applications, such as
computing option prices using �nite di�erence methods, linear equations with a very
large number of variables and equations may be encountered.

Over the years, numerical analysts have studied linear equations extensively and
have developed algorithms for solving them quickly, accurately, and with a mini-
mum of computer storage. In most applied work, one can typically rely on Gaussian
elimination, which may be implemented in various di�erent forms depending on the
structure of the linear equation. Iterative methods o�er an alternative to Gaussian
elimination and are especially eÆcient if the A matrix is large and consists mostly of
zero entries.

Some linear equations Ax = b are relatively easy to solve. For example, if A is a
lower triangular matrix,

A =

2
66664
a11 0 0 : : : 0
a21 a22 0 : : : 0
a31 a32 a33 : : : 0

an1 an2 an3 : : : ann

3
77775 ;

then the elements of x can be computed recursively using forward-substitution:

x1 = b1=a11
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x2 = (b2 � a21x1)=a22
x3 = (b3 � a31x1 � a32x2)=a33
...

xn = (bn � an1x1 � an2x2 � : : :� ann�1xn�1)=ann:
This clearly works only if all of the diagonal elements are non-zero (i.e., if the matrix
is nonsingular). The algorithm can be written more compactly using summation
notation as

xi =

 
bi �

i�1X
j=1

aijxj

!
=aii 8i:

In the vector processing language Matlab, this may be implemented as follows:

for i=1:length(b)

x(i)=(b(i)-A(i,1:i-1)*x(1:i-1))/A(i,i);

end

If A is an upper triangular matrix, then the elements of x can be computed recursively
using backward-substitution.

Most linear equations encountered in practice, however, do not have a triangular
A matrix. In such cases, the linear equation is often best solved using the L-U

factorization algorithm. The L-U algorithm is designed to decompose the A matrix
into the product of lower and upper triangular matrices, allowing the linear equation
to be solved using a combination of backward and forward substitution.

The L-U algorithm involves two phases. In the factorization phase, Gaussian
elimination is used to factor the matrix A into the product

A = LU

of a row-permuted lower triangular matrix L and an upper triangular matrix U . A
row-permuted lower triangular matrix is simply a lower triangular matrix that has
had its rows rearranged. Any nonsingular square matrix can be decomposed in this
way.

In the solution phase of the L-U algorithm, the factored linear equation

Ax = (LU)x = L(Ux) = b

is solved by �rst solving

Ly = b
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for y using forward substitution, accounting for row permutations, and then solving

Ux = y

for x using backward substitution.
Consider, for example, the linear equation Ax = b where

A =

2
4 �3 2 3
�3 2 1
3 0 0

3
5 and b =

2
4 10

8
�3

3
5 :

The matrix A can be decomposed into the product A = LU where

L =

2
4 1 0 0

1 0 1
�1 1 0

3
5 and U =

2
4 �3 2 3

0 2 3
0 0 �2

3
5 :

The matrix L is row-permuted lower triangular; by interchanging the second and third
rows, a lower diagonal matrix results. The matrix U is upper triangular. Solving
Ly = b for y using forward substitution involves �rst solving for y1, then for y3, and
�nally for y2. Given the solution y = [10 7 �2]>, the linear equation Ux = y can
the be solved using backward substitution, yielding the solution of the original linear
equation, x = [�1 2 1]>.

The L-U factorization algorithm is faster than other linear equation solution meth-
ods that are typically presented in elementary linear algebra courses. For large n, it
takes approximately n3=3+n2 long operations (multiplications and divisions) to solve
an n�n linear equation using L-U factorization. Explicitly computing the inverse of A
and then computing A�1b requires approximately n3+n2 long operations. Solving the
linear equation using Cramer's rule requires approximately (n + 1)! long operations.
To solve a 10�10 linear equation, for example, L-U factorization requires exactly 430
long operations, whereas matrix inversion and multiplication requires exactly 1100
long operations and Cramer's rule requires nearly 40 million long operations.

Linear equations arise so frequently in numerical analysis that most numerical
subroutine packages and software programs include either a basic subroutine or an
intrinsic function for solving a linear equation using L-U factorization. In Matlab,
the solution to the linear equation Ax = b is returned by the statement x = A n b.
The \n", or \backslash", operator is designed to solve the linear equation using L-U
factorization, unless a special structure for A is detected, in which caseMatlab may
implicitly use another, more eÆcient method. In particular, if Matlab detects that
A is triangular or permuted triangular, it will dispense with L-U factorization and
solve the linear equation directly using forward or backward substitution. Matlab

also uses special algorithms when the A matrix is positive de�nite (see Section 2.7 on
page 22).
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Although L-U factorization is the best general method for solving a linear equa-
tion, situations can arise in which alternative methods may be preferable. For exam-
ple, in many computational economic applications, one must solve a series of linear
equations, all having the same A matrix, but di�erent b vectors, b1; b2; : : : ; bm. In this
situation, it is often computationally more eÆcient to directly compute and store the
inverse of A �rst and then compute the solutions x = A�1bj by performing only di-
rect matrix-vector multiplications. Whether explicitly computing the inverse is faster
than L-U factorization depends on the size of the linear equation system n and the
number of times, m, an equation system is to be solved. Computing x = A n bj a
total of m times involves mn3=3 + mn2 long operations. Computing A�1 once and
then computing A�1bj a total of m times requires n3 +mn2 long operations. Thus
explicit computation of the inverse should be faster than L-U factorization whenever
the number of equations to be solved m is greater than three or four. The actual
breakeven point will vary across numerical analysis packages, depending on the com-
putational idiosyncrasies and overhead costs of the L-U factorization and inverse
routines implemented in the package.

2.4 Gaussian Elimination

The L-U factors of a matrix A are computed using Gaussian elimination. Gaussian
elimination is based on two elementary row operations: subtracting a constant mul-
tiple of one row of a linear equation from another row, and interchanging two rows of
a linear equation. Either operation may be performed on a linear equation without
altering its solution.

The Gaussian elimination algorithm begins with matrices L and U initialized as
L = I and U = A, where I is the identity matrix. The algorithm then uses elementary
row operations to transform U into an upper triangular matrix, while preserving the
permuted lower diagonality of L and the factorization A = LU :

Consider the matrix

A =

2
664

2 0 �1 2
4 2 �1 4
2 �2 �2 3
�2 2 7 �3

3
775 :

The �rst stage of Gaussian elimination is designed to nullify the subdiagonal entries of
the �rst column of the U matrix. The U matrix is updated by subtracting 2 times the
�rst row from the second, subtracting 1 times the �rst row from the third, and sub-
tracting �1 times the �rst row from the fourth. The L matrix, which initially equals
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the identity, is updated by storing the multipliers 2, 1, and �1 as the subdiagonal
entries of its �rst column. These operations yield updated L and U matrices:

L =

2
664

1 0 0 0
2 1 0 0
1 0 1 0
�1 0 0 1

3
775 U =

2
664

2 0 �1 2
0 2 1 0
0 �2 �1 1
0 2 6 �1

3
775 :

After the �rst stage of Gaussian elimination, A = LU and L is lower triangular, but
U is not yet upper triangular.

The second stage Gaussian elimination is designed to nullify the subdiagonal en-
tries of the second column of the U matrix. The U matrix is updated by subtracting
�1 times second row from the third and subtracting 1 times the second row from
the fourth. The L matrix is updated by storing the multipliers �1 and 1 as the
subdiagonal elements of its second column. These operations yield updated L and U
matrices:

L =

2
664

1 0 0 0
2 1 0 0
1 �1 1 0
�1 1 0 1

3
775 U =

2
664

2 0 �1 2
0 2 1 0
0 0 0 1
0 0 5 �1

3
775 :

After the second stage of Gaussian elimination, A = LU and L is lower triangular,
but U still is not upper triangular.

In the third stage of Gaussian elimination, one encounters an apparent problem.
The third diagonal element of the matrix U is zero, making it impossible to nullify
the subdiagonal entry as before. This diÆculty is easily remedied, however, by inter-
changing the third and fourth rows of U . The L matrix is updated by interchanging
the previously computed multipliers residing in the third and fourth columns. These
operations yield updated L and U matrices:

L =

2
664

1 0 0 0
2 1 0 0
1 �1 0 1
�1 1 1 0

3
775 U =

2
664

2 0 �1 2
0 2 1 0
0 0 5 �1
0 0 0 1

3
775 :

The Gaussian elimination algorithm terminates with a permuted lower triangular
matrix L and an upper triangular matrix U whose product is the matrix A. In theory,
Gaussian elimination will compute the L-U factors of any matrix A, provided A is
invertible. If A is not invertible, Gaussian elimination will detect this by encountering
a zero diagonal element in the U matrix that cannot be replaced with a nonzero
element below it.
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2.5 Rounding Error

In practice, Gaussian elimination performed on a computer can sometimes render
inaccurate solutions due to rounding errors. The e�ects of rounding errors, however,
can often be controlled by pivoting.

Consider the linear equation� �M�1 1
1 1

� �
x1
x2

�
=

�
1
2

�
:

where M is a large positive number.
To solve this equation via Gaussian elimination, a single row operation is required:

subtracting �M times the �rst row from the second row. In principle, this operation
yields the L-U factorization� �M�1 1

1 1

�
=

�
1 0
�M 1

� � �M�1 1
0 M + 1

�
:

In theory, applying forward and backward substitution yields the solution x1 =
M=(M + 1) and x2 = (M + 2)=(M + 1), which are both very nearly one.

In practice, however, Gaussian elimination may yield a very di�erent result. In
performing Gaussian elimination, one encounters an operation that cannot be carried
out precisely on a computer, and which should be avoided in computational work:
adding or subtracting values of vastly di�erent magnitudes. On a computer, it is not
meaningful to add or subtract two values whose magnitude di�er by more than the
number of signi�cant digits that the computer can represent. If one attempts such an
operation, the smaller value is e�ectively treated as zero. For example, the sum of 0:1
and 0:0001 may be 0:1001, but on a hypothetical machine with three digit precision
the result of the sum is rounded to 0:1 before it is stored.

In the linear equation above, adding 1 or 2 to a suÆciently largeM on a computer
simply returns the value M . Thus, in the �rst step of the backward substitution, x2
is computed, not as (M + 2)=(M + 1), but rather as M=M , which is exactly one.
Then, in the second step of backward substitution, x1 = �M(1� x2) is computed to
be zero. Rounding error thus produces computed solution for x1 that has a relative
error of nearly 100 percent.

Fortunately, there is a partial remedy for the e�ects of rounding error in Gaussian
elimination. Rounding error arises in the example above because the diagonal element
�M�1 is very small. Interchanging the two rows at the outset of Gaussian elimination
does not alter the theoretical solution to the linear equation, but allows one to perform
Gaussian elimination with a diagonal element of larger magnitude.
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Consider the equivalent linear equation system after the rows have been inter-
changed:�

1 1
�M�1 1

� �
x1
x2

�
=

�
2
1

�
:

After interchanging the rows, the new A matrix may be factored as�
1 1

�M�1 1

�
=

�
1 0

�M�1 1

� �
1 1
0 M�1 + 1

�
:

Backward and forward substitution yield the theoretical results x1 = 1 �M�1 and
x2 =M�1+1+M�1(1�M�1). In evaluating these expressions on the computer, one
again encounters rounding error. Here, x2 is numerically computed to be exactly one
as before. However, x1 is also computed to be exactly one. The computed solution,
though not exactly correct, is correct to the precision available on the computer, and
is certainly more accurate than the one obtained without interchanging the rows.

Interchanging rows during Gaussian elimination in order to make the magnitude
of diagonal element as large as possible is called pivoting. Pivoting substantially
enhances the reliability and the accuracy of a Gaussian elimination routine. For this
reason, all good Gaussian elimination routines designed to perform L-U factorization,
including the ones implemented in Matlab, employ some form of pivoting.

2.6 Ill Conditioning

Pivoting cannot cure all the problems caused by rounding error. Some linear equations
are inherently diÆcult to solve accurately on a computer, despite pivoting. This
occurs when the A matrix is structured in such a way that a small perturbation Æb
in the data vector b induces a large change Æx in the solution vector x. In such cases
the linear equation or, more generally, the A matrix are said to be ill-conditioned.

One measure of ill-conditioning in a linear equation Ax = b is the \elasticity" of
the solution vector x with respect to the data vector b

� = sup
jjÆbjj>0

jjÆxjj=jjxjj
jjÆbjj=jjbjj :

The elasticity gives the maximum percentage change in the size of the solution vector
x induced by a one percent change the size of the data vector b. If the elasticity
is large, then small errors in the computer representation of the data vector b can
produce large errors in the computed solution vector x. Equivalently, the computed
solution x will have far fewer signi�cant digits than the data vector b.
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The elasticity of the solution is expensive to compute and thus is virtually never
computed in practice. In practice, the elasticity is estimated using the condition

number of the matrix A, which for invertible A is de�ned by

� � jjAjj � jjA�1jj:
The condition number of A is the least upper bound of the elasticity. The bound is
tight in that for some data vector b, the condition number equals the elasticity. The
condition number is always greater than or equal to one. Numerical analysts often
use the rough rule of thumb that for each power of 10 in the condition number, one
signi�cant digit is lost in the computed solution vector x. Thus, if A has a condition
number of 1000, the computed solution vector x will have about three fewer signi�cant
digits than the data vector b.

Consider the linear equation Ax = b where Aij = in�j and bi = (in�1)=(i�1). In
theory, the solution x to this linear equation is a vector containing all ones for any n.
In practice, however, if one solves the linear equation numerically usingMatlab's \n"
operator one can get quite di�erent results. Below is a table that gives the supremum
norm approximation error in the computed value of x and the condition number of
the A matrix for di�erent n:

Approximation Condition
n Error Number

5 2.5e-013 2.6e+004
10 5.2e-007 2.1e+012
15 1.1e+002 2.6e+021
20 9.6e+010 1.8e+031
25 8.2e+019 4.2e+040

In this example, the computed answers are accurate to seven decimals up to n =
10. The accuracy, however, deteriorates rapidly after that. In this example, the
matrix A is a member of the a class of notoriously ill-conditioned matrices called the
Vandermonde matrices, which we will encounter again in Chapter 6.

Ill-conditioning ultimately can be ascribed to the limited precision of computer
arithmetic. The e�ects of ill-conditioning can often be mitigated by performing com-
puter arithmetic using the highest precision available on the computer. The best way
to handle ill-conditioning, however, is to avoid it altogether. This is often possible
when the linear equation problem is as an elementary task in a more complicated
solution procedure, such as solving a nonlinear equation or approximating a function
with a polynomial. In such cases one can sometimes reformulate the problem or alter
the solution strategy to avoid the ill-conditioned linear equation. We will see several
examples of this avoidance strategy later in the book.
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2.7 Special Linear Equations

Gaussian elimination can be accelerated for matrices possessing certain special struc-
tures. Two such classes arising frequently in computational economic analysis are
symmetric positive de�nite matrices and sparse matrices.

Linear equations Ax = b in which A is a symmetric positive de�nite arise fre-
quently in least-squares curve-�tting and optimization applications. A special form
of Gaussian elimination, the Cholesky factorization algorithm, may be applied to
such linear equations. Cholesky factorization requires only half as many operations
as general Gaussian elimination and has the added advantage that it is less vulnerable
to rounding error and does not require pivoting.

The essential idea underlying Cholesky factorization is that any symmetric positive
de�nite matrix A can be uniquely expressed as the product

A = U>U

of an upper triangular matrix U and its transpose. The matrix U is called the
Cholesky factor or square root of A. Given the Cholesky factor of A, the linear
equation

Ax = U>Ux = U>(Ux) = b

may be solved eÆciently by using forward substitution to solve

U>y = b

and then using backward substitution to solve

Ux = y:

The Matlab \n" operator will automatically employ Cholesky factorization, rather
than L-U factorization, to solve the linear equation if it detects that A is symmetric
positive de�nite.

Another situation that often arises in computational practice are linear equations
Ax = b in which the A matrix is sparse, that is, it consists largely of zero entries. For
example, in solving di�erential equations, one often encounters tridiagonal matrices,
which are zero except on or near the diagonal. When the A matrix is sparse, the con-
ventional Gaussian elimination algorithm consists largely of meaningless, but costly,
operations involving either multiplication or addition with zero. The Gaussian elim-
ination algorithm in these instances can often be dramatically increased by avoiding
these useless operations.

Matlab has special routines for eÆciently storing sparse matrices and operating
with them. In particular, the Matlab command S=sparse(A) creates a version S of
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the matrix A stored in a sparse matrix format, in which only the nonzero elements of
A and their indices are explicitly stored. Sparse matrix storage requires only a fraction
of the space required to store A in standard form if A is sparse. Also, the operator
\n" is designed to recognize whether a sparse matrix is involved in the operation and
adapts the Gaussian elimination algorithm to exploit this property. In particular,
both x = S nb and x = Anb will compute the answer to Ax = b. However, the former
expression will be executed substantially faster by avoiding operations with zeros.

2.8 Iterative Methods

Algorithms based on Gaussian elimination are called exact or, more properly, direct
methods because they would generate exact solutions for the linear equation Ax = b
after a �nite number of operations, if not for rounding error. Such methods are ideal
for moderately-sized linear equations, but may be impractical for large ones. Other
methods, called iterative methods can often be used to solve large linear equations
more eÆciently if the A matrix is sparse, that is, if A is composed mostly of zero
entries. Iterative methods are designed to generate a sequence of increasingly accurate
approximations to the solution of a linear equation, but generally do not yield an exact
solution after a prescribed number of steps, even in theory.

The most widely-used iterative methods for solving a linear equation Ax = b are
developed by choosing an easily invertible matrix Q and writing the linear equation
in the equivalent form

Qx = b+ (Q� A)x
or

x = Q�1b + (I �Q�1A)x:

This form of the linear equation suggests the iteration rule

x(k+1)  Q�1b+ (I �Q�1A)x(k);

which, if convergent, must converge to a solution of the linear equation.
Ideally, the so-called splitting matrix Q will satisfy two criteria. First, Q�1b and

Q�1A should be relatively easy to compute. This is true if Q is either diagonal or
triangular. Second, the iterates should converge quickly to the true solution of the
linear equation. If

jjI �Q�1Ajj < 1

in any matrix norm, then the iteration rule is a contraction mapping and is guaranteed
to converge to the solution of the linear equation from any initial value. The smaller
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the value of the matrix norm jjI�Q�1Ajj, the faster the guaranteed rate of convergence
of the iterates when measured in the associated vector norm.

The two most popular iterative methods are the Gauss-Jacobi and Gauss-Seidel
methods. The Gauss-Jacobi method sets Q equal to the diagonal matrix formed
from the diagonal entries of A. The Gauss-Seidel method sets Q equal to the upper
triangular matrix formed from the upper triagonal elements of A. Using the row-
sum matrix norm to test the convergence criterion, both methods are guaranteed to
converge from any starting value if A is diagonally dominant, that is, if

jAiij >
nX
i=1

i6=j

jAijj 8i:

Diagonally dominant matrices arise naturally in many computational economic ap-
plications, including the solution of di�erential equations and the approximation of
functions using cubic splines, both of which will be discussed in later sections.

The following Matlab script solves the linear equation Ax = b using Gauss-
Jacobi iteration:

d = diag(A);

for it=1:maxit

dx = (b-A*x)./d;

x = x+dx;

if norm(dx)<tol, break, end

end

Here, the user speci�es the data A and b and an initial guess x for the solution of
the linear equation, typically the zero vector or b. Iteration continues until the norm
of the change dx in the iterate falls below the speci�ed convergence tolerance tol or
until a speci�ed maximum number of allowable iterations maxit are performed.

The following Matlab script solves the same linear equation using Gauss-Seidel
iteration:

Q = tril(A);

for it=1:maxit

dx = Q\(b-A*x);

x = x+lambda*dx;

if norm(dx)<tol, break, end

end

Here, we have incorporated a so-called over-relaxation parameter, �. Instead of using
x + dx, we use x + �dx to compute the next iterate. It is often true, though not
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universally so, that a value of � between 1 and 2 will accelerate convergence of the
Gauss-Seidel algorithm.

The Matlab subroutine library accompanying the textbook includes functions
gjacobi and gseidel that solve linear equations using Gauss-Jacobi and Gauss-Seidel
iteration, respectively. The following script solves a linear equation using Gauss-Seidel
iteration with default value of 1 for the over-relaxation parameter:

A = [3 1 ; 2 5];

b = [7 ; 9];

x = gseidel(A,b)

Execution of this script produces the result x=[2;1]. When A=[3 2; 4 1], however,
the algorithm diverges. The subroutines are extensible in that they allow the user to
override the default values of the convergence parameters and, in the case of gseidel,
the default value of the over-relaxation parameter.

A general rule of thumb is that if A is large and sparse, then the linear equation is
a good candidate for iterative methods, provided that sparse matrix storage functions
are used to reduce storage requirements and computational e�ort. Iterative meth-
ods, however, have some drawbacks. First, iterative methods, in contrast to direct
methods, can fail to converge. Furthermore, it is often diÆcult or computationally
costly to check whether a speci�c problem falls into a class of problems known to
be convergent. It is therefore always a good idea to monitor whether the iterations
seem to be diverging and try something else if they are. Second, satisfaction of the
termination criteria do not necessarily guarantee a similar level of accuracy in the
solution, as measured as the deviation of the approximate solution from the true (but
unknown) solution.
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Exercises

2.1. It is well known that a quadratic equation

ax2 + bx + c = 0

has two roots given by

�b�pb2 � 4ac

2a
:

There are, however, other mathematically correct ways of expressing the quadratic
equation. For example, it could be written as

�2c
b�pb2 � 4ac

or, indeed, as either

�b
2a

(1�
p
1� 4ac=b2):

or

�2c
b(1�p1� 4ac=b2)

(you can derive these by noting that 4ac = (b +
p
b2 � 4ac)(b � pb2 � 4ac).

Discuss the relative merits of these alternative ways of computing the roots.
Under what circumstances will each produce inaccurate results. Based on these
considerations, write a Matlab function that accepts a, b and c and returns
the two roots.

2.2. Solve Ax = b for

A =

2
664

54 14 �11 2
14 50 �4 29
�11 �4 55 22

2 29 22 95

3
775 ; b =

2
664
1
1
1
1

3
775 :

by
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(a) L-U decomposition

(b) Gauss-Jacobi iteration

(c) Gauss-Seidel iteration

How many Gauss-Jacobi and Gauss-Seidel iterations are required to get answers
that agree with the L-U decomposition solution to four signi�cant digits?

2.3. Use theMatlab function randn to generate a random 10 by 10 matrix A and a
random 10-vector b. Then use the Matlab function flop to count the number
of oating point operations needed to solve the linear equation Ax = b 1, 10,
and 50 times for each of the following algorithms:

(a) x = A n b
(b) x = Un(Lnb), computing the L-U factors of A only once using theMatlab

function lu.

(c) x = A�1b, computing A�1 only once using the Matlab function inv.

2.4. Prove theoretically that Gauss-Jacobi iteration applied to the linear equation
Ax = b must converge if A is diagonally dominant. You will need to use the
Contraction Mapping Theorem (Appendix A, 466) and the result that jjMyjj �
jjM jj jjyjj for any square matrix M and conformable vector y.
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Bibliographic Notes

Good introductory discussions of computer basics are contained in Gill et al., Press
et al. and Kennedy and Gentle. These references also all contain discussions of com-
putational aspects of linear algebra and matrix factorizations. A standard in depth
treatment of computational linear algebra is Golub and van Loan. Most textbook on
linear algebra also include discussions of Gaussian elimination and other factoriza-
tions; see, for example, Leon.

We have only discussed the two matrix factorizations that are most important
for the remainder of this text. A number of other factorizations exist and have
uses in computational economic analysis, making them worth mentioning briey (see
refenereces cited above for more details).

The �rst is the eigenvalue/eigenvector factorization. Given A (n � n), this �nds
n � n matrices Z and D, with D diagonal, that satisfy AZ = ZD. The columns
of Z and the diagonal elements of D form eigenvector, eigenvalue pairs. If Z is
nonsingular, this leads to a factorization of the form A = ZDZ�1. It is possible,
however, that Z is singular (even if A is not); such matrices are called defective.
The eigenvalue/eigenvector factorization is unique (up to rearrangement and possible
linear combinations of columns of Z associated with repeated eigenvalues).

In general, both Z and D may be complex-valued, even if A is real-valued. Com-
plex eigenvalues arise in economic models that display cyclic behavior. In the special
case that A is real-valued and symmetric, the eigenvector matrix is not only guaran-
teed to be nonsingular but is orthonormal (i.e., Z>Z = I), so A = ZDZ> and Z and
D are real-valued.

Another factorization is the QR decomposition, which �nds a representation A =
QR, where Q is orthonormal and R is triangular. This factorization is not unique;
there are a number of algorithms that produce di�erent values of Q and R, including
Householder and Givens transformations. A need not be square to apply the QR
decomposition.

Finally, we mention the singular-value decomposition (SVD), which �nds U , D
and V , with U and V orthonormal and D diagonal, that satis�es A = UDV >. The
diagonal elements of D are known as the singular values of A and are nonnegative
and generally order highest to lowest. In the case of a square, symmetric A, this is
identical to the eigenvalue/eigenvector decomposition. The SVD can be used with
non-square matrices.

The SVD is the method of choice for determining matrix condition and rank. The
condition number is the ratio of the highest to the lowest singular value; the rank is
the number of non-zero singular values. In practice, one would treat a singular value
Djj as zero if Djj < maxi(Dii)�, for some speci�ed value of � (Matlab sets � equal
to the value of the machine precision eps times the maximum of the number of rows
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and columns of A).
We have only touched on iterative methods. These are mainly useful when solving

large sparse systems that cannot be stored directly. See Golub and Ortega, Section
9.3, for further details and references.

Numerous software libraries that perform basic linear algebra computations are
available, including LINPACK, LAPACK, IMSL and NAG. See Notes on Web Re-
sources (page 497).



Chapter 3

Nonlinear Equations and

Complementarity Problems

One of the most basic numerical operations encountered in computational economics
is to �nd the solution of a system of nonlinear equations. Nonlinear equations gen-
erally arise in one of two forms. In the nonlinear root�nding problem, a function f
mapping <n to <n is given and one must compute an n-vector x, called a root of f ,
that satis�es

f(x) = 0:

In the nonlinear �xed-point problem, a function g from <n to <n is given and one
must compute an n-vector x called a �xed-point of g, that satis�es

x = g(x):

The two forms are equivalent. The root�nding problem may be recast as a �xed-point
problem by letting g(x) = x�f(x); conversely, the �xed-point problem may be recast
as a root�nding problem by letting f(x) = x� g(x).

In the related complementarity problem, two n-vectors a and b, with a < b, and
a function f from <n to <n are given, and one must compute an n-vector x 2 [a; b],
that satis�es

xi > ai ) fi(x) � 0 8i = 1; : : : ; n
xi < bi ) fi(x) � 0 8i = 1; : : : ; n:

The root�nding problem is a special case of complementarity problem in which ai =
�1 and bi = +1 for all i. However, the complementarity problem is not simply to
�nd a root that lies within speci�ed bounds. An element fi(x) may be nonzero at a
solution of the complementarity problem, provided that xi equals one of the bounds
ai or bi.

30
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Nonlinear equations and complementarity problems arise directly in many eco-
nomic applications. For example, the typical economic equilibrium model charac-
terizes market prices and quantities with an equal number of supply, demand, and
market clearing equations. If one or more of the equations is nonlinear, a nonlin-
ear root�nding problem arises. If the model is generalized to include constraints on
prices and quantities arising from price supports, quotas, nonnegativity conditions,
or limited production capacities, a nonlinear complementarity problem arises.

One also encounters nonlinear root�nding and complementarity problems indi-
rectly when maximizing or minimizing a real-valued function. An unconstrained op-
timum may be characterized by the condition that the �rst derivative of the function
is zero|a root�nding problem. A constrained optimum may be characterized by the
Karush-Kuhn-Tucker conditions|a complementarity problem. Nonlinear equations
and complementarity problems also arise as elementary tasks in solution procedures
designed to solve more complicated functional equations. For example, the Euler
functional equation of a dynamic optimization problem might be solved using a collo-
cation method, which gives rise to a nonlinear equation or complementarity problem,
depending on whether the actions are unconstrained or constrained, respectively.

Various practical diÆculties arise with nonlinear equations and complementarity
problems. In many applications, it is not possible to solve the nonlinear problem
analytically. In these instances, the solution is often computed numerically using an
iterative method that reduces the nonlinear problem to a sequence of linear problems.
Such methods can be very sensitive to initial conditions and inherit many of the
potential problems of linear equation methods, most notably rounding error and ill-
conditioning. Nonlinear problems also present the added diÆculty that they may
have more than one solution.

Over the years, numerical analysts have studied nonlinear equations and comple-
mentarity problems extensively and have devised a variety of algorithms for solving
them quickly and accurately. In many applications, one may use simple derivative-
free methods, such as function iteration, which is applicable to �xed-point problems,
or the bisection method, which is applicable to univariate root�nding problems. In
many applications, however, one must rely on more sophisticated Newton and quasi-
Newton methods, which use derivatives or derivative estimates to help locate the
root or �xed-point of a function. These methods can be extended to complementar-
ity problems using semismooth approximation methods.

3.1 Bisection Method

The bisection method is perhaps the simplest and most robust method for computing
the root of a continuous real-valued function de�ned on a bounded interval of the real
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line. The bisection method is based on the Intermediate Value Theorem, which asserts
that if a continuous real-valued function de�ned on an interval assumes two distinct
values, then it must assume all values in between. In particular, if f is continuous,
and f(a) and f(b) have di�erent signs, then f must have at least one root x in [a; b].

The bisection method is an iterative procedure. Each iteration begins with an
interval known to contain or to bracket a root of f , meaning the function has di�erent
signs at the interval endpoints. The interval is bisected into two subintervals of equal
length. One of the two subintervals must have endpoints of di�erent signs and thus
must contain a root of f . This subinterval is taken as the new interval with which to
begin the subsequent iteration. In this manner, a sequence of intervals is generated,
each half the width of the preceding one, and each known to contain a root of f .
The process continues until the width of the bracketing interval shrinks below an
acceptable convergence tolerance.

The bisection method's greatest strength is its robustness. In contrast to other
root�nding methods, the bisection method is guaranteed to compute a root to a
prescribed tolerance in a known number of iterations, provided valid data are in-
put. Speci�cally, the method computes a root to a precision � in no more than in
log((b � a)=�)= log(2) iterations. The bisection method, however, is applicable only
to one-dimensional root�nding problems and typically requires more iterations than
other root�nding methods to compute a root to a given precision, largely because it
ignores information about the function's curvature. Given its relative strengths and
weaknesses, the bisection method is often used in conjunction with other root�nding
methods. In this context, the bisection method is �rst used to obtain a crude approx-
imation for the root. This approximation then becomes the starting point for a more
precise root�nding method that is used to compute a sharper, �nal approximation to
the root.

The following Matlab script computes the root of a user-supplied univariate
function f using the bisection method. The user speci�es two points at which f has
di�erent signs, a and b, and a convergence tolerance tol. The script makes use of
the intrinsic Matlab function sign, which returns �1, 0, or 1 if its argument is
negative, zero, or positive, respectively:

s = sign(f(a));

x = (a+b)/2;

d = (b-a)/2;

while d>tol;

d = d/2;

if s == sign(f(x))

x = x+d;

else
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x = x-d;

end

end

In this implementation of the bisection algorithm, d begins each iteration equal
to the distance from the current root estimate x to the boundaries of the bracketing
interval. The value of d is cut in half, and the iterate is updated by increasing or
decreasing its value by this amount, depending on the sign of f(x). If f(x) and f(a)
have the same sign, then the current x implicitly becomes the new left endpoint of
the bracketing interval and x is moved d units toward b. Otherwise, the current x
implicitly becomes the new right endpoint of the bracketing interval and x moved d
units toward a.

The Matlab toolbox accompanying the textbook includes a function bisect

that computes the root of a univariate function using the bisection method. The
following script demonstrates how bisect may be used to compute the cube root of
2, or, equivalently, the root of the function f(x) = x3 � 2:

f = inline('x^3-2');

x = bisect(f,1,2)

Execution of this script produces the result x = 1.2599. In this example, the initial
bracketing interval is set to [1; 2] and the root is computed to the default tolerance of
1:5 � 10�8, or eight decimal places. The sequence of iterates is illustrated in Figure
3.1. The function bisect is extensible in that it allows the user to override the default
tolerance and to pass additional arguments for the function f ; the subroutine also
checks for input errors. The Matlab operation inline is used here to de�ne the
function whose root is sought.

3.2 Function Iteration

Function iteration is a relatively simple technique that may be used to compute a
�xed-point, x = g(x), of a function from <n to <n. The technique is also applicable
to a root�nding problem f(x) = 0, by recasting it as the equivalent �xed-point
problem x = x� f(x).

Function iteration begins with the analyst supplying a guess x(0) for the �xed-point
of g. Subsequent iterates are generated using the simple iteration rule

x(k+1)  g(x(k)):

Since g is continuous, if the iterates converge, they converge to a �xed-point of g.
In theory, function iteration is guaranteed to converge to a �xed-point of g if g

is di�erentiable and if the initial value of x supplied by the analyst is \suÆciently"
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close to a �xed-point x� of g at which kg0(x�)k < 1. Function iteration, however,
often converges even when the suÆciency conditions are not met. Given that the
method is relatively easy to implement, it is often worth trying before attempting
to use more robust, but ultimately more complex methods, such as the Newton and
quasi-Newton methods that are discussed in the following sections.

Computation of the �xed point of a univariate function g(x) using function iter-
ation is graphically illustrated in Figure 3.2. In this example, g possesses an unique
�xed-point x�, which is graphically characterized by the intersection of g and the
45-degree line. The algorithm begins with the analyst supplying a guess x(0) for the
�xed-point of g. The next iterate x(1) is obtained by projecting upwards to the g func-
tion and then rightward to the 45-degree line. Subsequent iterates are obtained by
repeating the projection sequence, tracing out a step function. The process continues
until the iterates converge.

The Matlab toolbox accompanying the textbook includes a function fixpoint

that computes the �xed-point of a multivariate function using function iteration. The
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Function Iteration
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x(2)=g(x(1))

x(3)=g(x(2))

Figure 3.2

following script computes the �xed point x� = 1 of g(x) = x0:5 to a default tolerance
of 1:5� 10�8 starting from the initial guess x = 0:4:

g = inline('x^0.5');

x = fixpoint(g,0.4)

The subroutine fixpoint is extensible in that it allows the user to override the default
tolerance and to pass additional arguments for the function g.

3.3 Newton's Method

In practice, most nonlinear root�nding problems are solved using Newton's method

or one of its variants. Newton's method is based on the principle of successive lin-

earization. Successive linearization calls for a hard nonlinear problem to be replaced
with a sequence of simpler linear problems whose solutions converge to the solution
of the nonlinear problem. Newton's method is typically formulated as a root�nding
technique, but may be used to solve a �xed-point problem x = g(x) by recasting it
as the root�nding problem f(x) = x� g(x) = 0.
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The univariate Newton method is graphically illustrated in Figure 3.3. The algo-
rithm begins with the analyst supplying a guess x(0) for the root of f . The function f
is approximated by its �rst-order Taylor series expansion about x(0), which is graph-
ically represented by the line tangent to f at x(0). The root x(1) of the tangent line
is then accepted as an improved estimate for the root of f . The step is repeated,
with the root x(2) of the line tangent to f at x(1) taken as an improved estimate for
the root of f , and so on. The process continues until the roots of the tangent lines
converge.

0

Newton Method

x(0)x(1)x(2)x*

Figure 3.3

More generally, the multivariate Newton method begins with the analyst supplying
a guess x(0) for the root of f . Given x(k), the subsequent iterate x(k+1) is computed
by solving the linear root�nding problem obtained by replacing f with its �rst order
Taylor approximation about x(k):

f(x) � f(x(k)) + f 0(x(k))(x� x(k)) = 0:

This yields the iteration rule

x(k+1)  x(k) � [f 0(x(k))]�1f(x(k)):
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The following Matlab script computes the root of a function f using Newton's
method. It assumes that the user has provided an initial guess x for the root, a
convergence tolerance tol, and an upper limit maxit on the number of iterations. It
calls a user-supplied routine f that computes the value fval and Jacobian fjac of
the function at an arbitrary point x. To conserve on storage, only the most recent
iterate is stored:

for it=1:maxit

[fval,fjac] = f(x);

x = x - fjac\fval;

if norm(fval) < tol, break, end

end

In theory, Newton's method converges if f is continuously di�erentiable and if the
initial value of x supplied by the analyst is \suÆciently" close to a root of f at which
f 0 is invertible. There is, however, no generally practical formula for determining
what suÆciently close is. Typically, an analyst makes a reasonable guess for the root
f and counts his blessings if the iterates converge. If the iterates do not converge,
then the analyst must look more closely at the properties of f to �nd a better starting
value, or change to another root�nding method. Newton's method can be robust to
the starting value if f is well behaved, for example, if f has monotone derivatives.
Newton's method can be very sensitive to starting value, however, if the function
behaves erratically, for example, if f has high derivatives that change sign frequently.
Finally, in practice it is not suÆcient for f 0 to be merely invertible at the root. If
f 0 is invertible but ill-conditioned, then rounding errors in the vicinity of the root
can make it diÆcult to compute a precise approximation to the root using Newton's
method.

The Matlab toolbox accompanying the textbook includes a function newton

that computes the root of a function using the Newton's method. The user inputs
the name of the function �le that computes f , a starting vector and any additional
parameters to be passed to f (the �rst input to f must be x). The function has
default values for the convergence tolerance and the maximum number of steps to
attempt. These may be altered using optset.

Example: Cournot Duopoly
To illustrate the use of this function, consider a simple Cournot duopoly model, in
which the inverse demand for a good is

p = P (q) = q�1=�

and the two �rms producing the good face cost functions

Ci(qi) =
1
2 ciq

2
i ; for i = 1; 2:
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The pro�t for �rm i is

�i(q1; q2) = P (q1 + q2)qi � C(qi):
If �rm i takes the other's �rms output as given, it will choose its output level so as
to solve

@�i=@qi = P (q1 + q2) + P 0(q1 + q2)qi � C 0
i(qi) = 0:

Thus, the market equilibrium outputs, q1 and q2, are the roots of the two nonlinear
equations

fi(q) = (q1 + q2)
�1=� � (1=�)(q1 + q2)

�1=��1qi � ciqi = 0; for i = 1; 2:

Suppose one wished to use the function newton to compute for the market equi-
librium quantities, assuming � = 1:6, c1 = 0:6 and c2 = 0:8. The �rst step would be
write a Matlab function that gives the value and Jacobian of f at arbitrary vector
of quantities q:

function [fval,fjac] = cournot(q)

c = [0.6; 0.8]; eta = 1.6;

e = -1/eta;

fval = sum(q)^e + e*sum(q)^(e-1)*q - diag(c)*q;

fjac = e*sum(q)^(e-1)*ones(2,2) + e*sum(q)^(e-1)*eye(2) ...

+ (e-1)*e*sum(q)^(e-2)*q*[1 1] - diag(c);

Making an initial guess of, say q1 = q2 = 0:2, a call to newton

q = newton('cournot',[0.2;0.2]);

will compute the equilibrium quantities q1 = 0:8396 and q2 = 0:6888 to the default
tolerance of 1:5�10�8. The subroutine newton is extensible in that it allows the user
to override the default tolerance and limit on the number of iterations, and allows
the user to pass additional arguments for the function f , if necessary.

The path taken by newton to the Cournot equilibrium solution from an initial
guess of (0:2; 0:2) is illustrated by the dashed line in Figure 3.4. Here, the Cournot
market equilibrium is the intersection of the zero contours of f1 and f2, which may be
interpreted as the reaction functions for the two �rms. In this case Newton's method
works very well, needing only a few steps to e�ectively land on the root.
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3.4 Quasi-Newton Methods

Quasi-Newton methods o�er an alternative to Newton's method for solving root�nding
problems. Quasi-Newton methods are based on the same successive linearization
principle as Newton's method, except that they replace the Jacobian f 0 with an
estimate that is easier to compute. Quasi-Newton methods are easier to implement
and less likely to fail due to programming errors than Newton's method because the
analyst need not explicitly code the derivative expressions. Quasi-Newton methods,
however, often converge more slowly than Newton's method and additionally require
the analyst to supply an initial estimate of the function's Jacobian.

The secant method is the most widely used univariate quasi-Newton method. The
secant method is identical to the univariate Newton method, except that it replaces
the derivative of f with a �nite-di�erence approximation constructed from the func-
tion values at the two previous iterates:

f 0(x(k)) � f(x(k))� f(x(k�1))
x(k) � x(k�1) :

This yields the iteration rule

x(k+1)  x(k) � x(k) � x(k�1)
f(x(k))� f(x(k�1))f(x

(k)):
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Unlike the Newton method, the secant method requires two, rather than one starting
value.

The secant method is graphically illustrated in Figure 3.5. The algorithm begins
with the analyst supplying two distinct guesses x(0) and x(1) for the root of f . The
function f is approximated using the secant line passing through x(0) and x(1), whose
root x(2) is accepted as an improved estimate for the root of f . The step is repeated,
with the root x(3) of the secant line passing through x(1) and x(2) taken as an improved
estimate for the root of f , and so on. The process continues until the roots of the
secant lines converge.

0

Secant Method

x(0)x(1)x(2)x(3)x*

Figure 3.5

Broyden's method is the most popular multivariate generalization of the univariate
secant method. Broyden's method generates a sequence of vectors x(k) and matrices
A(k) that approximate the root of f and the Jacobian f 0 at the root, respectively.
Broyden's method begins with the analyst supplying a guess x(0) for the root of the
function and a guess A(0) for the Jacobian of the function at the root. Often, A(0)

is set equal to the numerical Jacobian of f at x(0).1 Alternatively, some analysts use

1Numerical di�erentiation is discussed in Section 5.6 (page 107).
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a rescaled identity matrix for A(0), though this typically will require more iterations
to obtain a solution than if a numerical Jacobian is computed at the outset. Given
x(k) and A(k), one updates the root approximation by solving the linear root�nding
problem obtained by replacing f with its �rst-order Taylor approximation about x(k):

f(x) � f(x(k)) + A(k)(x� x(k)) = 0:

This yields the root approximation iteration rule

x(k+1)  x(k) � (A(k))�1f(x(k)):

Broyden's method then updates the Jacobian approximant A(k) by making the
smallest possible change, measured in the Frobenius matrix norm, that is consistent
with the secant condition, which any reasonable Jacobian estimate should satisfy:

f(x(k+1))� f(x(k)) = A(k+1)(x(k+1) � x(k)):
This yields the iteration rule

A(k+1)  A(k) +
�
f(x(k+1))� f(x(k))� A(k)d(k)

� d(k)>

d(k)>d(k)

where d(k) = x(k+1) � x(k).
In practice, Broyden's method may be accelerated by avoiding the linear solve.

This can be accomplished by retaining and updating the Broyden estimate of the
inverse of the Jacobian, rather than that of the Jacobian itself. Broyden's method with
inverse update generates a sequence of vectors x(k) and matricesB(k) that approximate
the root of f and the inverse Jacobian f

0�1 at the root, respectively. It uses the
iteration rule

x(k+1)  x(k) � B(k)f(x(k))

and inverse update rule2

B(k+1)  B(k) +
�
(d(k) � u(k))d(k)>B(k)

�
=(d(k)>u(k))

where u(k) = B(k)(f(x(k+1))� f(x(k))). Most implementations of Broyden's methods
employ the inverse update rule because of its modest speed advantage over Broyden's
method with Jacobian update.

2This is a straightforward application of the Sherman-Morrison formula:

(A+ uv>)�1 = A�1 +
1

1 + u>A�1v
A�1uv>A�1:
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In theory, Broyden's method converges if f is continuously di�erentiable, if x(0)

is \suÆciently" close to a root of f at which f 0 is invertible, and if A(0) or B(0) are
\suÆciently" close to the Jacobian or inverse Jacobian of f at that root. There is,
however, no generally practical formula for determining what suÆciently close is. Like
Newton's method, the robustness of Broyden's method depends on the regularity of
f and its derivatives. Broyden's method may also have diÆculty computing a precise
root estimate if f 0 is ill-conditioned near the root. It is important to also note that
the sequence approximants A(k) and B(k) need not, and typically do not, converge
to the Jacobian and inverse Jacobian of f at the root, respectively, even if the x(k)

converge to a root of f .
The following Matlab script computes the root of a user-supplied multivariate

function f using Broyden's method with inverse update. The script assumes that
the user has written a Matlab routine f that evaluates the function at an arbitrary
point and that the user has speci�ed a starting point x, a convergence tolerance tol,
and a limit on the number of iterations maxit. The script also computes an initial
guess for the inverse Jacobian by inverting the �nite di�erence derivative computed
using the toolbox function fdjac, which is discussed in Chapter 5 (page 107).

fjacinv = inv(fdjac(f,x));

fval = f(x);

for it=1:maxit

fnorm = norm(fval);

if fnorm<tol, break; end

d = -(fjacinv*fval);

x = x+d;

fold = fval;

fval = f(x);

u = fjacinv*(fval-fold);

fjacinv = fjacinv + ((d-u)*d'*fjacinv)/(d'*u);

end

The Matlab toolbox accompanying the textbook includes a function broyden

that computes the root of a function using Broyden's method with inverse update.
To illustrate the use of this function, consider the simple Cournot duopoly model,
introduced in the preceding subsection. The function cournot listed on page 38
could be passed to broyden, with an initial guess of, say q1 = q2 = 0:2:

q = broyden('cournot',[0.2;0.2]);

yielding the equilibrium quantities q1 = 0:8396 and q2 = 0:6888 to the default tol-
erance of 1:5� 10�8. Note that the function cournot need not return the Jacobian
of f because the Broyden method does not require it. The subroutine broyden is
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extensible in that it allows the user to enter an initial estimate of the Jacobian es-
timate, if available, and allows the user to override the default tolerance and limit
on the number of iterations. The subroutine also allows the user to pass additional
arguments for the function f , if necessary.

The path taken by broyden to the Cournot equilibrium solution from an initial
guess of (0:2; 0:2) is illustrated by the dashed line in Figure 3.6. In this case Broyden's
method works well and not altogether very di�erent from Newton's method. However,
a close comparison of Figures 3.4 and 3.6 demonstrates that Broyden's method takes
more iterations and follows a somewhat more circuitous route than Newton's method.
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Figure 3.6

3.5 Problems With Newton Methods

Several diÆculties commonly arise in the application of Newton and quasi-Newton
methods to solving multivariate non-linear equations. The most common cause of
failure of Newton-type methods is coding errors committed by the analyst. The next
most common cause of failure is the speci�cation of a starting point that is not suÆ-
ciently close to a root. And yet another common cause of failure is an ill-conditioned
Jacobian at the root. These problems can often be mitigated by appropriate action,
though they cannot always be eliminated altogether.
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The �rst cause of failure, coding error, may seem obvious and not speci�c to
root�nding problems. It must be emphasized, however, that with Newton's method,
the likelihood of committing an error in coding the analytic Jacobian of the function
is often high. A careful analyst can avoid Jacobian coding errors in two ways. First,
the analyst could use Broyden's method instead of Newton's method to solve the
root�nding problem. Broyden's method is derivative-free and does not require the
explicit coding of the function's analytic Jacobian. Second, the analyst can perform
a simple, but highly e�ective check of his code by comparing the values computed
by his analytic derivatives to those computed using �nite di�erence methods. Such a
check will almost always detect an error in either the code that returns the function's
value or the code that returns its Jacobian.

A comparison of analytic and �nite di�erence derivatives can easily be performed
using the checkjac routine provided with the Matlab toolbox accompanying this
textbook. This function computes the analytic and �nite di�erence derivatives of a
function at a speci�ed evaluation point and returns the index and magnitude of the
largest deviation. The function may be called as follows:

[error,i,j] = checkjac(f,x)

Here, we assume that the user has coded a Matlab function f that returns the
function value and analytic derivatives at a speci�ed evaluation point x. Execution
returns error, the highest absolute di�erence between an analytic and �nite di�erence
cross-partial derivative of f , and its index i and j. A large deviation indicates that
the either the i; jth partial derivative or the ith function value may be incorrectly
coded.

The second problem, a poor starting value, can be partially addressed by \back-
stepping". If taking a full Newton (or quasi-Newton) step x+ d does not o�er an im-
provement over the current iterate x, then one \backsteps" toward the current iterate
x by repeatedly cutting d in half until x+d does o�er an improvement. Whether a step
d o�ers an improvement is measured by the Euclidean norm kf(x)k = 1

2
f(x)>f(x).

Clearly, kf(x)k is precisely zero at a root of f , and is positive elsewhere. Thus,
one may view an iterate as yielding an improvement over the previous iterate if it
reduces the function norm, that is, if kf(x)k > kf(x + d)k. Backstepping prevents
Newton and quasi-Newton methods from taking a large step in the wrong direction,
substantially improving their robustness.

A simple backstepping algorithm will not necessarily prevent Newton type meth-
ods from getting stuck at a local minimum of kf(x)k. If kf(x)k must decrease with
each step, it may be diÆcult to �nd a step length that moves away from the cur-
rent value of x. Most good root-�nding algorithms employ so mechanism for getting
unstuck. We use a very simple one in which the backsteps continue until either
kf(x)k > kf(x+ d)k or kf(x+ d=2)k > kf(x+ d)k.
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The followingMatlab script computes the root of a function using a safeguarded
Newton's method. It assumes that the user has speci�ed a maximum number maxit
of Newton iterations, a maximum number maxsteps of backstep iterations, and a
convergence tolerance tol, along with the name of the function f and an initial value
x:

for it=1:maxit

[fval,fjac] = f(x);

fnorm = norm(fval);

if fnorm<tol, return, end

d = -(fjac\fval);

fnormold = inf;

for backstep=1:maxsteps

fvalnew = f(x+d);

fnormnew = norm(fvalnew);

if fnormnew<fnorm, break, end

if fnormold<fnormnew, d=2*d; break, end

fnormold = fnormnew;

d = d/2;

end

x = x+d;

end

Safeguarded backstepping may also implemented with Broyden's method; the newton
and broyden routines supplied with theMatlab toolbox accompanying the textbook
both employ safeguarded backstepping.

The third problem, an ill-conditioned Jacobian at the root, occurs less often, but
should not be ignored. An ill-conditioned Jacobian can render inaccurately com-
puted Newton step dx, creating severe diÆculties for the convergence of Newton and
Newton-type methods. In some cases, ill-conditioning is a structural feature of the
underlying model and cannot be eliminated. However, in many cases, ill-conditioning
is inadvertently and unnecessarily introduced by the analyst. A common source of
avoidable ill-conditioning arises when the natural units of measurements for model
variables yield values that vary vastly in order of magnitude. When this occurs, the
analyst should consider rescaling the variables so that their values have comparable
orders of magnitude, preferably close to unity. Rescaling will generally lead to faster
execution time and more accurate results.
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3.6 Choosing a Solution Method

Numerical analysts have special terms that they use to classify the rates at which
iterative routines converge. Speci�cally, a sequence of iterates x(k) is said to converge
to x� at a rate of order p if there is constant C > 0 such that

kx(k+1) � x�k � Ckx(k) � x�kp

for suÆciently large k. In particular, the rate of convergence is said to be linear if
C < 1 and p = 1, superlinear if 1 < p < 2, and quadratic if p = 2.

The asymptotic rates of convergence of the nonlinear equation solution methods
discussed earlier are well known. The bisection method converges at a linear rate
with C = 1=2. The function iteration method converges at a linear rate with C
equal to kf 0(x�)k. The secant and Broyden methods converge at a superlinear rate,
with p � 1:62. And Newton's method converges at a quadratic rate. The rates of
convergence are asymptotically valid, provided that the algorithms are given \good"
initial data.

Consider a simple example. The function g(x) =
p
x has an unique �xed-point

x� = 1. Function iteration may be used to compute the �xed-point. One can also
compute the �xed-point by applying Newton's method or the secant method to the
equivalent root�nding problem f(x) = x�px = 0.

Starting from x(0) = 0:5, and using a �nite di�erence derivative for the �rst secant
method iteration, the approximation error jx(k)� x�j produced by the three methods
are:

Function Broyden's Newton's
k Iteration Method Method

1 2.9e-001 -2.1e-001 -2.1e-001
2 1.6e-001 3.6e-002 -8.1e-003
3 8.3e-002 1.7e-003 -1.6e-005
4 4.2e-002 -1.5e-005 -6.7e-011
5 2.1e-002 6.3e-009 0.0e+000
6 1.1e-002 2.4e-014 0.0e+000
7 5.4e-003 0.0e+000 0.0e+000
8 2.7e-003 0.0e+000 0.0e+000
9 1.4e-003 0.0e+000 0.0e+000
10 6.8e-004 0.0e+000 0.0e+000
15 2.1e-005 0.0e+000 0.0e+000
20 6.6e-007 0.0e+000 0.0e+000
25 2.1e-008 0.0e+000 0.0e+000
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This simple experiment generates convergence patterns that are typical for the
various iterative nonlinear equation solution algorithms used in practice. Newton's
method converges in fewer iterations than the quasi-Newton method, which in turn
converges in fewer iterations than function iteration. Both the Newton and quasi-
Newton methods converge to machine precision very quickly, in this case 5 or 6
iterations. As the iterates approach the solution, the number of signi�cant digits in
the Newton and quasi-Newton approximants begin to double with each iteration.

However, the rate of convergence, measured in number of iterations, is only one
determinant of the computational eÆciency of a solution algorithm. Algorithms di�er
in the number of arithmetic operations, and thus the computational e�ort required
per iteration. For multivariate problems, function iteration requires only a function
evaluation; Broyden's method with inverse update requires a function evaluation and
a matrix-vector multiplication; and Newton's method requires a function evaluation,
a derivative evaluation, and the solution of a linear equation. In practice, function
iteration tends to require the most overall computational e�ort to achieve a given
accuracy than the other two methods. However, whether Newton's method or Broy-
den's method requires the most overall computational e�ort to achieve convergence
in a given application depends largely on the dimension of x and complexity of the
derivative. Broyden's method will tend to be computationally more eÆcient than
Newton's method if the derivative is costly to evaluate.

An important factor that must be considered when choosing a nonlinear equation
solution method is developmental e�ort. Developmental e�ort is the e�ort exerted by
the analyst to produce a viable, convergent computer code|this includes the e�ort
to write the code, the e�ort to debug and verify the code, and the e�ort to �nd
suitable starting values. Function iteration and quasi-Newton methods involve the
least developmental e�ort because they do not require the analyst to correctly code the
derivative expressions. Newton's method typically requires more developmental e�ort
because it additionally requires the analyst to correctly code derivative expressions.
The developmental cost of Newton's method can be quite high if the derivative matrix
involves many complex or irregular expressions.

Experienced analysts use certain rules of thumb when selecting a nonlinear equa-
tion solution method. If the nonlinear equation is of small dimension, say univariate
or bivariate, or the function derivatives follow a simple pattern and are relatively
easy to code, then development costs will vary little among the di�erent methods and
computational eÆciency should be the main concern, particularly if the equation is
to be solved many times. In this instance, Newton's method is usually the best �rst
choice.

If the nonlinear equation involves many complex or irregular function derivatives,
or if the derivatives are expensive to compute, then the Newton's method it less
attractive. In such instances, quasi-Newton and function iteration methods may make
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better choices, particularly if the nonlinear equation is to be solved very few times.
If the nonlinear equation is to be solved many times, however, the faster convergence
rate of Newton's method may make the development costs worth incurring.

3.7 Complementarity Problems

Many economic models naturally take the form of a complementary problem rather
than a root�nding or �xed point problem. In the complementarity problem, two n-
vectors a and b, with a < b, and a function f from <n to <n are given, and one must
�nd an n-vector x 2 [a; b], that satis�es

xi > ai ) fi(x) � 0 8i = 1; : : : ; n
xi < bi ) fi(x) � 0 8i = 1; : : : ; n:

The complementarity conditions require that fi(x) = 0 whenever ai < xi < bi. The
complementarity problem thus includes the root�nding problem as a special case in
which ai = �1 and bi = +1 for all i. The complementarity problem, however, is not
to �nd a root that lies within speci�ed bounds. An element fi(x) may be nonzero at
a solution of a complementarity problem, though only if xi equals one of its bounds.
For the sake of brevity, we denote the complementarity problem CP(f; a; b).

Complementarity problems arise naturally in economic equilibrium models. In
this context, x is an n-vector that represents the levels of certain economic activities.
For each i = 1; 2; : : : ; n, ai denotes a lower bound on activity i, bi denotes an upper
bound on activity i, and fi(x) denotes the marginal arbitrage pro�t associated with
activity i. Disequilibrium arbitrage pro�t opportunities exist if either xi < bi and
fi(x) > 0, in which case an incentive exists to increase xi, or xi > ai and fi(x) < 0, in
which case an incentive exists to decrease xi. An arbitrage-free economic equilibrium
obtains if and only if x solves the complementarity problem CP(f; a; b).

Complementarity problems also arise naturally in economic optimization models.
Consider maximizing a function F : <n 7! < subject to the simple bound constraint
x 2 [a; b]. The Karush-Kuhn-Tucker theorem asserts that x solves the bounded max-
imization problem only if it solves the complementarity problem CP(f; a; b) where
fi(x) = @F=@xi. Conversely, if F is strictly concave at x and x solves the comple-
mentarity problem CP(f; a; b), then x solves the bounded maximization problem (see
Section 4.6, page 79).

As a simple example of a complementarity problem, consider the well-known Mar-
shallian competitive price equilibrium model. In this model, competitive equilibrium
obtains if and only if excess demand E(p), the di�erence between quantity demanded
and quantity supplied at price p, is zero. Suppose, however, that the government
imposes a price ceiling �p that it enforces through �at or direct market intervention.
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It is then possible for excess demand to exist at equilibrium, but only if price ceiling
is binding. In the presence of a price ceiling, the equilibrium market price is the
solution to the complementarity problem CP(E; 0; �p).

A more interesting example of a complementarity problem is the single commodity
competitive spatial price equilibrium model. Suppose that there are n distinct regions
and that excess demand for the commodity in region i is a function Ei(pi) of the price
pi in the region. In the absence of trade among regions, equilibrium is characterized
by the condition that Ei(pi) = 0 in each region i, a root�nding problem. Suppose,
however, that trade can take place among regions, and that the cost of transporting
one unit of the good from region i to region j is a constant cij. Denote by xij the
amount of the good that is produced in region i and consumed in region j and suppose
that this quantity cannot exceed a given shipping capacity bij.

In this market, pj � pi � cij is the unit arbitrage pro�t available from shipping
one unit of the commodity from region i to region j. When the arbitrage pro�t
is positive, an incentive exists to increase shipments; when the arbitrage pro�t is
negative, an incentive exists to decrease shipments. Equilibrium obtains only if all
spatial arbitrage pro�t opportunities have been eliminated. This requires that, for all
pairs of regions i and j, 0 � xij � bij and

xij > 0 ) pj � pi � cij � 0
xij < bij ) pj � pi � cij � 0:

To formulate the spatial price equilibrium model as a complementarity problem,
note that market clearing requires that net imports equal excess demand in each
region i:X

k

[xki � xik] = Ei(pi):

This implies that

pi = E�1
i

 X
k

[xki � xik]
!
:

If

fij(x) = E�1
j

 
kX
[xkj � xjk]

!
� E�1

i

 
kX
[xki � xik]

!
� cij

then x is a spatial equilibrium trade ow if and only if x solves the complementary
problem CP(f; 0; b), where x, f and b are vectorized and written as n2 by 1 vectors.
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In order to understand the mathematical structure of the complementarity prob-
lem, it is instructive to consider the simplest case: the univariate linear complementar-
ity problem. Figure 3.7a-c illustrate the three possible subcases when f is negatively
sloped. In all three subcases, an unique equilibrium solution exists. In Figure 3.7a,
f(a) � 0 and the unique equilibrium solution is x� = a; in Figure 3.7b, f(b) � 0
and the unique equilibrium solution is x� = b; and in Figure 3.7c, f(a) > 0 > f(b)
and the unique equilibrium solution lies between a and b. In all three subcases, the
equilibrium is stable in that the economic incentive at nearby disequilibrium points
is to return to the equilibrium.

a) f’<0, f(a)<0

0

a b

b) f’<0, f(b)>0

0

a b

c) f’<0, f(a)>0>f(b)

0

a b

d) f’>0

0

a b

Figure 3.7

Figure 3.7d illustrates the diÆculties that can arise when f is positively sloped.
Here, multiple equilibrium solutions arise, one in the interior of the interval and
one at each endpoint. The interior equilibrium, moreover, is unstable in that the
economic incentive at nearby disequilibrium points is to move away from the interior
equilibrium toward one of the corner equilibria.

More generally, multivariate complementarity problems are guaranteed to possess
an unique solution if f is strictly negative monotone, that is, if (x�y)>(f(x)�f(y)) <
0 whenever x; y 2 [a; b] and x 6= y. This will be true for most well-posed economic
equilibrium models. It will also be true when the complementarity problem derives
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from a bound constrained maximization problem in which the objective function is
strictly concave.

3.8 Complementarity Methods

Although the complementarity problem appears quite di�erent from the ordinary
root�nding problem, it actually can be reformulated as one. In particular, x solves the
complementarity problem CP(f; a; b) if and only if it solves the root�nding problem

f̂(x) = min(max(f(x); a� x); b� x) = 0:

A formal proof of the equivalence between the complementarity problem CP(f; a; b)
and its `minmax' root�nding formulation f̂(x) = 0 is straightforward, but requires a
somewhat tedious enumeration of several possible cases, which we leave as an exercise
for the reader. The equivalence, however, can easily be demonstrated graphically for
the univariate complementarity problem.

Figure 3.8 illustrates minmax root�nding formulation of the same four univariate
complementarity problems examined in Figure 3.7. In all four plots, the curves y =
a � x and y = b � x are drawn with narrow dashed lines, the curve y = f(x) is
drawn with a narrow solid line, and the curve y = f̂(x) is drawn with a thick solid
line; clearly, in all four �gures, f̂ lies between the lines y = x� a and y = x� b and
coincides with f inside the lines. In Figure 3.8a, f(a) � 0 and the unique solution to
the complementarity problem is x� = a, which coincides with the unique root of f̂ ;
in Figure 3.8b, f(b) � 0 and the unique solution to the complementarity problem is
x� = b, which coincides with the unique root of f̂ ; in Figure 3.8c, f(a) > 0 > f(b)
and the unique solution to the complementarity problem lies between a and b and
coincides with the unique root of f̂ (and f). In Figure 3.8d, f is upwardly sloped and
possesses multiple roots, all of which, again, coincide with roots of f̂ .

The reformulation of the complementarity problem as a root�nding problem sug-
gests that it may be solved using standard root�nding algorithms, such as Newton's
method. To implement Newton's method for the minmax root�nding formulation re-
quires computation of the Jacobian Ĵ of f̂ . The ith row of Ĵ may be derived directly
from the Jacobian J of f :

Ĵi(x) =

�
Ji(x); for ai � xi < fi(x) < bi � xi;
�Ii� otherwise.

Here, Ii� is the ith row of the identity matrix.
The followingMatlab script computes the solution of the complementarity prob-

lem CP(f; a; b) by applying Newton's method to the equivalent minmax root�nding
formulation. The script assumes that the user has provided the lower and upper
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Figure 3.8

bounds a and b, a guess x for the solution of the complementarity problem, a con-
vergence tolerance tol, and an upper limit maxit on the number of iterations. It
calls a user-supplied routine f that computes the value fval and Jacobian fjac of
the function at an arbitrary point x:

for it=1:maxit

[fval,fjac] = f(x);

fhatval = min(max(fval,a-x),b-x);

fhatjac = -eye(length(x));

i = find(fval>a-x & fval<b-x);

fhatjac(i,:) = fjac(i,:);

x = x - fhatjac\fhatval;

if norm(fhatval)<tol, break, end

end

Using Newton's method to �nd a root of f̂ will often work well. However, in
many cases, the nondi�erentiable kinks in f̂ create diÆculties for Newton's method,
undermining its ability to converge rapidly and possibly even causing it to cycle.
One way to deal with the kinks is to replace f̂ with a function that has the same
roots, but is smoother and therefore less prone to numerical diÆculties. One function
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that has proven very e�ective for solving the complementarity problem in practical
applications is Fischer's3 function

~f(x) = ��(�+(f(x); a� x); b� x);
where

��i (u; v) = ui + vi �
q
u2i + v2i :

In Figures 3.9a and 3.9b, the functions f̂ and ~f , respectively, are drawn as thick
solid lines for a representative complementarity problem. Clearly, f̂ and ~f can di�er
substantially. What is important for solving the complementarity problem, however,
is that f̂ and ~f possess the same signs and roots and that ~f is smoother than f̂ .

0

a) Minimax Formulation

a−x

b−x

f(x)

0

b) Semismooth Formulation

a−x

b−x

f(x)

Figure 3.9

The Matlab toolbox accompanying the textbook includes a function ncpsolve

that solves the complementarity problem by applying Newton's method with safe-
guarded backstepping to either the minmax or semismooth root�nding formulations.
To apply this function, one de�nes a Matlab function f that returns the function
value and Jacobian at arbitrary point, and speci�es the lower and upper bounds, a and
b, and, optionally, a starting value x. To solve the complementarity problem using the
semismooth formulation one writes the Matlab script x=ncpsolve('f',a,b,x); to
solve the complementarity problem using the minmax formulation one must change
the default option using theMatlab script optset('ncpsolve','type','minmax')
before executing the x=ncpsolve('f',a,b,x) script.

3One could also use

~f(x) = �+(��(f(x); b� x); a� x):
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In practice, Newton's method applied to either the minmax root�nding formula-
tion f̂(x) = 0 or the semismooth root�nding formulation ~f(x) = 0 will often success-
fully solve the complementarity problem CP(f; a; b). The semismooth formulation is
generally more robust than the minmax formulation because it avoids the problematic
kinks found in ~f . However, the semismooth formulation also requires more arithmetic
operations per iteration.

As an example of a complementarity problem for which the semismooth formula-
tion is successful, but for which the minmax formulation is not, consider the surpris-
ingly diÆcult complementarity problem CP(f; 0;+1) where

f(x) = 1:01� (x� 1)2:

The function f has root at x = 1�p1:01, but this is not a solution to the complemen-
tarity problem because it is negative. Also, 0 is not a solution because f(0) = 0:01 is
positive. The complementarity problem has an unique solution x = 1+

p
1:01 � 2:005.

Figure 3.10a displays f̂ (dashed) and ~f (solid) for the complementarity problem
and Figure 3.10b magni�es the plot near the origin, making it clear why the problem
is hard. Newton's method starting at any value slightly less than 1 will tend to move
toward 0. In order to avoid convergence to this false root, Newton's method must take
a suÆciently large step to exit the region of attraction. This will not happen with f̂
because 0 poses an upper bound on the positive Newton step. With ~f , however, the
function is smooth at its local maximum near the origin, meaning that the Newton
step can be very large.

To solve the complementarity problem using the semismooth formulation, one
codes the function

function [fval,fjac] = f(x)

fval = 1.01-(1-x).^2;

fjac = 2*(1-x);

and then executes the Matlab script

x = ncpsolve('f',0,inf,0);

(this uses x = 0 as a starting value). To solve the complementarity problem using
the minmax formulation, one executes the Matlab script

optset('ncpsolve','type','minmax')

x = ncpsolve('f',0,inf,0);

In this example, the semismooth formulation will successfully compute the solution
of the complementarity problem, but the minmax formulation will not.

Algorithms for solving complementarity problems are still an active area of re-
search, especially for cases that are not well behaved. Algorithms will no doubt
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continue to improve and existing methods vary considerably in terms of robustness
and speed. Our suggestion, however, is to �rst use a well implemented general pur-
pose root �nding algorithm in conjunction with a semismooth formulation. This has
the virtue of simplicity and requires only a standard root�nding utility.
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Exercises

3.1. The bisection method can fail if the initial interval doesn't bracket a root.
Develop and implement in Matlab a strategy that �nds a root-bracketing
interval.

3.2. If x =
p
c then x2 � c = 0.

a) Use this root condition to construct a Newton's method for determining the
square root that uses only simple arithmetic operations (addition, subtraction,
multiplication and division).

b) Given an arbitrary value of c > 0, how would you �nd a starting value to
begin Newton's method?

c) Write a Matlab procedure
function x=newtroot(c)

that implements the method. The procedure should be self-contained (i.e., it
should not call a generic root-�nding algorithm).

3.3. The computation of
p
1 + c2 � 1 can fail due to overow or underow: when c

is large, squaring it can exceed the largest representable number (realmax in
Matlab), whereas when c is small, the addition 1 + c2 will be truncated to 1.

Noting that x =
p
1 + c2 � 1 is equivalent to the condition

(x+ 1)2 � (1 + c2) = 0:

Determine the iterations of the Newton method for �nding x and a good starting
value for the iterations. Write a Matlab program that accepts c and returns
x, using only simple arithmetic operations (i.e., do not use power, log, square
root operators). The procedure should be self-contained (i.e., it should not call
a generic root-�nding algorithm). Be sure to deal with the overow problem.

3.4. Black-Scholes Option Pricing Formula

The Black-Scholes option pricing formula expresses the value of an option as a
function of the current value of the underlying asset, S, the option's strike price
K, the time-to-maturity on the option, � , the current risk-free interest rate, r,
a dividend rate, Æ, and the volatility of the the price of the underlying asset, �.
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The formula for a call option is4

V (S;K; �; r; Æ; �) = e�Æ�S� (d)� e�r�K�
�
d� �p��

where

d =
ln(e�Æ�S)� ln(e�r�K)

�
p
�

+ 1
2 �
p
� ;

and � is the standard normal CDF:

�(x) =
1p
2�

Z x

�1
e
� 1

2
z2
dz:

a) Write a MATLAB procedure that takes the 6 inputs and returns the Black-
Scholes option value:

V=BSVal(S,K,tau,r,delta,sigma)

The function cdfn provided in the COMPECON toolbox can be used to compute
the standard normal CDF.

b) All of the inputs to the Black-Scholes formula are readily observable except
�. Market participants often want to determine the value of � implied by the
market price of an option. Write a stand-alone that computes the so-called
\implied volatility". The function should have the following calling syntax

sigma=ImpVol(S,K,tau,r,delta,V)

The algorithm should use Newton's method to solve (for �) the root-�nding
problem V �BSVal(S;K; �; r; Æ; �). To do this you will need to use the derivative
of the Black-Scholes formula with respect to �, which can be shown to equal

@V

@�
= Se�Æ�

p
�=(2�)e�0:5d

2

:

The program should be stand-alone, hence it should not call any root-�nding
solver such as newton or broyden or a numerical derivative algorithm. It may,
however, call BSVal from part (a).

c) If the procedures you wrote for the previous two exercises are not vectorized,
make them so. They should be able to accept a set of conformable matrices as
inputs and return an appropriately sized result.

4This is known as the extended Black-Scholes formula because it includes the parameter Æ not
found in the original formula. The inclusion of Æ generalizes the formula: for options on stocks Æ
represents a continuous percentage dividend ow, for options on currencies it is set to the interest
rate in the foreign country and for options on futures it is set to r.
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3.5. It was claimed (page 41) that the Broyden method chooses the approximate
Jacobian to minimize a matrix norm subject to a constaint. Speci�cally

A�  A + (g � Ad) d
>

d>d

with g = f(x(k+1))� f(x(k)) and d = x(k+1) � x(k), solves the problem

min
A�

X
i

X
j

�
A�ij � Aij

�2
:

subject to

g = A�d:

Provide a proof of this claim.

3.6. Consider the function f : <2 7! <2 de�ned by

f1(x) = 200x1(x2 � x21)� x1 + 1
f2(x) = 100(x21 � x2):

Write aMatlab function `func.m' that takes a column 2-vector x as input and
returns f, a column 2-vector that contains the value of f at x, and d, a 2 by 2
matrix that contains the Jacobian of f at x.

(a) Compute numerically the root of f via Newton's method.

(b) Compute numerically the root of f via Broyden's method.

3.7. A common problem in computation is �nding the inverse of a cumulative dis-
tribution function (CDF). A CDF is a function, F , that is nondecreasing over
some domain [a; b] and for which F (a) = 0 and F (b) = 1. Write a function that
uses Newton's method to solve inverse CDF problems. The function should
take the following form:

x=icdf(p,F,x0,varargin)

where p is a probability value (a real number on [0,1]), F is the name of a
Matlab function �le, and x0 is a starting value for the Newton iterations.

The function �le should have the form:
[F,f]=cdf(x,additional parameters)

For example, the normal CDF with mean � and standard deviation � would be
written:
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function [F,f]=cdfnormal(x,mu,sigma)

z=(x-mu)./sigma;

F=cdfnorm(z);

f=exp(-0.5*z.^2)./(sqrt(2*pi)*sigma);

You can test your code with the statement:
x-icdf(cdfnormal(x,0,1),'cdfnormal',0,0,1)

which should return a number close to 0.

3.8. Consider a simple endowment economy with three agents and two goods. Agent
i is initially endowed with eij units of good j and maximizes utility

Ui(x) =
2X

j=1

aij(vij + 1)�1xvij+1
ij ;

subject to the budget constraint

2X
j=1

pjxij =
2X

j=1

pjeij:

Here, xij is the amount of good j consumed by agent i, pj is the market price
of good j, and aij > 0 and vij < 0 are preference parameters.

A competitive general equilibrium for the endowment economy is a pair of
relative prices, p1 and p2, normalized to sum to one, such that all the goods
markets clear if each agent maximizes utility subject to his budget constraints.

Compute the competitive general equilibrium for the following parameters:

(i; j) aij vij eij

(1,1) 2.0 -2.0 2.0
(1,2) 1.5 -0.5 3.0
(2,1) 1.5 -1.5 1.0
(2,2) 2.0 -0.5 2.0
(3,1) 1.5 -0.5 4.0
(3,2) 2.0 -1.5 0.0
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3.9. Consider the market for potatoes, which are storable intraseasonaly, but not
interseasonaly. In this market, the harvest is entirely consumed over two mar-
keting periods, i = 1; 2. Denoting initial supply by s and consumption in period
i by ci, material balance requires that:

s = c1 + c2:

Competition among storers possessing perfect foresight eliminate interperiod
arbitrage opportunities; thus,

p1 + � = Æp2

where pi is equilibrium price in period i, � = 0:2 is per-period unit cost of
storage, and Æ = 0:95 is per-period discount factor. Demand, assumed the same
across periods, is given by

pi = c�5i :

Compute the equilibrium period 1 and period 2 prices for s = 1, s = 2, and
s = 3.

3.10. Provide a formal proof that the complementarity problem CP(f; a; b) is equiva-
lent to the root�nding problem ~f(x) = min(max(f(x); a�x); b�x) = 0 in that
both have the same solutions.

3.11. Commodity X is produced and consumed in three countries. Let quantity q be
measured in units and price p be measured in dollars per unit. Demand and
supply in the three countries is given by:

Demand Supply
Country 1: p = 42� 2q p = 9 + 1q
Country 2: p = 54� 3q p = 3 + 2q
Country 3: p = 51� 1q p = 18 + 1q

The unit costs of transportation are:
to

From Country 1 Country 2 Country 3
Country 1: 0 3 9
Country 2: 3 0 3
Country 3: 6 3 0

(a) Formulate and solve the linear equation that characterizes competitive
equilibrium, assuming that intercountry trade is not permitted.
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(b) Formulate and solve the linear complementarity problem that character-
izes competitive spatial equilibrium, assuming that intercountry trade is
permitted.

(c) Using standard measures of surplus, which of the six consumer and pro-
ducer groups in the three countries gain, and which ones lose, from the
introduction of trade.
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Bibliographic Notes

Root�nding problems have been studied for centuries (Newton's method bears its
name for a reason). They are discussed in most standard references on numerical
analysis. In depth treatments can be found in Dennis and Schnabel and in Ortega
and Rheinboldt. Press et al. provides a discussion, with computer code, of both
Newton's and Broyden's method and of backstepping.

Standard references on complementarity problems include Balinski and Cottle,
Cottle et al. (1980), Cottle et al. (1992) and Ferris. Ferris and Pang provides an
overview of applications of CPs.

We have broken with standard expositions of complementarity problems; the CP
problem is generally stated to be

f(x) � 0; x � 0 and x>f(x) = 0:

This imposes only a one-sided bound on x at 0. Doubly bounded problems are
often called mixed complementarity problems (MCPs) and are typically formulated
as solving

max(min(f(x); x� a); x� b) = 0

rather than

min(max(f(x); a� x); b� x) = 0;

as we have done. If standard software for MCPs is used, the sign of f should be
reversed.

A number of approaches exist for solving CPs other than reformulation as a
root�nding problem. A well-studied and robust algorithm based on successive lin-
earization is incorporated in the PATH algorithm described by Ferris et al., and Ferris
and Munson. The linear complementarity problem (LCP) has received considerable
attention and forms the underpinning for methods based on successive linearization.
Lemke's method is perhaps the most widely used and robust LCP solver. It is de-
scribed in the standard works cited above. Recent work on LCPs includes Kremers
and Talman.

We have not discussed homotropy methods for solving nonlinear equations, but
these may be desirable to explore, especially if good initial values are hard to guess.
Judd, chapter 5, contains a good introduction, with economic applications and refer-
ences for further study.



Chapter 4

Finite-Dimensional Optimization

In this chapter we examine methods for optimizing a function with respect to a �nite
number of variables. In the �nite-dimensional optimization problem, one is given a
real-valued function f de�ned on X � <n and asked to �nd an x� 2 X such that
f(x�) � f(x) for all x 2 X. We denote this problem

max
x2X

f(x)

and call f the objective function, X the feasible set, and x�, if it exists, a maximum.1

Finite-dimensional optimization problems are ubiquitous in economics. For exam-
ple, the standard neoclassical models of �rm and individual decisionmaking involve
the maximization of pro�t and utility functions, respectively. Competitive static price
equilibrium models can often be equivalently characterized as optimization problems
in which a hypothetical social planner maximizes total surplus. Finite-dimensional
optimization problems arise in econometrics, as in the minimization of the sum of
squares or the maximization of a likelihood function. And one also encounters �nite-
dimensional optimization problems embedded within the Bellman equation that char-
acterizes the solution to continuous-space dynamic optimization models.

There is a close relationship between the �nite-dimensional optimization prob-
lems discussed in this chapter and the root�nding and complementarity problems
discussed in the previous chapter. The �rst-order necessary conditions of an uncon-
strained problem pose a root�nding problem; the Karush-Kuhn-Tucker �rst-order
necessary conditions of a constrained optimization problem pose a complementarity
problem. The root�nding and complementarity problems associated with optimiza-
tion problems are special in that they possess a natural merit function, the objective
function itself, which may be used to determine whether iterations are converging on
a solution.

1We focus our discussion on maximization. To solve a minimization problem, one simply maxi-
mizes the negative of the objective function.

63
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Over the years, numerical analysts have studied �nite-dimensional optimization
problems extensively and have devised a variety of algorithms for solving them quickly
and accurately. We begin our discussion with derivative-free methods, which are use-
ful if the objective function is rough or if its derivatives are expensive to compute.
We then turn to Newton-type methods for unconstrained optimization, which employ
derivatives or derivative estimates to locate an optimum. Univariate unconstrained
optimization methods are of particular interest because many multivariate optimiza-
tion algorithms use the strategy of �rst determining a linear direction to move in,
and then �nding the optimal point in that direction. We conclude with a discussion
of how to solve constrained optimization problems.

Before proceeding, we review some facts about �nite-dimensional optimization
and de�ne some terms. By the Wierstrass Theorem, if f is continuous and X is
nonempty, closed, and bounded, then f has a maximum on X. A point x� 2 X is a
local maximum of f if there is an �-neighborhood N of x� such that f(x�) � f(x) for
all x 2 N \X. The point x� is a strict local maximum if, additionally, f(x�) > f(x)
for all x 6= x� in N \X. If x� is a local maximum of f that resides in the interior of X
and f is twice di�erentiable there, then f 0(x�) = 0 and f 00(x�) is negative semide�nite.
Conversely, if f 0(x�) = 0 and f 00(x) is negative semide�nite in an �-neighborhood of
x� contained in X, then x� is a local maximum; if, additionally, f 00(x�) is negative
de�nite, then x� is a strict local maximum. By the Local-Global Theorem, if f is
concave, X is convex, and x� is a local maximum of f , then x� is a global maximum
of f on X.2

4.1 Derivative-Free Methods

As was the case with univariate root�nding, optimization algorithms exist that will
place progressively smaller brackets around a local maximum of a univariate func-
tion. Such methods are relatively slow, but do not require the evaluation of function
derivatives and are guaranteed to �nd a local optimum to a prescribed tolerance in a
known number of steps.

The most widely-used derivative-free method is the golden search method. Sup-
pose we wish to �nd a local maximum of a continuous univariate function f(x) on
the interval [a; b]. Pick any two numbers in the interior of the interval, say x1 and x2
with x1 < x2. Evaluate the function and replace the original interval with [a; x2] if
f(x1) > f(x2) or with [x1; b] if f(x2) � f(x1). A local maximum must be contained
in the new interval because the endpoints of the new interval are lower than a point
on the interval's interior (or the local maximum is at one of the original endpoints).

2These results also hold for minimization, provided one changes concavity of f to convexity and
negative (semi) de�niteness of f 00 to positive (semi) de�niteness.
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We can repeat this procedure, producing a sequence of progressively smaller intervals
that are guaranteed to contain a local maximum, until the length of the interval is
shorter than some desired tolerance level.

A key issue is how to pick the interior evaluation points. Two simple criteria lead
to the most widely-used strategy. First, the length of the new interval should be
independent of whether the upper or lower bound is replaced. Second, on successive
iterations, one should be able to reuse an interior point from the previous iteration so
that only one new function evaluation is performed per iteration. These conditions
are uniquely satis�ed by selecting xi = a+ �i(b� a), where

�1 =
3�p5

2
and �2 =

p
5� 1

2
:

The value �2 is known as the golden ratio, a number dear to the hearts of Greek
philosophers and Renaissance artists.

The followingMatlab script computes a local maximum of a univariate function
f on an interval [a; b] using the golden search method. The script assumes that the
user has written a Matlab routine f that evaluates the function at an arbitrary
point. The script also assumes that the user has speci�ed interval endpoints a and b

and a convergence tolerance tol:

alpha1 = (3-sqrt(5))/2;

alpha2 = (sqrt(5)-1)/2;

x1 = a+alpha1*(b-a); f1 = f(x1);

x2 = a+alpha2*(b-a); f2 = f(x2);

d = alpha1*alpha2*(b-a);

while d>tol

d = d*alpha2;

if f2<f1

x2 = x1; x1 = x1-d;

f2 = f1; f1 = f(x1);

else

x1 = x2; x2 = x2+d;

f1 = f2; f2 = f(x2);

end

end

if f2>f1

x = x2;

else

x = x1;

end



CHAPTER 4. FINITE-DIMENSIONAL OPTIMIZATION 66

TheMatlab toolbox accompanying the textbook includes a function golden that
computes a local maximum of a univariate function using the golden search method.
To apply this function, one �rst de�nes a Matlab function that returns the value
of the objective function at an arbitrary point. One then passes the name of this
function, along with the lower and upper bounds for the search interval, to golden.
For example, to compute a local maximum of f(x) = x cos(x2) � 1 on the interval
[0; 3], one executes the following Matlab script:

f = inline('x*cos(x^2)-1');

x = golden(f,0,3)

Execution of this script yields the result x = 0:8083. As can be seen in Figure 4.1,
this point is a local maximum, but not a global maximum in [0; 3]. The golden search
method is guaranteed to �nd the global maximum when the function is concave.
However, as the present example makes clear, this need not be true when the optimand
is not concave.

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3
Maximization of x cos(x2) via golden search

Figure 4.1

Another widely-used derivative-free optimization method for multivariate func-
tions is the Nelder-Mead algorithm. The algorithm begins by evaluating the objec-
tive function at n + 1 points. These n + 1 points form a so-called simplex in the
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n-dimensional decision space. This is most easily visualized when x is 2-dimensional,
in which case a simplex is a triangle.

At each iteration, the algorithm determines the point on the simplex with the
lowest function value and alters that point by reecting it through the opposite face
of the simplex. This is illustrated in Figure 4.2 (Reection), where the original simplex
is lightly shaded and the heavily shaded simplex is the simplex arising from reecting
point A. If the reection succeeds in �nding a new point that is higher than all the
others on the simplex, the algorithm checks to see if it is better to expand the simplex
further in this direction, as shown in Figure 4.2 (Expansion). On the other hand, if
the reection strategy fails to produce a point that is at least as good as the second
worst point, the algorithm contracts the simplex by halving the distance between the
original point and its opposite face, as in Figure 4.2 (Contraction). Finally, if this
new point is not better than the second worst point, the algorithm shrinks the entire
simplex toward the best point, point B in Figure 4.2 (Shrinkage).

                       Simplex Transformations in the Nelder−Mead Algorithm
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Figure 4.2

One thing that may not be clear from the description of the algorithm is how to
compute a reection. For a point xi, the reection is equal to xi+2di where xi+di is
the point in the center of the opposite face of the simplex from xi. That central point
can be found by averaging the n other point of the simplex. Denoting the reection
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by ri, this means that

ri = xi + 2

 
1

n

X
j 6=i

xj � xi
!
=

2

n

nX
j=1

xj �
�
1 +

1

2

�
xi:

An expansion can then be computed as

1:5ri � 0:5xi

and a contraction as

0:25ri + 0:75xi:

The Nelder-Mead algorithm is simple, but slow and unreliable. However, if a
problem involves only a single optimization or costly function and derivative evalua-
tions, the Nelder-Mead algorithm is worth trying. In many problems an optimization
problem that is embedded in a larger problem must be solved repeatedly, with the
function parameters perturbed slightly with each iteration. For such problems, which
are common is dynamic models, one generally will want to use a method that moves
more quickly and reliably to the optimum, given a good starting point.

TheMatlab toolbox accompanying the textbook includes a function neldermead
that maximizes a multivariate function using the Nelder-Meade method. To apply
this function, one must �rst de�ne a Matlab function f that returns the value of
the objective functions at an arbitrary point and then pass the name of this function
along with a starting value x to neldermeade. Consider, for example, maximizing the
\banana" function f(x) = �100(x2 � x21)2 � (1� x1)2, so-called because its contours
resemble bananas. Assuming a starting value of (1; 0), the Nelder-Meade procedure
may be executed in Matlab as follows:

f = inline('-100*(x(2)-x(1)^2)^2-(1-x(1))^2');

x = neldmead(f,[1; 0]);

Execution of this script yields the result x = (1; 1), which indeed is the global maxi-
mum of the function. The contours of the banana function and the path followed by
the Nelder-Meade iterates are illustrated in Figure 4.3.

4.2 Newton-Raphson Method

The Newton-Raphson method for maximizing an objective function uses successive
quadratic approximations to the objective in the hope that the maxima of the ap-
proximants will converge to the maximum of the objective. The Newton-Raphson
method is intimately related to the Newton method for solving root�nding problems.
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Indeed, the Newton-Raphson method is identical to applying Newton's method to
compute the root of the gradient of the objective function.

More generally, the Newton-Raphson method begins with the analyst supplying a
guess x(0) for the maximum of f . Given x(k), the subsequent iterate x(k+1) is computed
by maximizing the second order Taylor approximation to f about x(k):

f(x) � f
�
x(k)
�
+ f 0

�
x(k)
� �
x� x(k)�+ 1

2

�
x� x(k)�>f 00 �x(k)� �x� x(k)� :

Solving the �rst order condition

f 0
�
x(k)
�
+ f 00

�
x(k)
� �
x� x(k)� = 0;

yields the iteration rule

x(k+1)  x(k) � �f 00 �x(k)���1 f 0 �x(k)� :
In theory, the Newton-Raphson method converges if f is twice continuously di�er-

entiable and if the initial value of x supplied by the analyst is \suÆciently" close to a
local maximum of f at which the Hessian f 00 is negative de�nite. There is, however,
no generally practical formula for determining what suÆciently close is. Typically,
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an analyst makes a reasonable guess for the maximum of f and counts his blessings
if the iterates converge. The Newton-Raphson method can be robust to the starting
value if f is well behaved, for example, if f is globally concave. The Newton-Raphson
method, however, can be very sensitive to starting value if the function is not globally
concave. Also, in practice, the Hessian f 00 must be well-conditioned at the optimum,
otherwise rounding errors in the vicinity of the optimum can make it diÆcult to
compute a precise approximate solution.

The Newton-Raphson algorithm has numerous drawbacks. First, the algorithm
requires computation of both the �rst and second derivatives of the objective function.
Second, the Newton-Raphson algorithm o�ers no guarantee that the objective func-
tion value may be increased in the direction of the Newton step. Such a guarantee is
available only if the Hessian f 00

�
x(k)
�
is negative de�nite; otherwise, one may actually

move towards a saddle point of f (if the Hessian is inde�nite) or even a minimum (if
Hessian is positive de�nite). For this reason, the Newton-Raphson method is rarely
used in practice, and then only if the objective function is globally concave.

4.3 Quasi-Newton Methods

Quasi-Newton methods employ a similar strategy to the Newton-Raphson method,
but replace the Hessian of the objective function (or its inverse) with a negative
de�nite approximation, guaranteeing that function value can be increased in the di-
rection of the Newton step. The most eÆcient quasi-Newton algorithms employ an
approximation to the inverse Hessian, rather than the Hessian itself, in order to avoid
performing a linear solve, and employ updating rules that do not require second
derivative information to ease the burden of implementation and the cost of compu-
tation.

In analogy with the Newton-Raphson method, quasi-Newton methods use a search
direction of the form

d(k) = �B(k)f 0
�
x(k)
�

where B(k) is an approximation to the inverse Hessian of f at the kth iterate x(k).
The vector d(k) is called the Newton or quasi-Newton step.

The more robust quasi-Newton methods do not necessarily take the full Newton
step, but rather shorten it or lengthen it in order to obtain improvement in the
objective function. This is accomplished by performing a line-search in which one
seeks a step length s > 0 that maximizes or nearly maximizes f

�
x(k) + sd(k)

�
. Given

the computed step length s(k), one updates the iterate as follows:

x(k+1) = x(k) + s(k)d(k):
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Line search methods are discussed in the following section.
Quasi-Newton method di�er in how the inverse Hessian approximation Bk is con-

structed and updated. The simplest quasi-Newton method sets Bk = �I, where I is
the identity matrix. This leads to a Newton step that is identical to the gradient of
the objective function at the current iterate:

d(k) = f 0
�
x(k)
�
:

The choice of gradient as a step direction is intuitively appealing because the gradient
always points in the direction which, to a �rst order, promises the greatest increase in
f . For this reason, this quasi-Newton method is called the method of steepest ascent.
The steepest ascent method is simple to implement, but is numerically less eÆcient
in practice than competing quasi-Newton methods that incorporate information re-
garding the curvature of the objective function.

The most widely-used quasi-Newton methods that employ curvature information
produce a sequence of inverse Hessian estimates that satisfy two conditions. First,
given that

d(k) � f 00�1(x(k))
�
f 0(x(k) + d(k))� f 0(x(k))� ;

the inverse Hessian estimate Ak is required to satisfy the so-called quasi-Newton

condition:

d(k) = B(k)
�
f 0(x(k) + d(k))� f 0(x(k))� :

Second, the inverse Hessian estimate A(k) is required to be both symmetric and
negative-de�nite, as must be true of the inverse Hessian at a local maximum. The
negative de�niteness of the Hessian estimate assures that the objective function value
can be inreased in the direction of the Newton step.

Two methods that satisfy the quasi-Newton and negative de�niteness conditions
are the Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shano (BFGS)
updating methods. The DFP method uses the updating scheme

B  B +
dd>

d>u
� Buu>B

u>Bu
;

where

d = x(k+1) � x(k)

and

u = f 0(x(k+1))� f 0(x(k)):
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The BFGS method uses the update scheme

B  B +
1

d>u

�
wd> + dw> � w>u

d>u
dd>

�
;

where w = d� Bu:
The BFGS algorithm is generally considered superior to DFP, although there

are problems for which DFP outperforms BFGS. However, except for the updating
formulae, the two methods are identical, so it is easy to implement both and give
users the choice.3

The following Matlab script computes the maximum of a user-supplied multi-
variate function f using the quasi-Newton method. The script assumes that the user
has written aMatlab routine f that evaluates the function at an arbitrary point and
that the user has speci�ed a starting point x, an initial guess for the inverse Hessian
A, a convergence tolerance tol, and a limit on the number of iterations maxit. The
script uses an auxiliary algorithm optstep to determine the step length (discussed
in the next section). The algorithm also o�ers the user a choice on how to select the
search direction, searchmeth (1-steepest ascent, 2-DFP, 3-BFGS).

k = size(x,1);

[fx0,g0] = f(x);

if all(abs(g0)<eps), return; end

for it=1:maxit

d = -A*g0; % search direction

[s,fx] = optstep(StepMeth,f,x,fx0,g0,d,maxstep,varargin{:});

if fx<=fx0 % Step search failure

warning('Iterations stuck in qnewton'), return;

end

d = s*d;

x = x+d;

[fx,g] = f(x);

% Test convergence

if all(abs(d)/(abs(x)+eps0)<tol)) | all(abs(g)<eps); return; end

% Update Inverse Hessian

u = g-g0; ud = u'*d;

if SearchMeth==1 | abs(ud)<eps % Steepest ascent

A = -eye(k)./max(abs(fx),1);

elseif SearchMeth==2; % DFP update

3Modern implementations of quasi-Newton methods store and update the Cholesky factors of
the inverse Hessian approximation. This approach is numerically more stable and computationally
eÆcient, but is also somewhat more complicated and requires routines to update Cholesky factors.
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v = A*u;

A = A + d*d'./ud - v*v'./(u'*v);

elseif SearchMeth==3; % BFGS update

w = d-A*u; wd = w*d';

A = A + ((wd + wd') - ((u'*w)*(d*d'))./ud)./ud;

end

% Update iteration

fx0 = fx; g0 = g;

end

Quasi-Newton methods are susceptible to certain problems. Notice in both update
formulae there is a division by d>u. If this value becomes very small in absolute value,
numerical instabilities will result. It is best to monitor this value and skip updating
A(k) if it becomes too small. A useful rule for what is too small is

jd>uj < � jjdjj jjujj;
where � is the precision of the computer. An alternative to skipping the update,
used in the following implementation, is to reset the inverse Hessian approximant to
a scaled negative identity matrix.

The Matlab toolbox accompanying the textbook includes a function qnewton

that maximizes a multivariate function using the quasi-Newton method. To apply
this function, one de�nes a Matlab function f that returns the function value at
arbitrary point and speci�es a starting value x. Consider, for example, maximizing
the banana function f(x) = �100 (x2 � x21)2 � (1� x1)2 assuming a starting value
of (1; 0). To maximize the function using the default BFGS Hessian update, one
proceeds as follows:

f = inline('-100*(x(2)-x(1)^2)^2-(1-x(1))^2');

x = qnewton(f,[1;0]);

Execution of this script returns the maximum x = (1; 1) in 18 iterations. To maximize
the function using the steepest ascent method, one may override the default update
method as follows:

optset('qnewton','SearchMeth',1);

x = qnewton(f,[1;0]);

Execution of this script fails to �nd the optimum afer 250 iterations, the default
maximum allowable, returning the nonoptimal value x = (0:82; 0:68). The path
followed by the quasi-Newton method iterates in these two examples are illustrated
in Figure 4.4 and 4.5.
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4.4 Line Search Methods

Just as was the case with root�nding problems, it is not always best to take a full
Newton step. In fact, it may be better to either stop short or move past the Newton
step. If we view the Newton step as de�ning a search direction, performing a one-
dimensional search in that direction will generally produce improved results.

In practice, it is not necessary to perform a thorough search for the best point
in the Newton direction. Typically, it is suÆcient to assure that successive quasi-
Newton iterations are raising the value of the objective. A number of di�erent line
search methods are used in practice, including the golden search method. The golden
search algorithm is very reliable, but computationally ineÆcient. Two alternative
schemes are typically used in practice to perform line searches. The �rst, known as
the Armijo search, is similar to the backstepping algorithm used in root�nding and
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complementarity problems. The idea is to �nd the minimum power j such that

f(x+ sd)� f(x)
s

� �f 0(x)>d;

where s = �j and 0 < � < 0:5. Note that the left hand side is the slope of the
line from the current iteration point to the candidate for the next iteration and the
right hand side is the directional derivative at x in the search direction d, that is,
the instantaneous slope at the current iteration point. The Armijo approach is to
backtrack from a step size of 1 until the slope on the left hand side is a given fraction,
� of the slope on the right hand side.

Another widely-used approach, known as Goldstein search, is to �nd any value of
s that satis�es

�0f
0(x)>d � f(x+ sd)� f(x)

s
� �1f

0(x)>d;
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for some values of 0 < �0 � 0:5 � �1 < 1. Unlike the Armijo search, which is both
a method for selecting candidate values of the stepsize s and a stopping rule, the
Goldstein criteria is simply a stopping rule that can be used with a variety of search
approaches.

Figure 4.6 illustrates the typical situation at a given iteration. The �gure plots the
objective function, expressed as deviations from f(x), i.e., f(x + sd)� f(x), against
the step size s in the Newton direction d. The objective function is highlighted and
the line tangent to it at the origin has slope equal to the directional derivative f 0(x)>d.
The values �0 and �1 de�ne a cone within which the function value must lie to be
considered an acceptable step. In Figure 4.6 the cone is bounded by dashed lines with
�0 = 0:25 and �1 = 0:75. These values are for illustrative purposes and de�ne a far
narrower cone than is desirable; typical values are on the order of 0.0001 and 0.9999.
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A simple strategy for locating an acceptable point is to �rst �nd a point in or
above the cone using step doubling (doubling the value of s at each iteration). If a
point above the cone is found �rst, we have a bracket within which points in the cone
must lie. We can then narrow the bracket using the golden search method. We call
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this the bhhhstep approach.
Another approach, stepbt, checks to see if s = 1 is in the cone and, if so, max-

imizes a quadratic approximation to the objective function in the Newton direction
constructed from knowledge of f(x), f 0(x)d and f(x + d). If the computed step s is
acceptable, it is taken. Otherwise, the algorithm iterates until an acceptable step is
found using a cubic approximation to the objective function in the Newton direction
constructed from knowledge of f(x), f 0(x)d, f(x+ s(j�1)d) and f(x+ s(j)d). stepbt
is fast and generally gives good results. It is recommended as the default lines search
procedure for general maximization algorithms.

In Figure 4.6 we have included three stars representing the step lengths deter-
mined by stepbhhh, stepbt and our implementation of the golden search step length
maximizer, stepgold (also listed below). stepgold �rst brackets a maximum in the
direction d and then uses the golden search approach to narrow the bracket. This
method di�ers from the other two in that it terminates when the size of the bracket
is less than a speci�ed tolerance (here set at 0.0004).

In this example, the three methods took 11, 4 and 20 iterations to �nd an accept-
able step length, respectively. Notice that stepbt found the maximum in far fewer
steps than did stepgold. This will generally be true when the function is reasonably
smooth and hence well approximated by a cubic function. It is diÆcult to make gen-
eralizations about the performance of the step line search algorithm, however. In this
example, the step size was very small, so both stepbhhh and stepgold take many
iterations to get the order of magnitude correct. In many cases, if the initial distance
is well chosen, the step size will typically be close to unity in magnitude, especially
as the maximizer approaches the optimal point. When this is true, the advantage of
stepbt is less important. Having said all of that, we recommend stepbt as a default.
We have also implemented our algorithm to use stepgold if the other methods fail.

4.5 Special Cases

Two special cases arise often enough in economic practice (especially in econometrics)
to warrant additional discussion. Nonlinear least squares and the maximum likeli-
hood problems have objective functions with special structures that give rise to their
own special quasi-Newton methods. The special methods di�er from other Newton
and quasi-Newton methods only in the choice of the matrix used to approximate the
Hessian. Because these problems generally arise in the context of statistical applica-
tions, we alter our notation to conform with the conventions for those applications.
The optimization takes place with respect to a k-dimensional parameter vector � and
n will refer to the number of observations.
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The nonlinear least squares problem takes the form

min
�

1
2 f(�)

>f(�)

where f : <k ! <n (the 1
2 is for notational convenience). The gradient of this

objective function is

nX
i=1

f 0i(�)
>fi(�) = f 0(�)>f(�):

The Hessian of the objective function is

f 0(�)>f 0(�) +
nX
i=1

fi(�)
@2f(�)

@�@�>
:

If we ignore the second term in the Hessian, we are assured of having a positive
de�nite matrix with which to determine the search direction:

d = � �f 0(�)>f 0(�)��1 f 0(�)>f(�):
All other aspects of the problem are identical to the quasi-Newton methods already
discussed, except for the adjustment to minimization. It is also worth pointing out
that, in typical applications, f(�) composed of error terms each having expectation
0. Assuming that the usual central limit assumptions apply to the error term, the
inverse of the approximate Hessian�

f 0(�)>f 0(�)
��1

;

can be used as a covariance estimator for �.
Maximum likelihood problems are speci�ed by a choice of a distribution function

for the data, y, that depends on a parameter vector, �. The log-likelihood function
is the sum of the logs of the likelihoods of each of the data points:

l(�; y) =
nX
i=1

ln f(�; yi):

The score function is de�ned as the matrix of derivatives of the log-likelihood function
evaluated at each observation:

si(�; y) =
@l(�; yi)

@�
:

(viewed as a matrix, the score function is n� k).



CHAPTER 4. FINITE-DIMENSIONAL OPTIMIZATION 79

A well-known result in statistical theory is that the expectation of the inner prod-
uct of the score function is equal to the negative of the expectation of the second
derivative of the likelihood function, which is known as the information matrix. Ei-
ther the information matrix or the sample average of the inner product of the score
function provides a positive de�nite matrix that can be used to determine a search
direction. In the later case the search direction is de�ned by

d = � �s(�; y)>s(�; y)��1 s(�; y)>1n;
where 1n is an n-vector of ones. This approach is known as the modi�ed method of

scoring.4 As in the case of the nonlinear least squares, a covariance estimator for � is
immediately available using�

s(�; y)>s(�; y)
��1

:

4.6 Constrained Optimization

The simplest constrained optimization problem involves the maximization of an ob-
jective function subject to simple bounds on the choice variable:

max
a�x�b

f(x):

According to the Karush-Kuhn-Tucker theorem, if f is di�erentiable on [a; b], then
x� is a constrained maximum for f only if it solves the complementarity problem
CP(f 0; a; b):5

ai � xi � bi
xi > ai ) f 0i(x) � 0
xi < bi ) f 0i(x) � 0:

Conversely, if f is concave and di�erentiable on [a; b] and x� solves the complemen-
tarity problem CP(f 0(x); a; b), then x� is a constrained maximum of f ; if additionally
f is strictly concave on [a; b], then the maximum is unique.

Two bounded maximization problems are displayed in Figure 4.7. In this �gure,
the bounds are displayed with dashed lines and the objective function with a solid
line. In Figure 4.7A the objective function is concave and achieves its unique global
maximum on the interior of the feasible region. At the maximum, the derivative of f
must be zero, for otherwise one could improve the objective by moving either up or

4If the information matrix is known in closed form, it could be used rather than s>s and the
method would be known as the method of scoring.

5Complementarity problems are discussed in Section 3.7 on page 48.)
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down, depending on whether the derivative is positive or negative. In Figure 4.7B we
display a more complicated case. Here, the objective function is convex. It achieves a
global maximum at the lower bound and a local, non-global maximum at the upper
bound. It also achieves a global minimum in the interior of the interval.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

a) f(x) = 1.5−(x−3/4)2, x* = 3/4

                                                 One−Dimensional Maximization Problems

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

b) f(x) = −2+(x−3/4)2, x* = 0 & 1

Figure 4.7

In Figure 4.8 we illustrate the complementarity problem presented by the Karush-
Kuhn-Tucker conditions associated with the bounded optimization problems in Figure
4.7. The complementarity problems are represented in their equivalent root�nding
formulation min(max(f 0(x); a�x); b�x) = 0. In Figure 4.8A we see that the Karush-
Kuhn-Tucker conditions possess an unique solution at the unique global maximum of
f . In Figure 4.8B there are three solutions to the Karush-Kuhn-Tucker conditions,
corresponding to the two local maxima and the one local minimum of f on [a; b].
These �gures illustrate that one may reliably solve a bounded maximization problem
using standard complementarity methods only if the objective function is concave.
Otherwise, the complementary algorithm could lead to local, non-global maxima or
even minima.

The sensitivity of the optimal value of the objective function f � to changes in
the bounds of the bounded optimization problem are relatively easy to characterize.
According to the Envelope theorem,

df �

da
= min (0; f 0(x�))

df �

db
= max (0; f 0(x�)) :

More generally, if f , a, and b all depend on some parameter p, then

df �

dp
=
@f

@p
+min

�
0;
@f

@x

�
da

dp
+max

�
0;
@f

@x

�
db

dp
;
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where the derivatives of f , a, and b are evaluated at (x�; p).
The most general constrained �nite-dimensional optimization problem that we

consider is

max
a�x�b

f(x); s.t. R(x) S r;

where R : [a; b]! <m.
According to the Karush-Kuhn-Tucker Theorem, a regular point x maximizes f

subject to the general constraints only if there is a vector � 2 <n such that (x; �)
solves the complementarity problem

CP

� �
f 0(x)> � R0(x)>�>

R(x)� r
�
;

�
a
p

�
;

�
b
q

��

where the values of p and q depend on the type of constraint:

� = �
pi 0 �1 �1
qi 1 1 0

A point x is regular if the gradients of all constraint functions Ri that satisfy Ri(x) =
ri are linearly independent.6 Conversely, if f is concave, R is convex and (x; �)
satis�es the Karush-Kuhn-Tucker conditions, then x solves the general constrained
optimization problem.

6The regularity conditions may be omitted if either the constraint function R is linear, or if f is
concave, R is convex, and the feasible set has nonempty interior.
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In the Karush-Kuhn-Tucker conditions, the �i are called Lagrangian multipliers
or shadow prices. The signi�cance of the shadow prices is given by the Envelope
Theorem, which asserts that under mild regularity conditions,

@f �

@r
= �;

that is, �i is the rate at which the optimal value of the objective will change with
changes in the constraint constant ri. The sensitivity of the optimal value of the
objective function f � to changes in the bounds on the choice variable are given by:

df �

da
= min

�
0; f 0(x)� R0(x)�>�

df �

db
= max

�
0; f 0(x)� R0(x)�>� :

The Karush-Kuhn-Tucker complementarity conditions typically have a natural
arbitrage interpretation. Consider the problem of maximizing pro�ts from certain
economic activities when the activities employ �xed factors or resources that are
available in limited supply. Speci�cally, suppose x1; x2; : : : ; xn are the levels of n
economic activities, which must be nonnegative, and the objective is to maximize
pro�t f(x) generated by those activities. Also suppose that these activities employ m
resources and that the usage of the ith resource Ri(x) cannot exceed a given availability
ri. Then �

�
i represents the opportunity cost or shadow price of the ith resource and

MPj =
@f

@xj
�
X
i

��i
@Ri

@xj

represents the economic marginal pro�t of the jth activity, accounting for the op-
portunity cost of the resources employed in the activity. The Karush-Kuhn-Tucker
conditions may thus be interpreted as follows:

xj � 0 activity levels are nonnegative

MPj � 0 otherwise, raise pro�t by raising xj

xj > 0)MPj � 0 otherwise, raise pro�t by lowering xj

��i � 0 Shadow price of resource is nonnegative

Ri(x) � ri resource use cannot exceed availability

�i > 0) Ri(x) = ri valuable resources should not be wasted
There are many approaches to solving general optimization problems that would

take us beyond what we can hope to accomplish in this book. Solving general opti-
mization problems is diÆcult and the best advice we can give here is that you should
obtain a good package and use it. However, if your problem is reasonably well behaved
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in the sense that the Karush-Kuhn-Tucker are both necessary and suÆcient, then the
problem is simply to solve the Karush-Kuhn-Tucker conditions. This means writing
the Karush-Kuhn-Tucker conditions as a complementarity problem and solving the
problem using the methods of the previous chapter.
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Exercises

4.1. Suppose that the probability density function of a non-negative random variable,
y, is

exp(�yi=�i)=�i

where �i = Xi� for some observable data Xi (Xi is 1� k and � is k � 1).

(a) Show that the �rst order conditions for the maximum likelihood estimator
of � can be written asX Xi

>Xi

(Xi�)2
� =

X Xi
>yi

(Xi�)2
:

(b) Use this result to de�ne a recursive algorithm to estimate �.

(c) Write a Matlab function of the form [beta,sigma]=example(y,X) that
computes the maximum likelihood estimator of � and its asymptotic co-
variance matrix �. The function should be a stand-alone procedure (i.e.,
do not call any optimization or root-�nding solvers) that implements the
recursive algorithm.

(d) Show that the recursive algorithm can be interpreted as a quasi-Newton
method. Explain fully.

4.2. The two-parameter gamma probability distribution function has density:

f(x; �) =
��12 x

�1�1e��2x

�(�1)
:

(a) Derive the �rst order conditions associated with maximizing the log-likelihood
associated with this distribution. Note that the �rst and second deriva-
tives of the log of the � function are the psi and trigamma functions. The
Matlab toolbox contains procedures to evaluate these special functions.

(b) Solve the �rst order condition for �2 in terms of �1. Use this to derive an
optimality condition for �1 alone.

(c) Write a Matlab function that is passed a vector of observations (of pos-
itive numbers) and returns the maximum likelihood estimates of � and
their covariance matrix. Implement the function to use Newton's method
without calling any general optimization or root-�nding solvers.
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Notice that the maximum likelihood estimator of � depends on the data
only through Y1 =

1
n

Pn
i=1 xi, the arithmetic mean, and Y2 = exp( 1

n

Pn
i=1 ln(xi)),

the geometric mean (Y1 and Y2 are known as suÆcient statistics for �).
Your code should exploit this by only computing these suÆcient statistics
once.

(d) Plot �1 as a function of Y1=Y2 over the range [1:1; 3].

4.3. CIR Bond Pricing

The so-call Cox-Ingersoll-Ross (CIR) bond pricing model uses the function

Z(r; � ; �; �; �) = A(�) exp(�B(�)r)

with

A(�) =

�
2e(+�)�=2

( + �)(e� � 1) + 2

�2��=�2

and

B(�) =
2(e� � 1)

( + �)(e� � 1) + 2
;

where  =
p
�2 + 2�2. Here r is the current instantaneous rate of interest, � is

the time to maturity of the bond, and �, � and � are model parameters. The
percent rate of return on a bond is given by

r(�) = �100 ln(Z(r; �))=�:

In the following table, actual rates of return7 on Treasury bonds for 9 values of
� are given for 5 consecutive Wednesdays in early 1999.

Date .25 .5 1 2 3 5 7 10 30
1999/01/07 4.44 4.49 4.51 4.63 4.63 4.62 4.82 4.77 5.23
1999/01/13 4.45 4.48 4.49 4.61 4.61 4.60 4.84 4.74 5.16
1999/01/20 4.37 4.49 4.53 4.66 4.66 4.65 4.86 4.76 5.18
1999/01/27 4.47 4.47 4.51 4.57 4.57 4.57 4.74 4.68 5.14
1999/02/03 4.48 4.55 4.59 4.72 4.73 4.74 4.91 4.83 5.25

7Actually, the data is constructed by a smoothing and �tting process and thus these returns do
not necessarily represent the market prices of actual bonds; for the purposes of the exercise, however,
this fact can be ignored.
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a) For each date, �nd the values of r, �, � and � that minimize the squared
di�erences between the model and the actual rates of return. This is one way
that model parameters can be \calibrated" to the data and ensures that model
parameters yield a term structure that is close to the observed term structure.

b) In this model the values of the parameters are �xed, but the value of r varies
over time. In fact, part (a) showed that the three parameters values vary from
week to week. As an alternative, �nd the values of the parameters and the 5
values of r that minimize the squared deviations between the model and actual
values. Compare these to the parameter values obtained by calibrating to each
date separately.

4.4. Option-based Risk-neutral Probabilities

An important theorem in �nance theory demonstrates that the value of a Eu-
ropean put option is equal to the expected return on the option, with the ex-
pectation taken with respect to the so-called risk-neutral probability measure8

V (k) =

Z 1

0

(k � p)+f(p)dp =
Z k

0

(k � p)f(p)dp

where f(p) is the probability distribution of the price of underlying asset at the
option's maturity, k is the option's strike price and (x)+ = max(0; x).

This relationship has been used to compute estimates of f(p) based on observed
asset prices. There are two approaches that have been taken. The �rst is to
choose a parametric form for f and �nd the parameters that best �t the observed
option price. To illustrate, de�ne the discrepancy between observed and model
values as

e(k) = Vk �
Z k

0

(k � p)f(p; �)dp

and then �t � by, e.g., minimizing the sum of squared errors:

min
�

X
j

e(kj)
2:

The other approach is to discretize the price, pi, and its probability distribution,
fi. Values of the fi can be computed that correctly reproduce observed option

8This is strictly true only if the interest rate is 0 or, equivalently, if the option values are interest
rate adjusted appropriately. Also, the price of the underlying asset should not be correlated with
the interest rate.
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value and that satisfy some auxiliary condition. That condition could be a
smoothness condition, such as minimizing the sum of the fi+1 � 2fi + fi�1; if
the pi are evenly spaced this is proportional to an approximation to the second
derivative of f(p).

An alternative is to compute the maximum entropy values of the fi:

max
ffig

X
i

fi ln(fi);

subject to the constraints that the fi are non-negative and sum to 1. It is easy
to show that the fi satisfy

fi =
exp(

P
j �j(kj � pi)+)P

i exp(
P

j �j(kj � pi)+)
;

where �j is the Lagrange multiplier on the constraint that the jth option is
correctly priced. The problem is thus converted to the root �nding problem of
solving for the Lagrange multipliers:

Vj �
X
i

fi(kj � pi)+ = 0;

where the fi are given above.

Write a MATLAB program that takes as input a vector of price nodes, p, and
associated vectors of strike prices, k, and observed put option values, v, and
returns a vector of maximum entropy probabilities, f , associated with p:
f=RiskNeutral(p,k,v)

The function can pass an auxiliary function to a root �nding algorithm such as
Newton or Broyden.

The procedure just described has the peculiar property that (if put options alone
are used), the upper tail probabilities are all equal above the highest value of
the kj. To correct for this, one can add in the constraint that the expected price
at the option's expiration date is the current value of the asset, as would be
true in a 0 interest rate situation. Thus modify the original program to accept
the current value of the price of the underlying asset:
f=RiskNeutral(p,k,v,p0)

To test your program, use the script �le RiskNeutD.m.
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4.5. Consider the Quadratic Programming problem

max
x

1
2
x>Dx+ c>x

s:t: Ax � b

x � 0

where D is a symmetric n� n matrix, A is an m� n matrix, b is an m-vector.

(a) Write the Karush-Kuhn-Tucker necessary conditions as a linear comple-
mentarity problem.

(b) What condition on D will guarantee that the Karush-Kuhn-Tucker condi-
tions are suÆcient for optimality?

4.6. A consumer's preferences over the commodities x1, x2, and x3 are characterized
by the Stone-Geary utility function

U(x) =
3X

i=1

�i ln(xi � i)

where �i > 0 and xi > i � 0. The consumer wants to maximize his utility
subject to the budget constraint

3X
i=1

pixi � I

where pi > 0 denotes the price of xi, I denotes income, and I �P3
i=1 pii > 0:

(a) Write the Karush-Kuhn-Tucker necessary conditions for the problem.

(b) Verify that the Karush-Kuhn-Tucker conditions are suÆcient for optimal-
ity.

(c) Derive analytically the associated demand functions.

(d) Derive analytically the shadow price and interpret its meaning.

(e) Prove that the consumer will utilize his entire income.
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4.7. Derive and interpret the Karush-Kuhn-Tucker conditions for the classical trans-
portation problem:

min
nX
{=1

mX
|=1

x{|x{|

s:t:
nX
{=1

x{| � d| | = 1; : : : ; m

mX
|=1

x{| � s{ { = 1; : : : ; n

x{| � 0 { = 1; : : : ; n; | = 1; : : : ; m

State suÆcient conditions for the transportation problem to have an optimal
feasible solution.

4.8. Demand for a commodity in regions A and B is given by:

Region A : p = 200� 2q

Region B : p = 100� 4q

Supply is given by:

Region A : p = 20 + 8q

Region B : p = 10 + 6q:

The transportation cost between regions is $10 per unit.

Formulate an optimization problem that characterizes the competitive spatial
price equilibrium. Derive, but do not solve, the Karush-Kuhn-Tucker condi-
tions. Interpret the shadow prices.

4.9. Portfolio Choice

Suppose that the returns on a set of n assets has mean � (n� 1) and variance
� (n� n). A portfolio of assets can be characterized by a set of share weights,
!, an n � 1 vector of non-negative values summing to 1. The mean return on
portfolio is �>! and its variance is !>�!.

A portfolio is said to be on the mean-variance eÆcient frontier if its variance is
as small as possible for a given mean return.
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Write a MATLAB program that calculates and plots a mean-variance eÆcient
frontier. Write it so it returns two vectors that provide points on the frontier:
[mustar,Sigmastar]=MV(mu,Sigma,n)

Here n represents the desired number of points.

Run the program MVDemo.m to test your program.

Hint: Determine the mean return from the minimium variance portfolio and
determine the maximum mean return portfolio. These provide lower and upper
bounds for mustar. Then solve the optimization problem for the remaining
n� 2 values of mustar.

4.10. Consider the nonlinear programming problem

max
x1;x2

x22 � 2x1 � x21
s:t: x21 + x22 � 1

x1 � 0; x2 � 0:

(a) Write the Karush-Kuhn-Tucker necessary conditions for the problem.

(b) What points satisfy the Karush-Kuhn-Tucker necessary conditions.

(c) Are the Karush-Kuhn-Tucker conditions suÆcient for optimality?

(d) How do you know that problem possesses an optimum?

(e) Determine the optimum, if any.

4.11. A tomato processor operates two plants whose hourly variable costs (in dollars)
are, respectively,

c1 = 80 + 2:0x1 + 0:001x21
c2 = 90 + 1:5x2 + 0:002x22;

where xi is the number of cases produced per hour at plant i. In order to meet
contractual obligations, he must produce at a rate of at least 2000 cases per
hour (x1 + x2 � 2000.) He wishes to do so at minimal cost.

(a) Write the Karush-Kuhn-Tucker necessary conditions for the problem.

(b) Verify that the Karush-Kuhn-Tucker conditions are suÆcient for optimal-
ity.

(c) Determine the optimal levels of production.

(d) Determine the optimal value of the shadow price and interpret its meaning.
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4.12. Consider the problem of allocating a scarce resource, the total supply of which
is b > 0, among n tasks with separable rewards:

max
x1;x2;:::;xn

f1(x1) + f2(x2) + : : :+ fn(xn)

s:t: x1 + x2 + : : :+ xn � b

x1 � 0; x2 � 0; : : : ; xn � 0:

Assume each fi is strictly increasing and di�erentiable but not necessarily con-
cave.

(a) How do you know that problem possesses an optimum?

(b) Write the Karush-Kuhn-Tucker necessary conditions.

(c) Prove that the scarce resource will be completely utilized.

(d) Interpret the shadow price associated with the resource constraint.

(e) Given a marginal increase in the supply of the resource, to which task(s)
would you allocate the additional amount.

4.13. Consider a one-output two-input production function

y = f(x1; x2) = x21 + x22:

Given the prices of inputs 1 and 2, w1 and w2, the minimum cost of producing
a given level of output, �y, is obtained by solving the constrained optimization
problem

min
x1;x2

C = w1x1 + w2x2

s:t: f(x1; x2) � �y:

Letting � denote the shadow price associated with the production constraint,
answer the following questions:

(a) Write the Karush-Kuhn-Tucker necessary conditions.

(b) Find explicit expressions for the optimal x�1, x
�
2, and C

�.

(c) Find an explicit expression for the optimal �� and interpret its meaning.

(d) Di�erentiate the expression for C� to con�rm that @C�

@�y
= ��.
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4.14. A salmon cannery produces Q 1-lb. cans of salmon according to a technology
given by Q = 18K

1

4L
1

3 , where capital K is �xed at 16 units in the shortrun and
labor L may be hired in any quantity at a wage rate of w dollars per unit. Each
unit of output provides a pro�t contribution of 1 dollar.

(a) Derive the �rm's shortrun demand for labor.

(b) If w = 3, how much would the �rm be willing to pay to rent a unit of
capital.

4.15. Consider the nonlinear programming problem

min
x1;:::;x4

x0:251 x0:503 x0:254

s:t: x1 + x2 + x3 + x4 � 4

x1; x2; x3; x4 � 0:

(a) What can you say about the optimality of the point (1; 0; 2; 1)?

(b) Does this program possess all the correct curvature properties for the
Karush-Kuhn-Tucker conditions to be suÆcient for optimality throughout
the feasible region? Why or why not?

(c) How do you know that problem possesses an optimal feasible solution?

4.16. Consider the non-linear programming problem

min
x1;x2

2x21 � 12x1 + 3x22 � 18x2 + 45

s:t: 3x1 + x2 � 12

x1 + x2 � 6

x1; x2 � 0:

The optimal solution to this problem is: x�1 = 3 and x�2 = 3.

(a) Verify that the Karush-Kuhn-Tucker conditions are satis�ed by this solu-
tion.

(b) Determine the optimal values for the shadow prices �1 and �2 associated
with the structural constraints, and interpret ��1 and �

�
2.

(c) If the second constraint were changed to x1 + x2 � 5, what would be the
e�ect on the optimal values of x1, x2, �1, and �2?
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Chapter 5

Numerical Integration and

Di�erentiation

In many computational economic applications, one must compute the de�nite integral
of a real-valued function f with respect to a \weighting" function w over an interval
I of <n:Z

I

f(x)w(x) dx:

The weighting function may be the identity, w � 1, in which case the integral repre-
sents the area under the function f . In other applications, w may be the probability
density of a random variable ~X, in which case the integral represents the expectation
of f( ~X) when I repesents the whole support of ~X.

In this chapter, we discuss three classes of numerical integration or numerical

quadrature methods. All methods approximate the integral with a weighted sum of
function values:Z

I

f(x)w(x) dx �
nX
i=0

wif(xi)

The methods di�er only in how the quadrature weights wi and the quadrature nodes

xi are chosen. Newton-Cotes methods approximate the integrand f between nodes
using low order polynomials, and sum the integrals of the polynomials to estimate
the integral of f . Newton-Cotes methods are easy to implement, but are not particu-
larly eÆcient for computing the integral of a smooth function. Gaussian quadrature
methods choose the nodes and weights to satisfy moment matching conditions, and
are more powerful than Newton-Cotes methods if the integrand is smooth. Monte
Carlo and quasi-Monte Carlo integration methods use \random" or \equidistributed"

94
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nodes, and are simple to implement and are especially useful if the integration domain
is of high dimension or irregularly shaped.

In this chapter, we also present an overview of how to compute �nite di�erence

approximations for the derivatives of a real-valued function. As we have seen in
previous chapters, it is often desirable to compute derivatives numerically because
analytic derivative expressions are diÆcult or impossible to derive, or expensive to
evaluate. Finite di�erence methods can also be used to solve di�erential equations,
which arise frequently in dynamic economic models, especially models formulated in
continuous time. In this chapter, we introduce numerical methods for di�erential
equations and illustrate their application to initial value problems.

5.1 Newton-Cotes Methods

Newton-Cotes quadrature methods are designed to approximate the integral of a real-
valued function f de�ned on a bounded interval [a; b] of the real line. Newton-Cotes
methods approximate the integrand f between nodes using low order polynomials,
and sum the integrals of the polynomials to form an estimate the integral of f . Two
Newton-Cotes rules are widely used in practice: the trapezoid rule and Simpson's
rule. Both rules are very easy to implement and are typically adequate for computing
the area under a continuous function.

The simplest way to compute an approximate integral of a real-valued function
f over a bounded interval [a; b] � < is to partition the interval into subintervals of
equal length, approximate f over each subinterval using a straight line segment that
linearly interpolates the function values at the subinterval endpoints, and then sum
the areas under the line segments. This is the so-called trapezoid rule, which draws its
name from the fact that the area under f is approximated by a series of trapezoids.

More formally, let xi = a + (i� 1)h for i = 1; 2; : : : ; n, where h = (b� a)=n. The
nodes xi divide the interval [a; b] into n� 1 subintervals of equal length h. Over the
ith subinterval, [xi; xi+1], the function f may be approximated by the line segment
passing through the two graph points (xi; f(xi)) and (xi+1; f(xi+1)). The area under
this line segment de�nes a trapezoid that provides an estimate of the area under f
over this subinterval:Z xi+1

xi

f(x) dx �
Z xi+1

xi

f̂(x) dx =
h

2
[f(xi) + f(xi+1)]:

Summing up the areas of the trapezoids across subintervals yields the trapezoid rule:Z b

a

f(x) dx �
nX
i=1

wi f(xi)
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where w1 = wn = h=2 and wi = h, otherwise.
The trapezoid rule is simple and robust. Other Newton-Cotes methods will be

more accurate if the integrand f is smooth. However, the trapezoid rule will often
be more accurate if the integrand exhibits discontinuities in its �rst derivative, which
can occur in economic applications exhibiting corner solutions. The trapezoid rule
is said to be �rst order exact because in theory it exactly computes the integral of
any �rst order polynomial, that is, a line. In general, if the integrand is smooth, the
trapezoid rule yields an approximation error that is O(h2), that is, the error shrinks
quadratically with the size of the sampling interval.

Simpson's rule is based on piece-wise quadratic, rather than piece-wise linear, ap-
proximations to the integrand f . More formally, let xi = a+(i�1)h for i = 1; 2; : : : ; n,
where h = (b � a)=(n � 1) and n is odd. The nodes xi divide the interval [a; b] into
an even number n� 1 of subintervals of equal length h. Over the jth pair of subinter-
vals, [x2j�1; x2j] and [x2j ; x2j+1], the function f may be approximated by the unique

quadratic function f̂j that passes through the three graph points (x2j�1; f(x2j�1))
(x2j; f(x2j)), and (x2j+1; f(x2j+1)). The area under this quadratic function provides
an estimate of the area under f over the subinterval:Z x2j+1

x2j�1

f(x) dx �
Z x2j+1

x2j�1

f̂j(x) dx =
h

3
(f(x2j�1) + 4f(x2j) + f(x2j+1)) :

Summing up the areas under the quadratic approximants across subintervals yields
Simpson's rule:Z b

a

f(x) dx �
nX
i=1

wif(xi)

where w1 = wn = h=3 and, otherwise, wi = 4h=3 if i is odd and wi = 2h=3 if i is
even.

Simpson's rule is almost as simple as the trapezoid rule, and thus not much harder
to program. Simpson's rule, moreover, will yield more accurate approximations if
the integrand is smooth. Even though Simpson's rule is based on locally quadratic
approximation of the integrand, it is third order exact. That is, it exactly computes
the integral of any third order (e.g., cubic) polynomial. In general, if the integrand is
smooth, Simpson's rule yields an approximation error that is O(h4), and thus falls at
twice the geometric rate as the error associated with the trapezoid rule. Simpson's rule
is the Newton-Cotes rule most often used in practice because it retains algorithmic
simplicity while o�ering an adequate degree of approximation. Newton-Cotes rules of
higher order may be de�ned, but are more diÆcult to work with and thus are rarely
used.
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Through the use of tensor product principles, univariate Newton-Cotes quadrature
schemes can be generalized for higher dimensional integration. Suppose one wishes
to integrate a real-valued function de�ned on a rectangle f(x1; x2)ja1 � x1 � b1; a2 �
x2 � b2g in <2. One way to proceed, is to compute the Newton-Cotes nodes and
weights f(x1i; w1i)ji = 1; 2; : : : ; n1g for the real interval [a1; b1] and the Newton-Cotes
nodes and weights f(x2j; w2j)jj = 1; 2; : : : ; n2g for the real interval [a2; b2]. The tensor
product Newton-Cotes rule for the rectangle would be comprised of the n = n1n2 grid
points of the form f(x1i; x2j)ji = 1; 2; : : : ; n1; j = 1; 2; : : : ; n2g with associated weights
fwij = w1iw2jji = 1; 2; : : : ; n1; j = 1; 2; : : : ; n2g. This construction principle can be
applied to an arbitrary dimension using repeated tensor product operations.

In most computational economic applications, it is not possible to determine a
priori how many partition points are needed to compute an integral to a desired level of
accuracy using a Newton-Cotes quadrature rule. One solution to this problem is to use
an adaptive quadrature strategy whereby one increases the number of points at which
the integrand is evaluated until the sequence of estimates of the integral converge.
EÆcient adaptive Newton-Cotes quadrature schemes are especially easy to implement.
One simple, but powerful, scheme calls for the number of intervals to be doubled
with each iteration. Because the new partition points include the partition points
used in the previous iteration, the computational e�ort required to form the new
integral estimate is cut in half. More sophisticated adaptive Newton-Cotes quadrature
techniques relax the requirement that the intervals be equally spaced and concentrate
new evaluation points in those areas where the integrand appears to be most irregular.

5.2 Gaussian Quadrature

Gaussian quadrature rules are constructed with respect to speci�c weighting func-
tions. Speci�cally, for a weighting function w de�ned on an interval I � < of the real
line, and for a given order of approximation n, the quadrature nodes x1; x2; : : : ; xn
and quadrature weights w1; w2; : : : ; wn are chosen so as to satisfy the 2n \moment-
matching" conditions:Z

I

xkw(x) dx =
nX
i=1

wix
k
i ; for k = 0; : : : ; 2n� 1:

Integral approximations are then formed using weighted sums of values of f at selected
nodes:Z

I

f(x)w(x) dx �
nX
i=1

wi f(xi):
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Gaussian quadrature over a bounded interval with respect to the identity weighting
function, w(x) � 1, is called Gauss-Legendre quadrature. Gauss-Legendre quadrature
may be used to compute the area under a curve, and can easily be generalized to in-
tegration on higher dimensional spaces using tensor product principles. By construc-
tion, an n-point Gauss-Legendre quadrature rule will exactly compute the integral of
any polynomial of order 2n� 1 or less. Thus, if f can be closely approximated by a
polynomial, a Gauss-Legendre quadrature should provide an accurate approximation
to the integral. Furthermore, Gauss-Legendre quadrature is consistent for Riemann
integrable functions. That is, if f is Riemann integrable, then the approximation
a�orded by Gauss-Legendre quadrature can be made arbitrarily precise by increasing
the number of nodes n.

Selected Newton-Cotes and Gaussian quadrature methods are compared in Table
5.1. The table illustrates that Gauss-Legendre quadrature is the numerical integration
method of choice when f possesses continuous derivatives, but should be applied
with great caution otherwise. If the function f possesses known kink points, it is
often possible to break the integral into the sum of two or more integrals of smooth
functions. If these or similar steps do not produce smooth integrands, then Newton-
Cotes quadrature methods may be more eÆcient than Gaussian quadrature methods
because they limit the error caused by the kinks and singularities to the interval in
which they occur.

Table 5.1: Errors for Selected Quadrature Methods

Degree Trapezoid Simpson Gauss-
Function (n) Rule Rule Legendre

exp(�x) 10 1.36e+001 3.57e-001 8.10e-002
20 3.98e+000 2.31e-002 2.04e-008
30 1.86e+000 5.11e-003 1.24e-008

(1 + 25x2)�1 10 8.85e-001 9.15e-001 8.65e-001
20 6.34e-001 6.32e-001 2.75e+001
30 4.26e-001 3.80e-001 1.16e+004

jxj0:5 10 7.45e-001 7.40e-001 6.49e-001
20 5.13e-001 4.75e-001 1.74e+001
30 4.15e-001 3.77e-001 4.34e+003

When the weighting function w(x) is the continuous probability density for some
random variable ~X, Gaussian quadrature has a very straightforward interpretation.
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In this context, Gaussian quadrature essentially \discretizes" the continuous random
variable ~X by constructing a discrete random variable with mass points xi and prob-
abilities wi that approximates ~X in the sense that both random variables have the
same moments of order less than 2n:

nX
i=1

wix
k
i = E[ ~Xk] for k = 0; : : : ; 2n� 1:

Given the mass points and probabilities of the discrete approximant, the expectation
of any function of the continuous random variable ~X may be approximated using
the expectation of the function of the discrete approximant, which requires only the
computation of a weighted sum:

E[f( ~X)] =

Z
f(x) w(x) dx �

nX
i=1

f(xi)wi:

For example, the three-point approximation to the standard univariate normal
distribution ~Z is characterized by the condition that moments 0 through 5 match
those of the standard normal: E ~Z0 = 1, E ~Z1 = 0, E ~Z2 = 1, E ~Z3 = 0, E ~Z4 = 3,
and E ~Z5 = 0. One can easily verify that these conditions are satis�ed by a discrete
random variable with mass points x1 = �

p
3, x2 = 0, and x3 =

p
3 and associated

probabilities w1=1/6, w2 = 2=3, and w3 = 1=6.
Computing the n-degree Gaussian nodes and weights is a non-trivial task which

involves solving the 2n nonlinear equations for fxig and fwig. EÆcient, special-
ized numerical routines for computing Gaussian quadrature nodes and weights are
available for di�erent weighting functions, including virtually all the better known
probability distributions, such as the uniform, normal, gamma, exponential, Chi-
square, and beta distributions. Gaussian quadrature with respect to the identity
weight is called Gauss-Legendre quadrature; Gaussian quadrature with respect to
normal probability densities is related to Gauss-Hermite quadrature.1

As was the case with Newton-Cotes quadrature, tensor product principles may
be applied to univariate Gaussian quadrature rules to develop quadrature rules for
multivariate integration. Suppose, for example, that ~X is a d-dimensional normal
random variable with mean vector � and variance-covariance matrix �. Then ~X is
distributed as � + ~ZR where R is the Cholesky square root of � (e.g., � = R>R)
and ~Z is a row d-vector of independent standard normal variates. If fzi; wig are the
degree n Gaussian nodes and weights for a standard normal variate, then an nd degree

1Gauss-Hermite quadrature applies to the weighting function w(x) = exp(�x2), as opposed the
weighting function for the standard normal density w(x) = exp(�x2=2)=

p
2�.
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approximation for ~X may be constructed using tensor products. For example, in two
dimensions the nodes and weights would take the form

xij = (�1 +R11zi +R21zj; �2 +R12zi +R22zj)

and

pij = pipj:

The Gaussian quadrature scheme for normal variates may also be used to develop
a reasonable scheme for discretizing lognormal random variates. By de�nition, ~Y is
lognormally distributed with parameters � and �2 if, and only if, it is distributed
as exp( ~X) were ~X is normally distributed with mean � and variance �2. It follows
that if fxi; wig are nodes and weights for a Normal(�; �2) distribution, then fyi; wig,
where yi = exp(xi), provides a reasonable discrete approximant for a Lognormal(�; �2)
distribution. Given this discrete approximant for the lognormal distribution, one can
estimate the expectation of a function of ~Y as follows: Ef( ~Y ) =

R
f(y) w(y) dy �Pn

i=1 f(yi)wi This integration rule for lognormal distributions will be exact if f is a
polynomial of degree 2n� 1 and less in log(y) (not in y).

5.3 Monte Carlo Integration

Monte Carlo integration methods are motivated by the Strong Law of Large Numbers.
One version of the Law states that if x1; x2; : : : are independent realizations of a
random variable ~X and f is a continuous function, then

lim
n!1

1

n

nX
i=1

f(xi) = Ef( ~X)

with probability one.
The Monte Carlo integration scheme is thus a simple one. To compute an approx-

imation to the expectation of f( ~X), one draws a random sample x1; x2; : : : ; xn from
the distribution of ~X and sets

E
h
f( ~X)

i
� 1

n

nX
i=1

f(xi):

Matlab o�ers two intrinsic random number generators. The routine rand gen-
erates a random sample from the Uniform(0,1) distribution stored in either vector
or matrix format. Similarly, the routine randn generates a random sample from the
standard normal distribution stored in either vector or matrix format. In particular,
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a call of the form x=rand(m,n) or x=randn(m,n) generates a random sample of mn
realizations and stores it in an m� n matrix.

The uniform random number generator is useful for generating random samples
from other distributions. Suppose ~X has a cumulative distribution function

F (x) = Pr( ~X � x)

whose inverse has a well-de�ned closed form. If ~U is uniformly distributed on (0; 1),
then

~X = F�1( ~U)

has the desired distribution F . Thus, to generate a random sample x1; x2; : : : ; xn from
the ~X distribution, one generates a random sample u1; u2; : : : ; un from the uniform
distribution and sets xi = F�1(ui).

The standard normal random number generator is useful for generating random
samples from related distributions. For example, to generate a random sample of n
lognormal variates, one may use the script

x = exp(mu+sigma*randn(n));

where mu and sigma are the mean and standard deviation of the distribution. To
generate a random sample of n d-dimensional normal variates one may use the script

x = randn(n,d)*chol(Sigma)+mu(ones(n,1),:);

where Sigma is the d by d variance-covariance matrix and mu is the mean vector in
row form.

A fundamental problem that arises with Monte Carlo integration is that it is al-
most impossible to generate a truly random sample of variates for any distribution.
Most compilers and vector processing packages provide intrinsic routines for comput-
ing so-called random numbers. These routines, however, employ iteration rules that
generate a purely deterministic, not random, sequence of numbers. In particular,
if the generator is repeatedly initiated at the same point, it will return the same
sequence of \random" variates each time. About all that can be said of numerical
random number generators is that good ones will generate sequences that appear to
be random, in that they pass certain statistical tests for randomness. For this reason,
numerical random number generators are more accurately said to generate sequences
of \pseudo-random" rather than random numbers.

Monte Carlo integration is easy to implement and may be preferred over Gaussian
quadrature if the a routine for computing the Gaussian mass points and probabilities
is not readily available or if the integration is over many dimensions. Monte Carlo
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integration, however, is subject to a sampling error that cannot be bounded with
certainty. The approximation can be made more accurate, in a statistical sense, by
increasing the size of the random sample, but this can be expensive if evaluating
f or generating the pseudo-random variate is costly. Approximations generated by
Monte Carlo integration will vary from one integration to the next, unless initiated
at the same point, making the use of Monte Carlo integration in conjunction within
other iterative schemes, such as dynamic programming or maximum likelihood esti-
mation, problematic. So-called quasi Monte-Carlo methods can circumvent some of
the problems associated with Monte-Carlo integration.

5.4 Quasi-Monte Carlo Integration

Although Monte-Carlo integration methods originated using insights from probability
theory, recent extensions have severed that connection and, in the process, demon-
strated ways in which the methods can be improved. Monte-Carlo methods rely on
sequences fxig with the property that

lim
n!1

b� a
n

1X
i=1

f(xi) =

Z b

a

f(x) dx:

Any sequence that satis�es this condition for arbitrary (Riemann) integrable functions
can be used to approximate an integral on [a; b]. Although the Law of Large Numbers
assures us that this is true when the xi are independent and identically distributed
random variables, other sequences also satisfy this property. Indeed, it can be shown
that sequences that are explicitly non-random, but instead attempt to �ll in space in
a regular manner exhibit improved convergence properties.

There are numerous schemes for generating equidistributed sequences. The best
known are the Neiderreiter, Weyl, and Haber. The followingMatlab script generates
equidistributed sequences of length n for the unit hypercube:

eds_pp=sqrt(primes(7920));

i=(1:n)';

switch upper(type(1))

case 'N' % Neiderreiter

j=2.^((1:d)/(d+1));

x=i*j;

x=x-fix(x);

case 'W' % Weyl

j=eds_pp(1:d);

x=i*j;
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x=x-fix(x);

case 'H' % Haber

j=eds_pp(1:d);

x=(i.*(i+1)./2)*j;

x=x-fix(x);

end

The Matlab toolbox accompanying the textbook includes a function qnwequi

that generates the equidistributed nodes for integration over an arbitrary bounded
interval in a space of arbitrary dimension. The calling sequence takes the form

[x,w] = qnwequi(n,a,b,type);

where x are the nodes, w are the weights, n is the number of nodes and weights, a
is the vector of left endpoints, b is the vector of right endpoints, and type refers
to the type of equidistributed sequence (`N'-Neiderrieter, `W'-Weyl, and `H'-Haber).
For example, suppose one wished to compute the integral of exp(x1 + x2) over the
rectangle [1; 2]� [0; 5] in <2. On could invoke qnwequi to generate a sequence of, say,
1000 equidistribued Neiderrieter nodes and weights and form the weighted sum:

[x,w] = qnwequi(1000,[1 0],[2 5],'N');

integral = w'*exp(x(:,1)+x(:,2));

Two-dimensional examples of these sequences and a pseudo-random sequence are
illustrated in Figure 5.1. Each of the plots shows 4; 000 values. It is evident that
the Neiderreiter and Weyl sequences are very regular, showing far less blank space
than the Haber sequence or the pseudo-random sequence. This demonstrates that it
is possible to have sequences that are not only uniformly distributed in an ex ante

or probabilistic sense but also in an ex post sense, thereby avoiding the clumpiness
exhibited by truly random sequences.

Figure 5.2 demonstrates how increasing the number of points in the Neiderreiter
sequence progressively �lls in the unit square.

To illustrate the quality of the approximations, Table 5.2 displays the approxima-
tion error for the integralZ 0

�1

Z 0

�1
exp

�� 1
2
x21x

2
2

�
dx1 dx2;

the solution of which is �=2. It is clear that the method requires many evaluation
points for even modest accuracy and that large increases in the number of points
reduces the error very slowly.2

2Part of the problem may be due to truncation of the domain of integration to [�8; 0]� [�8; 0].
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Figure 5.1: Alternative Equidistributed Sequences

Table 5.2: Approximation Errors for Alternative Quasi-Monte Carlo
Methods

n Neiderreiter Weyl Haber Pseudo Random
1000 0.08533119 0.03245903 0.08233608 0.21915134
10000 0.01809421 0.00795709 0.00089792 0.01114914
100000 0.00110185 0.00051383 0.00644085 0.01735175
250000 0.00070244 0.00010050 0.00293232 0.00157189

5.5 An Integration Toolbox

TheMatlab toolbox accompanying the textbook includes four functions for comput-
ing numerical integrals for general functions. Each takes three inputs, n, a, and b and
generates appropriate nodes and weights. The functions qnwtrap and qnwsimp imple-
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Figure 5.2: Fill in of the Neiderreiter Sequence

ment the Newton-Cotes trapezoid and Simpson's rule methods, qnwlege implements
Gauss-Legendre quadrature and qnwequi generates nodes and weights associated with
either equidistributed or pseudo-random sequences. The calling syntax is the same
for each and is illustrated with below with qnwtrap.

[x,w] = qnwtrap(n,a,b);

The inputs are is the number nodes and weights, n, the left endpoint, a and the right
endpoint, b. The outputs are the nodes, x, and the weights, w. For example, to
compute the de�nite integral of exp(x) on [�1; 2] using a 21 point trapezoid rule one
would write:

[x,w] = qnwtrap(21,-1,2); integral = w'*exp(x);

In this example, the trapezoid rule yields an estimate that is accurate to two signif-
icant digits. The Simpson's rule with the same number of nodes yields an estimate
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that is accurate to �ve signi�cant digits; Gauss-Legendre quadrature produces an
estimate that is accurate to fourteen signi�cant digits, eight more than Simpson's
quadrature with the same number of nodes.

All of the quadrature functions will use tensor products to generate nodes and
weights for integration over an arbitrary bounded interval [a; b] in higher dimensional
spaces. For a d-variable function, with ni nodal points for the ith variable, w is n� 1
and x is n � d, where n =

Qd
i=1 ni. For example, suppose one wished to compute

the integral of exp(x1 + x2) over the rectangle [1; 2]� [0; 5] in <2. One could invoke
qnwtrap to construct a grid of, say, 2601 quadrature nodes produced by taking the
cross-product of 51 nodes in the x1 direction and 51 nodes in the x2 direction:

[x,w] = qnwtrap([51 51],[1 0],[2 5]);

integral = w'*exp(x(:,1)+x(:,2));

Application of the trapezoid rule in this example yields an estimate of 689.1302, which
is accurate to three signi�cant digits; application of Simpson's rule with the same
number of nodes yields an estimate of 688.5340, which is accurate to six signi�cant
digits. Using qnwlege with 5 nodes in the x1 direction and 4 nodes in the x2 direction:

[x,w] = qnwlege([5 4],[1 0],[2 5]);

integral = w'*exp(x(:,1)+x(:,2));

yield an approximate answer of 688.5323, which is very close to the correct answer
688.5336 and more accurate than the approximation a�orded by Simpson's rule using
nearly 100 times more function evaluations.

In addition to the general integration routines, the Matlab toolbox accompa-
nying the textbook also includes several functions for computing nodes and weights
associated with common distribution functions. qnwnorm generates the quadrature
nodes and weights for computing the expectations of functions of normal random
variates. For univariate normal distributions, the calling sequence takes the form

[x,w] = qnwnorm(n,mu,var);

where x are the nodes, w are the probability weights, n is the number nodes and
weights, mu the mean of the distribution, and var is the variance of the distribution. If
mu and var are omitted, the mean and variance are assumed to be 0 and 1, respectively.
For example, suppose one wanted to compute the expectation of exp( ~X) where ~X is
normally distributed with mean 2 and variance 4. An approximate expectation could
be computed using the following Matlab code:

[x,w] = qnwnorm(3,2,4); expectation = w'*exp(x);
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The Matlab function qnwnorm also generates nodes and weights for multivariate
normal random variables. For example, suppose one wished to compute the expec-
tation of, say, exp( ~X1 + ~X2) where ~X1 and ~X2 are jointly normal with mean vector
[3 4] and variance covariance matrix [2 �1;�1 4]. One could invoke qnwnorm to
construct a grid of 100 Gaussian quadrature nodes as the cross-product of 10 nodes
in the x1 direction and 10 nodes in the x2 direction, and then form the weighted sum
of the assigned weights and function values at the nodes:

[x,w] = qnwnorm([10 10],[3 4],[2 -1; -1 4]);

expectation = w'*exp(x(:,1)+x(:,2));

This computation would yield an approximate answer of 8103.083, which is accurate
to 7 signi�cant digits (the exact value is e9).

Other quadrature functions included in the Matlab toolbox accompanying the
textbook generate quadrature nodes and weights for computing the expectations of
functions of lognormal, beta and gamma random variates. For univariate lognormal
distributions, the calling sequence takes the form

[x,w] = qnwlogn(n,mu,var);

where mu and var are the mean and variance of the log of x. For the beta distribution,
the calling syntax is

[x,w] = qnwbeta(n,a,b);

where a and b are the shape parameters of the beta distribution. For the gamma
distribution, the calling syntax is

[x,w] = qnwgamma(n,a);

where a is the shape parameters of the (one dimensional) gamma distribution. For
both the beta and gamma distributions the parameters may be passed as vectors,
yielding nodes and weights for multivariate independent random variables.

In addition to the quadrature routines provided with this book, Matlab o�ers
two Newton-Cotes quadrature routines, quad and quad8, both of which employ an
adaptive Simpson's rule.

5.6 Numerical Di�erentiation

The most natural way to approximate a derivative is to replace it with a �nite di�er-
ence. The de�nition of a derivative,

f 0(x) = lim
h!0

f(x + h)� f(x)
h

;
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suggests a natural way to do this. One can simply take h to be a small number,
knowing that, for h small enough, the error of the approximation will also be small.
We will return to the question of how small h should be, but �rst we address the issue
of how large an error is produced using this �nite di�erence approach.

An error bound for the approximation can be be obtained using a Taylor expan-
sion. We know, for example, that

f(x+ h) = f(x) + f 0(x)h+O(h2);

where O(h2) means that other terms in the expression are expressible in terms of
second or higher powers of h. If we rearrange this expression we see that

f 0(x) = [f(x + h)� f(x)]=h+O(h):

(since O(h2)=h = O(h)), so the approximation to the derivative f 0(x) has an O(h)
error.

The simple O(h) approximation is a two-point approximation, meaning that only
two function values are used. In order to obtain more accurate approximations,
consider evaluating the function at three points, x, x+h and x+�h and approximating
the derivative with a weighted sum of these values:

f 0(x) � af(x) + bf(x + h) + cf(x + �h):

To determine both the appropriate values of a, b, and c and to determine the size of
the approximation error, expand the Taylor series for f(x+h) and f(x+�h) around
x, obtaining

af(x) + bf(x+ h) + cf(x+ �h) =

(a+ b + c)f(x) + h(b + c�)f 0(x) + h2

2
(b + c�2)f 00(x)

+ h3

6

�
bf (3)(z1) + c�3f (3)(z2)

�
:

(for some z1 2 [x; x + h] and z2 2 [x; x + �h]). The constraints a + b + c = 0,
b + c� = 1=h and b+ c�2 = 0 uniquely determine a, b and c:2

4 a
b
c

3
5 =

1

h�(1� �)

2
4 �2 � 1
��2
1

3
5

leading to

af(x) + bf(x + h) + cf(x+ �h) = f 0(x) +O(h2):
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Thus, by using 3 points, we can ensure that the approximation converges at a
quadratic rate in h.

Some special cases of importance arise when the evaluations points are evenly
spaced. When � = �1, x lies halfway between the other points and we obtain the
centered �nite di�erence approximation

f 0(x) =
f(x + h)� f(x� h)

2h
+O(h2);

which is second order accurate even though only two approximation points are used.
If � = 2, we obtain a formula that is useful when a derivative is needed at a boundary
of a domain. In this case

f 0(x) =
1

2h
[�3f(x) + 4f(x+ h)� f(x+ 2h)] +O(h2)

(use h > 0 for a lower bound and h < 0 for an upper bound).
To obtain formulii for second derivatives we can use the same approach but in

order to obtain second order accuracy, we will (in general) require a weighted sum
composed of 4 points

f 0(x) � af(x) + bf(x + h) + cf(x + �h) + df(x+  h):

We also expand the Taylor series to the fourth order, obtaining

af(x) + bf(x+ h) + cf(x+ �h) + df(x+  h) =

(a + b+ c+ d)f(x) + h(b + c�+ d )f 0(x) + h2

2
(b + c�2 + d 2)f 00(x)

+ h3

6
(b+ c�3 + d 3)f 000(x) + h4

24

�
bf (4)(z1) + c�4f (4)(z2) + d 4f (4)(z3)

�
:

The constraints a + b + c + d = 0, b + c� + d = 0, b + c�2 + d 2 = 2=h2 and
b + c�3 + d 3 = 0 uniquely determine a, b, c and d:

2
664
a
b
c
d

3
775 =

2

h2

2
666666666666664

1 + �+  

� 

�2 �  2

(�� 1)( � 1)( � �)
 2 � 1

�(�� 1)( � 1)( � �)
1� �2

 (�� 1)( � 1)( � �)

3
777777777777775



CHAPTER 5. INTEGRATION AND DIFFERENTIATION 110

with

af(x) + bf(x + h) + cf(x+ �h) + df(x+  h) = f 00(x) +O(h2):

Thus, by using 4 points, we can ensure that the approximation converges at a
quadratic rate in h.

Some special cases of importance arise when the evaluations points are evenly
spaced. When x lies halfway between x+h and one of the other two points (i.e., when
either � = �1 or  = �1), we obtain the centered �nite di�erence approximation

f 00(x) =
f(x+ h)� 2f(x) + f(x� h)

h2
+O(h2);

which is second order accurate even though only three approximation points are used.
If � = 2 and  = 3 we obtain a formula that is useful when a derivative is needed at
a boundary of the domain. In this case

f 00(x) =
1

h2
[2f(x)� 5f(x+ h) + 4f(x+ 2h)� f(x+ 3h)] +O(h2):

An important use of second derivatives is in computing Hessian matrices. Given
some function f : <n ! <, the Hessian is the n� n matrix of second partial deriva-

tives, the ijth element of which is @2f(x)
@xi@xj

. We consider only centered, evenly spaced

approximations, which can be obtained as a weighted sum of the function values eval-
uated at the point x and 8 points surrounding it obtained by adding or subtracting
hiui and/or hjuj, where the h terms are scalar step increments and the u terms are
n-vectors of zeros but with the ith element equal to 1 (the ith column of In).

To facilitate notation, let subscripts indicate a partial derivative of f evaluated

at x, e.g., fi =
@f(x)
@xi

, fiij =
@3f(x)

@x2i @xj
, etc. and let superscripts on f denote the function

evaluated at one of the 9 points of interest, so f++ = f(x+ hiui + hjuj), f
00 = f(x),

f 0� = f(x� hjuj), etc. (see Figure 5.3).
With this notation, we can write Taylor expansions up to the third order for each

of the f ij. For example

f+0 = f 00 + hifi +
h2i
2
fii +

h3i
6
fiii +O(h4);

and

f++ = f 00 + hifi + hjfj +
h2i
2
fii + hihjfij

h2j
2
fjj

+
h3i
6
fiii +

h2i hj
2
fiij +

hih
2
j

2
fijj +

h3j
6
fjjj +O(h4):
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With simple but tedious computations, it can be shown that the only O(h2) ap-
proximations to fii composed of these 9 points are convex combinations of the usual
centered approximation

fii � 1

h2i
(f+0 � 2f 00 + f�0)

and an alternative

fii � 1

2h2i
(f++ � 2f 0+ + f�+ + f�+ � 2f�0 + f��):

More importantly, for computing cross partials, the only O(h2) approximations to fij
are convex combinations of

fij � 1

2hihj
(f 0+ + f�0 + f 0� + f+0 � f+� � f�+ � 2f 00)

or

fij � 1

2hihj
(2f 00 + f++ + f�� � f 0+ � f�0 � f 0� � f+0):

The obvious combination of taking the mean of the two results in

fij � 1

4hihj
(f++ + f�� � f�+ � f+�):
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This requires less computation than the other two forms if only a single cross partial
is evaluated. Using either of the other two schemes, however, along with the usual
centered approximation for the diagonal terms of the Hessian enables one to compute
the entire Hessian with second order accuracy in 1 + n+ n2 function evaluations.

There are typically two situations in which numerical approximations of deriva-
tives are needed. The �rst arises when one can compute the function at any value of
x but it is diÆcult to derive an closed form expression for the derivatives. In this case
one is free to choose the evaluation points (x, x+h, x+�h, etc.). The other situation
is one in which the value of f is known only at a �xed set of points x1, x2, etc. This
situation arises frequently in interpolation and functional equation problems, which
we consider in the next chapter (see especially Section 6.4, page 143).

When a function can be evaluated at any point, the choice of evaluation points
must be considered. As with convergence criteria, there is no one rule that always
works. If h is made too small, round-o� error can make the results meaningless. On
the other hand, too large an h provides a poor approximation, even if exact arithmetic
is used.

This is illustrated in Figure 5.4a, which displays the errors in approximating the
derivative of exp(x) at x = 1 as a function of h. The approximation improves as h
is reduced to the point that it is approximately equal to

p
� (the square root of the

machine precision), shown as a star on the horizontal axis. Further reductions in h
actually worsen the approximation because of the inaccuracies due to inexact arith-
metic. This gives credence to the rule of thumb that, for one-sided approximations,
h should be chosen to be of size

p
� relative to x. When x is small, however, it is

better not to let h get too small. We suggest the rule of thumb of setting

h = max(x; 1)
p
�:

Figure 5.4b shows an analogous plot for two-sided approximations. It is evident
that the error is minimized at a much higher value of h, at approximately 3

p
�. A

good rule of thumb is to set

h = max(x; 1) 3
p
�

when using two-sided approximations.
There is a further, and more subtle, problem. If x+h cannot be represented exactly

but is instead equal to x + h+ e, then we are actually using the approximation

f(x + h+ e)� f(x+ h)

e

e

h
+
f(x + h)� f(x)

h
� f 0(x+ h) e

h
+ f 0(x)

� �
1 + e

h

�
f 0(x):

Even if the rounding error e is on the order of machine accuracy, �, and h on the
order of

p
�, we have introduced an error on the order of

p
� into the calculation. It
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is easy to deal with this problem, however. Letting xh represent x + h, de�ne h in
the following way:

h=sqrt(eps)*max(x,1); xh=x+h; h=xh-x;

for one-sided and

h=eps.^(1/3)*max(x,1); xh1=x+h; xh0=x-h; hh=xh1-xh0;

for two-sided approximations (hh represents 2h).
We provide below a function that computes two-sided �nite di�erence approxima-

tions for the Jacobian of an arbitrary function. For a real-valued function, f : <n 7!
<m, the output is an m� n matrix:

function fjac = fdjac(f,x);

h = eps^(1/3)*max(abs(x),1);

xh1=x+h; xh0=x-h; h=xh1-xh0;

for j=1:length(x);

xx = x;

xx(j) = xh1(j); f1=feval(f,xx);

xx(j) = xh0(j); f0=feval(f,xx);

fjac(:,j) = (f1-f0)/h(j);

end

For second derivatives, the choice of h encounters the same diÆculties as with �rst
derivatives and similar reasoning leads to the rule of thumb that

h = max(x; 1) 4
p
�
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A procedure for computing �nite di�erence Hessians, fdhess is provided in the Comp-
Econ toolbox. It is analogous to fdjac, with calling syntax

fhess = fdhess(f,x);

5.7 Initial Value Problems

Di�erential equations pose the problem of inferring a function given information
about its derivatives and additional \boundary" conditions. Di�erential equations
may characterized as either ordinary di�erential equations (ODEs), whose solutions
are functions of a single argument, and partial di�erential equations (PDEs), whose
solutions are functions of multiple arguments. Both ODEs and PDEs may be solved
numerically using �nite di�erence methods.

From a numerical point of view the distinction between ODEs and PDEs is less
important than the distinction between initial value problems (IVPs), which can be
solved in a recursive or evolutionary fashion, and boundary value problems (BVPs),
which require the entire solution to be computed simultaneously because the solution
at one point (in time and/or space) depends on the solution everywhere else. For
ODEs, the solution of an IVP is known at some point and the solution near this
point can then be (approximately) determined. This, in turn, allows the solution at
still other points to be approximated and so forth. BVPs, on the other hand, require
simultaneous solution of the di�erential equation and the boundary conditions. We
take up the solution of IVPs in this section, but defer discussion of BVPs until the
next chapter (page 164).

The most common initial value problem is to �nd a function x : [0; T ] 7! <d
whose initial value x(0) is known and which, over its domain, satis�es the di�erential
equation

x0(t) = f(t; x(t)):

Here, x is a function of a scalar t (often referring to time in economic applications)
and f : [0; T ] � <d 7! <d is a given function. Many problems in economics are
time-autonomous, in which case the di�erential equation takes the form

x0(t) = f(x(t)):

Although the di�erential equation contains no derivatives of order higher than one,
the equation is more general than it might at �rst appear, because higher order
derivatives can always be eliminated by expanding the number of variables. For
example, consider the second order di�erential equation

y00(t) = f(t; y(t); y0(t)):
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By de�ning z to be the �rst derivative of x, so that z0 = x00, the di�erential equation
may be written in �rst order form

y0 = z

z0 = f(t; y; z):

Initial value problems can be solved using a recursive procedure. First the direc-
tion of motion is calculated based on the current position of the system and a small
step is taken in that direction. This is then repeated as many times as is desired. The
inputs needed for these methods are the functions de�ning the system, f , an initial
value, x0, the time step size, h, and the number of steps to take, n (or, equivalently,
the stopping point T ).

The most simple form of such a procedure is Euler's method. The ith iteration of
the procedure generates an approximation for the value of the solution function x at
time ti

xi+1 = xi + hf(ti; xi);

with the procedure beginning at the prescribed x0 = x(0). This method is �ne
for rough approximations, especially if the time step is small enough. Higher order
approximations can yield better results, however.

Among the numerous re�nements on the Euler method, the most commonly used
are the Runge-Kutta methods. Runge-Kutta methods are a class of methods charac-
terized by an order of approximation and by selection of certain key parameters. The
derivation of these methods is fairly tedious for high order methods but are easily
demonstrated for a second order model.

Runge-Kutta methods are based on Taylor approximations at a given starting
point t.

x(t + h) = x + hf(t; x) +
h2

2
(ft + fxf) +O(h3);

where x = x(t), f = f(t; x) and ft and fx are the partial derivatives of f evaluated
at (t; x). This equation could be used directly but would require obtaining explicit
expressions for the partial derivatives ft and fx. A method that relies only on function
evaluations is obtained by noting that

f(t+ �h; x+ �hf) = f + �h (ft + fxf) +O(h2):

Substituting this into the previous expression yields

x(t + h) = x + h

��
1� 1

2�

�
f(t; x) +

1

2�
f
�
t + �h; x+ �hf

��
+O(h3): (5.1)



CHAPTER 5. INTEGRATION AND DIFFERENTIATION 116

Two simple choices for � are 1
2
and 1 leading to the following second order Runge-

Kutta methods:

x(t + h) � x+ hf

�
t+

h

2
; x +

h

2
f

�

and

x(t + h) � x+
h

2

h
f(t; x) + f (t+ h; x+ hf)

i
:

It can be shown that an optimal choice, in the sense of minimizing the absolute value
of the h3 term in the truncation error, is to set � = 2=3:

x(t + h) � x+
h

4

�
f(t; x) + 3f

�
t+

2h

3
; x+

2h

3
f

��

(we leave this as an exercise)
Further insight can be gained into the Runge-Kutta methods by relating them to

Newton-Cotes numerical integration methods. In general

x(t + h) = x(t) +

Z t+h

t

f(�; x(�))d�

Suppose that the integral in this expression is approximated used the trapezoid rule:

x(t + h) = x(t) +
h

2

�
f(t; x(t)) + f

�
t+ h; x(t + h)

��
:

Now use Euler's method to approximate the x(t+ h) term that appears on the right-
hand side to obtain

x(t + h) = x(t) +
h

2

�
f(t; x(t)) + f

�
t+ h; x(t) + hf(t; x(t))

��
;

which is the same formula as above with � = 1. Thus combining two �rst order
methods, Euler's method and the trapezoid method, results in a second order Runge-
Kutta method.

The most widely used Runge-Kutta method is the classical fourth-order method.
A derivation of this approach is tedious but the algorithm is straightforward:

x(t + h) = x + (F1 + 2(F2 + F3) + F4)=6;

where

F1 = hf(t; x)
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F2 = hf
�
t+ 1

2
h; x + 1

2
F1

�

F3 = hf
�
t+ 1

2
h; x + 1

2
F2

�

F4 = hf
�
t+ h; x + F3

�
:

It can be shown that the truncation error in any order k Runge-Kutta method is
O(hk+1). Also, just as a second order method can be related to the trapezoid rule
for numerical integration, the fourth order Runge-Kutta method can be related to
Simpson's rule (we leave this as an exercise).

The Matlab function RK4 implements the classical fourth order Runge-Kutta
approach to compute an approximate solution x(T ) to x0 = f(t; x), s.t. x(T (1)) = x0,
where T is a vector of values. The calling syntax is

x=rk4(f,T,x0,[],additional parameters)

The inputs are the name of a problem �le that returns the function f , the vector of
time values T and the initial conditions, x0. The fourth input is an empty matrix to
make the calling syntax for rk4 compatible with Matlab's ODE solvers. Unlike the
suite of ODE solvers provided by Matlab, RK4 is designed to compute solutions for
multiple initial values. If x0 is d�k and there are n time values in T , RK4 will return
an n�d�k array. Avoiding a loop over multiple starting points results in much faster
execution when a large set of trajectories are computed. To take advantage of this
feature, however, the function passed to RK4 that de�nes the di�erential equation
must be able to return a d � k matrix when its second input argument is a d � k
matrix (see the example below for an illustration of how this is done).

There are numerous other approaches and re�nements to solving initial value prob-
lems. Briey, these include so-called multi-step algorithms which utilize information
from previous steps to determine the current step direction (Runge-Kutta are single-
step methods). Also, any method can adapt the step size to the current behavior
of the system by monitoring the truncation error, reducing (increasing) the step size
if this error is unacceptably large (small). Adaptive schemes are important if one
requires a given level of accuracy.3

Example: Commercial Fishery
As an example of an initial value problem, consider the following model of a com-

3The Matlab functions ODE23 and ODE45 are implemented in this way, with ODE45 a fourth
order method.
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mercial �shery:

p = �� �Ky inverse demand for �sh
� = py � cy2=2S � f pro�t function of representative �shing �rm
S 0 = (a� bS)S �Ky �sh population dynamics
K 0 = Æ� entry/exit from industry

where p is the price of �sh, K is the size of the industry, y is the catch rate of
the representative �rm, � is the pro�t of the representative �rm and S is the �sh
population (�, �, c, f , a, b and Æ are parameters).

The behavior of this model can be analyzed by �rst determining short-run (in-
stantaneous) equilibrium given the current size of the �sh stock and the size of the
�shing industry. This equilibrium is determined by the demand for �sh and a �shing
�rm pro�t function, which together determine the short-run equilibrium catch rate
and �rm pro�t level. The industry is competitive in the sense that catch rates are
chosen by setting marginal cost equal to price:

p = cy=S;

a relationship that can be interpreted as the short-run inverse supply function per
unit of capital. The short-run (market-clearing) equilibrium is determined by equating
demand and supply:

�� �Ky = cy=S;

yielding a short-run equilibrium catch rate:

y = �S=(c+ �SK);

price

p = �c=(c+ �SK);

and pro�t function

� =
c�2S

2(c+ �SK)2
� f:

All of these relationships are functions of the industry size and the stock of �sh.
The model's dynamic behavior is governed by a growth rate for the �sh stock and

a rate of entry into the �shing industry. The former depends on the biological growth
of the �sh population and on the current catch rate, whereas the later depends on
the current pro�tability of �shing. The capital stock adjustment process is myopic,
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as it depends only on current pro�tability and not on expected future pro�tability.
The result is a 2 dimensional IVP:

S 0 = (a� bS)S � �SK

c+ �SK

K 0 = Æ

�
c�2S

2(c+ �SK)2
� f

�
which can be solved for any initial �sh stock (S) and industry size (K).

A useful device for summarizing the behavior of a dynamic system is the phase
diagram, which shows the movement of the system for selected starting values; these
curves are known as the trajectories. A phase diagram for this model is exhibited in
Figure 5.5 for parameter values � = 2:75, f = 0:06, Æ = 10 and other parameters
normalized to equal 1. The so-called zero-isoclines (the points in the state space for
which one of the variables' time rate of change is zero) are shown as dashed lines. In
the phase diagram in Figure 5.5, the dashed lines represent the zero-isoclines and the
solid lines the trajectories.
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Figure 5.5

There are 3 long-run equilibria in this system; these are the points where the
zero-isoclines cross. Two of the equilibria are locally stable (points A and C) and one
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is a saddlepoint (point B). The state space is divided into two regions of attraction,
one in which the system moves toward point A and the other towards point C. The
dividing line between these regions consists of points that move the system towards
point B. Also note that point A exhibits cyclic convergence.
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Exercises

5.1. Demand for a commodity is given by q = 2p�0:5. The price of a good falls from
4 to 1. Compute the change in consumer surplus:

(a) analytically using Calculus;

(b) numerically using a 10 interval trapezoid rule;

(c) numerically using a 10 interval Simpson rule;

(d) numerically using a 10 point Gauss-Legendre rule.

5.2. For z > 0, the cumulative probability function for a standard normal random
variable is given by

F (z) = 0:5 +
1p
2�

Z z

0

exp

�
�x

2

2

�
dx:

(a) Write a short Matlab program that computes the value of F (z) using
Simpson's rule. The program should accept z and the number of intervals
n in the discretization as input; the program should print F (z).

(b) What values of F (z) do you obtain for z = 1 and n = 6, n = 10, n = 20
n = 50, n = 100? How do these values compare to published statistical
tables?

5.3. Write a Matlab program that solves numerically the following expression for
�:

�

Z 1

0

exp(��� �2=2)d� = 1

and demonstrate that the solution (to 4 signi�cant digits) is � = 0:5061.

5.4. Using Monte Carlo integration, estimate the expectation of f( ~X) = 1=(1+ ~X2)
where ~X is exponentially distributed with CDF F (x) = 1� exp(�x) for x � 0.
Compute an estimate using 100, 500, and 1000 replicates.

5.5. A government stabilizes the supply of a commodity at S = 2, but allows the
price to be determined by the market. Domestic and export demand for the
commodity are given by:

D = ~�1P
�1:0

X = ~�2P
�0:5;
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where log ~�1 and log ~�2 are normally distributed with means 0, variances 0.02
and 0.01, respectively, and covariance 0.01.

(a) Compute the expected price E[p] and the ex-ante variance of price V [p]
using a 6th degree Gaussian discretization for the demand shocks.

(b) Compute the expected price E[p] and the ex-ante variance of price V [p]
using a 1000 replication Monte Carlo integration scheme.

(c) Repeat parts (a) and (b) assuming the log of the demand shocks are neg-
atively correlated with covariance -0.01.

5.6. Consider the commodity market model of Chapter 1 (page 2), except now as-
sume that log yield is normally distributed with mean 0 and standard deviation
0.2.

(a) Compute the expectation and the variance of price without government
support payments.

(b) Compute the expectation and the variance of the e�ective producer price
assuming a support price of 1.

5.7. Consider a market for an agricultural commodity in which farmers receive a
government payment whenever the market price p drops below an announced
target price �p: max(�p�p; 0). In this market, producers base their acreage plant-
ing decisions on their expectation of the e�ective producer price f = max(p; �p);
speci�cally, acreage planted a is given by:

a = 1 + (E[f ])0:5:

Production q is acreage planted a times a random yield ~y, unknown at planting
time:

q = a~y;

and quantity demanded at harvest is given by

q = p�0:2 + p�0:5:

Conditional on information known at planting time, log y is normally distributed
with mean 0 and variance 0.03. For �p = 0, �p = 1, and �p = 2, compute:

(a) the expected subsidy E[q(f � p)];
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(b) the ex-ante expected producer price E[f ];

(c) the ex-ante variance of producer price V [f ];

(d) the ex-ante expected producer revenue E[fq]; and

(e) the ex-ante variance of producer revenue V [fq].

5.8. Suppose acreage planted at the beginning of the growing season is given by
a = �(E[p]; V [p]) where p is price at harvest time and E and V are the ex-
pectation and variance operators conditional on information known at planting
time. Further suppose that p = �(ay) where yield y is random and unknown at
planting time. Develop an algorithm for computing the acreage planted under
rational expectations.

5.9. One approach to approximating a real-valued function with no closed-form ex-
pression over an interval is to (1) evaluate the function at n equally-spaced
points and (2) �t an m-degree polynomial to the points, using ordinary least
squares to compute the coeÆcients on the xi terms, i = 0; 1; 2; : : : ; m. To im-
prove the approximation, n may be increased until the root mean squared error
is tolerably close to zero.

Is this approach sensible? If not, what method would you recommend? Justify
your response.

5.10. Professor Sayan, a regional economist, maintains a large deterministic model
of the Turkish economy. Using his model, Professor Sayan can estimate the
number of new jobs y that will be created under the new GATT agreement.
However, Dr. Sayan is unsure about the value of one critical model parameter,
the elasticity of labor supply x. A recent econometric study estimated the
elasticity to be �x and gave an asymptotic normal standard error �. Given
the uncertainty about the value of x, Dr. Sayan wishes to place a con�dence
interval around his estimate of y. He has considered using Monte Carlo methods,
drawing pseudo-random values of x according to the published distribution and
computing the value of y for each x. However, a large number of replications is
not feasible because two hours of mainframe computer time are needed to solve
the model each time. Do you have a better suggestion for Dr. Sayan? Justify
your answer.

5.11. A standard biological model for predator-prey interactions, known as the Lokta-
Volterra model, can be written

x0 = �x� xy
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y0 = xy � y;

where x is the population of a prey species and y is the population of a predator
species. To make sense we restrict attention to x; y > 0 and � > 0 (the model is
scaled to eliminate excess parameters; you should determine how many scaling
dimensions the model has). Although admittedly a simple model, it captures
some of the essential features of the relationship. First the prey population
grows at rate � when there are no predators present and the greater the number
of predators, the more slowly the prey population grows and it declines when
the predator population exceeds �. The predator population, on the other hand
declines if it grows too large unless prey is plentiful. Determine the equilibria
(there are two) and draw the phase diagram [hint: this model exhibits cycles].

5.12. A frequently used model in �nance for pricing bonds and futures (the so-called
aÆne di�usion model) requires solving a system of Riccati (quadratic) di�eren-
tial equations of the form

dX

dt
= A>X + 1

2B
>diag(C>X)C>X � g

dx

dt
= a>X + 1

2
b>diag(C>X)C>X � g0

where X(t) : <+ ! Rn and x(t) : <+ ! R. The problem parameters a, b, and
g are n� 1, A, B, and C are n�n and g0 is a scalar. In addition, the functions
must satisfy boundary conditions of the form X(0) = X0 and x(0) = x0.

a) Write a program to solve this class of problems with the following input/output
syntax:

[X,x]=AffSolve(t,a,A,b,B,C,g,g0,X0,x0)

The solution should be computed at the time values speci�ed by t. If there
are m time values the outputs should be m� n and m� 1. The program may
use RK4 or one of the functions in MATLAB's ODE suite (ODE45 is particularly
useful for this problem). You will need to write an auxiliary function to pass to
the solver. Also note that diag(z)z can be written in MATLAB as z.*z.

Plot your solution functions over the interval t 2 [0; 30] for the following pa-



CHAPTER 5. INTEGRATION AND DIFFERENTIATION 125

rameters values:

a =

2
4 0:0217

0:0124
0:00548

3
5 A =

2
4 �17:4 17:4 �9:309

0 �0:226 0:879
0 0 �0:362

3
5

b =

2
4 0
:0002
0

3
5 B =

2
4 0 0 1
0 0 0
0 0 :00782

3
5

g =

2
4 1
0
0

3
5 C =

2
4 1 �3:42 4:27
�:0943 1 0

0 0 1

3
5

with g0 = x0 = 0 and X0 = 0.

b) When the eigenvalues of A are all negative (or have negative real parts when
complex), X has a long-run stationary point.

Write a �xed-point algorithm to compute the long-run stationary value of X,
noting that it satis�es dX=dt = 0, testing it with the parameter values above.
You should �nd that

X(1) =

2
4 �0:0575�4:4248
�8:2989

3
5 :

Also write a a stand-alone algorithm implementing Newton's method for this
problem (it should not call other functions like newton or fjac). To calculate
the relevant Jacobian, it helps to note that

dAz

dz
= A

and

ddiag(z)z

dz
= 2diag(z):

5.13. Show that the absolute value of the O(h3) truncation error in the second order
Runge-Kutta formula (5.1):

x(t+ h) = x+ h
h�

1� 1

2�

�
f +

1

2�
f
�
t + �h; x+ �hf

�i
+ O(h3):

is minimized by setting � = 2=3.
(Hint: expand to the 4th order and minimize the O(h3) term.)
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Treatments of numerical integration are contained in most general numerical analysis
texts. Press et al. contains a excellent treatment of Gaussian quadrature techniques.
Our discussion of quasi-Monte Carlo techniques largely follows that of Judd.

A detailed treatment of the issues in computing �nite di�erence approximations
to derivatives is contained in Gill et al. (especially Section 8.6).

The subject of solving initial value problems is one the most studied in numerical
analysis. See discussions, for example, in Atkinson, Press et al., and Golub and
Ortega. Matlab has a whole suite of ODE solvers, of which ODE45 and ODE15s are
good for most problems. ODE15s is useful for sti� problems and can also handle the
slightly more general problem:

M(t)x0(t) = f(t; x(t));

which includes M , the so-called mass matrix. We will encounter (potentially) sti�
problems with mass matrices in Section ??.

The commercial �shery example was developed by Smith.



Chapter 6

Function Approximation

In many computational economic applications, one must approximate an analytically
intractable real-valued function f with a computationally tractable function f̂ .

Two types of function approximation problems arise often in computational eco-
nomic applications. In the interpolation problem, one knows the value of a function
f at speci�ed points in its domain and must choose an approximant f̂ from a family
of \nice", tractable functions that matches the original function at the known eval-
uation points. The interpolation problem can be generalized to include the value of
the function's �rst or higher derivatives at speci�ed points.

Interpolation methods were originally developed to approximate the value of math-
ematical and statistical functions from published tables of values. In most modern
computational economic applications, however, the analyst is free to chose what data
to obtain about the function to be approximated. Modern interpolation theory and
practice is concerned with ways to optimally extract data from a function and with
computationally eÆcient methods for constructing and working with its approximant.

In the functional equation problem, one must �nd a function f that satis�es

Tf = 0

where T is an operator that maps a vector space of functions into itself. In the
equivalent functional �xed-point problem, one must �nd a function f such that

f = Tf:

The operator notation encompasses many speci�c cases, including simple func-
tional relationships g(x; f(x)) = 0, di�erential equations g(x; f(x); f 0(x)) = 0 and
integral equations f(x)� R g(x)f(x)dx = 0. In each of these examples, g is a known
function and the unknown function f must satisfy the relationship for every value of
x on some speci�ed domain.

127
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Functional equations are common in dynamic economic analysis. For example, the
Bellman equation that characterizes the solutions of a dynamic optimization model
is a functional �xed-point equation. Euler equations and the di�erential equations
arising in arbitrage-based asset pricing models are also functional equations.

Functional equations are diÆcult to solve because the unknown is not simply a
vector in <n, but an entire function f whose domain contains an in�nite number
points. Moreover, the functional equation typically imposes an in�nite number of
conditions on the solution f . Except in very few special cases, functional equations
lack explicit closed-form solutions and thus cannot be solved exactly. One must
therefore settle for an approximate solution f̂ that satis�es the functional equation
closely. In many cases, one can compute accurate approximate solutions to functional
equations using techniques that are natural extensions of interpolation methods.

In this chapter we discuss methods for approximating functions and focus on
the two most generally practical techniques: Chebychev polynomial and polynomial
spline approximation. In addition we discuss the use of piecewise linear functions
with �nite di�erence approximations for derivatives. Univariate function interpola-
tion methods are developed �rst and then are generalized to multivariate function
interpolation methods. In the �nal section, we introduce the collocation method, a
natural generalization of interpolation methods that may be used to solve a variety
of functional equations. Collocation will be used extensively in Chapters 9 and 11 for
solving dynamic economic models.

In this chapter we also introduce a set of Matlab functions that will be used
extensively in the remainder of the book. These are discussed in Section 6.7. The
suite of functions for working with approximating functions provide the foundation
for the solution methods used for solving dynamic models in Chapters 9 and 11. The
general boundary value solver discussed in this chapter (page 164) introduces the
approach we will take.

6.1 Interpolation Principles

Interpolation involves the use of an approximating function, f̂ , that is easy to evaluate
in place of the function of interest, f . The �rst step in designing an interpolation
scheme is choose a family of approximating functions. We will con�ne ourselves to
families of functions that can be written as a linear combination of a set of n linearly
independent basis functions �1; �2; : : : ; �n:

f̂(x) =
nX

j=1

�j(x)cj = �(x)c;
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whose basis coeÆcients c1; c2; : : : ; cn are to be determined.1 Polynomials of increas-
ing order are often used as basis functions, although other types of basis functions,
most notably spline functions, are also common. The number n of independent basis
functions is called the degree of interpolation.

The second step in designing an interpolation scheme is to specify the properties of
the original function f that one wishes the approximant f̂ to replicate. Because there
are n undetermined coeÆcients, n conditions are required to �x the approximant. The
easiest and most common conditions imposed are that the approximant interpolate or
match the value of the original function at selected interpolation nodes x1; x2; : : : ; xn.

Given n interpolation nodes and n basis functions, computing the basis coeÆ-
cients reduces to solving a linear equation. Speci�cally, one �xes the n undetermined
coeÆcients c1; c2; : : : ; cn of the approximant f̂ by solving the interpolation conditions

nX
j=1

�j(xi)cj = f(xi) = yi 8i = 1; 2; : : : ; n:

Using matrix notation, the interpolation conditions equivalently may be written as the
matrix linear interpolation equation whose unknown is the vector of basis coeÆcients
c:

�c = y;

where

�ij = �j(xi)

is the typical element of the interpolation matrix �. In theory, an interpolation scheme
is well-de�ned if the interpolation nodes and basis functions are chosen such that the
interpolation matrix is nonsingular.

Interpolation schemes are not limited to using only function value information. In
many applications, one may wish to interpolate both function values and derivatives
at speci�ed points. Suppose, for example, that one wishes to construct an approx-
imant f̂ that replicates the function's values at nodes x1; x2; : : : ; xn1 and its �rst
derivatives at nodes x01; x

0
2; : : : ; x

0
n2
. An approximant that satis�es these conditions

may be constructed by selecting n = n1 + n2 basis functions and �xing the basis
coeÆcients c1; c2; : : : ; cn of the approximant by solving the interpolation equation

nX
j=1

�j(xi)cj = f(xi); 8i = 1; : : : ; n1

1Approximations that are non-linear in basis function exist (e.g. rational approximations), but
are more diÆcult to work with and hence are not often seen in practical applications except in
approximating special functions such as cumulative distribution functions.
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nX
j=1

�0j(x
0
i)cj = f 0(x0i); 8i = 1; : : : ; n2

for the undetermined coeÆcients cj. This principle applies to any combination of
function values, derivatives, or even antiderivatives at selected points. All that is
required is that the associated interpolation matrix be nonsingular.

Interpolation is closely related to the problem of curve �tting; indeed it can be
thought of as a special case. The curve �tting problem arises when one attempts to
�nd an approximant that has lower degree than the number of available evaluation
points. In this case it will not generally be possible to solve

nX
j=1

�j(xi)cj = f(xi)

exactly. Instead one can de�ne an approximation error

ei = f(xi)�
nX

j=1

�j(xi)cj;

and attempt to make the norm of e small. If the 2-norm is used, this is the least
squares curve �tting problem:

min
c

mX
i=1

e2i :

In developing an interpolation scheme, the analyst should chose interpolation
nodes and basis functions that satisfy certain criteria. First, the approximant should
be capable of producing an accurate approximation of the original function f . In
particular, the interpolation scheme should allow the analyst to achieve, at least in
theory, an arbitrarily accurate approximation by increasing the degree of approxi-
mation. Second, it should be possible to compute the basis coeÆcients quickly and
accurately. In particular, the interpolation equation should be well-conditioned and
should be easy to solve|diagonal, near diagonal, or orthogonal interpolation matri-
ces are best. Third, the approximant should be easy to work with. In particular, the
basis functions should be easy and relatively costless to evaluate, di�erentiate, and
integrate.

Interpolation schemes may be classi�ed as either spectralmethods or �nite element
methods. A spectral method uses basis functions that are nonzero over the entire
domain of the function being approximated, except possibly at a �nite number of
points. In contrast, a �nite element method uses basis functions that are nonzero
over only a subinterval of the domain of approximation. Polynomial interpolation,
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which uses polynomials of increasing degree as basis functions, is the most common
spectral method. Spline interpolation, which uses basis functions that are polynomials
of low degree over subintervals of the approximation domain, is the most common
�nite element method. We examine both of these methods in greater detail in the
following sections.

6.2 Polynomial Interpolation

According to the Weierstrass Theorem, any continuous real-valued function f de�ned
on a bounded interval [a; b] of the real line can be approximated to any degree of ac-
curacy using a polynomial. More speci�cally, for any � > 0, there exists a polynomial
p such that

jjf � pjj1 = sup
x2[a;b]

jf(x)� p(x)j < �:

The Weierstrass theorem provides strong motivation for using polynomials to approx-
imate continuous functions. The theorem, however, is not very practical. It gives no
guidance on how to �nd a good polynomial approximant. It does not even state what
order polynomial is required to achieve the required level of accuracy.

One apparently reasonable way to construct a nth-degree polynomial approximant
for a function f is to form the unique (n� 1)th-order polynomial

p(x) = c1 + c2x + c3x
2 + : : :+ cnx

n�1

that interpolates f at the n evenly spaced interpolation nodes

xi = a+
i� 1

n� 1

�
b� a

�
8i = 1; 2; : : : ; n:

In practice, however, polynomial interpolation at evenly spaced nodes often does not
produce an accurate approximant. In fact, there are well-behaved functions for which
polynomial approximants with evenly spaced nodes rapidly deteriorate, rather than
improve, as the degree of approximation n rises.

Numerical analysis theory and empirical experience both suggest that polynomial
approximants over a bounded interval [a; b] should be constructed by interpolating
the underlying function at the so-called Chebychev nodes:

xi =
a+ b

2
+
b� a
2

cos

�
n� i + 0:5

n
�

�
; 8i = 1; 2; : : : ; n:

As illustrated in Figure 6.1 for n = 9, the Chebychev nodes are not evenly spaced.
They are more closely spaced near the endpoints of the interpolation interval and less
so near the center.
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Chebychev-node polynomial interpolants possess some strong theoretical proper-
ties. According to Rivlin's Theorem, Chebychev-node polynomial interpolants are
very nearly optimal polynomial approximants. Speci�cally, the approximation er-
ror associated with the nth-degree Chebychev-node polynomial interpolant cannot be
larger than 2� log(n)+ 2 times the lowest error attainable with any other polynomial
approximant of the same order. For n = 100, this factor is approximately 30, which is
very small when one considers that other polynomial interpolation schemes typically
produce approximants with errors that are orders of magnitude, that is, powers of
10, larger then the optimum. In practice, the accuracy a�orded by the Chebychev-
node polynomial interpolant is often much better than indicated by Rivlin's bound,
especially if the function being approximated is smooth.

Another theorem, Jackson's theorem, provides a more useful result. Speci�cally,
if f is continuously di�erentiable, then the approximation error a�orded by the nth-
degree Chebychev-node polynomial interpolant pn can be bounded above:

jjf � pnjj � 6

n
jjf 0jj(b� a)(log(n)=� + 1):

This error bound can often be accurately estimated in practice, giving the analyst
a good indication of the accuracy a�orded by the Chebychev-node polynomial in-
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terpolant. More importantly, however, the error bound goes to zero as n rises. In
contrast to polynomial interpolation with evenly spaced nodes, one can achieve any
desired degree of accuracy with Chebychev-node polynomial interpolation by increas-
ing the degree of approximation.

To illustrate the di�erence between Chebychev and evenly spaced node polynomial
interpolation, consider approximating the function f(x) = exp(�x) on the interval
[�1; 1]. The approximation error associated with ten node polynomial interpolants
are illustrated in Figure 6.2. The Chebychev node polynomial interpolant exhibits
errors that oscillate fairly evenly throughout the interval of approximation, a com-
mon feature of Chebychev node interpolants. The evenly spaced node polynomial
interpolant, on the other hand, exhibits signi�cant instability near the endpoints
of the interval. The Chebychev node polynomial interpolant avoids such endpoint
instabilities because the nodes are more heavily concentrated near the endpoints.
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Figure 6.2

The most intuitive basis for expressing polynomials, regardless of the interpola-
tion nodes chosen, is the monomial basis consisting of the simple power functions
1; x; x2; x3; : : :, illustrated in Figure 6.3 for the interval x 2 [0; 1]. However, the
monomial basis produces an interpolation matrix � that is a so-called Vandermonde
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matrix:

� =

2
6664
1 x1 : : : xn�21 xn�11

1 x2 : : : xn�22 xn�12
...

...
. . .

...
...

1 xn : : : xn�2n xn�1n

3
7775 :

Vandermonde matrices are notoriously ill-conditioned, and increasingly so as the de-
gree of approximation n is increased. Thus, e�orts to compute the basis coeÆcients
of the monomial basis polynomials often fail due to rounding error, and attempts to
compute increasingly more accurate approximations by raising the number of inter-
polation nodes are often futile.
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Figure 6.3

Fortunately, alternatives to the standard monomial basis exist. In fact, any se-
quence of n polynomials having exact orders 0; 1; 2; : : : ; n � 1 can serve as a basis
for all polynomials of order less than n. One such basis for the interval [a; b] on the
real line is the Chebychev polynomial basis. De�ning z = 2(x � a)=(b � a) � 1, to
normalize the domain to the interval [-1,1], the Chebychev polynomials are de�ned
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recursively as:2

�j(x) = Tj�1 (z)

where

T0(z) = 1

T1(z) = z

T2(z) = 2z2 � 1

T3(z) = 4z3 � 3z
...

Tj(z) = 2zTj�1(z)� Tj�2(z):
The �rst twelve Chebychev basis polynomials for the interval x 2 [0; 1] are displayed
in Figure 6.4.
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2The Chebychev polynomials also possess the alternate trigonometric de�nition Tj(z) =

cos
�
arccos(z)j

�
on the domain [a; b].
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Chebychev polynomials are an excellent basis for constructing polynomials that
interpolate function values at the Chebychev nodes. Chebychev basis polynomials in
combination with Chebychev interpolation nodes yields an extremely well-conditioned
interpolation equation that can be accurately and eÆciently solved, even with high
degree approximants. The interpolation matrix � associated with the Chebychev
interpolation has typical element

�ij = cos((n� i+ 0:5)(j � 1)�=n):

This Chebychev interpolation matrix is orthogonal

�>� = diagfn; n=2; n=2; : : : ; n=2g
and has a condition number

p
2 regardless of the degree of interpolation, which is

very near the ideal minimum of 1. This implies that the Chebychev basis coeÆcients
can be computed quickly and accurately, regardless of the degree of interpolation.

Derivatives and integrals of polynomials are also polynomials. Di�erentiation
decreases the polynomial order by 1 and integration increases it by 1. A di�erential
operator that maps the coeÆcients of a polynomial in the Chebyshev basis is given
by the n� 1� n matrix operator with ijth element given by

Dij =

8>>><
>>>:

2(j�1)
b�a if i = 1 and i+ j is odd

4(j�1)
b�a if i > 1, i+ j is odd and i<j

0 otherwise.

Similarly, the n+ 1� n matrix with ijth element

D�1
ij =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

b�a
2

if i � 2 and j = 1

� b�a
8

if i = 1 and j = 2

(�1)j (b�a)
2j(j�2) if i = 1 and j > 2

b�a
4j

if i > 1 and j = i� 1

� b�a
4(j�2) if i > 1 and j = i + 1

0 otherwise.

maps Chebyshev coeÆcients into the coeÆcients of the integral (normalized so the
integral is 0 at a).
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6.3 Piecewise Polynomial Splines

Piecewise polynomial splines, or simply splines for short, are a rich, exible class
of functions that may be used instead of high degree polynomials to approximate a
real-valued function over a bounded interval. Generally, an order k spline consists of
series of kth order polynomial segments spliced together so as to preserve continuity of
derivatives of order k�1 or less. The points at which the polynomial pieces are spliced
together, �1 < �2 < : : : < �p, are called the breakpoints of the spline. By convention,
the �rst and last breakpoints are the endpoints of the interval of approximation [a; b].

A general order k spline with p breakpoints may be characterized by (p�1)(k+1)
parameters, given that each of the p� 1 polynomial segments is de�ned by its k + 1
coeÆcients. By de�nition, however, a spline is required to be continuous and have
continuous derivatives up to order k � 1 at each of the p � 2 interior breakpoints,
which imposes k(p � 2) conditions. Thus, an order k spline with p breakpoints is
actually characterized by n = (k + 1)(p� 1)� k(p� 2) = p+ k � 1 free parameters.
It should not be surprising that a general order k spline with p breakpoints can be
written as a linear combination of n = p + k � 1 basis functions.

There are many ways to express bases for splines, but for applied numerical work
the most useful are the so-called B-splines. The B-splines for an order k spline with
breakpoint vector � can be computed using the recursive de�nition

Bk;�
j (x) =

x� �j�k
�j � �j�kB

k�1;�
j�1 (x) +

�j+1 � x
�j+1 � �j+1�k

Bk�1;�
j (x);

for i = 1; : : : ; n, with the recursion starting with

B0;�
j (x) =

�
1 if �j � x < �j+1

0 otherwise.

This de�nition requires that we extend the breakpoint vector, �, for j < 1 and j > p:

�j =

�
a if j � 1
b if j � p:

Additionally, at the endpoints we set the terms

Bk�1;�
0

�1 � �1�k =
Bk�1;�
n

�n+1 � �n�k+1
= 0:

Given a B-spline representation of a spline, the spline can easily be di�erentiated
by computing simple di�erences, and can be integrated by computing simple sums.
Speci�cally:

dBk;�
j (x)

dx
=

k

�j � �j�kB
k�1;�
j�1 (x)� k

�j+1 � �j+1�k
Bk�1;�
j (x)
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and Z x

a

Bk;�
j (z)dz =

nX
i=j

�i � �i�k
k

Bk+1;�
i+1 (x):

Although these formulae appear a bit complicated, their application in computer
programs is relatively straightforward. First notice that the derivative of a B-spline
of order k is a weighted sum of two order k � 1 B-splines. Thus, the derivative
of an order k spline is an order k � 1 spline with the same breakpoints. Similarly,
the integral of a B-spline can be represented as the sum of B-splines of order k + 1.
Thus, the antiderivative of an order k spline is an order k + 1 spline with the same
breakpoints. This implies that the family of splines are closed under di�erentiation
and integration, with the oder k decreasing or increasing by 1 and with the breakpoints
remaining unchanged.

Two classes of splines are often employed in practice. A �rst-order or linear spline
is a series of line segments spliced together to form a continuous function. A third-
order or cubic spline is a series of cubic polynomials segments spliced together to form
a twice continuously di�erentiable function.

Linear spline approximants are particularly easy to construct and evaluate in
practice, which explains their widespread popularity. Linear splines use line segments
to connect points on the graph of the function to be approximated. A linear spline
with n evenly spaced breakpoints on the interval [a; b] may be written as a linear
combination

f̂(x) =
nX
i=1

�i(x)ci

of the basis functions:

�j(x) =

(
1� jx� �jj

h
if jx� �jj � h

0 otherwise.

Here, h = (b� a)=(n� 1) is the distance between breakpoints and �j = a+ (j � 1)h,
j = 1; 2; : : : ; n, are the breakpoints. The linear spline basis functions are popularly
called the \hat" functions, for reasons that are clear from Figure 6.5. This �gure
illustrates the basis functions for a degree 12, evenly spaced breakpoint linear spline
on the interval [0; 1]. Each hat function is zero everywhere, except over a narrow
support of width 2h. The basis function achieves a maximum of 1 at the midpoint of
its support.

One can �x the coeÆcients of an n-degree linear spline approximant for a function
f by interpolating its values at any n points of its domain, provided that the resulting
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interpolation matrix is nonsingular. However, if the interpolation nodes x1; x2; : : : ; xn
are chosen to coincide with the spline breakpoints �1; �2; : : : ; �n, then computing the
basis coeÆcients of the linear spline approximant becomes a trivial matter. In this
case �i(xj) equals one if i = j, but equals zero otherwise; that is, the interpolation
matrix � is simply the identity matrix and the interpolation equation reduces to the
identity c = y, where y is the vector of function values at the interpolation nodes.
The linear spline approximant of f when nodes and breakpoints coincide thus takes
the form

f̂(x) =
nX
i=1

�i(x)f(xi):

When interpolation nodes and breakpoints coincide, no computations other than
function evaluations are required to form the linear spline approximant. For this
reason linear spline interpolation nodes in practice are always chosen to be the spline's
breakpoints.

Evaluating a linear spline approximant and its derivative at an arbitrary point x is
also straightforward. Since at most two basis functions are nonzero at any point, only
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two basis function evaluations are required. Speci�cally, if i is the greatest integer
less than 1 + (x� a)=h, then x lies in the interval [�i; �i+1]. Thus,

f̂(x) = ((x� �i)ci+1 + (�i+1 � x)ci)=h
and

f̂ 0(x) = (ci+1 � ci)=h:
Higher order derivatives are zero, except at the breakpoints, where they are unde�ned.

Linear splines are attractive for their simplicity, but have certain limitations that
often make them a poor choice for computational economic applications. By construc-
tion, linear splines produce �rst derivatives that are discontinuous step functions and
second derivative that are zero almost everywhere. Linear spline approximants thus
typically do a very poor job of approximating the �rst derivative of a nonlinear func-
tion and are incapable of approximating its second derivative. In some economic
applications, the derivative represents a measure of marginality that is of as much
interest to the analyst as the function itself. The �rst and maybe second derivatives
of the function also may be needed to solve for the root of the function using Newton-
like method and in the continuous time dynamic models encountered in Chapters 10
and 11 are expressed in terms of second order di�erential equations.

Cubic spline approximants o�er a higher degree of smoothness while retaining
much of the exibility and simplicity of linear spline approximants. Because cubic
splines possess continuous �rst and second derivatives, they typically produce ade-
quate approximations for both the function and its �rst and second derivatives.

The basis functions for n-degree, evenly spaced breakpoint cubic splines on the
interval [a; b] are generated using the n � 2 breakpoints �j = a + h(j � 1), j =
1; 2; : : : ; n � 2, where h = b�a

n�3 . Cubic spline basis function generated with evenly
spaced breakpoints are nonzero over a support of width 4h. As such, at any point of
[a; b], at most four basis functions are nonzero. The basis functions for a degree 12,
evenly spaced breakpoint cubic spline on the interval [0; 1] are illustrated in Figure
6.6.

Although spline breakpoints are often chosen to be evenly spaced, this need not
be the case. Indeed, the ability to distribute breakpoints unevenly and to stack them
on top of one another adds considerably to the exibility of splines, allowing them to
accurately approximate a wide range of functions. In general, functions that exhibit
wide variations in curvature are diÆcult to approximate numerically with polynomials
of high degree. With splines, however, one can often �nesse curvature diÆculties by
concentrating breakpoints in regions displaying the highest degree of curvature.

To illustrate the importance of breakpoint location, consider the problem of form-
ing a cubic spline approximant for Runge's function

f(x) =
1

1 + 25x2
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on the interval x 2 [�5; 5]. Figure 6.7 displays two cubic spline approximations,
one using thirteen evenly spaced breakpoints, the other using thirteen breakpoints
that cluster around zero (the breakpoints are indicated by `x' symbols). Figure 6.8
shows the associated approximation errors (note that the errors for the unevenly
spaced approximation have been multiplied by 100). In Figure 6.7 the unevenly
spaced breakpoints approximation lies almost on top of the actual function, whereas
the even spacing leads to signi�cant errors, especially near zero. The �gures clearly
demonstrate the power of spline approximations with good breakpoint placement.

The placement of the breakpoints can also be used to a�ect the continuity of
the spline approximant and its derivatives. By stacking breakpoints on top of one
another, we can reduce the smoothness at the breakpoints. Normally, an order k
spline has continuous derivatives to order k � 1 at the breakpoints. By stacking q
breakpoints, we can reduce this to k � q continuous derivatives at this breakpoint.
For example, with two equal breakpoints, a cubic spline possesses a discontinuous
second derivative at the point. With three equal breakpoints, a cubic spline possesses
a discontinuous �rst derivative at that point, that is, it exhibits a kink there. Stacking
breakpoints is a useful practice if the function is known a priori to exhibit a kink at a
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given point. Kinks arise in the pricing of options, which display a kink in their payo�
function and in dynamic optimization problems with discrete choice variables, which
display kinks in their marginal value function (or its derivative).

Regardless of the placement of breakpoints, splines have several important and
useful properties. We have already commented on the limited domain of the basis
function. This limited support implies that spline interpolation matrices are sparse
and for this reason can be stored and manipulated using sparse matrix methods. This
property is extremely useful in high-dimensional problems for which a fully expanded
interpolation matrix would strain any computer's memory. Another useful feature of
splines is that their values are bounded, thereby reducing the likelihood that scaling
e�ects will cause numerical diÆculties. In general, the limited support and bounded
values make spline basis matrices well-conditioned.

If the spline interpolation matrix must be reused, one must resist the temptation
to form and store its inverse, particularly if the size of the matrix is large. Inversion
destroys the sparsity structure. More speci�cally, the inverse of the interpolation
matrix will be dense, even though the interpolation matrix is not. When n is large,
solving the sparse n by n linear equation using sparse L-U factorization will generally
be less costly than performing the matrix-vector multiplication required with the
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dense inverse interpolation matrix (accomplished with the \n" operator inMatlab).

6.4 Piecewise-Linear Basis Functions

Despite their simplicity, linear splines have many virtues. For problems in which
the function being approximated is not-smooth and may even exhibit discontinuities,
linear splines can still provide reasonable approximations. Unfortunately, derivatives
of linear splines are discontinuous, piecewise constant functions.

There is no reason, however, to limit ourselves to using the actual derivative of
the approximating function, if a more suitable alternative exists. If a function is
approximated by a linear spline, a reasonable candidate for an approximation of its
derivative is a linear spline constructed using �nite di�erence approximations to the
derivative (see Section 5.6, page 107). Given a breakpoint sequence � for the function's
approximant, this can be accomplished by de�ning a new breakpoint sequence with
n � 1 values placed at the midpoints of the original sequence: zi = (�i + �i+1)=2,
i = 1; : : : ; n � 1. The new function is set to equal the centered �nite di�erence



CHAPTER 6. FUNCTION APPROXIMATION 144

approximation to the derivative at the new breakpoints:

f 0(zi) � f(�i+1)� f(�i)
�i+1 � �i :

Values between and beyond the zi sequence can be obtained by linear interpolation
and extrapolation. We leave it as an exercise to show that this piecewise linear
function, evaluated at the original breakpoints (the �i), is equal to the centered �nite
di�erence approximations derived in the last chapter. Approximations to higher order
derivatives can be obtained be repeated application of this idea.

For completeness, we de�ne an approximate integral that is also a linear spline,
with a breakpoint sequence zi+1 = (�i + �i+1)=2 for i = 2; : : : ; n and with additional
breakpoints de�ned by extrapolating beyond the original sequence: z1 = (3�1� �2)=2
and zn+1 = (3�n � �n�1)=2. The approximation to the integral,

F (x) =

Z x

�1

f(x)dx

at the new breakpoints is

F (zi) = F (zi�1) + (zi � zi�1)f(�i�1);
where

F (z1) =
1
2
(�1 � �2)f(�1)

(this ensures the normalization that F (�1) = 0).3 This de�nition produces an approx-
imation to the integral at the original breakpoints that is equal to the approximation
obtained by applying the trapezoid rule (see Section 5.1, page 95):Z �i+1

�i

f(x)dx � 1
2 (�i+1 � �i)(f(�i+1) + f(�i)):

(we leave the veri�cation of this assertion as exercise for the reader).
As with the other families of functions discussed, the family of piecewise linear

functions obtained using these approximations is closed under di�erentiation and in-
tegration. Unlike splines, however, for which di�erentiation and integration decreases
or increases the order of the piecewise segments, leaving the breakpoint sequence

3It should be pointed out that the breakpoint sequence obtain by integrating and then di�eren-
tiating will not produce the original breakpoint sequence unless the original breakpoints are evenly
spaced. This leads to the unfortunate property that di�erentiating the integral will only produce
the original function if the breakpoints are evenly spaced. It can also be shown that, although the
�rst derivatives are O(h2), the second derivatives are only O(h) when the breakpoints are not evenly
spaced.
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unchanged, with the piecewise linear family, di�erentiation and integration do not
change the polynomial order of the pieces (they remain linear) but decrease or in-
crease the number of breakpoints.

The piecewise linear family makes computation using �nite di�erence operators
quite easy, without a need for special treatment to distinguish them from other fam-
ilies of basis functions (including �nite element families such as splines). We will
return to this point in Chapter 11 when we discuss solving partial di�erential equa-
tions (PDEs).

6.5 Multidimensional Interpolation

The univariate interpolation methods discussed in the preceding sections may be ex-
tended in a natural way to multivariate functions through the use of tensor products.
To illustrate, consider the problem of approximating a bivariate real-valued function
f(x; y) de�ned on a bounded interval I = f(x; y) j ax � x � bx; ay � y � byg in
<2. Suppose that �xi , i = 1; 2; : : : ; nx and �yj , j = 1; 2; : : : ; ny are basis functions for
univariate functions de�ned on [ax; bx] and [ay; by], respectively. Then an n = nxny
degree basis for f on I may be constructed by letting

�ij(x; y) = �xi (x)�
y
j (y) 8i = 1; : : : ; nx; j = 1; : : : ; ny:

Similarly, a grid of n = nxny interpolation nodes can be constructed by taking the
Cartesian product of univariate interpolation nodes. More speci�cally, if x1; x2; : : : xnx
and y1; y2; : : : ; yny are nx and ny interpolation nodes in [ax; bx] and [ay; by], respec-
tively, then n nodes for interpolating f on I may be constructed by letting

f(xi; yj) j i = 1; 2; : : : ; nx; j = 1; 2; : : : ; nyg:
For example, suppose one wishes to approximate a function using a cubic poly-

nomial in the x direction and a quadratic polynomial in the y direction. A tensor
product basis constructed from the simple monomial basis of x and y comprises the
following functions

1; x; y; xy; x2; y2; xy2; x2y; x2y2; x3; x3y; x3y2:

The dimension of the basis is 12. An approximant expressed in terms of the tensor
product basis would take the form

f̂(x; y) =
4X

i=1

3X
j=1

xi�1yj�1cij:
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Typically, tensor product node-basis schemes inherit the favorable qualities of
their univariate node-basis parents. For example, if a bivariate linear spline basis is
used and the interpolation nodes fxi; yjg are chosen such that the xi and yj coincide
with the breakpoints in the x and y direction, respectively, then the interpolation
matrix will be the identity matrix, just like in the univariate case. Also, if a bivariate
Chebychev polynomial basis is used, and the interpolation nodes fxi; yjg are chosen
such that the xi and yj coincide with the Chebychev nodes on [ax; bx] and [ay; by],
respectively, then the interpolation matrix will be orthogonal.

Tensor product schemes can be developed similarly for higher than two dimensions.
Consider the problem of interpolating a d-variate function

f(x1; x2; : : : ; xd)

on a d-dimensional interval

I = f(x1; x2; : : : ; xd) j ai � xi � bi; i = 1; 2; : : : ; dg:
Let �ij, j = 1; :::; ni, be the jth basis function in a ni degree univariate basis for
real-valued functions of on [ai; bi]. An approximant for f in the tensor product basis
would take the following form:

f̂(x1; x2; : : : ; xd) =
n1X
j1=1

n2X
j2=1

: : :

ndX
jd=1

�1j1(x1)�2j2(x2) : : : �djd(xd)cj1:::jd:

Using tensor notation the approximating function can be written

f̂(x1; x2; : : : ; xd) = [�d(xd)
 �d�1(xd�1)
 : : :
 �1(x1)]c:
where c is a column vector with n = �d

i=1ni elements. We have chosen to evaluate
the tensor product in reverse order; in principle it can be evaluated in any order but
using the reverse order makes indexing easier in Matlab. An even more compact
notation is

f(x) = �(x)c

where �(x) is a function of d variables that produces an n-column row vector.
Consider the case in which d = 2, with n1 = 3 and n2 = 2, and the simple

monomial (power) function bases are used (of course one should use Chebychev but
it makes the example harder to follow). The elementary basis functions are

�11(x1) = 1
�21(x1) = x1
�31(x1) = x21
�12(x2) = 1

and
�22(x2) = x2:
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The elementary basis vectors are

�1(x1) = [1 x1 x
2
1]

and
�2(x2) = [1 x2]:

Finally, the full basis function is

�(x) = [1 x2]
 [1 x1 x
2
1] = [1 x1 x

2
1 x2 x1x2 x

2
1x2];

which has n = n1n2 = 6 columns.
We are often interested in evaluating f(x) at many values of x. Suppose we have

an m � d matrix X, each row of which represents a single value of x, and which is
denoted Xi. The matrix �(X) is an m � n matrix, each row of which is composed
of �(Xi). Continuing the previous example, suppose we want to evaluate f at the m
points [0 0], [0 0:5], [0:5 0] and [1 1]. The matrix X is thus

X =

2
664

0 0
0 0:5
0:5 0
1 1

3
775 :

Then

�(X) =

2
664
1 0 0 0 0 0
1 0 0 0:5 0 0
1 0:5 0:25 0 0 0
1 1 1 1 1 1

3
775 ;

which is 4� 6 (m� n).
If �(X) has n rows and is nonsingular, the coeÆcients of the interpolating function

are found by performing the linear solve

�(X)c = f(X); (6.1)

where f(X) represents the m values of the function evaluated at each of the Xi. This
is one of the reasons why we have limited ourselves to families of functions that can be
expressed as linear combinations of basis functions; it is easy to solve the interpolation
problem.

Although (6.1) can be solved for arbitrary values of an n � d matrix X as long
as the resulting �(X) is nonsingular, substantial eÆciencies can be obtained if X
represents points on a regular grid. Speci�cally, suppose we form the grid de�ned by
the d vectors xi, the ith of which has ni values. If �i is the ni�ni interpolation matrix
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associated with xi, then the interpolation conditions for the multivariate function can
be written

[�d 
 �d�1 
 : : :
 �1]c = f(X)

where f(X) contains the n values of the function evaluated at the interpolation nodes
x, properly stacked.

As an example, suppose x1 = [0; 0:5; 1] and x2 = [0; 1] and we use the monomial
basis functions of the above example. Then

�1(X1) =

2
4 1 0 0
1 0:5 0:25
1 1 1

3
5 ;

�2(X2) =

�
1 0
1 1

�

and

�(X) = �2(X2)
 �1(X1) =

2
6666664

1 0 0 0 0 0
1 0:5 0:25 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 0:5 0:25 1 0:5 0:25
1 1 1 1 1 1

3
7777775
:

The proper stacking of X yields rows containing all possible combinations of the
values of the xi, with the lowest order xi changing most rapidly:4

X =

2
6666664

0 0
0:5 0
1 0
0 1
0:5 1
1 1

3
7777775
:

Using a standard result from tensor matrix algebra, the system can be solved by
forming the inverse of the interpolation matrix and postmultiplying it by the data
vector:

c = [��1d 
 ��1d�1 
 : : :
 ��11 ]f(X):

4If we formed the tensor products in ascending rather than descending order, we should have
the highest order xi changing most rapidly; this, however, runs counter to Matlab's indexing
conventions.



CHAPTER 6. FUNCTION APPROXIMATION 149

Hence, there is no need to invert an n � n multivariate interpolation matrix to de-
termine the interpolating coeÆcients. Instead, each of the univariate interpolation
matrices may be inverted individually and then multiplied together. This leads to
substantial savings in storage and computational e�ort. For example, if the problem
is 3-dimensional and there are 10 evaluation points in each dimension, only three
10� 10 matrices need to be inverted, rather than a single 1000� 1000 matrix.

Interpolation using tensor product schemes tends to become computationally more
challenging as the dimensions rise. With a one{dimensional argument the number of
interpolation nodes and the dimension of the interpolation matrix can generally be
kept small with good results. For a relatively smooth function, Chebychev polynomial
approximants of order 10 or less can often provide extremely accurate approximations
to a function and its derivatives. If the function's argument is d-dimensional one could
approximate the function using the same number of points in each dimension, but this
increases the number of interpolation nodes to 10d and the size of the interpolation
matrix to 102d elements. The tendency of computational e�ort to grow exponentially
with the dimension of the function being interpolated is known as the curse of di-

mensionality. To mitigate the e�ects of the curse requires that careful attention be
paid to both storage and computational eÆciency when designing and implementing
numerical routines that perform approximation.

6.6 Choosing an Approximation Method

The most signi�cant di�erence between spline and polynomial interpolation methods
is that spline basis functions have narrow supports, but polynomial basis functions
have supports that cover the entire interpolation interval. This can lead to big dif-
ferences in the quality of approximation when the function being approximated is
irregular. Discontinuities in the �rst or second derivatives can create problems for all
interpolation schemes. However, spline functions, due to their narrow support, can
often contain the e�ects of such discontinuities. Polynomial approximants, on the
other hand, allow the ill e�ects of discontinuities to propagate over the entire interval
of interpolation. Thus, when a function exhibits kinks, spline interpolation may be
preferable to polynomial interpolation.

In order to illustrate the di�erences between spline and polynomial interpolation,
we compare in Table 6.1 the approximation error for four di�erent functions, all de-
�ned on [�5; 5], and four di�erent approximation schemes: linear spline interpolation,
cubic spline interpolation, evenly spaced node polynomial interpolation, and Cheby-
chev polynomial interpolation. The errors are measured as the maximum absolute
error using 1001 evenly spaced evaluation points on [�5; 5]. The approximants ob-
tained using splines and Chebyshev polynomials, along with the actual functions, are
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displayed in Figures 6.9-6.12.
The four functions are ordered in increasing diÆculty of approximation. The �rst

is cubic and can be �t exactly by both cubic spline and polynomials \approximations".
The second function is quite smooth and hence can be �t well with a polynomial. The
third function (Runge's function) has continuous derivatives of all orders but has a
high degree of curvature near the origin. A scaleless measure of curvature familiar to
economists is �f 00=f 0; for Runge's function this measure is 1=x � 2 which becomes
unbounded at the origin. The fourth function is kinked at the origin, i.e., its derivative
is not continuous.

The results presented in Table 6.1 and in Figures 6.9-6.12 lend support to cer-
tain rules of thumb. When comparing interpolation schemes of the same degree of
approximation:

1. Chebychev node polynomial interpolation dominates evenly spaced node poly-
nomial interpolation.

2. Cubic spline interpolation dominates linear spline interpolation, except where
the approximant exhibits a profound discontinuity.

3. Chebychev polynomial interpolation dominates cubic spline interpolation if the
approximant is smooth; otherwise, cubic or even linear spline interpolation may
be preferred.

6.7 An Approximation Toolkit

Implementing routines for multivariate function approximation involves a number of
bookkeeping details that are tedious at best. In this section we describe a set of
numerical tools that take much of the pain out of this process. This toolbox contains
several high-level functions that use a structured variable to store the essential in-
formation that de�nes the function space from which approximants are drawn. The
toolbox also contains a set of middle-level routines that de�ne the basis functions for
Chebychev polynomials and for splines and a set of low-level utilities to handle basic
computations, including tensor product manipulations.

The six high-level procedures, all prefaced by FUN, are FUNDEFN, FUNFITF, FUNFITXY,
FUNEVAL, FUNNODE, and FUNBAS.

The most basic of these routines is FUNDEFN, which creates a structured vari-
able that contains the essential information about the function space from which
approximants will be drawn. There are several pieces of information that must be
speci�ed and stored in the structure variable in order to de�ne the function space:
the type of basis function (e.g., Chebychev polynomial, spline, etc.), the number of
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Table 6.1: Errors for Selected Interpolation Methods

Linear Cubic Uniform Chebychev
Function Degree Spline Spline Polynomial Polynomial

1 + x 10 1.30e+001 1.71e-013 2.27e-013 1.71e-013
+2x2 � 3x3 20 3.09e+000 1.71e-013 3.53e-011 1.99e-013

30 1.35e+000 1.71e-013 6.56e-008 3.41e-013

exp(�x) 10 1.36e+001 3.57e-001 8.10e-002 1.41e-002
20 3.98e+000 2.31e-002 2.04e-008 1.27e-010
30 1.86e+000 5.11e-003 1.24e-008 9.23e-014

(1 + 25x2)�1 10 8.85e-001 9.15e-001 8.65e-001 9.25e-001
20 6.34e-001 6.32e-001 2.75e+001 7.48e-001
30 4.26e-001 3.80e-001 1.16e+004 5.52e-001

jxj0:5 10 7.45e-001 7.40e-001 6.49e-001 7.57e-001
20 5.13e-001 4.75e-001 1.74e+001 5.33e-001
30 4.15e-001 3.77e-001 4.34e+003 4.35e-001

basis functions, and the endpoints of the interpolation interval. If the approximant is
multidimensional, the number of basis functions and the interval endpoints must be
supplied for each dimension.

The function FUNDEFN de�nes the approximation function space using the syntax:

fspace = fundefn(bastype,n,a,b,order);

Here, on input, bastype is string referencing the basis function family, which can
take the values 'cheb' for Chebychev polynomial basis, 'spli' for spline basis or
'lin' for piecewise linear basis; n is the vector containing the degree of approxima-
tion along each dimension; a is the vector of left endpoints of interpolation intervals
in each dimension; b is the vector of right endpoints of interpolation intervals in each
dimension; and order is an optional input that speci�es the order of the interpo-
lating spline (only used if bastype is 'spli'). On output, fspace is a structured
Matlab variable containing numerous �elds of information necessary for forming
approximations in the chosen function space.

For example, suppose one wished to construct 10th degree Chebychev approxi-
mants for univariate functions de�ned on the interval [�1; 2]. Then one would de�ne
the appropriate function space for approximation as follows:
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Figure 6.9

fspace = fundefn('cheb',10,-1,2);

Suppose instead that one wished to construct cubic spline approximants for bivariate
functions de�ned on the two-dimensional interval f(x1; x2)j�1 � x1 � 2; 4 � x2 � 9g.
Furthermore suppose that one wished to form an approximant using 10 basis functions
for the x1 dimension and 15 basis functions for the x2 dimension. Then one would
issue the following command:

fspace = fundefn('spli',[10 15],[-1 2],[4 9]);

For spline interpolation, cubic (that is, third-order) spline interpolation is the default.
However, other order splines may also be used for interpolation by specifying order.
In particular, if one wished to construct linear spline approximants instead of cubic
spline interpolants, one would issue the following command:

space = fundefn('spli',[10 15],[-1 2],[4 9],1);

Two procedures are provided for function approximation and simple data �tting.
FUNFITF determines the basis coeÆcients of a member from the speci�ed function
space that approximates a given function f de�ned in an m-�le. The syntax for this
function approximation routine is:



CHAPTER 6. FUNCTION APPROXIMATION 153

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

F
un

ct
io

n

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

C
he

by
ch

ev

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

C
ub

ic
 S

pl
in

e

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

Li
ne

ar
 S

pl
in

e

Figure 6.10

c = funfitf(fspace,f,additional parameters);

Here, on input, fspace is the approximation function space de�ned using FUNDEF,
f is the string name of the m-�le that evaluates the function to be approximated.
Any additional parameters passed to FUNFITF are simply passed on to the function
f. On output, c is the vector of basis function coeÆcients for the unique member
of the approximating function space that interpolates the function f at the standard
interpolation nodes associated with that space.

A second procedure, FUNFITXY, computes the basis coeÆcients of the function
approximant that interpolates the values of a given function at arbitrary points that
may, or may not, coincide with the standard interpolation nodes. The syntax for this
function approximation routine is:

c = funfitxy(fspace,x,y);

Here, on input, fspace is an approximation function space de�ned using FUNDEF, x is
a matrix of points at which the function has been evaluated (each row represents one
point in Rd) and y is a matrix of function values at those points. On output, c is the
matrix of basis function coeÆcients for the member of the approximating function
space that interpolates f at the interpolation nodes supplied in x. If there are more
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Figure 6.11

data points than coeÆcients, FUNFITXY returns the least squares �t; the procedure
can therefore be used for statistical data �tting as well as interpolation.

If y is obtained by evaluating f at a regular grid of values, x can be passed as a
cell array containing the vectors de�ning the grid. The toolbox contains a function,
makegrid, for generating grid points from such a cell array. To evaluate a function
on a regular grid one can use the following code:

X=makegrid(x);

y=f(X);

If x a cell array containing d vectors of length ni, i = 1; : : : ; d, makegrid returns X as
an
Q

i ni � d matrix. One could then use either of the following commands to obtain
the coeÆcient values:

c=funfitxy(fspace,x,y);

or

c=funfitxy(fspace,X,y);

The only di�erence in calling syntax involves whether x or X is passed. Using x

however is far more eÆcient when d > 1 because the interpolation equation can be
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Figure 6.12

solved using the tensor product of the inverses rather than the inverse of the tensor
product.

Once the approximant function space has been chosen and a speci�c approximant
in that space has been selected by specifying the basis coeÆcients, then the procedure
FUNEVAL may be used to evaluate the approximant at one or more points. The syntax
for this function approximation routine is:

y = funeval(c,fspace,x);

Here, on input, fspace is the approximation function space de�ned using FUNDEFN,
c is the matrix of coeÆcients that identi�es the approximant and x is the point at
which the approximant is to be evaluated, written as a m� d matrix. On output, y
is the value of the approximant at x. If one wishes to evaluate the approximant at m
points, then one may pass all these points to FUNEVAL at once as an m � d array x,
in which case y is returned as an m� 1 vector of function values.

The procedure FUNEVAL may also be used to evaluate the derivatives or the ap-
proximant at one or more points. The syntax for evaluating derivatives is:

deriv = funeval(c,space,x,order);
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were, on input, order is a 1�d specifying the order of integration in each dimension.
For example, to compute the �rst and second derivative of a univariate approximant,
one issues the commands:

f1 = funeval(c,space,x,1);

f2 = funeval(c,space,x,2);

To compute the partial derivative of a bivariate approximant with respect to its �rst
two arguments, one would issue the commands:

f1 = funeval(c,space,x,[1 0]);

f2 = funeval(c,space,x,[0 1]);

The single command

J = funeval(c,space,x,eye(d));

will compute the entire Jacobian. To compute the second partial derivatives and the
cross partial of a bivariate function, one would issue the commands:

f11 = funeval(c,space,x,[2 0]);

f12 = funeval(c,space,x,[1 1]);

f22 = funeval(c,space,x,[0 2]);

A simple example will help clarify how all of these procedures may be used to con-
struct and evaluate function approximants. Suppose we are interested (for whatever
reason) in approximating the univariate function

f(x) = exp(��x)
on [-1,1]. The �rst step is to create a �le that computes the desired function:

function fx=nexp(x,alpha)

fx=exp(-alpha*x);

The �le should be named nexp. The following script constructs the Chebychev ap-
proximant for � = 2 and then plots the errors using a �ner grid than used in inter-
polation:

alpha=2;

space = fundefn('cheb',10,-1,1);

c = funfitf(space,'nexp',alpha);

x = nodeunif(1001,-1,1);

yact = f(x);

yapp = funeval(c,space,x);

plot(x,yact-yapp);
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The steps used here are to �rst initialize the parameter �. Second, we use FUNDEFN

to de�ne the function space from which the approximant is to be drawn, in this
case the space of degree 10 Chebychev polynomial approximants on [-1,1]. Third, we
use FUNFITF to compute the coeÆcient vector for the approximant that interpolates
the function at the standard Chebychev nodes. Fourth, we generate a �ne grid of
1001 equally spaced nodes on the interval of interpolation and plot the di�erence
between the actual function values yact and the approximated values yapp. The
approximation error is plotted in Figure 6.13.
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Figure 6.13

Two other routines are useful in applied computational economic analysis. For
many problems it is necessary to work directly with the basis matrices. For this
purpose FUNBAS can be used. The command

B = funbas(space,x);

returns the matrix containing the values of the basis functions evaluated at the points
x. The matrix containing the value of the basis functions associated with a derivative
of given order at x may be retrieved by issuing the command

B = funbas(space,x,order);
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When a function is to be repeatedly evaluated at the same points but with di�erent
values of the coeÆcients, substantial time saving are achieved by avoiding repeated
recalculation of the basis. The commands

B = funbas(space,x);

y = B*c;

have the same e�ect as

y = funeval(c,space,x);

Finally, the procedure FUNNODE computes standard nodes for interpolation and
function �tting. It returns a 1 � d cell array associated with a speci�ed function
space. Its syntax is

x = funnode(space);

The toolbox also contains a number of functions for \power users." These func-
tions either automate certain procedures (for example FUNJAC, FUNHESS and FUNCONV)
or they give the user more control over how information is stored and manipulated
(for example FUNBASX or FUNDEF). In addition, the function approximation tools are
extensible, allowing other families of approximating functions to be de�ned. Com-
plete documentation is available at the toolbox web site (see Web Resources on page
497).

6.8 Solving Functional Equations

In this section we consider the use of approximants to solve functional equations. One
class of functional equation problems involves �nding a function f that satis�es

g(x; f(x)) = 0 for x 2 [a; b]:

A numerical solution to this problem seeks a function f̂ from a �nite-dimensional
function space that approximately satis�es g(x; f̂(x)) = 0.

As with interpolation, it is useful to work with approximants that can be written
in the form

f(x) � f̂(x) =
nX

j=1

�j(x)cj = �(x)c;

where the �j are a set of basis functions. The condition to be satis�ed can be written
as

g (x; �(x)c) � 0 for x 2 [a; b]:
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The term g (x; �(x)c) can be thought of as a residual, which should be made small
(in some sense) by the choice of c. Notice that, for any choice of c, the residual is a
function of x.

A general approach to solving functional equations numerically is collocation. The
collocation strategy is to choose c in such a way as to make the residual zero at n
prescribed nodes:

g (xi; �(xi)c) = 0 for i = 1; 2; : : : ; n:

This approach changes an in�nite dimensional function equation problem into an n-
dimensional root�nding problem, which can be solved using the methods discussed
in Chapter 3.

The same approach can be taken with respect to other classes of functional equa-
tions. Consider, for example, the di�erential equation

g(x; f(x); f 0(x)) = 0 for x 2 [a; b]

subject to b(f(xb)) = 0. This can be replaced by the residual function

g (xi; �(xi)c; �
0(xi)c) = 0 for i = 1; 2; : : : ; n� 1

and the boundary function

b (�(xb)c) = 0:

Although the principle of collocation can be stated quite simply, it is a powerful
tool in solving complicated economic equilibirum and optimization models. We now
examine some examples of functional equations and demonstrate the use of collocation
methods to solve them.

6.8.1 Cournot Oligopoly

In the standard microeconomic model of �rm behavior, a �rm facing a given cost
function maximizes pro�t by setting marginal revenue (MR) equal to marginal cost
(MC). The marginal cost is determined by the �rm's technology and is a function
of the amount of the good the �rm produces (q). For a price taking �rm, MR is
simply the price the �rm faces (p). An oligopolistic �rm, however, recognizing that
its actions a�ect price, takes the marginal revenue to be p+ q dp

dq
. Of course, the term

dp
dq

is the problem. The Cournot assumption is that the �rm acts as if any output
change it makes will be unmatched by its competitors. This implies that

dp

dq
=

1

D0(p)
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where D(p) is the market demand for the good.
If we want to determine the e�ective supply for this �rm at any given price, we

need to �nd a function q = S(p) that equates marginal cost with marginal revenue
and therefore solves the functional equation:

p+
S(p)

D0(p)
�MC(S(p)) = 0

for all positive prices. In simple cases, this function can be found explicitly. For
example, suppose that MC(q) = c and q = D(p) = p��. It is easy to demonstrate
that5

q = S(p) = �(p� c)p���1:
With m identical �rms, we can compute the (Cournot) equilibrium price for the

whole industry by setting

mS(p) = D(p);

which, in the constant marginal cost case, yields

p =

0
BB@ 1

1� 1

�m

1
CCA c

(notice that this result produces the perfect competition result that p = c asm!1).
What are we to do, however, if the marginal cost function is not so nicely behaved?

Suppose, for example, that

MC(q) = �
p
q + q2:

Using the same demand function, the MR=MC condition becomes�
p� qp�+1

�

�
� (�

p
q + q2) = 0:

There is no way to �nd an explicit expression for q = S(p) from this relationship.
To �nd a solution we must resort to numerical methods, �nding a function Ŝ that

approximates S over some interval p 2 [a; b]. Using collocation, we de�ne a set of
price nodes (p) and an associated basis matrix �. These are used in a function that,
given a coeÆcient vector c, computes the residual equation at the price nodes. This
function is then passed to a root �nding algorithm. The following script demonstrates
how to perform these tasks:5Strictly speaking we should impose the q � 0 and write the residual as a complementarity
(Kuhn-Tucker) condition. In MC = c case this puts a kink at p = c, with S(p) = 0 for p < c.
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alpha=1; eta=1.5;

n=25; a=0.1; b=3;

fspace = fundefn('cheb',n,a,b);

p = funnode(fspace);

Phi = funbas(fspace,p);

c = Phi\sqrt(p);

c = broyden('fapp09',c,[],p,alpha,eta,Phi);

The script calls a function 'fapp09' that computes the functional equation residual
for any choice of coeÆcient vector c:

function resid=fapp09(c,p,alpha,eta,Phi);

dp = (-1./eta)*p.^(eta+1);

q = Phi*c;

resid = p + q.*dp - alpha*sqrt(q) - q.^2;

The resulting coeÆcients, c, can then be used to evaluate the \supply" functions.
A set of industry \supply" functions and the industry demand function for � = 1,
� = 1:5 are illustrated in Figure 6.14. The equilibrium price is determined by the
intersection of the industry \supply" and demand curves. A plot of the equilibrium
price for alternative industry sizes is shown in Figure 6.15.

It should be emphasized that almost all collocation problems involve writing a
function to compute the residuals which is passed to a root-�nding algorithm (the
most important exception is when the residual function is linear in c, which can
therefore be computed using a linear solve operation). Typically, it makes sense to
initialize certain variables, such as the basis matrices needed to evaluate the residual
function, as well as any other variables whose value does not depend on the coeÆcient
values. Thus, for most problems, it is useful to write two procedures when solving
collocation problems. The �rst sets up the problem and initializes variables. It then
call a root-�nding algorithm, passing it the name of the second procedure, which
computes the residuals.

It is also generally a good idea to implement an additional step in solving any
collocation problem to analyze how well the problem has been solved. Although we
generally do not know the true solution, we can compute the value of the residual at
any particular point. If the input argument is low-dimensional (1 or 2) we can plot
the residual function at a grid of points, with the grid much �ner than that used to
de�ne the collocation nodes. Even if plotting is infeasible, one can still evaluate the
residual function at a grid of points and determine the maximum absolute residual
or the mean squared residual. This should give you a reasonable idea of how well the
approximation solves the problem. Residuals for the Cournot example can be plotted
against price with the following script:
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p = nodeunif(501,a,b);

Phi = funbas(fspace,p);

r = resid(c,p,alpha,eta,Phi);

plot(p,r)

The result is shown in Figure 6.16, which makes clear that the approximation
adequately solves the functional equation (the �le demapp09 contains code for this
example).

6.8.2 Function Inverses

As another example, consider the problem of inverting a function g. Speci�cally, we
would like to approximate a function f(x) that satis�es g(f(x)) = x on some interval
a � x � b. The residual function here is simply r(x) = g(f(x))� x. The collocation
approach is therefore to �nd the c that satis�es

g (�(xi)c)� xi = 0
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at a selected set of xi. Except in the trivial case in which g is linear, c must be found
using a non-linear root �nding algorithm.

To accomplish this we will �rst de�ne a set of x values for collocation nodes and
form a basis matrix at those values. These will be prede�ned and stored in memory
in the initialization phase. It is also necessary to de�ne initial coeÆcient values; we've
simply de�ned an identity mapping, f(x) = x, as our initial guess. This works well
for our example below; if this doesn't work for the function of your choice, you'll have
to come up with a better initial guess.

To illustrate, suppose you want to approximate the inverse of exp(y) over the
range x 2 [1; 2]. We must �nd a function f for which it is approximately true that
exp(f(x)) � x = 0 for x 2 [1; 2]. The following script computes an approximate
inverse via collocation:

fspace = fundefn('cheb',6,1,2); % define approximating family

x = funnode(fspace); % select collocation nodes

Phi = funbas(fspace,x); % define basis matrix

c = funfitxy(fspace,x,x); % initial conditions

c = broyden('fapp10',c,[],fspace,x,Phi); % call solver
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The script calls a function 'fapp10' that computes the functional equation residual
for any choice of coeÆcient vector c:

function resid=fapp10(c,fspace,x,Phi)

resid = exp(Phi*c)-x;

The script �le demapp10 demonstrates the method and generates a plot of the
residual function, shown in Figure 6.17, and a plot of the true approximation error,
shown in Figure 6.18. Even with only 6 nodes, it is clear that we have found a good
approximation to the inverse. Of course we know that the inverse is ln(x), which
allowed us to compute directly how well we have done.

It would be a simple matter to write a general procedure that automated this
process for �nding function inverses; we leave this as an exercise.

6.8.3 Boundary Value Problems

Initial value problems of the form

x0(t) = f(t; x(t))
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subject to x(0) = x0 were discussed in Section 5.7 (page 114). A more general form of
di�erential equations are the so-called boundary value problems (BVPs). In a BVP
one seeks a solution function x(t) : [a; b]! Rd that satis�es the residual function

r(t; x(t); x0(t)) = 0

subject to bi(t
b
i ; x(t

b
i); x

0(tbi)) = 0; for i = 1; : : : ; d. This generalizes the IVP in two
ways. First, the di�erential equation can be non-linear in x0(t). Second, the solution
function need not be known at any speci�c point. Instead, d side conditions of any
form must be speci�ed.

Boundary value problems arise most often in economics in deterministic optimal
control problems, the solutions to which can be expressed as a set of di�erential
equations de�ning the dynamic behavior of a set of ds state variables and dx control
or decision variables, along with initial values for the ds state variables and dx so-
called transversality conditions. We will consider such problems in more detail in
Chapter 10.

Although there are a number of strategies to solve BVPs, the function approxima-
tion tools developed in this chapter make a collocation strategy very straightforward.
The solution is approximated using x(t) � �(t)c, where � is a set of n basis functions
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and c is an n� d matrix of coeÆcients. The collocation strategy selects a set of n� 1
nodal values of t, ti, and �nds the value of c that solves the (n � 1)d values of the
residual function

r(ti; �(ti)c; �
0(ti)c) = 0;

i = 1; : : : ; n� 1 and the boundary conditions

bi(t
b
i ; �(t

b
i)c; �

0(tbi)c) = 0

for i = 1; : : : ; d. This provides a total of nd equations in nd unknowns.
A general routine for solving �rst order BVPs is quite simple to design. We will

illustrate the use of our solver with a simple example:

r(t; x(t); x0(t)) = x0(t)� x(t)A;
where

A =

� �1 �0:5
0 �0:5

�
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with \boundary conditions" x1(0) = 1 and x2(1) = 1. It should be noted that x is
de�ned to be a row vector (1� d). We shall seek an approximation on t 2 [0; 2]; this
illustrates the idea that the \boundary" conditions need not be at the boundaries of
the domain of interest (they must, however, not be outside of it). The example has
a closed form solution x1(t) = e�t and x2(t) = ce�t=2 + e�t, where c = e0:5(1� e�1).

There are two distinct pieces of information that the user must supply. First, the
model must be de�ned. The model consists of the location of the boundary points
together with the functions r(t; x(t); x0(t)) and b(tb; x(tb); x0(tb)). In addition, the
model may be de�ned in terms of a set of parameters used by these functions. To
specify a model, the user should de�ne a structure variable with �elds func, tb and
params. The �rst �eld contains the name of a function �le that will calculate r and
b (described below). The tb �eld is a d-vector of points at which b is evaluated. The
params �eld should be a cell array of any parameters that are needed to evaluate r
and/or b; in the example, the cell array will contain the single matrix A.

For the example problem, the structure variable is de�ned by

model.func='pbvp01';

model.tb=[0;1];

model.params={A};

The function referred to by the model.func �eld computes the residuals and the
boundary conditions and should be written using the following syntax:

out1=BVPfile(flag,t,x,dx,additional parameters)

switch flag

case 'r'

out1= residual function evaluated at t, x, dx

case 'b'

out1= boundary function evaluated at t, x ,dx

end

It uses the flag variable to determine whether the r or b function is being requested.
If the r function is requested, the function is passed an n�1�1 vector t and n�1�d
matrices x and dx. It should return an n � 1� d matrix with ijth element equal to
rj(ti; x(ti); x

0(ti)). If the b function is requested, the function is passed a d� 1 vector
tb and d � d matrices x and dx and should return a d � 1 vector with ith element
equal to bi(t

b
i ; x(t

b
i); x

0(tbi)) = 0. In our example problem the �le looks like

function out1=pbvp01(flag,t,x,dx,A);

switch flag

case 'r'

out1=dx-x*A;
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case 'b'

out1=[x(1,1)-1;x(2,2)-1];

end

The solver also needs to know the desired family of approximating functions,
fspace, (i.e., a family de�nition structure as de�ned by fundef) the nodal values of
t used for collocation, tnodes, and an initial guess of the parameter values, c.

The general solver routine looks like:

function [c,x,r]=bvpsolve(model,fspace,tnode,c,tvals)

% dimension of problem

d=size(c,2);

% nodal basis matrices

Phi=funbas(fspace,tnode);

Phi1=funbas(fspace,tnode,1);

% boundary point basis matrices

tb=model.tb;

phi=funbas(fspace,tb);

phi1=funbas(fspace,tb,1);

% Call rootfinding algorithm

c=broyden('bvpres',c(:),[],model,fspace,tnode,Phi,Phi1,tb,phi,phi1);

c=reshape(c,cdef.n,d);

% compute solution and residual functions

if nargout>1 & ~isempty(tvals)

x=funeval(c,cdef,tvals);

dx=funeval(c,cdef,tvals,1);

r=feval(model.func,'r',tvals,x,dx,model.params{:});

end

In addition to computing the coeÆcient matrix, c, the procedure is implemented
to, optionally, take a vector of time values tvals and to return the solution and
residual functions at those values (x and r).

The solver instructs the root�nding algorithm broyden to �nd the roots of the
function BVPRes, which in turn calls the model.func �le to compute the residual and
boundary functions.

function r=bvpres(c,model,fspace,tnode,Phi,Phi1,tb,phi,phi1);

n=size(Phi,2);
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m=length(tb);

c=reshape(c,n,m);

% Compute residuals at nodal values

x=Phi*c;

dx=Phi1*c;

r=feval(model.func,'r',tnode,x,dx,model.params{:});

% Compute boundary conditions and concatenate to residuals

x=phi*c;

dx=phi1*c;

b=feval(model.func,'b',tb,x,dx,model.params{:});

r=[r(:);b(:)];

The demonstration �le dembvp01 contains the code to solve the example problem
using Chebyshev polynomial approximants and plots both the approximation error
functions and the residual functions. The procedure solves in a single iteration of
the root�nding algorithm because it is a linear problem. An economic application of
these procedures is illustrated next with a simple market equilibrium example.

Example: Commodity Market Equilibrium
At time t = 0 there are available for consumption S0 units of a periodically produced
commodity. No more of the good will be produced until time t = 1, at which time
all of the currently available good must be consumed. The change in the level of
the stocks is the negative of the rate of consumption, which is given by the demand
function, here assumed to be of the constant elasticity type:

s0(t) = �q = �D(p) = �p��:
To prevent arbitrage and to induce storage, the price must rise at a rate that covers
the cost of capital, r and the physical storage charges, C:

p0(t) = rp+ C:

It is assumed that no stocks are carried into the next production cycle, which begins
at time t = 1; hence the boundary condition that s(1) = 0.

This is a two variable system of �rst order di�erential equations with two boundary
conditions, one at t = 0 and the other at t = 1. De�ning x = [p; s], the residual
function is

r(t; x; x0) = x0 � [rx1 + C � x��1 ]

and the boundary conditions are x2(0)� S0 = 0 and x2(1) = 0.
The model structure can be created using
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model.func='pbvp02';

model.tb=[0;1];

model.params={A};

The problem de�nition �le pbvp02 for this problem is

function out1=pbvp02(flag,t,x,dx,r,C,eta,S0);

switch flag

case 'r'

out1=dx-[r*x(:,1)+C -x(:,1).^(-eta)];

case 'b'

out1=x(:,2)-[S0;0];

end

A demonstration �le, dembvp02 is available that uses the parameters r = 0:10,
C = 0:5, � = 2 and S0 = 1. It approximates the solution using a degree n = 6
Chebyshev polynomial approximation. The resulting solution and residual functions
are shown in Figures 6.19 and 6.20. It is evident in the latter that the approximation
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achieves a high degree of accuracy even with a low order approximation; the maximum
sizes of the price and stocks residual functions are approximately 10�10 and 10�3,
respectively.
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Exercises

6.1. Construct the 5- and 50-degree approximants for the function f(x) = exp(�x2)
on the interval [�1; 1] using each of the interpolation schemes below. For each
scheme and degree of approximation, estimate the sup norm approximation
error by computing the maximum absolute deviation between the function and
approximant at 201 evenly spaced points. Also, graph the approximation error
for the degree 5 approximant.

(a) Uniform node, monomial basis polynomial approximant

(b) Chebychev node, Chebychev basis polynomial approximant

(c) Uniform node, linear spline approximant

(d) Uniform node, cubic spline approximant

6.2. In the Cournot model each �rm takes the output of the other �rms as given
when determining its output level. An alternative assumption is that each �rm
takes its competitiors' output decision functions as given when making its own
output choice. This can be expressed as the assumption that

dp

dqi
=

1

D0(p)

nX
j=1

dqj
dqi

=
1

D0(p)

 
1 +

X
j 6=i

dSj(p)

dp

dp

dqi

!
:

Solving this for dp=dqi yields

dp

dqi
=

1

D0(p)�Pj 6=i S
0
j(p)

:

In an industry with m identical �rms, each �rm assumes the other �rms will
react in the same way it does, so this expression simpli�es to

dp

dq
=

1

D0(p)� (m� 1)S 0(p)
:

This expression di�ers from the Cournot case in the extra term in the denomina-
tor (which only equals 0 in the monopoly situation of m = 1). Notice also that,
unlike the Cournot case, the �rm's \supply" function depends on the number
of �rms in the industry.

Write a function to solve this problem analogous to the one described in Sec-
tion 6.8.1 (page 159) and a demo �le to produce the analogous plots. The
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function must take the parameters (including m, the industry size) and it must
also compute the derivative of the q = S(p) function to compute the residual
function.

6.3. Consider the potato market model discussed in the Chapter 3 (page 60). Con-
struct a 5th degree Chebychev polynomial approximant for the function relating
the period 1 price to initial supply s over the interval s 2 [1; 3]. Interpolate the
polynomial at s = 1, s = 2, and s = 3 and compare to the interpolated values
to those obtained earlier.

6.4. Consider again the potato market model. Assume now that supply s is the
product of acreage a and yield y where yield can achieve one of two equiprobable
outcomes, a low yield 0:75 and a high yield 1:25, and that acreage is a function
of the price expected in the harvest period:

a = 0:5 + 0:5E[p1]:

The rational expectations equilibrium acreage level and expected price satisfy
the acreage supply function and

E[p1] = 0:5f(0:75a) + 0:5f(1:25a)

where f is the function approximated in the preceding problem. Compute the
rational expectations equilibrium of the model using the 10th degree Chebychev
polynomial approximation for f computed in the preceding problem.

6.5. Using collocation with the basis functions of your choice and without using
BVPSOLVE numerically solve the following di�erential equation for x 2 [0; 1]:

(1 + x2)v(x)� v00(x) = x2;

with v(0) = v(1) = 0. Plot the residual function to ensure that the maximum
value of the residual is less than 1e-8. What degree of approximation is needed
to achieve this level of accuracy.

6.6. Lifetime Consumption

A simple model of lifetime savings/consumption choice considers an agent with
a projected income ow by w(t), who must choose a consumption rate c(t) to
maximize discounted lifetime utility:

max
C(t)

Z T

0

e��tU(C(t))dt
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subject to an intertemporal wealth constraint dW=dt = rW + w(t)� C, where
r is the rate of return on investments (or the interest rate on borrowed funds, if
W < 0). The solution to this optimal control problem can be expressed as the
system of di�erential equations

C 0 = � U
0(C)

U 00(C)
(r � �)

and

W 0 = rW + w(t)� C:

It is assumed that the agent begins with no wealth (W (0) = 0) and leaves no
bequests (W (T ) = 0).

a) Use BVPSOLVE to solve this BVP using the CARA utility function U(C) =
(C1��� 1)=(1��) and the parameters values T = 45, r = 0:1, � = 0:6, � = 0:5
and w(t) = w0=(1+e

��t), with w0 = 1 and � = 0:15. Plot the solution function
and the residual functions.

b) In part (a) the agent works until time T and then dies. Suppose, instead,
that the agent retires at time T and lives an additional R = 20 retirement years
with no additional income (w(t) = 0 for T < t � T +R). Resolve the problem
with this assumption. What additional problem is encountered? How can the
problem be addressed?

6.7. The complementary Normal CDF is de�ned as

�c(x) =
1p
2�

Z 1

x

e�z
2=2dz:

De�ne

u(x) = ex
2=2�c(x):

(a) Express u as a di�erential equation with boundary condition u(1) = 0.

(b) Use the change of variable t = x=(K + x) (for some constant K) to de�ne
a di�erential equation for the function v(t) = u(x), for v 2 [0; 1].

(c) Write a Matlab function to solve this di�erential equation using collo-
cation with Chebyshev polynomials. Do this by writing the collocation
equations in the form Bc = f , where c is an n-vector of coeÆcients. Then
solve this linear system directly.
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(d) Plot the residual function for a range of values of K between 0.1 and 20.
Make a recommendation about the best choice of K.

6.8. Write a Matlab function that automates the approximation of function in-
verses. The function should have the following syntax:

function c=finverse(f,fspace,varargin)

You will also need to write an auxiliary function to compute the appropriate
residuals used by the root�nding algorithm.
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Bibliographic Notes

Most introductory texts on numerical analysis contain some discussion of interpola-
tion via Chebyshev polynomials and splines; see, for example, Press et al., or, for a
discussion focused on solving di�erential equations, see Golub and Ortega (Chapter
6).

Collocation is one of a more general class of approximation methods known as
weighted residual methods. The general idea of weighted residual methods is to �nd
an approximate that minimizes the residual function for some functional norm. In
addition to collocation, two common approaches of this general class are least squares
methods, which (for the simple functional equation problem, solve:

min
c

Z b

a

r2(x; �(x)c)dx

and Galerkin methods (also called Bubnov-Galerkin methods), which solveZ b

a

r(x; �(x)c)�i(x)dx = 0; for i = 1; : : : ; n:

When the integrals in these expressions can be solved explicitly, they seem to be some-
what more eÆcient than collocation, especially the Galerkin approach. Unless r has a
convenient structure, however, these methods will necessitate the use of some kind of
discretization to compute the necessary integrals, reducing any potential advantages
these methods may have relative to collocation.



Chapter 7

Discrete Time Discrete State

Dynamic Models

With this chapter, we begin our study of dynamic economic models. Dynamic eco-
nomic models often present three complications rarely encountered together in dy-
namic physical science models. First, humans are cogent, future-regarding beings
capable of assessing how their actions will a�ect them in the future as well as in the
present. Thus, most useful dynamic economic models are future-looking. Second,
many aspects of human behavior are unpredictable. Thus, most useful dynamic eco-
nomic models are inherently stochastic. Third, the predictable component of human
behavior is often complex. Thus, most useful dynamic economic models are inherently
nonlinear.

The complications inherent in forward-looking, stochastic, nonlinear models make
it impossible to obtain explicit analytic solutions to all but a small number of dynamic
economic models. However, the proliferation of a�ordable personal computers, the
phenomenal increase of computational speed, and developments of theoretical insights
into the eÆcient use of computers over the last two decades now make it possible
for economists to analyze dynamic models much more thoroughly using numerical
methods.

The next three chapters are devoted to the numerical analysis of dynamic economic
models in discrete time and are followed by three chapters on dynamic economic
models in continuous time. In this chapter we study the simplest of these models:
the discrete time, discrete state Markov decision model. Though the model is simple,
the methods used to analyze the model lay the foundations for the methods developed
in subsequent chapters to analyze more complicated models with continuous states
and time.

177
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7.1 Discrete Dynamic Programming

The discrete time, discrete state Markov decision model has the following structure:
in every period t, an agent observes the state of an economic process st, takes an
action xt, and earns a reward f(xt; st) that depends on both the state of the process
and the action taken. The state space S, which enumerates all the states attainable
by the process, and the action space X, which enumerates all actions that may be
taken by the agent, are both �nite. The state of the economic process follows a
controlled Markov probability law. That is, the distribution of next period's state,
conditional on all currently available information, depends only on the current state
of the process and the agent's action:

Pr(st+1 = s0jxt = x; st = s; other information at t ) = P (s0jx; s):
The agent seeks a policy fx�tgTt=1 that prescribes the action xt = x�t (st) that should
be taken in each state at each point in time so as to maximize the present value
of current and expected future rewards over time, discounted at a per-period factor
Æ 2 (0; 1]:

max
fx�t gTt=0

E

"
TX
t=0

Ætf(xt; st)

#
:

A discrete Markov decision model may have an in�nite horizon (T = 1) or a
�nite horizon (T < 1). The model may also be either deterministic or stochastic.
It is deterministic if next period's state is known with certainty once the current
period's state and action are known. In this case, it is bene�cial to dispense with the
probability transition law as a description of how the state evolves and use instead a
deterministic state transition function g, which explicitly gives the state transitions:

st+1 = g(xt; st):

Discrete Markov decision models may be analyzed and understood using the dy-
namic programming principles developed by Richard Bellman (1956). Dynamic pro-
gramming is an analytic approach in which a multiperiod model is e�ectively decom-
posed into a sequence two period models. Dynamic programming is based on the
Principle of Optimality, which was articulated by Bellman as follows:

\An optimal policy has the property that, whatever the initial state and
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the �rst decision."
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The Principle of Optimality can be formally expressed in terms of the value func-
tions Vt. For each period t and state s, Vt(s) speci�es the maximum attainable sum
of current and expected future rewards, given that the process is in state s and the
current period is t. Bellman's Principle implies that the value functions must satisfy
Bellman's recursion equation

Vt(s) = max
x2X(s)

ff(x; s) + Æ
X
s02S

P (s0jx; s)Vt+1(s
0)g s 2 S:

Bellman's equation captures the essential problem faced by a dynamic, future-
regarding optimizing agent: the need to balance the immediate reward f(xt; st) with
expected present value of future rewards ÆEtVt+1(st+1). Given the value functions, the
optimal policies x�t (s) are simply the solutions to the optimization problems embedded
in Bellman's equation.

In a �nite horizon model, we adopt the convention that the optimizing agent faces
decisions up to and including a �nal decision period T < 1. The agent faces no
decisions after the terminal period T , but may earn a �nal reward VT+1(sT+1) in the
subsequent period that depends on the realization of the state in that period. The
terminal value is typically �xed by some economically relevant terminal condition.
In many applications, VT+1 is identically zero, indicating that no rewards are earned
by the agent beyond the terminal decision period. In other applications, VT+1 may
specify a salvage value earned by the agent after making his �nal decision in period
T .

For the �nite horizon discrete Markov decision model to be well posed, the terminal
value VT+1 must be speci�ed by the analyst. Given the terminal value function,
the �nite horizon decision model in principle may be solved recursively by repeated
application of Bellman's equation: having VT+1, solve for VT (s) for all states s; having
VT , solve for VT�1(s) for all states s; having VT�1, solve for VT�2(s) for all states s;
and so on. The process continues until V0(s) is derived for all states s. Because only
�nitely many actions are possible, the optimization problem embedded in Bellman's
equation can always be solved by performing �nitely many arithmetic operations.
Thus, the value functions of a �nite horizon discrete Markov decision model are
always well-de�ned, although in some cases more than one policy of state-contingent
actions may yield the maximum expected stream of rewards, that is, the optimal
action may not be unique.

If the decision problem has an in�nite horizon, the value functions will not depend
on time t. We may, therefore, disregard the time subscripts and denote the common
value function by V . Bellman's equation therefore becomes the vector �xed-point
equation

V (s) = max
x2X(s)

"
f(x; s) + Æ

X
s02S

P (s0jx; s)V (s0)
#
; s 2 S:
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If the discount factor Æ is less than one, the mapping underlying Bellman's equation
is a strong contraction. The Contraction Mapping Theorem thus guarantees the
existence and uniqueness of the in�nite horizon value function.1

7.2 Economic Examples

Speci�cation of a discrete Markov decision model requires several pieces of infor-
mation: the state space, the action space, the reward function, the state transition
function or state transition probabilities, the discount factor Æ, the time horizon T ,
and, if the model has �nite horizon, the terminal value VT+1. This section provides
seven economic examples that illustrate how the necessary information is speci�ed
and how the Bellman equation is formulated.

7.2.1 Mine Management

A mine operator must determine the optimal ore extraction schedule for a mine that
will be shut down and abandoned after T years of operation. The price of extracted
ore is p dollars per ton and the total cost of extracting x tons of ore in any year is
c = x2=(1+s) dollars, where s is the tons of ore remaining in the mine at the beginning
of the year. The mine currently contains �s tons of ore. Assuming the amount of ore
extracted in any year must be an integer number of tons, what extraction schedule
maximizes pro�ts?

This is a �nite horizon, deterministic model with time t = f1; 2; : : : ; Tg measured
in years. The state variable

s 2 S = f0; 1; 2; : : : ; �sg
denotes tons of ore remaining in the mine at the beginning of the year. The action
variable

x 2 X(s) = f0; 1; 2; : : : ; sg
denotes tons of ore extracted over the year. The state transition function is

s0 = g(s; x) = s� x:
The reward function is

f(s; x) = px� x2=(1 + s):

1Value functions in in�nite horizon problems could be time dependent if f , P , or Æ displayed time
dependence. However, this creates diÆculties in developing solution methods, and we have chosen
not to explicitly consider this possibility. Fortunately, most in�nite horizon economic model do not
display such time dependence.



CHAPTER 7. DISCRETE STATE MODELS 181

The value of the mine, given it contains s tons of ore at the beginning of year t,
satis�es Bellman's equation

Vt(s) = max
x2f0;1;2;:::;sg

fpx� x2=(1 + s) + ÆVt+1(s� x)g; s 2 S

subject to the terminal condition

VT+1(s) = 0; s 2 S:

7.2.2 Asset Replacement - I

At the beginning of each year, a manufacturer must decide whether to continue op-
erating with an aging physical asset or replace it with a new one. An asset that is a
years old yields a pro�t contribution p(a) up to n years, after which the asset becomes
unsafe and must be replaced by law. The cost of a new asset is c. What replacement
policy maximizes pro�ts?

This is an in�nite horizon, deterministic model with time t = f1; 2; : : : ; Tg mea-
sured in years. The state variable

a 2 A = f1; 2; : : : ; ng
denotes the age of the asset in years. The action variable

x 2 X(a) =

� fkeep; replaceg a < n
freplaceg a = n

denotes the keep-replacement decision. The state transition function is

a0 = g(a; x) =

�
a+ 1 x = keep
1 x = replace.

The reward function is

f(a; x) =

�
p(a) x = keep
p(0)� c x = replace.

The value of an asset of age a satis�es Bellman's equation

V (a) = maxfp(a) + ÆV (a+ 1); p(0)� c+ ÆV (1)g:
Bellman's equation asserts that if the manufacturer keeps an asset of age a, he earns
p(a) over the coming year and begins the subsequent year with an asset worth V (a+1);
if he replaces the asset, on the other hand, he earns p(0) � c over the coming year
and begins the subsequent year with an asset worth V (1). Actually, our language
is a little loose here. The value V (a) measures not only the current and future net
earnings of an asset of age a, but also the net earnings of all future assets that replace
it.
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7.2.3 Asset Replacement - II

Consider the preceding example, but suppose that the productivity of the asset may
be enhanced by performing annual service maintenance. Speci�cally, at the beginning
of each year, a manufacturer must decide whether to replace the asset with a new one
or, if he elects to keep the old one, whether to service it. An asset that is a years old
and has been serviced s times yields a pro�t contribution p(a; s) up to and age of n
years, after which the asset becomes unsafe and must be replaced by law. The cost
of a new asset is c and the cost of servicing an existing asset is k. What replacement
policy maximizes pro�ts?

This is an in�nite horizon, deterministic model with time t = f1; 2; : : : ; Tg mea-
sured in years. The state variables

a 2 A = f1; 2; : : : ; ng
s 2 S = f0; 1; : : : ; ng

denote the age of the asset in years and the number of servicings it has undergone,
respectively. The action variable

x 2 X(a; s) =

� freplace, service, no actiong a < n
freplaceg a = n:

;

The state transition function is

(a0; s0) = g(a; s; x) =

8<
:

(1; 0) x = replace
(a+ 1; s+ 1) x = service
(a+ 1; s) x = no action:

The reward function is

f(a; s; x) =

8<
:

p(0; 0)� c x = replace
p(a; s+ 1)� k x = service
p(a; s) x = no action:

The value of asset of age a that has undergone s servicings must satisfy Bellman's
equation

V (a; s) = maxf p(0; 0)� c+ ÆV (1; 0);
p(a; s+ 1)� k + ÆV (a+ 1; s+ 1);
p(a; s) + ÆV (a+ 1; s)g:

Bellman's equation asserts that if the manufacturer keeps an asset of age a, he earns
p(a) over the coming year and begins the subsequent year with an asset worth V (a+1);
if he replaces the asset, on the other hand, he earns p(0) � c over the coming year
and begins the subsequent year with an asset worth V (1). Actually, our language is
a little loose here. The value V (a) measures not only the current and future earnings
of an asset of age a, but also the optimal earnings of all future assets that replace it.
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7.2.4 Option Pricing

An American put option gives the holder the right, but not the obligation, to sell a
speci�ed quantity of a commodity at a speci�ed strike price on or before a speci�ed
expiration date. In the Cox-Ross-Rubinstein binomial option pricing model, the price
of the commodity is assumed to follow a two-state discrete jump process. Speci�cally,
if the price of the commodity is p in period t, then its price in period t+1 will be pu
with probability q and p=u with probability 1� q where:

u = exp(�
p
�t) > 1

q = 1
2
+

p
�t

2�

�
r � 1

2
�2
�

Æ = exp(�r�t):
Here, r is the annualized interest rate, continuously compounded, � is the annualized
volatility of the commodity price, and �t is the length of a period in years. Assuming
the current price of the commodity is p0, what is the value of an American put option
if it has a strike price �p and if it expires T years from today?

This is a �nite horizon, stochastic model where time t 2 f0; 1; 2; : : : ; Ng is mea-
sured in periods of length �t = T=N years each. The state is2

p = commodity price

p 2 S = fp1uiji = �N � 1;�N; : : : ; N;N + 1g:
The action is

x = decision to keep or exercise

x 2 X = fkeep; exerciseg;
the state transition probability rule is

P (p0jx; p) =
8<
:

q p0 = pu
1� q p0 = p=u
0 otherwise

the reward function is

f(p; x) =

�
0 x = keep
�p� p x = exercise

2In this example, we alter our notation to conform with standard treatments of option valuation.
Thus, the state is the price, denoted by p, the number of time periods until expiration is N , and T
reserved for the time to expiration (in years).
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The value function

Vt(p) = option value at t, if commodity price is p,

must satisfy Bellman's equation

Vt(p) = maxf �p� p; qÆVt+1(pu) + (1� q)ÆVt+1(p=u) g
subject to the post-terminal condition

VN+1(p) = 0

Note that if the option is exercised, the owner receives �p�p. If he does not exercise the
option, however, he earns no immediate reward but will have an option in hand the
following period worth Vt+1(pu) with probability q and Vt+1(p=u) with probability
1 � q. In option expires in the terminal period, making it valueless the following
period; as such, the post-terminal salvage value is zero.

7.2.5 Job Search

At the beginning of each week, an in�nitely-lived worker �nds himself either employed
or unemployed and must decide whether to be active in the labor market over the
coming week by working, if he is employed, or by searching for a job, if he is unem-
ployed. An active employed worker earns a wage w. An active unemployed worker
earns an unemployment bene�t u. An inactive worker earns a psychic bene�t v from
additional leisure, but no income. An unemployed worker that looks for a job will
�nd one with probability p by the end of the week. An employed worker that remains
at his job will be �red with probability q at the end of the week. What is the worker's
optimal labor policy?

This is a in�nite horizon, stochastic model with time t = f1; 2; : : : ;1g measured
in weeks. The state is

s = employment state

s 2 S = funemployed(0); employed(1)g
and the action is

x = labor force participation decision

x 2 X = finactive(0); active(1)g:
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The state transition probability rule is

P (s0js; x) =

8>>>>>><
>>>>>>:

1 x = 0; s0 = 0 (inactive worker)
1� p x = 1; s = 0; s0 = 0 (searches, �nds no job)
p x = 1; s = 0; s0 = 1 (searches, �nds job)
q x = 1; s = 1; s0 = 0 (works, loses job)
1� q x = 1; s = 1; s0 = 1 (works, keeps job)
0 otherwise;

and the reward function is

f(s; x) =

8<
:

v x = 0 (inactive, receives leisure)
u x = 1; s = 0 (searching, receives bene�t)
w x = 1; s = 1 (working, receives wage)

The value function

V (s) = Value of being in employment state s at beginning of week;

must satisfy Bellman's equation

V (s) =

�
maxfv + ÆV (0); u+ ÆpV (1) + Æ(1� p)V (0)g; s = 0
maxfv + ÆV (0); w + ÆqV (0) + Æ(1� q)V (1)g; s = 1

7.2.6 Optimal Irrigation

Water from a dam can be used for either irrigation or recreation. Irrigation during
the spring bene�ts farmers, but reduces the dam's water level during the summer,
damaging recreational users. Speci�cally, farmer and recreational user bene�ts in
year t are, respectively, F (xt) and G(yt), where xt are the units of water used for
irrigation and yt are the units of water remaining for recreation. Water levels are
replenished by random rainfall during the winter. With probability p, it rains one
unit; with probability 1�p is does not rain at all. The dam has a capacity ofM units
of water and excess rainfall ows out of the dam without bene�t to either farmer or
recreational user. Derive the irrigation ow policy that maximizes the sum of farmer
and recreational user bene�ts over an in�nite time horizon.

This is a in�nite horizon, stochastic model with time t = f1; 2; : : : ;1g measured
in years. The state is

s = units of water in dam at beginning of year

s 2 S = f0; 1; 2; : : : ;Mg
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and

x = units of water released for irrigation during year

x 2 X(s) = f0; 1; 2; : : : ; sg:
The state transition probability rule is

P (s0js; x) =
8<
:

p s0 = min(s� x+ 1;M) (rain)
1� p s0 = s� x; (no rain)
0 otherwise

and the reward function is

f(s; x) = F (x) +G(s� x):
The value function

V (s) = Value of s units of water in dam at beginning of year t:

must satisfy Bellman's equation:

V (s) = max
x=0;1;:::;s

ff(s; x) + ÆpV (min(s� x + 1;M)) + Æ(1� p)V (s� x)g:

7.2.7 Optimal Growth

Consider an economy comprising a single composite good. Each year t begins with
a predetermined amount of the good st, of which an amount xt is invested and the
remainder is consumed. The social welfare derived from consumption in year t is
u(st � xt). The amount of good available in year t + 1 is st+1 = xt + �t+1f(xt)
where  is the capital survival rate (1 minus the depreciation rate), f is the aggregate
production function, and �t+1 is a positive production shock with mean 1. What
consumption-investment policy maximizes the sum of current and expected future
welfare over an in�nite horizon?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g measured
in years. The model has a single state variable

st = stock of good at beginning of year t

st 2 [0;1)

and a single action variable

xt = amount of good invested in year t
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subject to the constraint

0 � xt � st:

The reward earned by the optimizing agent is

u(st � xt) = social utility in t:

State transitions are governed by

st+1 = xt + �t+1f(xt)

where

�t = productivity shock in year t:

The value function, which gives the sum of current and expected future social
welfare, satis�es Bellman's equation

V (s) = max
0�x�s

fu(s� x) + ÆEV (x+ �f(x))g; s > 0:

7.2.8 Renewable Resource Problem

A social planner wishes to maximize the discounted sum of net social surplus from
harvesting a renewable resource over an in�nite horizon. For year t, let st denote the
resource stock at the beginning of the year, let xt denote the amount of the resource
harvested, let ct = c(xt) denote the total cost of harvesting, and let pt = p(xt) denote
the market clearing price. Growth in the stock level is given by st+1 = g(st � xt).
What is the socially optimal harvest policy?

This is an in�nite horizon, deterministic model with time t 2 f0; 1; 2; : : :g mea-
sured in years. There is one state variable,

st = stock of resource at beginning of year t

st 2 [0;1);

and one action variable,

xt = amount of resource harvested in year t,

subject to the constraint

0 � xt � st:

The net social surplus isZ xt

0

p(�) d� � c(xt):
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State transitions are governed by

st+1 = g(st � xt):
The value function, which gives the net social value of resource stock, satis�es

Bellman's equation

V (s) = max
0�x�s

f
Z x

0

p(�) d� � c(x) + ÆV (g(s� x))g:

7.2.9 Bioeconomic Model

In order to survive, an animal must forage for food in one of m distinct areas. In area
x, the animal survives predation with probability px, �nds food with probability qx,
and, if it �nds food, gains ex energy units. The animal expends one energy unit every
period and has a maximum energy carrying capacity �s. If the animal's energy stock
drops to zero, it dies. What foraging pattern maximizes the animal's probability of
surviving T years to reproduce at the beginning of period T + 1?

This is a �nite horizon, stochastic model with time t = f1; 2; : : : ; Tg measured in
foraging periods. The state is

s = stock of energy

s 2 S = f0; 1; 2; : : : ; �sg;
the action is

x = foraging area

x 2 X = f1; 2; : : : ; mg:
The state transition probability rule is, for s = 0,

P (s0js; x) =
�

1 s0 = 0 (death is permanent)
0 otherwise;

and, for s > 0,

P (s0js; x) =

8>><
>>:

pxqx s0 = min(�s; s� 1 + ex) (survive, �nds food)
px(1� qx) s0 = s� 1 (survive, no food)
(1� px) s0 = 0 (does not survive)
0 otherwise.

The reward function is

f(s; x) = 0:
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Here, s = 0 is an absorbing state that, once entered, is never exited. More to the
point, an animal whose energy stocks fall to zero dies, and remains dead. The reward
function for periods 1 through T is zero, because there is only one payo�, surviving
to procreate, and this payo� is earned in period T + 1.

The value function

Vt(s) = probability of procreating, given energy stocks s in period t

must satisfy Bellman's equation

Vt(s) = max
x2X
fpxqxVt+1(min(�s; s� 1 + e)) + px(1� qx)Vt+1(s� 1)g;

for t 2 1; : : : ; T , with Vt(0) = 0, subject to the terminal condition

VT+1(s) =

�
0 s = 0
1 s > 0

7.3 Solution Algorithms

Below, we develop numerical solution algorithms for stochastic discrete time, discrete
space Markov decision models. The algorithms apply to deterministic models as well,
provided one views a deterministic model as a degenerate special case of the stochastic
model for which the transition probabilities are all zeros or ones.

To develop solution algorithms, we must introduce some vector notation and op-
erations. Assume that the states S = f1; 2; : : : ; ng and actions X = f1; 2; : : : ; mg are
indexed by the �rst n and m integers, respectively. Let v 2 <n denote an arbitrary
value vector:

vi 2 < = value in state i;

and let x 2 Xn denote an arbitrary policy vector:

xi 2 X = action in state i:

Also, for each policy x 2 Xn, let f(x) 2 <n denote the n-vector of rewards earned in
each state when one follows the prescribed policy:

fi(x) = reward in state i, given action xi taken;

and let P (x) 2 <n�n denote the n-by-n state transition probabilities when one follows
the prescribed policy:

Pij(x) = probability of jump from state i to j, given action xi is taken:
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Given this notation, it is possible to express Bellman's equation for the �nite
horizon model succinctly as a recursive vector equation. Speci�cally, if vt 2 <n
denotes the value function in period t, then

vt = max
x
ff(x) + ÆP (x)vt+1g;

were the maximization is the vector operation induced by maximizing each row indi-
vidually. Given the recursive nature of the �nite horizon Bellman equation, one may
compute the optimal value and policy functions vt and xt using backward recursion:

Algorithm: Backward Recursion

0. Initialization: Specify the rewards f , transition probabilities P , discount factor
Æ, terminal period T , and post-terminal value function vT+1; set t T .

1. Recursion Step: Given vt+1, compute vt and xt:

vt  max
x
ff(x) + ÆP (x)vt+1g

xt  argmax
x
ff(x) + ÆP (x)vt+1g:

2. Termination Check: If t = 1, stop; otherwise set t t� 1 and return to step 1.

Each recursive step involves a �nite number of matrix-vector operations, implying
that the �nite horizon value functions are well-de�ned for every period. Note however,
that it may be possible to have more than one sequence of optimal policies if ties occur
in Bellman's equation. Since the algorithm requires exactly T iterations, it terminates
in �nite time with the value functions precisely computed and at least one optimal
policy obtained.

Consider now the in�nite horizon Markov decision model. Given the notation
above, it is also possible to express the in�nite horizon Bellman equation as a vector
�xed-point equation

v = max
x
ff(x) + ÆP (x)vg:

This vector equation may be solved using standard function iteration methods:
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Algorithm: Function Iteration

0. Initialization: Specify the rewards f , transition probabilities P , discount factor
Æ, convergence tolerance � , and initial guess for the value function v.

1. Function Iteration: Update the value function v:

v  max
x
ff(x) + ÆP (x)vg:

2. Termination Check: If jj�vjj < � , set

x argmax
x
ff(x) + ÆP (x)vg

and stop; otherwise return to step 1.

Function iteration does not guarantee an exact solution in �nitely many iterations.
However, if the discount factor Æ is less than one, the �xed-point map be shown to be a
strong contraction. Thus, the in�nite horizon value function exists and is unique, and
may be computed to an arbitrary accuracy. Moreover, an explicit upper bound may
be placed on the error associated with the �nal value function iterate. Speci�cally, if
the algorithm terminates at iteration n, then

jjvn � v�jj1 � Æ

1� Æ jjvn � vn�1jj1
where v� is the true value function.

The Bellman vector �xed-point equation for an in�nite horizon model may alter-
natively be recast at a root�nding problem

v �max
x
ff(x) + ÆP (x)vg = 0

and solved using Newton's method. By the Envelope Theorem, the derivative of the
left-hand-side with respect to v is I � ÆP (x) where x is optimal for the embedded
maximization problem. As such, the Newton iteration rule is

v  v � (I � ÆP (x))�1(v � f(x)� ÆP (x)v)
where P and f are evaluated at the optimal x. After algebraic simpli�cation the
update rule may be written

v  (I � ÆP (x))�1f(x):
Newton's method applied to Bellman's equation traditionally has been referred to as
`policy iteration':
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Algorithm: Policy Iteration

0. Initialization: Specify the rewards f , transition probabilities P , discount factor
Æ, and an initial guess for v.

1. Policy Iteration: Given the current value approximant v, update the policy x:

x argmax
x
ff(x) + ÆP (x)vg

and then update the value by setting

v  (I � ÆP (x))�1f(x):
2. Termination Check: If �v = 0, stop; otherwise return to step 1.

At each iteration, policy iteration either �nds the optimal policy or o�ers a strict
improvement in the value function. Because the total number of states and actions is
�nite, the total number of admissible policies is also �nite, guaranteeing that policy
iteration will terminate after �nitely many iterations with an exact optimal solution.
Policy iteration, however, requires the solution of a linear equation system. If P (x)
is large and dense, the linear equation could be expensive to solve, making policy
iteration slow and possibly impracticable. In these instances, the function iteration
algorithm may be the better choice.

The backward recursion, function iteration, and policy iteration algorithms are
structured as a series of three nested loops. The outer loop represents either a back-
ward recursion, function iteration, or policy iteration; the middle loop represents visits
to each state; and the inner loop represents visits to each action. The computational
e�ort needed to solve a discrete Markov decision model is roughly proportional to the
product of the number of times each loop must be executed. More precisely, if ns is
the number of states and nx is the number of actions, then ns � nx total actions need
to be evaluated with each outer iteration.

The computational e�ort needed to solve a discrete Markov decision model is
particularly sensitive to the dimensionality of the state and action variables. Suppose,
for the sake of argument, that the state variable is k-dimensional and each dimension
of the state variable has l di�erent levels. Then the number of states will equal ns = lk.
This implies that the computational e�ort required to solve the discrete Markov
decision model will grow exponentially, not linearly, with the dimensionality of the
state space. The same will be true regarding the dimensionality of the action space.
The tendency for the solution time to grow exponentially with the dimensionality
of the state or action space is called the \Curse of Dimensionality". Historically,
the curse has represented the most severe practical problem encountered in solving
discrete Markov decision models.
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7.4 Dynamic Simulation Analysis

The optimal value and policy functions provide some insight into the nature of the
controlled dynamic economic process. The optimal value function describes the ben-
e�ts of being in a given state and the optimal policy function prescribes the optimal
action to be taken there. However, the optimal value and policy functions provide
only a partial, essentially static, picture of the controlled dynamic process. Typically,
one wishes to analyze the controlled process further to learn about its dynamic be-
havior. Furthermore, one often wishes to know how the process is a�ected by changes
in model parameters.

To analyze the dynamics of the controlled process, one will typically perform
dynamic path and steady-state analysis. Dynamic path analysis examines how the
controlled dynamic process evolves over time starting from some initial state. Specif-
ically, dynamic path analysis describes the path or expected path followed by the
state or some other endogenous variable and how the path or expected path will vary
with changes in model parameters.

Steady-state analysis examines the longrun tendencies of the controlled process
over an in�nite horizon, without regard to the path followed over time. Steady-state
analysis of a deterministic model seeks to �nd the values to which the state or other
endogenous variables will converge over time, and how the limiting values will vary
with changes in the model parameters. Steady-state analysis of a stochastic model
requires derivation of the steady-state distribution of the state or other endogenous
variable. In many cases, one is satis�ed to �nd the steady-state means and variances
of these variables and their sensitivity to changes in exogenous model parameters.

The path followed by a controlled, �nite horizon, deterministic, discrete, Markov
decision process is easily computed. Given the state transition function g and the
optimal policy functions x�t , the path taken by the state from an initial point s1 can
be computed as follows:

s2 = g(s1; x
�
1(s1))

s3 = g(s2; x
�
2(s2))

s4 = g(s3; x
�
3(s3))

...
sT+1 = g(sT ; x

�
T (sT )):

Given the path of the controlled state, it is straightforward to derive the path of
actions through the relationship xt = x�t (st). Similarly, given the path taken by the
controlled state and action allows one to derive the path taken by any function of the
state and action.

A controlled, in�nite horizon, deterministic, discrete Markov decision process can
be analyzed similarly. Given the state transition function g and optimal policy func-
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tion x�, the path taken by the controlled state from an initial point s1 can be computed
from the iteration rule:

st+1 = g(st; x
�(st)):

The steady-state of the controlled process can be computed by continuing to form
iterates until they converge. The path and steady-state values of other endogenous
variables, including the action variable, can then be computed from the path and
steady-state of the controlled state.

Analysis of controlled, stochastic, discrete Markov decision processes is a bit more
complicated because such processes follow a random, not a deterministic, path. Con-
sider a �nite horizon process whose optimal policy x�t has been derived for each period
t. Under the optimal policy, the controlled state will be a �nite horizon Markov chain
with nonstationary transition probability matrices P �

t , whose row i, column j element
is the probability of jumping from state i in period t to state j in period t+ 1, given
that the optimal policy x�t (i) is followed in period t:

P �
tij = Pr(st+1 = jjxt = x�t (i); st = i)

The controlled state of an in�nite horizon, stochastic, discrete Markov decision
model with optimal policy x� will be an in�nite horizon stationary Markov chain with
transition probability matrix P � whose row i, column j element is the probability of
jumping from state i in one period t to state j in the following period, given that the
optimal policy x�(i) is followed:

P �
ij = Pr(st+1 = jjxt = x�(i); st = i)

Given the transition probability matrix P � for the controlled state it is possible to
simulate a representative state path, or, for that matter, many representative state
paths, by performing Monte Carlo simulation. To perform Monte Carlo simulation,
one picks an initial state, say s1. Having the simulated state st = i, one may simulate
a jump to st+1 by randomly picking a new state j with probability P �

ij.
The path taken by the controlled state of an in�nite horizon, stochastic, discrete

Markov model may also be described probabilistically. To this end, let Qt denote the
matrix whose row i, column j entry gives the probability that the process will be in
state j in period t, given that it is in state i in period 0. Then the t-period transition
probability matrices Qt are simply the matrix powers of P :

Qt = P t

where Q0 = I. Given the t-period transition probability matrices Qt, one can fully
describe, in a probabilistic sense, the path taken by the controlled process from any
initial state s0 = i by looking at the ith rows of the matrices Qt.
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In most economic applications, the multiperiod transition matrices Qt will con-
verge to a matrix Q as t goes to in�nity. In such cases, each entry of Q will indicate
the relative frequency with which the controlled decision process will visit a given
state in the longrun, when starting from given initial state. In the event that all the
columns of Q are identical and the longrun probability of visiting a given state is
independent of initial state, then we say that the controlled state process possesses
a steady-state distribution. The steady state distribution is given by the probability
vector � that is the common row of the matrix Q. Given the steady-state distribution
of the controlled state process, it becomes possible to compute summary measures
about the longrun behavior of the controlled process, such as its longrun mean or
variance. Also, it is possible to derive the longrun probability distribution of the
optimal action variable or the longrun distribution of any other variables that are
functions of the state and action.

7.5 A Discrete Dynamic Programming Toolbox

In order to simplify the process of solving discrete Markov decision models, we have
provided a single, unifying routine ddpsolve that solves such models using the dy-
namic programming algorithm selected by the user. The routine is executed by issuing
the following command:

[v,x,pstar] = ddpsolve(model,alg,v)

Here, on input, model is a structured variable that contains all relevant model in-
formation, including the time horizon, the discount factor, the reward matrix, the
probability transition matrix, and the terminal value function (if needed); alg is a
string that speci�es the algorithm to be used, either 'newt' for policy iteration, 'func'
for function iteration, or 'back' for backward recursion; and v is the post-terminal
value function, if the model has �nite horizon, or an initial guess for the value func-
tion, if the model has in�nite horizon. On output, v is the optimal value function, x
is the optimal policy, and pstar is the optimal probability transition matrix.

The structured variable model contains �ve �elds, horizon, discount, reward,
transition, and vterm which are speci�ed as follows:

� horizon - The time horizon, a positive integer or 'inf'.

� discount - The discount factor, a positive scalar less than one.

� reward - An n by mmatrix of rewards whose rows and columns are associated
with states and actions, respectively.
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� transition - An mn by n matrix of state transition probabilities whose rows
are associated with this period's state and whose columns are associated with
next period's state. The state transition probability matrices for the various
actions are stacked vertically on top of each other, with the n by n transition
probability matrix associated with action 1 at the top and the n by n transition
probability matrix associated with action m at the bottom.

� vterm - An n by 1 vector of terminal values, if model has a �nite horizon, or
initial guess for value function, if model has an in�nite horizon. It has a default
value of zero if not speci�ed.

The routine ddpsolve implements all three standard solution algorithms relying
on two elementary routines. One routine takes the current value function v, the
reward matrix f, the probability transition matrix P, and the discount factor delta
and solves the optimization problem embedded in Bellman's equation, yielding an
updated value function v and optimal policy x:

function [v,x] = valmax(v,f,P,delta)

[m,n]=size(f);

[v,x]=max(f+delta*reshape(P*v,m,n),[],2);

The second routine takes a policy x, the reward matrix f, the probability transition
matrix P, and the discount factor delta and returns the state reward function fstar

and state probability transition matrix Pstar induced by the policy:

function [pstar,fstar] = valpol(x,f,P,delta)

[n,m]=size(f); i=(1:n)';

pstar = P(n*(x(i)-1)+i,:);

fstar = f(n*(x(i)-1)+i);

Given the valmax and valpol routines, it is straightforward to implement the
backward recursion, function iteration, and policy iteration algorithms used to solve
discrete Markov decision models. The Matlabscript that performs backward recur-
sion for a �nite horizon model is

[n,m]=size(f);

x = zeros(n,T);

v = [zeros(n,T) vterm];

for t=T:-1:1

[v(:,t),x(:,t)] = valmax(v(:,t+1),f,P,delta);

end

The Matlabscript that performs function iteration for the in�nite horizon model
is
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for it=1:maxit

vold = v;

[v,x] = valmax(v,f,P,delta);

if norm(v-vold)<tol, return, end;

end

The Matlabscript that performs policy iteration for the in�nite horizon model
is

for it=1:maxit

vold = v;

[v,x] = valmax(v,f,P,delta);

[pstar,fstar] = valpol(x,f,P,delta);

v = (eye(n,n)-delta*pstar)\fstar;

if norm(v-vold)<tol, return, end;

end

The toolbox accompanying the textbook also provides two utilities for performing
dynamic analysis. The �rst routine, ddpsimul is employed as follows:

st = ddpsimul(pstar,s1,nyrs,x)

On input, pstar is the optimal probability transition matrix induced by the optimal
policy, which is generated by the routine ddpsolve; x is the optimal policy, which is
also generated by the routine ddpsolve; s1 is a k by 1 vector of initial states, each
entry of which initiates a distinct replication of the optimized state process; and nyrs

is the number of years for which the process will be simulated. On output, st is a k

by nyrs vector containing k replications of the process, each nyrs in length. When
the model is deterministic, the path is deterministic. When the model is stochastic,
the path is generated by Monte Carlo methods. If we simulate replications all which
begin from the same state, the row average of the vector st will provide an estimate
of the expected path of the state.

The toolbox accompanying the textbook provides a second utility for performing
dynamic analysis called markov, which is employed as follows:

pi=markov(pstar);

On input, pstar is the optimal probability transition matrix induced by the opti-
mal policy, which is generated by the routine ddpsolve. On output, pi is a vector
containing the invariant distribution of the optimized state process.

Finally, the toolbox accompanying the textbook provides a utility for convert-
ing the deterministic state transition rule into the equivalent degenerate probability
transition matrix. The routine is employed as follows:



CHAPTER 7. DISCRETE STATE MODELS 198

P = expandg(g);

On input, g is the deterministic state transition rule. On output, P is the correspond-
ing probability transition matrix.

Given the aforementioned Matlabutilities, the most signi�cant practical diÆ-
cultly typically encountered when solving discrete Markov decision models is cor-
rectly initializing the reward and state transition matrices. We demonstrate how to
implement these routines in practice in the following section.

7.6 Numerical Examples

7.6.1 Mine Management

Consider the mine management model with market price p = 1, initial stock of ore
�s = 100, and annual discount factor Æ = 0:95.

The �rst step required to solve the model numerically is to specify the model
parameters and to construct the state and action spaces:

delta = 0.9; % discount factor

price = 1; % price of ore

sbar = 100; % initial ore stock

S = (0:sbar)'; % vector of states

n = length(S); % number of states

X = (0:sbar)'; % vector of actions

m = length(X); % number of actions

Next, one constructs the reward and transition probability matrices:

f = zeros(n,m);

for k=1:m

f(:,k) = price*X(k)-(X(k)^2)./(1+S);

f(X(k)>S,k) = -inf;

end

g = zeros(n,m);

for k=1:m

j = max(0,S-X(k)) + 1;

g(:,k) = j;

end

P = expandg(g);

Notice that a reward matrix element is set to negative in�nity if the extraction level
exceeds the available stock. This guarantees that the value maximization algorithm
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will not chose an infeasible action. Also note that we have de�ned the deterministic
state transition rule g �rst, and then used the utility expandg to construct the asso-
ciated probability transition matrix, which consists of mostly zeros and is stored in
sparse matrix format to accelerate subsequent computations.

One then packs the essential data into the structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

Once the model data have been speci�ed, solution of the model is relatively
straightforward. To solve the in�nite horizon model via policy iteration, one issues
the command:

[vi,xi,pstari] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the command:

[vi,xi,pstari] = ddpsolve(model,'func');

Upon convergence, vi will be n vector containing the value function and xi will be
n vector containing the indices of the optimal ore extractions. Note that the policy
iteration algorithm was not explicitly speci�ed because it is the default algorithm
when the horizon is in�nite.

To solve the model over a ten year horizon, one issues the commands

model.horizon = 10;

[vf,xf,pstarf] = ddpsolve(model);

Note that we do not have to pass the post-terminal value function, since it is iden-
tically zero, the default. Also note that the backward recursion algorithm was not
explicitly speci�ed because it is the default algorithm when the horizon is �nite. Upon
completion, xf is an n by 10 matrix containing the optimal ore extraction policy for
all possible ore stock levels for periods 1 to 10. The columns of x represent peri-
ods and its rows represent states. Similarly, vf is an n by 11 matrix containing the
optimal values for all possible stock levels for periods 1 to 11.

Once the optimal solution has been computed, one may plot the optimal value
and extraction policy functions:

figure(1); plot(S,X(xi));

xlabel('Stock'); ylabel('Optimal Extraction');

figure(2); plot(S,vi);

xlabel('Stock'); ylabel('Optimal Value');
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Both functions are illustrated in Figure 7.1.
To analyze the dynamics of the optimal solution, one may also plot the optimal

path of the stock level over time, starting from the initial stock level, for both the
�nite and in�nite horizon models:

s1 = length(S); nyrs = 10;

sipath = ddpsimul(pstari,s1,nyrs,xi);

sfpath = ddpsimul(pstarf,s1,nyrs,xf);

figure(3)

plot(1:nyrs,S(sipath),1:nyrs,S(sfpath));

legend('Infinite Horizon','Ten Year Horizon');

xlabel('Year'); ylabel('Stock');

As seen in Figure 7.1, one extracts the stock at a faster rate if the horizon is �nite.
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Figure 7.1: Solution to Mine Management Problem
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7.6.2 Asset Replacement - I

Suppose that a new machine costs $50 and that the net pro�t contribution of a
machine is:

age net profit

0 50

1 45

2 35

3 20

4+ 0

Then, letting 0=keep and 1=replace, the optimal replacement policy over a �ve
year planning horizon, with no discounting, is:

Optimal Policy Optimal Value

Machine Age Machine Age

Year 0 1 2 3 4+ 0 1 2 3 4+

5 0 0 0 0 0 50.0 45.0 35.0 20.0 0.0

4 0 0 0 0 0 95.0 80.0 55.0 20.0 0.0

3 0 0 1 1 1 130.0 100.0 70.0 55.0 35.0

2 0 1 1 1 1 150.0 115.0 105.0 90.0 70.0

1 0 0 1 1 1 165.0 150.0 125.0 110.0 90.0

Assuming a discount factor of 0.9, the initial year optimal policy and value for
functions for di�ering horizons are:

Optimal Policy Optimal Value

Machine Age Machine Age

Horizon 0 1 2 3 4+ 0 1 2 3 4+

1 0 0 0 0 0 50.0 45.0 35.0 20.0 0.0

2 0 0 0 0 0 90.5 76.5 53.0 20.0 0.0

3 0 0 1 1 1 118.8 92.7 56.4 41.4 21.4

4 0 0 1 1 1 133.4 95.8 82.0 67.0 47.0

5 0 0 0 1 1 136.2 118.8 95.3 80.1 60.1

6 0 0 0 1 1 156.9 130.7 107.1 82.6 62.6

7 0 0 1 1 1 167.7 141.4 116.2 101.2 81.2

8 0 0 0 1 1 177.2 149.6 126.1 110.9 90.9

9 0 0 0 1 1 184.6 158.5 134.8 119.5 99.5

10 0 0 0 1 1 192.6 166.3 142.6 126.2 106.2

20 0 0 0 1 1 237.2 210.3 186.5 171.0 151.0

40 0 0 0 1 1 257.9 231.3 207.4 191.8 171.8
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60 0 0 0 1 1 260.5 233.9 209.9 194.4 174.4

100 0 0 0 1 1 260.8 234.2 210.2 194.7 174.7

200 0 0 0 1 1 260.8 234.2 210.2 194.7 174.7

The optimal steady-state policy is to replace the tractor after year three.

7.6.3 Asset Replacement - II

Consider the same model as above, except that now the pro�t contribution of a tractor

f(a; n) = (50:0� 2:5a� 2:5a2) � (1� (a� n)=4)
depends both on its age a and the number of times n it has undergone end-of-year
servicing. At the beginning of the year, a farmer must decide what to do at the end
of the year: keep and service the tractor, keep but not service the tractor, or replace
the tractor. It costs $75 to order a new tractor and $10 to schedule one for servicing.
Assuming a discount factor of 0.9, the steady-state optimal replacement-maintenance
policy and value functions are:

Optimal Policy Optimal Value

Times Serviced Times Serviced

Age 0 1 2 3 4 0 1 2 3 4

0 2 0 0 0 0 163.2 0.0 0.0 0.0 0.0

1 1 2 0 0 0 114.2 136.8 0.0 0.0 0.0

2 3 1 1 0 0 89.3 99.9 113.2 0.0 0.0

3 3 3 3 3 0 76.8 81.8 86.8 91.8 0.0

4 3 3 3 3 3 71.8 71.8 71.8 71.8 71.8

where 0=not de�ned, 1=keep but don't service, 2=keep and service, and 3=replace.
The optimal steady-state policy is thus to service the tractor after its �rst and

second years, to keep it but not service it after its third year, and to replace it after
its fourth year. Should one forget to service the tractor after its �rst year, then it
would be optimal to keep but not service it after its second year and then to sell it
after its third year.

7.6.4 Option Pricing

Consider the binomial option pricing model with current asset price p1 = 2:00, strike
price �p = 2:10, annual interest rate r = 0:05, annual volatility � = 0:2, and time to
expiration T = 0:5 years that is to be divided into N = 50 intervals.

The �rst step required to solve the model numerically is to specify the model
parameters and to construct the state space:
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T = 0.5; % years to expiration

sigma = 0.2; % annual volatility

r = 0.05; % annual interest rate

strike = 2.1; % option strike price

p1 = 2; % current asset price

N = 100; % number of time intervals

tau = T/N; % length of time intervals

delta = exp(-r*tau); % discount factor

u = exp( sigma*sqrt(tau)); % up jump factor

q = 0.5+tau^2*(r-(sigma^2)/2)/(2*sigma); % up jump probability

price = p1*(u.^(-N:N))'; % asset prices

n = length(price); % number of states

There is no need to explicitly de�ne an action space since actions are represented by
integer indices.

Next, one constructs the reward and transition probability matrices:

f = [ strike-price zeros(n,1) ];

P = zeros(n,n);

for i=1:n

P(i,min(i+1,n)) = q;

P(i,max(i-1,1)) = 1-q;

end

P = [zeros(n,n); P];

P = sparse(P);

Here, action 1 is identi�ed with the exercise decision and action 2 is identi�ed with
the hold decision. Note how the transition probability matrix associated with the
decision to exercise the option is identically the zero matrix. This is done to ensure
that the expected future value of an exercised option always computes to zero. Also
note that because the probability transition matrix contains mostly zeros, it is stored
in sparse matrix format to speed up subsequent computations.

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.discount = delta;

model.horizon = N+1;

To solve the �nite horizon model via backward recursion, one issues the command:

[v,x] = ddpsolve(model);
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Upon completion, v(:,1) is an n vector that contains the value of the American
option in period 1 for di�erent asset prices.

Once the optimal solution has been computed, one may plot the optimal value
function.

plot(price,v(:,1)); axis([0 strike*2 -inf inf]);

xlabel('Asset Price'); ylabel('Put Option Premium');

This plot is given in Figure 7.2.
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7.6.5 Job Search

Consider the job search model with weekly unemployment bene�t u = 55 and psychic
bene�t from leisure v = 60. Also assume the probability of �nding a job is p = 0:90,
the probability of being �red is q = 0:05, and the weekly discount rate is Æ = 0:99.
Suppose we wish to explore the optimal labor market participation policy for wages
ranging from w = 55 to w = 65.

The �rst step required to solve the model numerically is to specify the model
parameters:

u = 50; % weekly unemp. benefit

v = 60; % weekly value of leisure

pfind = 0.90; % prob. of finding job
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pfire = 0.10; % prob. of being fired

delta = 0.99; % discount factor

Note that by identifying both states and actions with their integer indices, one does
not need to explicitly generate the state and action space.

Next, one constructs the reward and transition probability matrices. Here, we
identify state 1 with unemployment and state 2 with employment, and identify action
1 with inactivity and action 2 with participation:

f = zeros(2,2);

f(:,1) = v; % gets leisure

f(1,2) = u; % gets benefit

P1 = sparse(zeros(2,2));

P2 = sparse(zeros(2,2));

P1(:,1) = 1; % remains unemployed

P2(1,1) = 1-pfind; % finds no job

P2(1,2) = pfind; % finds job

P2(2,1) = pfire; % gets fired

P2(2,2) = 1-pfire; % keeps job

P = [P1;P2];

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration at di�erent wage rates, one
issues the command :

xtable = [];

wage=55:65;

for w=wage

f(2,2) = w; model.reward = f; % vary wage

[v,x] = ddpsolve(model); % solve via policy iteration

xtable = [xtable x]; % tabulate

end

Upon convergence, xtable will be a matrix containing the optimal labor force par-
ticipation decisions at di�erent wage rates. The table may be printed by issuing the
following commands:
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fprintf('\nOptimal Job Search Strategy')

fprintf('\n (1=inactive, 2=active)\n')

fprintf('\nWage Unemployed Employed\n')

fprintf('%4i %10i%10i\n',[wage;xtable])

The optimal decision rule is given in Table 7.1.

Table 7.1: Optimal Labor Participation Rule

Wage Unemployed Employed
55 I I
56 I I
57 I I
58 I I
59 I I
60 I I
61 I A
62 A A
63 A A
64 A A
65 A A

7.6.6 Optimal Irrigation

The �rst step required to solve the model numerically is to specify the model param-
eters and to construct the state and action spaces:

delta = 0.9;

irrben = [-3;5;9;11]; % Irrigation Benefits to Farmers

recben = [-3;3;5;7]; % Recreational Benefits to Users

maxcap = 3; % maximum dam capacity

S = (0:1:maxcap)'; % vector of states

n = length(S); % number of states

X = (0:1:maxcap)'; % vector of actions

m = length(X); % number of actions

Next, one constructs the reward matrix:

f = zeros(n,m);
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for i=1:n;

for k=1:m;

if k>i

f(i,k) = -inf;

else

f(i,k) = irrben(k) + recben(i-k+1);

end

end

end

Here, a reward matrix element is set to negative in�nity if the irrigation level exceeds
the available water stock, an infeasible action.

Next, one constructs the transition probability matrix:

P = [];

for k=1:m

Pk = sparse(zeros(n,n));

for i=1:n;

j=i-k+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.4;

j=j+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.6;

end

P = [P;Pk];

end

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration, one issues the command:

[v,x] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the command:

[v,x] = ddpsolve(model,'func');

Upon convergence, v will be n vector containing the value function and x will be n

vector containing the optimal irrigation policy.
Once the optimal solution has been computed, one may plot the optimal value

and irrigation policy functions:



CHAPTER 7. DISCRETE STATE MODELS 208

figure(1); plot(S,X(x));

xlabel('Stock'); ylabel('Optimal Irrigation');

figure(2); plot(S,v);

xlabel('Stock'); ylabel('Optimal Value');

Suppose one wished to compute the steady-state stock level. One could easily do
this by calling markov to compute the steady state distribution and integrating:

pi = markov(pstar);

avgstock = pi'*S;

fprintf('\nSteady-state Stock %8.2f\n',avgstock)

To plot expected water level over time given that water level is currently zero, one
would issue the commands

figure(3)

nyrs = 20;

s1=ones(10000,1);

st = ddpsimul(pstar,s1,nyrs,x);

plot(1:nyrs,mean(S(st)));

xlabel('Year'); ylabel('Expected Water Level');

Here, we use the function ddpsimul to simulate the evolution of the water level via
Monte Carlo 10000 times over a 20 year horizon. The mean of the 10000 replications
is then computed and plotted for each year in the simulation. The expected path,
together with the optimal value and policy functions are given in Figure 7.3.

7.6.7 Optimal Growth

7.6.8 Renewable Resource Problem

7.6.9 Bioeconomic Model

Consider the bioeconomic model with three foraging areas, predation survival prob-
abilities p1 = 1, p2 = 0:98, and p3 = 0:90, and foraging success probabilities q1 = 0,
q2 = 0:3, and q3 = 0:8. Also assume that successful foraging delivers e = 4 units of
energy in all areas and that the procreation horizon is 10 periods.

The �rst step required to solve the model numerically is to specify the model
parameters and to construct the state and action spaces:

T = 10; % foraging periods

eadd = 4; % energy from foraging
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Figure 7.3: Solution to Optimal Irrigation Problem

emax = 10; % energy capacity

S = 0:emax; % energy levels

n = length(S); % number of states

X = 1:3; % foraging areas

m = length(X); % number of actions

There is no need to explicitly de�ne an action space since actions are represented by
integer indices.

Next, one constructs the reward and transition probability matrices:

f = zeros(n,m);

p = [1 .98 .9]; % predation survival prob.

q = [0 .30 .8]; % foraging success prob.

P = [];

for k=1:m

Pk = zeros(n,n);
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Pk(1,1) = 1;

for i=2:n;

Pk(i,min(n,i-1+eadd)) = p(k)*q(k);

Pk(i,i-1) = p(k)*(1-q(k));

Pk(i,1) = Pk(i,1) + (1-p(k));

end

P = [ P ; Pk ];

end

Note that the reward matrix is zero because the reward is not earned until the
post-terminal period. Upon the reaching the post-terminal period, either the animal
is alive, earning reward of 1, or is dead, earning a reward of 0. We capture this by
specifying the terminal value function as follows

v = ones(n,1); % terminal value: survive

v(1) = 0; % terminal value: death

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

model.vterm = v;

To solve the �nite horizon model via backward recursion, one issues the command:

[v,x] = ddpsolve(model);

Upon convergence, v will be n by 1 matrix containing the value function and ix will
be n by 1 matrix containing the indices of the optimal foraging policy for all possible
initial energy stock levels.

Once the optimal solution has been computed, one may print out the survival
probabilities (see Table 7.2):

fprintf('\nProbability of Survival\n')

disp(' Stock of Energy')

fprintf('Period ');fprintf('%5i ',S);fprintf('\n');

for t=1:T

fprintf('%5i ',t);fprintf('%6.2f',v(:,t)');fprintf('\n')

end

A similar script can be executed to print out the optimal foraging strategy (see Table
7.3).
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Table 7.2: Survival Probabilities

Stock of Energy
Period 0 1 2 3 4 5 6 7 8 9 10

1 0.00 0.59 0.71 0.80 0.82 0.83 0.85 0.92 0.93 0.93 0.93
2 0.00 0.59 0.77 0.80 0.82 0.83 0.92 0.92 0.93 0.93 1.00
3 0.00 0.64 0.77 0.80 0.82 0.91 0.92 0.92 0.93 1.00 1.00
4 0.00 0.64 0.77 0.80 0.90 0.91 0.92 0.92 1.00 1.00 1.00
5 0.00 0.64 0.77 0.88 0.90 0.91 0.92 1.00 1.00 1.00 1.00
6 0.00 0.64 0.85 0.88 0.90 0.91 1.00 1.00 1.00 1.00 1.00
7 0.00 0.72 0.85 0.88 0.90 1.00 1.00 1.00 1.00 1.00 1.00
8 0.00 0.72 0.85 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 0.00 0.72 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.00 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 7.3: Optimal Foraging Strategy

Stock of Energy
Period 0 1 2 3 4 5 6 7 8 9 10

1 1 3 3 3 2 2 2 2 2 2 2
2 1 3 3 3 2 2 2 2 2 2 1
3 1 3 3 3 2 2 2 2 2 1 1
4 1 3 3 3 2 2 2 2 1 1 1
5 1 3 3 2 2 2 2 1 1 1 1
6 1 3 3 2 2 2 1 1 1 1 1
7 1 3 3 2 2 1 1 1 1 1 1
8 1 3 3 2 1 1 1 1 1 1 1
9 1 3 3 1 1 1 1 1 1 1 1
10 1 3 1 1 1 1 1 1 1 1 1
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Exercises

7.1. Consider a stationary 3-state Markov chain with transition probability matrix:

P =

2
4 0:2 0:4 0:4
0:5 0:5 0:0
0:6 0:2 0:2

3
5 :

(a) Is the Markov chain irreducible?

(b) If so, �nd the steady-state distribution.

7.2. A machine lasts a maximum of 6 years but may require replacement sooner.
Suppose that the probability of requiring replacement after each year is given
by

Cycle Prob
1 0.03
2 0.04
3 0.12
4 0.39
5 0.80
6 1.00

(a) What is the age distribution of macines in a large population? Draw a
histogram.

(b) What is the average machine age in a large population?

7.3. A �rm operates in an uncertain pro�t environment. The �rm takes an operat-
ing loss of one unit in a bad year, it makes a operating pro�t of two units in
an average year, and it makes an operating pro�t of four units in a good year.
At the beginning of a bad year, the �rm may elect to shut down, avoiding the
operating loss. Although the �rm faces no �xed costs or shut-down costs, it
incurs a start-up cost 0.2 units if it reopens after one or more periods of inac-
tivity. The pro�t environment follows a stationary �rst-order Markov process
with transition probabilities:

to

bad avg good
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bad 0.4 0.5 0.1

from avg 0.3 0.4 0.3

good 0.1 0.5 0.4

(a) Suppose the �rm adopts the policy of staying open regardless of the pro�t
environment in any given year. Given that this is a bad year, how much
pro�t can the �rm expect to make one year from now, two years from now,
three years from now, ten years from now?

(b) Suppose the �rm adopts the following policy: (i) in a bad year, do not
operate; (ii) in a good year, operate; and (iii) in an average year, do what
you did the preceding year. Given that this is a bad year, how much pro�t
can the �rm expect to make one year from now, two years from now, three
years from now?

Graph the expected pro�ts for both parts on the same �gure.

7.4. Consider a competitive price-taking �rm that wishes to maximize the present
value sum of current and future pro�ts from harvesting a nonrenewable resource.
In year t, the �rm earns revenue ptxt where pt is the market price for the
harvested resource and xt is the amount harvested by the �rm; the �rm also
incurs cost �x�t , where � and � are cost function parameters. The market price
takes one of two values, p1 or p2, according to the �rst-order Markov probability
law:

Pr[pt+1 = pjjpt = pi] = wij:

Assuming an annual discount factor of Æ, and that harvest levels and stocks must
be integers, formulate the �rm's optimization problem. Speci�cally, formulate
Bellman's functional equation, clearly identifying the state and action variables,
the state and action spaces, and the reward and probability transition functions.

7.5. Consider a timber stand that grows by one unit of biomass per year. That is,
if the stand is planted with seedlings at the beginning of year t, it will contain
t0�t units of biomass in year t0. Harvesting decisions are made at the beginning
of each year. If the stand is harvested, new seedlings are replanted at the end
of the period (so the stand has biomass 0 in the next period). The price of
harvested timber is p dollars per unit and the cost of harvesting and replanting
is c. The timber �rm discounts the future using a discount factor of Æ.

(a) Set up the decision problem (de�ne states, controls, reward function, tran-
sition rule).
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(b) Formulate the value function and Bellman's recursive functional equation.

(c) For parameters values Æ = 0:95, p = 1 and c = 5, determine the optimal
harvesting policy.

7.6. A �rm operates in an uncertain pro�t environment. At the beginning of each
period t, the �rm observes its potential short-run variable pro�t �t, which may
be negative, and then decides whether to operate, making a short-run variable
pro�t �t, or to temporarily shut down, making a short-run variable pro�t of
zero. Although the �rm faces no �xed costs or shut-down costs, it incurs a
start-up cost c if it reopens after a period of inactivity. The short-run variable
pro�t �t follows a stationary �rst-order Markov process. Speci�cally, short-
run variable pro�t assumes �ve values p1, p2, p3, p4, and p5 with stationary
transition probabilities Pij = Pr(�t+1 = pjj�t = pi).

(a) Formulate the �rm's in�nite horizon pro�t maximization problem. Speci�-
cally, formulate Bellman's functional equation, clearly identifying the state
and action variables, the state and action spaces, and the reward and prob-
ability transition functions.

(b) In the standard static model of the �rm, a previously open �rm will shut
down if its short-run variable pro�t pt is negative. Is this condition suÆ-
cient in the current model?

(c) In the standard static model of the �rm, a previously closed �rm will
reopen if its short-run variable pro�t pt exceeds the start-up cost c. Is this
condition necessary in the current model?

7.7. Consider the preceding problem under the assumption that the start-up cost
is c = 0:8, the discount factor is Æ = 0:95, and the short-run variable pro�t
assumes �ve values p1 = �1:0, p2 = �0:2, p3 = 0:4, p4 = 1:2, and p5 = 2:0 with
stationary transition probabilities:

to

p_1 p_2 p_3 p_4 p_4

p_1 0.1 0.2 0.3 0.4 0.0

p_2 0.1 0.3 0.2 0.2 0.2

from p_3 0.1 0.5 0.2 0.1 0.1

p_4 0.2 0.1 0.3 0.2 0.2

p_5 0.3 0.2 0.2 0.1 0.2.

(a) Compute the optimal operation-closure policy.

(b) What is the value of the �rm?
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(c) In the long-run, what percentage of the time will be �rm be closed?

7.8. Consider the problem of optimal harvesting of a nonrenewable resource by a
competitive price-taking �rm:

max E
P1

t=0 Æ
t[ptxt � �x�t ]

s.t. st+1 = st � xt

where Æ = 0:9 is the discount factor; � = 0:2, � = 1:5, are cost function
parameters; pt is the market price; xt is harvest; and st is beginning reserves.
Develop a Matlabprogram that will solve this problem numerically assuming
stock and harvest levels are integers, then answer the following questions.

(a) Graph the value function for p = 1 and p = 2.

(b) Graph the optimal decision rule for p = 1 and p = 2.

(c) Assuming an initial stocks of 100 units, graph the time path of optimal
harvest for periods t = 0 to t = 20, inclusive; do so for both p=1 and p=2.

(d) Under the same assumption as in (c), graph the shadow price of stocks for
periods t = 0 to t = 20. Do so both in current dollars and in year 0 dollars.

7.9. Consider the preceding problem, but now assume that price takes one of two
values, p = 1 or p = 2 according to the following �rst-order Markov probability
law:

Pr[pt+1 = 1jpt = 1] = 0:8
Pr[pt+1 = 2jpt = 1] = 0:2
Pr[pt+1 = 1jpt = 2] = 0:3
Pr[pt+1 = 2jpt = 2] = 0:7

Further assume that the manager maximizes the discounted sum of expected
utility over time, where utility in year t is

ut = � expf�(ptxt � �x�t )g

where  = 0:2 is the coeÆcient of absolute risk aversion.

(a) Write a Matlabprogram that solves the problem.

(b) Graph the optimal decision rule for this case and for the risk neutral case
on the same graph.
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(c) What is the e�ect of risk aversion on the rate of optimal extraction in this
model?

7.10. Consider the article by Burt and Allison, \Farm Management Decisions with
Dynamic Programming," Journal of Farm Economics, 45(1963):121-37. Write
a program that replicates Burt and Allison's results, then compute the optimal
value function and decision rule if:

(a) the annual interest rate is 1 percent.

(b) the annual interest rate is 10 percent.

7.11. Consider Burt and Allison's farm management problem. Assume now that the
government will subsidize fallow land at $25 per acre, raising the expected return
on a fallow acre from a $2.33 loss to a $22.67 pro�t. Further assume, as Burt
and Allison implicitly have, that cost, price, yield, and return are determinate
at each moisture level:

(a) Compute the optimal value function and decision rule.

(b) Derive the steady-state distribution of the soil moisture level under the
optimal policy.

(c) Derive the steady-state distribution of return per acre under the optimal
policy.

(d) Derive the steady-state mean and variance of return per acre under the
optimal policy.

7.12. At the beginning of every year, a �rm must decide how much to produce over
the coming year in order to meet the demand for its product. The demand over
any year is known at the beginning of the year, but varies annually, assuming
serially independent values of 5, 6, 7, or 8 thousand units with probabilities
0.1, 0.3, 0.4, and 0.2, respectively. The �rm's cost of production in year t is
10qt + (qt � qt�1)2 thousand dollars, where qt is thousands of units produced
in year t. The product sells for $20 per unit and excess production can either
be carried over to the following year at a cost of $2 per unit or disposed of
for free. The �rm's production and storage capacities are 8 thousand and 5
thousand units per annum, respectively. The annual discount factor is 0.9.
Assuming that the �rm meets its annual demand exactly, and that production
and storage levels must be integer multiples of one thousand units, answer the
following questions:

(a) Under what conditions would the �rm use all of its storage capacity?
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(b) What is the value of �rm and what is its optimal production if its previous
year's production was 5 thousand units, its carryin is 2 thousand units,
and the demand for the coming year is 7 units?

(c) What would be the production levels over the subsequent three years if
the realized demands were 6, 5, and 8 units, respectively?

7.13. At dairy producer must decide whether to keep and lactate a cow or replace
it with a new one. A cow yields yi = 8 + 2i � 0:25i2 tons of milk over its ith

lactation up to ten lactations, after which she becomes barren and must be
replaced. Assume that the net cost of replacing a cow is 500 dollars, the pro�t
contribution of milk is 150 dollars per ton, and the per-laction discount factor
is Æ = 0:9.

(a) What lactation-replacement policy maximizes pro�ts?

(b) What is the optimal policy if the pro�t contribution of milk rises to 200
dollars per ton?

(c) What is the optimal policy if the cost of replacement ct follows a three-state
Markov chain with possible values, $400, $500, and $600, and transition
probabilities

ct+1

ct $400 $500 $600
$400 0.5 0.4 0.1
$500 0.2 0.6 0.2
$600 0.1 0.4 0.5



Chapter 8

Discrete Time Continuous State

Dynamic Models: Theory

We now turn our attention to discrete time dynamic economic models whose state
variables may assume a continuum of values. Three classes of discrete time continuous
state dynamic economic models are examined. One class includes models of central-
ized decision making by individuals, �rms, or institutions. Examples of continuous
state dynamic decision models involving discrete choices include a �nancial investor
deciding when to exercise a put option, a capitalist deciding whether to enter or exit
an industry, and a producer deciding whether to keep or replace a physical asset. Ex-
amples of continuous state decision models admitting a continuum of choices include
a central planner managing the harvest of a natural resource, an entrepreneur plan-
ning production and investment, and a consumer making consumption and savings
decisions.

A second class of discrete time continuous state dynamic model examined includes
models of strategic gaming among a small number of individuals, �rms, or institu-
tions. Dynamic game models attempt to capture the behavior of a small group of
dynamically optimizing agents when the policy pursued by one agent a�ects the im-
mediate and long-run welfare of another. Examples of such models include national
grain marketing boards deciding how much grain to sell on world markets, produc-
ers of substitute goods deciding whether to expand factory capacity, and individuals
deciding how much work e�ort to exert within an income risk-sharing arrangement.

A third class of discrete time continuous state dynamic economic model examined
includes partial and general equilibrium models of collective, decentralized economic
behavior. Dynamic equilibrium models characterize the behavior of a market, eco-
nomic sector, or entire economy through intertemporal arbitrage conditions that are
enforced by the collective action of atomistic dynamically optimizing agents. Often
the behavior of agents at a given date depends on their expectations of what will hap-

218
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pen at a future date. If it is assumed that agents' expectations are consistent with
the implications of the model, then agents are said to possess rational expectations.
Rational expectations models may be used to study asset returns in a pure exchange
economy, futures prices in a primary commodity market, and agricultural producer
responses to government price support programs.

Dynamic optimization and equilibriummodels are closely related. The solutions to
continuous state continuous action dynamic optimization models may often be equiv-
alently characterized by �rst-order intertemporal equilibrium conditions obtained by
di�erentiating the Bellman's equation. Conversely, many dynamic equilibrium prob-
lems can be \integrated" into equivalent optimization formulations. Whether cast in
optimization or equilibrium form, most discrete time continuous state dynamic eco-
nomic models pose in�nite-dimensional �xed-point problems that lack closed-form
solution. This chapter introduces the theory of discrete time continuous state dy-
namic economic models and provides illustrative examples. The subsequent chapter
is devoted to numerical methods that may be used to solve and analyze such models.

8.1 Continuous State Dynamic Programming

The discrete time continuous state Markov decision model has the following structure:
In every period t, an agent observes the state of an economic process st 2 S, takes
an action xt 2 X, and earns a reward f(st; xt) that depends on both the state of the
process and the action taken. The state of the economic process follows a controlled
Markov probability law. Speci�cally, the state of the economic process in period t+1
will depend on the state and action in period t and an exogenous random shock �t+1

that is unknown in period t:

st+1 = g(st; xt; �t+1):

The agent seeks a policy of state-contingent actions x�t : S 7! X, t = 0; 1; 2; : : : ; T �
1, that maximizes the present value of current and expected future rewards, dis-
counted at a per-period factor Æ:

max
fxt(�)g

E0

TX
t=0

Ætf(st; xt(st)):

The state vector s 2 <n of a continuous state Markov decision model may possess
continuous state variables whose ranges are intervals of the real line and discrete state
variables whose ranges are �nite subsets of real numbers. At least one state variable
must be continuous. If all states are continuous, the state space is said to be purely
continuous; if some states are continuous and some are discrete, the state space is
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said to be mixed. The state space, which contains all possible realizations of the state
vector, is denoted S � <n.

The action vector x 2 <m of a continuous state Markov decision model may possess
continuous action variables whose ranges are intervals of the real line or discrete action
variables whose ranges are �nite subsets of real numbers. We limit our discussion,
however, to models whose actions are all of one form or the other. If all actions are
continuous, the model is said to be a continuous choice model; if all actions discrete,
the model is said to be a discrete choice model. The action space, which contains all
possible realizations of the action vector, is denoted X � <m.

In the continuous state Markov decision model, the exogenous random shocks �t
are assumed to be independently and identically distributed over time, and indepen-
dent of preceding states and actions. The reward functions f and the state transition
functions g are assumed to be twice continuously di�erentiable over the continous
dimensions of S and X and the per-period discount factor Æ is assumed to be less
than one. In some instances, the set of actions available to the agent may vary with
the state of the process s. In such cases, the restricted action space is denoted X(s).

Like the discrete Markov decision problem, the discrete time continuous state
Markov decision problem may be analyzed using dynamic programming methods
based on Bellman's Principle of Optimality. The Principle of Optimality applied to
the discrete time continuous state Markov decision model yields Bellman's recursive
functional equation:

Vt(s) = max
x2X(s)

ff(s; x) + ÆE�Vt+1(g(s; x; �))g; s 2 S:
Here, Vt(s) denotes the maximum attainable sum of current and expected future
rewards, given that the process is in state s in period t. The functions Vt : S 7! < are
called the value functions. The Bellman equation succinctly captures the essential
problem faced by a dynamically optimizing agent: the need to optimally balance
immediate bene�ts f against expected future bene�ts ÆEVt+1.

In a �nite horizon model, we adopt the convention that the optimizing agent faces
decisions up to and including a �nal decision period T < 1. The agent faces no
decisions after the terminal period T , but may earn a �nal reward VT+1 in period
T + 1. In many applications, the post-terminal value function VT+1 is identically
zero, indicating that no rewards are earned by the agent beyond the terminal decision
period. In other applications, VT+1 may specify a salvage value earned by the agent
after making his �nal decision in period T . Given the post-terminal value function,
the �nite horizon discrete time continuous state Markov decision model may be solved
recursively, in principle, by repeated application of Bellman's equation: Having VT+1,
solve for VT (s) for all states s; having VT , solve for VT�1(s) for all states s; having
VT�1, solve for VT�2(s) for all states s; and so on, until V0(s) is derived for all states
s.
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The value function of the in�nite horizon discrete time continuous state Markov
decision model will the same for every period and thus may be denoted simply by V .
The in�nite horizon value function V is characterized as the solution to the Bellman
functional �xed-point equation

V (s) = max
x2X(s)

ff(s; x) + ÆE�V (g(s; x; �))g; s 2 S:

If the discount factor Æ is less than one and the reward function f is bounded, the map-
ping underlying Bellman's equation is a strong contraction on the space of bounded
continuous functions and, thus, by The Contraction Mapping Theorem, will possess
an unique solution.

8.2 Continuous State Discrete Choice Models

Discrete choice dynamic decision models are common in management, economics, and
�nance. Many of these models involve binary choices, in which an agent must decide
whether or not to undertake a speci�c action. Regenerative binary choice models
involve decisions that bring an economic process back to some natural initial state,
from which the decision cycle begins anew. Examples of such models include asset
replacement, in which the agent starts fresh with a new asset whenever an old one is
replaced, and timber cutting, in which the agent starts fresh with a stand of seedlings
after cutting down the old stand. Non-regenerative binary decision models involve
decisions that bring an economic process to some natural terminal state, from which
the process never again emerges and further decisions are moot. An example of such
a model is the put option, which, once exercised, can never be exercised again.

8.2.1 Asset Replacement

A producer must decide when to replace an aging asset with a new one. The asset
produces q(a) units of output in its ath period of operation, up to period �a, after
which its output drops to zero. A new asset costs K and the pro�t contribution per
unit of output p is an exogenous continuous-valued Markov process

pt+1 = g(pt; �t+1):

What is the optimal machine replacement policy and what is the value of owning an
asset of age a if the price of output is p?

This is an in�nite horizon, stochastic model with one continuous state variable,
the current unit pro�t contribution p 2 (0;1), and one discrete state variable, the
current age of the asset a 2 f1; 2; : : : ; �ag. The model has a single binary choice
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variable j, which equals 1 if the asset is replaced and equals 0 otherwise. The current
reward earned by the producer equals the pro�t contribution generated by the asset
less replacement costs, if any:

f(s; a; j) =

�
p q(0)�K j = 1
p q(a) j = 0:

The value V (p; a) of owning an asset of age a, given the current unit pro�t con-
tribution of output is p, satis�es Bellman's equation

V (p; a) = maxfp q(a) + ÆE�V (g(p; �); a+ 1); p q(0)�K + ÆE�V (g(p; �); 1)g:

8.2.2 Timber Cutting

The owner of a timber stand must decide each year whether to cut down the stand
and sell it for lumber, or allow the stand to develop one more year. The stand biomass
s grows at a deterministic rate:

st+1 = g(st):

The pro�t contribution per unit of biomass is p, treated as constant. Immediately
upon cutting down the timber stand, the owner is required to plant seedlings, incur-
ring a replanting cost K. What is the optimal timber cutting policy and what is the
value of owning a timber stand with biomass s?

This is an in�nite horizon, stochastic model with one continuous state variables,
the current biomass of the timber stand s 2 [0;1). The model has one binary choice
variable j, which equals 1 if the stand is cut and replanted and equals 0 otherwise.
The current reward earned by the owner equals the revenue from lumber sales less
replanting costs, if the stand is cut, but equals zero otherwise:

f(s; j) =

�
p s�K j = 1
0 j = 0:

The value V (s) of a timber stand of biomass s satis�es Bellman's equation

V (s) = maxfÆE�[V (g(s))]; p s�K + ÆE�[V (0)]g:

8.2.3 American Option Pricing

An American put option gives the holder the right, but not the obligation, to sell a
speci�ed quantity of a commodity at a speci�ed strike price K on or before a speci�ed
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expiration period T . In the discrete-time Black-Scholes option pricing model, the price
of the commodity follows an exogenous continuous-valued Markov process

pt+1 = g(pt; �t+1):

What is the value of an American put option in period t if the commodity price is
p? At what critical price is it optimal to exercise the put option and how does this
critical price vary over time?

This is a �nite horizon, stochastic model with one continuous state variable, the
current price of the commodity p, and one binary state variable, i, which equals 0
if the option has already been exercised or 1 otherwise. The model has one binary
choice variable, j, which equals 1 if the option is exercised in the current period and
0 otherwise. The current period reward earned by the holder of the option is

f(p; i; j) = ij(K � p):
The value Vt(p; 1) of an unexercised put option in period t, given the commodity

price p, satis�es Bellman's equation

Vt(p; 1) = maxfK � p; ÆE�Vt+1(g(p; �); 1)g;
subject to the terminal condition VT+1(p; 1) = 0. The value of a previously exercised
put option is zero, regardless of the price of the commodity.

8.2.4 Industry Entry and Exit

A �rm operates in an uncertain pro�t environment. At the beginning of each period,
the �rm observes its potential short-run pro�t over the coming period �, which may
be negative, and decides whether to operate, taking the short run pro�t �, or to not
operate, making a short-run pro�t of 0. Although the �rm faces no �xed costs, it
incurs a shut down cost K0 if it closes after a period of activity, and a start-up cost
K1 if it opens after a period of inactivity. The short-run pro�t � is an exogenous
continuous-valued Markov process

�t+1 = g(�t; �t+1):

What is the value of the �rm and what is the optimal entry-exit policy? In particular,
how low must the short-run pro�t be for active �rm to close and how high must the
short-run pro�t be for an inactive �rm to open?

This is an in�nite horizon, stochastic model with one continuous state variable,
the current short-run pro�t � 2 (�1;1), and one binary state variable i, which
equals 1 if the �rm operated in the preceding period or 0 otherwise. The model has
a single binary choice variable j, which equals 1 if the �rm operates in the current
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period or 0 otherwise. The current reward earned by the �rm is its short-run pro�t
less transactions costs, if any:

f(�; i; j) = �j �K0i(1� j)�K1j(1� i):
The value V (�; i) of the �rm, given the current short-run pro�t � and the �rm's

previous operational state i, satis�es Bellman's equation

V (�; i) = max
j=0;1
f�j �K0i(1� j)�K1j(1� i) + ÆE�V (g(�; �); j)g:

8.2.5 Job Search

An in�nitely-lived laborer must make employment decisions in an environment with
uctuating wages and uncertain job security. At the beginning of each period, the
laborer observes the current wage rate w. If the laborer is currently employed, he
must decide whether to continue to work at the given wage or to quit. If the laborer is
currently unemployed, he must decide whether to search for job to begin the following
period. If the laborer works, he receives the going wage rate w; if he searches for a
job, he receives an unemployment bene�t u; and if he neither works nor searches,
he receives a bene�t from leisure v. If the agent searches for a job, his probability
of �nding employment for the following period is �f ; if he elects to work, he faces
a probability �k of keeping his job for the following period. The wage rate w is an
exogenous continuous-valued Markov process

wt+1 = g(wt; �t+1):

What is the laborers optimal search and employment policy? In particular, how low
must the wage rate be for him to decline to search if unemployed; and how low must
the wage rate be for him to quit his job if employed?

This is an in�nite horizon, stochastic model with one continuous state variable,
the current wage rate p 2 [0;1), and one binary state variable i, which equals 1 if
the laborer is employed at the beginning of the period or 0 otherwise. The model has
a single binary choice variable j, which equals 1 if the laborer is 'active', that is, if he
continues to work if employed or initiates a search if unemployed, and which equals
0 otherwise. The current reward earned by the laborer is:

f(w; i; j) = wij + u(1� i)j + v(1� j):
The value V (�; i) of the �rm, given the current short-run pro�t � and the �rm's

previous operational state i, satis�es Bellman's equation

V (w; i) = max
j=0;1
ff(w; i; j) + ÆE�[�ijV (g(w; �); 1) + (1� �ij)V (g(w; �); 0)]g

where �01 = �f , �11 = �k, and �00 = �10 = 0.
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8.3 Continuous State Continuous Choice Models

Markov decision models with continuous state and action spaces are special because
their solutions can often be characterized by \�rst-order" equilibrium conditions.
Characterizing the solution to a Markov decision problem via its equilibrium con-
ditions, the so-called Euler conditions, provides an intertemporal arbitrage interpre-
tation that helps the analyst understand and explain the essential features of the
optimized dynamic economic process. Below, we derive the Euler conditions for the
in�nite horizon model, leaving derivation of the Euler conditions for �nite horizon
models as an exercise.

The equilibrium conditions of the continuous state and action Markov decision
problem involve, not the value function, but its derivative

�(s) � V 0(s):

We call � the shadow price function. It represents the marginal value of the state
variable to the optimizer or, equivalently, the price that the optimizer imputes to the
state variable.

The equilibrium conditions for discrete time continuous state continuous choice
Markov decision problem are derived by applying the Karush-Kuhn-Tucker and Enve-
lope Theorems to the optimization problem embedded in Bellman's equation. Assum-
ing actions are unconstrained, the Karush-Kuhn-Tucker conditions for the embedded
optimization problem imply that the optimal action x, given state s, satis�es the
equimarginality condition

fx(s; x) + ÆE� [�(g(s; x; �))gx(s; x; �)] = 0:

The Envelope Theorem applied to the same problem implies:

fs(s; x) + ÆE� [�(g(s; x; �))gs(s; x; �)] = �(s):

Here, fx, fs, gx, and gs denote partial derivatives whose dimensions are 1xm, 1xn,
nxm, and nxn, respectively, where n and m are the dimensions of the state and action
spaces, respectively.

In certain applications, the state transition depends only on the action taken
by the agent, so that gs = 0. In these instances, it is possible to substitute the
expression derived using the Envelope theorem into the expression derived using the
Karush-Kuhn-Tucker condition. This eliminates the shadow price function as an
unknown, and simpli�es the Euler conditions into a single functional equation in a
single unknown, the optimal policy function x:

fx(s; x(s)) + ÆE� [fs(g(s; x(s); �); x(g(s; x(s); �)))gx(s; x(s); �)] = 0:
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This equation, when it exists, is called the Euler equation.
The Euler conditions take a di�erent form when actions are subject to constraints.

Suppose, for example, that actions are subject to bounds of the form

a(s) � x � b(s);

where a : S 7! X and b : S 7! X are di�erentiable functions of the state s. In these
instances, the Euler conditions take the form:

fx(s; x) + ÆE� [�(g(s; x; �))gx(s; x; �)] = �

fs(s; x) + ÆE� [�(g(s; x; �))gs(s; x; �)] + min(�; 0)a0(s) + max(�; 0)b0(s) = �(s)

where x and � satisfy the complementarity condition

a(s) � x � b(s); xi > ai(s) =) �i � 0; xi < bi(s) =) �i � 0:

Here, � is a 1xm vector whose ith element, �i, measures the current and expected
future reward from a marginal increase in the ith action variable xi. At the optimum,
�i must be nonpositive if xi is less than its upper bound, for otherwise rewards can be
increased by raising xi; similarly, �i must be nonnegative if xi is greater than its lower
bound, for otherwise rewards can be increased by lowering xi. And if xi is neither
at its upper or lower bound, �i must be zero to preclude the possibility of increasing
rewards via marginal changes in xi in either direction.

An analyst is often interested with the long-run tendencies of the optimized pro-
cess. If the model is deterministic, it may possess a well-de�ned steady-state to which
the process will converge over time. The steady-state is characterized by the solution
to a nonlinear equation. More speci�cally, the steady-state of an unconstrained de-
terministic problem, if it exists, consists of a state s�, an action x�, and shadow price
�� that satisfy the Euler and state stationarity conditions:

fx(s
�; x�) + Æ��gx(s�; x�) = 0

�� = fs(s
�; x�) + Æ��gs(s�; x�)

s� = g(s�; x�):

The steady-state conditions of a constrained deterministic dynamic optimization
problem can be similarly stated, except that they take the form of a nonlinear comple-
mentarity problem, rather than a system of nonlinear equations. Whether the action
is constrained or not, the steady-state conditions pose a �nite-dimensional problem
that can typically be solved numerically using standard nonlinear equation or com-
plementarity methods. In simpler applications, the conditions can often be solved
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analytically, even if the Bellman and Euler equations do not possess closed-form so-
lutions. In such situations, it is often further possible through implicit di�erentiation
to derive explicit closed-form expressions for the derivatives of the steady-state state,
action, and shadow price with respect to critical model parameters.

Knowledge of the steady-state of a deterministic Markov decision problem is often
very useful in applied work. For most well-posed deterministic problems, the opti-
mized process will converge to the steady-state, regardless of initial condition. The
steady-state, therefore, unequivocally characterizes the long-run behavior of the pro-
cess. The analyst will often be satis�ed to understand the dynamics of the process
around the steady-state, given that this is the region where the process tends to re-
side. For stochastic models, the state and action generally will not converge to speci�c
values and the long-run behavior of the model can only be described probabilistically.
In these cases, however, it is often practically useful to derive the steady-state of the
deterministic \certainty-equivalent" problem obtained by �xing all exogenous random
shocks at their respective means. Knowledge of the certainty-equivalent steady-state
can assist the analyst by providing a reasonable initial guess for the optimal policy,
value, and shadow price functions in iterative numerical solution algorithms designed
to solve the Bellman equation or Euler conditions. Also, one can often solve a hard
stochastic dynamic model by �rst solving the certainty-equivalent model, and then
solving a series of models obtained by gradually perturbing the variance of the shock
from zero back to its true level, always using the solution of one model as the starting
point for the algorithm used to solve the subsequent model.

8.3.1 Optimal Economic Growth

Consider an economy that produces and consumes a single composite good. Each
year begins with a predetermined amount of the good s in stock, of which an amount
x is invested and the remainder s� x is consumed, yielding a social bene�t u(s� x).
The amount of good available at the beginning of each year is a controlled Markov
process

st+1 = xt + �t+1f(xt)

where  is the capital survival rate (1 minus the depreciation rate), f is the aggre-
gate production function, and � is a positive production shock with mean 1. What
consumption-investment policy maximizes the sum of current and expected future
social bene�ts?

This is an in�nite horizon, stochastic model with one state variable, the stock of
good at beginning of the year s, and one choice variable, the amount of good invested
over the current year x, which is subject to the constraint 0 � x � s: The sum of
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current and expected future social bene�ts V (s), satis�es Bellman's equation

V (s) = max
0�x�s

fu(s� x) + ÆEV (x+ �f(x))g:

Assuming u0(0) = �1 and f(0) = 0, the constraints will never be binding at
an optimum and the shadow price of the composite good �(s) will satisfy the Euler
equilibrium conditions:

u0(s� x)� ÆE [�(x + �f(x))( + �f 0(x))] = 0

�(s) = u0(s� x):
These conditions imply that along the optimal path

u0t = ÆEt

�
u0t+1( + �t+1f

0
t)
�

where u0t is current marginal utility and �t+1f
0
t is the following period's marginal

product of capital. Thus, the utility derived from a unit of good today must equal
the discounted expected utility derived from investing it and consuming its yield
tomorrow.

The certainty-equivalent steady-state, which is obtained by �xing the production
shock � at its mean 1, are the stock level s�, investment level x�, and shadow price
�� that solve the nonlinear equation system

u0(s� � x�) = Æ��( + f 0(x�))

�� = u0(s� � x�)
s� = x� + f(x�):

The certainty-equivalent steady-state conditions imply the golden rule: 1�  + r =
f 0(x�), where Æ = 1=(1 + r). That is, the marginal product of capital must equal the
capital depreciation rate plus the interest rate. Totally di�erentiating the equation
system above with respect to the interest rate r:

@s�

@r
=

1 + r

f 00
< 0

@x�

@r
=

1

f 00
< 0

@��

@r
=
u
00

r

f 00
> 0:

Thus, a permanent rise in the interest rate will reduce the deterministic steady-state
stock and investment levels, and will raise the shadow price.
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8.3.2 Public Renewable Resource Management

A social planner wishes to maximize social bene�ts derived from harvesting a publicly-
owned resource. Each year begins with a predetermined stock of the resource s, of
which an amount x is harvested at a total cost c(x) and sold at a market clearing
price p(x). The remainder s � x is retained for reproduction. The stock of resource
available at the beginning of each period follows a controlled deterministic process

st+1 = g(st � xt):
What harvest policy maximizes the sum of current and future net social surplus?
What is the steady-state resource stock and harvest and how do they vary with the
interest rate?

This is an in�nite horizon, deterministic model with one state variable, the stock of
resource at beginning of the period s, and one choice variable, the amount of resource
harvested over the current period x, which is subject to the constraint 0 � x � s.
The current reward, net social surplus, is derived by integrating under the demand
curve and subtracting total harvest costs:

f(x) =

Z x

0

p(�) d� � c(x):

The value V (s) of the resource stock satis�es Bellman's equation

V (s) = max
0�x�s

f
Z x

0

p(�) d� � c(x) + ÆV (g(s� x))g:

Assuming p(0) = 1 and g(0) = 0, the constraint will never be binding at an
optimum and the shadow price of the resource �(s) will satisfy the Euler equilibrium
conditions:

p(x) = c0(x) + Æ�(g(s� x))g0(s� x)

�(s) = Æ�(g(s� x))g0(s� x):

These conditions imply that along the optimal path

pt = c0t + �t

�t = Æ�t+1g
0
t

where pt is the market price, c0t is the marginal harvest cost, and g0t is the marginal
future yield of stock in t. Thus, the market price of the harvested resource must cover
both the shadow price of the unharvested resource and the marginal cost of harvesting
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it. Moreover, the current value of one unit of the resource equals the discounted value
of its yield in the subsequent period.

The steady-state resource stock s�, harvest x�, and shadow price �� solve the
equation system

p(x�) = c0(x�) + Æ��g0(s� � x�)

�� = Æ��g0(s� � x�)

s� = g(s� � x�):

These conditions imply g0(s��x�) = 1+r. That is, in steady-state, the marginal rate
of growth of resource stock equals the interest rate. Totally di�erentiating this equa-
tion and making reasonable assumptions about the curvature of the growth function
g:

@s�

@r
=

1 + r

g00
< 0

@x�

@r
=

r

g00
< 0:

That is, as the interest rate rises, the steady-state stock and harvest fall.

8.3.3 Private Nonrenewable Resource Management

Amine owner wishes to maximize pro�ts derived from extracting and selling ore. Each
period begins with a predetermined stock of ore s, of which an amount x is extracted
at a total cost c(x) and sold at a market price p, which is assumed constant. What
extraction policy maximizes the sum of current and future pro�ts?

This is an in�nite horizon, deterministic model with one state variable, the stock of
ore at beginning of the period s, and one choice variable, the amount of ore extracted
over the current period x, which is subject to the constraint 0 � x � s: The current
reward, net pro�t, equals revenue from ore sales less the cost of extraction:

f(s; x) = p x� c(x):
The value V (s) of the mine containing ore stock s satis�es Bellman's equation

V (s) = max
0�x�s

fp x� c(x) + ÆV (s� x)g:

If p > c0(0), one can show that ore will always be extracted provided there are
stocks remaining. However, it is not possible to rule out the possibility that in
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some states it will be optimal to extract all that remains in the mine. That is, the
upper bound on x may be binding. As such, the Euler conditions take the form of a
complementarity condition. More speci�cally, the shadow price of the resource �(s)
is characterized by the following:

p� c0(x)� Æ�(s� x) = �

�(s) = Æ�(s� x) + max(�; 0)

where the ore extracted x and the long-run marginal pro�t of extraction � must
satisfy the complementarity condition

0 � x � s; x > 0 =) � � 0; x < s =) � � 0:

Thus, in any period, ore is extracted until the long-run marginal pro�t is driven to
zero or the content of the mine is exhausted, whichever comes �rst.

Under the assumption p > c0(0), the model admits only one steady state: s� =
x� = 0, �� = p� c0(0), and �� = (1� Æ)��. That is, the mine will be worked until its
contents are depleted. Until such time that the content of the mine is depleted,

pt = c0t + Æ�t

�t = Æ�t+1:

where pt is the market price and c0t is the marginal cost of extraction. That is, the
market price of extracted ore equals the shadow price of unextracted ore plus the
marginal cost of extraction. Also, the current-valued shadow price of unextracted ore
will grow at the rate of interest, or equivalently, the present-value shadow price will
remain constant.

8.3.4 Optimal Water Management

A water planner wishes to maximize social bene�ts derived from the water collected
in a reservoir. The water may be used either for irrigation or recreation. Irrigation
during the spring bene�ts agricultural producers, but reduces the reservoir level dur-
ing the summer, damaging recreational users. Speci�cally, if s is the water level at the
beginning of spring and an amount x is released for irrigation, producer bene�ts will
be a(x) and recreational user bene�ts will be u(s� x). Water levels are replenished
during the winter months by i.i.d. random rainfalls �, implying that the reservoir
level at the beginning of each year is a controlled Markov process

st+1 = st � xt + �t+1:
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What irrigation policy maximizes the sum of current and expected future bene�ts to
producers and users combined?

This is an in�nite horizon, stochastic model with one state variable, the reservoir
water level at beginning of the year s, and one choice variable, the amount of water
released for irrigation x, which is subject to the constraint 0 � x � s: The current
reward is the sum of producer and user bene�ts

f(s; x) = a(x) + u(s� x):
The value of the water in the reservoir satis�es Bellman's equation

V (s) = max
0�x�s

fa(x) + u(s� x) + ÆEV (s� x + �)g:
Assuming a0(0) and u0(0) are suÆciently large, the constraints will not be binding

at an optimal solution and the shadow price of water �(s) will satisfy the Euler
equilibrium conditions

a0(x)� u0(s� x)� ÆE�(s� x+ �) = 0

�(s) = u0(s� x) + ÆE�(s� x + �):

It follows that along the optimal path

a0t = �t = u0t + ÆE�t+1

where a0t and u
0
t are the marginal producer and user bene�ts, respectively. Thus, on

the margin, the bene�t received by producers this year from releasing one unit of
water must equal the marginal bene�t received by users this year from retaining the
unit of water plus the bene�ts of having that unit available for either irrigation or
recreation the following year.

The certainty-equivalent steady-state water level s�, irrigation level x�, and shadow
price �� solve the equation system

x� = ��

a0(x�) = ��

u0(s� � x�) = (1� Æ)a0(x�)
where �� is mean annual rainfall. These conditions imply that the certainty-equivalent
steady-state irrigation level and shadow price of water are not a�ected by the interest
rate. The certainty-equivalent steady-state reservoir level, however, is a�ected by the
interest rate. Totally di�erentiating the above equation system and making reasonable
assumptions about the curvature of the bene�t functions:

@s�

@r
=
Æ2a0

u00
< 0:

That is, as the interest rate rises, the certainty-equivalent steady-state reservoir level
falls.
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8.3.5 Optimal Monetary Policy

A monetary authority wishes to control the nominal interest rate x in order to min-
imize the volatility of the ination rate s1 and the gross domestic product (GDP)
gap s2. Speci�cally, the authority wishes to minimize expected discounted stream of
weighted squared deviations from zero targets

L(s) =
1

2
s>
s

where s is a 2x1 vector containing the ination rate and the GDP gap and 
 is a 2x2
constant positive de�nite matrix of weights. The ination rate and the GDP gap are
a joint controlled linear Markov process

st+1 = � + �st + x + �

where � and  are 2x1 constant vectors, � is a 2x2 constant matrix, and � is a
2x1 random vector with mean zero. For political reasons, the nominal interest rate
x cannot be negative. What monetary policy minimizes the sum of current and
expected future losses?

This is an in�nite horizon, stochastic model with two state variables, the ination
rate s1 and the GDP gap s2, and one choice variable, the nominal ination rate x,
which is subject to the constraint x � 0: In order to formulate this problem as a
maximization problem, one may posit a reward function that equals the negative of
the loss function

f(s) = �L(s):
Given this assumption, the sum of current and expected future rewards V (s) satis�es
Bellman's equation

V (s) = max
0�x
f�L(s) + ÆEV (g(s; x; �))g:

Given the structure of the model, one cannot preclude the possibility that the
nonnegativity constraint on the optimal nominal interest rate will be binding in cer-
tain states. As such, the shadow price function �(s) is characterized by the Euler
conditions

Æ>E�(g(s; x; �) = �

�(s) = �
s + Æ�>E�(g(s; x; �))

where the nominal interest rate x and the long-run marginal reward � from increasing
the nominal interest rate must satisfy the complementarity condition

x � 0; � � 0; x > 0 =) � = 0:
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It follows that along the optimal path

Æ>Et�t+1 = �t

�t = �
st + Æ�>E�t+1

xt � 0; �t � 0; xt > 0 =) �t = 0:

Thus, in any period, the nominal interest rate is reduced until either the long-run
marginal reward or the nominal interest rate is driven to zero.

8.3.6 Production-Adjustment Model

A competitive price-taking �rm wishes to manage production so as to maximize long
run pro�ts, given that production is subject to adjustment costs. In particular, if
the �rm produces a quantity q, it incurs production costs c(q) and adjustment costs
0:5a(q � l)2, where l is the preceding period's (lagged) production. The �rm can
sell any quantity it produces at the prevailing market price, which is an exogenous
Markov process

pt+1 = g(pt; �t+1):

What production policy maximizes the value of the �rm?
This is an in�nite horizon, stochastic model with two state variables, the current

market price p and lagged production l, and one choice variable, production q, which
is subject to the nonnegativity constraint q � 0. The current reward, short-run
pro�ts, equals revenue less production and adjustment costs

f(p; l; q) = p q � c(q)� 0:5a(q � l)2:
The value V (p; l) of the �rm, given the market price p and the previous period's
production l, satis�es Bellman's equation

V (p; l) = max
0�q
fp q � c(q)� a(q � l) + ÆEV (g(p; �); q)g:

Assuming a positive optimal production level in all states, the shadow price of
lagged production �(p; l) will satisfy the Euler equilibrium conditions

p� c0(q)� a0(q � l) + ÆE�(g(p; �); q) = 0

�(p; l) = a0(q � l):
It follows that along the optimal path

pt = c0t + (a0t � ÆEa0t+1)
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where c0t and a
0
t are the marginal production and adjustment costs in period t. Thus,

price equals the marginal cost of production plus the net (current less future) marginal
adjustment cost.

The certainty-equivalent steady-state production q� is obtained by assuming p is
�xed at its long-run mean �p:

�p = c0(q�) + (1� Æ)a0(0):

8.3.7 Production-Inventory Model

A competitive price-taking �rm wishes to manage production and inventories so as to
maximize long-run pro�ts. The �rm begins each period with a predetermined stock
of inventory s and decides how much to produce q and how much to store x, buying
or selling the resulting di�erence s+ q� x on the open market at the prevailing price
p. The �rm's production and storage costs are given by c(q) and k(x), respectively,
and the market price follows a purely exogenous Markov process

pt+1 = g(st; �t+1):

What production policy and inventory policy maximizes the value of the �rm?
This is an in�nite horizon, stochastic model with two state variables, the current

market price p and beginning inventories s, and two choice variables, production q
and ending inventories x, both of which are subject to nonnegativity constraints q � 0
and x � 0. The current reward, short-run pro�ts, equals net revenue from marketing
sales or purchases, less production and storage costs:

f(p; s; q; x) = p(s+ q � x)� c(q)� k(x):
The value V (p; s) of the �rm, given market price p and beginning inventories s,
satis�es Bellman's equation

V (p; s) = max
0�q;0�x

fp(s+ q � x)� c(q)� k(x) + ÆEV (g(p; �); x)g:

If production is subject to increasing marginal costs and c0(0) is suÆciently small,
then production will be positive in all states and the shadow price of beginning
inventories �(p; s) will satisfy the Euler equilibrium conditions:

p = c0(q)

ÆE�(g(p; �); x)� p� k0(x) = �

�(p; s) = p
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x � 0; � � 0; x > 0 =) � = 0:

It follows that along the optimal path,

pt = c0t

xt � 0; Etpt+1 � pt � k0t � 0; x > 0 =) Etpt+1 � pt � k0t = 0:

where pt denotes the market price, c0t denotes the marginal production cost, and k0t
denotes the marginal storage cost. Thus, the �rm's production and storage decisions
are independent. Production is governed by the conventional short-run pro�t max-
imizing condition that price equal the marginal cost of production. Storage, on the
other hand, is entirely driven by intertemporal arbitrage pro�t opportunities. If the
expected marginal pro�t from storing is negative, then no storage is undertaken. Oth-
erwise, stocks are accumulated up to the point at which the marginal cost of storage
equals the present value expected appreciation in the market price.

The certainty-equivalent steady-state obtains when p is �xed at its long-run mean
�p, in which case no appreciation can take place and optimal inventories will be zero.
The certainty-equivalent steady-state production is implicitly de�ned by the short-run
pro�t maximization condition.

8.3.8 Optimal Feeding

An livestock producer feeds his stock up to period T and then sells it at the beginning
of period T + 1 at a �xed price p per unit weight. Each period, the producer must
determine how much grain x to feed his livestock, given that grain sells at a constant
unit cost c. The weight of the livestock at the beginning of each period is a controlled
�rst-order deterministic process

st+1 = g(st; xt):

What feeding policy maximizes pro�t, given that the weight of the livestock in the
initial period, t = 0, is �s?

This is an �nite horizon, deterministic model with one state variable, the livestock
weight at beginning of the period s 2 [�s;1), and one choice variable, the amount
of feed purchased x 2 [0;1), which is subject to the constraint x � 0: The value of
livestock weighing s in period t satis�es Bellman's equation

Vt(s) = max
x�0
f�cx + ÆVt+1(g(s; x))g;

subject to the terminal condition

VT+1(s) = ps:
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If the marginal weight gain gx at zero feed is suÆciently large, the nonnegativity
constraint of feed will never be binding. Under these conditions, the shadow price of
livestock weight in period t, �t(s), will satisfy the Euler equilibrium conditions:

Æ�t+1(g(s; x))gx(s; x) = c

�t(s) = Æ�t+1(g(s; x))gs(s; x)

subject to the terminal condition

�T+1(s) = p:

It follows that along the optimal path

Æ�t+1gx;t = c

�t = Æ�t+1gs;t

where gx;t and gs;t represent, respectively, the marginal weight gain from feed and the
marginal decline in the livestock's ability to gain weight as it grows in size. Thus,
the cost of feed must equal the value of the marginal weight gain. Also, the present
valued shadow price grows at a rate that exactly counters the marginal decline in the
livestock's ability to gain weight.

8.4 Linear-Quadratic Control

The linear-quadratic control problem is an unconstrained Markov decision model with
a quadratic reward function

f(s; x) = F0 + Fss + Fxx+ 0:5s>Fsss+ s>Fsxx + 0:5x>Fxxx

and a linear state transition function

g(s; x; �) = G0 +Gss+Gxx+ �:

Here, s is an n-by-1 state vector, x is an m-by-1 action vector, F0 is a known constant,
Fs is a known 1-by-n vector, Fx is a known 1-by-m vector, Fss is a known n-by-n
matrix, Fsx is a known n-by-m matrix, Fxx is a known m-by-m matrix, G0 is a known
n-by-1 vector, Gs is a known n-by-n matrix, and Gx is a known n-by-m vector.
Without loss of generality, the shock � is assumed to have a mean of zero.

The linear-quadratic control model is of special importance because it is one of the
few discrete time continuous state Markov decision models with a �nite-dimensional
solution. By a conceptually simple but algebraically burdensome induction proof
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omitted here, one can show that the optimal policy and shadow price functions of the
in�nite horizon linear-quadratic control model are both linear in the state variable:

x(s) = �0 + �ss

�(s) = �0 + �ss:

Here, �0 is an m-by-1 vector, �s is an m-by-n matrix, �0 is an n-by-1 vector, and �s

is an n-by-n matrix.
The parameters �0 and �s of the shadow price function are characterized by the

nonlinear vector �xed point Riccati equations

�0 = �[ÆGs
>�sGx + Fsx][ÆGx

>�sGx + Fxx
>]�1[ÆGx

>[�sG0 + �0] + Fx
>]

+ÆGs
>[�sG0 + �0] + Fs

>

�s = �[ÆGs
>�sGx + Fsx][ÆGx

>�sGx + Fxx
>]�1[ÆGx

>�sGs + Fsx
>]

+ÆGs
>�sGs + Fss:

These �nite-dimensional �xed-point equations can typically be solved in practice using
function iteration. The recursive structure of these equations allow one to �rst solve
for �s by applying function iteration to the second equation, and then solve for �0 by
applying function iteration to the �rst equation. Once the parameters of the shadow
price function have been computed, one can compute the parameters of the optimal
policy via algebraic operations:

�0 = �[ÆGx
>�sGx + Fxx

>]�1[ÆGx
>[�sG0 + �0] + Fx

>]

�s = �[ÆGx
>�sGx + Fxx

>]�1[ÆGx
>�sGs + Fsx

>]

The relative simplicity of the linear-quadratic control problem derives from the
fact that the optimal policy and shadow price functions are known to be linear, and
thus belong to a �nite dimensional family. The parameters of the linear functions,
moreover, are characterized as the solution to a well-de�ned nonlinear vector �xed-
point equation. Thus, the apparently in�nite-dimensional Euler functional �xed-
point equation may be converted into �nite-dimensional vector �xed-point equation
and solved using standard nonlinear equation solution methods. This simpli�cation,
unfortunately, is not generally possible for other types of discrete time continuous
state Markov decision models.

A second simplifying feature of the linear-quadratic control problem is that the
shadow price and optimal policy functions depend only on the mean of the state shock,
but not its variance or higher moments. This is known as the certainty-equivalence
property of the linear-quadratic control problem. It asserts that the solution of the
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stochastic problem is the same as the solution of the deterministic problem obtained
by �xing the state shock � at its mean of zero. Certainty equivalence also is not a
property of more general discrete time continuous state Markov decision models.

Because linear-quadratic control models are relatively easy to solve, many analysts
compute approximate solutions to more general Markov decision models using the
method of linear-quadratic approximation. Linear quadratic approximation calls for
all constraints of the general problem to be discarded and for its reward and transition
functions to be replaced with by their second- and �rst-order approximations about
the steady-state. This approximation method, which is illustrated in the following
chapter, works well in some instances, for example, if the state transition rule is linear,
constraints are non-binding or non-existent, and if the shocks have relatively small
variation. However, in most economic applications, linear-quadratic approximation
will often render highly inaccurate solutions that di�er not only quantitatively but
also qualitatively from the true solution. For this reason, we strongly discourage the
use of linear-quadratic approximation, except in those cases where the assumptions
of the linear quadratic model are known to hold globally, or very nearly so.

8.5 Dynamic Games

Dynamic game models attempt to capture strategic interactions among a small num-
ber of dynamically optimizing agents when the actions of one agent a�ects the welfare
of the others. To simplify notation, we consider only in�nite horizon games. The the-
ory and methods developed, however, can be easily adapted to accommodate �nite
horizons.

The discrete time continuous state Markov m-agent game has the following struc-
ture: In every period, each agent i observes the state of an economic process s 2 S,
takes an action xi 2 X, and earns a reward fi(s; xi; x�i) that depends on the state
of the process and both the action taken by the agent and the actions taken by the
m � 1 other agents x�i. The state of the economic process is a jointly controlled
Markov process. Speci�cally, the state of the economic process in period t + 1 will
depend on the state in period t, the actions taken by all m agents in period t, and an
exogenous random shock �t+1 that is unknown in period t:

st+1 = g(st; xt; �t+1):

As with static games, the equilibrium solution to a Markov game depends on the
information available to the agents and the strategies they are assumed to pursue. We
will limit discussion to noncooperative Markov perfect equilibria, that is, equilibria
that yield a Nash equilibrium in every proper subgame. Under the assumption that
each agent can perfectly observe the state of the process and knows the policies



CHAPTER 8. CONTINUOUS STATE MODELS: THEORY 240

followed by the other agents, a Markov perfect equilibrium is a set of m policies of
state-contingent actions x�i : S 7! X, i = 1; 2; : : : ; m, such that policy x�i maximizes
the present value of agent i's current and expected future rewards, discounted at a
per-period factor Æ, given that other agents pursue their policies x��i(�). That is, for
each agent i, x�i (�) solves

max
fx(�)g

E0

TX
t=0

Ætfi(st; xi(st); x
�
�i(st))

The Markov perfect equilibrium for the m-agent game is characterized by a set of
m simultaneous Bellman equations

Vi(s) = max
x2Xi(s)

�
fi(s; x; x

�
�i(s)) + ÆE�Vi(g(s; x; x

�
�i(s); �))

	
:

whose unknowns are the value functions Vi(�) and optimal policies x�i (�), i = 1; 2; : : : ; m
of the di�erent agents. Here, Vi(s) denotes the maximum current and expected future
rewards that can be earned by agent i, given that other agents pursue their optimal
strategies.

8.5.1 Capital-Production Game

Consider two in�nitely-lived �rms that produce perishable goods that are close sub-
stitutes (say, donuts and bagels). Each �rm i begins period t with a predetermined
capital stock ki and must decide how much to produce qi. Its production cost ci(qi; ki)
depends on both the quantity produced and the capital stock. Prices are determined
by short-run market clearing conditions (Cournot competition). More speci�cally,
�rm i receives price pi = Pi(q1; q2) that depends both on its output and the output
of its competitor. The �rm must also decide how much to invest in capital. Speci�-
cally, if the �rm invests in new capital xi, it incurs a cost hi(xi) and its capital stock
at the beginning of the following period will be (1 � �)ki + xi where � is the capi-
tal depreciation rate. What are the two �rm's optimal production and investment
policies?

This is an in�nite horizon, deterministic 2-agent dynamic game with two state
variables, the capital stocks of the two producers, k1 and k2. Each agent i has
two decision variables, production qi and investment xi, which are subject to the
nonnegativity constraints qi � 0 and xi � 0. His current reward, net revenue, equals
Pi(q1; q2)qi � ci(qi; ki) � hi(xi). The Markov perfect equilibrium for the production-
capital game is represented by a pair of Bellman equations, one for each �rm, which
take the form

Vi(k1; k2) = max
qi�0;xi�0

fPi(q1; q2)qi � ci(qi; ki)� hi(xi) + ÆE�Vi(k̂1; k̂i)g

where k̂i = (1� �)ki + xi.
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8.5.2 Risk-Sharing Game

Consider two in�nitely-lived agents who must make consumption-investment deci-
sions. Each period, each agent i begins with a predetermined level of wealth si, of
which an amount xi is invested, and the remainder is consumed, yielding an utility
ui(si � xi). Agent i's wealth at the beginning of period t + 1 is determined entirely
by his investment in period t and an income shock �t+1, which is unknown at the
time the investment decision is made. More speci�cally, wealth follows a controlled
Markov process

sit+1 = gi(xit; �it+1):

Suppose now that the two agents co-insure against exogenous income risks by
agreeing to share their wealth in perpetuity. Speci�cally, the agents agree that, at
the beginning of any given period t, the wealthier of the two agents will transfer a
certain proportion � of the wealth di�erential to the poorer agent. Under this scheme,
agent i's wealth in period t+ 1, after the transfer, will equal

sit+1 = (1� �)gi(xit; �it+1) + �gj(xjt; �jt+1):

where j 6= i. If the wealth transfer is enforceable, but agents are free to consume and
invest freely, moral hazard will arise. In particular, both agents will have incentives to
shirk investment in favor of current consumption when co-insured. How will insurance
a�ect the agents' behavior, and for what initial wealth states s1 and s2 and share
parameter � will both agents be willing to enter into the insurance contract? How
does the correlation in the wealth shocks a�ect the value of the insurance contract?

This is an in�nite horizon, stochastic 2-agent dynamic game with two state vari-
ables, the wealth levels of the two agents s1 and s2. Each agent i has a single decision
variable, his investment xi, which is subject to the constraint 0 � xi � ŝi. His current
period reward, current utility, equals ui(ŝi� xi). The Markov perfect equilibrium for
the redistribution game is represented by a pair of Bellman equations, one for each
agent, which take the form

Vi(s1; s2) = max
0�xi�ŝi

fui(ŝi � xi) + ÆE�Vi(ŝ1; ŝ2)g;

where ŝi = (1 � �)gi(xi; �i) + �gj(xj; �j). Here, Vi(s1; s2) denotes the maximum
expected lifetime utility that can be obtained by agent i.

8.5.3 Marketing Board Game

Suppose that two countries are the sole producers of a commodity and that, in each
country, a government marketing board has the exclusive power to sell the commodity
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on the world market. The marketing boards compete with each other, attempting
to maximize the present value of their own current and expected future income from
commodity sales. More speci�cally, the marketing board in country i begins each
period with a pre-determined supply si of the commodity, of which it exports a
quantity qi and stores the remainder si�qi at a total cost ci(si�qi). The world market
price will depend on the total amount exported by both countries, p = p(q1 + q2).
The supplies available in the two countries at the beginning period t+1 are given by

sit+1 = xit + yit

where new production in both countries, y1t and y2t, are assumed to be exogenous
and independently and identically distributed over time. What are the optimal export
strategies for the two marketing boards?

This is an in�nite horizon, stochastic 2-agent dynamic game with two state vari-
ables, the beginning supplies in the two counties s1 and s2. The marketing board
for country i has a single decision variable, the export level qi, which is subject
to the constraint 0 � xi � si. Country i's current reward, net income, equals
p(q1 + q2)qi � ci(si � qi). The Markov perfect equilibrium for the marketing board
game is captured by a pair of Bellman equations, one for each marketing board, which
take the form

Vi(s1; s2) = max
0�qi�si

fp(q1 + q2)qi � ci(si � qi) + ÆEyVi(s1 � q1 + y1; s2 � q2 + y2)g:

Here, Vi(s1; s2) denotes the maximum current and expected future income that can
be earned by marketing board i, given that marketing board j remains committed to
its export policy.

8.6 Rational Expectations Models

We now examine dynamic stochastic models of economic systems in which arbitrage-
free equilibria are enforced through the collective, decentralized actions of atomistic
dynamically optimizing agents. We assume that agents are rational in the sense
that their expectations are consistent with the implications of the model as whole.
Examples of phenomenon that may be studied in a rational expectations framework
include asset returns in a pure exchange economy, pricing of primary commodities,
and agricultural production subject to price controls.

We limit attention to dynamic models of the following form: At the beginning of
period t, an economic system emerges in a state st. Agents observe the state of the
system and, by pursuing their individual objectives, produce a systematic response xt
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governed by an equilibrium condition that depends on expectations of the following
period's state and action

f(st; xt; Eth(st+1; xt+1)) = 0:

The economic system then evolves to a new state st+1 that depends on the current
state st and response xt, and an exogenous random shock �t+1 that is realized only
after the system responds at time t:

st+1 = g(st; xt; �t+1):

In many applications, the equilibrium condition f = 0 admits a natural arbitrage
interpretation. In these instances, fi > 0 indicates activity i generates pro�ts on the
margin, so that agents have a collective incentive to increase xi; fi < 0 indicates that
activity i generates loses on the margin, so that agents have a collective incentive to
decrease xi. An arbitrage-free equilibrium exists if and only if f = 0.

The state space S 2 <n, which contains the states attainable by the economic
system, and the response space X 2 <m, which contains the admissible system re-
sponses, are both closed convex nonempty sets. The functions f : <n+m+p 7! <m,
g : <n+m+n 7! <n, and h : <n+m 7! <p are continuously di�erentiable and the per-
period discount factor Æ is less than one. The exogenous random shocks �t are iden-
tically distributed over time, mutually independent, and independent of past states
and responses. In some instances, the range of admissible responses may vary with
the state of the process s. In such cases, the restricted response space will be denoted
X(s). The stipulation that the response in any period depends only the expecta-
tions of only the subsequent period's state and response is more general than �rst
appears. By introducing new accounting variables, responses can be made dependent
on expectations of states and responses further in the future.

The primary task facing an economic analyst is to derive the rational expectations
equilibrium system response x = x(s) for each state s. The response function x(�) is
characterized implicitly as the solution to a functional equation

f
�
s; x(s); E�

h
h(g(s; x(s); �); x(g(s; x(s); �)))

i�
= 0:

The equilibrium condition takes a di�erent form when the system response is
constrained. Suppose, for example, that responses are subject to bounds of the form

a(s) � x � b(s);

where a : S 7! X and b : S 7! X are continuous functions of the state s. In these
instances, the arbitrage condition takes the form

f(st; xt; Eth(st+1; xt+1)) = �t



CHAPTER 8. CONTINUOUS STATE MODELS: THEORY 244

where xt and �t satisfy the complementarity condition

a(st) � x � b(st); xti > ai(st) =) �ti � 0; xti < bi(s) =) �ti � 0:

Here, �t is am m-vector whose ith element, �ti, measures the marginal bene�t from
activity i. In equilibrium, �ti must be nonpositive if xti is less than its upper bound, for
otherwise agents can gain by increasing activity i; similarly, �ti must be nonnegative if
xti is greater than its lower bound, for otherwise agents can gain by reducing activity
i. And if xti is neither at its upper or lower bound, �ti must be zero to ensure the
absence of arbitrage opportunities from revising the level of activity i.

8.6.1 Asset Pricing Model

Consider a pure exchange economy in which a representative in�nitely-lived agent
allocates wealth between immediate consumption and investment. Wealth is held
in shares, st, of claims that pay a dividend of dt units of a consumption good per
share with the current price of a share being pt. The representative agent's objective
is choose consumption levels, ct, to maximize discounted expected utility subject
to an intertemporal budget constraint. The budget constraint stipulates that the
current value of shares purchased in this period must equal the total dividends paid
on beginning of period shares less consumption:

pt(st+1 � st) = dtst � ct
which implies the state transition equation

st+1 = st + (dtst � ct)=pt:
Thus the agent solves

V (st; dt; pt) = max
ct2[0;dtst]

E0

" 1X
t=0

ÆtU(ct)

#
s.t. st+1 = st + (dtst � ct)=pt:

Under mild regularity conditions, the agent's dynamic optimization problem has an
unique solution that satis�es the �rst-order Euler condition

U 0(ct)pt = ÆEt

h
U 0(ct+1)(pt+1 + dt+1)

i
(see exercise 8.21). The Euler condition asserts that along an optimal consumption
path the marginal utility of consuming one unit of wealth today equals the marginal
bene�t of investing the unit of wealth and consuming it and its dividend tomorrow.

In a representative agent economy, all agents behave in identical fashion and hence
no shares are bought or sold (autarky). Furthermore, if we normalize the total number
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of shares to equal the population size then the consumption level will equal ct = dt.
The model is closed by assuming that process dt is an exogenous Markov process

dt+1 = g(dt; �t+1):

The asset pricing model is an in�nite horizon, stochastic model that may be
formulated with one state variable, the dividend level d, one response variable, the
asset price p, and one equilibrium condition

U 0(dt)pt � ÆEt[U
0(dt+1)(pt+1 + dt+1)] = 0;

which asserts that the expected marginal utility from saving is zero.
A solution to the rational expectations asset pricing model is a function p(d) that

gives the equilibrium asset price p in terms of the exogenous dividend level d. From
the dynamic equilibrium conditions, the asset return function is characterized by the
functional equation

U 0(d)p(d)� ÆE�

h
U 0
�
g(d; �)

��
p(g(d; �)) + g(d; �)

�i
= 0:

In the notation of the general model, with s = d and x = p,

h(s; x) = U 0(s)(x+ s);

and

f(s; x; Eh) = U 0(s)x� ÆEh:

8.6.2 Competitive Storage

Consider a market for a storable primary commodity. Each period t begins with a
predetermined supply of the commodity st, of which an amount qt is sold to consumers
at a market clearing price pt = P (qt) and the remainder xt is stored. Supply at the
beginning of the following period is the sum of current carryout and exogenous new
production yt+1, which is uncertain in period t:

st+1 = xt + yt+1:

Competitive storers seeking to maximize expected pro�ts guarantee that pro�t
opportunities are fully exploited in equilibrium. In particular,

ÆEt[pt+1]� pt � c = �t

xt � 0; �t � 0: xt > 0 =) �t = 0
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where �t equals pro�t from storing one unit of the commodity. Whenever expected
pro�ts are positive, storers increase stockholdings, raising the current market price
and lowering the expected future price, until pro�ts are eliminated. Conversely, when-
ever expected pro�ts are negative, storers decrease stockholdings, lowering the current
market price and raising the expected future price, until either expected losses are
eliminated or stocks are depleted.

The commodity storage model is an in�nite horizon, stochastic model. The model
may be formulated with one state variable, the supply s available at the beginning of
the period, one response variable, the storage level x, and one equilibrium condition

ÆEt [P (st+1 � xt+1)]� P (st � xt)� c = �t

xt � 0; �t � 0; xt > 0 =) �t = 0:

A solution to the commodity storage model formulated in this fashion is a function
x(�) that gives the equilibrium storage in terms of the available supply. From the
dynamic equilibrium conditions, the equilibrium storage function is characterized by
the functional complementarity condition

ÆEy[P (x(s) + y � x(x(s) + y))]� P (s� x(s))� c = �(s)

x(s) � 0; �(s) � 0; x(s) > 0 =) �(s) = 0:

In the notation of the general model

h(s; x) = P (s� x)

g(s; x; y) = s+ y � x

and

f(s; x; Eh) = ÆEh� P (s� x)� c:
The commodity storage model also admits an alternate formulation with the mar-

ket price p as the sole response variable. In this formulation, the equilibrium condition
takes the form

ÆEt[pt+1]� pt � c = �t

pt � P (st); �t � 0; pt > P (st) =) �t = 0:

A solution to the commodity storage model formulated in this fashion is a function
�(�) that gives the equilibrium market price in terms of the available supply. From
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the dynamic equilibrium conditions, the equilibrium price function is characterized
by the functional complementarity condition

ÆEy[�(s�D(�(s) + y)]� �(s)� c = �(s)

�(s) � P (s); �(s) � 0; �(s) > P (s) =) �(s) = 0:

where D = P�1 is the demand function. In the notation of the general model

h(s; p) = p

g(s; p; y) = s+ y �D(p)

and

f(s; p; Eh) = ÆEh� p� c:
The two formulations are mathematically equivalent. The equilibrium price func-

tion may be derived from the equilibrium storage function through the relation

�(s) = P (s� x(s)):
The equilibrium storage function may be derived from the equilibrium price function
through the relation

x(s) = s�D(�(s)):

8.6.3 Government Price Controls

Consider a market for an agricultural commodity in which the government is com-
mitted to maintaining a minimum price through the management of a public bu�er
stock. In particular, the government stands ready to purchase and store unlimited
quantities of the commodity at a �xed price p� in times of excess supply and to sell
any quantities in its stockpile at the price p� in times of short supplies. Assume that
there is no private stockholding.

Each year t begins with a predetermined supply of the commodity st, of which
an amount qt is sold to consumers at a market clearing price pt = P (qt) and the
remainder xt is stored by the government. Supply at the beginning of the following
year is the sum of government stocks and new production, which equals the acreage
planted by producers at times an exogenous per-acre yield yt+1, which is uncertain in
year t

st+1 = xt + atyt+1:
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In making planting decisions, producers maximize expected pro�ts by equating ex-
pected per-acre revenue to the marginal cost of production, which is a function of the
acreage planted

ÆEtpt+1yt+1 = c(at):

The government price control model is an in�nite horizon, stochastic model with
two state variables, the supply s available at the beginning of the period and the yield
y, two response variables, the acreage planted a and government storage x, and two
equilibrium conditions

ÆEtP (st+1 � xt+1)yt+1 � c(at) = 0;

which asserts that the marginal expected pro�t from planting is zero, and

xt � 0; p� � P (st � xt); xt > 0 =) p� = P (st � xt);
which asserts that the government will store the quantities necessary to enforce the
price oor, but will not store otherwise. A solution to the government price control
model are a pair of functions x(�) and a(�) that give government storage and acreage
planting in terms of available supply. From the dynamic equilibrium conditions, the
equilibrium government storage and acreage planting functions are characterized by
the simultaneous functional complementarity problem

ÆEy

h
P
�
x(s) + y � x(x(s) + y)

�i
� P (s� x(s))� c(x(s)) = 0

and

x(s) � 0; p� � P (s� x(s)); x(s) > 0 =) p� = P (s� x(s)):
In the notation of the general model the state variable is (s; y), the response variable
is (x; a) and the shock process is y. The expectation function is

h(s; y; x; a) = P (s� x)y
and the equilibrium function is

f(s; x; Eh) =

�
p� � P (s� x)
ÆEh� c(a)

�

with a unbounded and x 2 [0;1].
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Exercises

8.1. An industrial �rm's pro�t in period t

�(qt) = �0 + �1qt � 0:5q2t

is a function of its output qt. The �rm's production process generates an en-
vironmental pollutant. Speci�cally, if xt is the level of pollutant in the envi-
ronment in period t, then the level of the pollutant the following period will
be

xt+1 = �xt + qt

where 0 < � < 1.

A �rm operating without regard to environmental consequences produces at its
pro�t maximizing level qt = �1. Suppose that the social welfare, accounting for
environmental damage, is given by

1X
t=0

Æt [�(qt)� cxt]

where c is the unit social cost of su�ering the pollutant and Æ < 1 is the social
discount factor.

(a) Set up the social planner's decision problem of determining the stream of
production levels that maximizes net social welfare. Speci�cally, formulate
Bellman's equation, clearly identifying the states and actions, the reward
function, the transition rule, and the value function.

(b) Assuming an internal solution, derive and interpret the Euler conditions
for socially optimal production. What does the derivative of the value
function represent?

(c) Solve for the steady-state socially optimal production level q� and pollution
level x� in terms of the model parameters (�0; �1; Æ; �; c).

(d) Determine the per-unit tax on output � that will induce the �rm to produce
at the steady-state socially optimal production level q�.
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8.2. Consider the problem of harvesting a renewable resource over an in�nite time
horizon. For year t, let st denote the resource stock at the beginning of the year,
let xt denote the amount of the resource harvested, let pt = p(xt) = �0 � �1xt
denote the market clearing price, and let ct = c(st) = �0 + �1st denote the unit
cost of harvest. Assume an annual interest rate r and a stock growth dynamic
st+1 = st + (�s� st)� xt where �s is the no-harvest steady-state stock level.

(a) Formulate and interpret the conditions that characterize the optimal solu-
tion to the social planner's problem of maximizing the discounted sum of
net social surplus over time.

(b) Formulate and interpret the conditions that characterize the optimal so-
lution to the monopolist's problem of maximizing the discounted sum of
pro�ts over time.

(c) In (a) and (b), explicitly solve the steady-state conditions for the steady-
state harvest and stock levels, x� and s�. Does the monopolist or the social
planner maintain the larger steady-state stock of resource?

(d) How do the steady-state equilibrium stock levels change if demand rises
(i.e., if �0 rises)? How do they change if the harvest cost rises (i.e., if �0
rises)?

8.3. Consider the optimal management of a timber stand whose biomass at time t
is St. The biomass transition function is described by

lnSt+1=St � N(�; �2):

The decision problem is to determine when to clear cut and replant the entire
stand. The price obtained for cut timber is p dollars per unit and the cost of
replanting is K dollars. The period after cutting, S = 0.

(a) Formulate and interpret Bellman's equation.

(b) What conditions characterize the certainty equivalent steady-state?

8.4. Repeat the last exercise but assume now that the per unit price of cut timber
satis�es

ln(Pt+1) = �p+ �
�
ln(Pt)� �p

�
+ et+1;

where e � i:i:d: N(0; �2) and is independent of S.
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8.5. Consider an aquaculturist that wishes to maximize the present value of pro�ts
derived from harvesting cat�sh grown in a pond. For period t, let st denote the
quantity of cat�sh in the pond at the beginning of the period and let xt denote
the quantity of cat�sh harvested. Assume that the market price p of cat�sh is
constant over time and that the total cost of harvesting in period t is given by
ct = c(st; xt) = �xt � �(stxt � 0:5x2t ). Assume an annual discount factor Æ > 0
and a stock growth dynamic st+1 = (st � xt), where  > 1.

(a) Formulate and interpret the Bellman equation that characterizes the opti-
mal harvest policy.

(b) Formulate and interpret the Euler conditions that characterize the optimal
harvest policy.

(c) How does the steady-state stock level vary with the discount rate?

8.6. Consider a in�nite-horizon, perfect foresight model

f(st; xt; xt+1) = 0

st+1 = g(st; xt)

where st and xt denote, respectively, the state of the economy and the response
of agents in the economy at time t.

(a) How would you compute the steady-state (s�; x�) of the economic system?

(b) How would you compute the function x(�), that relates the action of agents
to the state of the economy: xt = x(st)?

8.7. At time t, a �rm earns net revenue

�t = pyt � rkt � �tkt � ct

where p is the market price, yt is output, r is the capital rental rate, kt is capital
at the beginning of the period, ct is the cost of adjusting capital, and �t is tax
paid per unit of capital. The �rm's production function, adjustment costs, and
tax rate are given by

yt = �kt;

ct = 0:5�(kt+1 � kt)2;
�t = � + 0:5kt:
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Assume that the unit output price p and the unit capital rental rate r are both
exogenously �xed and known; also assume that the parameters � > 0, � > 0,
 > 0, and � > 0 are given. Formulate the �rm's problem of maximizing the
present value of net revenue over an in�nite time horizon. Speci�cally:

(a) Identify the state and action variables, the reward function, and the tran-
sition function of this problem.

(b) Write Bellman's functional equation. What does the value function repre-
sent?

(c) Assuming an internal solution, derive the Euler conditions and interpret
them. What does the shadow price function represent?

(d) What e�ect does an increase in the base tax rate, � , have on output in the
long run.

(e) What e�ect does an increase in the discount factor, Æ, have on output in
the long run.

8.8. Consider the optimal growth model in section 8.3.1. Find and sign
@s�

@
,
@x�

@
,

and
@��

@
.

8.9. Consider the renewable resource model in section 8.3.2. However, now assume
that the renewable resource is entirely owned by a pro�t-maximizing monopo-
list. Will the steady-state harvest and stock levels be greater for the monopolist
or for the social planner? Give conditions under which a \regular" steady-state
will exist. What if these conditions are not satis�ed?

8.10. Hogs breed at a rate �. That is, if a farmer breeds xt hogs during period t,
there will be (1 + �)xt hogs at the beginning of period t+ 1. At the beginning
of any period, hogs can be marketed for a pro�t p per hog. Only the hogs not
sent to market at the beginning of the period are available for breeding during
the period. A farmer has H hogs at the beginning of period 0. Find the hog
marketing strategy that maximizes the present value of pro�ts over a T -period
horizon.

8.11. A �rm has a contractual obligation to deliver Q units of its product to a buyer
�rm at the beginning of period T ; that is, letting xt denote inventories on
hand at the beginning of period t, the �rm must produce suÆcient quantities
in periods 0; 1; 2; : : : ; T � 1 so as to ensure that xT � Q. The cost of producing
qt units in period t is given by c(qt), where c

0 > 0. The unit cost of storage is
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k dollars per period; due to spoilage, a proportion � of inventories held at the
beginning of one period do not survive to the following period. The �rm's initial
inventories are x0 where 0 < x0 < Q. The �rm wishes to minimize the present
value of the cost of meeting its contractual obligation; assume a discount factor
Æ < 1.

(a) Identify the state and action variables, the reward function, and the tran-
sition function of this problem.

(b) Write Bellman's functional equation. What does the value function repre-
sent?

(c) Derive the Euler conditions and interpret them. What does the shadow
price function represent?

(d) Assuming increasing marginal cost, c00 > 0, qualitatively describe the op-
timal production plan.

(e) Assuming decreasing marginal cost, c00 < 0, qualitatively describe the op-
timal production plan.

8.12. A subsistence farmer grows and eats a single crop. Production, yt, depends on
how much seed is on hand at the beginning of the year, kt, according to yt = k�t
where 0 < � < 1. The amount kept for next year's seed is the di�erence between
the amount produced and the amount consumed, ct:

kt+1 = yt � ct:

The farmer has a time-additive logarithmic utility function and seeks to maxi-
mize

TX
t=0

Æt ln(ct):

subject to having an initial stock of seed, k0.

(a) Identify the state and action variables, the reward function, and the tran-
sition function of this problem.

(b) Write Bellman's functional equation. What does the value function repre-
sent?

(c) Derive the Euler conditions and interpret them. What does the shadow
price function represent?
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(d) Show that the value function has the form

V (kt) = A +B ln(kt)

and that the optimal decision rule for this problem is

kt+1 = Cyt;

�nd the values for A, B, and C.

8.13. A �rm competes in a mature industry whose total pro�t is a �xed amount X
every year. If the �rm captures a fraction pt of total industry sales in year
t, it makes a pro�t ptX. The fraction of sales captured by the �rm in year t
is a function pt = f(pt�1; at�1) of the fraction it captured the preceding year
and its advertising expenditures the preceding year, at�1. Find the advertising
policy that maximizes the �rm's discounted pro�ts over a �xed time horizon of
T years. Assume p0 and a0 are known.

(a) Identify the state and action variables, the reward function, and the tran-
sition function of this problem.

(b) Write Bellman's functional equation. What does the value function repre-
sent?

(c) Derive the Euler conditions and interpret them. What does the derivative
of value function represent?

(d) What conditions characterize the steady-state optimal solution?

8.14. A corn producer's net per-acre revenue in year t is given by

ct = pyt � cxt � wlt

where p is the unit price of corn ($/bu.), yt is the corn yield (bu./acre), c is the
unit cost of fertilizer ($/lb.), xt is the amount of fertilizer applied (lbs./acre), w
is the wage rate ($/man-hour), and lt is the amount of labor employed (man-
hours/acre). The per-acre crop yield in year t is a function

yt = f(lt; xt; st)

of the amount of labor employed and fertilizer applied in year t and the level
of fertilizer carryin st from the preceding year. Fertilizer carryout in year t is a
function

st+1 = f(xt; st)
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of the amount of fertilizer applied and the level of fertilizer carryin in year
t. Assume that future corn prices, fertilizer costs, and wage rates are known
with certainty. The corn producer wishes to maximize the expected present
value of net revenues over a �nite horizon of T years. Formulate the producer's
optimization problem. Speci�cally,

(a) Identify the state and action variables, the reward function, and the tran-
sition function of this problem.

(b) Write Bellman's functional equation. What does the value function repre-
sent?

(c) Derive the Euler conditions and interpret them. What does the derivative
of value function represent?

(d) What conditions characterize the steady-state optimal solution?

8.15. The role of commodity storage in intertemporal allocation has often been con-
troversial. In particular, the following claims have often been made: a) Compet-
itive storers, in search of speculative pro�ts, tend to hoard a commodity|that
is, they collectively store more than is socially optimal, and b) A monopolistic
storer tends to dump a commodity at �rst in order to extract monopoly rents
in the future|that is, he/she stores less than is socially optimal. Explore these
two propositions in the context of a simple intraseasonal storage model in which
a given amount Q of a commodity is to be allocated between two periods. Con-
sumer demand is given by pi = a � qi for periods i = 1; 2, and the unit cost
of storage between periods is k. There is no new production in period 2, so
q1 + q2 = Q. Speci�cally, answer each of the following:

(a) Determine the amount stored under the assumption that there are a large
number of competitive storers.

(b) Determine the amount stored under the assumption that there is a single
pro�t-maximizing storer who owns the entire supply Q at the beginning of
period 1.

(c) Taking expected total consumer surplus less storage costs as a measure of
societal welfare, determine the socially optimal level of storage. Address
the two comments above.

(d) Consider an Economist who rejects net total surplus as a measure of social
welfare. Why might he/she still wish to �nd the level of storage that
maximizes total surplus?

To simplify the analysis, assume that the discount factor is 1 and that the
storer(s) are risk neutral and possess perfect price foresight.
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8.16. Consider an industry of identical price taking �rms. For the representative �rm,
let st denote beginning capital stock, let xt denote newly purchased capital
stock, let qt = f(st + xt) denote production, let k denote the unit cost of new
capital, and let  > 0 denote the survival rate of capital. Furthermore, let
pt = p(qt) be the market clearing price. Find the perfect foresight competitive
equilibrium for this industry.

8.17. Show that the competitive storage model in section 8.6.2 can be formulated with
the equilibrium storage function as the sole unknown. Hint: Write the arbitrage
storage condition in the form f(st; xt; Eth(xt+1)) = 0 for some appropriately
de�ned function h.

8.18. Show that the competitive storage model of section 8.6.2 can be recast as a dy-
namic optimization problem. In particular, formulate a dynamic optimization
problem in which a hypothetical social planner maximizes the discounted ex-
pected sum of consumer surplus less storage costs. Derive the Euler conditions
to show that, under a suitable interpretation, they are identical to the rational
expectations equilibrium conditions of the storage model.

8.19. Consider the production-inventory model of section 8.3.7. Show that the value
function is of the form V (p; s) = ps + W (p) where W is the solution to a
Bellman functional equation. Can you derive general conditions under which
one can reduce the dimensionality of a Bellman equation?

8.20. Consider the monetary policy model of section 8.3.5. Derive the certainty-
equivalent steady-state ination rate, GDP gap, nominal interest rate, and
shadow prices under the simplifying assumption that the nominal interest rate
is unconstrained.

8.21. Demonstrate that the problem

V (st; dt; pt) = max
ct2[0;dtst]

E0

" 1X
t=0

ÆtU(ct)

#
s.t. st+1 = st + (dtst � ct)=pt:

leads to the Euler condition

ÆEt[U
0(ct+1)(pt+1 + dt+1)] = U 0(ct)pt:



Chapter 9

Discrete Time Continuous State

Dynamic Models: Methods

This chapter discusses numerical methods for solving discrete time continuous state
dynamic economic models. Such models give rise to functional equations whose un-
knowns are entire functions de�ned on a subset of Euclidean space. For example, the
unknown of Bellman's equation

V (s) = max
x2X(s)

ff(s; x) + ÆE�V (g(s; x; �))g

is the value function V (�). And the unknown of a rational expectations equilibrium
condition

f(s; x(s); E�h(g(s; x(s); �); x(g(s; x(s); �)))) = 0

is the response function x(�).
In most applications, these functional equations lack known closed form solu-

tion and can only be solved approximately using computational methods. Among
the computational methods available, linear-quadratic approximation and space dis-
cretization historically have been popular among economists due to the relative ease
with which they can be implemented. However, in most applications, these methods
either provide unacceptably poor approximations or are computationally ineÆcient.

In recent years, economists have begun to experiment with projection methods
pioneered by physical scientists. Among the various projection methods available, the
collocation method is the most useful for solving dynamic models in Economics and
Finance. In most applications, the collocation method is exible, accurate, and nu-
merically eÆcient. It can also be developed directly from basic numerical integration,
approximation, and root�nding techniques.

257
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The collocation method employs a conceptually straightforward strategy to solve
functional equations. Speci�cally, the unknown function is approximated using a lin-
ear combination of n known basis functions whose n coeÆcients are �xed by requiring
the approximant to satisfy the functional equation, not at all possible points of the
domain, but rather at n prescribed points called the collocation nodes. The collo-
cation method e�ectively replaces an in�nite-dimensional functional equation with
a �nite-dimensional nonlinear equation that can be solved using standard numerical
root�nding, �xed-point, and complementarity techniques.

Unfortunately, the widespread applicability of the collocation method to economic
and �nancial models has been hampered by the absence of publicly available general
purpose computer code. We address this problem by developing computer routines
that perform the essential computations for a broad class of dynamic economic and
�nancial models. Below, the collocation method is developed in greater detail for
single- and multiple-agent decision Bellman equations and rational expectations mod-
els. Application of the method is illustrated with a variety of examples.

9.1 Traditional Solution Methods

Before discussing collocation methods for continuous state Markov decision models
in greater detail, let us briey examine the two numerical techniques that historically
have been popular among economists for computing approximate solutions to such
models: space discretization and linear-quadratic approximation.

Space discretization calls for the continuous state Markov decision model to be
replaced with a discrete state and action decision model that closely resembles it. The
resulting discrete state and action model is then solved using the dynamic program-
ming methods discussed in Chapter 7. To \discretize" the state space of a continuous
state Markov decision problem, one partitions the state space S into �nitely many re-
gions, S1; S2; : : : ; Sn. If the action space X is also continuous, it too is partitioned into
�nitely many regions X1; X2; : : : ; Xm. Once the space and action spaces have been
partitioned, the analyst selects representative elements, si 2 Si and xj 2 Xj, from
each region. These elements serve as the state and action spaces of the approximating
discrete state discrete action Markov decision problem. The transition probabilities
of the discrete state discrete action space problem are computed by integrating with
respect to the density of the random shock:

P (si0jsi; xj) = Pr[g(si; xj; �) 2 Si0]:
When the state and action spaces are bounded intervals on the real line, say, S =
[smin; smax] and X = [xmin; xmax], it is often easiest to partition the spaces so that the
nodes are equally-spaced and the �rst and �nal nodes correspond to the endpoints
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of the intervals. Speci�cally, set si = smin + (i � 1)ws and xj = xmin + (j � 1)wx,
for i = 0; 1; : : : ; n and j = 0; 1; : : : ; m, where ws = (smax � smin)=(n � 1) and wx =
(xmax � xmin)=(m� 1). If the model is stochastic, the transition probabilities of the
approximating discrete state decision model are given by

P (si0jsi; xj) = Pr[si0 � ws=2 � g(si; xj; �) � si0 + ws=2]:

Another popular method for solving dynamic optimizationmodels is linear-quadratic
approximation. Linear-quadratic approximation calls for the state transition function
g and objective function f to be replaced with linear and quadratic approximants,
respectively. Linear-quadratic approximation is motivated by the fact that an uncon-
strained Markov decision problem with linear transition and quadratic objective has
a closed-form solution that is relatively easy to derive numerically. Typically, the lin-
ear and quadratic approximants of g and f are constructed by forming the �rst- and
second-order Taylor expansions around the certainty-equivalent steady-state. When
passing to the linear-quadratic approximation, any constraints on the action, includ-
ing nonnegativity constraints, must be discarded.

The �rst step in deriving an approximate solution to a continuous state Markov
decision problem via linear-quadratic approximation is to compute the certainty-
equivalent steady-state. If �� denotes the mean shock, the certainty-equivalent steady-
state state s�, optimal action x�, and shadow price �� are characterized by the non-
linear equation system:

fx(s
�; x�) + Æ��gx(s�; x�; ��) = 0

�� = fs(s
�; x�) + Æ��gs(s

�; x�; ��)

s� = g(s�; x�; ��):

Typically, the nonlinear equation may be solved for the steady-state values of s�,
x�, and �� using standard nonlinear equation methods. In one-dimensional state
and action models, the conditions can often be solved analytically. Here, fx, fs, gx,
and gs denote partial derivatives whose dimensions are 1 � m, 1 � n, n � m, and
n�n, respectively, where n and m are the dimensions of the state and action spaces,
respectively. Here, the certainty-equivalent steady-state shadow price �� is expressed
as a 1� n row vector.

The second step is to replace the state transition function g and the reward func-
tion f , respectively, with their �rst- and second-order Taylor series approximants
expanded around the certainty-equivalent steady-state:

f(s; x) � f � + f �s (s� s�) + f �x(x� x�) + 0:5(s� s�)>f �ss(s� s�)
+(s� s�)>f �sx(x� x�) + 0:5(x� x�)>f �xx(x� x�)
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g(s; x; �) � g� + g�s(s� s�) + g�x(x� x�):
Here, f �, g�, f �s , f

�
x , g

�
s , g

�
x, f

�
ss, f

�
sx, and f �xx are the values and partial derivatives

of f and g evaluated at the certainty-equivalent steady-state. If n and m are the
dimensions of the state and action spaces, respectively, then the orders of these vectors
and matrices are as follows: f � is a constant, f �s is 1 � n, f �x is 1 �m, f �ss is n � n,
f �sx is n�m, f �xx is m�m, g� is n� 1, g�s is n� n, and g�x is n�m.

The shadow price and optimal policy functions of the resulting linear-quadratic
control problem will be linear. Speci�cally:

x(s) = x� + �(s� s�)

�(s) = �� + �(s� s�):

The slope matrices of the policy and shadow price functions, � and �, are character-
ized by the nonlinear vector �xed point equations

� = �[Æg�s>�g�x + f �sx][Æg
�
x
>�g�x + f �xx

>]�1[Æg�x
>�g�s + f �sx

>] + Æg�s
>�g�s + f �ss

� = �[Æg�x>�g�x + f �xx
>]�1[Æg�x

>�g�s + f �sx
>]:

These �xed point equations can usually be solved using numerically by function it-
eration, typically with initial guess � = 0, or, if the problem is one dimensional,
analytically by applying the quadratic formula. In particular, if the problem has
one dimensional state and action spaces, and if f �ssf

�
xx = f �2sx , a condition often en-

countered in economic problems, then the slope of the shadow price function may be
computed analytically as follows:

� = [f �ssg
�2
x � 2f �ssf

�
xxg

�
sg
�
x + f �xxg

�2
s � f �xx=Æ]=g�2x

9.2 The Collocation Method

In order to describe the collocation method for solving continuous state Markov
decision models, we will limit our discussion to in�nite-horizon models with one-
dimensional state and action spaces and univariate shocks. The presentation general-
izes to models with higher dimensional states, actions, and shocks, but at the expense
of cumbersome additional notation required to track the di�erent dimensions.1

1The routines included in the Compecon library accompanying the book admit higher dimensional
states, actions, and shocks.
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Consider, then, Bellman's equation for an in�nite horizon discrete time continuous
state dynamic decision problem

V (s) = max
x2X(s)

ff(s; x) + ÆE�V (g(s; x; �))g:

Assume that the state space is a bounded interval of the real line, S = [smin; smax],
and the actions either are discrete or are continuous and subject to simple bounds
a(s) � x � b(s) that are continuous functions of the state. Further assume that the
reward function f(s; x) and state transition function g(s; x; �) are twice continuously
di�erentiable functions of their arguments.

To compute an approximate solution to Bellman's equation via collocation, one
employs the following strategy: First, write the value function approximant as a linear
combination of known basis functions �1; �2; : : : ; �n whose coeÆcients c1; c2; : : : ; cn are
to be determined:

V (s) �
nX

j=1

cj�j(s):

Second, �x the basis function coeÆcients c1; c2; : : : ; cn by requiring the approxi-
mant to satisfy Bellman's equation, not at all possible states, but rather at n states
s1; s2; : : : ; sn, called the collocation nodes. Many collocation basis-node schemes are
available to the analyst, including Chebychev polynomial and spline approximation
schemes. The best choice of basis-node scheme is application speci�c, and often
depends on the curvature of the value and policy functions.

The collocation strategy replaces the Bellman functional equation with a system
of n nonlinear equations in n unknowns. Speci�cally, to compute the value function
approximant, or more precisely, to compute the n coeÆcients c1; c2; : : : ; cn in its basis
representation, one must solve the nonlinear equation system

X
j

cj�j(si) = max
x2X(si)

ff(si; x) + ÆE�

nX
j=1

cj�j(g(si; x; �))g:

The nonlinear equation system may be compactly expressed in vector form as the
collocation equation

�c = v(c):

Here, �, the collocation matrix, is the n by n matrix whose typical ijth element is the
jth basis function evaluated at the ith collocation node

�ij = �j(si)
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and v, the collocation function, is the function from <n to <n whose typical ith element
is

vi(c) = max
x2X(si)

ff(si; x) + ÆE�

nX
j=1

cj�j(g(si; x; �))g:

The collocation function evaluated at a particular vector of basis coeÆcients c yields a
vector whose ith entry is the value obtained by solving the optimization problem em-
bedded in Bellman's equation at the ith collocation node, replacing the value function
appearing in the optimand with the approximant

P
j cj�j.

In principle, the collocation equation may be solved using any nonlinear equation
solution method. For example, one may write the collocation equation as a �xed-
point problem c = ��1v(c) and employ function iteration, which uses the iterative
update rule

c ��1v(c):

Alternatively, one may write the collocation equation as a root�nding problem �c�
v(c) = 0 and solve for c using Newton's method, which employs the iterative update
rule

c c� [�� v0(c)]�1[�c� v(c)]:
Here, v0(c) is the n by n Jacobian of the collocation function v at c. The typical
element of v0 may be computed by applying the Envelope Theorem to the optimization
problem in the de�nition of v(c). Speci�cally,

v0ij(c) =
@vi
@cj

(c) = ÆE��j(g(si; xi; �))

where xi is the optimal argument in the maximization problem producing vi(c). As a
variant to Newton's method one could also employ a quasi-Newton method to solve
the collocation equation.2

If the model is stochastic, one must compute expectations in a numerically prac-
tical way. Regardless of the quadrature scheme selected, the continuous random vari-
able � in the state transition function is replaced with a discrete approximant, say,
one that assumes values �1; �2; : : : ; �m with probabilities w1; w2; : : : ; wm, respectively.
In this instance, the collocation function v takes the speci�c form

vi(c) = max
x2X(si)

ff(si; x) + Æ
mX
k=1

nX
j=1

wkcj�j(g(si; x; �k))g:

2The Newton update rule is equivalent to c  [� � v0(c)]�1f , where f is the n by 1 vector of
optimal rewards at the state nodes. This is identical to the \policy iteration" rule commonly used
in discrete state dynamic programming.
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and its Jacobian takes the form

v0ij(c) = Æ
mX
k=1

wk�j(g(si; xi; �k)):

Let us now consider the practical steps that must be taken to implement the col-
location method in a computer programming environment. Below, we outline the
key operations using the Matlab vector processing language, presuming access to the
function approximation and numerical quadrature routines contained in the Com-
pecon library. The necessary steps can be implemented in virtually any other vector
processing or high-level algebraic programming language, with a level of diÆculty
that will depend mainly on the availability of the required elementary approximation
and quadrature routines.

Consider �rst a dynamic decision model with a discrete action space in which the
possible actions are identi�ed with the �rst p positive integers. The initial steps in
any implementation of the collocation method are to specify the basis functions that
will be used to express the value function approximant and to specify the collocation
nodes at which the Bellman equation will be required to hold exactly. These steps
may be executed using the Compecon library routines fundefn, funnode, and funbas,
which are discussed in Chapter 6:

fspace = fundefn('cheb',n,smin,smax);

s = funnode(fspace);

Phi = funbas(fspace);

Here, it is presumed that the analyst has previously speci�ed the lower and upper
endpoints of the state interval, smin and smax, and the number of basis functions and
collocation nodes n. After execution, fspace is a structured variable that contains the
information needed to well-de�ne the approximation basis, s is the n by 1 vector of
standard collocation nodes associated with the basis, and Phi is the n by n collocation
matrix associated with the basis. In this speci�c example, the Chebychev polynomial
basis functions and collocation nodes are used to form the value function approximant
via collocation.

Next, a numerical routine must be coded to evaluate the collocation function and
its derivative at an arbitrary basis coeÆcient vector. A simple version of such a
routine for discrete choice models would have a calling sequence of the form

[v,x,vjac] = vmax(s,c).

Here, on input, s is an n by 1 vector of collocation nodes and c is an n by 1 vector of
basis coeÆcients. On output, v is an n by 1 vector of optimal values at the collocation
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nodes, x is an n by 1 vector of associated optimal actions at the nodes, and vjac is
an n by n Jacobian of the collocation function at c.

Given the collocation nodes s, collocation matrix Phi, and collocation function
routine vmax, and given an initial guess for the basis coeÆcient vector c, the colloca-
tion equation may be solved either by function iteration

for it=1:maxit

cold = c;

[v,x] = vmax(s,c);

c = Phi\v;

if norm(c-cold)<tol, break, end;

end

or by Newton iteration

for it=1:maxit

cold = c;

[v,x,vjac] = vmax(s,c);

c = cold - [Phi-vjac]\[Phi*c-v];

if norm(c-cold)<tol, break, end;

end

Here, tol and maxit are iteration control parameters set by the analyst, specifying
the convergence tolerance and the maximum number of iterations. The Matlab
operator is used to perform the linear solve.

The main challenge in implementing the collocation method for a general class of
dynamic optimization problems is coding the routine vmax that solves the optimiza-
tion problem embedded in Bellman's equation at the collocation nodes and returns
the collocation function values and derivatives. A simple routine that performs this
optimizations for the discrete choice model is as follows:3

function [v,x,vjac] = vmax(s,c)

Ev = 0;

for i=1:p

x = i*ones(n,1);

f(:,i) = ffunc(s,x);

for k=1:m

g = gfunc(s,x,e(k));

3For clarity, the code omits several bookkeeping operations and programming tricks that acceler-
ate execution. Operational versions of vmax that eÆciently handle arbitrary dimensional state and
actions spaces are included with the Compecon library routine dpsolve.
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Ev(:,i) = Ev(:,i) + w(k)*funeval(c,fspace,g);

end

end

[v,x] = max(f+delta*Ev,[],2); vjac = 0;

for k=1:K

g = gfunc(s,x,e(k));

vjac = vjac + delta*w(k)*funbas(fspace,g);

end

This routine assumes that the analyst has coded separate ancillary routines ffunc and
gfunc that return the rewards and state transitions speci�c to the dynamic decision
model being solved. The routine ffunc accepts n by 1 vectors of state nodes s and
actions x and returns an n by 1 vector f of associated reward function values. The
routine gfunc accepts n by 1 vectors of state nodes s and actions x and a particular
value of the shock e and returns an n by 1 vector g of associated state transition
function values.

The routine vmax begins with the execution of a series of loops, one for each
possible action. The loops produce n by p matrices f and Ev containing, respectively,
the current reward and value expected next period associated with the n state nodes
(rows) and the p possible actions (columns). The value expected next period is
computed by looping over all K possible realizations of the discrete shock and forming
the probability weighted sum of values next period (here, e(k) and w(k) are the kth

shock and its probability). For each realization of the shock, the state next period
g is computed and passed to the routine funeval, which returns next period's value
using value function approximant associated with the coeÆcient vector c.

By construction, f+delta*Ev is an n by p matrix whose entries give for each
state node (row) and action (column) the current reward f plus the expected value
next period Ev discounted at the rate delta. The maximum value in each row of
f+delta*Ev and the associated column index are the optimal value and action asso-
ciated with the corresponding state node. In this implementation of vmax, the Matlab
vector maximization routine max is used to perform the column-wise maximization in
one call, yielding n by 1 vectors v and x that contain the optimal values and actions
associated with the n state nodes. The Jacobian vjac of the collocation function is
computed by executing a loop over all K possible realizations of the discrete shock.
For each realization of the shock, the state next period g is computed and passed to
the Compecon library routine funbas, which returns the basis function values at that
state node.

Consider now a dynamic decision model with a continuous, rather than a discrete,
action space. The steps required to solve a continuous choice model using collocation
are identical to those required to solve a discrete choice model, with the exception
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of the optimization routine vmax. As with a discrete choice model, the analyst must
specify the basis functions and collocation nodes and code a numerical routine to
evaluate the collocation function and its derivative at an arbitrary basis coeÆcient
vector. Armed with these elements and given initial guesses for the basis coeÆcient
vector c and optimal actions x, the collocation equation may be solved either by
function iteration or by Newton iteration, just as before.

The only di�erence between discrete and continuous choice implementations of the
collocation method lies with the routine vmax that solves the optimization problem
embedded in Bellman's equation. A routine that performs the optimization for the
continuous choice model by iteratively solving the associated Karush-Kuhn-Tucker
complementarity conditions is as follows:

function [v,x,vjac] = vmax(s,x,c)

[xl,xu] = bfunc(s);

for it=1:maxit

[f,fx,fxx] = ffunc(s,x);

Ev=0; Evx=0; Evxx=0;

for k=1:K

[g,gx,gxx] = gfunc(s,x,e(k));

vn = funeval(c,fspace,g);

vnder1 = funeval(c,fspace,g,1);

vnder2 = funeval(c,fspace,g,2);

Ev = Ev + w(k)*vn;

Evx = Evx + w(k)*vnder1.*gx;

Evxx = Evxx + w(k)*(vnder1.*gxx + vnder2.*gx.^2);

end

v = f + delta*Ev;

delx = -(fx+delta*Evx)./(fxx+delta*Evxx);

delx = min(max(delx,xl-x),xu-x);

x = x + delx;

if norm(delx)<tol, break, end;

end vjac = 0;

for k=1:K

g = gfunc(s,x,e(k));

phinext = funbas(fspace,g);

vjac = vjac + delta*w(k)*phinext;

end

This routine assumes that the analyst has coded separate ancillary routines bfunc,
ffunc, and gfunc that compute the bounds, rewards, and state transitions speci�c to
the dynamic decision model being solved. The routine bfunc accepts an n by 1 vector
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of states s and returns n by 1 vectors xl and xu of associated lower and upper bounds
on the actions. The routine ffunc accepts n by 1 vectors of states s and actions x
and returns n by 1 vectors f, fx, and fxx of associated reward function values, �rst
derivatives, and second derivatives. The routine gfunc accepts n by 1 vectors of states
s and actions x and a particular value of the shock e and returns n by 1 vectors g, gx,
and gxx of associated state transition function values, �rst derivatives, and second
derivatives.

The continuous action routine vmax begins by computing the lower and upper
bounds xl and xu on the actions at the state nodes. The routine then executes a
series of Newton iterations that sequentially update the actions x at the state nodes
s until the Karush-Kuhn-Tucker conditions of the optimization problem embedded in
Bellman's equation are satis�ed to a speci�ed tolerance tol. With each iteration, the
standard Newton step delx is computed and subsequently shortened, if necessary,
to ensure that the updated action x+delx remains within the bounds xl and xu.
The standard Newton step delx is the negative of the ratio of the second and third
derivatives of the Bellman optimand with respect to the action, fx+delta*Evx and
fxx+delta*Evxx. Here, fx and fxx are the �rst and second derivatives of the reward
function, Evx and Evxx are the �rst and second derivatives of the expected value next
period, and delta is the discount rate.

In order to compute the expected value next period and its derivatives, a loop is
executed over all K possible realizations of the discrete shock and probability weighted
sums are formed (here, e(k) and w(k) are the kth shock and its probability). For each
realization of the shock, the state next period g and its �rst and second derivatives
with respect to the action, gx and gxx, are computed. The state next period is passed
to the library routine funeval, which computes next period's value and its derivatives
using the value function approximant that is identi�ed with the current coeÆcient
vector c. The Chain Rule is then used to compute the derivatives of the expected
value.

Once convergence is achieved and the optimal value and action at the state nodes
have been determined, the Jacobian vjac of the collocation function is computed.
The Jacobian is a n by n matrix whose representative ijth entry is the discounted
expectation of the jth basis evaluated at the following period's state, given the current
state is the ith state node. To compute the Jacobian, a loop is executed over all K
possible realizations of the discrete shock. For each realization of the shock, the state
next period g is computed and passed to the Compecon library routine funbas, which
evaluates the basis functions at that state.

Once the collocation equation has apparently been solved, the analyst should per-
form a diagnostic test to assure that the computed value function approximant solves
Bellman's equation to an acceptable degree of accuracy over the entire interpolation
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interval. In order to perform this test, de�ne the residual function

Rc(s) = max
x2X(s)

ff(s; x) + ÆE�

nX
j=1

cj�j(g(s; x; �))g �
X
j

cj�j(s);

which measures the di�erence between the right and left sides of the Bellman equation
at arbitrary states s when the value function is replaced with its approximant

P
j cj�j.

If the approximant provides an exact solution to Bellman's equation, the residual will
be zero throughout the interpolation interval. Of course, in practice, the residual of
an approximant will typically be nonzero, except at the collocation nodes where it
is zero by design. However, if the residual function between the collocation nodes
is close to zero, the value function approximant is deemed acceptable. Otherwise, if
large residuals obtain, the model should be solved again with more collocation nodes,
or di�erent basis functions, or a revised interpolation interval, until the norm of the
residual function is reduced to acceptable levels.

In practice, the easiest way to assess the Bellman equation approximation error
is to plot the residual function on a �ne grid of states spanning the interpolation
interval. The residual function may be computed at any vector of states using the
routines vmax and funeval. For example, the approximation residual of a discrete
action model approximant may be checked as follows:

nres = 500;

sres = nodeunif(smin,smax,nres);

resid = vmax(sres,c) - funeval(c,fspace,sres);

plot(sres,resid)

Here, the Compecon library routine nodeunif is used to generate a vector sres of 500
equally spaced states spanning the interpolation interval. The residual resid is then
computed and plotted at the equally-spaced states. Notice that, to perform compute
the residual, vmax is evaluated at the residual evaluation points, not the collocation
nodes. However, careful inspection of the code above reveals that vmax is designed
to solve the optimization problem embedded in Bellman's equation at an arbitrary
vector of states, not just the collocation nodes.

There are two common causes of poor residuals. First, the value function may
exhibit discontinuous derivatives along a boundary separating regions of the state
space where the solution exhibits qualitatively di�erent characteristics. In a discrete
action model, each region may correspond to a family of states at which a given dis-
crete action is optimal. In a continuous action model, the regions may separate states
according to whether action constraints are binding or nonbinding. This existence of
discontinuous second derivatives in the value function creates diÆculties for approx-
imation schemes based on Chebychev polynomials and cubic splines, both of which
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are twice continuously di�erentiable. In particular, the residuals will tend to be much
larger in magnitude near the kink points. If the kink points are known analytically,
which is rarely the case in practice, the residual error can often be reduced by the
choosing collocation nodes so as to include the kink points. Another remedy that is
often e�ective is to by simply increase the number of basis functions and collocation
nodes, though this many not be computationally practical when the state space is
higher-dimensional.

Another possible cause of poor residuals is extrapolation beyond the interpola-
tion interval. Since interpolants can provide highly inaccurate approximations when
evaluated outside the speci�ed interpolation interval, one should check whether this
occurs within the routine vmax at the �nal solution. The test can be performed by
enumerating all values that can be realized by the state transition function at all
possible state nodes, corresponding optimal actions, and shocks, and checking that
the value remains between smin and smax. In Matlab, this can be executed with the
following commands:

for k=1:K;

g = gfunc(s,x,e(k));

if any(g<smin), disp('Warning: reduce smin '), end;

if any(g>smax), disp('Warning: increase smax'), end;

end

If the Bellman residuals are poor and there are attempts to extrapolate within vmax

are detected, the minimum and/or maximum state should be extended and the model
should be solved again. The interpolation interval should be repeatedly adjusted in
this manner until extrapolation beyond the interval no longer occurs or the residual
function becomes acceptably small.

9.3 Postoptimality Analysis

Although the optimal policy and shadow price functions reveal a great deal about
the nature of the optimized dynamic process, they give an incomplete picture of
the model's implications. Given an economic model, we typically wish to describe
the dynamic behavior of the optimized process and how this behavior changes with
variations model parameters or assumptions. Given a dynamic economic model, we
typically characterize the model's solution in one of two ways. Steady-state analysis
examines the long-run tendencies of the optimized process, abstracting from the initial
state and the path taken by the process over time. Dynamic path analysis focuses on
how the system evolves over time, starting from a given initial condition.
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Given a deterministic dynamic model, steady-state and dynamic path analysis
are relatively straightforward to perform. As we have seen, the steady-state of a
deterministic process is typically characterized by a system of nonlinear equations.
The system can be solved numerically and totally di�erentiated to generate explicit
expressions describing how the steady-state varies with changes in model parameters.
Dynamic path analysis can be performed through a simple deterministic simulation
of the process, which requires repeated evaluations of the optimal policy and state
transition functions. In particular, if x(s) is the computed optimal policy function
and g(s; x) is the transition function, then, given an initial state s0, the path taken by
the state variable may be computed iteratively as follows: st+1 = g(st; x(st)): Given
the path of the state variable st, it is then usually straightforward to generate the
path taken by any other endogenous variable.

The analysis of stochastic models is a bit more involved. Stochastic models do
not generate an unique, deterministic path from a given initial state. A stochastic
process may take any one of many possible paths, depending on the realizations of
the random shocks. Often, it is instructive to generate one such possible path to
illustrate the volatility that an optimized process is capable of exhibiting. This is
performed by a simple Monte Carlo simulation in which a sequence of pseudorandom
shocks are generated for the process using a random number generator. In particular,
given the computed optimal policy function x(s), the transition function g(s; x; �),
an initial state s0, and a pseudorandom sequence of �t, a representative path may be
generated iteratively as follows: st+1 = g(st; x(st); �t+1):

A more revealing analysis of the dynamics generated by a stochastic model is to
draw not a single representative path, but rather the expected path of the process.
The expected path may be computed by generating a large number of independent
representative paths and averaging the results at each point in time. The expected
path is typically smooth and converges to a steady-state mean value.

The steady-state of a stochastic process is a distribution, not a point. Typically,
it will suÆce to compute the mean and standard deviation of the steady-state distri-
bution for selected endogenous variables. The most common approach to computing
steady-state means and variances is through the use of Monte Carlo simulation. Monte
Carlo simulation is used to generate a single representative path of long horizon, say
10,000 periods. The values of the endogenous variable thus generated collectively
reect the steady-state distribution of the variable. In practice, we simply accumu-
late the �rst and second moments of the variable with each simulated period, and
compute the means and the standard deviation at the conclusion of the simulated
long-run history.

In many instances we are interested in seeing how certain properties of the model
vary as the parameters of the model change. Typically, we focus on the relationship
between the steady-state mean or variance of a given endogenous variable and an
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exogenous parameter of interest. In order to perform sensitivity analysis, one performs
Monte Carlo simulations at chosen values of the parameter and constructs a least-
squares �t to the graph points generated in this fashion.

9.4 Computational Examples

9.4.1 Asset Replacement

Consider the asset replacement model of Section 8.2.1 assuming that an asset produces
q(a) = (50� 2:5a� 2:5a2) units of output in its ath period of operation, up to period
�a = 10, and that the output price is p = 2. Further assume that the replacement cost
k is an exogenous continuous-valued �rst-order Markov process kt+1 = g(kt; �t+1) =
�k + (kt � �k) + �t+1 where �t is i.i.d. normal(0; �2).

The collocation method calls for the analyst to select n basis functions �j and n
collocation nodes (ki; ai), and form the value function approximant V � Pn

j=1 cj�j
whose coeÆcients cj solve the collocation equation

nX
j=1

cj�j(ki; ai) =

maxfp q(ai) + Æ
nX

j=1

wkcj�j(k̂ik; ai + 1); p q(0)� ki + Æ
nX

j=1

wkcj�j(k̂ik; 1)g:

where k̂ik = g(ki; �k) and where �k and wk represent Gaussian quadrature nodes and
weights for the normal shock. In practice, one may solve the asset replacement model
using Compecon library routines as follows:4

Step 1 Code model function �le:

function out = mfdp01(flag,s,x,e,price,cbar,gamma);

switch flag

case 'f'; % REWARD FUNCTION

out = price*(50-2.5*s(:,2)-2.5*s(:,2).^2).*(1-x)...

+(price*50-s(:,1)).*x;

case 'g'; % STATE TRANSITION FUNCTION

out(:,1) = cbar + gamma*(s(:,1)-cbar) + e;

out(:,2) = min(s(:,2)+1,10).*(1-x) + x;

end

4Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp01.
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The model function �le returns the values of the reward and transition functions at
arbitrary vectors of states s, actions x, and shocks e. Passing the ag 'f' returns
the reward function value f and passing the ag 'g' returns the transition function
value g.

Step 2 Enter model parameters:

delta = 0.9;

price = 2.0;

cbar = 100;

gamma = 0.5;

sigma = 15;

Here, the discount factor, output price, long-run mean replacement cost, replacement
cost autoregression coeÆcient, and standard deviation of replacement cost shock are
speci�ed, respectively.

Step 3 Discretize shock:

m = 5;

[e,w] = qnwnorm(m,0,sigma^2);

Here, the normal replacement cost shock is discretized using a �ve node Gaussian
quadrature scheme.

Step 4 Specify basis functions and collocation nodes:

n = 60;

cmin = 30;

cmax = 190;

fspace = fundefn('lin',n,cmin,cmax,[],[1:10]');

snodes = funnode(fspace);

s = gridmake(snodes);

Here, a 60-function �nite di�erence basis on the interval [30; 190] is used to approx-
imate the value function along its continuous dimension (replacement cost) and the
associated collocation nodes are used to formulate the collocation equation.

Step 5 Construct the action space:

x = [0;1];

Here, the action space is dichotomous.
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Step 6 Pack model structure:

model.func = 'mfdp01';

model.discount = delta;

model.e = e;

model.w = w;

model.actions = x;

model.discretestates = 2;

model.params = {price cbar gamma};

Here, model is a structured variable whose �elds contain the elements of the dynamic
decision model. The �rst �eld contains the name of the model function �le 'mfdp01';
the remaining �elds contain the discount factor delta, shock values e, shock proba-
bilities w, the action space x, the index of the discrete state (age) discretestates,
and model function parameters params, respectively.

Step 7 Provide judicious guesses for values at the collocation nodes:

vinit = zeros(size(s,1),1);

Here, the value function is initialized to zero.

Step 8 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vinit);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guess for the value function
vinit. It then solves the collocation equation, returning as output the basis coeÆ-
cients c, and the optimal values v, optimal actions x, and Bellman equation residuals
resid at a re�ned state grid s.

Step 8 Perform postoptimality analysis. Figure 9.1a gives the value of the �rm as a
function of the asset replacement costs for di�erent asset ages. For any given asset age,
the value of the �rm is downward sloping and kinked at the critical replacement cost,
below which the asset is replaced. Figure 9.1b gives the Bellman equation residual for
the �nite di�erence basis approximant as a function of the asset replacement costs for
di�erent asset ages. The residual exhibits noticeable errors at the critical replacement
costs, which can be expected due to the discontinuous derivatives of the value function
at those points.
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Figure 9.1: Solution to Asset Replacement Model

9.4.2 Timber Cutting

Consider the timber cutting model of Section 8.2.2 assuming that the stand biomass
s grows at a deterministic rate st+1 = K+exp��(st�K). Further assume a constant
pro�t contribution per unit of biomass p and constant cost of replanting C.

The collocation method calls for the analyst to select n basis functions �j and
n collocation nodes (si), and form the value function approximant V � Pn

j=1 cj�j
whose coeÆcients cj solve the collocation equation

nX
j=1

cj�j(si) = maxfÆ
nX

j=1

cj�j(g(si))); P si � C + Æ
nX

j=1

cj�j(0)g:

In practice, one may solve the timber cutting model using Compecon library routines
as follows:5

Step 1 Code model function �le:

function out = mfdp02(flag,s,x,e,price,C,K,alpha);

switch flag

case 'f';

out = (price*s-C).*x;

case 'g';

5Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp02.
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out = ((K+exp(-alpha)*(s-K))).*(1-x);

end

The model function �le returns the values of the reward and transition functions at
arbitrary vectors of states s, actions x, and shocks e. Passing the ag 'f' returns
the reward function value f and passing the ag 'g' returns the transition function
value g.

Step 2 Enter model parameters:

delta = 0.95;

price = 1;

C = 0.2;

K = 0.5;

alpha = 0.1;

Here, the discount factor, output price, replanting cost, carrying capacity, and speed
of mean reversion are speci�ed, respectively.

Step 3 Specify basis functions and collocation nodes:

n = 350;

fspace = fundefn('lin',n,0,K);

snodes = funnode(fspace);

Here, a 350-function �nite di�erence basis on the interval [0; K] and the associated
standard collocation nodes are used to formulate the collocation equation.

Step 4 Construct the action space:

x = [0;1];

Here, the action space is dichotomous.

Step 5 Pack model structure:

model.func = 'mfdp02';

model.discount = delta;

model.actions = x;

model.params = {price C K alpha};

Here, model is a structured variable whose �elds contain the elements of the dynamic
decision model. The �rst �eld contains the name of the model function �le 'mfdp02';
the remaining �elds contain the discount factor delta, the action space x, and model
function parameters params, respectively.



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 276

Step 6 Provide judicious guesses for values at the collocation nodes:

vinit = zeros(size(snodes));

Here, the value function is initialized to zero.

Step 7 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vinit);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guess for the value function
vinit. It then solves the collocation equation, returning as output the basis coeÆ-
cients c, and the optimal values v, optimal actions x, and Bellman equation residuals
resid at a re�ned state grid s.
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Figure 9.2: Solution to Timber Cutting Model

Step 8 Perform postoptimality analysis. Figure 9.2a gives the value of the stand
as a function of the biomass. Figure 9.2b gives the Bellman equation residual for the
�nite di�erence basis approximant.

9.4.3 Optimal Economic Growth

Consider the optimal economic growth model of Section 8.3.1 assuming a social bene�t
function u(c) = c1��=(1��), an aggregate production function f(x) = x�, and an i.i.d.
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lognormal(0; �2) production shock �. The collocation method calls for the analyst to
select n basis functions �j and n collocation nodes si, and form the value function
approximant V �Pn

j=1 cj�j whose coeÆcients cj solve the collocation equation

nX
j=1

cj�j(si) = max
0�x�si

f(si � x)1��=(1� �) + Æ
mX
k=1

nX
j=1

wkcj�j(x+ �kx
�)g

where �k and wk represent Gaussian quadrature nodes and weights for the lognor-
mal shock. In practice, one may solve the optimal economic growth model using
Compecon library routines as follows:6

Step 1 Code model function �le:

function [out1,out2,out3] = mfdp07(flag,s,x,e,alpha,beta,gamma);

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(size(s));

out2 = s;

case 'f'; % REWARD FUNCTION

out1 = ((s-x).^(1-alpha))/(1-alpha);

out2 = -(s-x).^(-alpha);

out3 = -alpha*(s-x).^(-alpha-1);

case 'g'; % STATE TRANSITION FUNCTION

out1 = gamma*x + e.*x.^beta;

out2 = gamma + beta*e.*x.^(beta-1);

out3 = (beta-1)*beta*e.*x.^(beta-2);

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s, actions x, and shocks e. Passing
the ag 'b' returns the lower and upper bounds on the action xl and xu; passing the
ag 'f' returns the reward function value and its �rst and second derivatives with
respect to the action, f, fx, and fxx; and passing the ag 'g' returns the transition
function value and its �rst and second derivatives with respect to the action, g, gx,
and gxx.

Step 2 Enter model parameters:

6Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp07.
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delta = 0.9;

alpha = 0.2;

beta = 0.5;

gamma = 0.9;

sigma = 0.1;

Here, the discount factor, utility function parameter, production elasticity, capital
survival rate, and production shock volatility are speci�ed, respectively.

Step 3 Discretize shock:

m = 3;

[e,w] = qnwlogn(m,0,sigma^2);

Here, the lognormal production shock is discretized using a three node Gaussian
quadrature scheme.

Step 4 Specify basis functions and collocation nodes:

n = 10;

smin = 5;

smax = 10;

fspace = fundefn('cheb',n,smin,smax);

snodes = funnode(fspace);

Here, the �rst ten Chebychev polynomials on the interval [5; 10] and the corresponding
standard Chebychev nodes are selected to serve as basis functions and collocation
nodes.

Step 5 Pack model structure:

model.func = 'mfdp07';

model.discount = delta;

model.e = e;

model.w = w;

model.params = {alpha beta gamma};

Here, model is a structured variable whose �elds contain the elements of the dy-
namic decision model. The �rst �eld contains the name of the model function �le
'mfdp07'; the remaining �elds contain the discount factor delta, shock values e,
shock probabilities w, and model function parameters params, respectively.
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Step 6 Provide judicious guesses for values and actions at the collocation nodes:

estar = 1;

xstar = ((1-delta*gamma)/(delta*beta))^(1/(beta-1));

sstar = gamma*xstar + xstar^beta;

[vlq,xlq] = lqapprox(model,snodes,sstar,xstar,estar);

Here, the the certainty-equivalent steady-state shock, action, and state are computed
analytically and passed to the Compecon library routine lqapprox, which returns
the linear-quadratic approximation values and actions at the collocation nodes. The
linear-quadratic approximation is used to initialize the collocation algorithm.

Step 7 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vlq,xlq);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vlq and optimal actions xlq. It then solves the collocation equation, returning as
output the basis coeÆcients c, and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.

Step 8 Perform postoptimality analysis. Figure 9.3a gives optimal investment as a
percent of wealth computed using both Chebychev collocation and linear-quadratic
approximation. The Chebychev collocation approximant is upward sloping and the
linear-quadratic approximant is downward sloping, indicating a qualitative di�erence
between the two. Figure 9.3b gives the Bellman equation residual for the Chebychev
approximant. The residual possesses zeros at the collocation nodes by design and
exhibits very nearly equal oscillations between the nodes, a property that is typical
of Chebychev residuals when the underlying model is smooth and e�ectively uncon-
strained. In this example, a ten degree Chebychev approximation was suÆcient to
solve the Bellman equation to a residual error of order 2�10�10, approximately seven
orders of magnitude more accurate than the linear-quadratic approximant, whose
residual is not drawn. These results suggest that linear-quadratic approximation can
yield globally inaccurate solutions even when the underlying model is smooth and the
constraints on the actions are not binding.

Figure 9.3c gives the expected path followed by the wealth level over time, begin-
ning from a wealth level of 5. The expected path was computed by performing Monte
Carlo simulations involving 2000 replications of twenty years in duration each, using
the Compecon library routine dpsimul:
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Figure 9.3: Solution to Optimal Economic Growth Model

nyrs = 20;

nrep = 2000;

sinit = 5*ones(nrep,1);

[spath,xpath] = dpsimul(model,sinit,nyrs,s,x);

As seen in this �gure, expected wealth rises at a declining rate, converging asymptot-
ically to a steady-state value of approximately 7.5. Figure 9.3d gives the steady-state
distribution of the wealth level. The distribution, represented as an 80 bin histogram,
was computed using using the Compecon library routine dpstst with a smoothing
parameter of 5:

nsmooth = 5;
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nbin = 80;

[ss,pi,xx] = dpstst(model,nsmooth,nbin,s,x);

As seen in this �gure, the steady-state distribution is essentially bell-shaped with
a mean of approximately 7.5, which is consistent with the Monte-Carlo state path
simulations.

9.4.4 Public Renewable Resource Management

Consider the public renewable resource management model of Section 8.3.2 assuming
an inverse demand function p(x) = x� , a constant cost of harvest k, and a deter-
ministic state transition function g(s; x) = �(s� x)� 0:5�(s� x)2. The collocation
method calls for the analyst to select n basis functions �j and n collocation nodes si,
and form the value function approximant V � Pn

j=1 cj�j whose coeÆcients cj solve
the collocation equation

nX
j=1

cj�j(si) = max
0�x�si

f x
1�

1�  � k x+ Æ
nX

j=1

cj�j(�(si � x)� 0:5�(si � x)2)g:

In practice, one may solve the public renewable resource management model using
Compecon library routines as follows:7

Step 1 Code model function �le:

function [out1,out2,out3] = mfdp08(flag,s,x,e,alpha,beta,gamma,cost);

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(size(s));

out2 = s;

case 'f'; % REWARD FUNCTION

out1 = (x.^(1-gamma))/(1-gamma)-cost*x;

out2 = x.^(-gamma)-cost;

out3 = -gamma*x.^(-gamma-1);

case 'g'; % STATE TRANSITION FUNCTION

out1 = alpha*(s-x) - 0.5*beta*(s-x).^2;

out2 = -alpha + beta*(s-x);

out3 = zeros(size(s))-beta;

end

7Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp08.
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The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s and actions x. Passing the ag
'b' returns the lower and upper bounds on the action xl and xu; passing the ag 'f'
returns the reward function value and its �rst and second derivatives with respect to
the action, f, fx, and fxx; and passing the ag 'g' returns the transition function
value and its �rst and second derivatives with respect to the action, g, gx, and gxx.

Step 2 Enter model parameters:

delta = 0.9;

alpha = 4.0;

beta = 1.0;

gamma = 0.5;

cost = 0.2;

Here, the discount factor, growth function parameters, demand function parameter,
and unit cost of harvest are speci�ed, respectively.

Step 3 Specify basis functions and collocation nodes:

n = 8;

smin = 6;

smax = 9;

fspace = fundefn('cheb',n,smin,smax);

snodes = funnode(fspace);

Here, the �rst eight Chebychev polynomials on the interval [6; 9] and the associated
standard Chebychev nodes are selected to serve as basis functions and collocation
nodes.

Step 4 Pack model structure:

model.func = 'mfdp08';

model.discount = delta;

model.params = {alpha beta gamma cost};

Here, model is a structured variable whose �elds contain the elements of the dynamic
decision model. The �rst �eld contains the name of the model function �le 'mfdp08';
the remaining �elds contain the discount factor delta and model function parameters
params, respectively.



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 283

Step 5 Provide judicious guesses for values and actions at the collocation nodes:

sstar = (alpha^2-1/delta^2)/(2*beta);

xstar = sstar - (delta*alpha-1)/(delta*beta);

[vlq,xlq] = lqapprox(model,snodes,sstar,xstar);

Here, the steady-state state and action are computed analytically and passed to the
Compecon library routine lqapprox, which returns the linear-quadratic approxima-
tion values and actions at the collocation nodes. The linear-quadratic approximation
is used to initialize the collocation algorithm.

Step 6 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vlq,xlq);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vlq and optimal actions xlq. It then solves the collocation equation, returning as
output the basis coeÆcients c, and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.

Step 7 Perform postoptimality analysis. Figure 9.4a gives optimal harvest as a
percent of resource stock computed using both Chebychev collocation and linear-
quadratic approximation. The Chebychev collocation approximant is upward sloping
and the linear-quadratic approximant is downward sloping. Figure 9.4b gives the
shadow price of the resource stock computed using both Chebychev collocation and
linear-quadratic approximation. Both approximants are downward sloping, but the
Chebychev approximant has a steeper slope. Figure 9.4c gives the Bellman equation
residual for the Chebychev approximant. The residual possesses zeros at the colloca-
tion nodes by design and exhibits very nearly equal oscillations between the nodes.
In this example, an eight degree Chebychev approximation was suÆcient to solve the
Bellman equation to a relative residual error of order 2� 10�10.

Figure 9.3d gives the path followed by the resource stock level over a twenty year
period, beginning from a level of 6. The path was computed the Compecon library
routine dpsimul:

nyrs = 20;

sinit = smin;

[spath,xpath] = dpsimul(model,sinit,nyrs,s,x);

As seen in this �gure, resource stock rises rapidly, e�ectively converging to its steady-
state value of 4.5 within four years.
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Figure 9.4: Solution to Public Renewable Resource Management Model

9.4.5 Private Nonrenewable Resource Management

Consider the private nonrenewable resource management model of Section 8.3.3 as-
suming a constant output price � and a cost of extraction c(s; x) = x2=(� + s) where
� and � are positive constants. The collocation method calls for the analyst to se-
lect n basis functions �j and n collocation nodes si, and form the value function
approximant V �Pn

j=1 cj�j whose coeÆcients cj solve the collocation equation

nX
j=1

cj�j(si) = max
0�x�si

f� x� x2=(� + s) + Æ
nX

j=1

cj�j(si � x)g:
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In practice, one may solve the private nonrenewable resource management model
using Compecon library routines as follows:8

Step 1 Code model function �le:

function [out1,out2,out3] = mfdp09(flag,s,x,e,alpha,beta);

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(size(s));

out2 = s;

case 'f'; % REWARD FUNCTION

out1 = alpha*x - (x.^2)./(beta+s);

out2 = alpha - 2*x./(beta+s);

out3 = -2./(beta+s);

case 'g'; % STATE TRANSITION FUNCTION

out1 = s-x;

out2 = -ones(size(s));

out3 = zeros(size(s));

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s and actions x. Passing the ag
'b' returns the lower and upper bounds on the action xl and xu; passing the ag 'f'
returns the reward function value and its �rst and second derivatives with respect to
the action, f, fx, and fxx; and passing the ag 'g' returns the transition function
value and its �rst and second derivatives with respect to the action, g, gx, and gxx.

Step 2 Enter model parameters:

delta = 0.9;

alpha = 1.0;

beta = 20.0;

Here, the discount factor, output price, and cost function parameter are speci�ed,
respectively.

Step 3 Specify basis functions and collocation nodes:

8Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp09.
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n = 100;

smin = 0;

smax = 5;

fspace = fundefn('spli',n,smin,smax);

snodes = funnode(fspace);

Here, a 100 cubic spline basis on the interval [0; 5] and the corresponding standard
nodes are selected to serve as basis functions and collocation nodes.

Step 4 Pack model structure:

model.func = 'mfdp09';

model.discount = delta;

model.params = {alpha beta};

Here, model is a structured variable whose �elds contain the elements of the dynamic
decision model. The �rst �eld contains the name of the model function �le 'mfdp09';
the remaining �elds contain the discount factor delta and model function parameters
params, respectively.

Step 5 Provide judicious guesses for values and actions at the collocation nodes:

xinit = snodes;

vinit = zeros(size(snodes));

Here, since the model has no meaningful steady-state, the harvest is set equal to the
stock level and the initial value function is set to zero to initialize the collocation
algorithm.

Step 6 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vinit,xinit);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vinit and optimal actions xinit. It then solves the collocation equation, returning
as output the basis coeÆcients c, and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.
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Figure 9.5: Solution to Private Nonrenewable Resource Management Model

Step 7 Perform postoptimality analysis. Figure 9.5a gives optimal harvest policy
and the 45o line. A salient feature of the optimal policy is that, for stock levels roughly
below 1, the upper bound on the extraction level is binding and the optimal policy
is to extract all remaining stock. Figure 9.5b gives the shadow price of the resource
stock. As seen in this �gure, the shadow price exhibits an apparently discontinuous
derivative or kink at the point at which the upper bound becomes binding. Figure 9.5c
gives the Bellman equation residual for the cubic spline approximant. The residual
exhibits a strong disturbance near the kink point, which is typical of spline and
Chebychev polynomial approximations in the presence of kinks. Still, the residual
produced with 100 cubic spline basis functions is small in the vicinity of the kink,
on the order of 1 � 10�6, and is several orders of magnitude smaller at stock levels



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 288

further removed from the kink. As seen in Figure 9.3d, if the initial stock level is 3,
it will be optimal to extract the entire stock in exactly two years.

9.4.6 Optimal Monetary Policy

Consider the optimal monetary policy model of Section 8.3.5 assuming a loss function

L(s) =
1

2
(s� s�)>
(s� s�)

and a state transition function

g(s; x; �) = � + �s+ x + �

where � and  are 2 � 1 constant vectors, � is a 2 � 2 constant matrix, and � is a
2� 1 random with i.i.d. bivariate normal(0;�) shock �. The collocation method calls
for the analyst to select n basis functions �j and n collocation nodes si, and form the
value function approximant V �Pn

j=1 cj�j whose coeÆcients cj solve the collocation
equation

nX
j=1

cj�j(si) = max
0�x
f�L(si) + Æ

mX
k=1

nX
j=1

wkcj�j(� + �s+ x+ �k)g

where �k and wk represent Gaussian quadrature nodes and weights for the normal
shock.

This example di�ers from the preceding continuous choice examples in that the
state space is 2-dimensional. In practice, one may solve the optimal monetary policy
model using Compecon library routines as follows:9

Step 1 Code model function �le:

function [out1,out2,out3] = mfdp11(flag,s,x,e,lambda,starget,a,b,c);

[n ds] = size(s);

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(n,1);

out2 = inf*ones(n,1);

case 'f'; % REWARD FUNCTION

starget = starget(ones(n,1),:);

out1 = -0.5*((s-starget).^2)*lambda';

9Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp11.
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out2 = zeros(n,1);

out3 = zeros(n,1);

case 'g'; % STATE TRANSITION FUNCTION

out1 = a(ones(n,1),:) + s*b' + x*c + e;

out2 = c(ones(n,1),:);

out3 = zeros(n,ds);

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s, actions x, and shocks e. Passing
the ag 'b' returns the lower and upper bounds on the action xl and xu; passing the
ag 'f' returns the reward function value and its �rst and second derivatives with
respect to the action, f, fx, and fxx; and passing the ag 'g' returns the transition
function value and its �rst and second derivatives with respect to the action, g, gx,
and gxx.

Step 2 Enter model parameters:

delta = 0.9;

a = [0.9 0.4];

b = [0.8 0.5; 0.2 0.6];

c = [-0.8 0.0];

lambda = [0.3 1];

starget = [0 1];

cov = 0.04*eye(2);

Here, the discount factor, transition function parameters, loss function preference
weights, state targets, and shock covariance matrix are speci�ed, respectively.

Step 3 Discretize shock:

m = [3 3];

mu = [0 0];

[e,w] = qnwnorm(m,mu,cov);

Here, a 9-node discretization of the bivariate normal production shock is constructed
by forming the Cartesian product of the three standard univariate nodes in each
dimension.
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Step 4 Specify basis functions and collocation nodes:

n = [10 10];

smin = [-15 -10];

smax = [15 10];

fspace = fundefn('spli',n,smin,smax); scoord = funnode(fspace);

snodes = gridmake(scoord);

Here, a 100-function bivariate Chebychev polynomial basis on the square f(s1; s2)j �
15 � s1 � 15;�10 � s2 � 10g is constructed by forming the tensor products of the
�rst ten univariate Chebychev polynomials along each dimension; also, a 100-node
collocation grid within the square is constructed by forming the Cartesian product of
the ten standard Chebychev nodes along each dimension. Note that snodes will be
a 100 by 2 matrix.

Step 5 Pack model structure:

model.func = 'mfdp11';

model.discount = delta;

model.e = e;

model.w = w;

model.params = {lambda starget a b c};

Here, model is a structured variable whose �elds contain the elements of the dy-
namic decision model. The �rst �eld contains the name of the model function �le
'mfdp11'; the remaining �elds contain the discount factor delta, shock values e,
shock probabilities w, and model function parameters params, respectively.

Step 6 Provide judicious guesses for values and actions at the collocation nodes:

estar = [0 0];

sstar = starget;

xstar = (sstar(1)-a(1)-b(1,:)*sstar')/c(1);

[vlq,xlq] = lqapprox(model,snodes,sstar,xstar,estar);

Here, the the certainty-equivalent steady-state shock, state, and action are computed
analytically and passed to the Compecon library routine lqapprox, which returns
the linear-quadratic approximation values and actions at the collocation nodes. The
linear-quadratic approximation is used to initialize the collocation algorithm.
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Step 7 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vlq,xlq);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vlq and optimal actions xlq. It then solves the collocation equation, returning as
output the basis coeÆcients c, and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.
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Figure 9.6: Solution to Optimal Monetary Policy Model

Step 8 Perform postoptimality analysis. Figure 9.6a gives optimal nominal interest
rate as a function of the underlying ination rate and GDP gap. A salient feature of
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the solution is that the nonnegativity constraint on the nominal interest rate is binding
for low GDP gaps and ination rates. Although the model possesses a quadratic
objective and a linear state transition function, the exact solution cannot be derived
via linear-quadratic approximation due to the binding constraint. Figure 9.6b gives
the Bellman equation residual for the Chebychev approximant. The residual exhibits
discernable turbulence along the boundary at which the nonnegativity constraint
becomes binding, but is relatively small elsewhere. The residual can be reduced,
but only at the expense of additional nodes along each direction. Unfortunately,
doubling the basis functions and nodes in each direction quadruples the necessary
computational e�ort due to the product rule construction of the bivariate basis and
collocation grid.

The Compecon library routine dpsimul was used to simulate the model 5000 times
over a twenty year period starting from an initial GDP gap of 10% and ination rate of
15%. Figure 9.6c indicates that the expected GDP gap will initially drop dramatically,
overshooting its target of zero, but over time converges asymptotically to its target.
Figure 9.6d, on the other hand, indicates that the expected ination rate will drop
monotonically steadily, eventually converging to its target of 1.

9.4.7 Production-Adjustment Model

Consider the production-adjustment model of Section 8.3.6 assuming a linear cost of
production function c(q) = � q, a stochastic constant elasticity inverse demand curve
�q��, a quadratic adjustment cost a(q�l) = 0:5�(q�l)2, and an i.i.d. lognormal(0; �2)
demand shock �. In practice, one may solve the production-adjustment model using
Compecon library routines as follows:10

Step 1 Code model function �le:

function [out1,out2,out3] = mfdp12(flag,s,x,e,alpha,beta,kappa);

n = size(s,1);

l = s(:,1);

d = s(:,2);

q = x;

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(n,1);

out2 = inf*ones(n,1);

case 'f'; % REWARD FUNCTION

10Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demdp12.
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out1 = d.*q.^(1-beta) - kappa*q - 0.5*alpha*((q-l).^2);

out2 = (1-beta)*d.*q.^(-beta) - kappa - alpha*(q-l);

out3 = -beta*(1-beta)*d.*q.^(-beta-1) - alpha;

case 'g'; % STATE TRANSITION FUNCTION

out1 = [q e];

out2 = [ones(n,1) zeros(n,1)];

out3 = zeros(n,2);

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s, actions x, and shocks e. Passing
the ag 'b' returns the lower and upper bounds on the action xl and xu; passing the
ag 'f' returns the reward function value and its �rst and second derivatives with
respect to the action, f, fx, and fxx; and passing the ag 'g' returns the transition
function value and its �rst and second derivatives with respect to the action, g, gx,
and gxx.

Step 2 Enter model parameters:

delta = 0.9;

beta = 0.5;

kappa = 0.5;

alpha = 0.5;

sigma = 0.4;

Here, the discount factor, demand elasticity, unit production cost, marginal produc-
tion cost, and demand shock volatility are speci�ed, respectively.

Step 3 Discretize shock:

m = 3;

[e,w] = qnwlogn(m,0,sigma^2);

Here, the lognormal demand shock is discretized using a three node Gaussian quadra-
ture scheme.

Step 4 Specify basis functions and collocation nodes:

n = [10 15];

smin = [xstar-1.0 e(1)];

smax = [xstar+3.0 e(m)];
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fspace = fundefn('cheb',n,smin,smax);

scoord = funnode(fspace);

snodes = gridmake(scoord);

Here, a 150-function bivariate Chebychev polynomial basis is constructed by forming
the tensor products of the �rst ten and �rst �fteen univariate Chebychev polynomials
along �rst and second state dimension, respectively; also, a 150-node collocation
grid is constructed by forming the Cartesian product of the ten and �fteen standard
Chebychev nodes along each dimension. Note that snodes will be a 150 by 2 matrix.

Step 5 Pack model structure:

model.func = 'mfdp12';

model.discount = delta;

model.e = e;

model.w = w;

model.params = {alpha beta kappa};

Here, model is a structured variable whose �elds contain the elements of the dy-
namic decision model. The �rst �eld contains the name of the model function �le
'mfdp12'; the remaining �elds contain the discount factor delta, shock values e,
shock probabilities w, and model function parameters params, respectively.

Step 6 Provide judicious guesses for values and actions at the collocation nodes:

estar = 1;

xstar = ((1-beta)/kappa)^(1/beta);

sstar = [xstar 1];

[vlq,xlq] = lqapprox(model,snodes,sstar,xstar,estar);

Here, the the certainty-equivalent steady-state shock, action, and state are computed
analytically and passed to the Compecon library routine lqapprox, which returns
the linear-quadratic approximation values and actions at the collocation nodes. The
linear-quadratic approximation is used to initialize the collocation algorithm.

Step 7 Solve the decision model:

[c,s,v,x,resid] = dpsolve(model,fspace,snodes,vlq,xlq);

The Compecon routine dpsolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vlq and optimal actions xlq. It then solves the collocation equation, returning as
output the basis coeÆcients c, and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.
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Figure 9.7: Solution to Production-Adjustment Model

Step 8 Perform postoptimality analysis. Figure 9.7a shows that optimal production
as a monotonically increasing function of the demand shock and the preceding period's
production. Figure 9.7b gives the value of the �rm as a function of the demand shock
and the preceding period's production. Value is an increasing function of the demand
shock, but a concave function of lagged production. Figure 9.7c gives the Bellman
equation residual for the approximant. The residual exhibits discernable turbulence
for low values of the demand shock. However, the maximum residuals are on the
order of 1� 10�7 times the value of the �rm. The Compecon library routine dpsimul
was used to simulate the model 5000 times over a twenty year period starting from an
production of 0.3. Figure 9.7d indicates that production can be expected to adjust
gradually toward an steady-state mean value of approximately 1.1.
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9.5 Dynamic Game Methods

Recall from Section 8.5 that the Markov perfect equilibrium of an m-agent in�nite-
horizon dynamic game is characterized by a set of m simultaneous Bellman equations

Vp(s) = max
xp2Xp(s)

�
fp(s; xp; x

�
�p(s)) + ÆE�Vp(g(s; xp; x�p(s); �))

	
;

p = 1; 2; : : : ; m, whose unknowns are the m value functions Vp(�) and the associated
optimal policies x�p(�), all of which are de�ned on the state space S. For the sake
of discussion, assume that the state space is a bounded interval of Euclidian space,
S = [smin; smax], and that each agent p's actions are constrained to an interval on
the real line, Xp(s) = [ap(s); bp(s)]. Further assume that the reward functions fp
and state transition function g are twice continuously di�erentiable functions of their
arguments.11

To compute an approximate solution to the system of Bellman functional equa-
tions via collocation, one employs the following strategy: First, write the value
function approximants as linear combinations of known basis functions �1; �2; : : : ; �n
whose coeÆcients cp1; cp2; : : : ; cpn, are to be determined:

Vp(s) �
nX

j=1

cpj�j(s):

Second, �x the mn basis function coeÆcients cp1; cp2; : : : ; cpn by requiring the approx-
imants to satisfy their respective Bellman equations, not at all possible states, but
rather at n states s1; s2; : : : ; sn, called the collocation nodes.

The collocation strategy replaces the m Bellman functional equations with a
system of mn nonlinear equations in mn unknowns. Speci�cally, to compute the
value function approximants, or more precisely, to compute the mn basis coeÆcients
cp1; cp2; : : : ; cpn in their basis representations, one solves the equation system

X
j

cpj�j(si) = max
xpi2Xp(si)

ffp(si; xpi; x�pi) + ÆE�

nX
j=1

cpj�j(g(si; xpi; x�pi; �))g:

for p = 1; 2; : : : ; m and i = 1; 2; : : : ; n, where xpi is action taken by agent p and x�pi
are the actions taken by his competitors when the state is si. The nonlinear equa-
tion system may be compactly expressed in vector form as a system of simultaneous
collocation equations

�cp = vp(cp; x�p):

11The presentation generalizes to models with dimensional individual action spaces, but at the
expense of cumbersome additional notation that o�ers little additional insight.
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Here, cp is the n by 1 vector of basis coeÆcients of agent p's value function approxi-
mant; x�p is the (m� 1)n vector of his competitors actions at the state nodes; �, the
collocation matrix, is the n by n matrix whose typical ijth element is the jth basis
function evaluated at the ith collocation node

�ij = �j(si);

and vp, agent p's collocation function, is the function from <mn to <n whose typical
ith element is

vpi(cp; x�p) = max
xpi2Xp(si)

ffp(si; xpi; x�pi) + ÆE�

nX
j=1

cpj�j(g(si; xpi; x�pi; �))g:

Agent p's collocation function evaluated at a particular vector of basis coeÆcients cp
yields an n by 1 vector vp whose i

th entry is the value obtained by solving the optimiza-
tion problem embedded in Bellman's equation at the ith collocation node, replacing
the value function appearing in the optimand with the approximant

P
j cpj�j and

taking his competitor's current actions x�p as given.
Just as in case of single-agent dynamic optimization model, the simultaneous col-

location equations of an m-agent game may be solved using standard nonlinear equa-
tion solution methods. However, one cannot solve the individual collocation equa-
tions independently because one agent's optimal action depends on the actions taken
by others. Still, one can solve collocation equations for the m-agent using iterative
strategies that are straightforward generalization of those used to solve single-agent
dynamic optimization models. For example, one may write the collocation equation as
a �xed-point problem cp = ��1vp(cp; x�p) and use function iteration, which employs
the iterative update rule

cp  ��1vp(cp; x�p):

In this implementation, the optimal actions of all agents are updated at each iteration
with the evaluation of the collocation functions vp, and passed as arguments to the
collocation functions vp in the subsequent iteration.

Alternatively, one may write the collocation equation as a root�nding problem
�cp� vp(cp; x�p) = 0 and solve for c using a mixed Newton's method, which employs
the iterative update rule

cp  cp � [�� v0(x)]�1[�cp � vp(cp; x�p)]:
Here, v0(x) is the common n by n Jacobian of the collocation functions vp with respect
to the basis coeÆcient cp. The typical element of v0(x) may be computed by applying
the Envelope Theorem:

v0ij(x) = ÆE��j(g(si; xi; �))
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where xi is the vector of optimal actions taken by all p players when the state is si.
As with the single-agent model, unless the m-agent game model is determinis-

tic, one must compute expectations in a numerically practical way. Regardless of
which quadrature scheme is selected, the continuous random variable � in the state
transition function is replaced with a discrete approximant, say, one that assumes
values �1; �2; : : : ; �K with probabilities w1; w2; : : : ; wK, respectively. In this instance,
the collocation functions vp take the speci�c form

vpi(cp; x�p) = max
xpi2Xp(si)

ffp(si; xpi; x�pi) + Æ
KX
k=1

nX
j=1

wkcpj�j(g(si; xpi; x�pi; �k))g:

and their Jacobian takes the form

v0ij(x) = Æ
KX
k=1

wk�j(g(si; xi; �k))

The practical steps that must be taken to implement the collocation method for
dynamic games in a computer programming environment are similar to taken to solve
single-agent models. The initial step is to specify the basis functions that will be used
to express the value function approximants and the collocation nodes at which the
Bellman equations will be required to hold exactly. This step may be executed using
the Compecon library routines fundefn, funnode, and funbas, which are discussed
in Chapter 6:

fspace = fundefn('cheb',n,smin,smax);

s = funnode(fspace);

Phi = funbas(fspace);

Here, it is presumed that the analyst has previously speci�ed the lower and upper
endpoints of the state interval, smin and smax, and the number of basis functions and
collocation nodes n. After execution, fspace is a structured variable containing all
the information needed to well-de�ne the approximation space, s is the n by 1 vector
of standard collocation nodes for the selected basis, and Phi is the associated n by
n collocation matrix. In this speci�c example, the standard Chebychev polynomials
basis functions and collocation nodes are used to form the approximant.

Next, a numerical routine must be coded to evaluate the collocation functions
and their common derivative at an arbitrary set of basis coeÆcient vectors. A version
of such a routine in which all basis coeÆcients and actions are eÆciently stored in
matrix formats with columns corresponding to di�erent agents would have a calling
sequence of the form

[v,x,vjac] = vmax(s,x,c).
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Here, on input, s is an n by 1 vector of collocation nodes, c is an n by m matrix of
basis coeÆcients, and x is an n by m matrix of current optimal actions. On output,
v is an n by m matrix of optimal values at the collocation nodes, x is an n by m

matrix of updated optimal actions at the nodes, and vjac is an n by n Jacobian of
the collocation functions. The m columns of v, x, and c correspond to the m agents.

Given a vmax function coded as described, the joint collocation equations for the
m-agent game can be solved by executing the same commands needed to solve the
single-agent model. In particular, given the collocation nodes s, collocation matrix
Phi, and collocation function routine vmax, and given initial guesses for the basis
coeÆcient matrix c and optimal action matrix x, the collocation equation may be
solved either by function iteration

for it=1:maxit

cold = c;

[v,x] = vmax(s,x,c);

c = Phi\v;

if norm(c-cold)<tol, break, end;

end

or by the Newton iteration

for it=1:maxit

cold = c;

[v,x,vjac] = vmax(s,x,c);

c = cold - [Phi-vjac]\[Phi*c-v];

if norm(c-cold)<tol, break, end;

end

The main challenge in implementing the collocation method for a dynamic game
is coding the routine vmax that returns the collocation functions and their com-
mon derivative, which requires solving the optimization problems embedded in the m
Bellman equations at the collocation nodes. A simple routine that performs the opti-
mizations by iteratively solving the associated Karush-Kuhn-Tucker complementarity
conditions is as follows:

function [v,xnew,vjac] = vmax(s,xold,c) xnew = xold;

for p=1:m

x = xold;

[xl,xu] = bfunc(s,p);

for it=1:maxit

[f,fx,fxx] = ffunc(s,x,p);

Ev=0; Evx=0; Evxx=0;
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for k=1:K

[g,gx,gxx] = gfunc(s,x,e(k),p);

vn = funeval(c(:,p),fspace,g);

vnder1 = funeval(c(:,p),fspace,g,1);

vnder2 = funeval(c(:,p),fspace,g,2);

Ev = Ev + w(k)*vn;

Evx = Evx + w(k)*vnder1.*gx;

Evxx = Evxx + w(k)*(vnder1.*gxx + vnder2.*gx.^2);

end

v = f + delta*Ev;

delx = -(fx+delta*Evx)./(fxx+delta*Evxx);

delx = min(max(delx,xl-x),xu-x);

x(:,p) = x(:,p) + delx;

if norm(delx)<tol, break, end;

end

xnew(:,p) = x(:,p)

end

vjac = 0;

for k=1:K

g = gfunc(s,xnew,e(k));

phinext = funbas(fspace,g);

vjac = vjac + delta*w(k)*phinext;

end

The m-agent game routine vmax di�ers from the similarly-named routine for single-
agent models primarily in that m Bellman optimands rather than one must be maxi-
mized. In this implementation, an outer loop over the agent index p is executed. For
each agent, the collocation function is evaluated using the ancillary routines bfunc,
ffunc, and gfunc that compute the bounds, rewards, and state transitions and ad-
ditionally take the agent's index as an argument. In particular, the routine bfunc

accepts the n by 1 vector of states s and the agent's index p and returns n by 1

vectors xl and xu of associated lower and upper bounds on the agent's actions. The
routine ffunc accepts the n by 1 vector of states s, the n by m matrix of actions x,
and the agent's index p and returns n by 1 vectors f, fx, and fxx of associated reward
function values and derivatives with respect to the agent's actions. The routine gfunc
accepts the n by 1 vectors of states s, the n by m matrix of actions x, the agent's
index p, and a particular value of the shock e and returns n by 1 vectors g, gx, and
gxx of associated state transition function values and derivatives with respect to the
agent's actions.
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Each outer agent loop in vmax begins by computing the lower and upper bounds
xl and xu on agent p's actions at the state nodes. The inner loop executes a series
of Newton iterations that sequentially update agent p's actions at the state nodes
until the Karush-Kuhn-Tucker conditions of the optimization problem embedded in
Bellman's equation are satis�ed to a speci�ed tolerance tol. With each iteration, the
standard Newton step delx is computed and subsequently shortened, if necessary, to
ensure that the updated action x+delx remains within the bounds xl and xu. The
standard Newton step delx is the negative of the ratio of the second and third deriva-
tives of agent p's Bellman optimand with respect to agent p's action, fx+delta*Evx
and fxx+delta*Evxx.

In order to compute the expected value next period and its derivatives, another
nested loop is executed over all K possible realizations of the discrete shock and
probability weighted sums are formed (here, e(k) and w(k) are the kth shock and its
probability). For each realization of the shock, the state next period g and its �rst
and second derivatives with respect to agent p's action, gx and gxx, are computed.
The state next period is passed to the library routine funeval, which computes
next period's value and its derivatives using the value function approximant that is
identi�ed with agent p's coeÆcient vector c(:,p). The Chain Rule is then used to
compute the derivatives of the expected value.

Once convergence is achieved and the optimal value and action at the state nodes
have been determined, the Jacobian vjac of the collocation function is computed.
The Jacobian is a n by n matrix whose representative ijth entry is the discounted
expectation of the jth basis evaluated at the following period's state, given the current
state is the ith state node. To compute the Jacobian, a loop is executed over all K
possible realizations of the discrete shock. For each realization of the shock, the state
next period g is computed and passed to the Compecon library routine funbas, which
in turn evaluates the basis functions at that state.

9.5.1 Capital-Production Game

Consider the capital-production game of Section 8.5.1 assuming that the market clear-
ing prices Pp = Pp(q1; q2) are given by

logP1 = log a1 + e11 log q1 + e12 log q2;

logP2 = log a2 + e21 log q1 + e22 log q2;

that the cost of production is given by

Cp(q; k) = pq
�
p k

�
p ;

and new capital can be purchased at a constant price �. The collocation method calls
for the analyst to select n basis functions �j and n collocation nodes (k1i; k2i), and
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form the value function approximants Vp �
Pn

j=1 cpj�j whose coeÆcients cpj solve
the collocation equation

nX
j=1

cpj�j(k1i; k2i) = max
qp�0;xp�0

fPp(q1; q2)qp � Cp(qp; kp)� �xp + ÆE�

nX
j=1

cj�j(k̂1; k̂2)g

where k̂p = (1 � �)kp + xp. In practice, one may solve the capital-production game
using Compecon library routines as follows:12

Step 1 Code model function �le:

function [out1,out2,out3] = mfgame01(flag,s,x,e,smax,eps,...

gamma,A,beta,theta,alpha,cost,xi);

n = size(s,1);

ds = 2;

dx = 2;

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(n,dx);

out2 = smax(ones(n,1),:) - (1-xi)*s;

case 'f1'; % REWARD FUNCTION

Prof = Profit(s,n,alpha,beta,gamma,A,eps);

c = cost(:,1);

xx = x(:,1);

f = Prof(:,1) - c*xx.^theta/theta;

fx = - c*xx.^(theta-1);

fxx = - (theta - 1)*c*xx.^(theta - 2);

out1 = zeros(n,1);

out2 = zeros(n,dx);

out3 = zeros(n,dx,dx);

out1 = f;

out2(:,1)= fx;

out3(:,1,1) = fxx;

case 'f2'; % REWARD FUNCTION

Prof = Profit(s,n,alpha,beta,gamma,A,eps);

c = cost(:,2);

xx = x(:,2);

f = Prof(:,2) - c*xx.^theta/theta;

12Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demgame01.
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fx = - c*xx.^(theta-1);

fxx = - (theta - 1)*c*xx.^(theta - 2);

out1 = zeros(n,1);

out2 = zeros(n,dx);

out3 = zeros(n,dx,dx);

out1 = f;

out2(:,2)= fx;

out3(:,2,2) = fxx;

case 'g'; % STATE TRANSITION FUNCTION

g = zeros(n,ds);

gx = zeros(n,ds,dx);

gxx = zeros(n,ds,dx,dx);

g = (1-xi)*s + x;

gx(:,1,1) = ones(n,1);

gx(:,2,2) = ones(n,1);

out1=g; out2=gx; out3=gxx;

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s, actions x, and shocks e. Passing
the ag 'b' returns the lower and upper bounds on the action xl and xu; passing the
ag 'f' returns the reward function value and its �rst and second derivatives with
respect to the action, f, fx, and fxx; and passing the ag 'g' returns the transition
function value and its �rst and second derivatives with respect to the action, g, gx,
and gxx.

Step 2 Enter model parameters:

delta = 0.95;

A = [1.5 1.5];

alpha = [1.5 1.5];

beta = -[0.75 0.75];

gamma = [0.25 0.25];

eps = -[0.5 0.2;0.2 0.5];

cost = [1.5 1.5];

theta = 2.5;

xi = 0.07;

Here, the discount factor, demand parameters, cost elasticity of quantity, cost elas-
ticity of capital, production cost parameters, demand elasticities, investment cost
elasticity, and the depreciation rate are speci�ed, respectively.
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Step 3 Specify basis functions and collocation nodes:

n = [8 8];

smin = [7 7];

smax = [10 10];

fspace = fundefn('cheb',n,smin,smax);

scoord = funnode(fspace);

s = gridmake(scoord);

Here, an 64-function bivariate Chebychev polynomial basis is constructed by forming
the tensor products of eight and eight Chebychev polynomials along the �rst and
second state dimensions, respectively; also, an 64-node collocation grid is constructed
by forming the Cartesian product of the eight and eight standard Chebychev nodes
along the two state dimensions. Note that snodes will be a 64 by 2 matrix.

Step 4 Pack model structure:

model.func = 'mfgame01';

model.discount = delta;

model.params={smax,eps,gamma,A,beta,theta,alpha,cost,xi};

Here, model is a structured variable whose �elds contain the elements of the dy-
namic decision model. The �rst �eld contains the name of the model function �le
'mfgame01'; the remaining �elds contain the discount factor delta, shock values e,
shock probabilities w, and model function parameters params, respectively.

Step 5 Provide judicious guesses for values and actions at the collocation nodes:

x = xi*s;

vinit = zeros(size(s,1),2);

vinit(:,1) = feval(model.func,'f1',s,x,[],model.params{:})/(1-delta);

vinit(:,2) = feval(model.func,'f2',s,x,[],model.params{:})/(1-delta);

Here, investment is initialized by setting it equal to depreciation and the value func-
tion is initialized by taking that level of investment and assuming the reward is
constant over time.

Step 6 Solve the decision model:

[c,s,v,x,resid] = gamesolve(model,fspace,snodes,v,x);
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The Compecon routine gamesolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value func-
tion vlq and optimal actions xlq. It then solves the collocation equation, returning
as output the basis coeÆcients c and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.
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Figure 9.8: Solution to Capital-Production Game

9.5.2 Income Redistribution Game

Consider the capital-production game of Section 8.5.2 assuming that player p's reward
is (sp � xp)1��p=(1� �p) and his wealth evolves according to pxp + �px

�p
p , where the

production shocks �p are i.i.d. lognormal(0; �2). In practice, one may solve the income
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redistribution game using Compecon library routines as follows:13

Step 1 Code model function �le:

function [out1,out2,out3] = mfgame02(flag,s,x,e,alpha,beta,gamma,share);

n = size(s,1);

ds = 2;

dx = 2;

switch flag

case 'b'; % BOUND FUNCTION

xl = zeros(n,dx);

xu = 0.99*s;

out1=xl; out2=xu; out3=[];

case 'f1' % REWARD FUNCTION

fx = zeros(n,dx);

fxx = zeros(n,dx,dx);

f = ((s(:,1)-x(:,1)).^(1-alpha(1)))/(1-alpha(1));

fx(:,1) = -(s(:,1)-x(:,1)).^(-alpha(1));

fxx(:,1,1) = -alpha(1)*(s(:,1)-x(:,1)).^(-alpha(1)-1);

out1=f; out2=fx; out3=fxx;

case 'f2' % REWARD FUNCTION

fx = zeros(n,dx);

fxx = zeros(n,dx,dx);

f = ((s(:,2)-x(:,2)).^(1-alpha(2)))/(1-alpha(2));

fx(:,2) = -(s(:,2)-x(:,2)).^(-alpha(2));

fxx(:,2,2) = -alpha(2)*(s(:,2)-x(:,2)).^(-alpha(2)-1);

out1=f; out2=fx; out3=fxx;

case 'g'; % STATE TRANSITION FUNCTION

g = zeros(n,ds);

gx = zeros(n,ds,dx);

gxx = zeros(n,ds,dx,dx);

g1 = gamma(1)*x(:,1) + e(:,1).*x(:,1).^beta(1);

g2 = gamma(2)*x(:,2) + e(:,2).*x(:,2).^beta(2);

g(:,1) = (1-share)*g1 + share*g2;

gx(:,1,1) = (1-share)*(gamma(1) + beta(1)*e(:,1).*x(:,1).^(beta(1)-1));

gxx(:,1,1,1) = (1-share)*((beta(1)-1)*beta(1)*e(:,1).*x(:,1).^(beta(1)-2));

g(:,2) = (1-share)*g2 + share*g1;

gx(:,2,2) = (1-share)*(gamma(2) + beta(2)*e(:,2).*x(:,2).^(beta(2)-1));

13Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demgame02.
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gxx(:,2,2,2) = (1-share)*((beta(2)-1)*beta(2)*e(:,2).*x(:,2).^(beta(2)-2));

out1=g; out2=gx; out3=gxx;

end

The model function �le returns the values and derivatives of the bound, reward, and
transition functions at arbitrary vectors of states s, actions x, and shocks e. Passing
the ag 'b' returns the lower and upper bounds on the action xl and xu; passing the
ag 'f' returns the reward function value and its �rst and second derivatives with
respect to the action, f, fx, and fxx; and passing the ag 'g' returns the transition
function value and its �rst and second derivatives with respect to the action, g, gx,
and gxx.

Step 2 Enter model parameters:

delta = 0.9;

alpha = [0.2 0.2];

beta = [0.5 0.5];

gamma = [0.9 0.9];

sigma = [0.1 0.1];

share = 0.05;

Here, the discount factor, utility function parameters, production elasticities, capi-
tal survival rates, production shock volatilities, and wealth share rate are speci�ed,
respectively.

Step 3 Discretize shock:

m = 3;

[e,w] = qnwlogn(m,0,sigma^2);

Here, the lognormal demand shock is discretized using a three node Gaussian quadra-
ture scheme.

Step 4 Specify basis functions and collocation nodes:

n = [20 20];

smin = [3 3];

smax = [11 11];

fspace = fundefn('spli',n,smin,smax);

scoord = funnode(fspace);

s = gridmake(scoord);
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Here, an 400-function bivariate cubic spline basis is constructed by forming the ten-
sor products of twenty and twenty basis functions along the �rst and second state
dimensions, respectively; also, an 400-node collocation grid is constructed by forming
the Cartesian product of the twenty and twenty standard cubic spline nodes along
the two state dimensions. Note that snodes will be a 400 by 2 matrix.

Step 5 Pack model structure:

model.func = 'mfgame02';

model.discount = delta;

model.e = e;

model.w = w;

model.params = {alpha beta gamma share};

Here, model is a structured variable whose �elds contain the elements of the dy-
namic decision model. The �rst �eld contains the name of the model function �le
'mfgame01'; the remaining �elds contain the discount factor delta, shock values e,
shock probabilities w, and model function parameters params, respectively.

Step 6 Provide judicious guesses for values and actions at the collocation nodes:

xstar = ((1-delta*gamma)./(delta*beta)).^(1./(beta-1));

sstar = gamma.*xstar + xstar.^beta;

xinit = 0.75*s;

vstar1 = feval(model.func,'f1',sstar,xstar,[],model.params{:});

vstar2 = feval(model.func,'f1',sstar,xstar,[],model.params{:});

vinit(:,1) = vstar1 + delta*(s(:,1)-sstar(1));

vinit(:,2) = vstar2 + delta*(s(:,2)-sstar(2));

Here, wealth and investment are initialized by setting them equal to their steady state
values in the absence of any income sharing.

Step 7 Solve the decision model:

[c,s,v,x,resid] = gamesolve(model,fspace,snodes,vinit,xinit);

The Compecon routine gamesolve accepts as input the model structure model, basis
functions fspace, collocation nodes snodes, and initial guesses for the value function
vinit and optimal actions xinit. It then solves the collocation equation, returning
as output the basis coeÆcients c and the optimal values v, optimal actions x, and
Bellman equation residuals resid at a re�ned state grid s.
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Figure 9.9: Solution to Income Redistribution Game

9.6 Rational Expectations Methods

Recall that the general formulation of the model involves solving for x(s) a comple-
mentarity problem of the form

CP
�
f(st; xt; Eth(st+1; xt+1)); a(s); b(s)

�
with f : <n�m�p ! <m together with a state transition function

st+1 = g(st; xt; et+1)

with g : <n�m�n ! <n.
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This is an in�nite dimensional problem but can be converted to a �nite dimension
one by using an approximating function for either x�(s) or h(s; x�(s)). Although the
former approach seems more natural, it can lead to diÆculties, specially when the
response function exhibits kinks due to binding constraints.

Response function approximation uses x�(s) � �(s)c. Together with a K-valued
discretization of the shock process (e; w), we can write a residual function

r(c; s) = f

 
s; �(s)c;

KX
k=1

wkh(s
0
k; �(s

0
k)c)

!
;

where s0k = g(s; �(s)c; ek). Collocation can be used to determine c by solving the
complementarity problem min(max(r(c; si); �(si)c � a(si)); �(si)c � b(si)) = 0 at N
nodal values of s.

We have chosen, instead, to provide a general solver that works using h(s; x�(s)) �
�(s)c. For problems in which the response function is non-smooth due to boundary
conditions, the non-smooth behavior will typically have less inuence on the solution
with this scheme because h(s; x) will typically be smoother than x itself.

For a given value of c, we determine x by solving

CP

 
f

 
s; x;

KX
k=1

wk�(g(s; x; ek))c

!
; a; b

!
:

To accomplish this it is useful to have the Jacobian with respect to x:14

df

dx
= fx + fh

"
KX
k=1

wk�
0(g(s; x; ek))c gx(s; x; ek)

#
:

This requires that the partial derivatives fx, fh and gx are available.
For a given set of N (si; xi) pairs, c (N � p) can be computed by solving the

N -dimensional linear system

�(si)c = h(si; x
�(si)):

This leads naturally to a function iteration scheme, which is initialized by choosing
a starting value for c. The coeÆcient matrix c is updated iteratively by �rst solving
the CP to obtain x(j) given c(j) and then performing the linear solve to obtain c(j+1)

given x(j). The procedure continues until jjc(j+1) � c(j)jj is less than some prescribed
tolerance.15

14This is a shorthand notation. The sizes of these terms are fx (m�m), fh (m�p), �0(g)c (p�n)
and gx (n�m).

15This approach breaks down when fx = 0 and gx = 0 because f given c does not depend on x
and hence the equilibrium value of x given c is not de�ned.
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We have implemented this approach in a Matlab function REMSOLVE, the main
features of which are now described (many of these steps parallel those used in solving
dynamic programming problems; we will not discuss these in detail). First the user
must specify the nature of the approximating function desired. For example (see
discussion on p. 263):

fspace = fundefn('cheb',N,smin,smax);

s = funnode(fspace);

Phi = funbas(fspace);

Here, it is presumed that the analyst has previously speci�ed the lower and upper
endpoints of the state interval, smin and smax, and the number of basis functions and
collocation nodes N.

Next, a numerical routine must be coded solve the arbitrage equation for arbitrary
basis coeÆcients. Such a routine would have a calling sequence of the form

[f,x,h] = arbit(s,x,c).

Here, on input, s is an N � n matrix of collocation nodes, x is and N � m matrix
of response levels and c is an N � p matrix of coeÆcients for approximating h. On
output, f is an N �m matrix of values of f(s; x�(s); Eh) at the collocation nodes, x
is an N�m matrix of values of x�(s) and h is an N�p matrix of values of h(s; x�(s)).
We describe this routine more fully below but for now suÆce it to say that it �nds
x�(si) by solving CP (f(si; x; Eh(si; x; c)); a(si); b(si)) for each of the N values of si.
Thus N separate m-dimensional CPs are solved rather than a single Nm-dimensional
ones, an important computational advantage.

Given the collocation nodes s, collocation matrix Phi, and collocation function
routine arbit, and given an initial guess for the basis coeÆcient vector c, the collo-
cation equation may be solved by function iteration

for it=1:maxit

cold = c;

[f,x,h] = arbit(s,x,c);

c = Phi\h;

change = norm(c-cold,inf);

if change<tol, break, end;

end

Here, tol and maxit are iteration control parameters set by the analyst, specifying
the convergence tolerance and the maximum number of iterations.

The main challenge in implementing the collocation method is coding the routine
arbit that solves for the equilibrium x given c. First, however, we note that, to
accomplish this, arbit must evaluate f(s; x; Eh) and its derivative with respect to
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x. Furthermore, in doing so, it must evaluate Eh, which is a function of s and x.
We demonstrate now how this is accomplished in a simpli�ed setting (m = 1 and
p = 1):16

function [f,fx]=equilibrium(s,x,c)

K = length(w);

N=size(s,1);

eh= 0;

ehder = 0;

for k=1:length(w)

[g,gx] = gfunc(s,x,e(k));

hnext = funeval(c,fspace,g);

hnextder = funeval(c,fspace,g,1);

eh = eh + w(k)*hnext;

ehder = ehder + w(k)*hnextder.*gx;

end

[f,fx,feh] = ffunc(s,x,eh);

fx = fx + feh.*ehder;

This requires that the user has written a function to evaluate gfunc and ffunc along
with the required derivatives. The speci�c way this is implemented is described below.
The routine ffunc accepts an N � n matrix of state nodes s, an N � m matrix of
response variable values x, and an N �p matrix of values of Eh. It returns an N �m
matrix of f values, an N � m � m matrix of derivatives with respect to x and an
N �m� p matrix of derivatives with respect to Eh.

The function for computing the equilibrium value of x given c can now be de-
scribed.

function [f,x,h] = arbit(s,x,c)

for it=1:maxit

xold = x;

[f,fx]=equilibrium(s,x,c);

[f,fx] = minmax(x,xl,xu,f,fx);

deltax=-(fx\f);

x = x + deltax;

if norm(deltax(:))< tol, break, end;

end

h = hfunc(s,x);

16For clarity, the code omits several bookkeeping operations and programming tricks that accel-
erate execution. Operational versions of the code that eÆciently handle arbitrary dimensional state
and actions spaces are included with the Compecon library routine remsolve.
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This requires that the user has written a function to evaluate hfunc and that the
lower and upper bound functions on the response variables, xl and xu, have been
de�ned (both are N �m). The routine hfunc accepts an N �n matrix of state nodes
s and an N �m matrix of response variable values x, and returns an N � p matrix
of values of h.

Essentially arbit is a simple complementarity solver that uses Newton's method
with no backstepping routine on the minmax transformation of the CP (see discussion
in section 3.7 on page 48). A semi-smooth transformation of the CP can be used
obtained by substituting the smooth function for minmax in the �fth line (this is a
setable option in the toolbox version).

It is important to point out that the algorithm involves a double iteration. The
inner iteration computes the equilibrium x for �xed c (done in arbit) via Newton's
method. The outer iteration computes the equilibrium interpolating value of c given
a prior guess of its value, i.e., it uses function iteration to determine c.

9.6.1 Asset Pricing Model

In some models the approach just described is not needed. Consider the simple asset
pricing model of Section 8.6.1 involving an exogenous state process for dividends, d,
governed by

dt+1 = g(dt; et+1);

and share price, p, as the response variable, governed by the equilibrium condition

U 0(d)p(d)� ÆE�

h
U 0
�
g(d; �)

��
p(g(d; �)) + g(d; �)

�i
= 0:

In the notation of the general model the expectation variable is

h(d; p) = U 0(d)(p+ d);

and equilibrium condition is

f(d; p; Eh) = U 0(d)p� ÆEh:
For this model it is perhaps easiest to seek an approximation of the response

variable by using p(d) � �(d)c. The collocation method requires that for the analyst
select N basis functions �j and N collocation nodes si, and solve for c the linear
function

U 0(d)�(d)c� ÆE�

h
U 0
�
g(d; �)

��
�(g(d; �))c+ g(d; �)

�i
= 0
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or, equivalently,�
U 0(d)�(d)� ÆE�

h
U 0
�
g(d; �)

�
�(g(d; �))

i�
c = ÆE�

h
U 0
�
g(d; �)

�
g(d; �)

i
To make this concrete, let U(c) = (c1�� � 1)=(1� �), so U 0(c) = c��. Further, let

dt+1 = g(dt; �t+1) = �d+ (dt � �d) + �t+1

where � � i:i:d: N(0; �2). To compute the expectations we can use Gaussian quadra-
ture nodes and weights for the normal shock (�k and wk). The model can be solved
by the following steps:17

Step 1 Enter model parameters:

delta = 0.9;

dbar = 1.0;

gamma = 0.5;

beta = 0.4;

sigma = 0.1;

Step 2 Discretize shock:

m = 3;

[e,w] = qnwnorm(m,0,sigma^2);

Here, the normal dividend shock is discretized using a three node Gaussian quadrature
scheme.

Step 3 Specify basis functions and collocation nodes:

n = 10;

dmin = dbar+min(e)/(1-gamma);

dmax = dbar+max(e)/(1-gamma);

fspace = fundefn('cheb',n,dmin,dmax);

dnode = funnode(fspace);

Here, the �rst ten Chebychev polynomials and the corresponding standard Chebychev
nodes are selected to serve as basis functions and collocation nodes. The minimum
and maximum values of d are selected to ensure that dt+1 never requires extrapolation:
min(dt+1) = dmin when dt = dmin and max(dt+1) = dmax when dt = dmax.

17Functioning Matlab code for this example is contained in the Compecon library demonstration
�le demrem01.
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Step 4 Solve the decision model:

LHS = diag(dnode.^(-beta))*funbas(fspace,ynode);

RHS = 0;

for k=1:m

dnext = dbar + gamma*(dnode-dbar) + e(k);

LHS = LHS - delta*w(k)*diag(dnext.^(-beta))*funbas(fspace,dnext);

RHS = RHS + delta*w(k)*dnext.^(1-beta);

end

c = LHS\RHS;

The computed value of c provides coeÆcients for the approximate pricing function,
which is plotted along with the solution residuals in Figure 9.10.

Step 5 Compute the response function and approximation residuals:

d = nodeunif(10*n,dmin,dmax);

p = funeval(c,fspace,d);

Eh=0;

for k=1:m

dnext = dbar + gamma*(d-dbar) + e(k);

h = diag(dnext.^(-beta))*(funeval(c,fspace,dnext)+dnext);

Eh = Eh + delta*w(k)*h;

end

resid = d.^(-beta).*funeval(c,fspace,d)-Eh;

9.6.2 Competitive Storage

To solve the competitive storage model of section 8.6.2 we return to the use the general
solver for rational expectations models, REMSOLVE. Recall that the equilibrium storage
function is characterized by the functional complementarity condition

ÆEy[P (x(s) + y � x(x(s) + y))]� P (s� x(s))� c = �(s)

x(s) � 0; �(s) � 0; x(s) > 0 =) �(s) = 0:

The carryin stocks level is the state variable and we treat the carryout stocks as the
response variable. In the notation of the general model

h(s; x) = P (s� x);
g(s; x; y) = s+ y � x

and

f(s; x; Eh) = ÆEh� P (s� x)� c:
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Figure 9.10: Solution to Asset Pricing Model

Step 1 Code model function �le:

function [out1,out2,out3]=prem02(flag,s,x,ep,e,delta,gamma,cost,xmax);

n=length(s);

switch flag

case 'b'; % BOUND FUNCTION

out1 = zeros(n,1);

out2 = max(s,xmax);

case 'f'; % EQUILIBRIUM FUNCTION

out1 = delta*ep-(s-x).^(-gamma)-cost;

out2 = -gamma*(s-x).^(-gamma-1);

out3 = delta*ones(n,1);

case 'g'; % STATE TRANSITION FUNCTION

out1 = x + e;

out2 = ones(n,1);

case 'h'; % EXPECTATION FUNCTION

out1 = (s-x).^(-gamma);

out2 = gamma*(s-x).^(-gamma-1);

end

The model function �le returns the values and (where appropriate) the derivatives of
the bound, equilibrium, transition and expectation functions functions at arbitrary
vectors of states s, actions x, next period's expectations Eh and shocks e (as well
as the model speci�c additional parameters delta, gamma, cost and xmax). Passing
the ag 'b' returns the lower and upper bounds on the response variable xl and xu;
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passing the ag 'f' returns the equilibrium function value and its �rst derivatives
with respect to the response and the expectation variables, f, fx, and fh; passing the
ag 'g' returns the transition function value and its �rst with respect to the response
variable, g and gx; passing the ag 'h' returns the expectation variable and its �rst
derivative with respect to response variable, h and hx.

Step 2 Enter model parameters:

delta = 0.9;

cost = 0.1;

gamma = 2.0;

xmax = 0.9;

yvol = 0.2;

Here, the discount factor, storage cost parameter, inverse demand elasticity, maximum
storage level and yield volatility are speci�ed.

Step 3 Discretize shock:

m = 5;

[yshk,w] = qnwlogn(m,0,yvol^2);

Here, the lognormal production shock is discretized using a �ve node Gaussian quadra-
ture scheme.

Step 4 Pack model structure:

model.func = 'prem02';

model.discount = delta;

model.e = yshk;

model.w = w;

model.params = {delta,gamma,cost,xmax};

Here, model is a structure variable whose �elds contain the elements of the model.
The �rst �eld contains the name of the model function �le 'prem02'; the remaining
�elds contain the discount factor delta, shock values e, shock probabilities w, and
model function parameters params, respectively.



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 318

Step 5 Specify basis functions and collocation nodes:

n = 10;

smin = min(yshk);

smax = max(yshk)+xmax;

fspace = fundefn('spli',n,smin,smax);

snodes = funnode(fspace);

Here, a degree 10 cubic spline with evenly spaced breakpoints and standard nodes are
selected to serve as basis functions and collocation nodes. The domain of the state is
taken to be the interval from minimum production level to the sum of the maximum
production level and the maximum storage level. This ensures that next period's
carryin stocks cannot lead to extrapolation beyond the approximation interval.

Step 6 Provide a judicious guess for the response variable at the collocation nodes:

x = zeros(size(snodes));

Here, the carryout stocks are simply set to 0.

Step 7 Solve equilibrium model:

[ch,sres,xres,hres,fres,resid] = remsolve(model,fspace,snodes,x);

The Compecon routine remsolve accepts as input the model structure model, basis
function de�nition variable fspace, collocation nodes snodes, and the initial guess for
the response variable x. It then solves the collocation equation, returning as output
c, the basis coeÆcients for the expectation variable, a vector of the values of the state
sres, together with values of the response variable xres, the expectation variable
hres, the equilibrium function fres and the collocation residual resid, all evaluated
at the values in sres.

Step 8 Perform post-solution analysis. To check on the quality of the solution,
both fres and resid should be examined. The former is used to demonstrate how
well the equilibrium condition is satis�ed when evaluated as

f(s; x(s; c); Eh(�(g(s; x(s; c); e))c);

the latter is used to demonstrate how well the approximating function matches the
expectation variable:

resid = h(s; x(s; c))� �(s)c:
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Figure 9.11: Solution to Commodity Storage Model

resid should be close to 0 for all s 2 [smin; smax]; fres should be close to 0 for all
values of s such that x(s) is on the interior of [a(s); b(s)]. Together these functions
provide an indication of how accurately the solution has been approximated.

Figure 9.11a gives the equilibrium carryout stocks as a function of supply (carryin
plus production). Figure 9.3b gives the equilibrium price function with stockholding
(above) and without stockholding (below). Figure 9.11c shows that f is satis�ed to
near machine accuracy. The collocation equation, however, shown in Figure 9.11d,
indicates that the solution error is small but non-trivial (approximately 1%).

Although a higher degree approximate would provide a more accurate solution,
Figures 9.11a and 9.11b exhibit the essential properties of the true rational expecta-
tions equilibrium solution. Speci�cally, when supply is low, price is high and storage
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is zero; as supply rises, however, prices drop and stockholding becomes pro�table.
Both the response function (carryout stocks) and the expectation function (price)
exhibit kinks at the point at which stockholding becomes pro�table. It is precisely
for this reason that we used a spline approximate. Furthermore, the price function is
less drastically kinked and it therefore makes good sense to attempt to approximate
it, rather than the stockholding function.

9.7 Comparison of Solution Methods

When applying the collocation method, the analyst faces a number of practical de-
cisions. First, the analyst must choose the basis function and collocation nodes.
Second, the analyst must chose an algorithm for solving the resulting nonlinear equa-
tion or complementarity problem. And third, the analyst must select an appropriate
numerical quadrature technique for computing expectations. A careful analyst will
often try a variety of basis-node combinations, and may employ more than one itera-
tive scheme in order to assure the robustness of the results. If the basis functions and
nodes are chosen wisely, the collocation method will often be numerically consistent,
in the sense that the approximation error can be made arbitrarily small simply by
increasing the number of basis functions, collocation nodes, and quadrature points.

In developing a numerical approximation strategy for solving Bellman's equation,
one pursues a series of multiple, sometimes conicting goals. First, the algorithm
should o�er a high degree of accuracy for a minimal computational e�ort. Second,
the algorithm should be capable of yielding arbitrary accuracy, given suÆcient compu-
tational e�ort. Third, the algorithm should yield answers with minimal convergence
problems. Fourth, it should be possible to code the algorithm relatively quickly with
limited chances for programmer error.

Space discretization has some major advantages for computing approximate so-
lutions to continuous-space dynamic decision problems. The biggest advantage to
space discretization is that it is easy to implement. In particular, the optimization
problem embedded in Bellman's equation is solved by complete enumeration, which is
easy to code and numerically stable. Also, constraints are easily handled by the com-
plete enumeration algorithm. Each time a new action is examined, one simply tests
whether the action satis�es the constraint, and rejects it if it fails to do so. Finally,
space discretization can provide an arbitrarily accurate approximation by increasing
the number of state nodes.

Space discretization, however, has several major disadvantages. The biggest dis-
advantage is that complete enumeration is extremely slow. Complete enumeration
mindlessly examines all possible actions, ignoring the derivative information that
would otherwise help to �nd the optimal action. Another drawback to space dis-
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cretization is that it uses discontinuous step functions to approximate the value and
policy functions. The approximate optimal solution generated by space discretization
will not possess the smoothness and curvature properties of the true optimal solution.
Finally, because the states and actions are forced to coincide with speci�ed nodes,
the accuracy a�orded by space discretization will be limited by the coarseness of the
state and action space grids.

Linear-quadratic approximation is perhaps the method easiest to implement. The
solution to the approximating problem is a linear function whose coeÆcients can
be derived analytically using the methods discussed in section 9.1. Alternatively,
the coeÆcients can easily be computed numerically using a successive approximation
scheme that is typically free of convergence problems.

Linear-quadratic approximation, however, has some severe shortcomings. The ba-
sic problem with linear-quadratic approximation is that it relies on Taylor series ap-
proximations that are accurate only in the vicinity of the steady-state, and then only
if the process is deterministic or nearly so. Linear-quadratic approximation will yield
poor results if random shocks repeatedly throw the state variable far from the steady-
state and if the reward and state transition functions are not accurately approximated
by second- and �rst-degree polynomials over their entire domains. Linear-quadratic
approximation will yield especially poor approximations if the true optimal process
is likely to encounter any inequality and nonnegativity constraints, which must be
discarded in passing to a linear-quadratic approximation.

Collocation methods address many of the shortcomings of linear-quadratic approx-
imation and space discretization methods. Unlike linear-quadratic approximation,
collocation methods employ global, rather than local, function approximation schemes
and, unlike space discretization, they approximate the solution using a smooth, not
discontinuous, function. Chebychev collocation methods, in particular, are motivated
by the Wieirstrass polynomial approximation theorem, which asserts that a smooth
function can be approximated to any level of accuracy using a polynomial of suÆ-
ciently high degree. A second important advantage to collocation methods is that
they may employ root�nding or optimization that exploit derivative information. A
di�erentiable approach can help pinpoint the equilibrium solution at each state node
faster and more accurately than the complete enumeration scheme of discrete dynamic
programming.

The collocation method replaces the inherently in�nite-dimensional functional
equation problem with a �nite-dimensional nonlinear equation problem that can be
solved using standard nonlinear equation methods. The accuracy a�orded by the
computed approximant will depend on a number of factors, most notably the number
of basis functions and collocation nodes n. The greater the degree of approximation
n, the more accurate the resulting approximant, but the more expensive is its com-
putation. For this reason choosing a good set of basis functions and collocation nodes



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 322

is critical for achieving computational eÆciency. Approximation theory suggests that
Chebychev polynomials basis functions and Chebychev collocation points will often
make superior choices, provided the solution to the functional equation is relatively
smooth. Otherwise, linear or cubic basic splines with equally spaced collocation nodes
may provide better approximation.

Chebychev and cubic spline collocation, however, is not without its disadvantages.
First, polynomial interpolants can behave strangely outside the range of interpolation
and should be extrapolated with extreme caution. Even when state variable bounds
for the model solution are known, states outside the bounds can easily be generated
in the early stages of the solution algorithm, leading to convergence problems. Also,
polynomial interpolants can behave strangely in the vicinity of nondi�erentiabilities
in the function being interpolated. In particular, interpolating polynomials can fail
to preserve monotonicity properties near such points, undermining the root�nding
algorithm used to compute the equilibrium at each state node. Finally, inequality
constraints, such as nonnegativity constraints, require the use of special methods for
solving nonlinear complementarity problems.

Table 1 gives the execution time and approximation error associated with four so-
lution schemes, including uniform polynomial and Chebychev collocation, as applied
to the commodity storage model examined in section 9.6.2. Approximation error is
de�ned as the maximum absolute di�erence between the \true" price function and
the approximant at points spaced 0.001 units apart over the approximation inter-
val [0:5; 2:0]. Execution times are based on the successive approximation algorithm
implemented on an 80486 50 megahertz Gateway 2000 personal microcomputer.

The superiority of the Chebychev collocation for solving the storage model is ev-
ident from table 1. The accuracy a�orded by Chebychev collocation exceeded that
of space discretization by several orders of magnitude. For example, the accuracy
achieved by space discretization in nearly �ve minutes of computation was easily
achieved by Chebychev collocation in less than one-tenth of a second. In the same
amount of time, the linear-quadratic approximation method a�orded an approxima-
tion that was three orders of magnitude worse than that a�orded by Chebychev col-
location. The approximation a�orded by linear-quadratic approximation, moreover,
was not subject to improvement by raising the degree of the approximation, which
is �xed. Finally, as seen in table 1, when using uniform node, monomial collocation,
the approximation error actually increased as the number of nodes doubled from 10
to 20; the algorithm, moreover, would not converge for more than 23 nodes. The
example thus illustrates once again the inconsistency and instability of uniform node
monomial interpolation.
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Number Execution Maximum
of Time Absolute

Method Nodes (seconds) Error

Chebychev 10 0.1 4.7E�02
Polynomial 20 0.4 1.1E�02
Collocation 30 0.7 2.7E�03

40 1.1 5.9E�04
50 1.6 3.3E�04
100 5.8 3.1E�06
150 12.5 2.3E�08

Uniform 10 0.1 1.4E�01
Polynomial 20 0.3 1.7E+00
Collocation 30 N.A. N.A.

Space 10 2.0 4.5E+00
Discretization 20 7.5 1.7E+00

30 16.9 8.6E�01
40 31.0 5.3E�01
50 32.3 3.5E�01
100 124.6 9.7E�02
150 292.2 4.5E�02

L-Q Approximation 0.1 2.8E+01

Table 9.1: Execution Times and Approximation Error for Selected Continuous-Space
Approximation Methods
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Exercises

9.1. Rework the problem in the preceding chapter on optimal production with pol-
lution externalities treating the state space as continuous, rather than discrete.
Use a 10 degree Chebychev polynomial basis with nodes the Chebychev nodes
for the interval [2; 7].

(a) Compute the optimal shadow price and production policy using 10 degree
Chebychev collocation.

(b) Graph the shadow price function obtained in (a) and the shadow price
function obtained in problem 8.2 on the same �gure.

(c) Graph the optimal production policy obtained in (a) and the optimal pro-
duction policy obtained in problem 8.2 on the same �gure.

(d) Plot pollution level through year 20, beginning with a pollution level of 7
at time 0.

(e) Plot production through year 20, beginning with a pollution level of 7 at
time 0.

9.2. A farmer's corn yield in year t, in bushels per acre, is

yt = 100 + 1:085(st + xt)� 0:015(st + xt)
2

where st is soil fertilizer carryin and xt is fresh fertilizer applied topically at
planting time, both measured in pounds per acre. The soil carryover dynamic
is

st+1 = 4:0 + 0:7st + 0:2xt:

Develop a numerical dynamic program to maximize the discounted sum of prof-
its over an in�nite-horizon assuming that (i) the price of corn is $2.00 per bushel;
(ii) commercial fertilizer costs $0.55 per pound; and (iii) the discount factor is
0.90.

(a) Derive the optimal fertilizer policy and shadow price function.

(b) Graph the optimal sequence of carryover levels assuming an initial stock
of s = 10.
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9.3. Consider an in�nitely-lived put option with strike price K on a �nancial asset
whose log-price pt follows

pt+1 = �p� (pt � �p) + �t+1

where �t is i.i.d. normal with mean zero and standard deviation �. Assuming
K = 1, �p = 0,  = 0:5, and � = 0:2, price the option in terms of the log of the
asset price over the range [log(0:8); log(1:2)]. What is the optimal exercise rule?

9.4. As a social planner, you wish to maximize the discounted sum of net social
surplus from harvesting a renewable resource over an in�nite horizon. Let st
denote the amount of resource available at the beginning of year t and let
xt denote the amount harvested. The harvest cost is c(xt) = kxt, the market
clearing price is pt = x�t , and the stock dynamic is st+1 = �(st�xt)�0:5�(st�
xt)

2. Assume  = 0:5, � = 4, � = 1:0, k = 0:2, and Æ = 0:9.

(a) Develop a computer program that will compute an approximate optimal
policy using space discretization. Let S = [1; 4] and X = [1; 6], employing
a 26 point discretization. Use the FORTRAN intrinsic function \nint" to
�nd the state node closest to g(si; xj).

(b) Derive analytical expressions for the steady-state state s�, action x�, and
shadow price �� in terms of the model parameters. Formulate the linear-
quadratic approximation for the decision model. Derive analytical ex-
pressions for the approximate shadow price and optimal policy function
coeÆcients in terms of the model parameters.

(c) Develop a computer program that will compute an approximate optimal
policy over the interval S = [4; 8] using Chebychev polynomial projec-
tion. The degree of the interpolating polynomial n should be treated as
parameters by the program. Solve the model using n = 2, n = 10, and
n = 50.

(d) Using the graphics package of your choice, graph the optimal policies de-
rived in (a), (b), and (c) together. To draw your graph, evaluate the policy
functions at 101 equally points over the interval [4; ].

(e) Repeat (a)-(d), except now assume that the resource is owned by a pro�t
maximizing monopolist, rather than a benevolent social planner.

9.5. Consider the commodity storage model of section 5.4, except now assume that
harvest ht+1 at the beginning of year t + 1 is the product of the acreage at
planted in year t and a random yield yt+1 realized at the beginning of year t+1:

ht+1 = at � yt+1:
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Further assume that acreage planted is a function

at = (Etpt+1)
0:8

of the price expected to prevail at harvest time conditional on the information
known at planting time and that the log yt are serially independent and normally
distributed with mean 0 and standard deviation 0.2.

(a) Write the conditions that characterize the rational expectations equilib-
rium for this market in terms of the � solution function to be computed.

(b) Develop a computer program to solve for the rational expectations equi-
librium using Chebychev polynomial projection methods.

(c) Graph acreage planted in terms of the supply available at the beginning
of the period.

(d) Estimate the steady-state mean and variance of acreage planted using
Monte-Carlo simulation. A �ve thousand year simulation will be adequate.

Use an appropriate 5 point discretization for the random yield and set the
minimum and maximum supply levels to 0.6 and 2.0.

9.6. Consider the problem of optimal harvesting of a nonrenewable resource by a
competitive price-taking �rm:

max E
P1

t=0 Æ
t[ptxt � �x�t ]

s.t. st+1 = st � xt

where Æ = 0:9 is the discount factor; � = 0:2, � = 1:5, are cost function
parameters; pt is the market price; xt is harvest; and st is beginning reserves.
Develop a Matlab program that will solve this problem numerically treating the
state space as continuous. Approximate the value function using a linear spline
basis with nodes spaced one unit apart on the interval [0; 100]

(a) Graph the shadow price as a function of the stock level.

(b) Graph the optimal harvest as a function of the stock level.

(c) Plot optimal stock levels through year 20, beginning with a stock of 100.

(d) Plot optimal harvests through year 20, beginning with a stock of 100 at
time 0.
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9.7. A social planner wishes to maximize the present value of current and future net
social welfare derived from industrial production over an in�nite time horizon.
Net social welfare in period t is

�0 + �1qt � 0:5q2t � cst

where qt is industrial production in period t and st is the pollution level at the
beginning of period t. The pollutant stock is related to industrial production
as follows:

st+1 = st + qt:

Assume �0 = 2:0, �1 = 3:0,  = 0:6, c = 1:0, and Æ = 0:9.

Solve this problem using linear quadratic approximation and collocation, treat-
ing the state space as continuous, over the interval [2; 7]. Use a 10 degree
Chebychev polynomial basis for the collocation scheme:

(a) Compute and plot, on one �gure, the optimal shadow price function ob-
tained by L-Q approximation and by collocation.

(b) Compute and plot, on one �gure, the optimal production policy function
obtained by L-Q approximation and by collocation.

(c) Plot pollution level through year 20, beginning with a pollution level of 7
at time 0.

(d) Plot production through year 20, beginning with a pollution level of 7 at
time 0.

9.8. In a widely cited article, Deaton and Larocque pose a time-stationary, discrete-
time dynamic model of a market for a storable primary commodity in which:

� consumption c in any period is a deterministic function c = D(p) of price
p;

� storage x is costless and undertaken by risk neutral, expected pro�t max-
imizers who discount the future at a constant per-period rate r

� new production ~h at the beginning of each period is exogenous and random.

Please answer the following questions:

(a) Formulate and interpret the intertemporal arbitrage condition that must
be satis�ed by prices in this commodity market.
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(b) How would you solve and simulate this model in order to gain an under-
standing of price dynamics in this commodity market.

9.9. In a well-known article on primary commodity price dynamics, Deaton and
Larocque pose the functional equation

f(x) = ÆEhmaxf q�1(x) ; f(x� q(f(x)) + h) g x 2 X

where Æ is a known discount factor, q(�) is a known demand function, h is
a random variable with known continuous distribution, and f is an unknown
function that gives the equilibrium market price in terms of the available sup-
ply x. Describe the steps that you would take to solve this functional equation
numerically for f . Also discuss how you would test the validity of your approx-
imation.

9.10. The Bellman equation of a deterministic autonomous continuous-time dynamic
optimization model takes the form

�rV (s) = max
x
ff(s; x) + V 0(s)g(s; x)g s 2 S

where f and g are known functions, r is the interest rate, and S � < is a compact
interval. Describe the steps that you would take to solve this functional equation
numerically for the unknown value function V . Also discuss how you would test
the validity of your approximation.

9.11. Consider a in�nitely-lived worker searching for a job. At each point in time
t, the worker observes a per-period wage o�er wt. The worker may accept the
o�er, committing him to receive that per-period wage thereafter in perpetuity.
Alternatively, he may reject the o�er, earning nothing in the current period,
and wait for a hopefully better wage o�er the following period. The wage o�ers
follow an autoregressive process

log(wt+1) = 0:5 log(wt) + �t

where the �t are i.i.d. normal with mean zero and standard deviation 0.2. The
worker's objective is to maximize the present value of current and expected
future wages using a discount factor of 0.9 per period.

(a) Formulate Bellman's equation for the worker's optimization problem.

(b) Solve Bellman's equation for the worker's value function using a continuous-
state numerical collocation scheme of your choosing.
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(c) Plot the value function.

(d) Plot the residual function.

(e) Estimate the worker's reservation wage, that is, the minimum wage he
would accept.

9.12. A farmer wishes to maximize the present value of current and future pro�ts over
an in�nite horizon assuming a stable corn price of $2.00 per bushel, a stable
commercial fertilizer cost of $0.25 per pound, and an annual discount factor
of 0.9. The farmer's corn yield in year t, in bushels per acre, is given by the
Mitscherlick-Baule production function

yt = 140[1� 0:3 exp(�0:1st)][1� 0:1 exp(�1:3xt)]

where st is soil fertilizer carryin and xt is fresh fertilizer applied topically at
planting time, both measured in pounds per acre. The fertilizer carryover dy-
namic is

st+1 = 9:0 + 0:7st + 0:1xt

Solve Bellman's equation for the value function over the interval [15; 60] using
both linear-quadratic approximation and a 10 degree Chebychev collocation
scheme.

(a) Plot of the shadow price function produced by both the L-Q and Chebychev
approximations.

(b) Plot the optimal fertilizer application policy produced by both the L-Q
and Chebychev approximations.

(c) Plot the residual function for the Chebychev approximation.

(d) Plot carryin through year 20, beginning with a carryin of 15 at time 0.
(Use Chebychev approximant.)

(e) Plot fertilizer applications through year 20, beginning with a carryin of 15
at time 0. (Use the Chebychev approximant.)



Chapter 10

Continuous Time Models:

Theory and Examples

In this chapter we discuss models that treat time as a continuum. Such models are
typically expressed in terms of di�erential equations, either ordinary or partial. Our
discussion proceeds in three sections. First, we discuss models of asset prices that
are based on arbitrage considerations alone and that do not depend on solving a de-
cision problem. Many �nancial asset, including bonds, futures and some options are
in this class. We then take up the topic of stochastic control, i.e., of optimal decision
making applied to processes that evolve continuously in time. Such problems will be
illustrated with examples of growth models, portfolio choice and resource manage-
ment. Next, we will turn to problems involving free boundaries, which arise when
a discrete choice is made. Examples of such problems include entry/exit decisions,
option exercise and asset replacement.

Continuous time models make extensive use of Ito processes, which are continuous
time Markov processes. Because Ito processes do not possess time derivatives, it is
necessary to make use of stochastic calculus. Especially useful is the extension of
the chain rule known as Ito's Lemma and the relationships between expectations and
di�erential equations embodied in so-called forward and backward equations and the
Feynman-Kac Equation. A review of these topics is provided in the Mathematical
Appendix; more details can be found in the references discussed at the end of this
chapter.

10.1 Arbitrage Based Asset Valuation

An important use of continuous time methods results from powerful arbitrage con-
ditions that can be derived in a simple and elegant fashion. Originally developed to

330
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solve option pricing problems, arbitrage arguments apply much more broadly. Any
assets that are based on the same underlying risks have values that are related to one
another in very speci�c ways.

Consider two assets which have values V and W , both of which depend on the
same random process S. Suppose that S is an Ito process, with1

dS = �Sdt+ �Sdz:

Under suitable regularity conditions, this implies that V andW are also Ito processes,
with

dV = �V dt+ �V dz

dW = �Wdt+ �Wdz:

Suppose further that the assets generate income streams (dividends), which are de-
noted by ÆV and ÆW .

One can create a portfolio consisting of one unit of V and h units of W , the value
of which is described by

dV + hdW = [�V + h�W ]dt+ [�V + h�W ]dz:

This portfolio can be made risk free by the appropriate choice of h, speci�cally by
setting the dz term to 0:

h = ��V =�W :
Because it is risk-free, the portfolio must earn the risk-free rate of return. Therefore
the capital appreciation on the portfolio plus its income stream must equal the risk
free rate times the investment cost:�

�V � �V
�W

�W

�
dt+

�
ÆV � �V

�W
ÆW

�
dt = r

�
V � �V

�W
W

�
dt:

\Divide" by �V dt and rearrange to conclude that

�V + ÆV � rV
�V

=
�W + ÆW � rW

�W
:

This expression must hold or any assets that depend on S and therefore both sides
must equal a function �(S; t), that does not depend on the speci�c features of the

1The following notational conventions are used. �, � and Æ represent drift, di�usion and payouts
associated with random processes; subscripts on these variables identify the process. V and W
represent asset values, which are functions of the underlying state variables and time; subscripts
refer to partial derivatives.



CHAPTER 10. CONTINUOUS TIME - THEORY & EXAMPLES 332

particular derivative asset. In other words, the function � is common to all assets
whose values depend on S. � can be interpreted as the market price of the risk in S.

To avoid arbitrage opportunities, any asset with value V that depends on S must
therefore satisfy

�V + ÆV = rV + ��V

This is a fundamental arbitrage condition that is interpreted as saying that the total
return on V , �V + ÆV , equals the risk free return plus a risk adjustment, rV + ��V .

Ito's Lemma provides a way to evaluate the �V and �V terms. Speci�cally,

�V = Vt + �SVS +
1
2 �

2
SVSS

and

�V = �SVS:

Combining with the arbitrage condition and rearranging yields

rV = ÆV + Vt + (�S � ��S)VS + 1
2
�2SVSS: (10.1)

This is the fundamental di�erential equation that any asset derived from S must
satisfy, in the sense that it must be satis�ed by any frictionless economy in equilibrium.
This is a remarkable result. Its says that all assets that depend on S satisfy a linear
PDE that is identical in its homogeneous part. Assets are di�erentiated only by the
forcing term ÆV and by boundary conditions.

It is important to note that, in general, S may or may not be the price of a traded
asset. If it is the price of a traded asset then the arbitrage condition applies to S
itself, so

�S � ��S = rS � ÆS:
The value of any asset, V , which is derived from S, therefore satis�es the partial
di�erential equation

rV = ÆV + Vt + (rS � ÆS)VS + 1
2 �

2
SVSS:

On the other hand, if S is not the price of a traded asset, but there is a traded asset
or portfolio, W , that depends only on S, then the market price of risk, �, can be
inferred from the behavior of W :

�(S; t) =
�W + ÆW � rW

�W
;

where ÆW is the dividend ow acquired by holding W .
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The no-arbitrage condition provides a very convenient framework for pricing a
wide variety of �nancial assets. One must specify the nature of the state process (�
and �) and how the asset and interest rate depend on the state. Any asset that pays
a state-dependent return at a �xed terminal date T can then (in principle) be valued.
With a little more work we will also be able to value assets that may be terminated
early, such as American style option and callable bonds. Such assets, however, entail
an optimal termination choice; we will return to them in Section 10.3.3 after we
discuss control theory in continuous time.

Example: Bond Pricing
Suppose that the instantaneous rate of interest is described by the (risk-neutral)
process

dr = �(r)dt+ �(r)dz:

A bond paying 1 unit of account at time T has a current price, B(r; t;T ), that satis�es
the arbitrage condition

rB = Bt + �(r)Br +
1
2
�2(r)Brr;

subject to the boundary condition at time T that B(r; T ;T ) = 1. Speci�c examples
are left as exercises.

Example: Black-Scholes Formula
Consider a non-dividend paying (or payout protected) stock (ÆS = 0), the price of
which follows

dS = �Sdt+ �Sdz;

where � and � are constants, so S follows a geometric Brownian motion (sometimes
denoted dS=S = �dt+�dz). The log di�erences, ln(S(t+�t))�ln(S(t)), are normally
distributed with mean (�� 1

2
�2)�t and variance �2�t (see Appendix A, Section ??).

The stock as itself an asset with no ow of payments and hence must satisfy the
arbitrage condition that

�(S)� ��(S) = rS:

A derivative asset that depends on S and that generates a one-time return at time T
therefore has value, V (S; t), that satis�es the arbitrage condition

rV = Vt + rSVS +
1
2 �

2S2VSS:

A European call option on S with a strike price of K has a payout at time T of S�K
if S > K and 0 otherwise. The boundary condition for the PDE is, therefore, that
V (S; T ) = max(0; S �K).
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The value of such an option is

V (S; t) = S� (d)� e�r�K�
�
d� �p��

where � = T � t,

d =
ln(S=K) + r�

�
p
�

+ 1
2 �
p
� ;

and � is the standard normal CDF:

�(x) =
1p
2�

Z x

�1
e
� 1

2
z2
dz:

Some tedious manipulations will demonstrate that

VS = � (d) ;

VSS =
� (d)

�S
p
�

and

Vt = ��S� (d)
2
p
�
� re�r�K�

�
d� �

p
�

2

�
;

where

�(x) = �0(x) =
e
� 1

2
x2

p
2�

(the partial derivatives are known as the delta, gamma and theta of the call option
and are used in hedging). Using these expressions it is straightforward to verify that
the partial di�erential equation above, including the boundary condition, is satis�ed.

Example: Exotic Options
The basic no-arbitrage approach can be applied to more complicated derivative
assets. We illustrate with several types of so-called exotic options, Asian, lookback
and barrier options.

An Asian option is one for which the payout depends on the average price of the
underlying asset over some pre-speci�ed period. There are two basic types: the �rst
has a strike price equal to the average and the second pays the positive di�erence
between the average price and a �xed strike price.
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De�ning S to be the underlying price and letting the Asian option depend on the
average price over the period 0 to T its expiration date, the relevant average is

A =
1

T

Z T

0

Stdt:

The average strike Asian call option pays, at time T , max(S � A; 0) and the �xed
strike Asian call option, with strike price K, pays max(A�K; 0).

Suppose the dynamics of S are given by

dS = �(S)dt+ �(S)dW:

It is not enough, however, to know current S because the average depends on the path
S takes; in other words the option is not Markov in S. We can, however, expand the
state space by de�ning

Ct =

Z t

0

S�d�:

The option's value will depend on S, C and t. Noting that dC = Sdt, the option
satis�es the usual no-arbitrage condition

rV = Vt + �(S)VS + SVC + 1
2
�2(S)VSS

with the terminal value equal to

V (S;C; T ) = max(S � C=T; 0)
or

V (S;C; T ) = max(C=T �K; 0)
for average and �xed strike Asian, respectively.

In the special case that S evolves according to a geometric Brownian motion (the
assumption made to derive the Black-Scholes formula) this two dimensional PDF can
be simpli�ed. We use a guess and verify strategy by de�ning the transformation
y = S=C and the guess that V (S;C; �) has the form Cv(S; �). This will work for the
average strike option, with the terminal condition v(y; T ) = max(y � 1=T; 0).2 The
partial derivatives are V� = Cv� , VS = vy, VSS = vyy=C and VC = v � Cvy(S=C2) =

2The terminal condition for the �xed strike Asian cannot be put in this form so it is clear that
its value is not proportional to C. A closed form expression exists for a �xed strike Asian when the

average is de�ned as exp
�R T

0
Sdt=T

�
(geometric average), however; we leave this as an exercise.
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v � yvy. These can be substituted into the no-arbitrage condition to derive the
expression

rCv = Cvt + ryCvy + yC(v � yvy) + 1
2
�2y2Cvyy:

Notice that C is a common term and can be divided out, leaving

(r � y)v = vt + (r � y)yvy + 1
2 �

2y2vyy:

Instead of a two dimensional PDE, we only have to solve a one-dimensional one; this
is far easier to accomplish numerically.

A lookback option is one written on the maximum price over the option's life and
can be either a lookback strike or a �xed strike lookback. Like Asian options, one
must de�ne an additional state variable to keep track of the maximum price. Let

Mt = max
�2[0;t]

S� :

The terminal conditions are V (S;M; T ) = max(M�K; 0) for the �xed strike lookback
call and V (S;M; 0) = max(M � S; 0) for the lookback strike put.

Notice that dM = 0 for S < M . Hence the no-arbitrage condition for S < M
does not involve M :

rV = Vt + �(S)dt+ 1
2 �

2(S)dW:

This does not mean, however, that V doesn't depend on M . At the point S =M the
option value must satisfy VM(M;M; t) = 0.

Finally, we consider one of the many types of barrier options, the so-called down-
and-out option. This option behaves like a normal put option so long as the underlying
price stays above some prespeci�ed barrier B. However, if the price hits B anytime
during the life of the option, the option is immediately terminated with some rebate
R paid to its holder.

Down-and-out options satis�es the usual no-arbitrage condition for S 2 [B;1).
In addition to the usual terminal boundary condition, V (S; T ) = max(K �S; 0), this
additional boundary condition S(B; t) = R must be imposed.

A number of other exotic options exist that, like American style options, have
a value that depends on the holder optimally making some decision during the life
of the option. For example, a shout option allows the holder to lock in a minimal
return at some point during the option's life so the return (at time T ) is determined
by solving

max
�2[0;T ]

max(S� �K;St �K):
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Many options and other assets also have compound features; their return is based
on the value of another option or other derivative asset. For example, bond options
and futures options depend on the value of a speci�ed bond or on a speci�ed futures
price at the expiration of the option. To price these, one must �rst determine the
value of the underlying and use this value as a terminal condition for the option.

Consider, for example, an option written on a 3-month Treasury bond. The value
of the Treasury bond satis�es the no-arbitrage condition with B(S; T + 0:25) = 1
as a terminal condition. The terminal condition for a call option with a strike price
of K is V (S; T ) = B(S; T ). Using this approach, compound options of considerable
complexity can be valued. In general there will not be closed form solutions for such
assets, but it is relatively easy to price them numerically, as we will see in the next
chapter.

Example: Multivariate AÆne Asset Pricing Model
As the dimension of the state process increases, the use of the no-arbitrage PDE
becomes increasingly diÆcult to apply, as we shall see in the next chapter. There are
some cases, however, for which this so-called curse of dimensionality can be avoided.
The most important case is the aÆne asset pricing model, which has been widely
applied, especially in modeling interest rate and futures price term structure.

Suppose that the risk-neutral state price process can be described by an aÆne
di�usion, which takes the form

dS = (a+ AS)dt+ Cdiag
�p

b+BS
�
dW;

where a and b are n�1 and A, B and C are n�n (the p operator is applied element
by element). Furthermore, the risk free interest rate is an aÆne function of the state,
r0 + rS (r0 is a scalar and r is 1� n) and the log of the terminal value of the asset is
an aÆne function of the state, ln(V (S; 0)) = h0 + hS.

Given these assumptions, it is straightforward to show that the log of the asset
value is aÆne in the state, with the coeÆcients depending on the time-to-maturity
(� = T � t):

V (S; �) = exp(�0(�) + �(�)S):

It is clear this satis�es the terminal condition when �0(0) = h0 and �(0) = h. Sub-
stituting the proposed value of V into the no-arbitrage condition yields

(r0 + rS)V = �(� 00(�) + � 0(�)S)V + �(�)(a+ AS)V
+ 1

2 trace
�
Cdiag(b +BS)C>�(�)>�(�)

�
V:

V is a common term that can be divided out and the remaining expression is aÆne
in S. The expression is therefore satis�ed when3

� 00(�) = �(�)a+ 1
2
�(�)Cdiag(C�(�))b� r0
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and

� 0(�) = �(�)A + 1
2 �(�)Cdiag(C�(�))B � r:

The n + 1 coeÆcient functions �0(�) and �(�) are thus solutions to a system of
ordinary di�erential equations, which are easily solved, even when n is quite large.

10.2 Stochastic Control

On an intuitive level, continuous time optimization methods can be viewed as simple
extensions of discrete time methods. In continuous time one replaces the summation
over time in the objective function with an integral evaluated over time and the
di�erence equation de�ning the state variable transition function with a di�erential
equation. For non-stochastic models, the optimization problem is4

max
x(S;t)

Z T

0

e��tf(S; x)dt+ e��TR(S(T )); s.t. dS = g(S; x)dt;

where S is the state variable (the state), x the control variable (the control), f is the
reward function, g the state transition function and R is a terminal period \salvage"
value. The time horizon, T , may be in�nite (in which case R has no meaning) or it
may be state dependent and must be determined endogenously (see Section 10.3 on
free boundaries).

For non-stochastic problems, optimal control theory and its antecedent, the cal-
culus of variations, have become standard tools in economists' mathematical toolbox.
Unfortunately, neither of these methods lends itself well to extensions involving un-
certainty. The other alternative for solving such problems is to use continuous time
dynamic programming. Uncertainty can be handled in an elegant way if one restricts
oneself to modeling that uncertainty using Ito processes. This is not much of a re-
striction because the family of Ito processes is rather large and can be used to model
a great variety of dynamic behavior (the main restriction is that it does not allow for
jumps). Furthermore, we will show that for deterministic problems, optimal control
theory and dynamic programming are two sides of the same coin and lead to equiv-
alent solutions. Thus, the only change needed to make the problem stochastic is to

3We use the facts that trace(xyz) = trace(zxy) and, when x and y are vectors, diag(x)y =
diag(y)x.

4We cover here the more common discounted time autonomous problem. The more general case
is developed as an exercise.
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de�ne the state variable, S, to be a controllable Ito process, meaning that the control
variable, x, inuences the value of the state:5

dS = g(S; x)dt+ �(S)dz:

To develop the solution approach on an intuitive level, notice that for problems
in discrete time, Bellman's equation can be written in the form

V (S; t) = max
x

�
f(S; x)�t +

1

1 + ��t
Et[V (St+�t; t+�t)]

�
:

Multiplying this by (1 + ��t)=�t and rearranging:

�V (S; t) = max
x

�
f(S; x; t)(1 + ��t) +

Et[V (St+�t; t+�t)� V (S; t)]
�t

�
:

Taking the limits of this expression at �t ! 0 yields the continuous time version of
Bellman's equation:

�V (S; t) = max
x

�
f(S; x; t) +

EtdV (S; t)

dt

�
: (10.2)

If we think of V as the value of an asset on a dynamic project, Bellman's equation
states that the rate of return on V (�V ) must equal the current income ow to
the project (f) plus the expected rate of capital gain on the asset (E[dV ]=dt), both
evaluated using the best management strategy (i.e., the optimal control). Thus,
Bellman's equation is a kind of intertemporal arbitrage condition.6

By Ito's Lemma

dV = [Vt + g(S; x)VS +
1
2
�(S)2VSS]dt+ �(S)VSdz:

Taking expectations and \dividing" by dt we see that the term EtdV (S; t)=dt can be
replaced, resulting in the following form for Bellman's equation in continuous time:7

�V = max
x

f(S; x) + Vt + g(S; x)VS +
1
2 �

2(S)VSS: (10.3)

The maximization problem is solved in the usual way by setting the �rst derivative
equal to zero:

fx(S; x) + gx(S; x)VS = 0: (10.4)

5A more general form would allow x to inuence the di�usion as well as the drift term; this can
be handled in a straightforward fashion but makes exposition somewhat less clear.

6It is important to note that the arbitrage interpretation requires that the discount rate, �, be
appropriately chosen (see Section 10.1 for further discussion).

7Also known as the Hamilton-Jacobi-Bellman equation.
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leading (in principle) to a solution of the form

x = x(S; VS)

If there are additional constraints on the state variables they typically can be han-
dled in the usual way (using Lagrange multipliers and, for inequality constraints,
Karush-Kuhn-Tucker type conditions). Constraints on the control on somewhat more
problematic (they are discussed in the inventory management exercise on page 386).
The optimal control can be combined with (10.3) to form the concentrated Bellman

equation:

�V = f(S; x(S; VS)) + Vt + g(S; x(S; VS))VS +
1
2
�2(S)VSS; (10.5)

which must be solved for V (S).
Notice that Bellman's Equation is not stochastic; the expectation operator and

the randomness in the problem have been eliminated by using Ito's Lemma. As with
discrete time versions the state transition equation is incorporated in Bellman's equa-
tion. This e�ectively transforms a stochastic dynamic problem into a deterministic
one.

In �nite time horizon problems, the value function is a function of time and
the time derivative Vt appears in the Bellman's equation. In in�nite time horizon
problems, however, the value function becomes time invariant, implying that V is a
function of S alone and thus Vt = 0. Thus the Bellman's Equation simpli�es to

�V = max
x

f(S; x) + g(S; x)VS +
1
2 �

2(S)VSS:

10.2.1 Boundary Conditions

The Bellman's equation expresses the optimal control in terms of a di�erential equa-
tion. In general, there will be many solutions, many of which are useless to us.
Furthermore, from a numerical point of view, without boundary conditions imposed
on the problem, it will be luck as to whether the derived solution is indeed the cor-
rect one. Unfortunately, the literature on this topic is incomplete and boundary
conditions are often justi�ed by economic rather than mathematical reasoning. For
example, consider a case in which one is extracting a resource with a stochastic price.
Suppose also that the price has an absorbing barrier at P = 0, meaning if the process
hits the barrier it stays there forever (e.g., dP = �(m�P )Pdt+�Pdz). The value of
the inventory is a function of the level of the inventory and the price: V (I; P ). The
reward function is Pq, where dI = �qdt, so the control q is the rate of extraction. It
is obvious that the stream of pro�ts generated by selling from an inventory will be
zero if the price is zero because, once zero is reached, the price is zero forever and the
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inventory is therefore worthless. Also, if the inventory reaches zero it is worthless.
We see, therefore, that

V (I; 0) = V (0; P ) = 0:

We would still need to determine upper boundaries, which we discuss further in the
example on page 345.

Many problems in economics specify a reward function that has a singularity at an
endpoint. Typical examples include utility of consumption functions for which zero
consumption is in�nitely bad. The commonly used constant relative risk aversion
family of utility functions

U(c) = (c� � 1)=�

(with ln(c) when � = 0) is a case in point. Again, economic reasoning would suggest
that if consumption is derived from a capital or resource stock and that stock goes
to zero, consumption must also go to zero and hence the value of a zero stock, which
equals the discounted stream of utility from that stock must be �1. Furthermore,
the marginal value of the stock when the stock gets low becomes quite large, with
VS = 1 as S ! 0. Although this reasoning makes good sense from an economic
perspective, it raises some diÆculties for numerical analysis.

As a rule of thumb, one needs to impose a boundary condition for each derivative
that appears in Bellman's equation. For a single state problem, this means that there
are two boundary conditions needed. In a two-dimensional problem with only one
stochastic state variable, we will need two boundary conditions for the stochastic
state and one for the non-stochastic one. For example, suppose Bellman's equation
has the form

�V = f(S;R; x) + g(S;R; x)VR + �(S)VS +
1
2 �

2S2VSS:

To completely specify the problem we could impose a condition at a point R = Rb, e.g.
V (S;Rb) = H(S) and conditions at S = S and S = S, say VSS(S;R) = VSS(S;R) = 0.

Like all rules of thumb, however, there are exceptions. The exceptions tend to
arise in problems involving singular processes for which the variance term vanishes
at a boundary. For example, it may not be necessary to impose explicit boundary
conditions when the state variable is governed by

dS = �(S; x)dt+ �Sdz;

where �(0; 0) > 0 and x is constrained such that x = 0 if S = 0. Zero is a natural
boundary for this process, meaning that S(t) � 0 with probability 1. In this case, it
may not be necessary to impose conditions on the boundary at S = 0. An intuitive
way to think of this situation is that a second order di�erential equation becomes
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e�ectively �rst order as the variance goes to zero. We may, therefore, not need to
impose further conditions to achieve a well de�ned solution. Several examples we will
discuss have singular boundary conditions.

10.2.2 Choice of the Discount Rate

The choice of the appropriate discount rate to use in dynamic choice problems has
been a topic of considerable discussion in the corporate �nance literature. The ar-
bitrage theory discussed in section 10.1 can be applied fruitfully to this issue. In
particular, there is an equivalence between the choice of a discount rate and the price
of risk assigned to the various sources of risk a�ecting the problem.

In general, if there is a market for assets that depend on a speci�c risk, S, then
arbitrage constrains the choice of the discount rate that should be used to value an
investment project. If an inappropriate discount rate is used, a potential arbitrage
opportunity is created by either overvaluing or undervaluing the risk of the project.
To see this note that the concentrated Bellman's equation for a dynamic project can
be written

�V = ÆV + Vt + �SVS +
1
2 �SVSS;

where ÆV = f(S; x�; t) and �x = g(S; x�; t). To avoid arbitrage, however, (10.1) must
hold. Together these relationships imply that

� = r + ��SVS=V = r + ��V =V (10.6)

In practice we can eliminate the need to determine the appropriate discount rate
by using the risk-free rate as the discount rate and acting as if the process S has
instantaneous mean of either

�̂S = �S � �S�S
or, if S is the value of a traded asset,

�̂S = rS � ÆS:
Which form is more useful depends on whether it is easier to obtain estimates of the
market price of risk for S, �S, or income stream generated by S, ÆS.

Even if the project involves a non-traded risk, it may be easier to guess the market
price of that risk than to de�ne the appropriate discount rate. For example, if the
risk is idiosyncratic and hence can be diversi�ed away, then a well-diversi�ed agent
would set the market price of risk to zero. An appropriate discount rate is particularly
diÆcult to select when there are multiple source of risk (state variables) because the
discount rate becomes a complicated function of the various market prices of risk.
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Having said that, there may be cases in which the appropriate discount rate is
easier to set. For �rm level capital budgeting, the discount rate is the required rate
of return on the project and, in a well functioning capital market, should equal the
�rm's cost of capital. Thus the total return on the project must cover the cost of
funds:

�V = ÆV + �V = rV + �S�V :

The cost of funds, �, therefore implicitly determines the market price of risk (using
10.6).

Summarizing, there are three alternative cases to consider:

1. S is a traded asset for which

�S � ��S = rS � ÆS

2. S is not a traded asset but there is a traded asset the value of which,W , depends
on S and the market price of risk can be determined according to

� = (�W + ÆW � rW )=�W

3. S represents a non-priced risk and either � or � must be determined by other
means.

When S is inuenced by the control x, the payment stream, Æ(S; t), becomes
f(S; x; t) and the drift term, �(S; t), becomes g(S; x; t). There are three forms of
Bellman's equation:

A) rV = maxx f(S; x; t) + Vt + (rS � ÆS)VS + 1
2
�2(S; t)VSS

B) rV = maxx f(S; x; t) + Vt + (g(S; x; t)� ��(S; t))VS + 1
2
�2(S; t)VSS

C) �V = maxx f(S; x; t) + Vt + g(S; x; t)VS + 1
2
�2(S; t)VSS

Any of the three forms can be used when S is a traded asset, although (A) and (B) are
preferred in that they rely on market information rather than on guesses concerning
the appropriate discount rate. When S is not a traded asset but represents a risk
priced in the market, (B) is the preferred form. If S represents a non-priced asset then
either form (B) or (C) may be used, depending on whether it is easier to determine
appropriate values for � or for �.
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10.2.3 Euler Equation Methods

As in the discrete time case, it may be possible to eliminate the value function (or
costate variable) and express the optimality conditions in terms of the state and
control alone (see discussion for discrete time in Section ??). Such an expression
is known as an Euler equation. In the discrete time case, this was most useful in
problems for which gS(x; S; �) = 0. In the continuous time case, however, Euler
equation methods are most useful in deterministic problems. As before, we discuss
the in�nite horizon case and leave the reader to work out the details for the �nite
horizon case.

Suppose

dS = g(x; S)dt:

The Bellman Equation is

�V (S) = max
x

f(x; S) + g(x; S)V 0(S);

with FOC

fx(x; S) + gx(x; S)V
0(S) = 0:

Let h(x; S) = �fx(x; S)=gx(x; S), so the FOC can be written

V 0(S) = h(x; S): (10.7)

Using the Envelope Theorem applied to the Bellman Equation,

(�� gS(x; S))V 0(S)� fS(x; S) = g(x; S)V 00(S):

Using h and its total derivative with respect to S:

V 00(S) = hS(x; S) + hx(x; S)
dx

dS
;

the terms involving V can be eliminated:

(�� gS(x; S))h(x; S)� fS(x; S) = g(x; S)

�
hS(x; S) + hx(x; S)

dx

dS

�
: (10.8)

This is a �rst-order di�erential equation that can be solved for the optimal feed-
back rule, x(S). The \boundary" condition is that the solution pass through the
steady state at which dS=dt = 0 and dx=dt = 0. The �rst of these conditions is that
g(x; S) = 0, which in turn implies that the left hand side of (10.8) equals 0:

(�� gS(x; S))h(x; S)� fS(x; S) = 0:

These two equations are solved simultaneously (either explicitly or numerically) to
yield boundary conditions for the Euler Equation. This approach is applied in the
example beginning on page 353.
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10.2.4 Examples

Example: Optimal Renewable Resource Extraction
The stock of a resource, S, is governed by the controlled stochastic process

dS = (B(S)� q)dt+ �Sdz;

where B(S) is a biological growth function and q is the harvest rate of the resource.
The marginal cost of harvesting the resource depend only on the stock of the resource
with the speci�c functional form

C(q) = c(S)q:

The total surplus (consumer plus producer) is

f(S; q) =

Z q

0

D�1(z)dz � c(S)q;

where D is the demand function for the resource.
With a discount rate of �, the Bellman Equation for this optimization problem is

�V = max
q

Z q

0

D�1(z)dz � c(S)q + (B(S)� q)VS + 1
2
�2S2VSS:

The FOC for the optimal choice of q is

D�1(q)� c(S)� VS(S) = 0;

or

q� = D(c(S) + VS):

Notice that the FOC implies that the marginal surplus of an additional unit of the
harvested resource is equal to the marginal value of an additional unit of the in situ
stock:

fq (S; q
�) � D�1(q�)� c(S) = VS(S):

To make the problem operational, it must be parameterized. Speci�cally the
biological growth function is

B(S) =
�

�
S(1� (S=K)�);

the demand function is

D(p) = bp��
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and the marginal cost function is

c(S) = cS�:

In general this model must be solved numerically, but special cases do exist which
admit an explicit solution. Speci�cally, if  = 1 + � and � = 1=(1 + �) the value
function has the form

V (S) = ��
�

1

S�
+

�

�K�

�

where � solves

��
1+�
� � ��� c = 0;

and

� =

�
�+ �

b

�

1 + �
� ��2

2b

� 1+�
�

:

It is straightforward to solve for � using a standard root �nding solver (see Chapter
3) and for some values of � a complete solution is possible. Table 10.1 provides
three special cases discussed by Pindyck that have closed form solutions, including
the limiting case as � ! 0.

Example: Stochastic Growth
An economy is characterized by a function describing the productivity of capital, K,
that depends, both in mean and variance, on an exogenous technology shock, denoted
Y . Y is governed by

dY = �(1� Y )dt+ �
p
Y dz:

With c denoting current consumption (the control), the capital stock dynamics are

dK = (�KY � c)dt+ �K
p
Y dz;

where the same Brownian motion, dz, that drives the technology shocks also causes
volatility in the productivity of capital. The social planner's optimization problem is
to maximize the present value of the utility of consumption, taken here to be the log
utility function, using discount rate �.

Before discussing the solution it is useful to consider the form of the technology
assumed here. The expected growth rate in capital, ignoring consumption, is aÆne
in the capital stock and depends on the size of the technology shock. The technology
shock, in turn, has an expected growth pattern given by

dEY = (aEY � b)dt:
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Table 10.1: Known Solutions to the Optimal Harvesting Problem

� �  B(S) V (S) VS(S) q�(S)

1 1
2

2 �S(1� S=K) ��1
�

1
S
+ �

�K

�
�1
S2

bp
c+�1

S

0 1 1 �S ln(K=S) b
�+�

ln(S) + �2
b

(�+�)S
b�S

� 1
2

2 1
2

2�S
�q

K
S
� 1
�
��3

�p
S + �

p
K
�

�
� �3

2
p
S

b
(c��3=2)2S

where

�1 = 2

�
b

�+ �� �2
�2
0
@1 +

s
1 + c

�
� + �� �2

b

�2
1
A

�2 =
b

�

�
ln(b�)� c� + 1

� + �

�
� ln(K)� b� � 1

2
�2
��

; � =
� + �

b + c(� + �)

�3 = c�
s
c2 +

2b

� + �+ �2=8
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This di�erential equation can be solved for the expected value of Y :

EtYT = (Yt � b=a)ea(T�t) + b=a:

Roughly speaking, this implies that, for a given capital stock, the productivity of
capital is expected to grow at a constant rate (a) if Y is greater than b=a and to
shrink at the same rate when Y is less than b=a.

The Bellman Equation for this problem is

�V = max
c

ln(c) + VK (�KY � c) + VY (aY � b)

+ 1
2
VKK�

2K2Y + 1
2
VY Y �

2Y + VKY ��KY

Let us guess that the solution is one with consumption proportional to the capital
stock

c = �K:

The FOC condition associated with the Bellman equation tells us that the optimal c
satis�es

1=c = VK:

If our guess is right, it implies that V (K; Y ) = ln(K)=� + f(Y ), where f(Y ) is yet
to be determined. To verify that this guess is correct, substitute it into the Bellman
equation:

�
�
ln(K)
�

+ f(Y )
�
=

ln(�K) +
�
�
�
Y � 1

�
+ f 0(Y )(aY � b)� �2Y

2�
+ 1

2
f 00(Y )�2Y:

Collecting terms and simplifying, we see that � = � and that f(Y ) solves a certain
second order di�erential equation.

Rather than try to solve f(Y ) directly, however, a more instructive approach is
to solve for the value function directly from its present value form. If our guess is
correct then

V (K; Y ) = E

�Z 1

0

e��t ln(�K)dt

�
=

ln(�)

�
+

Z 1

0

e��tE [ln(K)] dt (10.9)

The only diÆculty presented here is to determine the time path of E[ln(K)]. Using
Ito's Lemma and c = �K

d ln(K) =
dK

K
� 1

2
�2Y dt =

h�
� � 1

2
�2
�
Y � �

i
dt+ �

p
Y dz:
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Taking expectations and using the previously obtained result for EY yields

dE[ln(K)] =
h�
� � 1

2
�2
�
E[Y ]� �

i
dt

=
h�
� � 1

2
�2
� ��

Y0 � b
a

�
eat + b

a

�� �i dt
= [c0ae

at + c1] dt;

where

c0 =
� � 1

2
�2

a

�
Y0 � b

a

�

c1 =
b

a

�
� � 1

2
�2
�
� �:

Integrating both sides and choosing the constant of integration to ensure that, at
t = 0, the expected value of E[ln(Kt)] = ln(K0) produces an expression for E[ln(K)]
when c = �K:

E[ln(K)] = ln(K0)� c0 + c0e
at + c1t:

One step remains; we must use the formula for E[ln(K)] to complete the derivation
of the present value form of the value function. Recalling (10.9)8

V (K; Y ) =

Z 1

0

e��tE [ln(K)] dt+
ln(�)

�

=

Z 1

0

�
(ln(K0)� c0) e��t + c0e

(a��)t + c1te
��t� dt+ ln(�)

�

=
ln(K0)� c0

�
+

c0
�� a +

c1
�2

+
ln(�)

�
:

Substituting in the values of c0 and c1 and rearranging we obtain an expression for
the value function

V (K; Y ) =
ln(K)

�
+
� � 1

2
�2

�(�� a)Y +
1

�

0
@ln(�)� b(� � 1

2
�2)

�(�� a) � 1

1
A :

8If the third line is problematic for you it might help to note that

Z
te��tdt = �e

��t

�

�
t+

1

�

�
:
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(the subscripts on K and Y are no longer necessary). Notice that this does indeed
have the form ln(K)=�+ f(Y ), with f(Y ) a linear function of Y . We have therefore
satis�ed the essential part of Bellman's equation, namely verifying that c = �K is an
optimal control. We leave as an exercise the task of completing the veri�cation that
Bellman's equation is satis�ed by our expression for V (K; Y ).

Let's review the steps we took to solve this problem. First, we guessed a solution
for the control and then used the �rst order conditions from Bellman's equation to
determine a functional form for V (K; Y ) that must hold for this to be an optimal
control. We then evaluated the present value form of the value function for this con-
trol, thereby obviating the need to worry about the appropriate boundary conditions
on Bellman's equation (which we have seen is a delicate subject). We were able to
obtain an expression for the value function that matched the functional form obtained
using the �rst order conditions, verifying that we do indeed have the optimal control.
This strategy is not always possible, of course, but when it is, we might as well take
advantage of it.

Example: Portfolio Choice
The previous examples had a small number of state and control variables. In the
example we are about to present, we start out with a large number of both state
variables and controls, but with a speci�c assumption about the state dynamics, the
dimension of the state is reduced to one and the control to two. Such a reduction
transforms a problem that is essentially impossible to solve in general into one that
is relatively straightforward to solve. If a speci�c class of reward functions is used,
the problem can be solved explicitly (we leave this as an exercise).

Suppose investors have a set of n assets from which to invest, with the per unit
price of these assets generated by an n dimensional Ito process

dP = �(P )dt+ �(P )dz;

where �(P ) is an n � k matrix valued function (i.e., � : <n ! <n�k), and dz is a
k-dimensional vector of independent Wiener processes. We assume that � = ��>,
the instantaneous covariance matrix for prices, is non-singular, implying that there
are no redundant assets or, equivalently, that there is no riskless asset.9 A portfolio
can be de�ned by the number of shares, Ni, invested in each asset or as the fraction
of wealth held in each asset:

wi = NiPi=W:

Expressed in terms of Ni the wealth process can be described by

dW =
nX
i=1

NidPi

9The case in which a riskless asset is available is treated in an exercise.
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whereas, in terms of wi, it is given by

dW=W =
nX
i=1

widPi=Pi:

The latter expression is particularly useful if prices are multivariate geometric Brow-
nian motion processes, so �(P ) = P� and �(P ) = P� (where � and � are constants),
implying that:

dW=W = w>�dt+ w>�dz;

i.e., W is itself a geometric Brownian motion process. This means that portfolio
decisions can be expressed in terms of wealth alone, without reference to the prices of
the underlying assets in the portfolio. Geometric Brownian motion, therefore, allows
for a very signi�cant reduction in the dimension of the state (from n to 1).

Consider an investor who draws o� a ow of consumption expenditures C. The
wealth dynamics are then

dW =
�
Ww>�� C� dt+Ww>�dz:

Suppose the investor seeks to maximize the discounted stream of satisfaction derived
from consumption, where utility is given by U(C) and the discount rate is �. The
Bellman's Equation for this problem is10

�V = max
C;w

U(C) +
�
Ww>�� C�VW + 1

2
W 2w>�wVWW ;

s.t.
P

iwi = 1.
The FOC associated with this maximization problem are

U 0(C) = VW ; (10a)

WVW�+W 2VWW�w � �1 = 0; (10b)

and X
i

wi = 1; (10c)

where � is a Lagrange multiplier introduced to handle the adding-up constraint on
the wi. A bit of linear algebra applied to (10b) and (10c) will demonstrate that the

10If prices were not geometric Brownian motion the coeÆcients � and � would be functions of
current prices and the Bellman's Equation would have additional terms representing derivatives of
the value function with respect to prices, which would make the problem considerably harder to
solve.
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optimal portfolio weight vector, w, can be written as a linear combination of vectors,
� and �, that are independent of the investor's preferences:

w = � + �(W )�; (11)

where

� =
��11
1>��11

;

� = ��1
�
�� 1>��1�

1>��11
1

�

and

�(W ) = � VW
WVWW

;

This has a nice economic interpretation. When asset prices are generated by geometric
Brownian motion, a portfolio separation result occurs, much like in the static CAPM
model. Only two portfolios are needed to satisfy all investors, regardless of their
preferences. One of the portfolios has weights proportional to ��11, the other to
��1(��(�>�)1). The relative amounts held in each portfolio depend on the investor's
preferences, with more of the �rst portfolio being held as the degree of risk aversion
rises (as �(W ) decreases). This is understandable when it is noticed that the �rst
portfolio is the minimum risk portfolio, i.e., � solves the problem

min
�

�>��; s.t. �>1 = 1:

Furthermore, the expected return on the minimum risk portfolio is �>�; hence the
term � � (�>�)1 can therefore be thought of as an \excess" return vector, i.e., the
expected returns over the return on the minimum risk portfolio.

The problem is therefore reduced to determining the two decision rule functions
for consumption and investment decisions, C(W ) and �(W ), that satisfy:

U 0(C(W )) = VW (W )

and

�(W ) = � VW (W )

WVWW (W )
:

Notice that the two fund separation result is a result of the assumption that asset
prices follow geometric Brownian motions and not the result of any assumption about
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preferences. Given the enormous simpli�cation that it allows, it is small wonder that
�nancial economists like this assumption.

Example: Neoclassical Growth Model
Ramsey introduced what has become a standard starting place for studying optimal
economic growth. The basic model has been re�ned and extended in numerous ways.
We present here simple version.11 A single (aggregate) good economy is governed by
a production technology, f . The net output from the production process depends on
the level of the capital stock K. That output can either be consumed at rate C or
invested, thereby increasing the capital stock. A social utility function depends on
the rate of consumption, U(C); a social planner attempts to maximize the discounted
stream of social utility over an in�nite time horizon, using a constant discount factor
�.

The optimization problem can be expressed in terms of K, the state variable, and
C, the control variable, as follows

max
C(t)

Z 1

0

e��tU(C)dt;

subject to the state transition function K 0 = q(K)� C.
This is a deterministic in�nite time problem so VKK and Vt do not enter the

Bellman's equation. The Bellman's equation for this problem is

�V (K) = max
C

U(C) + V 0(K) (q(K)� C)

The maximization problem requires that

U 0(C) = V 0(K): (12)

We can derive an Euler equation form for this problem by eliminating the value
function, thereby obtaining a di�erential equation for consumption in terms of current
capital stock. Applying the Envelope Theorem,

�V 0(K) = q0(K)V 0(K) + [q(K)� C]V 00(K): (13)

Combining (12), (13) and the fact that V 00(K) = U
00

(C)C 0(K) yields

� U
0(C)

U 00(C)
(q0(K)� �) = (q(K)� C)C 0(K):

Thus the optimal decision rule C(K) solves a �rst order di�erential equation.

11We alter Ramsey's original formulation by including a discount factor in the optimization prob-
lem, as is standard in modern treatments.
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The boundary condition for this di�erential equation is that the solution passes
through the point (K�; C�) which simultaneously solves dK=dt = 0 and the Euler
condition:

q0(K�) = �

C� = q(K�):

Example: Non-Renewable Resource Management
A �rm that manages a non-renewable resource obtains a net return ow of Ax1��

per unit of time, where x is the rate at which the resource is extracted. The stock of
the resource is governed by

dS = �xdt:
The extraction rate is bounded below by 0 (x � 0) and constrained to equal 0 if the
stock is 0 (S = 0) x = 0). The manager seeks to solve

V (S) = max
x

E

�Z 1

0

e���Ax1��� d�

�
:

The Bellman's equation for the problem is

�V (S) = max
x

Ax1�� � xVs:
The boundary condition is that V (0) = 0. The �rst order optimality condition is

VS(S) = (1� �)Ax��:
Using an Euler equation approach, apply the envelope theorem to obtain

�VS = �xVSS:
We have an expression for VS from the optimality condition and this can be di�eren-
tiated with respect to S to obtain

�(1� �)Ax�� = �(1� �)Ax�� dx
dS

:

Simplifying, this yields

dx

dS
=
�

�
;

which, with the boundary condition that x = 0 when S = 0, produces the optimal
control

x(S) =
�

�
S

and the value function

V (S) =

�
�

�

��

AS1��:
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10.3 Free Boundary Problems

We have already seen how boundary conditions are needed to determine the solution
to dynamic models in continuous time. Many important problems in economics,
however, involve boundaries in the state space which must be determined as part of
the solution. Such problems are known as free boundary problems. The boundary
marks the location where some discrete action is taken, generally taking the form of
e�ecting an instantaneous change in the value of a continuous or a discrete state.12

Table 10.2 contains a classi�cation of di�erent free boundary problems that have
appeared in the economics literature. An important distinction, both in understand-
ing the economics and in solving the problem numerically, is whether the boundary
can be crossed. If the control is such that it maintains a state variable within some
region de�ned by the free boundary, the problem is a barrier problem and we will
solve a di�erential equation in this region only. For example, the stock of a stochastic
renewable resource can be harvested in such a way as to keep the stock level below
some speci�ed point. If the stock rises to this point, it is harvested in such a way as
to maintain it at the boundary (barrier control) or to move it to some point below
the boundary (impulse control).

Table 10.2: Types of Free Boundary Problems

BARRIERS:

Problem Action at Boundary

Impulse control Jump from trigger to target

Barrier control Move along boundary

TRANSITIONAL BOUNDARIES:

Problem Action at Boundary

Discrete states Change state

Bang-bang Switch between control extrema

In barrier controls problems, the barrier de�nes a trigger point at which, if reached,
one maintains the state at the barrier by exactly o�setting any movements across the

12In the physical sciences free boundary problems are also known as Stefan problems. A commonly
used example is the location of the phase change between liquid and ice, where the state space is
measured in physical space coordinates.
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barrier. Typically, such a control is optimal when there are variable costs associated
with exerting the control. In such a situation it is only optimal to exert the control
if the marginal change in the state o�sets the marginal cost of exerting the control.

In impulse control problems, if the barrier is reached one takes an action that
instantaneously moves the state to a point inside the barrier. An (s; S) inventory
control system is an example of an impulse control in which the state is the level of
inventory, which is subject to random demand. When the inventory drops to the level
s, an order to replenish it to level S is issued. Typically such controls are optimal
when there is a �xed cost associated with exerting the control; the control is exerted
only when the bene�t from exerting the control covers the �xed cost.

The other major type of free boundary problem arises when, in addition to one
or more continuous state variables, there is also a state that can take on discrete set
of values. In this case, boundaries represent values of the continuous states at which
a change in the discrete state occurs. For example, consider a �rm that can either be
actively producing or can be inactive (a binary state variable). The choice of which
state is optimal depends on a randomly uctuating net output price. Two boundaries
exist that represent the prices at which the �rm changes from active to inactive or
from inactive to active (it should be clear that the latter must be above the former
to prevent the �rm from having to be continuously changing!).

An important special case of the discrete state problem is the so-called optimal
stopping problem; the exercise of an American option is perhaps the most famil-
iar example. Stopping problems arise when the choice of one of the discrete state
values is irreversible. Typically the discrete state takes on two values, active and
inactive. Choosing the inactive state results in an immediate one time payout. An
American put option, for example, can be exercised immediately for a reward equal
to the option's exercise price less the price of the underlying asset. It is optimal to
exercise when the underlying asset's price is so low that it is better to have the cash
immediately and reinvest it than to wait in hopes that the price drops even lower.

Another important special case is the so-called stochastic bang-bang problem.
Such problems arise when it is optimal to exert a bounded continuous control at either
its maximum or minimum level. E�ectively, therefore, there is a binary state variable
that represents which control level is currently being exerted. The free boundary
determines the values of the continuous variables at which it is optimal to change the
binary state.

A couple points should be mentioned now and borne in mind whenever consid-
ering free boundary problems. First, it is useful to distinguish between the value
function evaluated using an arbitrary boundary and the value function using the op-
timal choice of the boundary. The value function (the present value of the return
stream) using an arbitrary barrier control is described by a second order partial dif-
ferential equation subject to the appropriate boundary conditions; this is the message
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of the Feynman-Kac equation (see Appendix A, Section A.5.3). The optimal choice
of the boundary must then add additional restrictions that ensure its optimality. We
therefore distinguish in Table 10.2 between a point, Sa, on an arbitrary boundary
and a point, S�, on the optimal boundary. As we shall see in the next chapter, this
distinction is particularly important when using a strategy to �nd the free boundary
that involves guessing its location, computing the value function for that guess, and
then checking whether the optimality condition holds.

Related to this is an understanding the number of boundary conditions that must
be applied. Here are some rules that should help you avoid problems. First, any
non-stochastic continuous state will have one partial derivative and will require one
boundary condition. On the other hand, any stochastic state variable will have second
order derivatives and will generally need two boundary conditions.13 These statements
apply to arbitrary controls.

For optimality we will require an additional boundary condition for each possible
binary choice. The additional constraints can be derived formally by maximizing the
value function for an arbitrary barrier with respect to the location of the barrier,
which for single points means solving an ordinary maximization problem and for
functional barriers means solving an optimal control problem.

In all of these cases one can proceed as before by de�ning a Bellman's Equation for
the problem and solving the resulting maximization problem. The main new problem
that arises lies in determining the region of the state space over which the Bellman's
Equation applies and what conditions apply at the boundary of this region. We will
come back to these points so, if they are not clear now, bear with us. Now let us
consider each of the main types of problem and illustrate them with some examples.

10.3.1 Impulse Control

Impulse and barrier control problems arise when the reward function includes the
size of the change in a state variable caused by exerting some control. Such problems
typically arise when there are transactions costs associated with exerting a control,
in which case it may be optimal to exert the control at an in�nite rate at discrete
selected times. In addition, the reward function need not be continuous in �S.

The idea of an in�nite value for the control may seem puzzling at �rst and one
may feel that it is unrealistic. Consider that in many applications encountered in
economics the control represents the rate of change in a state variable. The state
is typically a stock of some asset measured in quantity units. The control is thus a
ow rate, measured in quantity units per unit time. If the control is �nite, the state

13The exception to this rule of thumb involves processes that exhibit singularities at natural
boundaries, which can eliminate the need to specify a condition at this boundary
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cannot change quickly; essentially the size of the change in the state must be small if
the time interval over which the change is measured is small.

In many situations, however, we would like to have the ability to change the state
very quickly in relation to the usual time scale of the problem. For example, the
time it takes to cut down a timber stand may be very small in relation to the time it
takes for the stand to grow to harvestable size. In such situations, allowing the rate
of change in the state to become in�nite allows us to change the state very quickly
(instantaneously). Although this makes the mathematics somewhat more delicate, it
also results in simpler optimality conditions with intuitive economic interpretations.

Consider the single state case in which the state variable governed by

dS = [�(S) + x]dt + �(S)dz

and the reward function that is subject to �xed and variable costs associated with
exerting the control:

f(S;�S; x) =

8>>><
>>>:

r�(S)� c�(��S)� F� if x < 0

r0(S) if x = 0

r+(S)� c+(�S)� F+ if x > 0

with c�(0) = c+(0) = 0. In this formulation there are �xed costs, F� and F+, and
variable costs, c� and c+, associated with exerting the control, both of which depend
on the sign of the control. Typically, we would assume that the �xed costs are non-
negative. The variable costs, however, could be negative; consider the salvage value
from selling o� assets. To rule out the possibility of arbitrage pro�ts, when the reward
is increasing in the state (rS � 0), we require that

F+ + c+(z) + F� + c�(�z) > 0

for any positive z; thereby preventing in�nite pro�ts to be made by continuous changes
in the state.

With continuous time di�usion processes, which are very wiggly, any strategy
that involved continuous readjustment of a state variable would become in�nitely
expensive and could not be optimal. Instead the optimal strategy is to change the
state instantly in discrete amounts, thereby incurring the costs of those states only
at isolated points in time. An impulse control strategy would be optimal when there
are positive �xed costs (F+; F� > 0). Barrier control strategies (which we discuss in
the next section) arise when the �xed cost components of altering the state are zero.

With impulse control, the state of the system is reset to a new position (a tar-
get) when a boundary is reached (a trigger). It may be the case that either or both
the trigger and target points are endogenous. For example, in a cash management
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situation, a bank manager must determine when there is enough cash-on-hand (the
trigger) to warrant investing some of it in an interest bearing account and must also
decide how much cash to retain (the target). Alternatively, in an inventory replace-
ment problem, an inventory is restocked when it drops to zero (the trigger), but the
restocking level (the target) must be determined (restocking occurs instantaneously
so there is no reason not to let inventory fall to zero). A third possibility arises in an
asset replacement problem, where the age at which an old machine is replaced by a
new one must be determined (the trigger), but the target is known (the age of a new
asset).

In any impulse control problem, a Feynman-Kac Equation governs the behavior
of the value function on a region where control is not being exerted. The boundaries
of the region are determined by value matching conditions that equate the value at
the trigger point with the value at the target point less the cost of making the jump.
Furthermore, if the trigger is subject to choice, a smooth pasting condition is imposed
that the marginal value of changing the state is equal to the marginal cost of making
the change. A similar condition holds at the target point if it is subject to choice.

Example: Asset Replacement
Consider the problem of when to replace an asset that produces a physical output,
y(A), where A is the state variable representing the age of the asset. The asset's
value also depends on the net price of the output, P , and the net cost of replacing
the asset, c.

This is a deterministic problem in which the state dynamics are simply dA = dt.
The reward function is y(A)P . Thus the Bellman equation is

�V (A) = y(A)P + V 0(A):

This di�erential equation is solved on the range A 2 [0; A�], where A� is the optimal
replacement age. The boundary conditions are given by the value matching condition:

V (0) = V (A�) + c

and the optimality (smooth pasting) condition:

V 0(A�) = 0

The smooth pasting condition may not be obvious, but it is intuitively reasonable
if one considers that an asset which is older than A� should always be immediately
replaced. Once past the age of A�, therefore, the value function is constant: V (A) =
V (A�) = V (0) � c, for A � A�. No optimality condition is imposed at the lower
boundary (A = 0) because this boundary is not a decision variable.
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Before leaving the example, a potentially misleading interpretation should be dis-
cussed. Although it is not unusual to refer to V (A) as the value of an age A asset, this
is not quite correct. In fact, V (A) represents the value of the current asset, together
with the right to earn returns from future replacement assets. The current asset will
be replaced at age A� and has value equal to the discounted stream of returns it
generates:Z A��A

0

e��tPy(A+ t)dt;

but the value function is

V (A) =

Z A��A

0

e��tPy(A+ t)dt+ e��(A
��A)V (A�)

Thus the current asset at age A has value

V (A)� e��(A��A)V (A�):

Example: Timber Harvesting
The previous example examined an asset replacement problem in which the asset
generated a continuous stream of net returns. In some cases, however, the returns are
generated only at the replacement time. Consider a forest stand that will be clear-cut
on a date set by the manager. The stand is allowed to grow naturally at a biologically
determined rate according to

dS = �(m� S)dt+ �
p
Sdz:

The state variable here represents the biomass of the stand and the parameter m rep-
resents a biological equilibrium point. When the stand is cut, it is sold for a net return
of PS. In addition, the manager incurs a cost of C to replant the stand, which now
has size S = 0. The decision problem is to determine the optimal cutting/replanting
stand size, using a discount rate of �. The Bellman equation is

�V = �(m� S)V 0(S) + 1
2
�2SV 00(S);

for S 2 [0; S�], where S� is determined by boundary conditions

V (S�) = V (0) + PS� � C value matching

and

V 0(S�) = P smooth pasting.
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If the stand starts at a size above S� it is optimal to cut/replant immediately. Clearly
the marginal value of additional timber when S > S� is the net return from the
immediate sale of an additional unit of timber. Hence, for S > S�, V (S) = V (S�) +
p(S � S�) and V 0(S) = P:

As in the previous example, the value function refers not to the value of the timber
on the stand but rather to the right to cut the timber on the land in perpetuity.

10.3.2 Barrier Control

In barrier control problems it is optimal to maintain the state within a region by
keeping it on the region's boundary whenever it would otherwise tend to move out-
side of it and to do nothing when the state is in the interior of the region. This, of
course, assumes that the state is suÆciently controllable so that such a policy is fea-
sible. Barrier control problems can be thought of as limiting cases of impulse control
problems as the size of any �xed costs go to zero. When this happens, the size of the
jump goes to zero, so the trigger and target points become equal. This represents
something of a dilemma because the value matching condition between the target
and jump points becomes meaningless when these points are equal. The resolution
of this dilemma is to shift the value matching condition to the �rst derivative and
the smooth pasting to the second derivative (the latter is sometimes referred to as a
super-contact condition).

Example: Capacity Choice
A �rm can install capital, K, to produce an output with a net return of P . Capital
produces Q(K) units of output per unit of time, but the capital depreciates at rate
Æ. The �rm wants to determine

V (Kt) = max
I�

Z 1

t

e���
h
Pq(K�)� CI�

i
d�;

s.t.

dK = (I � ÆK)dt;

together with the constraint that I � 0. This is an in�nite horizon, deterministic
control problem. The Bellman's Equation for this problem is

�V (K) = max
I
Pq(K)� CI � (I � ÆK)V 0(K):

The KKT condition associated with optimal I is

C � V 0(K) � 0; I � 0 and (V 0(K)� C)I = 0:
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This suggests that the rate of investment should be 0 when the marginal value of
capital is less than C and that the rate should be suÆciently high (in�nite) to ensure
that the marginal value of capital never falls below C.

We assume that capital exhibits positive but declining marginal productivity. The
optimal control is speci�ed by a value K� such that investment is 0 when K > K�

(implying low marginal value of capital) and is suÆcient high to ensure that K does
not fall below K�. If K starts below K�, the investment policy will be to invest at
an in�nite rate so as to move instantly to K�, incurring a cost of (K� �K)C in the
process. If K starts at K�, the investment rate should be just suÆcient to counteract
the e�ect of depreciation. Summarizing, the optimal investment policy is

I =

8>>><
>>>:
1 for K < K�

ÆK for K = K�

0 for K > K�

:

The value function for any arbitrary value of K� can now be determined. To do
so, �rst de�ne the function T (K;K�) to represent the time it takes for the capital
stock to reach K� is it is current equal to K. Clearly T = 0 if K � K�. In the
absence of investment, the capital stock evolves according to Kt+h = e�ÆhKt; hence
T = ln(K=K�)=Æ for K > K�. The value function is

V (K;K�) =

8<
:

1
�

�
Pq(K�)� ÆK�C

�
� (K� �K)C for K < K�R T (K;K�)

0
e���Pq(e�Æ�K)d� + e��TV (K�) for K > K�

: (14)

It is clear that value matching holds; i.e. the value function is continuous. Not so
obvious is the fact that the derivative of the value function is also continuous. The
left hand derivative is clearly equal to C and a few simple computations will show
that the right hand derivative is also.14 This illustrates the point made above that
the usual smooth-pasting condition (i.e., the continuity of the �rst derivative) is not
an optimality condition in barrier control problems.

To determine the optimal choice of K�, notice that we can use the Bellman equa-
tion to express the value function for K > K�:

V (K;K�) =
1

�
[Pq(K)� ÆKVK(K;K�)] :

14For K > K�

V 0(K) =

Z T

0

e���Pq0(e�Æ�K)d� +

�
e��TPq(e�ÆTK)� �e��TV (K�)

�
dT

dK
:

Using dT=dK = 1=(ÆK) and T (K�;K�) = 0 and simplifying yields the desired result.
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Setting the derivative of this expression with respect to K� to 0

VK�(K;K�) =
ÆK

�
VKK�(K;K�);

and noting that VK(K
�; K�) = C implies that VKK�(K�; K�) = �VKK(K

�; K�),
demonstrates that the appropriate optimality condition is to �nd K� such that

VKK(K
�) = 0;

implying continuity of the second derivative.
To complete the problem we apply the Envelope Theorem to the Bellman equation

to note that

�VK = Pq0(K)� ÆVK � ÆKVKK:

Using the fact that VK(K
�) = C and VKK(K

�) = 0 yields the condition satis�ed by
the optimal K�:

C =
P

�+ Æ
q0(K�):

This is the same expression one obtains by setting the derivatives in (14) equal to 0
and solving for K = K�.15

10.3.3 Discrete State/Control Problems

We turn now to problems involving transitional boundaries. In such problems, con-
trols are not exerted on a continuous state variable to force it to remain within some
region. Instead, the boundary typically represents the values of the state at which a
decision is made to change from one discrete state to another. In the simplest form of
these problems, a termination decision is taken. So-called optional stopping problems
include the exercise of American style options and asset abandonment. More compli-
cated problems arise when projects can be activated and deactivated. The problem

15We should express a note of caution here. When the depreciation rate is 0, the second derivative
condition does not apply and, in fact, the second derivative is discontinuous at the optimal K�. The
intuition is clear, however. When Æ = 0 the capital stock stays the same unless actively moved.
Since disinvestment is not allowed (I � 0), if the marginal value of capital is less than the cost of
capital, no change in the capital stock is warranted. However, if the marginal value of capital is less
than C, then the capital stock should be immediately increased to the point where the present value
of the marginal unit of capital equals the cost of capital:

C = Pq0(K�)=�:



CHAPTER 10. CONTINUOUS TIME - THEORY & EXAMPLES 364

then becomes one of determining the value of the project if active, given that one
can deactivate it, together with the value of the project if inactive, given that it can
be activated. The solution involves two boundaries, one which determines when the
project should be activated (given that it is currently inactive), the other when it
should be deactivated (given that it is currently active).

The hallmark of transitional boundary problems is that there is a distinct value
function on either side of the boundary and there are conditions that must apply to
both of these functions at the boundary. Thus the boundary and the value functions
on both sides must all be simultaneously determined. For arbitrary speci�cations of
the boundary, we require that the two value functions, net of switching costs, are
equal at the boundary (value matching) and for the optimal boundary, we require
that their derivatives are equal at the boundary (smooth-pasting or high contact).

Optimal Stopping Problems

The optimal stopping problem is in many ways the simplest of the free boundary
problems and arises in situations involving a once and for all decision. For example,
suppose a �rm is attempting to decide whether a certain project should be under-
taken. The value of the project depends on a stochastic return that the project, once
developed, will generate. The state variable can therefore be taken to be the present
value of the developed project. Furthermore, the �rm must invest a speci�ed amount
to develop the project. In this simple framework, the state space is partitioned into
a region in which no investment takes place (when the present value of the developed
project is low) and a region in which the project would be undertaken immediately.
The boundary between these two areas represents the value of the state, that, if
reached from below, would trigger the investment.

It is important to emphasize that optimal stopping problems, although they have
a binary control, di�er from other binary control problems in that one value of the
control pays out an immediate reward, after which no further decisions are made. The
one time nature of the control makes the problem quite di�erent from and, actually,
easier to solve than problems with binary controls that can be turned on and o�.

Stopping problems in continuous time are characterized by a random state gov-
erned by

dS = �(S)dt+ �(S)dz;

a reward stream f(S) that is paid so long as the process is allowed to continue
and a payout function R(S) that is received when the process is stopped (for now we
consider only in�nite time discounted time autonomous problems; this will be relaxed
presently).
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Another way to view the stopping problem is as a problem of choosing an optimal
time to stop a process. This leads to the following formal statement of the problem

V (S) = max
t�(S)

E

"Z t�(S)

0

e���f(S)d� + e��t
�(S)R(S)

#
:

This value function is described by the di�erential equation

�V (S) = f(S) + �(S)VS(S) + 1
2
�2(S)VSS(S) (15)

The optimal control problem consists of �nding the boundary between the regions
on which the process should be stopped and those on which it should be allowed to
continue. For the present, assume that there is a single such switching point, S�,
with S < S� indicating that the process should be allowed to continue. Thus the
di�erential equation is satis�ed on [S; S�], where S is a (known) lower bound on the
state.

Any speci�c choice of a control consists of a choice of the stopping point, say S� .
At this point the value function, to be continuous, must equal the reward

V (Sa) = R(Sa);

(the value-matching condition). The optimal choice of Sa is determined by the smooth
pasting condition

VS(S
�) = R0(S�);

the optimal choice makes the derivative of the value function equal the derivative
of the reward function at the boundary between the continuation and stopping re-
gions. Intuitively, the value matching and smooth pasting conditions are indi�erence
relations; at S� the decision maker is indi�erent between continuing and stopping.
The value function must, therefore, equal the reward and the marginal value of an
additional unit of the state variable must be equal regardless of whether the process
is stopped or allowed to continue.

This is the simplest of the optimal stopping problems. We can make them more
complex by allowing time to enter the problem either through non-autonomous re-
wards, state dynamics or stopping payment or by imposing a �nite time horizon. In
the following example we examine a �nite horizon problem.

Example: Exercising an American Put Option
An American put option, if exercised, pays K � P , where K is the exercise or strike
price. P is the random price of the underlying asset, which evolves according to

dP = �(P )dt+ �(P )dz:



CHAPTER 10. CONTINUOUS TIME - THEORY & EXAMPLES 366

The option pays nothing when it is being held, so f(P ) = 0. Let T denote the option's
expiration date, meaning that it must be exercised on or before t = T (if at all).

In general, the option is written on a traded asset so we may use the form of the
Bellman's Equation that is discounted at the risk-free rate and with mean function
replaced by rP � ÆP (see Section 10.2.2):

rV = Vt + (rP � ÆP )VP + 1
2
�2(P )VPP

on the continuation region, where Æ represents the income ow (dividend, convenience
yield, etc.) from the underlying asset. Notice that the constraint that t � T means
that the value function is a function of time and so Vt must be included in the Bell-
man's Equation. The solution involves determining the optimal exercise boundary,
P �(t). Unlike the previous problem, in which the optimal stopping boundary was a
single point, the boundary here is a function of time. For puts, P �(t) is a lower bound
so the continuation region on which the Bellman's Equation is de�ned is [P �;1). The
boundary conditions for the put option are

V (P; T ) = max(K � P; 0) (terminal condition)

V (P �; t) = K � P � (value matching)

VP (P
�; t) = �1 (smooth-pasting)

and,

V (1; t) = 0:

Example: Machine Abandonment
Consider a situation in which a machine produces an output worth P per unit time,
where

dP = �Pdt+ �Pdz;

i.e., that P is a geometric Brownian motion process. The machine has an operating
cost of c per unit time. If the machine is shut down, it must be totally abandoned
and thus is lost. Furthermore, at time T , the machine must be abandoned. At issue is
the optimal abandonment policy for an agent who maximizes the ow of net returns
from the machine discounted at rate �.

For the �nite time case de�ne � as equal to the time remaining until the machine
must be abandoned, so � = T �t and d� = �dt. The optimal policy can be de�ned in
terms of a function, P �(�); for P > P �(�) it is optimal to keep the machine running,
whereas for P < P �(�) it is optimal to abandon it.
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The current value of the operating machine satis�es the Bellman's equation

�V = P � c� V� + �PVP + 1
2
�2P 2VPP :

and boundary conditions

V (P; 0) = 0 terminal condition

VP (1; �) = (1� e��� )=(�� �) natural boundary condition

V (P �; �) = 0 value matching condition

VP (P
�; �) = 0 smooth pasting condition

The �rst boundary condition states that the machine is worthless when it must be
abandoned. The second condition is derived by considering the expected value of an
in�nitely-lived machine that is never abandoned:

V (P; �) =

�
P

�� � �
c

�

��
1� e����

(the derivation of this result is left as an exercise). An alternative upper bound-
ary condition is that VPP (1; �) = 0. The remaining two conditions are the value
matching and smooth pasting conditions at P �(�).

General Transitional Boundaries

An optimal stopping problem exhibits complete irreversability; an inactivated (exer-
cised) option cannot be reactivated. Optimal stopping problems can put into a more
general framework by viewing them as having a binary state variable representing
the active/inactive states. In an optimal stopping problem, the cost of moving from
the inactive to the active state is e�ectively in�nite, thus precluding this possibility.
More generally, however, it may be possible to move back and forth between states.

In general, suppose that there is a state variable, D, that can take on integer
values from 1 to n, as well as a continuous state variable (possibly vector-valued)
governed by

dS = �(S)dt+ �(S)dz:

The control variable is one that allows any of the n discrete state to be chosen; hence
x(S;D) takes on values in the set f1; : : : ; ng. In addition, there is a cost to switching
from D = i to D = j of F ij.

A decision rule de�nes the n sets 
i as the values of S such that S 2 
i )
x(S; i) = i. 
i is the set of values of S for which a decision rule speci�es that the
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discrete state remain unchanged. The boundaries of the 
i represent states at which
it is optimal to change the value of D. It is important to note, however, that the
presence of �xed transition costs makes it possible that the 
i are overlapping sets
(
i \ 
j 6= ;).

The solution can be expressed as a set of n functions, V i(S), representing the value
function for each of the n values of the discrete state. From a computational point of
view, it is only necessary to de�ne V i(S) over the points in 
i, and to determine the
set of switching points Sij, for each (i; j). The Bellman equation is

rV i(S) = f(S; i) + �(S)V i
S(S) +

1
2
�2(S)V i

SS(S);

for S 2 
i. In addition, at any points, Sij on the boundary of 
i at which a switch
from i to j is e�ected, it must be true that

V i(Sij) = V j(Sij; j)� F ij

to ensure that no arbitrage opportunities exist. Furthermore, if the switch point is
optimal, the smooth pasting condition also holds

V i
S(S

ij) = V j
S (S

ij):

Example: Entry/Exit
Consider a �rm that can either be not producing at all or be actively producing q
units of a good per period at a cost of c per unit. In addition to the binary state
Æ (Æ = 0 for inactive, Æ = 1 for active), there is also an exogenous stochastic state
representing the return per unit of output, P , which is a geometric Brownian motion
process:

Pt = �(P )dt+ �(P )dz:

We assume there are �xed costs of activating and deactivating of I and E, with
I + E � 0 (to avoid arbitrage opportunities). The value function is

V (P; Æ) = E

�Z 1

0

e��tÆ(P � c)dt
�
� the discounted costs of switching states;

where Æ = 1 if active, 0 if inactive.
For positive transition costs, it is reasonable that such switches should be made

infrequently. Furthermore it is intuitively reasonable that the optimal control is to
activate when P is suÆciently high, P = Ph, and to deactivate when the price is suf-
�ciently low, P = Pl. It should be clear that Pl < Ph, otherwise in�nite transactions
costs would be incurred. The value function can therefore be thought of as a pair of
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functions, one for when the �rm is active, V a, and one for when it is inactive, V i.
The former is de�ned on the interval [Pl;1), the latter on the interval [0; Ph]. On
the interior of these regions the value functions satisfy the Feynman-Kac equations

�V a = P � c+ �(P )V a
P + �2(P )V a

PP

�V i = �(P )V i
P + �2(P )V i

PP

: (16)

At the upper boundary point, Ph, the �rm will change from being inactive to active at
a cost of I. Value matching requires that the value functions di�er by the switching
cost: V i(Ph) = V a(Ph)� I. Similarly at the point Pl the �rm changes from an active
state to an inactive one; hence V i(Pl)� E = V a(Pl).

Value matching holds for arbitrary choices of Pl and Ph. For the optimal choices
the smooth pasting conditions must also be satis�ed:

V i
P (Pl) = V a

P (Pl)

and

V i
P (Ph) = V a

P (Ph):

In this problem, the exit is irreversible in the sense that reentry is as expensive as
initial investment. A re�nement of this approach is to allow for temporary suspension
of production, with a per unit time maintenance change. Temporary suspension
is generally preferable to complete exit (so long as the maintenance charge is not
prohibitive). The discrete state for this problem takes on 3 values; its solution is left
as an exercise.

10.3.4 Stochastic Bang-Bang Problems

Bang-bang control problems arise when both the reward function and the state tran-
sition dynamics are linear in the control and the control is bounded. In such cases it
is optimal to set the control at either its upper or lower bound. The control problem
thus becomes one of dividing the state space into a set of points at which the control
is at its upper bound and a set at which it is at its lower bound. Equivalently, the
problem is to �nd the boundary between the two sets. If there is no cost to switching
the control from the lower to upper bound, we are in precisely the same situation
that we discussed in the last section when the switching costs go to zero. The opti-
mal value function and control is found in a similar fashion: de�ne a Feynman-Kac
Equation on each side of the boundary and require that the value functions on either
side of the boundary are equal up to their second derivative.
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The general bang-bang problem has reward function of the form

f0(S) + f1(S)x

and state dynamics of the form

dS = [g0(S) + g1(S)x]dt+ �(S)dz:

Furthermore the control is constrained to lie on a given interval:

xa � x � xb:

The Bellman's equation for this problem is

�V = max
x

f0(S) + f1(S)x+ [g0(S) + g1(S)x]VS + 1
2
�2(S)VSS

subject to the control constraint. The Karush-Kuhn-Tucker conditions for this prob-
lem indicate that

x =

8<
: xa if f1(S

�) + g1(S
�)VS(S�) > 0

xb if f1(S
�) + g1(S

�)VS(S�) < 0

This suggests that there is a point, S�, at which

f1(S
�) + g1(S

�)VS(S
�) = 0: (17)

Assuming that VS is decreasing in S, this suggests that we must solve for two func-
tions, one for S < S� that solves

�V a = f0(S) + f1(S)xa + [g0(S) + g1(S)xa]V
a
S + 1

2
�2(S)V a

SS (18)

and the other for S > S� that solves

�V b = f0(S) + f1(S)xb + [g0(S) + g1(S)xb]V
b
S + 1

2
�2(S)V b

SS: (19)

We will need three side conditions at S� to completely specify the problem and to
�nd the optimal location of S�, namely that

V a(S�) = V b(S�)

V a
S (S

�) = V b
S (S

�)

f1(S
�) + g1(S

�)VS(S�) = 0:
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Combining these conditions with (18) and (19) we see that

V a
SS(S

�) = V b
SS(S

�);

i.e., with the optimal choice of S� the value function is continuous up to its second
derivative.

Example: Harvesting a Renewable Resource
Consider a manager of a renewable biological resource who must determine the op-
timal harvesting strategy. The state variable, the stock of the resource, is stochastic,
uctuating according to

dS = [�S(1� S)� hS]dt+ �Sdz;

where h, the control, is the proportional rate at which the resource is harvested.
Assume that the per unit return is p and that 0 � h � C. The manager seeks to
solve

V (S) = max
h

E

�Z 1

0

e��tphSdt
�
:

In the notation of general problem, xa = 0, xb = C, f0(S) = 0, f1(S) = pS, g0(S) =
�S(1� S) and g1(S) = �S. The Bellman equation for this problem is

�V = max
h

phS + (�S(1� S)� hS)VS + 1
2
�2S2VSS:

The assumptions the stock dynamics imply that V (0) = 0 (once the stock reaches
zero it never recovers and hence the resource is worthless). At high levels of the
stock, the marginal value of an additional unit to the stock becomes constant and
hence VSS(1) = 0.

The �rst order conditions for this problem suggest that it is optimal to set h =
C if VS < p and set h = 0 if VS > p. The interpretation of these conditions is
straightforward: only harvest when the value of a harvested unit of the resource
is greater than an unharvested one and then harvest at maximum rate. Thus the
problem becomes one of �nding the sets

S0 = fS : VS > pg
and

SC = fS : VS < pg
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where

�V � �S(1� S)VS � 1
2
�2S2VSS = 0 on S0

and

�V � (�S(1� S)� CS)VS � 1
2
�2S2VSS � pCS = 0 on SC

The solution must also satisfy the boundary conditions at 0 and1 and the continuity
conditions at any points S� such that VS(S

�) = p. The fact that �S(1� S)� hS is
concave in S implies that S� will be a single point, with S0 = [0; S�) and SC = (S�;1).

Example: Production with a Learning Curve
More complicated bang-bang problems arise when there are two state variables. The
free boundary is then a curve, which typically must be approximated. Consider the
case of a �rm that has developed a new production technique. Initially production
costs are relatively high but decrease as the �rm gains more experience with the
process. It therefore has an incentive to produce more than it otherwise might due
to the future cost reductions it thereby achieves.

To make this concrete, suppose that marginal and average costs are constant at
any point in time but decline at an exponential rate in cumulative production until a
minimum marginal cost level is achieved. The problem facing the �rm is to determine
the production rule that maximizes the present value of returns (price less cost times
output) over an in�nite horizon:

max
x

Z 1

0

e�rt (P � C(Q)) x dt;

where r is the risk-free interest rate and the two state variables are P , the output
price, and Q, the cumulative production to date. The state transition equations are

dP = �P dt+ �P dz

and

dQ = x dt;

where x is the production rate, which is constrained to lie of the interval [0; xc]. The
price equation should be interpreted as a risk-neutral process. The cost function is
given by

C(Q) =

8<
: ce�Q if Q < Qm

ce�Qm = �c if Q � Qm

;
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once Q � Qm, the per unit production cost is a constant but for Q < Qm it declines
exponentially.

The Bellman equation for this problem is

rV = max
x

(P � C(Q))x + xVQ + �PVP + 1
2
�2P 2VPP

s.t. 0 � x � xc. The problem thus is of the stochastic bang-bang variety with the
optimality conditions given by:

P � C(Q) + VQ < 0 ) x = 0

P � C(Q) + VQ > 0 ) x = xc:

Substituting the optimal production rate into the Bellman Equation and rear-
ranging yields the partial di�erential equation

rV (P;Q) = �PVP (P;Q) + 1
2
�2P 2VPP +max(0; P � C(Q) + VQ(P;Q))xc:

The boundary conditions for this problem require that

V (0; Q) = 0

VP (1; Q) = xc=Æ

and that V , VP , and VQ be continuous. The �rst boundary condition reects the
fact that 0 is an absorbing state for P ; hence is P reaches 0, no revenue will ever
be generated and hence the �rm has no value. The second condition is derived from
computing the expected revenue if the �rm always produces at maximum capacity, as
it would if the price were to get arbitrarily large (i.e., if the probability that the price
falls below marginal cost becomes arbitrarily small). The derivative of the expected
revenue is xc=Æ.

As illustrated in Figure 10.1, the (Q;P ) state space for this problem is divided by
a curve P �(Q) that de�nes a low price region in which the �rm is inactive and a high
price region in which it is active. Furthermore, for Q > Qm the location of P �(Q) is
equal to c because, once the marginal cost is at its minimum level, there is nothing to
be gained from production when the price is less than the marginal production cost.

For Q > Qm the problem is simpli�ed by the fact that VQ = 0. Thus V is a
function of P alone and the value of the �rm satis�es

rV (P ) = �PVP (P ) + 1
2
�2P 2VPP +max(0; P � C(Q))xc:

For Q < Qm, on the other hand, VQ 6= 0 and the location of the boundary P �(Q)
must be determined simultaneously with the value function.



CHAPTER 10. CONTINUOUS TIME - THEORY & EXAMPLES 374

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
Sequential Learning: Optimal Activation Boundary

Q

P

Production Region:

V(P,Q) must be

computed numerically

Non−Production Region:

A(Q) computed from

value matching condition

Production

Region:

V known

Non−Production

Region:

V known

Q
m

P*

Figure 10.1

A third boundary condition

V (P;Qm) = �V (P ) (de�ned below)

is a \terminal" condition in Q. Once Qm units have been produced the �rm has
reached its minimum marginal cost. Further production decisions do not depend on
Q nor does the value of the �rm, V .

An explicit solution can be derived for Q > Qm:

�V (P ) =

8<
: A1P

�1 if P � �c

A2P
�2 + P

Æ �
�c
r if P � �c;

where the � solve the quadratic equation

1
2
�2�(1� �) + (r � Æ)� � r = 0

and the A1 and A2 are computed using the continuity of �V and �VP .
The continuity requirements on the value function, even though the control is

discontinuous, allow us to determine a free boundary between the regions of the state
space in which production will and will not occur. Intuitively, there is a function
P �(Q) above which the price is high enough to justify current production and below
which no production is justi�ed.
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Notice that below the free boundary the Bellman's equation takes a particularly
simple form

rV (P;Q) = (r � Æ)PVP (P;Q) + 1
2
�2P 2VPP ;

which together with the �rst boundary condition (V (0; Q) = 0), is solved by

V (P;Q) = A1(Q)P
�1;

where A1(Q) is yet to be determined (we know, of course, that A1(Qm) = �c)). Above
the boundary, however, there is no closed form solution. A1(Q); P

�(Q) and V (P;Q)
for P � P � must be computed numerically.

The solution methods for this problem depend on being able to determine the
position of the free boundary. It is therefore worth exploring some of the consequences
of the continuity conditions on V . First, consider the known form of the value function
below the free boundary and its derivative:

V (P;Q) = A1(Q)P
�1

VP (P;Q) = �1A1(Q)P
�1�1:

Eliminating A1(Q) yields

PVP (P;Q) = �1V (P;Q):

This condition holds everywhere below the boundary and at it as well. By the conti-
nuity of the V and VS, it must also hold as the boundary is approached from above.

Another relationship that is useful to note concerns the continuity in the Q direc-
tion. Below the boundary,

VQ(P;Q) = A01(Q)P
�1:

The derivative of A1 is constant in P and may therefore be related to VQ as it
approaches the boundary from above, which is known from the Bellman equation:

VQ(P;Q) = A01(Q)P
�1

= (LV (P �; Q)� (P � � C(Q)))
�
P

P �

��1

where the di�erential operator L is de�ned as

LV (P;Q) = rV (P;Q)� (r � Æ)PVP (P;Q)� 1
2
�2P 2VPP (P;Q)

But we have already seen that P ��C(Q)+VQ(P �; Q) = 0 and therefore LV (P �; Q) =
0. Summarizing these results, we see that

VQ(P;Q) =

8<
: � (P � � C(Q)) � P

P �

��1 for P � P �

LV (P;Q)� (P � C(Q)) for P � P �
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Exercises

10.1. Pricing Bonds

De�ne P (t; T ) to be the current (time t) price of a pure discount bond maturing
at time T , i.e., a bond that pays $1 at time T . The price of a bond of any
maturity depends on the instantaneous interest rate, r. It can be shown that

P (r; t; T ) = Ê

�
exp

�
�
Z T

t

r(�)d�

��
;

where the expectation is taken with respect to the risk adjusted process gov-
erning the instantaneous interest rate. Assuming that this process is

dr = �(r; t)dt+ �(r; t)dz

an extended version of the Feynman-Kac Formula implies that P is the solution
to

rP = Pt + �(r; t)Pr + 1
2
�2(r; t)Prr;

subject to the boundary condition that P (r; T; T ) = 1.

Suppose that the instantaneous interest rate process is

dr = �(�� r)dt+ �dz:

Show that P has the form

P (r; t;T ) = A(t;T ) exp(�B(t;T )r)

and, in doing so, determine the functions A and B.

10.2. Pricing Bonds Continued

Given the setting of the previous problem, suppose we take the instantaneous
interest rate process to be

dr = �(�� r)dt+ �
p
rdz:

Verify numerically that P has the form

P (r; t; T ) = A(t; T ) exp(�B(t; T )r)
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with

A(�) =

�
2e(+�)�=2

( + �)(e� � 1) + 2

�2��=�2

and

B(�) =
2(e� � 1)

( + �)(e� � 1) + 2
;

where  =
p
�2 + 2�2. This can be accomplished by writing a function that

returns the proposed value of the bond. This function can be di�erentiated
with respect to t and r to obtain the partial derivatives. The arbitrage condition
should be close to 0 for all values of r, t and all parameter values.

10.3. Futures Prices

A futures contract maturing in � periods on a commodity whose price is gov-
erned by

dS = �(S; t)dt+ �(S; t)dz

can be shown to satisfy

V� (S; �) = (rS � Æ(S; t))VS(S; �) + 1
2
�2(S; t)VSS(S; �)

subject to the boundary condition V (S; 0) = S. Here Æ is interpreted as the
convenience yield, i.e., the ow of bene�ts that accrue to the holders of the
commodity but not to the holders of a futures contract. Suppose that the
volatility term is

�(S; t) = �S:

In a single factor model one assumes that Æ is a function of S and t. Two
common assumptions are

Æ(S; t) = Æ

and

Æ(S; t) = ÆS:

In both cases the resulting V is linear in S. Derive explicit expressions for V
given these two assumptions.
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10.4. Futures Prices Continued

Continuing with the previous question, suppose that the convenience yield is

Æ(S; t) = ÆS

where Æ is a stochastic mean-reverting process governed by

dÆ = �(m� Æ)dt+ �Ædw;

with Edzdw = ���Æ. Furthermore, suppose that the market price of the conve-
nience yield risk is a constant �. Then the futures price solves

V� = (r � Æ)SVS + (�(m� Æ)� �)VÆ + 1
2
�2S2VSS + ���ÆSVSÆ + 1

2
�2ÆVÆÆ;

with V (S; 0)=S.

Verify that the solution has the form V = exp(A(�)�B(�)Æ)S and in doing so
derive expression for A(�) and B(�).

10.5. Lookback Options with Geometric Brownian Motion

Suppose the risk neutral process associated with a stock price follows

dS = (r � Æ)Sdt+ 1
2
�SdW:

Show that a lookback strike put option can be written in the form

V (S;M; t) = Sv(y; t);

where y =M=S. Derive the PDE and boundary conditions satis�ed by v.

10.6. Portfolio Choice with CRRA Utility

For the portfolio choice problem on page 350 show that a utility function of
the form U(C) = (C1�)=(1 � ) implies an optimal consumption rule of the
form C(W ) = cW . Determine the constant a and, in the process, determine
the value function and the optimal investment rule �(W ).
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10.7. Portfolio Choice with a Risk Free Asset

Suppose that, in addition to n risky assets, there is also a risk-free asset that
earns rate of return r. The controls for the investor's problem are again C, the
consumption rate, and the n-vector w, the fractions of wealth held in the risky
assets. The fraction of wealth held in the riskless asset is 1�Piwi = 1�w>1.
a) Show that the wealth process can be follows

dW

W
= [W (r + w>(�� r1))� C]dt+ w>�dz:

b) Write the Bellman's Equation for this problem and the associated �rst order
condition.
c) Show that it is optimal to hold a portfolio consisting of the risk-free asset
and a mutual fund with weights proportional to ��1(�� r1).
d) Derive expressions for w>(� � r1) and w>�w and use them to concentrate
the Bellman equation with respect to w.
e) Suppose that U(C) = C1�

1� . Verify that the optimal consumption rate is
proportional to the wealth level and �nd the constant of proportionality.

10.8. Portfolio Choice Continued

Continuing the previous problem, de�ne �(W ) = �V 0(W )=V 00(W ). Show that
C(W ) and �(W ) satisfy a system of �rst order di�erential equations. Use this
result to verify that C is aÆne in W and � is a constant when U(C) = �e�C .

10.9. Stochastic Nonrenewable Resource Management

Suppose that the resource stock discussed on page 354 evolved according to

dS = �xdt + �Sdz:

Verify that the optimal control has the form

x(S) = �S�;

and, in so doing, determine the values of � and �. Also obtain an expression
for the value function. You should check that your answer in the limiting case
that � = 0 is the same as that given on page 354.
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10.10. Nonrenewable Resources with Stochastic Prices

As in the example on page 354, a resource is extracted at rate x, yielding a ow
of returns Ax1��. The stock of the resource is governed by dS = �xdt. Here,
however, we treat A as a random shock process due to randomness in the price
of the resource governed by

dA = �(A)dt+ �(A)dz:

The �rm would like to maximize the expected present value of returns to ex-
traction, using a discount rate of �.

a) State the �rm's optimization problem.
b) State the associated Bellman's equation.
c) State the �rst order optimality condition and solve for the optimal extraction
rate (as a function of the value function and its derivatives).

10.11. Timber Lease

A government timber lease allows a timber company to cut timber for T years
on a stand with B units of biomass. The price of cut timber is governed by

dp = �(�p� p)dt+ �
p
pdW:

With a cutting rate of x and a cutting cost of Cx2=2, discuss how the company
can decide what to pay for the lease, given a current price of p and a discount
rate of � (assume that the company sells timber as it is cut).

Hint: introduce a remaining stand size, S, with dS = �xdt (S is bounded below
by 0) and set up the dynamic programming problem.

10.12. Timber Harvesting with Deterministic Growth

Suppose that the timber harvesting problem discussed on page 360 is non-
stochastic. The Bellman equation can then be rewritten in the form

V 0 =
�

�

V

m� S :

Verify that the solution is of the form

V = k(m� S)��=�;

where k is a constant of integration to be determined by the boundary condi-
tions. There are two unknowns to be determined, k and S�. Solve for k in terms
of S� and derive an optimality condition for S� as a function of parameters.
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10.13. Fishery Management

A monopolist manager of a �shery faces a state transition function

dS = [�S(M � S)� x]dt + �2(S)dW:

The price is constant and the cost function has a constant marginal cost that
is inversely proportional to the stock level. In addition, a �xed cost of F is
incurred if any �shing activity takes place. The reward function can thus be
written�

p� C

S

�
x� FÆx>0:

This is an impulse control problem with two endogenous values of the state,
Q and R, with Q < R. When S � R, the stock of �sh is harvested down to
Q. Express the Bellman equation for S � R and the boundary conditions that
determine the location of Q and R (assume a discount rate of �).

�V (S) = �S(M � S)VS(S) + �2(S)

2
VSS(S); for S 2 [0; R]:

V (R)� V (Q) = p(R�Q)� C ln(R=Q)� F:

Vs(R) = p� C=R

Vs(Q) = p� C=Q:

10.14. Capital Investment

Consider an investment situation in which a �rm can add to its capital stock,
K, at a cost of C per unit. The capital produces output at rate q(K) and the
net return on that output is P . Hence the reward function facing the �rm is

f(K;P; I) = Pq(K)� CI:

K is clearly a controllable state, with

dK = Idt:
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P , on the other hand, is stochastic and is assumed to be governed by

dP = �Pdt+ �Pdz;

(geometric Brownian motion). Using a discount rate of �, the Bellman equation
for this problem is

�V (K;P ) =

max
I
Pq(K)� CI + IVK(K;P ) + �PVP (K;P ) + 1

2
�2P 2VPP (K;P ):

There are, however, no constraints on how fast the �rm can add capital and
hence it is reasonable to suppose that, when it invests, it does so at an in�nite
rate, thereby keeping its investment costs to a minimum.

The optimal policy, therefore, is to add capital whenever the price is high enough
and to do so in such a way that the capital stock price remains on or above a
curve K�(P ). If K > K�(P ), no investment takes place and the value function
therefore satis�es

�V (K;P ) = Pq(K) + �PVP (K;P ) + 1
2
�2P 2VPP (K;P ):

This is a simpler expression because, for a given K, it can be solved more or
less directly. It is easily veri�ed that the solution has the form

V (K;P ) = A1(K)P �1 + A2(K)P �2 +
Pq(K)

�� �

where the �i solves 1
2
�2�(� � 1) + �� � � = 0. It can be shown, for � > � > 0,

that �2 < 0 < 1 < �1. For the assumed process for P , 0 is an absorbing barrier
so the term associated with the negative root must be forced to equal zero by
setting A2(K) = 0 (we can drop the subscripts on A1(K) and �1).

At the barrier, the marginal value of capital must just equal the investment
cost:

VK(K
�(P ); P ) = C: (20)

Consider now the situation in which the �rm �nds itself with K < K�(P ) (for
whatever reason). The optimal policy is immediately to invest enough to bring
the capital stock to the barrier. The value of the �rm for states below the
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barrier, therefore, is equal to the value at the barrier (for the same P ) less the
cost of the new capital:

V (K;P ) = V (K�(P ); P )� (K�(P )�K)C:

This suggests that the marginal value of capital equals C when K < K�(P )
and hence does not depend on the current price. Thus, in addition to (20), it
must be the case that

VKP (K
�(P ); P ) = 0: (21)

Use the barrier conditions (20) and (21) to obtain explicit expressions for the
optimal trigger price P �(K) and the marginal value of capital, A0(K). Notice
that to determine A(K) and therefore to completely determine the value func-
tion, we must solve a di�erential equation. The optimal policy, however, does
not depend on knowing V , and, furthermore, we have enough information now
to determine the marginal value of capital for any value of the state (K;P ).

Write a program to compute and plot the optimal trigger price curve are dis-
played in using the parameters

� = 0

� = 0:2

� = 0:05

c = 1

and the following two alternative speci�cations for q(K):

q(K) = ln(K + 1)

q(K) =
p
K:

10.15. Cash Management

Consider the manager of a cash account subject to random deposits and with-
drawals. In the absence of active management the account is described by
absolute Brownian motion

dS = �dt+ �dz:
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The manager must maintain a positive cash balance. When the account hits
0, the manager must draw funds from an interest bearing account. To increase
the cash account by z units, the manager bears a cost of f + cz, i.e., there are
both �xed and proportional variable costs of control. Similarly, the manager
can place funds in the interest bearing account by withdrawing an amount z
from the cash account, incurring costs of F + Cz.

Suppose the manager uses a discount rate of � and the interest bearing account
generates interest at rate r. It is clear that the manager will want to adjust the
account only at discrete times so as to minimize the adjustment costs. A control
policy can therefore be described as a choice of three cash levels, S1 � S2 � S3,
where S1 is the amount of the addition to the fund when it hits 0, S3 is the trigger
level for withdrawing funds (adding them to the interest bearing account) and
S2 is the target level (i.e., S3 � S2 units are withdrawn when the fund hits S3).

The value function associated with this problem solves the Bellman equation16

�V (S) = �V 0(S) + 1
2
�2V 00(S); for S 2 [0; S3]

with the side conditions that

V (0) = V (S1)� f � (r=�+ c)S1

and

V (S3) = V (S2)� F + (r=�� C)(S3 � S2):

Furthermore, an optimal policy satis�es

V 0(S1) = (r=�+ c)

and

V 0(S3) = V 0(S2) = (r=�� C):
16Although it is not necessary to solve the problem, it is useful to understand why these conditions

are appropriate. The value function here is interpreted as the present value of the current cash
position, which does not depend on how much money is in the interest bearing account at the
present moment. Cash pays no current ows and hence the Bellman equation is homogeneous (no
reward term). The cost of withdrawing funds from the interest bearing account equals the control
cost plus the opportunity cost of the lost interest, which is equal to r=� times the amount withdrawn.
The cost of adding funds to the interest bearing account equals the control cost less the present value
of the interest earned on the funds put into the account (r=� times the amount of these funds).
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The Bellman equation can be solved explicitly:

V (S) = A exp(�S) +B exp(�S);

where � and � are chosen to solve the di�erential equation and A and B are
chosen to satisfy the side conditions.

Write a MATLAB procedure that accepts the parameters �, �, �, r, f , F , c,
and C and returns the parameters A, B, �, �, S1, S2, and S3. Also determine
how the program needs to be modi�ed if the proportional costs (c and C) are
zero. Check your code using the following parameter values: � = 0, � = 0:5,
� = 0:4, r = 0:5, f = 1, F = 0:5, c = 0:1, and C = 0:1. You should obtain the
result that S1 = 0:7408, S2 = 0:8442, and S3 = 2:2216.

10.16. Entry/Suspension/Exit

The Entry/Exit problem discussed beginning on page 368 can be extended to
allow for temporary suspension of production. Suppose that a maintenance fee
ofm is needed to keep equipment potentially operative. In the simple entry/exit
problem there were two switching costs, I and E. Now there are 6 possible
switching costs, which will generically be called F ij. With D = 1 representing
the active production state, D = 2 the temporarily suspended state and D = 3
the exited state, de�ne the Bellman equations and boundary conditions satis�ed
by the solution.

10.17. Non-Renewable Resource Management

The demand for a nonrenewable resource is given by

p = D(q) = q��;

where q is the extraction rate. For simplicity, assume the resource can be
extracted at zero cost. The total stock of the resource is denoted by S (with
S(0) = S0), and is governed by the transition function

dS = �qdt:

a) For the social planner's problem, with the reward function being the social
surplus, state the Bellman's equation and the optimality condition, using dis-
count rate �. Use the optimality condition to �nd the concentrated Bellman's
equation.

b) Guess that V (S) = �S�. Verify that this is correct and, in doing so, deter-
mine � and �.
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c) Determine the time value, T , at which the resource is exhausted.

d) Solve the problem using an optimal control (Hamiltonian) approach and
verify that the solutions are the same.

10.18. Renewable Resource Management with Adjustment Costs

Consider an extension to the renewable resource problem discussed on page
371. Suppose that the harvest rate is still constrained to lie on [0; C] but that it
cannot be adjusted instantaneously. Instead assume that the rate of adjustment
in the harvest rate, x, must lie on [a; b], with a < 0 < b, with the proviso that
x � 0 is h = 0 and x � 0 is h = C.

This problem can be addressed by de�ning h to be a second state variable with
a deterministic state transition equation:

dh = xdt:

The optimal control for this problem is de�ned by two regions, one in which
x = a and one in which x = b. The boundary between these regions is a curve
in the space [0;1)� [0; C].

Write the PDEs that must be satis�ed by the value functions in each region
and the value-matching and smooth pasting conditions that must hold at the
boundaries.

10.19. Optimal Sales from an Inventory

Consider a situation in which an agent has an inventory of S0 units of a good
in inventory, all of which must be sold within T periods. It costs k dollars per
unit of inventory per period to store the good. In this problem there is a single
control, the sales rate q, and two state variables, the price P and the inventory
level S. The price is an exogenously given Ito process:

dP = �(P; t)dt+ �(P; t)dz:

The amount in storage evolves according to

dS = �qdt:

Furthermore it is assumed that both the state and the control must be nonneg-
ative. The latter assumes that the agent cannot purchase additional amounts
to replenish the inventory, so that sales are irreversible.



CHAPTER 10. CONTINUOUS TIME - THEORY & EXAMPLES 387

The problem can be written as

V (S; P; t) = max
q(S;P;t)

Et

Z T

t

e�rt (qP � kS) dt

subject to the above constraints.

What is Bellman's equation for this problem? Treat the problem as an optimal
stopping problem so q = 0 when the price is low and q = 1 when the price is
high. At or above the stopping boundary all inventory is sold instantaneously.
State the Bellman's equation for the regions above and below the stopping
boundary. State the value-matching and smooth-pasting conditions that hold
at the boundary.

10.20. Learning-By-Doing with Deterministic Price

Suppose in the sequential learning that the price is deterministic (� = 0) and
the r � Æ. In this case, once production is initiated, it is never stopped. Use
this to derive an explicit expression for V (P;Q), where P � P �(Q). In this
case, because production occurs at all times,

V (P;Q) =

Z 1

0

e�r� (P� � C(Q� ))d�;

where Pt solves the homogeneous �rst order di�erential equation

dPt
dt

= (r � Æ)P

and

Z 1

0

e�r�C(Q� )d� =

Z Qm�Q

0

e�r�C(Q� �Q)d� + �c

Z 1

Qm�Q
e�r�d�:

Also show that, for P < P �, the value function can be written in the form
f(P; P �(Q))V (P �(Q); Q).

Combining these two results, determine the optimal activation boundary in the
deterministic case. Verify that your answer satis�es the Bellman equation.
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Appendix A
Dynamic Programming and Optimal Control Theory

Many economists are more familiar with optimal control theory than with dynamic
programming. This appendix provides a brief discussion of the relationship between
the two approaches. As stated previously, optimal control theory is not naturally
applied to stochastic problems but it is used extensively in deterministic ones. The
Bellman equation in the deterministic case is

�V = max
x

f(S; x) + Vt + g(S; x)VS;

where x is evaluated at its optimal level. Suppose we totally di�erentiate the marginal
value function with respect to time:

dVS
dt

= VSt + VSS
dS

dt
= VSt + VSSg(S; x):

Now apply the Envelope Theorem to the Bellman equation to determine that

�VS = fS(S; x) + VtS + g(S; x)VSS + VSgS(S; x):

Combining these expressions and rearranging yields

dVS
dt

= �VS � fS � VSgS: (22)

This can be put in a more familiar form by de�ning � = VS. Then (22), combined
with the FOC for the maximization problem and the state transition equation can be
written as the following system

0 = fx(S; x) + �gx(S; x)

d�

dt
= ��� fS(S; x)� �gS(S; x)

and

dS

dt
= g(S; x):

These relationships are recognizable as the Hamiltonian conditions from optimal con-
trol theory, with � the costate variable representing the shadow price of the state
variable (expressed in current value terms).17

17See Kamien and Schwartz, pp. 151-152 for further discussion.
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The message here is that dynamic programming and optimal control theory are
just two approaches to arrive at the same solution. It is important to recognize the
distinction between the two approaches, however. Optimal control theory leads to
three equations, two of which are ordinary di�erential equations in time. Optimal
control theory therefore leads to expressions for the time paths of the state, control
and costate variables as functions of time: S(t), x(t) and �(t). Dynamic programming
leads to expressions for the control and the value function (or its derivative, the
costate variable) as functions of time and the state. Thus dynamic programming leads
to decision rules rather than time paths. In the stochastic case, it is precisely the
decision rules that are of interest, because the future time path, even when the optimal
control is used, will always be uncertain. For deterministic problems, however, DP
involves solving partial di�erential equations, which tend to present more challenges
than ordinary di�erential equations.
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Appendix B
Deriving the Boundary Conditions for Resetting Problems

It is instructive to view the resetting problem from another perspective. In a simple
resetting problem an asset is replaced at a discrete set of times when S = S�, at which
point a reward, f(S�) is obtained. Let us de�ne �(S; S�) to be the (random) time
until the state �rst hits S�, given that it is now equal to S. The �rst time the state
hits S� a reward worth f(S�)e���(S;S

�) (in current units of account) will be generated
and the state is reset to 0. The time elapsing after a resetting until the state next
hits S� depends on a random variable that has the same distributional properties as
�(0; S�) and is independent of previous hitting times (by the Markov property). The
expected discounted rewards (i.e., the value function) can be therefore be written as

V (S;S�) = f(S�)E
�
e���(S;S

�)
� 1X
i=0

�
E
�
e���(0;S

�)
��i

=
f(S�)E

�
e���(S;S

�)
�

1� E [e���(0;S�)]
:

To simplify the notation, let

�(S; S�) = E
�
e���(S;S

�)
�
;

so the value function is

V (S;S�) =
f(S�)�(S; S�)
1� �(0; S�) :

From the de�nition of � it is clear that �(S�; S�) = 0 so �(S�; S�) = 1. Hence the
boundary condition that

V (S�;S�) =
f(S�)

1� �(0; S�) :

Combining this with the lower boundary condition

V (0;S�) =
f(S�)�(0; S�)
1� �(0; S�)

leads to the value matching condition that

V (S�;S�) = V (0;S�) + f(S�):

Notice that value matching does not indicate anything about the optimality of
the choice of S�. One way to obtain an optimality condition is to set the derivative
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of V (S; S�) with respect to S� equal to zero. After suitable rearrangement the FOC
is, for every S,

f 0(S�)�(S; S�) + f(S�)
�
@�(S; S�)
@S�

+
�(S; S�)

1� �(0; S�)
@�(0; S�)
@S�

�
= 0: (23)

In order to show that this is equivalent to the smooth pasting condition we will use
two properties of �. First, �(S�; S�) is identically equal to 1, so @�(S�; S�)=@S� = 0.
Combined with the fact that

dS

dS�

����
S=S�

= 1;

this implies

d�(S�; S�)
dS�

=
@�(S�; S�)

@S
+
@�(S�; S�)

@S�
= 0

and hence that

@�(S�; S�)
@S

= �@�(S
�; S�)

@S�
:

The second fact, a result of the Markov assumption, is that

�(S; S� + dS�) = �(S; S�)�(S�; S� + dS�):

taking limits as dS� ! 0 we see that

@�(S; S�)
@S�

= �(S; S�)
@�(S�; S�)

@S�
:

If we evaluate (23) at S = S� and rearrange, it is straightforward to see that

f 0(S�) = �f(S�)
�
@�(S�; S�)

@S�
+

�(S�; S�)
1� �(0; S�)

@�(0; S�)
@S�

�

= �f(S�)
�
1 +

�(0; S�)
1� �(0; S�)

�
@�(S�; S�)

@S�

= � f(S�)
1� �(0; S�)

@�(S�; S�)
@S�

=
f(S�)

1� �(0; S�)
@�(S�; S�)

@S

=
@V (S�; S�)

@S

which is the desired result.
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Appendix C
Deterministic Bang-Bang Problems

The general form for a deterministic bang-bang type problem has a reward function

f0(S) + f1(S)x

state dynamics

dS = [g0(S) + g1(S)x]dt

and control constraint

xa � x � xb:

Suppose we use a control, not necessarily optimal, with S� as a switching point, e.g.,
set x = xa for S < S� and x = xb for S > S� .18 At S = S� we choose x in such a
way that dS=dt = 0. Summarizing, de�ne

x(S; Sa) =

8>>><
>>>:

xa if S < Sa

�g0(S)
g1(S)

if S = Sa

xb if S > Sa

;

with xa < �g0(Sa)=g1(S
a) < xb. The value function satis�es the di�erential equation

V (S; Sa) =
1

�

�
f0(S) + f1(S)x(S; S

a) +
h
g0(S) + g1(S)x(S; S

a)
i
VS(S; S

a)
�
; (24)

which, evaluated at S = S� , yields

V (Sa; Sa) =
1

�

�
f0(S

a)� f1(Sa)
g0(S

a)

g1(Sa)

�
: (25)

In spite of the discontinuity of the control at S� , the value function is continuous, as
is readily apparent by writing it as

V (S; Sa) =

Z 1

0

e��t (f0(S) + f1(S)x(S; S
a)) dt;

and noting that as S approaches S� from below (above), the amount of time during
which the control is set at xa (xb) goes to 0.

18This assumes that the state is growing when xa is used and is shrinking when xb is used. It is
a simple matter to reverse these inequalities.
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The continuity of V can be used to demonstrate the continuity of VS(S; S
� ) at

S = S� , and to thereby determine its value:19

VS(S
a; Sa) = �f1(S

a)

g1(Sa)
: (26)

So far, however, we have only considered the value function for the control S� . To
choose the control optimally, we must pick S� to satisfy

VSa(S; S
a) = 0:

For S 6= Sa we can di�erentiate (24) to see that

VSa(S; S
a) = 1

�

h
f1(S) + g1(S)VS(S; S

a)
i
xSa(S; S

a)

+ g1(S)x(S; S
a)VSSa(S; S

a):
(27)

However, except at S = S� , xS� (S; S
� ) and VSSa(S; S

a) are zero and hence we only
need to set this derivative to zero at S = S� . (27) is not well de�ned at S = S� because
the derivative xS� (S; S

� ) is unde�ned at this point. Instead we use the relationship

dV (Sa; Sa)

dSa
= VS(S

a; Sa) + VSa(S
a; Sa):

Rearranging this and using (25) and (26) we get

VSa(S
a; Sa) =

dV (Sa; Sa)

dSa
� VS(Sa; Sa)

=
1

�

d
�
f0(S

a)� g0(Sa)f1(S
a)

g1(Sa)

�
dSa

+
f1(S

a)

g1(Sa)
:

19To determine the limit from below, note that continuity of V implies that

lim
S%Sa

V (S; Sa) = lim
S%Sa

1

�
[f0(S) + f1(S)xa + (g0(S) + g1(S)xa) VS(S; S

a)]

=
1

�

�
f0(S

a) + f1(S
a)xa + (g0(S

a) + g1(S
a)xa) lim

S%Sa
VS(S; S

a)

�

=
1

�

�
f0(S

a)� f1(S
a)g0(S

a)

g1(Sa)

�
� V (Sa; Sa):

Rearranging, we see this expression implies that

(g0(S
a) + g1(S

a)xa) lim
S%Sa

V (S; Sa) = �
�
f1(S

a)xa +
f1(S

a)g0(S
a)

g1(Sa)

�

= �f1(S
a)

g1(Sa)

�
g0(S

a) + g1(S
a)xa

�
:

The same exercise can be applied to solving for the limit from above.
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Thus the optimal switching points are found by solving for the roots of this expression.
It is possible that there are multiple roots, leading to a situation in which VS may
be discontinuous at a root; this root represents an unstable equilibrium at which x is
unde�ned.
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Chapter 11

Continuous Time Models:

Solution Methods

In the previous chapter we saw how continuous time economic models, whether deter-
ministic or stochastic, result in solution functions that satisfy di�erential equations.
Ordinary di�erential equations (ODEs) arise in in�nite horizon single state models
or in deterministic problems solved in terms of time paths. Partial di�erential equa-
tions (PDEs) arise in models with multiple state variables or in �nite horizon control
problems. From a numerical point of view the distinction between ODEs and PDEs
is less important than the distinction between problems which can be solved in a re-
cursive or evolutionary fashion or those that require the entire solution be computed
simultaneously because the solution at one point (in time and/or space) depends on
the solution everywhere else.

This is the distinction between initial value problems (IVPs) and boundary value
problems (BVPs) that we discussed in Sections 5.7 and 6.8.3. With an IVP, the
solution is known at some point or points and the solution near these points can
then be (approximately) determined. This, in turn, allows the solution at still other
point to be approximated and so forth. When possible, it is usually faster to use such
recursive solution techniques.

Numerous methods have been developed for solving PDEs. We concentrate on
a particular approach that encompasses a number of the more common methods
and which builds nicely on the material already covered in this book. Speci�cally, the
true but unknown solution will be replaced with a convenient approximating function,
the parameters of which will be determined using collocation. For initial value type
problems (IVPs), this approach will be combined with a recursive algorithm. We will
also discuss free boundary problems. The basic approach for such problems is to solve
the model taking the free boundary as given and then use the optimality condition
to identify the location of the boundary.

397
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There are a number of methods for solving PDEs and stochastic control problems
that we do not discuss here. These include binary and trinomial tree methods, sim-
ulation methods and methods that discretize control problems and solve the related
discrete problem. Although all of these methods have their place, we feel that provid-
ing a general framework that works to solve a wide variety of problems and builds on
general methods developed in previous chapters is of more value than an encyclopedic
account of existing approaches. Much of what is discussed here should look and feel
familiar to readers that have persevered up to this point.1 We do, however, include
some references to other approaches in the bibliographical notes at the end of the
chapter.

11.1 Solving Arbitrage-based Valuation Problems

In the previous chapter it was shown that �nancial assets often satisfy an arbitrage
condition in the form of the PDE

r(S)V = Æ(S) + Vt + VSS�(S) + 1
2
trace(�(S)�(S)>VSS):

The speci�c asset depends on the boundary conditions. For an asset that has a single
payout at time T , the only boundary condition is of the form V (S; T ) = R(S) and,
as there are no dividends, Æ = 0. For zero-coupon default-free bonds the boundary
condition is R(S) = 1. For futures, European call options and European put options
written on an underlying asset with price p = P (S), the boundary conditions are,
respectively, R(S) = P (S) and R(S) = max(0; P (S)� K) and R(S) = max(0; K �
P (S)), where K is the option's strike price.

Asset pricing problems of this kind are more easily expressed in terms of time-to-
maturity rather than calendar time; let � = T � t. We will work with V (S; �) rather
than V (S; t), necessitating a change of sign of the time derivative: V� = �Vt.

The problem, of course, is that the functional form of V is unknown. Suppose,
however, it is approximated with a function of the form V (S; �) � �(S)c(�), where �
is a suitable n-dimensional family of approximating functions and c(�) is an n-vector
of time varying coeÆcients. When the state variable is one-dimensional, the arbitrage
condition can be used to form a residual equation of the form2

�(S)c0(�) �
h
�(S)�0(S) + 1

2
�2(S)�00(S)� r(S)�(S)

i
c(�) = �(S)c(�): (1)

1It would be useful to at least be familiar with the material in Chapter 6.
2For multi-dimensional states the principle is the same but the implementation is a bit messier.

We discuss this in Appendix 11.A.
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A collocation approach to determining the c(�) is to select a set of n values for
S, si, and to solve the residual equation with equality at these values. The residual
function can then be written in the form

�c0(�) = Bc(�);

where � and B are both n � n matrices. This is a �rst order system of ordinary
di�erential equations in � , with the known solution c(�) = exp(���1B)c0; where
�c0 satis�es the boundary condition R(S) evaluated at the n values of the si (note:
the exponential is a matrix exponential which can be computed using the Matlab

function expm).
Before illustrating this approach, a few additional comments are in order. It may

be desirable to impose additional boundary conditions. This would require rede�n-
ing � and B using fewer than n nodes and to concatenate to these any additional
equations needed to impose the boundary conditions. Generally, this is not needed
if the behavior at the boundaries is regular enough. The issue becomes more critical
when free boundary problems are encountered. Another issue is especially important
in option pricing problems, for which the terminal boundary is not smooth but rather
has a kink at the strike price K. This suggests that the use of a polynomial approxi-
mation may not be appropriate. Instead a cubic spline, possibly with extra nodes at
S = K, or a piece-wise linear approximation with �nite di�erence derivatives may be
in order.

Example: Pricing Bonds
The CIR (Cox-Ingersoll-Ross) bond pricing model assumes that the risk-neutral pro-
cess for the short interest rate is given by

dr = �(�� r)dt+ �
p
rdz:

Expressing the value of a bond in terms of time-to-maturity (�), a bond paying 1 unit
of account at maturity, has value V (r; �) that solves

V� = �(�� r)Vr + 1
2
�2rVrr � rV;

with initial condition V (r; 0) = 1.
To solve this model, �rst choose a family of approximating functions with basis

�(r) and n collocation nodes, ri. Letting the basis functions and their �rst two
derivatives at these points be de�ned as the n� n matrices �0, �1 and �2, a system
of collocation equations is given by

�0c
0(�) = [�(�� r)�1 + 1

2
�2r�2 � r�0]c(�) = Bc(�):
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The term r�0 is an abuse of notation; it indicates multiplying the n� 1 vector r by
an n � n matrix �0. Such a term is more properly written as diag(r)�0 and can be
obtained in Matlab using element-by-element multiplication as

r(:,ones(n,1)).*Phi0

(see code below). The same comments also apply to the �rst and second order terms.
The following function solves the CIR bond pricing problem.

function c=cirbond(fspace,tau,kappa,alpha,sigma)

% Define nodes and basis

r=funnode(fspace);

Phi0=funbas(fspace,r,0);

Phi1=funbas(fspace,r,1);

Phi2=funbas(fspace,r,2);

% Evaluate parameters

m=kappa*(alpha-r);

s=0.5*sigma.^2*r;

% Define and solve the linear differential equation in the coefficients

u=ones(size(r,1),1);

B=m(:,u).*Phi1+s(:,u).*Phi2-r(:,u).*Phi0;

B=Phi0\B;

c0=Phi0\u;

c=expm(full(tau*B))*c0;

The function's input arguments include a function de�nition structure fspace

indicating the family of approximating functions desired, the time to maturity, � ,
and the model parameters, �, � and �. The function returns the coeÆcient vector
c� . A script �le, demfin01.m, demonstrates the use of the procedure. It uses a
Chebyshev polynomial approximation of degree n = 20 on the interval [0; 2]. The
solution function for a 30-year bond with parameter values � = 0:1, � = 0:05 and
� = 0:1 is plotted in Figure 11.1.

Two points are in order concerning the procedure. First, Matlab's matrix expo-
nential function expm requires that its argument be a full rather than a sparse matrix.
Some basis functions (e.g., spline and piecewise linear) are stored as sparse matrices,
so this ensures that the code will work regardless of the family of functions used.

Second, the procedure uses the standard nodes for a given approximating family
of functions. This typically requires upper and lower bounds to be speci�ed. For the
process used in the bond pricing example, a natural lower bound of 0 can be used.
The upper bound is trickier, because the natural upper bound is 1. Knowledge of
the underlying nature of the problem, however, should suggest an upper bound for
the rate of interest. We have used 2, which should more than suÆce for countries
that are not experiencing hyper-ination.
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More generally, one should use an upper bound that ensures the result is not
sensitive to the choice in regions of the state space that are important. In practice, this
may necessitate some experimentation. A useful rule of thumb is that the computed
value of V (S) is not sensitive to the choice of �S if the probability that ST = �S, given
St = S, is negligible. For in�nite horizon problems with steady state probability
distributions, one would like the steady state probability of �S to be negligible.

For this example, a known solution to the bond pricing problem exists (see exercise
10.2 on p. 376). The closed form solution can be used to compute the approximation
error function, which is shown in Figure 11.2. The example uses a Chebyshev poly-
nomial basis of degree n = 20; it is evident that this is more than suÆcient to obtain
a high degree of accuracy.

11.1.1 Extensions and Re�nements

The approach to solving the asset pricing problems just described replaces the original
arbitrage condition with one of the form

�c0(�) = Bc(�);

with �c(0) = V0. The known solution c(�) = exp(���1B)��1V0 can be put in
recursive form

c(� +�) = exp(���1B)c(�) = Ac(�):
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The n� n matrix A need only be computed once and the recursive relationship may
then be used to compute solution values for a whole grid of evenly spaced values of
� .

In the approach taken above, the existence of a known solution to the collocation
di�erential equation is due to the linearity of the arbitrage condition in V and its
partial derivatives. If linearity does not hold, we will still be able to express the
system in the form �c0(t) = B(c(t)), which can be solved using any convenient initial
value solver such as the Runge-Kutta algorithm described in Section 5.7 or any of the
suite of Matlab ODE solvers. This approach has been called the extended method
of lines. The name comes from a technique called the method of lines, which treats
� = In and uses �nite di�erence approximations for the �rst and second derivatives
in S. The values contained in the c(t) vector are then simply the n values of V (si; t).
The extended method of lines simply extends this approach by allowing for arbitrary
basis functions.

We should point out that the system of ODEs in the extended method of lines is
often \sti�". This is a term that is diÆcult to de�ne precisely and a full discussion is
beyond the scope of this book. SuÆce it to say, a sti� ODE is one that operates on
very di�erent time scales. The practical import of this is that ordinary evolutionary
solvers such as Runge-Kutta and its re�nements must take very small time steps to
solve sti� problems. Fortunately, so-called implicit methods for solving sti� problems
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do exist. The Matlab ODE suite provides two sti� solvers, ode15s and ode23s.
It is also possible to use �nite di�erence approximations for � ; indeed, this is

perhaps the most common approach to solving PDEs for �nancial assets. Expressed
in terms of time-to-maturity (�), a �rst order approximation with a forward di�erence
(in �) transforms (1) to

�(S)
c(� +�)� c(�)

�
= �(S)c(�);

or, equivalently,

�(S)c(� +�) = [�(S) + ��(S)]c(�):

Expressing this in terms of basis matrices evaluated at n values of S leads to

c(� +�) = [In +���1B]c(�):

This provides an evolutionary rule for updating c(�), given the initial values c(0).
[In + ���1B] is a �rst order Taylor approximation (in �) of exp(���1B). Hence
the �rst order di�erencing approach leads to errors of O(�2).

A backwards (in �) di�erencing scheme can also be used

�(S)
c(�)� c(� ��)

�
= �(S)c(�);

leading to

c(� ��) = [In ����1B]c(�)

or

c(� +�) = [In ����1B]�1c(�):

[In ����1B]�1 is also a �rst order Taylor approximation (in �) of exp(���1B) so
this method also has errors of O(�2).

Although it may seem like the forward and backwards approaches are essentially
the same, there are two signi�cant di�erences. First, the backwards approach de�nes
c(�) implicitly and the update requires a linear solve using the matrix [In����1B].
The forward approach is explicit and requires no linear solve. This point is rela-
tively unimportant when the coeÆcients of the di�erential equation are constant in
� because the inversion would need to be carried out only once. The point becomes
more signi�cant when the coeÆcients are time varying. As we shall see, this can
happen even when the state process has constant (in time) coeÆcients, especially in
free boundary problems.
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The need for a linear solve would seem to make the backward (implicit) approach
less desirable. It is possible, however, that the explicit forward approach is unsta-
ble. Both approaches replace the di�erential system of equations with a system of
di�erence equations of the form

x�+� = Ax� :

It is well known that such a system is explosive if any of the eigenvalues of A are
greater than 1 in absolute value.

In applications of the kind found in �nancial applications, the matrix A = [In +
���1B] can be assured of having small eigenvalues only by making � small enough.
On the other hand, the implicit method leads to a di�erence equation for which
A = [In � ���1B]�1, which can be shown to be stable for any �. Practically
speaking, this means that the explicit may not be faster than the implicit method and
may produce garbage if � is not chosen properly. If the matrix A is explosive, small
errors in the approximation will be magni�ed as the recursion progresses, causing the
computed solution to bear no resemblance to the the true solution.

A Matlab Asset Pricing Function: FINSOLVE

Due to the common structure of the arbitrage pricing equation across a large class
of �nancial assets, it is possible to write general procedures for asset pricing. Such
a procedure, finsolve, for solving an arbitrage condition for an asset that pays no
dividends is shown in below. The function requires �ve inputs, model, fspace, alg,
snodes and N. The �rst input, model, is a structure variable with the following �elds:

func the name of the problem de�nition �le
T the time to maturity of the asset

params a cell array of additional parameters to be passed to model.func
A template for the function de�nition �le is:

out1=func(flag,S,t,additional parameters);

switch flag

case 'rho'

out1 = instantaneous risk-free interest rate

case 'mu'

out1 = drift on the state process

case 'sigma'

out1 = volatility on the state process

case 'V0'

out1 = exercise value of the asset

end
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The function uses the modi�ed method of lines by default if alg is unspeci�ed
but explicit (forward) or implicit (backward) �nite di�erences can also be used to
represent the derivative in � by specifying the alg argument to be either 'implicit'
or 'explicit' (the default is 'lines'). In addition, a method known as the Crank-
Nicholson method, which averages the implicit and explicit methods, can be obtained
by specifying 'CN'.

function [c,V,A]=finsolve(model,fspace,alg,s,N)

if ~exist('alg','var') | isempty(alg), alg='lines'; end

if ~exist('N','var') | isempty(N), N=1; end

probfile=model.func;

T=model.T;

n=prod(fspace.n);

% Compute collocation matrix

mu=feval(probfile,'mu',s,[],model.params{:});

sigma=feval(probfile,'sigma',S,[],model.params{:});

rho=feval(probfile,'rho',S,[],model.params{:});

V0=feval(probfile,'V0',S,[],model.params{:});

n=fspace.n;

Phi0=funbas(fspace,s,0); % compute basis matrices

Phi1=funbas(fspace,s,1); Phi2=funbas(fspace,s,2);

v=0.5*sigma.*sigma; u=ones(n,1);

B=mu(:,u).*Phi1+v(:,u).*Phi2-rho(:,u).*Phi0;

B=funfitxy(fspace,Phi0,B);

c0=funfitxy(fspace,Phi0,V0);

Delta=T/N;

switch method

case 'lines'

A=expm(full(Delta*B));

case 'explicit'

A=eye(n)+Delta*B;

case 'implicit'

A=inv(eye(n)-Delta*B);

case 'CN'
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A=(inv(eye(n)-Delta*B) + eye(n)+Delta*B)/2;

otherwise

error('Method option is invalid')

end

c=zeros(n,N+1);

c(:,1)=c0;

for i=2:N+1

c(:,i)=A*c(:,i-1);

end

The next section uses this function to solve the Black-Scholes option pricing model
(the Matlab �le demfin01 optionally uses finsolve to solve the CIR bond pricing
example).

Example: Black-Scholes Option Pricing Formula
In Section 10.1, the Black-Scholes option pricing formula was introduced. The as-
sumption underlying this formula is that the price of a dividend protected stock has
risk-neutral dynamics given by

dS = rSdt+ �Sdz:

The arbitrage condition is

V� = rSVS +
1
2
�2S2VSS � rV

with the initial condition V (S; 0) = max(S �K; 0).
A script �le using the finsolve function is given below (see demfin02) . The

family of piece-wise linear functions with �nite di�erence approximations for the
derivatives (with pre�x lin) is used. 50 evenly spaced nodal values on [0; 2K] are
used, along with 75 time steps using the implicit (backward in �) method. Notice that
the function finsolve returns an n � N + 1 matrix of coeÆcients; the �rst column
contains coeÆcients that approximate the terminal value. If only the values for time-
to-maturity T are desired, all but the last column of the output can be discarded
(hence the c=c(:,end); line). The approximation can be evaluated at arbitrary
values of S using funeval(c,fspace,S). The delta and gamma of the option can
also be evaluated using funeval.

% Define parameters

r=.05; delta=0; sigma=0.2; K=1; T=1; put=0;
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clear model

model.func='pfin02';

model.T=T;

model.params={r,delta,sigma,K,put};

n=50;

fspace=fundefn('lin',n,log(K/3),log(3*K));

s=funnode(fspace);

% Call solution algorithm

c=finsolve(model,fspace,'implicit',s,75);

c=c(:,end);

The problem de�nition �le for this example follows:

function out1=pfin02(flag,S,t,r,delta,sigma,K,put);

n=size(S,1);

switch flag

case 'rho'

out1=r+zeros(n,1);

case 'mu'

out1= (r-delta-0.5*sigma.^2);

case 'sigma'

out1=sigma;

case 'V0'

if put

out1=max(0,K-exp(S));

else

out1=max(0,exp(S)-K);

end

end

As a closed form solution exists for this problem, we can plot the approximation
errors produced the method (the procedure BlackSch is available in the CompEcon

toolbox). These are shown in Figure 11.3. The maximum absolute error is 5:44�10�4.
It is simple to experiment with the alternate methods by changing the alg argument
to the finsolve function. The family of approximating functions can also be changed
easily by changing the input to the fundef function. The approximation errors in
Table 11.1 were obtained in this manner.

The approximation errors for all of these methods are roughly equivalent, with
a slight preference for the cubic spline. Note, however, that the explicit approach
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Table 11.1: Option Pricing Approximation Errors

Method
Function Family Lines Implicit Explicit
Piecewise-linear 4.85 5.44 5.31
Cubic Splines 2.89 2.31 3.20

Maximum absolute errors on [0; 2K] times 10�4.
Explicit cubic spline uses 250 time steps; other methods use 50 steps.
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using the cubic spline basis is explosive with under 200 time steps and the table gives
approximation errors using 250 time steps. It should also be noted that a polynomial
approximation does a very poor job in this problem due to its inability to adequately
represent the initial condition, which has a discontinuity at K in its �rst derivative,
and, more generally, because of the high degree of curvature near S = K.

11.2 Solving Stochastic Control Problems

In the previous chapter we saw that for problems of the form

V (S) = max
x(S)

Z 1

t

e���f(S; x)d�; s.t. dS = g(S; x)dt+ �(S)dz;
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Bellman's equation takes the form

�V (S) = max
x(S)

f(S; x) + g(S; x)V 0(S) + 1
2 �

2(S)V 00(S);

possibly subject to boundary conditions.
When the functional form of the solution is unknown, the basic strategy for solv-

ing such problems will be essentially the same as in the discrete time case. The value
function will be approximated using V (S) � �(S)c, where c is an n-vector of coef-
�cients. For in�nite horizon problems, c can be found using either a value function
and a policy function iteration.

Given a guess of the value of c, the optimal value of the control can be solved (in
principle) for a set of nodal values of S.

��(si)c = max
xi

f(si; xi) + g(si; xi)�
0(si)c+ 1

2 �
2(si)�

00(si)c:

This leads to the �rst order conditions

fx(si; xi) + gx(si; xi)�
0(si)c = 0;

which may admit a closed form solution, xi = x�(si; c).
If there are no relevant boundary conditions, n values of S are used to form the

n � n basis matrices �0, �1 and �2. The three vectors de�ned by fi = f(si; xi),
mi = g(si; xi) and vi = 0:5�2(si) are also computed. A function iteration algorithm
can then be expressed as

c 1

�
��10

�
f + [m�1 + v�2] c

�
(as noted earlier, terms like m�1 are an abuse of notation and signify diag(m)�1).
Policy function iteration uses

c = [��0 �m�1 � v�2]
�1 f:

If there are relevant boundary conditions, the number of nodal values of S can be
less than n by the number of additional conditions. Generally boundary conditions
are linear in the value function and its derivatives and hence are linear in the approx-
imation coeÆcients. These conditions can, therefore, be appended to the collocation
conditions from the Bellman's Equation and c can be updated in essentially the same
manner. This approach will be used extensively for solving free boundary in the next
section.

An alternative when one can solve explicitly for the optimal control (in terms of the
value function) is to substitute the control out of the Bellman Equation. This results
in (generally) a nonlinear di�erential equation in S, which can be solved directly
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using collocation. If the di�erential equation is nonlinear, however, the collocation
equations are also nonlinear and hence must be solved using a root �nding algorithm.

A general solver routine for stochastic control problems with continuous control
variables can be developed along the same lines as the solver for the discrete time
case (discussed beginning on p. ??). The method starts with an initial guess of the
coeÆcients of an approximation of the value function. It then computes the optimal
control given this guess. The value function coeÆcients are then updated using either
policy or function iteration. This iterative process occurs until a convergence criterion
is met.

There are, in fact, some distinct computational advantages to using continuous
time models because of three related facts. First, the Bellman equation is not stochas-
tic; there is no need to perform numerical integration to compute an expectation.
Second, to implement a Newton solution to the optimization problem, the �rst order
condition, fx(s; x) + Vs(s)gx(s; x) = 0, and its derivative need only be evaluated at
nodal values of the state. Third, the �rst order condition is relatively simple and can
often be solved explicitly in the form x� = x(s; Vs), thereby eliminating entirely the
need to perform use numerical optimization methods to determine the conditional
optimal control.

Even if no explicit solution is available, the computation of second derivative of
the conditional value function is easier.3 In the discrete time case

vxx = fxx + Vsgxx + gx
>Vssgx:

In the continuous time case, the last of these terms does not appear because the value
of the state at which V is evaluated is independent of x.

A general solver for continuous time stochastic control problems is provided by
scsolve. This solver requires that the user specify a model structure and problem
de�nition �le as well as a family of approximating a functions, a set of collocation
nodes and initial values for the value function at the collocation nodes. Optionally,
an initial value for the optimal control may be passed. The model structure should

3If the variance term � is a function of x, the computation of the �rst and second derivatives
must account for this.

vx = fx + Vsgx + vec(Vss�)
>�x

and

vxx = fxx + Vsgxx + �x
>(Id 
 Vss)�x + vec(Vss�)

>�xx:

Here �x is d2� p and �x is d2� p� p. The matrix product vec(Vss�)
>�xx multiplies a 1� d2 matrix

by a d2 � p � p array and returns a p � p array. In Matlab this type of matrix multiplication is
accomplished by

reshape(A*reshape(B,d*d,p*p),p,p).
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contain the following �elds:
func the name of the problem de�nition �le

params a cell array of additional parameters to be passed to model.func

For many continuous time problems, a solution to the �rst order conditions (as a
function of S and VS) can be obtained in closed form. If this is the case, the problem
de�nition �le should return these values when a flag value of x is passed. A template
for the problem de�nition �le is:

function out1=probdef(flag,s,x,Vs,additional parameters)

switch flag

case 'x'

out1 = optimal value of the control

case 'f'

out1 = reward function

case 'g'

out1 = drift term in state transition equation

case 'sigma'

out1 = diffusion term in state transition equation

case 'rho'

out1 = discount rate

end

A simpli�ed (one-dimensional state and action) version of the solver is provided
below. This version assumes that the optimal control can be explicitly calculated.

% SCSOLVE1 Solves stochastic control problems

% Simplified to handle the single state, single control case

function cv=scsolve1(model,fspace,snodes,v0);

maxiters=100;

tol=sqrt(eps);

% Compute part of collocation matrix that does not depend on x

u=ones(1,fspace.n);

rho=feval(scfile,'rho',s,[],[],varargin{:});

Phi0=funbas(fspace,s,0);

B=rho(:,u).*Phi0;

sigma=feval(scfile,'sigma',s,[],[],varargin{:});

sigma=0.5*sigma.*sigma;

B=B-sigma(:,u).*funbas(fspace,s,2);

% The part of the collocation matrix that does depend on x

Phi1=funbas(fspace,s,1);
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% Initialize coefficient and control vectors

if isempty(v0)

c=zeros(fspace.n,1);

v0=zeros(fspace.n,1);

else

c=Phi0\v0;

end

v=v0;

% Policy function iteration loop

for i=1:maxiters

Vs=Phi1*c;

x=feval(scfile,'x',s,[],Vs,varargin{:});

f=feval(scfile,'f',s,x,[],varargin{:});

g=feval(scfile,'g',s,x,[],varargin{:});

c=(B-g(:,u).*Phi1)\f;

v0=v;

v=Phi0*c;

e=max(abs(v-v0));

if e<tol, break; end

end

if i>=maxiters, % print warning message

disp(['Algorithm did not converge. Maximum error: ' num2str(e)]);

end

If no explicit solution for the optimal control exists, the problem de�nition �le
must return derivative information that can be used to numerically solve for the
optimal control. In this case the a template for the problem de�nition �le is:

function [out1,out2,out3]=probdef(flag,s,x,Vs,additional parameters)

switch flag

case 'f'

out1 = reward function

out2 = derivative of the reward function with respect to x

out3 = second derivative of the reward function with respect to x

case 'g'

out1 = drift term in state transition equation

out2 = derivative of the drift function with respect to x

out3 = second derivative of the drift function with respect to x

case 'sigma'

out1 = diffusion term in state transition equation

case 'rho'
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out1 = discount rate

end

Example: Renewable Resource Management
The problem of optimally managing a renewable resource was discussed beginning on
page 345. There are a total of 9 parameters in the model, �, �, K, b, �, c, , � and
�. The problem de�nition �le for this example is provided below. It is complicated
by the need to handle separately the cases in which � = 1 or � = 0 in order to avoid
division by 0.

out1=psc01(flag,s,x,Vs,alpha,beta,K,b,eta,C,gamma,sigma,rho)

switch flag

case 'x'

Cost=C*s.^(-gamma);

out1=b*(Cost+Vs).^(-eta);

case 'f'

Cost=C*s.^(-gamma);

if eta~=1 % handle demand elasticity <> 1

factor1=1-1/eta; % case separately to avoid

factor0=b.^(1/eta)/factor1; % division by 0; see iteration loop

out1=factor0*x.^factor1-Cost.*x;

else % demand elasticity = 1

out1=b*log(x)-Cost.*x;

end

case 'g'

if beta~=0 % need to handle beta=0

Growth=alpha/beta*s.*(1-(s/K).^beta); % case separately

else % to avoid division by 0

Growth=alpha*s.*log(K./s);

end

out1=Growth-x;

case 'sigma'

out1=sigma*s;

case 'rho'

out1=rho+zeros(size(s,1),1);

end

Notice that an explicit expression for the optimal control is used so there is no need
to provide derivative information.
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A script �le using scsolve to obtain a solution is provided below. The parameter
values used are � = 0:5, � = 1, K = 1, b = 1, � = 0:5, c = 0:1,  = 2, � = 0:05, and
� = 0:1. The natural state space is S 2 [0;1): As discussed below, an approximation
is feasible only over a bounded interval. The demonstration uses a piecewise linear
approximation with 75 breakpoints, evenly spaced on the interval [0:2; 1:2].

% Set parameter values

beta=1; eta=0.5; gam=2;

alpha=0.5; K=1; b=1;

C=5; rho=0.05; sigma=0.1;

beta=1; eta=0.5; gam=2;

% Define model variable

model.func='psc01';

model.params={alpha,beta,K,b,eta,C,gam,sigma,rho};

% Define the approximating family and nodes

lo=0.2; hi=1.2; n=75;

fspace=fundefn('plin',n,lo,hi);

s=funnode(fspace);

% Call the stochastic control solver

cv=scsolve(model,fspace,s);

An explicit solution exists for the parameter values used in the demonstration,
as displayed in Table 10.1 on page 347. The demonstration �le plots the relative
error functions over the range of approximation for the marginal value function and
optimal control (i.e., 1� V̂ =V and 1� x̂=x). The resulting plot is displayed in Figure
11.4. It can be seen that the errors in both functions are quite small, except at the
upper end of the range of approximation.

As with all problems involving an unbounded state space, a range of approximation
must be selected. For in�nite horizon problems, the general rule of thumb is that
the range should include events that the stationary (long-run) distribution places a
non-negligible probability of occurrence. In this case, there is little probability that
the resource stock, optimally harvested, will ever be close to the biological carrying
capacity of K. It is also never optimal to let the stock get too small.4

The renewable resource problem has a natural lower bound on S of 0. It turns out,
however, that 0 is a poor choice for the lower bound of the approximation because
the value function goes to �1 and the marginal value function to1 as S ! 0. Such
behavior is extremely hard to approximate with splines or polynomials. Inclusion

4For the parameters values used in the example, the long run distribution has a known closed
form. It can be shown that the probability of values of S less that 0.2 or greater than 0.8 are
e�ectively 0.
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of basis functions that exhibit such behavior is possible but requires more work. It
is also unnecessary, because the approximation works well with a smaller range of
approximation.

In practice, of course, we may not know the stationary distribution or how large
the errors are. There are several methods to address whether the approximation
choices are good ones. First, check whether the approximation provides reasonable
results. Second, check the residual function at inter-nodal values of S. Third, check
whether increasing the range of approximation changes the value of the approximating
function in a signi�cant manner.

Before leaving this example, a technique for improving the accuracy of a solution
will be demonstrated. For a number of reasons, a piecewise linear approximation with
�nite di�erence derivatives is a fairly robust choice of approximating functions. It is
a shape preserving choice, in the sense that an approximation to a monotonic and/or
convex function will also be monotonic and/or convex. This makes it far more likely
that the iterations will converge from arbitrary starting values.

The piecewise linear approximation, however, requires a large number of colloca-
tion nodes to obtain accurate approximations. It may therefore be useful to obtain
a rough solution with a piecewise linear approximation and use that approximation
as a starting point for a second, more accurate approximation. The following code
fragment could be appended to the script �le on page 414 to obtain a polynomial
approximation on the same interval.
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s2=linspace(lo,hi,101)';

fspace2=fundefn('cheb',35,lo,hi);

cv2=scsolve(model,fspace,s2,funeval(cv,fspace,s2));

This code fragment de�nes a new family of approximating functions and uses the pre-
viously computed solution to provide starting values. The polynomial approximation
with 35 collocation nodes produces an approximation with a relative error of under
10�10 except at the upper end of the range of approximation (above 0.9).

Example: Optimal Growth
The neoclassical optimal growth model, discussed beginning on page 353, solves

max
C(t)

Z 1

0

e��tU(C)dt;

subject to the state transition function K 0 = q(K)�C. This problem could be solved
using the scsolve function; we leave this as an exercise (page 452). The optimal
control (C) satis�es the Euler condition

� U
0(C)

U 00(C)
(q0(K)� �) = (q(K)� C)C 0(K);

a �rst order di�erential equation. The solution C(K) passes through the steady state
point (K�; C�) which simultaneously solves dK=dt = 0 and the Euler condition:

q0(K�) = �

C� = q(K�):

Our solution approach requires that three functions be de�ned. The �rst is q(K),
the second is s(K) = q0(K) � �, which measures the excess marginal productivity
over the discount rate and the third is the absolute risk aversion function, r(C) =
�U 00(C)=U 0(C). The steady state capital stock solves s(K) = 0.

The optimal control can be approximated on the interval [a; b] with a function
�(K)c. The Euler condition is used to form the residual function

0 � e(K) =
�
q(K)� �(K)c

�
�0(K)c� s(K)

r(�(K)c)
:

This equation can be solved at a set of nodal values, ki, simultaneously with the
boundary condition that �(K�)c� C� = 0.
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To make the problem concrete, de�ne

q(K) = � ln(K + 1)� ÆK;
implying that

s(K) = q0(K)� � = �

K + 1
� Æ � �:

The steady state capital stock is therefore K� =
�

Æ + �
� 1. As the units in which K

is denominated are arbitrary, it is convenient to set K� = 1 by de�ning � = 2(Æ+ �).
Furthermore, let the utility function be of the constant relative risk aversion (CRRA)
form, U(C) = (C1� � 1)=(1� ), which implies that r(C) = =C: The relative risk
aversion parameter, , takes on values between 0 and 1, with 0 implying risk neutrality
and 1 resulting in logarithmic utility. Speci�c parameter values are � = 0:05, Æ = 0:02,
� = 2(�+ Æ) = 0:14 and  = 0:5.

A script �le to solve the problem is displayed in Code Box 1. The code uses
\inline" functions to de�ne q(K), s(K) and r(C) at the beginning of the �le. These
three functions can be thought of as the parameters de�ning the model and can be
changed without altering the rest of the code to explore the implications of alternative
parameters.

The next step is to determine the steady state values. We pass s(K) to root-
�nding algorithm broyden to obtain K�. This is a bit gratuitous in this example
given that we already know that K� = 1, but it illustrates how K� can be found if
s(K) = 0 cannot be solved directly. Given the model parameters, the steady state
consumption rate is C� = 0:077 or 7:7% of the capital stock.

The next step is to set up the collocation problem. We use a Chebyshev poly-
nomial approximation of degree n = 20. To impose the boundary condition, it is
necessary, however, to solve the Euler equation at n � 1 nodes and impose the ad-
ditional restriction that �(K�)c = C�. In practice, it turns out that it is useful to
impose the additional restriction that no consumption can occur when the capital
stock is 0: C(0) = 0. Thus, we use n � 2 collocation nodes on the interval [0; 2K�]
for the Euler equation, plus the two boundary conditions. The Euler equation nodes
used are simply the Chebyshev nodes for degree n � 2. These n � 2 nodes are then
appended to 0 and K� and the basis matrices for the function and its derivative are
computed (�0 and �1). An initial coeÆcient vector is �t to the straight line through
(0; 0) and (K�; C�) using the funfitxy procedure.

To solve the collocation problem, we will need to pass a residual function to a
root�nding algorithm. The residual function is de�ned in a separate �le shown in
Code Box 2. The residual �le takes values of c, the approximation coeÆcient vector,
and returns the collocation residual vector. A number of precomputed values are
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Code Box 11.1: Neoclassical Growth Model

% DEMSC03 Neo-classical Optimal Growth Problem (cont. time)

% Define Problem Parameters

% q(K)=alpha*log(K+1) - delta*K

q=inline('0.14*log(K+1) - 0.02*K','K');

% s(K)=q'(K)-rho

s=inline('0.14./(K+1) - 0.02 - 0.05','K');

% r(C)=-U''(C)/U'(C)

r=inline('0.5./C','C');

% Find steady state solution

Kstar=broyden(s,1);

Cstar=q(Kstar);

disp('Steady State Capital and Consumption')

disp([Kstar Cstar])

% Define nodes and basis matrices

n=20;

a=0; b=2*Kstar;

cdef=fundef({'cheb',n-2,a,b});

K=[0;Kstar;funnode(cdef)];

cdef=fundef({'cheb',n,a,b});

Phi0=funbas(cdef,K,0);

Phi1=funbas(cdef,K,1);

svals=s(K);

qvals=q(K);

% Get initial value of C, linear in K

k=linspace(cdef.a,cdef.b,301)';

c=funfitxy(cdef,k,Cstar/Kstar*k);

c=broyden('fsc03',c,[],r,svals,qvals,Phi0,Phi1,Cstar);

% Plot optimal control function

figure(1)

C=funeval(c,cdef,k); C(1)=0;

plot(k,C,Kstar,Cstar,'*')

title('Optimal Consumption Rule')

xlabel('K')

ylabel('C')

% Plot residual function

figure(2)

dC=funeval(c,cdef,k,1);

warning off % avoid divide by zero warning

e=(q(k)-C).*dC-s(k)./r(C);

warning on

plot(k,e)

title('Growth Model Residual Function')

xlabel('K')

prtfigs(mfilename)
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passed to this function as auxiliary parameters. These include the basis matrices, �0

and �1, the steady state control, C�, and the risk aversion function r(C). The values
of q(K) and s(K) are also needed to compute the residual function. Unlike the values
of r(C), however, these do not change with c, so they can be precomputed and passed
as vectors rather than \inline" functions. The residual function �rst computes the
residuals for the Euler equation and then alters the �rst two values to impose the
boundary conditions at K = 0 and K = K�.

Code Box 11.2: Residual Function for Neoclassical Growth Model

% FSC03 Residual function for neoclassical optimal growth problem

% See DEMSC03 for usage

function e=fsc03(c,r,svals,qvals,Phi0,Phi1,Cstar)

C=Phi0*c;

dC=Phi1*c;

warning off

e=(qvals-C).*dC-svals./feval(r,C);

warning on

e(1)=C(1);

e(2)=C(2)-Cstar;

After using broyden to �nd the coeÆcient vector for the optimal consumption
function, the demonstration �le then produces a plot of this function, which is shown
in Figure 11.5. The steady state equilibrium point (K�; C�) is marked with a \*". The
demonstration code also plots the residual function de�ned by the Euler equation.
This provides an estimate of the error of the approximation. As seen in Figure 11.6
the residual function is relatively small, even with a degree 20 approximation.

11.3 Free Boundary Problems

Many of the problems discussed in the previous chapter involved free boundaries
which represent endogenously determined state values at which some action is taken.
In their most simple form, with a single state variable in an in�nite horizon situation,
these problems involve solving a second order linear di�erential equation of the form

�(S)V (S) = f(S) + �(S)V 0(S) + 1
2
�2(S)V 00(S); (2)

where this equation holds on some interval [a; b]. The usual boundary value problem
takes both a and b as known and requires boundary conditions such as V (a) = ga and
V (b) = gb to be met, where ga and gb are known values. As discussed in Section 6.8.3
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(page 164), one can approximate the solution using a function parameterized by an
n-vector c, V (S) � �(S)c, with c is chosen so that �(S)c satis�es (2) at n� 2 points
and satis�es the boundary conditions. This yields n equations in the n unknown
parameters.

In the free boundary problem one or both of the boundary locations a and b are
unknown and must be determined by satisfying some additional conditions. Suppose,
for example that the location of the upper boundary, b, is unknown but is known to
satisfy V 0(b) = hb, where hb is a known constant. Thus there are three boundary
conditions and one additional parameter, b, implying that one must solve n + 1
equation in n + 1 unknowns. If both boundaries are free, with V 0(a) = ha, the
problem becomes one with n + 2 equations and n+ 2 parameters.

A general strategy treats the solution interval [a; b] as known, �nds an approximate
solution on this interval using the di�erential equations along with V (a) = ga and
V (b) = gb. This allows the residual functions V

0(a)�ha and V 0(b)�hb to be de�ned.
These are passed to a root�nding algorithm to determine the location of the free
boundaries.

A problem with this method, however, is that the approximating functions we use
typically de�ne the function in terms of its boundaries. Here, however, the interval
on which the approximating function is to be de�ned is unknown. Fortunately, this
problem is easily addressed using a change in variable. To illustrate, consider �rst
the case in which b is unknown and, for simplicity, a = 0. De�ne

y = S=b;

so the di�erential equation is de�ned on y 2 [0; 1]. De�ne the function v(y) such that

V (S) = v(y):

Using the chain rule it can be seen that

V 0(S) = v0(y)
dy

dS
=
v0(y)
b

and

V 00(S) = v00(y)
�
dy

dS

�2

+ v0(y)
d2y

dS2
=
v00(y)� v0(y)

b2
:

Inserting these de�nitions into (2) demonstrates that the original problem is equiva-
lent to

�(by)v(y) = f(by) +
�(by)

b
v0(y) +

�2(by)

2b
v00(y); (3)
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for y 2 [0; 1], with

v(0) = ga;
v(1) = gb;

(4)

and

v0(1) = bhb: (5)

An approximation, v(y; b) = �(y)c(b) can be found for arbitrary values of b using
(3) and (4). The optimal choice of b can then be determined using a root �nding
algorithm to solve (5) using �0(1)c(b) � bhb = 0. More complicated problems will
use a similar strategy, but may need to handle multiple value functions, multiple
boundaries and/or boundaries that are curves or surfaces in the state space rather
than isolated points. After illustrating the basic approach in the simplest of cases,
we discuss ways to handle the complications.

Before proceeding, we should point out that there is a vast and growing literature
on free boundary problems. Our goal here is rather modest. We want to present
a framework that can solve such problems, while building on the methods already
developed in this book. As such, we are not attempting to provide the most eÆcient
approaches to speci�c problems, but rather ones that will provide useful answers
without a lot of special coding. We also make no attempt to provide general solvers
for these models but rather demonstrate by example how they can be solved.

Example: Asset Replacement
The in�nite time horizon resetting problem with a single state variable is perhaps the
simplest example of a free boundary problem to solve. Recall the asset replacement
problem (page 359) in which an asset's productivity depends on its age, A, yielding
a net return of Q(A)P . The Bellman equation is

�V (A) = Q(A)P + V 0(A);

and applies on the range A 2 [0; A�], where A� is the optimal replacement age. The
asset can be replaced by paying a �xed cost C. The boundary conditions are given
by the value matching condition:

V (0) = V (A�) + C

and the optimality (smooth pasting) condition:

V 0(A�) = 0:
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We �rst transform the problem in terms of y = A=A�, de�ning v(y) = V (A) and,
therefore, v0(y) = V 0(A)A�. Thus, the Bellman's equation can be expressed in terms
of y:

�v(y) = Q(A�y)P + v0(y)=A�

with boundary conditions v(0)� v(1) = C and v0(1) = 0.
We approximate the value function using v(y) � �(y)c, for y 2 [0; 1], where c

is an n-vector of coeÆcients. Then the Bellman's equation can be expressed as the
residual function

[��(y)� �0(y)=A�]c = Q(A�y)P:

The Bellman equation is solved with equality at n� 1 nodal points on [0; 1] simulta-
neously with the value-matching condition [�(0)��(1)]c = C. This is a linear system
in c and hence can be solved directly.

The system of n� 1 collocation equations plus the value-matching condition pro-
vides a value of c that is conditional on the choice of the free boundary A�. This
choice is optimal when �0(1)c(A�) = 0; this is a single equation in a single unknown
and is easily solved using a nonlinear root�nding algorithm. The method is demon-
strated below for the case in which Q(A) = 1 + 0:05A� 0:003A2, P = 2, C = 3 and
� = 0:1.

% DEMFB01 Asset Replacement Demonstration

% Define parameters

Q=inline('1+.05*A-.003*A.^2','A');

P=2;

C=3;

rho=0.1;

% Define nodes and basis matrices

n=15;

cdef=fundefn('cheb',n-1,0,1);

y=funnode(cdef);

cdef=fundefn('cheb',n,0,1);

rPhi0=funbas(cdef,y); % rho*phi(y)

Phi1=funbas(cdef,y,1); % phi'(y)

phiVM=funbas(cdef,0)-funbas(cdef,1); % phi(0)-phi(1) for value matching

phiSP=funbas(cdef,1,1); % phi'(1) for smooth pasting

% Call rootfinder

Astar=100; % initial guess



CHAPTER 11. CONTINUOUS TIME - METHODS 424

Astar=broyden('ffb01',Astar,[],Q,P,C,y,rPhi0,Phi1,phiVM,phiSP);

[e,c]=ffb01(Astar,Q,P,C,y,rPhi0,Phi1,phiVM,phiSP);

The nodal values of y are de�ned as the standard Chebyshev nodes for degree
n � 1 rather then for degree n, to accommodate the addition of the value-matching
condition. Furthermore, in addition to the basis matrices for the Bellman's equation
(�0 and �1), we precompute basis vectors (1�n) for the value-matching and smooth-
pasting conditions. The latter vectors are de�ned as �VM = �(0)� �(1) and �SP =
�0(1), respectively.

After setting A� to an initial guess of 100, broyden is called to solve for the optimal
A�. This requires that a separate residual function �le be de�ned:

function [e,c]=ReplaceRes(Astar,Q,P,C,y,rPhi0,Phi1,phiVM,phiSP)

B=[rPhi0-Phi1./Astar;phiVM];

b=[feval(Q,Astar*y)*P;C];

c=B\b;

e=phiSP*c;

The residual function �rst determines c(A�) by solving2
664

��(y1)� �0(y1)=A�
� � �

��(yn�1)� �0(yn�1)=A�
�(0)� �(1)

3
775 c =

2
664

Q(A�y1)P
� � �

Q(A�yn�1)P
C

3
775 :

It then returns the value e = �0(1)c(A�). It will also return the computed value of c,
which can then be used to evaluate v(y) and hence V (A).

A plot of V (A) is shown in Figure 11.7. The value-matching condition appears
in the �gure as the di�erence of C = 3 between V (0) and V (A�) (A� � 17:64). The
smooth-pasting condition appears as the 0 slope of V at A�.

Example: Investment Timing
In the previous example, a state variable was controlled in such a way as to keep it
within a region of the state space bounded by a free boundary. In other problems,
the state can wander outside of the region de�ned by the free boundary but the
problem is either known or has no meaning outside of the region. In such case the
value function need only be approximated on the region of interest, using appropriate
boundary conditions to de�ne both the value function and the boundary itself. From
a computational perspective such problems require no new considerations.

To illustrate, consider a simple irreversible investment problem in which an invest-
ment of I will generate a return stream with present value of S, where S is described
by the Ito process

dS = �(m� S)Sdt+ �Sdz:
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This process can be shown to have a mean reverting rate of return, with long-run
mean m (see Appendix A, Section A.5.2). When the investment is made, it has net
value S� I. Prior to making the investment, however, the value of the right to make
such an investment is V (S), which is the solution to the following di�erential equation

1
2
�2S2V 00(S) + �(m� S)SV 0(S)� rV (S) = 0;

where r is the risk-free interest rate. The lower boundary, S = 0, is associated
with an investment value of 0, because once the process S goes to 0, it stays equal
to 0 forever; hence V (0) = 0. The upper boundary is de�ned as the value, S�, at
which investment actually occurs. At this value two conditions must be met. The
value matching condition states that at S� the value of investing and not investing
are equal: V (S�) = S� � I. The smooth-pasting optimality condition requires that
V 0(S�) = 1.

Applying the change of variables (z = S=S�) yields the equivalent problem

1
2
�2z2v00(z) + �(m� zS�)zv0(z)� rv(z) = 0; (6)

on the interval [0; 1], with v(0) = 0, v(1) = S� � I, and v0(1) = S�. To solve the
problem we use an approximation of the form v(z) � �(z)c. Chebyshev polynomials
are a natural choice for this problem because v(z) should be relatively smooth. The
parameter vector c and the optimal investment trigger S� are selected to satisfy (6)
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at n � 2 appropriately chosen nodes on the interior of [0; 1] (e.g., the roots of the
order n� 2 Chebyshev polynomial) and to satisfy the three boundary conditions.

To make this a bit more explicit, given a guess of S�, de�ne the n� 2� n matrix
B

Bij =
1
2 �

2z2i �
00
j (zi) + �(m� ziS�)zi�0j(zi)� r�j(zi)

for i = 1; : : : ; n�2. Then concatenate the basis functions for the boundary conditions
to the bottom of this matrix: Bn�1;j = �j(0) and Bn;j = �j(1). This produces an
n� n matrix. The coeÆcients, conditional on the guess of S�, are given by

c(S�) = B�1
�

0n�1
S� � I

�
:

Given c we can de�ne a residual function in one dimension to solve for S� using the
smooth-pasting condition:

e(S�) = S� � �0(1)c(S�):
This approach works well in some cases but this example has one additional prob-

lem that must be addressed. For some parameter values, the approximate solution
obtained becomes unstable, exhibiting wide oscillations at low values of z. The so-
lution value for S�, however, remains reasonable. The problem, therefore, seems
due to the approximation having trouble satisfying the lower boundary. It can be
shown that, for some parameter values, the derivative of v becomes unbounded as S
approaches 0:

lim
S&0

V 0(S) =1:

This type of behavior cannot be well approximated by polynomials, the derivatives
of which (at every order) are bounded on a bounded domain.

Fortunately this problem can be easily addressed by simply eliminating the lower
boundary constraint and evaluating (6) at n � 1 rather than n � 2 nodes. This
causes some error at very small values of z (or S) but does not cause signi�cant
problems at higher values of z. The economic context of the problem places far more
importance on the values of z near 1, which de�nes the location of S� and hence
determines the optimal investment rule. Matlab code solving the problem using
function approximation is displayed in Code Boxes 3 and 4.

This particular problem has a partially known solution. It can be shown that the
solution can be written as

V (S) = AS�H(�S; �; �);
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Code Box 11.3: Solution Function for Optimal Investment Problem

% OPTINVEST Solves the optimal investment problem with mean-reverting return

% Finds the optimal investment rule for a project that has return process

% dS=alpha(m-S)dt + sigma*SdW

% USAGE

% [e,vstar,V,dV]=OptInvest(v,r,alpha,m,sigma,I,n);

% INPUTS

% r : interest rate

% alpha, m, sigma : return process paramters

% I : fixed investment cost

% n : number of nodes used for Chebyshev collocation

% OUTPUTS

% Sstar : the trigger return level (invest if S>=Sstar)

% c : coefficients for value function approximation

% fspace : function family definition structure

function [Sstar,c,fspace]=optinvest(r,alpha,m,sigma,I,n)

if nargin<6 | isempty(n), n=50; end

fspace=fundefn('cheb',n-1,0,1);

t=funnode(fspace); % nodal points on [0,1]

fspace=fundefn('cheb',n,0,1);

Phi0=funbas(fspace,t);

Phi1=funbas(fspace,t,1);

u=ones(1,n);

tt=t.*t;

B=(sigma.^2/2)*tt(:,u).*funbas(fspace,t,2) + alpha*m*t(:,u).*Phi1 - r*Phi0;

B=[B;funbas(fspace,[1])];

B1=[alpha*tt(:,u).*Phi1;zeros(1,n)]; % basis matrix for VSTAR part

phi11=funbas(fspace,1,1);

Sstar=2*m;

Sstar=broyden('optinvestr',Sstar,[],I,B,B1,phi11,n);

[e,c]=optinvestr(Sstar,I,B,B1,phi11,n);

Code Box 11.4: Residual Function for Optimal Investment Problem

% OPTINVESTR Residual function for optimal investment problem

function [e,c]=optinvestr(Sstar,I,B,B1,phi11,n)

c=(B-Sstar*B1)\[zeros(n-1,1);Sstar-I];

e=Sstar-phi11*c;
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where H(x; �; �) is the conuent hypergeometric function de�ned by the series ex-
pansion

H(x; �; �) =
1X
i=0

�(� + i)�(�)xi

�(�)�(�+ i)i!
:

and

� =
1

2
� �m

�2
+

r�
1
2
� �m

�2

�2
+
2r

�2

� = 1 + 2

r�
1
2 �

�m

�2

�2
+
2r

�2

� =
2�

�2
:

The problematic parrameters arise when � < 1, which causes the term in the deriva-
tive involving S��1 to become unbounded as S ! 0.

The solution is only partially known because the constants A and S� must be
determined numerically using the free boundary conditions:

AS��H(�S�; �; �)� (S� � I) = 0

and

A�S���1H(�S�; �; �) + A�S��H 0(�S�; �; �)� 1 = 0:

Eliminating A yields the relationship5

S� � �(S� � I)
�
1 +

�

�

H(�S�; � + 1; �+ 1)

H(�S�; �; �)
S�
�
= 0;

a simple root �nding problem in a single variable (see the toolbox �le optinvest2.m).
A demonstration �le demfb02.m uses both approaches with the parameter values

r = 0:04, � = 0:5, m = 1, � = 0:2 and I = 1. Wit the �rst method, the problem is
solved using a Chebyshev approximation of degree n = 50, with the lower end point
condition not imposed. The code produces Figures 11.8 and 11.9, showing the value
function and the approximation errors. The parameters values imply � = 0:0830,
making the value function near the lower bound rise very steeply. The approximation
displays some slight wiggling in this region, illustrating the diÆculties in �tting the
value function at the lower end. The computation of the location of the free boundary
is not very sensitive to these problems, however, and is computed with an error of
less than 10�4.

5Notice from the series expansion that the derivative of H is given by

H 0(x;�; �) =
�

�

1X
i=0

�(� + i+ 1)�(�)xi

�(�)�(�+ i+ 1)i!
=

�

�
H(x;� + 1; �+ 1):
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11.3.1 Multiple Value Functions

Problems with binary states that can be exited and reentered, as is the case with
entry/exit and stochastic bang-bang problems, lead to new challenges. These chal-
lenges arise because, in e�ect, two value functions, one for each of the binary states,
must be simultaneously approximated. Furthermore, regions of the state space over
which these value functions apply must be determined.

Recall that the general framework giving rise to stochastic bang-bang problems
occurs when the reward function is of the form

f(S; x) = f0(S) + f1(S)x;

the state variable is governed by

dS = [g0(S) + g1(S)x]dt+ �(S)dz

and the control is bounded:

xl � x � xu:

In the discounted in�nite time horizon problem,

V (S) = max
x

E

�Z 1

t

e��tf(S; x)dt
�
;

the optimal control is to set x = xl whenever f1 + g1VS < 0 and to set x = xu
whenever f1 + g1VS > 0. Denoting these regions Sl and Su, the value function must
satisfy

�V � (g0 + g1xl)VS � 1
2
�2VSS � (f0 + f1xl) = 0 on Sl

�V � (g0 + g1xu)VS � 1
2 �

2VSS � (f0 + f1xu) = 0 on Su

and value-matching and smooth pasting at points where f1 = g1VS (plus any addi-
tional boundary conditions at S = a and S = b).

For concreteness suppose that there is a single point S� such that f1(S
�) =

g1(S
�)VS(S�) and that Sl consists of points less than S� and Su of points greater

than S� (usually the context of the problem will suÆce to determine the general na-
ture of these sets). The numerical problem is to �nd this S� and the value function
V (S). To solve this we will use two functions, one on Sl, the other on Su that approx-
imately satisfy the Bellman equations and the boundary conditions and also that, for
any guess of S�, satisfy value matching and smooth pasting at this guess.
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Let the approximations be de�ned by �i(S)ci, for i = l; u and de�ne the function
Bi(S) as

Bi(S) = ��i(S)� [g0(S) + g1(S)xi]�
0
i(S)� 1

2
�2(S)�00i (S)

The ci can be determined by making

Bi(S)ci � [f0(S) + f1(S)xi] = 0

at a selected set of collocation nodes, together with the boundary conditions and

�l(S
�)cl � �u(S�)cu = 0 (value matching)

�0l(S
�)cl � �0u(S�)cu = 0 (smooth pasting).

Determining the ci for some guess of S�, therefore, amounts to solving a system of
linear equations (assuming any additional boundary conditions are linear in V ). Once
the ci are determined, the residual

r(S�) = f1(S
�) + g1(S

�)�0l(S
�)cl

can be computed. The optimal value of S� is then chosen to make r(S�) = 0.

Example: Optimal Fish Harvest
In the optimal �sh harvesting problem (page 345) the value function solves the coupled
PDE

�V =

�
�S(1� S=K)VS +

1
2 �

2S2VSS for S < S�

PHS + (�S(1� S=K)�HS)VS + 1
2
�2S2VSS for S > S�

with S� determined by P = VS(S
�) and continuity of V and VS at S�. For simplicity,

we impose the scale normalization P = K = 1 (by choosing units for money and �sh
quantity).

To solve this problem we �rst transform the state variable by setting

y = ln(S)� ln(S�):

This transformation has two e�ects: �rst, it simpli�es the di�erential equation by
making the coeÆcients constant or linear in S, and, second, it places the boundary
between the two solution functions at y = 0.

The transformation necessitates rewriting the value function in terms of y, say as
v(y). The transformation implies that

S = S�ey;

SVS(S) = vy(y)
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and

S2VSS(S) = vyy(y)� vy(y):
The transformed Bellman equation with the scale normalizations is

�v =

�
1
2 �

2vyy +
�
�(1� S�ey)� 1

2 �
2
�
vy for y < 0

1
2
�2vyy +

�
�(1� S�ey)� 1

2
�2 �H� vy + S�Hey for y > 0

:

It will be useful to rewrite this to isolate the S� terms�
�v � ��� 1

2
�2
�
vy � 1

2
�2vyy

�
+ S��eyvy = 0 for y < 0�

�v � ��� 1
2 �

2 �H� vy � 1
2 �

2vyy
�
+ S��eyvy = S�Hey for y > 0

:

The two functions are coupled by imposing continuity of v and vy at y = 0. Technically
there are also boundary conditions as y goes to �1 and 1 , but we will ignore these
for the time being.

Now let's approximate the two functions using �l(y)cl and �u(y)cu, where the �i
are ni-element basis vectors and the ci are the coeÆcients associated with these bases.
For a speci�c guess of S�, the Bellman equation can be written

Dl(y)cl + S� [�ey�0l(y)] cl = 0 for y < 0
[Du(y) +H�0u(y)] cu + S� [�ey�0u(y)] cu = S�Hey for y > 0

:

where Di(y) = ��i(y)�
�
�� 1

2 �
2
�
�0i(y)� 1

2 �
2�00i (y). Evaluating this expression at a

set of nodes, yl 2 [a; 0], and yu 2 [0; b], where a and b are arbitrary upper and lower
bounds, with a < 0 and b > 0.

The boundary conditions at y = 0 for a given S� are

�l(0)cl � �u(0)cu = 0

and

�0l(0)cl � �0u(0)cu = 0:

If we choose yl and yu to have nl� 1 and nu� 1 elements, respectively, this yields the
nl + nu system of linear equations:0

BB@
2
664

Bl 0
0 Bu

�l(0) ��u(0)
�0l(0) ��0u(0)

3
775+ S�

2
664
Dl 0
0 Du

0 0
0 0

3
775
1
CCA
�
cl
cu

�
=

2
664

0
S�Heyu

0
0

3
775 :

which has the form

(B + S�D)c = S�f:
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The unknowns here are S� (a scalar) and c (an n0 + n1 vector). The matrices B, D
and f do not depend on either S� or c and therefore can be prede�ned. Furthermore,
this system of equations is linear in c and hence can be easily solved for a given S�,
thereby obtaining an approximation to the value function, v. We can therefore view
c as a function of S�:

c(S�) = (B + S�D)�1S�f: (7)

The optimal S� is then determined by solving the (non-linear) equation

S� � �0l(0)cl(S�) = 0: (8)

A Matlab implementation is displayed in Code Box 5. The procedure fishh de-
�nes the approximating functions and precomputes the matrices needed to evaluate
(7) and (8). The actual evaluation of these equations is performed by the auxiliary
procedure fishhr displayed in Code Box 6, which is passed to the root�nding algo-
rithm broyden by fishh. A script �le which computes and plots results is given in
Code Box 7; this was used to produce Figures 11.10-11.13.
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The procedure fishh allows additional constraints to be imposed at the lower
and upper bounds of the approximating interval (a and b). By setting nbl to 2, the
additional constraint that v00l (a) = 0 is imposed. Similarly, by setting nbu to 2, the
additional constraint that v00u(b) = 0 is imposed. Although neither is necessary to
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Code Box 11.5: Collocation File for Fish Harvesting Problem

% FISHH Solution function for fish harvesting problem

% See DEMFB03 for demonstration

function [sstar,cl,cdefl,cu,cdefu]=fishh(rho,alpha,sigma,H)

% Set up basis matrices

a=log(0.005); % lower bound

b=log(10); % upper bound

nl=25; nu=15; % number of nodes for functions

nbl=2; nbu=1; % number of boundary constraints on functions

cdefl=fundef({'cheb',nl-nbl,a,0});

cdefu=fundef({'cheb',nu-nbu,0,b});

yl=funnode(cdefl);

yu=funnode(cdefu);

cdefl=fundef({'cheb',nl,a,0});

cdefu=fundef({'cheb',nu,0,b});

eyl=exp(yl);

eyu=exp(yu);

Dl=funbas(cdefl,yl,1);

Du=funbas(cdefu,yu,1);

B=rho*funbas(cdefl,yl)...

-(alpha-0.5*sigma.^2)*Dl...

-(0.5*sigma.^2)*funbas(cdefl,yl,2);

temp=rho*funbas(cdefu,yu)...

-(alpha-0.5*sigma.^2-H)*Du...

-(0.5*sigma.^2)*funbas(cdefu,yu,2);

B=[B zeros(nl-nbl,nu);zeros(nu-nbu,nl) temp];

% Add boundary constraints

B=[B; ...

funbas(cdefl,0) -funbas(cdefu,0); ... % V continuous at y=0

funbas(cdefl,0,1) -funbas(cdefu,0,1)]; % Vx continuous at y=0

if nbl==2; B=[B;funbas(cdefl,a,2) zeros(1,nu)]; end % lower boundary

if nbu==2; B=[B;zeros(1,nl) funbas(cdefu,b,2)]; end % upper boundary

% Basis for Vy

D=[alpha*eyl*ones(1,nl).*Dl zeros(nl-nbl,nu); ...

zeros(nu-nbu,nl) alpha*eyu*ones(1,nu).*Du; ...

zeros(nbl+nbu,nl+nu)];

% RHS of DE residual function

f=[zeros(nl-nbl,1);H*eyu;zeros(nbl+nbu,1)];

% Basis for residual function (Vy(0)=S*)

phil10=funbas(cdefl,0,1);

% find the cutoff stock level

sstar=broyden('fishhr',0.5*(1-rho/alpha),[],B,D,f,phil10,nl);

% Break apart the coefficient vector and create structures to return

c=(B+sstar*D)\(sstar*f);

cl=c(1:nl);

cu=c(nl+1:end);
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Code Box 11.6: Residual File for Fish Harvesting Problem

% FISHHR residual function for fish harvesting problem

% Used by FISHH

function [e,c]=fishhr(sstar,B,D,f,phil10,nl)

c=(B+sstar*D)\(sstar*f);

e=sstar-phil10*c(1:nl);
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obtain useful results, the former is e�ective in enforcing sensible behavior in the value
function and its derivatives for low stock levels.

Figure 11.10 illustrates a numerical approximation to the value function for the
problem with � = 0:05, � = 0:1, � = 0:2 and H = 1. Figures 11.11 and 11.12 display
the �rst and second derivatives of the value function. S� is indicated in these plots
with an \*". Notice that the value function is continuous up to its second derivative,
but that V 00 exhibits a kink at S = S�. This indicates why it is a good idea to break
the value function apart and approximate it on each region separately, and pasting
the two approximations together at the cut-o� stock level. It also allows us to use
the high degree of accuracy that polynomial approximations provide. Evidence of the
quality of the approximation is provided by the plot of the residual function, shown
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Code Box 11.7: Script File for Fish Harvesting Problem

% DEMFB03 Demo for fish harvesting problem

rho=0.05;

alpha=0.1;

sigma=0.2;

H=1;

[sstar,cl,cdefl,cu,cdefu]=fishh(rho,alpha,sigma,H);

% CODE TO GENERATE PLOTS

a=cdefl.a; b=cdefu.b;

N=101;

yl=linspace(a,0,N)';

yu=linspace(0,log(1/sstar),N)';

s=sstar*exp([yl;yu]);

figure(1)

v=[funeval(cl,cdefl,yl);funeval(cu,cdefu,yu)];

plot(s,v,sstar,v(N),'*');

title('Fish Harvesting: Value Function');

xlabel('S');

ylabel('V');

figure(2)

v1=[funeval(cl,cdefl,yl,1);funeval(cu,cdefu,yu,1)];

plot(s,v1./s,sstar,v1(N)./sstar,'*');

title('Fish Harvesting: Marginal Value Function');

xlabel('S');

ylabel('V''');

axis([0 1 0 5]);

figure(3)

v2=[funeval(cl,cdefl,yl,2);funeval(cu,cdefu,yu,2)]-v1;

plot(s,v2./(s.^2),sstar,v2(N)./sstar.^2,'*');

title('Fish Harvesting: Curvature of Value Function');

xlabel('S');

ylabel('V"');

axis([0 1 -1 0]);

figure(4)

e=rho*v-(alpha-alpha*s).*v1-(0.5*sigma.^2)*v2;

e=e+(H*(v1-s)).*(s>=sstar);

plot([yl;yu],e)

title('Fish Harvesting: Residual Function');

xlabel('y')

ylabel('e')

prtfigs(mfilename)
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in Figure 11.13. One could, of course, approximate the entire value function with,
say, a cubic spline, so long as you ensured that y=0 was a node (see problem 7 on



CHAPTER 11. CONTINUOUS TIME - METHODS 438

page 454). This would avoid the need to de�ne two functions and thus has something
to recommend it. However, it would require more nodes to achieve the same level of
accuracy.

Example: Entry-Exit
In stochastic bang-bang problems, the state space is divided into a region in which
the control is set to it highest possible value and another region where it is set to its
lowest possible value. In other problems with transitional boundaries, the state space
may not be partitioned in this way. Instead, multiple free boundaries may need to be
determined.

In the entry-exit problem (page 368), a �rm is either active or inactive. The two
value functions satisfy

�V a = P � C + �(P )V a
P + �2(P )V a

PP for P 2 [Pl;1)
�V i = �(P )V i

P + �2(P )V i
PP for P 2 [0; Ph]

: (9)

with

V i(Ph) = V a(Ph)� I
V i(Pl)� E = V a(Pl)
V i
P (Pl) = V a

P (Pl)
and

V i
P (Ph) = V a

P (Ph):

When P is a geometric Brownian motion process, i.e.,

dP = �Pdt+ �Pdz;

the solution is known for arbitrary levels of Pl and Ph. The general form of the
solution is

V a = Aa
1P

�1 + Aa
2P

�2 + P=(�� �)� C=�

V i = Ai
1P

�1 + Ai
2P

�2

where the four A terms will be pinned down by the boundary conditions and the �i
solve

1
2 �

2�(� � 1) + �� � � = 0:

It can be shown that, for � > 0, one of the � is negative and the other is greater than
one; de�ne �1 > 1 and �2 < 0. (It is easy to verify that these solutions solve (9)).

Two of the unknown constants can be eliminated by considering the boundary
conditions at P = 0 and P = 1. At P = 0 only V i is de�ned and the geometric
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Brownian motion process is absorbed; hence V i(0) = 0, which requires that Ai
2 = 0.

For large P , only V a is de�ned and the probability of deactivation becomes vanishingly
small; hence the value function would approach P=(���)�C=�, requiring that Aa

1 = 0.
We still have two unknown constants to determine, Ai

1 and A
a
2 (we shall henceforth

refer to these as A1 and A2, as there is no possible confusion concerning which function
they belong to). The value matching conditions require that,

V a(Ph)� I = A2P
�2
h + Ph=(�� �)� C=�� I = A1P

�1
h = V i(Ph)

and

V a(Pl) = A2P
�2
l + Pl=(�� �)� C=� = A1P

�1
l � E = V i(Pl)� E:

The optimality conditions on Pl and Ph are that the derivatives of V
a and V i are

equal at the two boundary locations:

V a
P (P ) = �2A2P

�2�1 + 1=(�� �) = �1A1P
�1�1 = V i

P (P )

at P = Pl and P = Ph. Taken together, the value matching and smooth pasting
conditions yield a system of four equations in four unknowns, A1, A2, Pl and Ph.
This is a simple root-�nding problem (the toolbox function entex2.m solves this
problem).

For general processes, we will have to approximate the value functions. We �rst
de�ne two transformed variables that will make the boundaries of the approximating
functions simple. Let ya = P=Pl and yi = P=Ph. The value functions can then be
approximated using V j(P ) = vj(yj) � �j(yj)cj for j = a; i, with va de�ned on [1; �ya]
and vi on [0; 1] (the choice of �ya, the upper bound on ya is discussed below).

Given the linearity of the Bellman's Equation and the boundary conditions, it
will again be the case that the coeÆcient vectors ci and ca, for given values of the
boundary points, satisfy a system of linear equations. Our strategy will be write a
procedure that is passed trial values of P � = [Pl;Ph], computes ci and ca for these
free boundary points and then returns the di�erence in marginal value functions at
the two boundary points:

r(P �) =

2
6664
�v

i
y(1)

Ph
+
vay(Ph=Pl)

Pl

viy(Pl=Ph)

Ph
� vay(1)

Pl

3
7775 :

At the optimal choice of P �, r(P �) = 0. The procedure that returns the residuals can
be passed to a root�nding algorithm to determine P �.
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To see how the coeÆcient values can be determined, �rst write the Bellman's
equation in terms of the yj and vj:

�vi(yi)� �(Phy
i)viy(y

i)

Ph
� �2(Phy

i)viyy(y
i)

2P 2
h

= 0:

and

�va(ya)� �(Ply
a)vay(y

a)

Pl
� �2(Ply

a)vayy(y
a)

2P 2
l

= Ply
a � C:

Suppose the approximating functions have degree ni and na, respectively. We will
evaluate the Bellman's Equation at ni � 2 values of yi and na � 2 values of ya. The
addition of the two end point conditions (vi(0) = 0 and vyy(�y

a) = 0) and the two
value-matching conditions yields a system of ni + na linear equations in the same
number of unknowns.

Speci�cally, the linear system is2
6666664

�i(0) 0
Di 0
��i(1) (Ph=Pl)�

a(Ph=Pl)
(Pl=Ph)�

i(Pl=Ph) ��a(1)
0 Da

0 �a00(�ya)

3
7777775
�
ci

ca

�
=

2
6666664

0
0
I
E
�C1
0

3
7777775
+ Pl

2
6666664

0
0
0
0
Y a

0

3
7777775
;

where

Di = ��i
0 �

�(PhY
i)

Ph
�i
1 �

�2(PhY
i)

2P 2
h

�i
2

and

Da = ��a
0 �

�(PlY
a)

Pl
�a
1 �

�2(PlY
a)

2P 2
l

�i
2:

The system is of the form Bc = b0 + Plb1, where b0 and b1 do not depend on Pl and
Ph and hence can be precomputed. Furthermore, all of the basis matrices used in
B except for �i(Pl=Ph) and �

a(Ph=Pl) can be precomputed. The drift and di�usion
terms � and � are evaluated at points that may depend on Pl and Ph and hence must
be computed each time the residual function is evaluated. The user must supply
a speci�c function to evaluate these terms. Once the drift, di�usion and discount
rates are known, the Di and Da matrices can be computed and the matrix B can be
formed.
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The residuals themselves can be written in the form Rc:

r(P �) =

"
��i0(1) Ph

Pl
�a0(Ph=Pl)

Pl
Ph
�i
0
(Pl=Ph) ��a0(1)

# �
ci

ca

�
:

The procedure for computing the residuals is found in the toolbox function entexres.
Most of the inputs to this function are precomputed basis and other parameter matri-
ces, including b0, b1 and elements of B and R. A procedure that solves the entry/exit
problem is provided in the toolbox function entex. This procedure takes as inputs
the problem parameters and approximation information. It then precomputes basis
matrices and the other coeÆcients used by the residual function entexres, and passes
entexres to the root�nding algorithm broyden to �nd Pl and Ph. entex returns the
value of P �, the value function coeÆcient vectors (ci and ca) and their associated
function de�nition structures (fspacei and fspacea).

In addition, a procedure must be de�ned that accepts values of P (along with
additional parameters as needed) and returns values of �, � and � for a speci�ed
model.6 An example of such a �le for geometric Brownian motion with a constant
discount rate is given by:

function [r,m,s]=gbm(P,rho,mu,sigma)

n=size(P,1);

r=rho+zeros(n,1);

m=mu*P;

s=sigma*P;

The �le demfb04.m demonstrates the use of this approach for the geometric Brow-
nian motion case and compares the resulting solution to the (essentially) closed form
solution discussed above. Figure 11.14 shows the value functions for the inactive and
active states. Figures 11.15 and 11.16 show, respectively, the approximation errors
and the residual functions for the collocation approximation relative to the \closed
form" solution.

An important point to note about this problem concerns the choice of the up-
per bound for va. Even though the optimal boundary values are Pl = 0:41815 and
Ph = 2:1996, it is necessary to set the upper bound for ya to a rather large number.
Intuitively the reason for this stems from the non-stationarity of the geometric Brow-
nian motion process coupled with the in�nite time horizon. Together, these imply
that the probability of getting a large value of P , even when starting at a relatively
low current value, is non-negligible over time horizons that contribute to the present
value. We should expect, therefore, that relatively larger values of the upper bound
will be needed as �� � shrinks.

6Although applications of this model generally treat � as a �xed constant, the approach taken
here provides the exibility to make it depend on P if desired.
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11.3.2 Finite Horizon Problems

Thus far we have discussed single state, in�nite horizon free boundary problems.
Somewhat greater diÆculties arise in �nite horizon problems. The location of the
free boundaries in such problems are not isolated points but are functions of time.
For example, when an American put option is near to expiration, it is optimal to
exercise it at higher prices of the underlying asset than when it is far from expiration.

In �nite time problems, we know the value function at the terminal date. This
means that we can employ evolutionary methods that work their way backwards in
time from the end point. We present two ways of handling such problems. The �rst
implicitly assumes that the control can be exercised only at discrete points in time.
Although simple, this method approximates the free boundary with a step function.

To obtain a smoother approximation of the boundary, without requiring a dense
set of state variable nodes, we use an explicit �nite di�erence approximation for
the time derivative, while simultaneously solving for the free boundary. The two
approaches are described in the following two examples.

Example: Pricing American Options
In Section 11.1 we solved problems of valuing European style options using the ex-
tended method of lines, which approximates the value of an option using V (S; �) �
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�(S)c(�). By evaluating �(S) at a set of n nodal values, we derived a di�erential
equation of the form

c0(�) = ��1Bc(�):

which is solved by

c(� +�) = Ac(�);

where A = exp(���1B) and �c(0) equals the terminal payout, R(S), evaluated at
the nodal state values.

The most commonly used strategy for pricing American style options solves the
closely related problem of determining the value of an option that can be exercised
only at a discrete set of dates. Clearly, as the time between dates shrinks, the value
of this option converges to the value of one that can be exercised at any time before
expiration.

Between exercise dates, the option is e�ectively European and hence can be ap-
proximated using7

ĉ(� +�) = Ac(�):

The value of �(S)ĉ(� +�) can then be compared to the value of immediate exercise,
R(S), and the value function set to the maximum of the two:

V (S; � +�) � max(R(S); �(S)ĉ(� +�)):

The coeÆcient vector is updated to approximate this function, i.e.,

c(� +�) = ��1max(R;�ĉ(� +�)):

The function finsolve described in Section 11.1 requires only minor modi�cation
to implement this approach to pricing American style assets. First, add an additional
�eld to the model variable, model.american, which takes values of 0 or 1. Then,
change the main iteration loop to the following:

for i=2:N+1

c(:,i)=A*c(:,i-1);

if model.american

c(:,i)=iPhi*max(V0,Phi*c(:,i));

end

end

7Commonly used �nite di�erence and binomial tree methods discretize the time derivatives,

replacing c0(� +�) with

�
c(� +�)� c(�)

�
=�.
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The �le demfin04.m demonstrates the use of this feature and produces Figures
11.17-11.19. It closely follows the code described on page 406, but two di�erences are
noteworthy. First, a closed form solution does not exist for the American put option,
even when the underlying price is geometric Brownian motion. To assess the quality of
the approximation, we have computed a di�erent approximation due to Baron-Adesi
and Whaley (see bibliographic notes), which is implemented in the toolbox function
baw. The di�erences between the approximations are plotted in Figure 11.18.

The other distinction lies in the determination of the optimal exercise boundary,
which is plotted in Figure 11.19. This is obtained by determining which nodal points
that are less than or equal to K are associated with an option that is equal to its
intrinsic value of K � S. The exercise boundary is taken to be the highest such
nodal value of S. This provides a step function approximation to the early exercise
boundary. Unfortunately, this approximation can only be re�ned by increasing the
number of nodal values so they are fairly dense in the region where early exercise may
occur (just below the strike price). Such a dense set of nodal values is rarely needed
to improve the accuracy of the value function, however.

On the positive side, the method of �nding an approximation to the value of an
option with a discrete set of exercise dates has two overriding advantages. It is very
simple and it extends in an obvious way to multiple state situations. On its negative
side, it does not produce a smooth representation of the optimal exercise boundary.
If a smooth approximation is needed or desired, the approach described in the next
example can be used.

Example: Sequential Learning
In the sequential learning problem on page 372, the cumulative production, Q, acts
like a time variable. There is a known terminal condition at Q = Qm and the solution
can be obtained in an evolutionary fashion by working backwards in Q from Qm.
Identifying the location of the free boundary, however, is somewhat more involved
than with the American option pricing problem.

Recall that the problem involved solving

rV = P � c(Q) + VQ + (r � Æ)PVP + 1
2 �

2P 2VPP

on [P �(Q);1) � [0; Qm], where P
�(Q) is a free boundary to be determined. The

boundary conditions are8

P �(Q)VP (P �(Q); Q) = �V (P �(Q); Q)

and

P �(Q)VPP (P �(Q); Q) = (� � 1)VP (P
�(Q); Q);

8We ignore the limiting condition as P !1.
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where � is the positive solution to

1
2 �

2�(� � 1) + (r � Æ)� � r = 0:
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Also a terminal condition atQ = Qm is known and, for states below the free boundary,
the value function is known up to a constant:

V (P;Q) = A(Q)P �:

The diÆculty with free boundaries is the unknown shape of the space over which
the di�erential equation must hold. To get around this problem, we use a transfor-
mation method that regularizes the boundary; speci�cally,

y = ln(P )� ln(P �(Q))

with v(y;Q) = V (P;Q). The PDE must be solved for values of P on [P �(Q);1),
which translates into values on y on [0;1) (in practice we will truncate y). Given
this transformation it is straightforward to verify the following relationships between
the original and the transformed problem:

vy(y;Q) = PVP (P;Q)

vyy � vy = P 2VPP (P;Q)

and

VQ = vQ � P �0(Q)
P �(Q)

vy:
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Substituting these expressions into the Bellman equation and the boundary conditions
yields:

rv = P �ey � C(Q) + vQ + (r � Æ � 1
2
�2 � P �0=P �)vy + 1

2
�2vyy;

vy(0; Q)� �v(0; Q) = 0

and

vyy(0; Q)� �vy(0; Q) = 0:

We can approximate v(y;Q) with the function �(y)c(Q), where c(Q) : [0; Qm]!
<n. The Bellman equation (with suitable rearrangement) can be written as

�(y)c0(Q)� �0(y)c(Q)
P �(Q)

P �0(Q) = D(y)c(Q)� eyP �(Q) + C(Q);

where

D(y) = r�(y)� (r � Æ � 1
2 �

2)�0(y)� 1
2 �

2�00(y):

The boundary conditions at y = 0 (P = P �) are

[�0(0)� ��(0)]c(Q) = 0

and

[�00(0)� ��0(0)]c(Q) = 0:

Treated as system of n+1 unknowns, this is a di�erential/algebraic equation (DAE)
system in Q. It di�ers from an ordinary system of di�erential equations because of
the boundary conditions, which do not involve the Q-derivatives.

We will take a simple explicit Euler approach, by replacing the Q derivatives with
�rst order backwards �nite di�erences

c0(Q) � c(Q)� c(Q��)

�

and

P �0(Q) � P �(Q)� P �(Q��)

�
:
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(this approach is explicit because we are working backwards in time from a terminal
condition). This leads to the following system2

664
�0 ��1c(Q)

P �(Q)
�0(0)���(0) 0
�00(0)���0(0) 0

3
775
�

c(Q��)
P �(Q��)

�

=

2
4 �0 � �1 ��D(Y ) �eY

0 0
0 0

3
5� c(Q)

P �(Q)

�
�
2
4 C(Q)1

0
0

3
5 ;

where �0, �1 and D have the usual meaning, i.e., they are the functions �(y), �0(y)
and D(y) evaluated at n� 1 nodal points.

A Matlab function implementing this approach is displayed in Code Box 8.
The function takes as input arguments the problem parameters r, Æ, �, Qm, �c, and
C, as well as the number of Q steps, N , and the degree and upper bound of the
approximating function, n and hi. The function returns an N + 1 vector of values
of Q and an n�N + 1 matrix, c, of coeÆcients, each column representing one value
of Q, with the �rst column associated with Q = 0 and the last with Q = Qm. The
output fspace is the function de�nition structure associated with c. The function
also returns the parameters associated with the known parts of the solution, �1, �2,
A1 and A2. A demonstration �le demfb05.m implements the approach and produces
Figure 10.1 on page 374 and Figure 11.20. It uses parameter values of r = 0:05,
Æ = 0:05, � = 0:02, Qm = 20, �c = 10 and C = 40. The approximation uses the
Chebyshev basis of degree n = 15 for P and 400 evenly spaced steps for Q.

A few comments are in order. First, this is e�ectively an explicit method and
hence is prone to instability if the number of nodes and Q steps is not picked carefully.
Fortunately, it is generally obvious when this is a problem, as the results will be clearly
incorrect. The other problem concerns the choice of the upper bound, b. This bound
represents a value of P equal to P �(Q)eb. Too small a value leads to distortions in
both the value function and the location of the optimal boundary. By experimenting
with this value, we found that having an upper limit of 100P � was suÆcient to obtain
at least 3 place accuracy for P �(Q).



CHAPTER 11. CONTINUOUS TIME - METHODS 450

Code Box 11.8: Sequential Learning Problem: Solution Function

% Learn Solves sequential learning problem

function [Q,pstar,c,cdef,A1,A2,beta1,beta2]=learn(r,delta,sigma,Qm,cbar,C,N,n,hi)

% Compute solution for Q>Qm

beta1=0.5-(r-delta)/sigma.^2 + sqrt((0.5-(r-delta)/sigma.^2).^2+2*r/sigma.^2);

beta2=0.5-(r-delta)/sigma.^2 - sqrt((0.5-(r-delta)/sigma.^2).^2+2*r/sigma.^2);

% Impose value matching and smooth pasting at P=cbar

temp=[ cbar.^beta1 -(cbar.^beta2) ; ...

beta1*cbar.^(beta1-1) -beta2*cbar.^(beta2-1)];

temp=temp\[cbar/delta-cbar/r ; 1/delta];

A1=temp(1); A2=temp(2);

% Define the approximating functions and nodal values

Delta=Qm/N;

Q=linspace(0,Qm,N+1);

cdef=fundef({'cheb',n-1,0,hi});

y=funnode(cdef);

cdef=fundef({'cheb',n,0,hi});

% Set up collocation matrices

D=funbasx(cdef,y,[0;1;2]);

Phi0=D.vals{1};

Phi1=D.vals{2};

D=r*Phi0-(r-delta-0.5*sigma^2)*Phi1-0.5*sigma.^2*D.vals{3};

phi=funbasx(cdef,0,[0;1;2]);

B=[ Phi0 zeros(n-1,1);

phi.vals{2}-beta1*phi.vals{1} 0 ;

phi.vals{3}-(beta1)*phi.vals{2} 0 ];

A=[Phi0-Phi1-Delta*D Delta*exp(y);

zeros(2,n+1) ];

% Compute cost function values

gamma=log(C/cbar)/Qm;

Cost=Delta*cbar*exp(gamma*(Qm-Q));

Cfactor=[ones(n-1,1);0;0];

% Initialize at terminal boundary

p=[cbar;cbar*exp(y)];

c=zeros(n+1,N+1);

c(1:n,N+1)=[phi.vals{1};Phi0]\(A2*p.^beta2+p/delta-cbar/r);

c(end,N+1)=cbar;

% Iterate backwards in Q

for i=N+1:-1:2

B(1:n-1,end)=Phi1*c(1:n,i)/(-c(end,i));

c(:,i-1)=B\(A*c(:,i)-Cost(i)*Cfactor);

end

% Extract Pstar

pstar=c(end,:)';

c(end,:)=[];
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Exercises

11.1. A Generalized Term Structure Model

A one factor model that encompasses many term-structure models appearing
in the literature is based on the process for the short interest rate (under the
risk neutral measure) given by:

dr = [�1 + �2r + �3r log(r)]dt+ [�1 + �2r]
�dW:

State the PDE satis�ed by a zero-coupon bond maturing in � periods, along
with the associated boundary condition. Write a function analogous to cirbond
on p. 400 for this case. The function should have the following input/output
format:

c=Bond(fspace,alpha1,alpha2,alpha3,beta1,beta2,nu,tau)

Notice that this function returns the coeÆcients of a function of r de�ned by
the function de�nition structure variable fspace. Verify that your function
reproduces correctly the results obtained using CIRBOND, which is a special case
of the generalized model. To do this, use the parameters � = 30, � = :1, � = :05
and � = 0:2.

11.2. Bond Option Pricing

Consider an option that gives its holder the right, in � o periods, to buy a bond
that pays 1 unit of account � b periods after the option expires, at a strike price
of K. Using the model for the short rate described in the previous exercise,
write a Matlab function that computes the value of such an option.The func-
tion should have the following input/output format:
c=BondOption(fspace,alpha1,alpha2,alpha3,beta1,beta2,nu,K,tauo,taub)

Determine the value of an option for the CIR model with K = 1, � o = 1,
� b = 0:25, � = :1, � = :05 and � = 0:2.

11.3. Neoclassical Optimal Growth

Use scsolve to solve the neoclassical optimal growth model, discussed begin-
ning on page 416:

max
C(t)

Z 1

0

e��tU(C)dt;

subject to the state transition function K 0 = q(K)� C, where

q(K) = � ln(K + 1)� ÆK
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and

U(C) = (C1� � 1)=(1� )

using the parameter values � = 0:05, Æ = 0:02, � = 2(�+ Æ) = 0:14 and  = 0:5.
Compare your results to those obtained using the Euler equation approach.

11.4. Cow Replacement

Convert the discrete time and state cow replacement problem on page ?? to a
continuous time and continuous state problem and solve the problem.

11.5. Asset Replacement with Stochastic Quality

In the asset replacement problem discussed on pages 359 and 422, the produc-
tivity of the asset depended only on its age. Suppose instead that the output
of the machine is governed by

dQ = ��Qdt+ �
q
Q(Q� �Q)dz;

where �Q is the productivity of a new asset. Notice that the process is singular
at Q = 0 and Q = �Q. At Q = �Q the drift rate is negative, so productivity is
decreasing, whereas Q = 0 is an absorbing barrier.

The income ow rate from the asset is PQ, for some constant P , the replacement
cost of the asset is C and the discount rate is �. Intuitively, there is some value
Q = � at which it is optimal to replace the asset.

a) State the Bellman's equation and boundary conditions for this problem (be
sure to consider what happens if � = 0). What is the value function for Q < �?

b) Write a Matlab �le that has the following input/output format:
[beta,c,fspace]=Replace(mu,sigma,rho,P,C,Qbar,n)

where c and fspace are the coeÆcients and the function de�nition structure
de�ning the value function on the interval [�; �Q], and n is the degree of the
approximation. You may assume an interior solution (� > 0).

c) Call the function you wrote with the line
[beta,c,fspace]=Replace(0.02,0.05,0.1,1,2,1,50);

Plot the value function on the interval [0; �Q] (not on [�; �Q]) and mark the point
(�; V (�)) with a \*".

11.6. Timber Harvesting
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a) Solve the timber harvesting example from page 360 with the parameters
� = 0:1, m = 1, � � 0, P = 1, C = 0:15 and � = 0:08. Plot the value function,
indicating the location of the free boundary with an \*".

b) Resolve the problem under the assumption that the land will be abandoned
and the replanting cost will not be incurred. Add this result to the plot gener-
ated for part (a).

11.7. Fish Harvesting Using Cubic Splines

Modify the code in the �sh harvesting example (page 431) to compute the value
function using a single cubic spline approximation with a double breakpoint at
y = 0. Plot the value function and its 1st and 2nd derivatives as functions of S
(not y) and the residual function for the di�erential equation as a function of y.

11.8. Fish Harvesting - Unbounded E�ort

a) Consider the �sh harvesting problem (page 431) under the assumption that
the control is not bounded (H !1), making the problem of the barrier control
type. Write a program to solve for the value function and the optimal stock
level that triggers harvesting. Use the same parameter values as in the bounded
e�ort model (� = 0:1, � = 0:05, � = 0:2).

b) Compute and plot the optimal trigger stock level as a function of the maximal
harvest rate (H), using the above values for other parameters. Demonstrate that
the limiting value as H !1 computed in part (a) is correct.

11.9. Cost Uncertainty

Consider the problem of determining an investment strategy when a project
takes time to complete and completion costs are uncertain. The cost uncertainty
takes two forms. The �rst, technical uncertainty, arises because of unforeseen
technical problems that develop as the project progresses. Technical uncertainty
is assumed to be diversi�able and hence the market price of risk is zero. The
second type of uncertainty is factor cost uncertainty, which is assumed to have
market price of risk � .

De�ne K to be the expected remaining cost to complete a project that is worth
V upon completion. The dynamics of K are given by

dK = �Idt+ �
p
IKdz + Kdw;

where I, the control, is the current investment rate and dz and dw are indepen-
dent Weiner processes. The project cannot be completed immediately because
I is constrained by 0 � I � k. Given the assumptions about the market price



CHAPTER 11. CONTINUOUS TIME - METHODS 455

of risk, we convert the K process to its risk neutral form and use the risk free
interest rate, r, to discount the future. Thus we act \as if"

dK = �(I + �K)dt + �
p
IKdz + Kdw

and solve

F (K) = max
I(t)

E

�
e�rTV �

Z T

0

e�rtI(t)dt
�
;

where T is the (uncertain) completion time given by K(T ) = 0.

The Bellman equation for this problem is

rF = max
I
�I � (I + �K)F 0(K) + 1

2
(�2IK + 2K2)F 00(K);

with boundary conditions

F (0) = V
F (1) = 0:

The optimal control is of the bang-bang type:

I =

�
0 if K > K�

k if K < K�

where K� solves

1
2 �

2KF 00(K)� F 0(K)� 1 = 0:

Notice that technical uncertainty increases with the level of investment. This is
a case in which the variance of the process is inuenced by the control. Although
we have not dealt with this explicitly, it raises no new problems.
a) Solve F up to an unknown constant for K > K�.
b) Use the result in (a) to obtain a boundary condition at K = K� by utilizing
the continuity of F and F 0.
c) Solve the deterministic problem (� =  = 0) and show that

K� = k ln(1 + rV=k)=r.
d) Write the Bellman equation for K < K� and transform it from the domain
[0; K�] to [0; 1] using z = K=K�: Also transform the boundary conditions.
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e) Write a computer program using Chebyshev collocation to solve for F and
K� using the following parameters:

V = 10
r = 0:05
� = 0
k = 2
 = 0:5
� = 0:25:

g) What alterations are needed to handle the case when  = 0 and why are
they needed.

11.10. Investment with Time-to-Build Constraints

Consider an investment project which, upon completion, will have a random
value V and will generate a return ow of ÆV . The value of the completed
project evolves, under the risk neutral measure, according to

dV = (r � Æ)V dt+ �V dz;

where r is the risk free rate of return. The amount of investment needed to
complete the project is K, which is a completely controlled process:

dK = �Idt;

where the investment rate is constrained by 0 � I � k. In this situation it
is optimal to either be investing at the maximum rate or not at all. Let the
value of the investment opportunity in these two cases by denoted F (V;K) and
f(V;K), respectively. These functions are governed by the following laws of
motion:

1
2 �

2V 2FV V + (r � Æ)V FV � rF � kFK � k = 0

and

1
2
�2V 2fV V + (r � Æ)V fV � rf = 0;
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subject to the boundary conditions

F (V; 0) = V

lim
V!1

FV (V;K) = e�ÆK=k

f(0; K) = 0

f(V �; K) = F (V �; K)

fV (V
�; K) = FV (V

�; K):

V � is the value of the completed project needed to make a positive investment.
It can be shown that f(V ) = A(K)V �, where

� =
1

2
� r � Æ

�2
+

s�
1
2
� r � Æ

�2

�2

+
2r

�2
: (10)

and A(K) is a function that must be determined by the boundary conditions.
This may be eliminated by combining the free boundary conditions to yield

�F (V �; K) = V �FV (V �; K):

Summarizing, the problem is to solve the following partial di�erential equation
for given values of �, r, Æ and k:

1
2
�2V 2FV V + (r � Æ)V FV � rF � kFK � k = 0;

subject to

F (V; 0) = V

lim
V!1

FV (V;K) = e�ÆK=k

�F (V �; K) = V �FV (V �; K);

where � is given by (10). This is a PDE in V and K, with an initial condition
for K = 0, a limiting boundary condition for large V and a lower free boundary
for V that is a function of K.

The problem as stated is solved by

F = V e�Æ=kK �K
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with optimal cuto� boundary

V �(K) =
K

� � 1
eÆ=kK :

However, the optimal solution must, in addition, satisfy

FK(V
�; K) = 1:

Write Matlab code to solve the time-to-build problem for the following pa-
rameter values:

Æ = 0
r = 0:02
� = 0:2
k = 1

11.11. Sequential Learning Continued

Review the sequential learning model discussed on pages 372 and 445. Note
that the Bellman equation provides an expression for VQ when P > P �. For
P < P �, the value function has the form A(Q)P �1 and so VQ(P;Q) = A0(Q)P �1.

a) Derive an expression for VQ for P > P �.
b) Show that VQ is continuous at P = P � for � > 0.
c) Use this fact to determine A0(Q).
d) Plot VQ as a function of P for Q = 0 using the parameters r = Æ = 0:05 and
for the values �=0.1, 0.2, 0.3, 0.4 and 0.5.
e) When � = 0, VQ is discontinuous at P = P �. This case was discussed in
Problem 20 in Chapter 10. Add this case to the plot from part (d).
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Appendix A

Basis Matrices for Multivariate Models

The basic PDE used in control problems arising in economics and �nance takes the
form

r(S)V = Æ(S) + Vt + VSS�(S) +
1
2 trace(�(S)�(S)

>VSS):

Generically, S is a d-dimensional vector, VS is (1� d), �(S) is d� 1, VSS is d� d, and
�(S) is d� d.

The �rst derivative term can be computed (for a single S vector) using

VS�(S) � �(S)>�0(S)c

where

�0(S) =

2
664
�01(S1)
 �2(S2)
 : : :
 �d(Sd)
�1(S1)
 �02(S2)
 : : :
 �d(Sd)

: : :
�1(S1)
 �2(S2)
 : : :
 �0d(Sd)

3
775 :

The second derivative term can be computed using

1
2 trace(�(S)�(S)

>VSS) � 1
2 vec(�(S)�(S)

>)>�00(S)c

where

�00(S) =

2
666666666666666666664

�001(S1)
 �2(S2)
 : : :
 �d(Sd)
�01(S1)
 �02(S2)
 : : :
 �d(Sd)

: : :
�01(S1)
 �2(S2)
 : : :
 �0d(Sd)
�01(S1)
 �02(S2)
 : : :
 �d(Sd)
�1(S1)
 �002(S2)
 : : :
 �d(Sd)

: : :
�1(S1)
 �02(S2)
 : : :
 �0d(Sd)

: : :
�01(S1)
 �2(S2)
 : : :
 �0d(Sd)
�1(S1)
 �02(S2)
 : : :
 �0d(Sd)

: : :
�1(S1)
 �2(S2)
 : : :
 �00d(Sd)

3
777777777777777777775

:

It would be even more eÆcient to avoid the double computations arising from sym-
metry by using the vech operator:

1
2 trace(�(S)�(S)

>VSS) � vech(�(S)�(S)>)>�̂00(S)c
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where

�̂00(S) =

2
6666666666664

1
2 �

00
1(S1)
 �2(S2)
 : : :
 �d(Sd)

�01(S1)
 �02(S2)
 : : :
 �d(Sd)
: : :

�01(S1)
 �2(S2)
 : : :
 �0d(Sd)
�1(S1)
 1

2
�002(S2)
 : : :
 �d(Sd)

: : :
�1(S1)
 �02(S2)
 : : :
 �0d(Sd)

: : :
�1(S1)
 �2(S2)
 : : :
 1

2
�00d(Sd)

3
7777777777775
:
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Bibliographic Notes

A standard reference on solving PDEs is Ames. It contains a good discussion of stabil-
ity and convergence analysis; the section on parabolic PDEs is especially relevant for
economic applications. Golub and Ortega contains a useful introductory treatment
the extended method-of-lines for solving PDEs (Section 8.4), which they call a semi-
discrete method. Most treatments of PDEs begin with a discussion of �nite di�erence
methods and may then proceed to �nite element and weighted residual methods. The
approach we have taken reverses this order by starting with a weighted residual ap-
proach (collocation) and demonstrating that �nite di�erence methods can be viewed
as a special case with a speci�c choice of basis functions. We have not discussed �nite
element methods explicitly, but the same remarks apply to them. Piecewise linear
cubic splines bases are common examples of �nite element methods.

The investment under uncertainty with mean reversion in the risk neutral return
process is due to Dixit and Pindyck (pp. 161-163). We have simpli�ed the notation
by taking as given the risk-neutral process for the value of the completed investment.

Numerous references containing discussions of numerical techniques for solving
�nancial asset models now exist. Hull contains a good overview of commonly used
techniques. See also DuÆe and Wilmott. In addition to �nite di�erence methods,
binomial and trinomial trees and Monte Carlo methods are the most commonly used
approaches.

Tree approaches represent state dynamics using a branching process. Although
the conceptual framework seems di�erent from the PDE approach, tree methods are
computationally closely related to explicit �nite di�erence methods for solving PDEs.
If the solution to an asset pricing model for a given initial value of the state is the
only output required from a solution, trees have an advantage over �nite di�erence
methods because they require evaluation of far fewer nodal points. If the entire
solution function and/or derivatives with respect to the state variable and to time
are desired, this advantage disappears. Furthermore, the extended method of lines is
quite competitive with tree methods and far more simple to implement.

Monte Carlo techniques are increasingly being used, especially in situations with
a high dimensional state space. The essential approach simulates paths for the state
variable using the risk-neutral state process. Many assets can then be priced as the
average value of the returns to the asset evaluated along each sample path. This
approach is both simple to implement and avoids the need for special treatment of
boundary conditions with exotic assets. Numerous re�nements exist to increase the
eÆciency of the approach, including the use of variance reduction techniques such
as antithetic and control variates, as well as the use of quasi-random numbers (low
discrepancy sequences). Monte Carlo approaches have been applied to the calculation
of American style assets with early exercise features but this requires more work.
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Other approaches to solving stochastic control problems include discretization
methods; see, e.g., Kushner and Dupuis.

Several of the exercises are based on problems in the literature. The generalized
model of the short interest rate appears in DuÆe, pp. 131-133. The �sh harvesting
problem with adjustment costs was developed by Ludwig and Ludwig and Varrah.
The cost uncertainty model is discussed in Dixit and Pindyck, pp. 345-351. The
time-to-build exercise is from Majd and Pindyck and is also discussed in Dixit and
Pindyck (pp. 328-339).
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Mathematical Background

A.1 Normed Linear Spaces

A linear space or vector space is a nonempty set X endowed with two operations,
vector addition + and scalar multiplication �, that satisfy
� x+ y = y + x for all x; y 2 X
� (x+ y) + z = x+ (y + z) for all x; y; z 2 X
� there is a � 2 X such that x + � = x for all x 2 X
� for each x 2 X there is a y 2 X such that x + y = �

� (��) � x = � � (� � x) for all �; � 2 < and x 2 X
� � � (x+ y) = � � x + � � y for all � 2 < and x; y 2 X
� (� + �) � x = � � x + � � y for all �; � 2 < and x 2 X
� 1 � x = x for all x 2 X.

The elements of X are called vectors.
A normed linear space is a linear space endowed with a real-valued function jj � jj

on X, called a norm, which measures the size of vectors. By de�nition, a norm must
satisfy

� jjxjj � 0 for all x 2 X;

� jjxjj = 0 if and only if x = �;

� jj� � xjj = j�j jjxjj for all � 2 < and x 2 X;

463
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� jjx+ yjj � jjxjj+ jjyjj for all x; y 2 X.

Every norm on a linear space induces a metric that measures the distance d(x; y)
between arbitrary vectors x and y. The induced metric is de�ned via the relation
d(x; y) = jjx� yjj. It meets all the conditions we normally expect a distance function
to satisfy:

� d(x; y) = d(y; x) � 0 for all x; y 2 X;

� d(x; y) = 0 if and only if x = y 2 X;

� d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X.

Norms and metrics play a critical role in numerical analysis. In many numerical
applications, we do not solve a model exactly, but rather compute an approximation
via some iterative scheme. The iterative scheme is usually terminated when the
change in successive iterates becomes acceptably small, as measured by the norm of
the change. The accuracy of the approximation or approximation error is measured by
the metric distance between the �nal approximant and the true solution. Of course, in
all meaningful applications, the distance between the approximant and true solution
is unknown because the true solution is unknown. However, in many theoretical and
practical applications, it is possible to compute upper bounds on the approximation
error, thus giving a level of con�dence in the approximation.

In this book we will work almost exclusively with three classes of normed linear
spaces. The �rst normed linear space is the familiar<n, the space of all real n-vectors.
The second normed linear space is <m�n, the space of all real m-by-n matrices. We
will use a variety of norms for real vector and matrix spaces, all of which are discussed
in greater detail in the following section.

The third class of normed linear space is C(S), the space of all bounded continuous
real-valued functions de�ned on S � <m. Addition and scalar multiplication in this
space are de�ned pointwise. Speci�cally, if f; g 2 C(S) and � 2 <, then f + g is the
function whose value at x 2 S is f(x) + g(x) and �f is the function whose value at
x 2 S is �f(x). We will use only one norm, called the sup or supremum norm, on
the function space C(S):

jjf jj = supfjf(x)j j x 2 Sg:
In most applications, S will be a bounded interval of <n.

A subset Y of a normed linear space X is called a subspace if it is closed under
addition and scalar multiplication, and thus is a normed linear space in its own right.
More speci�cally, Y is a subspace of X if x + y 2 Y and �x 2 Y whenever x; y 2 Y
and � 2 <. A subspace Y is said to be dense in X if for any x 2 X and � > 0,
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we can always �nd a y 2 Y such that jjx � yjj < �. Dense linear subspaces play an
important role in numerical analysis. When constructing approximants for elements
in a normed linear space X, drawing our approximants from a dense linear subspace
guarantees that an arbitrarily accurate approximation can always be found, at least
in theory.

Given a nonempty subset S ofX, span(S) is the set of all �nite linear combinations
of elements of S:

span(S) = f
nX
i=1

�ixij�i 2 <; xi 2 X; n an integerg:

We say that a subset B is a basis for a subspace Y if Y =span(B) and if no proper
subset of B has this property. A basis has the property that no element of the basis
can be written as a linear combination of the other elements in the basis. That is,
the elements of the basis are linearly independent.

Except for the trivial subspace f�g, a subspace Y will generally have many distinct
bases. However, if Y has a basis with a �nite number of elements, then all bases have
the same number of nonzero elements and this number is called the dimension of the
subspace. If the subspace has no �nite basis, it is said to be in�nite dimensional.

Consider some examples. Every normed linear space X, has two trivial subspaces:
f�g, whose dimension is zero, and X. The sets f(0; 1); (1; 0)g and f(2; 1); (3; 4)g both
are bases for <2, which is a two-dimensional space; the set f(�; 0:5 � �)j� 2 <g is
a one-dimensional subspace of <2. In general, <n is an n-dimensional space with
many possible bases; moreover, the span of any k < n linearly independent n-vectors
constitutes a proper k-dimensional subspace of <n.

The function space C(S) of all real-valued bounded continuous functions on an
interval S � < is an in�nite-dimensional space. That is, there is no �nite number of
real-valued bounded continuous functions whose linear combinations span the entire
space. This space has a number of subspaces that are important in numerical analysis.
The set of all polynomials on S of degree at most n forms an n+1 dimensional subspace
of C(S) with one basis being f1; x; x2; : : : ; xng. The set of all polynomials, regardless
of degree, is also a subspace of C(S). It is in�nite-dimensional. Other subspaces
of C(S) interest include the space of piecewise polynomials splines of a given order.
These subspaces are �nite-dimensional and are discussed further in the text.

A sequence fxkg in a normed linear space X converges to a limit x� in X if
limk�!1 jjxk � x�jj = 0. We write limk�!1 xk = x� to indicate that the sequence
fxkg converges to x�. If a sequence converges, its limit is necessarily unique.

An open ball centered at x 2 X is a set of the form fy 2 X j jjx� yjj < �g, where
� > 0. A set S in X is open if every element of S is the center of some open ball
contained entirely in S. A set S in X is closed if its complement, that is, the set of
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elements of X not contained in S, is an open set. Equivalently, a set S is closed if it
contains the limit of every convergent sequence in S.

The Contraction Mapping Theorem has many uses in computational economics,
particularly in existence and convergence theorems: Suppose that X is a complete
normed linear space, that T maps a nonempty set S � X into itself, and that, for
some Æ < 1,

jjT (x)� T (y)jj � Æjjx� yjj; for all x; y 2 S:
Then, there is an unique x� 2 S such that T (x�) = x�. Moreover, if x0 2 S and
xk+1 = T (xk), then fxkg necessarily converges to x� and

jjxk � x�jj � Æ

1� Æ jjxk � xk�1jj:
When the above conditions hold, T is said to be a strong contraction on S and x� is
said to be a �xed-point of T in S.

We shall not de�ne what we mean by a complete normed linear space, save to
note that <n, C(S), and all their subspaces are complete.

A.2 Matrix Algebra

We write x 2 <n to denote that x is an n-vector whose ith entry is xi. A vector is
understood to be in column form unless otherwise noted.

If x and y are n-vectors, then their sum z = x+ y is the n-vector whose ith entry
is zi = xi + yi. Their inner product or dot product, x � y, is the real number

P
i xiyi.

And their array product, z = x: � y, is the n-vector whose ith entry is zi = xiyi.
If � is a scalar, that is, a real number, and x is an n-vector, then their scalar sum

z = �+x = x+� is the n vector whose ith entry is zi = �+xi. Their scalar product,
z = �x = x�, is the n-vector whose ith entry is zi = �xi.

The most useful vector norms are, respectively, the 1-norm or sum norm, the
2-norm or Euclidean norm, and the in�nity or sup norm:

jjxjj1 =
P

i jxij;
jjxjj2 =

pP
i jxij2;

jjxjj1 = maxi jxij:
In Matlab, the norms may be computed for any vector x, respectively, by writing:
norm(x,1), norm(x,2), and norm(x,inf). If we simply write norm(x), the 2-norm or
Euclidean norm is computed.

All norms on <n are equivalent in the sense that a sequence converges in one
vector norm, if and only if it converges in all other vector norms. This is not true of
generally of all normed linear spaces.



APPENDIX A. MATHEMATICAL BACKGROUND 467

A sequence of vectors fxkg converges to x� at a rate of order p � 1 if for some
c � 0 and for suÆciently large n,

jjxk+1 � x�jj � cjjxk � x�jjp:
If p = 1 and c < 1 we say the convergence is linear; if p > 1 we say the convergence
is superlinear; and if p = 2 we say the convergence is quadratic.

We write A 2 <m�n to denote that A is an m-row by n-column matrix whose row
i, column j entry, or, more succinctly, ijth entry, is Aij.

If A is an m by n matrix and B is an m by n matrix, then their sum C = A+B
is the m by n matrix whose ijth entry is Cij = Aij + Bij. If A is an m by p matrix
and B is a p by n matrix, then their product C = AB is the m by n matrix whose
ijth entry is Cij =

Pp
k=1AikBkj: If A and B are both m by n matrices, then their

array product C = A: �B is the m by n matrix whose ijth entry is Cij = AijBij.
A matrix A is square if it has an equal number of rows and columns. A square

matrix is upper triangular if Aij = 0 for i > j; it is lower triangular if Aij = 0 for
i < j; it is diagonal if Aij = 0 for i 6= j; and it is tridiagonal if Aij = 0 for ji� jj > 1.
The identity matrix, denoted I, is a diagonal matrix whose diagonal entries are all 1.
In Matlab, the identity matrix of order n may is generated by the statement eye(n).

The transpose of an m by n matrix A, denoted A0, is the n by m matrix whose
ijth entry is the jith entry of A. A square matrix is symmetric if A = A0, that is, if
Aij = Aji for all i and j. A square matrix A is orthogonal if A>A = AA> is diagonal,
and orthonormal if A>A = AA> = I. In Matlab, the transpose of a matrix A is
generated by the statement A'.

A square matrix A is invertible if there exists a matrix A�1, called the inverse of
A, such that AA�1 = A�1A = I. If the inverse exists, it is unique. In Matlab, the
inverse of a square matrix A can be generated by the statement inv(A).

The most useful matrix norms, and the only ones used in this book, are constructed
from vector norms. A given n-vector norm jj � jj induces a corresponding matrix norm
for n by n matrices via the relation

jjAjj = max
jjxjj=1

jjAxjj

or, equivalently,

jjAjj = max
jjxjj6=0

jjAxjj
jjxjj :

Given corresponding vector and matrix norms,

jjAxjj � jjAjj jjxjj:
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Moreover, if A and B are square matrices,

jjABjj � jjAjj jjBjj:
Common matrix norms include the matrix norms induced by the one, two (Eu-

clidean), and in�nity norms:

jjAjjp = max
jjxjjp=1

jjAxjjp

for p = 1; 2;1. In Matlab, these norms may be computed for any matrix A, re-
spectively, by writing: norm(A,1), norm(A,2), and norm(A,inf). The two (Euclidean)
matrix norm is relatively expensive to compute. The one and in�nity norms, on the
other hand, take a relatively simple form:

jjAjj1 = max1�j�n
Pn

i=1 jAijj
jjAjj1 = max1�i�n jAijj:

The spectral radius of a square matrix A, denoted �(A), is the in�mum of all the
matrix norms of A. We have lim1

k=1A
k = 0 if and only if �(A) < 1, in which case

(I � A)�1 =P1
k=1A

k. Thus, if jjAjj < 1 in any vector norm, Ak converges to zero.
A square symmetric matrix A is negative semide�nite if x>Ax � 0 for all x; it is

negative de�nite if x>Ax < 0 for all x 6= 0; it is positive semide�nite if x>Ax � 0 for
all x; and it is positive de�nite if x>Ax > 0 for all x 6= 0.

A.3 Real Analysis

The gradient or Jacobian of a vector-valued function f : <n 7! <m is the m by n
matrix-valued function of �rst partial derivatives of f . More speci�cally, the gradient
of f at x, denoted by either f 0(x) or fx(x), is the m by n matrix whose ijth entry
is the partial derivative @fi

@xj
(x). More generally, if f(x1; x2) is an n-vector-valued

function de�ned for x1 2 <n1 and x2 2 <n2, then fx1(x) is the m by n1 matrix of
partial derivatives of f with respect to x1 and fx2(x) is the m by n2 matrix of partial
derivatives of f with respect to x2.

The Hessian of the real-valued function f : <n 7! < is the n by n matrix-valued
function of second partial derivatives of f . More speci�cally, the Hessian of f at x,
denoted by either f 00(x) or fxx(x), is the symmetric n by n matrix whose ijth entry

is @2f
@xi@xj

(x). More generally, if f(x1; x2) is a real-valued function de�ned for x1 2 <n1
and x2 2 <n2 , where n1 + n2 = n, then fxixj(x) is the ni by nj submatrix of f 00(x)
obtained by extracting the rows corresponding to the elements of xi and the columns
corresponding to the columns of xj.
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A real-valued function f : <n 7! < is smooth on a convex open set S if its
gradient and Hessian are de�ned and continuous on S. By Taylor's theorem, a smooth
function may be approximated locally by either a linear or quadratic function. More
speci�cally, for all x in S,

f(x) = f(x0) + fx(x0)(x� x0) + o(jjx� x0jj)
and

f(x) = f(x0) + fx(x0)(x� x0)
+ 1

2
(x� x0)>fxx(x0)(x� x0) + o(jjx� x0jj2)

where o(t) denotes a term with the property that limt�!0(o(t)=t) = 0.
The Intermediate Value Theorem asserts that if a continuous real-valued function

attains two values, then it must attain all values in between. More precisely, if f
continuous on a convex set S 2 <n and f(x1) � y � f(x2) for some x1 2 S, x2 2 S,
and y 2 <, then f(x) = y for some x 2 S.

The Implicit Function Theorem gives conditions under which a system of nonlinear
equations will have a locally unique solution that will vary continuously with some
parameter: Suppose F : <m+n 7! <n is continuously di�erentiable in a neighborhood
of (x0; y0), x0 2 <m and y0 2 <n, and that F (x0; y0) = 0. If Fy(x0; y0) is nonsingular,
then there is an unique function f : <m 7! <n de�ned on a neighborhood N of x0
such that for all x 2 N , F (x; f(x)) = 0. Furthermore, the function f is continuously
di�erentiable on N and f 0(x) = �F�1

y (x; f(x))Fx(x; f(x)).
A subset S is bounded if it is contained entirely inside some ball centered at zero.

A subset S is compact if it is both closed and bounded. A continuous real-valued
function de�ned on a compact set has well-de�ned maximum and minimum values;
moreover, there will be points in S at which the function attains its maximum and
minimum values.

A real-valued function f : <n 7! < is concave on a convex set S if �1f(x1) +
�2f(x2) � f(�1x1 + �2x2) for all x1; x2 2 S and �1; �2 � 0 with �1 + �2 = 1. It
is strictly concave if the inequality is always strict. A smooth function is concave
(strictly concave) if and only if f 00(x) is negative semide�nite (negative de�nite) for
all x 2 S. A smooth function f is convex if and only �f is concave. If a function
is concave (convex) on an convex set, then its maximum (minimum), if it exists, is
unique.
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A.4 Markov Chains

AMarkov process is a sequence of random variables fXt j t = 0; 1; 2; : : :g with common
state space S whose distributions satisfy

PrfXt+1 2 A j Xt; Xt�1; Xt�2; : : :g = PrfXt+1 2 A j Xtg A � S:

A Markov process is often said to be memoryless because the distribution Xt+1 con-
ditional on the history of the process through time t is completely determined by Xt

and is independent of the realizations of the process prior to time t.
A Markov chain is a Markov process with a �nite state-space S = f1; 2; 3; : : : ; ng.

A Markov chain is completely characterized by its transition probabilities

Ptij = PrfXt+1 = j j Xt = ig; i; j 2 S:
A Markov chain is stationary if its transition probabilities

Pij = PrfXt+1 = j j Xt = ig; i; j 2 S
are independent of t. The matrix P , called the transition probability matrix.

The steady-state distribution of a stationary Markov chain is a probability distri-
bution f�iji = 1; 2; : : : ; ng on S, such that

�j = lim
�!1

PrfX� = j j Xt = ig i; j 2 S:

The steady-state distribution �, if it exists, completely characterizes the longrun
behavior of a stationary Markov chain.

A stationary Markov chain is irreducible if for any i; j 2 S there is some k � 1
such that PrfXt+k = j j Xt = ig > 0, that is, if starting from any state there is
positive probability of eventually visiting every other state. Given an irreducible
Markov chain with transition probability matrix P , if there is an n-vector � � 0 such
that

P>� = �P
i �i = 1;

then the Markov chain has a steady-state distribution �.
In computational economic applications, one often encounters irreducible Markov

chains. To compute the steady-state distribution of the Markov chain, one solves the
n+ 1 by n linear equation system�

I � P>

1>

�
� =

�
0
1

�
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where P is the probability transition matrix and 1 is the vector consisting of all
ones. Due to linear dependency among the probabilities, any one of the �rst n linear
equations is redundant and may be dropped to obtain an uniquely soluble matrix
linear equation.

Consider a stationary Markov chain with transition probability matrix

P =

2
4 0:5 0:2 0:3
0:0 0:4 0:6
0:5 0:5 0:0

3
5

Although one cannot reach state 1 from state 2 in one step, one can reach it with
positive probability in two steps. Similarly, although one cannot return to state 3 in
one step, one can return in two steps. The steady-state distribution � of the Markov
chain may be computed by solving the linear equation2

4 0:5 0:0 �0:5
�0:2 0:6 �0:5
1:0 1:0 1:0

3
5 � =

2
4 0
0
1

3
5 :

The solution is

� =

2
4 0:316
0:368
0:316

3
5 :

Thus, over the long run, the Markov process will spend about 32.6 percent of its time
in state 1, 36.8 percent of its time in state 2, and 31.6 percent of its time in state 3.

A.5 Continuous Time Mathematics

A.5.1 Ito Processes

The stochastic processes most commonly used in economic applications are con-
structed from the so-called standard Weiner process or standard Brownian motion.
This process is most intuitively de�ned as a limit of sums of independent normally
distributed random variables:

zt+�t � zt �
Z t+�t

t

dz = lim
n!1

r
�t

n

nX
i=1

vi:

where the vi are independently and identically distributed standard normal variates
(i:i:d: N(0; 1)). The standard Weiner process has the following properties:



APPENDIX A. MATHEMATICAL BACKGROUND 472

1. time paths are continuous (no jumps)

2. non-overlapping increments are independent

3. increments are normally distributed with mean zero and variance �t.

The �rst property is not obvious but properties 2 and 3 follow directly from the
de�nition of the process. Each non-overlapping increment of the process is de�ned as
the sum of independent random variables and hence the increments are independent.
Each of the variables in the sum have expectation zero and hence so does the sum.
The variance is

E�z2 = �t lim
n!1

1

n
E

 
nX
i=1

vi

!2

= �t lim
n!1

1

n

nX
i=1

E[v2i ] = �t:

Ito di�usion processes are typically represented in di�erential form as

dS = �(S; t)dt+ �(S; t)dz

where z is a standard Wiener process. The Ito process in completely de�ned in terms
of the functions � and �, which can be interpreted as the instantaneous mean and
standard deviation of the process:

E[dS] = �(S; t)dt

and

V ar[dS] = E[dS2]� (E[dS])2 = E[dS2]� �(S; t)2dt2 = E[dS2] = �2(S; t)dt;

which are also known as the drift and di�usion terms, respectively. This is not as
limiting as it might appear at �rst, because a wide variety of stochastic behavior can
be represented by appropriate de�nition of the two functions.

The di�erential representation is a shorthand for the stochastic integral

St+�t = St +

Z t+�t

t

�(S� ; �)d� +

Z t+�t

t

�(S� ; �)dz: (1)

The �rst of the integrals in (1) is an ordinary (Riemann) integral. The second integral,
however, involves the stochastic term dz and requires additional explanation. It is
de�ned in the following way:

Z t+�t

t

�(S� ; �)dz = lim
n!1

r
�t

n

n�1X
i=0

�(St+ih; t+ ih)vi; (2)
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where h = �t=n and vi �i.i.d. N(0,1). The key feature of this de�nition is that it is
non-anticipating; values of S that are not yet realized are not used to evaluate the �
function. This naturally represents the notion that current events cannot be functions
of speci�c realizations of future events.1 It is useful to note that EtdS = �(S; t)dt;
this is a direct consequence of the fact that each of the elements of the sum in (2)
has zero expectation. This implies that

Et[St+�t] = St + Et

Z t+�t

t

�(S� ; �)d�:

From a practical point of view, the de�nition of an Ito process as the limit of
a sum provides a natural method for simulating discrete realizations of the process
using

St+�t = St + �(St; t)�t+ �(St; t)
p
�t v;

where v � N(0; 1). This approximation will be exact when � and � are constants.2

In other cases the approximation will improve as �t gets small, but may produce
inaccurate results as �t gets large.

In order to de�ne and work with functions of Ito processes it is necessary to have a
calculus that operates consistently with them. Suppose y = f(t; S), with continuous
derivatives ft, fS and fSS. In the simplest case S and y are both scalar processes. It
is intuitively reasonable to de�ne the di�erential dy as

dy = ftdt+ fSdS;

as would be the case in standard calculus. Unfortunately, this will produce incorrect
results because it ignores the fact that (dS)2 = O(dt). To see what this means consider

1Standard Riemann integrals of continuous functions are de�ned as:

Z b

a

f(x)dx = lim
n!1

h
n�1X
i=0

f(a+ (i+ �)h);

with h = (b � a)=n and � is any value on [0; 1]. With stochastic integrals, alternative values on �
produce di�erent results. Furthermore, any value of � other than 0 would imply a sort of clairvoyance
that makes it unsuitable for applications involving decision making under uncertainty.

2When � and � are constants the process is known as absolute Brownian motion. Exact simulation
methods also exist for other processes, e.g., for geometric Brownian motion process,

dS = �Sdt+ �Sdz;

it will subsequently be shown that

St+�t = St exp(��t+ �
p
�tv);

where v � N(0; 1).
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a Taylor expansion of dy at (S; t), i.e., totally di�erentiate the Taylor expansion of
f(S; t):

dy = ftdt+ fSdS + 1
2
ftt(dt)

2 + ftSdtdS + 1
2
fSS(dS)

2 + higher order terms.

Terms of higher order than dt and dS are then ignored in the di�erential. In this
case, however, the term (dS)2 represents the square of the increments of a random
variable that has expectation �2dt and, therefore, cannot be ignored. Including this
term results in the di�erential

dy = [ft +
1
2
fSS�

2(S; t)]dt + fSdS

= [ft + fS�(S; t) +
1
2
fSS�

2(S; t)]dt + fS�(S; t)dz;

a result known as Ito's Lemma. An immediate consequence of Ito's Lemma is that
functions of Ito processes are also Ito processes (provided the functions have appro-
priately continuous derivatives).

Multivariate versions of Ito's Lemma are easily de�ned. Suppose S is an n-vector
valued process and z is a k-vector Wiener process (composed of k independent stan-
dard Wiener processes). Then � is an n-vector valued function (� : <n+1 ! <n)
and � is an n � k matrix valued function (� : <n+1 ! <n�k). The instantaneous
covariance of S is ��T , which may be less than full rank.

For vector-valued S, Ito's Lemma is

dy =
�
ft + fS�(S; t) +

1
2
trace

�
�T (S; t)fSS�(S; t)

��
dt+ fS�(S; t)dz;

(the only di�erence being in the second order term; derivatives are de�ned such that
fS is a (1� n)-vector). The lemma extends in an obvious way if y is vector valued.

Ito's Lemma can be used to generate some simple results concerning Ito processes.
For example, consider the case of geometric Brownian motion, de�ned as

dS = �Sdt+ �Sdz:

De�ne y = ln(S), implying that @y=@t = 0, @y=@S = 1=S and @2y=@S2 = �1=S2.
Applying Ito's Lemma yields the result that

dy = [�� �2=2]dt+ �dz:

This is a process with independent increments, yt+�t�yt, that areN((���2=2)�t; �2�t).
Hence a geometric Brownian motion process has conditional probability distributions
that are lognormally distributed:

ln(St+�t)� ln(St) � N
�
(�� �2=2)�t; �2�t� :
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A.5.2 Forward and Backward Equations

It is often useful to consider the behavior of a process at some future time, T , from
the vantage point of the current time, t. Suppose, for example, we are interested in
deriving an expression for E[ST jSt = s] = m(s; t; T ), where dSt = �dt+ �dz. Notice
that there are two time variables in this function, T and t. It is natural, therefore,
that the behavior of the function can be expressed in terms of di�erential equations in
either of these variables. When T is held �xed and t varies, the resulting di�erential
equation is a \backward" equation; when t is held �xed and T varies, it is a \forward"
equation.

The forward approach uses the integral representation of the SDE

ST = St +

Z T

t

�(S� ; �)d� +

Z T

t

�(S� ; �)dz� :

The di�usion term has expectation 0, so

Et[ST ] = St +

Z T

t

Et [�(S� ; �)] d�

or, in di�erential form,

@Et[ST ]

@T
= Et [�(ST ; T )] : (3)

If � is aÆne in S, �(S) = �(� � S), this leads to the di�erential equation mT =
�(��m), with the boundary condition at time t that m(s; t; t) = s. Thus

E[ST jSt = s] = � + e��(T�t)(s� �): (4)

In contrast, the backward approach holds T �xed. Viewing m as a process that
varies in t and using Ito's Lemma

dm =

�
mt +mS�+

1

2
mSS�

2

�
dt+mS�dz: (5)

By the Law of Iterated Expectations, the drift associated with the process m must
be 0; hence m solves the partial di�erential equation

0 = mt +mS�+
1

2
mSS�

2;

subject to the boundary condition that m(s; T; T ) = s. For the aÆne �, the di�eren-
tial equation is

0 = mt +mS�(�� S) + 1

2
mSS�

2(St; t):
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Although the � term appears in this PDE, it actually plays no role. We leave as an
exercise the veri�cation that this PDE is solved by the function obtained from the
forward equation.

Forward and backwards equations can also be derived for expectations of functions
of S. Consider the function S2

t ; Ito's Lemma provides an expression for its dynamics:

S2
T = S2

t +

Z T

t

S��(S� ; �) + �2(Sx� ; �)d� +

Z T

t

S��(S� ; �)dz:

Taking expectations and subtracting the square of Et[ST ] provides an expression for
the variance of ST given St:

V art[ST ] = S2
t + Et

�Z T

t

S��(S� ; �) + �2(S� ; �)d�

�
� (Et[ST ])

2 :

Di�erentiating this with respect to T yields

dV art[ST ]

dT
= Et[�

2(ST ; T )] + 2
�
Et[ST�(ST ; T )]� Et[ST ]Et[�(ST ; T )]

�
:

The boundary condition is that V arT [ST ] = 0, i.e., at time T all uncertainty about
the value of ST is resolved. As an exercise, you are asked to apply this result to the
process

dS = �(�� S)dt+ �dz

(i.e., the di�usion term is a constant).
The backward approach can also be used. Consider again the expression (5),

noting that the drift equals 0, so

dm = ms(St; t; T )�(St; t)dz:

Furthermore, mT = ST , so

ST = mt +

Z T

t

ms(S� ; �; T )�(S� ; �)dz� ;

the variance of which is

V art[ST ] = Et[(ST �mt)
2] = Et

"�Z T

t

ms�dz�

�2
#
:

Given two functions f(St; t) and g(St; t), it can be shown that

Et [f(ST ; T )g(ST ; T )] = Et

��Z T

t

f(S� ; �)dW�

� �Z T

t

g(S� ; �)dW�

��

= Et

�Z T

t

f(S� ; �)g(S� ; �)d�

�
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and therefore

V art[ST ] = Et

�Z T

t

m2
s(S� ; �; T )�

2(S� ; �)d�

�
: (6)

Another important use of forward and backward equations is in providing expres-
sions for the transition densities associated with stochastic processes. Let f(S; T ; s; t)
denote the density function de�ned by

Prob[ST � SjSt = s] =

Z S

�1
f(ST ; T ; s; t)dST :

The Kolmogorov forward and backward equations are partial di�erential equations
satis�ed by f . The forward equation, which treats S and T as variable, is

0 =
@f(S; T ; s; t)

@T
+
@�(S; T )f(S; T ; s; t)

@S
� 1

2

@2�2(S; T )f(S; T ; s; t)

@S2
:

From the de�nition of the transition density function, f must have a degenerate
distribution at T = t, i.e.,

f(S; t; s; t) = Æs(S);

where Æs(S) is the Dirac function which concentrates all probability mass at the single
point S = s.

Similarly, the backward equation, which treats s and t as variable, is

0 =
@f(S; T ; s; t)

@t
+ �(s; t)

@f(S; T ; s; t)

@s
+ 1

2
�2(s; t)

@2f(S; T ; s; t)

@s2
:

The boundary condition for the backward equation is the terminal condition
f(S; T ; s; T ) = ÆS(s).

We leave as an exercise the veri�cation that

dS = �(�� S)dt+ �dz

has Gaussian transition densities, i.e., that

f(S; T ; s; t) =
1p
2�v

exp(�0:5(S �m)2=v);

where m is given in (4) and

v =
�2

2�

�
1� e�2�(T�t)� :
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A.5.3 The Feynman-Kac Equation

The backward equation approach to computing moments is a special case of a more
general result on the relationship between the solution to certain PDEs and the ex-
pectation of functions of di�usion processes. Control theory in continuous time is
typically concerned with problems which attempt to choose a control that maximizes
an expected discounted return stream over time. It will prove useful, therefore, to
have an idea of how to evaluate such a return stream for an arbitrary control. Consider
the value

V (St; t) = Et

�Z T

t

e��(��t)f(S� )d� + e��(T�t)R(ST )
�
;

where

dS = �(S)dt+ �(S)dz:

An important theorem, generally known in economics as the Feynman-Kac Equation,
but also known as Dynkin's Formula, states that V (S) is the solution to the following
partial di�erential equation

�V (S; t) = f(S) + Vt(S; t) + �(S)VS(S; t) +
1
2 �

2(S)VSS(S; t);

with V (S; T ) = R(S). The function R here represents a terminal value of the state,
i.e., a salvage value.3

By applying Ito's Lemma, the Feynman-Kac Equation can be expressed as:

�V (S; t) = f(S) + E[dV ]=dt: (7)

(7) has a natural economic interpretation. Notice that V can be thought of as the
value of an asset that generates a stream of payments f(S). The rate of return on
the asset, �V , is composed of two parts, f(S), the current income ow and E[dV ]=dt,
the expected rate of appreciation of the asset. Alternative names for the components
are the dividend ow rate and the expected rate of capital gains.

A version of the theorem applicable to in�nite horizon problems states that

V (St) = Et

�Z 1

t

e��(��t)f(S)d�
�

is the solution to the di�erential equation

�V (S) = f(S) + �(S)VS(S) +
1
2 �

2(S)VSS(S):

3The terminal time T need not be �xed, but could be a state dependent. Such an interpretation
will be used in the discussion of optimal stopping problems (Section 10.3.3).
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Although more general versions of the theorem exist (see bibliographical notes), these
will suÆce for our purposes.

As with any di�erential equation, boundary conditions are needed to completely
specify the solution. In this case, we require that the solution to the di�erential
equation be consistent with the present value representation as S approaches its
boundaries (often 0 and 1 in economic problems). Generally economic intuition
about the nature of the problem is used to determine the boundary conditions.

Example: Geometric Brownian Motion
Geometric Brownian motion is a particularly convenient stochastic process because
it is relatively easy to compute expected values of reward streams. If S is governed
by

dS = �Sdt+ �Sdz;

the expected present value of a reward stream f(S) is the solution to

�V = f(S) + �SVS +
1
2 �

2S2VSS:

As this is a linear second order di�erential equation, the solution can be written as
the sum of the solution to the homogeneous problem (f(S) = 0) and any particular
solution that solves the non-homogeneous problem. The homogeneous problem is
solved by

V (S) = A1S
�1 + A2S

�2;

where the �i are the roots of the quadratic equation

1
2 �

2�(� � 1) + �� � � = 0

and the Ai are constants to be determined by boundary conditions. For positive �,
one of these roots is greater than one, the other is negative: �1 > 1, �2 < 0.

Consider the problem of �nding the expected discounted value of a power of S,
(f(S) = S), assuming, momentarily, that the expectation exists. It is easily veri�ed
that a particular solution is

V (S) = S=(�� � � 1
2
�2( � 1)): (8)

All that remains, therefore, is to determine the value of the arbitrary constants A1 and
A2 that ensure the solution indeed equals the expected value of the reward stream.
This is a bit tricky because it need not be the case that the expectation exists (the
integral may not converge as its upper limit of integration goes to 1). It can be
shown, however, that the present value is well de�ned for �2 <  < �1, making
the numerator in (8) positive. Furthermore, the boundary conditions require that
A1 = A2 = 0. Thus the particular solution is convenient in that it has a nice
economic interpretation as the present value of a stream of returns.
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Bibliographic Notes

Many books contain discussions of Ito stochastic calculus with economics and �nance
orientation, including Neftci and Hull. At a more advanced level see DuÆe; the
discussion of the Feynman-Kac formula draws heavily on this source.

A brief but useful discussion of steady-state distributions is found in Appendix B
of Merton (1975). For more detail, including discussion of boundary issues, see Karlin
and Taylor, chapter 15 and Bharucha-Reid. Early work in this area is contained in
several papers by Feller. A classic text on stochastic processes is Cox and Miller.



Appendix B

A MATLAB Primer

B.1 The Basics

Matlab is a programming language and a computing environment that uses matrices
as one of its basic data types. It is a commercial product developed and distributed by
MathWorks. Because it is a high level language for numerical analysis, numerical code
to be written very compactly. For example, suppose you have de�ned two matrices
(more on how to do that presently) that you call A and B and you want to multiply
them together to form a new matrix C. This is done with the code

C=A*B;

(note that expressions generally terminate with a semicolon inMatlab). In addition
to multiplication, most standard matrix operations are coded in the natural way for
anyone trained in basic matrix algebra. Thus the following can be used

A+B

A-B

A' for the transpose of A
inv(A) for the inverse of A
det(A) for determinant of A
diag(A) for a vector equal to the diagonal elements of A

With the exception of transposition all of these must be used with appropriate sized
matrices, e.g., square matrices to inv and det and conformable matrices for arithmetic
operations. In addition, standard mathematical operators and functions are de�ned
that operate on each element of a matrix. For example, suppose A is de�ned as the
2� 1 matrix

481
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[2 3]

then A.^2 (.^ is the exponentiation operator) yields

[4 9]

(not A*A, which is not de�ned for non-square matrices anyway). Functions that
operate on each element include

exp

ln

sqrt

cos

sin

tan

arccos

arcsin

arctan

and
abs

In addition to these standard mathematical functions there are a number of less
standard but useful functions such as cumulative distribution functions for the normal:
cdfn (in the STATS toolbox). The constant � (pi) is also available. Matlab has a
large number of built-in functions, far more than can be discussed here.

As you explore the capabilities of Matlab a useful tool is Matlab's help docu-
mentation. Try typing helpwin at the command prompt; this will open a graphical
interface window that will let you explore the various type of functions available. You
can also type help or helpwin followed by a speci�c command or function name at
the command prompt to get help on a speci�c topic.

Be aware that Matlab can only �nd a function if it is either a built-in function
or is in a �le that is located in a directory speci�ed by the Matlab path. If you get
a function or variable not found message, you should check the Matlab path (using
path to see if the functions directory is included) or use the command addpath to add
a directory to the Matlab path. Also be aware that �les with the same name can
cause problems. If the Matlab path has two directories with �les called tiptop.m,
and you try to use the function tiptop, you may not get the function you want. You
can determine which is being used with the which command, e.g., which tiptop, and
the full path to the �le where the function is contained will be displayed.

A few other built in functions or operators are extremely useful, especially

index=start:increment:end;

creates a row vector of evenly spaced values. For example,
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i=1:1:10;

creates the vector [1 2 3 4 5 6 7 8 9 10]. It is important to keep track of the dimensions
of matrices; the size function does this. For example, if A is 3� 2,

size(A,1)

returns a 3 and

size(A,2)

returns a 2. The second argument of the size function is the dimension: the �rst
dimension of a matrix is the rows, the second is the columns. If the dimension is left
out a 1� 2 vector is returned:

size(A)

returns [3 2]. There are a number of ways to create matrices. One is by enumeration

X=[1 5;2 1];

which de�nes X to be the 2� 2 matrix�
1 5
2 1

�

The ; indicates the end of a row (actually it is a concatenation operator that allow
you to stack matrices; more on that below). Other ways to create matrices include

X=ones(m,n);

and

X=zeros(m,n);

which create m�n matrices with each element equal to 1 or 0, respectively. Matlab

also has several random number generators with a similar syntax.

X=rand(m,n);

creates an m � n matrix of independent random draws from a uniform distribution
(actually they are pseudo-random).

X=randn(m,n);

draws from the standard normal distribution. Individual elements of a matrix the size
of which has been de�ned can be accessed using (); for example if you have de�ned
the 3� 2 matrix B, you can set element 1,2 equal to cos(2:5) with the statement
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B(1,2)=cos(5.5);

If you then what to set element 2,1 to the same value use

B[2,1]=B[1,2];

A whole column or row of a matrix can be referenced as well in the following way

B(:,1);

refers to column 1 of the matrix B and

B(3,:);

refers to its third row. The : is an operator that selects all of the elements in the row
or column. An equivalent expression is

B(3,1:end);

where end indicates the column in the matrix. You can also pick and choose the
elements you want, e.g.,

C=B([1 3],2);

results in a new 2� 1 matrix equal to�
B12

B32

�
:

Also the construction

B(1:3,2);

is used to refer to rows 1 through 3 and column 2 of the matrix B.
The ability to access parts of a matrix is very useful but also can cause problems.

One of the most common programming errors is attempting to access elements of
a matrix that don't exist; this will cause an error message. While on the subject
on indexing elements of a matrix, you should know that Matlab actually has two
di�erent ways of indexing. One is to use the row and column indices, as above, the
other to use the location in the vectorized matrix. When you vectorize a matrix you
stack its columns on top of each other. So a 3 � 2 matrix becomes a 6 � 1 vector
composed of a stack of two 3 � 1 vectors. Element 1,2 of the matrix is element 4 of
the vectorized matrix. If you want to create a vectorized matrix the command

X(:)



APPENDIX B. A MATLAB PRIMER 485

will do the trick.
Matlab has a powerful set of graphics routines that enable you to visualize your

data and models. For starters, it will suÆce to note that routines plot, mesh and
contour. For plotting in two dimensions, use plot(x,y). Passing a string as a third
argument gives you control over the color of the plot and the type of line or symbol
used. mesh(x,y,z) provides plots of a 3-D surface, whereas contour(x,y,z) projects
a 3-d surface onto two dimensions. It is easy to add titles, labels and text to the plots
using title, xlabel, ylabel and text. Subscripts, superscripts and Greek letters
can be obtained using TEX commands (e.g., x_t, x^2 and \alpha\mu will result in
xt, x

2 and ��).
To gain mastery over graphics takes some time; the documentation UsingMatlab

Graphics available with Matlab is as good a place as any to learn more. You may
have noticed that statements sometimes end with ; (semi-colon) and they don't.
Matlab is an interactive environment, meaning it interacts with you as it runs
jobs. It communicates things to you via your display terminal. Any time Matlab

executes an assignment statement, meaning that is assigns new values to variables, it
will display the variable on the screen UNLESS the assignment statement end with
a semi-colon. It will also tell you the name of the variable, so the command

x=2+4

will display

x =

6

on your screen, whereas the command

x=2+4;

displays nothing. If you ask Matlab to make some computation but do not assign
the result to a variable, Matlab will assign it to an implicit variable called ans

(short for \answer"). Thus the command

2+4

will display

ans =

6
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B.2 Conditional Statements And Looping

As with any programming language Matlab can evaluate boolean expression such
as A>B, A>=B, A<B, A<=B and A~=B (the last one is not equal; ~ is Matlab's negation
operator). Also ~(A>B), ~(A<B), etc., can be used. These need to be used with a
bit of case when A and B are not scalars, however. A>B creates a matrix of zeros
and ones equal in size to A and B. If you want to know is any of the elements of A
are bigger than any of the elements of B is the same as checking whether any of the
elements of the matrix A>B are non-zero.

Matlab provides the functions any and all to evaluate matrices resulting form
boolean expressions. As with many Matlab functions, any and all operate on rows
and return a rows vector with the same number of columns as the original matrix. This
is true for sum and prod functions as well. The following are equivalent expressions

any(A>B)

and

sum(A>B)>0

The following are also equivalent:

all(A>B)

and

prod(A>B)>0

All of these expression are row vectors:

size(all(A>B))

is equal to

[1 max(size(A),size(B))]

Boolean expressions are mainly used to handle conditional execution of code using
one of the following:

if expression
...
end

if expression
...
else

...
end
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or
while expression
...
end

The �rst two of these are single conditionals, for example

if X>0, A=1/X; else A=0, end

You should also be aware of the switch command (type help switch). The last is
for looping. Usually you use while for looping when you don't know how many times
the loop is to be executed and use a for loop when you know how many times it will
be executed. To loop through a procedure n times for example, one could use the
following code:

for i=1:n, X(I)=3*X(i-1)+1; end

A common use of while for our purposes will be to iterate until some convergence
criteria is met, such as

P=2.537;

X=0.5;

DX=0.5;

while DX<1E-7;

DX=DX/2;

if normcdf(X)>P, X=X-DX; else X=X+DX; end

disp(X)

end

(can you �gure out what this code does?). One thing in this code fragment that has
not yet been explained is disp(X). This will write the matrix X to the screen.

B.3 Scripts and Functions

When you work in Matlab you are working in an interactive environment that
stores the variables you have de�ned and allows you to manipulate them throughout
a session. You do have the ability to save groups of commands in �les that can be
executed many times.

Matlab has two kinds of command �les, called m-�les. The �rst is a script
m-�le. If you save a bunch of commands in a script �le called MYFILE.m and then
type the word MYFILE at the Matlab command line, the commands in that �le will
be executed just as if you had run them each from the Matlab command prompt
(assuming Matlab can �nd where you saved the �le). A good way to work with
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Matlab is to use it interactively, and then edit you session and save the edited
commands to a script �le. You can save the session either by cutting and pasting or
by turning on the diary feature (use the on-line help to see how this works by typing
help diary).

The second type of M-�les is the function �le. One of the most important aspects
of Matlab is the ability to write your own functions, which can then be used and
reused just like intrinsic Matlab functions. A function �le is a �le with an m
extension (e.g., MYFUNC.m) that begins with the word function.

function Z=DiagReplace(X,v)

% DiagReplace Put vector v onto diagonal of matrix X

% SYNTAX:

% Z=DiagReplace(X,v);

n=size(X,1);

Z=X;

ind=(1:n:n*n) + (0:n-1);

Z(ind)=v;

You can see how this function works by typing the following code at the Matlab

command line:

m=3; x=randn(m,m); v=rand(m,1); x, v, xv=diagreplace(x,v)

Any variables that are de�ned by the function that are not returned by the function
are lost after the function has �nished executing (n and ind in DiagReplace).

Here is another example:

function x = rndint(k,m,n)

% RANDINT Random integers between 1 and k (inclusive).

% SYNTAX:

% x = rndint(k,m,n);

% Returns an m by n matrix

% Can be used for sampling with replacement.

x=ceil(k*rand(m,n));

Documentation of functions (and scripts) is very important. In M-�les a % denotes
that the rest of the line is a comment. Comments should be used liberally to help
you and others who might read your code understand what the code is intending to
do. The top lines of code in a function �le are especially important. It is here where
you should describe what the function does, what its syntax is and what each of the
input and output variables are. These top line become an online help feature for your
function. For example, typing help randint at the Matlab command line would
display the four commented lines on your screen.
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A note of caution on naming �les is in order. It is very easy to get unexpected
results if you give the same name to di�erent functions, or if you give a name that is
already used by Matlab. Prior to saving a function that you write, it is useful to
use the which command to see if the name is already in use.

Matlab is very exible about the number of arguments that are passed to and
from a function. This is especially useful if a function has a set of prede�ned defaults
values that usually provide good results. For example, suppose you write a function
that iterates until a convergence criteria is met or a maximum number of iterations
has been reached. One way to write such a function is to make the convergence
criteria and the maximum number of iterations be optional arguments. The following
function attempts to �nd the value of x such that ln(x) = ax, where a is a parameter.

function x=SolveIt(a,tol,MaxIters)

if nargin<3 | isempty(MaxIters), MaxIters=100; end

if nargin<2 | isempty(tol), tol=sqrt(eps); end

x=a;

for i=1:MaxIters

lx=log(x);

fx=x.*lx-a;

x=x-fx./(lx+1);

disp([x fx])

if abs(fx)<tol, break; end

end

In this example, the command nargin means "number of input arguments" and
the command isempty checks to see is a variable is passed but is empty (an empty
variable is created by setting it to []). An analogous function for the number of
output arguments is nargout; many times it is useful to put a statement like

if nargout<2, return; end

into your function so that the function does not have do computations that are not
requested. It is possible that you want nothing or more than one thing returned from
a procedure. For example

function [m,v]=MeanVar(X)

% MeanVar Computes the mean and variance of a data matrix

% SYNTAX

% [m,v]=MeanVar(X);

n=size(X,1);

m=mean(X);
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if nargout>1

temp=X-m(ones(n,1),:);

v=sum(temp.*temp)/(n-1);

end

To use this procedure call it with [mu,sig]=MeanVar(X). Notice that is only
computes the variance if more than one output is desired. Thus, the statement
mu=MeanVar(X) is correct and returns the mean without computing the variance.

In the following example, the function can accept one or two arguments and checks
how many outputs are requested. The function computes the covariance of two or
more variables. It can handle both a bivariate case when passed two data vectors and
a multivariate case when passed a single data matrix (treating columns as variables
and rows as observations). Furthermore it returns not only the covariance but, if
requested, the correlation matrix as well.

function [CovMat,CorrMat]=COVARIANCE(X,Y)

% COVARIANCE Computes covariances and correlations

n=size(X,1);

if nargin==2

X=[X Y]; % Concatenate X and Y

end

m=mean(X); % Compute the means

X=X-m(ones(n,1),:); % Subtract the means

CovMat=X'*X./n; % Compute the covariance

if nargout==2 % Compute the correlation, if requested

s=sqrt(diag(CovMat));

CorrMat=CovMat./(s*s');

end

This code executes in di�erent ways depending on the number of input and output
arguments used. If two matrices are passed in, they are concatenated before the
covariance is computed, thereby allowing the frequently used bivariate case to be
handled. The function also checks whether the caller has requested one or two outputs
and only computes the correlation if 2 are requested. Although it would not be a
mistake to just go ahead and compute the correlation, there is no point if it is not
going to be used. Unless additional output arguments must be computed anyway,
it is good practice to compute them only as needed. Some examples of calling this
function are

c=COVARIANCE(randn(10,3));

[c1,c2]=COVARIANCE((1:10)',(2:2:20)');
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Good documentation is very important but it is also useful to include some error
checking in your functions. This makes it much easier to track down the nature of
problems when they arise. For example, if some arguments are requires and/or their
values must meet some speci�c criteria (they must be in a speci�ed range or be inte-
gers) these things are easily checked. For example, consider the function DiagReplace
listed above. This is intended for a square matrix (n�n) X and an n-vector v. Both
inputs are needed and they must be conformable. The following code puts in error
checks.

function Z=DiagReplace(X,v)

% DiagReplace Put vector v onto diagonal of matrix X

% SYNTAX:

% Z=DiagReplace(X,v);

if nargin<2, error('2 inputs are required'); end

n=size(X,1);

if size(X,2)~=n, error('X is not square'); end

if prod(size(v))~=n, error('X and v are not conformable'); end

Z=X;

ind=(1:n:n*n) + (0:n-1);

Z(ind)=v;

The command error in a function �le prints out a speci�ed error message and
returns the user to the Matlab command line. An important feature of Matlab is
the ability to pass a function to another function. For example, suppose that you want
to �nd the value that maximizes a particular function, say f(x) = x�exp(�0:5x2). It
would useful not to have to write the optimization code every time you need to solve
a maximization problem. Instead, it would be better to have solver that handles
optimization problems for arbitrary functions and to pass the speci�c function of
interest to the solver. For example, suppose we save the following code as a Matlab

function �le called MYFUNC.m

function fx=myfunc(x)

fx=x.*exp(-0.5*x.^2);

Furthermore suppose we have another function called MAXIMIZE.m which has the
following calling syntax

function x=MAXIMIZE(f,x0)

The two arguments are the name of the function to be maximized and a starting value
where the function will begin its search (this is the way many optimization routines
work). One could then call MAXIMIZE using
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x=maximize('myfunc',0)

and, if the MAXIMIZE function knows what it's doing, it will return the value 1. Notice
that the word myfunc is enclosed in single quotes. It is the name of the function,
passed as a string variable, that is passed in. The function MAXIMIZE can evaluate
MYFUNC using the feval command. For example, the code

fx=feval(f,x)

is used to evaluate the function. It is important to understand that the �rst argument
to feval is a string variable (you may also want to �nd out about the command
eval, but this is only a primer, not a manual). It is often the case that functions
have auxiliary parameters. For example, suppose we changed MYFUNC to

function fx=myfunc(x,mu,sig)

fx=x.*exp(-0.5*((x-mu)./sig).^2);

Now there are two auxiliary parameters that are needed and MAXIMIZE needs to be
altered to handle this situation. MAXIMIZE cannot know how many auxiliary param-
eters are needed, however, so Matlab provides a special way to handle just this
situation. Have the calling sequence be

function x=MAXIMIZE(f,x0,varargin)

and, to evaluate the function, use

fx=feval(f,x,varargin{:})

The keyword varargin (variable number of input arguments) is a special way that
Matlab has designed to handle variable numbers of input arguments. Although it
can be used in a variety of ways the simplest is shown here, where it simply passes
all of the input arguments after the second on to feval. Don't worry too much if
this is confusing at �rst. Until you start writing code to perform general functions
like MAXIMIZE you will probably not need to use this feature in your own code, but it
is handy to have an idea of what its for when you are trying to read other peoples'
code.

B.4 Debugging

Bugs in your code are inevitable. Learning how to debug code is very important and
will save you lots of time and aggravation. Debugging proceeds in three steps. The
�rst ensures that your code is syntactically correct. When you attempt to execute
some code, Matlab �rst scans the code and reports an error the �rst time it �nds a
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syntax error. These errors, known as compile errors, are generally quite easy to �nd
and correct (once you know what the right syntax is).

The second step involves �nding errors that are generated as the code is executed,
known as run-time errors. Matlab has a built-in editor/debugger and it is the key
to eÆcient debugging of run-time errors. If your code fails due to run time errors,
Matlab reports the error and provides a trace of what was being done at the point
where the error occurred. Often you will �nd that an error has occurred in a function
that you didn't write but was called by a function that was called by a function that
was called by a function (etc.) that you did write. A safe �rst assumption is that the
problem lies in your code and you need to check what your code was doing that led
to the eventual error.

The �rst thing to do with run-time errors is to make sure that you are using the
right syntax in calling whatever function you are calling. This means making sure you
understand what that syntax is. Most errors of this type occur because you pass the
wrong number of arguments, the arguments you pass are not of the proper dimension
or the arguments you pass have inappropriate values.

If the source of the problem is not obvious, it is often useful to use the debugger.
To do this, click on File and the either Open or New from within Matlab. Once
in the editor, click on Debug, then on Stop if error. Now run your procedure again.
When Matlab encounters an error, it now enters a debugging mode that allows you
to examine the values of the variables in the various functions that were executing at
the tie the error occurs. These can be accessed by selecting a function in the stack
on the editor's toolbar. Then placing your cursor over the name of a variable in the
code will allow you to see what that variable contains. You can also return to the
Matlab command line and type commands. These are executed using the variables
in the currently selected workspace (the one selected in the Stack). Generally a little
investigation will reveal the source of the problem (as in all things, it becomes easier
with practice). There is a third step in debugging.

Just because your code runs without generating an error message, it is not neces-
sarily correct. You should check the code to make sure it is doing what you expect.
One way to do this is to test it one a problem with a know solution or a solution that
can be computed by an alternative method. After you have convinced yourself that
it is doing what you want it to, check you documentation and try to think up how it
might cause errors with other problems, put in error checks as appropriate and then
check it one more time. Then check it one more time.

A few last words of advice on writing code and debugging.

1. Break your problem down into small chunks and debug each chunk separately.
This usually means write lots of small function �les (and document them).

2. Try to make functions work regardless of the size of the parameters. For exam-
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ple, if you need to evaluate a polynomial function, write a function that accepts
a vector of values and a coeÆcient vector. If you need such a function once it is
likely you will need it again. Also if you change your problem by using a �fth
order polynomial rather than a fourth order, you will not need to rewrite your
evaluation function.

3. Try to avoid hard-coding parameter values and dimensions into your code. Sup-
pose you have a problem that involves an interest rate of 7%. Don't put a lot
of 0.07s into your code. Later on you will want to see what happens when the
interest rate is 6% and you should be able to make this change in a single line
with a nice comment attached to it, e.g.,

rho=0.07; % the interest rate

4. Avoid loops if possible. Loops are slow in Matlab. It is often possible to do
the same thing that a loop does with a vectorized command. Learn the available
commands and use them.

5. RTFM - internet lingo meaning Read The F-word of choice) Manual.

6. When you just can't �gure it out, check the Matlab technical support site
(MathWorks), the Matlab discussion group (comp.soft-sys.matlab) and De-
jaNews for posting about your problem and if that turns up nothing, post a
question to the discussion group. Don't overdo it, however; people who abuse
these groups are quickly spotted and will have their questions ignored. (If you
are a student, don't ask the group to solve your homework problems. You will
get far more out of attempting them yourself then you'll get out of having some-
one else tell you the answer. You are likely to be found out anyway and it is a
form of cheating.)

B.5 Other Data Types

So far we have only used variables that are scalars, vector or matrices. Matlab also
recognizes multidimensional arrays. Element by element arithmetic works as usual
on these arrays (including addition and subtraction, as well as boolean arithmetic).
Matrix arithmetic is not clearly de�ned for multidimensional arrays and Matlab

has not attempted to de�ne a standard. If you try to multiply two multidimensional
arrays, you will generate an error message. Working with multi-dimensional arrays
can get a bit tricky but is often the best way to handle certain kinds of problems.
An alternative to multi-dimensional arrays is what Matlab calls a cell array. A
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multidimensional array contains numbers for elements. A cell array is an array (pos-
sibly a multi-dimensional one) that other data structures as elements. For example,
you can de�ne a 2 � 1 cell array that contains a 3 � 1 matrix in it �rst cell (i.e., as
element (1; 1)) and a 4 � 4 matrix in its second cell. Cell arrays are de�ned using
curly brackets rather than square ones, e.g.,

x={[1;2],[1 2;3 4]};

Other data types are available in Matlab include string variables, structure
variables and objects. A string variable is self-explanatory. Structure variables are
variables that have named �elds that can be referenced. For example, a structure
variable, X, could have the �elds DATE and PRICE. One could then refer to the data
contained in these �led using X.DATE and X.PRICE. If the structure variable is itself
an array, one could refer to �elds of an element in the structure using X(1).DATE and
X(1).PRICE. Object type variables are like structures but have methods attached to
them. The �elds of an object cannot be directly accessed but must be access using
the methods associated with the object. Structures and objects are advanced topics
that are not needed to get started using Matlab. They are quite useful if you are
trying to design user friendly functions for other users. It is also useful to understand
objects when working with Matlab's graphical capabilities, although, again, you
can get pretty nice plots without delving into how objects work.

B.6 Programming Style

In general there are di�erent ways to write a program that produce the same end
results. Algorithmic eÆciency refers to the execution time and memory used to get the
job done. In many cases, especially in a matrix processing language like Matlab, there
are important trade-o�s between execution time and memory use. Often, however,
the trade-o�s are trivial and one way of writing the code may be unambiguously
better than another.

In Matlab, the rule of thumb is to avoid loops where possible. Matlab is a hybrid
language that is both interpreted and complied. A loop executed by the interpreter is
generally slower than direct vector operations that are implemented in compiler code.
For example, suppose one had a scalar x that one wanted to multiply by the integers
from 1 to n to create a vector y whose ith entry is yi = xi. Both of the following code
segments produce the desired result:

for k=1:n

y(i)=x^i;

end

and
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y=x.^(1:n);

The second way avoids the looping of the �rst and hence executes substantially faster.
Programmer development e�ort is another critical resource required in program

construction that is sometimes ignored in discussions of eÆciency. One reason for
using high level language such as Matlab, rather than a low level language such
as Fortran, is that programming time is often greatly reduced. Matlab carries out
many of the housekeeping tasks that the programmer must deal with in lower level
languages. Even in Matlab, however, one should consider carefully how important it
is to write very eÆcient code. If the code will be used infrequently, less e�ort should
be devoted to making the code computationally eÆcient than if the code will be used
often or repeatedly.

Furthermore, computationally eÆcient code can sometimes be fairly diÆcult to
read. If one plans to revise the code at a later date or if someone else is going to use it,
it may be better to approach the problem in a simpler way that is more transparent,
though possibly slower. The proper balance of computational eÆciency versus clarity
and development e�ort is a judgment call. A good idea, however, is embodied in the
saying \Get it to run right, then get it to run fast." In other words, get your code to
do what you want it to do �rst, then look for ways to improve its eÆciency.

It is especially important to document one's code. It does not take long for even an
experienced programmer to forget what a piece of code does if it is undocumented.
We suggest that one get in the habit of writing headers that explain clearly what
the code in a �le does. If it is a function, the header should contain details on the
input and output arguments and on the algorithm used (as appropriate), including
references. Within the code it is a good idea to sprinkle reminders about what the
code is doing at that point.

Another good programming practice is modularity. Functions that perform a
simple well de�ned task that is to be repeated often should be written separately and
called from other functions as needed. The simple functions can be debugged and
then depended on to perform their job in a variety of applications. This not only saves
program development time, but makes the resulting code far easier to understand.
Also, if one decides that there is a better way to write such a function, one need
only make the changes in one place. An example of this principle is a function that
computes the derivatives of a function numerically. Such a function will be used
extensively in this book.



Web Resources

http:// Website for this text
http:// Website for CompEcon toolbox
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