
REUSE METHODOLOGY MANUAL

FOR SYSTEM-ON-A-CHIP DESIGNS

SECOND EDITION

REUSE METHODOLOGY MANUAL

FOR SYSTEM-ON-A-CHIP DESIGNS

SECOND EDITION

Trademark Information

Synopsys, COSSAP, and Logic Modeling are registered trademarks of Synopsys, Inc.

Cyclone, Formality, Floorplan Manager, Module Compiler, Power Compiler, SWIFT
Interface, Test Compiler, VSS Expert, and VSS Professional are trademarks of Syn
opsys, Inc.

Mentor Graphics is a registered trademark of Mentor Graphics Corporation.

DFTAdvisor, FastScan, FISPbus, FlexTest, QuickPower, QuickSim II, and Seamless
CVE are trademarks of Mentor Graphics Corporation.

All other trademarks are the exclusive property of their respective holders and should
be treated as such.

Trademark Information

Synopsys, COSSAP, and Logic Modeling are registered trademarks of Synopsys, Inc.

Cyclone, Formality, Floorplan Manager, Module Compiler, Power Compiler, SWIFT
Interface, Test Compiler, VSS Expert, and VSS Professional are trademarks of Syn
opsys, Inc.

Mentor Graphics is a registered trademark of Mentor Graphics Corporation.

DFTAdvisor, FastScan, FISPbus, FlexTest, QuickPower, QuickSim II, and Seamless
CVE are trademarks of Mentor Graphics Corporation.

All other trademarks are the exclusive property of their respective holders and should
be treated as such.

REU SE METHODOLOGY MANUAL

FOR SYSTEM-ON-A-CHIP DESIGNS

SECOND EDITION

by

Michael Keating
Synopsys, Inc.

Pierre Bricaud
Mentor Graphics Corporation

~ . . ,
SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-7289-9 ISBN 978-1-4615-5037-2 (eBook)
DOI 10.1007/978-1-4615-5037-2

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

Copyright ~ 1999 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1999
Softcover reprint of the hardcover 2nd edition 1999
AlI rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

Table of Contents

Foreword .. xv

Preface to the Second Edition ... xvii

Acknowledgements ... :xxi

1 Introduction .. 1
1.1 Goals of This Document. ... 2

1.1.1 Assumptions ... 3
1.1.2 Definitions .. 3
1.1.3 Virtual Socket Interface Alliance ... 4

1.2 Design for Reuse: The Challenge .. 4
1.2.1 Design for Use .. 5
1.2.2 Design for Reuse .. 5
1.2.3 Fundamental Problems ... 6

1.3 Design Reuse: A Business Model ... 7
1.3.1 Changing Roles in SoC Design .. 7
1.3.2 Retooling Skills for New Roles .. 7
1.3.3 Sources of IP for SoC Designs ... 8
1.3.4 Cost Models Drive Reuse ... 8
1.3.5 How Much Reuse and When .. 9

Table of Contents

Foreword .. xv

Preface to the Second Edition ... xvii

Acknowledgements ... :xxi

1 Introduction .. 1
1.1 Goals of This Document. ... 2

1.1.1 Assumptions ... 3
1.1.2 Definitions .. 3
1.1.3 Virtual Socket Interface Alliance ... 4

1.2 Design for Reuse: The Challenge .. 4
1.2.1 Design for Use .. 5
1.2.2 Design for Reuse .. 5
1.2.3 Fundamental Problems ... 6

1.3 Design Reuse: A Business Model ... 7
1.3.1 Changing Roles in SoC Design .. 7
1.3.2 Retooling Skills for New Roles .. 7
1.3.3 Sources of IP for SoC Designs ... 8
1.3.4 Cost Models Drive Reuse ... 8
1.3.5 How Much Reuse and When .. 9

vi Reuse Methodology Manual

2 The System-on-a-Chip Design Process ••.••.••••••••••••••••••••••••••••••••• 11

2.1 A Canonical SoC Design ... 11

2.2 System Design Flow .. 12
2.2.1 Waterfall vs. Spiral ... 13
2.2.2 Top-Down vs. Bottom-Up .. 15
2.2.3 Construct by Correction ... 17
2.2.4 Summary ... 17

2.3 The Specification Problem .. 18
2.3.1 Specification Requirements .. 19
2.3.2 Types of Specifications ... 19

2.4 The System Design Process ... 20

3 System-Level Design Issues: Rules and TooIs •••••••••••••••••••••••••••• 25

3.1 The Standard Model .. 25
3.1.1 Soft IP vs. Hard IP .. 27
3.1.2 The Role of Full Custom Design in Reuse 28

3.2 Design for TIming Closure: Logic Design Issues 29
3.2.1 Interfaces and Timing Closure .. 29
3.2.2 Synchronous vs. Asynchronous Design Style 33
3.2.3 Clocking ... 34
3.2.4 Reset ... 35
3.2.5 TIming Exceptions and Multicycle Paths 36

3.3 Design for Timing Closure: Physical Design Issues 36
3.3.1 Floorplanning ... 36
3.3.2 Synthesis Strategy and Timing Budgets ... 36
3.3.3 Hard Macros ... 37
3.3.4 Clock Distribution .. 37

3.4 Design for Verification: Verification Strategy ... 38

3.5 System Interconnect and On-Chip Buses .. 39
3.5.1 Basic Interface Issues ... 39
3.5.2 Tristate vs. Mux Buses ... 40
3.5.3 Reuse Issues and On-Chip Buses ... 41
3.5.4 IP-to-IP Interfaces ... 42
3.5.5 Design for Bring-Up and Debug: On-Chip Debug Structures 43

3.6 Design for Low Power ... 44
3.6.1 Lowering the Supply Voltage ... 44
3.6.2 Reducing Capacitance and Switching Activity 45
3.6.3 Sizing and Other Synthesis Techniques .. 48
3.6.4 Summary ... 48

vi Reuse Methodology Manual

2 The System-on-a-Chip Design Process ••.••.••••••••••••••••••••••••••••••••• 11

2.1 A Canonical SoC Design ... 11

2.2 System Design Flow .. 12
2.2.1 Waterfall vs. Spiral ... 13
2.2.2 Top-Down vs. Bottom-Up .. 15
2.2.3 Construct by Correction ... 17
2.2.4 Summary ... 17

2.3 The Specification Problem .. 18
2.3.1 Specification Requirements .. 19
2.3.2 Types of Specifications ... 19

2.4 The System Design Process ... 20

3 System-Level Design Issues: Rules and TooIs •••••••••••••••••••••••••••• 25

3.1 The Standard Model .. 25
3.1.1 Soft IP vs. Hard IP .. 27
3.1.2 The Role of Full Custom Design in Reuse 28

3.2 Design for TIming Closure: Logic Design Issues 29
3.2.1 Interfaces and Timing Closure .. 29
3.2.2 Synchronous vs. Asynchronous Design Style 33
3.2.3 Clocking ... 34
3.2.4 Reset ... 35
3.2.5 TIming Exceptions and Multicycle Paths 36

3.3 Design for Timing Closure: Physical Design Issues 36
3.3.1 Floorplanning ... 36
3.3.2 Synthesis Strategy and Timing Budgets ... 36
3.3.3 Hard Macros ... 37
3.3.4 Clock Distribution .. 37

3.4 Design for Verification: Verification Strategy ... 38

3.5 System Interconnect and On-Chip Buses .. 39
3.5.1 Basic Interface Issues ... 39
3.5.2 Tristate vs. Mux Buses ... 40
3.5.3 Reuse Issues and On-Chip Buses ... 41
3.5.4 IP-to-IP Interfaces ... 42
3.5.5 Design for Bring-Up and Debug: On-Chip Debug Structures 43

3.6 Design for Low Power ... 44
3.6.1 Lowering the Supply Voltage ... 44
3.6.2 Reducing Capacitance and Switching Activity 45
3.6.3 Sizing and Other Synthesis Techniques .. 48
3.6.4 Summary ... 48

Reuse Methodology Manual vII

3.7 Design for Test: Manufacturing Test Strategies .. 49
3.7.1 System Level Test Issues .. 49
3.7.2 Memory Test ... 49
3.7.3 Microprocessor Test ... 49
3.7.4 Other Macros .. 49
3.7.5 Logic BIST ... 50

3.8 Prerequisites for Reuse .. 50
3.8.1 Libraries .. 50
3.8.2 Physical Design Rules .. 51

4 The Macro Design Process .. S3

4.1 Design Process Overview .. 53

4.2 Contents of a Design Specification .. 58

4.3 Top-Level Macro Design ... 60
4.3.1 Top-Level Macro Design Process ... 60
4.3.2 Activities and Tools .. 62

4.4 Subblock Design .. 63
4.4.1 Subblock Design Process ... 63
4.4.2 Activities and Tools .. 65

4.5 Macro Integration .. 66
4.5.1 Integration Process ... 66
4.5.2 Activities and Tools .. 68

4.6 Soft Macro Productization ... 69
4.6.1 Productization Process .. 69
4.6.2 Activities and Tools .. 71

5 RTL Coding Guidelines ... 73

5.1 Overview of the Coding Guidelines .. 73

5.2 Basic Coding Practices .. 74
5.2.1 General Naming Conventions ... 74
5.2.2 Naming Conventions for VITAL Support 76
5.2.3 Architecture Naming Conventions ... 77
5.2.4 Include Headers in Source Files ... 77
5.2.5 Use Comments .. 79
5.2.6 Keep Commands on Separate Lines ... 79
5.2.7 Line Length .. 79
5.2.8 Indentation .. 80
5.2.9 Do Not Use HDL Reserved Words ... 81
5.2.10 Port Ordering .. 81

Reuse Methodology Manual vII

3.7 Design for Test: Manufacturing Test Strategies .. 49
3.7.1 System Level Test Issues .. 49
3.7.2 Memory Test ... 49
3.7.3 Microprocessor Test ... 49
3.7.4 Other Macros .. 49
3.7.5 Logic BIST ... 50

3.8 Prerequisites for Reuse .. 50
3.8.1 Libraries .. 50
3.8.2 Physical Design Rules .. 51

4 The Macro Design Process .. S3

4.1 Design Process Overview .. 53

4.2 Contents of a Design Specification .. 58

4.3 Top-Level Macro Design ... 60
4.3.1 Top-Level Macro Design Process ... 60
4.3.2 Activities and Tools .. 62

4.4 Subblock Design .. 63
4.4.1 Subblock Design Process ... 63
4.4.2 Activities and Tools .. 65

4.5 Macro Integration .. 66
4.5.1 Integration Process ... 66
4.5.2 Activities and Tools .. 68

4.6 Soft Macro Productization ... 69
4.6.1 Productization Process .. 69
4.6.2 Activities and Tools .. 71

5 RTL Coding Guidelines ... 73

5.1 Overview of the Coding Guidelines .. 73

5.2 Basic Coding Practices .. 74
5.2.1 General Naming Conventions ... 74
5.2.2 Naming Conventions for VITAL Support 76
5.2.3 Architecture Naming Conventions ... 77
5.2.4 Include Headers in Source Files ... 77
5.2.5 Use Comments .. 79
5.2.6 Keep Commands on Separate Lines ... 79
5.2.7 Line Length .. 79
5.2.8 Indentation .. 80
5.2.9 Do Not Use HDL Reserved Words ... 81
5.2.10 Port Ordering .. 81

viii Reuse Methodology Manual

5.2.11 Port Maps and Generic Maps ... 82
5.2.12 VHDL Entity, Architecture, and Configuration Sections 83
5.2.13 Use Functions ... 84
5.2.14 Use Loops and Arrays .. 85
5.2.15 Use Meaningful Labels ... 86

5.3 Coding for Portability .. 87
5.3.1 Use Only IEEE Standard 1Ypes .. 87
5.3.2 Do Not Use Hard-Coded Numeric Values 88
5.3.3 Packages ... 88
5.3.4 Include Files ... 89
5.3.5 Avoid Embedding dc_shell Scripts ... 89
5.3.6 Use Technology-Independent Libraries .. 89
5.3.7 Coding For Translation (VHDL to Verilog) 90

5.4 Guidelines for Clocks and Resets .. 91
5.4.1 Avoid Mixed Clock Edges .. 91
5.4.2 Avoid Clock Buffers ... 93
5.4.3 Avoid Gated Clocks .. 93
5.4.4 Avoid Internally Generated Clocks .. 94
5.4.5 Gated Clocks and Low Power Designs .. 94
5.4.6 Avoid Internally Generated Resets ... 96

5.5 Coding for Synthesis ... 97
5.5.1 Infer Registers ... 97
5.5.2 Avoid Latches ... 99
5.5.3 If you must use a latch .. 102
5.5.4 Avoid Combinational Feedback ... 102
5.5.5 Specify Complete Sensitivity Lists ... 103
5.5.6 Blocking and Nonblocking Assignments (Verilog) 105
5.5.7 Signal vs. Variable Assignments (VHDL) 107
5.5.8 Case Statements versus if-then-else Statements 108
5.5.9 Coding State Machines ... 110

5.6 Partitioning for Synthesis .. 114
5.6.1 Register All Outputs ... 114
5.6.2 Locate Related Combinational Logic in a Single Module 115
5.6.3 Separate Modules That Have Different Design Goals 116
5.6.4 Asynchronous Logic ... 118
5.6.5 Arithmetic Operators: Merging Resources 118
5.6.6 Partitioning for Synthesis Runtime ... 119
5.6.7 Avoid Point-to-Point Exceptions and False Paths 120
5.6.8 Eliminate Glue Logic at the Top LeveL 121
5.6.9 Chip-Level Partitioning .. 122

5.7 Designing with Memories ... 123

viii Reuse Methodology Manual

5.2.11 Port Maps and Generic Maps ... 82
5.2.12 VHDL Entity, Architecture, and Configuration Sections 83
5.2.13 Use Functions ... 84
5.2.14 Use Loops and Arrays .. 85
5.2.15 Use Meaningful Labels ... 86

5.3 Coding for Portability .. 87
5.3.1 Use Only IEEE Standard 1Ypes .. 87
5.3.2 Do Not Use Hard-Coded Numeric Values 88
5.3.3 Packages ... 88
5.3.4 Include Files ... 89
5.3.5 Avoid Embedding dc_shell Scripts ... 89
5.3.6 Use Technology-Independent Libraries .. 89
5.3.7 Coding For Translation (VHDL to Verilog) 90

5.4 Guidelines for Clocks and Resets .. 91
5.4.1 Avoid Mixed Clock Edges .. 91
5.4.2 Avoid Clock Buffers ... 93
5.4.3 Avoid Gated Clocks .. 93
5.4.4 Avoid Internally Generated Clocks .. 94
5.4.5 Gated Clocks and Low Power Designs .. 94
5.4.6 Avoid Internally Generated Resets ... 96

5.5 Coding for Synthesis ... 97
5.5.1 Infer Registers ... 97
5.5.2 Avoid Latches ... 99
5.5.3 If you must use a latch .. 102
5.5.4 Avoid Combinational Feedback ... 102
5.5.5 Specify Complete Sensitivity Lists ... 103
5.5.6 Blocking and Nonblocking Assignments (Verilog) 105
5.5.7 Signal vs. Variable Assignments (VHDL) 107
5.5.8 Case Statements versus if-then-else Statements 108
5.5.9 Coding State Machines ... 110

5.6 Partitioning for Synthesis .. 114
5.6.1 Register All Outputs ... 114
5.6.2 Locate Related Combinational Logic in a Single Module 115
5.6.3 Separate Modules That Have Different Design Goals 116
5.6.4 Asynchronous Logic ... 118
5.6.5 Arithmetic Operators: Merging Resources 118
5.6.6 Partitioning for Synthesis Runtime ... 119
5.6.7 Avoid Point-to-Point Exceptions and False Paths 120
5.6.8 Eliminate Glue Logic at the Top LeveL 121
5.6.9 Chip-Level Partitioning .. 122

5.7 Designing with Memories ... 123

Reuse Methodology Manual ix

5.8 Code Profiling .. 125

6 Macro Synthesis Guidelines .. 127

6.1 Overview of the Synthesis Problem .. 127

6.2 Macro Synthesis Strategy .. 128
6.2.1 Macro Timing Budget. .. 128
6.2.2 Subblock Timing Budget... ... 129
6.2.3 Synthesis in the Design Process ... 129
6.2.4 Subblock Synthesis Process ... 130
6.2.5 Macro Synthesis Process .. 130
6.2.6 Wire Load Models .. 131
6.2.7 Preserve Clock and Reset Networks ... 131
6.2.8 Code Checking Before Synthesis ... 132
6.2.9 Code Checking After Synthesis .. 132

6.3 High-Performance Synthesis ... 133
6.3.1 Classical Synthesis ... 133
6.3.2 High-Performance Synthesis .. 134
6.3.3 Tiling ... 134

6.4 RAM and Datapath Generators ... 134
6.4.1 Memory Design .. 134
6.4.2 Datapath Design ... 135
6.4.3 Design Flow Using Module Compiler .. 138
6.4.4 RAM Generator Flow ... 140
6.4.5 Design Reuse with Datapath and RAM Compilers 140

6.5 Coding Guidelines for Synthesis Scripts ... 142

7 Macro Verification Guidelines .. 145

7.1 Overview of Macro Verification .. 145
7.1.1 Verification Plan ... 146
7.1.2 Verification Strategy ... 147
7.1.3 Subblock Simulation .. 151
7.1.4 Macro Simulation ... 151
7.1.5 Prototyping ... 152
7.1.6 Limited Production ... 152

7.2 Inspection as Verification .. 152

7.3 Adversarial Testing .. 154
7.4 Testbench Design ... 155

7.4.1 Subblock Testbench .. 155
7.4.2 Macro Testbench ... 156

Reuse Methodology Manual ix

5.8 Code Profiling .. 125

6 Macro Synthesis Guidelines .. 127

6.1 Overview of the Synthesis Problem .. 127

6.2 Macro Synthesis Strategy .. 128
6.2.1 Macro Timing Budget. .. 128
6.2.2 Subblock Timing Budget... ... 129
6.2.3 Synthesis in the Design Process ... 129
6.2.4 Subblock Synthesis Process ... 130
6.2.5 Macro Synthesis Process .. 130
6.2.6 Wire Load Models .. 131
6.2.7 Preserve Clock and Reset Networks ... 131
6.2.8 Code Checking Before Synthesis ... 132
6.2.9 Code Checking After Synthesis .. 132

6.3 High-Performance Synthesis ... 133
6.3.1 Classical Synthesis ... 133
6.3.2 High-Performance Synthesis .. 134
6.3.3 Tiling ... 134

6.4 RAM and Datapath Generators ... 134
6.4.1 Memory Design .. 134
6.4.2 Datapath Design ... 135
6.4.3 Design Flow Using Module Compiler .. 138
6.4.4 RAM Generator Flow ... 140
6.4.5 Design Reuse with Datapath and RAM Compilers 140

6.5 Coding Guidelines for Synthesis Scripts ... 142

7 Macro Verification Guidelines .. 145

7.1 Overview of Macro Verification .. 145
7.1.1 Verification Plan ... 146
7.1.2 Verification Strategy ... 147
7.1.3 Subblock Simulation .. 151
7.1.4 Macro Simulation ... 151
7.1.5 Prototyping ... 152
7.1.6 Limited Production ... 152

7.2 Inspection as Verification .. 152

7.3 Adversarial Testing .. 154
7.4 Testbench Design ... 155

7.4.1 Subblock Testbench .. 155
7.4.2 Macro Testbench ... 156

x Reuse Methodology Manual

7.4.3 Bus Functional Models ... 159
7.4.4 Automated Response Checking .. 160
7.4.5 Verification Suite Design .. 161
7.4.6 Code Coverage Analysis .. 166

7.5 Timing Verification .. 169

8 Developing Hard Macros ... 171

8.1 Overview ... 171
8.1.1 Why and When to use Hard Macros ... 172
8.1.2 Design Process for Hard vs. Soft Macros 173

8.2 Design Issues for Hard Macros ... 173
8.2.1 Full Custom Design .. 173
8.2.2 Interface Design .. 174
8.2.3 Design For Test ... 175
8.2.4 Clock and Reset .. 176
8.2.5 Aspect Ratio ... 177
8.2.6 Porosity ... 177
8.2.7 Pin Placement ... 178
8.2.8 Power Distribution .. 178

8.3 The Hard Macro Design Process ... 179
8.4 Block Integration for Hard Macros ... 181
8.5 Productization of Hard Macros ... 181

8.5.1 Physical Design .. 181
8.5.2 Verification ... 184
8.5.3 Models .. 185
8.5.4 Documentation ... 185

8.6 Model Development for Hard Macros ... 186
8.6.1 Functional Models .. 186
8.6.2 Synthesis and Floorplanning Models ... 194

8.7 Porting Hard Macros ... 197

9 Macro Deployment: Packaging for Reuse 199

9.1 Delivering the Complete Product .. 199
9.1.1 Soft Macro Deliverables ... 200
9.1.2 Hard Macro Deliverables .. 202
9.1.3 The Design Archive .. 204

9.2 Contents of the User Guide ... 205

x Reuse Methodology Manual

7.4.3 Bus Functional Models ... 159
7.4.4 Automated Response Checking .. 160
7.4.5 Verification Suite Design .. 161
7.4.6 Code Coverage Analysis .. 166

7.5 Timing Verification .. 169

8 Developing Hard Macros ... 171

8.1 Overview ... 171
8.1.1 Why and When to use Hard Macros ... 172
8.1.2 Design Process for Hard vs. Soft Macros 173

8.2 Design Issues for Hard Macros ... 173
8.2.1 Full Custom Design .. 173
8.2.2 Interface Design .. 174
8.2.3 Design For Test ... 175
8.2.4 Clock and Reset .. 176
8.2.5 Aspect Ratio ... 177
8.2.6 Porosity ... 177
8.2.7 Pin Placement ... 178
8.2.8 Power Distribution .. 178

8.3 The Hard Macro Design Process ... 179
8.4 Block Integration for Hard Macros ... 181
8.5 Productization of Hard Macros ... 181

8.5.1 Physical Design .. 181
8.5.2 Verification ... 184
8.5.3 Models .. 185
8.5.4 Documentation ... 185

8.6 Model Development for Hard Macros ... 186
8.6.1 Functional Models .. 186
8.6.2 Synthesis and Floorplanning Models ... 194

8.7 Porting Hard Macros ... 197

9 Macro Deployment: Packaging for Reuse 199

9.1 Delivering the Complete Product .. 199
9.1.1 Soft Macro Deliverables ... 200
9.1.2 Hard Macro Deliverables .. 202
9.1.3 The Design Archive .. 204

9.2 Contents of the User Guide ... 205

Reuse Methodology Manual xi

10 System Integration with Reusable Macros 207

10.1 Integration Overview ... 207

10.2 Integrating Macros into an SoC Design .. 208
10.2.1 Problems in Integrating IP .. 208
10.2.2 Strategies for Managing Interfacing Issues 209

10.2.3 Interfacing Hard Macros to the Rest of the Design 210

10.3 Selecting IP .. 211
10.3.1 Hard Macro Selection ... 211
10.3.2 Soft Macro Selection .. 212

10.3.3 Soft Macro Installation ... 212
10.3.4 Soft Macro Configuration ... 213

10.3.5 Synthesis of Soft Macros .. 213

10.4 Integrating Memories .. 213

10.5 Physical Design ... 214
10.5.1 Design Planning to Initial Placement ... 216
10.5.2 Placement Loop .. 223
10.5.3 Timing Closure ... 225
10.5.4 Verifying the Physical Design .. 227
10.5.5 Summary ... 228

11 System-Level Verification Issues ... 229

11.1 The Importance of Verification .. 229

11.2 The Verification Strategy ... 230

11.3 Interface Verification ... 231
11.3.1 Transaction Verification .. 231
11.3.2 Data or Behavioral Verification .. 232
11.3.3 Standardized Interfaces ... 234

11.4 Functional Verification .. 234

11.5 Application-Based Verification ... 237
11.5.1 FPGA and LPGA Prototyping .. 238

11.5.2 Emulation Based Testing .. 239
11.5.3 Silicon Prototyping ... 239

11.6 Gate-Level Verification .. 240
11.6.1 Sign-Off Simulation ... 240
11.6.2 Formal Verification ... 242
11.6.3 Gate-Level Simulation with Unit-Delay Timing 243
11.6.4 Gate-Level Simulation with Full Timing 243

11. 7 Specialized Hardware for System Verification .. 244
11. 7.1 Accelerated Verification Overview ... 246

Reuse Methodology Manual xi

10 System Integration with Reusable Macros 207

10.1 Integration Overview ... 207

10.2 Integrating Macros into an SoC Design .. 208
10.2.1 Problems in Integrating IP .. 208
10.2.2 Strategies for Managing Interfacing Issues 209

10.2.3 Interfacing Hard Macros to the Rest of the Design 210

10.3 Selecting IP .. 211
10.3.1 Hard Macro Selection ... 211
10.3.2 Soft Macro Selection .. 212

10.3.3 Soft Macro Installation ... 212
10.3.4 Soft Macro Configuration ... 213

10.3.5 Synthesis of Soft Macros .. 213

10.4 Integrating Memories .. 213

10.5 Physical Design ... 214
10.5.1 Design Planning to Initial Placement ... 216
10.5.2 Placement Loop .. 223
10.5.3 Timing Closure ... 225
10.5.4 Verifying the Physical Design .. 227
10.5.5 Summary ... 228

11 System-Level Verification Issues ... 229

11.1 The Importance of Verification .. 229

11.2 The Verification Strategy ... 230

11.3 Interface Verification ... 231
11.3.1 Transaction Verification .. 231
11.3.2 Data or Behavioral Verification .. 232
11.3.3 Standardized Interfaces ... 234

11.4 Functional Verification .. 234

11.5 Application-Based Verification ... 237
11.5.1 FPGA and LPGA Prototyping .. 238

11.5.2 Emulation Based Testing .. 239
11.5.3 Silicon Prototyping ... 239

11.6 Gate-Level Verification .. 240
11.6.1 Sign-Off Simulation ... 240
11.6.2 Formal Verification ... 242
11.6.3 Gate-Level Simulation with Unit-Delay Timing 243
11.6.4 Gate-Level Simulation with Full Timing 243

11. 7 Specialized Hardware for System Verification .. 244
11. 7.1 Accelerated Verification Overview ... 246

xii Reuse Methodology Manual

11.7.2 RTL Acceleration ... 247
11. 7.3 Software Driven Verification .. 248
11.7.4 Traditional In-Circuit Verification .. 248
11. 7.5 Support for Intellectual Property .. 249
11. 7.6 Design Guidelines for Accelerated Verification 249
11. 7.7 Testbenches for Emulation ... 249

12 Data and Project Management ... 253

12.1 Data Management .. 253
12.1.1 Revision Control Systems .. 253
12.1.2 Bug Tracking .. 255
12.1.3 Regression Testing .. 255
12.1.4 Managing Multiple Sites .. 256
12.1.5 Archiving .. 256

12.2 Project Management .. 257
12.2.1 Development Process .. 257
12.2.2 Functional Specification ... 257
12.2.3 Project Plan ... 258

13 Implementing a Reuse Process ... 261

13.1 Key Steps in Implementing a Reuse Process ... 261

13.2 Managing the Transition to Reuse ... 263
13.2.1 Barriers to Reuse .. 263
13.2.2 Key Elements in Reuse-Based Design ... 263
13.2.3 Key Steps .. 265

13.3 Organizational Issues in Reuse .. 270
13.3.1 A Combined Solution ... 272
13.3.2 A Common Problem ... 272
13.3.3 A Reuse Economy .. 273
13.3.4 Summary .. 274

13.4 Redesign for Reuse: Dealing with Legacy Designs 275
13.4.1 Recapturing Intent .. 275
13.4.2 Using the Design As-Is ... 275
13.4.3 Retirning ... 276
13.4.4 Tools for Using Legacy Designs ... 276
13.4.5 Summary ... 276

Glossary ... 277

xii Reuse Methodology Manual

11.7.2 RTL Acceleration ... 247
11. 7.3 Software Driven Verification .. 248
11.7.4 Traditional In-Circuit Verification .. 248
11. 7.5 Support for Intellectual Property .. 249
11. 7.6 Design Guidelines for Accelerated Verification 249
11. 7.7 Testbenches for Emulation ... 249

12 Data and Project Management ... 253

12.1 Data Management .. 253
12.1.1 Revision Control Systems .. 253
12.1.2 Bug Tracking .. 255
12.1.3 Regression Testing .. 255
12.1.4 Managing Multiple Sites .. 256
12.1.5 Archiving .. 256

12.2 Project Management .. 257
12.2.1 Development Process .. 257
12.2.2 Functional Specification ... 257
12.2.3 Project Plan ... 258

13 Implementing a Reuse Process ... 261

13.1 Key Steps in Implementing a Reuse Process ... 261

13.2 Managing the Transition to Reuse ... 263
13.2.1 Barriers to Reuse .. 263
13.2.2 Key Elements in Reuse-Based Design ... 263
13.2.3 Key Steps .. 265

13.3 Organizational Issues in Reuse .. 270
13.3.1 A Combined Solution ... 272
13.3.2 A Common Problem ... 272
13.3.3 A Reuse Economy .. 273
13.3.4 Summary .. 274

13.4 Redesign for Reuse: Dealing with Legacy Designs 275
13.4.1 Recapturing Intent .. 275
13.4.2 Using the Design As-Is ... 275
13.4.3 Retirning ... 276
13.4.4 Tools for Using Legacy Designs ... 276
13.4.5 Summary ... 276

Glossary ... 277

Reuse Methodology Manual xiii

Bib60graphy ... 279

Index ... 281

Reuse Methodology Manual xiii

Bib60graphy ... 279

Index ... 281

Foreword

The electronics industry has entered the era of multimillion-gate chips, and there's no
turning back. By the year 2001, Sematech predicts that state-of-the-art les will
exceed 12 million gates and operate at speeds surpassing 600 MHz. An engineer
designing 100 gates/day would require a hypothetical 500 years to complete such a
design, at a cost of $75 million in today's dollars. This will never happen, of course,
because the time is too long and the cost is too high. But 12-million gate les will hap
pen, and soon.

How will we get there? Whatever variables the solution involves, one thing is clear:
the ability to leverage valuable intellectual property (IP) through design reuse will be
the invariable cornerstone of any effective attack on the productivity issue. Reusable
IP is essential to achieving the engineering quality and the timely completion of mul
timillion-gate les. Without reuse, the electronics industry will simply not be able to
keep pace with the challenge of delivering the "better, faster, cheaper" devices con
sumers expect.

Synopsys and Mentor Graphics have joined forces to help make IF reuse a reality.
One of the goals of our Design Reuse Partnership is to develop, demonstrate, and doc
ument a reuse-based design methodology that works. The Reuse Methodology Man
ual (RMM) is the result of this effort. It combines the experience and resources of
Synopsys and Mentor Graphics. Synopsys' expertise in design reuse tools and Mentor
Graphics' expertise in IP creation and sourcing resulted in the creation of this manual
that documents the industry'S first systematic reuse methodology. The RMM
describes the design methodology that our teams have found works best for designing
reusable blocks and for integrating reusable blocks into large chip designs.

Foreword

The electronics industry has entered the era of multimillion-gate chips, and there's no
turning back. By the year 2001, Sematech predicts that state-of-the-art les will
exceed 12 million gates and operate at speeds surpassing 600 MHz. An engineer
designing 100 gates/day would require a hypothetical 500 years to complete such a
design, at a cost of $75 million in today's dollars. This will never happen, of course,
because the time is too long and the cost is too high. But 12-million gate les will hap
pen, and soon.

How will we get there? Whatever variables the solution involves, one thing is clear:
the ability to leverage valuable intellectual property (IP) through design reuse will be
the invariable cornerstone of any effective attack on the productivity issue. Reusable
IP is essential to achieving the engineering quality and the timely completion of mul
timillion-gate les. Without reuse, the electronics industry will simply not be able to
keep pace with the challenge of delivering the "better, faster, cheaper" devices con
sumers expect.

Synopsys and Mentor Graphics have joined forces to help make IF reuse a reality.
One of the goals of our Design Reuse Partnership is to develop, demonstrate, and doc
ument a reuse-based design methodology that works. The Reuse Methodology Man
ual (RMM) is the result of this effort. It combines the experience and resources of
Synopsys and Mentor Graphics. Synopsys' expertise in design reuse tools and Mentor
Graphics' expertise in IP creation and sourcing resulted in the creation of this manual
that documents the industry'S first systematic reuse methodology. The RMM
describes the design methodology that our teams have found works best for designing
reusable blocks and for integrating reusable blocks into large chip designs.

xvi Reuse Methodology Manual

It is our hope that this manual for advanced IC designers becomes the basis for an
industry-wide solution that accelerates the adoption of reuse and facilitates the rapid
development of tomorrow's large, complex ICs.

Aart 1. de Geus
Chairman & CEO
Synopsys, Inc.

Walden C. Rhines
President & CEO

Mentor Graphics Corporation

xvi Reuse Methodology Manual

It is our hope that this manual for advanced IC designers becomes the basis for an
industry-wide solution that accelerates the adoption of reuse and facilitates the rapid
development of tomorrow's large, complex ICs.

Aart 1. de Geus
Chairman & CEO
Synopsys, Inc.

Walden C. Rhines
President & CEO

Mentor Graphics Corporation

Preface to the Second Edition

The first edition of the RMM has been very warmly received, much to the surprise
and delight of the authors. But in considering what changes to make for the second
edition, we thought it useful to try to determine why the book has been so popular.
What is the key value that readers have found in the book, and how could we add to
this value?

Certainly a great deal of the success of the book has been due to the fact that it is the
first book on a subject of great importance to virtually all chip designers. But the par
ticular comments on the book, both positive and critical, have been very interesting.

One common observation among readers is that the title may not be accurate; the
book is really about good design practices in general, not just about reuse. Another
observation is that the book does not serve as a stand-alone manual for reuse, but
rather as a guide for readers to develop their own, more detailed design reuse method
ologies. Finally, a number of readers have offered very insightful suggestions of areas
in the book that need to be addressed in more detail.

This last issue we have attempted to address in the second edition. We have expanded
virtually every chapter with additional information, based on suggestions from read
ers and on our own experience over the last year in doing reuse-based design. We
have also added some new material on low-power design for reuse and the prerequi
sites for doing reuse-based design. We expect to continue updating the RMM, as we
and the industry learn more about reuse and its role in SoC design.

But none of these updates will change the basic nature of the book. The RMM will
never be a complete recipe for how to do reuse-based design. It will never contain all
the design and coding guidelines that a design team should follow. It will never cover

Preface to the Second Edition

The first edition of the RMM has been very warmly received, much to the surprise
and delight of the authors. But in considering what changes to make for the second
edition, we thought it useful to try to determine why the book has been so popular.
What is the key value that readers have found in the book, and how could we add to
this value?

Certainly a great deal of the success of the book has been due to the fact that it is the
first book on a subject of great importance to virtually all chip designers. But the par
ticular comments on the book, both positive and critical, have been very interesting.

One common observation among readers is that the title may not be accurate; the
book is really about good design practices in general, not just about reuse. Another
observation is that the book does not serve as a stand-alone manual for reuse, but
rather as a guide for readers to develop their own, more detailed design reuse method
ologies. Finally, a number of readers have offered very insightful suggestions of areas
in the book that need to be addressed in more detail.

This last issue we have attempted to address in the second edition. We have expanded
virtually every chapter with additional information, based on suggestions from read
ers and on our own experience over the last year in doing reuse-based design. We
have also added some new material on low-power design for reuse and the prerequi
sites for doing reuse-based design. We expect to continue updating the RMM, as we
and the industry learn more about reuse and its role in SoC design.

But none of these updates will change the basic nature of the book. The RMM will
never be a complete recipe for how to do reuse-based design. It will never contain all
the design and coding guidelines that a design team should follow. It will never cover

xviii Reuse Methodology Manual

in complete detail how to create timing models for full-custom hard IP. These tasks
are left for other books, and for the tutorials and user guides provided by tool vendors.

The reason for this insistence on brevity over completeness has to do with the funda
mental role of the RMM. There are whole (and very large) books devoted to coding
guidelines, such as Ben Cohen's VHDL Coding Styles and Methodologies, and whole
(and very large) books devoted to ASIC design, such as Michael Smith's Application
Specific Integrated Circuits. But in these large, detailed studies, it is very easy to get
consumed with the details and lose sight of the big picture. To be honest, an RMM on
the same proportions as these books, with the equivalent level of detail, would be
more than most readers would be willing to read from cover to cover.

In contrast, the RMM is about forests, rather than trees. It is about the real pitfalls of
design, the key areas to watch out for. Most of all, it is about a paradigm shift required
for large designs.

There is a common thread underlying all of the material in the RMM. It is the obser
vation that we need to restrict the design space in order to do the kinds of designs that
will make multimillion gate chips feasible. The size of chips today, and the time-to
market pressure put on their designers, requires a different set of tradeoffs, a different
optimization function from previous generations of design. Many of the designer's
tricks for saving a picosecond here or a gate there are counter-productive in today's
designs. Designs need to be simple to be scalable, and they need to be regular in struc
ture to take full advantage of today's design tools. To achieve this, designers need to
employ a disciplined approach to design.

We hope that the RMM can help motivate this design discipline, give the key ele
ments of the design style required, and provide sufficient detail that engineers and
managers can implement the discipline in their own teams.

To support this goal, we have tried to stress in the second edition a fundamental theme
of any good design discipline, the concept of locality. Local problems are easy to find
and to fix. Global problems are inherently harder to deal with; as designs get larger,
global problems can quickly become intractable, causing schedule delays and even
project cancellations.

The three most basic rules that leverage this concept of locality to produce better, and
more reusable, designs are:

• Use a fully synchronous design style, and most importantly register the inputs and
outputs of macros. This makes timing optimization a local problem.

• Do rigorous, bottom up verification; make sure a block or module is completely
verified before it is integrated into the next level of hierarchy. This helps to make
verification as local as possible.

xviii Reuse Methodology Manual

in complete detail how to create timing models for full-custom hard IP. These tasks
are left for other books, and for the tutorials and user guides provided by tool vendors.

The reason for this insistence on brevity over completeness has to do with the funda
mental role of the RMM. There are whole (and very large) books devoted to coding
guidelines, such as Ben Cohen's VHDL Coding Styles and Methodologies, and whole
(and very large) books devoted to ASIC design, such as Michael Smith's Application
Specific Integrated Circuits. But in these large, detailed studies, it is very easy to get
consumed with the details and lose sight of the big picture. To be honest, an RMM on
the same proportions as these books, with the equivalent level of detail, would be
more than most readers would be willing to read from cover to cover.

In contrast, the RMM is about forests, rather than trees. It is about the real pitfalls of
design, the key areas to watch out for. Most of all, it is about a paradigm shift required
for large designs.

There is a common thread underlying all of the material in the RMM. It is the obser
vation that we need to restrict the design space in order to do the kinds of designs that
will make multimillion gate chips feasible. The size of chips today, and the time-to
market pressure put on their designers, requires a different set of tradeoffs, a different
optimization function from previous generations of design. Many of the designer's
tricks for saving a picosecond here or a gate there are counter-productive in today's
designs. Designs need to be simple to be scalable, and they need to be regular in struc
ture to take full advantage of today's design tools. To achieve this, designers need to
employ a disciplined approach to design.

We hope that the RMM can help motivate this design discipline, give the key ele
ments of the design style required, and provide sufficient detail that engineers and
managers can implement the discipline in their own teams.

To support this goal, we have tried to stress in the second edition a fundamental theme
of any good design discipline, the concept of locality. Local problems are easy to find
and to fix. Global problems are inherently harder to deal with; as designs get larger,
global problems can quickly become intractable, causing schedule delays and even
project cancellations.

The three most basic rules that leverage this concept of locality to produce better, and
more reusable, designs are:

• Use a fully synchronous design style, and most importantly register the inputs and
outputs of macros. This makes timing optimization a local problem.

• Do rigorous, bottom up verification; make sure a block or module is completely
verified before it is integrated into the next level of hierarchy. This helps to make
verification as local as possible.

Reuse Methodology Manual xix

• Plan before doing; write a reasonable specification before design begins. This ini
tial planning can help produce well-architected, well-partitioned designs that can
employ locality effectively.

For teams not yet employing these rules, especially teams not yet registering their
inputs and outputs, adoption of these three rules can have a dramatic effect in reduc
ing design time. And these three rules are the first and most important steps toward
making designs reusable. Throughout the RMM, we have tried to point out how to
implement these rules, and the effect that they can have on the design cycle.

We believe that in the future, it simply will not be possible to design large chips with
out following these design guidelines, and without adopting a disciplined approach to
design. Design tools will be able to assemble multimillion gate chips only if they can
make certain simplifying assumptions about the locality of timing closure and verifi
cation problems. Otherwise, the global problems of meeting timing and verifying
functionality will become totally overwhelming.

We hope that by stressing the underlying principles of good design and of design
reuse, the RMM can provide designers a practical path toward the design practices
that can ultimately tame Moore's law.

Mike Keating
Mountain View, California

Pierre Bricaud
Sophia Antipolis, France

Reuse Methodology Manual xix

• Plan before doing; write a reasonable specification before design begins. This ini
tial planning can help produce well-architected, well-partitioned designs that can
employ locality effectively.

For teams not yet employing these rules, especially teams not yet registering their
inputs and outputs, adoption of these three rules can have a dramatic effect in reduc
ing design time. And these three rules are the first and most important steps toward
making designs reusable. Throughout the RMM, we have tried to point out how to
implement these rules, and the effect that they can have on the design cycle.

We believe that in the future, it simply will not be possible to design large chips with
out following these design guidelines, and without adopting a disciplined approach to
design. Design tools will be able to assemble multimillion gate chips only if they can
make certain simplifying assumptions about the locality of timing closure and verifi
cation problems. Otherwise, the global problems of meeting timing and verifying
functionality will become totally overwhelming.

We hope that by stressing the underlying principles of good design and of design
reuse, the RMM can provide designers a practical path toward the design practices
that can ultimately tame Moore's law.

Mike Keating
Mountain View, California

Pierre Bricaud
Sophia Antipolis, France

Acknowledgements

We would like to thank the following people who made substantial contributions to
the ideas and content of the Reuse Methodology Manual:

• Warren Savage, Ken Scott, and their engineering teams, including Shiv Chonnad,
Guy Hutchison, Chris Kopetzky, Keith Rieken, Mark Noll, and Ralph Morgan

• Glenn Dukes and his engineering team

• John Coffin, Ashwini Mulgaonkar, Suzanne Hayek, Pierre Thomas, Alain Pirson,
Fathy Yassa, John Swanson, Gil Herbeck, Saleem Haider, Martin Lampard, Larry
Groves, Nonn Kelley, Kevin Kranen, Angelina So, and Neel Desai

We would also like to thank the following individuals for their helpful suggestions on
how to make the RMM a stronger document:

• Nick Ruddick, Sue Dyer, Jake Buurma, Bill Bell, Scott Eisenhart, Andy Betts,
Bruce Mathewson

The following people were particularly helpful in preparing the second edition:

• David Flynn, Simon Bates, Ravi Tembhekar, Steve Peltan, Anwar Awad, Daniel
Chapiro, Steve Carlson, John Perry, Dave Tokic, Francine Furgeson

We also thank Rhea Tolman and Bill Rogers for helping to prepare the manuscript.

Finally, we would like to thank Tim and Christina Campisi of Trayler-Parke Commu
nications for the cover design.

Acknowledgements

We would like to thank the following people who made substantial contributions to
the ideas and content of the Reuse Methodology Manual:

• Warren Savage, Ken Scott, and their engineering teams, including Shiv Chonnad,
Guy Hutchison, Chris Kopetzky, Keith Rieken, Mark Noll, and Ralph Morgan

• Glenn Dukes and his engineering team

• John Coffin, Ashwini Mulgaonkar, Suzanne Hayek, Pierre Thomas, Alain Pirson,
Fathy Yassa, John Swanson, Gil Herbeck, Saleem Haider, Martin Lampard, Larry
Groves, Nonn Kelley, Kevin Kranen, Angelina So, and Neel Desai

We would also like to thank the following individuals for their helpful suggestions on
how to make the RMM a stronger document:

• Nick Ruddick, Sue Dyer, Jake Buurma, Bill Bell, Scott Eisenhart, Andy Betts,
Bruce Mathewson

The following people were particularly helpful in preparing the second edition:

• David Flynn, Simon Bates, Ravi Tembhekar, Steve Peltan, Anwar Awad, Daniel
Chapiro, Steve Carlson, John Perry, Dave Tokic, Francine Furgeson

We also thank Rhea Tolman and Bill Rogers for helping to prepare the manuscript.

Finally, we would like to thank Tim and Christina Campisi of Trayler-Parke Commu
nications for the cover design.

To our wives,
Deborah Keating and Brigitte Bricaud,

for their patience and support

To our wives,
Deborah Keating and Brigitte Bricaud,

for their patience and support

CHAPTER 1 Introduction

Silicon technology now allows us to build chips consisting of tens of millions of tran
sistors. This technology promises new levels of system integration onto a single chip,
but also presents significant challenges to the chip designer. As a result, many ASIC
developers and silicon vendors are re-examining their design methodologies, search
ing for ways to make effective use of the huge numbers of gates now available.

These designers see current design tools and methodologies as inadequate for devel
oping million gate ASICs from scratch. There is considerable pressure to keep design
team size and design schedules constant even as design complexities grow. Tools are
not providing the productivity gains required to keep pace with the increasing gate
counts available from deep submicron technology. Design reuse - the use of pre
designed and pre-verified cores - is the most promising opportunity to bridge the
gap between available gate-count and designer productivity.

This manual outlines an effective methodology for creating reusable designs for use
in a System-on-a-Chip (SoC) design methodology. Silicon and tool technologies
move so quickly that no single methodology can provide a permanent solution to this
highly dynamic problem. Instead, this manual is an attempt to capture and incremen
tally improve on current best practices in the industry, and to give a coherent, inte
grated view of the design process. We expect to update this document on a regular
basis as a result of changing technology and improved insight into the problems of
design reuse and its role in producing high-quality SoC designs.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

2 Reuse Methodology Manual

1.1 Goals of This Document

Development methodology necessarily differs between system designers and ASSP
designers, as well as between DSP developers and chipset developers. However, there
is a common set of problems facing everyone who is designing SoC-scale ASICs:

• Time-to-market pressures demand rapid development.

• Quality of results, in performance, area, and power, are key to market success.

• Increasing chip complexity makes verification more difficult.

• Deep submicron issues make timing closure more difficult.

• The development team has different levels and areas of expertise, and is often scat
tered throughout the world.

• Design team members may have worked on similar designs in the past, but cannot
reuse these designs because the design flow, tools, and guidelines have changed.

• SoC designs include embedded processor cores, and thus a significant software
component, which leads to additional methodology, process, and organizational
challenges.

In response to these problems, many design teams are turning to a block-based design
approach that emphasizes design reuse. Reusing macros (sometimes called "cores")
that have already been designed and verified helps to address all of the above prob
lems. However, ASIC design for reuse is a new paradigm in hardware design. Ironi
cally, many researchers in software design reuse point to hardware design as the
prime model for design reuse, in terms of reusing the same chips in different combi
nations to create many different board designs. However, most ASIC design teams do
not code their RTI.. or design their testbenches with reuse in mind and, as a result,
most designers find it faster to develop modules from scratch than to reverse engineer
someone else's design.

Some innovative design teams are trying to change this pattern and are developing
effective design reuse strategies. This document focuses on describing these tech
niques. In particular, it describes:

• How reusable macros fit into an SoC development methodology

• How to design reusable soft macros

• How to design reusable hard macros

• How to integrate soft and hard macros into an SoC design

• How to verify timing and functionality in large SoC designs

In doing so, this document addresses the concerns of two distinct audiences: the cre
ators of reusable designs (macro authors) and chip designers who use these reusable
blocks (macro integrators). For macro authors, the main sections of interest will be
those on how to design reusable hard and soft macros, and the other sections will be

Introduction 3

primarily for reference. For integrators, the sections on designing hard and soft mac
ros are intended primarily as a description of what to look for in reusable designs.

SoC designs are made possible by deep submicron technology. This technology pre
sents a whole set of design challenges. Interconnect delays, clock and power distribu
tion, and place and route of millions of gates are real challenges to physical design in
the deep submicron technologies. These physical design problems can have a signifi
cant impact on the functional design of systems on a chip and on the design process
itself. Interconnect issues, fioorplanning, and timing design must be addressed early
in the design process, at the same time as the development of the functional require
ments. This document addresses issues and problems related to providing logically
robust designs that can be fabricated on deep submicron technologies and that, when
fabricated, will meet the requirements for clock speed, power, and area.

SoC designs have a significant software component in addition to the hardware itself.
However, this manual focuses primarily on the creation and reuse of reusable hard
ware macros. This focus on hardware reuse should not be interpreted as an attempt to
minimize the importance in the software aspects of system design. Software plays an
essential role in the design, integration, and test of SoC systems, as well as in the final
product itself.

1.1.1 Assumptions

This document assumes that the reader is familiar with standard high-level design
methodology, including:

• HDL design and synthesis

• Design for test, including full scan techniques

• Floorplanning and place and route

1.1.2 Definitions

In this document, we will use the following terms interchangeably:

• Macro

• Core

• Block

All of these terms refer to a design unit that can reasonably be viewed as a stand-alone
sub-component of a complete SoC design. Examples include a PCI interface macro, a
microprocessor core, or an on-chip memory.

4 Reuse Methodology Manual

Other tenns used throughout this document include:

• Subblock - A subblock is a sub-component of a macro, core, or block. It is too
small or specific to be a stand-alone design component.

• Hard macro - A hard macro (or core or block) is one that is delivered to the inte
grator as a GDSH file. It is fully designed, placed, and routed by the supplier.

• Soft macro - A soft macro (or core or block) is one that is delivered to the inte
grator as synthesizable RTL code.

1.1.3 Virtual Socket Interface Alliance

The Virtual Socket Interface Alliance (VSIA) is an industry group working to facili
tate the adoption of design reuse by setting standards for tool interfaces and design
practices. VSIA has done an excellent job in raising industry awareness of the impor
tance of reuse and of identifying key technical issues that must be addressed to sup
port widespread and effective design reuse.

The working groups of the VSIA have developed a number of proposals for standards
that are currently in review. To the extent that detailed proposals have been made, this
document attempts to be compliant with them.

Some exceptions to this position are:

• Virtual component: VSIA has adopted the name "virtual component" to specify
reusable macros. We have used the shorter tenn "macro" in most cases.

• Finn macro: VSIA has defined an intennediate fonn between hard and soft mac
ros, with a fairly wide range of scope. Finn macros can be delivered in RTL or
netlist fonn, with or without detailed placement, but with some fonn of physical
design infonnation to supplement the RTL itself. We do not address finn macros
specifically in this document; we feel that it is more useful to focus on hard and
soft macros. As technology evolves for more tightly coupling synthesis and physi
cal design, we anticipate that the category of finn macros will be merged with that
of soft macros.

1.2 Design for Reuse: The Challenge

An effective block-based design methodology requires an extensive library of reus
able blocks, or macros. The developers of these macros must, in turn, employ a design
methodology that consistently produces reusable macros. This design reuse method
ology is based on the following principles:

• Creation of every stage of design, from specification to silicon, with the under
standing that it will be modified and reused in other projects by other design teams

Introduction 5

• The use of tools and processes that capture the design infonnation in a consistent,
easy-to-communicate fonn

• The use of tools and processes that make it easy to integrate modules into a design
when the original designer is not available

1.2.1 Design for Use

Design for reuse presents significant new challenges to the design team. But before
considering innovations, remember that to be reusable, a design must first be usable:
a robust and correct design. Many of the techniques for design reuse are just good
design techniques:

• Good documentation

• Goodcode

• Thorough commenting

• Well-designed verification environments and suites

• Robust scripts

Both hardware and software engineers learn these techniques in school, but in the
pressures of a real design project, they often succumb to the temptation to take short
cuts. A shortcut may appear to shorten the design cycle for code that is used only
once, but it often prevents the code from being effectively reused by other teams on
other projects. Initially, complying with these design reuse practices might seem like
an extra burden, but once the design team is fully trained, these techniques speed the
design, verification, and debug processes of a project by reducing iterations through
out the code and verification loop.

1.2.2 Design for Reuse

In addition to the requirements above for a robust design, there are some additional
requirements for a hardware macro to be fully reusable. The macro must be:

• Designed to solve a general problem - This often means the macro must be
easily configurable to fit different applications.

• Designed for use in multiple technologies - For soft macros, this means
that the synthesis scripts must produce satisfactory quality of results with a variety
of libraries. For hard macros, this means having an effective porting strategy for
mapping the macro onto new technologies.

• Designed for simulation with a variety of simulators - A macro or a veri
fication testbench that works with only a single simulator is not portable. Some
new simulators support both Verilog and VHDL. However, good design reuse

6 Reuse Methodology Manual

practices dictate that both a Verilog and VHDL version of each model and verifi
cation testbench should be available, and they should work with all the major com
mercial simulators.

• Verified independently of the chip in which it will be used - Often, mac
ros are designed and only partially tested before being integrated into a chip for
verification, thus saving the effort of developing a full testbench for the design.
Reusable designs must have full, stand-alone testbenches and verification suites
that afford very high levels of test coverage.

• Verified to a high level of confidence - This usually means very rigorous
verification as well as building a physical prototype that is tested in an actual sys
tem running real software.

• Fully documented in terms of appropriate applications and restric
tions - In particular, valid configurations and parameter values must be docu
mented. Any restrictions on configurations or parameter values must be clearly
stated. Interfacing requirements and restrictions on how the macro can be used
must be documented.

These requirements increase the time and effort needed for the development of a
macro, but they provide the significant benefit of making that macro reusable.

1.2.3 Fundamental Problems

Teams attempting to reuse code today are frequently faced with code that wasn't
designed for reuse. The guidelines and techniques described in this document are the
result of our experience with problems, such as:

• The design representation is not appropriate. For example, the RTL is available in
Verilog but the new chip design is in VHDL, or a gate-level netlist using a.51l
library is available, but an incompatible .35lllibrary is now being used.

• The design comes with incomplete design information, often with no functional
specification and with unreadable, uncommented code.

• Supporting scripts are not available or are so obtuse as to be unusable.

• The full design was never properly archived, so pieces of the design are scattered
over various disks on various machines, some of which no longer exist.

• The tools used to develop the design are no longer supported; vendors have gone
out of business.

• The tools used to develop the design had poor inter-operability; scripts to patch the
tools together have disappeared.

• A hard macro is available, but the simulation model is so slow that system-level
simulation is not practical.

Introduction 7

1.3 Design Reuse: A Business Model

All the software reuse books, and our own experiences, say that reuse is not just a
technical issue. In fact, most of the barriers to the adoption of reuse are management
and cultural in nature. In this document, except for the chapter Implementing a Reuse
Process, we focus on the technical aspects of reuse. But it is useful to look at the busi
ness and organization context within which design and design reuse occur. The busi
ness models we touch on here are important for defining the cost-benefit equation that
drives when and how reuse occurs in real organizations.

1.3.1 Changing Roles in SoC Design

First we look at a change that is occurring in the role of systems houses and semicon
ductor companies. Traditionally, systems houses (and systems groups within semi
conductor companies) designed ASICs to the RTL level, through functional
verification and synthesis. The team then handed the design off to ASIC houses for
physical implementation. Large semiconductor companies had their system, ASIC,
and full custom divisions. The systems groups designed to the RTL level and the
ASIC group did physical implementation for internal and external customers. The
only people who designed chips from start to finish were the groups that could differ
entiate their chips from those done with standard ASIC methodologies: namely, the
full custom chip design groups.

SoC designs, and the IP they require, is driving a significant change in this model.
System designers can no longer do complete RTL designs. Their chips require proces
sors, memory, and other blocks that are provided by the ASIC vendor. The ASIC ven
dor must now do more of the chip integration, manage the IP, and provide simulation
and synthesis models to the systems designers. As these chips become more complex
and IP-dominated, systems houses look to ASIC vendors and semiconductor compa
nies to do more and more of the design. In many cases, the systems houses provide
specifications to their silicon vendor, and the vendor does the entire chip design. This
frees the systems house to focus on software and applications aspects of the design.

1.3.2 Retooling Skills for New Roles

As silicon vendors start to do more of the design, they often find that their ASIC
groups don't have the front-end design experience to do the design tasks that custom
ers are demanding. So they turn to their chip designers - the full custom design
groups - to design these new SoCs. The trouble is that these design teams have often
spent their careers developing full custom chips, focusing on performance at the
expense of time-to-market. These teams often have not developed the RTL-based
design skills needed to create SoC designs; more importantly, they do not have the
culture of balancing performance and time-to-market.

8 Reuse Methodology Manual

As a result, we see a significant retooling of design skills in the industry. Systems
houses are focused on improving software and system architecture skills to differenti
ate their products. They depend on their silicon providers to provide not just silicon,
but IP and integration services required to implement very complex chips. ASIC ven
dors and semiconductor houses are learning to develop and manage IP. And design
teams within these silicon providing companies are developing skills and methodolo
gies for integrating IP into large designs.

1.3.3 Sources of IP for SoC Designs

Let us examine this shift in design roles in more detail by considering two representa
tive cases.

First, let us consider a system designer who is designing a large chip, perhaps a cell
phone with some advanced features for supporting Internet access. This design will
require a 32-bit processor, a DSP, large amounts of on-chip memory, numerous blocks
from previous cell-phone designs, and some new designs for the Internet support
blocks. 1)rpically, the processor and DSP will come from the silicon vendor; perhaps
an ARM core for the processor and a TI or DSP Group DSP core. The memory will
typically be designed by using a memory generator from the silicon vendor. And the
rest of the blocks will be from internal sources: reusing blocks from previous designs
and developing new blocks.

Next, let us consider another scenario. Consider a large semiconductor company that
is making automotive chips. These chips again use on-chip, 32-bit processors and
large amounts of memory; in addition they use many blocks from previous genera
tions of designs. Often the new design integrates multiple chips (of the previous gen
eration) into one new chip. In this case, the processor may be a proprietary processor
from another group in the company; perhaps half or more of the other blocks are from
other internal groups, who designed the different chips that made up the previous gen
eration chip set.

We note that in either case, most of the IP that is used to create an SoC design comes
from internal sources. Only a small fraction comes from third-party IP providers;
these may be key blocks, such as processors, but the actual number of third-party IP
blocks in these designs is likely to be small. Developing and managing the internally
sourced IP is probably the single greatest reuse challenge facing design teams today.

1.3.4 Cost Models Drive Reuse

For third-party IP providers, the investment in making a design fully reusable is
clearly justified: if their IP fails to meet designers expectations in tenus of quality or
ease of use, they will not have a business.

Introduction 9

But since most reuse is internal, we need to examine closely the business justification
for investing in making designs reusable.

Our current estimate is that designing a typical block for reuse costs about 2-3x the
cost of designing the same block for a single use. Some of this additional cost may not
be real: the increase in robustness and ease of integration will earn back some of this
effort on the very first chip design using the block.

Nonetheless, there is certainly an additional investment required to make a block
reusable, not only in time and effort, but in discipline and methodology as well.

Re-designing an existing block to make it reusable (or more reusable) in future
designs can also be costly, depending on the amount of rework required.

The benefits of design for reuse (and re-design for reuse) can be significant. Our cur
rent estimates are that integrating a highly reusable block requires one tenth or less
the effort of developing that same block for a single use. Thus, reusing the block pro
vides a lOx productivity benefit or higher for that part of the design. For blocks that
are not fully designed for reuse, this benefit can drop to 2x. Thus, there can be more
than a 5x productivity benefit in using a block that has been designed (or re-designed)
for reuse, over reusing a block that was not designed for reuse.

1.3.5 How Much Reuse and When

One of the critical questions, then, is which blocks should be designed (or re
designed) for reuse. Clearly, any block that will be used without modification in ten or
more designs justifies full design for reuse. The lOx productivity benefit over ten or
more chip designs more than justifies the reuse effort. Domain independent IP such as
processors, their peripherals, and standard interfaces such as PCI and USB clearly
need to be designed for reuse.

Domain specific blocks, such as multi-media or data communication blocks, deserve
full design-for-reuse if they can be used on several generations of product or on sev
eral different products in a short period of time. The challenge here is build the flexi
bility into these designs so that they can be modified for different applications through
setting of parameters rather than through changing code. Studies show that white box
reuse (reuse with code modification) significantly degrades the productivity advan
tage of reuse compared to black box reuse (reuse without modifying the code).

Application specific blocks - blocks intended for a single chip design - may well
not justify the effort to make them reusable. For instance, a block that implements a
standard that will be obsolete by the time the next generation chip is designed, does
not justify a full design for reuse. These blocks, of course, should be designed for ease
of integration, since that effort will always pay for itself.

10 Reuse Methodology Manual

For blocks that will only be used three or four times, the issue of design effort is more
difficult. Such blocks probably do not warrant full design for reuse, but certainly jus
tify some effort towards reusability. Designers of these blocks should follow the
design and coding guidelines outlined in this book, since these benefit any design and
required little additional effort. Packaging the IP for reuse, however, is probably not
justified in these cases.

We need to issue one warning, though. Most chip designs are actually redesigns of
existing chips, adding new features, fixing bugs, improving performance, or integrat
ing several chips into one chip. Thus, functions that at first look as if they will only be
used once end up being used many times. Blocks that implement these functions, if
they are well designed and designed for reuse, can dramatically improve the time-to
market for these succeeding generations of chips.

In this document, we describe how to make blocks completely reusable. It is aimed
primarily at internal reuse: for those design teams that design both blocks and chips,
and who wish to reuse blocks on several generations of chips. In actual practice, indi
viduals and teams need to assess how much they should invest in making an individ
ual block reusable. This decision is driven by economics; how much investment to
make in the short term to achieve benefits in the long term.

We cannot stress strongly enough, however, the critical need to develop most blocks
so that they can be easily integrated into multiple designs without modifying the code.
We are on the verge of being able to fit 7-10 million gates into a square centimeter of
silicon. The only way to design chips this large is to employ widespread, blackbox
reuse.

CHAPTER 2 The System-on-a-Chip
Design Process

This chapter gives an overview of the System-on-a-Chip (SoC) design methodology.
The topics include:

• Canonical SoC design

• System design flow

• The role of specifications throughout the life of a project

• System design process

2.1 A Canonical SoC Design

Consider the chip design in Figure 2-1. We claim that, in some sense, this design rep
resents the canonical or generic form of SoC design. It consists of:

• A microprocessor and its memory subsystem

• A datapath that includes interfaces to the external system

• Blocks that perform transformations on data received from the external system

• Another 110 interface to the external system

This design is somewhat artificial, but it contains most of the structures and chal
lenges found in real SoC designs. The processor could be anything from an 8-bit 8051
to a 64-bit RISC. The memory subsystem could be single or multi-leveled, and could
include SRAM and/or DRAM. The communication interfaces could include PCl,
Ethernet, USB, A-to-D, D-to-A, electro-mechanical, or electro-optical converters.
The data transformation block could be a graphics processor or a network router. The
M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

12 Reuse Methodology Manual

design process required to specify such a system, to develop and verify the blocks,
and to assemble them into a fabricated chip contains all the basic elements and chal
lenges of an SoC design.

Real SoC designs are, of course, much more complex than this canonical example. A
real design would typically include several sets of IP interfaces and data transforma
tions. Many SoC designs today include multiple processors, and combinations of pro
cessors and DSPs. The memory structures of SoC designs are often very complex as
well, with various levels of caching and shared memory, and specific data structures
to support data transformation blocks, such as MPEG2. Thus, the canonical design is
just a miniature version of an SoC design that allows us to discuss the challenges of
developing these chips by utilizing reusable macros.

----"'
I PERIPHERALS I
I __ J --

~ ..
~r

PROCESSOR _110. MEMORY .. MEMORY .. CONTROLLER

~~

~
SYSTEM BUS

~, ~ r ~ r

1/0 f---+ DATA r-+ 1/0
~ INTERFACE TRANSFORMATION INTERFACE --+

Figure 2-1 Canonical hardware view of SoC

2.2 System Design Flow

To meet the challenges of SoC, chip designers are changing their design flows in two
major ways:

• From a waterfall model to a spiral model

• From a top-down methodology to a combination of top-down and bottom-up

The System-on-a-Chip Design Process 13

2.2.1 Waterfall vs. Spiral

The traditional model for ASIC development, shown in Figure 2-2, is often called a
wateifall model. In a waterfall model, the project transitions from phase to phase in a
step function, never returning to the activities of the previous phase. In this model, the
design is often tossed "over the wall" from one team to the next without much interac
tion between the teams.

This process starts with the development of a specification for the ASIC. For complex
ASICs with high algorithmic content, such as graphics chips, the algorithm may be
developed by a graphics expert; this algorithm is then given to a design team to
develop the R1L for the ASIC.

After functional verification, either the design team or a separate team of synthesis
experts synthesizes the ASIC into a gate-level netlist. Then timing verification is per
formed to verify that the ASIC meets timing. Once the design meets its timing goals,
the netlist is given to the physical design team, which places and routes the design.
Finally, a prototype chip is built and tested. This prototype is delivered to the software
team for software debug.

In most projects, software development is started shortly after the hardware design is
started. But without a model of the hardware to use for debug, the software team can
make little real progress until the prototype is delivered. Thus, hardware and software
development are essentially serialized.

This flow has worked well in designs of up to lOOk gates and down to .5 /.1. It has con
sistently produced chips that worked right the first time, although often the systems
that were populated with them did not. But this flow has always had problems. The
handoffs from one team to the next are rarely clean. The R1L design team may have
to go back to the system designer and tell him that the algorithm cannot be imple
mented. The synthesis team may go back to the R1L team in and inform them that the
R1L must be modified to meet timing.

For large, deep submicron designs, this waterfall methodology simply does not work.
Large systems have sufficient software content that hardware and software must be
developed concurrently to ensure correct system functionality. Physical design issues
must be considered early in the design process to ensure that the design can meet its
performance goals.

14 Reuse Methodology Manual

Specification
development

RTLcode
development

"
Functional
verification

~

Synthesis

Timing
verification

!
Place and route

Prototype
build and test

!
Deliver to system integration and software test

Figure 2·2 Traditional waterfall ASIC design flow

The System-on-a-Chlp Design Process 15

As complexity increases, geometry shrinks, and time-to-market pressures continue to
escalate, chip designers are turning to a modified flow to produce today's larger SOC
designs. Many teams are moving from the old waterfall model to the newer spiral
development model. In the spiral model, the design team works on multiple aspects of
the design simultaneously, incrementally improving in each area as the design con
verges on completion.

Figure 2-3 shows the spiral SoC design flow. This flow is characterized by:

• Parallel, concurrent development of hardware and software

• Parallel verification and synthesis of modules

• Floorplanning and place-and-route included in the synthesis process

• Modules developed only if a predesigned hard or soft macro is not available

• Planned iteration throughout

In the most aggressive projects, engineers simultaneously develop top-level system
specifications, algorithms for critical subblocks, system-level verification suites, and
timing budgets for the final chip integrations. That means that they are addressing all
aspects of hardware and software design concurrently: functionality, timing, physical
design, and verification.

2.2.2 Top-Down vs. Bottom-Up

The classic top-down design process can be viewed as a recursive routine that begins
with specification and decomposition, and ends with integration and verification:

1. Write complete specifications for the system or subsystem being designed.

2. Refine its architecture and algorithms, including software design and hard-
ware/software cosimulation if necessary.

3. Decompose the architecture into well-defined macros.

4. Design or select macros; this is where the recursion occurs.

5. Integrate macros into the top level; verify functionality and timing.

6. Deliver the subsystem/system to the next higher level of integration; at the top
level, this is tapeout.

7. Verify all aspects of the design (functionality, timing, etc.).

With increasing time-to-market pressures, design teams have been looking at ways to
accelerate this process. Increasingly powerful tools, such as synthesis and emulation
tools, have made significant contributions. Developing libraries of reusable macros
also aids in accelerating the design process.

16 Reuse Methodology Manual

Goal: Maintain parallel interacting design flows

SYSTEM DESIGN AND VERIFICATION

PHYSICALl

Physical
specification:
area, power,

¢> clock tree
design

I- - - -- -
Preliminary ¢>
floorplan

~ - - -- -

Updated ¢>
floorplans

I- - -- -
Updated ¢>

floorplans

- - -- -

Trial ¢>
placement

[

TIMING l HARDWAREl

Timing Hardware
specification: specification

1/0 timing,

¢> clock
Algorithm frequency

development
& macro

decomposition
1---- - I- - --

Block timing ¢> Block
specification selection!

design
f---- - -- --

Block ¢> Block
synthesis verification

I- - -- - - - --
¢> Top-level

HDL

I- - -- 1-- ~---

Top-level ¢> Top-level
synthesis verification

Final place and route

Tapeout

SOFTWARE +
Software

specification

~ Application
prototype

development

- ~ - --

¢> Application
prototype
testing

I-- - - --

¢> Application
development

1-- 1-----

¢> Application
testing

1-- ----

~ Application
testing

Figure 2-3 Spiral SoC design flow

I-

• • • • • • • • -
• • • • • • •

1

The System-on-a-Chip Design Process 17

However, like the waterfall model of system development, the top-down design meth
odology is an idealization of what can really be achieved. A top-down methodology
assumes that the lowest level blocks specified can, in fact, be designed and built. If it
turns out that a block is not feasible to design, the whole specification process has to
be repeated. For this reason, real world design teams usually use a mixture of top
down and bottom-up methodologies, building critical low-level blocks while they
refine the system and block specifications. Libraries of reusable hard and soft macros
clearly facilitate this process by providing a source of preverified blocks, proving that
at least some parts of the design can be designed and fabricated in the target technol
ogy and perform to specification.

2.2.3 Construct by Correction

The Sun Microsystems engineers that developed the UltraSPARC processor have
described their design process as "construct by correction." In this project, a single
team took the design from architectural definition through place and route. In this
case, the engineers had to learn how to use the place and route tools, whereas, in the
past, they had always relied on a separate team for physical design. By going through
the entire flow, the team was able to see for themselves the impact that their architec
tural decisions had on the area, power, and performance of the final design.

The UltraSPARC team made the first pass through the design cycle - from architec
ture to layout - as fast as possible, allowing for multiple iterations through the entire
process. By designing an organization and a development plan that allowed a single
group of engineers to take the design through multiple complete iterations, the team
was able to see their mistakes, correct them, and refine the design several times before
the chip was finally released to fabrication. The team called this process of iteration
and refinement "construct by correction".

This process is the opposite of "correct by construction" where the intent is to get the
design completely right during the first pass. The UltraSPARC engineers believed that
it was not possible at the architectural phase of the design to foresee all the implica
tion their decisions would have on the final physical design.

The UltraSPARC development projects was one of the most successful in Sun Micro
systems' history. The team attributes much of its success to the "construct by correc
tion" development methodology.

2.2.4 Summary

Hardware and software teams have consistently found that iteration is an inevitable
part of the design process. There is significant value in planning for iteration, and
developing a methodology that minimizes the overall design time. This usually means

18 Reuse Methodology Manual

minimizing the number of iterations, especially in major loops. Going back to the
specification after an initial layout of a chip is expensive; we want to do it as few
times as possible, and as early in the design cycle as possible.

We would prefer to iterate in tight, local loops, such as coding, verifying, and synthe
sizing small blocks. These loops can be very fast and productive. We can achieve this
if we can plan and specify the blocks that we need with confidence that the blocks can
be built to meet the needs of the overall design. A rich library of pre-designed blocks
clearly helps here; parameterized blocks that allow us to make tradeoffs between
function, area, and performance are particularly helpful.

In the following sections we describe design processes in flow diagrams because they
are a convenient way of representing the process steps. Iterative loops are often not
shown explicitly, in order to simplify the diagrams. However, we do not wish to imply
a waterfall methodology. Often, it is necessary to investigate some implementation
details before completing the specification. In the process flow diagrams, one stage
can begin before the previous stage is completed, but no stage can be considered com
plete until the previous stage is completed.

A word of caution: the inevitability of iteration should never be used as an excuse to
short-change the specification process. Taking the time to carefully specify a design is
the best way to minimize the number of iterative loops and to minimize the amount of
time spent in each loop.

2.3 The Specification Problem

The first part of the design process consists of recursively developing, verifying, and
refining a set of specifications until they are detailed enough to allow RTL coding to
begin. The rapid development of clear, complete, and consistent specifications is a
difficult problem. In a successful design methodology, it is the most crucial, challeng
ing, and lengthy phase of the project. If you know what you want to build, implemen
tation mistakes are quickly spotted and fixed. If you don't know, you may not spot
major errors until late in the design cycle or until fabrication.

Similarly, the cost of documenting a specification during the early phases of a design
is much less than the cost of documenting it after the design is completed. The extra
discipline of formalizing interface definitions, for instance, can occasionally reveal
inconsistencies or errors in the interfaces. On the other hand, documenting the design
after it is completed adds no real value for the designer and either delays the project or
is skipped altogether.

The System-on-a-Chip Design Process 19

2.3.1 Specification Requirements

In an SoC design, specifications are required for both the hardware and software por
tions of the design. The specifications must completely describe the behavior of the
design as seen by the outside world, including:

Hardware

• Functionality

• Timing

• Performance

• External interface to other hardware

• Interface to SW

• Physical design issues such as area and power

Software

• Functionality

• Timing

• Performance

• Interface to HW

• SW structure, kernel

Traditionally, specifications have been written in a natural language, such as English,
and have been plagued by ambiguities, incompleteness, and errors. Many companies,
realizing the problems caused by natural language specifications, have started using
executable specifications for some or all of the system.

2.3.2 Types of Specifications

There are two major techniques currently being used to help make hardware and soft
ware specifications more robust and useful: formal specification and executable spec
ification.

• Formal specification - In formal specification, the desired characteristics of
the design are defined independently of any implementation. This type of specifi
cation is considered promising in the long term. Once a formal specification is
generated for a design, formal methods such as property checking can be used to
prove that a specific implementation meets the requirements of the specification.
A number of formal specification languages have been developed, including one
for VHDL called VSPEC [1]. These languages typically provide a mechanism for
describing not only functional behavior, but timing, power, and area requirements

20 Reuse Methodology Manual

as well. To date, formal specification has not been used widely for commercial
designs, but continues to be an important research topic.

• Executable specifications - Executable specifications are currently more use
ful for describing functional behavior in most design situations. An executable
specification is typically an abstract model for the hardware and/or software being
specified. For high level specifications, the executable specification is typically
written in C, C++, SDL[l], Vera, or Specman. At the lower levels, hardware is
usually described in Verilog or VHDL. Developing these software models early in
the design process allows the design team to verify the basic functionality and
interfaces of the hardware and software long before the detailed design begins.

Most executable specifications address only the functional behavior of a system,
so it may still be necessary to describe critical physical specifications - timing,
clock frequency, area, and power requirements - in a written document. Efforts
are under way to develop more robust ways to capture timing and physical design
requirements.

2.4 The System Design Process

The system design process shown in Figure 2-4 employs both executable and written
specifications. This process involves the following steps:

1. System specification
The process begins by identifying the system requirements: the required functions,
performance, cost, and development time for the system. These are formulated
into a preliminary specification, often written jointly by engineering and market
ing. Then, a high-level illgorithmic model for the overall system is developed, usu
ally in C/C++. Tools such as COSSAP, SPW, and Matlab may be more useful for
some algorithmic-intensive designs, and tools such as Bones, NuThena, SDT
more useful for control dominated designs.

This high-level model provides an executable specification for the key functions of
the system. It can then be used as the reference for future versions of the design.
For instance, many microprocessor design teams start by developing a C/C++
behavioral model of the processor that is instruction accurate. As the design is
realized in RTL, the behavior of the RTL design is compared to the behavior of the
C model to verify its correctness.

The software team can use this high-level model of the hardware a& a vehicle for
developing and testing the system software. With the software content of SoC
designs increasing rapidly, it is essential to start the software design as early as
possible.

The System-on-a-Chip Design Process 21

2. Model refinement and test
A verification environment for the high-level model is developed to refine and test
the algorithm. This environment provides a mechanism for refining the high-level
design, and verifying the functionality and performance of the algorithm. If prop
erly designed, it can also be used later to verify models for the hardware and soft
ware, such as an RTL model verified using hardware/software cosimulation. For
systems with very high algorithmic content, considerable model development,
testing, and refinement occurs before the hardware/software partitioning.

For instance, a graphics or multimedia system may be initially coded in C/C++
with all floating point operations. This approach allows the system architect to
code and debug the basic algorithm quickly. Once the algorithm is determined, a
fixed-point version of the model is developed. This allows the architect to deter
mine what accuracy is required in each operation to achieve performance goals
while minimizing die area.

Finally, a cycle-accurate and bit-accurate model is developed, providing a very
accurate model for implementation. In many system designs, this refinement of
the model from floating point to fixed point to cycle accurate is one of the key
design challenges.

These multiple models are very useful when the team is using hardware/software
cosimulation to debug the software. The behavioral model can provide very fast
simulation for most development and debugging. Later, the detailed, cycle-accu
rate model can be used for final software debug.

3. Hardware/software partitioning (decomposition)
As the high-level model is refined, the system architects determine the hard
ware/software partition; that is, the division of system functionality between hard
ware and software. This is largely a manual process requiring judgment and
experience on the part of the system architects and a good understanding of the
cost/performance trade-offs for various architectures. A rich library of preverified,
characterized macros and a rich library of reusable software modules are essential
for identifying the size and performance of various hardware and software func
tions. Tools, such as NuThena's Forsight can assist in the validation and perfor
mance estimates of a partition.

The final step in hardware/software partitioning is to define the interfaces between
hardware and software, and specify the communication protocols between them.

4. Block specification
The output of the hardware/software partitioning phase is a hardware specification
and a software specification. The hardware specification includes a description of
the basic functions, the timing, area, and power requirements, and the physical and
software interfaces, with detailed descriptions of the I/O pins and the register map.

22 Reuse Methodology Manual

5. System behavioral model and cosimulation
Once the hardware/software partition is determined, a behavioral model of the
hardware is developed in parallel with a prototype version of the software. Often
these can be derived from the system model and from behavioral models of hard
ware functions that already exist in a library of macros. Hardware/software cosim
ulation then allows the hardware model and prototype software to be refined to the
point where a robust executable and written functional specifications for each are
developed. This hardware/software cosimulation continues throughout the design
process, verifying interoperability between the hardware and software at each
stage of design.

The System-on-a-Chip Design Process

WRITE
hardware specification

DEVELOP
behavioral model for

hardware

WRITE
preliminary specification

for macro

IDENTIFY
system

requirements

WRITE

DEVELOP
high-level algorithmic

model
c/C++lMATLABlSEs/

NuThena/BonesICOSSAP

REFINE and TEST
algorithms

c/C++lCOSSAPlSPWISDL

DEFINE
interfaces

Hardware/software
COSIMULATION

WRITE
software specification

DEVELOP
prototype of software

23

Figure 2-4 Top-level system design and recommended applications for each step

24 Reuse Methodology Manual

References

1. Ellsberger, Jan, et al. SDL: Formal Object-Oriented Language for Communicating Systems. Prentice
Hall, 1997.

CHAPTER 3 System-Level Design
Issues: Rules and Tools

This chapter discusses system-level issues such as layout, clocking, floorplanning, on
chip busing, and strategies for synthesis, verification, and testing. These elements
must be agreed upon before the components of the chip are selected or designed.

Topics in this chapter include:

• The standard model

• Design for timing closure

• Design for verification

• System interconnect and on-chip buses

• Design for low power

• Design for test

• Prerequisites for reuse

3.1 The Standard Model

As more design teams use IP to do SoC designs, there is a consensus emerging about
some of the key aspects of reuse-based design. We call this view the "standard model"
for design reuse.

In this standard model, the fundamental proposition is this: well-designed IP is the
key to successful SoC design. No matter how good our SoC integration flow, if the
blocks we are using are not designed well, the road to tapeout is long and very, very

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

26 Reuse Methodology Manual

painful. On the other hand, well designed IP can be integrated with virtually any (rea
sonably capable) SoC flow, and produce good results quickly.

In this chapter, we discuss the design guidelines for producing well-designed IP, as
well as how to integrate well-designed IP into an SoC design. These guidelines are
largely driven by the needs of the IP integrator and chip designer. In this sense, they
are basically system-level design guidelines.

In the next chapter, we discuss detailed coding guidelines, many of which are
intended to implement the design guidelines discussed here.

There are some basic premises underlying all the guidelines in this book:

• Discipline - Building large systems (on a chip or otherwise) requires restricting
the design domain to practices that consistently produce scalable, supportable, and
easy to integrate designs.

• Simplicity - The simpler the design, the easier it is to analyze, to process with
various tools, to verify, and to reach timing closure. All designs have problems;
the simpler the design, the easier it is to find and fix them.

• Locality - Problems are easiest to find and solve when you know where to look.
Making timing and verification problems local rather than global has a huge pay
off in reducing design time and improving the quality of a design. Careful block
and interface design is essential for achieving this locality.

The authors, and many designers like us, learned these principles while designing
large systems, and often learned them the hard way. For example (Mike speaking
here), one of my first jobs was designing very large (hundreds of boards, each with
hundreds of chips) ECL systems. When I arrived on the job, I was given a "green
book" of how to do ECL system design. One of the rules was always to buffer inputs
next to the edge connector, and always to buffer outputs next to the connector. This
buffering essentially isolated the board, so that the backplane traces could be designed
as transmission lines without knowing the details of how the daughter boards would
load each signal. Essentially it made both backplane and board design local (and rela
tively simple) design problems. The global problem, of designing a transmission line
backplane with arbitrary stubs on the daughter boards, is totally intractable.

Similarly, on large chip designs, we can make block design into a local problem by
carefully designing the interfaces. Good interfaces decouple internal timing and func
tion (as much as possible) from the external behavior of the block, and thus from the
timing and functional behavior of the other blocks. Thus, each block can be designed
and verified in isolation. If the interfaces are consistent, then the blocks should plug
and play; any remaining problems should be real, system-level design problems and
not bugs in the block designs themselves.

System-Level Design Issues: Rules and Tools 27

This concept of locality is also fundamental to object oriented programming. Here,
classes are used to isolate internal data structures and functions from the outside
world. Again, by carefully designing the interfaces between the class and the rest of
the program, design and debug of key functionality can be isolated from the rest of the
program. Software engineers have found that this approach greatly facilitates design
and debug of huge software systems, and greatly improves the quality of these sys
tems.

There are two problems that dominate the SoC design process: achieving timing clo
sure (that is, getting the physical design to meet timing), and functional verification.
Before we discuss design techniques for addressing these issues, we need to address
the issue of hard vs. soft IP. This issue can affect how we approach the problems of
timing closure and verification.

3.1.1 Soft IP vs. Hard IP

As the industry gets more experience in reuse-based SoC design, the distinction
between hard and soft IP is beginning to blur. Until recently, there was a sharp distinc
tion between which IP should be hard and which should be soft. If we look at the
canonical design in Figure 3-5, this view held that the processor should be hard and
the interface blocks and peripherals should be soft. The memory, of course, is gener
ated and treated essentially as a hard block. Reasonable people would disagree as to
whether the data transformation block should be hard or soft.

Today, the processor may well be available in soft form, and many of the other blocks
may be available as hard macros. ARM and the DSP Group have both announced soft
versions of their traditionally hard processor cores [1,2].

The emerging trend is that all IP starts out as soft IP, and the RTL is considered the
golden reference. This approach is essential for rapid migration to new processes. If a
piece of IP is taken to GDSH, then this hard representation should be stored in the IP
repository along with the soft version. If another design is done in the same technol
ogy, and if it can use the same functionality and physical characteristics as the hard
version, then the hard version can be used in the chip design.

On the other hand, if the process is new, or if the blockage from a piece of hard IP
makes design of the overall chip difficult, then the soft version should be used. Thus,
the soft and hard versions of the IP are just different views of the IP, each appropriate
for different situations.

28

I PERiPHERALS ""\
I (Soft) I ____ J

~

~,

PROCESSOR
(Hard)

H

"
1/0

INTERFACE
(Soft) --+ --+

Reuse Methodology Manual

MEMORY MEMORY ... CONTROLLER ...
(Generator) ...

(Soft)
..

A~

SYSTEM BUS

~ , "
DATA 1/0

TRANSFORMATION r+ INTERFACE f--+ (Soft or Hard) (Soft)

Figure 3·1 Sources of IP for the canonical design

3.1.2 The Role of Full Custom Design in Reuse
The standard model for reuse calls for standard cell design using RTL as the reference
representation of the design. Designs are then synthesized to the target technology
and physical design is performed. This approach does not use full custom design
because full custom design results in non-synthesizable, and therefore, less portable
designs.

Some design teams have traditionally relied on full custom techniques to differentiate
their designs in terms of timing performance, area, or low power. Unfortunately, these
teams have tended also to differentiate themselves in slow time-to-market. We see full
custom design rapidly disappearing from the vast majority of designs. The small
incremental benefits from full custom does not justify the time-to-market problem
that these non-portable, hard to modify designs produce.

The performance penalty for semi-custom, standard cell-based design appears to be
quite small. In one recent design, a full custom processor was redesigned using the
design methodology described in this book. The results were:

• Maximum clock frequency was the same as for the full custom design.

• Power was within a few percent of the original full custom version after Power
Compiler was used to insert clock gating. Clock gating was used in the full custom
design, but not in the redesigned code. Consequently, power was at first about 2x

System-Level Design Issues: Rules and Tools 29

higher in the redesign than in the custom design. By using Power Compiler instead
of hand-instantiated clock gating in the redesign, both low power and full reusabil
ity were achieved.

• Area was initially about 7% larger than the full custom design. However, all of this
difference was found to be in a small, arithmetic operator. By replacing this opera
tor with a full custom version, the area for the entire processor was the same as for
the full custom version.

These results show why even processor designers are using full custom techniques
only for small portions of their designs. Processor designers tend to use synthesis for
control logic and full custom only for data paths. The above results indicate that selec
tive use of full custom only on small parts of the data path may produce the same
results.

These observations lead to an interesting model for IP designers and integrators. We
expect non-processor designs to avoid full custom design completely. But for proces
sor designs, integrators can use the RTL version of the processor as-is for rapid
deployment in a new technology. For the most aggressive designs, they may selec
tively replace one or two key blocks with full custom versions. This approach allows
the integrator to balance time-to-market against performance, without incurring the
full cost of a full custom design.

3.2 Design for Timing Closure: Logic Design Issues

Timing and synthesis issues include interface design, synchronous or asynchronous
design, clock and reset schemes, and selection of synthesis strategy.

3.2.1 Interfaces and Timing Closure

The proper design of block interfaces can make timing closure - both at the block
level and system level- a local problem that can be (relatively) easily solved.

One of the major issues compounding the problem of timing closure for large chips is
the uncertainty in wire delays. In deep-submicron technologies, the wire delay
between gates can be much larger than the intrinsic delay of the gate. Wire load mod
els provide estimates of these wire delays for synthesis, but these are only estimates.
As blocks become larger, the variance between the average delay (well estimated by
the wire load model) and the actual delay on worst case wires can become quite large.
To meet timing constraints, it may be necessary to increase the drive strengths of cells
driving long wires. For very long wires, additional buffers must be inserted at inter
mediate points between the gates to ensure acceptable rise and fall times as well as
delays.

30 Reuse Methodology Manual

The problem is, of course, that the architect and designer do not know which wires
will require additional buffering until physical design. If the designer has to wait until
layout to learn that the design has to be modified to meet timing, then the project can
easily suffer significant delays. If timing problems are severe enough to require archi
tectural changes, such as increasing the pipeline depth, then other blocks, and even
software, may be affected.

Timing driven place and route tools can help deal with some of these timing problems
by attempting to place critical timing paths so as to minimize total wire length. But
these tools cannot correct for fundamental architectural issues, such as an insufficient
number of pipeline stages. And like most optimization tools, they work better on rela
tively small, local problems than on large, global ones.

Macro Interfaces

For macros, both inputs and outputs should be registered, as shown in Figure 3-2.
This approach makes timing closure within each block completely local; internal tim
ing has no effect on the timing of primary inputs and outputs of the block. Macro A
and Macro B can be designed independently, and without consideration of their rela
tive position on the chip. This design gives a full clock cycle to propagate outputs
from one block to inputs of another. If necessary, buffers can to be inserted at the top
level to drive long wires between blocks, without requiring redesign of Macros A and
B.

This kind of defensive timing design is useful in all large chip designs, but is essential
for reuse-based SOC design. The IP designer does not know the timing context in
which the block will be used. Output wires may be short or they may be many milli
meters. Defensive timing design is the only way to ensure that timing problems will
not limit the use of the IP in multiple designs.

The major exception to this policy is the interface between a processor and cache
memory. This interface is critical for high-performance designs, and usually requires
special design. However, we prefer to think of the processor plus cache as being the
true macro, and that the interface between this macro and the rest of the system
should comply with the design guidelines mentioned above.

Subblock Interfaces

There is a corresponding design guideline for subblocks of macros, as shown in
Figure 3-3. For these designs, registering the outputs of the subblocks is sufficient to
provide locality in timing closure. Because Macro A is designed as a unit, and is rela
tively small, the designer has all the timing context information needed to develop
reasonable timing budgets for the design.

System-Level Design Issues: Rules and Tools 31

D 0
-

-f0-

b MACRO A

r--

0 0 CHIP
b MACRO B

Figure 3-2 Registering inputs and outputs of major blocks

SUBBLOCK 1 SUBBLOCK2

MACRO A

Figure 3-3 Registering outputs of subblocks

Because subblock 1 is relatively close to subblock 2, there is a very small chance that
the output wires from subblock 1 to subblock 2 will be long enough to cause timing
problems [3]. The wire load estimates, synthesis results, and the timing constraints
that we provide to the physical design tools should all be accurate enough to achieve
rapid timing closure in physical design.

32 Reuse Methodology Manual

There are several issues with this approach:

• When is a block large enough that we must register outputs?

• When is a block large enough that we must register both inputs and outputs?

• When can we break these rules and how do we minimize timing risks when we
do?

The first issue is reasonably straightforward: any block that is synthesized as a unit
should have its outputs registered. Synthesis, and time budgeting for synthesis, is
where we start striving for timing closure. This is where we want to start establishing
locality in the timing of our designs.

The second issue has a similar answer: any block that is floorplanned as a unit should
have its inputs and outputs registered. With blocks, especially reusable blocks, that
are floorplanned as standalone units, we do not necessarily know how long the wires
on its outputs and inputs will be. Registering all interfaces gives us the best chance of
achieving timing closure for an arbitrary chip with an arbitrary floorplan. Consider
our canonical design. In some designs, we can ensure that the system bus controller
and the data transformation block will be close. However, we would like to design the
data transformation block so that it can be used in a wide variety of chip designs,
including those where the bus controller is ten or more millimeters away. For this rea
son, we want to register all the interfaces of the data transformation block.

We should violate these guidelines only when we absolutely need to, and only when
we understand the timing and floorplanning implications of doing so. For example,
the PCI specification requires several levels of logic between the PCI bus and the first
flop in the PCI interface block, for several critical control signals. In this case we can
not register all the inputs of the PCI bus directly; but as a result we must floorplan the
chip so that the PCI block is very close to the I/O pads for those critical control sig
nals.

Registering the interfaces to the major blocks of a design is the single most powerful
tool in ensuring timing closure. Localizing timing closure issues allows the synthesis,
timing analysis, and timing-driven place and route tools to work effectively.

Once we have reduced timing closure to a series of local timing problems, there are
several techniques for the internal design of blocks that we can use to facilitate rapid
timing closure. These techniques are based on the same concept of locality as above.
We want to make timing closure within blocks a series of local problems as well.
They key to achieving this locality is to use a fully synchronous, flip-flop based
design style.

System-Level Design Issues: Rules and Tools 33

3.2.2 Synchronous vs. Asynchronous Design Style

Rule - The system should be synchronous and register based. Latches should be
used only to implement small memories or FIFOs. The FIFOs and memories should
be designed so that they are synchronous to the external world and are edge triggered.
Exceptions to this rule should be made with great care and must be fully documented.

In the past, latch-based designs have been popular, especially for some processor
designs. Multi-phase, non-overlapping clocks were used to clock the various pipeline
stages. Latches were viewed as offering greater density and higher performance than
register (flop) based designs. These benefits were sufficient to justify the added com
plexity of design.

Today, the tradeoffs are quite different. Deep submicron technology has made a huge
number of gates available to the chip designer and, in most processor-based designs,
the size of on-chip memory is dwarfing the size of the processor pipeline. Also, with
deep submicron design, delays are dominated by interconnect delay, so the difference
in effective delay between latches and flip-flops is minimal.

On the other hand, the cost of the increased complexity of latch-based design has
risen significantly with the increase in design size and the need for design reuse.

Latch timing is inherently ambiguous, as illustrated in Figure 3-4. The designer may
intend data to be set up at the D input of the latch before the leading edge of the clock,
ill which case data is propagated to the output on the leading edge of clock. Or, the
designer may intend data to be set up just before the trailing edge of the clock, in
which case data is propagated to the output (effectively) on the trailing edge of the
clock.

Designers may take advantage of this ambiguity to improve timing. "Tune borrow
ing" is the practice of absorbing some delay by:

• Guaranteeing that the data is set up before the leading clock edge at one stage

• Allowing data to arrive as late as one setup time before the trailing clock edge at
the next stage

The problem caused by the ambiguity of latch timing, and exacerbated by time bor
rowing, is that it is impossible by inspection of the circuit to determine whether the
designer intended to borrow time or the circuit is just slow. Thus, timing analysis of
each latch of the design is difficult. Over a large design, timing analysis becomes
impossible. Only the original designer knows the full intent of the design. Thus, latch
based design is inherently not reusable.

For this reason, true latch-based designs are not appropriate for SoC designs. Some
LSSD design styles are effectively register-based and are acceptable if used correctly.

34

3.2.3 Clocking

.. 0

.. G ..

Reuse Methodology Manual

QI-----••

u
From which edge of the clock is
data propagated to the output?

Figure 3·4 Latch timing

Rule - The number of clock domains and clock frequencies must be documented. It
is especially important to document:

• Required clock frequencies and associated phase locked loops

• External timing requirements (setup/hold and output timing) needed to interface to
the rest of the system

Guideline - Use the smallest possible number of clock domains. If two asynchro
nous clock domains interact, they should meet in a single module, which should be as
small as possible. Ideally, this module should consist solely of the flops required to
transfer the data from one clock domain to the other. The interface structure between
the two clock domains should be designed to avoid metastability [4,5].

Guideline - If a phase locked loop (PLL) is used for on-chip clock generation, then
some means of disabling or bypassing the PLL should be provided. This bypass
makes chip testing and debug much easier, and facilitates using hardware modelers
for system simulation.

System-Level Design Issues: Rules and Tools 35

3.2.4 Reset

Rule - The basic reset strategy for the chip must be documented. It is particularly
important to address the following issues:

• Is the reset synchronous or asynchronous?

• Is there an internal or external power-on reset?

• Is there more than one reset (hard vs. soft reset)?

• Is each macro individually resettable for debug purposes?

There are advantages and disadvantages to both synchronous and asynchronous reset.

Synchronous reset:

• Is easy to synthesize - reset is just another synchronous input to the design.

• Requires a free-running clock, especially at power-up, for reset to occur.

Asynchronous reset:

• Does not require a free-running clock.

• Is harder to implement - reset is a special signal, like clock. Usually, a tree of
buffers is inserted at place and route.

• Must be synchronously de-asserted in order to ensure that all flops exit the reset
condition on the same clock. Otherwise, state machines can reset into invalid
states.

• Makes static timing analysis, cycle-based simulation more difficult, and can make
the automatic insertion of test structures more difficult.

The major danger with using synchronous reset is the problem of resetting tristate
buses. Tristate buses must be reset immediately on power-up in order to prevent mul
tiple drivers from driving the bus. Asynchronous power-up reset is the most straight
forward way of addressing this. Our response to this issue is to recommend that users
not employ tristate buses. Tristate buses require very careful physical design to ensure
that only one driver is enabled at a time, and to ensure that the bus does not float
between operations. (A floating bus could float to threshold voltage, causing a large
amount of current to flow in the receivers.)

Because there is no guarantee that there will not be any tristate buses in the target chip
environment, many IP providers are choosing to design their IP with asynchronous
reset.

36 Reuse Methodology Manual

3.2.5 Timing Exceptions and Multicycle Paths

In general, the standard model of reuse is for a fully synchronous system. Asynchro
nous signals and other timing exceptions should be avoided; they make chip-level
integration significantly more difficult. The optimization tools - synthesis and tim
ing-driven place and route - work best with fully synchronous designs. Once the
clock frequency is defined, these tools can work to ensure that every path from flop to
flop meets this timing constraint. Any exception to this model - any asynchronous
signals, multicycle paths, or test signals that do not need to meet this timing constraint
- must be identified. Otherwise, the optimization tools will focus on optimizing
these (false) long paths, and not properly optimize the real critical timing paths. Iden
tifying these exceptions is a manual task, and prone to error. Our experience has
shown that the fewer the exceptions, the better the results of synthesis and physical
design.

3.3 Design for Timing Closure: Physical Design Issues

Once a design synthesizes and meets timing, timing closure becomes a physical
design issue. Can we physically place and route the design so as to meet the timing
constraints of the design? One of the keys to achieving rapid timing closure in physi
cal design is to plan the physical design early.

3.3.1 F100rplanning

RuI~ - Floorplanning must begin early in the design process. The size of the chip is
critical in determining whether the chip will meet its timing, performance, and cost
goals. Some initial floorplan should be developed as part of the initial functional spec
ification for the SoC design.

This initial floorplan can be critical in determining both the functional interfaces
between macros and the clock distribution requirements for the chip. If macros that
communicate with each other must be placed far apart, signal delays between the
macros may exceed a clock cycle, forcing a lower-speed interface between the mac
ros.

3.3.2 Synthesis Strategy and Timing Budgets

Rule - Overall design goals for timing, area, and power should be documented
before macros are designed or selected. In particular, the overall chip synthesis meth
odology needs to be planned very early in the chip design process.

System-Level Design Issues: Rules and Tools 37

We recommend a bottom-up synthesis approach. Each macro should have its own
synthesis script that ensures that the internal timing of the macro can be met in the tar
get technology. This implies that the macro should be floorplanned as a single unit to
ensure that the original wire load model still holds and is not subsumed into a larger
floorplanning block.

Chip-level synthesis then consists solely of connecting the macros and resizing output
drive buffers to meet actual wire load and fanout. To facilitate this, the macro should
appear at the top level as two blocks: the internals of the macro (which are
dont_touched) and the output buffers (which undergo incremental compile).

3.3.3 Hard Macros

Rule - A strategy for floorplanning, placing, and routing a combination of hard and
soft macros must be developed before hard macros are selected or designed for the
chip. Most SoC designs combine hard and soft macros, and hard macros are problem
atic because they can cause blockage in the placement and routing of the entire chip.
Too many hard macros, or macros with the wrong aspect ratio, can make the chip
unroutable or unacceptably big, or can create unacceptable delays on critical nets.

3.3.4 Clock Distribution

Rule - The design team must decide on the basic clock distribution architecture for
the chip early in the design process. The size of the chip, the target clock frequency,
and the target library are all critical in determining the clock distribution architecture.

To date, most design teams have used a balanced clock tree to distribute a single clock
throughout the chip, with the goal of distributing the clock with a low enough skew to
prevent hold-time violations for flip-flops that directly drive other flip-flops.

For large, high-speed chips, this approach can require extremely large, high-power
clock buffers. These buffers can consume as much as half of the power in the chip and
a significant percentage of the real estate.

Guideline - For chips attempting to achieve lower power consumption, design
teams are turning to a clock distribution technique similar to that used on boards
today. A lower-speed bus is used to connect the modules and all transactions between
modules use this bus. The bus is fully synchronous and a clock is distributed as one of
the bused signals. The clock distribution for this bus still requires relatively low skew,
but the distribution points for the clock are much fewer. Each macro can then syn
chronize its own local clock to the bus clock, either by buffering the bus clock or by
using a phase locked loop. This local clock can be a multiple of the bus clock, allow
ing higher frequency clocking locally.

38 Reuse Methodology Manual

3.4 Design for Verification: Verification Strategy

Design teams consistently list timing closure and verification as the major problems
in chip design. For both of these problems, careful planning can help reduce the num
ber of iterations through the design process. And for both problems, the principle of
locality can help reduce both the number of iterations and the time each iteration
takes, by making problems easier to find and to fix.

The objective of verification is to ensure that the block or chip being verified is 100%
functionally correct. In practice, this objective is rarely, if ever, achieved. In software,
several defects per thousand lines of code is typical for new code [6,7]. RTL code is
unlikely to be dramatically better.

We have found that the best strategy for minimizing defects is to do bottom up verifi
cation; that is, to verify each module as thoroughly as possible before it is integrated
into the next level module (or chip). Finding and fixing bugs is easier in small designs.
Then, the major verification task in the next level module is to test the interaction
between sub-modules.

The major difficulty in bottom-up verification is developing testbenches at every level
of hierarchy. For this reason, designers often do cursory testing at the submodule level
(where a submodule is typically designed by a single engineer) before integrating it
into the large block (typically designed by five or six engineers). This approach may
be more convenient, but it usually results in poorer verification.

With modem testbench creation languages, such as Vera and Specman, creating test
benches at the submodule level is considerably easier than before. For well-designed
blocks with clean, well-defined interfaces, these tools plus code coverage tools allow
the designer to do very thorough verification at the submodule level, as well as at the
module and chip levels.

Rule - The system-level verification strategy must be developed and documented
before macro selection or design begins. Selecting or designing a macro that does not
provide the modeling capability required for system-level verification can prevent
otherwise successful SoC designs from completing in a timely manner. See Chapter
11 for a detailed discussion of system-level verification strategies.

Rule - The macro-level verification strategy must be developed and documented
before design begins. This strategy should be based on bottom-up verification. Clear
goals, testbench creation methodology, and completion metrics should all be defined.
See Chapter 7 for a detailed discussion of macro-level verification.

Guideline - The verification strategy determines which verification tools can be
used. These tools could include event-driven simulation, cycle-based simulation,

System-Level Design Issues: Rules and Tools 39

and/or emulation. Each of these tools could have very specific requirements in terms
of coding style. If a required macro or testbench is not coded in the style required by
the tool, the design team may have to spend a significant amount of effort to translate
the code.

The verification strategy also determines the kinds of testbenches required for system
level verification. These testbenches must accurately reflect the environment in which
the final chip will work, or else we are back in the familiar position of ''the chip
works, but the system doesn't." Testbench design at this level is non-trivial and must
be started early in the design process.

3.5 System Interconnect and On-Chip Buses

The wide variety of buses used in SOC designs presents a major problem for reuse
based design. A number of companies and standards committees have attempted to
standardize buses and interfaces, with mixed results. In this section, we discuss some
of the issues facing designers attempting to design IP for multiple environments and
SoC designers attempting to integrate IP from various (incompatible) sources.

3.5.1 Basic Interface Issues

The version of our canonical design shown in Figure 3-5 shows a common configura
tion for buses on an SoC design. A hierarchy of buses is used to deal with the different
bandwidth requirements of the various blocks in the system. A high-speed processor
bus provides a high-bandwidth channel between the processor and its primary periph
erals. A lower-bandwidth system bus provides a channel between the processor and
the other blocks in the system. In our case, the data transformation block only needs
setup information from the processor; the high speed path is from the 110 block to the
data transformation block.

The challenge to the SoC designer is determining which detailed bus architectures to
use for the various buses.

40 Reuse Methodology Manual

~
MEMORY

~
MEMORY

PROCESSOR CONTROLLER

PROCESSOR
BUS [PERIPHERAL 1] PERIPHERAL 21

CONTROLLER

~i" ~

~, ~

~

PROCESSOR BUS
~r

I ADAPTER

..
SYSTEM BUS

~ ~,. ~,.

1/0 -. DATAXFORM -. 1/0 --.

Figure 3·5 A hierarchical bus structure

3.5.2 Tristate vs. Mux Buses

The first consideration in designing anyon-chip bus is whether to use a tristate bus or
a multiplexer-based bus. Tristate buses are popular for board-level design, because
they reduce the number of wires in the design. Tristate buses are problematic for on
chip interconnect, however. It is essential to ensure that only one driver is active on
the bus at anyone time; any bus contention, with multiple drivers active at the same
time, can reduce the reliability of the chip significantly. For high-performance buses,
where we want to be driving the bus on nearly every cycle, this requirement can pro
duce very timing-critical, technology-dependent designs. Similarly, tristate buses
must never be allowed to float; if they float to threshold voltage, they can cause high
currents in the receiver, again reducing long-term chip reliability. Either some form of

System-Level Design Issues: Rules and Tools 41

bus-keeper, or a guarantee that exactly one driver is driving the bus at all times, is
required. This requirement is particularly difficult to meet during power-on.

Guideline - For these reasons, we recommend using multiplexer-based buses when
ever possible. They are not nearly as technology-dependent as tristate buses, and thus
result in much more portable designs. They are simpler and much less likely to affect
long-term reliability of the chip. Thus, they are easier to implement, and in general
lead to shorter development times.

3.5.3 Reuse Issues and On-Chip Buses

One major problem in reuse-based design is the large number of different bus archi
tectures used in chip designs. Different processors, of course, all have different buses;
but even different divisions within the same company, using the same processor, will
use slightly different bus architectures. This fact makes interchange of IP even
between different divisions of the same company very problematic.

To address this problem, some companies have attempted to standardize on a single
bus. However, the requirements of different designs have prevented this approach
from being successful. Some chip designs have very aggressive timing goals, and
need very wide, high performance buses. Other designs are targeting low-power
applications, and need a narrow, low-power bus. These differing requirement have
prevented any effective standardization of buses within companies, much less across
the industry.

VSIA, running into these problems when it tried to establish a standard bus, has pro
posed a different approach. Under their proposal, IP blocks would be designed with
VSI standard interfaces. A series of bus adapters would then bolt on to the IP, allow
ing the IP to work with anyon-chip bus. This approach is shown in Figure 3-6.

This bus adapter approach is elegant in concept, but poses some problems in practice.
The IP now has several layers of interface between the core functionality and the bus:
the IP side VSI interface, and the two interfaces in the adapter. These multiple layers
may well degrade the performance of the IP, and will certainly add gates to the design.

A number of companies are examining this adapter approach carefully, and are devel
oping internal projects for testing it. But it is too early to tell if this approach will
become widely adopted [8]. Other companies have decided to standardize on a few
buses, typically three or four, and to design IP to work with all of these standard
buses. Usually this means that macros are designed so that the interface block is a sep
arate subblock of the IP. Three or four different interface blocks are designed to allow
the macro to interface to all of the standard buses.

42

IP

ADAPTER]

~~

~,

Reuse Methodology Manual

VSISTANDARDINTERFFACE

SYSTEM BUS

Figure 3·6 A bus-adapter approach to IP-bus interoperability

3.5.4 IP·to·IP Interfaces

Another challenge for reuse-based design is the interface between various IP blocks.
For example, in our canonical design in Figure 3-5, if the I/O block and the data trans
formation block are obtained from different suppliers, we may have a problem con
necting them. Their interfaces will most likely not be directly compatible; some re
design of at least one of the blocks may be required.

Different design teams are trying different approaches to this problem. One approach
is to assume that the direct I/O to data transformation block connection will be FIFO
based, but not to provide the FIFO in either block. Rather, the system designer can
design a small block with just the FIFO and two simple interfaces; one to the I/O
block and the other to the data transformation block. This approach has been used
successfully in a number of applications.

Another approach is to eliminate direct IP-to-IP connections altogether. Several
design teams are looking at forcing all block-to-block communication to take place
over the bus. This reduces the IP-to-IP interface problem to an IP to bus interface
problem, greatly reducing the complexity of the overall problem. For a variety of
designs, teams have shown (at least on paper) that buses can be designed with more
than enough bandwidth to handle this additional communication. But once again, we
do not have enough experience with this approach to know if it will be widely
adopted.

Considering the conflicting approaches to solving the on-chip bus problem, we rec
ommend the following guidelines to SoC design teams.

System-Level Design Issues: Rules and Tools 43

Rule - The design of the on-chip busing scheme that will interconnect the various
blocks in an SoC design must be an integral part of the macro selection and design
process. If it is done after the fact, conflicting bus designs are likely to require addi
tional interface hardware design and could jeopardize system performance.

Guideline - There are different bus strategies for different kinds of blocks used in an
SoC design. Microprocessors and microcontrollers tend to have fixed interfaces, so it
is necessary to design or select peripherals that can interface to the selected micro
controller.

Because of the need to interface to a variety of buses, it is best to design or select mac
ros that have flexible or parameterizable interfaces. FIFO-based interfaces are particu
larly flexible; they have simple interfaces, simple timing requirements, and can
compensate for different data rates between the macro and the bus.

The PI-Bus defined by the Open Microprocessor Systems Initiative (OMI), the FISP
bus from Mentor Graphics, and the AMBA system and peripheral buses from ARM
are examples of on-chip buses [9,10,11]. We believe most on-chip buses will share
many of the characteristics of these standards, including:

• Separate address and data buses

• Support for multiple masters

• Request/grant protocol

• Fully synchronous, multiple-cycle transactions

3.5.5 Design for Bring-Up and Debug: On-Chip Debug
Structures

Rule - The design team must develop a strategy for the bring-up and debug of the
SoC design at the beginning of the design process. The most effective debug strate
gies usually require specific features to be designed into the chip. Adding debug fea
tures early in the design cycle greatly reduces the incremental cost of these features,
in terms of design effort and schedule. Adding debug features after the basic function
ality is designed can be difficult or impossible. However, without effective debug
structures, even the simplest of bugs can be very difficult to troubleshoot on a large
SoC design.

Guideline - Controllability and observability are the keys to an easy debug process.

• Controllability is best achieved by design features in the macros themselves. The
system should be designed so that each macro can be effectively turned off, turned
on, or put into a debug mode where only its most basic functions are operational.
This can be done either from an on-chip microprocessor or microcontroller, or
from the chip's test controller.

44 Reuse Methodology Manual

• Observability is best achieved by adding bus monitors to the system. These moni
tors check data transactions, detect illegal transactions, and provide a logic ana
lyzer type of interface to the outside world for debugging.

For a general discussion of on-chip debug techniques, see [12]. For a description of
ARM's approach to on-chip debug, see [13]. Motorola, Hitachi, Hewlett-Packard,
Siemens, and Bosh Etas have formed the Nexus Global Embedded Processor Debug
Interface Standard Consortium to devise a debug interface standard [14,15].

3.6 Design for Low Power

With portable devices becoming one of the fastest growing segments in the electron
ics market, low power design has become increasingly important. Traditionally,
design teams have used full custom design to achieve low power, but this approach
does not give the technology portability required for reuse-based design. In this sec
tion we discuss techniques that result in both low power and reusable designs.

The power in a CMOS circuit consists of static and dynamic power. For standard cell
designs, static current is inherently low, and is primarily a function of the library
rather than the design. So we will focus on techniques for lowering the dynamic
power of a design.

The dynamic power of a CMOS design can be expressed as:

where the sum is over all nodes, a is the switching activity for the node,! is the clock
frequency, C is the capacitance of the node, and V is the supply voltage.

The basic approach to low power design is to minimize a, C, and V; f is then fixed by
the required system performance.

3.6.1 Lowering the Supply Voltage

Lowering the supply voltage has the largest effect on power; lowering the voltage
from 5v to l.1v results in a 21x reduction in power. Silicon providers have been low
ering the standard supply voltage with each new process from .5).1 onwards. Running
the core of the chip at the lowest possible voltage (consistent with correct functional
ity) is the first step in achieving a very low-power design.

System-Level Design Issues: Rules and Tools 45

Unfortunately, lowering the supply voltage has several adverse effects which must be
overcome in other areas of design.

The primary problem with lowering the supply voltage is that it slows the timing per
formance of the chip. To compensate for this factor, designers typically use pipelining
and parallelism to increase the inherent performance of the design. Although this
increases area of the design, and thus the overall capacitance, the end result can lower
power significantly [16].

110 voltages must meet the requirements of the board design, and are usually higher
than the minimum voltage that the process will support. Typical 110 voltages are 3.3v
or 5v. Most designers run the 110 at the required voltage, and use a separate, lower
voltage power supply for the core logic of the chip.

3.6.2 Reducing Capacitance and Switching Activity

Once we have lowered the supply voltage to the minimum, we need to reduce the
capacitance and switching activity of the circuit.

The standard cell library provider can use a variety of techniques to produce a low
power library. The detailed techniques are beyond the scope of this book, but are dis
cussed in [17].

Once we have selected a good low-power library, we can use architectural and design
techniques to reduce system power. In real chips, memory design, 110 cells, and the
clocking network often dominate overall power. These areas deserve special attention
when doing low power design.

Reducing power in 110 requires minimizing the internal, short-circuit switching cur
rent (by selecting the right 110 cell from the library) and minimizing the capacitance
of the external load.

Memory Architecture

Reducing power in the on-chip memories again involves both circuit and architectural
techniques. Most silicon providers have memory compilers that can produce a variety
of memory designs that trade off area, power, and speed.

The memory architecture itself can reduce power significantly. Instead of using a sin
gle, deep memory, it may be possible to partition the memory into several blocks,
selected by a decode of the upper or lower address bits. Only the block being accessed
is powered up. This approach again produces redundant logic (in extra decode logic),
so it reduces power at the expense of (slightly) increasing area. This technique is

46 Reuse Methodology Manual

shown in Figure 3-7 and described in more detail in [16], where an 8x reduction in
RAM power was achieved.

BLOCK
SELECT

RAM
BLOCK

A

RAM
BLOCK

B

Figure 3·7 Multi-block RAM architecture

Clock Distribution

In pipelined designs, a significant portion of the overall power is in the clock, so
reducing power in the clock distribution network is important. As few different clocks
as possible should be used. Single clock, flop-based designs can reduce power by
50% over latch-based dual, non-overlapping clock designs.

Clock gating, by shutting down clock distribution to part of the circuit, can signifi
cantly reduce chip power. Clock gating, however, can be very technology dependent;
careful design is required to ensure a portable, reusable design.

There are two basic types of clock gating: gating the clock to a block of logic, or gat
ing the clock to a single flop.

In Figure 3-8, a central clock module provides separate gated clocks to Block A and
Block B. Significant power savings are realized because whole blocks can be shut
down when not being used. In addition, the entire clock distribution to the block can
be shut down. Since large buffers are often used in clock distribution networks, shut
ting down the clock inputs to these buffers can result in significant power savings.

The actual clock gating circuit itself can be non-trivial. Disabling the clock in such a
way as to avoid generating a glitch on the clock line requires careful design, and a
detailed knowledge of the timing of the gates used. For this reason, the clock gating
circuit itself tends to be technology dependent and not reusable.

System-Level Design Issues: Rules and Tools 47

BLOCK BLOCK
A B

CLOCK ~
GENERATION

AND
GATING

Figure 3-8 Block-level clock gating

Isolating the clock gating in a separate clock generation block allows Block A and
Block B to be designed to be completely reusable. The clock generation block can be
made small, so that its technology-dependent design can be manually verified for cor
rectness.

In some cases, it may not be possible to gate the clock to an entire block, and the
designer may want to gate the clock on a flop by flop basis. This case usually occurs
on flops where we selectively hold data, as shown in Figure 3-9.

In Figure 3-9a, Reg A has its data selectively held by the mux. Figure 3-9b shows the
equivalent circuit using clock gating instead, which results in lower power.

Guideline - Use the approach shown in Figure 3-9a. The approach in Figure 3-9b is
not recommended for reusable designs, since the clock gating function is inherently
technology dependent. Today's advanced power synthesis tools can detect the config
uration in Figure 3-9a, and, working in conjunction with clock tree physical design
tools, automatically convert it to the configuration in Figure 3-9b.

By designing and coding the circuit without clock gating, engineers can ensure that
the design is technology independent and reusable.

48 Reuse Methodology Manual

D Q

REG A

------IClK

(a)

----tD

ClK
GATE

REGA

ClK

(b)

Figure 3-9 Clock gating at individual flip-flops

3.6.3 Sizing and Other Synthesis Techniques

Q

The next major technique for reducing chip power involves optimizing the gate-level
design for low power.

Gate sizing can produce a significant power savings in many designs. This technique
consists of reducing the drive strength of gates to the lowest level that meets the tim
ing requirements for the design. Synthesis tools can do this automatically, without any
requirement for changing the RTI.. code.

Some incremental improvement can be gained by restructuring logic to reduce the
number of intermediate, spurious transitions in the logic. Again, synthesis tools can
do this automatically.

3.6.4 Summary

In [16] the results of several low power chip designs are reported. The results show:

• 21x reduction in power by lowering the voltage from 5v to 1.1 v.

• 3-4x reduction from gate sizing, low power I/O cells, and similar gate-level opti
mizations.

• 2-3x improvement by clock gating.

• 8x improvement in a memory array by using the multi-block technique described
above.

Thus, with a good low-power library, low power design for reuse is possible through a
combination of architectural techniques and the proper use of power synthesis tools.

System-Level Design Issues: Rules and Tools 49

These techniques can produce designs that are fully reusable and are quite close to
full custom designs in power consumption. Considering that overall chip power is
likely to be dominated by I/O and memory, the small increase in power from the logic
in the chip is more than offset by the time-to-market advantage of having reusable
blocks.

3.7 Design for Test: Manufacturing Test Strategies

Manufacturing test strategies must be established at specification time. The optimal
strategy for an individual block depends on the type of block.

3.7.1 System Level Test Issues

Rule - The system-level chip manufacturing test strategy must be documented.

Guideline - On-chip test structures are recommended for all blocks. It is not feasi
ble to develop parallel test vectors for chips consisting of over a million gates. Differ
ent kinds of blocks will have different test strategies; at the top level, a master test
controller is required to control and sequence these independent test structures.

3.7.2 Memory Test

Guideline - Some form of BIST is recommended for RAMs. because this provides a
rapid, easy-to-control test methodology. However, some BIST solutions are not suffi
cient to test data retention. Some form of reasonably direct memory access is recom
mended to detect and troubleshoot data retention problems.

3.7.3 Microprocessor Test

Guideline - Microprocessors usually have some form of custom test structure, com
bining full or partial scan and parallel vectors. Often, this means that the chip-level
test controller must provide the microprocessor with both a scan chain controller and
some form of boundary scan.

3.7.4 Other Macros

Guideline - For most other blocks, the best choice is a full-scan technique. Full scan
provides very high coverage for very little design effort. The chip-level test controller
needs to manage the issue of how many scan chains are operated simultaneously, and
how to connect them to the chip-level I/O.

50 Reuse Methodology Manual

3.7.5 Logic BIST

Logic BIST is a variation on the full scan approach. Where full scan must have its
scan chain integrated into the chip's overall scan chain(s), logic BIST uses an LFSR
(Linear Feedback Shift Register) to generate the test patterns locally. A signature rec
ognition circuit checks the results of the scan test to verify correct behavior of the cir
cuit.

Logic BIST has the advantage of keeping all pattern generation and checking within
the macro. This provides some element of additional security against reverse engi
neering of the macro. It also reduces the requirements for scan memory in the tester
and allows testing at higher clock rates than can be achieve on most testers. Logic
BIST does require some additional design effort and some increase die area for the
generator and checker, although tools to automate this process are becoming avail
able.

Logic BIST is currently being used in some designs, but it is much less common than
standard full-scan testing. The success of logic BIST in the long term probably
depends on the ability of scan test equipment manufactures to keep up with the need
for ever-increasing scan memory in the tester. If the test equipment fails to provide for
scan test of large chips, logic BIST will become the test methodology of choice for
SoC designs.

3.8 Prerequisites for Reuse

We conclude this chapter with a discussion of some of the prerequisites for reuse,
some of the technical infrastructure that must be in place for the standard model of
reuse to be successful.

3.S.1 Libraries

First of all, design teams must have access to high quality standard cell libraries.
These libraries should provide a full set of views, including synthesis, physical, and
power views. These libraries need to be validated in hardware so that design teams
can have a high degree of confidence in their timing and power characteristics.
Finally, the libraries should have accurate, validated wire load models to enable accu
rate synthesis and timing analysis of designs.

These libraries need to be tested in the SoC flow before they can be considered com
pletely validated. A number of subtle problems, such as not modeling antenna rules
correctly or using non-standard definitions for rise times, can bring a large chip

System-Level Design Issues: Rules and Tools 51

design project to a screeching halt. Testing the libraries through the entire flow can
help prevent significant delays on later projects.

These libraries should be available as early as possible. In some semiconductor com
panies, libraries are not available to design teams until after the process is on line.
This is too late; many designs are started while the new process is being developed. In
some cases design teams have designed their own libraries to allow design work to
proceed. This practice can lead to the proliferation of invalid, high-defect libraries.

These libraries should also include a set of memory compilers. These memory com
pilers should provide for some tradeoffs between power, area, and timing perfor
mance. They should support single and multiple port configurations, and provide fully
synchronous interfaces. (Generating a write pulse in standard cell logic requires tech
nology-dependent, non-reusable design practices.)

If the target technology supports flash EPROM and/or DRAM, then the memory com
pilers should support these as well.

Although not always considered part of the library, certain analog blocks occur so
often in chip designs that they should be provided along with the library. These
include Phase Locked Loop (PLL) clock generators and basic analog-to-digital and
digital-to-analog converters. PLLs, in particular, are very demanding designs, and it
makes no sense to force individual design teams to develop their own.

3.8.2 Physical Design Rules

One common problem in large designs is that several pieces of hard IP are integrated
from different sources. For example, an automotive group may use a processor from a
computer division and a DSP from a wireless division. If these blocks have been
designed with different physical design rules, and verified using different DRe decks,
then physical verification at the chip level can be a major problem. The design team
will be hard pressed to find or develop a DRe deck that will work for both blocks.

We strongly recommend that, for a given process, standard DRe and LVS decks be
developed and validated. These decks should be used by all design teams, so that
physical designs (hard IP) can be exchanged and integrated without undue effort.

52 Reuse Methodology Manual

References

1. Ovadia, Bat-Sheva. PalmDSPCore: An Architecture for Intensive Parallel DSP Processing, Proceedings
of Microprocessor Forum, 1998.

2. Press release announcing synthesizable ARM7. http://www.ann.com/CoInfo/PressReIl15Jun981

3. Sylvester, Dennis and Keutzer, Kurt. Getting to the Bottom of Deep Submicron. Proceedings of ICCAD,
1998.

4. Chaney, Thomas, "Measured Flip-Flop Responses to Marginal Triggering,· IEEE Transactions of Com
puters, Volume C-32, No. 12, December 1983, pgs 1207 to 1209.

5. Horstmann, Jens U, Hans W Eichel, and Robert L Coates, "Metastability Behavior of CMOS ASIC ftip
flops in theory and test,· IEEE Journal of Solid-State Circuits, Volume 24, No.1, February 1989, pgs 146 to
157.

6. Poulin, Jeffrey. Measuring Software Reuse: Principles, Practices, and Economic Models. Addison-Wes
ley, 1996.

7. Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality. McGraw Hill, 1996.

8. VSIA: VIrtUal Socket Interface Alliance. http://www.vsLorgllibrarylspecs.htm

9. PI bus: http://www.sussex.ac.ukIengglresearch/vlsi/projects/pibusfmdex.html

10. FISPbus: http://www.mentorg.com/inventraifispbus

11. ARM AMBAbus: http://www.ann.comIDocumentationlOveviewS/AMBA_lntro/ index.html

12. Neugass, Henry. Approaches to on-chip debugging, Computer Design, December 1998.

13. Goudge, Liam. Debugging Embedded Systems. http://www.ann.comIDocumentationlWhitePa
persJDebugEmbSys.

14. Cole, Bernard. User demands shake up CPU debug traditions, BE Tnnes. http://www.eet
imes.com/sotry/OEG 1999021650009

15. Nexus website: http://www.nexus-standard.orglnexus-standard.nsf

16. Chandrakasan, Anantha and Brodersen, Robert. Low Power Digital CMOS Design. Kluwer Academic
Publishers, 1995.

17. Chandrakasan, Anantha (editor) and Brodersen, Robert (editor). Low Power CMOS Design. IEEE,
1998.

CHAPTER 4 The Macro Design
Process

This chapter addresses the issues encountered in designing hard and soft macros for
reuse. The topics include:

• An overview of the macro design workflow

• Contents of a design specification

• Top-level macro design and partitioning into subblocks

• Designing subblocks

• Integrating subblocks and macro verification

• Productization and prototyping issues

4.1 Design Process Overview

Once the Soc design team has developed a set of specifications for the various macros
in the design, these macros need to be selected from an existing library of reusable
parts or designed from scratch. This chapter describes the design process for develop
ing macros, with an emphasis on developing reusable macros.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

54 Reuse Methodology Manual

Figure 4-1 shows the macro design process up to the point of integrating subblocks
into the parent macro. Figure 4-2 shows the process of integrating the subblocks. The
major steps in the macro design process are:

1. Specification and partitioning - The first thing the macro design team must
do is to make sure the team completely understands the initial macro specification.
The team then refines the specification and partitions the design into subblocks.
Usually this refinement includes developing a behavioral model and testing it.
This is particularly useful in algorithmic-intensive designs, where the algorithm
itself must be developed in addition to the implementation. It also provides an ini
tial testbench and test suite for the macro, and it can be used to generate a simula
tion model for end users of the macro.

2. Subblock specification and design - Once the partitioning is complete, the
designer develops a functional specification for the subblock, emphasizing the
timing and functionality of the interfaces to other subblocks. The specifications for
all subblocks are reviewed by the team and checked for consistency. The designer
then develops the RTL code, the detailed timing constraints, the synthesis scripts,
and the testbench and test suite for the subblock. Once these are completed and
verified, the subblock is ready for integration with the other subblocks.

3. Testbench development - In parallel with the subblock development, some
members of the macro design team refine the behavioral testbench into a testbench
that can be used for RTL testing of the entire macro.

4. Timing checks - In addition, the team must be checking the timing budgets of
the subblocks to ensure that they are consistent and achievable.

5. Integration - Integrating the subblocks into the macro includes generating the
top-level netlist and using it to perform functional test and synthesis. The synthe
sis process includes verifying that the macro meets the requirements for manufac
turing testability. This usually consists of doing scan insertion and automatic test
pattern generation (ATPG) and verifying test coverage.

Once these tasks have been successfully completed, the macro is ready for produc
tization.

6. Productization - During the productization phase, the team prepares the macro
for use by the SoC integration team. For all macros, this involves productization as
a soft macro. For some macros, additional productization is done to produce a
hard macro version.

Figure 4-3 shows the activities of the various team members during the first three
phases of macro design.

The Macro Design Process

BLOCK SPECIFICATION

DEVELOP functional
specification

Completed
behavioral

I model for _.,_-----J .. hardware/
software

PARTITION design into subblocks

WRITE functional specification

I cosimulation
and test
development

.J

Perform these DEVELOP DEVELOP
steps for each timing constraints test bench
subblock I'-"';"''''''':::'''';'';'.,....'';''''-J '"..,...._--,r-rJ--";';;';;'';';;';;=';''''--

PERFORM
power analysis

Meets timing,
power, & area
requirements

PASSES-
READY FOR INTEGRATION

coverage

Figure 4·1 The macro design process

55

56 Reuse Methodology Manual

l Subblock 1 J [Subblock2 l Subblock n J

-~ ~ ~
DETERMINE configuration

and GENERATE
top-level HDL

! ~
Top-Ie vel HDL

[RUN lint] GENERATE

~,.

synthesis scripts

FUNCTIONAL ..
VERIFICATION

with reference simulator SYNTHESIZE

+
with reference library

+ DEVELOP and RUN
multiple configuration Scan insertion, ATPG, tests fault simulation

~ + MEASURE
test coverage PERFORM final timing

and power analysis

~,. ~,. +
[READY FOR PRODUCTIZATION J

~,.

PRODUCTIZE
as soft macro

,..
PRODUCTIZE
as hard macro

Figure 4·2 The macro integration process

The Macro Design Process

TEST
TEAM

DESIGN
TEAM

SPECIFY and DOCUMENT

SYNTHESIS
TEAM

functional requirements, 1/0, timing, performance,
area goals, and test strategy

CREATE behavioral model and test cases

SPECIFY COORDINATE
block function, 1/0, timing specs

DEVELOP timing, test strategy between blocks
macro

testbench and
test cases

CODE and TEST SYNTHESIZE

Macro
specifications,
behavioral model

Macro partitions
and block
specifications

Block design

['-____ T_E_S_T ___ ~I I'--__ S_Y_N_TH_E_S_IZ_E __ ~I Block integration

CHECK AGAINST EXIT CRITERIA
as defined in the specification and test plan

Figure 4-3 Block design teams

57

It is important to note that the separation of the design process into distinct phases
does not imply a rigid, top-down design methodology. Frequently, some detailed
design work must be done before the specification is complete, just to make sure that
the design can be implemented.

A rigid, top-down methodology says that one phase cannot start until the preceding
one is completed. We prefer a more mixed methodology, which simply says that one
phase cannot complete until the preceding one is completed.

Methodology note - The design flow described in this chapter is the standard,
R1LIsynthesis flow. There are several alternate flows that use domain-specific tools
such as Module Compiler. These flows are described in Chapter 6 of this manual.

58 Reuse Methodology Manual

4.2 Contents of a Design Specification

Specifications occur at every level in the design process. They are very general at the
beginning and become progressively more focused and detailed as the design process
continues. There are common elements, however, to all specifications. This section
describes the archetypal structure of a good specification. When there are references
to specifications later in this document, assume that the specifications contain the fol
lowing elements:

Overview
This section briefly describes the technical goals for the design. In particular,
if the design needs to comply with a specific standard, such as an IEEE stan
dard; the standard must be specified here.

Functional requirements
This section describes the project from a technical perspective. Its main pur
pose is to describe the unit being designed as seen by the outside world: its
form, fit, and function, and how it transforms the data at its inputs and outputs,
based on the values of the software registers.

Physical requirements
This section describes the packaging, die size, power, and other physical
design requirements of the unit being designed. For soft macros, it includes the
cell libraries the design must support and the performance requirements for the
design.

Design requirements
This section describes the design rules to which the design must comply. It
may reference a standard design guideline document or explicitly list the
guidelines. The issues addressed in this section of the specification are those
described in Chapter 3 of this manual.

The block diagram
Block diagrams are essential for communicating the function of most hard
ware. The block diagrams must present enough detail so that the reader can
understand the functionality of the unit being designed.

Interfaces to external system
This section describes the inputs and outputs of the module and how they
operate:

• Signal names and functions

• Transaction protocols with cycle-accurate timing diagrams

• Legal values for input and output data

• Timing specifications

• Setup and hold times on inputs

• Clock to out times for outputs

The Macro Design Process 59

• Special signals

• Asynchronous signals and their timing

• Clock, reset, and interrupt signals and their timing

Manufacturing test methodology
This section describes the manufacturing test methodology that the macro sup
ports, and the chip-level requirements for supporting the test methodology. For
most macros, this methodology will be full scan. Typically, the integrator will
perform scan insertion and ATPG on the entire chip (or a large section of the
chip) at one time, rather than doing scan insertion for the macro and then inte
grating it into the chip design. Any untestable regions in the design must be
specified.

For some hard macros, the performance penalty of scan-based testing is not
acceptable, and parallel vectors are used for test. In this case, a ITAG-based
boundary scan technique is used to isolate the macro and to provide a way to
apply the vectors to the block.

The software model
This section describes the hardware registers that are visible to the software. It
includes complete information on which registers are read, write, and
read/write, which bits are valid, and the detailed function of the register.

Software requirements
Hardware design doesn't stop until software runs on it. One of the key obliga
tions of the hardware team is to provide the lowest level of software required
to configure and operate the hardware. Once this software is provided, the
software team only needs to know about these software routines, and not about
the detailed behavior of the hardware or of the registers. For many hardware
systems, this low-level software is referred to as the set of software drivers for
the system. Although the drivers are often written by the software team, the
hardware team is responsible for helping to specify this software and for veri
fying that it is correct.

The specification of this software must be included in the functional specifica
tion.

Deliverables
This section describes the deliverables for the project: what files and docu
ments will be created, archived, and delivered at the end of the project.

Verification Plan
This section describes how the team will verify that the design requirements
have been met. It describes what functional tests will be run and what tools
and processes will be used. It also defines how performance will be verified,
for example, what configurations will be synthesized with what technology
libraries.

60 Reuse Methodology Manual

The deliverables and the test plan define the exit criteria for the project. When
all the deliverables pass all the verification procedures defined in the verifica
tion plan, design is done.

4.3 Top-Level Macro Design

The first phase of macro design consists of refining the functional specification to the
point where the design can be partitioned into subblocks small enough that each sub
block can be designed, coded, and tested by one person. The key to success in this
phase is a complete and clear specification for the macro and its subblocks. In partic
ular, the interfaces between subblocks must be clearly specified, so that subblock inte
gration will be relatively smooth and painless.

4.3.1 Top-Level Macro Design Process

Figure 4-4 shows the top-level macro design process. This phase is complete when
the design team has produced and reviewed the following top-level design elements:

• Updated macro hardware specification

All sections of the document should be updated to reflect the design refinement
that occurs during the macro top-level design process. In particular, the partition
ing of the macro and the specifications for the subblocks must be added to the
macro specification.

• Executable specificationlbehavioral model

In many cases, a behavioral model is extremely useful as an executable specifica
tion for the macro. This model allows the development and debug of testbenches
and test suites during the detailed design of the macro, rather than after the design
is completed. For hard macros, this behavioral model can provide a key simulation
model for the end user.

A behavioral model is particularly useful for a macro that has a high algorithmic
content. For a macro dominated by state machines and with little algorithmic con
tent, a behavioral model may be of little use, because it would have all the interest
ing behavior abstracted out of it.

A behavioral model is required in the case of macros that have software content.
The behavioral model provides a high-speed simulation model early in the design
cycle. The software developers can use this model for software design and debug
while the detailed design is being done. This approach is essential for meeting
time-to-market goals with this kind of macro.

The Macro Design Process 61

• Testbench

A high-level, self-checking testbench with a complete set of test suites is essential
to the successful design and deployment of the macro. 'JYpically, the testbench
consists of bus functional models for the surrounding system and is designed to
allow the verification engineer to write tests at a relatively high level of abstrac
tion.

• Preliminary specification for each subblock

DEVELOP detailed
technical specification

r-----------------I CREATE BEHAVIORAL MODEL I
I

I I
CODE behavioral model CODE testbench

CNerilogNHDL I- CNerilogNHDLNeral
Specman

\ I
TEST behavioral model

- -- --------------
~,

PARTITION
the block into subblocks

I Completed

I behavioral model
-+for hardwarel

I software
cosimulation and

I test development

I
I
J

Figure 4·4 Flow for top-level macro design

62 Reuse Methodology Manual

4.3.2 Activities and Tools

The top-level macro design process involves the following activities and tools:

Develop algorithms and behavioral models
For most designs, the behavioral model is developed in C/C++, Verilog, or
VHDL; some developers are starting to use the new testbench tools Vera and
Specman for creating behavioral models as well. etC++ is particularly useful
for designs that require significant hardware/software cosimulation, such as
processor designs. Verilog, VHDL, Vera, and Specman are preferred for
designs in which some of the RTL characteristics, such as 110 behavior, may
be needed.

These behavioral models are all easily ported to multiple environments, either
through programming language interfaces to the simulation tools, or using a
commercial interface like SWIFT. In particular, through the SWIFT interface,
it is possible to package the model for secure, highly portable distribution to
most commercial simulators.

These behavioral models are particularly important for applications such as
digital video, wireless communications, and data communication.

For example, in some digital video applications, macros are being designed
around an application-specific processor. This processor controls the other
blocks in the macro, simplifying hardware design and improving performance.
This approach also provides an additional level of reuse through reprogram
ming. Such a design, however, can have significant software content. The
behavioral model is essential for this kind of design.

Developing software for a processor-based macro requires significant test and
debug. This, in turn, requires a model of the hardware that can be simulated at
tens or hundreds of thousands of cycles per second. RTL and gate-level
netlists, even when they are available, are much too slow to achieve this kind
of performance, typically running at tens or hundreds of cycles per second.
Only a high-level model provides the performance required for software devel
opment and testing.

Stream-driven tools such as COSSAP and SPW can be useful modeling tools
for those datapath-intensive designs in which the algorithm itself, independent
of the implementation, requires significant exploration and development. For
example, when verifying a video compression algorithm, it may be necessary
to simulate with many frames of video. The different processing blocks in the
algorithm typically operate at different data rates; however, including the logic
to handle these different rates can slow down simulation. With a stream or data
driven simulator, each block executes as soon as the required data is received.
This approach provides the kind of simulation performance and ease of model
ing required for datapath-intensive designs like video processing.

The Macro Design Process 63

COS SAP can also help generate RTL code and can assist in the hardware/soft
ware partitioning.

Develop testbenches
Testbench design and test development are essential and challenging at every
level of representation - behavioral, RTL, and gate. For a full discussion of
the macro testbench, refer to Chapter 7 of this manual.

4.4 Subblock Design

The second phase of macro design consists of design, RTL coding, and testing the
subblocks in the macro. The key to the success of this phase is to have a complete and
clear specification for each subblock before RTL coding begins, and to have a clear
understanding of the deliverables needed at the end of the design phase.

4.4.1 Subblock Design Process

Subblock design, as illustrated in Figure 4-5, begins when there is a preliminary hard
ware specification for the subblock and a set of design guidelines for the project. The
phase is complete when the design team has produced and reviewed the following
subblock design elements:

• An updated hardware specification for the subblock

• A synthesis script
• A testbench for the subblock, and a verification suite that achieves 100% test cov

erage. See Chapter 7 for details on this requirement. In particular, note that the
testbenchlverification suite must provide 100% path and statement coverage as
measured by a coverage tool.

• RTL that passes lint and synthesis. The final RTI.. code for the subblock must com
ply with the coding guidelines adopted by the design team. A configurable lint
like tool that verifies compliance to the guidelines is essential to ensure consistent
code quality throughout the macro.

The final RTL code must also synthesize on the target library and meet its timing
constraints, using a realistic wire load model.

64

Size of each block = what
one person can design
and code.

Perform these steps for
each subblock.

DEVELOP
timing

constraints

SYNTHESIZE
Design Compiler

WRITE
functional specification

WRITE
technical specification

WRITERTL
run lint

Reuse Methodology Manual

DEVELOP
testbench

SIMULATE
VeriiogIVHDL

Coverage
tool passes

PERFORM power analysis
PowerCompilerl

QuickPower

MEASURE
test bench coverage

VHDLCoverNeriSureiCoverMeter

Meets timing, power,
& area requirements

PASSES
ready for integration

Figure 4·5 Flow for designing subblocks

The Macro Design Process 65

4.4.2 Activities and Tools

The subblock design process involves the following activities and tools:

Develop the functional and technical specifications
The actual design of the subblock should be done before, not during, RTL cod
ing.

The functional specification for the subblock describes, in detail, the aspects of
the subblock that are visible to the rest of the macro: functionality, 110, timing,
area, and power. This specification can be included as part of the macro func
tional specification.

The technical specification describes the internals of the subblock and is
intended to be the vehicle by which the designer captures the details of the
subblock design before beginning coding. The quality of the technical specifi
cation is a key factor in determining the time required for the rest of the sub
block design process. A good technical specification allows the designer to
code once and to verify quickly. A poorly thought-out specification results in
many iterations through the code/test/synthesis loop.

Develop RTl
In most cases, the RTL code is written directly by the designer.

For some arithmetic-intensive designs, Module Compiler provides a means of
specifying the datapath and controlling the structures to be synthesized. Mod
ule Compiler generates a gate-level netlist and a simulation model for the sub
block. It takes as input its own Verilog-like HDL. See "RAM and Datapath
Generators" in Chapter 6 for a more detailed description of the work flow
using Module Compiler.

Develop testbench
The design of the subblock-level testbench is described in Chapter 7. The crit
ical requirements for this testbench are readability and ease of modification, so
that the designer can easily create and extend the testbench, and use the test
bench to detect and debug problems in the subblock.

Develop synthesis scripts and synthesize
The external timing constraints should be fully defined by the specification
before coding begins. Synthesis scripts must be developed early in the design
process and synthesis should begin as soon as the RTL code passes the most
basic functional tests. These early synthesis runs give great insight into prob
lem areas for timing and may significantly affect the final code.

Run lint
A lint-like tool, such as VerilintIVHDLlint from InterHDL, provides a power
ful method for checking the RTL for violations of coding guidelines and other
kinds of errors. It should be run often throughout the design process, since it is

66 Reuse Methodology Manual

the fastest means of catching errors. The final code must pass all lint checks
specified in the coding guidelines.

Measure testbench coverage
It is essential to catch bugs as early as possible in the design process, since the
time to find and correct a bug increases by an order of magnitude at each level
of design integration. A bug found early during specificationlbehavioral mod
eling is dramatically cheaper than a bug found at macro integration.

Coverage tools such as VeriSure and VHDLCover provide a means of measur
ing statement and path coverage for RTL designs and testbenches. A coverage
tool must be run on the final design and it should indicate 100 percent state
ment and path coverage before the subblock is integrated with other sub
blocks.

Perform power analysis
If power consumption is an issue, the design team uses QuickPower or Power
Compiler to analyze power and to ensure that power consumption is within
specification.

4.5 Macro Integration

The third phase of macro design consists of integrating the subblocks into the top
level macro and performing a final set oftests. The key to the success of this phase is
to have subblocks that have been designed to the guidelines outlined in this document.
In particular, the timing and functional behavior of the interfaces between subblocks
should be completely specified before subblock design and verified after subblock
design. Most bugs occur at the interfaces between subblocks and as a result of misun
derstandings between members of the design team.

4.5.1 Integration Process

The macro integration process, shown in Figure 4-6, is complete when:

• Development of top-level RTL, synthesis scripts, and testbenches is complete

• Macro RTL passes all tests

• Macro synthesizes with reference library and meets all timing, area, and power
criteria

• Macro RlL passes lint and manufacturing test coverage

The only new criterion here is the one about meeting the manufacturing test coverage
requirements. Most macros use a full scan methodology for manufacturing test, and
require 95 percent coverage (99 percent is preferred). Whatever the methodology, test

The Macro Design Process 67

coverage must be measured at this point and must be proven to meet the requirements
in the functional specification.

[Subblock 1] Subblock2 J [Subblockn J
+ + +

DETERMINE configuration and GENERATE
top-level HDL

Top-level HDL +

l

GENERATE , .. top level

FUNCTIONAL TEST
synthesis scripts

VerilogIVHDL simulator • ModelSlm, VSS, VCS
SYNTHESIZE

with reference library
r Design Complier

RUN lint • Verilint,
VHDLllnt Scan insertion, ATPG,

coverage analysis
Test Compiler, TestGen,

, .. DFTAdvlsor,
FastScanIFlexTest

DEVELOP and RUN
multiple configuration tests
VerilogIVHDL simulator

ModelSlm, VSS, VCS

POWER ANALYSIS
QulckPower, Power

Compiler

, .. , .. ~
READY FOR PRODUCTIZATION

!
PRODUCTIZE

soft macro

PRODUCTIZE
hard macro

]

Figure 4-6 Flow and recommended applications for integrating subblocks

68 Reuse Methodology Manual

4.5.2 Activities and Tools

The process of integrating the subblocks into the top-level macro involves the follow
ing activities and tools:

Develop top-level RTL
Once the subblocks have all been developed, the design team needs to develop
a top-level RTL description that instantiates the subblocks and connects them
together. Parameterizable macros, where the number of instances of a particu
lar sub block may vary, present a particular challenge here. It may be necessary
to develop a script that will generate the appropriate instances and instantiate
them in the top level RTL.

Run functional tests
It is essential to develop a thorough functional test suite and to run it on the
final macro design. The design team must run this test on a sufficient set of
configurations to ensure that the macro is robust for all possible configura
tions.

The verification strategy for the entire macro is discussed in Chapter 7 of this
manual.

Develop synthesis scripts
Once the subblock-Ievel synthesis scripts have all been developed, the design
team needs to develop a top-level synthesis script. For parameterizable mac
ros, where the number of instances of a particular subblock may vary, this pre
sents a particular challenge. It may be necessary to provide a set of scripts for
different configurations of the macro. It may also be useful to provide different
scripts for different synthesis goals: one script to achieve optimal timing per
formance, another to minimize area.

Run synthesis
The design team must run synthesis on a sufficiently large set of configura
tions to ensure that synthesis will run successfully for all configurations. In
general, this means synthesizing both a minimum and maximum configura
tion. Note that the final synthesis constraints must take into account the fact
that scan will later be inserted in the macro, adding some setup time require
ments to the flops.

Use Design Compiler to perform top-level synthesis.

Perform scan insertion
The final RTL code must also meet the testability requirements for the macro.
Most macros will use a full scan test methodology and require 95% coverage
(99% preferred).

Use a test insertion tool (for example Test Compiler, TestGen, DFTAdvisor, or
FastScanlFlexTest) to perform scan insertion and automatic test pattern gener-

The Macro Design Process 69

ation for the macro. As part of this process, the test insertion tool should also
report the actual test coverage for the macro.

After scan insertion, the design team uses a static timing analysis tool to verify
the final timing of the macro.

Perform power analysis
If power consumption is an issue, the design team uses QuickPower or Power
Compiler to analyze power and to ensure that power consumption is within
specification.

Run lint
Finally, run the lint tool on the entire design to ensure compliance to guide
lines. In addition, use the lint tool to verify the translatability of the macro and
testbench between Verilog and VHDL.

4.6 Soft Macro Productization

The final phase of macro design consists of productizing the macro, which means cre
ating the remaining deliverables that system integrators will require for reuse of the
macro. This chapter describes the productization of soft macros only. The develop
ment and productization of hard macros is described in Chapter 8.

4.6.1 Productization Process

The soft macro productization phase, shown in Figure 4-7, is complete when the
design team has produced and reviewed the following components of the final prod
uct.

• Verilog and VHDL versions of the code, testbenches, and tests

• Supporting scripts for the design

This includes the installation scripts and synthesis scripts required to build the dif
ferent configurations of the macro.

• Documentation

This includes updating all the functional specifications and generating the final
user documentation from them.

• Final version locked in RCS

All deliverables must be in a revision control system to allow future maintenance.

70

DEVELOP
specification

for prototype chip

Scan insertion, ATPG,
and coverage analysis

TC

Reuse Methodology Manual

From block integration

TRANSLATE
VerilogHVHDL

InterHDL

REGRESSION
TEST

translated code
VSSNerilogNC

ModelSim

RUN TESTS
on multiple
simulators

SYNTHESIZE
to multiple

technologies
DC

RUN gate sim on
one technology

VSSNerilogNCSI
ModelSim

FORMAL
VERIFICATION
RTL vs. gates

Design Compiler,
Formality

RELEASE

CREATE
user docs
(Databook)

Figure 4-7 Productizing soft macros

The Macro Design Process 71

4.6.2 Activities and Tools

The soft macro productization process involves the following activities and tools:

Develop a prototype chip
A prototype chip is essential for verifying both the robustness of the design
and the correctness of the original specifications. Some observers estimate that
90 percent of chips work the first time, but only 50 percent of chips work cor
rectly in the system.

Developing a chip using the macro and testing it in a real application with real
application software allows us to:

• Verify that the design is functionally correct.

• Verify that the design complies with the appropriate standards (for exam
ple, we can take a PCI test chip to the PCI SIG for compliance testing).

• Verify that the design is compatible with the kind of hardware/software
environment that other integrators are likely to use.

The process for developing the prototype chip is a simple ASIC flow appropri
ate for small chip design. It is assumed that the chip will be a simple applica
tion of the macro, perhaps twice the size of the macro itself in gate count.

Provide macro and testbench in both Verilog and VHDL
To be widely useful, the macro and its testbenches must be available in both
the Verilog and VHDL languages. Commercial translators are available,
including one from InterHDL. These translators do a reasonable job on RTL
code but still present some challenge for translating testbenches.

After the code and testbenches have been translated, they must be re-verified
to validate the translation.

Test on several simulators
In addition, the macro and testbenches should be run on the most popular sim
ulators in order to ensure portability. This is particularly important for the
VHDL simulators, which have significant differences from vendor to vendor.

Synthesize on multiple technologies
The macro should be synthesized using a variety of technologies to ensure
portability of the scripts and to ensure that the design can meet its timing and
area goals with the ASIC libraries that customers are most likely to use.

Perform gate-level simulation
Gate-level simulation must be run on at least one target technology in order to
verify the synthesis scripts.

72 Reuse Methodology Manual

Formal verification
Using fonnal verification tools, such as Fonnality or the compare_design
feature of Design Compiler, we can verify that the final netlist is functionally
equivalent to the original RTL.

Create/update user documentation
The functional specifications created during the design process are usually not
the best vehicle for helping a customer use the macro. A set of user documents
must be developed that address this need. The components of this documenta
tion are described in Chapter 9 of this manual.

CHAPTER 5 RTL Coding Guidelines

This chapter offers a collection of coding rules and guidelines. Following these prac
tices helps to ensure that your HDL code is readable, modifiable, and reusable. Fol
lowing these coding practices also helps to achieve optimal results in synthesis and
simulation.

Topics in this chapter include:

• Basic coding practices

• Coding for portability

• Guidelines for clocks and resets

• Coding for synthesis

• Partitioning for synthesis

• Designing with memories

• Code profiling

5.1 Overview of the Coding Guidelines

The coding guidelines in this chapter are based on a few fundamental principles. The
basic underlying goal is to develop RTL code that is simple and regular. Simple and
regular structures are inherently easier to design, code, verify, and synthesize than
more complex designs. The overall goal for any reusable design should be to keep it
as simple as possible and still meet its functional and performance goals.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

74 Reuse Methodology Manual

The coding guidelines detailed in this chapter provide the following general recom
mendations:

• Use simple constructs, basic types (for VHDL), and simple clocking schemes.

• Use a consistent coding style, consistent naming conventions, and a consistent
structure for processes and state machines.

• Use a regular partitioning scheme, with all module outputs registered and with
modules roughly of the same size.

• Make the RTL code easy to understand, by using comments, meaningful names,
and constants or parameters instead of hard-coded numbers.

By following these guidelines, the developer should be better able to produce code
that converges quickly to the desired performance, in terms of functionality, timing,
power, and area.

S.2 Basic Coding Practices

The following guidelines address basic coding practices, focusing on lexical conven
tions and basic RTL constructs.

5.2.1 General Naming Conventions

Rule - Develop a naming convention for the design. Document it and use it consis
tently throughout the design.

Guideline - Use lowercase letters for all signal names, variable names, and port
names.

Guideline - Use uppercase letters for names of constants and user-defined types.

Guideline - Use meaningful names for signals, ports, functions, and parameters. For
example, do not use ra for a RAM address bus. Instead, use ram_addr.

Guideline - If your design uses several parameters, use short but descriptive names.
During elaboration, the synthesis tool concatenates the module's name, parameter
names, and parameter values to form the design unit name. Thus, lengthy parameter
names can cause excessively long design unit names when you elaborate the design
with Design Compiler.

Guideline - Use the name elk for the clock signal. If there is more than one clock in
the design, use elk as the prefix for all clock signals (for example, elk1, elk2, or
elk_interface).

RTL Coding Guidelines 75

Guideline - Use the same name for all clock signals that are driven from the same
source.

Guideline - For active low signals, end the signal name with an underscore followed
by a lowercase character (for example, _b or _n). Use the same lowercase character to
indicate active low signals throughout the design.

Guideline - For standardization, we recommend that you use _n to indicate an
active low signal. However, any lowercase character is acceptable as long as it is used
consistently.

Guideline - Use the name rst for reset signals. If the reset signal is active low, use
rsCn (or substitute n with whatever lowercase character you are using to indicate
active low signals).

Rule - When describing multibit buses, use a consistent ordering of bits. For VHDL,
use either (y downto x) or (x to y). ForVerilog, use (x:O) or (O:x).
Using a consistent ordering helps improve the readability of the code and reduces the
chance of accidently swapping order between connected buses.

Guideline - Although the choice is somewhat arbitrary, we recommend using
(y downto x) for multibit signals in VHDL and (x: 0) for multibit signals in
Verilog. We make this recommendation primarily to establish a standard, and thus
achieve some consistency across multiple designs and design teams.
See Example 5-1.

Example 5·1 Using downto in port declarations

entity DW_addinc is
generic(WIDTH : natural);
port (

A,B in std_logic_vector(WIDTH-l downto 0);
CI in std_logic;
SUM out std_logic_vector(WIDTH-l downto 0);
co out std_logic;

) ;

end DW01_addinc;

Guideline - When possible, use the same name or similar names for ports and sig
nals that are connected (for example, a => a; or a => a_int;).

76 Reuse Methodology Manual

Guideline - When possible, use the signal naming conventions listed in Table 5-1.

Table 5-1 Signal naming conventions

Convention Use

* _r Output of a register (for example, count_r)

* _a Asynchronous signal (for example, addr_s trobe_a)

* _pn Signal used in the nth phase (for example, enable--p2)

* _nxt Data before being registered into a register with the same name

* _z Tristate internal signal

5.2.2 Naming Conventions for VITAL Support

VITAL is a gate-level modeling standard for VHDL libraries and is described in IEEE
Specification 1076.4. This specification places restrictions on the naming conventions
(and other characteristics) of the port declarations at the top level of a library element.

Normally, an RTL coding style document need not address gate-level modeling con
ventions. However, some of these issues can affect developers of hard macros. The
deliverables for a hard macro include full-functionaVfull-timing models, where a tim
ing wrapper is added to the RTL code. If the timing wrapper is in VHDL, then it must
be VITAL-compliant.

Background

According to IEEE Specification 1076.4, VITAL libraries can have two levels of com
pliance with the standard: VITAL_LeveIO and VITAL_Levell. VITAL_Levell is
more rigorous and deals with the architecture (functionality and timing) of a library
cell. VITAL_LeveIO is the interface specification that deals with the ports and gener
ics specifications in the entity section of a VHDL library cell. VITAL_LeveIO has
strict rules regarding naming conventions and port/generic types. These rules were
designed so that simulator vend.ors can assume certain conventions and deal with SDP
back-annotation in a uniform manner.

Rules

Section 4.3.1 of IEEE Specification 1076.4 addresses port naming conventions and
includes the following rules. These restrictions apply only to the top-level entity of a
hard macro.

RTL Coding Guidelines 77

Rule (hard macro, top-level ports) - 00 not use underscore characters U in the
entity port declaration for the top-level entity of a hard macro.

The reason for the above rule is that VITAL uses underscores as separators to con
struct names for SOF back-annotation from the SOF entries.

Rule (hard macro, top-level ports) - A port that is declared in entity port decla
ration shall not be of mode LINKAGE.

Rule (hard macro, top-level ports) - The type mark in an entity port declaration
shall denote a type or subtype that is declared in package std_logic_1164. The
type mark in the declaration of a scalar port shall denote a subtype of std_ulogic.
The type mark in the declaration of an array port shall denote the type
std_logic_vector.

Rule (hard macro, top-level ports) - The port in an entity port declaration can
not be a guarded port. Furthermore, the declaration cannot impose a range constraint
on the port, nor can it alter the resolution of the port from that defined in the standard
logic package.

5.2.3 Architecture Naming Conventions

Guideline - Use the VHOL architecture types listed in Table 5-2.

Table 5-2 Architecture naming conventions

Architecture Naming Convention

synthesis ARCHITECTURE rtl OF my_syn_model IS
model or

ARCHITECTURE str OF my_structural_design IS

simulation ARCHITECTURE sim OF my_behave_model IS
model or

ARCHITECTURE tb OF my_test_bench IS

5.2.4 Include Headers in Source Files

Rule - Include a header at the top of every source file, including scripts. The header
must contain:

• Filename

• Author

78 Reuse Methodology Manual

• Description of function and list of key features of the module

• Date the file was created

• Modification history including date, name of modifier, and description of the
change

Example 5-2 shows a sample HDL source file header.

Example 5-2 Header in an HDL source file

--This confidential and proprietary software may be used
--only as authorized by a licensing agreement from
--Synopsys Inc.
--In the event of publication, the following notice is
--applicable:

(C) COPYRIGHT 1996 SYNOPSYS INC.
ALL RIGHTS RESERVED

The entire notice above must be reproduced on all
--authorized copies.

File
Author
Date
Version
Abstract

DWpci_core.vhd
Jeff Hackett
09/17/96
0.1
This file has the entity, architecture
and configuration of the PCI 2.1
MacroCel1 core module.
The core module has the interface,
config, initiator,
and target top-level modules.

Modification History:
Date By Version Change Description

==
9/17/96
11/13/96
03/04/97

JDH
JDH
SKC

0.1 Original
Last pre-Atria changes

changes for ism_ad_en_ffd_n
and tsm_data_ffd_n

==

RTl Coding Guidelines 79

5.2.5 Use Comments

Rule - Use comments appropriately to explain all processes, functions, and declara
tions of types and sUbtypes. See Example 5-3.

Example 5-3 Comments for a sUbtype declaration

--Create subtype INTEGER_256 for built-in error
--checking of legal values.
subtype INTEGER_256 is type integer range ° to 255;

Guideline - Use comments to explain ports, signals, and variables, or groups of sig
nals or variables.

Comments should be placed logically, near the code that they describe. Comments
should be brief, concise, and explanatory. Avoid "comment clutter"; obvious func
tionality does not need to be commented. The key is to describe the intent behind the
section of code.

5.2.6 Keep Commands on Separate Lines

Rule - Use a separate line for each HDL statement. Although both VHDL and Ver
ilog allow more than one statement per line, the code is more readable and maintain
able if each statement or command is on a separate line.

5.2.7 Line Length

Guideline - Keep the line length to 72 characters or less.

Lines that exceed 80 characters are difficult to read in print and on standard terminal
width computer screens. The 72 character limit provides a margin that enhances the
readability of the code.

For HDL code (VHDL or Verilog), use carriage returns to divide lines that exceed 72
characters and indent the next line to show that it is a continuation of the previous
line. See Example 5-4.

Example 5-4 Continuing a line of HDL code

hp_req <= (xO_hp_req or to_hp_req or xl_hp_req or
tl_hp_req or sO_hp_req or t2_hp_req or sl_hp_req or
x2_hp_req or x3_hp_req or x4_hp_req or x5_hp_req or
wd_hp_req and ea and pf_req nor iip2);

80 Reuse Methodology Manual

5.2.8 Indentation

Rule - Use indentation to improve the readability of continued code lines and nested
loops. See Example 5-5.

Guideline - Use indentation of2 spaces. Larger indentation (for example, 8 spaces)
restricts line length when there are several levels of nesting.

Guideline - Avoid using tabs. Differences in editors and user setups make the posi
tioning of tabs unpredictable and can corrupt the intended indentation. There are pro
grams available, including language-specific versions of emacs, that will replace tabs
with spaces.

Example S-S Indentation in a nested if loop

if (bit_width (m+l) >= 2) then
for i in 2 to bit_width(m+l) loop

spin_j := 0;
for j in 1 to m loop

if j > spin_j then
if (matrix(m) (i-l) (j) /= wht) then

if (j=m) and (matrix(m) (i) (j) = wht) then
matrix(m)(i)(j) := j;

else
for k in j+l to m loop

if (matrix(m) (i-l) (k) /= wht) then
matrix(m)(i)(k) := j;
spin_j := k;
exit;

end if;
end loop; -- k

end if;
end if;

end if;
end loop; -- j

end loop; -- i
end if;

Rll Coding Guidelines 81

5.2.9 Do Not Use HDL Reserved Words

Rule - Do not use VHDL or Verilog reserved words for names of any elements in
your RTL source files. Because macro designs must be translatable from VHDL to
Verilog and from Verilog to VHDL, it is important not to use VHDL reserved words
in Verilog code, and not to use Verilog reserved words in VHDL code.

5.2.10 Port Ordering

Rule - Declare ports in a logical order, and keep this order consistent throughout the
design.

Guideline - Declare one port per line, with a comment following it (preferably on
the same line).

Guideline - Declare the ports in the following order:

Inputs:

• Clocks

• Resets

• Enables

• Other control signals

• Data and address lines

Outputs:

• Clocks

• Resets
• Enables

• Other control signals

• Data

Guideline - Use comments to describe groups of ports. See Example 5-6.

Example 5-6 Port ordering in entity definition

entity my_fir is
generic (

DATA_WIDTH positive;
COEF_WIDTH positive;
ACC_WIDTH positive;
ORDER positive

) ;

82

port

clk
rst_n
run
load
tc

data_in
coef_in
sum_in

Reuse Methodology Manual

Control Inputs

in std_logici
in std_logici
in std_logic;
in std_logic;
in std_logici

Data Inputs

in std_logic_vector{DATA_WIDTH-l downto 0);
in std_logic_vector{COEF_WIDTH-l downto 0);
in std_logic_vector{ACC_WIDTH-l downto 0);

Control Outputs

start
hold

out std_logic;
out std_logici

Data Outputs

5.2.11 Port Maps and Generic Maps

Rule - Always use explicit mapping for ports and generics, using named association
rather than positional association. See Example 5-7.

Guideline - Leave a blank line between the input and output ports to improve read
ability.

RTL Coding Guidelines

Example 5-7 Using named association for port mapping

VlIDL:

-- instantiate my_add
U_ADD: my_add

generic map (width => WORDLENGTH)
port map (

a => inl,
b => in2,
ci => carry_in,

sum => sum,
co => carry_out

) i

Verilog:

II instantiate my_add
my_add # ('WORDLENGTH)

.a (inl) ,

.b (in2) ,

.ci (carry_in) ,

. sum (sum) ,

.co (carry _ou t)
) i

U_ADD

5.2.12 VHDL Entity, Architecture, and Configuration Sections

83

Guideline - Place entity, architecture, and configuration sections of your VHDL
design in the same file. Putting all the information about a particular design in one file
makes the design easier to understand and to maintain.

If you include sUbdesign configurations in a source file with entity and architecture
declarations, you must comment them out for synthesis. You can do this with the
pragma translate_off and pragma translate_on pseudo-comments
in the VHDL source file, as shown in Example 5-8.

84 Reuse Methodology Manual

Example 5·8 Using pragmas to comment out VHDL configurations for synthesis

-- pragma translate_off
configuration cfg_example_struc of example is

for struc
use example_gate;

end for;
end cfg_example_struc;
-- pragma translate_on

5.2.13 Use Functions

Guideline - Use functions when possible, instead of repeating the same sections of
code. If possible, generalize the function to make it reusable. Also, use comments to
explain the function.

For example, if your code frequently converts address data from one format to
another, use a function to perform the conversion and call the function whenever you
need to. See Example 5-9.

Example 5·9 Creating a reusable function

VlIDL:

--This function converts the incoming address to the
--corresponding relative address.

function convert_address
(input_address, offset

return integer is
begin

function body here

end; -- convert_address

Verilog:

integer)

II This function converts the incoming address to the
II corresponding relative address.

function ['BUS_WIDTH-l:0] convert_address;
input input_address, offset;
integer input_address, offset;

RTL Coding Guidelines

begin
II ... function body goes here

end
endfunction II convert_address

5.2.14 Use Loops and Arrays

85

Guideline - Use loops and arrays for improved readability of the source code. For
example, describing a shift register, PN-sequence generator, or Johnson counter with
a loop construct can greatly reduce the number of lines of source code while still
retaining excellent readability. See Example 5-10.

Example 5-10 Using loops to improve readability

shift_delay_loop: for i in 1 to (number_taps-l) loop
delay(i) := delay(i-l);

end loop shift_delay_loop;

The ARRAY construct also reduces the number of statements necessary to describe the
function and improves readability. Example 5-11 is an example of a register bank
implemented as a two-dimensional array of flip-flops.

Example 5-11 Register bank using an array

type reg_array is array(natural range <» of
std_logic_vector(REG_WIDTH-l downto 0);

signal reg: reg_array(WORD_COUNT-l downto 0);

begin
REG_PROC: process (clk)
begin

if clk='l' and clk'event then
if we='l' then

reg (addr) <= data;
end if;

end if;
end process REG_PROC;

data_out <= reg(addr);

Guideline - Arrays are significantly faster to simulate than for loops. To improve
simulation performance, use vector operations on arrays rather than for loops when
ever possible. See Example 5-12.

86 Reuse Methodology Manual

Example 5-12 Using arrays for faster simulation

Poor coding style;
function my_xor{ bbit : std_logic;

avec : std_logic_vector{x downto y))
return std_logic_vector is

variable cvec :
std_logic_vector{avec'range-l downto 0);

begin
for i in avec'range loop bit-level for loop

cvec{i) := avec{i) xor bbit; bit-level xor
end loop;
return (cvec) ;

end;

Recommended coding style:
function my_xor{ bbit : std_logic;

avec: std_logic_vector{x downto y))
return std_logic_vector is

variable cvec, temp :
std_logic_vector{avec'range-l downto 0);

begin
temp := (others => bbit);
cvec := avec xor temp;
return{cvec);

end;

5.2.15 Use Meaningful Labels

Rule - Label each process block with a meaningful name. This is very helpful for
debug. For example, you can set a breakpoint by referencing the process label.

Guideline - Label each process block <name> _PROC.

Rule - Label each instance with a meaningful name.

Guideline - Label each instance U_ <name>.

In a multi-layered design hierarchy, keep the labels short as well as meaningful. Long
process and instance labels can cause excessively long path names in the design hier
archy. See Example 5-13.

RTl Coding Guidelines 87

Rule - 00 not duplicate any signal, variable, or entity names. For example, if you
have a signal named incr, do not use incr as a process label.

Example 5-13 Meaningful process label

-- Synchronize requests (hold for one clock) .
SYNC_PROC : process (reql, req2, rst, clk)

. .. process body here

end process SYNC_PROCi

5.3 Coding for Portability

The following guidelines address portability issues. By following these guidelines,
you will create code that is technology-independent, compatible with various simula
tion tools, and easily translatable from VHOL to Verilog (or from Verilog to VHOL).

5.3.1 Use Only IEEE Standard Types

Rule (VHDL only) - Use only IEEE standard types.

You can create additional types and subtypes, but all types and subtypes should be
based on IEEE standard types. Example 5-14 shows how to create a subtype
(word_type) based on the IEEE standard type std_Iogic_vector.

Example 5-14 Creating a subtype from std_Iogic_vector

--Create new 16-bit subtype
subtype WORD_TYPE is std_Iogic_vector (15 downto 0);

Guideline (VHDL only) - Use std_Iogic rather than std_ulogic. Likewise,
use std_Iogic_vector rather than std_ulogic_vector. The std_Iogic
and std_Iogic_vector types provide the resolution functions required for
tristate buses. The std_ulogic and std_ulogic_vector types do not provide
resolution functions.

Note - Standardizing on either std_Iogic or std_ulogic is more important
than which of the two you select. There are advantages and disadvantages to each.
Most designers today use std_Iogic, which is somewhat better supported by EOA
tools. In most applications, the availability of resolution functions is not required.
Internal tristate buses present serious design challenges and should be used only when

88 Reuse Methodology Manual

absolutely necessary. However, at the system level and in those extreme cases where
internal tristate buses are required, the resolution functions are essential.

Guideline (VHDL only) - Be conservative in the number of subtypes you create.
Using too many subtypes makes the code difficult to understand.

Guideline (VHDL only) - Do not use the types bi t or bi t_ vector. Many sim
ulators do not provide built-in arithmetic functions for these types. Example 5-15
shows how to use built-in arithmetic packages for std_logic_vector.

Example 5-15 Using built-in arithmetic functions for std_logic_vector

use ieee.std_logic_arith.all;
signal a,b,c,d:std_logic_vector(y downto x);

c <::;: a + b;

5.3.2 Do Not Use Hard-Coded Numeric Values

Guideline - Do not use hard-coded numeric values in your design. As an exception,
you can use the values 0 and 1 (but not in combination, as in 1001). Example 5-16
shows Verilog code that uses a hard-coded numerical value (7) in the "poor coding
style" example and a constant (MY _BUS_SIZE) in the "recommended coding style"
example.

Example 5-16 Using constants instead of hard-coded values

Poor coding style:
wire [7:0] my_in_bus;
reg [7:0] my_out_bus;

Recommended coding style:

'define MY_BUS_SIZE 8
wire ['MY_BUS_SIZE-l:0] my_in_bus;
reg ['MY_BUS_SIZE-l:0] my_out_bus;

5.3.3 Packages

Guideline (VHDL only) - Collect all parameter values and function definitions for
a design into a single separate file (a "package") and name the file
DesignName-package.vhd.

RlL Coding Guidelines 89

5.3.4 Include Files

Guideline (Verilog only) - Keep the \ define statements for a design in a single
separate file and name the file DesignName.J)arams . v.

5.3.5 Avoid Embedding dc_shell Scripts

Although it is possible to embed dc_shell synthesis commands directly in the
source code, this practice is not recommended. Others who synthesize the code may
not be aware of the hidden commands, which may cause their synthesis scripts to pro
duce poor results. If the design is reused in a new application, the synthesis goals may
be different, such as a higher-speed version. If the source code is reused with a new
release of Design Compiler, the commands will still be supported but may be obso
lete.

There are several exceptions to this rule. In particular, the synthesis directives to turn
synthesis on and off must be embedded in the code in the appropriate places. These
exceptions are noted in various guidelines throughout this chapter.

5.3.6 Use Technology-Independent Libraries

Guideline - Use the DesignWare Foundation Library to maintain technology inde
pendence.

The Design Ware Foundation Library contains improved architectures for the infer
able arithmetic components, such as:

• Adders

• Multipliers

• Comparators
• Incrementers and decrementers

These architectures provide improved timing performance over the equivalent internal
Design Compiler architectures.

The Design Ware Foundation Library also provides additional arithmetic components
such as:

• Sin, cos

• Modulus, divide

• Square root
• Arithmetic and barrel shifters

90 Reuse Methodology Manual

These DesignWare components are all high-performance designs that are portable
across processes. They provide significantly more portability than custom-designed,
process-specific designs. Using these components helps you create designs that
achieve high performance in all target libraries.

The Design Ware Foundation Library also includes a number of sequential compo
nents, also designed to be completely process-portable, and which can save consider
able design time. These components include:

• FIFO's and FIFO controllers

• ECC

• CRC
• ITAG components and ASIC debugger

For more information about using Design Ware components, see the Design Ware
Foundation Library Databook and the Design Ware User Guide.

Guideline - Avoid instantiating gates in the design. Gate-level designs are very hard
to read, and thus difficult to maintain and reuse. If technology-specific gates are used,
then the design is not portable to other technologies.

Guideline - If you must use technology-specific gates, then isolate these gates in a
separate module. This will make it easier to modify these gates as needed for different
technologies.

Guideline - The GTECH library If you must instantiate a gate, use a technology
independent library such as the Synopsys generic technology library, GTECH. This
library contains the following technology-independent logical components:

• AND, OR, and NOR gates (2, 3, 4, 5, and 8)

• I-bit adders and half adders

• 2-of-3 majority

• Multiplexors

• Flip-flops

• Latches

• Multiple-level logic gates, such as AND-NOT, AND-OR, AND-OR-INVERT

5.3.7 Coding For Translation (VHDL to Verilog)

Guideline (VHDL only) - Do not use generate statements. There is no equiva
lent construct in Verilog.

Rll Coding Guidelines 91

Guideline (VHDL only) - Do not use block constructs. There is no equivalent
construct in Verilog.

Guideline (VHDL only) - Do not use code to modify constant declarations.
There is no equivalent capability in Verilog.

5.4 Guidelines for Clocks and Resets

The following sections contain guidelines for clock and reset signals. The basic the
ory behind these guidelines is that a simple clocking structure is easier to understand,
analyze, and maintain. It also consistently produces better synthesis results. The pre
ferred clocking structure is a single global clock and positive edge-triggered flops as
the only sequential devices, as illustrated in Figure 5-1.

r---------, r---------,

L ____ _ ___ ...l L ____ _ ___ ...l

CLK----~------------------------~

Figure 5-1 Ideal Clocking Structure

5.4.1 Avoid Mixed Clock Edges

Guideline - Avoid using both positive-edge and negative-edge triggered flip-flops in
your design.

Mixed clock edges may be necessary in some designs. In designs with very aggres
sive timing goals, for example, it may be necessary to capture data on both edges of
the clock. However, clocking on both edges creates several problems, and should be
used with caution:

• The duty cycle of the clock becomes a critical issue in timing analysis, in addition
to the clock frequency itself.

• Most scan-based testing methodologies require separate handling of positive and
negative-edge triggered flops.

92 Reuse Methodology Manual

Figure 5-2 shows an example of a module with both positive-edge and negative-edge
triggered flip-flops.

Figure 5·2 Bad example: Mixed clock edges

Rule - If you must use both positive-edge and negative-edge triggered flip-flops in
your design, be sure to model the worst case duty cycle of the clock accurately in syn
thesis and timing analysis.

The assumption of a perfect clock with 50% duty cycle is optimistic, giving signals
half the clock cycle to propagate from one register to the next. In the physical design,
the duty cycle will be not be perfect, and the actual time available for signals to prop
agate can be much smaller.

Rule - If you must use both positive-edge and negative-edge triggered flip-flops in
your design, be sure to document the assumed duty cycle in the user documentation.

In most chip designs, the duty cycle is a function of the clock tree that is inserted into
the design; this clock tree insertion is usually specific to the process technology. The
chip designer using the macro must check that the actual duty cycle will match
requirements of the macro, and must know how to change the synthesis/timing analy
sis scripts for the macro to match the actual conditions.

Guideline - If you must use a large number of both positive-edge and negative-edge
triggered flip-flops in your design, it may be useful to separate them into different
modules. This makes it easier to identify the negative-edge flops, and thus to put them
in different scan chains.

Figure 5-3 shows an example design where the positive-edge triggered flip-flops and
negative-edge triggered flip-flops are partitioned into separate blocks.

RlL Coding Guidelines

r---------, r---------,

L ___ .J L_ ___ .J

CLK----~--------------------~

Figure 5-3 Better example: Negative-edge and positive-edge flip-flops are
separated

5.4.2 Avoid Clock Buffers

93

Guideline - Avoid hand instantiating clock buffers in RTL code. Clock buffers are
nonnally inserted after synthesis as part of the physical design. In synthesizable RTL
code, clock nets are nonnally considered ideal nets, with no delays. During place and
route, the clock tree insertion tool inserts the appropriate structure for creating as
close to an ideal, balanced clock distribution network as possible.

5.4.3 Avoid Gated Clocks

Guideline - Avoid coding gated clocks in your RTL. Clock gating circuits tend to be
technology specific and timing dependent. Improper timing of a gated clock can gen
erate a false clock or glitch, causing a flip-flop to clock in the wrong data. Also, the
skew of different local clocks can cause hold time violations.

Gated clocks also cause limited testability because the logic clocked by a gated clock
cannot be made part of a scan chain. Figure 5-4 shows a design where U2 cannot be
clocked during scan-in, test, or scan-out, and cannot be made part of the scan chain.

Gated clocks are required for many low-powered designs, but they should not be
coded in the RTL for a macro. See section 5.4.5 for the preferred way of dealing with
gated clocks. If individual flip-flops need to be gated within a design, the clock gating
should be inserted by a tool such as Power Compiler, so that the RTL remains tech
nology portable.

94 Reuse Methodology Manual

elK

U1

01----.
U2

Figure 5·4 Bad example: Limited testability and skew problems because of gated
clock

5.4.4 Avoid Internally Generated Clocks

Guideline - Avoid using internally generated clocks in your design.

Internally generated clocks cause limited testability because logic driven by the inter
nally generated clock cannot be made part of a scan chain. Internally generated clocks
also make it more difficult to constrain the design for synthesis.

Figure 5-5 shows a design in which U2 cannot be clocked during scan-in, test, or
scan-out, and cannot be made part of the scan chain because it is clocked by an inter
nally generated clock. As an alternative, design synchronously or use multiple clocks.

Lo U1
0 - U2

0 0

> 0 >
Figure 5·5 Bad example: Internally generated clock

5.4.5 Gated Clocks and Low Power Designs

Some designs, especially low-power designs, required a gated clocks. The following
guidelines address this issue.

Guideline - If you must use a gated clock, or an internally generated clock or reset,
keep the clock and/or reset generation circuitry as a separate module at the top level
of the design. Partition the design so that all the logic in a single module uses a single
clock and a single reset. See Figure 5-6.

RTL Coding Guidelines 95

In particular, a gated clock should never occur within a macro. The clock gating cir
cuit, if required, should appear at the top level of the design hierarchy, as shown in
Figure 5-6.

Isolating clock and reset generation logic in a separate module solves a number of
problems. It allows submodules 1-3 to use the standard timing analysis and scan
insertion techniques. It restricts exceptions to the R1L coding guidelines to a small
module than can be carefully reviewed for correct behavior. It also makes it easier for
the design team to develop specific test strategies for the clock/reset generation logic.

Guideline - If your design requires a gated clock, model it using synchronous load
registers, as illustrated in Example 5-17.

top

clk1 submodule1
Clock

Generation

elk2
submodule2 ...

elk3 .. submodule3

Figure 5-6 Good example: Clock generation circuitry is isolated at the top level

Example 5-17 Use synchronous load instead of combinational gating

Poor coding style:

elk-p1 <= elk and p1_gatei
EX17A_PROC: process (elk-p1)

begin
if (clk-p1'event and elk-p1 = '1') then

end ifi
end process EX17A_PROCi

96

Good coding style:
EX17B_PROC: process (clk)

begin

Reuse Methodology Manual

if (clk'event and clk = '1') then
if (pl_gate = '1') then

end ifi
end ifi

end process EX17B_PROCi

5.4.6 Avoid Internally Generated Resets

Make sure your registers are controlled only by a simple reset signal.

Guideline - Avoid internally generated. conditional resets if possible. Generally. all
the registers in the macro should be reset at the same time. This approach makes anal
ysis and design much simpler and easier.

Guideline - If a conditional reset is required. create a separate signal for the reset
signal. and isolate the conditional reset logic in a separate module. as shown in
Example 5-18. This approach results in more readable code and improves synthesis
results.

Example 5·18 Isolating conditional reset logic

Poor coding style:
EX18A_PROC: process clk, rst, a, b

begin
if (rst or (a and b) = '1') then

reg_sigs <= 'O'i
elsif (clk'event and clk = '1') then

end ifi
end process EX18A_PROCi

Good coding style:
in a separate reset module

z_rst <= rst or (a and b)i

-- in the main module

RTL Coding Guidelines

EX18B_PROC: process (clk, z_rst)
begin

if (z_rst = '1') then
reg_sigs <= 'a';

elsif (clk'event and clk = '1') then

end if;
end process EX18B_PROC;

5.5 Coding for Synthesis

97

The following guidelines address synthesis issues. By following these guidelines, you
will create code that achieves the best compile times and synthesis results, including:

• Testability
• Performance

• Simplification of static timing analysis

• Gate-level circuit behavior that matches that of the original R1L code

5.5.1 Infer Registers

Guideline - Registers (flip-flops) are the preferred mechanism for sequential logic.
To maintain consistency and to ensure correct synthesis, use the following templates
to infer technology-independent registers (Example 5-19 for VHDL, Example 5-20
for Verilog). Use the design's reset signal to initialize registered signals, as shown in
these examples. In VHDL, do not initialize the signal in the declaration; in Verilog, do
not use an ini tial statement to initialize the signal. These mechanisms can cause
mismatches between pre-synthesis and post-synthesis simulation.

Example 5-19 VHDL template for sequential processes

-- process with synchronous reset
EX19A_PROC: process (clk)

begin
IF (clk'event and clk = '1') then

if rst = '1' then

else

end if;
end if;

98

end process EX19A_PROCi

-- process with asynchronous reset
EX19B_PROC: process (clk, rst_a)

begin
IF rst_a = '1' then

Reuse Methodology Manual

elseif (clk'event and clk = '1') then

end ifi
end process EX19B_PROCi

Example 5·20 Verilog template for sequential processes

II process with synchronous reset
always @(posedge clk)

begin : EX20A_PROC
if (reset == l'b1)

begin

end
3lse

begin

end
end II EX20A_PROC

II process with asynchronous reset
always @(posedge clk or posedge rst_a)

begin : EX20B_PROC
if (reset == l'b1)

begin

end
else

begin

end
end II Ex20b-proc

RTL Coding Guidelines 99

5.5.2 Avoid Latches

Rule - Avoid using any latches in your design.

As an exception, you can instantiate technology-independent GTECH D latches.
However, all latches must be instantiated and you must provide documentation that
lists each latch and describes any special timing requirements that result from the
latch.

Large registers, memories, FIFOs, and other storage elements are examples of situa
tions in which D latches are permitted. Also, for 2-phase clocked synchronous RAM,
you may want to use D latches to latch the address.

Note - To check your design for latches, compile the design (with no constraints for
a quick compile) and use the all_registers -level_sensitive command,
which will list all level sensitive elements, such as latches, in your design.

Example 5-21 illustrates a VHDL code fragment that infers a latch because there is no
else clause for the if statement. Example 5-22 illustrates another VHDL code frag
ment that infers a latch because the z output is not assigned for the when others
condition.

Example 5·21 Poor coding style: Latch inferred because of missing else
condition

EX21_PROC: process (a, b)
begin

if (a = '1') then
q <= bi

end ifi
end process EX21_PROCi

Example 5·22 Poor coding style: Latch inferred because of missing z output
assignment

EX22_PROC: process (c)
begin

case c is
when '0' => q <= 'l'i z <= 'O'i
when others => q <= 'O'i

end casei
end process EX22_PROCi

100 Reuse Methodology Manual

Example 5-23 illustrates a Verilog code fragment that infers latches because of miss
ing s output assignments for the 2' bO 0 and 2' bO 1 conditions and a missing
2 ' bll condition.

Example 5·23 Poor coding style: Latches inferred because of missing assignments
and missing condition

always @ (d)
begin

case (d)
2'bOO: z <= l'bl;
2'bOl: z <= l'bO;
2'blO: z <= l'bl; s <= l'bl;

endcase
end

Guideline - You can avoid inferred latches by using any of the following coding
techniques:

• Assign default values at the beginning of a process, as illustrated for VHDL in
Example 5-24.

• Assign outputs for all input conditions, as illustrated in Example 5-25.

• Use else (instead of elsif) for the final priority branch, as illustrated in
Example 5-26.

Example 5·24 Avoiding a latch by assigning default values

COMBINATIONAL_PROC : process (state, bus_request)
begin

-- intitialize outputs to avoid latches
bus_hold <= ' 0' ;
bus_interrupt <= '0'
case (state) ...

end process COMBINATIONAL_PROC;

RTL Coding Guidelines 101

Example 5-25 Avoiding a latch by fully assigning outputs for all input conditions

Poor coding style:

EX25A_PROC: process (g, a, b)
begin

if (g = '1') then
q <= 0;

elsif (a = '1') then
q <= b;

end if;
end process EX25A_PROC;

Recommended coding style:

EX25B_PROC: process (gl, g2, a, b)
begin

q <= ' 0' ;
if (gl = '1') then

q <= a;
elsif (g2 = '1') then

q <= b;
end if;

end process EX25B_PROC;

Example 5-26 Avoiding a latch by using else for the final priority branch
(VHDL)

Poor. coding style:

MUX3_PROC: process (decode, A, B)
begin

if (decode = '0') then
C <= A;

elsif (decode = '1') then
C <= B;

end if;
end process MUX3_PROC;

Recommended coding style:

MUX3_PROC: process (decode, A, B)
begin

if (decode = '1') then
C <= A;

else
C <= Bi

102 Reuse Methodology Manual

end if;
end process MUX3_PROC;

5.5.3 If you must use a latch

In some designs, using a latch is absolutely unavoidable. For instance, in a PCI
design, the team found that it was impossible to comply with the PCI specification for
reset behavior without having a latch in the design. In order to achieve testability, the
team used the approach in Figure 5-7. They used a mux to provide either the normal
function or the input from an I/O pad as data to the mux. The mux was selected by the
test mode pin used to enable scan.

TEST IN

TEST
MODE

Normal
Function

1-----1 D Q 1--__ _

EN

Figure 5-7 Making a latch testable

5.5.4 Avoid Combinational Feedback

Guideline - Avoid combinational feedback; that is, the looping of combinational
processes. See Figure 5-8.

Rll Coding Guidelines

BAD: Combinational processes are looped

... -------------------- ... ------_ ... _---------------.
I

SEQ ~~~ • SEQ

RST / ~ CLKA I..--R----IST

8+-8
I

10 ____ ------- .. -------------------------------_ ...

GOOD: Combinational processes are not looped

.... - ------------- .. --_ __ -_ __ _ __ .. _-.

I

SEQ

RST

I

~~v-+ SEQ

/ CLKA RST

~~V
..... _------------_ .. _----------_ _-- _---_.

Figure 5·8 Avoiding combinational feedback

5.5.5 Specify Complete Sensitivity Lists

103

Rule - Include a complete sensitivity list in each of your process (VHDL) or
always (Verilog) blocks.

If you do not use a complete sensitivity list, the behavior of the pre-synthesis design
may differ from that of the post-synthesis netlist, as illustrated in Figure 5-9.

Design Compiler, as well as InterHDL's Verilint and VHDLlint, detect incomplete
sensitivity lists and issue a warning when you elaborate the design.

104

a

VHDL

process (a)
begin

c <= a or b;
end process

Reuse Methodology Manual

Verilog

always @ (a)
c <= a or b;

a

b~
:=1)-c b~

c~ c

Pre-synthesis
Simulation
Waveform

Synthesized
Netlist

Post-synthesis
Simulation
Waveform

Figure 5-9 Bad example: Simulation mismatch because of incomplete
sensitivity list

Combinational Blocks

For combinational blocks (blocks that contain no registers or latches), the sensitivity
list must include every signal that is read by the process. In general, this means every
signal that appears on the right side of an assign « =) statement or in a conditional
expression. See Example 5-27.

Example 5-27 Good coding style: Sensitivity list for combinational process block

VHDL:

COMBINATIONAL_PROC : process (a, inc_dec)
begin

if inc_dec = '0' then
sum <= a + 1;

else
sum <= a - 1;

end if;
end process COMBINATIONAL_PROC;

RTL Coding Guidelines

Verilog:

always @(a or inc_dec)
begin : COMBINATIONAL_PROC

if (inc_dec -- 0)
sum = a + 1i

else
sum = a - 1i

end II COMBINATIONAL_PROC

Sequential Blocks

105

For sequential blocks, the sensitivity list must include the clock signal that is read by
the process, as shown in Example 5-28. If the sequential process block also uses a
reset signal, include the reset signal in the sensitivity list.

Example 5·28 Good coding style: Sensitivity list in a sequential process block

VHDL:
SEQUENTIAL_PROC : process (clk)
begin

if (clk'event and clk = '1') then
q <= di

end ifi

end process SEQUENTIAL_PROCi

Verilog;

always @(posedge clk)
begin : SEQUENTIAL_PROC

q <= di
end II SEQUENTIAL_PROC

Sensitivity List and Simulation Performance

Guideline - Make sure your process sensitivity lists contain only necessary signals,
as defined in the sections above. Adding unnecessary signals to the sensitivity list
slows down simulation.

5.5.6 Blocking and Nonblocking Assignments (Verilog)

In Verilog, there are two types of assignment statements: blocking and nonblocking.
Blocking assignments execute in sequential order, nonblocking assignments execute
concurrently.

106 Reuse Methodology Manual

Rule (Verilog only) - When writing synthesizable code, always use nonblocking
assignments in always @ (posedge elk) blocks. Otherwise, the simulation
behavior of the RTL and gate-level designs may differ.

Example 5-29 shows a Verilog code fragment that uses a blocking assignment where
b is assigned the value of a, then a is assigned the value of b. The result is the circuit
shown in Figure 5-10, where Register A just loops around and reassigns itself every
clock tick. Register B is the same result one time unit later.

Example 5-29 Poor coding style: Verilog blocking assignment

always @ (posedge elk)
begin

b = ai

a = bi

end

eLK

-

- ~ - >

a

b

Figure 5-10 Bad example: Circuit built from blocking assignment

Example 5-30 shows a Verilog code fragment that uses a nonblocking assignment. b
is assigned the value of a and a is assigned the value of b at every clock tick. The
result is the circuit shown in Figure 5-11.

Example 5-30 Recommended coding style: Verilog nonblocking assignment

always @ (posedge elk)
begin

b <= ai

a <= -bi

end

Rll Coding Guidelines 107

b

'--- a a

~
a f--

~ ;--elK

Figure 5-11 Circuit built from nonblocking assignment

5.5.7 Signal vs. Variable Assignments (VHDL)

In VHDL simulation, signal assignments are scheduled for execution in the next sim
ulation cycle. Variable assignments take effect immediately, and they take place in the
order in which they appear in the code. Thus, they present some of the same problems
as blocking assignments in Verilog. VHDL variables are not as problematic as Verilog
blocking assignments because the interfaces between modules in VHDL are required
to be signals, so these interfaces are well-behaved. The order dependencies of vari
ables are thus strictly local, so it is reasonable easy to develop correct code.

Guideline (VHDL only) - When writing synthesizable code, we suggest you use
signals instead of variables to ensure that the simulation behavior of the pre-synthesis
design matches that of the post-synthesis netlist. If you feel that simulation speed will
be significantly improved by using variables, then it is certainly appropriate to do so.
Just exercise caution in creating order-dependent behavior in the code.

Example 5-31 VHDL variable assignment in synthesizable code

Poor coding style:

EX31_PROC: process (a,b)

variable c : std_logici
begin

c := a and bi
end process EX31_PROCi

Recommended coding style:

signal c : std_logici
EX31_PROC:process (a,b)

begin
c <= a and bi

end process EX31_PROCi

108 Reuse Methodology Manual

5.5.8 Case Statements versus if-then-else Statements

In VHDL and Verilog, a case statement infers a single-level multiplexer, while an
if - then -el s e statement infers a priority-encoded, cascaded combination of mul
tiplexers.

Figure 5-12 shows the circuit built from the VHDL if-then-else statement in
Example 5-32.

Figure 5-13 shows the circuit built from the VHDL case statement in Example 5-33.

d 0

c 1
0

sel
sel="10"

1 0

1----------5el="01"
a~~------------------------------~ 1

L..-_____________ 5el="00"

Figure 5-12 Circuit built from if-then-else statement

Example 5-32 Using a VHDL if-then-else statement

EX32_PROC: process (sel,a,b,c,d)
begin

if (sel = "00") then
outi <= ai

elsif (sel = "01") then
outi <= bi

elsif (sel = "10") then
outi <= Ci

else
outi <= di

end ifi
end process EX32_PROCi

outi

RTL Coding Guidelines

a
b

00

01

e 10

d 11

sel 2

oute

Figure 5-13 Circuit built from the case statement

Example 5-33 Using a VHDL case statement

EX33_PROC:process (sel,a,b,c,d)
begin

case sel is
when "00" => outc <= ai

when "01" => outc <= bi
when "10" => outc <= Ci

when others => outc <= di
end casei

end process EX33_PROCi

109

Guideline - The multiplexer is a faster circuit. Therefore, if the priority-encoding
structure is not required, we recommend using the case statement rather than an
if-then-else statement. Note that an if-then-else statement can be useful
if you have a late arriving signal; this signal can then be connect to the "a" input in
Figure 5-13 for the fastest path through the selection function.

In a cycle-based simulator, the case statement also simulates faster than the if
then-else statement.

A conditional signal assignment may also be used to infer a multiplexer. For large
multiplexers, a case statement will simulate faster than a conditional assignment on
most simulators, and especially on cycle-based simulators. For small muxes, the rela
tive speed of the two constructs varies with different simulators.

Example 5-34 illustrates how to use a conditional assignment to infer a mux.

110 Reuse Methodology Manual

Example 5·34 Using a conditional assignment to infer a mux

VIIDL:

zl <= a when sel_a = '1' else
b when sel_b = '1' else
c;

z2 <= d when sel - a = ' l' else
e when sel_b = ' l' else
f;

Verilog:

assign zl = (sel_a) ? a (sel_b)

assign z2 = (sel_a) ? d (sel_b)

5.5.9 Coding State Machines

? b

? e

Observe the following guidelines when coding state machines:

C;

f;

Guideline - Separate the state machine HDL description into two processes, one for
the combinational logic and one for the sequential logic.

Guideline - In VHDL, create an enumerated type for the state vector. In Verilog, use
, de fine statements to define the state vector.

Guideline - Keep FSM logic and non-FSM logic in separate modules. See "Parti
tioning for Synthesis" later in this chapter for details.

Guideline - Assign a default state for the state machine. This is useful to implement
graceful entry into the idle state if no other state is initiated. For VHDL, assign a state
for the others condition, as shown in Example 5-35. For Verilog, assign a
defaul t state, as shown in Example 5-36.

For more information about coding state machines, read the Optimizing Finite State
Machines chapter of the Design Compiler Reference Manual.

Example 5-35 VHDL FSM coding example

library IEEE, STD;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_components.all;
use IEEE.std_logic_misc.all;
entity fsm is

RTL Coding Guidelines

port (

x in std_logic;
rst in std_logic;
clock in std_logic;
z out std_logic);

end fsm;

architecture rtl of fsm is
type state is (STATE_O, STATE_l, STATE_2, STATE_3);
signal current_state, next_state : state;
begin

-- combinational process calculates next state

COMBO_PROC : process (x, current_state)
begin

case (current_state) is
when STATE_O =>

Z <= '0';

if x = '0' then
next_state <= STATE_O;

else
next_state <= STATE_l;

end if;
when STATE_l =>

z <= '0';
if x = '0' then

next_state <= STATE_l;
else

next_state <= STATE_2;
end if;

when STATE_2 =>

Z <= '0';

if x = '0' then
next_state <= STATE_2;

else
next_state <= STATE_3;

end if;
when STATE_3 =>

if x = '0' then
z <= '0';

111

112

next_state <= STATE_3;
else

z <= ' l' ;
next_state <= STATE_O;

end if;
when others =>

next_state <= STATE_O;
end case;

end process COMBO_PROC;

Reuse Methodology Manual

-- synchronous process updates current state

SYNCH_PROC : process (rst,clock)
begin

if (rst ='1') then
current_state <= STATE_O;

elsif (clock'event and clock ='1') then
current_state <= next_state;

end if;
end process SYNCH_PROC;

end rtl;

Example 5-36 Verilog FSM coding example

module fsm(clock, rst, x, z);
input clock, rst, x;
output z;
reg [1:0] current_state;
reg [1:0] next_state;
reg z;
parameter [1:0]

STATE_O = 0,
STATE_1 = 1,
STATE_2 = 2,
STATE_3 = 3;

II combinational process calculates next state

always @ (current_state or x)
case (current_state) Iisynopsys parallel_case full_case

STATE_O : begin
if (x) begin

Rll Coding Guidelines

next_state <= STATE_lj

z <= l'bOj

end else begin
next_state <= STATE_Oj
z <= l'bOj

end

end
STATE_l : begin

if (x)

begin
next_state <= STATE_2j
z <= l'bOj

end
else

begin

end

next_state <= STATE_lj
z <= l'bOj

end

STATE_2
if (x)

begin

begin
next_state <= STATE_3j
Z <= l'bOj
end

else
begin

end

next_state <= STATE_2j
z <= l'bOj
end

STATE_3 begin
if (x)

begin
next_state <= STATE_Oj
z <= l'blj

end
else

begin
next_state <= STATE_3j
z <= l'bOj

113

114

end
end
default begin

next_state <= STATE_O;
z <= l'bO;
end

endcase

Reuse Methodology Manual

always @ (posedge clock or negedge rst_na)
begin
if (! rst_na)

current_state <= STATE_O;
else

current_state <= next_state;
end

endmodule

5.6 Partitioning for Synthesis

Good synthesis partitioning in your design provides several advantages including:

• Better synthesis results
• Faster compile runtimes

• Ability to use simpler synthesis strategies to meet timing

The following sections illustrate several recommended synthesis partitioning tech
niques.

5.6.1 Register All Outputs

Guideline - For each block of a hierarchical design, register all output signals from
the block.

Registering the output signals from each block simplifies the synthesis process
because it makes output drive strengths and input delays predictable. All the inputs of
each block arrive with the same relative delay. Output drive strength is equal to the
drive strength of the average flip-flop.

Figure 5-14 shows a hierarchical design in which all output signals from each block
are registered; that is, there is no combinational logic between the registers and the
output ports.

RTL Coding Guidelines

A

Reg
A

B

Reg
B

c

Figure 5·14 Good example: All output signals are registered

Reg
C

115

5.6.2 Locate Related Combinational Logic in a Single Module

Guideline - Keep related combinational logic together in the same module.

Design Compiler has more flexibility in optimizing a design when related combina
tionallogic is located in the same module. This is because Design Compiler cannot
move logic across hierarchical boundaries during default compile operations.

Figure 5-15 shows an example design where the path from register A to register C is
split across three modules. Such a design inhibits Design Compiler from efficiently
optimizing the combinational logic because it must preserve the hierarchical bound
aries in the design.

A

elk

Reg
A

B c

elk

Reg
C

Figure 5·15 Bad example: Combinational logic split between modules

Figure 5-16 shows a similar design in which the related combinational logic is
grouped into a single hierarchical block. This design allows Design Compiler
to perform combinational logic optimization on the path from register A to register C.

116

A

elk

Reg
A

c

elk

Reuse Methodology Manual

Reg
C

Figure 5-16 Better example: Combinational logic grouped into same module

Figure 5-17 shows an even better design where the combinational logic is grouped
into the same module as the destination register. This design provides for improved
sequential mapping during optimization because no hierarchical boundaries exist
between the sequential logic and the combinational logic that drives it.

A

Reg
A

c

Reg
C

Figure 5-17 Best example: Combinational logic grouped with destination register

Keeping related combinational logic in the same module also eases time budgeting
and allows for faster simulation.

5.6.3 Separate Modules That Have Different Design Goals

Guideline - Keep critical path logic in a separate module from noncritical path logic
so that Design Compiler can optimize the critical path logic for speed, while optimiz
ing the noncritical path logic for area.

Figure 5-18 shows a design where critical path logic and noncritical path logic reside
in the same module. Optimization is limited because Design Compiler cannot per
form different optimization techniques on the two groups of logic.

RTL Coding Guidelines

ModuleA

Reg
B

Reg
A

117

Figure 5-18 Bad example: Critical path logic grouped with noncritical path logic

Figure 5-19 shows a similar design where the critical path logic is grouped into a sep
arate module from the noncritical path logic. In this design, Design Compiler can per
form speed optimization on the critical path logic, while performing area optimization
on the noncritical path logic.

Speed
Optimization

Area
Optimization

ModuleA

ModuleB

Reg
B

Reg
A

Figure 5-19 Good example: Critical path logic and noncritical path logic
grouped separately

118 Reuse Methodology Manual

5.6.4 Asynchronous Logic

Guideline - Avoid asynchronous logic.

Asynchronous logic is more difficult to design correctly and to verify. Correct timing
and functionality may be technology dependent, which limits the portability of the
design.

Guideline - If asynchronous logic is required in the design, partition the asynchro
nous logic in a separate module from the synchronous logic.

Isolating the asynchronous logic in a separate module makes code inspection much
easier. Asynchronous logic need to be reviewed carefully to verify its functionality
and timing.

5.6.5 Arithmetic Operators: Merging Resources

A resource is an operator that can be inferred directly from an HDL, as shown in the
following code fragment:

if ctl = 'I' then
z <= a + bi

else
z <= c + di

end ifi

Normally, two adders are created in this example. If only an area constraint exists,
however, Design Compiler is likely to synthesize a single adder and to share it
between the two additions. If performance is a consideration, the adders mayor may
not be merged.

For Design Compiler to consider resource sharing, all relevant resources need to be in
the same level of hierarchy; that is, within the same module.

Figure 5-20 is an example of poor partitioning. In this example, resources that can be
shared are separated by hierarchical boundaries.

Figure 5-21 is an example of good partitioning because the two adders are in the same
module. This partitioning allows Design Compiler full flexibility when choosing
whether or not to share the adders.

RTl Coding Guidelines 119

(-

"'" (+ D Q -

/'

>
(+

Figure 5-20 Poor partitioning: Resources area separated by hierarchical boundaries.

A A

B D Q Z
C

D Q Z
C CTl

D B
CTl D

Figure 5-21 Good partitioning: Adders are in the same hierarchy

5.6.6 Partitioning for Synthesis Runtime

In the past, most synthesis guidelines have recommended keeping modules relatively
small in order to reduce synthesis runtime. Improvements to Design Compiler,
increases in workstation performance, and more experience with large designs has
changed this.

The most important considerations in partitioning should be the logic function, design
goals, and timing and area requirements. Grouping related functions together is much
better than splitting functions artificially, and creating complex inter-block timing
dependencies. Good timing budgets and appropriate constraints can have a larger
impact on synthesis runtime than circuit size. In one test case, synthesis went from
nine hours to 72 hours when the critical range was increased from 0.1 ns to 10 ns.

By grouping logic by design goals, the synthesis strategy can be focused, reducing
synthesis runtime. For example, if the goal for a particular block is to minimize area,

120 Reuse Methodology Manual

and timing is not critical, then the synthesis scripts can be focused on area only,
greatly reducing runtime.

Overconstraining a design is one of the biggest causes of excessive runtime. A key
technique for reducing runtimes is to develop accurate timing budgets early in the
design phase and design the macro to meet these budgets. Then, develop the appropri
ate constraints to synthesize to this budget. Finally, by developing a good understand
ing of the Design Compiler commands that implement these constraints, you can
achieve an optimal combination of high qUality of results and low runtime.

For more information on synthesizing large designs, including the test case mentioned
above, see "Synthesis Methodology for Large Designs - Design Compiler 1997.01
Release" from Synopsys.

5.6.7 Avoid Point-to-Point Exceptions and False Paths

A point-to-point exception is a path from the output of one register to the input of
another that does not follow the standard objective of having the data traverse the path
in one clock cycle. A multicycle path is the prime example of a point-to-point excep
tion.

Multicycle paths are problematic because they are more difficult to analyze correctly
and lend themselves to human error. They must be marked as exceptions to the static
timing analysis tool; it is all too easy to mark a path as an exception by mistake and
not perform timing analysis. Most static timing analyzers work much better on stan
dard paths than on exceptions.

Guideline - Avoid multicycle paths in your design.

Guideline - If you must use a multicycle path in your design, keep point-to-point
exceptions within a single module, and comment them well in your RTI.. code.

Isolating point-to-point exceptions (for example, multicycle paths) within a module
improves compile runtime and synthesis results. Also, the characterize com
mand has limited support for point-to-point exceptions that cross hierarchical bound
aries.

Figure 5-22 shows a good partitioning example where the start and end points of a
multicycle path occur within a single module.

RlL Coding Guidelines 121

Figure 5·22 Good example: Isolating a point-to-point exception to a single module

Guideline - Avoid false paths in your design.

False paths are paths that static timing analysis identifies as failing timing, but that the
designer knows are not actually failing.

False paths are a problem because they require the designer to ignore a warning mes
sage from the timing analysis tool. If there are many false paths in a design, it is easy
for the designer to accidently ignore valid warning message about actual failing paths.

5.6.8 Eliminate Glue Logic at the Top Level

Guideline - Do not instantiate gate-level logic at the top level of the design hierar
chy.

A design hierarchy should contain gates only at leaf levels of the hierarchy tree. For
example, Figure 5-23 shows a design where a NAND gate exists at the top level,
between two lower-level design blocks. Optimization is limited because Design Com
piler cannot merge the NAND with the combinational logic inside block C.

122

Top

A

Reg
A

glue logic

c

Reuse Methodology Manual

clk

Reg
C

Figure 5-23 Bad example: Glue logic existing at top level

Figure 5-24 shows a similar design where the NAND gate is included as part of the
combinational logic in block C. This approach eliminates the extra CPU cycles
needed to compile small amount of glue logic and provides for simpler synthesis
script development. An automated script mechanism only needs to compile and char
acterize the leaf-level cells.

Top

A

clk

Reg
A

c

Reg
C

Figure 5-24 Good example: Glue logic grouped into lower-level block

5.6.9 Chip-Level Partitioning

Figure 5-25 shows the partitioning recommendation for the top level of an ASIC.

RlL Coding Guidelines

Clock
Generation

I JTAG I
III Middle

III

Top

CORE

111111111
Figure 5-25 Top-level partitioning for an ASIC

123

Guideline - Make sure that only the top level of the design contains an 110 pad ring.
Within the top level of hierarchy, a middle level of hierarchy contains IEEE 1149.1
boundary scan (JTAG) modules, clock generation circuitry, and the core logic. The
clock generation circuitry is isolated from the rest of the design as it is normally hand
crafted and carefully simulated. This hierarchy arrangement is not a requirement, but
allows easy integration and management of the test logic, the pads, and the functional
core.

5.7 Designing with Memories

Memories present special problems for reusable design, since memory design tends to
be foundry specific. Macros must be designed to deal with a variety of memory inter
faces. This section outlines some guidelines for dealing with these issues, in particu
lar, designing with synchronous and asynchronous memories.

Synchronous memories present the ideal case, and their interfaces are in the general
form shown in Figure 5-26. Figure 5-27 shows the equivalent asynchronous RAM
design.

124 Reuse Methodology Manual

Synchronous SRAM

~~_-I Addr

Data In

Figure 5·26 Synchronous memory interface

Data
Out

Asynchronous SRAM

1-___ -t Addr

1-___ --1 Data In Data

Write
Enable

Figure 5·27 Asynchronous memory interface

Guideline - Partition the address and data registers and the write enable logic in a
separate module. This allows the memory control logic to work with both asynchro
nous and synchronous memories. See Figure 5-28.

In the design shown in Figure 5-28, the interface module is required only for asyn
chronous memories. The functionality in the interface module is integrated into the
synchronous RAM.

RTL Coding Guidelines

r---------,

Main module·
works with both asynchronous
and synchronous memories

L _________ .L

125

,
IAsynchronous SRAM

1-__ '"1 Addr

t----... Data In

Interface module·
used only with
asynchronous
memories

_.J

Write
Enable

Data
Out

Figure 5·28 Partitioning memory control logic separately

5.S Code Profiling

In some cases, code profiling can assist you in optimizing your code. Some simula
tors, and several third-party code coverage tools, provide the capability of tracking
how often each line of code is executed during a given simulation run.

Profiling is a valuable tool that can reveal bottleneck areas in the model. However,
you must keep in mind that the profiler looks only at the frequency with which a line
is executed, not at how expensive that construct is in terms of machine cycles. For
example, performing a variable assignment statement differs a great deal from per
forming a signal assignment.

Code coverage tools that measure path coverage as well as statement coverage can be
very useful for analyzing how well a given test vector set exercises the model and for
checking redundancies in the model itself. For example, if some parts of the model
receive no execution coverage at all, either the vectors are failing to exercise the
model fully or that portion of the model is redundant. See Chapter 7 for more discus
sion of code coverage tools.

CHAPTER 6 Macro Synthesis
Guidelines

'This chapter discusses strategies for developing macro synthesis scripts that enable
the integrator to synthesize the macro and meet timing goals. The topics include:

• Overview of the synthesis problem

• Synthesis strategies for reusable macros

• High-performance synthesis

• RAM and datapath generators

• Coding guidelines for synthesis scripts

6.1 Overview of the Synthesis Problem

There are some special problems associated with the synthesis of parameterizable soft
macros:

• The macro and synthesis scripts must allow the integrator to synthesize the macro
and meet timing goals in the final chip.

• The macro must meet timing with the integrator's gate array or standard cell
library.

• The macro must meet timing in the integrator's specific configuration of the
macro.

'This chapter presents a set of tools and methodologies for achieving these goals.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

128 Reuse Methodology Manual

The synthesis guidelines in this chapter are based on many of the same fundamental
principles guiding the previous chapter. First and foremost, synthesis and timing
design must start at the beginning of the macro design cycle.

That is:

• Functional specifications for the macro must describe the timing, area, wire load
model, and power requirements for the design.

• Detailed technical specifications for the macro and its various subblocks must
describe the timing requirements and interfaces in detail, including specifications
for input and output delays.

• RTL needs to be coded from the outset to meet both the functional and the timing
requirements of the design. Coding for functionality first, and then fixing timing
problems later, causes significant delays and poor overall performance in many
designs.

If these fundamental guidelines are followed, then synthesis is a straightforward
issue. Each synthesizable unit or module in the design has a timing budget. Once each
module meets this timing budget, the macro is ensured of meeting its overall timing
goals. Synthesis problems become localized, so the difficult problems can be solved
on small modules, where they are the most tractable.

6.2 Macro Synthesis Strategy

The recommended synthesis strategy for macros is to develop a set of constraints for
the macro early in the design process and to use a bottom-up synthesis strategy.

6.2.1 Macro Timing Budget

Rule - The basic timing budget for the macro must be developed as part of the spec
ification process, before the design is partitioned into blocks and before coding
begins. This timing budget must be reviewed regularly during the design process to
ensure that it is still reasonable and consistent.

The macro timing budget must specify:

• Clock definition
• Setup time requirements for all signals going into the macro

• Clock to output delay requirements for all synchronous outputs of the macro

• Input and output delays for all combinational paths through the macro

• Loading budget for outputs and driving cell for inputs

Macro Synthesis Guidelines 129

• Operating conditions, including temperature and voltage

Note that combinational paths through the macro are discouraged, because they create
non-local synthesis problems that can be very difficult to resolve. The combinational
paths must be carefully documented and their timing budgets closely examined to
make sure the design constraints can be met. The preferred method for specifying
these combinational delays is to specify the input arrival times and the required output
time with respect to the clock, assuming the clock is present in the block

6.2.2 Subblock Timing Budget

Rule - The basic timing budget must be developed for each subblock in the macro.
This budget must be developed at the time that the design is partitioned into sub
blocks, and before coding begins. The budget must be reviewed regularly during the
design process to ensure that it is still reasonable and consistent.

The subblock timing budget must specify:

• Clock definition
• WIre load model

• Setup time requirements for all signals going into the subblock

• Clock to output delay requirements for all synchronous outputs of the subblock

• Input and output delays for all combinational paths through the subblock

• Loading budget for outputs and driving cell for inputs

• Operating conditions, including temperature and voltage

A good nominal starting point for the loading and driving specifications is to use a
two-input NAND gate as the driving cell and a flip-flop data input pin as the output
load.

Combinational paths through subblocks are discouraged, just as they are at the macro
level. In our experience, most synthesis problems arise from these combinational
paths.

6.2.3 Synthesis in the Design Process

Synthesis starts as the individual designers are developing the subblocks of the macro,
and is initially performed with a single technology library. Later, during the producti
zation phase, the entire macro is synthesized to multiple libraries to ensure portability.

The designer should start running synthesis as soon as the RTL passes the most basic
simulation tests. Performing synthesis at this stage allows the designer to identify and

130 Reuse Methodology Manual

fix timing problems early. Because fixing the tough timing problems usually means
modifying or restructuring the R1L, it is much better to deal with these problems
before the code is completely debugged.

Early synthesis also allows the designer to identify the incremental timing costs of
new functionality as it is added to the code.

The target at this early stage of synthesis should be to get to within about 10-20% of
the final timing budget. This should be close enough to ensure that the R1L code is
structured correctly. The additional effort to achieve the timing budget completely is
not worth the effort until the code is passing all functional tests. This additional effort
will most likely consist of modifying the synthesis scripts and refining the timing bud
gets.

The subblocks should meet all timing budgets, as well as meeting all functional verifi
cation requirements, before being integrated into the macro.

6.2.4 Subblock Synthesis Process

Guideline - The subblock synthesis process consists of three phases:

1. Perform a compile on the subblock, using constraints based on the budget.
2. Perform a characterize-compile on the whole subblock, to refine the timing con

straints and re-synthesize the subblock.

3. Iterate if required.

The characterize-compile strategy in step 2 is documented in the Design Compiler
Reference Manual.

6.2.5 Macro Synthesis Process

When the subblocks are ready for integration, we are ready to perform macro-level
synthesis.

Guideline - The macro synthesis process consists of three phases:

1. Perform a compile on each of the subblocks, using constraints based on the bud
get.

2. Perform a characterize-compile on the whole macro to improve timing and area.

3. If necessary to meet the timing goals, perform an incremental compile.

The characterize-compile in step 2 is needed to develop accurate estimates of the
loading effects on the inputs and outputs of each subblock. Initially, the drive strength

Macro Synthesis Guidelines 131

of the cells driving inputs, and the loading effects of cells driven by the outputs, are
estimated and set manually. The set_dri ving_cell and set_load commands
are used for this purpose. The characterize-compile step derives actual drive strengths
and loading from the rest of the macro. Clearly, this requires an initial synthesis of the
entire macro in order to know what cells are driving/loading any specific subblock
input/output.

6.2.6 Wire Load Models

Wire load models estimate the loading effect of metal interconnect upon cell delays.
For deep submicron designs, this effect dominates delays, so using accurate wire load
models is critical.

The details of how a given technology library does wire load prediction varies from
library to library, but the basic principles are the same. A statistical wire length is
determined based on the physical size of the block. From this statistical wire length
and the total input capacitance of the nodes on the net, the synthesis tool can deter
mine the total load on the driving cell.

The most critical factor in getting an accurate statistical wire length is to estimate
accurately the size of the block that will be placed and routed as a unit. Typically, a
macro will be placed and routed as a single unit, and the individual subblocks that
make up the macro will be flattened within the macro. Thus, the appropriate wire load
model is determined by the gate count (and thus area) of the entire macro at the top
level.

When we synthesize a subblock, we must use the wire load model for the full macro,
not just the subblock. If we use just the gate count of the subblock to determine the
wire load model, we will get an optimistic model that underestimates wire delays.
When we then integrate the subblocks into the macro and use the correct wire load
model, we can run into significant timing problems.

6.2.7 Preserve Clock and Reset Networks

Clock networks are typically not synthesized; we rely on the place and route tools to
insert a balanced clock tree with very low skew. Asynchronous reset networks are also
typically treated as special networks, with the place and route tools inserting the
appropriate buffers. These non-synthesized networks need to be identified to the syn
thesis tool.

Guideline - Set dont_touch_network on clock and asynchronous reset net
works. Include the required dont_touch_network commands in the synthesis
scripts for the design. See Example 6-1.

132 Reuse Methodology Manual

Example 6-1 Using dont_toueh_network on clocks and reset networks

dont_toueh_network {elk rst}

6.2.8 Code Checking Before Synthesis

Several checks should be run before synthesis. These checks can spot potential syn
thesis problems without having to perform a complete compile.

Lint Tools

Lint-like tools (InterHDL's Verilint and VHDLlint, for example) can quickly check
for many different potential problems, including:

• Presence of latches

• Non-synthesizable constructs like "==" or ini tial

• Whether a case statement was inferred as a mux or a priority encoder

• Whether all bits in a bus were assigned

• Unused macros, parameters, or variables

Once the R1L passes lint, the elaboration reports from Design Compiler should be
examined to check:

• Whether sequential statements were inferred as flip-flops or latches

• Whether synchronous or asynchronous reset was inferred

A clean elaboration of the design is a critical first step in performing synthesis.

6.2.9 Code Checking After Synthesis

After synthesis, a number of Design Compiler checks can be run to identify potential
problems:

Loop Checking
Run report_timing -loops to determine whether there are any combi
national loops.

Checking for Latches
Run all_registers -level_sensi ti ve to get a report on latches in
the design.

Macro Synthesis Guidelines 133

Check for Design Rule Violations
Run check_design to check for missing cells, unconnected ports, and
inputs tied high or low.

Verify Testability
Run check_test to verify that there are scan versions of all flops, and to
check for any untestable structures. Soft macros are typically not shipped with
scan flops inserted because scan is usually done on a chip-wide basis rather
than block-by-block. Thus, it is essential to verify that scan insertion and auto
matic test pattern generation (ATPG) will be successful.

As part of the productization phase of the macro development process, full
ATPG is run.

Verify Synthesis Results
Use Formality to verify that the RTI... and the post-synthesis netlist are func
tionally equivalent.

6.3 High-Performance Synthesis

As chip size and complexity increase, it becomes more critical to have some interac
tivity between the synthesis and layout phases of chip design. Currently, some alter
natives to the standard sequence are becoming available.

6.3.1 Classical Synthesis

In standard ASIC design, the synthesis phase has no automated interaction with the
subsequent layout phase. Synthesis must generate the netlists without any feedback
from floorplanning and place-and-route tools, and there is no opportunity to modify
synthesis based on findings during layout. Hand iteration between synthesis and
placement is slow and painful. If resynthesis is necessary, layout generally has to be
redone from scratch. While this lack of interactivity between the synthesis and layout
stages is manageable for smaller chip sizes, it is problematic and distinctly not opti
mal for today's large SoC designs.

The problems produced by this lack of interactivity between synthesis and layout are
exacerbated because, as transistors and cells become faster, cell delays decrease and
the percentage of delay due to loading factors increases. Information about physical
placement becomes more important for synthesis.

134 Reuse Methodology Manual

6.3.2 High-Performance Synthesis

New tools, such as Synopsys' Links-to-Layout and Floorplan Manager, provide inter
activity between the synthesis and placement phases of design. Such tools allow high
performance synthesis by forward-annotating constraints such as timing and net pri
orities to a floorplanner or place and route tool, and back-annotating physical infor
mation such as net delays, net capacitance, and physical grouping to the synthesis
tool. This interactivity greatly improves the speed and accuracy of synthesis and lay
out by ~peeding the iterations, and because synthesis and layout are both performed
with actual values rather than estimates.

6.3.3 Tiling

In some cases, the designer knows that certain elements will fit together - "tile" -
into a compact pattern that can then be repeated. Floorplanning and place and route
tools are not likely to detect the possibility of such compact configurations. Histori
cally, the designer has had to layout such areas by hand, and then provide the floor
planner with a "black box" macro for these areas. Such hand crafting produces highly
compact layout, but is costly in terms of time spent. Tools for automating this hand
crafted tiling process are becoming available.

6.4 RAM and Datapath Generators

Memories and datapaths present a special set of problems for design reuse. Histori
cally, memories and high performance datapaths have been designed at the physical
level, making them very technology dependent.

6.4.1 Memory Design

There is almost no logical design content to (most) memory design. There are single
port vs. multi-port and synchronous vs. asynchronous memories, but what truly dif
ferentiates a good memory design from a bad one is the size, power, and speed of the
memory. The extreme regularity of memory determines the design methodology. A
memory cell is developed, hopefully as small and fast and low power as possible. The
memory cell is then replicated in a regular tiling fashion. Unfortunately, the optimal
cell design is very dependent on the underlying fabrication process. Thus, each silicon
vendor has tended to develop a unique memory compiler tailored to the specific
requirements of the target silicon technology.

The result is that memory designs are not portable or reusable. This situation places a
significant burden on the developer of reusable designs. In Chapter 5, we described

Macro Synthesis Guidelines 135

some approaches for dealing with memories in designing reusable macros, and later
in this chapter we describe the integration flow for using macros with memory mod
ules in chip-level designs. But first, we discuss datapath design, which, until recently,
shared many of the same problems as memory design.

6.4.2 Datapath Design

In those datapaths that are dominated by arithmetic functions, the functionality of the
design is usually straightforward. The functionality of a 32-bit multiply-accumulate
block, for example, is clear and does not help differentiate a design. In order to have a
32-bit MAC that is superior to a competitor's, it is necessary to exploit hardware
structure to achieve a faster, smaller, or lower-power design. Historically, this
approach has led to tools and methodologies designed to exploit the structural regu
larity in the datapath, and thus derive a superior physical layout.

Datapath Design Issues

There are three major problems with traditional approaches to datapath design. First,
irregular structures like Wallace tree multipliers can outperform regular structures.
Second, the datapath designs produced are not portable to new technologies and do
not lend themselves to reuse. Third, great majority of modem applications are poor
candidates for the traditional approach, which is best suited to datapaths that are rela
tively simple (few number of operations) and highly regular (uniform bit-widths).

If we look at the history of datapath design, a typical datapath in 1988 would be a
simple, regular datapath, such as a CPU ALU. Regular structures like muxes and
adders dominated; bit slicing was used extensively, and was effective in deriving
dense, regular layouts. A 32-bit MAC was a separate chip.

In 1998, graphics, video, and digital signal processing applications are the most com
mon datapath designs. Blocks like IDCTs, FIRs, and FFTs are common datapath ele
ments, and a 32-bit MAC is just a small component in the datapath. The significant
increase in applications for complex datapaths, along with intense pressures to reduce
development time, has resulted in a desire to move datapath design to a higher level of
design abstraction as well as to leverage design reuse techniques.

Datapath design tools and methodologies are rapidly evolving to meet this need.

Datapath Design Tool Evolution

In the past, designers predominately designed datapaths by handcrafting the design.
They captured structural information about the design in schematics and then devel
oped a physical layout of the design. The physical design was laid out for a single bit-

136 Reuse Methodology Manual

slice of the datapath, then replicated. For regular datapaths dominated by muxes and
adders, this approach produced dense, regular physical designs. These handcrafted
designs exhibit:

• High performance because the methodology effectively exploited the regular
structure of the logic

• Low productivity because of the amount of handcrafting required

• Poor portability because the results were design and technology specific

In the more recent past, designers started using layout-oriented datapath design tools.
With these tools, structural descriptions of the design are entered either in schematic
form or in HDL, but with severe constraints limiting the subset of the language that
can be used. These tools automate much of the handcrafting that was done before,
such as developing bit-slice layouts and regular structures. The designs result in:

• High performance for regular structures

• Poor performance for irregular, tree-based structures like Wallace-tree multipliers

• Poor performance for structures with varying bit widths, a common characteristic
of graphics designs such as IDCTs, digital filters, or any other design employing
techniques like saturation, rounding, or normalization

• Moderate productivity because of the automation of design tasks

• Poor portability because designs were still design and technology specific

A number of datapath designers have used conventional synthesis to improve the
technology portability of their designs. Conventional synthesis uses generic operators
with structures that are expressed in a generic library; during synthesis, the designed
is then mapped onto the specific technology library. Designs using conventional syn
thesis have:

• Moderate performance for complex datapaths, very good performance on simple
ones

• Moderate productivity for complex datapaths, very good productivity on simple
ones

• Good portability

Today's most advanced datapath design tools, like Module Compiler, approach the
problem of datapath design differently. With these tools, the designer enters the struc
tural description for the design in a flexible HDL. The tool then performs synthesis to
generate an optimal netlist for the entire datapath. The designer has the flexibility to
manipulate the structural input to guide or control the synthesis. Because the func
tionality for even relatively complex datapaths is well known, the designer can focus
on the implementation structure to differentiate the datapath design solution.

Macro Synthesis Guidelines 137

The key realization behind these new tools is that good datapath design starts with a
good netlist, not with a bit-slice physical design. Today's datapaths are dominated by
tree structures that have little of the regularity of earlier datapaths. For these struc
tures, automatic place and route tools do at least as good a job as hand design, and
often better. The key to performance is to develop the best possible detailed structure
(the netlist) and then map it onto the available technology (through place and route).
And unlike conventional synthesis, these specialized tools use algorithms that are spe
cific for datapath synthesis, producing better netlists in shorter time.

One of the key benefits of these tools is that they are significantly faster than any other
design method, often an order of magnitude or more faster than conventional synthe
sis. One advantage of this speed is that many different implementations for the design
can be developed and evaluated. For instance, when designing an IDCT, the designer
can experiment with different saturation algorithms, different numbers of multipliers,
and different numbers of pipelines. As a result of this exploration, a superior architec
ture can be developed. This improved architecture can more than compensate for any
loss in performance compared to a handcrafted design.

Because they allow superior, technology-independent designs, these tools provide the
first opportunity to develop reusable datapath designs without sacrificing perfor
mance. This capability is essential for the design of reusable blocks for complex chips
in datapath-intensive domains such as video, graphics, and multimedia.

With these tools, designs have:

• High performance - implementation exploration allows superior designs

• High productivity - extremely fast synthesis times allow very rapid development
of very complex designs

• High portability - because the source is technology independent and can be
parameterized, it is very portable across technologies and from design to design

The next step in the evolution of datapath tools is to extend these specialized synthesis
tools to include links to physical design. Although irregular structures tend to domi
nate most large datapaths today, there are still many designs that have substantial por
tions that are very regular. Exploiting this regularity could even further improve the
performance of datapath circuits. Also, like any synthesis tool, links to physical
design can help improve circuit performance and reduce the iterations between logic
design and physical design.

138 Reuse Methodology Manual

6.4.3 Design Flow Using Module Compiler

Module Compiler (MC) is a Synopsys datapath synthesis and optimization tool that
provides an alternative method of designing and synthesizing complex arithmetic
datapaths. For such datapaths, MC offers better quality of results and much faster
compile times than general purpose synthesis tools. The compile times are so much
faster (1-2 orders of magnitude) than standard synthesis that it is possible to quickly
code and synthesize alternative implementations. Designers can quickly evaluate
tradeoffs between timing, power, and area, and converge on optimal designs much
faster than by conventional handcrafting or general RTI..-based synthesis.

In Module Compiler, you describe the datapath in the Module Compiler Language
(MCL), a Verilog-like datapath description language. MC produces:

• A Verilog or VHDL gate-level netlist

• A Verilog or VHDL simulation model

• Area and timing reports

• Placement guidance information for layout

Some of Module Compiler's highlights are:

Interfaces
Module Compiler supports both GUI and a command-line modes.

Inputs
The inputs are a high-level description of the datapath in MCL and some
design constraints. MCL has the look and feel of the Verilog hardware descrip
tion language, but is better suited to the task of describing the synthesis and
optimization of datapaths. The design constraints can be entered from the GUI
or embedded in the description.

Workflow
MC is designed to support two work flows: the "exploration loop" and the
"debugging loop" (Figure 6-1). The two flows are typically interleaved, with
one feeding into the other.

Macro Synthesis Guidelines

Run DC

Figure 6-1 The Module Compiler work flow

The typical MC work flow is as follows:

~Action

c.::>Data

139

• In the exploration loop, the designer explores the timing and area performance of
alternate datapath designs. The designer codes the prospective datapath and uses
MC to synthesize the input and generate reports on area, timing, and power. The
designer uses these reports to optimize the macro architecture.

• In the debugging loop, MC synthesizes and optimizes the input and generates a
Verilog or VHDL behavioral model and netlist. Simulation on these outputs con
firms the accuracy of the network description and that latency is acceptable.

• After exploration and debug are completed, the designer uses MC to generate the
final datapath netlist.

140 Reuse Methodology Manual

• If the datapath is part of a larger design, the designer reads both the datapath
netlist and the RTL for the rest of the design into the synthesis tool. The datapath
netlist can be "dont_touch' ed" so that no additional optimizations are per
formed on it. This option results in the fastest compile time. On the other hand, the
designer can have the synthesis tool re-optimize the netlist. On some designs,
some incremental improvement in timing and/or area can be achieved by this
approach.

6.4.4 RAM Generator Flow

The typical RAM generator work flow, shown in Figure 6-2, is similar to that of data
path generators such as Module Compiler. With RAM compilers, the designer:

• Describes the memory configuration, through either a GUI or a command-line
interface. The designer selects the family of memory, typically trading off power
and area versus speed.

• Invokes the memory compiler, which produces a simulation model and a synthesis
model for the memory.

• Performs simulation with models for the rest of the system to verify the function
ality of the memory interfaces.

• Performs synthesis with the synthesis model for the RAM and the RTL for the rest
of the system. The synthesis model for the RAM is key in determining overall chip
timing and allowing optimal synthesis of the modules that interface to the RAM.

6.4.5 Design Reuse with Datapath and RAM Compilers

The input to a GUI on a RAM generator is not reusable by itself. However, the gener
ator is a reuse tool. Most of the knowledge required to design the RAM resides in the
tool, not the inputs to the tool. It is so easy to create new configurations using the
RAM compiler that memory design becomes very straightforward for the chip
designer. The difficult aspects of RAM design have all been encapsulated by the tool
and are hidden from the user.

Module Compiler provides similar reuse capabilities. By encapsulating the difficult
parts of datapath design, such as adder and multiplier tree structures and merging of
arithmetic operators, MC reduces the input requirements for describing the datapath
to an absolute minimum. The tool itself is the key to datapath reuse.

Unlike RAM compilers, however, the MCL code describing the datapath does have a
significant design content. This code can be reused for many designs. One of the
strengths of an encapsulating tool like MC is that the datapath description in MCL
code is extremely simple and easy to understand. These features, of course, are the
fundamental requirements for reusability.

Macro Synthesis Guidelines 141

Run DC

Figure 6·2 RAM generator work flow

RAM compilers and datapath compilers like Me offer a challenge to the design reuse
community: Are there other domains where sufficient design expertise can be encap
sulated in a tool, so that significant design reuse can be obtained from the tool itself?

142 Reuse Methodology Manual

6.5 Coding Guidelines for Synthesis Scripts

Many of the coding guidelines described in Chapter 5 apply equally well to all scripts,
including synthesis scripts.

The following rules and guidelines apply particularly to synthesis scripts:

Rule - All scripts, including synthesis scripts, should begin with a header describing
the file, its purpose, its author, and its revision history.

Rule - Comments should be used extensively to describe the synthesis strategy being
executed.

Rule - All scripts used to build the design should be under revision control and a bug
tracking system, just as the source code is.

Guideline - Keep the line length to 72 characters or less.

Lines that exceed 80 characters are difficult to read in print and on standard terminal
width computer screens. The 72 character limit provides a margin that enhances the
readability of the code.

For dc_shell commands, use a backslash (\) to continue the statement onto the
next line if the command exceeds 72 characters and begin the next line with an indent.

Rule - No hard-coded numbers, data values, or filenames should be buried in the
body of the script. Variables should be used in the body of the script and their values
set at the top of the script.

Rule - No hard-coded paths should appear in any scripts. Scripts with hard-coded
paths are not portable because hard-coded paths prevent the script from being reused
in other environments.

Rule - Scripts should be as simple as they can be and still meet their objectives. Syn
thesis scripts that use only the most common commands are more easily understood
and modified.

Rule - Common commands such as those defining the library and search paths
should reside in a single setup file for the design, usually in the
. synopsys_dc . setup file or in a file that can be included in
. synopsys_dc. setup. All other synthesis scripts should perform only those
unique tasks for which they were written. Having libraries or search paths defined in
multiple files makes modification difficult.

Macro Synthesis Guidelines 143

Rule - Synthesis scripts for parameterized soft macros need to be tested as thor
oughly as any source code. In particular, all statements and all paths through the script
must be tested. Some scripting bugs appear only when the script is used to compile
the macro in a particular configuration; these bugs must be uncovered before shipping
the script to a customer.

Guideline - Run the syntax checker on Design Compiler scripts before running the
script. The syntax checker can spot many of the scripting errors that can cause DC to
halt or produce useless results.

The following example shows how to use the Design Compiler syntax checker:

dc_shell -syntax_check -f ./scripts/my_compile.scr

CHAPTER 7 Macro lkrijication
Guidelines

The goal of macro verification is to ensure that the macro is 100 percent correct in its
functionality and timing. In particular, the behavior of the macro must exactly match
the functionality and timing described in the functional specification. This chapter
discusses issues in simulating and verifying macros, including the importance of reus
able testbenches and test suites, and timing verification. The topics are:

• Overview of macro verification

• Testbench design

• Timing verification

7.1 Overview of Macro Verification

Design verification is consistently one of the most difficult and challenging aspects of
design. Parameterized, soft macros being designed for reuse present some particular
challenges:

• The verification goal must be for zero defects because the macro may be used in
anything from a computer game to a mission-critical aerospace application.

• The goal of zero defects must be achieved for all legal configurations of the
macro, and for all legal values of its parameters.

• The integration team must be able to reuse the macro-level testbenches and test
suites because the macro must be verified both as a standalone design and in the
context of the final application.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

146 Reuse Methodology Manual

• Because the macro may be substantially redesigned in the future, the entire set of
testbenches and test suites must be reusable by other design teams.

• Because some testbenches may be used in system testing, the testbenches must be
compatible with the verification tools used throughout the system testing process.

7.1.1 Verification Plan

Because of the inherent complexity and scope of the functional verification task, it is
essential that comprehensive functional verification plans be created, reviewed, and
followed by the design team. By defining the verification plan early, the design team
can develop the verification environment, including testbenches and verification
suites, early in the design cycle. Having a clear definition of the criteria that the macro
verification must meet before shipment helps to focus the verification effort and to
clarify exactly when the macro is ready to ship.

The specific benefits of developing a verification plan early in the design cycle
include:

• The act of creating a functional verification plan forces designers to think through
what are typically very time-consuming activities prior to performing them.

• A peer review of the functional verification plan allows a pro-active assessment of
the entire scope of the task.

• The team can focus efforts first on those areas in which verification is most needed
and will provide the greatest payoff.

• The team can minimize redundant effort.

• The engineers on the team can leverage the cumulative experience and knowledge
of the entire team.

• A functional verification plan provides a formal mechanism for correlating project
requirements to specific verification tests, which, in tum, allows the completeness
(coverage) of the test suite to be assessed.

• Early identification of verification tests allows their development to be tracked and
managed more effectively.

• A functional verification plan may serve as documentation of the verification tests
and testbench - a critical element for the reuse of these items during regression
testing and on subsequent projects. This documentation also reduces the impact of
unexpected personnel changes midstream during a project.

• The information contained in the functional verification plan enables a separate
verification support team to create a verification environment in parallel with the
design capture tasks performed by the primary design team. This can significantly
reduce the design cycle time.

Macro Verification Guidelines 147

The verification environment is the set of testbench components such as bus func
tional models, bus monitors, memory models, and the structural interconnect of such
components with the design-under-test. Creation of such an environment may involve
in-house development of some components and/or integration of off-the-shelf models.

The verification plan should be fully described either in the functional specification
for the macro or in a separate verification document. This document will be a living
document, changing as issues arise and strategies are refined. The plan should
include:

• A description of the test strategy, both at the subblock and the top level.

• A detailed description of the simulation environment, including a block diagram.

• A list of testbench components, such as bus functional models and bus monitors.
For each component, there should be a summary of key required features. There
should also be an indication of whether the component already exists, can be pur
chased from a third party, or needs to be developed.

• A list of required verification tools, including simulators and testbench creation
tools.

• A list of specific tests, along with the objective and estimated size of each. The
size estimate can help in estimating the effort required to develop the test.

• An analysis of the key specifications of the macro, and identification of which
tests verify each of these specifications.

• A specification of what functionality of the macro will be verified at the subblock
level, and what will be verified at the macro level.

• A specification of the target code coverage for each subblock, and for the top-level
macro.

• A description of the regression test environment and regression procedure. The
regression tests are those verification tests that are routinely run to verify that the
design team has not broken existing functionality while adding new functionality.

• A results verification procedure, specifying what criteria will be used to determine
when the verification process has been successfully completed.

7.1.2 Verification Strategy

The verification of a macro consists of three major phases:

• Verification of individual subblocks

• Macro verification

• Prototyping

The overall verification strategy is to achieve a very high level of test coverage at the
subblock level, and then to focus the macro-level verification at the interfaces

148 Reuse Methodology Manual

between blocks, overall macro functionality, and corner cases of behavior. This bot
tom-up verification approach is based on the concept of locality; it is much easier to
detect and fix bugs on small modules than on large modules.

This approach is different from the traditional approach ASIC designers have tended
to use. These designers have typically designed a module for an ASIC, verified the
most basic functionality at the module level, and then integrated it into the overall
chip for full verification. The advantage of this approach is that the other blocks form
a testbench for the module, and since we need a full verification suite for the chip any
way, why not do all the real verification at the chip level. Testing at the block level
seems a great deal of redundant effort.

When designing a reusable macro, ASIC designers are tempted to take the same
approach: do perfunctory testing at the subblock level, and do most of the verification
at the macro level. The problem with this approach is that:

• Observability and controllability of internal nodes becomes harder with the size of
the circuit. Achieving 100 percent coverage is much easier with smaller blocks.

• Debugging at the macro level can be much more difficult and time consuming than
debugging at the subblock level.

On the other hand, a pure bottom-up approach to verification, like any waterfall model
for development, never really works. In real projects, a spiral approach involving iter
ation, works best. The team does very thorough subblock testing, getting as close to
100 percent coverage as possible. They then integrate the subblock into the macro and
do macro verification. Inevitably the team finds additional bugs, usually involving
interfaces or interactions between blocks. They then go back and modify the subblock
design, do some more subblock verification, and then go back to macro-level testing.

Realistically, this approach gains high but not 100 percent confidence in the macro's
functional correctness. Building a rapid prototype of the macro allows the team to run
significant amounts of real application code on the macro, greatly increasing confi
dence in the robustness of the design.

At each phase of the verification process, the team needs to decide what kinds of tests
to run, and what verification tools to use to run them.

The basic types of verification tests include:

Compliance testing
These tests verify that the design complies with the specification. For an indus
try standard design, like a PCI interface or an IEEE 1394 interface, these tests
also verify compliance to the published specification. In all cases, compliance
to the functional specification for the design is checked as fully as possible.

Macro Verification Guidelines 149

Corner case testing
These tests try to find the complex scenarios, or corner cases, that are most
likely to break the design. They focus on the aspects of the design that are
most complex, involve the most interaction between blocks, or are the least
clearly specified.

Random testing
For many designs, such as processors or complex bus interfaces, random tests
can be a useful complement to compliance and corner case testing. Focused
tests like the compliance and corner case tests are limited to the scenarios that
the engineers anticipate. Random tests can create scenarios that the engineers
do not anticipate, and often uncover the most obscure bugs in a design.

Real code testing
One of the most important parts of verifying any design is running the design
in a real application, with real code. It is always possible for the hardware
design team to misunderstand a specification, and design and test their code to
an erroneous specification. Running the real application code is a useful way
to uncover these errors.

Regression testing
As tests are developed, they should be added to the regression test suite. This
regression test suite can then be run on a regular basis during the verification
phase of the project. One of the typical problems in verification is that, in the
process of fixing a bug, another bug can be inadvertently introduced. The
regression test suite can help verify that the existing baseline of functionality is
maintained as new features are added and bugs are fixed. It is particularly
important that, whenever a bug is detected, the test case for the bug is added to
the regression suite.

The verification tools available to the macro design team include:

Simulation
Most of the macro verification is performed by simulating the RTL on an
event-driven simulator. Event-driven simulators give a good compromise
between fast compile times and good simulation speed at the RTL level, and
provide a good debug environment. For large macros, the run-time for simula
tion may become a problem, especially for regression tests, random tests, and
real code testing.

VHDL in particular can present a problem here. VHDL uses a two-list simula
tion algorithm compared to Verilog's one-list algorithm [1], and so tends to be
inherently slower than Verilog. In this case, it may be worthwhile to use a
VHDL cycle-based simulator, which can provide improved runtime perfor
mance.

Although most simulation should be done at the RTL level, some simulation
should be run at the gate level. Typically, this is done late in the design cycle,

150 Reuse Methodology Manual

once the RTL is stable and well-verified. Some initialization problems are
masked at the RTL level, since RTL simulation uses a more abstract model for
registers, and thus does not propagate X's as accurately as gate-level simula
tion. Usually only the reset sequence and a few basic functional tests need to
be run at the gate level to verify correct initialization.

Testbench Automation Tools
Testbench automation tools such as Vera and Specman Elite can dramatically
aid the task of creating reusable testbenches. These tools essentially extend
VHDL and Verilog by providing powerful constructs for generating stimulus
and checking response. For example, the designer can check that an event
occurred some time within a window of clock cycles. They provide mecha
nisms for generating random tests and for checking test coverage. They also
provide mechanisms for communication between testbench objects; this fea
ture can be used to coordinate multiple bus functional models.

Code Coverage Tools
Code coverage tools, such as VHDLCover, VeriSure, VeriCov, and CoverMe
ter provide the ability to assess the quality of the verification suite. They can
provide information about what parts of the code have been tested, as well as
what states and arcs of a finite state machine have been tested. Code coverage
is discussed in more detail in a later section of this chapter.

Hardware modeling
A hardware modeler provides an interface between a physical chip and the
software simulator, so that stimulus can be applied to the chip and responses
monitored within the simulation environment. Hardware modelers allow the
designer to compare the simulation results of the RTL design with those of an
actual chip. This verification method is very effective for designs where there
is a known-good chip whose functionality is being designed into the macro.

Emulation
Emulation provides very fast run times but long compile times. It is signifi
cantly more expensive and more difficult to use than simulation. It is an appro
priate tool for running real code on a large design, but is not a very useful tool
for small macro development.

Prototyping
Building an actual prototype chip using the macro is key to verifying function
ality. A prototype allows execution of real code in a real application at real
time speeds. A physical chip is not as easy to debug as a simulation of the
design, so prototyping should only occur late in the design phase. Once a prob
lem is detected using a prototype, it is usually best to recreate the problem in
the simulation environment, and perform the debug there.

Macro Verification Guidelines 151

7.1.3 Subblock Simulation

Subblock verification is generally performed by the creator of the subblock, using a
handcrafted testbench. This testbench typically consists of algorithmically-generated
stimulus and a monitor to check outputs. The goal at this stage is 100 percent state
ment and path coverage, as measured with a commercial code coverage tool. This
level of coverage is usually achievable with a reasonable effort because the subblocks
are small. It is essential that this level of coverage be achieved at the subblock level
because high levels of coverage become increasingly more difficult at higher levels of
integration. Of course, good judgement needs to be used when applying this guide
line. For example, if a datapath and its control block are initially designed as separate
subblocks, then it may be impossible to get high coverage testing them separately. It
may be much more appropriate to integrate the two and then perform verification.

Whenever possible, the outputs of the subblock should be checked automatically. The
best way to do this is to add checking logic to the testbench. Of course, the checking
logic needs to be even more robust than the macro code it is checking.

Automated response checking is superior to visual verification of waveforms because:

• It is less error-prone.

• It enables checking of longer tests.

• It enables checking of random tests.

Rule - All response checking should be done automatically. It is not acceptable for
the designer to view waveforms and determine whether they are correct.

Guideline - All subblock test suites should achieve 100 percent statement and path
coverage as measured by a test coverage tool such as VeriSure or VHDLCover. Sub
block testing is the easiest place to detect design errors. With high coverage at this
level, integration-level errors should be limited to interfacing problems.

7.1.4 Macro Simulation

If the subblocks have been rigorously tested, then the major source of errors at the
macro integration level will either be interface problems or the result of the designer
misunderstanding the specification. Macro-level tests focus on these areas. At the
macro level, 100 percent coverage is no longer a practical goal. The emphasis at this
stage is on testing the interaction between the component subblocks and the interfaces
of the macro with its environment. Testing random cases of inputs and outputs is a
crucial element of macro verification.

The design of testbenches for macro simulation is discussed in the section, "Test
bench Design."

152 Reuse Methodology Manual

7.1.5 Prototyping

The design reuse methodology encourages rapid prototyping to complement simula
tion, and to compensate for the less-than-lOO percent coverage at the macro verifica
tion stage. Achieving the final small percent of coverage at the macro level is
generally extremely costly in time and still does not detect some of the bugs that will
become apparent in prototype operation.

For many macros, it is possible to build a prototype chip and board and thus test the
design in the actual target environment. Current FPGA and laser prototyping technol
ogies do not provide the gate-count or the speed of state-of-the-art ASIC technology,
but do provide the ability to create prototypes very rapidly. For designs that fit in these
technologies and that can be verified at the speeds they provide, these technologies
are very useful debugging mechanisms.

Building a prototype ASIC is required for macros that must be tested at speeds or gate
counts exceeding those of FPGA and laser technologies. For some projects, this may
mean that the prototype chip for the macro is the first SoC design in which it is used.
In this case, the team must realize that the chip is a prototype, and that there is a high
likelihood that it will have to be turned in order to achieve fully functional silicon.

7.1.6 Limited Production

Even after robust verification and prototyping, we cannot be sure that there are no
remaining bugs in the design. There may be testcases that we did not run, or configu
rations that we did not prototype. Fundamentally, we have done a robust design but
we have not used the macro in a real SoC design. For this reason, we recommend a
period of limited production for any new macro. Typically, limited production
involves working with just a few (1-4) customers and making sure that they are suc
cessful using the macro, before releasing the macro to widespread distribution. We
have found this cautious approach very beneficial in reducing the risk of support
problems.

7.2 Inspection as Verification

All of the books on code quality state that the fastest, cheapest, and most effective
way to detect and remove bugs is by careful inspection of the design and code. Design
reviews and code reviews playa key part in the drive towards zero defects.

Unfortunately, almost all of the research on code quality has been done in the area of
software rather than hardware. But the software data we have is compelling and is
likely to apply, in some general form, to hardware.

Macro Verification Guidelines 153

In Applied Software Measurement [2], Capers Jones reports that code inspections can
be twice as effective as any other method in removing defects. In particular, code
inspections are much more effective than test and debug for finding bugs. Jones states:

"Inspections tend to benefit project schedules and effort as well as quality. They are
extremely efficient at finding interface problems between components and in using
the human capacity for inductive reasoning to find subtle errors that testing will miss."

In our experience, we have found the same to be true for hardware designs as well.
Finding bugs by code inspection is much faster than finding the same bugs by debug
ging the code during simulation.

There are many styles of design and code review, and a number of authors offer data
on the advantages of different styles [2,3]. The following paragraphs describe a typi
cal approach to performing design and code reviews.

A design review is a presentation by the designer (or design team) to the rest of the
team. The size of the review team can be quite large. The designer provides the speci
fication document to the reviewers ahead of time, so they can read it and come to the
meeting well informed. At the meeting the designer reviews the requirements for the
design, and describes in some detail how the design meets these requirements.

Design reviews take place at many points during the design cycle; from the beginning,
where the specification is clear but the design is just being defined, up to release of the
final design. The level of detail varies at each stage. The purpose of the design review
is to review the approach to solving the problem, and to make sure that it is sound.
There is no useful way to review the detailed implementation with a large number of
people simultaneously.

Code reviews, on the other hand, are reviews of the details of the implementation.
They typically involve the designer and a very small number of reviewers, often just a
single reviewer. The object of the code review is to do a detailed peer review of the
code. The reviewer and the designer go through the code line by line, and the reviewer
is expected to fully understand the implementation. Often, teams will insist that
reviewers are not managers, to maintain the sense of a supportive, collegial review.
Teams have found that reviews work best when the designer knows that the purpose
of the review is to help drive quality, and not for assessment of the designer's perfor
mance.

Pressman [3] gives results of some interesting studies assessing the optimal number
of reviewers for code walkthroughs.

Code reviews are usually done after a subblock has been designed and verified by the
designer, and before it is integrated into the macro.

154 Reuse Methodology Manual

Static analysis tools such as linting tools can also help spot defects before going to
simulation. Linting tools such as Verilint, VHDLlint, and tools from Leda S.A. and
Escalade can check for a variety of potential sources of error. For example, they can
check for uninitialized variables or incomplete sensitivity lists. New versions of the
linting tools are becoming available to check many of the guidelines in this book.
Linting tools are very fast to run and should be run often.

Thus, there is a whole series of static verification methods that can effectively reduce
the number of bugs before even starting dynamic, simulation-based verification. In
addition, several software methodology books recommend single stepping through
code in a debugger as the first step in dynamic verification. This approach is a combi
nation of dynamic and static verification. By stepping through the code, the designer
clearly sees how the code actually behaves in great detail, and can spot bugs as they
are executed.

We have very limited experience in using this approach in hardware verification, but
encourage readers to try it and see if they find it effective. Single stepping through
code clearly works only relatively small blocks; stepping through a million gate
design that requires thousands of cycles to do anything interesting is clearly not a use
ful exercise. But for subblocks of a macro, this could be an effective verification tool.

7.3 Adversarial Testing

Hardware and software teams have found that having a dedicated team of verification
specialists can significantly improve the qUality of the final product. Subblock or unit
testing is done by the designer, and typically much of the macro verification is done
by the design team. However, designers often are focused on proving that the design
works correctly.

A separate team of verification experts can take a different view; they can focus on
trying to prove that the design is broken. The combination of these two approaches
usually gives the best results.

It is also useful to have some members of the team who are verification specialists,
and who spend time keeping up with the latest tools and methodologies in verifica
tion. In the last few years there has been a proliferation of new point tools targeting
verification, from the large EDA companies and from start-ups. Just keeping current
on these tools, much less integrating them into the design flow, can be a challenge for
the design team.

Macro Verification Guidelines 155

7.4 Testbench Design

Testbench design differs depending on the function of the macro. For example, the
top-level testbench for a microprocessor macro would typically execute test pro
grams, while that of a bus interface macro would typically use bus functional models
and bus monitors to apply stimulus and check the results. There are also significant
differences between subblock testbench design and top-level macro testbench design.
In all cases, it is important to make sure that the test coverage provided by the test
bench is adequate.

7.4.1 Subblock Testbench

Testbenches for subblocks tend to be rather ad hoc, developed specifically for the sub
block under test. At some abstract level, though, they tend to look like Figure 7-1.

Because subblocks will almost never have bidirectional interfaces, we can develop a
simple testbench that generates a set of inputs to the input ports and checks the out
puts at the output ports. The activity at these ports is not random; in most digital sys
tems, there will be a limited set of transactions that occur on a given port. These
transactions usually have to do with reading or writing data to some storage element
(registers, FIFOs, or memories) in the block.

Ql
Ql
0

Input ~ ~
Output

Transaction ---+ ~ ~ -+ Transaction
Generator "S "S Checker

Co % .E 0

Figure 7·1 Typical testbench for a subblock

Stimulus Generation

When we design the sub block, we can specify the transaction types that are allowed
to occur on a given input port; for example, a register write consists of one specific
sequence of data, address, and control pins changing, and no other sequence of
actions on these pins is legal. As we design the macro, of course, we need to make
sure that no block driving this port can ever generate any transactions other than the
legal transactions at this port.

Once we have defined the legal set of transaction types on the input ports, we need to
generate sequences of these transactions with the appropriate data/address values for
testing the subblock. We start by analyzing the functionality of the subblock to deter
mine useful sequences that will verify that the subblock complies with the specifica-

156 Reuse Methodology Manual

tion. Then we search for the comer cases of the design: those unique sequences or
combinations of transactions and data values that are most likely to break the design.

Once we have developed all the tests we can in this manner, we run a code coverage
tool. This tool gives us a good indication of the completeness of the test suite. If addi
tional testing is required to achieve 100 percent coverage, then we can develop addi
tional focused tests or we can create a random test generator to generate random
patterns of transactions and data. Random testing is effective for processors and bus
interfaces because of the large number of transaction types make it difficult to manu
ally generate all of the interesting combinations of transactions.

Output Checking

Generating test cases is, of course, just the first part of verification. We must check the
responses of the design to verify that it is working correctly. This checking can be
done manually, by monitoring the outputs on a waveform viewer and verifying that
the waveforms are correct. However, this process is very error-prone and, therefore,
an automatic output checker is a necessary part of the testbench. The design of this
checker is unique to the subblock being tested, but there are some common aspects to
most checkers:

• We can verify that only legal transactions are generated at the output port of the
design. For example, if the read/write line is always supposed to transition one
clock cycle before data and be stable until one clock cycle after data transitions,
then we can check this automatically.

• We can verify that the specific transactions are correct responses to the input trans
actions generated. This requires a detailed analysis of the design. Clearly, the sim
pler the design, the simpler this checking is. This provides another reason to keep
the design as simple as possible and still meet function and performance goals.

7.4.2 Macro Testbench

We can extend the concepts used in the subblock testbench to the testbench used for
checking the macro. Once the subblocks have been integrated into the macro, we con
struct a testbench that again automatically generates transactions at the macro input
ports and checks transactions at the output ports. There are several reasons why we
want to develop a more powerful and well-documented testbench at this level:

• The design is now considerably more complex, and so more complex test scenar
ios will be required for complete testing.

• More people will typically be working on verification of the macro, often the
entire team that developed the subblocks.

• The testbench will be shipped along with the macro so that the customer can ver
ify the macro in the system design.

Macro Verification Guidelines 157

The testbench can take several fonns. An interface macro, such as a PCI interface,
might have a testbench like the one shown in Figure 7-2. This testbench is coded
using a testbench generation tool, such as Vera or Specman Elite.

The PCI macro provides an interface between the PCI bus, with its complex protocol,
and two application buses: the master application bus, which can initiate PCI transac
tions, and the slave application bus, which is the target of PCI transactions.

In this testbench, PCI bus functional models are used to create transactions on the PCI
bus, and thus to the PCI macro. A PCI bus monitor checks the transactions on the PCI
bus, and thus acts as a transaction checker. The monitor produces a log file, where
address and data infonnation for each transaction is recorded, and an error message
generated if the basic PCI protocol is violated.

Multiple instances of the PCI BFM are used to generate complex test scenarios, with
colliding traffic in both directions. Because testbench creation tools are object-ori
ented, creating and managing these multiple instances is very straightforward.

Because the PCI macro acts as a bridge between the PCI bus and the application
buses, we need bus functional models and bus monitors for the application buses as
well.

The bus monitors are very useful for checking the correctness of the basic protocol,
but are not adequate to check the full functionality of the PCI macro. For this, we
need the On-the-Fly Checker. This block monitors all read and write transactions ini
tiated on any of the three buses. When a write to address A occurs on the PCI bus, this
transaction is written to a software FIFO in the checker. When a write appears on the
slave application bus, this is also written to a software FIFO in the checker. The
checker then compares the contents of the software FIFOs to make sure that transac
tions correctly propagated through the PCI macro, and in the correct number of
cycles.

Because of the complexity of the PCI protocol, the exact number of cycles for the
write to propagate through the macro is essentially non-detenninistic. It depends
strongly on the other transactions occurring at about the same time. The testbench
generations tools deal with this elegantly, allowing us to specify a window of time
during which the write must appear on the application slave bus.

One requirement for a complex testbench such as that shown in Figure 7-2 is that
actions of the BFMs must be coordinated. The testbench tools provide a message
passing mechanism so that commands from a central command file can drive all of
theBFMs.

Thus, when this testbench is fully assembled, we have the ability to generate and
check any sequence of transactions at any port of the PCI macro.

158 Reuse Methodology Manual

Testbench

[PCI

1
Command File Macro

~ ~ ~ ~ ~ ~

Cii TEST
PCIBFM Q) 'lii BENCH

~ CIS
Primary en :::i:
Master

.,
I

III I Q)
::J CD

~
Application tD tJ

U .{g BFM

PCIBFM
a. ~ ~ Master

Secondary c c 0 ~ Master ~ ...
~ .S:! Application .S:! a. ~ Monitor 1 a. Co

~
Monitor Co « _ Log File « Master

PCIBFM ., r
~ ... Primary ~ ...

Slave
~ ... On-the-Fly .r Check 1
~ ~ Checker Log File 'I

PCIBFM r

Secondary
Slave

Application BFM
Slave

PCI Bus ~ ..
Monitor

~ ... Application

~
Monitor

1
., , l..o ... Monitor Log File

Slave -, ,
Monitor
Log File

Figure 7·2 Macro development and verification environment

A more complex testbench is shown in Figure 7-3. Here, the actual software applica
tion is the source of commands for the PCI bus functional model. This application can
run on the workstation that is running the simulator; device driver calls that would
normally go to the system bus are redirected through a translator to the simulator,
using a programming language interface such as Verilog's PLI or ModelSim's FLI. A

Macro Verification Guidelines 159

hardware/software cosimulation environment can provide an effective way to set up
this testbench and a convenient debug environment.

The actual transactions between the application and the PCI macro under test are a
small percentage of the cycles being simulated; many cycles are spent generating
inputs to the bus functional model. Also, real code tends to repeat many of the same
basic operations many times; extensive testing of the macro requires the execution of
a considerable amount of application code. Thus, software-driven simulation is an
inherently inefficient test method, but it does give the opportunity of testing the macro
with real code. For large macros, this form of testing is most effective if the simula
tion is running on a very high-speed simulator, such as a cycle-based simulator or an
emulator.

(

I
I
I
I
I
I

Application
Software

--1-----"'
I

Drivers I
I

HW/SW I Cosim
Environment I

Translator
I
I
I

- - ------
PCI
Bus

Monitor

PCI Bus
~ I ...

Functional
Model

Application
Bus

Monitor

PCI I .. Application Bus

Macro r Functional
Model

Figure 7-3 Software-driven testbench for macro-level testing

7.4.3 Bus Functional Models

The bus functional models (BFM) used in the examples above are a common method
of creating testbenches. Typically they are written in RTL, a testbench automation
tool, or in C/C++, and use some form of command language to create sequences of
transactions on the bus. The intent of these models is to model only the bus transac-

160 Reuse Methodology Manual

tions of an agent on the bus. They do not model any of the functionality of an agent on
the bus; each read and write transaction is specified by the test developer explicitly.

Because of their simplicity; these models place little demand on simulator perfor
mance; simulation speeds are mostly determined by the macro itself.

Well-designed BFMs allow the test developer to specify the transactions on the bus at
a relatively high level of abstraction. Instead of controlling individual signals on the
bus, the test developer can specify a read or write transaction, with the associated
data, or an interrupt. The developer may well also want to generate an error condition,
such as forcing a parity error; therefore, the BFM should include this capability as
well.

Many testbenches require multiple BFMs, as in the PCI example above. In this case, it
is best to use a single command file to coordinate the actions of the various models.
The models must be written so that they can share a common command file. Many
commercial BFMs offer this capability.

BFMs are also extremely useful for system-level simulation, as described in Chapter
11. For example, a PCI BFM can be used to generate transactions to an SoC design
that has a PCI interface block. Similarly, the PCI monitor can be used to verify output
transactions to the PCI bus. For this reason, the BFM and monitor are considered two
of the macro deliverables.

Because they are part of the deliverables that will ship with the product, the BFM and
monitor must be designed and coded with the same care as the macro RTL. The
designer also needs to provide full documentation on how to use the BFM and moni
tor.

7.4.4 Automated Response Checking

In the previous examples, the automated response checking for the testbench was pro
vided by the bus monitors and checkers. This approach is useful for bus interfaces, but
for other types of macros there are some other techniques that may be useful.

One effective technique is to compare the output responses of the macro to those of a
reference design. If the macro is being designed to be compatible with an existing
chip (for example, a microcontroller or DSP), then the chip itself can be used as a ref
erence model. A hardware modeler can be used to integrate the physical chip as a
model in the simulation environment. Figure 7-4 shows a such a configuration.

Macro Verification Guidelines

Stimulus

[8051 chip I
Hardware Modeler

8051 macro
(RTL)

Compare
response

Figure 7·4 Self-checking testbench using a hardware modeler

161

If a behavioral model for the design was developed as part of the specification pro
cess, then this behavioral model can be used as the reference model, especially if it is
cycle accurate.

One approach often used by microprocessor developers is to develop an Instruction
Set Architecture (ISA) model of the processor, usually in C. This ISA model is
defined to be the reference for the design, and all other representations of the design
must exhibit the same instruction-level behavior. As RTL is developed for the design,
its behavior is constantly being compared to the reference ISA model.

In some sense, the "On-the-Fly Checker" in the PCI example is a reference design for
the PCI macro. The intent is for the checker to look at every input to the PCI macro
from the BFMs, look at the PCI macro's response to this input, and determine if the
response is correct. The difficulty lies in making the BFM, checker, and test suite rich
enough to test the macro completely.

7.4.5 Verification Suite Design

Once we have built the testbench, we can develop a set of tests to verify the correct
behavior of the macro. Developing a verification environment that can completely
verify a macro is every bit as difficult as specifying or designing the macro in the first
place, because it presents essentially the same problem: how to completely describe
the expected behavior of the design.

162 Reuse Methodology Manual

Functional Testing

The first step in developing the verification suite is to perform functional testing; that
is, verifying that the macro implements the functions described in the specification.
This usually involves going through the functional specification essentially line by
line, and verifying that there is a test for each required function. Testbench automa
tion tools can help by providing powerful constructs for describing this functionality,
but deciding how the macro should behave is essentially a human activity.

If the specification is an executable specification (for example, a C++ behavioral
model), then functional verification involves showing that the behavior of the specifi
cation and that of the macro are the same. That is, we need to completely exercise the
executable specification, and show that under the same stimulus, the macro produces
the same results. The trick here is to completely exercise the executable specification.
Running a coverage tool on the executable specification can help to determine the
completeness of these tests.

These functional tests are necessarily a subset of a complete verification of the macro.
The specification does not contain all (and in many cases does not contain any) of the
implementation details of the macro. For example, an ISA model for a microproces
sor is instruction set accurate, but not cycle accurate. The cycle-by-cycle behavior of
the RTL must be verified in addition to its ability to execute the instruction set cor
rectly.

Corner Case Testing

Corner case testing is intended to test the implementation details not covered in the
functional testing. Designers can often spot corner cases manually. For example, in
some microprocessor designs two 32-bit registers can sometimes be used as one 64-
bit register. The point where bits roll over from the first 32-bit register to the second is
a corner case.

Another typical set of corner cases involve designs with shared resources, such as a
bus arbiter, or a block that has multiple agents accessing the same FIFO. For these
designs it is useful to create contention for the resources, to ensure that the conflicts
are handled correctly.

Code Coverage and Random Testing

Once the designer has exhaustively tested all the anticipated corner cases, there are
two useful techniques for completing the verification suite: code coverage and ran
dom testing.

Macro Verification Guidelines 163

Code coverage is discussed in more detail in the next section, but it basically indicates
what parts of the code have been tested, and what parts have not. This information
allows the designer to create focused tests for these untested sections of code.

When manually adding new tests has become tedious or impractical, random testing
can help improve test coverage. Constraint-driven random test capabilities in the test
bench automation tools are particularly useful for creating random tests with the
desired distribution of activities. For processor testing, we can specify that a certain
percentage of instructions should be arithmetic instructions and a different percentage
should be load and store, and so on.

Random testing greatly enhances our verification capabilities, but it does have limita
tions. Runtimes can get very long for achieving very high coverage. And, since the
designer is human, the parameters of the random test may omit some critical tests.

A number oftool providers are working on automatic test generators to help solve this
problem. These tools would examine the circuit, determine what (if any) parts of the
circuit have already been tested, and then automatically generate additional tests to
achieve 100 percent coverage. These tools are (at the time of writing) still under
development, but, once mature, they could have a dramatic impact on verification.

Still, automatic generation of vectors is not a panacea for the verification challenge.
We still need to create automatic checkers that can tell us if the response of the macro
is correct to this 100 percent complete set of stimuli. And no tools will ever tell us if
we left out a function completely. Verification will always remain a fundamentally
human activity, because it requires us to specify the expected behavior of the design.
However, we start to see a much more promising picture of being able to complement
this human activity with much more powerful tools to ensure higher quality designs.

Code Examples - Testbench Automation Tools

Example 7-1 and Example 7-2 show some typical uses of Vera to create BFMs and
checkers. Example 7-1 shows a PCI bus monitor snooping the PCI bus to detect
writes to the target (slave) bus on the application interface. When a write occurs, it is
posted to a mailbox in the target bus monitor. Example 7-2 shows the target bus mon
itor snooping the target bus, and comparing actual writes to those received in the
mailbox. That is, it checks that the writes that are initiated on the PCI bus actually
propagate through the PCI macro to the target bus.

Example 7-3 shows a typical use of Specman Elite to verify a simple CPU.

164 Reuse Methodology Manual

Example 7-1 Vera code fragment for PCI monitor

class pc i_snooper {
pci-port my-port i

pci_data_class pci_datai
bit msg[255:0] msgi
task pci_monitor() {

while(!end_of_test) {

II DUT port
II class structure for PCl
Ilunpack pci_data to msg

pci_data = snoop-pci_bus with my-port()i
pci_data.unpack(msg)i
mailbox_send (mboxld, msg)i II mboxld - addr of

II target mailbox
}

} II end of monitor
} II end of class pci_snooper.

Example 7-2 Vera code fragment for PCI application bus monitor

class target_snooper {
target-port my-port i

pci_data_class pci_datai
bit msg[255:0] msgi
task target_monitor() {

while(!end_of_test) {

II DUT port
II class structure for PC!
Ilunpack pc i_data to msg

msg = mailbox_receivekl(WAlT, msg)i II block for
Ilmessage

expected-pci_data.pack(msg)i II pack
II message to class

actual-pci_data = snoop_target_bus with
my-port()i

compare (actual-pci_data, expected-pci_data)i
} II end of monitor
} II end of class target_snooper.

Macro Verification Guidelines

Example 7·3 Specman Elite code fragment for verifying a CPU

II Four typical steps in verifying a simple CPU,
II using Specman Elite (TM):

II 1. Describing the device under test (the OUT).

165

II The CPU spec says: "A CPU instruction consists of
II an opcode and two operands. The first operand is
II a CPU register, the second is a byte"
type command_type LOAD, STORE, ADD, SUB,

JMP, JMPC, CALL, RET];
REGO, REG1, REG2, REG3]; type register_type

struct instruction {

} ;

opcode
operand1
operand2

register_type;
byte;

II 2. Defining constraints for generating legal
II instructions, as part of the instruction
II definition. The CPU spec says: "the LOAD
II instruction should not use register zero"

keep (opcode == LOAD) => (operand1 != REGO);

II 3. Requesting interesting stimuli for a specific test,
II by adding constraints on the instruction. The test
II plan says: "Generate JMPC opcodes (JMP-on-Carry)
II 60% of the times that the carry bit is set in the
II model (i.e., respond to model state)"
extend instruction {

} ;

keep ('/dut/cpu/carry' -- 1) =>

} ;

I I i.e., if "carry" is set in the HDL,
II then select opcode according to ratios:

soft opcode == select {
60 JMPC; II 60% JMPC opcode
40 others; II 40% any other opcode

166 Reuse Methodology Manual

II 4. Checking a temporal rule (timing & sequence).
II The memory protocol spec states Interface Rule #4:
II "After data was requested, there should be at most
II MAX_WAIT cycles till data is ready. During those
II cycles, no other data request should be issued."
struct memory_monitor {

} i

II events tied to HDL
event data_req is rise('/dut/memory/request')i
event data_ready is rise('/dut/memory/ready')i

expect @data_req =>

{[O .. MAX_WAITJ * not @data_reqi @data_ready}
else dut_error("Violation of Memory ilf rule #4: "

"data_req was not followed by "
"data_ready in due time")i

7.4.6 Code Coverage Analysis

Verifying test coverage is essential to the verification strategy; it is the only way to
assess, quantitatively, the robustness of the test suite. Several commercial tools are
available that provide extensive coverage capabilities.

Types of Coverage Tests

We describe here some of the capabilities of the TransEDA VHDLCover tool, which
is representative of the better coverage tools currently available.

The coverage tool provides the following metrics:

• Statement coverage

• Branch coverage

• Condition coverage

• Path coverage

• Toggle coverage

• Triggering coverage

Statement coverage gives a count, for each executable statement, of how many
times it was executed.

Macro Verification Guidelines 167

Branch coverage verifies that each branch in an if-then-else or case statement was
executed.

Condition coverage verifies that all branch sub-conditions have triggered the con
dition branch. In Example 7-4, condition coverage means checking that the first line
was executed with a = 1 and that it was executed with b = 0, and it gives a count of
how many times each condition occurred.

Example 7-4 Condition coverage checks branch condition

if (a = '1' or b = '0') then
c <= '1' i

else
c <= ' 0' i

endifi

Path coverage checks which paths are taken between adjacent blocks of condi
tional code. For example, if there are two successive if-then-else statements, as in
Example 7-5, path coverage checks the various combinations of conditions between
the pair of statements.

Example 7-5 Path coverage

if (a = '1' or b = ' 0') then
c <= '1' i

else
c <= ' 0' i

endifi

if (a = ' l' and b = '1') then
d <= '1' i

else
d <= ' 0' i

endifi

There are several paths through this pair of if-then-else blocks, depending on the val
ues of a and b. Path coverage counts how many times each possible path was exe
cuted.

Triggering coverage checks which signals in a sensitivity list trigger a process.

Trigger coverage counts how many times the process was activated by each signal
in the sensitivity list changing value. In Example 7-6, trigger coverage counts how

168 Reuse Methodology Manual

many times the process is activated by signal a changing value, by signal b changing
value, and by signal c changing value.

Example '·6 Trigger coverage

process (a, b, c)

Toggle coverage counts how many times a particular signal transitions from '0' to
'1' , and how many times it transitions from '1' to '0'.

Achieving high code coverage with the macro testbench is a necessary but not suffi
cient condition for verifying the functionality of the macro. Code coverage does noth
ing to verify that the original intent of the specification was executed correctly. It also
does not verify that the simulation results were ever compared or checked. Code cov
erage only indicates whether the code was exercised by the verification suite.

On the other hand, if the code coverage tool indicates that a line or path through the
code was not executed, then clearly the verification suite is not testing that piece of
code.

We recommend targeting 100 percent statement, branch, and condition coverage.
Anything substantially below this number may indicate significant functionality that
is not being tested.

Path, toggle, and triggering coverage can be used as a secondary metric. Achieving
very high coverage here is valuable, but may not be practical. At times it may be best
to examine carefully sections of code that do not have 100 percent path, toggle, or
trigger coverage, to understand why the coverage was low and whether it is possible
and appropriate to generate additional tests to increase coverage.

One of the limitations of current code coverage tools is in the area of path coverage.
Path coverage is usually limited to adjacent blocks of code. If the design has multiple,
interacting state machines, this adjacency limitation means that it is unlikely that the
full interactions of the state machines are checked.

Recent Progress in Coverage Tools

Coverage tool providers continue to enhance tool performance on state machines.
Tools now can recognize state machines in the R1L, and give the designer useful
information about what nodes have been covered, as well as what arcs have been tra
versed. The tools can also examine pairs of state machines and indicate what pairs of
states/arcs have been exercised. This coverage is, of course, limited by the computa-

Macro Verification Guidelines 169

tional power of workstations and the complexity of the state machines, but offers an
important step forward.

Tool providers also have provided capabilities for using coverage to minimize regres
sion test suites. One of the historical problem with regression tests is that the tend to
grow until runtimes significantly affect the team's ability to verify modifications to
the design. Many of the new tests add little incremental coverage over existing tests.

Code coverage can be used to prune the overall test suite, eliminating redundant tests
and ordering tests so that the first tests run provide the highest incremental coverage.
TransEDA reports [4] that on a project with Hewlett Packard, this test pruning
approach reduced regression test runtime by 91 percent. Code coverage tools are still
limited in their coverage; see the comments on path coverage above. So, it may be
worthwhile running the full regression suite on the final version of the design. But
running the pruned suite at a lOx savings in simulation time seems like a very reason
able approach during most of the development cycle of a design.

7.5 Timing Verification

Static timing verification is the most effective method of verifying a macro's timing
performance. As part of the overall verification strategy for a macro, the macro should
be synthesized using a number of representative library technologies. Static timing
analysis should then be performed on the resulting netlists to verify that they meet the
macro's timing objectives.

The choice of which libraries to use is a key one. Libraries, even for the same technol
ogy (for example, .5J.1), can have significantly different performance characteristics.
The libraries should be chosen to reflect the actual range of technologies in which the
macro is likely to be implemented.

For macros that have aggressive performance goals, it is necessary to include a trial
layout of the macro to verify timing. Pre-layout wire load models are statistical and
actual wire delays after layout may vary significantly from these models. Doing an
actual layout of the macro can raise the confidence in its abilities to meet timing.

Gate-level simulation is oflimited use in timing verification. While leading gate-level
simulators have the capacity to handle 500k or larger designs, gate-level simulation is
slow. The limited number of vectors that can be run on a gate-level netlist cannot
exercise all of the timing paths in the design, so it is possible that the worst case tim
ing path in the design will never be exercised. For this reason, gate-level timing simu
lation may deliver optimistic results and is not, by itself, sufficient as a timing
verification methodology.

170 Reuse Methodology Manual

Gate-level simulation is most useful in verifying timing for asynchronous logic. We
recommend avoiding asynchronous logic, because it is harder to design correctly, to
verify functionality and timing, and to make portable across technologies and applica
tions. However, some designs may require a small amount of asynchronous logic. The
amount of gate-level, full timing simulation should be tailored to the requirements of
verifying the timing of this asynchronous logic.

Static timing verification, on the other hand, tends to be pessimistic unless false paths
are manually defined and not considered in the analysis. Because this is a manual pro
cess, it is subject to human error. Gate-level timing simulation does provide a coarse
check for this kind of error.

Guideline - The best overall timing verification methodology is to use static timing
analysis as the basis for timing verification. You can then use gate-level simulation as
a second-level check for your static timing analysis methodology (for example, to
detect mis-identified false paths).

References

1. Abramovici, Miron. Digital Systems Testing and Testable Design. IEEE, 1998.

2. Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality. McGraw Hill Text,
1996

3. Pressman, Roger. Software Engineering: A Practitioner's Approach. McGraw Hill Text, 1996.

4. http://www.transeda.comlresources_areall00_issue_S.pdf

CHAPTER 8 Developing Hard Macros

This chapter discusses issues that are specific to the development of hard macros. In
particular, it discusses the need for simulation, layout, and timing models, as well as
the differing productization requirements and deliverables for hard macros. The top
ics are:

• Overview

• Hard macro design issues

• Hard macro design process

• Physical design for hard macros

• Block integration

• Productization

• Model development for hard macros

• Portable hard macros

8.1 Overview

Hard macros are macros that have a physical representation, and are delivered in the
form of a GDSII file. As a result, hard macros are more predictable than soft macros
in terms of timing, power, and area. However, hard macros do not have the flexibility
of soft macros; they cannot be parameterized or user-configurable. The porting pro
cess of the two forms can also be quite different.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

172 Reuse Methodology Manual

In some sense, however, the distinction between hard and soft macros is artificial.
Every macro starts out as soft, for RTL has to be the reference implementation model.
Every macro ends up in GDSn, and thus in hard form. The only real distinction
between hard and soft macros is at which stage of design the developer hands the
macro over to the chip designer. In a very real sense, hard macros are just soft macros
that have been taken to GDSn before this handoff.

In this book, we assume the following model for hard macros:

• The macro developer delivers GDSn and a full set of models to the silicon vendor.

• The silicon vendor does the physical design for the chip, including integration of
the hard macro. Thus, only the silicon provider actually uses, or has access to, the
GDSn for the macro.

• The silicon vendor provides the timing and functional models to the chip designer.

• The chip designer uses the timing and functional models for the hard macro while
designing the rest of the chip. 'JYpically, these models do not include RTL for the
macro. Thus, the models must provide all of the functional and physical informa
tion needed to design the chip and verify its timing and functionality.

In a large semiconductor company, the macro developer, silicon vendor, and chip
designer may just be different groups within the company. Some large systems houses
that do their own physical design may purchase a hard macro directly from a third
party provider, thus getting both the GDSn and the models. In this case, the systems
house is acting as both the chip designer and as the (fabless) silicon provider. How
ever, the case outlined above is general enough to show the issues and challenges
involved in developing high-quality hard macros.

8.1.1 Why and When to use Hard Macros

Developers typically provide hard versions of macros for anyone of several reasons:

• The design is pushing performance to the limit of the silicon process, and thus the
physical design must be done by the designer, who knows exactly how to get opti
mal performance from the design.

• The design requires some full custom design, and so cannot be delivered in soft
(that is, synthesizable) form.

• The value of the macro is so great that the macro provider does not want the chip
designers to have access to the RTL. That is, hard macros can provide a greater
degree of IP protection for the IP provider.

• The macro provider wishes to prevent the possibility of the user modifying the
macro.

In the case of processors, all of these conditions are often the case. For this reason,
processors are the most common macros to be delivered in hard form.

Developing Hard Macros 173

There is also a case in which soft macros are used as virtual hard macros. In some
very large chips, the design team will use a divide-and-conquer approach to physical
design. Each major block, including each soft macro, is placed and routed indepen
dently of the other blocks. Chip-level physical design then consists of placing these
blocks and wiring them up. In such cases, most of the issues for hard macros
described below apply to these independent blocks. In particular, timing and func
tional models for each of the major blocks can provide more abstract representations
of the timing and functionality of the block. These models can provide a faster path to
timing convergence and functional verification.

8.1.2 Design Process for Hard vs. Soft Macros

Hard macro development is essentially an extension to soft macro development. The
extra steps for hard macros are primarily:

• Generating a physical design

• Developing models for simulation, layout, and timing.

These requirements stem from the fact that hard macros are delivered as a physical
database rather than RTL. Integrators require these models to perform system-level
verification, chip-level timing, fioorplanning, and layout.

Guideline - It is recommended that the design process itself be kept identical with
the design process for soft macros except for the productization phase. The following
sections describe how the design process for hard macros differs from the design pro
cess for soft macros.

8.2 Design Issues for Hard Macros

There are several key design issues that are unique to hard macros. These issues affect
the design process, and are described in the following sections.

8.2.1 Full Custom Design

Unlike soft macros, hard macros offer the opportunity to include some full custom
design in a reusable form. However, advances in synthesis, libraries, and timing
driven place and route have largely eliminated the performance advantage for full cus
tom design. And since full custom design imposes a significant cost in terms of devel
opment schedule, it should only be used in a few, specific circumstances.

Memory is the first and most natural candidate for full custom implementation. Mem
ory compilers can produce much smaller, faster, lower-power memories than synthe-

174 Reuse Methodology Manual

sized flop-based memories. We expect all memories except very small FIFOs to be
generated from a memory compiler.

For some datapath elements such as barrel shifters, full custom ·design techniques can
yield slightly smaller designs than synthesizable versions. For the most cost-sensitive
designs, it may be worth replacing the synthesized version of these blocks with a full
custom version.

There is considerable advantage in minimizing the amount of full custom logic in a
hard macro. Not only does custom logic slow development time, but it also limits the
options for porting the design to different processes. Fully synthesizable designs can
be ported either by physical porting tools or by repeating synthesis, place and route.
Full custom macros, or full custom components within macros, need to be ported by
physical design tools or by repeating the manual design, place, and route.

8.2.2 Interface Design
As in most design, good interface design is critical to producing high quality, easy to
integrate hard macros.

Guideline - We strongly recommend registering all of the inputs and outputs of the
macro, and clocking them from a single edge of a single clock. In general, the output
drivers should be the same for all output pins, and input setup times should be the
same for all input pins.

This technique provides a simple and consistent interface for chip designers using the
macro, and thus can speed up integration significantly. In addition, consistent timing
on ports can simplify synthesis and timing verification scripts for the rest of the chip,
reducing the chance of a human error, and speeding up timing convergence.

Registering inputs and outputs can also eliminate some difficult problems in IP secu
rity, manufacturing test, and timing modeling, as described later in this chapter.

An additional challenge in interface design is choosing the right output drive strength
for output ports. Using too strong a drive strength wastes power and area; for lightly
loaded outputs, they can also be slower due to increased intrinsic delay over a smaller
buffer. Using too small a drive strength, of course, can result in unacceptable delays
when driving long wires to other blocks. Ultimately, this choice is a judgement call,
but we recommend erring on the side of too strong a drive strength rather than too
weak. WIre delays are only getting greater as technologies shrink.

Registering all outputs helps make designs less sensitive to output drive strengths,
especially if the other blocks in the chip register their inputs. In this case, signals have
an entire clock cycle to travel from block to block. For large chip designs, where
cross-chip delays can be multiple nanoseconds and clock speeds can be hundreds of

Developing Hard Macros 175

megahertz, this approach can make the difference between meeting timing and not
meeting timing.

8.2.3 Design For Test

Hard macros pose some unique test issues not found in soft macros. With soft macros,
the integrator can choose from a variety of test methodologies: full scan, logic BIST,
or application of parallel vectors through boundary scan or muxing out to the pins of
the chip. The actual test structures are inserted at chip integration, so that the entire
chip can have a consistent set of test structures.

Hard macros do not provide this flexibility; test structures must be built into each hard
macro. The integrator then must integrate the test strategy of the hard macro with the
test strategy for the rest of the chip. It is the task of the hard macro developer to pro
vide an appropriate test structure for the hard macro that will be easy to integrate into
a variety of chip-level test structures.

The hard macro developer must choose between full scan, logic BIST, or application
of parallel vectors through boundary scan or muxing out to the pins of the chip.

Full scan offers very high test coverage and is easy to use. Tools can be used to insert
scan flops and perform automatic test pattern generation. Fault simulation can be used
to verify coverage. Thus, scan is the preferred test methodology for hard macros as
long as the delay and area penalties are acceptable. For most designs, the slight
increase in area and the very slight increase in delay are more than compensated for
by the ease of use and robustness of scan.

For some performance-critical designs, such as a microprocessor, a "near full scan"
approach is used, where the entire macro is full scan except for the datapath, where
the delay would be most costly. For the datapath, only the first and last levels of flops
are scanned.

Logic BIST is a variation on the full scan approach. Where full scan must have its
scan chain integrated into the chip's overall scan chain(s), logic BIST uses an LFSR
(Linear Feedback Shift Register) to generate the test patterns locally. A signature rec
ognition circuit checks the results of the scan test to verify correct behavior of the cir
cuit.

Logic BIST has the advantage of keeping all pattern generation and checking within
the macro. This provides some element of additional security against reverse engi
neering of the macro. It also reduces the requirements for scan memory in the tester.
Logic BIST does require some additional design effort and some increase in die area
for the generator and checker, although tools to automate this process are becoming
available.

176 Reuse Methodology Manual

Parallel vectors are used to test only the most timing or area critical designs. A robust
set of parallel vectors is extremely time-consuming to develop and verify. If the
macro developer selects parallel vector testing for the macro, boundary scan must be
included as part of the macro. Boundary scan provides an effective, if slow, way of
applying the vectors to the macro without requiring muxing the macro pins out to the
chip pins. Requiring the integrator to mux out the pins places an unreasonable burden
on the integrator and restricts the overall chip design.

Note that for the hard macro test to be fully self-contained, the inputs and the outputs
of the macro must be registered. For example, if there is combinational logic on an
input to the macro, then the stimulus to test this logic must come from the outside
logic. In Figure 8-1, for example, the scan chain of Block A needs to provide inputs to
the hard macro. With current tools, this means that ATPG must be done on Block A
and the hard macro concurrently.

One major problem with this approach is that the engineer doing the ATPG has to
have access to the gate-level netlist of the hard macro. For many third party IP provid
ers, this is a major security concern.

BLOCK A HARD MACRO

CHIP

Figure 8·1 Scan chains are not independent

8.2.4 Clock and Reset

The hard macro designer has to implement a clock and reset structure in the hard
macro without knowing in advance the clocking and reset structure of the chip in
which the macro will be used. The designer should provide full clock and reset buffer
ing in the hard macro, and provide a minimal load on the clock and reset inputs to the
macro.

To ease the integration of the macro onto the chip, the designer should provide a buff
ered, precisely aligned copy of the clock as an output of the macro. This clock is then
available to synchronize the signals going to/from the hard macro.

Developing Hard Macros

The problem, of course, is that the hard macro will have a clock tree insertion delay;
that is, the delay from the clock input pin of the macro, through the clock buffers,
before the clock arrives at the internal flops. This delay affects the setup and hold
times at the macro's inputs and its clock-to-output delays. The chip designer needs to
account for this when integrating the macro into the chip.

The macro designer can help simplify the integration process by registering the inputs
and outputs of the macro. The clock-to-output delay is then just the clock tree delay
plus the clock-to-q delay of the flops. For most designs, this is fast enough; if neces
sary, the chip designer can register the outputs immediately. This approach allows a
complete clock cycle for the insertion delay, flop delay, and wire delay.

Registering the inputs of the hard macro does not entirely solve the problem. If the
clock tree delay is substantial, the macro will exhibit large hold time requirements.
This problem can be solved by adding buffers to the hard macro's inputs, providing
sufficient delay to produce a zero hold time requirement.

Another way to deal with clock tree insertion delay is for the hard macro developer to
calculate the clock tree insertion delay of the hard macro and to provide that informa
tion to the macro integrator. The macro integrator can then provide the hard macro an
early version of the chip's clock signal, thereby aligning the macro's internal timing
with that of the rest of the chip.

8.2.5 Aspect Ratio

The aspect ratio of the hard macro affects the ftoorplan and routability of the final
chip. Thus, it is an important factor affecting the ease with which the macro can be
integrated into the final chip. A large hard macro with an extreme ratio can present
significant problems in placing and routing an SoC design. In most cases, an aspect
ratio close to 1: 1 minimizes the burden on the integrator. Aspect ratios of 1:2 and 1:4
are also commonly used.

Note also that a non-square aspect ratio (for example, a tall, narrow block), means that
there will be more routing in vertical direction than in the horizontal. This asymmetric
demand on routing resources can lead to problems during place and route. This is
another reason why macro designers typically try for a 1: 1 aspect ratio.

8.2.6 Porosity

Hard macros can present real challenges to the integrator if they completely block all
routing. Some routing channels through the macro should be made available to the
integrator, if it is possible to do so without affecting the macro's performance.

178 Reuse Methodology Manual

Another approach is to limit the number of used metal layers to less than the total
available in the process. For processes with more than two metal layers available for
signal routing, this can be an effective approach to providing routing through the hard
macro.

Both of these approaches, however, pose problems. A hard macro or memory is typi
cally characterized for the case where no extra wires are running through or over it.
The resulting timing model is used by the chip design team to calculate delays and
determine if the chip will meet timing.

Routing additional wires through the block adds capacitance that can slow down adja
cent signals. Unfortunately, the only way to factor these additional delays into the
timing model for the macro or memory is to completely re-characterize the macro or
memory. In most cases, this re-characterization is not practical. The chip design team
has little choice except to hope the additional capacitance does not affect a critical
timing path.

For these reasons, designers of leading edge microprocessors, where each block is
treated as a hard macro, leave routing channels between blocks and always route
around rather than through blocks.

Rule - At the very least, the macro deliverables must include a blockage map to
identify areas where over-cell routing will not cause timing problems.

8.2.7 Pin Placement

Pin placement of the macro can have a significant effect on the ftoorplan and top-level
routing of the chips that use it. Without knowing in detail the target chip design, it is
hard to ensure an optimal pin placement. However, common sense suggests that buses
and other related signals should be grouped together so that top-level wire lengths can
be roughly matched.

A ftoorplanning model is one of the deliverables of a hard macro. Among other
things, this model describes the pin placement, size, and grid.

8.2.8 Power Distribution

Power and ground busing within the macro must be designed to handle the peak cur
rent requirements of the macro at maximum frequency. The integrator using the
macro must provide sufficient power busing to the macro to limit voltage drop, noise,
and simultaneous output switching noise to acceptable levels. The specification of the
hard macro must include sufficient information about the requirements of the macro
and the electrical characteristics of the power pin contacts on the macro.

Developing Hard Macros 179

8.3 The Hard Macro Design Process

The hard macro design process is shown in Figure 8-2. For the hard macro, we
expand the macro specification to include physical design issues. The target library is
specified, and timing, area, and power goals are described.

The macro specification also addresses the issues described in the previous section:
design for test, clock and reset, aspect ratio, porosity, pin placement, and power distri
bution. The specification describes the basic requirements for each of these. The spec
ification also describes the porting plan: what techniques and tools will be used to
port the macro to different processes.

The macro specification also describes the models that will provided as part of the
final deliverables. These models include the simulation model(s), timing model(s),
and floorplanning model.

Concurrent with the functional specification and behavioral model development, we
develop a more detailed physical specification for the macro, addressing all of the
issues mentioned above, describing how each requirement of the macro specification
will be met. From this specification, we develop a preliminary floorplan of the macro.
This floorplan and the physical requirements of the macro help drive the partitioning
of the macro into subblocks.

Once the macro is partitioned into subblocks, the design of the individual subblocks
follows the same process as for soft macros.

For some very high performance designs, the designer may elect to not to use auto
mated synthesis for some critical subblocks. Instead, the designer may use a datapath
compiler or may handcraft the subblock. The goal of these alternate synthesis meth
ods is the same: to meet the timing, area, and power requirements of the macro speci
fication while ensuring that the detailed design is functionally equivalent to the RTI...

Note that even with manual synthesis and handcrafting, the RTI.. for the subblock is
the "golden" reference. For all synthesis methods, automated and manual, formal ver
ification should be used to ensure the equivalence between the final physical design
and the RTI...

180

Repeat for
each

subblock

Reuse Methodology Manual

r
I
I
I

CREATE BEHAVIORAL MODEL

(

DEVELOP
testbench

)
---- .-

PARTITION
design into subblocks

PASSES ALL THREE
Ready for INTEGRATION

Figure 8-2 The hard macro design process

Developing Hard Macros 181

8.4 Block Integration for Hard Macros

The process of integrating the subblocks into the macro is much the same for both
hard and soft macros. This process is described in Figure 8-3.

Because a hard macro is available only in a single configuration, functional test is
somewhat simplified; no multiple-configuration testing is required, as it is for soft
macros.

As described in the previous section, manufacturing test presents additional chal
lenges to hard macro design. Based on the requirement for the macro, a test methodol
ogy must be selected and implemented.

Synthesis needs to target only the target technology library. Because porting is done at
the physical level, after synthesis, there is no requirement to produce optimal netlists
in a variety of technologies.

Synthesis of the macro is an iterative process that involves refining the ftoorplan based
on synthesis results, updating the wire load models based on the ftoorplan, and repeat
ing synthesis. With a good initial ftoorplan, good partitioning of the design, and good
timing budgets, this process will converge rapidly. As the process starts to converge,
an initial placement of the macro that produces an estimated routing can further
improve the wire load models used for synthesis.

8.5 Productization of Hard Macros

Productization of hard macros involves physical design, verification, model develop
ment, and documentation.

8.5.1 Physical Design

The first step in productizing the hard macro is to complete the physical design.
Figure 8-4 shows the basic loop of ftoorplanning and incremental synthesis, place and
route, and timing extraction. In the first pass of this loop, the final ftoorplan and syn
thesized netlist provide the inputs to the place and route tools. After the initial place
and route, actual resistance and capacitance values are extracted from the physical
design and delivered back to the static timing analysis tool. We can then perform
static timing analysis to determine if the design meets our timing goals. If necessary,
we can also perform power analysis to see if the design meets the power goals.

182 Reuse Methodology Manual

DETERMINE CONFIGURATION AND GENERATE
top-level HDL

Top-level H DL
~

FUNCTIONAL
GENERATE

top-level synthesis
TEST scripts

~,. ~ ,.
RUN SYNTHESIZE

~
REFINE

lint tool with target library floorplan

~

SELECT
mfg. test strategy

,
DEVELOP parallel

SCAN INSERTION, test vectors, fault
coverage analysis, ATPG, or BIST, fault

boundary scan coverage analysis

~Ir u ! ~Ir

[READY FOR PRODUCTIZATION

,,.
PRODUCTIZE

hard macro

Figure 8-3 Flow for integrating subblocks into the hard macro

Developing Hard Macros 183

GATE
VERIFICATION

STATIC TIMING
ANALYSIS

RELEASE

(FINALGDSII

DEVELOP
floorplan model

DEVELOP
timing model

L
VERIFICATION

(LVS,DRC)

Figure 8·4 Productizing hard macros

184 Reuse Methodology Manual

If the physical design does not meet timing, we have two choices. If timing, power, or
area is far from meeting specification, we may need to go back to the design phase
and iterate as required. If we are reasonably close to meeting specification, however,
we can focus on synthesis only. We first try using the IPO (In Place Optimization)
feature of the synthesis tool. IPO modifies as little of the design as possible, focusing
on resizing buffers. We then provide the updated netlist to the place and route tool and
do an incremental place and route, where only the updated gates are modified in the
physical design. By retaining as much of the original place and route as possible, we
optimize our chances of rapidly converging on a good place and route.

One key to successful physical design is to have a high quality standard cell library.
The library should have been fully characterized to ensure that the timing models are
accurate. The library should also have all the views required to complete the design,
including power modeling.

A single library, or a consistent set of libraries, should be used for all aspects of the
design, including memory. For example, some libraries use a 30%-50% rise time, oth
ers use 20%-80%. Mixing these two different values in a single design can cause the
static timing analysis tools to give incorrect post-extraction timing results.

8.5.2 Verification

Once we achieve our physical design goals with a place and route, we perform a
series of verifications on the physical design:

Gate verification

We use formal verification to prove that the final gate-level netlist is equivalent to the
R1L. For hand-crafted blocks, we use a combination of LVS (Layout vs. Schematic),
to verify transistor to gate netlist equivalence, and formal verification. We also run
full-timing, gate-level simulation to verify any asynchronous parts of the design.

In this book, we strongly recommend fully synchronous design, with no timing
exceptions or multicycle paths and as few clock domains as possible. Following these
rules makes static timing analysis very straightforward. If these rules are violated,
however, it becomes necessary to develop fairly complex scripts to perform timing
analysis correctly. These scripts, like all complex scripts, are subject to human error.
For these designs, significant gate-level simulation may be necessary as a second
check that the design meets timing.

Static Timing Analysis

We perform a final static timing analysis to verify that the design meets timing.

Developing Hard Macros 185

Physical Verification

We use LVS and DRC (Design Rule Checking) tools to verify the correctness of the
final physical design.

The DRC and LVS decks are an important consideration in physical design. These
decks provide the physical design rules used in physical verification of the final
design. These decks need to be consistent between all the blocks in a chip design;
integrating different blocks that use different decks can cause a physical verification
nightmare. Typically, the hard macro designer gets these decks from the library pro
vider; it is important that the chip design team uses the same decks for the rest of the
chip, and in particular for any other hard macros used in the chip.

8.5.3 Models

In addition to the physical design database, we need to develop the models that the
integrator will use to model the macro in the system design:

• The functional simulation model is developed from the final RTL.

• The fioorplan model is developed as part of the fioorplanning process.

• The timing model is developed using the extracted timing values.

The process and tools for developing these models are discussed later in this chapter.

8.5.4 Documentation

Finally, we need to create a complete set of user documentation to guide the integrator
in using these models to develop the chip design. In addition to the requirements for a
soft macro, the documentation for a hard macro includes:

• Footprint and size of the macro

• Detailed timing and power specification

• Routing restrictions and porosity

• Power and ground interconnect guidelines

• Clock and reset timing guidelines

186 Reuse Methodology Manual

8.6 Model Development for Hard Macros

The set of models provided to the integrator is the key to the usability of a hard macro.
For most hard macros, the desired models include:

• Behavioral or ISA (Instruction Set Architecture) model for fast simulation. These
models are typically used by the software team to develop the embedded software
for the chip.

• Bus functional model for assisting system-level verification. Bus functional mod
els can be used to create the system-level testbench and to test the rest ofthe chip.

• Full functional, cycle-accurate model for accurate simulation; this model is
required for functional verification of the chip.

• Timing model; this model is required to perform full-chip timing analysis

• Floorplanning model for physical design

• Functional model for emulation (optional)

We can minimize the additional effort to create these models by leveraging the mod
els that are created as part of the macro development process.

8.6.1 Functional Models

Hard macros are typically of high value and high complexity; only this kind of design
justifies the additional effort to create a hard version. Because of this complexity, the
R1L for these designs tends to simulate quite slowly, creating a bottleneck in the
design process. Often, hard macros are processors, requiring significant application
code to be developed while the chip is being designed. The software developers
clearly need a very fast model of the processor to develop this software. On the other
hand, the chip designers need a very accurate functional model to be sure that the
entire chip will function correctly.

Because of these conflicting needs, it is usually necessary to provide a variety of
functional models for a hard macro. These models make various tradeoffs between
accuracy and speed to meet the various needs of the hardware and software design
teams.

Most of these functional models are created as part of the macro design process. How
ever, the method for packaging and delivering these models tends to be somewhat ad
hoc. There are some tools, and some new emerging tools, for automating some
aspects of model generation.

Developing Hard Macros 187

Model Security

One of the critical issues in developing a modeling process is determining the level of
security required for the models. All the functional models described in this section
are either C (or C++) models or HDL models. HDL source code for these models can
be shipped directly to the customer if security is not a concern. This is often the case
for bus functional models, which contain little information about the detailed func
tionality of the macro. If security is a concern, then some form of protection must be
used. Often this security is achieved by providing a compiled version of the model.

One common form of protection is to compile the model and the simulation kernel
into a single, stand-alone executable. An R1L wrapper is used to provide a simple
timing and functional interface to the R1L for the rest of the chip. The Verilog PLI
and VHDL language interfaces provide a reasonably straightforward mechanism for
tying this kind of model into the simulator. By delivering object code, the designer
ensures a high level of security.

Some commercial tools, such as VMC and SWIFT from Synopsys, and Visual IP
from Summit can help automate the compilation of these models and provide a stan
dard interface to the major commercial simulators.

Behavioral and ISA Models

Extensive hardware/software cosimulation is critical to the success of many SoC
design projects. In turn, effective hardware/software cosimulation requires very high
performance models for large system blocks. Behavioral and ISA models provide this
level of performance by abstracting out many of the implementation details of the
design.

Most processor design teams develop a high-level C/C++ model of the processor as
they define the processor architecture. This model accurately reflects the instruction
level behavior of the processor while abstracting out implementation details. It is then
used as a reference against which the detailed design is compared. This high level
model is often referred to as an ISA (Instruction Set Architecture) or ISS (Instruction
Set Simulator) model.

Because of their high level of abstraction, ISA models allow for very fast simulation.

The SoC designer using the processor core in a chip design can then use the ISA
model to verify the software and the rest of the system design. The hardware/software
co simulation environment provides an interface between this model and the R1L sim
ulation of the rest of the hardware, as shown in Figure 8-5.

188 Reuse Methodology Manual

SW System Simulation ..
VerilogNHDL

SWdebugger ..
~

G HW/SW
cosimulation
environment

G
Cmemory

_ ...
model ~

Processor ISA
API

interface to BFM
model simulator

Figure 8·5 Hardware/software cosimulation using an ISA model

Behavioral models are the equivalent of ISA models for non-processor designs.
Behavioral models represent the algorithmic behavior of the design at a very high
level of abstraction, allowing very high speed simulation. For example, for a design
using an MPEG macro, using a behavioral model instead of an R1L model can pro
vide orders of magnitude faster system simulation.

Behavioral models can be written in C/C++, Verilog, or VHDL, and they may be pro
tected or unprotected. Behavioral models can also be written using the new testbench
generation tools VERA and Specman Elite.

A representative flow for compiling the behavioral Verilog/YHDL models is shown in
Figure 8-6. A substantially equivalent flow is possible with Visual IP. VMC (Verilog
Model Compiler) compiles the Verilog model and the simulation kernel into a VCS
compatible object format. VFM then adds the SWIFT interface, allowing the model to
work with all major simulators.

In the flow shown in Figure 8-6, if the model is coded in VHDL, then it must first be
translated to Verilog, because VMC does not yet support VHDL. (A VHDL version of
VMC, VhMC, is under development.) The translation to Verilog can be done with
commercial translation tools available from a number of vendors, including Inter-

Developing Hard Macros 189

HDL. These translation tools are not yet perfected, especially for behavioral code.
However, they provide an initial translation that can be completed manually.

DEVELOP behavioral
model in VHDL

~
TRANSLATE VHDL

to Verilog

These models are typically devel oped as
gn part of the specification and desi

process for the macro.

DEVELOP behavioral
model Verilog

COMPILE model and
simulation kernel

VMC

!
LINK with SWIFT

interface
VFM

B Block

With the SWIFT inte
model cosimulates wi

rface added, the
th the VHDL or
d for system Verilog simulator use

simulation.

System Simulation
VerilogNHDL

B
Figure 8·6 Generating compiled HDL behavioral models

Bus Functional Models

Bus functional models abstract out all the internal behavior of the macro, and only
provide the capability of creating transactions on the output buses of the macro. These
models are useful for system simulation when the integrator wants to test the rest of
the system, independent of the macro. By abstracting out the internal behavior of the
macro, we can develop a very fast model that still accurately models the detailed
behavior of the macro at its interfaces.

190 Reuse Methodology Manual

In the past, bus functional models have usually been developed in Verilog or VHDL,
and distributed in source code. Because so little of the detailed behavior of the macro
is modeled, security is not a major concern.

The new testbench automation tools such as VERA and Specman Elite provide pow
erful features for creating bus functional models. In particular, they provide commu
nication mechanisms to facilitate coordination between multiple BFMs. They also
provide a richer semantics than either Verilog or VHDL for checking transactions on
ports and buses. With these tools, it is relatively simple to create bus monitors to
check the behavior of the rest of the chip as it interacts with the hard macro BFM.

Full Functional Models

Although more abstract models are useful for system-level verification, final verifica
tion of the R1L must be done using full functional models for all blocks in the design.
Full functional models provide the detailed, cycle-by-cycle behavior of the macro.
The R1L for the macro is a full functional model, and is the easiest full functional
model to deliver to the integrator. Because the model is available in R1L, the flow
shown in Figure 8-7 can be used. This flow is essentially the same as that for behav
ioral models coded in Verilog or VHDL.

Because the R1L for the macro is synthesizable, the requirement to translate VHDL
to Verilog is much less of a problem than for behavioral models. Commercial transla
tors do a reasonably good job of this translation.

Some hard macro providers choose to deliver a C-based model rather than an R1L
based model. The C-based model is a cycle-accurate, bit-accurate model of the
macro, but written in C or C++ rather than Verilog or VHDL. The compilation pro
cess is essentially the same, however. The C model and the simulator kernel are com
piled into a single executable, and an R1L wrapper provides the external interface.

The major problem with full functional models is that they are slow to simulate.

Full Functional Models with Timing

For some hard macros, it is necessary to provide a full functional model that contains
detailed timing information. If the macro does not comply with the guidelines in this
book, in particular if inputs and outputs are not registered, then static timing analysis
may not be sufficient to ensure timing performance of the overall chip design. Also, if
the macro exhibits asynchronous behavior, a full timing model may be required. Of
course, asynchronous design is not recommended because it is much harder to verify.

We can develop a full functional, full timing simulation model from the back-anno
tated netlist obtained from place and route. The same compilation scheme shown in

Developing Hard Macros 191

Figure 8-7 can be used. The drawback of this approach is that simulation is extremely
slow.

VHDL RTL model

+
TRANSLATE VHDL Verilog RTL model

toVerilog

COMPILE model
VMC

~iI"

With the SWIFT inte
LINK with SWIFT model co-simulates w

rface added, the
ith the VHDL or
d for system interface Verilog simulator use

VFM simulation.

System Simulation VerllogNHDL
iI"

B Block B
Figure 8·7 Generating full functional models

Figure 8-8 shows how to develop a full functional, full timing model with much better
simulation performance. This approach takes the full functional model developed
from the RTL (or C/C++) and adds a timing wrapper; that is, a set of structures on the
inputs and outputs that can be used to model the actual delays (and setup and hold
requirements) of the macro. The timing information for these buffers can be derived
from the extracted timing information from place and route. This approach can be
very effective provided that the macro is designed so that it does not have state depen
dent timing.

192 Reuse Methodology Manual

State dependent timing occurs when the timing characteristics of the block depend on
the value of the inputs or on the internal state of the block. For example, asynchro
nous RAMs have different timing for read and write modes. On the other hand, syn
chronous RAMs have exactly the same timing regardless of mode, and thus are easier
to characterize. Using a fully synchronous design style ensures that the macro will
have no state dependent timing.

It can be extremely burdensome to develop timing shells for blocks with state depen
dent timing, to the point where this approach is not practical.

SYNTHESIZE;
PLACE AND ROUTE

EXTRACT timing data

CREATE functional
model with SWIFT

interface (see fig. 8-6)

DEVELOPVerilogNHDL
timing wrapper for

design

UPDATE timing wrapper
L-_____ ~.. with back annotated SDF

r timing data

Block

System Simulation
VerilogNHDL

Figure 8-8 Generating full functional models with timing

Developing Hard Macros 193

Emulation Models

One of the major problems with full functional models is the slow simulation speeds
achieved with them. Emulation is one approach to addressing the problem of slow
system-level simulation with full functional models.

Emulation requires that the model for the macro be compiled into a gate-level repre
sentation. We can provide the R'IL directly to the integrator, who can then use the
emulator's compiler to generate the netlist, but this does not provide any security.

An alternate approach is to provide a netlist to the integrator. This approach provides
some additional security for the macro. A separate synthesis of the macro, compiling
for area with no timing constraints, will give a reasonable netlist for emulation with
out providing a netlist that meets the full performance of the macro.

Some emulation systems have more sophisticated approaches to providing security
for hard macro models. See Chapter 11 for a brief discussion on this subject.

Hardware Models

Hardware models provide an alternate approach for providing highly secure full func
tional models. Because the hard macro design process requires that we produce a
working test chip for the macro, this approach is often a practical form of model gen
eration.

Hardware modelers are systems that allow a physical device to interface directly to a
software simulator. The modeler is, in effect, a small tester that mounts the chip on a
small board. When the pins of the device are driven by the software simulator, the
appropriate values are driven to the physical chip. Similarly, when the outputs of the
chip change, these changes are propagated to the software simulator.

Rapid prototyping systems, such as those from Aptix, also allow a physical chip to be
used in modeling the overall system. These systems are described in Chapter 11.

Some emulators, including those from Mentor Graphics, allow physical chips to be
used to model part of the system. Thus, the test chip itself is an important full func
tional model for the macro.

In all these cases, it is important that the physical chip reflect exactly the functionality
of the macro. For example, with a microprocessor, one might be tempted to make the
data bus bi-directional on the chip, to save pins, even though the macro uses unidirec
tional data buses. This approach makes it much more difficult to control the core and
verify system functionality with a hardware modeler or emulator.

194 Reuse Methodology Manual

8.6.2 Synthesis and Floorplanning Models

The timing and floorplanning models can be generated from the design database.

From the final place and route of the macro, we can extract the basic blockage infor
mation, pin locations, and pin layers of the macro. This information can then used by
the integrator when floorplanning the SoC design. This information is typically deliv
ered in the LEF format.

Figure 8-9 shows the process for developing a static timing analysis model for the
hard macro. From the SDF back-annotated netlist for the macro, the PrimeTnne tim
ing analysis tool extracts a black-box timing model for the macro. This model pro
vides the setup and hold time requirements for input pins and the clock-to-output
delays for the output pins. This model is delivered as a Synopsys standard format .db
file. During static timing analysis on the entire chip, PrimeTnne uses the context
information, including actual ramp rates and output loading, to adjust the timing of
the bard macro model to reflect the macro's actual timing in the chip.

For this black-box model to work, of course, the design must have no state-dependent
timing. For blocks that do have state-dependent timing, a gray box timing model must
be used; this model retains all of the internal timing information in the design. The
entire back-annotated netlist can be used as a gray-box model, but it will result in
slower static timing analysis runtimes.

If the hard macro has any blocks that are handcrafted at the transistor level, we need
another approach to extract this timing information. Figure 8-10 shows a flow for this
case. After parasitic extraction, the CoreMill static timing analysis tool verifies that
the timing requirements for the design are met. Through a configuration file, the
designer provides the input ramp rates and output loading information, as well as
identification of input, output, and clock pins. When timing has been successfully
verified, CoreMill can generate a black box timing model for the design in Stamp for
mat. If desired, additional characterization information can be provided to the tool,
and CoreMill will develop a table of timing values based on different input ramp rates
and output loading. PrimeTime uses this Stamp model to develop the final timing
model in the .db format.

Developing Hard Macros

[MLbl~ I

SYNTHESIZE;
PLACE AND ROUTE

EXTRACT timing data;
BACK ANNOTATE

neUist

CREATE timing model
using PrimeTime

Hard
macro

System Synthesis
using Design Compiler

[~.~~ I
Figure 8-9 Generating static timing models for standard cell designs

195

196 Reuse Methodology Manual

PLACE and ROUTE

+
EXTRACT parasitics

~
Configuration 4 VERIFY timing
information PathMiII

No

~ Yes

Characterization 1--+ CREATE Stamp timing
data model using PathMIll

~
CREATE Synthesis

timing model
PrimeTime

System Synthesis
using Design Compiler

~,

[~Lblo~ 1 Hard
[~Blo~ 1 macro

Figure 8·10 Generating static timing models for full custom designs

Developing Hard Macros 197

8.7 Porting Hard Macros

One of the challenges for hard macro provider is to port the macro rapidly from one
process to another.

For hard IP that was completely synthesized, the porting strategy is quite straightfor
ward. We just resynthesize, targeting the new technology library, and repeat the phys
ical design and timing model generation. If we have saved the scripts from our initial
physical design, and these scripts were written to be as technology-independent as
possible, then this is a reasonably painless process.

For those sections of the design that are full custom, we have the choice between
manual porting and automated porting. Under certain circumstances, automatic port
ing tools such as Segantec's DREAM can be effective. These tools operate at the
polygon level, automatically mapping transistors and interconnect from one set of
design rules to another, and shrinking the design as much as possible.

This polygon mapping works quite well on cell libraries, and reasonably well on
small blocks, perhaps hundreds of gates. As the blocks get larger, the chances
increase that we will run into problems that require significant manual intervention.
These problems can slow down the porting process dramatically. This is another rea
son why we recommend reserving full custom design only for the most critical sub
blocks of the design.

The problems typically encountered in automated porting include clocking and hold
time problems. As the technology shrinks, circuits speed up, and the acceptable clock
skew becomes smaller. and minimum delays from flop to flop become less. These
problems can be difficult to resolve, and can require adding or resizing gates and buff
ers.

One of the time-consuming aspects of using the porting tools is establishing the corre
sponding design rules for the source and target technologies. One way of reducing the
risk of porting problems with automatic porting tools is to use lambda rules in the ini
tial full custom design. With these rules, all the physical constraints of the process are
described as multiples of lambda, a unit length representative of the technology. If the
design constraints of both the source and target libraries are both described as lambda
rules, and the original macro design complies with the source library lambda rules,
then automatic mapping is significantly easier.

CHAPTER 9 Macro Deployment:
Packaging for Reuse

This chapter discusses macro deployment issues, including deliverables for hard and
soft macros and the importance of keeping a design archive. The topics are:

• Delivering the complete product

• The contents of the user guide

9.1 Delivering the Complete Product

Once a macro has been designed according to the guidelines detailed in the preceding
chapters, the macro must be packaged and delivered to the customer. The packaging
of the macro depends on how it will be delivered.

Soft macros require:

• The RTL code

• Support files

• Documentation

Hard macros require:

• A rich set of models for system integration

• Documentation support for integration into the final chip

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

200 Reuse Methodology Manual

In addition, all files associated with the development of the macro must be stored
together in a design archive so that all necessary information is available when it is
time to modify or upgrade the macro.

As described in Chapter 4, a physical prototype of the macro is built as part of the ver
ification phase of the macro development. Many third party vendors make this proto
type available to customers either as a demonstration of capability or as an evaluation
unit. Evaluation prototypes are particularly helpful with programmable macros like
microcontrollers and microprocessors; application code can be developed and run on
the prototype to verify functionality and performance.

9.1.1 Soft Macro Deliverables

Table 9-1 lists the deliverables for soft macros.

Table 9·1 Deliverables for soft macros

Group Deliverables

Product files • Synthesizable Verilog for the macro and its subblocks

• Synthesizable VHDL for the macro and its subblocks

• Application notes, including VerilogNHDL design exam-
ples that instantiate the macro

• Synthesis scripts and timing constraints

• Scripts for scan insertion and ATPG

• CBA or other reference library

• Installation scripts

Verification files • Bus functional models/monitors used in testbench

Documentation
files

System
Integration files

• Testbench files, including representative verification tests

• User guide/functional specification

• Datasheet

• Bus functional models of other system components

• Cycle-based/emulation models as appropriate to the particu
lar macro and/or its testbenches and BFMs

• Recommendation of commercially available software
required for hardware/software cosimulation and system
integration, as appropriate for the particular macro

Macro Deployment: Packaging for Reuse 201

Product Files

In addition to the RTL in Verilog and VHDL, we must include the synthesis and
installation scripts. We include the reference CBA library so that the customer can
synthesize the design and verify that the installation was completed successfully. In
addition, providing the reference library, scripts, and verification environment allows
the user the recreate the developer's environment. This allows the user to verify many
of the claims of the developer, in terms of timing, power, area, and testability of the
macro.

The CBA reference library is also very helpful in identifying library problems in the
integrator's environment. Synthesis libraries vary considerably. If the integrator
encounters synthesis problems with the vendor's library, the integrator can synthesize
exactly the same configuration with the same scripts using the CBA library. This pro
cess helps the integrator identify whether the problem is in the macro (and its scripts)
or in the vendor's technology library.

Application notes that show exactly how to instantiate the design are also useful. If
the application notes are available in soft form, the integrator can cut and paste the
instantiation example, avoiding typographical errors and ensuring correct port names.

Verification files

The entire verification enviroiunent, including any bus functional models, bus moni
tors, or other models, and some set of verification test cases are shipped with the
product. The test cases that ship with the macro typically do not represent the full test
suite used to verify the macro. 1Ypically, a subset is shipped that is sufficient to ensure
that the macro has been installed correctly at the integrator's site. The integrator then
develops a test suite to verify the functionality of the macro in the full chip.

The bus functional models used to develop and verify the macro can be used by the
integrator to create a testbench environment for the SoC chip. See Chapter 11 for
more discussion on using bus functional models for system-level testing.

System Integration Files

Depending on the specific macro, there may be additional deliverables that are useful
for the integrator.

For large macros, where simulation speed in the system environment may be an issue,
it can be useful to include cycle-based simulation and/or emulation models. In gen
eral, RTL that complies with the coding guidelines in this document will work with
cycle-based simulation and emulation. However, testbenches and bus functional mod
els, unless coded to these same RTL guidelines, may not be usable with these verifica-

202 Reuse Methodology Manual

tion tools. It is up to the macro provider to determine which models need to be
provided in cycle-based simulation/emulation compatible forms.

For macros that have significant software requirements, such as microcontrollers and
processors, it is useful to include a list of compilers, debuggers, and real-time operat
ing systems that support the macro. For other designs, we may want to reference soft
ware drivers that are compatible with the design. In most cases, the macro provider
will not be providing the software itself, but should provide information on how to
obtain the required software from third-party providers.

9.1.2 Hard Macro Deliverables

Table 9-2 lists the deliverables for a hard macro.

The list of deliverables in Table 9-2 assumes that the physical integration is being
done by the silicon vendor rather than by the chip designer who is using the macro.
This model applies when the silicon vendor is also the macro vendor. In the case
where the chip designer is also doing the physical integration of the macro onto the
chip, the physical aDSII design files are also part of the deliverables.

Table 9·2 Deliverables for hard macros

Group Deliverables

Product files • Installation scripts

Verification files • None

Documentation files • User guide/functional specification

• Datasheet

System
Integration files

• ISA or behavioral model

• Bus functional model for macro

• Full functional model for macro

• Cycle-based simulation/emulation models as appropriate
to the particular macro

• TIming and synthesis model for macro

• Floorplanning model for macro

• Recommendation of commercially available software
required for hardware/software cosimulation and system
integration, as appropriate for the particular macro

• Test patterns for manufacturing test, where applicable

Macro Deployment: Packaging for Reuse 203

The deliverables for hard macros consist primarily of the documentation and models
needed by the integrator to design and verify the rest of the system. These models are
described in Chapter 8.

For processors, an ISA model provides a high level model that models the behavior of
the processor instruction-by-instruction, but without modeling all of the implementa
tion details of the design. This model provides a high speed model for system testing,
especially for hardware/software cosimulation. Many microprocessor vendors also
provide a tool for estimating code size and overall performance; such a tool can help
determine key memory architecture features such as cache, RAM, and ROM size.

For other macros, a behavioral model provides the high speed system-level simula
tion model. The behavioral model models the functionality of the macro, on a transac
tion-by-transaction basis, but without all the implementation details. A behavioral
model is most useful for large macros, where a full-functional model is too slow for
system-level verification.

For large macros, bus functional models provide the fastest simulation speed by mod
eling only the bus transactions of the macro. Such a model can be used to test that
other blocks in the system respond correctly to the bus transactions generated by the
macro.

The full functional model for the macro allows the integrator to test the full function
ality of the system, and thus is key to system-level verification.

As in the case of soft macros, cycle-based simulation and/or emulation models, espe
cially for the macro testbench, may be useful for the integrator. These models are
optional deliverables.

The timing and synthesis models provide the information needed by the integrator to
synthesize the soft portion of the chip with the context information from the hard
macro. These models provide the basic timing and loading characteristics of the
macro's inputs and outputs.

The ftoorplanning model for macro provides information the integrator needs to
develop a ftoorplan of the entire chip.

Test patterns for manufacturing test must be provided to the silicon manufacturer at
least, if not to the end user. For scan-based designs, the ATPG patterns and control
information needed to apply the test patterns must be provided. For non-scan designs,
the test patterns and the information needed to apply the test patterns is required; usu
ally access is provided through a ITAG boundary-scan ring around the macro.

204 Reuse Methodology Manual

9.1.3 The Design Archive

Table 9-3 lists the items that must be stored together in the design archive. All of these
items are needed when any change, upgrade, or modification is made to the macro.
The use of a software revision control system for archiving each version is a crucial
step in the design reuse workflow, and will save vast amounts of aggravation and frus
tration in the future.

Group

Product files

Verification files

Documentation
files

System
Integration files

Table 9-3 Contents of the design archive

Contents

• Synthesizable Verilog for the macro and its subblocks

• Synthesizable VHDL for the macro and its subblocks

• CBA reference library

• Verilog NHDL design examples that instantiate the macro

• Synthesis scripts

• Installation scripts

• Bus functional models/monitors used in testbench

• Testbench files

• User guide/functional specification

• Technical specification

• Datasheet

• Testplan
• Simulation log files
• Simulation coverage reports (VHDLCover, VeriSure, or

equivalent)

• Synthesis results for multiple technologies

• Testability report

• Lint report that demonstrates compliance to coding guide
lines

• Bus functional models of other system components

• Recommendation of commercially available software
required for hardware/software cosimulation and system
integration, as appropriate for the particular macro

• Cycle-based simulator and hardware emulator models

Macro Deployment: Packaging for Reuse 205

9.2 Contents of the User Guide

The user guide is the key piece of documentation that guides the macro user through
the selection, integration, and verification of the macro. It is essential that the user
guide provides sufficient information, in sufficient detail, that a potential user can
evaluate whether the macro is appropriate for the application. It must also provide all
the information needed to integrate the macro into the overall chip design. The user
guide should contain, at a minimum, the following information:

• Architecture and functional description

• Claims and assumptions

• Detailed description of 110

• Exceptions to coding/design guidelines

• Block diagram

• Register map

• Timing diagrams

• Timing specifications and performance

• Power dissipation

• Size/gate count

• Test structures, testability, and test coverage

• Configuration information and parameters

• Recommended clocking and reset strategies

• Recommended software environment, including compilers and drivers

• Recommended system verification strategy

• Recommended test strategy

• Floorplanning guidelines

• Debug strategy, including in-circuit emulation and recommended debug tools

• Version history and known bugs

The user guide is an important element of the design-for-reuse process. Use it to note
all information that future consumers of your macro need to know in order to use the
macro effectively. The following categories are especially important:

Claims and assumptions
Before purchasing a macro, the user must be able to evaluate its applicability
to the end design. To facilitate this evaluation, the user guide must explicitly
list all of the key features of the design, including timing performance, size,
and power requirements. If the macro implements a standard (for example, the
IEEE 1394 interface), then its compliance must be stated, along with any
exceptions or areas where the macro is not fully compliant to the published
specification. VSIA suggests that, in addition to this information, the macro

206 Reuse Methodology Manual

documentation include a section describing how the user can duplicate the
development environment and verify the claims.

For soft IP, the deliverables include a reference library, complete scripts, and a
verification environment, so these claims can be easily verified.

For hard IP, the end user does not have access to the GDSII, and so many of
the claims are unverifiable. We recommend including actual measured values
for timing performance and power in the user guide.

Exceptions to the coding/design guidelines
Any exceptions to the design and coding guidelines outlined in this manual
must be noted in the user guide. It is especially important to explain any asyn
chronous circuits, combinational inputs, and combinational outputs.

Timing specifications and performance
Timing specifications include input setup and hold times for all input and I/O
pins and clock-to-output delays for all output pins. Timing specifications for
any combinational inputs/outputs must be clearly documented in the user
guide. Timing for soft macros must be specified for a representative process.

CHAPTER 10 System Integration with
Reusable Macros

This chapter discusses the process of integrating completed macros into the whole
chip environment. The topics are:

• Integration overview

• Integrating soft macros

• Integrating hard macros

• Integrating RAMs and datapath generators

• Physical design

10.1 Integration Overview

Chapter 2 described system design from specification to the point where individual
blocks could be designed. The succeeding chapters described how these blocks
should be designed in order to make them reusable. We now return to the issue of sys
tem design, and discuss how to assemble these blocks into the final chip.

At this point in system design, there are two key tasks remaining: physical design and
functional verification. Each of these tasks has a dominant challenge. For physical
design it is achieving timing closure; for verification, it is knowing when we are done,
when we are confident enough in the functionality of the chip that we can tape out and
go to fabrication.

In this chapter, we address the integration of the blocks and the physical design of the
chip. In the next chapter, we discuss functional verification.
M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

208 Reuse Methodology Manual

The process of integrating the blocks and doing the physical design can be broken
into the following steps:

• Selecting IP blocks and preparing them for integration

• Integrating all the blocks into the top-level R1L

• Planning the physical design

• Synthesis and initial timing analysis

• Initial physical design and timing analysis, with iteration until timing closure

• Final physical design, timing verification, and power analysis

• Physical verification of the design

10.2 Integrating Macros into an SoC Design

Integrating macros into the top-level SoC design poses several challenges. In this sec
tion, we will discuss typical integration problems and strategies for dealing with
them.

10.2.1 Problems in Integrating IP

Assembling a set of blocks into a top-level design presents a series of challenges to
the design team. Naturally, we did a good job of decomposing the design into well
specified blocks, then selected the IP we needed and designed the new blocks required
as specified. Nonetheless, when we get down to assembling these blocks and making
them work together, we often find issues.

For blocks that were designed specifically for this chip, we tend to find:

• The low level interfaces do not work; for example, a handshake signal is inverted.

• There was a misunderstanding of the functionality of the block.

• There are functional bugs in the design.

Usually we have access to the block designers and the system architect, so these prob
lems are reasonably easy to fix.

For IP that has been obtained from an external source, either a third party or some
other division of the company, there are additional problems that frequently occur:

• Someone on the team needs to become familiar enough with the IP to integrate it
into the design.

• The documentation is incomplete, making this understanding harder to obtain.

• The interface of the IP does not match the interface of the system bus.

System Integration with Reusable Macros 209

• The verification models, such as bus functional models, are poorly written and dif
ficult to integrate into the system verification environment.

• Only limited support is available from the IP provider.

We will defer the discussion of the verification issues until the next chapter. For now
we will focus on the most serious of the other problems: interfaces that don't match
the system.

It is not unusual for a team to purchase a piece of IP that consists of 20k gates or so,
and then find that they have to design an additional block of 20k gates just to interface
it to the rest of the system. Most digital block interfaces are designed to pass data; that
is, they perform data reads and writes to other blocks. The protocol for these transac
tions may be quite different between different designs, and differ at different levels.

The detailed handshake may differ; one block may required a "ready for data" signal
from the target before it does a write, while the target may expect a "request for write"
signal before it reports status. At a higher level, blocks may have different kinds of
transactions: posted writes, burst reads with or without out of order return data, and
interrupted or aborted transactions. Incompatibilities at this level are more difficult to
resolve.

The most difficult interface problems usually involve exception handling: interrupts,
aborted transactions, and other unusual transactions. Differences at this level may
have to be resolved at a high level, perhaps even requiring changes to the architecture
of one of the blocks or the entire system.

10.2.2 Strategies for Managing Interfacing Issues

There is no universal solution for these interfacing issues except to adopt a universal
interface standard. Some groups are attempting to establish internal standards within
their companies, but we are a long way from having anything approaching a uniform
standard across the industry. The power, performance, and protocol needs of different
designs are just too disparate to make this approach practical.

There are several steps designs teams can take, however, to mitigate the problem:

• Plan the interfaces. We can identify early the kinds external IP to be used and ana
lyze the interface protocols involved. We can then select the specific IP, and define
the interfaces for the custom blocks, so that they can all be integrated with a mini
mum amount of additional interface design. What additional interface design is
required can be included in the overall project plan. The main idea here is not to
leave these interface issues until the last moment, and then be surprised at the
additional work, and schedule slip, involved.

210 Reuse Methodology Manual

• Keep all interfaces as simple as possible, whether we are designing IP or custom
blocks. These interfaces should usually include data read and ready for data sig
nals, so the connecting blocks know the ready status at all times.

• Standardize on a few common buses and block-to-block interfaces. It may not be
possible for a company or even a design team to standardize on a single bus, but in
many cases it is possible to standardize on a few. One design team has standard
ized on three standard buses; all IP is developed to support all three buses, as a
user-selectable option. All chips are designed using only these three buses. This
may result in some sacrifice of timing, area, or power, but the time-to-market
advantage more than compensates for this.

• Accumulate IP and experience with the IP. Once a team has gained experience
with a piece of IP, has used it successfully in a design, and has learned how to
interface it to other blocks, that IP has significantly increased in value. There is a
significant advantage to building a library of such IP, and leveraging it to create
new designs. Some software reuse books talk of "product line planning", where
multiple related products are developed over time to leverage investments in reus
able IP.

• Document this expertise. If a piece of IP has deficient documentation, supplement
it with the knowledge accumulated using it in a design. One of the most challeng
ing aspects of using someone else's design is learning how it works, and how to
use it. Capturing this knowledge in a document can help other integrators of the IP.

10.2.3 Interfacing Hard Macros to the Rest of the Design

In addition to the issues discussed above, hard IP presents some additional challenges
for the integrator. For soft macros, power and clock tree routing, as well as scan inser
tion, are done during chip-level integration. This fact ensures the consistent and com
patible power, clock, and test structure design. For hard macros, these are done during
macro design, and the interfaces between the hard macro and the rest of the chip must
be well thought out before integrating the macro into the chip.

Clock distribution
Typically, the macro has its own internal clock tree. The overall clock distribu
tion for the chip must accommodate the (already fixed) timing of the hard
macro clock. In some cases, a clock output from the hard macro is used to syn
chronize the clocks for the rest of the system.

Power and ground
Typically, the macro also has its own power and ground rings within the
macro. The physical design of the rest of the chip must account for this, and
provide the appropriate power and ground connections to the macro.

Test Structures
Well designed hard macros have their own embedded testability structures.
These may include a JTAG port or a full scan port. The macro may also have

System Integration with Reusable Macros 211

embedded structures for facilitating debug. These structures must be inte
grated into the overall chip design.

10.3 Selecting IP

In addressing the issues raised in the previous sections, one key step is to select IP that
can be easily integrated into the overall chip design. Choosing well-designed, well
documented IP can greatly reduce the integration effort.

10.3.1 Hard Macro Selection

The first step in selecting a macro from an external source, or in specifying a macro
that is to be developed by an internal source, is to determine the exact requirements
for the macro. For microprocessor cores, this means developing an understanding of
the instruction set, interfaces, and available peripherals.

Once the requirements for the macro are fully understood, the most critical factors
affecting the choice between several competing sources for a hard macro are:

Quality of the documentation
Good documentation is key to determining the appropriateness of a particular
macro for a particular application. The basic functionality, interface defini
tions, timing, and how to integrate and verify the macro should be clearly doc
umented.

Completeness of the design and verification environment
In particular, functional, timing, synthesis, and floorplanning models must be
provided.

If the macro is a microprocessor core, the vendor should supply or recommend
a third-party supplier for the compilers and debuggers required to make the
system design successful.

Robustness of the design
The design must have been proven in silicon.

Physical design limitations
Aspect ratio, blockage and porosity of the macro - the degree to which the
macro forces signal routing around rather than through the macro - must be
considered. A design that uses many macros that completely block routing
may result in very long wires between blocks, producing unacceptable delays.

212 Reuse Methodology Manual

10.3.2 Soft Macro Selection

The first step in selecting a macro from an external source, or in specifying a macro
that is to be developed by an internal source, is to determine the exact requirements
for the macro. For a standards-based macro, such as a PCI core or a IEEE 1394 core,
this means developing a sufficient understanding of the standard involved.

Once the requirements for the macro are fully understood, the choices can quickly be
narrowed to those that meet the functional, timing, area, and power requirements of
the design. The most critical factors affecting the choice between several competing
sources for a soft macro are:

Quality of the documentation
Good documentation is key to determining the appropriateness of a particular
macro for a particular application. The basic functionality, interface defini
tions, timing, and how to configure and synthesize the macro should be clearly
documented.

Robustness of the verification environment
Much of the value, and the development cost, of a macro lies in the verifica
tion suite. A rich set of models and monitors for generating stimulus to the
macro and checking its behavior can make the overall chip verification much
easier. These models and monitors should be compatible with the chip-level
verification environment.

Robustness of the design
A robust, well-designed macro still requires some effort to integrate into a chip
design. A poorly designed macro can create major problems and schedule
delays. Verifying the robustness of a macro in advance of actually using it is
difficult. A review of the deliverables for compliance to the design, coding,
and verification guidelines in this book is a first step. But for a macro to be
considered robust, it must have been proven in silicon.

Ease of use
In addition to the above issues, ease of use includes the ease of interfacing the
macro to the rest of the design, as well as the quality and user-friendliness of
the installation and synthesis scripts. Some IP providers offer user interface
tools, such as Synopsys coreBuilder and coreConsultant and Altera's MegaW
izard to make soft cores easier to use.

10.3.3 Soft Macro Installation

The macro, its documentation, and its full design verification environment should be
installed and integrated into your design environment much like an internally devel
oped block. In particular, all components of the macro package should be under revi
sion control. Even if you do not have to modify the design, putting the design under

System Integration with Reusable Macros 213

revision control helps ensure that it will be archived along with the rest of the design,
so that the entire chip development environment can be recreated if necessary.

10.3.4 Soft Macro Configuration

Many soft macros are configurable through parameter settings. Designing with a soft
macro begins with setting the parameters and generating the complete RlL for the
desired configuration. A key issue here is to make sure that the combination of
parameter settings is consistent and correct. Some IP providers supply configuration
wizards with their IP to guide the user and prevent illegal configurations of the IP.

10.3.5 Synthesis of Soft Macros

The final step in preparing the IP for integration is to perform an initial synthesis with
the target technology library. This initial synthesis can give a good preliminary indi
cation of whether the macro will meet the timing, area, and power goals of the design.

10.4 Integrating Memories

Memories are a special case of the hard macro, and are worth some additional com
ment.

Large, on-chip memories are typically output from memory compilers. These compil
ers produce the functional and timing models along with the physical design informa
tion required to fabricate the memory. The issues affecting memory design are
identical to those affecting hard macro designs, with the following additional issues:

• The integrator typically has a wide choice of RAM configurations, such as single
port or multi-port, fast or low-power, synchronous or asynchronous.

• Asynchronous RAMs present a problem because generating a write clock requires
a very timing-critical design that is tricky to create and difficult to verify. A fully
synchronous RAM is strongly preferred.

• Large RAMs with fixed aspect ratios can present significant blockage problems.
Check with your RAM provider to see if the aspect ratio of the RAMs can be mod
ified if necessary.

• BIST is available for many RAM designs, and can greatly reduce test time and
eliminates the need to bring RAM I/O to the chip's pins. However, the integrator
should be cautious because some BIST techniques do not test for data retention
problems.

214 Reuse Methodology Manual

10.5 Physical Design

The major challenge in the physical implementation of large SoC design is achieving
timing closure. This process is inherently iterative; a typical spiral process where each
iteration gets us closer to our performance goals. The problem that design teams often
encounter is that many iterations are required to achieve their timing objectives, and
each iteration can take many days. The result is often major delays to the project.

Many of the design guidelines in this book are intended to minimize the number of
iterations in physical design by making timing closure as contained and local a prob
lem as possible. In particular, the rules on partitioning, registering outputs, and fully
synchronous design are key to containing the timing closure problem.

In this section we outline a process that can help make the iterations as few and quick
as possible.

Figure 10-1 outlines the process of integrating the various blocks into the final version
of the chip and getting the chip through physical design. There are several variations
on the flow shown here depending on the size of chip, the number of hard and soft
blocks, and targeted performance. We describe here a representative flow, and will
discuss briefly some of the main variants.

This process consists of four major activities:

• Preparation of the design - Planning the physical implementation of the chip,
performing block-level and then chip-level synthesis, doing a detailed floorplan
ning, and initial route of the chip.

• Placement loop - Iterating on placing the chip, analyzing the timing results,
and modifying placement until timing goals are met.

• Timing closure - Adding clocks and detailed routing, doing a more accurate
timing analysis, and fixing any remaining timing problems.

• Physical verification - Running the final checks on the design prior to tapeout.

System Integration with Reusable Macros

r---------------,

Preparation

Placement
Loop

Timing Closure

Physical
Verification DRC/LVS L _______________ ~

Figure 10-1 Integrating blocks into a chip

215

216 Reuse Methodology Manual

10.5.1 Design Planning to Initial Placement
Preparation of the design involves design planning, synthesis, floorplan, and initial
routing.

Design Planning

Physical design starts with planning, and this planning can be done quite early in the
design process. At the very start of the design, before blocks are designed or IP
selected, the team should do an initial estimate of die size and power dissipation. This
information is key for determining package type.

Once the team has partitioned the design into blocks, the team can do a preliminary
floorplan. This initial floorplan should include a rough placement of blocks and 110
pads, as well as some preliminary planning for the power and clock distribution. This
information can be used to provide more accurate wire load models and timing bud
gets for synthesis.

If the inputs and outputs of each block are registered, then the timing budget is quite
straightforward - the block just has to meet the clock frequency target of the design.
The wire load model can be determined from the gate count of the block. The floor
planning information primarily helps identify long wires between blocks, or from
blocks to 110 pads, which will required extra buffering.

If only the outputs of each block are registered, then the relative placement of the
block on the chip affects both the wire load model and the time budget of the block. In
Figure lO-2(a), the blocks are close so that the arrival times at the inputs of Block B
are nearly the same as the output time of Block A. The wire load model for Block A is
probably accurate enough for the outputs of Block A as well as the internal signals. In
Figure lO-2(b), the blocks are at opposite comers of the chip; this can mean a signifi
cant wire delay between the blocks. The outputs in Block A must be buffered up to
drive the capacitance of the long wires, and the timing budget of Block B must be
modified to allow for a later arrival time at its inputs.

Once the team has RTL (for the soft blocks) and GDSII (for the hard blocks), the team
can use an RTL floorplanner such as Chip Architect to refine the floorplan. In particu
lar, the team can assign physical locations for the 1I0s of each block and do top-level
routing. This approach can give very accurate estimates of the capacitive loading on
the top-level interconnect, making synthesis much more accurate.

System Integration with Reusable Macros 217

CJ
BlkB

BlkA

(a) (b)

Figure 10-2 The ftoorplan affects timing budgets and wire load models

Synthesis

Armed with this preliminary physical design information, the design team can now do
a full synthesis of the chip. Using the wire load models and timing budgets from the
initial ftoorplan, we synthesize each block independently.

Once each block is meeting timing, we do a top-level synthesis of the entire chip,
using timing models for the hard macros. At the top level, synthesis should be
required only to stitch together the top-level netlist and refine the system-level inter
connect: resizing buffers driving inter-block signals, fixing hold-time problems, and
the like. For critical inter-block paths, some re-budgeting may be required. For this,
we can go back to the design planning tool to readjust block placement, or YO place
ment for the key blocks, or to re-route some top-level nets. Then, we can generate a
new top-level timing budget and wire loads, and re-run block-level synthesis.

The inputs to the top-level synthesis include:

• Timing budgets and wire load models from the design planning stage

• RTL (or a netlist synthesized from RTL) for the synthesizable blocks

• Synthesis models for the hard macros and memories

• Netlists for any modules generated from a datapath generator

• Any libraries required, such as the Design Ware Foundation Library

• Top-level RTL that instantiates the blocks, the YO pads, and top-level test struc
tures

218 Reuse Methodology Manual

The synthesis models for the hard macros and memories include the timing and area
information required to complete synthesis on the whole chip and to verify timing at
the chip level.

The top-level test structures typically include any test controllers, such as a JTAG
TAP controller or a custom controller for scan and on-chip BIST (Built-In Self Test)
structures.

After the top-level netlist has been generated, scan cells should be inserted in the
appropriate blocks for testability. An ATPG (Automatic Test Pattern Generator) tool
can then be used to generate scan test vectors for the chip. Scan insertion is typically
done by a test synthesis tool. Note that at this point, test synthesis merely replaces
standard flops with scan flops. The actual stitching of flops into the scan chain is typ
ically done as part of the chip routing. Thus, the scan interconnect between flops,
which is arbitrary, can be optimized for minimum wire length.

Similarly, if JTAG is required, JTAG structures should be added to the netlist. Typi
cally, this step is also performed by a tool.

If clock gating is needed to reduce power, then the power compiler should be used to
convert mux-hold flops into gated clocks.

Once all the test structures are in place, a final timing analysis is performed to verify
chip timing and, if necessary, an incremental synthesis is performed to achieve the
chip timing requirements.

The final netlist, along with timing information, is now ready for detailed floorplan
ning.

Note: As we go through the block and chip-level budgeting and synthesis, we begin to
realize the benefit of some of the design and coding guidelines. In particular, it
quickly becomes obvious that false paths and timing exceptions present a real prob
lem. Any exception to the basic timing goals, such as paths that take two cycles, or
test signals that do not have to meet the operating frequency, need to be listed in the
synthesis and budgeting scripts. This manual process is very prone to error. The
authors have seen large chips where there were literally thousands of timing excep
tions. In cases like these, the designers consistently miss a significant number of
paths, either specifying a path as false when it is not, or the other way around.

Either of these cases can result in synthesis and timing problems. If the path is not
false and we mark it as false, then clearly it will not be synthesized to meet timing. On
the other hand, if a path is false and is not marked as false, then synthesis will work
hard to get it to meet timing, often to the extent of not optimizing other paths that
really are critical.

System Integration with Reusable Macros 219

Thus, to meet timing, it is essential that the false path lists be completely correct. For
this reason, we strongly recommend that designers avoid false and multicycle paths
completely. Worst case, the list of paths should be very short.

Block-level SyntheSiS

Top-level SyntheSis using DeSign CompilerlTest Compiler/Power Compiler

To Packager

Figure 10-3 Chip-level synthesis

To block-level, top
level syntheSiS

220 Reuse Methodology Manual

Detailed Floorplan and Initial Power Route

At this point, we can read the final netlist into the ftoorplanning tool and complete the
preparation for placement. We can fix, if we haven't already:

• Block placement

• 110 pad placement

• Placement of the 110 cells for each block

Next, we do an initial route of the power mesh, the distribution of power and ground
in the chip. Designers have found that doing the power routing before detailed place
ment improves the overall design. Power routing takes routing resources on the chip
that could otherwise be used for routing signals. Thus, an optimal placement may
need to place critical cells away from the blocked routing channels.

Typically power routing involves placing wide power and ground rings around the
periphery of the chip, and then cross-hatching the chip with a mesh of power and
ground wires. For large chips, the chip may be divided up into sections, with each sec
tion having its own power and ground rings.

Often, chips will have different power supplies (and power rings) for 110 and the core
logic, especially if they run off of different voltages. For example, in low power
designs, the core is often run at as Iowa voltage as possible (for example, 1.5v) while
the 110 must run at standard voltages, such as 3.3v. Also, any analog block, such as a
PLL or AID converter, may need a separate power and ground supply to provide noise
isolation.

Initial Placement

Once the synthesized netlist meets timing based on wire load models, the placement
engine needs to place the design such that the timing goals of the design can be met.
The effective use of timing driven placement engines is the key to achieving this goal.

Timing driven placement has been a goal of tool providers and engineers for many
years. Today, the technology is mature enough to make timing closure on large chips
dramatically easier than it has been in the past. To use this technology effectively, we
need to provide to the placement engine:

• A good technology file that describes the parameters of the silicon technology

• Accurate timing constraints

• An optimization-friendly design

Timing driven placement takes as input the timing constraints and the gate-level
netlist (typically in Verilog). It then attempts to place the cells in the design so as to

System Integration with Reusable Macros 221

meet the timing constraints. The placement engine uses estimates for routing delays,
so that a full route of the design is not required to determine if it meets timing. The
accuracy of these estimates is key in achieving timing closure.

The placement tool relies on a technology file to tell it how to estimate the capaci
tance of metal interconnect. Coupling capacitance between adjacent wires (both
beside the wire in question, and above and below it), greatly affect the total capaci
tance seen by the driving gate, and thus the delay of the gate. The capacitance model
used by the placement engine must be pessimistic in order to ensure that estimated
routing delays are no worse than those from the actual, final route. One way to do this
is to force the tool to assume that each wire has other wires in adjacent routing tracks
both beside and above and below the wire. The technology file is where we can spec
ify this data to the placement engine.

In deep submicron designs, wires are taller than they are wide; as a result, fringe
capacitance has a significant effect on overall capacitance. This effect must be mod
eled in the technology file to achieve accurate capacitance estimates.

Once the capacitance per unit length is well modeled, the placement engine must esti
mate the actual length of each interconnect. It does this by assuming a Steiner route;
that is, an optimal route based on orthogonal routing. Congested areas, though, may
prevent some routes from being Steiner; they may have to take longer, "scenic" routes
(like going from San Francisco to Cleveland by way of New York if all the direct
flights are booked). The good placement tools are able to estimate congestion and its
effect on routing resources, and factor this into the delay estimate.

Clearly, accurate timing constraints are essential to good timing-driven placement. If
a false path is not identified, the placement engine can spend all of its time attempting
to meet timing on this false path, and produce sub-optimal placement on actual criti
cal parts of the design. Once again, avoiding false and multicycle paths can greatly
help achieve rapid timing closure.

Timing driven placement is much like synthesis; the tool spends much of its time
doing static timing analysis on a particular configuration, then using this information
to refine the design. Many of the guidelines in this book are aimed at producing
designs on which it is easy to perform static timing analysis. Following these guide
lines can make synthesis and timing driven placement run much faster and converge
with many fewer iterations through the tools.

In particular, a fully synchronous, flop-based design can allow timing driven place
ment to produce excellent results.

222 Reuse Methodology Manual

Flat VS. Hierarchical Placement

One critical issue in doing placement is deciding how much hierarchy to maintain
during physical design.

Some designs (microprocessor designs, for example), are designed with a strict hier
archy that is maintained throughout physical design. Typically this includes:

• A careful floorplan is developed early, and a location for each major block identi
fied.

• Pin locations for the I/O of each block are assigned.

• Some room between blocks is reserved for top-level routing; all routing between
blocks is restricted to this area.

• Top-level routing is performed before place and route of the blocks; as a result, the
wire length and capacitive loading for each top-level wire is fixed.

• Based on the information from the above steps, each block is placed and routed
independently, and then placed in the top-level design.

Another approach is to maintain hierarchy, but not to reserve top-level routing areas.
In this approach:

• A careful floorplan is developed early, and a location for each major block identi
fied.

• Pin locations for the I/O of each block are assigned.

• Based on the information from the above steps, each block is placed (and poten
tially routed) and then placed in the top-level design.

• Detailed routing (or potentially just top-level routing) is performed. Top-level
routing is done through blocks rather than around them.

A third approach is to do a completely flat place and route. In this approach:

• A careful floorplan is developed early, and a location for each major block identi
fied.

• Pin locations for the I/O of each block are assigned.

• Based on the information from the above steps, timing constraints are developed
for the design. The floorplan is not used; instead, the entire design is placed as a
unit.

• Detailed routing is performed on the chip as a single unit.

The irony in the flat approach is that a detailed floorplan is still needed; it allows us to
develop the timing constraints for placement. But the floorplan itself is thrown away.

Real designs may use a combination of the above approaches. Many teams will ini
tially try a hierarchical approach. If the design still has problems meeting timing or

System Integration with Reusable Macros 223

has excessive routing congestion, they then will try a flat placement. Based on the
results, they then pursue the approach that looks the most promising.

The only strong recommendation we make in this area is that the physical hierarchy
should reflect the logical hierarchy. A physical block may consist of several logical
blocks, but a single logical block should never be split across several physical blocks.
The resulting name changes makes it very difficult to work with the post-layout
netlist and to troubleshoot problems.

10.5.2 Placement Loop

One always hopes that after an initial placement, timing has been met and all that is
required is to route the chip and tape out. One is almost always disappointed.

There are two major sources of timing problems at this point: the timing constraints,
and the design itself.

If the design has false paths that are not listed in the constraints, then we are likely to
find that the long paths in the design are paths we do not care about. But we are also
likely to find that a number of critical paths were not appropriately placed, and are
failing timing. The solution to this problem is to update the constraints and re-run
placement.

If the timing is close but not quite passing, then it may be useful to refine the timing
budgets. This can be done manually by changing the constraints or automatically by
using a timing budgeting tool, such as PrimeTime. Then we re-run placement.

If the timing is still not met, then we may have to modify the design itself, changing
the RTL to add pipeline stages or the like. In this case, we have to repeat the floor
planning, synthesis, and initial placement.

Under any of the above scenarios, as well as a host of others, it becomes necessary to
iterate through placement. The goal is to make this iteration as short as possible, so
that we can converge quickly to a placement that meets timing. If our routing delay
estimates are accurate, then we can then achieve full timing closure quickly.

The actual loop through placement, analysis, and re-optimization is described below.

Quick Extraction

After placement is complete, the placement tool generates a report of the estimated
capacitances in the routing. This report is relatively quick to generate, but not as accu
rate as a full 3D extraction from tools such as Arcadia. The accuracy depends largely
on the way the technology file is written; that is, how the capacitances are modeled.

224 Reuse Methodology Manual

Timing Analysis

A timing analysis tools such as PrimeTime or Pearl can read these capacitances, along
with the netlist and timing constraints, and output a timing report. This timing report
lists all the paths that are violating the timing constraints (as well as a host of other
reports, as required).

Refine Constraints

We then analyze the timing reports to detennine if the violating paths are real and if
so, what to do about them. If the violations are false paths, we update the timing con
straints.

Re-optimize

If the timing violations are real, the most of them will probably be from excessive
capacitance loading gate outputs. The solution here is to increase drive strengths, add
buffers, or even restructure logic.

The best timing-driven placement tools have the capability of doing much of this
automatically as part of timing-driven placement. They can resize buffers and add/or
buffers to improve timing.

If the available placement tools do not re-optimize, or if significant restructuring of
logic is required, then we have to use the in-place optimization capabilities of the syn
thesis tools. In place optimization preserves as much of the placement as possible
while making the structural changes needed to meet timing.

ECO Place

If we had to go outside the placement tools to do our optimization, then we need to
get our changes back into the placement. The ECO placement capabilities of the
placement tool allows us to give it a revised netlist and (approximate) physicalloca
tions for the new devices. The tool then updates the placement, including placing the
new parts in legal locations, and we are ready to re-analyze the results.

The goal of ECO placement is to maintain as much of the existing placement as possi
ble. In this way, we can be reasonably confident that we are fixing timing problems
without creating new ones. There is a limit, however, to how many cells can be
changed at once and still use the incremental placement. Usually this limit is a few
percent of the cells in the design. If we need to make more changes than this, we need
to do a complete new placement, possibly resulting in a whole new set of timing prob
lems. For this reason, it is essential that our initial timing-driven placement be of high
quality, otherwise timing can end up diverging instead of converging. A design that is

System Integration with Reusable Macros 225

easy to optimize (fully synchronous, etc.) can make a huge difference in achieving
timing closure.

This basic placement iterative loop is the key step in achieving rapid timing closure.
'The overall time for this loop, even for very large designs, can usually be kept to less
than a day. Even if we have to do multiple iterations, we can produce a placement
with a high probability of meeting timing in a reasonable amount of time.

10.5.3 Timing Closure
After placement meets timing, we have several key tasks to complete the design.

Clock Route

Before doing a full route of the design, we route the clock(s), also known as clock tree
synthesis. Since these are the most critical nets in the design, and need to be balanced
to minimize clock skew, they are routed first. One common problem with routing
clock trees is that they typically require a very large number of buffers. As mentioned
above, inserting large numbers of buffers can perturb the design enough that we can
not use EeO place and route. This would be a major problem for clock tree synthesis,
since we are optimizing the clock for a specific placement of flip-flops.

For this reason, some designers reserve a buffer site next to each flop. This site can be
used for the clock tree buffer. If the site is not needed it takes up some small incre
mental area, but this is well worth it if it speeds convergence of clock tree synthesis.

Detailed Route

After the clock is routed and meeting skew, we do a full detailed route of the design.
This is the first time we have a complete physical design. We can now do a much
more accurate assessment of the timing and power.

During detailed route, we need to ensure that we comply with the process' rules for
antennas. During chip fabrication there is a time during which metal one has been
added to the chip, but the other metal layers have not. At this time, the metal one stub
can act like an antenna, picking up a static charge and damaging the chip. Each pro
cess has a set of rules for how long the stub can be for each metal layer. By adding
these rules to the cell library, we can get the router to comply with them during route.
Otherwise, it is necessary to go back after the route and fix any antenna violations, a
time consuming process.

226 Reuse Methodology Manual

Extraction and Timing Analysis

We now use a full 3-D extraction engine to calculate the actual capacitance of each
segment of metal interconnect in the design. These tools are full field solvers that give
very accurate results. With this data, we can now do a full static timing analysis and
determine the timing of the design.

Fixing Timing and Clocks

If the timing estimates used in placement were accurate, there should be few timing
violations at this point. We would typically expect a couple of long paths that need
repair. We also would expect some hold time violations. Both of these can result from
the fact that we used estimates both for metal delays and for clock skew. There may
also be some remaining clock tuning required to meet our skew requirements.

We fix the clock and the long paths first; if there are literally just a couple of fixes
required, we may be able to do these interactively in the place and route tool. For
larger numbers of fixes, we may have to go back and readjust our timing constraints,
re-optimize, and go back through place and route.

After these fixes have been implemented in the physical design, we again do a full
extraction and timing analysis. We iterate as required until the clock meets our
requirements.

Fixing Hold Time Violations

Once the clock tree is finalized and is meeting timing, we need to fix any remaining
hold time problems. Hold time problems result from a combination of fast data paths
from register to register and clock skew. They are typically fixed by inserting buffers
in the fast data paths.

Virtually all the hold time problems should be fixed during the placement loop. Hold
time violations, like long path problems, are fixed by the in-place optimization pro
cess. A few new hold time problems may appear as the clock is tuned; these we fix at
this point in the process.

Final Extraction and Timing Analysis

After all known timing problems have been fixed, we do one final (hopefully!)
extraction and timing analysis. At this point we typically have a review of the final
timing report, verifying that our false and multicycle paths specified earlier are really
false.

System Integration with Reusable Macros 227

10.5.4 Verifying the Physical Design

The last major step in the physical design process is verifying that the physical design
is correct and in compliance with the design rules for the target silicon process.

Checking Power

First we do a check of the power distribution system. We can estimate the voltage
drop across the power meshes using tools such as RailMill. Our initial power mesh
design was intended to be conservative, so we should see no surprises here.

We can also use tools such as PowerMill to get a final estimation of the power dissi
pation of the design.

ORC and LVS

Finally we run DRC (Design Rule Checking) and LVS (Layout vs. Schematic). DRC
verifies that the design does not violate any physical design rules.

For full custom designs, this step can involve many iterations as subtle problems with
the placement of cells are discovered and fixed. But in the standard model of reuse
presented in this book, full custom designs should only be imported into SoC designs
after they have been physically designed and verified. No full custom DRC violations
should occur at the chip level.

For standard cell designs, there should be very few DRC violations. Typical problems
that do occur are usually caused by problems in the library or by interface problems
between the standard cell sections and any hard blocks that have been imported.
These problems are usually quite straightforward to fix.

LVS compares the design as physically implemented to the gate-level netlist. It
extracts a post-layout netlist back from the physical design by mapping polygons
back into gates. It then compares this post-layout netlist to the pre-layout netlist.
Again, for standard cell designs, there tend to be few LVS errors in the final design.
The ones that do appear tend to be library problems and are usually straightforward to
fix.

Of course, we need to make sure that the final netlist, with added buffers and resized
gates, and clock fixes, still is functionally equivalent to the original netlist. Formal
verification should be used to check this equivalence.

Once these steps are completed, the chip is ready for fabrication.

228 Reuse Methodology Manual

10.5.5 Summary

The physical design of very large chips is an extremely challenging and complex task.
The algorithms used by the tools are very complex, and the databases huge. It is very
easy to spend many months trying to reach timing closure for a large chip.

There is much the designer can do to reduce the risk of runaway schedules in physical
design. The key is to make timing closure and physical design a series of local, rela
tively small problems. The process described above performs most of the real effort in
timing closure during placement. Once placement is successful, the rest of the design
process is straightforward and should require few iterations. The runtimes for extrac
tion can be very long, and DRe and LVS can take several days. However, by ensuring
a high probability of needing only one or two runs of each, this long runtime is tolera
ble.

The highly iterative loop is in timing driven placement. By carefully choosing a set of
simplifying assumptions, mainly in how we estimate routing delay, this loop can be
made relatively fast (hours instead of days), so that we can tolerate these iterations.

Above all else, the most important key to rapid timing closure is the quality of the
design itself. A fully synchronous design, with few or no timing exceptions, where the
levels of logic between registers is well understood and consistent with the timing
goals, can make it through physical design with few schedule surprises.

CHAPTER 11 System-Level
Verification Issues

This chapter discusses system-level verification, focusing on the issues and opportu
nities that arise when macros are integrated into a complete System on a Chip. The
topics are:

• The importance of verification

• Testplan
• Application-based verification

• Fast prototype testing
• Gate-level verification

• Verification tools
• Specialized hardware for system verification

11.1 The Importance of Verification

Verifying functionality and timing at the system level is probably the most difficult
and important aspect of SoC design. It is the last opportunity to find conceptual, func
tional, and implementation errors before the design is committed to silicon. For many
teams, verification takes 50 to 80 percent of the overall design effort.

For SoC design, verification must be an integral part of the design process from the
start, along with synthesis, system software, bringup, and debug strategies. It cannot
be an afterthought to the design process.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

230 Reuse Methodology Manual

System verification begins during system specification. The system functional speci
fication describes the basic test plan, including the criteria for completion (what tests
must run before taping out). As the system-level behavioral model is developed, a
testbench and test suite are developed to verify the model. Similarly, system software
is developed and tested using the behavioral model rather than waiting for real hard
ware. As a result, a rich set of test suites and test software, including actual applica
tion code, should be available by the time the RTL and functional models for the
entire chip are assembled and the chip is ready for verification.

Successful (and rapid) system-level verification depends on the following factors:

• QUality of the verification plan

• QUality and abstraction level of the models and testbenches used

• Quality and performance of the verification tools

• Robustness of the individual predesigned blocks

11.2 The Verification Strategy

The system-level verification strategy for an SoC design uses a divide-and-conquer
approach based on the system hierarchy. This strategy consists of the following steps:

• Verify that the leaf nodes - the lowest-level individual blocks - of the design
hierarchy are functionally correct as stand-alone units.

• Verify that the interfaces between blocks are functionally correct, first in terms of
the transaction types and then in terms of data content.

• Run a set of increasingly complex applications on the full chip.

• Prototype the full chip and run a full set of application software for final verifica
tion.

• Decide when it is appropriate to release the chip to production.

Block Level Verification

For large SoC designs, it is essential that each block be fully verified before it is inte
grated into the chip design. In this sense, block-level verification is a prerequisite and
precursor to chip-level verification.

Block-level verification is described in detail in Chapter 7. It uses code coverage tools
and a rigorous methodology to verify the RTL version of macro as thoroughly as pos
sible. A physical prototype is then built to provide silicon verification of functional
correctness.

System-Level Verification Issues 231

This verification methodology should, in general, be used for any block to be used in
the chip design, even if that block is not intended for reuse. Verifying blocks fully
before integration greatly reduces the overall verification effort, since bugs are much
easier to find at the block level rather than chip level.

The only exception to this rule is that the design team may well decide not to produce
prototypes of single-use blocks before they are integrated into the chip. This approach
seems a reasonable risk/benefit tradeoff, but the risk involved should be recognized.

Any block in the SoC design that has not gone through this process, including silicon
verification, is not considered fully verified as a standalone block. If the chip contains
any such partially verified blocks, the first version of the chip must be considered a
prototype. It is virtually assured of having bugs that require a redesign of the chip
before release to production.

Prototyping the chip, however, is part of the overall chip verification plan, so it is rea
sonable to have some number of new, single-use blocks that have been robustly veri
fied, but that have not been prototyped.

11.3 Interface Verification

Knowing that the individual blocks have been robustly verified, chip-level verification
consists primarily of verifying the interfaces and interaction between the blocks. Thus
we start chip verification with interface verification.

Inter-block interfaces usually have a regular structure, with address and data buses
connecting the blocks and some form of control- perhaps a request/grant protocol
or a requestlbusy protocol. The connections between blocks can be either point-to
point or on-chip buses.

Because of the regular structure of these interfaces, it is usually possible to talk about
transactions between blocks. The idea is that there are only a few permitted
sequences of control and data signals; these sequences are called transactions and
only the data (and data-like fields, such as address) change from transaction to trans
action.

11.3.1 Transaction Verification

Interface testing begins by listing all of the transaction types that can occur at each
interface, and systematically testing each one. If the system design restricts transac
tions to a relatively small set of types, it is fairly easy to generate all possible transac
tion types and sequences of transaction types and to verify the correct operation of the

232 Reuse Methodology Manual

interfaces to these transactions. Once this is done, all that remains is to test the behav
ior of the blocks to different data values in the transactions. Thus, a simple, regular
communication architecture between blocks can greatly reduce the system verifica
tion effort.

In the past, this transaction checking has been done very informally by instantiating
all the blocks in the top-level R1L, and then using a testbench to create activity within
the blocks and thus transactions between blocks. If the overall behavior of the system
is correct, perhaps as observed at the chip's primary I/O or in the memory contents,
then the chip - and thus the interfaces - were considered to be working correctly.

There are several changes that can be made to improve the rigor of transaction check
ing. First of all, as shown in Figure 11-1 (b), you can add a bus monitor to check the
transactions directly. This monitor can be coded behaviorally and thus provide very
good simulation performance. For a chip such as that shown in Figure 11-I(a), with
point-to-point interconnections, it is possible to build some simple transaction check
ing into the interface module of each block. Testbench automation tools can be useful
tools for creating effective transaction checkers very quickly.

This monitor approach improves observability during transaction testing, but it is also
possible to improve controllability. If we use simple, transaction-generating bus func
tional models instead of a full functional models for the system blocks, we can gener
ate precisely the transactions we wish to test, in precisely the order we want. This
approach can greatly reduce the difficulty of developing transaction verification tests
and can reduce simulation runtime as well.

11.3.2 Data or Behavioral Verification

Once the transactions have been verified, it is necessary to verify that the block
behaves correctly for all values of data and all sequences of data that it will receive in
actual operation. In most chips, generating the complete set of these data is impossi
ble because of the difficultly in controlling the data received by anyone block.

The approach described above helps here as well. We use the bus functional models
for all blocks except the block under test, for which we use the full R1L. We can then
generate the desired data sequences and transaction from the BFMs. We can construct
test cases either from our knowledge of the system or by random generation.

Automatic checking of the block's behavior under these sequences of transactions is
nontrivial and depends on how easy it is to characterize the correct behavior of the
block. For complex blocks, the semantics of a testbench generation tool may be the
only way to describe the block's behavior such that its outputs can be checked auto
matically.

System-Level Verification Issues 233

Block1 Block1 Block2 Block2

RTL Block 1 RTL ---+ RTL Block 2 RTL

~
Interface Interface Interface Interface

Block3 Block3 Block4 Block4

4 RTL Block 3 RTL ~ RTL Block 4 RTL r+ Interface Interface Interface Interface

(a) Chip with point-to-point interfaces

Block 1 Block 2

Bus
Block 1 RTL Block 2 RTL Transaction

Interface Interface Monitor

,~ 'II> ,~

~ IF d. ,IF ..
.....- 'II> ,~ ..

,IF 'IF
Block 3 RTL Block 4 RTL

Interface Interface

Block 3 Block 4

(b) Chip with an on-chip bus

Figure 11-1 System verification using interface testing

This test method often reveals that the block responds correctly to data sequences that
the designer expected the block to receive, but that there are some (legal or illegal)
sequences that can occur in the actual system to which the block does not respond
correctly. This must usually be considered a bug, requiring redesign of the block.

234 Reuse Methodology Manual

Another method for dealing with the problem of unanticipated or illegal inputs is to
design a checker into the block interface itself. This checker can suppress inputs that
are not legal and prevent the block from getting into incorrect states. This approach
has been used effectively in high-reliability system designs.

11.3.3 Standardized Interfaces
Interface verification and transaction checking can be greatly facilitated if the inter
faces are standardized. Clearly it is easier to get a bus functional model or bus monitor
out of a library than to create one from scratch.

This is one of several reasons why design teams are trying to standardize the primary
interfaces to the chip and the on-chip buses. Once these standards are established, bus
functional models and bus monitors can be developed and reused on many chip
designs.

11.4 Functional Verification

Once the basic functionality of the system has been verified by the transaction testing,
system verification consists of exercising the entire design, using a full functional
model for most, if not all, of the blocks. The ultimate goal of this aspect of verifica
tion is to try to test the system as it will actually be used. That is, we come as close as
we can to running actual applications on the system.

Verification based on running real application code is essential for achieving a high
quality design. However, this form of verification presents some major challenges.
Conventional simulation, even at the RTL level, is simply not fast enough to execute
the millions of vectors required to run even the smallest fragments of application
code, much less to boot an operating system or test a cellular phone.

There are two basic approaches to addressing this problem:

• Increase the level of abstraction so that software simulators running on worksta
tions run faster.

• Use specialized hardware for performing verification, such as emulation or rapid
prototyping systems.

This section addresses the first approach: how to use abstraction and other mecha
nisms to speed conventional simulation techniques. Subsequent sections address the
second approach.

The types of abstraction techniques we can use depend on the nature of the design, so
it is useful to use a specific design as an example. Fortunately, most large chips are

System-Level Verification Issues 235

converging to an architecture that looks something like the chip design shown in
Figure 11-2, the canonical SoC design described in Chapter 2.

----"'\
I PERIPHERALS I
I ____ oJ

A

U'

PROCESSOR

~~

~ ,
I/O

INTERFACE

... MEMORY .. MEMORY ... CONTROLLER ...

Aa.

SYSTEM BUS

~ , ~,

---. DATA r-. I/O -+ TRANSFORMATION INTERFACE

Figure 11-2 Canonical SoC Design

Figure 11-3 shows a possible testbench environment for verifying the canonical
design. The key features of this verification environment are:

• The full R1L model is used as the simulation model for most of the functional
blocks.

• Behavioral or ISA (Instruction Set Architecture) models may be used for memory
and the microprocessor.

• Bus functional models and monitors are used to generate and check transactions
with the communication blocks.

• It is possible to generate real application code for the processor and run it on the
simulation model.

With this test environment, we can run a set of increasingly complex application tests
on the system. Initially, full functional models for the RAM and microprocessor are
used to run some basic tests to prove that the system performs the most basic func
tions. The slow simulation speeds of this arrangement mean that we can do little more
than check that the system is alive and find the most basic system bugs. Errors are
detected manually (by looking at waveform displays), by means of the bus monitor,
and by the sequence monitor on the communication port. At this level of abstraction,
we are probably simulating at a rate of tens of system clocks per second.

236 Reuse Methodology Manual

Bus Application software/

~ Compiler
Monitor driversIRTOS

~
~I"

"
Processor

~
Memory Controller C/C++ C/C++ Memory

C/C++

RTL interface RTL interface

~I" ,.-----
I Other I

Peripherals

I (RTL) I

r ,
--f-~

I" ~I" ~

" ,
"

r+ I/O Interface Data .. Transformation r--. I/O Interface
(RTL) ... I--

(RTL) (RTL)

CHIP

Communication Sequence Communication
bus functional ... generator/ bus functional ~ -
model (RTL) analyzer model (RTL)

Figure 11-3 System verification environment

Behavioral models are now substituted for the memory and microprocessor. These
models can be high-level C/C++ models that accurately model the instruction set of
the processor, but abstract out all implementation detail. These models are often
called ISA (Instruction Set Architecture) models. Another approach is to code a very
high-level, behavioral model in Verilog or VHDL, abstracting out much of the cycle
by-cycle details, but retaining the basic functionality of the processor. If enough tim
ing detail is retained so that the bus transactions at the 110 port of the processor are
accurate on a clock-cycle by clock-cycle basis, the model is often referred to as a
cycle-accurate model.

System-Level Verification Issues 237

Using these behavioral models for the memory and processor, real code is compiled
and loaded into the memory model and the processor model executes this code. At the
same time, representative data transactions are generated at the communication inter
faces of the chip, usually by bus functional models. For instance, if the data transfor
mation block is an MPEG core, then we can feed in a digital video stream.

Using C/C++ models for both the processor and memory dramatically improves sim
ulation speed over full RTL simulation. In designs like our canonical example, most
cycles are spent entirely in the processor, executing instructions, or in accessing mem
ory. With these abstractions, execution speeds in the thousands of device cycles per
second can be achieved. Operating on top of this environment, hardware/software
cosimulation packages allow the engineer to run a software debugger, the ISA soft
ware, and an RTL simulator simultaneously.

Most system-level hardware and software bugs can be detected and fixed at this stage.
To complete software debug, it may be necessary to develop an even more abstract set
of models to improve simulation speed further. In our example, we could substitute a
c++ model for the RTL model of the data transformation block, and achieve very
high simulation speeds.

To complete hardware debug, however, we need to lower our abstraction level back to
RTL. The lack of detail in our ISAlbehavioral models undoubtedly masks some bugs.
At this point, we can run some real code on the RTL system model and perhaps some
random code as well for testing unforeseen sequences. But simulation speed prohibits
significant amount of real application code from being run at the RTL level.

During this debug phase, as we run application code on a high-level model and tar
geted tests on the RTL model, the bug rate follows a predictable curve. 1)'pically, the
bug rate increases during the first part of this testing, reaches a peak, and then starts
declining. At some point on the downward slope, simulation-based testing is provid
ing diminished returns, and an alternate method must be found to detect the remaining
bugs.

11.5 Application-Based Verification

For most design teams, a key goal is to have first silicon be fully functional. This goal
has motivated the functional verification plan and simulation strategies. To date, most
teams have been fairly successful. According to some estimates, about 90% of ASIC
designs work right the first time, although only about 50% work right the first time in
the system. This higher failure rate probably results from the fact that most ASIC
design teams do not do system-level simulation.

238 Reuse Methodology Manual

With the increasing gate count and complexity of SoC designs, it is not clear that the
industry can maintain this success rate. Assume that, in a lOOk gate design with
today's verification technology, there is a 10% chance of a serious bug. Then for a 1M
gate design, consisting of ten such modules comparably verified, the probability of no
serious bugs is:

Pbug-free = .910 = .35

Design reuse can also play an important role. If we assume that a 1M gate design con
sists of ten lOOk blocks, with two designed from scratch (90% chance of being bug
free) and eight reused (for the purpose of discussion, 98% chance of being bug-free),
then for the overall chip:

Pbug-free = .92 * .98 8= .69

But to achieve a 90% probability of first-silicon success, we need to combine design
reuse with a verification methodology that will either get individual blocks to a 99%
or allow us to verify the entire chip to the 90% level.

Running significant amounts of real application code is the only way to reach this
level of confidence in an SoC design. For most designs, this level of testing requires
running at or near real time speeds. The only available technologies for achieving this
kind of performance involve some form of rapid prototyping.

The available options for rapid prototyping include:

• FPGA or LPGA prototyping
• Emulation-based testing

• Real silicon prototyping

11.5.1 FPGA and LPGA Prototyping

For small designs, it is practical to build an FPGA or Laser Programmable Gate Array
(LPGA, such as the one provided by Chip Express) prototype of the chip. FPGAs
have the advantage of being reprogrammable, allowing rapid turnaround of bug fixes.
LPGA prototypes can achieve higher gate counts and faster clock speeds, but are
expensive to turn. Multiple iterations of an LPGA design can be very costly, but can
be done quickly, usually within a day or two.

Both FPGAs and LPGAs lag state-of-the-art ASIC technologies in gate count and
clock speed by significant amounts. They are much more appropriate for prototyping
individual blocks or macros than for proto typing SoC designs.

System-Level Verification Issues 239

A number of engineering teams have used multiple FPGAs to build a prototype of a
single large chip. This approach has at least one major problem: the interconnect is
difficult to design and almost impossible to modify quickly when a bug fix requires
repartitioning of the design between devices.

Rapid prototyping systems from Aptix address this problem by using custom, pro
grammable routing chips to connect the FPGAs. This routing can be performed under
software control, providing a very flexible fast proto typing system.

11.5.2 Emulation Based Testing

Emulation technology such as that provided by Mentor Graphics and QuickTurn grew
out of attempts to provide a better alternative to using a collection of FPGAs for rapid
prototyping of large chips. They provide programmable interconnect, fixed board
designs, relatively large gate counts, and special memory and processor support.
Recent developments in moving from FPGAs to processor-based architectures have
helped to resolve partitioning and interconnect problems.

Emulation can provide excellent performance for large-chip verification if the entire
design can be placed in the emulation engine itself. If any significant part of the cir
cuit or testbench is located on the host, there is significant degradation of perfor
mance.

For our canonical design, we need to provide emulation-friendly models for the
RAM, microprocessor, BFMs, monitor, and sequence generator/checker. Developing
these models late in the design process can be so time consuming as to negate the ben
efit of emulation. It is much better to consider the requirements of emulation from the
beginning of the project and to work with the memory and hard macro providers to
provide these models. Similarly, the requirements of emulation must be considered in
the design of the BFMs and monitors.

If executed correctly, emulation can provide simulation performance of one to two
orders of magnitude less than real time, and many orders of magnitude faster than
simulation.

11.5.3 Silicon Prototyping

If an SoC design is too large for FPGAILPGA prototyping and emulation is not prac
tical, then building a real silicon prototype may be the best option. Instead of extend
ing the verification phase, it may be faster and easier to build an actual chip and
debug it in the system.

240 Reuse Methodology Manual

To some extent this approach is just acknowledging the fact that any chip fabricated
without running significant amounts of real code must be considered a prototype.
That is, there is a high probability that engineering changes will be required before
release to production.

The critical issue in silicon prototyping is deciding when one should build the proto
type. The following is a reasonable set of criteria:

• The bug rate from simulation testing should have peaked and be on its way down.

• The time to determine that a bug exists should be much greater than the time to fix
it.

• The cost of fabricating and testing the chip is on the same order as the cost of find
ing the next n bugs, where n is the anticipated number of critical bugs remaining.

• Enough functionality has been verified that the likely bugs in the prototype should
not be severe enough to prevent extensive testing of other features. The scenario
we want to avoid is building a prototype only to find a critical bug that prevents
any useful debug of the prototype.

There are a number of design features that can help facilitate debug of this initial pro
totype:

• Good debug structures for controlling and observing the system, especially system
buses

• The ability to selectively reset individual blocks in the design

• The ability to selectively disable various blocks to prevent bugs in these blocks
from affecting operation of the rest of the system

11.6 Gate-Level Verification

The final gate-level netlist must be verified for both correct functionality and for tim
ing. A variety of techniques and tools can be used for this task.

11.6.1 Sign-OtT Simulation

In the past, gate-level simulation has been the final step before signing off an ASIC
design. ASIC vendors have required gate-level simulation and parallel test vectors as
part of signOff' using the parallel vectors as part of manufacturing test. They have
done this even if a full scan methodology was employed.

Today, for lOOk gate and larger designs, signoff simulation is typically done running
Verilog simulation with back-annotated delays on hardware accelerators from IKOS.
Running full-timing, gate-level simulations in software simulators is simply not feasi-

System-Level Verification Issues 241

ble at these gate counts. Even with hardware accelerators, speeds are rarely faster than
a few hundred device cycles per second.

RTL sign-off, where no gate-level simulation is performed, is becoming increasingly
common. However, most ASIC vendors still require that all manufacture-test vectors
submitted with a design be simulated on a sign-off quality simulator with fully back
annotated delay information and all hazard checking enabled. Furthermore, they
require that these simulations be repeated under best case, nominal case, and worst
case conditions. This has the potential to be a resource intensive task.

This requirement is rapidly becoming problematic for the following reasons:

• Thorough, full timing simulation of a million-gate ASIC is not possible without
very expensive hardware accelerators, and even then it is very slow.

• Parallel vectors typically have very low fault coverage (on the order of 60 percent)
unless a large and expensive effort is made to extend them. As a result, they can be
used only to verify the gross functionality of the chip.

• Parallel vectors do not exercise all the critical timing paths, for the same reason
they don't achieve high fault coverage. As a result, they do not provide a sufficient
verification that the chip meets timing.

As a result of these issues, the industry is moving to a different paradigm. The under
lying problems traditionally addressed by gate-level simulation are:

• Verification that synthesis has generated a correct netlist, and that subsequent
operations such as scan and clock insertion have not changed circuit functionality

• Verification that the chip, when fabricated, will meet timing

• A manufacturing test that verifies that the chip is free of manufacturing defects

These problems are now too large for a single solution, such as gate-level simulation.
Instead, the current methodology uses separate approaches to address each issue:

• Formal verification is used to verify correspondence between the RTL and final
netlist.

• Static timing analysis is used to verify timing.

• Some gate-level simulation, either unit-delay or full timing, is used to complement
formal verification and static timing analysis.

• Full scan plus BIST provides a complete manufacturing test for functionality. Spe
cial test structures, provided by the silicon vendor, are used to verify that the fabri
cated chip meets timing and other analog specifications.

242 Reuse Methodology Manual

11.6.2 Formal Verification

Formal verification uses mathematical techniques to prove the equivalence of two
representations of the circuit. 1Ypically, it is used to compare the gate-level netlist to
the RTL for a design. Because it uses a static, mathematical method of comparison,
formal verification requires no functional vectors. Thus, it can compare two circuits
much more quickly than can be done with simulation, and with much greater accu
racy. Formal verification is available from a variety of vendors; one such tool is Syn
opsys Formality.

Formality compares two design by reading them into memory and then applying for
mal mathematical algorithms on their data structures. The designs can be successfully
compared as long as they have the same synchronous functionality and correlating
state holding devices (registers or latches). The two circuits are considered equivalent
if the functionality is the same at all output pins and at each register and latch.

Formal verification can be used to check equivalence between the original RTL and:

• The synthesized netlist

• The netlist after test logic is inserted. For scan, this is quite straightforward; for
on-chip JTAG structure, some setup is required, but the equivalence can still be
formally verified.

• The netlist after clock tree insertion and layout. This requires comparing the hier
archical R1L to the flattened netlist.

• Hand edits. Occasionally engineers will make a last-minute hand edit to the netlist
to modify performance, testability, or function.

One key benefit of formal verification is that it allows the R1L to remain the golden
reference for the design, regardless of modifications made to the final netlist. Even if
the functionality of the circuit is changed by a last minute by editing the netlist, the
same modification can be retrofitted into the RTL and the equivalence of the modified
RTL and netlist can be verified.

For large designs, formal verification between the gate-level design and the RTL can
be too slow, especially for multiple iterations. In such cases, it is better to use formal
verification once between the RTL and the gate-level netlist, then use that gate-level
netlist as the golden reference for future iterations. For example, you can use formal
verification to compare gate-level netlists before and after clock tree insertion. Formal
verification algorithms work more efficiently when comparing gates to gates than
when comparing gates to RTL.

System-Level Verification Issues 243

11.6.3 Gate-Level Simulation with Unit-Delay Timing

Unit-delay simulation involves perfonning gate-level simulation with unit delay for
each gate. It is much faster than full-timing simulation, but much slower than R1L
simulation.

Unit-delay simulations can be used to verify that:

• The chip initializes properly (reset verification).

• The gate implementation functionally matches the R1L description (functional
correctness).

Gate-level simulation complements formal verification. Dynamic simulations are
rarely an exhaustive test of equivalence, but simulation is necessary to validate that an
implementation's behavior is consistent with the simulated behavior of the R1L
source. Gate-level simulation is particularly important for verifying initialization
because gate-level simulation handles propagation of unknown (X) or uninitialized
states more accurately than R1L simulation.

Because it can be time-consuming and resource-intensive, it is usually good to begin
unit-delay simulation as soon as you complete a netlist for your chip, even though the
chip may not meet timing.

11.6.4 Gate-Level Simulation with Full Timing

Full-timing simulation on large chips is very slow, and should be used only where
absolutely necessary. This technique is particularly useful for validating asynchro
nous logic, embedded asynchronous RAM interfaces, and single-cycle timing excep
tions. In a synchronous design, these problem areas should not exist, or should be
isolated so they are easily tested.

These tests should be run with the back-annotated timing information from the place
and route tools, and run with hazards enabled. They should be run with worst case
timing to check for long paths, and with best-case timing to check for minimum path
delay problems.

244 Reuse Methodology Manual

11.7 Specialized Hardware for System Verification

Design teams have long recognized the limitations of software simulators running on
workstations. Simulation has never provided enough verification bandwidth to do
really robust system simulation. Over the last fifteen years there have been numerous
efforts to address the needs of system simulation through specialized hardware sys
tems for verification.

Early efforts focused on hardware accelerators. Zycad introduced the first widely
available commercial accelerators in the early 1980's; in the early 1990's, Ikos intro
duced competitive systems based on somewhat similar architectures. The Zycad sys
tems provided very fast fault simulation; at the time fault, simulation of large chips
was not really practical with software simulators. These systems were also used for
gate-level system simulation. Ikos systems focus exclusively on system-level simula
tion.

These accelerators map the standard, event-driven software simulation algorithm onto
specialized hardware. The software data structures used to represent information
about gates, netlists, and delays are mapped directly into high-speed memories. The
algorithm itself is executed by a dedicated processor that has the simulation algorithm
hardwired into it. A typical system consists of anywhere from 4 to over a hundred of
these processors and their associated memory. These systems are faster than worksta
tions because each processor can access all the needed data structures at the same
time and operate on them simultaneously. Additional performance results from the
parallel execution on multiple processors.

The introduction of FPGAs in the 1980's made possible another kind of verification
system: emulation. These systems partition the gate-level netlist into small chunks
and map them onto FPGAs; they use additional FPGAs to provide interconnect rout
ing. These systems can execute many orders of magnitude faster than hardware accel
erators. Large circuits that run tens of cycles per second on software simulators might
run hundreds or a few thousand of cycles per second on a hardware accelerator. These
same circuits run at hundreds of thousands of cycles per second on emulation sys
tems.

Emulation systems achieve their high performance because they are essentially build
ing a hardware prototype of the circuit in FPGAs.

Emulation systems, however, have a number of shortcomings:

• They operate on gate-level netlists. Synthesis is typically used to generate this
netlist from the RTL. Any part of the circuit that is coded in non-synthesizable
code, especially testbenches, must run on the host workstation. This considerably

System-Level Verification Issues 245

slows emulation. A circuit with a substantial part executed on the workstation may
run as much as two orders of magnitude slower than one with the entire circuit in
the emulator.

• The partitioning of the circuit among numerous FPGAs, and dealing with the asso
ciated routing problems, presents a real problem. Poor utilization and routing inef
ficiencies result in the need for very large numbers of FPGAs to emulate a
reasonably sized chip. The resulting large systems are very expensive and have so
many mechanical components (chips, boards, and cables) that they tend to experi
ence reliability problems.

• The use of FPGAs tends to make controlling and observing individual nodes in the
circuit difficult. 1Ypically, the circuit has to be (at least partially) recompiled to
allow additional nodes to be traces. This makes debugging in the emulation envi
ronment difficult.

The first problem remains an issue today, but important progress has been made on
the second and third problems. New systems, such as those from Mentor Graphics
(the Accelerated Verification System) and from QuickThrn have moved from a pure
FPGA-based system to a custom chip/processor-based architecture. Where previous
systems had arrays of FPGAs performing emulation, the new systems have arrays of
special purpose processors. These processor-based systems usually use some form of
time-slicing: the processor emulates some gates on one cycle, additional gates on the
next cycle. Also, the interconnect between processors is time-sliced, so that a single
physical wire can act as several virtual wires. This processor-based approach signifi
cantly improves the routing and density problems seen in earlier emulation systems.

The processors used on these new systems also tend to have special capabilities for
storing stimulus as well as traces of nodes during emulation. This capability helps
make debug in the emulation environment much easier.

These new systems hold much promise for addressing the problems of high-speed
system verification. The success of these systems will depend on the capabilities of
the software that goes with them: compilers, debuggers, and hardware/software
cosimulation support. These systems will continue to compete against much less
expensive approaches: simulation using higher levels of abstraction and rapid proto
typing.

The rest of this chapter discusses emulation in more detail, using the Accelerated Ver
ification System from Mentor as an example.

246 Reuse Methodology Manual

11.7.1 Accelerated Verification Overview

Figure 11-4 shows the major components of Mentor Graphics' Accelerated Verifica
tion System process. The components are:

Models
RTI.. blocks and soft IP are synthesized and mapped onto the emulation system
hardware. Memory blocks are compiled and emulated on dedicated memory
emulation hardware.

Physical environment
Hard macros (IP cores) that have bonded-out chips, can be mounted on special
board and interfaced directly to the rest of the emulation system. Similarly,
hardware testbenches, such as signal generators, can be connected directly to
the emulation system.

In-circuit verification
The emulation system can be interfaced directly to a board or system to pro
vide in-circuit emulation. Thus, an application board can be developed and
debugged using an emulation model of the chip.

System environment
A software debug environment (XRay debugger) and a hardware/software co
simulation environment (Seamless eVE) provide the software support neces
sary for running and debugging real system software on the design.

Testbenches
Behavioral RTI.. testbenches can be run on the host and communicate with the
emulation system. Note that running any significant amount of code on the
host will slow down emulation considerably.

Stimulus
Synthesizable testbenches can be mapped directly onto the emulation system
and run at full emulation speeds. Test vectors can be stored on special memo
ries in the emulation system, so that they too can be run at full speed.

These components combine to provide all the capabilities that designers need to ver
ify large SOC designs including:

• RTI.. acceleration
• Software-driven verification at all levels in the design cycle

• In-circuit verification to ensure the design works in context of the system

• Intellectual property support

System-Level Verification Issues

Stimulus

Syntheslzable
testbenches

Test vectors

Testbenches

ModelSlm

ves

Verilog-XL

"CO

Models

IMemo~ I blocks

1

~
~

Software enviromnent

XRay
Debugger

Seamless
eVE

Physical
environment

Hard macros

Hardware
testbenches

In-cin:uit
verification

Target
systems

Figure 11-4 Mentor Graphics Accelerated Verification System process

11.7.2 RTL Acceleration

247

Designers continue to use software simulators like ModelSim, VSS, or Verilog-XL to
debug their designs, but a threshold is reached where simulator performance becomes
a major bottleneck for functional verification at the RTL level, especially for large
SoC designs. This threshold will vary based on the design team and the verification
environment. As the RTL functional simulations reach duration of more than 6-8
hours, it will become more efficient to compile the design and run it in an emulator.
As an example, an RTL design that may only take several minutes to compile on a
simulator, but runs for eight hours, may compile in 30 minutes on the emulator and
run in a matter of seconds.

Thus, at some point in the design cycle, system simulation and debug may be more
appropriately done on the emulator than on the simulator. For this debug strategy to
be effective, however, we need an RTL symbolic debug environment that provides

248 Reuse Methodology Manual

users with complete design visibility, real time variable access, and support for enu
merated types and state variable assignments.

11.7.3 Software Driven Verification

As the software content in SoC designs increases and design cycles shrink, hard
ware/software co-development and software-driven verification become increasingly
important. Software-driven verification plays two key roles in an SoC verification
strategy:

• Verification of the hardware using real software

• Verification of the software using (an emulation model of) real hardware, well
before the actual chip is built

Traditionally, using the software to verify the hardware has been confined to very late
in the design cycle using breadboards, or early prototype runs of silicon. With reus
able hardware and software blocks, it is possible to assemble an initial version of the
R1L and system software very quickly. With the new emulation systems, it is possible
to test this software on an emulation model of the hardware running at near-real-time
speeds. Incremental improvements to both the hardware and software can then be
made and tested, robustly and quickly.

In particular, the high performance of emulation systems allows the design team to:

• Develop and debug the low-level hardware device drivers on the virtual prototype
with hardware execution speeds that can approach near real-time

• Boot the operating system, initialize the printer driver, or place a phone call at the
R1L phase of the design cycle

11.7.4 Traditional In-Circuit Verification

As the design team reaches the end of the design cycle, the last few bugs tend to be
the most challenging to find. In-circuit testing of the design can be key tool at this
stage of verification because the ultimate verification testbench is the real working
system. One large manufacturer of routers routinely runs its next design for weeks on
its actual network, allowing the router to deal with real traffic, with all of the asyn
chronous events that are impossible to model accurately.

In the case of systems that operate with the real asynchronous world, with random
events that might occur only on a daily or weekly basis, complete information capture
is essential. The emulation system provides a built-in logic analyzer that records
every signal in the design during every emulation run, using a powerful triggering
mechanism. This debug environment allows designers to identify and correct prob
lems without having to repeat multiple emulation runs.

System-Level Verification Issues 249

11.7.5 Support for Intellectual Property

Mentor Graphics Accelerated Verification System offers very secure encryption
mechanisms and advanced macro compile capabilities that allow IP developers to
have complete control over what parts of the IP modules are visible to the end user.

11.7.6 Design Guidelines for Accelerated Verification

Most of the guidelines for Accelerated Verification are identical to guidelines for
design reuse listed in Chapter 5. These include:

Guideline - Use a simple clocking scheme, with as few clock domains as possible.
Emulation works best with a fully synchronous, single-clock design.

Guideline - Use registers (flip-flops), not latches.

Guideline - Do not use combinational feedback loops, such as a set-reset latch in
cross-coupled gates.

Guideline - Do not instantiate gates, pass transistors, delay lines, pulse generators,
or any element that depends on absolute timing.

Guideline - Avoid multi-cycle paths.

Guideline - Avoid asynchronous memory. Use the modeling techniques described
in Chapter 5 to model the asynchronous memory as a synchronous memory.

The following guidelines are requirements specific to emulation:

Guideline - Hierarchical, modular designs are generally easier to map to the emula
tion hardware than flat designs. The modularity helps reduce routing between proces
sors.

Guideline - Large register arrays should be modeled as memories, to take advantage
of the special memory modeling hardware in the emulation system.

11.7.7 Testbenches for Emulation
To realize the benefits of emulation, virtually all of the circuit and testbench for the
design must run on the emulator. This means that the testbench should be synthesiz
able.

250 Reuse Methodology Manual

One approach would be to make the testbench synthesizable from the beginning, and
to use the same testbench for both RTL verification and for emulation. We believe that
this approach is flawed.

The behavioral testbenches that can be created with current testbench automation
tools are significantly more powerful than any synthesizable testbench. The capabili
ties for stimulus creation and automated response checking are essential for RTL test
and debug, and cannot easily be replicated in the synthesizable subset of HDLs.

Instead, we recommend that a new, synthesizable, and relatively simple testbench be
used for emulation. Once a bug is found, the circuit (and its current state) can be
moved back to RTL simulation for debug.

If we take our canonical design, the following approach seems reasonable. In
Figure 11-5, the software for the processor is compiled and loaded into memory in the
emulator. This allows the processor and peripherals to run at full emulation speed.

The stimulus for the data transformation block is also loaded into memory on the
emulator. In this case, since it is an MPEG2 decoder, we can store a bit stream that
represents encoded video data. A simple state machine (marked "SM") transfers data
from the stimulus memory to the 110 interface. Similarly, the serial data from the out
put of the MPEG2 decoder is sent to a response capture memory in the emulator.
Another simple state machine handles the handshake for the data transfer.

Although this approach requires a second testbench to be built, including two state
machines, this is significantly less incremental effort than requiring the RTL testbench
to be synthesizable.

System-Level Verification Issues 251

Application software! .-.... Compiler
drivers/RTOS

~II'

r------------------ - - -,
Processor Memory Controller Memory C/C++ C/C++

C/C++

RTL interface RTL interface

~ .. II. ,..-----
I

Other I
Peripherals

I (RTL) I --r--
~, ~,

• ~~

~ , ~,

1/0 Interface MPEG2
-+ .. (RTL) f--+ 1/0 Interface ~ (RTL) (RTL)

I
I
I CHIP

--------------------- ~

S STIMULUS RESPONSE S

- M MEMORY TESTBENCH CAPTURE M ~ MEMORY

Figure 11-5 Emulation testbench

CHAPTER 12 Data and Project
Management

This chapter discusses tools and methodologies for managing the design database for
macro design and for system design. The topics are:

• Data management
• Project management

12.1 Data Management

Data management issues include revision control, bug tracking, regression testing,
managing multiple sites, and archiving the design project.

12.1.1 Revision Control Systems

A strong revision control system is essential for any design project. A good revision
control system allows the design team to:

• Keep all source code (including scripts and documentation) in one centralized
repository that is regularly backed up and archived

• Keep all previous versions of each file

• Identify, quickly, changes between different revisions of files

• Take a snapshot of the current state of the design and label it

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

254 Reuse Methodology Manual

RCS, SCCS, and Clearcase are examples of tools with which revision control systems
can be built. Additional scripts and processes are typically used to create a complete
revision control system.

The most common paradigm is for each designer to be able to check out the entire
design structure and recreate it locally, either by copying files or creating pointers to
them. The designer then works and tests locally before checking the design files back
into the central repository.

There are two different models for controlling this check-in process: the always-bro
ken and always-working models.

The Always-Broken Model

In the always-broken model, each designer works and tests locally and then all the
designers check in their work at the same time. The team then runs regression tests on
the whole design, fixing bugs as they appear.

There are two problems with this model. First, when regressions tests fail, it is not
clear whose code broke the design. If there are complex inter-dependencies between
the modules, debugging regression failures can be difficult and time consuming.

The second problem with this model is that there tends to be a long integration period
during which the design is essentially broken. No new design work can be done dur
ing this integration and debug phase because designers cannot check out a known
working copy of latest version of the design.

The Always-Working Model

The always-working model overcomes the major problems presented by the always
broken model. For the initial integration of the design, when separate modules are
first tested together, the always-working model is the same as the always-broken
model. Everyone checks in the initial version of the blocks and a significant debug
effort ensues. In some designs, it may be possible to integrate a subset of the whole
design, and then add additional blocks once the first subset is working. This approach
greatly reduces the debug effort.

Once an initial baseline for the design is established, the always-working model uses
the following check-in discipline:

• Only one designer can have a given block checked out for editing.

• When a block is being checked in, the entire central repository is locked, blocking
other designers from checking modules in.

Data and Project Management 255

• The designer then runs a full regression test with the existing design plus the mod
ified block.

• Once the regression tests pass, the designer checks in the block and removes the
lock.

This model ensures that the entire design in the central repository always passes
regression testing; that is, it is always working. It also greatly reduces the debug effort
because only one new module at a time is tested.

We recommend the always-working model of revision control.

12.1.2 Bug Tracking

An effective bug tracking system is essential for rapid design of complex blocks and
systems. A central database that collectS all known bugs and desired enhancements
lets the whole team know the state of the design and prevents designers from debug
ging known problems multiple times. It also ensures that known problems are not for
gotten, and that any design that is shipped with known bugs can include
documentation for the bugs.

Another key use for bug tracking is bug rate tracking. In most projects, the bug rate
follows a well-defined curve, reaching a peak value early in the integration phase and
then declining as testing becomes more robust. The current bug rate and the position
on this curve help define the most effective testing and debug strategy for any phase of
the project, and help determine when the chip is ready to tape out.

Formal bug tracking usually begins when integration begins; that is, as soon as the
work of two or more designers is combined into a larger block. For a single engineer
working on a single design, informal bug tracking is usually more effective. However,
some form of bug tracking is required at all stages of design.

12.1.3 Regression Testing

Automated regression testing provides a mechanism for quickly verifying whether
changes to the design have broken a previously-working feature. A good regression
testing system automates the addition of new tests, report generation, and distribution
of simulation over multiple workstations. It should also highlight differences in out
put files between passing and failing tests, to help direct debug efforts.

256 Reuse Methodology Manual

12.1.4 Managing Multiple Sites

Many large projects involve design teams located at multiple sites, sometimes scat
tered across the globe. Effective data management across these sites can facilitate
cooperation between the teams.

Multiple site data management starts with a high-speed link between sites; this is
essential for sharing data. The revision control central repository must be available to
all sites, as well as bug tracking information. Regression test reports must be available
to all sites.

The key to managing a multi-site project is effective communication between the
individual engineers working on the project. Email, voicemail, and telephones have
been the traditional tools for this. Technology is now readily available for desktop
video conferencing with shared displays and virtual whiteboards. All of these tech
niques are needed to provide close links between team members.

One management technique that helps make these technology-based solutions more
effective is to get the entire team in one place for an initial planning and teambuilding
session. Once team members get to know the people at other sites, the daily electronic
communication becomes much more effective.

12.1.5 Archiving

At the end of any design project, it is necessary to archive the entire design database,
so that it can be re-created in the future, either for bug fixes or for enhancements to the
product. All aspects of the design must be archived in one central place: documenta
tion, source code, all scripts, testbenches, and test suites. All the tools used in the
design must also be archived in the revision control system used for the design. If
these tools are used for multiple projects, obviously one copy is enough, and the tool
archives can be kept separate from the design archive.

The above observation may seem obvious, but let me interject a personal note. Several
years ago, I was hired to do the next generation design of an existing large system.
The first thing I did was to try to find the people who had worked on the previous gen
eration design and to find the design archive.

Well, the designers had all moved on to other companies. The system architect was
still with the company but busy with another project, and he wasn't all that familiar
with the detailed design anyway. The design files were scattered across a wide variety
of machines, some of which were obsolete machines cobbled together from spare
parts and whose disks were not backed up! Worse than that, I found several copies of
the design tree, with inconsistent data. It was impossible to collect even a majority of
design files and know with confidence that they were the latest versions.

Data and Project Management 257

In the middle of the previous design effort, the team had changed silicon vendors and
tools. The HDL for the design was almost accurate, but some (unspecified) changes
were made directly to the netlist. This scenario is the manager's nightmare. It took
months to recover the design archive to the point where the new design effort could
begin; in fact, close to half the design effort consisted of recreating the knowledge and
data that should have been archived at the end of the design.

12.2 Project Management

There are many excellent books on project management [1,2,3], and we will not
attempt to cover the subject in any depth. However, there are a several issues that are
worth addressing.

12.2.1 Development Process

An ISO 9000-1ike development process, where processes are documented and repeat
able, can help considerably in producing consistently high-quality, reusable designs.
Such a process should specify:

• The product development lifecycle, outlining the specific phases of the design pro
cess and the criteria for transitioning from one phase to another

• What design reviews are required at the different stages of the design, and how the
design reviews will be conducted

• What the sign-off process is to complete the design

• What metrics are to be tracked to determine the completeness and robustness

1\vo key documents are used to communicate with the rest of the community during
the course of macro design. These documents are the project plan and the functional
specification. These are both living documents that undergo constant modification
during the project.

12.2.2 Functional Specification

A key characteristic of a reusable design is a pedigree of documentation that enables
subsequent users to effectively use it. The requirements for a functional specification
are outlined in Chapter 4. This specification forms the basis for this pedigree of docu
mentation, and includes:

• Block diagrams

• Functional specification

• Description of parameters and their use

258 Reuse Methodology Manual

• Interface signal descriptions

• Tuning diagrams and requirements

• Verification strategy

• Synthesis constraints

In addition to the above basic functional information, it is quite useful to keep the
functional specification as a living document, which is updated by each user through
out its life. For each use of the block, the following information would be invaluable
to subsequent generations of users:

• Project it was used on

• Personnel on the project

• Verification reports (what was tested)

• Technology used

• Actual timing and area results

• Revision history for any modifications

12.2.3 Project Plan

The project plan describes the project from a management perspective and documents
the goals, schedule, cost, and core team for the project. Table 12-1 describes the con
tents of a typical project plan.

Part

Goals

Schedule

Cost

Core Team

Table 12-1 Contents of a project plan

Function

Describes the business reasons for developing the macro and its
key features and benefits, including the technical goals that will
determine the success or failure of the project.

Describes the development timeline, including external depen
dencies and risks. The schedule should contain sufficient contin
gency time to recover from unforeseen delays, and this
contingency should be listed explicitly.

Describes the financial resources required to complete the
project: headcount, tools, NREs, prototype build costs.

Describes the human resources required to complete the project:
who will be on the team, who will be the team leader.

Data and Project Management 259

References

1. Floyd, Thomas et al. WiMing the New Product Development Battle. IEEE, 1994.

2. McConnell, Steve. Suftware Project Survival Guide. Microsoft Press, 1997.

3. Demarco, Tom and lister, Tunothy. Peopleware: Productive Projects and Teams. Dorset House, 1999.

CHAPTER 13 Implementing a Reuse
Process

This chapter addresses requirements for establishing reuse processes within a com
pany. These requirements include tools, process inventories, macro libraries, and pilot
projects. Topics in this chapter include:

• Key steps in implementing a reuse process

• Managing the transition to reuse

• Organization issues

• Dealing with legacy designs

13.1 Key Steps in Implementing a Reuse Process

The following activities are key steps in implementing a design reuse process:

1. Develop a reuse plan.

The first step in developing a reuse process is to develop a plan for establishing a
reuse process. In particular, it is useful to determine the resources required to
establish such a process.

2. Implement reuse training.

Successful implementation of design reuse requires that design for reuse be an
integral part of technical and management training within the company.

M. Keating et al. (eds.), Reuse Methodology Manual
© Kluwer Academic Publishers 1999

262 Reuse Methodology Manual

3. Inventory tools and processes.

The next step in developing a design reuse process is to assess the design tools and
methodologies already in place. A robust high-level design methodology that uses
up-to-date synthesis and simulation tools is a prerequisite for developing a reuse
methodology. Good project management practices and documented processes as
outlined in the previous chapter are also required.

4. Build up libraries.

Design reuse can begin with small designs. Build or purchase libraries of rela
tively simple components and use them in current design projects. Track the effec
tiveness of using these components and examine any problems that arise from
their use.

5. Develop pilot projects.

Develop pilot projects both for developing reusable designs and for reusing exist
ing designs. This could involve existing internally-developed designs or a macro
purchased from a third party.

These pilot projects are the best way to start assessing the challenges and opportu
nities in design reuse. It is essential to track and measure the success of design
reuse in terms of the additional cost of developing reusable designs and the sav
ings involved in reusing existing designs.

6. Develop a reuse attitude.
Design reuse is a new paradigm in design methodology. It requires additional
investment in block development and produces significant savings in subsequent
reuse of the block in multiple designs. This paradigm shift requires a change in
attitude on the part of designers and management. Shortcuts in the name of "time
to-market" are no longer acceptable; the long-term cost to the organization is sim
ply too high.

Design reuse is the single most important issue in SoC designs. Unless they con
sist almost entirely of memory. million-gate designs cannot be designed from
scratch and hope to make their time-to-market and quality requirements. Reuse of
previously designed and verified blocks is the only way to build robust million
gate chips in a reasonable amount of time.

The most important step in developing a design reuse process is to convince the
management and engineering team to adopt the reuse attitude: that the investment
in design reuse is the key to taking advantage of the remarkable silicon technology
currently available.

The following sections describe these steps in more detail.

Implementing a Reuse Process 263

13.2 Managing the Transition to Reuse

Managing the transition to reuse-based design involves identifying the technical and
organizational barriers to reuse and taking incremental steps to effect the required
changes.

13.2.1 Barriers to Reuse

Many engineering managers are very reluctant to make the investment required for
effective, systematic reuse. Design for reuse is expensive. Our best estimate is that it
takes 2-3 times the effort to develop a block for reuse than it does to design the same
block for a single use. No rational manager is going to delay a critical chip project in
order to make some blocks reusable on future designs.

On the other hand, the benefit of design reuse is large. Our best estimate is that inte
grating a reusable block into a chip design is 10 to 100 times less effort than designing
the block from scratch. But this benefit is only realized after the investment in design
for reuse has been made.

In addition, transitioning a whole organization to reuse-based design requires a signif
icant investment in retooling design teams, organizational structures, and manage
ment practices. So transitioning to design reuse is a non-trivial problem. The
argument for reuse-based design is compelling: we simply won't be able to build
tomorrow's chips without it. But there is an investment required, both in time and in
engineering resources. The benefit is large, but delayed. This is why the books on
software reuse all say that reuse is not a technical problem, but a management and
cultural one.

Most experts agree that process change, to be effective, must be incremental. To tran
sition to a reuse paradigm, we must find the incremental steps that are gradual enough
to ensure success. But the adoption must be rapid enough to allow design productivity
to keep pace with Moore's Law. The intent of the next few sections is to give some
insight into this very difficult problem.

13.2.2 Key Elements in Reuse-Based Design

There are four key elements to a reuse-based SoC design methodology:

• Design for Reuse - The methodology, tools, and services to enable the creation
of reusable designs, as well as the ability to import third-party IP effectively.

• IP Repository - The central library of reusable IP and the tools, infrastructure,
and services to support it.

264 Reuse Methodology Manual

• SoC Design - The tools and methodology required to develop large chips incor
porating reusable IP.

• Reuse Support Structure - The organizational structure, incentives, people,
management and cultural norms required to make reuse-based design work effec
tively.

Design for Reuse

The design for reuse methodology is the cornerstone for a reuse-based chip design
methodology. The design practices described in this book can form the basis for this
methodology, but many of the detailed processes need to be customized to the partic
ular design environment. The fundamental goal of this methodology is to ensure that
the IP in the repository is easy to integrate into chip designs.

The reuse methodology must be supported by the appropriate tools. In addition to the
usual design tools such as simulators, synthesis tools, and so on, there need to be tools
to facilitate reuse and check for compliance to the standards defined in the methodol
ogy. Tools such as a methodology-specific version of linting tools, code coverage
tools, and automated checklists are some examples of reuse support tools.

These tools and processes are also useful in qualifying third-party IP. Third-party IP
providers are a key source of standards-based IP, but it is essential to validate the
quality of this IP before using it in chip design projects.

In addition to the methodologies and tools, many organizations are looking at provid
ing reuse services to design teams. Experts in the methodology can be assigned to
development teams to help them develop reusable designs. These experts can also
provide training in design-for-reuse to the development engineers.

Repository of Reusable IP

The second key element in a reuse-based design environment is the IP itself: the col
lection of high-value, easily-integrated IP stored in an assessable repository. The
design-for-reuse methodology exists primarily to provide a source of high-quality IP
for the repository.

A set of infrastructure tools provide engineers with access to the IP in the repository,
enabling them to browse the contents of the library, view datasheets and specifica
tions, download the appropriate models, and report back any problems with the IP.

Associated with the IP repository is a set of services for acquiring IP and ensuring the
quality of IP. This would include dealing with third-party IP providers and qualifying
their IP before adding it to the repository. Legacy IP services provide the expertise
and bandwidth to take existing, internally developed blocks and make them reusable.

Implementing a Reuse Process 265

SoC with Reuse

The whole purpose for both the design-for-reuse processes and the repository is to
facilitate the development of large chips. Thus, there must be an SoC development
process that can make effective use of the IP in the repository. This process must
allow rapid integration of soft and hard IP. Among other things, the design team must
have access to high-quality cell libraries (for synthesizing the soft IP), and use physi
cal design rules that are consistent with those of the hard IP being integrated.

Realistically, though, no chip design methodology can compensate for poor IP. Well
designed IP is a cornerstone of reuse, and well-designed IP can be easily integrated
into almost any modem flow. Poor IP - IP with functional bugs, or missing key
deliverables - is always a struggle to integrate into a chip design.

Reuse Support Structure

Finally, the company must have the processes, people, infrastructure, organization,
management, and passion for qUality required to make a reuse-based methodology
successful.

Above all else, the engineers, their managers, and senior management must, as a
team, agree that the benefits of a reuse-based chip design methodology justify the
cost. The key benefit of reuse is increased productivity, leading to faster time-to-mar
ket. But design reuse always requires some tradeoff in terms of dies size and/or per
formance. You can always make a specific block for a specific application smaller and
faster than the same function that has been make reusable, and applicable to many dif
ferent designs. Teams that are used to handcrafting transistors to get the last picosec
ond or the last square millimeter out of the design will have to make some tough
decisions, and potentially go through a tough cultural transition.

13.2.3 Key Steps

A basic plan for implementing a reuse-based chip design methodology consists of the
following steps:

1. Develop the basic reuse methodology, at least among a specific design team.

2. Demonstrate the effectiveness of the methodology in improving designer pro
ductivity.

3. Proliferate the methodology throughout the organization.

4. Refine the methodology by continually measuring its effectiveness and making
improvements.

266 Reuse Methodology Manual

In practice, this process consists of the following activities:

• Assessment and planning

• Training

• Buying/developing new tools

• Implementing a set of pilot projects

• Building the repository

• Proliferation of the methodology

Assessment and Planning

The goal of the assessment and planning is to determine what modifications are
required to the existing development methodology and to the organizational structure
to support a reuse methodology. This requires a clear assessment of current methodol
ogies and organizational structure, and an initial vision of the required methodology
and structure. The team can then plan how to implement the required modifications
and measure their effectiveness.

The assessment and planning process should also extend to the final products being
designed. Product line planning - planning what related designs will be developed,
and how successive designs can leverage IP from previous designs - is one of the
keys to successful reuse. This planning can help determine which IF will be added to
the repository in what order, and from what internal or third-party sources.

Some of the issues that must be examined as part of this assessment and planning pro
cess include:

• Engineering practices - Are designed teams making effective use of R1L-based
design methodologies and tools? What design reuse is currently practiced, includ
ing ad-hoc reuse and incorporation of third-party IP?

• Project management practices - Are project management processes documented,
followed, and measured?

• Cultural issues - Will "not invented here" factors adversely affect a transition to
reuse-based design? Which design groups are most supportive of reuse, and how
can their support be leveraged to accelerate adoption of reuse practices?

• Product line assessment - Can the current and future product lines be designed to
achieve high amounts of reuse?

Implementing a Reuse Process 267

Planning the Reuse Project

As a result of the assessment project, the overall design reuse project plan can be
refined and updated. Based on the assessment, a detailed plan should be developed to
address the following issues, as required:

• How to bring all teams to state-of-the-art RTL design

• Organizational changes required to support reuse and how to staff

• Documenting the reuse methodology

• Defining the tools needed to support the methodology

• Sequence of pilot projects and target IP for demonstrating reuse

• Plan for proliferating reuse and integrating it into a product line plan

Training

In many organizations, on-going technical training is viewed as essential to keeping
engineers up-to-date on design tools and methodologies, as well as on domain-spe
cific design issues. For other groups, investment in training is not a standard practice.
Often these groups are found during the assessment phase to be somewhat lagging the
current state-of-the-art design techniques and methodologies.

As a result of the assessment phase, the assessment team may identify either specific
design teams or specific subject areas where training is required to get the engineering
team(s) up to the appropriate level of high-level design. Since design reuse is built
upon high-level design practices, this is the first level of training that must be done as
part of implementing a reuse-based design methodology.

In addition, the assessment team should identify the engineering teams that will par
ticipate in the reuse pilot projects. These engineers should receive specific reuse
methodology training before participating in the pilot projects. The goal of this train
ing is to establish a baseline of engineering practices required to execute the projects.

During the proliferation phase of the reuse initiative, training will once again become
important. The pilot projects are key to demonstrating the value of reuse. In the same
way, training in reuse methodology, along with actual practice in designing for reuse
and use of tools that verify compliance with reuse standards, is key to establishing
effective design-for-reuse practices throughout the organization.

As reuse practices proliferate through the organization, and the organizations move
on to the refinement stage, continual training is key to reinforcing reuse practices and
communicating the latest techniques and tools to the practicing engineers.

268 Reuse Methodology Manual

Tools

Design reuse is fundamentally a methodology issue; that is, it is an approach to
improving design practices using, predominantly, the existing tool set. There are,
however, some reuse-specific tools that can greatly facilitate reuse.

First, some comments on existing design tools are in order. Today, chip designers
really need to be proficient in architectural tools (C++, COSSAP, SPW, and the like),
simulation, synthesis, datapath tools, behavioral synthesis, static timing verification,
formal verification, power analysis, test insertion and ATPG, and many more tools.
There are significant advantages to having a single engineering team able to deal with
all these tools; the team can only make well-informed design decisions if the informa
tion from all these tools is well understood. But it is virtually impossible for an engi
neer to be really expert in all these tools. For this reason, developing an infrastructure
for automating the use of these tools is one element in developing a state-of-the-art
reuse methodology.

That said, there are some additional tools that can greatly facilitate reuse. These
include:

• Infrastructure tools - Effective tools for data and project management are key
for establishing the kind of design discipline required to produce genuinely reus
able designs. These tools include revision control and bug tracking, as well as
automated checklists and statistic-gathering tools. An effective repository man
agement system that supports easy access to the library of IP also is key to sup
porting design reuse.

• Reuse-specific tools - There are several reuse-specific tools either available
now or in development that could help support reuse-based design methodologies.
A lint-like tool to enforce reuse coding guidelines is particularly useful. Even with
the best intentions, human error will generate inadvertent violations if they are not
automatically checked. In addition, tools are needed to help automate the packag
ing and delivery of IP, in order to eliminate the need for users to modify code or
scripts to adapt the IP to their specific applications. Synopsys' coreConsultant and
Altera's IP Wizard demonstrate the advantages of such tools.

Pilot Projects

The most important element in establishing a reuse-based methodology is the execu
tion of a set of pilot projects for developing and demonstrating the reuse methodology
and its benefits. A pilot project involves developing a block of reusable IP and using it
in a chip design. There two general types of reusable IP development:

• Redesign for Reuse projects involve taking the most valuable existing IP and
making it reusable. Because of the additional cost of designing for reuse, it is
important to take high value IP that can be used in many applications and design

Implementing a Reuse Process 269

projects. Such a project will show immediate benefits to the company by reducing
chip development costs on many different projects. Redesigning an existing piece
of IP also highlights the differences between current design practices and the
requirements of design for reuse.

• Design for Reuse projects involve identifying high-value IP that is needed for
several future projects, but which has not yet been designed. These projects allow
the team to develop IP with reuse in mind, rather than re-engineering reuse into
existing IP. These projects also allow the team to quantify the cost of design for
reuse vs. redesign for reuse.

Both redesign for reuse and design for reuse projects should include follow-up
projects where the IP is used in a chip design. These follow-up projects are key for
understanding the advantages and problems that result from doing design with reuse,
and help refine the design-for-reuse methodology before it is proliferated through the
organization.

Chip design with reuse involves taking IP developed during the design-for-reuse or
redesign-for-reuse pilot projects and using them to implement a chip design. This
chip pilot project is the key definition of success of the overall pilot projects. The
goals of the project are to:

• Measure the productivity and quality gain achieved through reuse

• Demonstrate the value of reuse in developing chips quickly

• Refine the chip design process employing reuse

• Determine additional tools or processes necessary to improve the design-for-reuse
process

• Determine additional tools or processes necessary to improve the process of
designing chips with reusable blocks.

At the end of this pilot project, the team will have demonstrated the effort required for
design for reuse and the value of reuse in accelerating chip design projects. The team
will have the data to support its conclusions, and a well-defined, reuse-based method
ology for designing blocks and chips.

Building the repository

The next step in implementing a reuse-based design methodology is to add IP to the
repository. The value of reuse only becomes compelling when the IP repository con
tains a significant collection of valuable, reusable blocks.

The first blocks to be added to the repository are typically high-value, domain inde
pendent parts such as processors (including DSP) and their peripherals. These can be
followed by lower-value, standards-based parts such as PCI, USB, and other inter
faces.

270 Reuse Methodology Manual

Domain independent parts are likely to be used the most broadly, and in the most chip
design projects, and so can most readily justify the cost of design for reuse. Many of
the standards-based IP can be obtained from third-party IP providers, and thus can be
added to the repository fairly easily. However, it should be noted that the quality of
third party IP does vary, and care should be taken to select IP that meets the standards
of quality and reusability established by the repository management team.

Once a reasonable set of domain-independent parts have been added, it makes sense
to add the most valuable domain-specific IP to the repository. These could include
multimedia blocks like MPEG, or data communication blocks like ATM or Ethernet.

Proliferation

Once chip design teams become aware that there are useful IP blocks in the reposi
tory, proliferation of reuse throughout the organization can take place. Additional
training in design for reuse and chip design with reuse can help design teams acquire
the skills to support and use this methodology. Additional resources and engineers
with reuse-specific skills may still be required to help chip design teams take the
blocks they develop and turn them into reusable designs.

There are several problems that are likely to appear as a reuse methodology is prolif
erated through a large organization. Some of these are technical. In particular, it is
important to have a consist design, verification, and integration flows between the dif
ferent design teams. This consistent set of flows greatly facilitates the exchange of IP
between groups.

However, the really major issues in proliferating reuse are organizational. We address
these in the next section.

13.3 Organizational Issues in Reuse

If we look at the reuse initiatives at different companies, we find that there are three
models being used for managing reuse and the development of IP:

• As-Is reuse - Blocks are designed as part of chip-development projects; that is,
they are designed for a single use. Once the chip project is concluded, the major
blocks are put into the IP repository as-is. Users are on their own in terms of inte
grating these blocks into future designs. A central CAD group manages the repos
itory, but does not provide technical support for the IP.

Implementing a Reuse Process 271

• Rework-based reuse - Again, blocks are designed as part of chip-development
projects. Once the chip project is concluded, the major blocks are given to a sepa
rate team that re-engineers them to make them reusable. This separate reuse team
provides technical support for the IP, and is usually part of the CAD team that
manages the IP repository.

• IP-based reuse - Here, key IP is developed explicitly for reuse by a dedicated
engineering team. This team is usually part of a product business unit, and not
connected to central CAD. The support arm of the business unit provides technical
support to users.

All of these models have advantages and disadvantages, although all share a common
and serious problems.

The advantage of as-is reuse, is that it has no engineering overhead. No additional
engineering cost is required to make the design available to other groups. Teams that
use this approach take the position that "users are going to have to modify the design
anyway, so why bother with all this design-for-reuse stuff."

The problem with this approach is that it achieves very little productivity gain. Data
from software reuse [1] and preliminary data from hardware reuse indicate that reuse
where you have to modify the design provides only a 2-3x improvement over no
reuse at all. On the other hand, the same data suggests that reuse without modification
can achieve gains of greater than lOx.

The advantage of rework-based reuse is that it produces fully reusable designs, and
the incremental time and effort are done after the chip design is complete. Thus, it
does not slow down chip development.

The problems with this approach is that, for some blocks, this rework may be as great
an effort, or even greater, than designing the block from scratch for reuse. If the block
was not architected for reuse, if future users will need features not provided, or if the
design and coding is not reuse-friendly, then substantial work may be required. And
since the rework is not done by the original designer, additional effort is required just
to understand the original design.

The advantage of IP-based reuse is that the design is done once, it is designed for
reuse from the beginning, and it can consistently produce the most reusable designs.

The disadvantage of this approach is that the IP is not developed by an actual user, so
the design may not meet the needs of the SoC teams that integrate the block into chip
designs. The IP may be elegant, but too late to meet critical market windows.

272 Reuse Methodology Manual

13.3.1 A Combined Solution

A combination of the above approaches makes the most sense. For blocks that are
unlikely to be reused more than once or twice, as-is reuse is the most economically
sound approach. The block should be designed and coded to be compliant with the
reuse guidelines, and should have a reasonable specification and testbench. These
efforts will not slow down the block design, and in many cases may accelerate it. But
no reuse packaging is justified for so few projected reuses.

For blocks that are likely to be reused many times, but which have relatively fixed
architectures, rework-based design works well. Blocks that execute a well-defined
function, and which will not require parameterization, are good candidates. The
rework team can focus on packaging these blocks for reuse.

For all other blocks, especially high-value blocks that will be used many times, the
IP-based reuse approach is best. Processors and highly configurable I/O blocks like
PCI and USB fall into this category. Explicitly designing for reuse will always pro
duce the most reusable designs, and the designs that will provide the greatest produc
tivity boost to chip design teams.

13.3.2 A Common Problem

The common and serious problem that all these approaches share is: who owns and
supports the IP. Some case histories can help indicate the seriousness of this problem.
(The following case histories are real examples; the names of the companies have
been withheld for obvious reasons.)

In one major semiconductor company, a design team is producing a next-generation
chip. The previous generation used a number of hard macros from other divisions.
These macros were provided only in hard form, but they all need to be ported to a new
technology and modified for small changes in functionality. The other divisions are
busy on their own next-generation chips, and have no interest in supporting our
design team in modifying the blocks. No RTL or scripts are available to our team. So
the team is forced to port the macros to the new process at the polygon level, and to
make the functional modifications at the polygon level as well. Instead of achieving a
lOx productivity improvement from reuse, they realize 2x at most.

In another major semiconductor company, a team has developed a next-generation
DSP intended for widespread use in many designs in many divisions of the company.
Unfortunately, the team focused exclusively on making the fastest, lowest power DSP
on the planet, and paid no attention to ease of use for the integrators. They shipped
only a transistor netlist to the chip design teams - no simulation models, no instruc
tion set simulator, and no testbench or bus functional models. Software debug had to
be performed with a switch-level simulation of the hardware!

Implementing a Reuse Process 273

These cases highlight the disasters that can happen if IP is not well supported and if IP
developers are not sensitive and responsive to the needs of the IP integrators. The key
to organizing for reuse success is to establish a structure that ensures a close and
effectively link between IP developers and IP integrators within the company.

13.3.3 A Reuse Economy

Most companies work like small economies: managers and engineering teams have
financial incentives to develop chips with specific features for a specific market win
dow. Today, these incentives actively discourage design for reuse; any additional
effort spent making a block reusable is seen as an impediment to getting today's chip
out as soon as possible. Similarly, many IP development teams are rewarded for the
technical merits of the IP' in terms of speed and power, but not in terms of ease-of
integration.

To foster reuse, the company must set up financial incentives that will motivate the
design teams to design for reuse. If the design teams are expected to support the IP
they develop, there must be strong financial (and other) rewards for doing so. In
essence, a miniature economy must be set up, so that the design teams that benefit
from reuse reward the groups that are developing reusable IP. Toshiba, for example,
has announced plans to let divisions to allow its various divisions to buy and sell IP
among themselves through an inter-departmental program [2]. This kind of financial
model may well be a key to fostering reuse, and we expect it to be adopted in other
large companies.

Such an economy might look something like Figure 13-1.

$ CHIP DESIGN GROUP
MICROPROCESSOR A

DESIGN GROUP IP ..
Peripheral

r+ Lib

IP
~$ DSP

DESIGN GROUP
CHIP DESIGN GROUP

B

[Peripheral
THIRD PARTY Lib

MICROPROCESSOR I PROVIDER

Figure 13-1 A reuse economy

274 Reuse Methodology Manual

Chip design group A is developing an SOC design. It decides to use a microprocessor
from an internal group. It pays (through some internal transfer of budgets) the Micro
processor Design Group for the IP. Group A expects in return a quality, easy to inte
grate design, and good technical support. IT Group A is not happy with the quality of
IP or technical support it receives from the internal supplier, it is free to purchase a
microprocessor from a third party IP provider.

After an initial round of financing from the company, the Microprocessor Design
Group receives its budget only from (happy) customers. IT internal customers consis
tently find the internal IP unacceptable, the internal IP development teams go out of
business. These teams should now be very motivated to produce quality, easy to inte
grateIP.

In our example, it turns out that Chip Design Group B has already developed some
peripherals or other blocks that could be useful in Group Ns design. These blocks
have been designed for reuse and are in Group B's local IP repository. Group A can
again purchase the IP from Group B, helping Group B offset the cost of making the IP
reusable. This added revenue also provides an incentive for Group B to make their
local IP highly reusable.

Such a reuse economy solves many of the problems existing today in promoting
reuse. The customer-vendor relationship ensures that the link between developers and
integrators of IP is close. This tight link is the key to ensuring the high quality, reus
able designs that can dramatically improve chip design productivity.

13.3.4 Summary

The preceding sections show the significant organization and technical changes
required to implement a full reuse process. The investment required is also significant.
This amount of change can be intimidating, and may discourage design teams from
adopting reuse. However, there are many smaIl, incremental changes that engineering
teams can make to start implementing reuse. For example, the following changes
incur little cost, yet can yield dramatic benefits:

• Register outputs to make timing problems local, not global.

• Verify from the bottom up to make verification problems local, not global.

• Plan before you do; good specifications allow design at the local level with confi
dence that it will integrate into the global design correctly.

• Hold IP providers, internal and external, accountable for the quality and ease of
use of their IP.

Implementing a Reuse Process 275

13.4 Redesign for Reuse: Dealing with Legacy Designs

Another key issue that can impede the adoption of reuse is the difficulties in reusing
existing, or legacy designs. Legacy designs - those designs we wish to reuse but
were not designed for reuse - present major challenges to the design team. Often
these designs are gate-level netlists with little or no documentation. The detailed
approach to a specific design depends on the state of design. However, there are a few
general guidelines that are useful.

13.4.1 Recapturing Intent

The most difficult part of dealing with a legacy design is recapturing the design intent.
With a good functional specification and a good test suite, it is possible to fix, modify,
or redesign a block relatively quickly. The specification and test suite fully define the
intent of the design and give objective criteria for when the design is functioning cor
rectly.

If the specification and test suite are not available, then the first step in reusing the
design must be to recreate them. Otherwise, it is not possible to modify the design in
any way, and some modification is nearly always required to port the design to a new
process or to a new application.

The problem with recreating the specification and test suite, of course, is that these
activities represent well over half of the initial design effort. Almost none of the ben
efits of reuse are realized.

Thus, if the specification and test suite exist and are of high quality, then reuse is easy,
in the sense that even if a complete redesign is required, it will take a fraction of the
time and cost of the original development. If the specification and test suite do not
exist, then reuse of the design is essentially equivalent to a complete redesign.

13.4.2 Using the Design As-Is

In spite of the observations in the above section, some unfortunate design teams are
required to try to reuse existing designs, usually in the form of netlists, for which doc
umentation and testbenches are mostly nonexistent. In such cases, most teams attempt
to use the design as-is. That is, they attempt to port the design to a new process with
out changing the functionality of the circuit in any way.

Formal verification is particularly useful in this scenario because it can prove whether
or not modifications to the circuit affect behavior. Thus, synthesis can be used to
remap and reoptimize the design for a new technology, and formal verification can be
used to verify the correctness of the results.

276 Reuse Methodology Manual

13.4.3 Retiming

For some designs, the above approach does not provide good enough results. In these
cases, behavioral retiming may be an effective solution. Behavioral retiming can
automatically change the pipelining structure of the design to solve timing problems.
Again, formal methods are used to prove that the resulting functionality is correct.

13.4.4 Tools for Using Legacy Designs

A large investment was probably made in legacy designs that are still very valuable
macros. For example, a design team might want to reuse a macro developed for
QuickSim II. ModelSim-Pro allows the team to simulate a VHDL and/or Verilog
design that contains instantiations of QuickSim II macros.

If the design team wants to use a VHDL legacy design within a Verilog design (or
vice versa), the ModelSim single-kernel architecture allows reuse of that macro
within the context of the entire design.

13.4.S Summary

Re~sing legacy designs should definitely be the last aspect of design reuse imple
mented as part of establishing a design reuse methodology. Developing the processes
for designing for reuse and for reusing well-designed blocks provides dramatically
more benefit than att.empting to reuse designs that were not designed with reuse in
mind.

References

1. Poulin, Iefferey. Measuring Software Reuse: Principles, Practices, and Economic Models. Addison

Wesley, 1997

2. Cataldo, Anthony, "Toshiba Plans Intemal Licensing Program" EE Times, September 2, 1998,
http://www.transeda.com/resources_area/l00_issue_S.pdf

Glossary

Arcadia - An Synopsys tool for extracting parasitics (resistance and capacitance)
from a physical chip design. Used for accurate timing analysis of the final physical
design.

ATPG - Automatic Test Pattern Generation.

BFM - Bus Functional Model.

BONeS - A Cadence tool for modeling and simulating network designs.

81ST - Built-In Self Test; usually a local generator and signature analysis block for
implementing on-chip test on a design block.

COS SAP - A Synopsys system-level design tool featuring a stream-driven simula
tor.

Escalade - A company offering a variety of reuse-oriented tools, including capabil
ities for checking compliance to coding and design guidelines. (See
http://www.escalade.com)

FSM - Finite State Machine.

HDL - Hardware Description Language, principally Verilog and VHDL.

ISA (ISS) - Instruction Set Architecture (Instruction Set Simulator); used inter
changeably for an instruction set executable model of a processor.

LEDA - A French EDA company that provides Proton, a lint-like tool for checking
compliance to design and coding guidelines. (See http://www.leda.fr)

278 Reuse Methodology Manual

MatLab - A mathematics package for numeric computation and visualization, from
Math Works. Often used for algorithm development and signal processing design.
(See http://www.mathworks.com!products/matlabl)

NuThena Foresight - A system level modeling and simulation tool. (See
http://www.nuthena.com)

RTL - Register Transfer Level.

SOL - Specification and Description Language; a language for high-level design,
especially of communication systems.

SOT - A tool implementing SOL. (See http://www.kvatro.no/telecom!sdtlsdt.htm)

SoC - System-on-a-Chip.

SPW - A Cadence system-level design tool, originally developed for signal process
ing algorithm capture and simulation.

Steiner Route - In chip physical design, refers to a minimal or optimal route using
orthogonal (vertical and horizontal) routing.

Specman Elite - A testbench automation tool from Verisity, Ltd.

SWIFT - Software Interface Technology, used by Synopsys modeling tools.

Vera - A testbench automation tool from Synopsys.

Verilint - A linting tool for checking Verilog code compliance to design and coding
guidelines. (See http://www.interhdl.com!verilint.html)

VFM - Verilog Foundry Model, a Synopsys tool.

VHOLlint - A linting tool for checking VHDL code compliance to design and cod
ing guidelines. (See http://www.interhdl.com!vhdllint.html)

VMC - Verilog Model Compiler, a Synopsys tool.

VSIA - Virtual Socket Interface Alliance. (See http://www.vsi.org)

VSPEC - An extension to VHDL to provide formal specification capabilities. (See
http://www.ececs. uc.edul-kbse/projects/vspecl)

Bibliography

Books on software reuse:
1. Measuring Software Reuse, Jeffrey S. Poulin, Addison-Wesley, 1997.

2. Practical Software Reuse, Donald J. Reifer, Wiley, 1997.

Formal specification and verification:
1. http://www.ececs.uc.edul-pbaraona/vspec/, the VSPEC homepage.

2. Formal Specification and Verification of Digital Systems, George Milne,
McGraw-Hill, 1994.

3. Formal Hardware Verification, Thomas Kropf (ed.), Springer, 1997.

Management processes:
1. http://www.sun.com!sparc/articlesIEETIMES.html. a description of the

UltraSPARC project, mentioning construct by correction.

2. Winning the New Product Development Battle, Floyd, Levy, Wolfman, IEEE.

Books and articles on manufacturing test:
1. "Testability on Tap," Colin Maunder et al, IEEE Spectrum, February 1992,

pp.34-37.

2. "Aiding Testability also aids Testing," Richard Quinell, EON, August 12, 1990,
pp.67-74.

3. ''ASIC Testing Upgraded," Marc Levitt, IEEE Spectrum, May 1992, pp. 26-29.

4. Synopsys Test Compiler User's Guide, v3.3a, 1995.

5. Synopsys Test Compiler Reference Manual, v3.2, 1994.

280 Reuse Methodology Manual

6. Synopsys Certified Test Vector Formats Reference Manual.

7. Digital Systems Testing and Testable Design, M. Abromovici et aI, Computer
Science Press, 1990.

8. The Boundary Scan Handbook, Kenneth Parker, Kluwer Academic Publishers,
1992.

9. The Theory and Practice of Boundary Scan, R. G. "Ben" Bennetts, IEEE Com
puter Society Press.

10. Testability Concepts for Digital ICs, Franz Beenker et aI, Philips Corp, 1994.

11. ''A Comparison of Defect Models for Fault Location with IDDQ Measurements,"
Robert Aitken, IEEE Design & Test, June 1995, pp. 778-787.

Books and articles on synthesis:
1. "Flattening and Structuring: A Look at Optimization Strategies," Synopsys

Application Note Version 3.4a, April 1996, pp. 2-1 to 2-16.

2. VHDL Compiler Reference Manual, Synopsys Documentation Version 3.4a,
April 1996, Appendix C.

3. DesignTime Reference Manual, Synopsys Documentation Version 3.4a, April
1996.

4. "Commands, Attributes, and Variables," Synopsys Documentation Version 3.4a,
April 1996.

Symbols
'define statements (Verilog) 89

A
Accelerated Verification System

coding guidelines 249
process 246

active low signals 75
algorithmic model 20, 62
all_registers 132
application testing 149
architecture (VHDL) 77,83
arrays 85
aspect ratio 177
asynchronous

design style 33
logic 118
memory interface 123
reset 35

ATPG 54,59, 133

B
behavioral model 60
BIST

logic 50, 175
RAM 49

block
definition 3
system interconnect 43

block constructs (VHDL) 91
block diagram 58

Index

blocking assignments (Verilog) 105
Bones 20
boundary scan 176
branch coverage 167
bug tracking 255
bus functional model 157,159,189
bus monitor 157
buses

c

naming convention 75
on-chip 37,43,87
three-state 87

C/C++ 62
case statements 108
characterize-compile 130
check_design 133
check_test 133
clock

buffers 37,93
coding guidelines 91
distribution 37
domains 34
frequencies 34
gating 93,94
hard macro 176
internal generation 94
mixed edges 91
naming convention 74
synthesis 131
tree 37

code profiling 125

282

coding guidelines
Accelerated Verification 249
basic 74
clock and reset 91
exceptions 206
functions 84
HDL translation 90
labels 86
loops and arrays 85
memory 123
partitioning 114
portability 87
readability 79
state machine 110
synthesis 97
synthesis scripts 142

combinational
blocks 104
feedback 102
logic partitioning 115
loops 132
paths 129

comments, in source files 79
compare_design 72
compliance tests 148
condition coverage 167
configuration (VHDL) 83
constants 88
construct by correction 17
core 3
corner tests 149
COSSAP 20, 62
coverage

D

analyzing 166
branch 167
condition 167
macro testbench 166
path 167
statement 166
subblock testbench 151
toggle 168
trigger 167

data management
design archive 256
multi-site 256
revision control 254

datapath
design issues 135
design methodologies 135
design tools 136
generators 136

Reuse Methodology Manual

debug
strategy selection 43
structures 43

deliverables
hard macro 202
soft macro 200

design archive 204, 256
design for reuse

coding guidelines 74
general guidelines 5
requirements 5

design methodology
bottom-up 15
spiral model 15
System-on-a-Chip 12
top-down 15
waterfall model 13

design process
hard macro 179
subblock 63
System-on-a-Chip 20
top-level macro 60

design reuse
common problems 6
definition 1
implementing 261
in System-on-a-Chip design 2
of legacy designs 275

design reviews 257
DesignWare 89
DFI'Advisor 68
documentation 69

E

hard macro 185
requirements 205
soft macro 72

emulation
limitations 244
model 193
pros and cons 150

entity (VHDL) 83
event-based simulation 149
executable specification 20

F
false paths 121
FastScan 68
firm macro 4
FlSPbus 43
FlexTest 68
Floorplan Manager 134
floorplanning

Reuse Methodology Manual

feedback to synthesis 133
hard macro 37
specification 36

fioorplanning model 194
fonnal specification 19
fonnal verification

hard macro 184
macro productization 72
system-level verification 242

Fonnality 72, 133, 242
FPGA prototype 238
full functional model 190
full scan 175
function definitions 88
functional specification 54,65,257

G
gates, instantiating 90, 121
generate statements (VHDL) 90
GrECH library 90

H
hard macro

aspect ratio 177
behavioral model 60
bus functional model 189
clock implementation 176
definition 4
deliverables 202
design for test 175
design process 179
development issues 171
documentation 185
emulation model 193
fioorplanning 37
fioorplanning model 194
full functional model 190
hardware model 193
models 185
physical design 181
pin placement 178
porosity 177
power distribution 178
productization 181
reset implementation 176
selection 211
subblock integration 181
timing model 194
verification 184

hard-coded numerics 88, 142
hard-coded paths 142
hardware accelerator 244
hardware model 193

hardware modeler 150
hardware specification 19
hardware/software

cosimulation 21, 248
partitioning 21

HDL translation 71,81,87
header, in source files 77

if-then-else statements 108
interconnect

on-chip blocks 43
subblocks 66

interpreted simulation 149

J
ITAG 59

L
labels 86
latches

avoiding 99
checking for 99, 13 2
design issues 33

layout 133
limited production 152
Links-to-Layout 134
lint 65,69, 132
loops 85
LPGA prototype 238

M
macro

definition 3
design process 54
integration 66
partitioning 54
productization 54
See also hard macro
See also soft macro
specification 54
synthesis strategy 130
testbench design 156
timing budget 128
top-level partitioning 60
top-level RTL 68
verification 151

manufacturing test
documenting strategy 59
on-chip structures 49
strategy selection 49

Matlab 20

283

284

memory
BIST 49
coding guidelines 123
design issues 134
test methodology 49

microprocessor
system-level modeling 235
test strategy 49

Module Compiler 65,138
multibit signals 75
multicycle paths 120
multiplexers 108

N
naming conventions 74
nonblocking assignments (Verilog) 105
NuThena 20

p
packages (VHDL) 88
parameter

assigning values 88
mapping 82
naming convention 74

partitioning
asynchronous logic 118
chip-level 122
combinational logic 115
critical path logic 116
macro into subblocks 54, 60

path coverage 167
phase locked loop 34
physical design

hard macro 181
of SOC with macros 214

PI-Bus 43
pin placement 178
place-and-route 133
point-to-point exceptions 120
porosity 177
port

grouping 81
mapping 82
naming convention 75
ordering 81

power analysis 66, 69
Power Compiler 66, 69
power distribution 178
product development lifecycle 257
productization

hard macro 181
soft macro 69

project plan 257

Reuse Methodology Manual

prototype 71, 150, 152

Q
QuickPower 66, 69

R
RAM generators 140,213
random tests 149
rapid prototyping 152
registers

for output signals 114
inferring 97

regression tests 254, 255
report_timing 132
reserved words 81
reset

asynchronous 35
coding guidelines 91
conditional 96
hard macro 176
internal generation 96
naming convention 75
strategy 35
synchronous 35
synthesis 131

resource sharing 118
revision control

always-broken model 254
always-working model 254
implementing 254
requirement 69,142,204

routing channels 177

S
scaninsertion 54,59,68
SDT 20
sensitivity list 103
sequential blocks 105
seCdriving...cell 131
seUoad 131
signal

naming convention 76
registering outputs 114

signal assignments (VHDL) 107
silicon prototype 239
simulation

code profiling 125
event-based 149
gate-level 71, 169
interpreted 149

simulator
compatibility 87
macro portability 71

Reuse Methodology Manual

soft macro
definition 4
deliverables 200
designing with 213
documentation 72
formal verification 72
gate-level simulation 71
installation 212
productization 69
selection 212
synthesis challenges 127
verification challenges 145

software
model 59
requirements 59
specification 19

specification
block 21
contents 58
executable 20
formal 19
functional 54, 65, 257
hardware 19
importance of 18
macro 54
requirements 19
software 19
subblock 54
system 20
technical 65

spiral model 15
SPW 20,62
state machine coding 110
statement coverage 166
static timing analysis 169, 184
std_Iogic 87
std_Iogic_ vector 87
std_ulogic 87
std_ulogic_ vector 87
subblock

definition 4
design process 63
functional specification 65
integration 54
RTL coding 65
specification 54
synthesis strategy 130
technical specification 65
testbench coverage 151
testbench design 155
testbench requirements 65
timing budget 129
verification 151

subtypes (VHDL) 88

SWIFf interface 62
synchronous

design style 33
memory interface 123
reset 35

synthesis
clock network 131
code checking after 132
code checking before 132
coding guidelines 97
early in design 130
guidelines 128
interactivity with layout 133
partitioning for 114
reset network 131
strategy selection 36, 128
top-level macro 68

synthesis scripts
embedded 89
guidelines 142
subblock 65
top-level 68

system verification
application-based verification 234
emulation 239
fast prototyping 237
formal verification 242
gate-level simulation 243
gate-level verification 240
hardware/software cosimulation 248
in-circuit testing 248
RTL acceleration 247
specialized hardware 244
strategy 230
test plan 230
verifying behavior and data 232
verifying macro interfaces 231
verifying macro transactions 231

System-on-a-Chip

T

design challenges 2
design flow diagram 16
design methodology 12
verification. See system verification

technical specification 65
technology

independence 87,89
macro portability 71

Test Compiler 68
test insertion 69
testability

checking for 133

285

286

coding for 97
gated clocks 93

testbench
coverage 66, 166
macro 54,61
output checking 156
stimulus generation 155
subblock 54,65,151

testbench design
macro 156
subblock 155

TestGen 68
tiling 134
timing budget

macro 128
subblock 129

timing model 194
timing verification 169
toggle coverage 168
translation, HDL 71
trigger coverage 167
types (VHDL) 87

U
user guide 205

V
variable assignments (VHDL) 107
verification

application testing 149
compliance tests 148
comer tests 149
hard macro 184
macro 145, 151
plan 147
random tests 149
strategy selection 38, 148
subblock 151
system-level. See system verification
timing 169
tools 38, 149

Verilint 65, 132
VeriSure 66, 151
VHDLCover 66, 151, 166
VHDLlint 65,132
virtual component 4
VITAL 76
VSIA 4
VSPEC 19

W
waterfall model 13
wireload models 131

Reuse Methodology Manual

