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Foreword 

The electronics industry has entered the era of multimillion-gate chips, and there's no 
turning back. By the year 2001, Sematech predicts that state-of-the-art les will 
exceed 12 million gates and operate at speeds surpassing 600 MHz. An engineer 
designing 100 gates/day would require a hypothetical 500 years to complete such a 
design, at a cost of $75 million in today's dollars. This will never happen, of course, 
because the time is too long and the cost is too high. But 12-million gate les will hap
pen, and soon. 

How will we get there? Whatever variables the solution involves, one thing is clear: 
the ability to leverage valuable intellectual property (IP) through design reuse will be 
the invariable cornerstone of any effective attack on the productivity issue. Reusable 
IP is essential to achieving the engineering quality and the timely completion of mul
timillion-gate les. Without reuse, the electronics industry will simply not be able to 
keep pace with the challenge of delivering the "better, faster, cheaper" devices con
sumers expect. 

Synopsys and Mentor Graphics have joined forces to help make IF reuse a reality. 
One of the goals of our Design Reuse Partnership is to develop, demonstrate, and doc
ument a reuse-based design methodology that works. The Reuse Methodology Man
ual (RMM) is the result of this effort. It combines the experience and resources of 
Synopsys and Mentor Graphics. Synopsys' expertise in design reuse tools and Mentor 
Graphics' expertise in IP creation and sourcing resulted in the creation of this manual 
that documents the industry'S first systematic reuse methodology. The RMM 
describes the design methodology that our teams have found works best for designing 
reusable blocks and for integrating reusable blocks into large chip designs. 
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It is our hope that this manual for advanced IC designers becomes the basis for an 
industry-wide solution that accelerates the adoption of reuse and facilitates the rapid 
development of tomorrow's large, complex ICs. 

Aart 1. de Geus 
Chairman & CEO 
Synopsys, Inc. 

Walden C. Rhines 
President & CEO 

Mentor Graphics Corporation 
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Preface to the Second Edition 

The first edition of the RMM has been very warmly received, much to the surprise 
and delight of the authors. But in considering what changes to make for the second 
edition, we thought it useful to try to determine why the book has been so popular. 
What is the key value that readers have found in the book, and how could we add to 
this value? 

Certainly a great deal of the success of the book has been due to the fact that it is the 
first book on a subject of great importance to virtually all chip designers. But the par
ticular comments on the book, both positive and critical, have been very interesting. 

One common observation among readers is that the title may not be accurate; the 
book is really about good design practices in general, not just about reuse. Another 
observation is that the book does not serve as a stand-alone manual for reuse, but 
rather as a guide for readers to develop their own, more detailed design reuse method
ologies. Finally, a number of readers have offered very insightful suggestions of areas 
in the book that need to be addressed in more detail. 

This last issue we have attempted to address in the second edition. We have expanded 
virtually every chapter with additional information, based on suggestions from read
ers and on our own experience over the last year in doing reuse-based design. We 
have also added some new material on low-power design for reuse and the prerequi
sites for doing reuse-based design. We expect to continue updating the RMM, as we 
and the industry learn more about reuse and its role in SoC design. 

But none of these updates will change the basic nature of the book. The RMM will 
never be a complete recipe for how to do reuse-based design. It will never contain all 
the design and coding guidelines that a design team should follow. It will never cover 
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in complete detail how to create timing models for full-custom hard IP. These tasks 
are left for other books, and for the tutorials and user guides provided by tool vendors. 

The reason for this insistence on brevity over completeness has to do with the funda
mental role of the RMM. There are whole (and very large) books devoted to coding 
guidelines, such as Ben Cohen's VHDL Coding Styles and Methodologies, and whole 
(and very large) books devoted to ASIC design, such as Michael Smith's Application
Specific Integrated Circuits. But in these large, detailed studies, it is very easy to get 
consumed with the details and lose sight of the big picture. To be honest, an RMM on 
the same proportions as these books, with the equivalent level of detail, would be 
more than most readers would be willing to read from cover to cover. 

In contrast, the RMM is about forests, rather than trees. It is about the real pitfalls of 
design, the key areas to watch out for. Most of all, it is about a paradigm shift required 
for large designs. 

There is a common thread underlying all of the material in the RMM. It is the obser
vation that we need to restrict the design space in order to do the kinds of designs that 
will make multimillion gate chips feasible. The size of chips today, and the time-to
market pressure put on their designers, requires a different set of tradeoffs, a different 
optimization function from previous generations of design. Many of the designer's 
tricks for saving a picosecond here or a gate there are counter-productive in today's 
designs. Designs need to be simple to be scalable, and they need to be regular in struc
ture to take full advantage of today's design tools. To achieve this, designers need to 
employ a disciplined approach to design. 

We hope that the RMM can help motivate this design discipline, give the key ele
ments of the design style required, and provide sufficient detail that engineers and 
managers can implement the discipline in their own teams. 

To support this goal, we have tried to stress in the second edition a fundamental theme 
of any good design discipline, the concept of locality. Local problems are easy to find 
and to fix. Global problems are inherently harder to deal with; as designs get larger, 
global problems can quickly become intractable, causing schedule delays and even 
project cancellations. 

The three most basic rules that leverage this concept of locality to produce better, and 
more reusable, designs are: 

• Use a fully synchronous design style, and most importantly register the inputs and 
outputs of macros. This makes timing optimization a local problem. 

• Do rigorous, bottom up verification; make sure a block or module is completely 
verified before it is integrated into the next level of hierarchy. This helps to make 
verification as local as possible. 
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• Plan before doing; write a reasonable specification before design begins. This ini
tial planning can help produce well-architected, well-partitioned designs that can 
employ locality effectively. 

For teams not yet employing these rules, especially teams not yet registering their 
inputs and outputs, adoption of these three rules can have a dramatic effect in reduc
ing design time. And these three rules are the first and most important steps toward 
making designs reusable. Throughout the RMM, we have tried to point out how to 
implement these rules, and the effect that they can have on the design cycle. 

We believe that in the future, it simply will not be possible to design large chips with
out following these design guidelines, and without adopting a disciplined approach to 
design. Design tools will be able to assemble multimillion gate chips only if they can 
make certain simplifying assumptions about the locality of timing closure and verifi
cation problems. Otherwise, the global problems of meeting timing and verifying 
functionality will become totally overwhelming. 

We hope that by stressing the underlying principles of good design and of design 
reuse, the RMM can provide designers a practical path toward the design practices 
that can ultimately tame Moore's law. 

Mike Keating 
Mountain View, California 

Pierre Bricaud 
Sophia Antipolis, France 
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CHAPTER 1 Introduction 

Silicon technology now allows us to build chips consisting of tens of millions of tran
sistors. This technology promises new levels of system integration onto a single chip, 
but also presents significant challenges to the chip designer. As a result, many ASIC 
developers and silicon vendors are re-examining their design methodologies, search
ing for ways to make effective use of the huge numbers of gates now available. 

These designers see current design tools and methodologies as inadequate for devel
oping million gate ASICs from scratch. There is considerable pressure to keep design 
team size and design schedules constant even as design complexities grow. Tools are 
not providing the productivity gains required to keep pace with the increasing gate 
counts available from deep submicron technology. Design reuse - the use of pre
designed and pre-verified cores - is the most promising opportunity to bridge the 
gap between available gate-count and designer productivity. 

This manual outlines an effective methodology for creating reusable designs for use 
in a System-on-a-Chip (SoC) design methodology. Silicon and tool technologies 
move so quickly that no single methodology can provide a permanent solution to this 
highly dynamic problem. Instead, this manual is an attempt to capture and incremen
tally improve on current best practices in the industry, and to give a coherent, inte
grated view of the design process. We expect to update this document on a regular 
basis as a result of changing technology and improved insight into the problems of 
design reuse and its role in producing high-quality SoC designs. 

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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1.1 Goals of This Document 

Development methodology necessarily differs between system designers and ASSP 
designers, as well as between DSP developers and chipset developers. However, there 
is a common set of problems facing everyone who is designing SoC-scale ASICs: 

• Time-to-market pressures demand rapid development. 

• Quality of results, in performance, area, and power, are key to market success. 

• Increasing chip complexity makes verification more difficult. 

• Deep submicron issues make timing closure more difficult. 

• The development team has different levels and areas of expertise, and is often scat
tered throughout the world. 

• Design team members may have worked on similar designs in the past, but cannot 
reuse these designs because the design flow, tools, and guidelines have changed. 

• SoC designs include embedded processor cores, and thus a significant software 
component, which leads to additional methodology, process, and organizational 
challenges. 

In response to these problems, many design teams are turning to a block-based design 
approach that emphasizes design reuse. Reusing macros (sometimes called "cores") 
that have already been designed and verified helps to address all of the above prob
lems. However, ASIC design for reuse is a new paradigm in hardware design. Ironi
cally, many researchers in software design reuse point to hardware design as the 
prime model for design reuse, in terms of reusing the same chips in different combi
nations to create many different board designs. However, most ASIC design teams do 
not code their RTI.. or design their testbenches with reuse in mind and, as a result, 
most designers find it faster to develop modules from scratch than to reverse engineer 
someone else's design. 

Some innovative design teams are trying to change this pattern and are developing 
effective design reuse strategies. This document focuses on describing these tech
niques. In particular, it describes: 

• How reusable macros fit into an SoC development methodology 

• How to design reusable soft macros 

• How to design reusable hard macros 

• How to integrate soft and hard macros into an SoC design 

• How to verify timing and functionality in large SoC designs 

In doing so, this document addresses the concerns of two distinct audiences: the cre
ators of reusable designs (macro authors) and chip designers who use these reusable 
blocks (macro integrators). For macro authors, the main sections of interest will be 
those on how to design reusable hard and soft macros, and the other sections will be 
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primarily for reference. For integrators, the sections on designing hard and soft mac
ros are intended primarily as a description of what to look for in reusable designs. 

SoC designs are made possible by deep submicron technology. This technology pre
sents a whole set of design challenges. Interconnect delays, clock and power distribu
tion, and place and route of millions of gates are real challenges to physical design in 
the deep submicron technologies. These physical design problems can have a signifi
cant impact on the functional design of systems on a chip and on the design process 
itself. Interconnect issues, fioorplanning, and timing design must be addressed early 
in the design process, at the same time as the development of the functional require
ments. This document addresses issues and problems related to providing logically 
robust designs that can be fabricated on deep submicron technologies and that, when 
fabricated, will meet the requirements for clock speed, power, and area. 

SoC designs have a significant software component in addition to the hardware itself. 
However, this manual focuses primarily on the creation and reuse of reusable hard
ware macros. This focus on hardware reuse should not be interpreted as an attempt to 
minimize the importance in the software aspects of system design. Software plays an 
essential role in the design, integration, and test of SoC systems, as well as in the final 
product itself. 

1.1.1 Assumptions 

This document assumes that the reader is familiar with standard high-level design 
methodology, including: 

• HDL design and synthesis 

• Design for test, including full scan techniques 

• Floorplanning and place and route 

1.1.2 Definitions 

In this document, we will use the following terms interchangeably: 

• Macro 

• Core 

• Block 

All of these terms refer to a design unit that can reasonably be viewed as a stand-alone 
sub-component of a complete SoC design. Examples include a PCI interface macro, a 
microprocessor core, or an on-chip memory. 



4 Reuse Methodology Manual 

Other tenns used throughout this document include: 

• Subblock - A subblock is a sub-component of a macro, core, or block. It is too 
small or specific to be a stand-alone design component. 

• Hard macro - A hard macro (or core or block) is one that is delivered to the inte
grator as a GDSH file. It is fully designed, placed, and routed by the supplier. 

• Soft macro - A soft macro (or core or block) is one that is delivered to the inte
grator as synthesizable RTL code. 

1.1.3 Virtual Socket Interface Alliance 

The Virtual Socket Interface Alliance (VSIA) is an industry group working to facili
tate the adoption of design reuse by setting standards for tool interfaces and design 
practices. VSIA has done an excellent job in raising industry awareness of the impor
tance of reuse and of identifying key technical issues that must be addressed to sup
port widespread and effective design reuse. 

The working groups of the VSIA have developed a number of proposals for standards 
that are currently in review. To the extent that detailed proposals have been made, this 
document attempts to be compliant with them. 

Some exceptions to this position are: 

• Virtual component: VSIA has adopted the name "virtual component" to specify 
reusable macros. We have used the shorter tenn "macro" in most cases. 

• Finn macro: VSIA has defined an intennediate fonn between hard and soft mac
ros, with a fairly wide range of scope. Finn macros can be delivered in RTL or 
netlist fonn, with or without detailed placement, but with some fonn of physical 
design infonnation to supplement the RTL itself. We do not address finn macros 
specifically in this document; we feel that it is more useful to focus on hard and 
soft macros. As technology evolves for more tightly coupling synthesis and physi
cal design, we anticipate that the category of finn macros will be merged with that 
of soft macros. 

1.2 Design for Reuse: The Challenge 

An effective block-based design methodology requires an extensive library of reus
able blocks, or macros. The developers of these macros must, in turn, employ a design 
methodology that consistently produces reusable macros. This design reuse method
ology is based on the following principles: 

• Creation of every stage of design, from specification to silicon, with the under
standing that it will be modified and reused in other projects by other design teams 
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• The use of tools and processes that capture the design infonnation in a consistent, 
easy-to-communicate fonn 

• The use of tools and processes that make it easy to integrate modules into a design 
when the original designer is not available 

1.2.1 Design for Use 

Design for reuse presents significant new challenges to the design team. But before 
considering innovations, remember that to be reusable, a design must first be usable: 
a robust and correct design. Many of the techniques for design reuse are just good 
design techniques: 

• Good documentation 

• Goodcode 

• Thorough commenting 

• Well-designed verification environments and suites 

• Robust scripts 

Both hardware and software engineers learn these techniques in school, but in the 
pressures of a real design project, they often succumb to the temptation to take short
cuts. A shortcut may appear to shorten the design cycle for code that is used only 
once, but it often prevents the code from being effectively reused by other teams on 
other projects. Initially, complying with these design reuse practices might seem like 
an extra burden, but once the design team is fully trained, these techniques speed the 
design, verification, and debug processes of a project by reducing iterations through
out the code and verification loop. 

1.2.2 Design for Reuse 

In addition to the requirements above for a robust design, there are some additional 
requirements for a hardware macro to be fully reusable. The macro must be: 

• Designed to solve a general problem - This often means the macro must be 
easily configurable to fit different applications. 

• Designed for use in multiple technologies - For soft macros, this means 
that the synthesis scripts must produce satisfactory quality of results with a variety 
of libraries. For hard macros, this means having an effective porting strategy for 
mapping the macro onto new technologies. 

• Designed for simulation with a variety of simulators - A macro or a veri
fication testbench that works with only a single simulator is not portable. Some 
new simulators support both Verilog and VHDL. However, good design reuse 
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practices dictate that both a Verilog and VHDL version of each model and verifi
cation testbench should be available, and they should work with all the major com
mercial simulators. 

• Verified independently of the chip in which it will be used - Often, mac
ros are designed and only partially tested before being integrated into a chip for 
verification, thus saving the effort of developing a full testbench for the design. 
Reusable designs must have full, stand-alone testbenches and verification suites 
that afford very high levels of test coverage. 

• Verified to a high level of confidence - This usually means very rigorous 
verification as well as building a physical prototype that is tested in an actual sys
tem running real software. 

• Fully documented in terms of appropriate applications and restric
tions - In particular, valid configurations and parameter values must be docu
mented. Any restrictions on configurations or parameter values must be clearly 
stated. Interfacing requirements and restrictions on how the macro can be used 
must be documented. 

These requirements increase the time and effort needed for the development of a 
macro, but they provide the significant benefit of making that macro reusable. 

1.2.3 Fundamental Problems 

Teams attempting to reuse code today are frequently faced with code that wasn't 
designed for reuse. The guidelines and techniques described in this document are the 
result of our experience with problems, such as: 

• The design representation is not appropriate. For example, the RTL is available in 
Verilog but the new chip design is in VHDL, or a gate-level netlist using a.51l 
library is available, but an incompatible .35lllibrary is now being used. 

• The design comes with incomplete design information, often with no functional 
specification and with unreadable, uncommented code. 

• Supporting scripts are not available or are so obtuse as to be unusable. 

• The full design was never properly archived, so pieces of the design are scattered 
over various disks on various machines, some of which no longer exist. 

• The tools used to develop the design are no longer supported; vendors have gone 
out of business. 

• The tools used to develop the design had poor inter-operability; scripts to patch the 
tools together have disappeared. 

• A hard macro is available, but the simulation model is so slow that system-level 
simulation is not practical. 
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1.3 Design Reuse: A Business Model 

All the software reuse books, and our own experiences, say that reuse is not just a 
technical issue. In fact, most of the barriers to the adoption of reuse are management 
and cultural in nature. In this document, except for the chapter Implementing a Reuse 
Process, we focus on the technical aspects of reuse. But it is useful to look at the busi
ness and organization context within which design and design reuse occur. The busi
ness models we touch on here are important for defining the cost-benefit equation that 
drives when and how reuse occurs in real organizations. 

1.3.1 Changing Roles in SoC Design 

First we look at a change that is occurring in the role of systems houses and semicon
ductor companies. Traditionally, systems houses (and systems groups within semi
conductor companies) designed ASICs to the RTL level, through functional 
verification and synthesis. The team then handed the design off to ASIC houses for 
physical implementation. Large semiconductor companies had their system, ASIC, 
and full custom divisions. The systems groups designed to the RTL level and the 
ASIC group did physical implementation for internal and external customers. The 
only people who designed chips from start to finish were the groups that could differ
entiate their chips from those done with standard ASIC methodologies: namely, the 
full custom chip design groups. 

SoC designs, and the IP they require, is driving a significant change in this model. 
System designers can no longer do complete RTL designs. Their chips require proces
sors, memory, and other blocks that are provided by the ASIC vendor. The ASIC ven
dor must now do more of the chip integration, manage the IP, and provide simulation 
and synthesis models to the systems designers. As these chips become more complex 
and IP-dominated, systems houses look to ASIC vendors and semiconductor compa
nies to do more and more of the design. In many cases, the systems houses provide 
specifications to their silicon vendor, and the vendor does the entire chip design. This 
frees the systems house to focus on software and applications aspects of the design. 

1.3.2 Retooling Skills for New Roles 

As silicon vendors start to do more of the design, they often find that their ASIC 
groups don't have the front-end design experience to do the design tasks that custom
ers are demanding. So they turn to their chip designers - the full custom design 
groups - to design these new SoCs. The trouble is that these design teams have often 
spent their careers developing full custom chips, focusing on performance at the 
expense of time-to-market. These teams often have not developed the RTL-based 
design skills needed to create SoC designs; more importantly, they do not have the 
culture of balancing performance and time-to-market. 
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As a result, we see a significant retooling of design skills in the industry. Systems 
houses are focused on improving software and system architecture skills to differenti
ate their products. They depend on their silicon providers to provide not just silicon, 
but IP and integration services required to implement very complex chips. ASIC ven
dors and semiconductor houses are learning to develop and manage IP. And design 
teams within these silicon providing companies are developing skills and methodolo
gies for integrating IP into large designs. 

1.3.3 Sources of IP for SoC Designs 

Let us examine this shift in design roles in more detail by considering two representa
tive cases. 

First, let us consider a system designer who is designing a large chip, perhaps a cell 
phone with some advanced features for supporting Internet access. This design will 
require a 32-bit processor, a DSP, large amounts of on-chip memory, numerous blocks 
from previous cell-phone designs, and some new designs for the Internet support 
blocks. 1)rpically, the processor and DSP will come from the silicon vendor; perhaps 
an ARM core for the processor and a TI or DSP Group DSP core. The memory will 
typically be designed by using a memory generator from the silicon vendor. And the 
rest of the blocks will be from internal sources: reusing blocks from previous designs 
and developing new blocks. 

Next, let us consider another scenario. Consider a large semiconductor company that 
is making automotive chips. These chips again use on-chip, 32-bit processors and 
large amounts of memory; in addition they use many blocks from previous genera
tions of designs. Often the new design integrates multiple chips (of the previous gen
eration) into one new chip. In this case, the processor may be a proprietary processor 
from another group in the company; perhaps half or more of the other blocks are from 
other internal groups, who designed the different chips that made up the previous gen
eration chip set. 

We note that in either case, most of the IP that is used to create an SoC design comes 
from internal sources. Only a small fraction comes from third-party IP providers; 
these may be key blocks, such as processors, but the actual number of third-party IP 
blocks in these designs is likely to be small. Developing and managing the internally 
sourced IP is probably the single greatest reuse challenge facing design teams today. 

1.3.4 Cost Models Drive Reuse 

For third-party IP providers, the investment in making a design fully reusable is 
clearly justified: if their IP fails to meet designers expectations in tenus of quality or 
ease of use, they will not have a business. 
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But since most reuse is internal, we need to examine closely the business justification 
for investing in making designs reusable. 

Our current estimate is that designing a typical block for reuse costs about 2-3x the 
cost of designing the same block for a single use. Some of this additional cost may not 
be real: the increase in robustness and ease of integration will earn back some of this 
effort on the very first chip design using the block. 

Nonetheless, there is certainly an additional investment required to make a block 
reusable, not only in time and effort, but in discipline and methodology as well. 

Re-designing an existing block to make it reusable (or more reusable) in future 
designs can also be costly, depending on the amount of rework required. 

The benefits of design for reuse (and re-design for reuse) can be significant. Our cur
rent estimates are that integrating a highly reusable block requires one tenth or less 
the effort of developing that same block for a single use. Thus, reusing the block pro
vides a lOx productivity benefit or higher for that part of the design. For blocks that 
are not fully designed for reuse, this benefit can drop to 2x. Thus, there can be more 
than a 5x productivity benefit in using a block that has been designed (or re-designed) 
for reuse, over reusing a block that was not designed for reuse. 

1.3.5 How Much Reuse and When 

One of the critical questions, then, is which blocks should be designed (or re
designed) for reuse. Clearly, any block that will be used without modification in ten or 
more designs justifies full design for reuse. The lOx productivity benefit over ten or 
more chip designs more than justifies the reuse effort. Domain independent IP such as 
processors, their peripherals, and standard interfaces such as PCI and USB clearly 
need to be designed for reuse. 

Domain specific blocks, such as multi-media or data communication blocks, deserve 
full design-for-reuse if they can be used on several generations of product or on sev
eral different products in a short period of time. The challenge here is build the flexi
bility into these designs so that they can be modified for different applications through 
setting of parameters rather than through changing code. Studies show that white box 
reuse (reuse with code modification) significantly degrades the productivity advan
tage of reuse compared to black box reuse (reuse without modifying the code). 

Application specific blocks - blocks intended for a single chip design - may well 
not justify the effort to make them reusable. For instance, a block that implements a 
standard that will be obsolete by the time the next generation chip is designed, does 
not justify a full design for reuse. These blocks, of course, should be designed for ease 
of integration, since that effort will always pay for itself. 
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For blocks that will only be used three or four times, the issue of design effort is more 
difficult. Such blocks probably do not warrant full design for reuse, but certainly jus
tify some effort towards reusability. Designers of these blocks should follow the 
design and coding guidelines outlined in this book, since these benefit any design and 
required little additional effort. Packaging the IP for reuse, however, is probably not 
justified in these cases. 

We need to issue one warning, though. Most chip designs are actually redesigns of 
existing chips, adding new features, fixing bugs, improving performance, or integrat
ing several chips into one chip. Thus, functions that at first look as if they will only be 
used once end up being used many times. Blocks that implement these functions, if 
they are well designed and designed for reuse, can dramatically improve the time-to
market for these succeeding generations of chips. 

In this document, we describe how to make blocks completely reusable. It is aimed 
primarily at internal reuse: for those design teams that design both blocks and chips, 
and who wish to reuse blocks on several generations of chips. In actual practice, indi
viduals and teams need to assess how much they should invest in making an individ
ual block reusable. This decision is driven by economics; how much investment to 
make in the short term to achieve benefits in the long term. 

We cannot stress strongly enough, however, the critical need to develop most blocks 
so that they can be easily integrated into multiple designs without modifying the code. 
We are on the verge of being able to fit 7-10 million gates into a square centimeter of 
silicon. The only way to design chips this large is to employ widespread, blackbox 
reuse. 



CHAPTER 2 The System-on-a-Chip 
Design Process 

This chapter gives an overview of the System-on-a-Chip (SoC) design methodology. 
The topics include: 

• Canonical SoC design 

• System design flow 

• The role of specifications throughout the life of a project 

• System design process 

2.1 A Canonical SoC Design 

Consider the chip design in Figure 2-1. We claim that, in some sense, this design rep
resents the canonical or generic form of SoC design. It consists of: 

• A microprocessor and its memory subsystem 

• A datapath that includes interfaces to the external system 

• Blocks that perform transformations on data received from the external system 

• Another 110 interface to the external system 

This design is somewhat artificial, but it contains most of the structures and chal
lenges found in real SoC designs. The processor could be anything from an 8-bit 8051 
to a 64-bit RISC. The memory subsystem could be single or multi-leveled, and could 
include SRAM and/or DRAM. The communication interfaces could include PCl, 
Ethernet, USB, A-to-D, D-to-A, electro-mechanical, or electro-optical converters. 
The data transformation block could be a graphics processor or a network router. The 
M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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design process required to specify such a system, to develop and verify the blocks, 
and to assemble them into a fabricated chip contains all the basic elements and chal
lenges of an SoC design. 

Real SoC designs are, of course, much more complex than this canonical example. A 
real design would typically include several sets of IP interfaces and data transforma
tions. Many SoC designs today include multiple processors, and combinations of pro
cessors and DSPs. The memory structures of SoC designs are often very complex as 
well, with various levels of caching and shared memory, and specific data structures 
to support data transformation blocks, such as MPEG2. Thus, the canonical design is 
just a miniature version of an SoC design that allows us to discuss the challenges of 
developing these chips by utilizing reusable macros. 
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Figure 2-1 Canonical hardware view of SoC 

2.2 System Design Flow 

To meet the challenges of SoC, chip designers are changing their design flows in two 
major ways: 

• From a waterfall model to a spiral model 

• From a top-down methodology to a combination of top-down and bottom-up 
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2.2.1 Waterfall vs. Spiral 

The traditional model for ASIC development, shown in Figure 2-2, is often called a 
wateifall model. In a waterfall model, the project transitions from phase to phase in a 
step function, never returning to the activities of the previous phase. In this model, the 
design is often tossed "over the wall" from one team to the next without much interac
tion between the teams. 

This process starts with the development of a specification for the ASIC. For complex 
ASICs with high algorithmic content, such as graphics chips, the algorithm may be 
developed by a graphics expert; this algorithm is then given to a design team to 
develop the R1L for the ASIC. 

After functional verification, either the design team or a separate team of synthesis 
experts synthesizes the ASIC into a gate-level netlist. Then timing verification is per
formed to verify that the ASIC meets timing. Once the design meets its timing goals, 
the netlist is given to the physical design team, which places and routes the design. 
Finally, a prototype chip is built and tested. This prototype is delivered to the software 
team for software debug. 

In most projects, software development is started shortly after the hardware design is 
started. But without a model of the hardware to use for debug, the software team can 
make little real progress until the prototype is delivered. Thus, hardware and software 
development are essentially serialized. 

This flow has worked well in designs of up to lOOk gates and down to .5 /.1. It has con
sistently produced chips that worked right the first time, although often the systems 
that were populated with them did not. But this flow has always had problems. The 
handoffs from one team to the next are rarely clean. The R1L design team may have 
to go back to the system designer and tell him that the algorithm cannot be imple
mented. The synthesis team may go back to the R1L team in and inform them that the 
R1L must be modified to meet timing. 

For large, deep submicron designs, this waterfall methodology simply does not work. 
Large systems have sufficient software content that hardware and software must be 
developed concurrently to ensure correct system functionality. Physical design issues 
must be considered early in the design process to ensure that the design can meet its 
performance goals. 
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As complexity increases, geometry shrinks, and time-to-market pressures continue to 
escalate, chip designers are turning to a modified flow to produce today's larger SOC 
designs. Many teams are moving from the old waterfall model to the newer spiral 
development model. In the spiral model, the design team works on multiple aspects of 
the design simultaneously, incrementally improving in each area as the design con
verges on completion. 

Figure 2-3 shows the spiral SoC design flow. This flow is characterized by: 

• Parallel, concurrent development of hardware and software 

• Parallel verification and synthesis of modules 

• Floorplanning and place-and-route included in the synthesis process 

• Modules developed only if a predesigned hard or soft macro is not available 

• Planned iteration throughout 

In the most aggressive projects, engineers simultaneously develop top-level system 
specifications, algorithms for critical subblocks, system-level verification suites, and 
timing budgets for the final chip integrations. That means that they are addressing all 
aspects of hardware and software design concurrently: functionality, timing, physical 
design, and verification. 

2.2.2 Top-Down vs. Bottom-Up 

The classic top-down design process can be viewed as a recursive routine that begins 
with specification and decomposition, and ends with integration and verification: 

1. Write complete specifications for the system or subsystem being designed. 

2. Refine its architecture and algorithms, including software design and hard-
ware/software cosimulation if necessary. 

3. Decompose the architecture into well-defined macros. 

4. Design or select macros; this is where the recursion occurs. 

5. Integrate macros into the top level; verify functionality and timing. 

6. Deliver the subsystem/system to the next higher level of integration; at the top 
level, this is tapeout. 

7. Verify all aspects of the design (functionality, timing, etc.). 

With increasing time-to-market pressures, design teams have been looking at ways to 
accelerate this process. Increasingly powerful tools, such as synthesis and emulation 
tools, have made significant contributions. Developing libraries of reusable macros 
also aids in accelerating the design process. 
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However, like the waterfall model of system development, the top-down design meth
odology is an idealization of what can really be achieved. A top-down methodology 
assumes that the lowest level blocks specified can, in fact, be designed and built. If it 
turns out that a block is not feasible to design, the whole specification process has to 
be repeated. For this reason, real world design teams usually use a mixture of top
down and bottom-up methodologies, building critical low-level blocks while they 
refine the system and block specifications. Libraries of reusable hard and soft macros 
clearly facilitate this process by providing a source of preverified blocks, proving that 
at least some parts of the design can be designed and fabricated in the target technol
ogy and perform to specification. 

2.2.3 Construct by Correction 

The Sun Microsystems engineers that developed the UltraSPARC processor have 
described their design process as "construct by correction." In this project, a single 
team took the design from architectural definition through place and route. In this 
case, the engineers had to learn how to use the place and route tools, whereas, in the 
past, they had always relied on a separate team for physical design. By going through 
the entire flow, the team was able to see for themselves the impact that their architec
tural decisions had on the area, power, and performance of the final design. 

The UltraSPARC team made the first pass through the design cycle - from architec
ture to layout - as fast as possible, allowing for multiple iterations through the entire 
process. By designing an organization and a development plan that allowed a single 
group of engineers to take the design through multiple complete iterations, the team 
was able to see their mistakes, correct them, and refine the design several times before 
the chip was finally released to fabrication. The team called this process of iteration 
and refinement "construct by correction". 

This process is the opposite of "correct by construction" where the intent is to get the 
design completely right during the first pass. The UltraSPARC engineers believed that 
it was not possible at the architectural phase of the design to foresee all the implica
tion their decisions would have on the final physical design. 

The UltraSPARC development projects was one of the most successful in Sun Micro
systems' history. The team attributes much of its success to the "construct by correc
tion" development methodology. 

2.2.4 Summary 

Hardware and software teams have consistently found that iteration is an inevitable 
part of the design process. There is significant value in planning for iteration, and 
developing a methodology that minimizes the overall design time. This usually means 



18 Reuse Methodology Manual 

minimizing the number of iterations, especially in major loops. Going back to the 
specification after an initial layout of a chip is expensive; we want to do it as few 
times as possible, and as early in the design cycle as possible. 

We would prefer to iterate in tight, local loops, such as coding, verifying, and synthe
sizing small blocks. These loops can be very fast and productive. We can achieve this 
if we can plan and specify the blocks that we need with confidence that the blocks can 
be built to meet the needs of the overall design. A rich library of pre-designed blocks 
clearly helps here; parameterized blocks that allow us to make tradeoffs between 
function, area, and performance are particularly helpful. 

In the following sections we describe design processes in flow diagrams because they 
are a convenient way of representing the process steps. Iterative loops are often not 
shown explicitly, in order to simplify the diagrams. However, we do not wish to imply 
a waterfall methodology. Often, it is necessary to investigate some implementation 
details before completing the specification. In the process flow diagrams, one stage 
can begin before the previous stage is completed, but no stage can be considered com
plete until the previous stage is completed. 

A word of caution: the inevitability of iteration should never be used as an excuse to 
short-change the specification process. Taking the time to carefully specify a design is 
the best way to minimize the number of iterative loops and to minimize the amount of 
time spent in each loop. 

2.3 The Specification Problem 

The first part of the design process consists of recursively developing, verifying, and 
refining a set of specifications until they are detailed enough to allow RTL coding to 
begin. The rapid development of clear, complete, and consistent specifications is a 
difficult problem. In a successful design methodology, it is the most crucial, challeng
ing, and lengthy phase of the project. If you know what you want to build, implemen
tation mistakes are quickly spotted and fixed. If you don't know, you may not spot 
major errors until late in the design cycle or until fabrication. 

Similarly, the cost of documenting a specification during the early phases of a design 
is much less than the cost of documenting it after the design is completed. The extra 
discipline of formalizing interface definitions, for instance, can occasionally reveal 
inconsistencies or errors in the interfaces. On the other hand, documenting the design 
after it is completed adds no real value for the designer and either delays the project or 
is skipped altogether. 
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2.3.1 Specification Requirements 

In an SoC design, specifications are required for both the hardware and software por
tions of the design. The specifications must completely describe the behavior of the 
design as seen by the outside world, including: 

Hardware 

• Functionality 

• Timing 

• Performance 

• External interface to other hardware 

• Interface to SW 

• Physical design issues such as area and power 

Software 

• Functionality 

• Timing 

• Performance 

• Interface to HW 

• SW structure, kernel 

Traditionally, specifications have been written in a natural language, such as English, 
and have been plagued by ambiguities, incompleteness, and errors. Many companies, 
realizing the problems caused by natural language specifications, have started using 
executable specifications for some or all of the system. 

2.3.2 Types of Specifications 

There are two major techniques currently being used to help make hardware and soft
ware specifications more robust and useful: formal specification and executable spec
ification. 

• Formal specification - In formal specification, the desired characteristics of 
the design are defined independently of any implementation. This type of specifi
cation is considered promising in the long term. Once a formal specification is 
generated for a design, formal methods such as property checking can be used to 
prove that a specific implementation meets the requirements of the specification. 
A number of formal specification languages have been developed, including one 
for VHDL called VSPEC [1]. These languages typically provide a mechanism for 
describing not only functional behavior, but timing, power, and area requirements 
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as well. To date, formal specification has not been used widely for commercial 
designs, but continues to be an important research topic. 

• Executable specifications - Executable specifications are currently more use
ful for describing functional behavior in most design situations. An executable 
specification is typically an abstract model for the hardware and/or software being 
specified. For high level specifications, the executable specification is typically 
written in C, C++, SDL[l], Vera, or Specman. At the lower levels, hardware is 
usually described in Verilog or VHDL. Developing these software models early in 
the design process allows the design team to verify the basic functionality and 
interfaces of the hardware and software long before the detailed design begins. 

Most executable specifications address only the functional behavior of a system, 
so it may still be necessary to describe critical physical specifications - timing, 
clock frequency, area, and power requirements - in a written document. Efforts 
are under way to develop more robust ways to capture timing and physical design 
requirements. 

2.4 The System Design Process 

The system design process shown in Figure 2-4 employs both executable and written 
specifications. This process involves the following steps: 

1. System specification 
The process begins by identifying the system requirements: the required functions, 
performance, cost, and development time for the system. These are formulated 
into a preliminary specification, often written jointly by engineering and market
ing. Then, a high-level illgorithmic model for the overall system is developed, usu
ally in C/C++. Tools such as COSSAP, SPW, and Matlab may be more useful for 
some algorithmic-intensive designs, and tools such as Bones, NuThena, SDT 
more useful for control dominated designs. 

This high-level model provides an executable specification for the key functions of 
the system. It can then be used as the reference for future versions of the design. 
For instance, many microprocessor design teams start by developing a C/C++ 
behavioral model of the processor that is instruction accurate. As the design is 
realized in RTL, the behavior of the RTL design is compared to the behavior of the 
C model to verify its correctness. 

The software team can use this high-level model of the hardware a& a vehicle for 
developing and testing the system software. With the software content of SoC 
designs increasing rapidly, it is essential to start the software design as early as 
possible. 
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2. Model refinement and test 
A verification environment for the high-level model is developed to refine and test 
the algorithm. This environment provides a mechanism for refining the high-level 
design, and verifying the functionality and performance of the algorithm. If prop
erly designed, it can also be used later to verify models for the hardware and soft
ware, such as an RTL model verified using hardware/software cosimulation. For 
systems with very high algorithmic content, considerable model development, 
testing, and refinement occurs before the hardware/software partitioning. 

For instance, a graphics or multimedia system may be initially coded in C/C++ 
with all floating point operations. This approach allows the system architect to 
code and debug the basic algorithm quickly. Once the algorithm is determined, a 
fixed-point version of the model is developed. This allows the architect to deter
mine what accuracy is required in each operation to achieve performance goals 
while minimizing die area. 

Finally, a cycle-accurate and bit-accurate model is developed, providing a very 
accurate model for implementation. In many system designs, this refinement of 
the model from floating point to fixed point to cycle accurate is one of the key 
design challenges. 

These multiple models are very useful when the team is using hardware/software 
cosimulation to debug the software. The behavioral model can provide very fast 
simulation for most development and debugging. Later, the detailed, cycle-accu
rate model can be used for final software debug. 

3. Hardware/software partitioning (decomposition) 
As the high-level model is refined, the system architects determine the hard
ware/software partition; that is, the division of system functionality between hard
ware and software. This is largely a manual process requiring judgment and 
experience on the part of the system architects and a good understanding of the 
cost/performance trade-offs for various architectures. A rich library of preverified, 
characterized macros and a rich library of reusable software modules are essential 
for identifying the size and performance of various hardware and software func
tions. Tools, such as NuThena's Forsight can assist in the validation and perfor
mance estimates of a partition. 

The final step in hardware/software partitioning is to define the interfaces between 
hardware and software, and specify the communication protocols between them. 

4. Block specification 
The output of the hardware/software partitioning phase is a hardware specification 
and a software specification. The hardware specification includes a description of 
the basic functions, the timing, area, and power requirements, and the physical and 
software interfaces, with detailed descriptions of the I/O pins and the register map. 
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5. System behavioral model and cosimulation 
Once the hardware/software partition is determined, a behavioral model of the 
hardware is developed in parallel with a prototype version of the software. Often 
these can be derived from the system model and from behavioral models of hard
ware functions that already exist in a library of macros. Hardware/software cosim
ulation then allows the hardware model and prototype software to be refined to the 
point where a robust executable and written functional specifications for each are 
developed. This hardware/software cosimulation continues throughout the design 
process, verifying interoperability between the hardware and software at each 
stage of design. 
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Figure 2-4 Top-level system design and recommended applications for each step 
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CHAPTER 3 System-Level Design 
Issues: Rules and Tools 

This chapter discusses system-level issues such as layout, clocking, floorplanning, on
chip busing, and strategies for synthesis, verification, and testing. These elements 
must be agreed upon before the components of the chip are selected or designed. 

Topics in this chapter include: 

• The standard model 

• Design for timing closure 

• Design for verification 

• System interconnect and on-chip buses 

• Design for low power 

• Design for test 

• Prerequisites for reuse 

3.1 The Standard Model 

As more design teams use IP to do SoC designs, there is a consensus emerging about 
some of the key aspects of reuse-based design. We call this view the "standard model" 
for design reuse. 

In this standard model, the fundamental proposition is this: well-designed IP is the 
key to successful SoC design. No matter how good our SoC integration flow, if the 
blocks we are using are not designed well, the road to tapeout is long and very, very 
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painful. On the other hand, well designed IP can be integrated with virtually any (rea
sonably capable) SoC flow, and produce good results quickly. 

In this chapter, we discuss the design guidelines for producing well-designed IP, as 
well as how to integrate well-designed IP into an SoC design. These guidelines are 
largely driven by the needs of the IP integrator and chip designer. In this sense, they 
are basically system-level design guidelines. 

In the next chapter, we discuss detailed coding guidelines, many of which are 
intended to implement the design guidelines discussed here. 

There are some basic premises underlying all the guidelines in this book: 

• Discipline - Building large systems (on a chip or otherwise) requires restricting 
the design domain to practices that consistently produce scalable, supportable, and 
easy to integrate designs. 

• Simplicity - The simpler the design, the easier it is to analyze, to process with 
various tools, to verify, and to reach timing closure. All designs have problems; 
the simpler the design, the easier it is to find and fix them. 

• Locality - Problems are easiest to find and solve when you know where to look. 
Making timing and verification problems local rather than global has a huge pay
off in reducing design time and improving the quality of a design. Careful block 
and interface design is essential for achieving this locality. 

The authors, and many designers like us, learned these principles while designing 
large systems, and often learned them the hard way. For example (Mike speaking 
here), one of my first jobs was designing very large (hundreds of boards, each with 
hundreds of chips) ECL systems. When I arrived on the job, I was given a "green 
book" of how to do ECL system design. One of the rules was always to buffer inputs 
next to the edge connector, and always to buffer outputs next to the connector. This 
buffering essentially isolated the board, so that the backplane traces could be designed 
as transmission lines without knowing the details of how the daughter boards would 
load each signal. Essentially it made both backplane and board design local (and rela
tively simple) design problems. The global problem, of designing a transmission line 
backplane with arbitrary stubs on the daughter boards, is totally intractable. 

Similarly, on large chip designs, we can make block design into a local problem by 
carefully designing the interfaces. Good interfaces decouple internal timing and func
tion (as much as possible) from the external behavior of the block, and thus from the 
timing and functional behavior of the other blocks. Thus, each block can be designed 
and verified in isolation. If the interfaces are consistent, then the blocks should plug 
and play; any remaining problems should be real, system-level design problems and 
not bugs in the block designs themselves. 
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This concept of locality is also fundamental to object oriented programming. Here, 
classes are used to isolate internal data structures and functions from the outside 
world. Again, by carefully designing the interfaces between the class and the rest of 
the program, design and debug of key functionality can be isolated from the rest of the 
program. Software engineers have found that this approach greatly facilitates design 
and debug of huge software systems, and greatly improves the quality of these sys
tems. 

There are two problems that dominate the SoC design process: achieving timing clo
sure (that is, getting the physical design to meet timing), and functional verification. 
Before we discuss design techniques for addressing these issues, we need to address 
the issue of hard vs. soft IP. This issue can affect how we approach the problems of 
timing closure and verification. 

3.1.1 Soft IP vs. Hard IP 

As the industry gets more experience in reuse-based SoC design, the distinction 
between hard and soft IP is beginning to blur. Until recently, there was a sharp distinc
tion between which IP should be hard and which should be soft. If we look at the 
canonical design in Figure 3-5, this view held that the processor should be hard and 
the interface blocks and peripherals should be soft. The memory, of course, is gener
ated and treated essentially as a hard block. Reasonable people would disagree as to 
whether the data transformation block should be hard or soft. 

Today, the processor may well be available in soft form, and many of the other blocks 
may be available as hard macros. ARM and the DSP Group have both announced soft 
versions of their traditionally hard processor cores [1,2]. 

The emerging trend is that all IP starts out as soft IP, and the RTL is considered the 
golden reference. This approach is essential for rapid migration to new processes. If a 
piece of IP is taken to GDSH, then this hard representation should be stored in the IP 
repository along with the soft version. If another design is done in the same technol
ogy, and if it can use the same functionality and physical characteristics as the hard 
version, then the hard version can be used in the chip design. 

On the other hand, if the process is new, or if the blockage from a piece of hard IP 
makes design of the overall chip difficult, then the soft version should be used. Thus, 
the soft and hard versions of the IP are just different views of the IP, each appropriate 
for different situations. 
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Figure 3·1 Sources of IP for the canonical design 

3.1.2 The Role of Full Custom Design in Reuse 
The standard model for reuse calls for standard cell design using RTL as the reference 
representation of the design. Designs are then synthesized to the target technology 
and physical design is performed. This approach does not use full custom design 
because full custom design results in non-synthesizable, and therefore, less portable 
designs. 

Some design teams have traditionally relied on full custom techniques to differentiate 
their designs in terms of timing performance, area, or low power. Unfortunately, these 
teams have tended also to differentiate themselves in slow time-to-market. We see full 
custom design rapidly disappearing from the vast majority of designs. The small 
incremental benefits from full custom does not justify the time-to-market problem 
that these non-portable, hard to modify designs produce. 

The performance penalty for semi-custom, standard cell-based design appears to be 
quite small. In one recent design, a full custom processor was redesigned using the 
design methodology described in this book. The results were: 

• Maximum clock frequency was the same as for the full custom design. 

• Power was within a few percent of the original full custom version after Power 
Compiler was used to insert clock gating. Clock gating was used in the full custom 
design, but not in the redesigned code. Consequently, power was at first about 2x 
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higher in the redesign than in the custom design. By using Power Compiler instead 
of hand-instantiated clock gating in the redesign, both low power and full reusabil
ity were achieved. 

• Area was initially about 7% larger than the full custom design. However, all of this 
difference was found to be in a small, arithmetic operator. By replacing this opera
tor with a full custom version, the area for the entire processor was the same as for 
the full custom version. 

These results show why even processor designers are using full custom techniques 
only for small portions of their designs. Processor designers tend to use synthesis for 
control logic and full custom only for data paths. The above results indicate that selec
tive use of full custom only on small parts of the data path may produce the same 
results. 

These observations lead to an interesting model for IP designers and integrators. We 
expect non-processor designs to avoid full custom design completely. But for proces
sor designs, integrators can use the RTL version of the processor as-is for rapid 
deployment in a new technology. For the most aggressive designs, they may selec
tively replace one or two key blocks with full custom versions. This approach allows 
the integrator to balance time-to-market against performance, without incurring the 
full cost of a full custom design. 

3.2 Design for Timing Closure: Logic Design Issues 

Timing and synthesis issues include interface design, synchronous or asynchronous 
design, clock and reset schemes, and selection of synthesis strategy. 

3.2.1 Interfaces and Timing Closure 

The proper design of block interfaces can make timing closure - both at the block 
level and system level- a local problem that can be (relatively) easily solved. 

One of the major issues compounding the problem of timing closure for large chips is 
the uncertainty in wire delays. In deep-submicron technologies, the wire delay 
between gates can be much larger than the intrinsic delay of the gate. Wire load mod
els provide estimates of these wire delays for synthesis, but these are only estimates. 
As blocks become larger, the variance between the average delay (well estimated by 
the wire load model) and the actual delay on worst case wires can become quite large. 
To meet timing constraints, it may be necessary to increase the drive strengths of cells 
driving long wires. For very long wires, additional buffers must be inserted at inter
mediate points between the gates to ensure acceptable rise and fall times as well as 
delays. 
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The problem is, of course, that the architect and designer do not know which wires 
will require additional buffering until physical design. If the designer has to wait until 
layout to learn that the design has to be modified to meet timing, then the project can 
easily suffer significant delays. If timing problems are severe enough to require archi
tectural changes, such as increasing the pipeline depth, then other blocks, and even 
software, may be affected. 

Timing driven place and route tools can help deal with some of these timing problems 
by attempting to place critical timing paths so as to minimize total wire length. But 
these tools cannot correct for fundamental architectural issues, such as an insufficient 
number of pipeline stages. And like most optimization tools, they work better on rela
tively small, local problems than on large, global ones. 

Macro Interfaces 

For macros, both inputs and outputs should be registered, as shown in Figure 3-2. 
This approach makes timing closure within each block completely local; internal tim
ing has no effect on the timing of primary inputs and outputs of the block. Macro A 
and Macro B can be designed independently, and without consideration of their rela
tive position on the chip. This design gives a full clock cycle to propagate outputs 
from one block to inputs of another. If necessary, buffers can to be inserted at the top 
level to drive long wires between blocks, without requiring redesign of Macros A and 
B. 

This kind of defensive timing design is useful in all large chip designs, but is essential 
for reuse-based SOC design. The IP designer does not know the timing context in 
which the block will be used. Output wires may be short or they may be many milli
meters. Defensive timing design is the only way to ensure that timing problems will 
not limit the use of the IP in multiple designs. 

The major exception to this policy is the interface between a processor and cache 
memory. This interface is critical for high-performance designs, and usually requires 
special design. However, we prefer to think of the processor plus cache as being the 
true macro, and that the interface between this macro and the rest of the system 
should comply with the design guidelines mentioned above. 

Subblock Interfaces 

There is a corresponding design guideline for subblocks of macros, as shown in 
Figure 3-3. For these designs, registering the outputs of the subblocks is sufficient to 
provide locality in timing closure. Because Macro A is designed as a unit, and is rela
tively small, the designer has all the timing context information needed to develop 
reasonable timing budgets for the design. 
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Figure 3-3 Registering outputs of subblocks 

Because subblock 1 is relatively close to subblock 2, there is a very small chance that 
the output wires from subblock 1 to subblock 2 will be long enough to cause timing 
problems [3]. The wire load estimates, synthesis results, and the timing constraints 
that we provide to the physical design tools should all be accurate enough to achieve 
rapid timing closure in physical design. 
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There are several issues with this approach: 

• When is a block large enough that we must register outputs? 

• When is a block large enough that we must register both inputs and outputs? 

• When can we break these rules and how do we minimize timing risks when we 
do? 

The first issue is reasonably straightforward: any block that is synthesized as a unit 
should have its outputs registered. Synthesis, and time budgeting for synthesis, is 
where we start striving for timing closure. This is where we want to start establishing 
locality in the timing of our designs. 

The second issue has a similar answer: any block that is floorplanned as a unit should 
have its inputs and outputs registered. With blocks, especially reusable blocks, that 
are floorplanned as standalone units, we do not necessarily know how long the wires 
on its outputs and inputs will be. Registering all interfaces gives us the best chance of 
achieving timing closure for an arbitrary chip with an arbitrary floorplan. Consider 
our canonical design. In some designs, we can ensure that the system bus controller 
and the data transformation block will be close. However, we would like to design the 
data transformation block so that it can be used in a wide variety of chip designs, 
including those where the bus controller is ten or more millimeters away. For this rea
son, we want to register all the interfaces of the data transformation block. 

We should violate these guidelines only when we absolutely need to, and only when 
we understand the timing and floorplanning implications of doing so. For example, 
the PCI specification requires several levels of logic between the PCI bus and the first 
flop in the PCI interface block, for several critical control signals. In this case we can
not register all the inputs of the PCI bus directly; but as a result we must floorplan the 
chip so that the PCI block is very close to the I/O pads for those critical control sig
nals. 

Registering the interfaces to the major blocks of a design is the single most powerful 
tool in ensuring timing closure. Localizing timing closure issues allows the synthesis, 
timing analysis, and timing-driven place and route tools to work effectively. 

Once we have reduced timing closure to a series of local timing problems, there are 
several techniques for the internal design of blocks that we can use to facilitate rapid 
timing closure. These techniques are based on the same concept of locality as above. 
We want to make timing closure within blocks a series of local problems as well. 
They key to achieving this locality is to use a fully synchronous, flip-flop based 
design style. 
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3.2.2 Synchronous vs. Asynchronous Design Style 

Rule - The system should be synchronous and register based. Latches should be 
used only to implement small memories or FIFOs. The FIFOs and memories should 
be designed so that they are synchronous to the external world and are edge triggered. 
Exceptions to this rule should be made with great care and must be fully documented. 

In the past, latch-based designs have been popular, especially for some processor 
designs. Multi-phase, non-overlapping clocks were used to clock the various pipeline 
stages. Latches were viewed as offering greater density and higher performance than 
register (flop) based designs. These benefits were sufficient to justify the added com
plexity of design. 

Today, the tradeoffs are quite different. Deep submicron technology has made a huge 
number of gates available to the chip designer and, in most processor-based designs, 
the size of on-chip memory is dwarfing the size of the processor pipeline. Also, with 
deep submicron design, delays are dominated by interconnect delay, so the difference 
in effective delay between latches and flip-flops is minimal. 

On the other hand, the cost of the increased complexity of latch-based design has 
risen significantly with the increase in design size and the need for design reuse. 

Latch timing is inherently ambiguous, as illustrated in Figure 3-4. The designer may 
intend data to be set up at the D input of the latch before the leading edge of the clock, 
ill which case data is propagated to the output on the leading edge of clock. Or, the 
designer may intend data to be set up just before the trailing edge of the clock, in 
which case data is propagated to the output (effectively) on the trailing edge of the 
clock. 

Designers may take advantage of this ambiguity to improve timing. "Tune borrow
ing" is the practice of absorbing some delay by: 

• Guaranteeing that the data is set up before the leading clock edge at one stage 

• Allowing data to arrive as late as one setup time before the trailing clock edge at 
the next stage 

The problem caused by the ambiguity of latch timing, and exacerbated by time bor
rowing, is that it is impossible by inspection of the circuit to determine whether the 
designer intended to borrow time or the circuit is just slow. Thus, timing analysis of 
each latch of the design is difficult. Over a large design, timing analysis becomes 
impossible. Only the original designer knows the full intent of the design. Thus, latch
based design is inherently not reusable. 

For this reason, true latch-based designs are not appropriate for SoC designs. Some 
LSSD design styles are effectively register-based and are acceptable if used correctly. 
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3.2.3 Clocking 
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Rule - The number of clock domains and clock frequencies must be documented. It 
is especially important to document: 

• Required clock frequencies and associated phase locked loops 

• External timing requirements (setup/hold and output timing) needed to interface to 
the rest of the system 

Guideline - Use the smallest possible number of clock domains. If two asynchro
nous clock domains interact, they should meet in a single module, which should be as 
small as possible. Ideally, this module should consist solely of the flops required to 
transfer the data from one clock domain to the other. The interface structure between 
the two clock domains should be designed to avoid metastability [4,5]. 

Guideline - If a phase locked loop (PLL) is used for on-chip clock generation, then 
some means of disabling or bypassing the PLL should be provided. This bypass 
makes chip testing and debug much easier, and facilitates using hardware modelers 
for system simulation. 
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3.2.4 Reset 

Rule - The basic reset strategy for the chip must be documented. It is particularly 
important to address the following issues: 

• Is the reset synchronous or asynchronous? 

• Is there an internal or external power-on reset? 

• Is there more than one reset (hard vs. soft reset)? 

• Is each macro individually resettable for debug purposes? 

There are advantages and disadvantages to both synchronous and asynchronous reset. 

Synchronous reset: 

• Is easy to synthesize - reset is just another synchronous input to the design. 

• Requires a free-running clock, especially at power-up, for reset to occur. 

Asynchronous reset: 

• Does not require a free-running clock. 

• Is harder to implement - reset is a special signal, like clock. Usually, a tree of 
buffers is inserted at place and route. 

• Must be synchronously de-asserted in order to ensure that all flops exit the reset 
condition on the same clock. Otherwise, state machines can reset into invalid 
states. 

• Makes static timing analysis, cycle-based simulation more difficult, and can make 
the automatic insertion of test structures more difficult. 

The major danger with using synchronous reset is the problem of resetting tristate 
buses. Tristate buses must be reset immediately on power-up in order to prevent mul
tiple drivers from driving the bus. Asynchronous power-up reset is the most straight
forward way of addressing this. Our response to this issue is to recommend that users 
not employ tristate buses. Tristate buses require very careful physical design to ensure 
that only one driver is enabled at a time, and to ensure that the bus does not float 
between operations. (A floating bus could float to threshold voltage, causing a large 
amount of current to flow in the receivers.) 

Because there is no guarantee that there will not be any tristate buses in the target chip 
environment, many IP providers are choosing to design their IP with asynchronous 
reset. 
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3.2.5 Timing Exceptions and Multicycle Paths 

In general, the standard model of reuse is for a fully synchronous system. Asynchro
nous signals and other timing exceptions should be avoided; they make chip-level 
integration significantly more difficult. The optimization tools - synthesis and tim
ing-driven place and route - work best with fully synchronous designs. Once the 
clock frequency is defined, these tools can work to ensure that every path from flop to 
flop meets this timing constraint. Any exception to this model - any asynchronous 
signals, multicycle paths, or test signals that do not need to meet this timing constraint 
- must be identified. Otherwise, the optimization tools will focus on optimizing 
these (false) long paths, and not properly optimize the real critical timing paths. Iden
tifying these exceptions is a manual task, and prone to error. Our experience has 
shown that the fewer the exceptions, the better the results of synthesis and physical 
design. 

3.3 Design for Timing Closure: Physical Design Issues 

Once a design synthesizes and meets timing, timing closure becomes a physical 
design issue. Can we physically place and route the design so as to meet the timing 
constraints of the design? One of the keys to achieving rapid timing closure in physi
cal design is to plan the physical design early. 

3.3.1 F100rplanning 

RuI~ - Floorplanning must begin early in the design process. The size of the chip is 
critical in determining whether the chip will meet its timing, performance, and cost 
goals. Some initial floorplan should be developed as part of the initial functional spec
ification for the SoC design. 

This initial floorplan can be critical in determining both the functional interfaces 
between macros and the clock distribution requirements for the chip. If macros that 
communicate with each other must be placed far apart, signal delays between the 
macros may exceed a clock cycle, forcing a lower-speed interface between the mac
ros. 

3.3.2 Synthesis Strategy and Timing Budgets 

Rule - Overall design goals for timing, area, and power should be documented 
before macros are designed or selected. In particular, the overall chip synthesis meth
odology needs to be planned very early in the chip design process. 
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We recommend a bottom-up synthesis approach. Each macro should have its own 
synthesis script that ensures that the internal timing of the macro can be met in the tar
get technology. This implies that the macro should be floorplanned as a single unit to 
ensure that the original wire load model still holds and is not subsumed into a larger 
floorplanning block. 

Chip-level synthesis then consists solely of connecting the macros and resizing output 
drive buffers to meet actual wire load and fanout. To facilitate this, the macro should 
appear at the top level as two blocks: the internals of the macro (which are 
dont_touched) and the output buffers (which undergo incremental compile). 

3.3.3 Hard Macros 

Rule - A strategy for floorplanning, placing, and routing a combination of hard and 
soft macros must be developed before hard macros are selected or designed for the 
chip. Most SoC designs combine hard and soft macros, and hard macros are problem
atic because they can cause blockage in the placement and routing of the entire chip. 
Too many hard macros, or macros with the wrong aspect ratio, can make the chip 
unroutable or unacceptably big, or can create unacceptable delays on critical nets. 

3.3.4 Clock Distribution 

Rule - The design team must decide on the basic clock distribution architecture for 
the chip early in the design process. The size of the chip, the target clock frequency, 
and the target library are all critical in determining the clock distribution architecture. 

To date, most design teams have used a balanced clock tree to distribute a single clock 
throughout the chip, with the goal of distributing the clock with a low enough skew to 
prevent hold-time violations for flip-flops that directly drive other flip-flops. 

For large, high-speed chips, this approach can require extremely large, high-power 
clock buffers. These buffers can consume as much as half of the power in the chip and 
a significant percentage of the real estate. 

Guideline - For chips attempting to achieve lower power consumption, design 
teams are turning to a clock distribution technique similar to that used on boards 
today. A lower-speed bus is used to connect the modules and all transactions between 
modules use this bus. The bus is fully synchronous and a clock is distributed as one of 
the bused signals. The clock distribution for this bus still requires relatively low skew, 
but the distribution points for the clock are much fewer. Each macro can then syn
chronize its own local clock to the bus clock, either by buffering the bus clock or by 
using a phase locked loop. This local clock can be a multiple of the bus clock, allow
ing higher frequency clocking locally. 
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3.4 Design for Verification: Verification Strategy 

Design teams consistently list timing closure and verification as the major problems 
in chip design. For both of these problems, careful planning can help reduce the num
ber of iterations through the design process. And for both problems, the principle of 
locality can help reduce both the number of iterations and the time each iteration 
takes, by making problems easier to find and to fix. 

The objective of verification is to ensure that the block or chip being verified is 100% 
functionally correct. In practice, this objective is rarely, if ever, achieved. In software, 
several defects per thousand lines of code is typical for new code [6,7]. RTL code is 
unlikely to be dramatically better. 

We have found that the best strategy for minimizing defects is to do bottom up verifi
cation; that is, to verify each module as thoroughly as possible before it is integrated 
into the next level module (or chip). Finding and fixing bugs is easier in small designs. 
Then, the major verification task in the next level module is to test the interaction 
between sub-modules. 

The major difficulty in bottom-up verification is developing testbenches at every level 
of hierarchy. For this reason, designers often do cursory testing at the submodule level 
(where a submodule is typically designed by a single engineer) before integrating it 
into the large block (typically designed by five or six engineers). This approach may 
be more convenient, but it usually results in poorer verification. 

With modem testbench creation languages, such as Vera and Specman, creating test
benches at the submodule level is considerably easier than before. For well-designed 
blocks with clean, well-defined interfaces, these tools plus code coverage tools allow 
the designer to do very thorough verification at the submodule level, as well as at the 
module and chip levels. 

Rule - The system-level verification strategy must be developed and documented 
before macro selection or design begins. Selecting or designing a macro that does not 
provide the modeling capability required for system-level verification can prevent 
otherwise successful SoC designs from completing in a timely manner. See Chapter 
11 for a detailed discussion of system-level verification strategies. 

Rule - The macro-level verification strategy must be developed and documented 
before design begins. This strategy should be based on bottom-up verification. Clear 
goals, testbench creation methodology, and completion metrics should all be defined. 
See Chapter 7 for a detailed discussion of macro-level verification. 

Guideline - The verification strategy determines which verification tools can be 
used. These tools could include event-driven simulation, cycle-based simulation, 
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and/or emulation. Each of these tools could have very specific requirements in terms 
of coding style. If a required macro or testbench is not coded in the style required by 
the tool, the design team may have to spend a significant amount of effort to translate 
the code. 

The verification strategy also determines the kinds of testbenches required for system
level verification. These testbenches must accurately reflect the environment in which 
the final chip will work, or else we are back in the familiar position of ''the chip 
works, but the system doesn't." Testbench design at this level is non-trivial and must 
be started early in the design process. 

3.5 System Interconnect and On-Chip Buses 

The wide variety of buses used in SOC designs presents a major problem for reuse
based design. A number of companies and standards committees have attempted to 
standardize buses and interfaces, with mixed results. In this section, we discuss some 
of the issues facing designers attempting to design IP for multiple environments and 
SoC designers attempting to integrate IP from various (incompatible) sources. 

3.5.1 Basic Interface Issues 

The version of our canonical design shown in Figure 3-5 shows a common configura
tion for buses on an SoC design. A hierarchy of buses is used to deal with the different 
bandwidth requirements of the various blocks in the system. A high-speed processor 
bus provides a high-bandwidth channel between the processor and its primary periph
erals. A lower-bandwidth system bus provides a channel between the processor and 
the other blocks in the system. In our case, the data transformation block only needs 
setup information from the processor; the high speed path is from the 110 block to the 
data transformation block. 

The challenge to the SoC designer is determining which detailed bus architectures to 
use for the various buses. 
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Figure 3·5 A hierarchical bus structure 

3.5.2 Tristate vs. Mux Buses 

The first consideration in designing anyon-chip bus is whether to use a tristate bus or 
a multiplexer-based bus. Tristate buses are popular for board-level design, because 
they reduce the number of wires in the design. Tristate buses are problematic for on
chip interconnect, however. It is essential to ensure that only one driver is active on 
the bus at anyone time; any bus contention, with multiple drivers active at the same 
time, can reduce the reliability of the chip significantly. For high-performance buses, 
where we want to be driving the bus on nearly every cycle, this requirement can pro
duce very timing-critical, technology-dependent designs. Similarly, tristate buses 
must never be allowed to float; if they float to threshold voltage, they can cause high 
currents in the receiver, again reducing long-term chip reliability. Either some form of 
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bus-keeper, or a guarantee that exactly one driver is driving the bus at all times, is 
required. This requirement is particularly difficult to meet during power-on. 

Guideline - For these reasons, we recommend using multiplexer-based buses when
ever possible. They are not nearly as technology-dependent as tristate buses, and thus 
result in much more portable designs. They are simpler and much less likely to affect 
long-term reliability of the chip. Thus, they are easier to implement, and in general 
lead to shorter development times. 

3.5.3 Reuse Issues and On-Chip Buses 

One major problem in reuse-based design is the large number of different bus archi
tectures used in chip designs. Different processors, of course, all have different buses; 
but even different divisions within the same company, using the same processor, will 
use slightly different bus architectures. This fact makes interchange of IP even 
between different divisions of the same company very problematic. 

To address this problem, some companies have attempted to standardize on a single 
bus. However, the requirements of different designs have prevented this approach 
from being successful. Some chip designs have very aggressive timing goals, and 
need very wide, high performance buses. Other designs are targeting low-power 
applications, and need a narrow, low-power bus. These differing requirement have 
prevented any effective standardization of buses within companies, much less across 
the industry. 

VSIA, running into these problems when it tried to establish a standard bus, has pro
posed a different approach. Under their proposal, IP blocks would be designed with 
VSI standard interfaces. A series of bus adapters would then bolt on to the IP, allow
ing the IP to work with anyon-chip bus. This approach is shown in Figure 3-6. 

This bus adapter approach is elegant in concept, but poses some problems in practice. 
The IP now has several layers of interface between the core functionality and the bus: 
the IP side VSI interface, and the two interfaces in the adapter. These multiple layers 
may well degrade the performance of the IP, and will certainly add gates to the design. 

A number of companies are examining this adapter approach carefully, and are devel
oping internal projects for testing it. But it is too early to tell if this approach will 
become widely adopted [8]. Other companies have decided to standardize on a few 
buses, typically three or four, and to design IP to work with all of these standard 
buses. Usually this means that macros are designed so that the interface block is a sep
arate subblock of the IP. Three or four different interface blocks are designed to allow 
the macro to interface to all of the standard buses. 
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3.5.4 IP·to·IP Interfaces 

Another challenge for reuse-based design is the interface between various IP blocks. 
For example, in our canonical design in Figure 3-5, if the I/O block and the data trans
formation block are obtained from different suppliers, we may have a problem con
necting them. Their interfaces will most likely not be directly compatible; some re
design of at least one of the blocks may be required. 

Different design teams are trying different approaches to this problem. One approach 
is to assume that the direct I/O to data transformation block connection will be FIFO
based, but not to provide the FIFO in either block. Rather, the system designer can 
design a small block with just the FIFO and two simple interfaces; one to the I/O 
block and the other to the data transformation block. This approach has been used 
successfully in a number of applications. 

Another approach is to eliminate direct IP-to-IP connections altogether. Several 
design teams are looking at forcing all block-to-block communication to take place 
over the bus. This reduces the IP-to-IP interface problem to an IP to bus interface 
problem, greatly reducing the complexity of the overall problem. For a variety of 
designs, teams have shown (at least on paper) that buses can be designed with more 
than enough bandwidth to handle this additional communication. But once again, we 
do not have enough experience with this approach to know if it will be widely 
adopted. 

Considering the conflicting approaches to solving the on-chip bus problem, we rec
ommend the following guidelines to SoC design teams. 
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Rule - The design of the on-chip busing scheme that will interconnect the various 
blocks in an SoC design must be an integral part of the macro selection and design 
process. If it is done after the fact, conflicting bus designs are likely to require addi
tional interface hardware design and could jeopardize system performance. 

Guideline - There are different bus strategies for different kinds of blocks used in an 
SoC design. Microprocessors and microcontrollers tend to have fixed interfaces, so it 
is necessary to design or select peripherals that can interface to the selected micro
controller. 

Because of the need to interface to a variety of buses, it is best to design or select mac
ros that have flexible or parameterizable interfaces. FIFO-based interfaces are particu
larly flexible; they have simple interfaces, simple timing requirements, and can 
compensate for different data rates between the macro and the bus. 

The PI-Bus defined by the Open Microprocessor Systems Initiative (OMI), the FISP
bus from Mentor Graphics, and the AMBA system and peripheral buses from ARM 
are examples of on-chip buses [9,10,11]. We believe most on-chip buses will share 
many of the characteristics of these standards, including: 

• Separate address and data buses 

• Support for multiple masters 

• Request/grant protocol 

• Fully synchronous, multiple-cycle transactions 

3.5.5 Design for Bring-Up and Debug: On-Chip Debug 
Structures 

Rule - The design team must develop a strategy for the bring-up and debug of the 
SoC design at the beginning of the design process. The most effective debug strate
gies usually require specific features to be designed into the chip. Adding debug fea
tures early in the design cycle greatly reduces the incremental cost of these features, 
in terms of design effort and schedule. Adding debug features after the basic function
ality is designed can be difficult or impossible. However, without effective debug 
structures, even the simplest of bugs can be very difficult to troubleshoot on a large 
SoC design. 

Guideline - Controllability and observability are the keys to an easy debug process. 

• Controllability is best achieved by design features in the macros themselves. The 
system should be designed so that each macro can be effectively turned off, turned 
on, or put into a debug mode where only its most basic functions are operational. 
This can be done either from an on-chip microprocessor or microcontroller, or 
from the chip's test controller. 
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• Observability is best achieved by adding bus monitors to the system. These moni
tors check data transactions, detect illegal transactions, and provide a logic ana
lyzer type of interface to the outside world for debugging. 

For a general discussion of on-chip debug techniques, see [12]. For a description of 
ARM's approach to on-chip debug, see [13]. Motorola, Hitachi, Hewlett-Packard, 
Siemens, and Bosh Etas have formed the Nexus Global Embedded Processor Debug 
Interface Standard Consortium to devise a debug interface standard [14,15]. 

3.6 Design for Low Power 

With portable devices becoming one of the fastest growing segments in the electron
ics market, low power design has become increasingly important. Traditionally, 
design teams have used full custom design to achieve low power, but this approach 
does not give the technology portability required for reuse-based design. In this sec
tion we discuss techniques that result in both low power and reusable designs. 

The power in a CMOS circuit consists of static and dynamic power. For standard cell 
designs, static current is inherently low, and is primarily a function of the library 
rather than the design. So we will focus on techniques for lowering the dynamic 
power of a design. 

The dynamic power of a CMOS design can be expressed as: 

where the sum is over all nodes, a is the switching activity for the node,! is the clock 
frequency, C is the capacitance of the node, and V is the supply voltage. 

The basic approach to low power design is to minimize a, C, and V; f is then fixed by 
the required system performance. 

3.6.1 Lowering the Supply Voltage 

Lowering the supply voltage has the largest effect on power; lowering the voltage 
from 5v to l.1v results in a 21x reduction in power. Silicon providers have been low
ering the standard supply voltage with each new process from .5).1 onwards. Running 
the core of the chip at the lowest possible voltage (consistent with correct functional
ity) is the first step in achieving a very low-power design. 
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Unfortunately, lowering the supply voltage has several adverse effects which must be 
overcome in other areas of design. 

The primary problem with lowering the supply voltage is that it slows the timing per
formance of the chip. To compensate for this factor, designers typically use pipelining 
and parallelism to increase the inherent performance of the design. Although this 
increases area of the design, and thus the overall capacitance, the end result can lower 
power significantly [16]. 

110 voltages must meet the requirements of the board design, and are usually higher 
than the minimum voltage that the process will support. Typical 110 voltages are 3.3v 
or 5v. Most designers run the 110 at the required voltage, and use a separate, lower 
voltage power supply for the core logic of the chip. 

3.6.2 Reducing Capacitance and Switching Activity 

Once we have lowered the supply voltage to the minimum, we need to reduce the 
capacitance and switching activity of the circuit. 

The standard cell library provider can use a variety of techniques to produce a low 
power library. The detailed techniques are beyond the scope of this book, but are dis
cussed in [17]. 

Once we have selected a good low-power library, we can use architectural and design 
techniques to reduce system power. In real chips, memory design, 110 cells, and the 
clocking network often dominate overall power. These areas deserve special attention 
when doing low power design. 

Reducing power in 110 requires minimizing the internal, short-circuit switching cur
rent (by selecting the right 110 cell from the library) and minimizing the capacitance 
of the external load. 

Memory Architecture 

Reducing power in the on-chip memories again involves both circuit and architectural 
techniques. Most silicon providers have memory compilers that can produce a variety 
of memory designs that trade off area, power, and speed. 

The memory architecture itself can reduce power significantly. Instead of using a sin
gle, deep memory, it may be possible to partition the memory into several blocks, 
selected by a decode of the upper or lower address bits. Only the block being accessed 
is powered up. This approach again produces redundant logic (in extra decode logic), 
so it reduces power at the expense of (slightly) increasing area. This technique is 
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shown in Figure 3-7 and described in more detail in [16], where an 8x reduction in 
RAM power was achieved. 
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Figure 3·7 Multi-block RAM architecture 

Clock Distribution 

In pipelined designs, a significant portion of the overall power is in the clock, so 
reducing power in the clock distribution network is important. As few different clocks 
as possible should be used. Single clock, flop-based designs can reduce power by 
50% over latch-based dual, non-overlapping clock designs. 

Clock gating, by shutting down clock distribution to part of the circuit, can signifi
cantly reduce chip power. Clock gating, however, can be very technology dependent; 
careful design is required to ensure a portable, reusable design. 

There are two basic types of clock gating: gating the clock to a block of logic, or gat
ing the clock to a single flop. 

In Figure 3-8, a central clock module provides separate gated clocks to Block A and 
Block B. Significant power savings are realized because whole blocks can be shut 
down when not being used. In addition, the entire clock distribution to the block can 
be shut down. Since large buffers are often used in clock distribution networks, shut
ting down the clock inputs to these buffers can result in significant power savings. 

The actual clock gating circuit itself can be non-trivial. Disabling the clock in such a 
way as to avoid generating a glitch on the clock line requires careful design, and a 
detailed knowledge of the timing of the gates used. For this reason, the clock gating 
circuit itself tends to be technology dependent and not reusable. 
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Figure 3-8 Block-level clock gating 

Isolating the clock gating in a separate clock generation block allows Block A and 
Block B to be designed to be completely reusable. The clock generation block can be 
made small, so that its technology-dependent design can be manually verified for cor
rectness. 

In some cases, it may not be possible to gate the clock to an entire block, and the 
designer may want to gate the clock on a flop by flop basis. This case usually occurs 
on flops where we selectively hold data, as shown in Figure 3-9. 

In Figure 3-9a, Reg A has its data selectively held by the mux. Figure 3-9b shows the 
equivalent circuit using clock gating instead, which results in lower power. 

Guideline - Use the approach shown in Figure 3-9a. The approach in Figure 3-9b is 
not recommended for reusable designs, since the clock gating function is inherently 
technology dependent. Today's advanced power synthesis tools can detect the config
uration in Figure 3-9a, and, working in conjunction with clock tree physical design 
tools, automatically convert it to the configuration in Figure 3-9b. 

By designing and coding the circuit without clock gating, engineers can ensure that 
the design is technology independent and reusable. 
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Figure 3-9 Clock gating at individual flip-flops 

3.6.3 Sizing and Other Synthesis Techniques 

Q 

The next major technique for reducing chip power involves optimizing the gate-level 
design for low power. 

Gate sizing can produce a significant power savings in many designs. This technique 
consists of reducing the drive strength of gates to the lowest level that meets the tim
ing requirements for the design. Synthesis tools can do this automatically, without any 
requirement for changing the RTI.. code. 

Some incremental improvement can be gained by restructuring logic to reduce the 
number of intermediate, spurious transitions in the logic. Again, synthesis tools can 
do this automatically. 

3.6.4 Summary 

In [16] the results of several low power chip designs are reported. The results show: 

• 21x reduction in power by lowering the voltage from 5v to 1.1 v. 

• 3-4x reduction from gate sizing, low power I/O cells, and similar gate-level opti
mizations. 

• 2-3x improvement by clock gating. 

• 8x improvement in a memory array by using the multi-block technique described 
above. 

Thus, with a good low-power library, low power design for reuse is possible through a 
combination of architectural techniques and the proper use of power synthesis tools. 
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These techniques can produce designs that are fully reusable and are quite close to 
full custom designs in power consumption. Considering that overall chip power is 
likely to be dominated by I/O and memory, the small increase in power from the logic 
in the chip is more than offset by the time-to-market advantage of having reusable 
blocks. 

3.7 Design for Test: Manufacturing Test Strategies 

Manufacturing test strategies must be established at specification time. The optimal 
strategy for an individual block depends on the type of block. 

3.7.1 System Level Test Issues 

Rule - The system-level chip manufacturing test strategy must be documented. 

Guideline - On-chip test structures are recommended for all blocks. It is not feasi
ble to develop parallel test vectors for chips consisting of over a million gates. Differ
ent kinds of blocks will have different test strategies; at the top level, a master test 
controller is required to control and sequence these independent test structures. 

3.7.2 Memory Test 

Guideline - Some form of BIST is recommended for RAMs. because this provides a 
rapid, easy-to-control test methodology. However, some BIST solutions are not suffi
cient to test data retention. Some form of reasonably direct memory access is recom
mended to detect and troubleshoot data retention problems. 

3.7.3 Microprocessor Test 

Guideline - Microprocessors usually have some form of custom test structure, com
bining full or partial scan and parallel vectors. Often, this means that the chip-level 
test controller must provide the microprocessor with both a scan chain controller and 
some form of boundary scan. 

3.7.4 Other Macros 

Guideline - For most other blocks, the best choice is a full-scan technique. Full scan 
provides very high coverage for very little design effort. The chip-level test controller 
needs to manage the issue of how many scan chains are operated simultaneously, and 
how to connect them to the chip-level I/O. 
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3.7.5 Logic BIST 

Logic BIST is a variation on the full scan approach. Where full scan must have its 
scan chain integrated into the chip's overall scan chain(s), logic BIST uses an LFSR 
(Linear Feedback Shift Register) to generate the test patterns locally. A signature rec
ognition circuit checks the results of the scan test to verify correct behavior of the cir
cuit. 

Logic BIST has the advantage of keeping all pattern generation and checking within 
the macro. This provides some element of additional security against reverse engi
neering of the macro. It also reduces the requirements for scan memory in the tester 
and allows testing at higher clock rates than can be achieve on most testers. Logic 
BIST does require some additional design effort and some increase die area for the 
generator and checker, although tools to automate this process are becoming avail
able. 

Logic BIST is currently being used in some designs, but it is much less common than 
standard full-scan testing. The success of logic BIST in the long term probably 
depends on the ability of scan test equipment manufactures to keep up with the need 
for ever-increasing scan memory in the tester. If the test equipment fails to provide for 
scan test of large chips, logic BIST will become the test methodology of choice for 
SoC designs. 

3.8 Prerequisites for Reuse 

We conclude this chapter with a discussion of some of the prerequisites for reuse, 
some of the technical infrastructure that must be in place for the standard model of 
reuse to be successful. 

3.S.1 Libraries 

First of all, design teams must have access to high quality standard cell libraries. 
These libraries should provide a full set of views, including synthesis, physical, and 
power views. These libraries need to be validated in hardware so that design teams 
can have a high degree of confidence in their timing and power characteristics. 
Finally, the libraries should have accurate, validated wire load models to enable accu
rate synthesis and timing analysis of designs. 

These libraries need to be tested in the SoC flow before they can be considered com
pletely validated. A number of subtle problems, such as not modeling antenna rules 
correctly or using non-standard definitions for rise times, can bring a large chip 
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design project to a screeching halt. Testing the libraries through the entire flow can 
help prevent significant delays on later projects. 

These libraries should be available as early as possible. In some semiconductor com
panies, libraries are not available to design teams until after the process is on line. 
This is too late; many designs are started while the new process is being developed. In 
some cases design teams have designed their own libraries to allow design work to 
proceed. This practice can lead to the proliferation of invalid, high-defect libraries. 

These libraries should also include a set of memory compilers. These memory com
pilers should provide for some tradeoffs between power, area, and timing perfor
mance. They should support single and multiple port configurations, and provide fully 
synchronous interfaces. (Generating a write pulse in standard cell logic requires tech
nology-dependent, non-reusable design practices.) 

If the target technology supports flash EPROM and/or DRAM, then the memory com
pilers should support these as well. 

Although not always considered part of the library, certain analog blocks occur so 
often in chip designs that they should be provided along with the library. These 
include Phase Locked Loop (PLL) clock generators and basic analog-to-digital and 
digital-to-analog converters. PLLs, in particular, are very demanding designs, and it 
makes no sense to force individual design teams to develop their own. 

3.8.2 Physical Design Rules 

One common problem in large designs is that several pieces of hard IP are integrated 
from different sources. For example, an automotive group may use a processor from a 
computer division and a DSP from a wireless division. If these blocks have been 
designed with different physical design rules, and verified using different DRe decks, 
then physical verification at the chip level can be a major problem. The design team 
will be hard pressed to find or develop a DRe deck that will work for both blocks. 

We strongly recommend that, for a given process, standard DRe and LVS decks be 
developed and validated. These decks should be used by all design teams, so that 
physical designs (hard IP) can be exchanged and integrated without undue effort. 
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CHAPTER 4 The Macro Design 
Process 

This chapter addresses the issues encountered in designing hard and soft macros for 
reuse. The topics include: 

• An overview of the macro design workflow 

• Contents of a design specification 

• Top-level macro design and partitioning into subblocks 

• Designing subblocks 

• Integrating subblocks and macro verification 

• Productization and prototyping issues 

4.1 Design Process Overview 

Once the Soc design team has developed a set of specifications for the various macros 
in the design, these macros need to be selected from an existing library of reusable 
parts or designed from scratch. This chapter describes the design process for develop
ing macros, with an emphasis on developing reusable macros. 
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Figure 4-1 shows the macro design process up to the point of integrating subblocks 
into the parent macro. Figure 4-2 shows the process of integrating the subblocks. The 
major steps in the macro design process are: 

1. Specification and partitioning - The first thing the macro design team must 
do is to make sure the team completely understands the initial macro specification. 
The team then refines the specification and partitions the design into subblocks. 
Usually this refinement includes developing a behavioral model and testing it. 
This is particularly useful in algorithmic-intensive designs, where the algorithm 
itself must be developed in addition to the implementation. It also provides an ini
tial testbench and test suite for the macro, and it can be used to generate a simula
tion model for end users of the macro. 

2. Subblock specification and design - Once the partitioning is complete, the 
designer develops a functional specification for the subblock, emphasizing the 
timing and functionality of the interfaces to other subblocks. The specifications for 
all subblocks are reviewed by the team and checked for consistency. The designer 
then develops the RTL code, the detailed timing constraints, the synthesis scripts, 
and the testbench and test suite for the subblock. Once these are completed and 
verified, the subblock is ready for integration with the other subblocks. 

3. Testbench development - In parallel with the subblock development, some 
members of the macro design team refine the behavioral testbench into a testbench 
that can be used for RTL testing of the entire macro. 

4. Timing checks - In addition, the team must be checking the timing budgets of 
the subblocks to ensure that they are consistent and achievable. 

5. Integration - Integrating the subblocks into the macro includes generating the 
top-level netlist and using it to perform functional test and synthesis. The synthe
sis process includes verifying that the macro meets the requirements for manufac
turing testability. This usually consists of doing scan insertion and automatic test 
pattern generation (ATPG) and verifying test coverage. 

Once these tasks have been successfully completed, the macro is ready for produc
tization. 

6. Productization - During the productization phase, the team prepares the macro 
for use by the SoC integration team. For all macros, this involves productization as 
a soft macro. For some macros, additional productization is done to produce a 
hard macro version. 

Figure 4-3 shows the activities of the various team members during the first three 
phases of macro design. 
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It is important to note that the separation of the design process into distinct phases 
does not imply a rigid, top-down design methodology. Frequently, some detailed 
design work must be done before the specification is complete, just to make sure that 
the design can be implemented. 

A rigid, top-down methodology says that one phase cannot start until the preceding 
one is completed. We prefer a more mixed methodology, which simply says that one 
phase cannot complete until the preceding one is completed. 

Methodology note - The design flow described in this chapter is the standard, 
R1LIsynthesis flow. There are several alternate flows that use domain-specific tools 
such as Module Compiler. These flows are described in Chapter 6 of this manual. 
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4.2 Contents of a Design Specification 

Specifications occur at every level in the design process. They are very general at the 
beginning and become progressively more focused and detailed as the design process 
continues. There are common elements, however, to all specifications. This section 
describes the archetypal structure of a good specification. When there are references 
to specifications later in this document, assume that the specifications contain the fol
lowing elements: 

Overview 
This section briefly describes the technical goals for the design. In particular, 
if the design needs to comply with a specific standard, such as an IEEE stan
dard; the standard must be specified here. 

Functional requirements 
This section describes the project from a technical perspective. Its main pur
pose is to describe the unit being designed as seen by the outside world: its 
form, fit, and function, and how it transforms the data at its inputs and outputs, 
based on the values of the software registers. 

Physical requirements 
This section describes the packaging, die size, power, and other physical 
design requirements of the unit being designed. For soft macros, it includes the 
cell libraries the design must support and the performance requirements for the 
design. 

Design requirements 
This section describes the design rules to which the design must comply. It 
may reference a standard design guideline document or explicitly list the 
guidelines. The issues addressed in this section of the specification are those 
described in Chapter 3 of this manual. 

The block diagram 
Block diagrams are essential for communicating the function of most hard
ware. The block diagrams must present enough detail so that the reader can 
understand the functionality of the unit being designed. 

Interfaces to external system 
This section describes the inputs and outputs of the module and how they 
operate: 

• Signal names and functions 

• Transaction protocols with cycle-accurate timing diagrams 

• Legal values for input and output data 

• Timing specifications 

• Setup and hold times on inputs 

• Clock to out times for outputs 
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• Special signals 

• Asynchronous signals and their timing 

• Clock, reset, and interrupt signals and their timing 

Manufacturing test methodology 
This section describes the manufacturing test methodology that the macro sup
ports, and the chip-level requirements for supporting the test methodology. For 
most macros, this methodology will be full scan. Typically, the integrator will 
perform scan insertion and ATPG on the entire chip (or a large section of the 
chip) at one time, rather than doing scan insertion for the macro and then inte
grating it into the chip design. Any untestable regions in the design must be 
specified. 

For some hard macros, the performance penalty of scan-based testing is not 
acceptable, and parallel vectors are used for test. In this case, a ITAG-based 
boundary scan technique is used to isolate the macro and to provide a way to 
apply the vectors to the block. 

The software model 
This section describes the hardware registers that are visible to the software. It 
includes complete information on which registers are read, write, and 
read/write, which bits are valid, and the detailed function of the register. 

Software requirements 
Hardware design doesn't stop until software runs on it. One of the key obliga
tions of the hardware team is to provide the lowest level of software required 
to configure and operate the hardware. Once this software is provided, the 
software team only needs to know about these software routines, and not about 
the detailed behavior of the hardware or of the registers. For many hardware 
systems, this low-level software is referred to as the set of software drivers for 
the system. Although the drivers are often written by the software team, the 
hardware team is responsible for helping to specify this software and for veri
fying that it is correct. 

The specification of this software must be included in the functional specifica
tion. 

Deliverables 
This section describes the deliverables for the project: what files and docu
ments will be created, archived, and delivered at the end of the project. 

Verification Plan 
This section describes how the team will verify that the design requirements 
have been met. It describes what functional tests will be run and what tools 
and processes will be used. It also defines how performance will be verified, 
for example, what configurations will be synthesized with what technology 
libraries. 
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The deliverables and the test plan define the exit criteria for the project. When 
all the deliverables pass all the verification procedures defined in the verifica
tion plan, design is done. 

4.3 Top-Level Macro Design 

The first phase of macro design consists of refining the functional specification to the 
point where the design can be partitioned into subblocks small enough that each sub
block can be designed, coded, and tested by one person. The key to success in this 
phase is a complete and clear specification for the macro and its subblocks. In partic
ular, the interfaces between subblocks must be clearly specified, so that subblock inte
gration will be relatively smooth and painless. 

4.3.1 Top-Level Macro Design Process 

Figure 4-4 shows the top-level macro design process. This phase is complete when 
the design team has produced and reviewed the following top-level design elements: 

• Updated macro hardware specification 

All sections of the document should be updated to reflect the design refinement 
that occurs during the macro top-level design process. In particular, the partition
ing of the macro and the specifications for the subblocks must be added to the 
macro specification. 

• Executable specificationlbehavioral model 

In many cases, a behavioral model is extremely useful as an executable specifica
tion for the macro. This model allows the development and debug of testbenches 
and test suites during the detailed design of the macro, rather than after the design 
is completed. For hard macros, this behavioral model can provide a key simulation 
model for the end user. 

A behavioral model is particularly useful for a macro that has a high algorithmic 
content. For a macro dominated by state machines and with little algorithmic con
tent, a behavioral model may be of little use, because it would have all the interest
ing behavior abstracted out of it. 

A behavioral model is required in the case of macros that have software content. 
The behavioral model provides a high-speed simulation model early in the design 
cycle. The software developers can use this model for software design and debug 
while the detailed design is being done. This approach is essential for meeting 
time-to-market goals with this kind of macro. 
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• Testbench 

A high-level, self-checking testbench with a complete set of test suites is essential 
to the successful design and deployment of the macro. 'JYpically, the testbench 
consists of bus functional models for the surrounding system and is designed to 
allow the verification engineer to write tests at a relatively high level of abstrac
tion. 
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4.3.2 Activities and Tools 

The top-level macro design process involves the following activities and tools: 

Develop algorithms and behavioral models 
For most designs, the behavioral model is developed in C/C++, Verilog, or 
VHDL; some developers are starting to use the new testbench tools Vera and 
Specman for creating behavioral models as well. etC++ is particularly useful 
for designs that require significant hardware/software cosimulation, such as 
processor designs. Verilog, VHDL, Vera, and Specman are preferred for 
designs in which some of the RTL characteristics, such as 110 behavior, may 
be needed. 

These behavioral models are all easily ported to multiple environments, either 
through programming language interfaces to the simulation tools, or using a 
commercial interface like SWIFT. In particular, through the SWIFT interface, 
it is possible to package the model for secure, highly portable distribution to 
most commercial simulators. 

These behavioral models are particularly important for applications such as 
digital video, wireless communications, and data communication. 

For example, in some digital video applications, macros are being designed 
around an application-specific processor. This processor controls the other 
blocks in the macro, simplifying hardware design and improving performance. 
This approach also provides an additional level of reuse through reprogram
ming. Such a design, however, can have significant software content. The 
behavioral model is essential for this kind of design. 

Developing software for a processor-based macro requires significant test and 
debug. This, in turn, requires a model of the hardware that can be simulated at 
tens or hundreds of thousands of cycles per second. RTL and gate-level 
netlists, even when they are available, are much too slow to achieve this kind 
of performance, typically running at tens or hundreds of cycles per second. 
Only a high-level model provides the performance required for software devel
opment and testing. 

Stream-driven tools such as COSSAP and SPW can be useful modeling tools 
for those datapath-intensive designs in which the algorithm itself, independent 
of the implementation, requires significant exploration and development. For 
example, when verifying a video compression algorithm, it may be necessary 
to simulate with many frames of video. The different processing blocks in the 
algorithm typically operate at different data rates; however, including the logic 
to handle these different rates can slow down simulation. With a stream or data 
driven simulator, each block executes as soon as the required data is received. 
This approach provides the kind of simulation performance and ease of model
ing required for datapath-intensive designs like video processing. 
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COS SAP can also help generate RTL code and can assist in the hardware/soft
ware partitioning. 

Develop testbenches 
Testbench design and test development are essential and challenging at every 
level of representation - behavioral, RTL, and gate. For a full discussion of 
the macro testbench, refer to Chapter 7 of this manual. 

4.4 Subblock Design 

The second phase of macro design consists of design, RTL coding, and testing the 
subblocks in the macro. The key to the success of this phase is to have a complete and 
clear specification for each subblock before RTL coding begins, and to have a clear 
understanding of the deliverables needed at the end of the design phase. 

4.4.1 Subblock Design Process 

Subblock design, as illustrated in Figure 4-5, begins when there is a preliminary hard
ware specification for the subblock and a set of design guidelines for the project. The 
phase is complete when the design team has produced and reviewed the following 
subblock design elements: 

• An updated hardware specification for the subblock 

• A synthesis script 
• A testbench for the subblock, and a verification suite that achieves 100% test cov

erage. See Chapter 7 for details on this requirement. In particular, note that the 
testbenchlverification suite must provide 100% path and statement coverage as 
measured by a coverage tool. 

• RTL that passes lint and synthesis. The final RTI.. code for the subblock must com
ply with the coding guidelines adopted by the design team. A configurable lint
like tool that verifies compliance to the guidelines is essential to ensure consistent 
code quality throughout the macro. 

The final RTL code must also synthesize on the target library and meet its timing 
constraints, using a realistic wire load model. 
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4.4.2 Activities and Tools 

The subblock design process involves the following activities and tools: 

Develop the functional and technical specifications 
The actual design of the subblock should be done before, not during, RTL cod
ing. 

The functional specification for the subblock describes, in detail, the aspects of 
the subblock that are visible to the rest of the macro: functionality, 110, timing, 
area, and power. This specification can be included as part of the macro func
tional specification. 

The technical specification describes the internals of the subblock and is 
intended to be the vehicle by which the designer captures the details of the 
subblock design before beginning coding. The quality of the technical specifi
cation is a key factor in determining the time required for the rest of the sub
block design process. A good technical specification allows the designer to 
code once and to verify quickly. A poorly thought-out specification results in 
many iterations through the code/test/synthesis loop. 

Develop RTl 
In most cases, the RTL code is written directly by the designer. 

For some arithmetic-intensive designs, Module Compiler provides a means of 
specifying the datapath and controlling the structures to be synthesized. Mod
ule Compiler generates a gate-level netlist and a simulation model for the sub
block. It takes as input its own Verilog-like HDL. See "RAM and Datapath 
Generators" in Chapter 6 for a more detailed description of the work flow 
using Module Compiler. 

Develop testbench 
The design of the subblock-level testbench is described in Chapter 7. The crit
ical requirements for this testbench are readability and ease of modification, so 
that the designer can easily create and extend the testbench, and use the test
bench to detect and debug problems in the subblock. 

Develop synthesis scripts and synthesize 
The external timing constraints should be fully defined by the specification 
before coding begins. Synthesis scripts must be developed early in the design 
process and synthesis should begin as soon as the RTL code passes the most 
basic functional tests. These early synthesis runs give great insight into prob
lem areas for timing and may significantly affect the final code. 

Run lint 
A lint-like tool, such as VerilintIVHDLlint from InterHDL, provides a power
ful method for checking the RTL for violations of coding guidelines and other 
kinds of errors. It should be run often throughout the design process, since it is 
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the fastest means of catching errors. The final code must pass all lint checks 
specified in the coding guidelines. 

Measure testbench coverage 
It is essential to catch bugs as early as possible in the design process, since the 
time to find and correct a bug increases by an order of magnitude at each level 
of design integration. A bug found early during specificationlbehavioral mod
eling is dramatically cheaper than a bug found at macro integration. 

Coverage tools such as VeriSure and VHDLCover provide a means of measur
ing statement and path coverage for RTL designs and testbenches. A coverage 
tool must be run on the final design and it should indicate 100 percent state
ment and path coverage before the subblock is integrated with other sub
blocks. 

Perform power analysis 
If power consumption is an issue, the design team uses QuickPower or Power 
Compiler to analyze power and to ensure that power consumption is within 
specification. 

4.5 Macro Integration 

The third phase of macro design consists of integrating the subblocks into the top
level macro and performing a final set oftests. The key to the success of this phase is 
to have subblocks that have been designed to the guidelines outlined in this document. 
In particular, the timing and functional behavior of the interfaces between subblocks 
should be completely specified before subblock design and verified after subblock 
design. Most bugs occur at the interfaces between subblocks and as a result of misun
derstandings between members of the design team. 

4.5.1 Integration Process 

The macro integration process, shown in Figure 4-6, is complete when: 

• Development of top-level RTL, synthesis scripts, and testbenches is complete 

• Macro RTL passes all tests 

• Macro synthesizes with reference library and meets all timing, area, and power 
criteria 

• Macro RlL passes lint and manufacturing test coverage 

The only new criterion here is the one about meeting the manufacturing test coverage 
requirements. Most macros use a full scan methodology for manufacturing test, and 
require 95 percent coverage (99 percent is preferred). Whatever the methodology, test 
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coverage must be measured at this point and must be proven to meet the requirements 
in the functional specification. 
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4.5.2 Activities and Tools 

The process of integrating the subblocks into the top-level macro involves the follow
ing activities and tools: 

Develop top-level RTL 
Once the subblocks have all been developed, the design team needs to develop 
a top-level RTL description that instantiates the subblocks and connects them 
together. Parameterizable macros, where the number of instances of a particu
lar sub block may vary, present a particular challenge here. It may be necessary 
to develop a script that will generate the appropriate instances and instantiate 
them in the top level RTL. 

Run functional tests 
It is essential to develop a thorough functional test suite and to run it on the 
final macro design. The design team must run this test on a sufficient set of 
configurations to ensure that the macro is robust for all possible configura
tions. 

The verification strategy for the entire macro is discussed in Chapter 7 of this 
manual. 

Develop synthesis scripts 
Once the subblock-Ievel synthesis scripts have all been developed, the design 
team needs to develop a top-level synthesis script. For parameterizable mac
ros, where the number of instances of a particular subblock may vary, this pre
sents a particular challenge. It may be necessary to provide a set of scripts for 
different configurations of the macro. It may also be useful to provide different 
scripts for different synthesis goals: one script to achieve optimal timing per
formance, another to minimize area. 

Run synthesis 
The design team must run synthesis on a sufficiently large set of configura
tions to ensure that synthesis will run successfully for all configurations. In 
general, this means synthesizing both a minimum and maximum configura
tion. Note that the final synthesis constraints must take into account the fact 
that scan will later be inserted in the macro, adding some setup time require
ments to the flops. 

Use Design Compiler to perform top-level synthesis. 

Perform scan insertion 
The final RTL code must also meet the testability requirements for the macro. 
Most macros will use a full scan test methodology and require 95% coverage 
(99% preferred). 

Use a test insertion tool (for example Test Compiler, TestGen, DFTAdvisor, or 
FastScanlFlexTest) to perform scan insertion and automatic test pattern gener-
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ation for the macro. As part of this process, the test insertion tool should also 
report the actual test coverage for the macro. 

After scan insertion, the design team uses a static timing analysis tool to verify 
the final timing of the macro. 

Perform power analysis 
If power consumption is an issue, the design team uses QuickPower or Power 
Compiler to analyze power and to ensure that power consumption is within 
specification. 

Run lint 
Finally, run the lint tool on the entire design to ensure compliance to guide
lines. In addition, use the lint tool to verify the translatability of the macro and 
testbench between Verilog and VHDL. 

4.6 Soft Macro Productization 

The final phase of macro design consists of productizing the macro, which means cre
ating the remaining deliverables that system integrators will require for reuse of the 
macro. This chapter describes the productization of soft macros only. The develop
ment and productization of hard macros is described in Chapter 8. 

4.6.1 Productization Process 

The soft macro productization phase, shown in Figure 4-7, is complete when the 
design team has produced and reviewed the following components of the final prod
uct. 

• Verilog and VHDL versions of the code, testbenches, and tests 

• Supporting scripts for the design 

This includes the installation scripts and synthesis scripts required to build the dif
ferent configurations of the macro. 

• Documentation 

This includes updating all the functional specifications and generating the final 
user documentation from them. 

• Final version locked in RCS 

All deliverables must be in a revision control system to allow future maintenance. 
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4.6.2 Activities and Tools 

The soft macro productization process involves the following activities and tools: 

Develop a prototype chip 
A prototype chip is essential for verifying both the robustness of the design 
and the correctness of the original specifications. Some observers estimate that 
90 percent of chips work the first time, but only 50 percent of chips work cor
rectly in the system. 

Developing a chip using the macro and testing it in a real application with real 
application software allows us to: 

• Verify that the design is functionally correct. 

• Verify that the design complies with the appropriate standards (for exam
ple, we can take a PCI test chip to the PCI SIG for compliance testing). 

• Verify that the design is compatible with the kind of hardware/software 
environment that other integrators are likely to use. 

The process for developing the prototype chip is a simple ASIC flow appropri
ate for small chip design. It is assumed that the chip will be a simple applica
tion of the macro, perhaps twice the size of the macro itself in gate count. 

Provide macro and testbench in both Verilog and VHDL 
To be widely useful, the macro and its testbenches must be available in both 
the Verilog and VHDL languages. Commercial translators are available, 
including one from InterHDL. These translators do a reasonable job on RTL 
code but still present some challenge for translating testbenches. 

After the code and testbenches have been translated, they must be re-verified 
to validate the translation. 

Test on several simulators 
In addition, the macro and testbenches should be run on the most popular sim
ulators in order to ensure portability. This is particularly important for the 
VHDL simulators, which have significant differences from vendor to vendor. 

Synthesize on multiple technologies 
The macro should be synthesized using a variety of technologies to ensure 
portability of the scripts and to ensure that the design can meet its timing and 
area goals with the ASIC libraries that customers are most likely to use. 

Perform gate-level simulation 
Gate-level simulation must be run on at least one target technology in order to 
verify the synthesis scripts. 
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Formal verification 
Using fonnal verification tools, such as Fonnality or the compare_design 
feature of Design Compiler, we can verify that the final netlist is functionally 
equivalent to the original RTL. 

Create/update user documentation 
The functional specifications created during the design process are usually not 
the best vehicle for helping a customer use the macro. A set of user documents 
must be developed that address this need. The components of this documenta
tion are described in Chapter 9 of this manual. 



CHAPTER 5 RTL Coding Guidelines 

This chapter offers a collection of coding rules and guidelines. Following these prac
tices helps to ensure that your HDL code is readable, modifiable, and reusable. Fol
lowing these coding practices also helps to achieve optimal results in synthesis and 
simulation. 

Topics in this chapter include: 

• Basic coding practices 

• Coding for portability 

• Guidelines for clocks and resets 

• Coding for synthesis 

• Partitioning for synthesis 

• Designing with memories 

• Code profiling 

5.1 Overview of the Coding Guidelines 

The coding guidelines in this chapter are based on a few fundamental principles. The 
basic underlying goal is to develop RTL code that is simple and regular. Simple and 
regular structures are inherently easier to design, code, verify, and synthesize than 
more complex designs. The overall goal for any reusable design should be to keep it 
as simple as possible and still meet its functional and performance goals. 

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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The coding guidelines detailed in this chapter provide the following general recom
mendations: 

• Use simple constructs, basic types (for VHDL), and simple clocking schemes. 

• Use a consistent coding style, consistent naming conventions, and a consistent 
structure for processes and state machines. 

• Use a regular partitioning scheme, with all module outputs registered and with 
modules roughly of the same size. 

• Make the RTL code easy to understand, by using comments, meaningful names, 
and constants or parameters instead of hard-coded numbers. 

By following these guidelines, the developer should be better able to produce code 
that converges quickly to the desired performance, in terms of functionality, timing, 
power, and area. 

S.2 Basic Coding Practices 

The following guidelines address basic coding practices, focusing on lexical conven
tions and basic RTL constructs. 

5.2.1 General Naming Conventions 

Rule - Develop a naming convention for the design. Document it and use it consis
tently throughout the design. 

Guideline - Use lowercase letters for all signal names, variable names, and port 
names. 

Guideline - Use uppercase letters for names of constants and user-defined types. 

Guideline - Use meaningful names for signals, ports, functions, and parameters. For 
example, do not use ra for a RAM address bus. Instead, use ram_addr. 

Guideline - If your design uses several parameters, use short but descriptive names. 
During elaboration, the synthesis tool concatenates the module's name, parameter 
names, and parameter values to form the design unit name. Thus, lengthy parameter 
names can cause excessively long design unit names when you elaborate the design 
with Design Compiler. 

Guideline - Use the name elk for the clock signal. If there is more than one clock in 
the design, use elk as the prefix for all clock signals (for example, elk1, elk2, or 
elk_interface). 
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Guideline - Use the same name for all clock signals that are driven from the same 
source. 

Guideline - For active low signals, end the signal name with an underscore followed 
by a lowercase character (for example, _b or _n). Use the same lowercase character to 
indicate active low signals throughout the design. 

Guideline - For standardization, we recommend that you use _n to indicate an 
active low signal. However, any lowercase character is acceptable as long as it is used 
consistently. 

Guideline - Use the name rst for reset signals. If the reset signal is active low, use 
rsCn (or substitute n with whatever lowercase character you are using to indicate 
active low signals). 

Rule - When describing multibit buses, use a consistent ordering of bits. For VHDL, 
use either (y downto x) or (x to y). ForVerilog, use (x:O) or (O:x). 
Using a consistent ordering helps improve the readability of the code and reduces the 
chance of accidently swapping order between connected buses. 

Guideline - Although the choice is somewhat arbitrary, we recommend using 
(y downto x) for multibit signals in VHDL and (x: 0) for multibit signals in 
Verilog. We make this recommendation primarily to establish a standard, and thus 
achieve some consistency across multiple designs and design teams. 
See Example 5-1. 

Example 5·1 Using downto in port declarations 

entity DW_addinc is 
generic(WIDTH : natural); 
port ( 

A,B in std_logic_vector(WIDTH-l downto 0); 
CI in std_logic; 
SUM out std_logic_vector(WIDTH-l downto 0); 
co out std_logic; 

) ; 

end DW01_addinc; 

Guideline - When possible, use the same name or similar names for ports and sig
nals that are connected (for example, a => a; or a => a_int;). 
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Guideline - When possible, use the signal naming conventions listed in Table 5-1. 

Table 5-1 Signal naming conventions 

Convention Use 

* _r Output of a register (for example, count_r) 

* _a Asynchronous signal (for example, addr_s trobe_a) 

* _pn Signal used in the nth phase (for example, enable--p2) 

* _nxt Data before being registered into a register with the same name 

* _z Tristate internal signal 

5.2.2 Naming Conventions for VITAL Support 

VITAL is a gate-level modeling standard for VHDL libraries and is described in IEEE 
Specification 1076.4. This specification places restrictions on the naming conventions 
(and other characteristics) of the port declarations at the top level of a library element. 

Normally, an RTL coding style document need not address gate-level modeling con
ventions. However, some of these issues can affect developers of hard macros. The 
deliverables for a hard macro include full-functionaVfull-timing models, where a tim
ing wrapper is added to the RTL code. If the timing wrapper is in VHDL, then it must 
be VITAL-compliant. 

Background 

According to IEEE Specification 1076.4, VITAL libraries can have two levels of com
pliance with the standard: VITAL_LeveIO and VITAL_Levell. VITAL_Levell is 
more rigorous and deals with the architecture (functionality and timing) of a library 
cell. VITAL_LeveIO is the interface specification that deals with the ports and gener
ics specifications in the entity section of a VHDL library cell. VITAL_LeveIO has 
strict rules regarding naming conventions and port/generic types. These rules were 
designed so that simulator vend.ors can assume certain conventions and deal with SDP 
back-annotation in a uniform manner. 

Rules 

Section 4.3.1 of IEEE Specification 1076.4 addresses port naming conventions and 
includes the following rules. These restrictions apply only to the top-level entity of a 
hard macro. 
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Rule (hard macro, top-level ports) - 00 not use underscore characters U in the 
entity port declaration for the top-level entity of a hard macro. 

The reason for the above rule is that VITAL uses underscores as separators to con
struct names for SOF back-annotation from the SOF entries. 

Rule (hard macro, top-level ports) - A port that is declared in entity port decla
ration shall not be of mode LINKAGE. 

Rule (hard macro, top-level ports) - The type mark in an entity port declaration 
shall denote a type or subtype that is declared in package std_logic_1164. The 
type mark in the declaration of a scalar port shall denote a subtype of std_ulogic. 
The type mark in the declaration of an array port shall denote the type 
std_logic_vector. 

Rule (hard macro, top-level ports) - The port in an entity port declaration can
not be a guarded port. Furthermore, the declaration cannot impose a range constraint 
on the port, nor can it alter the resolution of the port from that defined in the standard 
logic package. 

5.2.3 Architecture Naming Conventions 

Guideline - Use the VHOL architecture types listed in Table 5-2. 

Table 5-2 Architecture naming conventions 

Architecture Naming Convention 

synthesis ARCHITECTURE rtl OF my_syn_model IS 
model or 

ARCHITECTURE str OF my_structural_design IS 

simulation ARCHITECTURE sim OF my_behave_model IS 
model or 

ARCHITECTURE tb OF my_test_bench IS 

5.2.4 Include Headers in Source Files 

Rule - Include a header at the top of every source file, including scripts. The header 
must contain: 

• Filename 

• Author 
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• Description of function and list of key features of the module 

• Date the file was created 

• Modification history including date, name of modifier, and description of the 
change 

Example 5-2 shows a sample HDL source file header. 

Example 5-2 Header in an HDL source file 

--This confidential and proprietary software may be used 
--only as authorized by a licensing agreement from 
--Synopsys Inc. 
--In the event of publication, the following notice is 
--applicable: 

(C) COPYRIGHT 1996 SYNOPSYS INC. 
ALL RIGHTS RESERVED 

The entire notice above must be reproduced on all 
--authorized copies. 

File 
Author 
Date 
Version 
Abstract 

DWpci_core.vhd 
Jeff Hackett 
09/17/96 
0.1 
This file has the entity, architecture 
and configuration of the PCI 2.1 
MacroCel1 core module. 
The core module has the interface, 
config, initiator, 
and target top-level modules. 

Modification History: 
Date By Version Change Description 

======================================================== 
9/17/96 
11/13/96 
03/04/97 

JDH 
JDH 
SKC 

0.1 Original 
Last pre-Atria changes 

changes for ism_ad_en_ffd_n 
and tsm_data_ffd_n 

======================================================== 
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5.2.5 Use Comments 

Rule - Use comments appropriately to explain all processes, functions, and declara
tions of types and sUbtypes. See Example 5-3. 

Example 5-3 Comments for a sUbtype declaration 

--Create subtype INTEGER_256 for built-in error 
--checking of legal values. 
subtype INTEGER_256 is type integer range ° to 255; 

Guideline - Use comments to explain ports, signals, and variables, or groups of sig
nals or variables. 

Comments should be placed logically, near the code that they describe. Comments 
should be brief, concise, and explanatory. Avoid "comment clutter"; obvious func
tionality does not need to be commented. The key is to describe the intent behind the 
section of code. 

5.2.6 Keep Commands on Separate Lines 

Rule - Use a separate line for each HDL statement. Although both VHDL and Ver
ilog allow more than one statement per line, the code is more readable and maintain
able if each statement or command is on a separate line. 

5.2.7 Line Length 

Guideline - Keep the line length to 72 characters or less. 

Lines that exceed 80 characters are difficult to read in print and on standard terminal 
width computer screens. The 72 character limit provides a margin that enhances the 
readability of the code. 

For HDL code (VHDL or Verilog), use carriage returns to divide lines that exceed 72 
characters and indent the next line to show that it is a continuation of the previous 
line. See Example 5-4. 

Example 5-4 Continuing a line of HDL code 

hp_req <= (xO_hp_req or to_hp_req or xl_hp_req or 
tl_hp_req or sO_hp_req or t2_hp_req or sl_hp_req or 
x2_hp_req or x3_hp_req or x4_hp_req or x5_hp_req or 
wd_hp_req and ea and pf_req nor iip2); 
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5.2.8 Indentation 

Rule - Use indentation to improve the readability of continued code lines and nested 
loops. See Example 5-5. 

Guideline - Use indentation of2 spaces. Larger indentation (for example, 8 spaces) 
restricts line length when there are several levels of nesting. 

Guideline - Avoid using tabs. Differences in editors and user setups make the posi
tioning of tabs unpredictable and can corrupt the intended indentation. There are pro
grams available, including language-specific versions of emacs, that will replace tabs 
with spaces. 

Example S-S Indentation in a nested if loop 

if (bit_width (m+l) >= 2) then 
for i in 2 to bit_width(m+l) loop 

spin_j := 0; 
for j in 1 to m loop 

if j > spin_j then 
if (matrix(m) (i-l) (j) /= wht) then 

if (j=m) and (matrix(m) (i) (j) = wht) then 
matrix(m)(i)(j) := j; 

else 
for k in j+l to m loop 

if (matrix(m) (i-l) (k) /= wht) then 
matrix(m)(i)(k) := j; 
spin_j := k; 
exit; 

end if; 
end loop; -- k 

end if; 
end if; 

end if; 
end loop; -- j 

end loop; -- i 
end if; 



Rll Coding Guidelines 81 

5.2.9 Do Not Use HDL Reserved Words 

Rule - Do not use VHDL or Verilog reserved words for names of any elements in 
your RTL source files. Because macro designs must be translatable from VHDL to 
Verilog and from Verilog to VHDL, it is important not to use VHDL reserved words 
in Verilog code, and not to use Verilog reserved words in VHDL code. 

5.2.10 Port Ordering 

Rule - Declare ports in a logical order, and keep this order consistent throughout the 
design. 

Guideline - Declare one port per line, with a comment following it (preferably on 
the same line). 

Guideline - Declare the ports in the following order: 

Inputs: 

• Clocks 

• Resets 

• Enables 

• Other control signals 

• Data and address lines 

Outputs: 

• Clocks 

• Resets 
• Enables 

• Other control signals 

• Data 

Guideline - Use comments to describe groups of ports. See Example 5-6. 

Example 5-6 Port ordering in entity definition 

entity my_fir is 
generic ( 

DATA_WIDTH positive; 
COEF_WIDTH positive; 
ACC_WIDTH positive; 
ORDER positive 

) ; 
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port 

clk 
rst_n 
run 
load 
tc 

data_in 
coef_in 
sum_in 
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Control Inputs 

in std_logici 
in std_logici 
in std_logic; 
in std_logic; 
in std_logici 

Data Inputs 

in std_logic_vector{DATA_WIDTH-l downto 0); 
in std_logic_vector{COEF_WIDTH-l downto 0); 
in std_logic_vector{ACC_WIDTH-l downto 0); 

Control Outputs 

start 
hold 

out std_logic; 
out std_logici 

Data Outputs 

5.2.11 Port Maps and Generic Maps 

Rule - Always use explicit mapping for ports and generics, using named association 
rather than positional association. See Example 5-7. 

Guideline - Leave a blank line between the input and output ports to improve read
ability. 
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Example 5-7 Using named association for port mapping 

VlIDL: 

-- instantiate my_add 
U_ADD: my_add 

generic map (width => WORDLENGTH) 
port map ( 

a => inl, 
b => in2, 
ci => carry_in, 

sum => sum, 
co => carry_out 

) i 

Verilog: 

II instantiate my_add 
my_add # ( 'WORDLENGTH) 

.a (inl ) , 

.b (in2 ) , 

.ci (carry_in ) , 

. sum (sum ) , 

.co (carry _ou t) 
) i 

U_ADD 

5.2.12 VHDL Entity, Architecture, and Configuration Sections 
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Guideline - Place entity, architecture, and configuration sections of your VHDL 
design in the same file. Putting all the information about a particular design in one file 
makes the design easier to understand and to maintain. 

If you include sUbdesign configurations in a source file with entity and architecture 
declarations, you must comment them out for synthesis. You can do this with the 
pragma translate_off and pragma translate_on pseudo-comments 
in the VHDL source file, as shown in Example 5-8. 
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Example 5·8 Using pragmas to comment out VHDL configurations for synthesis 

-- pragma translate_off 
configuration cfg_example_struc of example is 

for struc 
use example_gate; 

end for; 
end cfg_example_struc; 
-- pragma translate_on 

5.2.13 Use Functions 

Guideline - Use functions when possible, instead of repeating the same sections of 
code. If possible, generalize the function to make it reusable. Also, use comments to 
explain the function. 

For example, if your code frequently converts address data from one format to 
another, use a function to perform the conversion and call the function whenever you 
need to. See Example 5-9. 

Example 5·9 Creating a reusable function 

VlIDL: 

--This function converts the incoming address to the 
--corresponding relative address. 

function convert_address 
(input_address, offset 

return integer is 
begin 

function body here 

end; -- convert_address 

Verilog: 

integer) 

II This function converts the incoming address to the 
II corresponding relative address. 

function ['BUS_WIDTH-l:0] convert_address; 
input input_address, offset; 
integer input_address, offset; 
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begin 
II ... function body goes here 

end 
endfunction II convert_address 

5.2.14 Use Loops and Arrays 
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Guideline - Use loops and arrays for improved readability of the source code. For 
example, describing a shift register, PN-sequence generator, or Johnson counter with 
a loop construct can greatly reduce the number of lines of source code while still 
retaining excellent readability. See Example 5-10. 

Example 5-10 Using loops to improve readability 

shift_delay_loop: for i in 1 to (number_taps-l) loop 
delay(i) := delay(i-l); 

end loop shift_delay_loop; 

The ARRAY construct also reduces the number of statements necessary to describe the 
function and improves readability. Example 5-11 is an example of a register bank 
implemented as a two-dimensional array of flip-flops. 

Example 5-11 Register bank using an array 

type reg_array is array(natural range <» of 
std_logic_vector(REG_WIDTH-l downto 0); 

signal reg: reg_array(WORD_COUNT-l downto 0); 

begin 
REG_PROC: process (clk) 
begin 

if clk='l' and clk'event then 
if we='l' then 

reg (addr) <= data; 
end if; 

end if; 
end process REG_PROC; 

data_out <= reg(addr); 

Guideline - Arrays are significantly faster to simulate than for loops. To improve 
simulation performance, use vector operations on arrays rather than for loops when
ever possible. See Example 5-12. 
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Example 5-12 Using arrays for faster simulation 

Poor coding style; 
function my_xor{ bbit : std_logic; 

avec : std_logic_vector{x downto y) ) 
return std_logic_vector is 

variable cvec : 
std_logic_vector{avec'range-l downto 0); 

begin 
for i in avec'range loop bit-level for loop 

cvec{i) := avec{i) xor bbit; bit-level xor 
end loop; 
return (cvec) ; 

end; 

Recommended coding style: 
function my_xor{ bbit : std_logic; 

avec: std_logic_vector{x downto y) ) 
return std_logic_vector is 

variable cvec, temp : 
std_logic_vector{avec'range-l downto 0); 

begin 
temp := (others => bbit); 
cvec := avec xor temp; 
return{cvec); 

end; 

5.2.15 Use Meaningful Labels 

Rule - Label each process block with a meaningful name. This is very helpful for 
debug. For example, you can set a breakpoint by referencing the process label. 

Guideline - Label each process block <name> _PROC. 

Rule - Label each instance with a meaningful name. 

Guideline - Label each instance U_ <name>. 

In a multi-layered design hierarchy, keep the labels short as well as meaningful. Long 
process and instance labels can cause excessively long path names in the design hier
archy. See Example 5-13. 
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Rule - 00 not duplicate any signal, variable, or entity names. For example, if you 
have a signal named incr, do not use incr as a process label. 

Example 5-13 Meaningful process label 

-- Synchronize requests (hold for one clock) . 
SYNC_PROC : process (reql, req2, rst, clk) 

. .. process body here 

end process SYNC_PROCi 

5.3 Coding for Portability 

The following guidelines address portability issues. By following these guidelines, 
you will create code that is technology-independent, compatible with various simula
tion tools, and easily translatable from VHOL to Verilog (or from Verilog to VHOL). 

5.3.1 Use Only IEEE Standard Types 

Rule (VHDL only) - Use only IEEE standard types. 

You can create additional types and subtypes, but all types and subtypes should be 
based on IEEE standard types. Example 5-14 shows how to create a subtype 
(word_type) based on the IEEE standard type std_Iogic_vector. 

Example 5-14 Creating a subtype from std_Iogic_vector 

--Create new 16-bit subtype 
subtype WORD_TYPE is std_Iogic_vector (15 downto 0); 

Guideline (VHDL only) - Use std_Iogic rather than std_ulogic. Likewise, 
use std_Iogic_vector rather than std_ulogic_vector. The std_Iogic 
and std_Iogic_vector types provide the resolution functions required for 
tristate buses. The std_ulogic and std_ulogic_vector types do not provide 
resolution functions. 

Note - Standardizing on either std_Iogic or std_ulogic is more important 
than which of the two you select. There are advantages and disadvantages to each. 
Most designers today use std_Iogic, which is somewhat better supported by EOA 
tools. In most applications, the availability of resolution functions is not required. 
Internal tristate buses present serious design challenges and should be used only when 
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absolutely necessary. However, at the system level and in those extreme cases where 
internal tristate buses are required, the resolution functions are essential. 

Guideline (VHDL only) - Be conservative in the number of subtypes you create. 
Using too many subtypes makes the code difficult to understand. 

Guideline (VHDL only) - Do not use the types bi t or bi t_ vector. Many sim
ulators do not provide built-in arithmetic functions for these types. Example 5-15 
shows how to use built-in arithmetic packages for std_logic_vector. 

Example 5-15 Using built-in arithmetic functions for std_logic_vector 

use ieee.std_logic_arith.all; 
signal a,b,c,d:std_logic_vector(y downto x); 

c <::;: a + b; 

5.3.2 Do Not Use Hard-Coded Numeric Values 

Guideline - Do not use hard-coded numeric values in your design. As an exception, 
you can use the values 0 and 1 (but not in combination, as in 1001). Example 5-16 
shows Verilog code that uses a hard-coded numerical value (7) in the "poor coding 
style" example and a constant (MY _BUS_SIZE) in the "recommended coding style" 
example. 

Example 5-16 Using constants instead of hard-coded values 

Poor coding style: 
wire [7:0] my_in_bus; 
reg [7:0] my_out_bus; 

Recommended coding style: 

'define MY_BUS_SIZE 8 
wire ['MY_BUS_SIZE-l:0] my_in_bus; 
reg ['MY_BUS_SIZE-l:0] my_out_bus; 

5.3.3 Packages 

Guideline (VHDL only) - Collect all parameter values and function definitions for 
a design into a single separate file (a "package") and name the file 
DesignName-package.vhd. 
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5.3.4 Include Files 

Guideline (Verilog only) - Keep the \ define statements for a design in a single 
separate file and name the file DesignName.J)arams . v. 

5.3.5 Avoid Embedding dc_shell Scripts 

Although it is possible to embed dc_shell synthesis commands directly in the 
source code, this practice is not recommended. Others who synthesize the code may 
not be aware of the hidden commands, which may cause their synthesis scripts to pro
duce poor results. If the design is reused in a new application, the synthesis goals may 
be different, such as a higher-speed version. If the source code is reused with a new 
release of Design Compiler, the commands will still be supported but may be obso
lete. 

There are several exceptions to this rule. In particular, the synthesis directives to turn 
synthesis on and off must be embedded in the code in the appropriate places. These 
exceptions are noted in various guidelines throughout this chapter. 

5.3.6 Use Technology-Independent Libraries 

Guideline - Use the DesignWare Foundation Library to maintain technology inde
pendence. 

The Design Ware Foundation Library contains improved architectures for the infer
able arithmetic components, such as: 

• Adders 

• Multipliers 

• Comparators 
• Incrementers and decrementers 

These architectures provide improved timing performance over the equivalent internal 
Design Compiler architectures. 

The Design Ware Foundation Library also provides additional arithmetic components 
such as: 

• Sin, cos 

• Modulus, divide 

• Square root 
• Arithmetic and barrel shifters 
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These DesignWare components are all high-performance designs that are portable 
across processes. They provide significantly more portability than custom-designed, 
process-specific designs. Using these components helps you create designs that 
achieve high performance in all target libraries. 

The Design Ware Foundation Library also includes a number of sequential compo
nents, also designed to be completely process-portable, and which can save consider
able design time. These components include: 

• FIFO's and FIFO controllers 

• ECC 

• CRC 
• ITAG components and ASIC debugger 

For more information about using Design Ware components, see the Design Ware 
Foundation Library Databook and the Design Ware User Guide. 

Guideline - Avoid instantiating gates in the design. Gate-level designs are very hard 
to read, and thus difficult to maintain and reuse. If technology-specific gates are used, 
then the design is not portable to other technologies. 

Guideline - If you must use technology-specific gates, then isolate these gates in a 
separate module. This will make it easier to modify these gates as needed for different 
technologies. 

Guideline - The GTECH library If you must instantiate a gate, use a technology
independent library such as the Synopsys generic technology library, GTECH. This 
library contains the following technology-independent logical components: 

• AND, OR, and NOR gates (2, 3, 4, 5, and 8) 

• I-bit adders and half adders 

• 2-of-3 majority 

• Multiplexors 

• Flip-flops 

• Latches 

• Multiple-level logic gates, such as AND-NOT, AND-OR, AND-OR-INVERT 

5.3.7 Coding For Translation (VHDL to Verilog) 

Guideline (VHDL only) - Do not use generate statements. There is no equiva
lent construct in Verilog. 
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Guideline (VHDL only) - Do not use block constructs. There is no equivalent 
construct in Verilog. 

Guideline (VHDL only) - Do not use code to modify constant declarations. 
There is no equivalent capability in Verilog. 

5.4 Guidelines for Clocks and Resets 

The following sections contain guidelines for clock and reset signals. The basic the
ory behind these guidelines is that a simple clocking structure is easier to understand, 
analyze, and maintain. It also consistently produces better synthesis results. The pre
ferred clocking structure is a single global clock and positive edge-triggered flops as 
the only sequential devices, as illustrated in Figure 5-1. 

r---------, r---------, 

L ____ _ ___ ...l L ____ _ ___ ...l 

CLK----~------------------------~ 

Figure 5-1 Ideal Clocking Structure 

5.4.1 Avoid Mixed Clock Edges 

Guideline - Avoid using both positive-edge and negative-edge triggered flip-flops in 
your design. 

Mixed clock edges may be necessary in some designs. In designs with very aggres
sive timing goals, for example, it may be necessary to capture data on both edges of 
the clock. However, clocking on both edges creates several problems, and should be 
used with caution: 

• The duty cycle of the clock becomes a critical issue in timing analysis, in addition 
to the clock frequency itself. 

• Most scan-based testing methodologies require separate handling of positive and 
negative-edge triggered flops. 
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Figure 5-2 shows an example of a module with both positive-edge and negative-edge 
triggered flip-flops. 

Figure 5·2 Bad example: Mixed clock edges 

Rule - If you must use both positive-edge and negative-edge triggered flip-flops in 
your design, be sure to model the worst case duty cycle of the clock accurately in syn
thesis and timing analysis. 

The assumption of a perfect clock with 50% duty cycle is optimistic, giving signals 
half the clock cycle to propagate from one register to the next. In the physical design, 
the duty cycle will be not be perfect, and the actual time available for signals to prop
agate can be much smaller. 

Rule - If you must use both positive-edge and negative-edge triggered flip-flops in 
your design, be sure to document the assumed duty cycle in the user documentation. 

In most chip designs, the duty cycle is a function of the clock tree that is inserted into 
the design; this clock tree insertion is usually specific to the process technology. The 
chip designer using the macro must check that the actual duty cycle will match 
requirements of the macro, and must know how to change the synthesis/timing analy
sis scripts for the macro to match the actual conditions. 

Guideline - If you must use a large number of both positive-edge and negative-edge 
triggered flip-flops in your design, it may be useful to separate them into different 
modules. This makes it easier to identify the negative-edge flops, and thus to put them 
in different scan chains. 

Figure 5-3 shows an example design where the positive-edge triggered flip-flops and 
negative-edge triggered flip-flops are partitioned into separate blocks. 
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r---------, r---------, 

L ___ .J L_ ___ .J 

CLK----~--------------------~ 

Figure 5-3 Better example: Negative-edge and positive-edge flip-flops are 
separated 

5.4.2 Avoid Clock Buffers 
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Guideline - Avoid hand instantiating clock buffers in RTL code. Clock buffers are 
nonnally inserted after synthesis as part of the physical design. In synthesizable RTL 
code, clock nets are nonnally considered ideal nets, with no delays. During place and 
route, the clock tree insertion tool inserts the appropriate structure for creating as 
close to an ideal, balanced clock distribution network as possible. 

5.4.3 Avoid Gated Clocks 

Guideline - Avoid coding gated clocks in your RTL. Clock gating circuits tend to be 
technology specific and timing dependent. Improper timing of a gated clock can gen
erate a false clock or glitch, causing a flip-flop to clock in the wrong data. Also, the 
skew of different local clocks can cause hold time violations. 

Gated clocks also cause limited testability because the logic clocked by a gated clock 
cannot be made part of a scan chain. Figure 5-4 shows a design where U2 cannot be 
clocked during scan-in, test, or scan-out, and cannot be made part of the scan chain. 

Gated clocks are required for many low-powered designs, but they should not be 
coded in the RTL for a macro. See section 5.4.5 for the preferred way of dealing with 
gated clocks. If individual flip-flops need to be gated within a design, the clock gating 
should be inserted by a tool such as Power Compiler, so that the RTL remains tech
nology portable. 
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elK 

U1 

01----. 
U2 

Figure 5·4 Bad example: Limited testability and skew problems because of gated 
clock 

5.4.4 Avoid Internally Generated Clocks 

Guideline - Avoid using internally generated clocks in your design. 

Internally generated clocks cause limited testability because logic driven by the inter
nally generated clock cannot be made part of a scan chain. Internally generated clocks 
also make it more difficult to constrain the design for synthesis. 

Figure 5-5 shows a design in which U2 cannot be clocked during scan-in, test, or 
scan-out, and cannot be made part of the scan chain because it is clocked by an inter
nally generated clock. As an alternative, design synchronously or use multiple clocks. 

Lo U1 
0 - U2 

0 0 

> 0 > 
Figure 5·5 Bad example: Internally generated clock 

5.4.5 Gated Clocks and Low Power Designs 

Some designs, especially low-power designs, required a gated clocks. The following 
guidelines address this issue. 

Guideline - If you must use a gated clock, or an internally generated clock or reset, 
keep the clock and/or reset generation circuitry as a separate module at the top level 
of the design. Partition the design so that all the logic in a single module uses a single 
clock and a single reset. See Figure 5-6. 
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In particular, a gated clock should never occur within a macro. The clock gating cir
cuit, if required, should appear at the top level of the design hierarchy, as shown in 
Figure 5-6. 

Isolating clock and reset generation logic in a separate module solves a number of 
problems. It allows submodules 1-3 to use the standard timing analysis and scan 
insertion techniques. It restricts exceptions to the R1L coding guidelines to a small 
module than can be carefully reviewed for correct behavior. It also makes it easier for 
the design team to develop specific test strategies for the clock/reset generation logic. 

Guideline - If your design requires a gated clock, model it using synchronous load 
registers, as illustrated in Example 5-17. 

top 

clk1 submodule1 
Clock 

Generation 

elk2 
submodule2 ... 

elk3 .. submodule3 

Figure 5-6 Good example: Clock generation circuitry is isolated at the top level 

Example 5-17 Use synchronous load instead of combinational gating 

Poor coding style: 

elk-p1 <= elk and p1_gatei 
EX17A_PROC: process (elk-p1) 

begin 
if (clk-p1'event and elk-p1 = '1') then 

end ifi 
end process EX17A_PROCi 



96 

Good coding style: 
EX17B_PROC: process (clk) 

begin 
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if (clk'event and clk = '1') then 
if (pl_gate = '1') then 

end ifi 
end ifi 

end process EX17B_PROCi 

5.4.6 Avoid Internally Generated Resets 

Make sure your registers are controlled only by a simple reset signal. 

Guideline - Avoid internally generated. conditional resets if possible. Generally. all 
the registers in the macro should be reset at the same time. This approach makes anal
ysis and design much simpler and easier. 

Guideline - If a conditional reset is required. create a separate signal for the reset 
signal. and isolate the conditional reset logic in a separate module. as shown in 
Example 5-18. This approach results in more readable code and improves synthesis 
results. 

Example 5·18 Isolating conditional reset logic 

Poor coding style: 
EX18A_PROC: process clk, rst, a, b 

begin 
if (rst or (a and b) = '1') then 

reg_sigs <= 'O'i 
elsif (clk'event and clk = '1') then 

end ifi 
end process EX18A_PROCi 

Good coding style: 
in a separate reset module 

z_rst <= rst or (a and b)i 

-- in the main module 
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EX18B_PROC: process ( clk, z_rst) 
begin 

if (z_rst = '1') then 
reg_sigs <= 'a'; 

elsif (clk'event and clk = '1') then 

end if; 
end process EX18B_PROC; 

5.5 Coding for Synthesis 
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The following guidelines address synthesis issues. By following these guidelines, you 
will create code that achieves the best compile times and synthesis results, including: 

• Testability 
• Performance 

• Simplification of static timing analysis 

• Gate-level circuit behavior that matches that of the original R1L code 

5.5.1 Infer Registers 

Guideline - Registers (flip-flops) are the preferred mechanism for sequential logic. 
To maintain consistency and to ensure correct synthesis, use the following templates 
to infer technology-independent registers (Example 5-19 for VHDL, Example 5-20 
for Verilog). Use the design's reset signal to initialize registered signals, as shown in 
these examples. In VHDL, do not initialize the signal in the declaration; in Verilog, do 
not use an ini tial statement to initialize the signal. These mechanisms can cause 
mismatches between pre-synthesis and post-synthesis simulation. 

Example 5-19 VHDL template for sequential processes 

-- process with synchronous reset 
EX19A_PROC: process (clk) 

begin 
IF (clk'event and clk = '1') then 

if rst = '1' then 

else 

end if; 
end if; 
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end process EX19A_PROCi 

-- process with asynchronous reset 
EX19B_PROC: process (clk, rst_a) 

begin 
IF rst_a = '1' then 
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elseif (clk'event and clk = '1') then 

end ifi 
end process EX19B_PROCi 

Example 5·20 Verilog template for sequential processes 

II process with synchronous reset 
always @(posedge clk) 

begin : EX20A_PROC 
if (reset == l'b1) 

begin 

end 
3lse 

begin 

end 
end II EX20A_PROC 

II process with asynchronous reset 
always @(posedge clk or posedge rst_a) 

begin : EX20B_PROC 
if (reset == l'b1) 

begin 

end 
else 

begin 

end 
end II Ex20b-proc 



RTL Coding Guidelines 99 

5.5.2 Avoid Latches 

Rule - Avoid using any latches in your design. 

As an exception, you can instantiate technology-independent GTECH D latches. 
However, all latches must be instantiated and you must provide documentation that 
lists each latch and describes any special timing requirements that result from the 
latch. 

Large registers, memories, FIFOs, and other storage elements are examples of situa
tions in which D latches are permitted. Also, for 2-phase clocked synchronous RAM, 
you may want to use D latches to latch the address. 

Note - To check your design for latches, compile the design (with no constraints for 
a quick compile) and use the all_registers -level_sensitive command, 
which will list all level sensitive elements, such as latches, in your design. 

Example 5-21 illustrates a VHDL code fragment that infers a latch because there is no 
else clause for the if statement. Example 5-22 illustrates another VHDL code frag
ment that infers a latch because the z output is not assigned for the when others 
condition. 

Example 5·21 Poor coding style: Latch inferred because of missing else 
condition 

EX21_PROC: process (a, b) 
begin 

if (a = '1') then 
q <= bi 

end ifi 
end process EX21_PROCi 

Example 5·22 Poor coding style: Latch inferred because of missing z output 
assignment 

EX22_PROC: process (c) 
begin 

case c is 
when '0' => q <= 'l'i z <= 'O'i 
when others => q <= 'O'i 

end casei 
end process EX22_PROCi 
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Example 5-23 illustrates a Verilog code fragment that infers latches because of miss
ing s output assignments for the 2' bO 0 and 2' bO 1 conditions and a missing 
2 ' bll condition. 

Example 5·23 Poor coding style: Latches inferred because of missing assignments 
and missing condition 

always @ (d) 
begin 

case (d) 
2'bOO: z <= l'bl; 
2'bOl: z <= l'bO; 
2'blO: z <= l'bl; s <= l'bl; 

endcase 
end 

Guideline - You can avoid inferred latches by using any of the following coding 
techniques: 

• Assign default values at the beginning of a process, as illustrated for VHDL in 
Example 5-24. 

• Assign outputs for all input conditions, as illustrated in Example 5-25. 

• Use else (instead of elsif) for the final priority branch, as illustrated in 
Example 5-26. 

Example 5·24 Avoiding a latch by assigning default values 

COMBINATIONAL_PROC : process (state, bus_request) 
begin 

-- intitialize outputs to avoid latches 
bus_hold <= ' 0' ; 
bus_interrupt <= '0' 
case (state) ... 

end process COMBINATIONAL_PROC; 
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Example 5-25 Avoiding a latch by fully assigning outputs for all input conditions 

Poor coding style: 

EX25A_PROC: process (g, a, b) 
begin 

if (g = '1') then 
q <= 0; 

elsif (a = '1') then 
q <= b; 

end if; 
end process EX25A_PROC; 

Recommended coding style: 

EX25B_PROC: process (gl, g2, a, b) 
begin 

q <= ' 0' ; 
if (gl = '1') then 

q <= a; 
elsif (g2 = '1') then 

q <= b; 
end if; 

end process EX25B_PROC; 

Example 5-26 Avoiding a latch by using else for the final priority branch 
(VHDL) 

Poor. coding style: 

MUX3_PROC: process (decode, A, B) 
begin 

if (decode = '0') then 
C <= A; 

elsif (decode = '1') then 
C <= B; 

end if; 
end process MUX3_PROC; 

Recommended coding style: 

MUX3_PROC: process (decode, A, B) 
begin 

if (decode = '1') then 
C <= A; 

else 
C <= Bi 
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end if; 
end process MUX3_PROC; 

5.5.3 If you must use a latch 

In some designs, using a latch is absolutely unavoidable. For instance, in a PCI 
design, the team found that it was impossible to comply with the PCI specification for 
reset behavior without having a latch in the design. In order to achieve testability, the 
team used the approach in Figure 5-7. They used a mux to provide either the normal 
function or the input from an I/O pad as data to the mux. The mux was selected by the 
test mode pin used to enable scan. 

TEST IN 

TEST 
MODE 

Normal 
Function 

1-----1 D Q 1--__ _ 

EN 

Figure 5-7 Making a latch testable 

5.5.4 Avoid Combinational Feedback 

Guideline - Avoid combinational feedback; that is, the looping of combinational 
processes. See Figure 5-8. 
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BAD: Combinational processes are looped 

... -------------------- ... ------_ ... _---------------. 
I 

SEQ ~~~ • SEQ 

RST / ~ CLKA I..--R----IST 

8+-8 
I 

10 ____ ------- .. -------------------------------_ ... 

GOOD: Combinational processes are not looped 

.... - .... ------------- .. --_ .... __ ..... -_ .... __ .... _ ........ __ .. _-. 

I 

SEQ 

RST 

I 

~~v-+ SEQ 

/ CLKA RST 

~~V 
..... _------------_ .. _----------_ ........... _-- ....... _---_. 

Figure 5·8 Avoiding combinational feedback 

5.5.5 Specify Complete Sensitivity Lists 
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Rule - Include a complete sensitivity list in each of your process (VHDL) or 
always (Verilog) blocks. 

If you do not use a complete sensitivity list, the behavior of the pre-synthesis design 
may differ from that of the post-synthesis netlist, as illustrated in Figure 5-9. 

Design Compiler, as well as InterHDL's Verilint and VHDLlint, detect incomplete 
sensitivity lists and issue a warning when you elaborate the design. 
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a 

VHDL 

process (a) 
begin 

c <= a or b; 
end process 

Reuse Methodology Manual 

Verilog 

always @ (a) 
c <= a or b; 

a 

b~ 
:=1)-c b~ 

c~ c 

Pre-synthesis 
Simulation 
Waveform 

Synthesized 
Netlist 

Post-synthesis 
Simulation 
Waveform 

Figure 5-9 Bad example: Simulation mismatch because of incomplete 
sensitivity list 

Combinational Blocks 

For combinational blocks (blocks that contain no registers or latches), the sensitivity 
list must include every signal that is read by the process. In general, this means every 
signal that appears on the right side of an assign « =) statement or in a conditional 
expression. See Example 5-27. 

Example 5-27 Good coding style: Sensitivity list for combinational process block 

VHDL: 

COMBINATIONAL_PROC : process (a, inc_dec) 
begin 

if inc_dec = '0' then 
sum <= a + 1; 

else 
sum <= a - 1; 

end if; 
end process COMBINATIONAL_PROC; 
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Verilog: 

always @(a or inc_dec) 
begin : COMBINATIONAL_PROC 

if (inc_dec -- 0) 
sum = a + 1i 

else 
sum = a - 1i 

end II COMBINATIONAL_PROC 

Sequential Blocks 
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For sequential blocks, the sensitivity list must include the clock signal that is read by 
the process, as shown in Example 5-28. If the sequential process block also uses a 
reset signal, include the reset signal in the sensitivity list. 

Example 5·28 Good coding style: Sensitivity list in a sequential process block 

VHDL: 
SEQUENTIAL_PROC : process (clk) 
begin 

if (clk'event and clk = '1') then 
q <= di 

end ifi 

end process SEQUENTIAL_PROCi 

Verilog; 

always @(posedge clk) 
begin : SEQUENTIAL_PROC 

q <= di 
end II SEQUENTIAL_PROC 

Sensitivity List and Simulation Performance 

Guideline - Make sure your process sensitivity lists contain only necessary signals, 
as defined in the sections above. Adding unnecessary signals to the sensitivity list 
slows down simulation. 

5.5.6 Blocking and Nonblocking Assignments (Verilog) 

In Verilog, there are two types of assignment statements: blocking and nonblocking. 
Blocking assignments execute in sequential order, nonblocking assignments execute 
concurrently. 
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Rule (Verilog only) - When writing synthesizable code, always use nonblocking 
assignments in always @ (posedge elk) blocks. Otherwise, the simulation 
behavior of the RTL and gate-level designs may differ. 

Example 5-29 shows a Verilog code fragment that uses a blocking assignment where 
b is assigned the value of a, then a is assigned the value of b. The result is the circuit 
shown in Figure 5-10, where Register A just loops around and reassigns itself every 
clock tick. Register B is the same result one time unit later. 

Example 5-29 Poor coding style: Verilog blocking assignment 

always @ (posedge elk) 
begin 

b = ai 

a = bi 

end 

eLK 

-

- ~ - > 

a 

b 

Figure 5-10 Bad example: Circuit built from blocking assignment 

Example 5-30 shows a Verilog code fragment that uses a nonblocking assignment. b 
is assigned the value of a and a is assigned the value of b at every clock tick. The 
result is the circuit shown in Figure 5-11. 

Example 5-30 Recommended coding style: Verilog nonblocking assignment 

always @ (posedge elk) 
begin 

b <= ai 

a <= -bi 

end 
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b 

'--- a a 

~ 
a f--

~ ;--elK 

Figure 5-11 Circuit built from nonblocking assignment 

5.5.7 Signal vs. Variable Assignments (VHDL) 

In VHDL simulation, signal assignments are scheduled for execution in the next sim
ulation cycle. Variable assignments take effect immediately, and they take place in the 
order in which they appear in the code. Thus, they present some of the same problems 
as blocking assignments in Verilog. VHDL variables are not as problematic as Verilog 
blocking assignments because the interfaces between modules in VHDL are required 
to be signals, so these interfaces are well-behaved. The order dependencies of vari
ables are thus strictly local, so it is reasonable easy to develop correct code. 

Guideline (VHDL only) - When writing synthesizable code, we suggest you use 
signals instead of variables to ensure that the simulation behavior of the pre-synthesis 
design matches that of the post-synthesis netlist. If you feel that simulation speed will 
be significantly improved by using variables, then it is certainly appropriate to do so. 
Just exercise caution in creating order-dependent behavior in the code. 

Example 5-31 VHDL variable assignment in synthesizable code 

Poor coding style: 

EX31_PROC: process (a,b) 

variable c : std_logici 
begin 

c := a and bi 
end process EX31_PROCi 

Recommended coding style: 

signal c : std_logici 
EX31_PROC:process (a,b) 

begin 
c <= a and bi 

end process EX31_PROCi 
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5.5.8 Case Statements versus if-then-else Statements 

In VHDL and Verilog, a case statement infers a single-level multiplexer, while an 
if - then -el s e statement infers a priority-encoded, cascaded combination of mul
tiplexers. 

Figure 5-12 shows the circuit built from the VHDL if-then-else statement in 
Example 5-32. 

Figure 5-13 shows the circuit built from the VHDL case statement in Example 5-33. 

d 0 

c 1 
0 

sel 
sel="10" 

1 0 

1----------5el="01" 
a~~------------------------------~ 1 

L..-_____________ 5el="00" 

Figure 5-12 Circuit built from if-then-else statement 

Example 5-32 Using a VHDL if-then-else statement 

EX32_PROC: process (sel,a,b,c,d) 
begin 

if (sel = "00") then 
outi <= ai 

elsif (sel = "01") then 
outi <= bi 

elsif (sel = "10") then 
outi <= Ci 

else 
outi <= di 

end ifi 
end process EX32_PROCi 

outi 



RTL Coding Guidelines 

a 
b 

00 

01 

e 10 

d 11 

sel 2 

oute 

Figure 5-13 Circuit built from the case statement 

Example 5-33 Using a VHDL case statement 

EX33_PROC:process (sel,a,b,c,d) 
begin 

case sel is 
when "00" => outc <= ai 

when "01" => outc <= bi 
when "10" => outc <= Ci 

when others => outc <= di 
end casei 

end process EX33_PROCi 
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Guideline - The multiplexer is a faster circuit. Therefore, if the priority-encoding 
structure is not required, we recommend using the case statement rather than an 
if-then-else statement. Note that an if-then-else statement can be useful 
if you have a late arriving signal; this signal can then be connect to the "a" input in 
Figure 5-13 for the fastest path through the selection function. 

In a cycle-based simulator, the case statement also simulates faster than the if
then-else statement. 

A conditional signal assignment may also be used to infer a multiplexer. For large 
multiplexers, a case statement will simulate faster than a conditional assignment on 
most simulators, and especially on cycle-based simulators. For small muxes, the rela
tive speed of the two constructs varies with different simulators. 

Example 5-34 illustrates how to use a conditional assignment to infer a mux. 
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Example 5·34 Using a conditional assignment to infer a mux 

VIIDL: 

zl <= a when sel_a = '1' else 
b when sel_b = '1' else 
c; 

z2 <= d when sel - a = ' l' else 
e when sel_b = ' l' else 
f; 

Verilog: 

assign zl = (sel_a) ? a (sel_b) 

assign z2 = (sel_a) ? d (sel_b) 

5.5.9 Coding State Machines 

? b 

? e 

Observe the following guidelines when coding state machines: 

C; 

f; 

Guideline - Separate the state machine HDL description into two processes, one for 
the combinational logic and one for the sequential logic. 

Guideline - In VHDL, create an enumerated type for the state vector. In Verilog, use 
, de fine statements to define the state vector. 

Guideline - Keep FSM logic and non-FSM logic in separate modules. See "Parti
tioning for Synthesis" later in this chapter for details. 

Guideline - Assign a default state for the state machine. This is useful to implement 
graceful entry into the idle state if no other state is initiated. For VHDL, assign a state 
for the others condition, as shown in Example 5-35. For Verilog, assign a 
defaul t state, as shown in Example 5-36. 

For more information about coding state machines, read the Optimizing Finite State 
Machines chapter of the Design Compiler Reference Manual. 

Example 5-35 VHDL FSM coding example 

library IEEE, STD; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_components.all; 
use IEEE.std_logic_misc.all; 
entity fsm is 
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port ( 

x in std_logic; 
rst in std_logic; 
clock in std_logic; 
z out std_logic); 

end fsm; 

architecture rtl of fsm is 
type state is (STATE_O, STATE_l, STATE_2, STATE_3); 
signal current_state, next_state : state; 
begin 

-- combinational process calculates next state 

COMBO_PROC : process (x, current_state) 
begin 

case (current_state) is 
when STATE_O => 

Z <= '0'; 

if x = '0' then 
next_state <= STATE_O; 

else 
next_state <= STATE_l; 

end if; 
when STATE_l => 

z <= '0'; 
if x = '0' then 

next_state <= STATE_l; 
else 

next_state <= STATE_2; 
end if; 

when STATE_2 => 

Z <= '0'; 

if x = '0' then 
next_state <= STATE_2; 

else 
next_state <= STATE_3; 

end if; 
when STATE_3 => 

if x = '0' then 
z <= '0'; 
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next_state <= STATE_3; 
else 

z <= ' l' ; 
next_state <= STATE_O; 

end if; 
when others => 

next_state <= STATE_O; 
end case; 

end process COMBO_PROC; 
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-- synchronous process updates current state 

SYNCH_PROC : process (rst,clock) 
begin 

if (rst ='1') then 
current_state <= STATE_O; 

elsif (clock'event and clock ='1') then 
current_state <= next_state; 

end if; 
end process SYNCH_PROC; 

end rtl; 

Example 5-36 Verilog FSM coding example 

module fsm(clock, rst, x, z); 
input clock, rst, x; 
output z; 
reg [1:0] current_state; 
reg [1:0] next_state; 
reg z; 
parameter [1:0] 

STATE_O = 0, 
STATE_1 = 1, 
STATE_2 = 2, 
STATE_3 = 3; 

II combinational process calculates next state 

always @ (current_state or x) 
case (current_state) Iisynopsys parallel_case full_case 

STATE_O : begin 
if (x) begin 
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next_state <= STATE_lj 

z <= l'bOj 

end else begin 
next_state <= STATE_Oj 
z <= l'bOj 

end 

end 
STATE_l : begin 

if (x) 

begin 
next_state <= STATE_2j 
z <= l'bOj 

end 
else 

begin 

end 

next_state <= STATE_lj 
z <= l'bOj 

end 

STATE_2 
if (x) 

begin 

begin 
next_state <= STATE_3j 
Z <= l'bOj 
end 

else 
begin 

end 

next_state <= STATE_2j 
z <= l'bOj 
end 

STATE_3 begin 
if (x) 

begin 
next_state <= STATE_Oj 
z <= l'blj 

end 
else 

begin 
next_state <= STATE_3j 
z <= l'bOj 
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end 
end 
default begin 

next_state <= STATE_O; 
z <= l'bO; 
end 

endcase 
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always @ ( posedge clock or negedge rst_na) 
begin 
if (! rst_na) 

current_state <= STATE_O; 
else 

current_state <= next_state; 
end 

endmodule 

5.6 Partitioning for Synthesis 

Good synthesis partitioning in your design provides several advantages including: 

• Better synthesis results 
• Faster compile runtimes 

• Ability to use simpler synthesis strategies to meet timing 

The following sections illustrate several recommended synthesis partitioning tech
niques. 

5.6.1 Register All Outputs 

Guideline - For each block of a hierarchical design, register all output signals from 
the block. 

Registering the output signals from each block simplifies the synthesis process 
because it makes output drive strengths and input delays predictable. All the inputs of 
each block arrive with the same relative delay. Output drive strength is equal to the 
drive strength of the average flip-flop. 

Figure 5-14 shows a hierarchical design in which all output signals from each block 
are registered; that is, there is no combinational logic between the registers and the 
output ports. 
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A 

Reg 
A 

B 

Reg 
B 

c 

Figure 5·14 Good example: All output signals are registered 

Reg 
C 
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5.6.2 Locate Related Combinational Logic in a Single Module 

Guideline - Keep related combinational logic together in the same module. 

Design Compiler has more flexibility in optimizing a design when related combina
tionallogic is located in the same module. This is because Design Compiler cannot 
move logic across hierarchical boundaries during default compile operations. 

Figure 5-15 shows an example design where the path from register A to register C is 
split across three modules. Such a design inhibits Design Compiler from efficiently 
optimizing the combinational logic because it must preserve the hierarchical bound
aries in the design. 

A 

elk 

Reg 
A 

B c 

elk 

Reg 
C 

Figure 5·15 Bad example: Combinational logic split between modules 

Figure 5-16 shows a similar design in which the related combinational logic is 
grouped into a single hierarchical block. This design allows Design Compiler 
to perform combinational logic optimization on the path from register A to register C. 
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A 

elk 

Reg 
A 

c 

elk 
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Reg 
C 

Figure 5-16 Better example: Combinational logic grouped into same module 

Figure 5-17 shows an even better design where the combinational logic is grouped 
into the same module as the destination register. This design provides for improved 
sequential mapping during optimization because no hierarchical boundaries exist 
between the sequential logic and the combinational logic that drives it. 

A 

Reg 
A 

c 

Reg 
C 

Figure 5-17 Best example: Combinational logic grouped with destination register 

Keeping related combinational logic in the same module also eases time budgeting 
and allows for faster simulation. 

5.6.3 Separate Modules That Have Different Design Goals 

Guideline - Keep critical path logic in a separate module from noncritical path logic 
so that Design Compiler can optimize the critical path logic for speed, while optimiz
ing the noncritical path logic for area. 

Figure 5-18 shows a design where critical path logic and noncritical path logic reside 
in the same module. Optimization is limited because Design Compiler cannot per
form different optimization techniques on the two groups of logic. 
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ModuleA 

Reg 
B 

Reg 
A 
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Figure 5-18 Bad example: Critical path logic grouped with noncritical path logic 

Figure 5-19 shows a similar design where the critical path logic is grouped into a sep
arate module from the noncritical path logic. In this design, Design Compiler can per
form speed optimization on the critical path logic, while performing area optimization 
on the noncritical path logic. 

Speed 
Optimization 

Area 
Optimization 

ModuleA 

ModuleB 

Reg 
B 

Reg 
A 

Figure 5-19 Good example: Critical path logic and noncritical path logic 
grouped separately 
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5.6.4 Asynchronous Logic 

Guideline - Avoid asynchronous logic. 

Asynchronous logic is more difficult to design correctly and to verify. Correct timing 
and functionality may be technology dependent, which limits the portability of the 
design. 

Guideline - If asynchronous logic is required in the design, partition the asynchro
nous logic in a separate module from the synchronous logic. 

Isolating the asynchronous logic in a separate module makes code inspection much 
easier. Asynchronous logic need to be reviewed carefully to verify its functionality 
and timing. 

5.6.5 Arithmetic Operators: Merging Resources 

A resource is an operator that can be inferred directly from an HDL, as shown in the 
following code fragment: 

if ctl = 'I' then 
z <= a + bi 

else 
z <= c + di 

end ifi 

Normally, two adders are created in this example. If only an area constraint exists, 
however, Design Compiler is likely to synthesize a single adder and to share it 
between the two additions. If performance is a consideration, the adders mayor may 
not be merged. 

For Design Compiler to consider resource sharing, all relevant resources need to be in 
the same level of hierarchy; that is, within the same module. 

Figure 5-20 is an example of poor partitioning. In this example, resources that can be 
shared are separated by hierarchical boundaries. 

Figure 5-21 is an example of good partitioning because the two adders are in the same 
module. This partitioning allows Design Compiler full flexibility when choosing 
whether or not to share the adders. 
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Figure 5-20 Poor partitioning: Resources area separated by hierarchical boundaries. 
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Figure 5-21 Good partitioning: Adders are in the same hierarchy 

5.6.6 Partitioning for Synthesis Runtime 

In the past, most synthesis guidelines have recommended keeping modules relatively 
small in order to reduce synthesis runtime. Improvements to Design Compiler, 
increases in workstation performance, and more experience with large designs has 
changed this. 

The most important considerations in partitioning should be the logic function, design 
goals, and timing and area requirements. Grouping related functions together is much 
better than splitting functions artificially, and creating complex inter-block timing 
dependencies. Good timing budgets and appropriate constraints can have a larger 
impact on synthesis runtime than circuit size. In one test case, synthesis went from 
nine hours to 72 hours when the critical range was increased from 0.1 ns to 10 ns. 

By grouping logic by design goals, the synthesis strategy can be focused, reducing 
synthesis runtime. For example, if the goal for a particular block is to minimize area, 
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and timing is not critical, then the synthesis scripts can be focused on area only, 
greatly reducing runtime. 

Overconstraining a design is one of the biggest causes of excessive runtime. A key 
technique for reducing runtimes is to develop accurate timing budgets early in the 
design phase and design the macro to meet these budgets. Then, develop the appropri
ate constraints to synthesize to this budget. Finally, by developing a good understand
ing of the Design Compiler commands that implement these constraints, you can 
achieve an optimal combination of high qUality of results and low runtime. 

For more information on synthesizing large designs, including the test case mentioned 
above, see "Synthesis Methodology for Large Designs - Design Compiler 1997.01 
Release" from Synopsys. 

5.6.7 Avoid Point-to-Point Exceptions and False Paths 

A point-to-point exception is a path from the output of one register to the input of 
another that does not follow the standard objective of having the data traverse the path 
in one clock cycle. A multicycle path is the prime example of a point-to-point excep
tion. 

Multicycle paths are problematic because they are more difficult to analyze correctly 
and lend themselves to human error. They must be marked as exceptions to the static 
timing analysis tool; it is all too easy to mark a path as an exception by mistake and 
not perform timing analysis. Most static timing analyzers work much better on stan
dard paths than on exceptions. 

Guideline - Avoid multicycle paths in your design. 

Guideline - If you must use a multicycle path in your design, keep point-to-point 
exceptions within a single module, and comment them well in your RTI.. code. 

Isolating point-to-point exceptions (for example, multicycle paths) within a module 
improves compile runtime and synthesis results. Also, the characterize com
mand has limited support for point-to-point exceptions that cross hierarchical bound
aries. 

Figure 5-22 shows a good partitioning example where the start and end points of a 
multicycle path occur within a single module. 



RlL Coding Guidelines 121 

Figure 5·22 Good example: Isolating a point-to-point exception to a single module 

Guideline - Avoid false paths in your design. 

False paths are paths that static timing analysis identifies as failing timing, but that the 
designer knows are not actually failing. 

False paths are a problem because they require the designer to ignore a warning mes
sage from the timing analysis tool. If there are many false paths in a design, it is easy 
for the designer to accidently ignore valid warning message about actual failing paths. 

5.6.8 Eliminate Glue Logic at the Top Level 

Guideline - Do not instantiate gate-level logic at the top level of the design hierar
chy. 

A design hierarchy should contain gates only at leaf levels of the hierarchy tree. For 
example, Figure 5-23 shows a design where a NAND gate exists at the top level, 
between two lower-level design blocks. Optimization is limited because Design Com
piler cannot merge the NAND with the combinational logic inside block C. 
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Figure 5-23 Bad example: Glue logic existing at top level 

Figure 5-24 shows a similar design where the NAND gate is included as part of the 
combinational logic in block C. This approach eliminates the extra CPU cycles 
needed to compile small amount of glue logic and provides for simpler synthesis 
script development. An automated script mechanism only needs to compile and char
acterize the leaf-level cells. 

Top 
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C 

Figure 5-24 Good example: Glue logic grouped into lower-level block 

5.6.9 Chip-Level Partitioning 

Figure 5-25 shows the partitioning recommendation for the top level of an ASIC. 
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Guideline - Make sure that only the top level of the design contains an 110 pad ring. 
Within the top level of hierarchy, a middle level of hierarchy contains IEEE 1149.1 
boundary scan (JTAG) modules, clock generation circuitry, and the core logic. The 
clock generation circuitry is isolated from the rest of the design as it is normally hand 
crafted and carefully simulated. This hierarchy arrangement is not a requirement, but 
allows easy integration and management of the test logic, the pads, and the functional 
core. 

5.7 Designing with Memories 

Memories present special problems for reusable design, since memory design tends to 
be foundry specific. Macros must be designed to deal with a variety of memory inter
faces. This section outlines some guidelines for dealing with these issues, in particu
lar, designing with synchronous and asynchronous memories. 

Synchronous memories present the ideal case, and their interfaces are in the general 
form shown in Figure 5-26. Figure 5-27 shows the equivalent asynchronous RAM 
design. 
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Figure 5·26 Synchronous memory interface 
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Figure 5·27 Asynchronous memory interface 

Guideline - Partition the address and data registers and the write enable logic in a 
separate module. This allows the memory control logic to work with both asynchro
nous and synchronous memories. See Figure 5-28. 

In the design shown in Figure 5-28, the interface module is required only for asyn
chronous memories. The functionality in the interface module is integrated into the 
synchronous RAM. 
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Figure 5·28 Partitioning memory control logic separately 

5.S Code Profiling 

In some cases, code profiling can assist you in optimizing your code. Some simula
tors, and several third-party code coverage tools, provide the capability of tracking 
how often each line of code is executed during a given simulation run. 

Profiling is a valuable tool that can reveal bottleneck areas in the model. However, 
you must keep in mind that the profiler looks only at the frequency with which a line 
is executed, not at how expensive that construct is in terms of machine cycles. For 
example, performing a variable assignment statement differs a great deal from per
forming a signal assignment. 

Code coverage tools that measure path coverage as well as statement coverage can be 
very useful for analyzing how well a given test vector set exercises the model and for 
checking redundancies in the model itself. For example, if some parts of the model 
receive no execution coverage at all, either the vectors are failing to exercise the 
model fully or that portion of the model is redundant. See Chapter 7 for more discus
sion of code coverage tools. 



CHAPTER 6 Macro Synthesis 
Guidelines 

'This chapter discusses strategies for developing macro synthesis scripts that enable 
the integrator to synthesize the macro and meet timing goals. The topics include: 

• Overview of the synthesis problem 

• Synthesis strategies for reusable macros 

• High-performance synthesis 

• RAM and datapath generators 

• Coding guidelines for synthesis scripts 

6.1 Overview of the Synthesis Problem 

There are some special problems associated with the synthesis of parameterizable soft 
macros: 

• The macro and synthesis scripts must allow the integrator to synthesize the macro 
and meet timing goals in the final chip. 

• The macro must meet timing with the integrator's gate array or standard cell 
library. 

• The macro must meet timing in the integrator's specific configuration of the 
macro. 

'This chapter presents a set of tools and methodologies for achieving these goals. 

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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The synthesis guidelines in this chapter are based on many of the same fundamental 
principles guiding the previous chapter. First and foremost, synthesis and timing 
design must start at the beginning of the macro design cycle. 

That is: 

• Functional specifications for the macro must describe the timing, area, wire load 
model, and power requirements for the design. 

• Detailed technical specifications for the macro and its various subblocks must 
describe the timing requirements and interfaces in detail, including specifications 
for input and output delays. 

• RTL needs to be coded from the outset to meet both the functional and the timing 
requirements of the design. Coding for functionality first, and then fixing timing 
problems later, causes significant delays and poor overall performance in many 
designs. 

If these fundamental guidelines are followed, then synthesis is a straightforward 
issue. Each synthesizable unit or module in the design has a timing budget. Once each 
module meets this timing budget, the macro is ensured of meeting its overall timing 
goals. Synthesis problems become localized, so the difficult problems can be solved 
on small modules, where they are the most tractable. 

6.2 Macro Synthesis Strategy 

The recommended synthesis strategy for macros is to develop a set of constraints for 
the macro early in the design process and to use a bottom-up synthesis strategy. 

6.2.1 Macro Timing Budget 

Rule - The basic timing budget for the macro must be developed as part of the spec
ification process, before the design is partitioned into blocks and before coding 
begins. This timing budget must be reviewed regularly during the design process to 
ensure that it is still reasonable and consistent. 

The macro timing budget must specify: 

• Clock definition 
• Setup time requirements for all signals going into the macro 

• Clock to output delay requirements for all synchronous outputs of the macro 

• Input and output delays for all combinational paths through the macro 

• Loading budget for outputs and driving cell for inputs 
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• Operating conditions, including temperature and voltage 

Note that combinational paths through the macro are discouraged, because they create 
non-local synthesis problems that can be very difficult to resolve. The combinational 
paths must be carefully documented and their timing budgets closely examined to 
make sure the design constraints can be met. The preferred method for specifying 
these combinational delays is to specify the input arrival times and the required output 
time with respect to the clock, assuming the clock is present in the block 

6.2.2 Subblock Timing Budget 

Rule - The basic timing budget must be developed for each subblock in the macro. 
This budget must be developed at the time that the design is partitioned into sub
blocks, and before coding begins. The budget must be reviewed regularly during the 
design process to ensure that it is still reasonable and consistent. 

The subblock timing budget must specify: 

• Clock definition 
• WIre load model 

• Setup time requirements for all signals going into the subblock 

• Clock to output delay requirements for all synchronous outputs of the subblock 

• Input and output delays for all combinational paths through the subblock 

• Loading budget for outputs and driving cell for inputs 

• Operating conditions, including temperature and voltage 

A good nominal starting point for the loading and driving specifications is to use a 
two-input NAND gate as the driving cell and a flip-flop data input pin as the output 
load. 

Combinational paths through subblocks are discouraged, just as they are at the macro 
level. In our experience, most synthesis problems arise from these combinational 
paths. 

6.2.3 Synthesis in the Design Process 

Synthesis starts as the individual designers are developing the subblocks of the macro, 
and is initially performed with a single technology library. Later, during the producti
zation phase, the entire macro is synthesized to multiple libraries to ensure portability. 

The designer should start running synthesis as soon as the RTL passes the most basic 
simulation tests. Performing synthesis at this stage allows the designer to identify and 
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fix timing problems early. Because fixing the tough timing problems usually means 
modifying or restructuring the R1L, it is much better to deal with these problems 
before the code is completely debugged. 

Early synthesis also allows the designer to identify the incremental timing costs of 
new functionality as it is added to the code. 

The target at this early stage of synthesis should be to get to within about 10-20% of 
the final timing budget. This should be close enough to ensure that the R1L code is 
structured correctly. The additional effort to achieve the timing budget completely is 
not worth the effort until the code is passing all functional tests. This additional effort 
will most likely consist of modifying the synthesis scripts and refining the timing bud
gets. 

The subblocks should meet all timing budgets, as well as meeting all functional verifi
cation requirements, before being integrated into the macro. 

6.2.4 Subblock Synthesis Process 

Guideline - The subblock synthesis process consists of three phases: 

1. Perform a compile on the subblock, using constraints based on the budget. 
2. Perform a characterize-compile on the whole subblock, to refine the timing con

straints and re-synthesize the subblock. 

3. Iterate if required. 

The characterize-compile strategy in step 2 is documented in the Design Compiler 
Reference Manual. 

6.2.5 Macro Synthesis Process 

When the subblocks are ready for integration, we are ready to perform macro-level 
synthesis. 

Guideline - The macro synthesis process consists of three phases: 

1. Perform a compile on each of the subblocks, using constraints based on the bud
get. 

2. Perform a characterize-compile on the whole macro to improve timing and area. 

3. If necessary to meet the timing goals, perform an incremental compile. 

The characterize-compile in step 2 is needed to develop accurate estimates of the 
loading effects on the inputs and outputs of each subblock. Initially, the drive strength 



Macro Synthesis Guidelines 131 

of the cells driving inputs, and the loading effects of cells driven by the outputs, are 
estimated and set manually. The set_dri ving_cell and set_load commands 
are used for this purpose. The characterize-compile step derives actual drive strengths 
and loading from the rest of the macro. Clearly, this requires an initial synthesis of the 
entire macro in order to know what cells are driving/loading any specific subblock 
input/output. 

6.2.6 Wire Load Models 

Wire load models estimate the loading effect of metal interconnect upon cell delays. 
For deep submicron designs, this effect dominates delays, so using accurate wire load 
models is critical. 

The details of how a given technology library does wire load prediction varies from 
library to library, but the basic principles are the same. A statistical wire length is 
determined based on the physical size of the block. From this statistical wire length 
and the total input capacitance of the nodes on the net, the synthesis tool can deter
mine the total load on the driving cell. 

The most critical factor in getting an accurate statistical wire length is to estimate 
accurately the size of the block that will be placed and routed as a unit. Typically, a 
macro will be placed and routed as a single unit, and the individual subblocks that 
make up the macro will be flattened within the macro. Thus, the appropriate wire load 
model is determined by the gate count (and thus area) of the entire macro at the top 
level. 

When we synthesize a subblock, we must use the wire load model for the full macro, 
not just the subblock. If we use just the gate count of the subblock to determine the 
wire load model, we will get an optimistic model that underestimates wire delays. 
When we then integrate the subblocks into the macro and use the correct wire load 
model, we can run into significant timing problems. 

6.2.7 Preserve Clock and Reset Networks 

Clock networks are typically not synthesized; we rely on the place and route tools to 
insert a balanced clock tree with very low skew. Asynchronous reset networks are also 
typically treated as special networks, with the place and route tools inserting the 
appropriate buffers. These non-synthesized networks need to be identified to the syn
thesis tool. 

Guideline - Set dont_touch_network on clock and asynchronous reset net
works. Include the required dont_touch_network commands in the synthesis 
scripts for the design. See Example 6-1. 
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Example 6-1 Using dont_toueh_network on clocks and reset networks 

dont_toueh_network {elk rst} 

6.2.8 Code Checking Before Synthesis 

Several checks should be run before synthesis. These checks can spot potential syn
thesis problems without having to perform a complete compile. 

Lint Tools 

Lint-like tools (InterHDL's Verilint and VHDLlint, for example) can quickly check 
for many different potential problems, including: 

• Presence of latches 

• Non-synthesizable constructs like "==" or ini tial 

• Whether a case statement was inferred as a mux or a priority encoder 

• Whether all bits in a bus were assigned 

• Unused macros, parameters, or variables 

Once the R1L passes lint, the elaboration reports from Design Compiler should be 
examined to check: 

• Whether sequential statements were inferred as flip-flops or latches 

• Whether synchronous or asynchronous reset was inferred 

A clean elaboration of the design is a critical first step in performing synthesis. 

6.2.9 Code Checking After Synthesis 

After synthesis, a number of Design Compiler checks can be run to identify potential 
problems: 

Loop Checking 
Run report_timing -loops to determine whether there are any combi
national loops. 

Checking for Latches 
Run all_registers -level_sensi ti ve to get a report on latches in 
the design. 
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Check for Design Rule Violations 
Run check_design to check for missing cells, unconnected ports, and 
inputs tied high or low. 

Verify Testability 
Run check_test to verify that there are scan versions of all flops, and to 
check for any untestable structures. Soft macros are typically not shipped with 
scan flops inserted because scan is usually done on a chip-wide basis rather 
than block-by-block. Thus, it is essential to verify that scan insertion and auto
matic test pattern generation (ATPG) will be successful. 

As part of the productization phase of the macro development process, full 
ATPG is run. 

Verify Synthesis Results 
Use Formality to verify that the RTI... and the post-synthesis netlist are func
tionally equivalent. 

6.3 High-Performance Synthesis 

As chip size and complexity increase, it becomes more critical to have some interac
tivity between the synthesis and layout phases of chip design. Currently, some alter
natives to the standard sequence are becoming available. 

6.3.1 Classical Synthesis 

In standard ASIC design, the synthesis phase has no automated interaction with the 
subsequent layout phase. Synthesis must generate the netlists without any feedback 
from floorplanning and place-and-route tools, and there is no opportunity to modify 
synthesis based on findings during layout. Hand iteration between synthesis and 
placement is slow and painful. If resynthesis is necessary, layout generally has to be 
redone from scratch. While this lack of interactivity between the synthesis and layout 
stages is manageable for smaller chip sizes, it is problematic and distinctly not opti
mal for today's large SoC designs. 

The problems produced by this lack of interactivity between synthesis and layout are 
exacerbated because, as transistors and cells become faster, cell delays decrease and 
the percentage of delay due to loading factors increases. Information about physical 
placement becomes more important for synthesis. 
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6.3.2 High-Performance Synthesis 

New tools, such as Synopsys' Links-to-Layout and Floorplan Manager, provide inter
activity between the synthesis and placement phases of design. Such tools allow high
performance synthesis by forward-annotating constraints such as timing and net pri
orities to a floorplanner or place and route tool, and back-annotating physical infor
mation such as net delays, net capacitance, and physical grouping to the synthesis 
tool. This interactivity greatly improves the speed and accuracy of synthesis and lay
out by ~peeding the iterations, and because synthesis and layout are both performed 
with actual values rather than estimates. 

6.3.3 Tiling 

In some cases, the designer knows that certain elements will fit together - "tile" -
into a compact pattern that can then be repeated. Floorplanning and place and route 
tools are not likely to detect the possibility of such compact configurations. Histori
cally, the designer has had to layout such areas by hand, and then provide the floor
planner with a "black box" macro for these areas. Such hand crafting produces highly 
compact layout, but is costly in terms of time spent. Tools for automating this hand
crafted tiling process are becoming available. 

6.4 RAM and Datapath Generators 

Memories and datapaths present a special set of problems for design reuse. Histori
cally, memories and high performance datapaths have been designed at the physical 
level, making them very technology dependent. 

6.4.1 Memory Design 

There is almost no logical design content to (most) memory design. There are single 
port vs. multi-port and synchronous vs. asynchronous memories, but what truly dif
ferentiates a good memory design from a bad one is the size, power, and speed of the 
memory. The extreme regularity of memory determines the design methodology. A 
memory cell is developed, hopefully as small and fast and low power as possible. The 
memory cell is then replicated in a regular tiling fashion. Unfortunately, the optimal 
cell design is very dependent on the underlying fabrication process. Thus, each silicon 
vendor has tended to develop a unique memory compiler tailored to the specific 
requirements of the target silicon technology. 

The result is that memory designs are not portable or reusable. This situation places a 
significant burden on the developer of reusable designs. In Chapter 5, we described 
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some approaches for dealing with memories in designing reusable macros, and later 
in this chapter we describe the integration flow for using macros with memory mod
ules in chip-level designs. But first, we discuss datapath design, which, until recently, 
shared many of the same problems as memory design. 

6.4.2 Datapath Design 

In those datapaths that are dominated by arithmetic functions, the functionality of the 
design is usually straightforward. The functionality of a 32-bit multiply-accumulate 
block, for example, is clear and does not help differentiate a design. In order to have a 
32-bit MAC that is superior to a competitor's, it is necessary to exploit hardware 
structure to achieve a faster, smaller, or lower-power design. Historically, this 
approach has led to tools and methodologies designed to exploit the structural regu
larity in the datapath, and thus derive a superior physical layout. 

Datapath Design Issues 

There are three major problems with traditional approaches to datapath design. First, 
irregular structures like Wallace tree multipliers can outperform regular structures. 
Second, the datapath designs produced are not portable to new technologies and do 
not lend themselves to reuse. Third, great majority of modem applications are poor 
candidates for the traditional approach, which is best suited to datapaths that are rela
tively simple (few number of operations) and highly regular (uniform bit-widths). 

If we look at the history of datapath design, a typical datapath in 1988 would be a 
simple, regular datapath, such as a CPU ALU. Regular structures like muxes and 
adders dominated; bit slicing was used extensively, and was effective in deriving 
dense, regular layouts. A 32-bit MAC was a separate chip. 

In 1998, graphics, video, and digital signal processing applications are the most com
mon datapath designs. Blocks like IDCTs, FIRs, and FFTs are common datapath ele
ments, and a 32-bit MAC is just a small component in the datapath. The significant 
increase in applications for complex datapaths, along with intense pressures to reduce 
development time, has resulted in a desire to move datapath design to a higher level of 
design abstraction as well as to leverage design reuse techniques. 

Datapath design tools and methodologies are rapidly evolving to meet this need. 

Datapath Design Tool Evolution 

In the past, designers predominately designed datapaths by handcrafting the design. 
They captured structural information about the design in schematics and then devel
oped a physical layout of the design. The physical design was laid out for a single bit-
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slice of the datapath, then replicated. For regular datapaths dominated by muxes and 
adders, this approach produced dense, regular physical designs. These handcrafted 
designs exhibit: 

• High performance because the methodology effectively exploited the regular 
structure of the logic 

• Low productivity because of the amount of handcrafting required 

• Poor portability because the results were design and technology specific 

In the more recent past, designers started using layout-oriented datapath design tools. 
With these tools, structural descriptions of the design are entered either in schematic 
form or in HDL, but with severe constraints limiting the subset of the language that 
can be used. These tools automate much of the handcrafting that was done before, 
such as developing bit-slice layouts and regular structures. The designs result in: 

• High performance for regular structures 

• Poor performance for irregular, tree-based structures like Wallace-tree multipliers 

• Poor performance for structures with varying bit widths, a common characteristic 
of graphics designs such as IDCTs, digital filters, or any other design employing 
techniques like saturation, rounding, or normalization 

• Moderate productivity because of the automation of design tasks 

• Poor portability because designs were still design and technology specific 

A number of datapath designers have used conventional synthesis to improve the 
technology portability of their designs. Conventional synthesis uses generic operators 
with structures that are expressed in a generic library; during synthesis, the designed 
is then mapped onto the specific technology library. Designs using conventional syn
thesis have: 

• Moderate performance for complex datapaths, very good performance on simple 
ones 

• Moderate productivity for complex datapaths, very good productivity on simple 
ones 

• Good portability 

Today's most advanced datapath design tools, like Module Compiler, approach the 
problem of datapath design differently. With these tools, the designer enters the struc
tural description for the design in a flexible HDL. The tool then performs synthesis to 
generate an optimal netlist for the entire datapath. The designer has the flexibility to 
manipulate the structural input to guide or control the synthesis. Because the func
tionality for even relatively complex datapaths is well known, the designer can focus 
on the implementation structure to differentiate the datapath design solution. 
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The key realization behind these new tools is that good datapath design starts with a 
good netlist, not with a bit-slice physical design. Today's datapaths are dominated by 
tree structures that have little of the regularity of earlier datapaths. For these struc
tures, automatic place and route tools do at least as good a job as hand design, and 
often better. The key to performance is to develop the best possible detailed structure 
(the netlist) and then map it onto the available technology (through place and route). 
And unlike conventional synthesis, these specialized tools use algorithms that are spe
cific for datapath synthesis, producing better netlists in shorter time. 

One of the key benefits of these tools is that they are significantly faster than any other 
design method, often an order of magnitude or more faster than conventional synthe
sis. One advantage of this speed is that many different implementations for the design 
can be developed and evaluated. For instance, when designing an IDCT, the designer 
can experiment with different saturation algorithms, different numbers of multipliers, 
and different numbers of pipelines. As a result of this exploration, a superior architec
ture can be developed. This improved architecture can more than compensate for any 
loss in performance compared to a handcrafted design. 

Because they allow superior, technology-independent designs, these tools provide the 
first opportunity to develop reusable datapath designs without sacrificing perfor
mance. This capability is essential for the design of reusable blocks for complex chips 
in datapath-intensive domains such as video, graphics, and multimedia. 

With these tools, designs have: 

• High performance - implementation exploration allows superior designs 

• High productivity - extremely fast synthesis times allow very rapid development 
of very complex designs 

• High portability - because the source is technology independent and can be 
parameterized, it is very portable across technologies and from design to design 

The next step in the evolution of datapath tools is to extend these specialized synthesis 
tools to include links to physical design. Although irregular structures tend to domi
nate most large datapaths today, there are still many designs that have substantial por
tions that are very regular. Exploiting this regularity could even further improve the 
performance of datapath circuits. Also, like any synthesis tool, links to physical 
design can help improve circuit performance and reduce the iterations between logic 
design and physical design. 
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6.4.3 Design Flow Using Module Compiler 

Module Compiler (MC) is a Synopsys datapath synthesis and optimization tool that 
provides an alternative method of designing and synthesizing complex arithmetic 
datapaths. For such datapaths, MC offers better quality of results and much faster 
compile times than general purpose synthesis tools. The compile times are so much 
faster (1-2 orders of magnitude) than standard synthesis that it is possible to quickly 
code and synthesize alternative implementations. Designers can quickly evaluate 
tradeoffs between timing, power, and area, and converge on optimal designs much 
faster than by conventional handcrafting or general RTI..-based synthesis. 

In Module Compiler, you describe the datapath in the Module Compiler Language 
(MCL), a Verilog-like datapath description language. MC produces: 

• A Verilog or VHDL gate-level netlist 

• A Verilog or VHDL simulation model 

• Area and timing reports 

• Placement guidance information for layout 

Some of Module Compiler's highlights are: 

Interfaces 
Module Compiler supports both GUI and a command-line modes. 

Inputs 
The inputs are a high-level description of the datapath in MCL and some 
design constraints. MCL has the look and feel of the Verilog hardware descrip
tion language, but is better suited to the task of describing the synthesis and 
optimization of datapaths. The design constraints can be entered from the GUI 
or embedded in the description. 

Workflow 
MC is designed to support two work flows: the "exploration loop" and the 
"debugging loop" (Figure 6-1). The two flows are typically interleaved, with 
one feeding into the other. 
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Figure 6-1 The Module Compiler work flow 
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• In the exploration loop, the designer explores the timing and area performance of 
alternate datapath designs. The designer codes the prospective datapath and uses 
MC to synthesize the input and generate reports on area, timing, and power. The 
designer uses these reports to optimize the macro architecture. 

• In the debugging loop, MC synthesizes and optimizes the input and generates a 
Verilog or VHDL behavioral model and netlist. Simulation on these outputs con
firms the accuracy of the network description and that latency is acceptable. 

• After exploration and debug are completed, the designer uses MC to generate the 
final datapath netlist. 
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• If the datapath is part of a larger design, the designer reads both the datapath 
netlist and the RTL for the rest of the design into the synthesis tool. The datapath 
netlist can be "dont_touch' ed" so that no additional optimizations are per
formed on it. This option results in the fastest compile time. On the other hand, the 
designer can have the synthesis tool re-optimize the netlist. On some designs, 
some incremental improvement in timing and/or area can be achieved by this 
approach. 

6.4.4 RAM Generator Flow 

The typical RAM generator work flow, shown in Figure 6-2, is similar to that of data
path generators such as Module Compiler. With RAM compilers, the designer: 

• Describes the memory configuration, through either a GUI or a command-line 
interface. The designer selects the family of memory, typically trading off power 
and area versus speed. 

• Invokes the memory compiler, which produces a simulation model and a synthesis 
model for the memory. 

• Performs simulation with models for the rest of the system to verify the function
ality of the memory interfaces. 

• Performs synthesis with the synthesis model for the RAM and the RTL for the rest 
of the system. The synthesis model for the RAM is key in determining overall chip 
timing and allowing optimal synthesis of the modules that interface to the RAM. 

6.4.5 Design Reuse with Datapath and RAM Compilers 

The input to a GUI on a RAM generator is not reusable by itself. However, the gener
ator is a reuse tool. Most of the knowledge required to design the RAM resides in the 
tool, not the inputs to the tool. It is so easy to create new configurations using the 
RAM compiler that memory design becomes very straightforward for the chip 
designer. The difficult aspects of RAM design have all been encapsulated by the tool 
and are hidden from the user. 

Module Compiler provides similar reuse capabilities. By encapsulating the difficult 
parts of datapath design, such as adder and multiplier tree structures and merging of 
arithmetic operators, MC reduces the input requirements for describing the datapath 
to an absolute minimum. The tool itself is the key to datapath reuse. 

Unlike RAM compilers, however, the MCL code describing the datapath does have a 
significant design content. This code can be reused for many designs. One of the 
strengths of an encapsulating tool like MC is that the datapath description in MCL 
code is extremely simple and easy to understand. These features, of course, are the 
fundamental requirements for reusability. 
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Run DC 

Figure 6·2 RAM generator work flow 

RAM compilers and datapath compilers like Me offer a challenge to the design reuse 
community: Are there other domains where sufficient design expertise can be encap
sulated in a tool, so that significant design reuse can be obtained from the tool itself? 
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6.5 Coding Guidelines for Synthesis Scripts 

Many of the coding guidelines described in Chapter 5 apply equally well to all scripts, 
including synthesis scripts. 

The following rules and guidelines apply particularly to synthesis scripts: 

Rule - All scripts, including synthesis scripts, should begin with a header describing 
the file, its purpose, its author, and its revision history. 

Rule - Comments should be used extensively to describe the synthesis strategy being 
executed. 

Rule - All scripts used to build the design should be under revision control and a bug 
tracking system, just as the source code is. 

Guideline - Keep the line length to 72 characters or less. 

Lines that exceed 80 characters are difficult to read in print and on standard terminal 
width computer screens. The 72 character limit provides a margin that enhances the 
readability of the code. 

For dc_shell commands, use a backslash (\) to continue the statement onto the 
next line if the command exceeds 72 characters and begin the next line with an indent. 

Rule - No hard-coded numbers, data values, or filenames should be buried in the 
body of the script. Variables should be used in the body of the script and their values 
set at the top of the script. 

Rule - No hard-coded paths should appear in any scripts. Scripts with hard-coded 
paths are not portable because hard-coded paths prevent the script from being reused 
in other environments. 

Rule - Scripts should be as simple as they can be and still meet their objectives. Syn
thesis scripts that use only the most common commands are more easily understood 
and modified. 

Rule - Common commands such as those defining the library and search paths 
should reside in a single setup file for the design, usually in the 
. synopsys_dc . setup file or in a file that can be included in 
. synopsys_dc. setup. All other synthesis scripts should perform only those 
unique tasks for which they were written. Having libraries or search paths defined in 
multiple files makes modification difficult. 
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Rule - Synthesis scripts for parameterized soft macros need to be tested as thor
oughly as any source code. In particular, all statements and all paths through the script 
must be tested. Some scripting bugs appear only when the script is used to compile 
the macro in a particular configuration; these bugs must be uncovered before shipping 
the script to a customer. 

Guideline - Run the syntax checker on Design Compiler scripts before running the 
script. The syntax checker can spot many of the scripting errors that can cause DC to 
halt or produce useless results. 

The following example shows how to use the Design Compiler syntax checker: 

dc_shell -syntax_check -f ./scripts/my_compile.scr 



CHAPTER 7 Macro lkrijication 
Guidelines 

The goal of macro verification is to ensure that the macro is 100 percent correct in its 
functionality and timing. In particular, the behavior of the macro must exactly match 
the functionality and timing described in the functional specification. This chapter 
discusses issues in simulating and verifying macros, including the importance of reus
able testbenches and test suites, and timing verification. The topics are: 

• Overview of macro verification 

• Testbench design 

• Timing verification 

7.1 Overview of Macro Verification 

Design verification is consistently one of the most difficult and challenging aspects of 
design. Parameterized, soft macros being designed for reuse present some particular 
challenges: 

• The verification goal must be for zero defects because the macro may be used in 
anything from a computer game to a mission-critical aerospace application. 

• The goal of zero defects must be achieved for all legal configurations of the 
macro, and for all legal values of its parameters. 

• The integration team must be able to reuse the macro-level testbenches and test 
suites because the macro must be verified both as a standalone design and in the 
context of the final application. 

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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• Because the macro may be substantially redesigned in the future, the entire set of 
testbenches and test suites must be reusable by other design teams. 

• Because some testbenches may be used in system testing, the testbenches must be 
compatible with the verification tools used throughout the system testing process. 

7.1.1 Verification Plan 

Because of the inherent complexity and scope of the functional verification task, it is 
essential that comprehensive functional verification plans be created, reviewed, and 
followed by the design team. By defining the verification plan early, the design team 
can develop the verification environment, including testbenches and verification 
suites, early in the design cycle. Having a clear definition of the criteria that the macro 
verification must meet before shipment helps to focus the verification effort and to 
clarify exactly when the macro is ready to ship. 

The specific benefits of developing a verification plan early in the design cycle 
include: 

• The act of creating a functional verification plan forces designers to think through 
what are typically very time-consuming activities prior to performing them. 

• A peer review of the functional verification plan allows a pro-active assessment of 
the entire scope of the task. 

• The team can focus efforts first on those areas in which verification is most needed 
and will provide the greatest payoff. 

• The team can minimize redundant effort. 

• The engineers on the team can leverage the cumulative experience and knowledge 
of the entire team. 

• A functional verification plan provides a formal mechanism for correlating project 
requirements to specific verification tests, which, in tum, allows the completeness 
(coverage) of the test suite to be assessed. 

• Early identification of verification tests allows their development to be tracked and 
managed more effectively. 

• A functional verification plan may serve as documentation of the verification tests 
and testbench - a critical element for the reuse of these items during regression 
testing and on subsequent projects. This documentation also reduces the impact of 
unexpected personnel changes midstream during a project. 

• The information contained in the functional verification plan enables a separate 
verification support team to create a verification environment in parallel with the 
design capture tasks performed by the primary design team. This can significantly 
reduce the design cycle time. 
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The verification environment is the set of testbench components such as bus func
tional models, bus monitors, memory models, and the structural interconnect of such 
components with the design-under-test. Creation of such an environment may involve 
in-house development of some components and/or integration of off-the-shelf models. 

The verification plan should be fully described either in the functional specification 
for the macro or in a separate verification document. This document will be a living 
document, changing as issues arise and strategies are refined. The plan should 
include: 

• A description of the test strategy, both at the subblock and the top level. 

• A detailed description of the simulation environment, including a block diagram. 

• A list of testbench components, such as bus functional models and bus monitors. 
For each component, there should be a summary of key required features. There 
should also be an indication of whether the component already exists, can be pur
chased from a third party, or needs to be developed. 

• A list of required verification tools, including simulators and testbench creation 
tools. 

• A list of specific tests, along with the objective and estimated size of each. The 
size estimate can help in estimating the effort required to develop the test. 

• An analysis of the key specifications of the macro, and identification of which 
tests verify each of these specifications. 

• A specification of what functionality of the macro will be verified at the subblock 
level, and what will be verified at the macro level. 

• A specification of the target code coverage for each subblock, and for the top-level 
macro. 

• A description of the regression test environment and regression procedure. The 
regression tests are those verification tests that are routinely run to verify that the 
design team has not broken existing functionality while adding new functionality. 

• A results verification procedure, specifying what criteria will be used to determine 
when the verification process has been successfully completed. 

7.1.2 Verification Strategy 

The verification of a macro consists of three major phases: 

• Verification of individual subblocks 

• Macro verification 

• Prototyping 

The overall verification strategy is to achieve a very high level of test coverage at the 
subblock level, and then to focus the macro-level verification at the interfaces 
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between blocks, overall macro functionality, and corner cases of behavior. This bot
tom-up verification approach is based on the concept of locality; it is much easier to 
detect and fix bugs on small modules than on large modules. 

This approach is different from the traditional approach ASIC designers have tended 
to use. These designers have typically designed a module for an ASIC, verified the 
most basic functionality at the module level, and then integrated it into the overall 
chip for full verification. The advantage of this approach is that the other blocks form 
a testbench for the module, and since we need a full verification suite for the chip any
way, why not do all the real verification at the chip level. Testing at the block level 
seems a great deal of redundant effort. 

When designing a reusable macro, ASIC designers are tempted to take the same 
approach: do perfunctory testing at the subblock level, and do most of the verification 
at the macro level. The problem with this approach is that: 

• Observability and controllability of internal nodes becomes harder with the size of 
the circuit. Achieving 100 percent coverage is much easier with smaller blocks. 

• Debugging at the macro level can be much more difficult and time consuming than 
debugging at the subblock level. 

On the other hand, a pure bottom-up approach to verification, like any waterfall model 
for development, never really works. In real projects, a spiral approach involving iter
ation, works best. The team does very thorough subblock testing, getting as close to 
100 percent coverage as possible. They then integrate the subblock into the macro and 
do macro verification. Inevitably the team finds additional bugs, usually involving 
interfaces or interactions between blocks. They then go back and modify the subblock 
design, do some more subblock verification, and then go back to macro-level testing. 

Realistically, this approach gains high but not 100 percent confidence in the macro's 
functional correctness. Building a rapid prototype of the macro allows the team to run 
significant amounts of real application code on the macro, greatly increasing confi
dence in the robustness of the design. 

At each phase of the verification process, the team needs to decide what kinds of tests 
to run, and what verification tools to use to run them. 

The basic types of verification tests include: 

Compliance testing 
These tests verify that the design complies with the specification. For an indus
try standard design, like a PCI interface or an IEEE 1394 interface, these tests 
also verify compliance to the published specification. In all cases, compliance 
to the functional specification for the design is checked as fully as possible. 
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Corner case testing 
These tests try to find the complex scenarios, or corner cases, that are most 
likely to break the design. They focus on the aspects of the design that are 
most complex, involve the most interaction between blocks, or are the least 
clearly specified. 

Random testing 
For many designs, such as processors or complex bus interfaces, random tests 
can be a useful complement to compliance and corner case testing. Focused 
tests like the compliance and corner case tests are limited to the scenarios that 
the engineers anticipate. Random tests can create scenarios that the engineers 
do not anticipate, and often uncover the most obscure bugs in a design. 

Real code testing 
One of the most important parts of verifying any design is running the design 
in a real application, with real code. It is always possible for the hardware 
design team to misunderstand a specification, and design and test their code to 
an erroneous specification. Running the real application code is a useful way 
to uncover these errors. 

Regression testing 
As tests are developed, they should be added to the regression test suite. This 
regression test suite can then be run on a regular basis during the verification 
phase of the project. One of the typical problems in verification is that, in the 
process of fixing a bug, another bug can be inadvertently introduced. The 
regression test suite can help verify that the existing baseline of functionality is 
maintained as new features are added and bugs are fixed. It is particularly 
important that, whenever a bug is detected, the test case for the bug is added to 
the regression suite. 

The verification tools available to the macro design team include: 

Simulation 
Most of the macro verification is performed by simulating the RTL on an 
event-driven simulator. Event-driven simulators give a good compromise 
between fast compile times and good simulation speed at the RTL level, and 
provide a good debug environment. For large macros, the run-time for simula
tion may become a problem, especially for regression tests, random tests, and 
real code testing. 

VHDL in particular can present a problem here. VHDL uses a two-list simula
tion algorithm compared to Verilog's one-list algorithm [1], and so tends to be 
inherently slower than Verilog. In this case, it may be worthwhile to use a 
VHDL cycle-based simulator, which can provide improved runtime perfor
mance. 

Although most simulation should be done at the RTL level, some simulation 
should be run at the gate level. Typically, this is done late in the design cycle, 
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once the RTL is stable and well-verified. Some initialization problems are 
masked at the RTL level, since RTL simulation uses a more abstract model for 
registers, and thus does not propagate X's as accurately as gate-level simula
tion. Usually only the reset sequence and a few basic functional tests need to 
be run at the gate level to verify correct initialization. 

Testbench Automation Tools 
Testbench automation tools such as Vera and Specman Elite can dramatically 
aid the task of creating reusable testbenches. These tools essentially extend 
VHDL and Verilog by providing powerful constructs for generating stimulus 
and checking response. For example, the designer can check that an event 
occurred some time within a window of clock cycles. They provide mecha
nisms for generating random tests and for checking test coverage. They also 
provide mechanisms for communication between testbench objects; this fea
ture can be used to coordinate multiple bus functional models. 

Code Coverage Tools 
Code coverage tools, such as VHDLCover, VeriSure, VeriCov, and CoverMe
ter provide the ability to assess the quality of the verification suite. They can 
provide information about what parts of the code have been tested, as well as 
what states and arcs of a finite state machine have been tested. Code coverage 
is discussed in more detail in a later section of this chapter. 

Hardware modeling 
A hardware modeler provides an interface between a physical chip and the 
software simulator, so that stimulus can be applied to the chip and responses 
monitored within the simulation environment. Hardware modelers allow the 
designer to compare the simulation results of the RTL design with those of an 
actual chip. This verification method is very effective for designs where there 
is a known-good chip whose functionality is being designed into the macro. 

Emulation 
Emulation provides very fast run times but long compile times. It is signifi
cantly more expensive and more difficult to use than simulation. It is an appro
priate tool for running real code on a large design, but is not a very useful tool 
for small macro development. 

Prototyping 
Building an actual prototype chip using the macro is key to verifying function
ality. A prototype allows execution of real code in a real application at real
time speeds. A physical chip is not as easy to debug as a simulation of the 
design, so prototyping should only occur late in the design phase. Once a prob
lem is detected using a prototype, it is usually best to recreate the problem in 
the simulation environment, and perform the debug there. 
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7.1.3 Subblock Simulation 

Subblock verification is generally performed by the creator of the subblock, using a 
handcrafted testbench. This testbench typically consists of algorithmically-generated 
stimulus and a monitor to check outputs. The goal at this stage is 100 percent state
ment and path coverage, as measured with a commercial code coverage tool. This 
level of coverage is usually achievable with a reasonable effort because the subblocks 
are small. It is essential that this level of coverage be achieved at the subblock level 
because high levels of coverage become increasingly more difficult at higher levels of 
integration. Of course, good judgement needs to be used when applying this guide
line. For example, if a datapath and its control block are initially designed as separate 
subblocks, then it may be impossible to get high coverage testing them separately. It 
may be much more appropriate to integrate the two and then perform verification. 

Whenever possible, the outputs of the subblock should be checked automatically. The 
best way to do this is to add checking logic to the testbench. Of course, the checking 
logic needs to be even more robust than the macro code it is checking. 

Automated response checking is superior to visual verification of waveforms because: 

• It is less error-prone. 

• It enables checking of longer tests. 

• It enables checking of random tests. 

Rule - All response checking should be done automatically. It is not acceptable for 
the designer to view waveforms and determine whether they are correct. 

Guideline - All subblock test suites should achieve 100 percent statement and path 
coverage as measured by a test coverage tool such as VeriSure or VHDLCover. Sub
block testing is the easiest place to detect design errors. With high coverage at this 
level, integration-level errors should be limited to interfacing problems. 

7.1.4 Macro Simulation 

If the subblocks have been rigorously tested, then the major source of errors at the 
macro integration level will either be interface problems or the result of the designer 
misunderstanding the specification. Macro-level tests focus on these areas. At the 
macro level, 100 percent coverage is no longer a practical goal. The emphasis at this 
stage is on testing the interaction between the component subblocks and the interfaces 
of the macro with its environment. Testing random cases of inputs and outputs is a 
crucial element of macro verification. 

The design of testbenches for macro simulation is discussed in the section, "Test
bench Design." 
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7.1.5 Prototyping 

The design reuse methodology encourages rapid prototyping to complement simula
tion, and to compensate for the less-than-lOO percent coverage at the macro verifica
tion stage. Achieving the final small percent of coverage at the macro level is 
generally extremely costly in time and still does not detect some of the bugs that will 
become apparent in prototype operation. 

For many macros, it is possible to build a prototype chip and board and thus test the 
design in the actual target environment. Current FPGA and laser prototyping technol
ogies do not provide the gate-count or the speed of state-of-the-art ASIC technology, 
but do provide the ability to create prototypes very rapidly. For designs that fit in these 
technologies and that can be verified at the speeds they provide, these technologies 
are very useful debugging mechanisms. 

Building a prototype ASIC is required for macros that must be tested at speeds or gate 
counts exceeding those of FPGA and laser technologies. For some projects, this may 
mean that the prototype chip for the macro is the first SoC design in which it is used. 
In this case, the team must realize that the chip is a prototype, and that there is a high 
likelihood that it will have to be turned in order to achieve fully functional silicon. 

7.1.6 Limited Production 

Even after robust verification and prototyping, we cannot be sure that there are no 
remaining bugs in the design. There may be testcases that we did not run, or configu
rations that we did not prototype. Fundamentally, we have done a robust design but 
we have not used the macro in a real SoC design. For this reason, we recommend a 
period of limited production for any new macro. Typically, limited production 
involves working with just a few (1-4) customers and making sure that they are suc
cessful using the macro, before releasing the macro to widespread distribution. We 
have found this cautious approach very beneficial in reducing the risk of support 
problems. 

7.2 Inspection as Verification 

All of the books on code quality state that the fastest, cheapest, and most effective 
way to detect and remove bugs is by careful inspection of the design and code. Design 
reviews and code reviews playa key part in the drive towards zero defects. 

Unfortunately, almost all of the research on code quality has been done in the area of 
software rather than hardware. But the software data we have is compelling and is 
likely to apply, in some general form, to hardware. 
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In Applied Software Measurement [2], Capers Jones reports that code inspections can 
be twice as effective as any other method in removing defects. In particular, code 
inspections are much more effective than test and debug for finding bugs. Jones states: 

"Inspections tend to benefit project schedules and effort as well as quality. They are 
extremely efficient at finding interface problems between components and in using 
the human capacity for inductive reasoning to find subtle errors that testing will miss." 

In our experience, we have found the same to be true for hardware designs as well. 
Finding bugs by code inspection is much faster than finding the same bugs by debug
ging the code during simulation. 

There are many styles of design and code review, and a number of authors offer data 
on the advantages of different styles [2,3]. The following paragraphs describe a typi
cal approach to performing design and code reviews. 

A design review is a presentation by the designer (or design team) to the rest of the 
team. The size of the review team can be quite large. The designer provides the speci
fication document to the reviewers ahead of time, so they can read it and come to the 
meeting well informed. At the meeting the designer reviews the requirements for the 
design, and describes in some detail how the design meets these requirements. 

Design reviews take place at many points during the design cycle; from the beginning, 
where the specification is clear but the design is just being defined, up to release of the 
final design. The level of detail varies at each stage. The purpose of the design review 
is to review the approach to solving the problem, and to make sure that it is sound. 
There is no useful way to review the detailed implementation with a large number of 
people simultaneously. 

Code reviews, on the other hand, are reviews of the details of the implementation. 
They typically involve the designer and a very small number of reviewers, often just a 
single reviewer. The object of the code review is to do a detailed peer review of the 
code. The reviewer and the designer go through the code line by line, and the reviewer 
is expected to fully understand the implementation. Often, teams will insist that 
reviewers are not managers, to maintain the sense of a supportive, collegial review. 
Teams have found that reviews work best when the designer knows that the purpose 
of the review is to help drive quality, and not for assessment of the designer's perfor
mance. 

Pressman [3] gives results of some interesting studies assessing the optimal number 
of reviewers for code walkthroughs. 

Code reviews are usually done after a subblock has been designed and verified by the 
designer, and before it is integrated into the macro. 
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Static analysis tools such as linting tools can also help spot defects before going to 
simulation. Linting tools such as Verilint, VHDLlint, and tools from Leda S.A. and 
Escalade can check for a variety of potential sources of error. For example, they can 
check for uninitialized variables or incomplete sensitivity lists. New versions of the 
linting tools are becoming available to check many of the guidelines in this book. 
Linting tools are very fast to run and should be run often. 

Thus, there is a whole series of static verification methods that can effectively reduce 
the number of bugs before even starting dynamic, simulation-based verification. In 
addition, several software methodology books recommend single stepping through 
code in a debugger as the first step in dynamic verification. This approach is a combi
nation of dynamic and static verification. By stepping through the code, the designer 
clearly sees how the code actually behaves in great detail, and can spot bugs as they 
are executed. 

We have very limited experience in using this approach in hardware verification, but 
encourage readers to try it and see if they find it effective. Single stepping through 
code clearly works only relatively small blocks; stepping through a million gate 
design that requires thousands of cycles to do anything interesting is clearly not a use
ful exercise. But for subblocks of a macro, this could be an effective verification tool. 

7.3 Adversarial Testing 

Hardware and software teams have found that having a dedicated team of verification 
specialists can significantly improve the qUality of the final product. Subblock or unit 
testing is done by the designer, and typically much of the macro verification is done 
by the design team. However, designers often are focused on proving that the design 
works correctly. 

A separate team of verification experts can take a different view; they can focus on 
trying to prove that the design is broken. The combination of these two approaches 
usually gives the best results. 

It is also useful to have some members of the team who are verification specialists, 
and who spend time keeping up with the latest tools and methodologies in verifica
tion. In the last few years there has been a proliferation of new point tools targeting 
verification, from the large EDA companies and from start-ups. Just keeping current 
on these tools, much less integrating them into the design flow, can be a challenge for 
the design team. 
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7.4 Testbench Design 

Testbench design differs depending on the function of the macro. For example, the 
top-level testbench for a microprocessor macro would typically execute test pro
grams, while that of a bus interface macro would typically use bus functional models 
and bus monitors to apply stimulus and check the results. There are also significant 
differences between subblock testbench design and top-level macro testbench design. 
In all cases, it is important to make sure that the test coverage provided by the test
bench is adequate. 

7.4.1 Subblock Testbench 

Testbenches for subblocks tend to be rather ad hoc, developed specifically for the sub
block under test. At some abstract level, though, they tend to look like Figure 7-1. 

Because subblocks will almost never have bidirectional interfaces, we can develop a 
simple testbench that generates a set of inputs to the input ports and checks the out
puts at the output ports. The activity at these ports is not random; in most digital sys
tems, there will be a limited set of transactions that occur on a given port. These 
transactions usually have to do with reading or writing data to some storage element 
(registers, FIFOs, or memories) in the block. 

Ql 
Ql 
0 

Input ~ ~ 
Output 

Transaction ---+ ~ ~ -+ Transaction 
Generator "S "S Checker 

Co % .E 0 

Figure 7·1 Typical testbench for a subblock 

Stimulus Generation 

When we design the sub block, we can specify the transaction types that are allowed 
to occur on a given input port; for example, a register write consists of one specific 
sequence of data, address, and control pins changing, and no other sequence of 
actions on these pins is legal. As we design the macro, of course, we need to make 
sure that no block driving this port can ever generate any transactions other than the 
legal transactions at this port. 

Once we have defined the legal set of transaction types on the input ports, we need to 
generate sequences of these transactions with the appropriate data/address values for 
testing the subblock. We start by analyzing the functionality of the subblock to deter
mine useful sequences that will verify that the subblock complies with the specifica-
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tion. Then we search for the comer cases of the design: those unique sequences or 
combinations of transactions and data values that are most likely to break the design. 

Once we have developed all the tests we can in this manner, we run a code coverage 
tool. This tool gives us a good indication of the completeness of the test suite. If addi
tional testing is required to achieve 100 percent coverage, then we can develop addi
tional focused tests or we can create a random test generator to generate random 
patterns of transactions and data. Random testing is effective for processors and bus 
interfaces because of the large number of transaction types make it difficult to manu
ally generate all of the interesting combinations of transactions. 

Output Checking 

Generating test cases is, of course, just the first part of verification. We must check the 
responses of the design to verify that it is working correctly. This checking can be 
done manually, by monitoring the outputs on a waveform viewer and verifying that 
the waveforms are correct. However, this process is very error-prone and, therefore, 
an automatic output checker is a necessary part of the testbench. The design of this 
checker is unique to the subblock being tested, but there are some common aspects to 
most checkers: 

• We can verify that only legal transactions are generated at the output port of the 
design. For example, if the read/write line is always supposed to transition one 
clock cycle before data and be stable until one clock cycle after data transitions, 
then we can check this automatically. 

• We can verify that the specific transactions are correct responses to the input trans
actions generated. This requires a detailed analysis of the design. Clearly, the sim
pler the design, the simpler this checking is. This provides another reason to keep 
the design as simple as possible and still meet function and performance goals. 

7.4.2 Macro Testbench 

We can extend the concepts used in the subblock testbench to the testbench used for 
checking the macro. Once the subblocks have been integrated into the macro, we con
struct a testbench that again automatically generates transactions at the macro input 
ports and checks transactions at the output ports. There are several reasons why we 
want to develop a more powerful and well-documented testbench at this level: 

• The design is now considerably more complex, and so more complex test scenar
ios will be required for complete testing. 

• More people will typically be working on verification of the macro, often the 
entire team that developed the subblocks. 

• The testbench will be shipped along with the macro so that the customer can ver
ify the macro in the system design. 
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The testbench can take several fonns. An interface macro, such as a PCI interface, 
might have a testbench like the one shown in Figure 7-2. This testbench is coded 
using a testbench generation tool, such as Vera or Specman Elite. 

The PCI macro provides an interface between the PCI bus, with its complex protocol, 
and two application buses: the master application bus, which can initiate PCI transac
tions, and the slave application bus, which is the target of PCI transactions. 

In this testbench, PCI bus functional models are used to create transactions on the PCI 
bus, and thus to the PCI macro. A PCI bus monitor checks the transactions on the PCI 
bus, and thus acts as a transaction checker. The monitor produces a log file, where 
address and data infonnation for each transaction is recorded, and an error message 
generated if the basic PCI protocol is violated. 

Multiple instances of the PCI BFM are used to generate complex test scenarios, with 
colliding traffic in both directions. Because testbench creation tools are object-ori
ented, creating and managing these multiple instances is very straightforward. 

Because the PCI macro acts as a bridge between the PCI bus and the application 
buses, we need bus functional models and bus monitors for the application buses as 
well. 

The bus monitors are very useful for checking the correctness of the basic protocol, 
but are not adequate to check the full functionality of the PCI macro. For this, we 
need the On-the-Fly Checker. This block monitors all read and write transactions ini
tiated on any of the three buses. When a write to address A occurs on the PCI bus, this 
transaction is written to a software FIFO in the checker. When a write appears on the 
slave application bus, this is also written to a software FIFO in the checker. The 
checker then compares the contents of the software FIFOs to make sure that transac
tions correctly propagated through the PCI macro, and in the correct number of 
cycles. 

Because of the complexity of the PCI protocol, the exact number of cycles for the 
write to propagate through the macro is essentially non-detenninistic. It depends 
strongly on the other transactions occurring at about the same time. The testbench 
generations tools deal with this elegantly, allowing us to specify a window of time 
during which the write must appear on the application slave bus. 

One requirement for a complex testbench such as that shown in Figure 7-2 is that 
actions of the BFMs must be coordinated. The testbench tools provide a message 
passing mechanism so that commands from a central command file can drive all of 
theBFMs. 

Thus, when this testbench is fully assembled, we have the ability to generate and 
check any sequence of transactions at any port of the PCI macro. 
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Figure 7·2 Macro development and verification environment 

A more complex testbench is shown in Figure 7-3. Here, the actual software applica
tion is the source of commands for the PCI bus functional model. This application can 
run on the workstation that is running the simulator; device driver calls that would 
normally go to the system bus are redirected through a translator to the simulator, 
using a programming language interface such as Verilog's PLI or ModelSim's FLI. A 
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hardware/software cosimulation environment can provide an effective way to set up 
this testbench and a convenient debug environment. 

The actual transactions between the application and the PCI macro under test are a 
small percentage of the cycles being simulated; many cycles are spent generating 
inputs to the bus functional model. Also, real code tends to repeat many of the same 
basic operations many times; extensive testing of the macro requires the execution of 
a considerable amount of application code. Thus, software-driven simulation is an 
inherently inefficient test method, but it does give the opportunity of testing the macro 
with real code. For large macros, this form of testing is most effective if the simula
tion is running on a very high-speed simulator, such as a cycle-based simulator or an 
emulator. 
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Figure 7-3 Software-driven testbench for macro-level testing 

7.4.3 Bus Functional Models 

The bus functional models (BFM) used in the examples above are a common method 
of creating testbenches. Typically they are written in RTL, a testbench automation 
tool, or in C/C++, and use some form of command language to create sequences of 
transactions on the bus. The intent of these models is to model only the bus transac-
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tions of an agent on the bus. They do not model any of the functionality of an agent on 
the bus; each read and write transaction is specified by the test developer explicitly. 

Because of their simplicity; these models place little demand on simulator perfor
mance; simulation speeds are mostly determined by the macro itself. 

Well-designed BFMs allow the test developer to specify the transactions on the bus at 
a relatively high level of abstraction. Instead of controlling individual signals on the 
bus, the test developer can specify a read or write transaction, with the associated 
data, or an interrupt. The developer may well also want to generate an error condition, 
such as forcing a parity error; therefore, the BFM should include this capability as 
well. 

Many testbenches require multiple BFMs, as in the PCI example above. In this case, it 
is best to use a single command file to coordinate the actions of the various models. 
The models must be written so that they can share a common command file. Many 
commercial BFMs offer this capability. 

BFMs are also extremely useful for system-level simulation, as described in Chapter 
11. For example, a PCI BFM can be used to generate transactions to an SoC design 
that has a PCI interface block. Similarly, the PCI monitor can be used to verify output 
transactions to the PCI bus. For this reason, the BFM and monitor are considered two 
of the macro deliverables. 

Because they are part of the deliverables that will ship with the product, the BFM and 
monitor must be designed and coded with the same care as the macro RTL. The 
designer also needs to provide full documentation on how to use the BFM and moni
tor. 

7.4.4 Automated Response Checking 

In the previous examples, the automated response checking for the testbench was pro
vided by the bus monitors and checkers. This approach is useful for bus interfaces, but 
for other types of macros there are some other techniques that may be useful. 

One effective technique is to compare the output responses of the macro to those of a 
reference design. If the macro is being designed to be compatible with an existing 
chip (for example, a microcontroller or DSP), then the chip itself can be used as a ref
erence model. A hardware modeler can be used to integrate the physical chip as a 
model in the simulation environment. Figure 7-4 shows a such a configuration. 



Macro Verification Guidelines 

Stimulus 

[ 8051 chip I 
Hardware Modeler 

8051 macro 
(RTL) 

Compare 
response 

Figure 7·4 Self-checking testbench using a hardware modeler 
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If a behavioral model for the design was developed as part of the specification pro
cess, then this behavioral model can be used as the reference model, especially if it is 
cycle accurate. 

One approach often used by microprocessor developers is to develop an Instruction 
Set Architecture (ISA) model of the processor, usually in C. This ISA model is 
defined to be the reference for the design, and all other representations of the design 
must exhibit the same instruction-level behavior. As RTL is developed for the design, 
its behavior is constantly being compared to the reference ISA model. 

In some sense, the "On-the-Fly Checker" in the PCI example is a reference design for 
the PCI macro. The intent is for the checker to look at every input to the PCI macro 
from the BFMs, look at the PCI macro's response to this input, and determine if the 
response is correct. The difficulty lies in making the BFM, checker, and test suite rich 
enough to test the macro completely. 

7.4.5 Verification Suite Design 

Once we have built the testbench, we can develop a set of tests to verify the correct 
behavior of the macro. Developing a verification environment that can completely 
verify a macro is every bit as difficult as specifying or designing the macro in the first 
place, because it presents essentially the same problem: how to completely describe 
the expected behavior of the design. 
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Functional Testing 

The first step in developing the verification suite is to perform functional testing; that 
is, verifying that the macro implements the functions described in the specification. 
This usually involves going through the functional specification essentially line by 
line, and verifying that there is a test for each required function. Testbench automa
tion tools can help by providing powerful constructs for describing this functionality, 
but deciding how the macro should behave is essentially a human activity. 

If the specification is an executable specification (for example, a C++ behavioral 
model), then functional verification involves showing that the behavior of the specifi
cation and that of the macro are the same. That is, we need to completely exercise the 
executable specification, and show that under the same stimulus, the macro produces 
the same results. The trick here is to completely exercise the executable specification. 
Running a coverage tool on the executable specification can help to determine the 
completeness of these tests. 

These functional tests are necessarily a subset of a complete verification of the macro. 
The specification does not contain all (and in many cases does not contain any) of the 
implementation details of the macro. For example, an ISA model for a microproces
sor is instruction set accurate, but not cycle accurate. The cycle-by-cycle behavior of 
the RTL must be verified in addition to its ability to execute the instruction set cor
rectly. 

Corner Case Testing 

Corner case testing is intended to test the implementation details not covered in the 
functional testing. Designers can often spot corner cases manually. For example, in 
some microprocessor designs two 32-bit registers can sometimes be used as one 64-
bit register. The point where bits roll over from the first 32-bit register to the second is 
a corner case. 

Another typical set of corner cases involve designs with shared resources, such as a 
bus arbiter, or a block that has multiple agents accessing the same FIFO. For these 
designs it is useful to create contention for the resources, to ensure that the conflicts 
are handled correctly. 

Code Coverage and Random Testing 

Once the designer has exhaustively tested all the anticipated corner cases, there are 
two useful techniques for completing the verification suite: code coverage and ran
dom testing. 
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Code coverage is discussed in more detail in the next section, but it basically indicates 
what parts of the code have been tested, and what parts have not. This information 
allows the designer to create focused tests for these untested sections of code. 

When manually adding new tests has become tedious or impractical, random testing 
can help improve test coverage. Constraint-driven random test capabilities in the test
bench automation tools are particularly useful for creating random tests with the 
desired distribution of activities. For processor testing, we can specify that a certain 
percentage of instructions should be arithmetic instructions and a different percentage 
should be load and store, and so on. 

Random testing greatly enhances our verification capabilities, but it does have limita
tions. Runtimes can get very long for achieving very high coverage. And, since the 
designer is human, the parameters of the random test may omit some critical tests. 

A number oftool providers are working on automatic test generators to help solve this 
problem. These tools would examine the circuit, determine what (if any) parts of the 
circuit have already been tested, and then automatically generate additional tests to 
achieve 100 percent coverage. These tools are (at the time of writing) still under 
development, but, once mature, they could have a dramatic impact on verification. 

Still, automatic generation of vectors is not a panacea for the verification challenge. 
We still need to create automatic checkers that can tell us if the response of the macro 
is correct to this 100 percent complete set of stimuli. And no tools will ever tell us if 
we left out a function completely. Verification will always remain a fundamentally 
human activity, because it requires us to specify the expected behavior of the design. 
However, we start to see a much more promising picture of being able to complement 
this human activity with much more powerful tools to ensure higher quality designs. 

Code Examples - Testbench Automation Tools 

Example 7-1 and Example 7-2 show some typical uses of Vera to create BFMs and 
checkers. Example 7-1 shows a PCI bus monitor snooping the PCI bus to detect 
writes to the target (slave) bus on the application interface. When a write occurs, it is 
posted to a mailbox in the target bus monitor. Example 7-2 shows the target bus mon
itor snooping the target bus, and comparing actual writes to those received in the 
mailbox. That is, it checks that the writes that are initiated on the PCI bus actually 
propagate through the PCI macro to the target bus. 

Example 7-3 shows a typical use of Specman Elite to verify a simple CPU. 
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Example 7-1 Vera code fragment for PCI monitor 

class pc i_snooper { 
pci-port my-port i 

pci_data_class pci_datai 
bit msg[255:0] msgi 
task pci_monitor() { 

while(!end_of_test) { 

II DUT port 
II class structure for PCl 
Ilunpack pci_data to msg 

pci_data = snoop-pci_bus with my-port()i 
pci_data.unpack(msg)i 
mailbox_send (mboxld, msg)i II mboxld - addr of 

II target mailbox 
} 

} II end of monitor 
} II end of class pci_snooper. 

Example 7-2 Vera code fragment for PCI application bus monitor 

class target_snooper { 
target-port my-port i 

pci_data_class pci_datai 
bit msg[255:0] msgi 
task target_monitor() { 

while(!end_of_test) { 

II DUT port 
II class structure for PC! 
Ilunpack pc i_data to msg 

msg = mailbox_receivekl(WAlT, msg)i II block for 
Ilmessage 

expected-pci_data.pack(msg)i II pack 
II message to class 

actual-pci_data = snoop_target_bus with 
my-port()i 

compare (actual-pci_data, expected-pci_data)i 
} II end of monitor 
} II end of class target_snooper. 
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Example 7·3 Specman Elite code fragment for verifying a CPU 

II Four typical steps in verifying a simple CPU, 
II using Specman Elite (TM): 

II 1. Describing the device under test (the OUT). 
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II The CPU spec says: "A CPU instruction consists of 
II an opcode and two operands. The first operand is 
II a CPU register, the second is a byte" 
type command_type LOAD, STORE, ADD, SUB, 

JMP, JMPC, CALL, RET ]; 
REGO, REG1, REG2, REG3 ]; type register_type 

struct instruction { 

} ; 

opcode 
operand1 
operand2 

register_type; 
byte; 

II 2. Defining constraints for generating legal 
II instructions, as part of the instruction 
II definition. The CPU spec says: "the LOAD 
II instruction should not use register zero" 

keep (opcode == LOAD) => (operand1 != REGO); 

II 3. Requesting interesting stimuli for a specific test, 
II by adding constraints on the instruction. The test 
II plan says: "Generate JMPC opcodes (JMP-on-Carry) 
II 60% of the times that the carry bit is set in the 
II model (i.e., respond to model state)" 
extend instruction { 

} ; 

keep ('/dut/cpu/carry' -- 1) => 

} ; 

I I i.e., if "carry" is set in the HDL, 
II then select opcode according to ratios: 

soft opcode == select { 
60 JMPC; II 60% JMPC opcode 
40 others; II 40% any other opcode 
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II 4. Checking a temporal rule (timing & sequence). 
II The memory protocol spec states Interface Rule #4: 
II "After data was requested, there should be at most 
II MAX_WAIT cycles till data is ready. During those 
II cycles, no other data request should be issued." 
struct memory_monitor { 

} i 

II events tied to HDL 
event data_req is rise('/dut/memory/request')i 
event data_ready is rise('/dut/memory/ready')i 

expect @data_req => 

{[O .. MAX_WAITJ * not @data_reqi @data_ready} 
else dut_error("Violation of Memory ilf rule #4: " 

"data_req was not followed by " 
"data_ready in due time")i 

7.4.6 Code Coverage Analysis 

Verifying test coverage is essential to the verification strategy; it is the only way to 
assess, quantitatively, the robustness of the test suite. Several commercial tools are 
available that provide extensive coverage capabilities. 

Types of Coverage Tests 

We describe here some of the capabilities of the TransEDA VHDLCover tool, which 
is representative of the better coverage tools currently available. 

The coverage tool provides the following metrics: 

• Statement coverage 

• Branch coverage 

• Condition coverage 

• Path coverage 

• Toggle coverage 

• Triggering coverage 

Statement coverage gives a count, for each executable statement, of how many 
times it was executed. 
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Branch coverage verifies that each branch in an if-then-else or case statement was 
executed. 

Condition coverage verifies that all branch sub-conditions have triggered the con
dition branch. In Example 7-4, condition coverage means checking that the first line 
was executed with a = 1 and that it was executed with b = 0, and it gives a count of 
how many times each condition occurred. 

Example 7-4 Condition coverage checks branch condition 

if (a = '1' or b = '0') then 
c <= '1' i 

else 
c <= ' 0' i 

endifi 

Path coverage checks which paths are taken between adjacent blocks of condi
tional code. For example, if there are two successive if-then-else statements, as in 
Example 7-5, path coverage checks the various combinations of conditions between 
the pair of statements. 

Example 7-5 Path coverage 

if (a = '1' or b = ' 0' ) then 
c <= '1' i 

else 
c <= ' 0' i 

endifi 

if (a = ' l' and b = '1' ) then 
d <= '1' i 

else 
d <= ' 0' i 

endifi 

There are several paths through this pair of if-then-else blocks, depending on the val
ues of a and b. Path coverage counts how many times each possible path was exe
cuted. 

Triggering coverage checks which signals in a sensitivity list trigger a process. 

Trigger coverage counts how many times the process was activated by each signal 
in the sensitivity list changing value. In Example 7-6, trigger coverage counts how 
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many times the process is activated by signal a changing value, by signal b changing 
value, and by signal c changing value. 

Example '·6 Trigger coverage 

process (a, b, c) 

Toggle coverage counts how many times a particular signal transitions from '0' to 
'1' , and how many times it transitions from '1' to '0'. 

Achieving high code coverage with the macro testbench is a necessary but not suffi
cient condition for verifying the functionality of the macro. Code coverage does noth
ing to verify that the original intent of the specification was executed correctly. It also 
does not verify that the simulation results were ever compared or checked. Code cov
erage only indicates whether the code was exercised by the verification suite. 

On the other hand, if the code coverage tool indicates that a line or path through the 
code was not executed, then clearly the verification suite is not testing that piece of 
code. 

We recommend targeting 100 percent statement, branch, and condition coverage. 
Anything substantially below this number may indicate significant functionality that 
is not being tested. 

Path, toggle, and triggering coverage can be used as a secondary metric. Achieving 
very high coverage here is valuable, but may not be practical. At times it may be best 
to examine carefully sections of code that do not have 100 percent path, toggle, or 
trigger coverage, to understand why the coverage was low and whether it is possible 
and appropriate to generate additional tests to increase coverage. 

One of the limitations of current code coverage tools is in the area of path coverage. 
Path coverage is usually limited to adjacent blocks of code. If the design has multiple, 
interacting state machines, this adjacency limitation means that it is unlikely that the 
full interactions of the state machines are checked. 

Recent Progress in Coverage Tools 

Coverage tool providers continue to enhance tool performance on state machines. 
Tools now can recognize state machines in the R1L, and give the designer useful 
information about what nodes have been covered, as well as what arcs have been tra
versed. The tools can also examine pairs of state machines and indicate what pairs of 
states/arcs have been exercised. This coverage is, of course, limited by the computa-
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tional power of workstations and the complexity of the state machines, but offers an 
important step forward. 

Tool providers also have provided capabilities for using coverage to minimize regres
sion test suites. One of the historical problem with regression tests is that the tend to 
grow until runtimes significantly affect the team's ability to verify modifications to 
the design. Many of the new tests add little incremental coverage over existing tests. 

Code coverage can be used to prune the overall test suite, eliminating redundant tests 
and ordering tests so that the first tests run provide the highest incremental coverage. 
TransEDA reports [4] that on a project with Hewlett Packard, this test pruning 
approach reduced regression test runtime by 91 percent. Code coverage tools are still 
limited in their coverage; see the comments on path coverage above. So, it may be 
worthwhile running the full regression suite on the final version of the design. But 
running the pruned suite at a lOx savings in simulation time seems like a very reason
able approach during most of the development cycle of a design. 

7.5 Timing Verification 

Static timing verification is the most effective method of verifying a macro's timing 
performance. As part of the overall verification strategy for a macro, the macro should 
be synthesized using a number of representative library technologies. Static timing 
analysis should then be performed on the resulting netlists to verify that they meet the 
macro's timing objectives. 

The choice of which libraries to use is a key one. Libraries, even for the same technol
ogy (for example, .5J.1), can have significantly different performance characteristics. 
The libraries should be chosen to reflect the actual range of technologies in which the 
macro is likely to be implemented. 

For macros that have aggressive performance goals, it is necessary to include a trial 
layout of the macro to verify timing. Pre-layout wire load models are statistical and 
actual wire delays after layout may vary significantly from these models. Doing an 
actual layout of the macro can raise the confidence in its abilities to meet timing. 

Gate-level simulation is oflimited use in timing verification. While leading gate-level 
simulators have the capacity to handle 500k or larger designs, gate-level simulation is 
slow. The limited number of vectors that can be run on a gate-level netlist cannot 
exercise all of the timing paths in the design, so it is possible that the worst case tim
ing path in the design will never be exercised. For this reason, gate-level timing simu
lation may deliver optimistic results and is not, by itself, sufficient as a timing 
verification methodology. 
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Gate-level simulation is most useful in verifying timing for asynchronous logic. We 
recommend avoiding asynchronous logic, because it is harder to design correctly, to 
verify functionality and timing, and to make portable across technologies and applica
tions. However, some designs may require a small amount of asynchronous logic. The 
amount of gate-level, full timing simulation should be tailored to the requirements of 
verifying the timing of this asynchronous logic. 

Static timing verification, on the other hand, tends to be pessimistic unless false paths 
are manually defined and not considered in the analysis. Because this is a manual pro
cess, it is subject to human error. Gate-level timing simulation does provide a coarse 
check for this kind of error. 

Guideline - The best overall timing verification methodology is to use static timing 
analysis as the basis for timing verification. You can then use gate-level simulation as 
a second-level check for your static timing analysis methodology (for example, to 
detect mis-identified false paths). 
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CHAPTER 8 Developing Hard Macros 

This chapter discusses issues that are specific to the development of hard macros. In 
particular, it discusses the need for simulation, layout, and timing models, as well as 
the differing productization requirements and deliverables for hard macros. The top
ics are: 

• Overview 

• Hard macro design issues 

• Hard macro design process 

• Physical design for hard macros 

• Block integration 

• Productization 

• Model development for hard macros 

• Portable hard macros 

8.1 Overview 

Hard macros are macros that have a physical representation, and are delivered in the 
form of a GDSII file. As a result, hard macros are more predictable than soft macros 
in terms of timing, power, and area. However, hard macros do not have the flexibility 
of soft macros; they cannot be parameterized or user-configurable. The porting pro
cess of the two forms can also be quite different. 

M. Keating et al. (eds.), Reuse Methodology Manual
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In some sense, however, the distinction between hard and soft macros is artificial. 
Every macro starts out as soft, for RTL has to be the reference implementation model. 
Every macro ends up in GDSn, and thus in hard form. The only real distinction 
between hard and soft macros is at which stage of design the developer hands the 
macro over to the chip designer. In a very real sense, hard macros are just soft macros 
that have been taken to GDSn before this handoff. 

In this book, we assume the following model for hard macros: 

• The macro developer delivers GDSn and a full set of models to the silicon vendor. 

• The silicon vendor does the physical design for the chip, including integration of 
the hard macro. Thus, only the silicon provider actually uses, or has access to, the 
GDSn for the macro. 

• The silicon vendor provides the timing and functional models to the chip designer. 

• The chip designer uses the timing and functional models for the hard macro while 
designing the rest of the chip. 'JYpically, these models do not include RTL for the 
macro. Thus, the models must provide all of the functional and physical informa
tion needed to design the chip and verify its timing and functionality. 

In a large semiconductor company, the macro developer, silicon vendor, and chip 
designer may just be different groups within the company. Some large systems houses 
that do their own physical design may purchase a hard macro directly from a third 
party provider, thus getting both the GDSn and the models. In this case, the systems 
house is acting as both the chip designer and as the (fabless) silicon provider. How
ever, the case outlined above is general enough to show the issues and challenges 
involved in developing high-quality hard macros. 

8.1.1 Why and When to use Hard Macros 

Developers typically provide hard versions of macros for anyone of several reasons: 

• The design is pushing performance to the limit of the silicon process, and thus the 
physical design must be done by the designer, who knows exactly how to get opti
mal performance from the design. 

• The design requires some full custom design, and so cannot be delivered in soft 
(that is, synthesizable) form. 

• The value of the macro is so great that the macro provider does not want the chip 
designers to have access to the RTL. That is, hard macros can provide a greater 
degree of IP protection for the IP provider. 

• The macro provider wishes to prevent the possibility of the user modifying the 
macro. 

In the case of processors, all of these conditions are often the case. For this reason, 
processors are the most common macros to be delivered in hard form. 
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There is also a case in which soft macros are used as virtual hard macros. In some 
very large chips, the design team will use a divide-and-conquer approach to physical 
design. Each major block, including each soft macro, is placed and routed indepen
dently of the other blocks. Chip-level physical design then consists of placing these 
blocks and wiring them up. In such cases, most of the issues for hard macros 
described below apply to these independent blocks. In particular, timing and func
tional models for each of the major blocks can provide more abstract representations 
of the timing and functionality of the block. These models can provide a faster path to 
timing convergence and functional verification. 

8.1.2 Design Process for Hard vs. Soft Macros 

Hard macro development is essentially an extension to soft macro development. The 
extra steps for hard macros are primarily: 

• Generating a physical design 

• Developing models for simulation, layout, and timing. 

These requirements stem from the fact that hard macros are delivered as a physical 
database rather than RTL. Integrators require these models to perform system-level 
verification, chip-level timing, fioorplanning, and layout. 

Guideline - It is recommended that the design process itself be kept identical with 
the design process for soft macros except for the productization phase. The following 
sections describe how the design process for hard macros differs from the design pro
cess for soft macros. 

8.2 Design Issues for Hard Macros 

There are several key design issues that are unique to hard macros. These issues affect 
the design process, and are described in the following sections. 

8.2.1 Full Custom Design 

Unlike soft macros, hard macros offer the opportunity to include some full custom 
design in a reusable form. However, advances in synthesis, libraries, and timing
driven place and route have largely eliminated the performance advantage for full cus
tom design. And since full custom design imposes a significant cost in terms of devel
opment schedule, it should only be used in a few, specific circumstances. 

Memory is the first and most natural candidate for full custom implementation. Mem
ory compilers can produce much smaller, faster, lower-power memories than synthe-
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sized flop-based memories. We expect all memories except very small FIFOs to be 
generated from a memory compiler. 

For some datapath elements such as barrel shifters, full custom ·design techniques can 
yield slightly smaller designs than synthesizable versions. For the most cost-sensitive 
designs, it may be worth replacing the synthesized version of these blocks with a full 
custom version. 

There is considerable advantage in minimizing the amount of full custom logic in a 
hard macro. Not only does custom logic slow development time, but it also limits the 
options for porting the design to different processes. Fully synthesizable designs can 
be ported either by physical porting tools or by repeating synthesis, place and route. 
Full custom macros, or full custom components within macros, need to be ported by 
physical design tools or by repeating the manual design, place, and route. 

8.2.2 Interface Design 
As in most design, good interface design is critical to producing high quality, easy to 
integrate hard macros. 

Guideline - We strongly recommend registering all of the inputs and outputs of the 
macro, and clocking them from a single edge of a single clock. In general, the output 
drivers should be the same for all output pins, and input setup times should be the 
same for all input pins. 

This technique provides a simple and consistent interface for chip designers using the 
macro, and thus can speed up integration significantly. In addition, consistent timing 
on ports can simplify synthesis and timing verification scripts for the rest of the chip, 
reducing the chance of a human error, and speeding up timing convergence. 

Registering inputs and outputs can also eliminate some difficult problems in IP secu
rity, manufacturing test, and timing modeling, as described later in this chapter. 

An additional challenge in interface design is choosing the right output drive strength 
for output ports. Using too strong a drive strength wastes power and area; for lightly 
loaded outputs, they can also be slower due to increased intrinsic delay over a smaller 
buffer. Using too small a drive strength, of course, can result in unacceptable delays 
when driving long wires to other blocks. Ultimately, this choice is a judgement call, 
but we recommend erring on the side of too strong a drive strength rather than too 
weak. WIre delays are only getting greater as technologies shrink. 

Registering all outputs helps make designs less sensitive to output drive strengths, 
especially if the other blocks in the chip register their inputs. In this case, signals have 
an entire clock cycle to travel from block to block. For large chip designs, where 
cross-chip delays can be multiple nanoseconds and clock speeds can be hundreds of 
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megahertz, this approach can make the difference between meeting timing and not 
meeting timing. 

8.2.3 Design For Test 

Hard macros pose some unique test issues not found in soft macros. With soft macros, 
the integrator can choose from a variety of test methodologies: full scan, logic BIST, 
or application of parallel vectors through boundary scan or muxing out to the pins of 
the chip. The actual test structures are inserted at chip integration, so that the entire 
chip can have a consistent set of test structures. 

Hard macros do not provide this flexibility; test structures must be built into each hard 
macro. The integrator then must integrate the test strategy of the hard macro with the 
test strategy for the rest of the chip. It is the task of the hard macro developer to pro
vide an appropriate test structure for the hard macro that will be easy to integrate into 
a variety of chip-level test structures. 

The hard macro developer must choose between full scan, logic BIST, or application 
of parallel vectors through boundary scan or muxing out to the pins of the chip. 

Full scan offers very high test coverage and is easy to use. Tools can be used to insert 
scan flops and perform automatic test pattern generation. Fault simulation can be used 
to verify coverage. Thus, scan is the preferred test methodology for hard macros as 
long as the delay and area penalties are acceptable. For most designs, the slight 
increase in area and the very slight increase in delay are more than compensated for 
by the ease of use and robustness of scan. 

For some performance-critical designs, such as a microprocessor, a "near full scan" 
approach is used, where the entire macro is full scan except for the datapath, where 
the delay would be most costly. For the datapath, only the first and last levels of flops 
are scanned. 

Logic BIST is a variation on the full scan approach. Where full scan must have its 
scan chain integrated into the chip's overall scan chain(s), logic BIST uses an LFSR 
(Linear Feedback Shift Register) to generate the test patterns locally. A signature rec
ognition circuit checks the results of the scan test to verify correct behavior of the cir
cuit. 

Logic BIST has the advantage of keeping all pattern generation and checking within 
the macro. This provides some element of additional security against reverse engi
neering of the macro. It also reduces the requirements for scan memory in the tester. 
Logic BIST does require some additional design effort and some increase in die area 
for the generator and checker, although tools to automate this process are becoming 
available. 
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Parallel vectors are used to test only the most timing or area critical designs. A robust 
set of parallel vectors is extremely time-consuming to develop and verify. If the 
macro developer selects parallel vector testing for the macro, boundary scan must be 
included as part of the macro. Boundary scan provides an effective, if slow, way of 
applying the vectors to the macro without requiring muxing the macro pins out to the 
chip pins. Requiring the integrator to mux out the pins places an unreasonable burden 
on the integrator and restricts the overall chip design. 

Note that for the hard macro test to be fully self-contained, the inputs and the outputs 
of the macro must be registered. For example, if there is combinational logic on an 
input to the macro, then the stimulus to test this logic must come from the outside 
logic. In Figure 8-1, for example, the scan chain of Block A needs to provide inputs to 
the hard macro. With current tools, this means that ATPG must be done on Block A 
and the hard macro concurrently. 

One major problem with this approach is that the engineer doing the ATPG has to 
have access to the gate-level netlist of the hard macro. For many third party IP provid
ers, this is a major security concern. 

BLOCK A HARD MACRO 

CHIP 

Figure 8·1 Scan chains are not independent 

8.2.4 Clock and Reset 

The hard macro designer has to implement a clock and reset structure in the hard 
macro without knowing in advance the clocking and reset structure of the chip in 
which the macro will be used. The designer should provide full clock and reset buffer
ing in the hard macro, and provide a minimal load on the clock and reset inputs to the 
macro. 

To ease the integration of the macro onto the chip, the designer should provide a buff
ered, precisely aligned copy of the clock as an output of the macro. This clock is then 
available to synchronize the signals going to/from the hard macro. 
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The problem, of course, is that the hard macro will have a clock tree insertion delay; 
that is, the delay from the clock input pin of the macro, through the clock buffers, 
before the clock arrives at the internal flops. This delay affects the setup and hold 
times at the macro's inputs and its clock-to-output delays. The chip designer needs to 
account for this when integrating the macro into the chip. 

The macro designer can help simplify the integration process by registering the inputs 
and outputs of the macro. The clock-to-output delay is then just the clock tree delay 
plus the clock-to-q delay of the flops. For most designs, this is fast enough; if neces
sary, the chip designer can register the outputs immediately. This approach allows a 
complete clock cycle for the insertion delay, flop delay, and wire delay. 

Registering the inputs of the hard macro does not entirely solve the problem. If the 
clock tree delay is substantial, the macro will exhibit large hold time requirements. 
This problem can be solved by adding buffers to the hard macro's inputs, providing 
sufficient delay to produce a zero hold time requirement. 

Another way to deal with clock tree insertion delay is for the hard macro developer to 
calculate the clock tree insertion delay of the hard macro and to provide that informa
tion to the macro integrator. The macro integrator can then provide the hard macro an 
early version of the chip's clock signal, thereby aligning the macro's internal timing 
with that of the rest of the chip. 

8.2.5 Aspect Ratio 

The aspect ratio of the hard macro affects the ftoorplan and routability of the final 
chip. Thus, it is an important factor affecting the ease with which the macro can be 
integrated into the final chip. A large hard macro with an extreme ratio can present 
significant problems in placing and routing an SoC design. In most cases, an aspect 
ratio close to 1: 1 minimizes the burden on the integrator. Aspect ratios of 1:2 and 1:4 
are also commonly used. 

Note also that a non-square aspect ratio (for example, a tall, narrow block), means that 
there will be more routing in vertical direction than in the horizontal. This asymmetric 
demand on routing resources can lead to problems during place and route. This is 
another reason why macro designers typically try for a 1: 1 aspect ratio. 

8.2.6 Porosity 

Hard macros can present real challenges to the integrator if they completely block all 
routing. Some routing channels through the macro should be made available to the 
integrator, if it is possible to do so without affecting the macro's performance. 
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Another approach is to limit the number of used metal layers to less than the total 
available in the process. For processes with more than two metal layers available for 
signal routing, this can be an effective approach to providing routing through the hard 
macro. 

Both of these approaches, however, pose problems. A hard macro or memory is typi
cally characterized for the case where no extra wires are running through or over it. 
The resulting timing model is used by the chip design team to calculate delays and 
determine if the chip will meet timing. 

Routing additional wires through the block adds capacitance that can slow down adja
cent signals. Unfortunately, the only way to factor these additional delays into the 
timing model for the macro or memory is to completely re-characterize the macro or 
memory. In most cases, this re-characterization is not practical. The chip design team 
has little choice except to hope the additional capacitance does not affect a critical 
timing path. 

For these reasons, designers of leading edge microprocessors, where each block is 
treated as a hard macro, leave routing channels between blocks and always route 
around rather than through blocks. 

Rule - At the very least, the macro deliverables must include a blockage map to 
identify areas where over-cell routing will not cause timing problems. 

8.2.7 Pin Placement 

Pin placement of the macro can have a significant effect on the ftoorplan and top-level 
routing of the chips that use it. Without knowing in detail the target chip design, it is 
hard to ensure an optimal pin placement. However, common sense suggests that buses 
and other related signals should be grouped together so that top-level wire lengths can 
be roughly matched. 

A ftoorplanning model is one of the deliverables of a hard macro. Among other 
things, this model describes the pin placement, size, and grid. 

8.2.8 Power Distribution 

Power and ground busing within the macro must be designed to handle the peak cur
rent requirements of the macro at maximum frequency. The integrator using the 
macro must provide sufficient power busing to the macro to limit voltage drop, noise, 
and simultaneous output switching noise to acceptable levels. The specification of the 
hard macro must include sufficient information about the requirements of the macro 
and the electrical characteristics of the power pin contacts on the macro. 
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8.3 The Hard Macro Design Process 

The hard macro design process is shown in Figure 8-2. For the hard macro, we 
expand the macro specification to include physical design issues. The target library is 
specified, and timing, area, and power goals are described. 

The macro specification also addresses the issues described in the previous section: 
design for test, clock and reset, aspect ratio, porosity, pin placement, and power distri
bution. The specification describes the basic requirements for each of these. The spec
ification also describes the porting plan: what techniques and tools will be used to 
port the macro to different processes. 

The macro specification also describes the models that will provided as part of the 
final deliverables. These models include the simulation model(s), timing model(s), 
and floorplanning model. 

Concurrent with the functional specification and behavioral model development, we 
develop a more detailed physical specification for the macro, addressing all of the 
issues mentioned above, describing how each requirement of the macro specification 
will be met. From this specification, we develop a preliminary floorplan of the macro. 
This floorplan and the physical requirements of the macro help drive the partitioning 
of the macro into subblocks. 

Once the macro is partitioned into subblocks, the design of the individual subblocks 
follows the same process as for soft macros. 

For some very high performance designs, the designer may elect to not to use auto
mated synthesis for some critical subblocks. Instead, the designer may use a datapath 
compiler or may handcraft the subblock. The goal of these alternate synthesis meth
ods is the same: to meet the timing, area, and power requirements of the macro speci
fication while ensuring that the detailed design is functionally equivalent to the RTI... 

Note that even with manual synthesis and handcrafting, the RTI.. for the subblock is 
the "golden" reference. For all synthesis methods, automated and manual, formal ver
ification should be used to ensure the equivalence between the final physical design 
and the RTI... 



180 

Repeat for 
each 

subblock 

Reuse Methodology Manual 

r 
I 
I 
I 

CREATE BEHAVIORAL MODEL 

( 

DEVELOP 
testbench 

) 
---- .-

PARTITION 
design into subblocks 

PASSES ALL THREE
Ready for INTEGRATION 

Figure 8-2 The hard macro design process 



Developing Hard Macros 181 

8.4 Block Integration for Hard Macros 

The process of integrating the subblocks into the macro is much the same for both 
hard and soft macros. This process is described in Figure 8-3. 

Because a hard macro is available only in a single configuration, functional test is 
somewhat simplified; no multiple-configuration testing is required, as it is for soft 
macros. 

As described in the previous section, manufacturing test presents additional chal
lenges to hard macro design. Based on the requirement for the macro, a test methodol
ogy must be selected and implemented. 

Synthesis needs to target only the target technology library. Because porting is done at 
the physical level, after synthesis, there is no requirement to produce optimal netlists 
in a variety of technologies. 

Synthesis of the macro is an iterative process that involves refining the ftoorplan based 
on synthesis results, updating the wire load models based on the ftoorplan, and repeat
ing synthesis. With a good initial ftoorplan, good partitioning of the design, and good 
timing budgets, this process will converge rapidly. As the process starts to converge, 
an initial placement of the macro that produces an estimated routing can further 
improve the wire load models used for synthesis. 

8.5 Productization of Hard Macros 

Productization of hard macros involves physical design, verification, model develop
ment, and documentation. 

8.5.1 Physical Design 

The first step in productizing the hard macro is to complete the physical design. 
Figure 8-4 shows the basic loop of ftoorplanning and incremental synthesis, place and 
route, and timing extraction. In the first pass of this loop, the final ftoorplan and syn
thesized netlist provide the inputs to the place and route tools. After the initial place 
and route, actual resistance and capacitance values are extracted from the physical 
design and delivered back to the static timing analysis tool. We can then perform 
static timing analysis to determine if the design meets our timing goals. If necessary, 
we can also perform power analysis to see if the design meets the power goals. 
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If the physical design does not meet timing, we have two choices. If timing, power, or 
area is far from meeting specification, we may need to go back to the design phase 
and iterate as required. If we are reasonably close to meeting specification, however, 
we can focus on synthesis only. We first try using the IPO (In Place Optimization) 
feature of the synthesis tool. IPO modifies as little of the design as possible, focusing 
on resizing buffers. We then provide the updated netlist to the place and route tool and 
do an incremental place and route, where only the updated gates are modified in the 
physical design. By retaining as much of the original place and route as possible, we 
optimize our chances of rapidly converging on a good place and route. 

One key to successful physical design is to have a high quality standard cell library. 
The library should have been fully characterized to ensure that the timing models are 
accurate. The library should also have all the views required to complete the design, 
including power modeling. 

A single library, or a consistent set of libraries, should be used for all aspects of the 
design, including memory. For example, some libraries use a 30%-50% rise time, oth
ers use 20%-80%. Mixing these two different values in a single design can cause the 
static timing analysis tools to give incorrect post-extraction timing results. 

8.5.2 Verification 

Once we achieve our physical design goals with a place and route, we perform a 
series of verifications on the physical design: 

Gate verification 

We use formal verification to prove that the final gate-level netlist is equivalent to the 
R1L. For hand-crafted blocks, we use a combination of LVS (Layout vs. Schematic), 
to verify transistor to gate netlist equivalence, and formal verification. We also run 
full-timing, gate-level simulation to verify any asynchronous parts of the design. 

In this book, we strongly recommend fully synchronous design, with no timing 
exceptions or multicycle paths and as few clock domains as possible. Following these 
rules makes static timing analysis very straightforward. If these rules are violated, 
however, it becomes necessary to develop fairly complex scripts to perform timing 
analysis correctly. These scripts, like all complex scripts, are subject to human error. 
For these designs, significant gate-level simulation may be necessary as a second 
check that the design meets timing. 

Static Timing Analysis 

We perform a final static timing analysis to verify that the design meets timing. 
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Physical Verification 

We use LVS and DRC (Design Rule Checking) tools to verify the correctness of the 
final physical design. 

The DRC and LVS decks are an important consideration in physical design. These 
decks provide the physical design rules used in physical verification of the final 
design. These decks need to be consistent between all the blocks in a chip design; 
integrating different blocks that use different decks can cause a physical verification 
nightmare. Typically, the hard macro designer gets these decks from the library pro
vider; it is important that the chip design team uses the same decks for the rest of the 
chip, and in particular for any other hard macros used in the chip. 

8.5.3 Models 

In addition to the physical design database, we need to develop the models that the 
integrator will use to model the macro in the system design: 

• The functional simulation model is developed from the final RTL. 

• The fioorplan model is developed as part of the fioorplanning process. 

• The timing model is developed using the extracted timing values. 

The process and tools for developing these models are discussed later in this chapter. 

8.5.4 Documentation 

Finally, we need to create a complete set of user documentation to guide the integrator 
in using these models to develop the chip design. In addition to the requirements for a 
soft macro, the documentation for a hard macro includes: 

• Footprint and size of the macro 

• Detailed timing and power specification 

• Routing restrictions and porosity 

• Power and ground interconnect guidelines 

• Clock and reset timing guidelines 
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8.6 Model Development for Hard Macros 

The set of models provided to the integrator is the key to the usability of a hard macro. 
For most hard macros, the desired models include: 

• Behavioral or ISA (Instruction Set Architecture) model for fast simulation. These 
models are typically used by the software team to develop the embedded software 
for the chip. 

• Bus functional model for assisting system-level verification. Bus functional mod
els can be used to create the system-level testbench and to test the rest ofthe chip. 

• Full functional, cycle-accurate model for accurate simulation; this model is 
required for functional verification of the chip. 

• Timing model; this model is required to perform full-chip timing analysis 

• Floorplanning model for physical design 

• Functional model for emulation (optional) 

We can minimize the additional effort to create these models by leveraging the mod
els that are created as part of the macro development process. 

8.6.1 Functional Models 

Hard macros are typically of high value and high complexity; only this kind of design 
justifies the additional effort to create a hard version. Because of this complexity, the 
R1L for these designs tends to simulate quite slowly, creating a bottleneck in the 
design process. Often, hard macros are processors, requiring significant application 
code to be developed while the chip is being designed. The software developers 
clearly need a very fast model of the processor to develop this software. On the other 
hand, the chip designers need a very accurate functional model to be sure that the 
entire chip will function correctly. 

Because of these conflicting needs, it is usually necessary to provide a variety of 
functional models for a hard macro. These models make various tradeoffs between 
accuracy and speed to meet the various needs of the hardware and software design 
teams. 

Most of these functional models are created as part of the macro design process. How
ever, the method for packaging and delivering these models tends to be somewhat ad 
hoc. There are some tools, and some new emerging tools, for automating some 
aspects of model generation. 
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Model Security 

One of the critical issues in developing a modeling process is determining the level of 
security required for the models. All the functional models described in this section 
are either C (or C++) models or HDL models. HDL source code for these models can 
be shipped directly to the customer if security is not a concern. This is often the case 
for bus functional models, which contain little information about the detailed func
tionality of the macro. If security is a concern, then some form of protection must be 
used. Often this security is achieved by providing a compiled version of the model. 

One common form of protection is to compile the model and the simulation kernel 
into a single, stand-alone executable. An R1L wrapper is used to provide a simple 
timing and functional interface to the R1L for the rest of the chip. The Verilog PLI 
and VHDL language interfaces provide a reasonably straightforward mechanism for 
tying this kind of model into the simulator. By delivering object code, the designer 
ensures a high level of security. 

Some commercial tools, such as VMC and SWIFT from Synopsys, and Visual IP 
from Summit can help automate the compilation of these models and provide a stan
dard interface to the major commercial simulators. 

Behavioral and ISA Models 

Extensive hardware/software cosimulation is critical to the success of many SoC 
design projects. In turn, effective hardware/software cosimulation requires very high 
performance models for large system blocks. Behavioral and ISA models provide this 
level of performance by abstracting out many of the implementation details of the 
design. 

Most processor design teams develop a high-level C/C++ model of the processor as 
they define the processor architecture. This model accurately reflects the instruction
level behavior of the processor while abstracting out implementation details. It is then 
used as a reference against which the detailed design is compared. This high level 
model is often referred to as an ISA (Instruction Set Architecture) or ISS (Instruction 
Set Simulator) model. 

Because of their high level of abstraction, ISA models allow for very fast simulation. 

The SoC designer using the processor core in a chip design can then use the ISA 
model to verify the software and the rest of the system design. The hardware/software 
co simulation environment provides an interface between this model and the R1L sim
ulation of the rest of the hardware, as shown in Figure 8-5. 
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Figure 8·5 Hardware/software cosimulation using an ISA model 

Behavioral models are the equivalent of ISA models for non-processor designs. 
Behavioral models represent the algorithmic behavior of the design at a very high 
level of abstraction, allowing very high speed simulation. For example, for a design 
using an MPEG macro, using a behavioral model instead of an R1L model can pro
vide orders of magnitude faster system simulation. 

Behavioral models can be written in C/C++, Verilog, or VHDL, and they may be pro
tected or unprotected. Behavioral models can also be written using the new testbench 
generation tools VERA and Specman Elite. 

A representative flow for compiling the behavioral Verilog/YHDL models is shown in 
Figure 8-6. A substantially equivalent flow is possible with Visual IP. VMC (Verilog 
Model Compiler) compiles the Verilog model and the simulation kernel into a VCS
compatible object format. VFM then adds the SWIFT interface, allowing the model to 
work with all major simulators. 

In the flow shown in Figure 8-6, if the model is coded in VHDL, then it must first be 
translated to Verilog, because VMC does not yet support VHDL. (A VHDL version of 
VMC, VhMC, is under development.) The translation to Verilog can be done with 
commercial translation tools available from a number of vendors, including Inter-
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HDL. These translation tools are not yet perfected, especially for behavioral code. 
However, they provide an initial translation that can be completed manually. 
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Figure 8·6 Generating compiled HDL behavioral models 

Bus Functional Models 

Bus functional models abstract out all the internal behavior of the macro, and only 
provide the capability of creating transactions on the output buses of the macro. These 
models are useful for system simulation when the integrator wants to test the rest of 
the system, independent of the macro. By abstracting out the internal behavior of the 
macro, we can develop a very fast model that still accurately models the detailed 
behavior of the macro at its interfaces. 
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In the past, bus functional models have usually been developed in Verilog or VHDL, 
and distributed in source code. Because so little of the detailed behavior of the macro 
is modeled, security is not a major concern. 

The new testbench automation tools such as VERA and Specman Elite provide pow
erful features for creating bus functional models. In particular, they provide commu
nication mechanisms to facilitate coordination between multiple BFMs. They also 
provide a richer semantics than either Verilog or VHDL for checking transactions on 
ports and buses. With these tools, it is relatively simple to create bus monitors to 
check the behavior of the rest of the chip as it interacts with the hard macro BFM. 

Full Functional Models 

Although more abstract models are useful for system-level verification, final verifica
tion of the R1L must be done using full functional models for all blocks in the design. 
Full functional models provide the detailed, cycle-by-cycle behavior of the macro. 
The R1L for the macro is a full functional model, and is the easiest full functional 
model to deliver to the integrator. Because the model is available in R1L, the flow 
shown in Figure 8-7 can be used. This flow is essentially the same as that for behav
ioral models coded in Verilog or VHDL. 

Because the R1L for the macro is synthesizable, the requirement to translate VHDL 
to Verilog is much less of a problem than for behavioral models. Commercial transla
tors do a reasonably good job of this translation. 

Some hard macro providers choose to deliver a C-based model rather than an R1L
based model. The C-based model is a cycle-accurate, bit-accurate model of the 
macro, but written in C or C++ rather than Verilog or VHDL. The compilation pro
cess is essentially the same, however. The C model and the simulator kernel are com
piled into a single executable, and an R1L wrapper provides the external interface. 

The major problem with full functional models is that they are slow to simulate. 

Full Functional Models with Timing 

For some hard macros, it is necessary to provide a full functional model that contains 
detailed timing information. If the macro does not comply with the guidelines in this 
book, in particular if inputs and outputs are not registered, then static timing analysis 
may not be sufficient to ensure timing performance of the overall chip design. Also, if 
the macro exhibits asynchronous behavior, a full timing model may be required. Of 
course, asynchronous design is not recommended because it is much harder to verify. 

We can develop a full functional, full timing simulation model from the back-anno
tated netlist obtained from place and route. The same compilation scheme shown in 
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Figure 8-7 can be used. The drawback of this approach is that simulation is extremely 
slow. 
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Figure 8-8 shows how to develop a full functional, full timing model with much better 
simulation performance. This approach takes the full functional model developed 
from the RTL (or C/C++) and adds a timing wrapper; that is, a set of structures on the 
inputs and outputs that can be used to model the actual delays (and setup and hold 
requirements) of the macro. The timing information for these buffers can be derived 
from the extracted timing information from place and route. This approach can be 
very effective provided that the macro is designed so that it does not have state depen
dent timing. 



192 Reuse Methodology Manual 

State dependent timing occurs when the timing characteristics of the block depend on 
the value of the inputs or on the internal state of the block. For example, asynchro
nous RAMs have different timing for read and write modes. On the other hand, syn
chronous RAMs have exactly the same timing regardless of mode, and thus are easier 
to characterize. Using a fully synchronous design style ensures that the macro will 
have no state dependent timing. 

It can be extremely burdensome to develop timing shells for blocks with state depen
dent timing, to the point where this approach is not practical. 
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r timing data 

Block 

System Simulation 
VerilogNHDL 

Figure 8-8 Generating full functional models with timing 
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Emulation Models 

One of the major problems with full functional models is the slow simulation speeds 
achieved with them. Emulation is one approach to addressing the problem of slow 
system-level simulation with full functional models. 

Emulation requires that the model for the macro be compiled into a gate-level repre
sentation. We can provide the R'IL directly to the integrator, who can then use the 
emulator's compiler to generate the netlist, but this does not provide any security. 

An alternate approach is to provide a netlist to the integrator. This approach provides 
some additional security for the macro. A separate synthesis of the macro, compiling 
for area with no timing constraints, will give a reasonable netlist for emulation with
out providing a netlist that meets the full performance of the macro. 

Some emulation systems have more sophisticated approaches to providing security 
for hard macro models. See Chapter 11 for a brief discussion on this subject. 

Hardware Models 

Hardware models provide an alternate approach for providing highly secure full func
tional models. Because the hard macro design process requires that we produce a 
working test chip for the macro, this approach is often a practical form of model gen
eration. 

Hardware modelers are systems that allow a physical device to interface directly to a 
software simulator. The modeler is, in effect, a small tester that mounts the chip on a 
small board. When the pins of the device are driven by the software simulator, the 
appropriate values are driven to the physical chip. Similarly, when the outputs of the 
chip change, these changes are propagated to the software simulator. 

Rapid prototyping systems, such as those from Aptix, also allow a physical chip to be 
used in modeling the overall system. These systems are described in Chapter 11. 

Some emulators, including those from Mentor Graphics, allow physical chips to be 
used to model part of the system. Thus, the test chip itself is an important full func
tional model for the macro. 

In all these cases, it is important that the physical chip reflect exactly the functionality 
of the macro. For example, with a microprocessor, one might be tempted to make the 
data bus bi-directional on the chip, to save pins, even though the macro uses unidirec
tional data buses. This approach makes it much more difficult to control the core and 
verify system functionality with a hardware modeler or emulator. 
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8.6.2 Synthesis and Floorplanning Models 

The timing and floorplanning models can be generated from the design database. 

From the final place and route of the macro, we can extract the basic blockage infor
mation, pin locations, and pin layers of the macro. This information can then used by 
the integrator when floorplanning the SoC design. This information is typically deliv
ered in the LEF format. 

Figure 8-9 shows the process for developing a static timing analysis model for the 
hard macro. From the SDF back-annotated netlist for the macro, the PrimeTnne tim
ing analysis tool extracts a black-box timing model for the macro. This model pro
vides the setup and hold time requirements for input pins and the clock-to-output 
delays for the output pins. This model is delivered as a Synopsys standard format .db 
file. During static timing analysis on the entire chip, PrimeTnne uses the context 
information, including actual ramp rates and output loading, to adjust the timing of 
the bard macro model to reflect the macro's actual timing in the chip. 

For this black-box model to work, of course, the design must have no state-dependent 
timing. For blocks that do have state-dependent timing, a gray box timing model must 
be used; this model retains all of the internal timing information in the design. The 
entire back-annotated netlist can be used as a gray-box model, but it will result in 
slower static timing analysis runtimes. 

If the hard macro has any blocks that are handcrafted at the transistor level, we need 
another approach to extract this timing information. Figure 8-10 shows a flow for this 
case. After parasitic extraction, the CoreMill static timing analysis tool verifies that 
the timing requirements for the design are met. Through a configuration file, the 
designer provides the input ramp rates and output loading information, as well as 
identification of input, output, and clock pins. When timing has been successfully 
verified, CoreMill can generate a black box timing model for the design in Stamp for
mat. If desired, additional characterization information can be provided to the tool, 
and CoreMill will develop a table of timing values based on different input ramp rates 
and output loading. PrimeTime uses this Stamp model to develop the final timing 
model in the .db format. 
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8.7 Porting Hard Macros 

One of the challenges for hard macro provider is to port the macro rapidly from one 
process to another. 

For hard IP that was completely synthesized, the porting strategy is quite straightfor
ward. We just resynthesize, targeting the new technology library, and repeat the phys
ical design and timing model generation. If we have saved the scripts from our initial 
physical design, and these scripts were written to be as technology-independent as 
possible, then this is a reasonably painless process. 

For those sections of the design that are full custom, we have the choice between 
manual porting and automated porting. Under certain circumstances, automatic port
ing tools such as Segantec's DREAM can be effective. These tools operate at the 
polygon level, automatically mapping transistors and interconnect from one set of 
design rules to another, and shrinking the design as much as possible. 

This polygon mapping works quite well on cell libraries, and reasonably well on 
small blocks, perhaps hundreds of gates. As the blocks get larger, the chances 
increase that we will run into problems that require significant manual intervention. 
These problems can slow down the porting process dramatically. This is another rea
son why we recommend reserving full custom design only for the most critical sub
blocks of the design. 

The problems typically encountered in automated porting include clocking and hold 
time problems. As the technology shrinks, circuits speed up, and the acceptable clock 
skew becomes smaller. and minimum delays from flop to flop become less. These 
problems can be difficult to resolve, and can require adding or resizing gates and buff
ers. 

One of the time-consuming aspects of using the porting tools is establishing the corre
sponding design rules for the source and target technologies. One way of reducing the 
risk of porting problems with automatic porting tools is to use lambda rules in the ini
tial full custom design. With these rules, all the physical constraints of the process are 
described as multiples of lambda, a unit length representative of the technology. If the 
design constraints of both the source and target libraries are both described as lambda 
rules, and the original macro design complies with the source library lambda rules, 
then automatic mapping is significantly easier. 



CHAPTER 9 Macro Deployment: 
Packaging for Reuse 

This chapter discusses macro deployment issues, including deliverables for hard and 
soft macros and the importance of keeping a design archive. The topics are: 

• Delivering the complete product 

• The contents of the user guide 

9.1 Delivering the Complete Product 

Once a macro has been designed according to the guidelines detailed in the preceding 
chapters, the macro must be packaged and delivered to the customer. The packaging 
of the macro depends on how it will be delivered. 

Soft macros require: 

• The RTL code 

• Support files 

• Documentation 

Hard macros require: 

• A rich set of models for system integration 

• Documentation support for integration into the final chip 

M. Keating et al. (eds.), Reuse Methodology Manual
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In addition, all files associated with the development of the macro must be stored 
together in a design archive so that all necessary information is available when it is 
time to modify or upgrade the macro. 

As described in Chapter 4, a physical prototype of the macro is built as part of the ver
ification phase of the macro development. Many third party vendors make this proto
type available to customers either as a demonstration of capability or as an evaluation 
unit. Evaluation prototypes are particularly helpful with programmable macros like 
microcontrollers and microprocessors; application code can be developed and run on 
the prototype to verify functionality and performance. 

9.1.1 Soft Macro Deliverables 

Table 9-1 lists the deliverables for soft macros. 

Table 9·1 Deliverables for soft macros 

Group Deliverables 

Product files • Synthesizable Verilog for the macro and its subblocks 

• Synthesizable VHDL for the macro and its subblocks 

• Application notes, including VerilogNHDL design exam-
ples that instantiate the macro 

• Synthesis scripts and timing constraints 

• Scripts for scan insertion and ATPG 

• CBA or other reference library 

• Installation scripts 

Verification files • Bus functional models/monitors used in testbench 

Documentation 
files 

System 
Integration files 

• Testbench files, including representative verification tests 

• User guide/functional specification 

• Datasheet 

• Bus functional models of other system components 

• Cycle-based/emulation models as appropriate to the particu
lar macro and/or its testbenches and BFMs 

• Recommendation of commercially available software 
required for hardware/software cosimulation and system 
integration, as appropriate for the particular macro 
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Product Files 

In addition to the RTL in Verilog and VHDL, we must include the synthesis and 
installation scripts. We include the reference CBA library so that the customer can 
synthesize the design and verify that the installation was completed successfully. In 
addition, providing the reference library, scripts, and verification environment allows 
the user the recreate the developer's environment. This allows the user to verify many 
of the claims of the developer, in terms of timing, power, area, and testability of the 
macro. 

The CBA reference library is also very helpful in identifying library problems in the 
integrator's environment. Synthesis libraries vary considerably. If the integrator 
encounters synthesis problems with the vendor's library, the integrator can synthesize 
exactly the same configuration with the same scripts using the CBA library. This pro
cess helps the integrator identify whether the problem is in the macro (and its scripts) 
or in the vendor's technology library. 

Application notes that show exactly how to instantiate the design are also useful. If 
the application notes are available in soft form, the integrator can cut and paste the 
instantiation example, avoiding typographical errors and ensuring correct port names. 

Verification files 

The entire verification enviroiunent, including any bus functional models, bus moni
tors, or other models, and some set of verification test cases are shipped with the 
product. The test cases that ship with the macro typically do not represent the full test 
suite used to verify the macro. 1Ypically, a subset is shipped that is sufficient to ensure 
that the macro has been installed correctly at the integrator's site. The integrator then 
develops a test suite to verify the functionality of the macro in the full chip. 

The bus functional models used to develop and verify the macro can be used by the 
integrator to create a testbench environment for the SoC chip. See Chapter 11 for 
more discussion on using bus functional models for system-level testing. 

System Integration Files 

Depending on the specific macro, there may be additional deliverables that are useful 
for the integrator. 

For large macros, where simulation speed in the system environment may be an issue, 
it can be useful to include cycle-based simulation and/or emulation models. In gen
eral, RTL that complies with the coding guidelines in this document will work with 
cycle-based simulation and emulation. However, testbenches and bus functional mod
els, unless coded to these same RTL guidelines, may not be usable with these verifica-
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tion tools. It is up to the macro provider to determine which models need to be 
provided in cycle-based simulation/emulation compatible forms. 

For macros that have significant software requirements, such as microcontrollers and 
processors, it is useful to include a list of compilers, debuggers, and real-time operat
ing systems that support the macro. For other designs, we may want to reference soft
ware drivers that are compatible with the design. In most cases, the macro provider 
will not be providing the software itself, but should provide information on how to 
obtain the required software from third-party providers. 

9.1.2 Hard Macro Deliverables 

Table 9-2 lists the deliverables for a hard macro. 

The list of deliverables in Table 9-2 assumes that the physical integration is being 
done by the silicon vendor rather than by the chip designer who is using the macro. 
This model applies when the silicon vendor is also the macro vendor. In the case 
where the chip designer is also doing the physical integration of the macro onto the 
chip, the physical aDSII design files are also part of the deliverables. 

Table 9·2 Deliverables for hard macros 

Group Deliverables 

Product files • Installation scripts 

Verification files • None 

Documentation files • User guide/functional specification 

• Datasheet 

System 
Integration files 

• ISA or behavioral model 

• Bus functional model for macro 

• Full functional model for macro 

• Cycle-based simulation/emulation models as appropriate 
to the particular macro 

• TIming and synthesis model for macro 

• Floorplanning model for macro 

• Recommendation of commercially available software 
required for hardware/software cosimulation and system 
integration, as appropriate for the particular macro 

• Test patterns for manufacturing test, where applicable 



Macro Deployment: Packaging for Reuse 203 

The deliverables for hard macros consist primarily of the documentation and models 
needed by the integrator to design and verify the rest of the system. These models are 
described in Chapter 8. 

For processors, an ISA model provides a high level model that models the behavior of 
the processor instruction-by-instruction, but without modeling all of the implementa
tion details of the design. This model provides a high speed model for system testing, 
especially for hardware/software cosimulation. Many microprocessor vendors also 
provide a tool for estimating code size and overall performance; such a tool can help 
determine key memory architecture features such as cache, RAM, and ROM size. 

For other macros, a behavioral model provides the high speed system-level simula
tion model. The behavioral model models the functionality of the macro, on a transac
tion-by-transaction basis, but without all the implementation details. A behavioral 
model is most useful for large macros, where a full-functional model is too slow for 
system-level verification. 

For large macros, bus functional models provide the fastest simulation speed by mod
eling only the bus transactions of the macro. Such a model can be used to test that 
other blocks in the system respond correctly to the bus transactions generated by the 
macro. 

The full functional model for the macro allows the integrator to test the full function
ality of the system, and thus is key to system-level verification. 

As in the case of soft macros, cycle-based simulation and/or emulation models, espe
cially for the macro testbench, may be useful for the integrator. These models are 
optional deliverables. 

The timing and synthesis models provide the information needed by the integrator to 
synthesize the soft portion of the chip with the context information from the hard 
macro. These models provide the basic timing and loading characteristics of the 
macro's inputs and outputs. 

The ftoorplanning model for macro provides information the integrator needs to 
develop a ftoorplan of the entire chip. 

Test patterns for manufacturing test must be provided to the silicon manufacturer at 
least, if not to the end user. For scan-based designs, the ATPG patterns and control 
information needed to apply the test patterns must be provided. For non-scan designs, 
the test patterns and the information needed to apply the test patterns is required; usu
ally access is provided through a ITAG boundary-scan ring around the macro. 



204 Reuse Methodology Manual 

9.1.3 The Design Archive 

Table 9-3 lists the items that must be stored together in the design archive. All of these 
items are needed when any change, upgrade, or modification is made to the macro. 
The use of a software revision control system for archiving each version is a crucial 
step in the design reuse workflow, and will save vast amounts of aggravation and frus
tration in the future. 

Group 

Product files 

Verification files 

Documentation 
files 

System 
Integration files 

Table 9-3 Contents of the design archive 

Contents 

• Synthesizable Verilog for the macro and its subblocks 

• Synthesizable VHDL for the macro and its subblocks 

• CBA reference library 

• Verilog NHDL design examples that instantiate the macro 

• Synthesis scripts 

• Installation scripts 

• Bus functional models/monitors used in testbench 

• Testbench files 

• User guide/functional specification 

• Technical specification 

• Datasheet 

• Testplan 
• Simulation log files 
• Simulation coverage reports (VHDLCover, VeriSure, or 

equivalent) 

• Synthesis results for multiple technologies 

• Testability report 

• Lint report that demonstrates compliance to coding guide
lines 

• Bus functional models of other system components 

• Recommendation of commercially available software 
required for hardware/software cosimulation and system 
integration, as appropriate for the particular macro 

• Cycle-based simulator and hardware emulator models 
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9.2 Contents of the User Guide 

The user guide is the key piece of documentation that guides the macro user through 
the selection, integration, and verification of the macro. It is essential that the user 
guide provides sufficient information, in sufficient detail, that a potential user can 
evaluate whether the macro is appropriate for the application. It must also provide all 
the information needed to integrate the macro into the overall chip design. The user 
guide should contain, at a minimum, the following information: 

• Architecture and functional description 

• Claims and assumptions 

• Detailed description of 110 

• Exceptions to coding/design guidelines 

• Block diagram 

• Register map 

• Timing diagrams 

• Timing specifications and performance 

• Power dissipation 

• Size/gate count 

• Test structures, testability, and test coverage 

• Configuration information and parameters 

• Recommended clocking and reset strategies 

• Recommended software environment, including compilers and drivers 

• Recommended system verification strategy 

• Recommended test strategy 

• Floorplanning guidelines 

• Debug strategy, including in-circuit emulation and recommended debug tools 

• Version history and known bugs 

The user guide is an important element of the design-for-reuse process. Use it to note 
all information that future consumers of your macro need to know in order to use the 
macro effectively. The following categories are especially important: 

Claims and assumptions 
Before purchasing a macro, the user must be able to evaluate its applicability 
to the end design. To facilitate this evaluation, the user guide must explicitly 
list all of the key features of the design, including timing performance, size, 
and power requirements. If the macro implements a standard (for example, the 
IEEE 1394 interface), then its compliance must be stated, along with any 
exceptions or areas where the macro is not fully compliant to the published 
specification. VSIA suggests that, in addition to this information, the macro 
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documentation include a section describing how the user can duplicate the 
development environment and verify the claims. 

For soft IP, the deliverables include a reference library, complete scripts, and a 
verification environment, so these claims can be easily verified. 

For hard IP, the end user does not have access to the GDSII, and so many of 
the claims are unverifiable. We recommend including actual measured values 
for timing performance and power in the user guide. 

Exceptions to the coding/design guidelines 
Any exceptions to the design and coding guidelines outlined in this manual 
must be noted in the user guide. It is especially important to explain any asyn
chronous circuits, combinational inputs, and combinational outputs. 

Timing specifications and performance 
Timing specifications include input setup and hold times for all input and I/O 
pins and clock-to-output delays for all output pins. Timing specifications for 
any combinational inputs/outputs must be clearly documented in the user 
guide. Timing for soft macros must be specified for a representative process. 



CHAPTER 10 System Integration with 
Reusable Macros 

This chapter discusses the process of integrating completed macros into the whole 
chip environment. The topics are: 

• Integration overview 

• Integrating soft macros 

• Integrating hard macros 

• Integrating RAMs and datapath generators 

• Physical design 

10.1 Integration Overview 

Chapter 2 described system design from specification to the point where individual 
blocks could be designed. The succeeding chapters described how these blocks 
should be designed in order to make them reusable. We now return to the issue of sys
tem design, and discuss how to assemble these blocks into the final chip. 

At this point in system design, there are two key tasks remaining: physical design and 
functional verification. Each of these tasks has a dominant challenge. For physical 
design it is achieving timing closure; for verification, it is knowing when we are done, 
when we are confident enough in the functionality of the chip that we can tape out and 
go to fabrication. 

In this chapter, we address the integration of the blocks and the physical design of the 
chip. In the next chapter, we discuss functional verification. 
M. Keating et al. (eds.), Reuse Methodology Manual
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The process of integrating the blocks and doing the physical design can be broken 
into the following steps: 

• Selecting IP blocks and preparing them for integration 

• Integrating all the blocks into the top-level R1L 

• Planning the physical design 

• Synthesis and initial timing analysis 

• Initial physical design and timing analysis, with iteration until timing closure 

• Final physical design, timing verification, and power analysis 

• Physical verification of the design 

10.2 Integrating Macros into an SoC Design 

Integrating macros into the top-level SoC design poses several challenges. In this sec
tion, we will discuss typical integration problems and strategies for dealing with 
them. 

10.2.1 Problems in Integrating IP 

Assembling a set of blocks into a top-level design presents a series of challenges to 
the design team. Naturally, we did a good job of decomposing the design into well
specified blocks, then selected the IP we needed and designed the new blocks required 
as specified. Nonetheless, when we get down to assembling these blocks and making 
them work together, we often find issues. 

For blocks that were designed specifically for this chip, we tend to find: 

• The low level interfaces do not work; for example, a handshake signal is inverted. 

• There was a misunderstanding of the functionality of the block. 

• There are functional bugs in the design. 

Usually we have access to the block designers and the system architect, so these prob
lems are reasonably easy to fix. 

For IP that has been obtained from an external source, either a third party or some 
other division of the company, there are additional problems that frequently occur: 

• Someone on the team needs to become familiar enough with the IP to integrate it 
into the design. 

• The documentation is incomplete, making this understanding harder to obtain. 

• The interface of the IP does not match the interface of the system bus. 
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• The verification models, such as bus functional models, are poorly written and dif
ficult to integrate into the system verification environment. 

• Only limited support is available from the IP provider. 

We will defer the discussion of the verification issues until the next chapter. For now 
we will focus on the most serious of the other problems: interfaces that don't match 
the system. 

It is not unusual for a team to purchase a piece of IP that consists of 20k gates or so, 
and then find that they have to design an additional block of 20k gates just to interface 
it to the rest of the system. Most digital block interfaces are designed to pass data; that 
is, they perform data reads and writes to other blocks. The protocol for these transac
tions may be quite different between different designs, and differ at different levels. 

The detailed handshake may differ; one block may required a "ready for data" signal 
from the target before it does a write, while the target may expect a "request for write" 
signal before it reports status. At a higher level, blocks may have different kinds of 
transactions: posted writes, burst reads with or without out of order return data, and 
interrupted or aborted transactions. Incompatibilities at this level are more difficult to 
resolve. 

The most difficult interface problems usually involve exception handling: interrupts, 
aborted transactions, and other unusual transactions. Differences at this level may 
have to be resolved at a high level, perhaps even requiring changes to the architecture 
of one of the blocks or the entire system. 

10.2.2 Strategies for Managing Interfacing Issues 

There is no universal solution for these interfacing issues except to adopt a universal 
interface standard. Some groups are attempting to establish internal standards within 
their companies, but we are a long way from having anything approaching a uniform 
standard across the industry. The power, performance, and protocol needs of different 
designs are just too disparate to make this approach practical. 

There are several steps designs teams can take, however, to mitigate the problem: 

• Plan the interfaces. We can identify early the kinds external IP to be used and ana
lyze the interface protocols involved. We can then select the specific IP, and define 
the interfaces for the custom blocks, so that they can all be integrated with a mini
mum amount of additional interface design. What additional interface design is 
required can be included in the overall project plan. The main idea here is not to 
leave these interface issues until the last moment, and then be surprised at the 
additional work, and schedule slip, involved. 
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• Keep all interfaces as simple as possible, whether we are designing IP or custom 
blocks. These interfaces should usually include data read and ready for data sig
nals, so the connecting blocks know the ready status at all times. 

• Standardize on a few common buses and block-to-block interfaces. It may not be 
possible for a company or even a design team to standardize on a single bus, but in 
many cases it is possible to standardize on a few. One design team has standard
ized on three standard buses; all IP is developed to support all three buses, as a 
user-selectable option. All chips are designed using only these three buses. This 
may result in some sacrifice of timing, area, or power, but the time-to-market 
advantage more than compensates for this. 

• Accumulate IP and experience with the IP. Once a team has gained experience 
with a piece of IP, has used it successfully in a design, and has learned how to 
interface it to other blocks, that IP has significantly increased in value. There is a 
significant advantage to building a library of such IP, and leveraging it to create 
new designs. Some software reuse books talk of "product line planning", where 
multiple related products are developed over time to leverage investments in reus
able IP. 

• Document this expertise. If a piece of IP has deficient documentation, supplement 
it with the knowledge accumulated using it in a design. One of the most challeng
ing aspects of using someone else's design is learning how it works, and how to 
use it. Capturing this knowledge in a document can help other integrators of the IP. 

10.2.3 Interfacing Hard Macros to the Rest of the Design 

In addition to the issues discussed above, hard IP presents some additional challenges 
for the integrator. For soft macros, power and clock tree routing, as well as scan inser
tion, are done during chip-level integration. This fact ensures the consistent and com
patible power, clock, and test structure design. For hard macros, these are done during 
macro design, and the interfaces between the hard macro and the rest of the chip must 
be well thought out before integrating the macro into the chip. 

Clock distribution 
Typically, the macro has its own internal clock tree. The overall clock distribu
tion for the chip must accommodate the (already fixed) timing of the hard 
macro clock. In some cases, a clock output from the hard macro is used to syn
chronize the clocks for the rest of the system. 

Power and ground 
Typically, the macro also has its own power and ground rings within the 
macro. The physical design of the rest of the chip must account for this, and 
provide the appropriate power and ground connections to the macro. 

Test Structures 
Well designed hard macros have their own embedded testability structures. 
These may include a JTAG port or a full scan port. The macro may also have 
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embedded structures for facilitating debug. These structures must be inte
grated into the overall chip design. 

10.3 Selecting IP 

In addressing the issues raised in the previous sections, one key step is to select IP that 
can be easily integrated into the overall chip design. Choosing well-designed, well
documented IP can greatly reduce the integration effort. 

10.3.1 Hard Macro Selection 

The first step in selecting a macro from an external source, or in specifying a macro 
that is to be developed by an internal source, is to determine the exact requirements 
for the macro. For microprocessor cores, this means developing an understanding of 
the instruction set, interfaces, and available peripherals. 

Once the requirements for the macro are fully understood, the most critical factors 
affecting the choice between several competing sources for a hard macro are: 

Quality of the documentation 
Good documentation is key to determining the appropriateness of a particular 
macro for a particular application. The basic functionality, interface defini
tions, timing, and how to integrate and verify the macro should be clearly doc
umented. 

Completeness of the design and verification environment 
In particular, functional, timing, synthesis, and floorplanning models must be 
provided. 

If the macro is a microprocessor core, the vendor should supply or recommend 
a third-party supplier for the compilers and debuggers required to make the 
system design successful. 

Robustness of the design 
The design must have been proven in silicon. 

Physical design limitations 
Aspect ratio, blockage and porosity of the macro - the degree to which the 
macro forces signal routing around rather than through the macro - must be 
considered. A design that uses many macros that completely block routing 
may result in very long wires between blocks, producing unacceptable delays. 
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10.3.2 Soft Macro Selection 

The first step in selecting a macro from an external source, or in specifying a macro 
that is to be developed by an internal source, is to determine the exact requirements 
for the macro. For a standards-based macro, such as a PCI core or a IEEE 1394 core, 
this means developing a sufficient understanding of the standard involved. 

Once the requirements for the macro are fully understood, the choices can quickly be 
narrowed to those that meet the functional, timing, area, and power requirements of 
the design. The most critical factors affecting the choice between several competing 
sources for a soft macro are: 

Quality of the documentation 
Good documentation is key to determining the appropriateness of a particular 
macro for a particular application. The basic functionality, interface defini
tions, timing, and how to configure and synthesize the macro should be clearly 
documented. 

Robustness of the verification environment 
Much of the value, and the development cost, of a macro lies in the verifica
tion suite. A rich set of models and monitors for generating stimulus to the 
macro and checking its behavior can make the overall chip verification much 
easier. These models and monitors should be compatible with the chip-level 
verification environment. 

Robustness of the design 
A robust, well-designed macro still requires some effort to integrate into a chip 
design. A poorly designed macro can create major problems and schedule 
delays. Verifying the robustness of a macro in advance of actually using it is 
difficult. A review of the deliverables for compliance to the design, coding, 
and verification guidelines in this book is a first step. But for a macro to be 
considered robust, it must have been proven in silicon. 

Ease of use 
In addition to the above issues, ease of use includes the ease of interfacing the 
macro to the rest of the design, as well as the quality and user-friendliness of 
the installation and synthesis scripts. Some IP providers offer user interface 
tools, such as Synopsys coreBuilder and coreConsultant and Altera's MegaW
izard to make soft cores easier to use. 

10.3.3 Soft Macro Installation 

The macro, its documentation, and its full design verification environment should be 
installed and integrated into your design environment much like an internally devel
oped block. In particular, all components of the macro package should be under revi
sion control. Even if you do not have to modify the design, putting the design under 
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revision control helps ensure that it will be archived along with the rest of the design, 
so that the entire chip development environment can be recreated if necessary. 

10.3.4 Soft Macro Configuration 

Many soft macros are configurable through parameter settings. Designing with a soft 
macro begins with setting the parameters and generating the complete RlL for the 
desired configuration. A key issue here is to make sure that the combination of 
parameter settings is consistent and correct. Some IP providers supply configuration 
wizards with their IP to guide the user and prevent illegal configurations of the IP. 

10.3.5 Synthesis of Soft Macros 

The final step in preparing the IP for integration is to perform an initial synthesis with 
the target technology library. This initial synthesis can give a good preliminary indi
cation of whether the macro will meet the timing, area, and power goals of the design. 

10.4 Integrating Memories 

Memories are a special case of the hard macro, and are worth some additional com
ment. 

Large, on-chip memories are typically output from memory compilers. These compil
ers produce the functional and timing models along with the physical design informa
tion required to fabricate the memory. The issues affecting memory design are 
identical to those affecting hard macro designs, with the following additional issues: 

• The integrator typically has a wide choice of RAM configurations, such as single 
port or multi-port, fast or low-power, synchronous or asynchronous. 

• Asynchronous RAMs present a problem because generating a write clock requires 
a very timing-critical design that is tricky to create and difficult to verify. A fully 
synchronous RAM is strongly preferred. 

• Large RAMs with fixed aspect ratios can present significant blockage problems. 
Check with your RAM provider to see if the aspect ratio of the RAMs can be mod
ified if necessary. 

• BIST is available for many RAM designs, and can greatly reduce test time and 
eliminates the need to bring RAM I/O to the chip's pins. However, the integrator 
should be cautious because some BIST techniques do not test for data retention 
problems. 
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10.5 Physical Design 

The major challenge in the physical implementation of large SoC design is achieving 
timing closure. This process is inherently iterative; a typical spiral process where each 
iteration gets us closer to our performance goals. The problem that design teams often 
encounter is that many iterations are required to achieve their timing objectives, and 
each iteration can take many days. The result is often major delays to the project. 

Many of the design guidelines in this book are intended to minimize the number of 
iterations in physical design by making timing closure as contained and local a prob
lem as possible. In particular, the rules on partitioning, registering outputs, and fully 
synchronous design are key to containing the timing closure problem. 

In this section we outline a process that can help make the iterations as few and quick 
as possible. 

Figure 10-1 outlines the process of integrating the various blocks into the final version 
of the chip and getting the chip through physical design. There are several variations 
on the flow shown here depending on the size of chip, the number of hard and soft 
blocks, and targeted performance. We describe here a representative flow, and will 
discuss briefly some of the main variants. 

This process consists of four major activities: 

• Preparation of the design - Planning the physical implementation of the chip, 
performing block-level and then chip-level synthesis, doing a detailed floorplan
ning, and initial route of the chip. 

• Placement loop - Iterating on placing the chip, analyzing the timing results, 
and modifying placement until timing goals are met. 

• Timing closure - Adding clocks and detailed routing, doing a more accurate 
timing analysis, and fixing any remaining timing problems. 

• Physical verification - Running the final checks on the design prior to tapeout. 
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Figure 10-1 Integrating blocks into a chip 
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10.5.1 Design Planning to Initial Placement 
Preparation of the design involves design planning, synthesis, floorplan, and initial 
routing. 

Design Planning 

Physical design starts with planning, and this planning can be done quite early in the 
design process. At the very start of the design, before blocks are designed or IP 
selected, the team should do an initial estimate of die size and power dissipation. This 
information is key for determining package type. 

Once the team has partitioned the design into blocks, the team can do a preliminary 
floorplan. This initial floorplan should include a rough placement of blocks and 110 
pads, as well as some preliminary planning for the power and clock distribution. This 
information can be used to provide more accurate wire load models and timing bud
gets for synthesis. 

If the inputs and outputs of each block are registered, then the timing budget is quite 
straightforward - the block just has to meet the clock frequency target of the design. 
The wire load model can be determined from the gate count of the block. The floor
planning information primarily helps identify long wires between blocks, or from 
blocks to 110 pads, which will required extra buffering. 

If only the outputs of each block are registered, then the relative placement of the 
block on the chip affects both the wire load model and the time budget of the block. In 
Figure lO-2(a), the blocks are close so that the arrival times at the inputs of Block B 
are nearly the same as the output time of Block A. The wire load model for Block A is 
probably accurate enough for the outputs of Block A as well as the internal signals. In 
Figure lO-2(b), the blocks are at opposite comers of the chip; this can mean a signifi
cant wire delay between the blocks. The outputs in Block A must be buffered up to 
drive the capacitance of the long wires, and the timing budget of Block B must be 
modified to allow for a later arrival time at its inputs. 

Once the team has RTL (for the soft blocks) and GDSII (for the hard blocks), the team 
can use an RTL floorplanner such as Chip Architect to refine the floorplan. In particu
lar, the team can assign physical locations for the 1I0s of each block and do top-level 
routing. This approach can give very accurate estimates of the capacitive loading on 
the top-level interconnect, making synthesis much more accurate. 
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Figure 10-2 The ftoorplan affects timing budgets and wire load models 

Synthesis 

Armed with this preliminary physical design information, the design team can now do 
a full synthesis of the chip. Using the wire load models and timing budgets from the 
initial ftoorplan, we synthesize each block independently. 

Once each block is meeting timing, we do a top-level synthesis of the entire chip, 
using timing models for the hard macros. At the top level, synthesis should be 
required only to stitch together the top-level netlist and refine the system-level inter
connect: resizing buffers driving inter-block signals, fixing hold-time problems, and 
the like. For critical inter-block paths, some re-budgeting may be required. For this, 
we can go back to the design planning tool to readjust block placement, or YO place
ment for the key blocks, or to re-route some top-level nets. Then, we can generate a 
new top-level timing budget and wire loads, and re-run block-level synthesis. 

The inputs to the top-level synthesis include: 

• Timing budgets and wire load models from the design planning stage 

• RTL (or a netlist synthesized from RTL) for the synthesizable blocks 

• Synthesis models for the hard macros and memories 

• Netlists for any modules generated from a datapath generator 

• Any libraries required, such as the Design Ware Foundation Library 

• Top-level RTL that instantiates the blocks, the YO pads, and top-level test struc
tures 
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The synthesis models for the hard macros and memories include the timing and area 
information required to complete synthesis on the whole chip and to verify timing at 
the chip level. 

The top-level test structures typically include any test controllers, such as a JTAG 
TAP controller or a custom controller for scan and on-chip BIST (Built-In Self Test) 
structures. 

After the top-level netlist has been generated, scan cells should be inserted in the 
appropriate blocks for testability. An ATPG (Automatic Test Pattern Generator) tool 
can then be used to generate scan test vectors for the chip. Scan insertion is typically 
done by a test synthesis tool. Note that at this point, test synthesis merely replaces 
standard flops with scan flops. The actual stitching of flops into the scan chain is typ
ically done as part of the chip routing. Thus, the scan interconnect between flops, 
which is arbitrary, can be optimized for minimum wire length. 

Similarly, if JTAG is required, JTAG structures should be added to the netlist. Typi
cally, this step is also performed by a tool. 

If clock gating is needed to reduce power, then the power compiler should be used to 
convert mux-hold flops into gated clocks. 

Once all the test structures are in place, a final timing analysis is performed to verify 
chip timing and, if necessary, an incremental synthesis is performed to achieve the 
chip timing requirements. 

The final netlist, along with timing information, is now ready for detailed floorplan
ning. 

Note: As we go through the block and chip-level budgeting and synthesis, we begin to 
realize the benefit of some of the design and coding guidelines. In particular, it 
quickly becomes obvious that false paths and timing exceptions present a real prob
lem. Any exception to the basic timing goals, such as paths that take two cycles, or 
test signals that do not have to meet the operating frequency, need to be listed in the 
synthesis and budgeting scripts. This manual process is very prone to error. The 
authors have seen large chips where there were literally thousands of timing excep
tions. In cases like these, the designers consistently miss a significant number of 
paths, either specifying a path as false when it is not, or the other way around. 

Either of these cases can result in synthesis and timing problems. If the path is not 
false and we mark it as false, then clearly it will not be synthesized to meet timing. On 
the other hand, if a path is false and is not marked as false, then synthesis will work 
hard to get it to meet timing, often to the extent of not optimizing other paths that 
really are critical. 
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Thus, to meet timing, it is essential that the false path lists be completely correct. For 
this reason, we strongly recommend that designers avoid false and multicycle paths 
completely. Worst case, the list of paths should be very short. 

Block-level SyntheSiS 

Top-level SyntheSis using DeSign CompilerlTest Compiler/Power Compiler 

To Packager 

Figure 10-3 Chip-level synthesis 

To block-level, top
level syntheSiS 
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Detailed Floorplan and Initial Power Route 

At this point, we can read the final netlist into the ftoorplanning tool and complete the 
preparation for placement. We can fix, if we haven't already: 

• Block placement 

• 110 pad placement 

• Placement of the 110 cells for each block 

Next, we do an initial route of the power mesh, the distribution of power and ground 
in the chip. Designers have found that doing the power routing before detailed place
ment improves the overall design. Power routing takes routing resources on the chip 
that could otherwise be used for routing signals. Thus, an optimal placement may 
need to place critical cells away from the blocked routing channels. 

Typically power routing involves placing wide power and ground rings around the 
periphery of the chip, and then cross-hatching the chip with a mesh of power and 
ground wires. For large chips, the chip may be divided up into sections, with each sec
tion having its own power and ground rings. 

Often, chips will have different power supplies (and power rings) for 110 and the core 
logic, especially if they run off of different voltages. For example, in low power 
designs, the core is often run at as Iowa voltage as possible (for example, 1.5v) while 
the 110 must run at standard voltages, such as 3.3v. Also, any analog block, such as a 
PLL or AID converter, may need a separate power and ground supply to provide noise 
isolation. 

Initial Placement 

Once the synthesized netlist meets timing based on wire load models, the placement 
engine needs to place the design such that the timing goals of the design can be met. 
The effective use of timing driven placement engines is the key to achieving this goal. 

Timing driven placement has been a goal of tool providers and engineers for many 
years. Today, the technology is mature enough to make timing closure on large chips 
dramatically easier than it has been in the past. To use this technology effectively, we 
need to provide to the placement engine: 

• A good technology file that describes the parameters of the silicon technology 

• Accurate timing constraints 

• An optimization-friendly design 

Timing driven placement takes as input the timing constraints and the gate-level 
netlist (typically in Verilog). It then attempts to place the cells in the design so as to 
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meet the timing constraints. The placement engine uses estimates for routing delays, 
so that a full route of the design is not required to determine if it meets timing. The 
accuracy of these estimates is key in achieving timing closure. 

The placement tool relies on a technology file to tell it how to estimate the capaci
tance of metal interconnect. Coupling capacitance between adjacent wires (both 
beside the wire in question, and above and below it), greatly affect the total capaci
tance seen by the driving gate, and thus the delay of the gate. The capacitance model 
used by the placement engine must be pessimistic in order to ensure that estimated 
routing delays are no worse than those from the actual, final route. One way to do this 
is to force the tool to assume that each wire has other wires in adjacent routing tracks 
both beside and above and below the wire. The technology file is where we can spec
ify this data to the placement engine. 

In deep submicron designs, wires are taller than they are wide; as a result, fringe 
capacitance has a significant effect on overall capacitance. This effect must be mod
eled in the technology file to achieve accurate capacitance estimates. 

Once the capacitance per unit length is well modeled, the placement engine must esti
mate the actual length of each interconnect. It does this by assuming a Steiner route; 
that is, an optimal route based on orthogonal routing. Congested areas, though, may 
prevent some routes from being Steiner; they may have to take longer, "scenic" routes 
(like going from San Francisco to Cleveland by way of New York if all the direct 
flights are booked). The good placement tools are able to estimate congestion and its 
effect on routing resources, and factor this into the delay estimate. 

Clearly, accurate timing constraints are essential to good timing-driven placement. If 
a false path is not identified, the placement engine can spend all of its time attempting 
to meet timing on this false path, and produce sub-optimal placement on actual criti
cal parts of the design. Once again, avoiding false and multicycle paths can greatly 
help achieve rapid timing closure. 

Timing driven placement is much like synthesis; the tool spends much of its time 
doing static timing analysis on a particular configuration, then using this information 
to refine the design. Many of the guidelines in this book are aimed at producing 
designs on which it is easy to perform static timing analysis. Following these guide
lines can make synthesis and timing driven placement run much faster and converge 
with many fewer iterations through the tools. 

In particular, a fully synchronous, flop-based design can allow timing driven place
ment to produce excellent results. 
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Flat VS. Hierarchical Placement 

One critical issue in doing placement is deciding how much hierarchy to maintain 
during physical design. 

Some designs (microprocessor designs, for example), are designed with a strict hier
archy that is maintained throughout physical design. Typically this includes: 

• A careful floorplan is developed early, and a location for each major block identi
fied. 

• Pin locations for the I/O of each block are assigned. 

• Some room between blocks is reserved for top-level routing; all routing between 
blocks is restricted to this area. 

• Top-level routing is performed before place and route of the blocks; as a result, the 
wire length and capacitive loading for each top-level wire is fixed. 

• Based on the information from the above steps, each block is placed and routed 
independently, and then placed in the top-level design. 

Another approach is to maintain hierarchy, but not to reserve top-level routing areas. 
In this approach: 

• A careful floorplan is developed early, and a location for each major block identi
fied. 

• Pin locations for the I/O of each block are assigned. 

• Based on the information from the above steps, each block is placed (and poten
tially routed) and then placed in the top-level design. 

• Detailed routing (or potentially just top-level routing) is performed. Top-level 
routing is done through blocks rather than around them. 

A third approach is to do a completely flat place and route. In this approach: 

• A careful floorplan is developed early, and a location for each major block identi
fied. 

• Pin locations for the I/O of each block are assigned. 

• Based on the information from the above steps, timing constraints are developed 
for the design. The floorplan is not used; instead, the entire design is placed as a 
unit. 

• Detailed routing is performed on the chip as a single unit. 

The irony in the flat approach is that a detailed floorplan is still needed; it allows us to 
develop the timing constraints for placement. But the floorplan itself is thrown away. 

Real designs may use a combination of the above approaches. Many teams will ini
tially try a hierarchical approach. If the design still has problems meeting timing or 
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has excessive routing congestion, they then will try a flat placement. Based on the 
results, they then pursue the approach that looks the most promising. 

The only strong recommendation we make in this area is that the physical hierarchy 
should reflect the logical hierarchy. A physical block may consist of several logical 
blocks, but a single logical block should never be split across several physical blocks. 
The resulting name changes makes it very difficult to work with the post-layout 
netlist and to troubleshoot problems. 

10.5.2 Placement Loop 

One always hopes that after an initial placement, timing has been met and all that is 
required is to route the chip and tape out. One is almost always disappointed. 

There are two major sources of timing problems at this point: the timing constraints, 
and the design itself. 

If the design has false paths that are not listed in the constraints, then we are likely to 
find that the long paths in the design are paths we do not care about. But we are also 
likely to find that a number of critical paths were not appropriately placed, and are 
failing timing. The solution to this problem is to update the constraints and re-run 
placement. 

If the timing is close but not quite passing, then it may be useful to refine the timing 
budgets. This can be done manually by changing the constraints or automatically by 
using a timing budgeting tool, such as PrimeTime. Then we re-run placement. 

If the timing is still not met, then we may have to modify the design itself, changing 
the RTL to add pipeline stages or the like. In this case, we have to repeat the floor
planning, synthesis, and initial placement. 

Under any of the above scenarios, as well as a host of others, it becomes necessary to 
iterate through placement. The goal is to make this iteration as short as possible, so 
that we can converge quickly to a placement that meets timing. If our routing delay 
estimates are accurate, then we can then achieve full timing closure quickly. 

The actual loop through placement, analysis, and re-optimization is described below. 

Quick Extraction 

After placement is complete, the placement tool generates a report of the estimated 
capacitances in the routing. This report is relatively quick to generate, but not as accu
rate as a full 3D extraction from tools such as Arcadia. The accuracy depends largely 
on the way the technology file is written; that is, how the capacitances are modeled. 
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Timing Analysis 

A timing analysis tools such as PrimeTime or Pearl can read these capacitances, along 
with the netlist and timing constraints, and output a timing report. This timing report 
lists all the paths that are violating the timing constraints (as well as a host of other 
reports, as required). 

Refine Constraints 

We then analyze the timing reports to detennine if the violating paths are real and if 
so, what to do about them. If the violations are false paths, we update the timing con
straints. 

Re-optimize 

If the timing violations are real, the most of them will probably be from excessive 
capacitance loading gate outputs. The solution here is to increase drive strengths, add 
buffers, or even restructure logic. 

The best timing-driven placement tools have the capability of doing much of this 
automatically as part of timing-driven placement. They can resize buffers and add/or 
buffers to improve timing. 

If the available placement tools do not re-optimize, or if significant restructuring of 
logic is required, then we have to use the in-place optimization capabilities of the syn
thesis tools. In place optimization preserves as much of the placement as possible 
while making the structural changes needed to meet timing. 

ECO Place 

If we had to go outside the placement tools to do our optimization, then we need to 
get our changes back into the placement. The ECO placement capabilities of the 
placement tool allows us to give it a revised netlist and (approximate) physicalloca
tions for the new devices. The tool then updates the placement, including placing the 
new parts in legal locations, and we are ready to re-analyze the results. 

The goal of ECO placement is to maintain as much of the existing placement as possi
ble. In this way, we can be reasonably confident that we are fixing timing problems 
without creating new ones. There is a limit, however, to how many cells can be 
changed at once and still use the incremental placement. Usually this limit is a few 
percent of the cells in the design. If we need to make more changes than this, we need 
to do a complete new placement, possibly resulting in a whole new set of timing prob
lems. For this reason, it is essential that our initial timing-driven placement be of high 
quality, otherwise timing can end up diverging instead of converging. A design that is 
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easy to optimize (fully synchronous, etc.) can make a huge difference in achieving 
timing closure. 

This basic placement iterative loop is the key step in achieving rapid timing closure. 
'The overall time for this loop, even for very large designs, can usually be kept to less 
than a day. Even if we have to do multiple iterations, we can produce a placement 
with a high probability of meeting timing in a reasonable amount of time. 

10.5.3 Timing Closure 
After placement meets timing, we have several key tasks to complete the design. 

Clock Route 

Before doing a full route of the design, we route the clock(s), also known as clock tree 
synthesis. Since these are the most critical nets in the design, and need to be balanced 
to minimize clock skew, they are routed first. One common problem with routing 
clock trees is that they typically require a very large number of buffers. As mentioned 
above, inserting large numbers of buffers can perturb the design enough that we can
not use EeO place and route. This would be a major problem for clock tree synthesis, 
since we are optimizing the clock for a specific placement of flip-flops. 

For this reason, some designers reserve a buffer site next to each flop. This site can be 
used for the clock tree buffer. If the site is not needed it takes up some small incre
mental area, but this is well worth it if it speeds convergence of clock tree synthesis. 

Detailed Route 

After the clock is routed and meeting skew, we do a full detailed route of the design. 
This is the first time we have a complete physical design. We can now do a much 
more accurate assessment of the timing and power. 

During detailed route, we need to ensure that we comply with the process' rules for 
antennas. During chip fabrication there is a time during which metal one has been 
added to the chip, but the other metal layers have not. At this time, the metal one stub 
can act like an antenna, picking up a static charge and damaging the chip. Each pro
cess has a set of rules for how long the stub can be for each metal layer. By adding 
these rules to the cell library, we can get the router to comply with them during route. 
Otherwise, it is necessary to go back after the route and fix any antenna violations, a 
time consuming process. 
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Extraction and Timing Analysis 

We now use a full 3-D extraction engine to calculate the actual capacitance of each 
segment of metal interconnect in the design. These tools are full field solvers that give 
very accurate results. With this data, we can now do a full static timing analysis and 
determine the timing of the design. 

Fixing Timing and Clocks 

If the timing estimates used in placement were accurate, there should be few timing 
violations at this point. We would typically expect a couple of long paths that need 
repair. We also would expect some hold time violations. Both of these can result from 
the fact that we used estimates both for metal delays and for clock skew. There may 
also be some remaining clock tuning required to meet our skew requirements. 

We fix the clock and the long paths first; if there are literally just a couple of fixes 
required, we may be able to do these interactively in the place and route tool. For 
larger numbers of fixes, we may have to go back and readjust our timing constraints, 
re-optimize, and go back through place and route. 

After these fixes have been implemented in the physical design, we again do a full 
extraction and timing analysis. We iterate as required until the clock meets our 
requirements. 

Fixing Hold Time Violations 

Once the clock tree is finalized and is meeting timing, we need to fix any remaining 
hold time problems. Hold time problems result from a combination of fast data paths 
from register to register and clock skew. They are typically fixed by inserting buffers 
in the fast data paths. 

Virtually all the hold time problems should be fixed during the placement loop. Hold 
time violations, like long path problems, are fixed by the in-place optimization pro
cess. A few new hold time problems may appear as the clock is tuned; these we fix at 
this point in the process. 

Final Extraction and Timing Analysis 

After all known timing problems have been fixed, we do one final (hopefully!) 
extraction and timing analysis. At this point we typically have a review of the final 
timing report, verifying that our false and multicycle paths specified earlier are really 
false. 
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10.5.4 Verifying the Physical Design 

The last major step in the physical design process is verifying that the physical design 
is correct and in compliance with the design rules for the target silicon process. 

Checking Power 

First we do a check of the power distribution system. We can estimate the voltage 
drop across the power meshes using tools such as RailMill. Our initial power mesh 
design was intended to be conservative, so we should see no surprises here. 

We can also use tools such as PowerMill to get a final estimation of the power dissi
pation of the design. 

ORC and LVS 

Finally we run DRC (Design Rule Checking) and LVS (Layout vs. Schematic). DRC 
verifies that the design does not violate any physical design rules. 

For full custom designs, this step can involve many iterations as subtle problems with 
the placement of cells are discovered and fixed. But in the standard model of reuse 
presented in this book, full custom designs should only be imported into SoC designs 
after they have been physically designed and verified. No full custom DRC violations 
should occur at the chip level. 

For standard cell designs, there should be very few DRC violations. Typical problems 
that do occur are usually caused by problems in the library or by interface problems 
between the standard cell sections and any hard blocks that have been imported. 
These problems are usually quite straightforward to fix. 

LVS compares the design as physically implemented to the gate-level netlist. It 
extracts a post-layout netlist back from the physical design by mapping polygons 
back into gates. It then compares this post-layout netlist to the pre-layout netlist. 
Again, for standard cell designs, there tend to be few LVS errors in the final design. 
The ones that do appear tend to be library problems and are usually straightforward to 
fix. 

Of course, we need to make sure that the final netlist, with added buffers and resized 
gates, and clock fixes, still is functionally equivalent to the original netlist. Formal 
verification should be used to check this equivalence. 

Once these steps are completed, the chip is ready for fabrication. 
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10.5.5 Summary 

The physical design of very large chips is an extremely challenging and complex task. 
The algorithms used by the tools are very complex, and the databases huge. It is very 
easy to spend many months trying to reach timing closure for a large chip. 

There is much the designer can do to reduce the risk of runaway schedules in physical 
design. The key is to make timing closure and physical design a series of local, rela
tively small problems. The process described above performs most of the real effort in 
timing closure during placement. Once placement is successful, the rest of the design 
process is straightforward and should require few iterations. The runtimes for extrac
tion can be very long, and DRe and LVS can take several days. However, by ensuring 
a high probability of needing only one or two runs of each, this long runtime is tolera
ble. 

The highly iterative loop is in timing driven placement. By carefully choosing a set of 
simplifying assumptions, mainly in how we estimate routing delay, this loop can be 
made relatively fast (hours instead of days), so that we can tolerate these iterations. 

Above all else, the most important key to rapid timing closure is the quality of the 
design itself. A fully synchronous design, with few or no timing exceptions, where the 
levels of logic between registers is well understood and consistent with the timing 
goals, can make it through physical design with few schedule surprises. 



CHAPTER 11 System-Level 
Verification Issues 

This chapter discusses system-level verification, focusing on the issues and opportu
nities that arise when macros are integrated into a complete System on a Chip. The 
topics are: 

• The importance of verification 

• Testplan 
• Application-based verification 

• Fast prototype testing 
• Gate-level verification 

• Verification tools 
• Specialized hardware for system verification 

11.1 The Importance of Verification 

Verifying functionality and timing at the system level is probably the most difficult 
and important aspect of SoC design. It is the last opportunity to find conceptual, func
tional, and implementation errors before the design is committed to silicon. For many 
teams, verification takes 50 to 80 percent of the overall design effort. 

For SoC design, verification must be an integral part of the design process from the 
start, along with synthesis, system software, bringup, and debug strategies. It cannot 
be an afterthought to the design process. 

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999
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System verification begins during system specification. The system functional speci
fication describes the basic test plan, including the criteria for completion (what tests 
must run before taping out). As the system-level behavioral model is developed, a 
testbench and test suite are developed to verify the model. Similarly, system software 
is developed and tested using the behavioral model rather than waiting for real hard
ware. As a result, a rich set of test suites and test software, including actual applica
tion code, should be available by the time the RTL and functional models for the 
entire chip are assembled and the chip is ready for verification. 

Successful (and rapid) system-level verification depends on the following factors: 

• QUality of the verification plan 

• QUality and abstraction level of the models and testbenches used 

• Quality and performance of the verification tools 

• Robustness of the individual predesigned blocks 

11.2 The Verification Strategy 

The system-level verification strategy for an SoC design uses a divide-and-conquer 
approach based on the system hierarchy. This strategy consists of the following steps: 

• Verify that the leaf nodes - the lowest-level individual blocks - of the design 
hierarchy are functionally correct as stand-alone units. 

• Verify that the interfaces between blocks are functionally correct, first in terms of 
the transaction types and then in terms of data content. 

• Run a set of increasingly complex applications on the full chip. 

• Prototype the full chip and run a full set of application software for final verifica
tion. 

• Decide when it is appropriate to release the chip to production. 

Block Level Verification 

For large SoC designs, it is essential that each block be fully verified before it is inte
grated into the chip design. In this sense, block-level verification is a prerequisite and 
precursor to chip-level verification. 

Block-level verification is described in detail in Chapter 7. It uses code coverage tools 
and a rigorous methodology to verify the RTL version of macro as thoroughly as pos
sible. A physical prototype is then built to provide silicon verification of functional 
correctness. 
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This verification methodology should, in general, be used for any block to be used in 
the chip design, even if that block is not intended for reuse. Verifying blocks fully 
before integration greatly reduces the overall verification effort, since bugs are much 
easier to find at the block level rather than chip level. 

The only exception to this rule is that the design team may well decide not to produce 
prototypes of single-use blocks before they are integrated into the chip. This approach 
seems a reasonable risk/benefit tradeoff, but the risk involved should be recognized. 

Any block in the SoC design that has not gone through this process, including silicon 
verification, is not considered fully verified as a standalone block. If the chip contains 
any such partially verified blocks, the first version of the chip must be considered a 
prototype. It is virtually assured of having bugs that require a redesign of the chip 
before release to production. 

Prototyping the chip, however, is part of the overall chip verification plan, so it is rea
sonable to have some number of new, single-use blocks that have been robustly veri
fied, but that have not been prototyped. 

11.3 Interface Verification 

Knowing that the individual blocks have been robustly verified, chip-level verification 
consists primarily of verifying the interfaces and interaction between the blocks. Thus 
we start chip verification with interface verification. 

Inter-block interfaces usually have a regular structure, with address and data buses 
connecting the blocks and some form of control- perhaps a request/grant protocol 
or a requestlbusy protocol. The connections between blocks can be either point-to
point or on-chip buses. 

Because of the regular structure of these interfaces, it is usually possible to talk about 
transactions between blocks. The idea is that there are only a few permitted 
sequences of control and data signals; these sequences are called transactions and 
only the data (and data-like fields, such as address) change from transaction to trans
action. 

11.3.1 Transaction Verification 

Interface testing begins by listing all of the transaction types that can occur at each 
interface, and systematically testing each one. If the system design restricts transac
tions to a relatively small set of types, it is fairly easy to generate all possible transac
tion types and sequences of transaction types and to verify the correct operation of the 



232 Reuse Methodology Manual 

interfaces to these transactions. Once this is done, all that remains is to test the behav
ior of the blocks to different data values in the transactions. Thus, a simple, regular 
communication architecture between blocks can greatly reduce the system verifica
tion effort. 

In the past, this transaction checking has been done very informally by instantiating 
all the blocks in the top-level R1L, and then using a testbench to create activity within 
the blocks and thus transactions between blocks. If the overall behavior of the system 
is correct, perhaps as observed at the chip's primary I/O or in the memory contents, 
then the chip - and thus the interfaces - were considered to be working correctly. 

There are several changes that can be made to improve the rigor of transaction check
ing. First of all, as shown in Figure 11-1 (b), you can add a bus monitor to check the 
transactions directly. This monitor can be coded behaviorally and thus provide very 
good simulation performance. For a chip such as that shown in Figure 11-I(a), with 
point-to-point interconnections, it is possible to build some simple transaction check
ing into the interface module of each block. Testbench automation tools can be useful 
tools for creating effective transaction checkers very quickly. 

This monitor approach improves observability during transaction testing, but it is also 
possible to improve controllability. If we use simple, transaction-generating bus func
tional models instead of a full functional models for the system blocks, we can gener
ate precisely the transactions we wish to test, in precisely the order we want. This 
approach can greatly reduce the difficulty of developing transaction verification tests 
and can reduce simulation runtime as well. 

11.3.2 Data or Behavioral Verification 

Once the transactions have been verified, it is necessary to verify that the block 
behaves correctly for all values of data and all sequences of data that it will receive in 
actual operation. In most chips, generating the complete set of these data is impossi
ble because of the difficultly in controlling the data received by anyone block. 

The approach described above helps here as well. We use the bus functional models 
for all blocks except the block under test, for which we use the full R1L. We can then 
generate the desired data sequences and transaction from the BFMs. We can construct 
test cases either from our knowledge of the system or by random generation. 

Automatic checking of the block's behavior under these sequences of transactions is 
nontrivial and depends on how easy it is to characterize the correct behavior of the 
block. For complex blocks, the semantics of a testbench generation tool may be the 
only way to describe the block's behavior such that its outputs can be checked auto
matically. 
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Figure 11-1 System verification using interface testing 

This test method often reveals that the block responds correctly to data sequences that 
the designer expected the block to receive, but that there are some (legal or illegal) 
sequences that can occur in the actual system to which the block does not respond 
correctly. This must usually be considered a bug, requiring redesign of the block. 
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Another method for dealing with the problem of unanticipated or illegal inputs is to 
design a checker into the block interface itself. This checker can suppress inputs that 
are not legal and prevent the block from getting into incorrect states. This approach 
has been used effectively in high-reliability system designs. 

11.3.3 Standardized Interfaces 
Interface verification and transaction checking can be greatly facilitated if the inter
faces are standardized. Clearly it is easier to get a bus functional model or bus monitor 
out of a library than to create one from scratch. 

This is one of several reasons why design teams are trying to standardize the primary 
interfaces to the chip and the on-chip buses. Once these standards are established, bus 
functional models and bus monitors can be developed and reused on many chip 
designs. 

11.4 Functional Verification 

Once the basic functionality of the system has been verified by the transaction testing, 
system verification consists of exercising the entire design, using a full functional 
model for most, if not all, of the blocks. The ultimate goal of this aspect of verifica
tion is to try to test the system as it will actually be used. That is, we come as close as 
we can to running actual applications on the system. 

Verification based on running real application code is essential for achieving a high 
quality design. However, this form of verification presents some major challenges. 
Conventional simulation, even at the RTL level, is simply not fast enough to execute 
the millions of vectors required to run even the smallest fragments of application 
code, much less to boot an operating system or test a cellular phone. 

There are two basic approaches to addressing this problem: 

• Increase the level of abstraction so that software simulators running on worksta
tions run faster. 

• Use specialized hardware for performing verification, such as emulation or rapid
prototyping systems. 

This section addresses the first approach: how to use abstraction and other mecha
nisms to speed conventional simulation techniques. Subsequent sections address the 
second approach. 

The types of abstraction techniques we can use depend on the nature of the design, so 
it is useful to use a specific design as an example. Fortunately, most large chips are 
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converging to an architecture that looks something like the chip design shown in 
Figure 11-2, the canonical SoC design described in Chapter 2. 
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Figure 11-2 Canonical SoC Design 

Figure 11-3 shows a possible testbench environment for verifying the canonical 
design. The key features of this verification environment are: 

• The full R1L model is used as the simulation model for most of the functional 
blocks. 

• Behavioral or ISA (Instruction Set Architecture) models may be used for memory 
and the microprocessor. 

• Bus functional models and monitors are used to generate and check transactions 
with the communication blocks. 

• It is possible to generate real application code for the processor and run it on the 
simulation model. 

With this test environment, we can run a set of increasingly complex application tests 
on the system. Initially, full functional models for the RAM and microprocessor are 
used to run some basic tests to prove that the system performs the most basic func
tions. The slow simulation speeds of this arrangement mean that we can do little more 
than check that the system is alive and find the most basic system bugs. Errors are 
detected manually (by looking at waveform displays), by means of the bus monitor, 
and by the sequence monitor on the communication port. At this level of abstraction, 
we are probably simulating at a rate of tens of system clocks per second. 
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Figure 11-3 System verification environment 

Behavioral models are now substituted for the memory and microprocessor. These 
models can be high-level C/C++ models that accurately model the instruction set of 
the processor, but abstract out all implementation detail. These models are often 
called ISA (Instruction Set Architecture) models. Another approach is to code a very 
high-level, behavioral model in Verilog or VHDL, abstracting out much of the cycle
by-cycle details, but retaining the basic functionality of the processor. If enough tim
ing detail is retained so that the bus transactions at the 110 port of the processor are 
accurate on a clock-cycle by clock-cycle basis, the model is often referred to as a 
cycle-accurate model. 
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Using these behavioral models for the memory and processor, real code is compiled 
and loaded into the memory model and the processor model executes this code. At the 
same time, representative data transactions are generated at the communication inter
faces of the chip, usually by bus functional models. For instance, if the data transfor
mation block is an MPEG core, then we can feed in a digital video stream. 

Using C/C++ models for both the processor and memory dramatically improves sim
ulation speed over full RTL simulation. In designs like our canonical example, most 
cycles are spent entirely in the processor, executing instructions, or in accessing mem
ory. With these abstractions, execution speeds in the thousands of device cycles per 
second can be achieved. Operating on top of this environment, hardware/software 
cosimulation packages allow the engineer to run a software debugger, the ISA soft
ware, and an RTL simulator simultaneously. 

Most system-level hardware and software bugs can be detected and fixed at this stage. 
To complete software debug, it may be necessary to develop an even more abstract set 
of models to improve simulation speed further. In our example, we could substitute a 
c++ model for the RTL model of the data transformation block, and achieve very 
high simulation speeds. 

To complete hardware debug, however, we need to lower our abstraction level back to 
RTL. The lack of detail in our ISAlbehavioral models undoubtedly masks some bugs. 
At this point, we can run some real code on the RTL system model and perhaps some 
random code as well for testing unforeseen sequences. But simulation speed prohibits 
significant amount of real application code from being run at the RTL level. 

During this debug phase, as we run application code on a high-level model and tar
geted tests on the RTL model, the bug rate follows a predictable curve. 1)'pically, the 
bug rate increases during the first part of this testing, reaches a peak, and then starts 
declining. At some point on the downward slope, simulation-based testing is provid
ing diminished returns, and an alternate method must be found to detect the remaining 
bugs. 

11.5 Application-Based Verification 

For most design teams, a key goal is to have first silicon be fully functional. This goal 
has motivated the functional verification plan and simulation strategies. To date, most 
teams have been fairly successful. According to some estimates, about 90% of ASIC 
designs work right the first time, although only about 50% work right the first time in 
the system. This higher failure rate probably results from the fact that most ASIC 
design teams do not do system-level simulation. 
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With the increasing gate count and complexity of SoC designs, it is not clear that the 
industry can maintain this success rate. Assume that, in a lOOk gate design with 
today's verification technology, there is a 10% chance of a serious bug. Then for a 1M 
gate design, consisting of ten such modules comparably verified, the probability of no 
serious bugs is: 

Pbug-free = .910 = .35 

Design reuse can also play an important role. If we assume that a 1M gate design con
sists of ten lOOk blocks, with two designed from scratch (90% chance of being bug
free) and eight reused (for the purpose of discussion, 98% chance of being bug-free), 
then for the overall chip: 

Pbug-free = .92 * .98 8= .69 

But to achieve a 90% probability of first-silicon success, we need to combine design 
reuse with a verification methodology that will either get individual blocks to a 99% 
or allow us to verify the entire chip to the 90% level. 

Running significant amounts of real application code is the only way to reach this 
level of confidence in an SoC design. For most designs, this level of testing requires 
running at or near real time speeds. The only available technologies for achieving this 
kind of performance involve some form of rapid prototyping. 

The available options for rapid prototyping include: 

• FPGA or LPGA prototyping 
• Emulation-based testing 

• Real silicon prototyping 

11.5.1 FPGA and LPGA Prototyping 

For small designs, it is practical to build an FPGA or Laser Programmable Gate Array 
(LPGA, such as the one provided by Chip Express) prototype of the chip. FPGAs 
have the advantage of being reprogrammable, allowing rapid turnaround of bug fixes. 
LPGA prototypes can achieve higher gate counts and faster clock speeds, but are 
expensive to turn. Multiple iterations of an LPGA design can be very costly, but can 
be done quickly, usually within a day or two. 

Both FPGAs and LPGAs lag state-of-the-art ASIC technologies in gate count and 
clock speed by significant amounts. They are much more appropriate for prototyping 
individual blocks or macros than for proto typing SoC designs. 
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A number of engineering teams have used multiple FPGAs to build a prototype of a 
single large chip. This approach has at least one major problem: the interconnect is 
difficult to design and almost impossible to modify quickly when a bug fix requires 
repartitioning of the design between devices. 

Rapid prototyping systems from Aptix address this problem by using custom, pro
grammable routing chips to connect the FPGAs. This routing can be performed under 
software control, providing a very flexible fast proto typing system. 

11.5.2 Emulation Based Testing 

Emulation technology such as that provided by Mentor Graphics and QuickTurn grew 
out of attempts to provide a better alternative to using a collection of FPGAs for rapid 
prototyping of large chips. They provide programmable interconnect, fixed board 
designs, relatively large gate counts, and special memory and processor support. 
Recent developments in moving from FPGAs to processor-based architectures have 
helped to resolve partitioning and interconnect problems. 

Emulation can provide excellent performance for large-chip verification if the entire 
design can be placed in the emulation engine itself. If any significant part of the cir
cuit or testbench is located on the host, there is significant degradation of perfor
mance. 

For our canonical design, we need to provide emulation-friendly models for the 
RAM, microprocessor, BFMs, monitor, and sequence generator/checker. Developing 
these models late in the design process can be so time consuming as to negate the ben
efit of emulation. It is much better to consider the requirements of emulation from the 
beginning of the project and to work with the memory and hard macro providers to 
provide these models. Similarly, the requirements of emulation must be considered in 
the design of the BFMs and monitors. 

If executed correctly, emulation can provide simulation performance of one to two 
orders of magnitude less than real time, and many orders of magnitude faster than 
simulation. 

11.5.3 Silicon Prototyping 

If an SoC design is too large for FPGAILPGA prototyping and emulation is not prac
tical, then building a real silicon prototype may be the best option. Instead of extend
ing the verification phase, it may be faster and easier to build an actual chip and 
debug it in the system. 
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To some extent this approach is just acknowledging the fact that any chip fabricated 
without running significant amounts of real code must be considered a prototype. 
That is, there is a high probability that engineering changes will be required before 
release to production. 

The critical issue in silicon prototyping is deciding when one should build the proto
type. The following is a reasonable set of criteria: 

• The bug rate from simulation testing should have peaked and be on its way down. 

• The time to determine that a bug exists should be much greater than the time to fix 
it. 

• The cost of fabricating and testing the chip is on the same order as the cost of find
ing the next n bugs, where n is the anticipated number of critical bugs remaining. 

• Enough functionality has been verified that the likely bugs in the prototype should 
not be severe enough to prevent extensive testing of other features. The scenario 
we want to avoid is building a prototype only to find a critical bug that prevents 
any useful debug of the prototype. 

There are a number of design features that can help facilitate debug of this initial pro
totype: 

• Good debug structures for controlling and observing the system, especially system 
buses 

• The ability to selectively reset individual blocks in the design 

• The ability to selectively disable various blocks to prevent bugs in these blocks 
from affecting operation of the rest of the system 

11.6 Gate-Level Verification 

The final gate-level netlist must be verified for both correct functionality and for tim
ing. A variety of techniques and tools can be used for this task. 

11.6.1 Sign-OtT Simulation 

In the past, gate-level simulation has been the final step before signing off an ASIC 
design. ASIC vendors have required gate-level simulation and parallel test vectors as 
part of signOff' using the parallel vectors as part of manufacturing test. They have 
done this even if a full scan methodology was employed. 

Today, for lOOk gate and larger designs, signoff simulation is typically done running 
Verilog simulation with back-annotated delays on hardware accelerators from IKOS. 
Running full-timing, gate-level simulations in software simulators is simply not feasi-
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ble at these gate counts. Even with hardware accelerators, speeds are rarely faster than 
a few hundred device cycles per second. 

RTL sign-off, where no gate-level simulation is performed, is becoming increasingly 
common. However, most ASIC vendors still require that all manufacture-test vectors 
submitted with a design be simulated on a sign-off quality simulator with fully back
annotated delay information and all hazard checking enabled. Furthermore, they 
require that these simulations be repeated under best case, nominal case, and worst 
case conditions. This has the potential to be a resource intensive task. 

This requirement is rapidly becoming problematic for the following reasons: 

• Thorough, full timing simulation of a million-gate ASIC is not possible without 
very expensive hardware accelerators, and even then it is very slow. 

• Parallel vectors typically have very low fault coverage (on the order of 60 percent) 
unless a large and expensive effort is made to extend them. As a result, they can be 
used only to verify the gross functionality of the chip. 

• Parallel vectors do not exercise all the critical timing paths, for the same reason 
they don't achieve high fault coverage. As a result, they do not provide a sufficient 
verification that the chip meets timing. 

As a result of these issues, the industry is moving to a different paradigm. The under
lying problems traditionally addressed by gate-level simulation are: 

• Verification that synthesis has generated a correct netlist, and that subsequent 
operations such as scan and clock insertion have not changed circuit functionality 

• Verification that the chip, when fabricated, will meet timing 

• A manufacturing test that verifies that the chip is free of manufacturing defects 

These problems are now too large for a single solution, such as gate-level simulation. 
Instead, the current methodology uses separate approaches to address each issue: 

• Formal verification is used to verify correspondence between the RTL and final 
netlist. 

• Static timing analysis is used to verify timing. 

• Some gate-level simulation, either unit-delay or full timing, is used to complement 
formal verification and static timing analysis. 

• Full scan plus BIST provides a complete manufacturing test for functionality. Spe
cial test structures, provided by the silicon vendor, are used to verify that the fabri
cated chip meets timing and other analog specifications. 
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11.6.2 Formal Verification 

Formal verification uses mathematical techniques to prove the equivalence of two 
representations of the circuit. 1Ypically, it is used to compare the gate-level netlist to 
the RTL for a design. Because it uses a static, mathematical method of comparison, 
formal verification requires no functional vectors. Thus, it can compare two circuits 
much more quickly than can be done with simulation, and with much greater accu
racy. Formal verification is available from a variety of vendors; one such tool is Syn
opsys Formality. 

Formality compares two design by reading them into memory and then applying for
mal mathematical algorithms on their data structures. The designs can be successfully 
compared as long as they have the same synchronous functionality and correlating 
state holding devices (registers or latches). The two circuits are considered equivalent 
if the functionality is the same at all output pins and at each register and latch. 

Formal verification can be used to check equivalence between the original RTL and: 

• The synthesized netlist 

• The netlist after test logic is inserted. For scan, this is quite straightforward; for 
on-chip JTAG structure, some setup is required, but the equivalence can still be 
formally verified. 

• The netlist after clock tree insertion and layout. This requires comparing the hier
archical R1L to the flattened netlist. 

• Hand edits. Occasionally engineers will make a last-minute hand edit to the netlist 
to modify performance, testability, or function. 

One key benefit of formal verification is that it allows the R1L to remain the golden 
reference for the design, regardless of modifications made to the final netlist. Even if 
the functionality of the circuit is changed by a last minute by editing the netlist, the 
same modification can be retrofitted into the RTL and the equivalence of the modified 
RTL and netlist can be verified. 

For large designs, formal verification between the gate-level design and the RTL can 
be too slow, especially for multiple iterations. In such cases, it is better to use formal 
verification once between the RTL and the gate-level netlist, then use that gate-level 
netlist as the golden reference for future iterations. For example, you can use formal 
verification to compare gate-level netlists before and after clock tree insertion. Formal 
verification algorithms work more efficiently when comparing gates to gates than 
when comparing gates to RTL. 
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11.6.3 Gate-Level Simulation with Unit-Delay Timing 

Unit-delay simulation involves perfonning gate-level simulation with unit delay for 
each gate. It is much faster than full-timing simulation, but much slower than R1L 
simulation. 

Unit-delay simulations can be used to verify that: 

• The chip initializes properly (reset verification). 

• The gate implementation functionally matches the R1L description (functional 
correctness). 

Gate-level simulation complements formal verification. Dynamic simulations are 
rarely an exhaustive test of equivalence, but simulation is necessary to validate that an 
implementation's behavior is consistent with the simulated behavior of the R1L 
source. Gate-level simulation is particularly important for verifying initialization 
because gate-level simulation handles propagation of unknown (X) or uninitialized 
states more accurately than R1L simulation. 

Because it can be time-consuming and resource-intensive, it is usually good to begin 
unit-delay simulation as soon as you complete a netlist for your chip, even though the 
chip may not meet timing. 

11.6.4 Gate-Level Simulation with Full Timing 

Full-timing simulation on large chips is very slow, and should be used only where 
absolutely necessary. This technique is particularly useful for validating asynchro
nous logic, embedded asynchronous RAM interfaces, and single-cycle timing excep
tions. In a synchronous design, these problem areas should not exist, or should be 
isolated so they are easily tested. 

These tests should be run with the back-annotated timing information from the place 
and route tools, and run with hazards enabled. They should be run with worst case 
timing to check for long paths, and with best-case timing to check for minimum path 
delay problems. 
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11.7 Specialized Hardware for System Verification 

Design teams have long recognized the limitations of software simulators running on 
workstations. Simulation has never provided enough verification bandwidth to do 
really robust system simulation. Over the last fifteen years there have been numerous 
efforts to address the needs of system simulation through specialized hardware sys
tems for verification. 

Early efforts focused on hardware accelerators. Zycad introduced the first widely
available commercial accelerators in the early 1980's; in the early 1990's, Ikos intro
duced competitive systems based on somewhat similar architectures. The Zycad sys
tems provided very fast fault simulation; at the time fault, simulation of large chips 
was not really practical with software simulators. These systems were also used for 
gate-level system simulation. Ikos systems focus exclusively on system-level simula
tion. 

These accelerators map the standard, event-driven software simulation algorithm onto 
specialized hardware. The software data structures used to represent information 
about gates, netlists, and delays are mapped directly into high-speed memories. The 
algorithm itself is executed by a dedicated processor that has the simulation algorithm 
hardwired into it. A typical system consists of anywhere from 4 to over a hundred of 
these processors and their associated memory. These systems are faster than worksta
tions because each processor can access all the needed data structures at the same 
time and operate on them simultaneously. Additional performance results from the 
parallel execution on multiple processors. 

The introduction of FPGAs in the 1980's made possible another kind of verification 
system: emulation. These systems partition the gate-level netlist into small chunks 
and map them onto FPGAs; they use additional FPGAs to provide interconnect rout
ing. These systems can execute many orders of magnitude faster than hardware accel
erators. Large circuits that run tens of cycles per second on software simulators might 
run hundreds or a few thousand of cycles per second on a hardware accelerator. These 
same circuits run at hundreds of thousands of cycles per second on emulation sys
tems. 

Emulation systems achieve their high performance because they are essentially build
ing a hardware prototype of the circuit in FPGAs. 

Emulation systems, however, have a number of shortcomings: 

• They operate on gate-level netlists. Synthesis is typically used to generate this 
netlist from the RTL. Any part of the circuit that is coded in non-synthesizable 
code, especially testbenches, must run on the host workstation. This considerably 
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slows emulation. A circuit with a substantial part executed on the workstation may 
run as much as two orders of magnitude slower than one with the entire circuit in 
the emulator. 

• The partitioning of the circuit among numerous FPGAs, and dealing with the asso
ciated routing problems, presents a real problem. Poor utilization and routing inef
ficiencies result in the need for very large numbers of FPGAs to emulate a 
reasonably sized chip. The resulting large systems are very expensive and have so 
many mechanical components (chips, boards, and cables) that they tend to experi
ence reliability problems. 

• The use of FPGAs tends to make controlling and observing individual nodes in the 
circuit difficult. 1Ypically, the circuit has to be (at least partially) recompiled to 
allow additional nodes to be traces. This makes debugging in the emulation envi
ronment difficult. 

The first problem remains an issue today, but important progress has been made on 
the second and third problems. New systems, such as those from Mentor Graphics 
(the Accelerated Verification System) and from QuickThrn have moved from a pure 
FPGA-based system to a custom chip/processor-based architecture. Where previous 
systems had arrays of FPGAs performing emulation, the new systems have arrays of 
special purpose processors. These processor-based systems usually use some form of 
time-slicing: the processor emulates some gates on one cycle, additional gates on the 
next cycle. Also, the interconnect between processors is time-sliced, so that a single 
physical wire can act as several virtual wires. This processor-based approach signifi
cantly improves the routing and density problems seen in earlier emulation systems. 

The processors used on these new systems also tend to have special capabilities for 
storing stimulus as well as traces of nodes during emulation. This capability helps 
make debug in the emulation environment much easier. 

These new systems hold much promise for addressing the problems of high-speed 
system verification. The success of these systems will depend on the capabilities of 
the software that goes with them: compilers, debuggers, and hardware/software 
cosimulation support. These systems will continue to compete against much less 
expensive approaches: simulation using higher levels of abstraction and rapid proto
typing. 

The rest of this chapter discusses emulation in more detail, using the Accelerated Ver
ification System from Mentor as an example. 
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11.7.1 Accelerated Verification Overview 

Figure 11-4 shows the major components of Mentor Graphics' Accelerated Verifica
tion System process. The components are: 

Models 
RTI.. blocks and soft IP are synthesized and mapped onto the emulation system 
hardware. Memory blocks are compiled and emulated on dedicated memory 
emulation hardware. 

Physical environment 
Hard macros (IP cores) that have bonded-out chips, can be mounted on special 
board and interfaced directly to the rest of the emulation system. Similarly, 
hardware testbenches, such as signal generators, can be connected directly to 
the emulation system. 

In-circuit verification 
The emulation system can be interfaced directly to a board or system to pro
vide in-circuit emulation. Thus, an application board can be developed and 
debugged using an emulation model of the chip. 

System environment 
A software debug environment (XRay debugger) and a hardware/software co
simulation environment (Seamless eVE) provide the software support neces
sary for running and debugging real system software on the design. 

Testbenches 
Behavioral RTI.. testbenches can be run on the host and communicate with the 
emulation system. Note that running any significant amount of code on the 
host will slow down emulation considerably. 

Stimulus 
Synthesizable testbenches can be mapped directly onto the emulation system 
and run at full emulation speeds. Test vectors can be stored on special memo
ries in the emulation system, so that they too can be run at full speed. 

These components combine to provide all the capabilities that designers need to ver
ify large SOC designs including: 

• RTI.. acceleration 
• Software-driven verification at all levels in the design cycle 

• In-circuit verification to ensure the design works in context of the system 

• Intellectual property support 
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Figure 11-4 Mentor Graphics Accelerated Verification System process 

11.7.2 RTL Acceleration 

247 

Designers continue to use software simulators like ModelSim, VSS, or Verilog-XL to 
debug their designs, but a threshold is reached where simulator performance becomes 
a major bottleneck for functional verification at the RTL level, especially for large 
SoC designs. This threshold will vary based on the design team and the verification 
environment. As the RTL functional simulations reach duration of more than 6-8 
hours, it will become more efficient to compile the design and run it in an emulator. 
As an example, an RTL design that may only take several minutes to compile on a 
simulator, but runs for eight hours, may compile in 30 minutes on the emulator and 
run in a matter of seconds. 

Thus, at some point in the design cycle, system simulation and debug may be more 
appropriately done on the emulator than on the simulator. For this debug strategy to 
be effective, however, we need an RTL symbolic debug environment that provides 
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users with complete design visibility, real time variable access, and support for enu
merated types and state variable assignments. 

11.7.3 Software Driven Verification 

As the software content in SoC designs increases and design cycles shrink, hard
ware/software co-development and software-driven verification become increasingly 
important. Software-driven verification plays two key roles in an SoC verification 
strategy: 

• Verification of the hardware using real software 

• Verification of the software using (an emulation model of) real hardware, well 
before the actual chip is built 

Traditionally, using the software to verify the hardware has been confined to very late 
in the design cycle using breadboards, or early prototype runs of silicon. With reus
able hardware and software blocks, it is possible to assemble an initial version of the 
R1L and system software very quickly. With the new emulation systems, it is possible 
to test this software on an emulation model of the hardware running at near-real-time 
speeds. Incremental improvements to both the hardware and software can then be 
made and tested, robustly and quickly. 

In particular, the high performance of emulation systems allows the design team to: 

• Develop and debug the low-level hardware device drivers on the virtual prototype 
with hardware execution speeds that can approach near real-time 

• Boot the operating system, initialize the printer driver, or place a phone call at the 
R1L phase of the design cycle 

11.7.4 Traditional In-Circuit Verification 

As the design team reaches the end of the design cycle, the last few bugs tend to be 
the most challenging to find. In-circuit testing of the design can be key tool at this 
stage of verification because the ultimate verification testbench is the real working 
system. One large manufacturer of routers routinely runs its next design for weeks on 
its actual network, allowing the router to deal with real traffic, with all of the asyn
chronous events that are impossible to model accurately. 

In the case of systems that operate with the real asynchronous world, with random 
events that might occur only on a daily or weekly basis, complete information capture 
is essential. The emulation system provides a built-in logic analyzer that records 
every signal in the design during every emulation run, using a powerful triggering 
mechanism. This debug environment allows designers to identify and correct prob
lems without having to repeat multiple emulation runs. 
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11.7.5 Support for Intellectual Property 

Mentor Graphics Accelerated Verification System offers very secure encryption 
mechanisms and advanced macro compile capabilities that allow IP developers to 
have complete control over what parts of the IP modules are visible to the end user. 

11.7.6 Design Guidelines for Accelerated Verification 

Most of the guidelines for Accelerated Verification are identical to guidelines for 
design reuse listed in Chapter 5. These include: 

Guideline - Use a simple clocking scheme, with as few clock domains as possible. 
Emulation works best with a fully synchronous, single-clock design. 

Guideline - Use registers (flip-flops), not latches. 

Guideline - Do not use combinational feedback loops, such as a set-reset latch in 
cross-coupled gates. 

Guideline - Do not instantiate gates, pass transistors, delay lines, pulse generators, 
or any element that depends on absolute timing. 

Guideline - Avoid multi-cycle paths. 

Guideline - Avoid asynchronous memory. Use the modeling techniques described 
in Chapter 5 to model the asynchronous memory as a synchronous memory. 

The following guidelines are requirements specific to emulation: 

Guideline - Hierarchical, modular designs are generally easier to map to the emula
tion hardware than flat designs. The modularity helps reduce routing between proces
sors. 

Guideline - Large register arrays should be modeled as memories, to take advantage 
of the special memory modeling hardware in the emulation system. 

11.7.7 Testbenches for Emulation 
To realize the benefits of emulation, virtually all of the circuit and testbench for the 
design must run on the emulator. This means that the testbench should be synthesiz
able. 
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One approach would be to make the testbench synthesizable from the beginning, and 
to use the same testbench for both RTL verification and for emulation. We believe that 
this approach is flawed. 

The behavioral testbenches that can be created with current testbench automation 
tools are significantly more powerful than any synthesizable testbench. The capabili
ties for stimulus creation and automated response checking are essential for RTL test 
and debug, and cannot easily be replicated in the synthesizable subset of HDLs. 

Instead, we recommend that a new, synthesizable, and relatively simple testbench be 
used for emulation. Once a bug is found, the circuit (and its current state) can be 
moved back to RTL simulation for debug. 

If we take our canonical design, the following approach seems reasonable. In 
Figure 11-5, the software for the processor is compiled and loaded into memory in the 
emulator. This allows the processor and peripherals to run at full emulation speed. 

The stimulus for the data transformation block is also loaded into memory on the 
emulator. In this case, since it is an MPEG2 decoder, we can store a bit stream that 
represents encoded video data. A simple state machine (marked "SM") transfers data 
from the stimulus memory to the 110 interface. Similarly, the serial data from the out
put of the MPEG2 decoder is sent to a response capture memory in the emulator. 
Another simple state machine handles the handshake for the data transfer. 

Although this approach requires a second testbench to be built, including two state 
machines, this is significantly less incremental effort than requiring the RTL testbench 
to be synthesizable. 
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CHAPTER 12 Data and Project 
Management 

This chapter discusses tools and methodologies for managing the design database for 
macro design and for system design. The topics are: 

• Data management 
• Project management 

12.1 Data Management 

Data management issues include revision control, bug tracking, regression testing, 
managing multiple sites, and archiving the design project. 

12.1.1 Revision Control Systems 

A strong revision control system is essential for any design project. A good revision 
control system allows the design team to: 

• Keep all source code (including scripts and documentation) in one centralized 
repository that is regularly backed up and archived 

• Keep all previous versions of each file 

• Identify, quickly, changes between different revisions of files 

• Take a snapshot of the current state of the design and label it 

M. Keating et al. (eds.), Reuse Methodology Manual
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RCS, SCCS, and Clearcase are examples of tools with which revision control systems 
can be built. Additional scripts and processes are typically used to create a complete 
revision control system. 

The most common paradigm is for each designer to be able to check out the entire 
design structure and recreate it locally, either by copying files or creating pointers to 
them. The designer then works and tests locally before checking the design files back 
into the central repository. 

There are two different models for controlling this check-in process: the always-bro
ken and always-working models. 

The Always-Broken Model 

In the always-broken model, each designer works and tests locally and then all the 
designers check in their work at the same time. The team then runs regression tests on 
the whole design, fixing bugs as they appear. 

There are two problems with this model. First, when regressions tests fail, it is not 
clear whose code broke the design. If there are complex inter-dependencies between 
the modules, debugging regression failures can be difficult and time consuming. 

The second problem with this model is that there tends to be a long integration period 
during which the design is essentially broken. No new design work can be done dur
ing this integration and debug phase because designers cannot check out a known
working copy of latest version of the design. 

The Always-Working Model 

The always-working model overcomes the major problems presented by the always
broken model. For the initial integration of the design, when separate modules are 
first tested together, the always-working model is the same as the always-broken 
model. Everyone checks in the initial version of the blocks and a significant debug 
effort ensues. In some designs, it may be possible to integrate a subset of the whole 
design, and then add additional blocks once the first subset is working. This approach 
greatly reduces the debug effort. 

Once an initial baseline for the design is established, the always-working model uses 
the following check-in discipline: 

• Only one designer can have a given block checked out for editing. 

• When a block is being checked in, the entire central repository is locked, blocking 
other designers from checking modules in. 
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• The designer then runs a full regression test with the existing design plus the mod
ified block. 

• Once the regression tests pass, the designer checks in the block and removes the 
lock. 

This model ensures that the entire design in the central repository always passes 
regression testing; that is, it is always working. It also greatly reduces the debug effort 
because only one new module at a time is tested. 

We recommend the always-working model of revision control. 

12.1.2 Bug Tracking 

An effective bug tracking system is essential for rapid design of complex blocks and 
systems. A central database that collectS all known bugs and desired enhancements 
lets the whole team know the state of the design and prevents designers from debug
ging known problems multiple times. It also ensures that known problems are not for
gotten, and that any design that is shipped with known bugs can include 
documentation for the bugs. 

Another key use for bug tracking is bug rate tracking. In most projects, the bug rate 
follows a well-defined curve, reaching a peak value early in the integration phase and 
then declining as testing becomes more robust. The current bug rate and the position 
on this curve help define the most effective testing and debug strategy for any phase of 
the project, and help determine when the chip is ready to tape out. 

Formal bug tracking usually begins when integration begins; that is, as soon as the 
work of two or more designers is combined into a larger block. For a single engineer 
working on a single design, informal bug tracking is usually more effective. However, 
some form of bug tracking is required at all stages of design. 

12.1.3 Regression Testing 

Automated regression testing provides a mechanism for quickly verifying whether 
changes to the design have broken a previously-working feature. A good regression 
testing system automates the addition of new tests, report generation, and distribution 
of simulation over multiple workstations. It should also highlight differences in out
put files between passing and failing tests, to help direct debug efforts. 
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12.1.4 Managing Multiple Sites 

Many large projects involve design teams located at multiple sites, sometimes scat
tered across the globe. Effective data management across these sites can facilitate 
cooperation between the teams. 

Multiple site data management starts with a high-speed link between sites; this is 
essential for sharing data. The revision control central repository must be available to 
all sites, as well as bug tracking information. Regression test reports must be available 
to all sites. 

The key to managing a multi-site project is effective communication between the 
individual engineers working on the project. Email, voicemail, and telephones have 
been the traditional tools for this. Technology is now readily available for desktop 
video conferencing with shared displays and virtual whiteboards. All of these tech
niques are needed to provide close links between team members. 

One management technique that helps make these technology-based solutions more 
effective is to get the entire team in one place for an initial planning and teambuilding 
session. Once team members get to know the people at other sites, the daily electronic 
communication becomes much more effective. 

12.1.5 Archiving 

At the end of any design project, it is necessary to archive the entire design database, 
so that it can be re-created in the future, either for bug fixes or for enhancements to the 
product. All aspects of the design must be archived in one central place: documenta
tion, source code, all scripts, testbenches, and test suites. All the tools used in the 
design must also be archived in the revision control system used for the design. If 
these tools are used for multiple projects, obviously one copy is enough, and the tool 
archives can be kept separate from the design archive. 

The above observation may seem obvious, but let me interject a personal note. Several 
years ago, I was hired to do the next generation design of an existing large system. 
The first thing I did was to try to find the people who had worked on the previous gen
eration design and to find the design archive. 

Well, the designers had all moved on to other companies. The system architect was 
still with the company but busy with another project, and he wasn't all that familiar 
with the detailed design anyway. The design files were scattered across a wide variety 
of machines, some of which were obsolete machines cobbled together from spare 
parts and whose disks were not backed up! Worse than that, I found several copies of 
the design tree, with inconsistent data. It was impossible to collect even a majority of 
design files and know with confidence that they were the latest versions. 
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In the middle of the previous design effort, the team had changed silicon vendors and 
tools. The HDL for the design was almost accurate, but some (unspecified) changes 
were made directly to the netlist. This scenario is the manager's nightmare. It took 
months to recover the design archive to the point where the new design effort could 
begin; in fact, close to half the design effort consisted of recreating the knowledge and 
data that should have been archived at the end of the design. 

12.2 Project Management 

There are many excellent books on project management [1,2,3], and we will not 
attempt to cover the subject in any depth. However, there are a several issues that are 
worth addressing. 

12.2.1 Development Process 

An ISO 9000-1ike development process, where processes are documented and repeat
able, can help considerably in producing consistently high-quality, reusable designs. 
Such a process should specify: 

• The product development lifecycle, outlining the specific phases of the design pro
cess and the criteria for transitioning from one phase to another 

• What design reviews are required at the different stages of the design, and how the 
design reviews will be conducted 

• What the sign-off process is to complete the design 

• What metrics are to be tracked to determine the completeness and robustness 

1\vo key documents are used to communicate with the rest of the community during 
the course of macro design. These documents are the project plan and the functional 
specification. These are both living documents that undergo constant modification 
during the project. 

12.2.2 Functional Specification 

A key characteristic of a reusable design is a pedigree of documentation that enables 
subsequent users to effectively use it. The requirements for a functional specification 
are outlined in Chapter 4. This specification forms the basis for this pedigree of docu
mentation, and includes: 

• Block diagrams 

• Functional specification 

• Description of parameters and their use 
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• Interface signal descriptions 

• Tuning diagrams and requirements 

• Verification strategy 

• Synthesis constraints 

In addition to the above basic functional information, it is quite useful to keep the 
functional specification as a living document, which is updated by each user through
out its life. For each use of the block, the following information would be invaluable 
to subsequent generations of users: 

• Project it was used on 

• Personnel on the project 

• Verification reports (what was tested) 

• Technology used 

• Actual timing and area results 

• Revision history for any modifications 

12.2.3 Project Plan 

The project plan describes the project from a management perspective and documents 
the goals, schedule, cost, and core team for the project. Table 12-1 describes the con
tents of a typical project plan. 

Part 

Goals 

Schedule 

Cost 

Core Team 

Table 12-1 Contents of a project plan 

Function 

Describes the business reasons for developing the macro and its 
key features and benefits, including the technical goals that will 
determine the success or failure of the project. 

Describes the development timeline, including external depen
dencies and risks. The schedule should contain sufficient contin
gency time to recover from unforeseen delays, and this 
contingency should be listed explicitly. 

Describes the financial resources required to complete the 
project: headcount, tools, NREs, prototype build costs. 

Describes the human resources required to complete the project: 
who will be on the team, who will be the team leader. 
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CHAPTER 13 Implementing a Reuse 
Process 

This chapter addresses requirements for establishing reuse processes within a com
pany. These requirements include tools, process inventories, macro libraries, and pilot 
projects. Topics in this chapter include: 

• Key steps in implementing a reuse process 

• Managing the transition to reuse 

• Organization issues 

• Dealing with legacy designs 

13.1 Key Steps in Implementing a Reuse Process 

The following activities are key steps in implementing a design reuse process: 

1. Develop a reuse plan. 

The first step in developing a reuse process is to develop a plan for establishing a 
reuse process. In particular, it is useful to determine the resources required to 
establish such a process. 

2. Implement reuse training. 

Successful implementation of design reuse requires that design for reuse be an 
integral part of technical and management training within the company. 

M. Keating et al. (eds.), Reuse Methodology Manual
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3. Inventory tools and processes. 

The next step in developing a design reuse process is to assess the design tools and 
methodologies already in place. A robust high-level design methodology that uses 
up-to-date synthesis and simulation tools is a prerequisite for developing a reuse 
methodology. Good project management practices and documented processes as 
outlined in the previous chapter are also required. 

4. Build up libraries. 

Design reuse can begin with small designs. Build or purchase libraries of rela
tively simple components and use them in current design projects. Track the effec
tiveness of using these components and examine any problems that arise from 
their use. 

5. Develop pilot projects. 

Develop pilot projects both for developing reusable designs and for reusing exist
ing designs. This could involve existing internally-developed designs or a macro 
purchased from a third party. 

These pilot projects are the best way to start assessing the challenges and opportu
nities in design reuse. It is essential to track and measure the success of design 
reuse in terms of the additional cost of developing reusable designs and the sav
ings involved in reusing existing designs. 

6. Develop a reuse attitude. 
Design reuse is a new paradigm in design methodology. It requires additional 
investment in block development and produces significant savings in subsequent 
reuse of the block in multiple designs. This paradigm shift requires a change in 
attitude on the part of designers and management. Shortcuts in the name of "time
to-market" are no longer acceptable; the long-term cost to the organization is sim
ply too high. 

Design reuse is the single most important issue in SoC designs. Unless they con
sist almost entirely of memory. million-gate designs cannot be designed from 
scratch and hope to make their time-to-market and quality requirements. Reuse of 
previously designed and verified blocks is the only way to build robust million
gate chips in a reasonable amount of time. 

The most important step in developing a design reuse process is to convince the 
management and engineering team to adopt the reuse attitude: that the investment 
in design reuse is the key to taking advantage of the remarkable silicon technology 
currently available. 

The following sections describe these steps in more detail. 
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13.2 Managing the Transition to Reuse 

Managing the transition to reuse-based design involves identifying the technical and 
organizational barriers to reuse and taking incremental steps to effect the required 
changes. 

13.2.1 Barriers to Reuse 

Many engineering managers are very reluctant to make the investment required for 
effective, systematic reuse. Design for reuse is expensive. Our best estimate is that it 
takes 2-3 times the effort to develop a block for reuse than it does to design the same 
block for a single use. No rational manager is going to delay a critical chip project in 
order to make some blocks reusable on future designs. 

On the other hand, the benefit of design reuse is large. Our best estimate is that inte
grating a reusable block into a chip design is 10 to 100 times less effort than designing 
the block from scratch. But this benefit is only realized after the investment in design 
for reuse has been made. 

In addition, transitioning a whole organization to reuse-based design requires a signif
icant investment in retooling design teams, organizational structures, and manage
ment practices. So transitioning to design reuse is a non-trivial problem. The 
argument for reuse-based design is compelling: we simply won't be able to build 
tomorrow's chips without it. But there is an investment required, both in time and in 
engineering resources. The benefit is large, but delayed. This is why the books on 
software reuse all say that reuse is not a technical problem, but a management and 
cultural one. 

Most experts agree that process change, to be effective, must be incremental. To tran
sition to a reuse paradigm, we must find the incremental steps that are gradual enough 
to ensure success. But the adoption must be rapid enough to allow design productivity 
to keep pace with Moore's Law. The intent of the next few sections is to give some 
insight into this very difficult problem. 

13.2.2 Key Elements in Reuse-Based Design 

There are four key elements to a reuse-based SoC design methodology: 

• Design for Reuse - The methodology, tools, and services to enable the creation 
of reusable designs, as well as the ability to import third-party IP effectively. 

• IP Repository - The central library of reusable IP and the tools, infrastructure, 
and services to support it. 
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• SoC Design - The tools and methodology required to develop large chips incor
porating reusable IP. 

• Reuse Support Structure - The organizational structure, incentives, people, 
management and cultural norms required to make reuse-based design work effec
tively. 

Design for Reuse 

The design for reuse methodology is the cornerstone for a reuse-based chip design 
methodology. The design practices described in this book can form the basis for this 
methodology, but many of the detailed processes need to be customized to the partic
ular design environment. The fundamental goal of this methodology is to ensure that 
the IP in the repository is easy to integrate into chip designs. 

The reuse methodology must be supported by the appropriate tools. In addition to the 
usual design tools such as simulators, synthesis tools, and so on, there need to be tools 
to facilitate reuse and check for compliance to the standards defined in the methodol
ogy. Tools such as a methodology-specific version of linting tools, code coverage 
tools, and automated checklists are some examples of reuse support tools. 

These tools and processes are also useful in qualifying third-party IP. Third-party IP 
providers are a key source of standards-based IP, but it is essential to validate the 
quality of this IP before using it in chip design projects. 

In addition to the methodologies and tools, many organizations are looking at provid
ing reuse services to design teams. Experts in the methodology can be assigned to 
development teams to help them develop reusable designs. These experts can also 
provide training in design-for-reuse to the development engineers. 

Repository of Reusable IP 

The second key element in a reuse-based design environment is the IP itself: the col
lection of high-value, easily-integrated IP stored in an assessable repository. The 
design-for-reuse methodology exists primarily to provide a source of high-quality IP 
for the repository. 

A set of infrastructure tools provide engineers with access to the IP in the repository, 
enabling them to browse the contents of the library, view datasheets and specifica
tions, download the appropriate models, and report back any problems with the IP. 

Associated with the IP repository is a set of services for acquiring IP and ensuring the 
quality of IP. This would include dealing with third-party IP providers and qualifying 
their IP before adding it to the repository. Legacy IP services provide the expertise 
and bandwidth to take existing, internally developed blocks and make them reusable. 
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SoC with Reuse 

The whole purpose for both the design-for-reuse processes and the repository is to 
facilitate the development of large chips. Thus, there must be an SoC development 
process that can make effective use of the IP in the repository. This process must 
allow rapid integration of soft and hard IP. Among other things, the design team must 
have access to high-quality cell libraries (for synthesizing the soft IP), and use physi
cal design rules that are consistent with those of the hard IP being integrated. 

Realistically, though, no chip design methodology can compensate for poor IP. Well
designed IP is a cornerstone of reuse, and well-designed IP can be easily integrated 
into almost any modem flow. Poor IP - IP with functional bugs, or missing key 
deliverables - is always a struggle to integrate into a chip design. 

Reuse Support Structure 

Finally, the company must have the processes, people, infrastructure, organization, 
management, and passion for qUality required to make a reuse-based methodology 
successful. 

Above all else, the engineers, their managers, and senior management must, as a 
team, agree that the benefits of a reuse-based chip design methodology justify the 
cost. The key benefit of reuse is increased productivity, leading to faster time-to-mar
ket. But design reuse always requires some tradeoff in terms of dies size and/or per
formance. You can always make a specific block for a specific application smaller and 
faster than the same function that has been make reusable, and applicable to many dif
ferent designs. Teams that are used to handcrafting transistors to get the last picosec
ond or the last square millimeter out of the design will have to make some tough 
decisions, and potentially go through a tough cultural transition. 

13.2.3 Key Steps 

A basic plan for implementing a reuse-based chip design methodology consists of the 
following steps: 

1. Develop the basic reuse methodology, at least among a specific design team. 

2. Demonstrate the effectiveness of the methodology in improving designer pro
ductivity. 

3. Proliferate the methodology throughout the organization. 

4. Refine the methodology by continually measuring its effectiveness and making 
improvements. 
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In practice, this process consists of the following activities: 

• Assessment and planning 

• Training 

• Buying/developing new tools 

• Implementing a set of pilot projects 

• Building the repository 

• Proliferation of the methodology 

Assessment and Planning 

The goal of the assessment and planning is to determine what modifications are 
required to the existing development methodology and to the organizational structure 
to support a reuse methodology. This requires a clear assessment of current methodol
ogies and organizational structure, and an initial vision of the required methodology 
and structure. The team can then plan how to implement the required modifications 
and measure their effectiveness. 

The assessment and planning process should also extend to the final products being 
designed. Product line planning - planning what related designs will be developed, 
and how successive designs can leverage IP from previous designs - is one of the 
keys to successful reuse. This planning can help determine which IF will be added to 
the repository in what order, and from what internal or third-party sources. 

Some of the issues that must be examined as part of this assessment and planning pro
cess include: 

• Engineering practices - Are designed teams making effective use of R1L-based 
design methodologies and tools? What design reuse is currently practiced, includ
ing ad-hoc reuse and incorporation of third-party IP? 

• Project management practices - Are project management processes documented, 
followed, and measured? 

• Cultural issues - Will "not invented here" factors adversely affect a transition to 
reuse-based design? Which design groups are most supportive of reuse, and how 
can their support be leveraged to accelerate adoption of reuse practices? 

• Product line assessment - Can the current and future product lines be designed to 
achieve high amounts of reuse? 
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Planning the Reuse Project 

As a result of the assessment project, the overall design reuse project plan can be 
refined and updated. Based on the assessment, a detailed plan should be developed to 
address the following issues, as required: 

• How to bring all teams to state-of-the-art RTL design 

• Organizational changes required to support reuse and how to staff 

• Documenting the reuse methodology 

• Defining the tools needed to support the methodology 

• Sequence of pilot projects and target IP for demonstrating reuse 

• Plan for proliferating reuse and integrating it into a product line plan 

Training 

In many organizations, on-going technical training is viewed as essential to keeping 
engineers up-to-date on design tools and methodologies, as well as on domain-spe
cific design issues. For other groups, investment in training is not a standard practice. 
Often these groups are found during the assessment phase to be somewhat lagging the 
current state-of-the-art design techniques and methodologies. 

As a result of the assessment phase, the assessment team may identify either specific 
design teams or specific subject areas where training is required to get the engineering 
team(s) up to the appropriate level of high-level design. Since design reuse is built 
upon high-level design practices, this is the first level of training that must be done as 
part of implementing a reuse-based design methodology. 

In addition, the assessment team should identify the engineering teams that will par
ticipate in the reuse pilot projects. These engineers should receive specific reuse 
methodology training before participating in the pilot projects. The goal of this train
ing is to establish a baseline of engineering practices required to execute the projects. 

During the proliferation phase of the reuse initiative, training will once again become 
important. The pilot projects are key to demonstrating the value of reuse. In the same 
way, training in reuse methodology, along with actual practice in designing for reuse 
and use of tools that verify compliance with reuse standards, is key to establishing 
effective design-for-reuse practices throughout the organization. 

As reuse practices proliferate through the organization, and the organizations move 
on to the refinement stage, continual training is key to reinforcing reuse practices and 
communicating the latest techniques and tools to the practicing engineers. 
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Tools 

Design reuse is fundamentally a methodology issue; that is, it is an approach to 
improving design practices using, predominantly, the existing tool set. There are, 
however, some reuse-specific tools that can greatly facilitate reuse. 

First, some comments on existing design tools are in order. Today, chip designers 
really need to be proficient in architectural tools (C++, COSSAP, SPW, and the like), 
simulation, synthesis, datapath tools, behavioral synthesis, static timing verification, 
formal verification, power analysis, test insertion and ATPG, and many more tools. 
There are significant advantages to having a single engineering team able to deal with 
all these tools; the team can only make well-informed design decisions if the informa
tion from all these tools is well understood. But it is virtually impossible for an engi
neer to be really expert in all these tools. For this reason, developing an infrastructure 
for automating the use of these tools is one element in developing a state-of-the-art 
reuse methodology. 

That said, there are some additional tools that can greatly facilitate reuse. These 
include: 

• Infrastructure tools - Effective tools for data and project management are key 
for establishing the kind of design discipline required to produce genuinely reus
able designs. These tools include revision control and bug tracking, as well as 
automated checklists and statistic-gathering tools. An effective repository man
agement system that supports easy access to the library of IP also is key to sup
porting design reuse. 

• Reuse-specific tools - There are several reuse-specific tools either available 
now or in development that could help support reuse-based design methodologies. 
A lint-like tool to enforce reuse coding guidelines is particularly useful. Even with 
the best intentions, human error will generate inadvertent violations if they are not 
automatically checked. In addition, tools are needed to help automate the packag
ing and delivery of IP, in order to eliminate the need for users to modify code or 
scripts to adapt the IP to their specific applications. Synopsys' coreConsultant and 
Altera's IP Wizard demonstrate the advantages of such tools. 

Pilot Projects 

The most important element in establishing a reuse-based methodology is the execu
tion of a set of pilot projects for developing and demonstrating the reuse methodology 
and its benefits. A pilot project involves developing a block of reusable IP and using it 
in a chip design. There two general types of reusable IP development: 

• Redesign for Reuse projects involve taking the most valuable existing IP and 
making it reusable. Because of the additional cost of designing for reuse, it is 
important to take high value IP that can be used in many applications and design 
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projects. Such a project will show immediate benefits to the company by reducing 
chip development costs on many different projects. Redesigning an existing piece 
of IP also highlights the differences between current design practices and the 
requirements of design for reuse. 

• Design for Reuse projects involve identifying high-value IP that is needed for 
several future projects, but which has not yet been designed. These projects allow 
the team to develop IP with reuse in mind, rather than re-engineering reuse into 
existing IP. These projects also allow the team to quantify the cost of design for 
reuse vs. redesign for reuse. 

Both redesign for reuse and design for reuse projects should include follow-up 
projects where the IP is used in a chip design. These follow-up projects are key for 
understanding the advantages and problems that result from doing design with reuse, 
and help refine the design-for-reuse methodology before it is proliferated through the 
organization. 

Chip design with reuse involves taking IP developed during the design-for-reuse or 
redesign-for-reuse pilot projects and using them to implement a chip design. This 
chip pilot project is the key definition of success of the overall pilot projects. The 
goals of the project are to: 

• Measure the productivity and quality gain achieved through reuse 

• Demonstrate the value of reuse in developing chips quickly 

• Refine the chip design process employing reuse 

• Determine additional tools or processes necessary to improve the design-for-reuse 
process 

• Determine additional tools or processes necessary to improve the process of 
designing chips with reusable blocks. 

At the end of this pilot project, the team will have demonstrated the effort required for 
design for reuse and the value of reuse in accelerating chip design projects. The team 
will have the data to support its conclusions, and a well-defined, reuse-based method
ology for designing blocks and chips. 

Building the repository 

The next step in implementing a reuse-based design methodology is to add IP to the 
repository. The value of reuse only becomes compelling when the IP repository con
tains a significant collection of valuable, reusable blocks. 

The first blocks to be added to the repository are typically high-value, domain inde
pendent parts such as processors (including DSP) and their peripherals. These can be 
followed by lower-value, standards-based parts such as PCI, USB, and other inter
faces. 
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Domain independent parts are likely to be used the most broadly, and in the most chip 
design projects, and so can most readily justify the cost of design for reuse. Many of 
the standards-based IP can be obtained from third-party IP providers, and thus can be 
added to the repository fairly easily. However, it should be noted that the quality of 
third party IP does vary, and care should be taken to select IP that meets the standards 
of quality and reusability established by the repository management team. 

Once a reasonable set of domain-independent parts have been added, it makes sense 
to add the most valuable domain-specific IP to the repository. These could include 
multimedia blocks like MPEG, or data communication blocks like ATM or Ethernet. 

Proliferation 

Once chip design teams become aware that there are useful IP blocks in the reposi
tory, proliferation of reuse throughout the organization can take place. Additional 
training in design for reuse and chip design with reuse can help design teams acquire 
the skills to support and use this methodology. Additional resources and engineers 
with reuse-specific skills may still be required to help chip design teams take the 
blocks they develop and turn them into reusable designs. 

There are several problems that are likely to appear as a reuse methodology is prolif
erated through a large organization. Some of these are technical. In particular, it is 
important to have a consist design, verification, and integration flows between the dif
ferent design teams. This consistent set of flows greatly facilitates the exchange of IP 
between groups. 

However, the really major issues in proliferating reuse are organizational. We address 
these in the next section. 

13.3 Organizational Issues in Reuse 

If we look at the reuse initiatives at different companies, we find that there are three 
models being used for managing reuse and the development of IP: 

• As-Is reuse - Blocks are designed as part of chip-development projects; that is, 
they are designed for a single use. Once the chip project is concluded, the major 
blocks are put into the IP repository as-is. Users are on their own in terms of inte
grating these blocks into future designs. A central CAD group manages the repos
itory, but does not provide technical support for the IP. 
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• Rework-based reuse - Again, blocks are designed as part of chip-development 
projects. Once the chip project is concluded, the major blocks are given to a sepa
rate team that re-engineers them to make them reusable. This separate reuse team 
provides technical support for the IP, and is usually part of the CAD team that 
manages the IP repository. 

• IP-based reuse - Here, key IP is developed explicitly for reuse by a dedicated 
engineering team. This team is usually part of a product business unit, and not 
connected to central CAD. The support arm of the business unit provides technical 
support to users. 

All of these models have advantages and disadvantages, although all share a common 
and serious problems. 

The advantage of as-is reuse, is that it has no engineering overhead. No additional 
engineering cost is required to make the design available to other groups. Teams that 
use this approach take the position that "users are going to have to modify the design 
anyway, so why bother with all this design-for-reuse stuff." 

The problem with this approach is that it achieves very little productivity gain. Data 
from software reuse [1] and preliminary data from hardware reuse indicate that reuse 
where you have to modify the design provides only a 2-3x improvement over no 
reuse at all. On the other hand, the same data suggests that reuse without modification 
can achieve gains of greater than lOx. 

The advantage of rework-based reuse is that it produces fully reusable designs, and 
the incremental time and effort are done after the chip design is complete. Thus, it 
does not slow down chip development. 

The problems with this approach is that, for some blocks, this rework may be as great 
an effort, or even greater, than designing the block from scratch for reuse. If the block 
was not architected for reuse, if future users will need features not provided, or if the 
design and coding is not reuse-friendly, then substantial work may be required. And 
since the rework is not done by the original designer, additional effort is required just 
to understand the original design. 

The advantage of IP-based reuse is that the design is done once, it is designed for 
reuse from the beginning, and it can consistently produce the most reusable designs. 

The disadvantage of this approach is that the IP is not developed by an actual user, so 
the design may not meet the needs of the SoC teams that integrate the block into chip 
designs. The IP may be elegant, but too late to meet critical market windows. 
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13.3.1 A Combined Solution 

A combination of the above approaches makes the most sense. For blocks that are 
unlikely to be reused more than once or twice, as-is reuse is the most economically 
sound approach. The block should be designed and coded to be compliant with the 
reuse guidelines, and should have a reasonable specification and testbench. These 
efforts will not slow down the block design, and in many cases may accelerate it. But 
no reuse packaging is justified for so few projected reuses. 

For blocks that are likely to be reused many times, but which have relatively fixed 
architectures, rework-based design works well. Blocks that execute a well-defined 
function, and which will not require parameterization, are good candidates. The 
rework team can focus on packaging these blocks for reuse. 

For all other blocks, especially high-value blocks that will be used many times, the 
IP-based reuse approach is best. Processors and highly configurable I/O blocks like 
PCI and USB fall into this category. Explicitly designing for reuse will always pro
duce the most reusable designs, and the designs that will provide the greatest produc
tivity boost to chip design teams. 

13.3.2 A Common Problem 

The common and serious problem that all these approaches share is: who owns and 
supports the IP. Some case histories can help indicate the seriousness of this problem. 
(The following case histories are real examples; the names of the companies have 
been withheld for obvious reasons.) 

In one major semiconductor company, a design team is producing a next-generation 
chip. The previous generation used a number of hard macros from other divisions. 
These macros were provided only in hard form, but they all need to be ported to a new 
technology and modified for small changes in functionality. The other divisions are 
busy on their own next-generation chips, and have no interest in supporting our 
design team in modifying the blocks. No RTL or scripts are available to our team. So 
the team is forced to port the macros to the new process at the polygon level, and to 
make the functional modifications at the polygon level as well. Instead of achieving a 
lOx productivity improvement from reuse, they realize 2x at most. 

In another major semiconductor company, a team has developed a next-generation 
DSP intended for widespread use in many designs in many divisions of the company. 
Unfortunately, the team focused exclusively on making the fastest, lowest power DSP 
on the planet, and paid no attention to ease of use for the integrators. They shipped 
only a transistor netlist to the chip design teams - no simulation models, no instruc
tion set simulator, and no testbench or bus functional models. Software debug had to 
be performed with a switch-level simulation of the hardware! 
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These cases highlight the disasters that can happen if IP is not well supported and if IP 
developers are not sensitive and responsive to the needs of the IP integrators. The key 
to organizing for reuse success is to establish a structure that ensures a close and 
effectively link between IP developers and IP integrators within the company. 

13.3.3 A Reuse Economy 

Most companies work like small economies: managers and engineering teams have 
financial incentives to develop chips with specific features for a specific market win
dow. Today, these incentives actively discourage design for reuse; any additional 
effort spent making a block reusable is seen as an impediment to getting today's chip 
out as soon as possible. Similarly, many IP development teams are rewarded for the 
technical merits of the IP' in terms of speed and power, but not in terms of ease-of
integration. 

To foster reuse, the company must set up financial incentives that will motivate the 
design teams to design for reuse. If the design teams are expected to support the IP 
they develop, there must be strong financial (and other) rewards for doing so. In 
essence, a miniature economy must be set up, so that the design teams that benefit 
from reuse reward the groups that are developing reusable IP. Toshiba, for example, 
has announced plans to let divisions to allow its various divisions to buy and sell IP 
among themselves through an inter-departmental program [2]. This kind of financial 
model may well be a key to fostering reuse, and we expect it to be adopted in other 
large companies. 

Such an economy might look something like Figure 13-1. 
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Figure 13-1 A reuse economy 
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Chip design group A is developing an SOC design. It decides to use a microprocessor 
from an internal group. It pays (through some internal transfer of budgets) the Micro
processor Design Group for the IP. Group A expects in return a quality, easy to inte
grate design, and good technical support. IT Group A is not happy with the quality of 
IP or technical support it receives from the internal supplier, it is free to purchase a 
microprocessor from a third party IP provider. 

After an initial round of financing from the company, the Microprocessor Design 
Group receives its budget only from (happy) customers. IT internal customers consis
tently find the internal IP unacceptable, the internal IP development teams go out of 
business. These teams should now be very motivated to produce quality, easy to inte
grateIP. 

In our example, it turns out that Chip Design Group B has already developed some 
peripherals or other blocks that could be useful in Group Ns design. These blocks 
have been designed for reuse and are in Group B's local IP repository. Group A can 
again purchase the IP from Group B, helping Group B offset the cost of making the IP 
reusable. This added revenue also provides an incentive for Group B to make their 
local IP highly reusable. 

Such a reuse economy solves many of the problems existing today in promoting 
reuse. The customer-vendor relationship ensures that the link between developers and 
integrators of IP is close. This tight link is the key to ensuring the high quality, reus
able designs that can dramatically improve chip design productivity. 

13.3.4 Summary 

The preceding sections show the significant organization and technical changes 
required to implement a full reuse process. The investment required is also significant. 
This amount of change can be intimidating, and may discourage design teams from 
adopting reuse. However, there are many smaIl, incremental changes that engineering 
teams can make to start implementing reuse. For example, the following changes 
incur little cost, yet can yield dramatic benefits: 

• Register outputs to make timing problems local, not global. 

• Verify from the bottom up to make verification problems local, not global. 

• Plan before you do; good specifications allow design at the local level with confi
dence that it will integrate into the global design correctly. 

• Hold IP providers, internal and external, accountable for the quality and ease of 
use of their IP. 



Implementing a Reuse Process 275 

13.4 Redesign for Reuse: Dealing with Legacy Designs 

Another key issue that can impede the adoption of reuse is the difficulties in reusing 
existing, or legacy designs. Legacy designs - those designs we wish to reuse but 
were not designed for reuse - present major challenges to the design team. Often 
these designs are gate-level netlists with little or no documentation. The detailed 
approach to a specific design depends on the state of design. However, there are a few 
general guidelines that are useful. 

13.4.1 Recapturing Intent 

The most difficult part of dealing with a legacy design is recapturing the design intent. 
With a good functional specification and a good test suite, it is possible to fix, modify, 
or redesign a block relatively quickly. The specification and test suite fully define the 
intent of the design and give objective criteria for when the design is functioning cor
rectly. 

If the specification and test suite are not available, then the first step in reusing the 
design must be to recreate them. Otherwise, it is not possible to modify the design in 
any way, and some modification is nearly always required to port the design to a new 
process or to a new application. 

The problem with recreating the specification and test suite, of course, is that these 
activities represent well over half of the initial design effort. Almost none of the ben
efits of reuse are realized. 

Thus, if the specification and test suite exist and are of high quality, then reuse is easy, 
in the sense that even if a complete redesign is required, it will take a fraction of the 
time and cost of the original development. If the specification and test suite do not 
exist, then reuse of the design is essentially equivalent to a complete redesign. 

13.4.2 Using the Design As-Is 

In spite of the observations in the above section, some unfortunate design teams are 
required to try to reuse existing designs, usually in the form of netlists, for which doc
umentation and testbenches are mostly nonexistent. In such cases, most teams attempt 
to use the design as-is. That is, they attempt to port the design to a new process with
out changing the functionality of the circuit in any way. 

Formal verification is particularly useful in this scenario because it can prove whether 
or not modifications to the circuit affect behavior. Thus, synthesis can be used to 
remap and reoptimize the design for a new technology, and formal verification can be 
used to verify the correctness of the results. 
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13.4.3 Retiming 

For some designs, the above approach does not provide good enough results. In these 
cases, behavioral retiming may be an effective solution. Behavioral retiming can 
automatically change the pipelining structure of the design to solve timing problems. 
Again, formal methods are used to prove that the resulting functionality is correct. 

13.4.4 Tools for Using Legacy Designs 

A large investment was probably made in legacy designs that are still very valuable 
macros. For example, a design team might want to reuse a macro developed for 
QuickSim II. ModelSim-Pro allows the team to simulate a VHDL and/or Verilog 
design that contains instantiations of QuickSim II macros. 

If the design team wants to use a VHDL legacy design within a Verilog design (or 
vice versa), the ModelSim single-kernel architecture allows reuse of that macro 
within the context of the entire design. 

13.4.S Summary 

Re~sing legacy designs should definitely be the last aspect of design reuse imple
mented as part of establishing a design reuse methodology. Developing the processes 
for designing for reuse and for reusing well-designed blocks provides dramatically 
more benefit than att.empting to reuse designs that were not designed with reuse in 
mind. 
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Glossary 

Arcadia - An Synopsys tool for extracting parasitics (resistance and capacitance) 
from a physical chip design. Used for accurate timing analysis of the final physical 
design. 

ATPG - Automatic Test Pattern Generation. 

BFM - Bus Functional Model. 

BONeS - A Cadence tool for modeling and simulating network designs. 

81ST - Built-In Self Test; usually a local generator and signature analysis block for 
implementing on-chip test on a design block. 

COS SAP - A Synopsys system-level design tool featuring a stream-driven simula
tor. 

Escalade - A company offering a variety of reuse-oriented tools, including capabil
ities for checking compliance to coding and design guidelines. (See 
http://www.escalade.com) 

FSM - Finite State Machine. 

HDL - Hardware Description Language, principally Verilog and VHDL. 

ISA (ISS) - Instruction Set Architecture (Instruction Set Simulator); used inter
changeably for an instruction set executable model of a processor. 

LEDA - A French EDA company that provides Proton, a lint-like tool for checking 
compliance to design and coding guidelines. (See http://www.leda.fr) 
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MatLab - A mathematics package for numeric computation and visualization, from 
Math Works. Often used for algorithm development and signal processing design. 
(See http://www.mathworks.com!products/matlabl) 

NuThena Foresight - A system level modeling and simulation tool. (See 
http://www.nuthena.com) 

RTL - Register Transfer Level. 

SOL - Specification and Description Language; a language for high-level design, 
especially of communication systems. 

SOT - A tool implementing SOL. (See http://www.kvatro.no/telecom!sdtlsdt.htm) 

SoC - System-on-a-Chip. 

SPW - A Cadence system-level design tool, originally developed for signal process
ing algorithm capture and simulation. 

Steiner Route - In chip physical design, refers to a minimal or optimal route using 
orthogonal (vertical and horizontal) routing. 

Specman Elite - A testbench automation tool from Verisity, Ltd. 

SWIFT - Software Interface Technology, used by Synopsys modeling tools. 

Vera - A testbench automation tool from Synopsys. 

Verilint - A linting tool for checking Verilog code compliance to design and coding 
guidelines. (See http://www.interhdl.com!verilint.html) 

VFM - Verilog Foundry Model, a Synopsys tool. 

VHOLlint - A linting tool for checking VHDL code compliance to design and cod
ing guidelines. (See http://www.interhdl.com!vhdllint.html) 

VMC - Verilog Model Compiler, a Synopsys tool. 

VSIA - Virtual Socket Interface Alliance. (See http://www.vsi.org) 

VSPEC - An extension to VHDL to provide formal specification capabilities. (See 
http://www.ececs. uc.edul-kbse/projects/vspecl) 
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