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v

The importance of power and energy in modern society is well established and it 
is impossible to create a modern society and country without the existence of reli-
able power and energy systems. The continued development of reliable systems 
has been the main focus of power and energy system engineers for over a cen-
tury. Reliability issues are integral elements in the planning and economics associ-
ated with any engineering system, and are embedded in basic project planning and 
appraisal techniques. As the complexities of modern power and energy systems 
grow, new approaches, techniques, and methods will be proposed for the evalua-
tion and analysis of these systems. While rapid developments in the field of com-
putational technologies have solved many issues related to the analysis of complex 
systems, the incorporation of new constraints arising from the use of particular 
technologies will dictate the solution techniques to be more creative and require 
considerable time to remodel, system test, and validate.

This Book Series entitled, “Reliable and Sustainable Electric Power and Energy 
Systems Management”, is intended to provide a platform for researchers, planners 
and policy makers to share their research outputs, ideas and opinions on the criti-
cal issue of sustainable and reliable power and energy systems. It also aims to pro-
vide impetus for critical research in this highly important area for modern society 
in the context of a meshed and complex environment that is affected by events 
taking place throughout the world. This book series is intended to be produced in 
separate volumes. The present book is the first volume of the Book Series. This 
volume is focused on new innovative research from academia and industry on 
understanding, quantifying and managing the risks associated with the uncertainty 
in wind variability.  These are important issues in planning and operating electric 
power systems with acceptable levels of reliability and high proportions of wind 
power generation.

Five of the eight chapters in this book are extended versions of papers presented 
at the PMAPS-2012 Conference, June 10–14, 2012 in Istanbul, Turkey. The biennial 
Probability Methods Applied to Power Systems conferences are highly focused gath-
erings of international experts. Reliability analysis of renewable energy sources in 
electric power systems has been a major presentation and discussion topic in recent 
years and this activity is expected to continue in the future. All of the chapter authors 
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in this book are actively involved in PMAPS and many of them actively participated 
in the recent conference in Istanbul.

Wind power behaves quite differently from conventional electric power gener-
ating units due to its intermittent and diffuse nature. An important requirement in 
planning a wind integrated power system is to ascertain the capacity credit that 
can be assigned to both existing and planned wind power facilities. Chapter  1 
illustrates the procedures used by a large Regional Transmission Organization 
and Independent System Operator to determine the capacity value of the wind 
resources in their jurisdiction. This chapter demonstrates the method developed to 
calculate the system-wide capacity value of wind resources and illustrates how the 
capacity credit is designated to the individual wind sites.

The increasing trend towards renewable forms of generation, and in particu-
lar wind, is creating new operating challenges. The uncertainty associated with 
the wind is an issue which must be considered in order for wind power to be suc-
cessfully integrated into an existing electric power system. This uncertainty may 
be managed through the use of suitable wind forecasting methodologies. The error 
inherent in forecasting will impact system reliability and cost as will inaccuracies in 
assumptions about the forecast error. Chapter 2 presents a methodology adopted for 
use in a Scenario Tree Tool constructed to allow for closer examination of the effect 
of forecast error assumptions and properties in unit commitment scheduling models.

Chapter 3 presents a new approach to the critical problem of detecting or fore-
casting ramping events in the context of wind power prediction. The novelty of the 
model relies on departing from the probability density function estimated for the 
wind power and building a probabilistic representation of encountering, at each time 
step, a ramp event according to some definition. The model allows the assignment 
of a probability value to each possible magnitude of a predicted ramp and its worth 
is assessed by several metrics including receiver operating characteristic curves 
which show the relationship between true positive and false positive ramp rates.

The increasing wind power penetration in electric power systems creates growing 
operational difficulties in maintaining system reliability due to the uncertain nature 
of wind power. An appreciation of the available wind power in the next few hours 
can assist the system operator to optimize the required regulating margin. Chapter 4 
illustrates a process in which time series Auto Regressive Moving Average (ARMA) 
models have been used to quantify the uncertainty associated with wind power 
commitment in a short future time such as 1–4 h using a conditional probability 
approach. Knowledge of available wind power a day ahead or even longer is also 
required by system operators to schedule the conventional generating units in the 
system. This chapter extends the future time of interest up to 24 h to examine the 
impact of initial wind speed/wind power conditions and to evaluate the wind power 
commitment based on a probabilistic wind power commitment risk.

Chapter  5 proposes a novel framework for designing an N-1 secure genera-
tion day-ahead dispatch for power systems with a high penetration of fluctuating 
power sources, e.g., wind or PV power. This is achieved by integrating the security 
constraints in a DC optimal power flow optimization and formulating a stochas-
tic program with chance constraints, which encode the probability of satisfying 

http://dx.doi.org/10.1007/978-81-322-0987-4_1
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the transmission capacity constraints of the lines. The resulting problem is solved 
numerically by transforming the initial problem into a tractable one using the  
so-called scenario approach, which is based on sampling the uncertain parameter 
(in this case the wind power) while keeping the desired probabilistic guarantees. 
A Markov chain-based model is employed to generate the wind power scenarios. 
The effectiveness of the proposed technique is illustrated by application to the 
IEEE 30-bus network, and comparing it with the solution of a deterministic vari-
ant of the problem, where the operator determines a secure generation dispatch 
based only on the available wind power forecast. A Monte Carlo simulation study 
is applied to collect statistical results regarding the performance of the method.

Substantial integration of intermittent renewable energy resources such as wind 
generation in an electric power system can have significant impacts on the system 
reliability. Chapter  6 illustrates the application of system well-being analysis to 
address both generation system adequacy and security concerns. Sequential Monte 
Carlo simulation is utilized in the system well-being analysis to capture the char-
acteristics associated with adequacy and security. A deterministic criterion of the 
loss of the largest generating unit is utilized as the security measure. The expected 
values and probability distributions of the system well-being indices associated 
with different generation scenarios are investigated and compared. The study 
results are demonstrated using the two test systems designated as the RBTS and 
IEEE-RTS.

Chapter  7 presents an approach which can be used to represent the correlation 
between any number of time series in a reliability evaluation based on non-sequential 
Monte Carlo simulation. The technique is illustrated in this chapter by application 
to generating capacity adequacy assessment with correlation between wind time 
series related to wind generation located at different sites and/or the system time-
varying load. The developed model can be applied in a reliability study (gener-
ating system, composite system, etc.) where several time series are present. The 
calculated generating system adequacy indices are compared to those obtained by 
sequential Monte Carlo simulation and show that the model captures the depend-
ence between correlated random variables.

Methodologies based on probability concepts are extremely useful in assessing 
the reliability performance of electric power systems and have been successfully 
applied to many areas including generating capacity planning, operating reserve 
assessment, distribution systems, etc. Many studies in these areas have been con-
ducted in the last few years in order to evaluate the behavior of electric power sys-
tems due to the volatility of renewable sources. New methods and models to assess 
the reliability of power networks with a high penetration of these sources have 
been proposed in the literature. Most of these methods, however, utilize simpli-
fied models, considering only generation reliability or the representation of energy 
constraints through clustered data models. Chapter  8 presents an application of 
a flexible non-sequential Monte Carlo simulation approach to evaluate the main 
reliability indices of composite generation and transmission systems, considering 
renewable energy, comprising mainly hydro, mini-hydro, wind, co-generation (e.g. 
biomass), and solar power sources. The renewable capacity is calculated based on 

http://dx.doi.org/10.1007/978-81-322-0987-4_6
http://dx.doi.org/10.1007/978-81-322-0987-4_7
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monthly (hydro and mini-hydro) or hourly (wind, co-generation, and solar) series 
of primary energy. Case studies using variations of the IEEE RTS-96 are presented 
and discussed. The feasibility of the proposed method is demonstrated by applica-
tion to an existing large electric power system.

Roy Billinton
Rajesh Karki

Ajit Kumar Verma



ix

	 Determining Capacity Credit for Wind Used in MISO  
Resource Adequacy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          	 1
Brandon Heath, Charles Tyson and John Lawhorn

	 Wind Power Scenario Tree Tool: Development and Methodology. . . .    	 13
Colm Lowery and Mark O’Malley

	 Probabilistic Ramp Detection and Forecasting for  
Wind Power Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 29
C. Ferreira, J. Gama, V. Miranda and A. Botterud

	 Application of Hourly Time Series Models in Day-ahead  
Wind Power Commitment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 45
Suman Thapa, Rajesh Karki and Roy Billinton

	 Probabilistic Guarantees for the N-1 Security of Systems  
with Wind Power Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 59

	 Maria Vrakopoulou, Kostas Margellos, John Lygeros  
and Göran Andersson

	 Adequacy and Security Measures in Integrated Intermittent  
Renewable Generation Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 75
Wijarn Wangdee, Roy Billinton and Wenyuan Li

	 Representation of Wind and Load Correlation in Non-Sequential  
Monte Carlo Reliability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 91
Carmen L. T. Borges and Julio A. S. Dias

	 Composite Reliability Assessment of Power Systems with  
Large Penetration of Renewable Sources. . . . . . . . . . . . . . . . . . . . . . . .                        	 107

	 Armando M. Leite da Silva, Luiz Antônio F. Manso, Silvan A. Flávio,  
Mauro A. da Rosa and Leonidas C. Resende

Contents

http://dx.doi.org/10.1007/978-81-322-0987-4_1
http://dx.doi.org/10.1007/978-81-322-0987-4_1
http://dx.doi.org/10.1007/978-81-322-0987-4_2
http://dx.doi.org/10.1007/978-81-322-0987-4_3
http://dx.doi.org/10.1007/978-81-322-0987-4_3
http://dx.doi.org/10.1007/978-81-322-0987-4_4
http://dx.doi.org/10.1007/978-81-322-0987-4_4
http://dx.doi.org/10.1007/978-81-322-0987-4_5
http://dx.doi.org/10.1007/978-81-322-0987-4_5
http://dx.doi.org/10.1007/978-81-322-0987-4_6
http://dx.doi.org/10.1007/978-81-322-0987-4_6
http://dx.doi.org/10.1007/978-81-322-0987-4_7
http://dx.doi.org/10.1007/978-81-322-0987-4_7
http://dx.doi.org/10.1007/978-81-322-0987-4_8
http://dx.doi.org/10.1007/978-81-322-0987-4_8




xi

Dr Roy Billinton  received the B.Sc. and M.Sc. degrees from the University of 
Manitoba, Winnipeg, MB, Canada, and the Ph.D. and D.Sc. degrees in electrical 
engineering from the University of Saskatchewan, Saskatoon, SK, Canada. He was 
with the System Planning and Production Divisions, Manitoba Hydro. In 1964, he 
joined the University of Saskatchewan, where he served as the Head of the Electri-
cal Engineering Department, Associate Dean for Graduate Studies, Research and 
Extension, and the Acting Dean of Engineering, and is currently a Professor Emeri-
tus in the Department of Electrical Engineering. He has authored or coauthored 
eight books and more than 940 papers on power system reliability evaluation, eco-
nomic system operation, and power system analysis. Dr. Billinton is a Fellow of the 
Engineering Institute of Canada, the Canadian Academy of Engineering, the Royal 
Society of Canada, a Foreign Associate of the United States National Academy of 
Engineering, and a Professional Engineer in the Province of Saskatchewan, Canada. 
The IEEE-PES honored Dr Billinton by initiating the Roy Billinton Power System 
Reliability Award in 2010.

Bio Sketch of Editors

Dr Rajesh Karki  obtained his B.E. degree in electrical engineering from the  
Regional Engineering College (renamed National Institute of Technology), West 
Bengal, India in 1991, and MSc and PhD degress in electrical power engineering 
in 1997 and 2000 respectively from the University of Saskatchewan, Canada. He 
worked for academic institutions and different industries in Nepal between 1991 
and 1995. He worked for GE Industrial Systems, Peterborough, ON, Canada  
during 2000–2002. He joined the University of Saskatchewan, Canada as an  
Assistant Professor in 2002, where he currently works as an Associate Professor. 
He chaired the Power Systems Research Group at the University of Saskatchewan  
during 2005–2012. His research interests include power system reliability and plan-
ning, and reliability modeling and analysis of renewable energy systems. He has 
served in various capacities in international conferences held in Canada and abroad. 
He has published over 70 papers in reputable international journals and peer re-
viewed conferences. He has completed several consulting projects on system plan-
ning and reliability for Canadian electric utilities. Dr Karki is a Senior Member of 
the IEEE, and a Professional Engineer in the Province of Saskatchewan, Canada.



Bio Sketch of Editorsxii

Dr Ajit Kumar Verma  obtained B.Tech (Electrical Engineering) and PhD  
(Reliability Engineering) from Indian Institute of Technology Kharagpur, India 
in 1984 and 1988 respectively. He joined Indian Institute of Technology Bombay 
in 1988 where he holds the position of Professor of Electrical Engineering. He is 
currently working as Professor of Technical Safety at University College Stord/ 
Haugesund, Norway. He has supervised/co-supervised 28 PhDs and 88 Masters 
thesis in the area of Software Reliability, Reliable Computing, Power Systems 
Reliability (PSR), Reliability Centred Maintenance (RCM) and Probabilistic 
Safety/Risk Assessment (PSA). He has over 195 publications in various journals 
and conferences. He is a senior member of IEEE and a life fellow of IETE. He is 
the Editor-in-Chief of OPSEARCH published by Springer as well as the Editor-in-
Chief of International Journal of Systems Assurance Engineering and Management 
(IJSAEM) published by Springer. He has served as a Guest Editor of many 
international journal including IEEE Transactions on Reliability March, 2010. He 
has been Conference Chairman of various International Conferences and symposia.



xiii

Göran Andersson  Power Systems Laboratory, Department of Electrical Engineer-
ing, ETH Zürich, Zurich, Switzerland, e-mail: andersson@eeh.ee.ethz.ch

Roy Billinton  Power System Research Group, Department of Electrical and 
Computer Engineering, University of Saskatchewan, Saskatoon, Canada,  
e-mail: roy.billinton@usask.ca

Carmen L. T. Borges  Electrical Engineering Department, Federal University of 
Rio de Janeiro, Rio de Janeiro, Brazil, e-mail: carmen@nacad.ufrj.br

A. Botterud  Argonne National Laboratory, Decision and Information Sciences 
Division, Lemont, UK, e-mail: abotterud@anl.gov

Mauro A. da Rosa  INESC Tech, Power System Unit, 4200-465 Porto, Portugal, 
e-mail: marosa@inescporto.pt

Armando M. Leite da Silva  Institute of Electrical Systems and Energy,  
Federal University of Itajubá – UNIFEI, Itajubá, MG 37.500-903, Brazil,  
e-mail: am.leitedasilva@gmail.com

Julio A. S. Dias  PSR, Rio de Janeiro, Brazil, e-mail: alberto@psr-inc.com

C. Ferreira  LIAAD/INESC TEC and ISEP/IPP, Polytechnic Institute of Porto, 
Porto, Portugal, e-mail: cgf@isep.ipp.pt

Silvan A. Flávio  Institute of Electrical Systems and Energy, Federal University of Ita-
jubá – UNIFEI, Itajubá, MG 37.500-903, Brazil, e-mail: silvanflavio@yahoo.com.br

J. Gama  LIAAD/INESC TEC and FEP, University of Porto, Porto, Portugal,  
e-mail: jgama@liaad.up.pt

Brandon Heath  Regulatory and Economic Studies Department, MISO, Saint Paul, 
MN, USA, e-mail: bheath@misoenergy.org

Rajesh Karki  Power System Research Group, Department of Electrical and Com-
puter Engineering, University of Saskatchewan, Saskatoon, Canada, e-mail: rajesh.
karki@usask.ca

John Lawhorn  Regulatory and Economic Studies Department, MISO, Saint Paul, 
MN, USA, e-mail: jlawhorn@misoenergy.org

Contributors



Contributorsxiv

Wenyuan Li  BC Hydro and Power Authority, Vancouver, BC, Canada, e-mail: 
wen.yuan.li@bchydro.com

Colm Lowery  Electricity Research Centre, University College Dublin, Dublin, 
Ireland, e-mail: Colm.Lowery@ucdconnect.ie

John Lygeros  Automatic Control Laboratory, Department of Electrical Engineer-
ing, ETH Zürich, Zurich, Switzerland, e-mail: lygeros@control.ee.ethz.ch

Mark O’Malley  Electricity Research Centre, University College Dublin, Dublin, 
Ireland, e-mail: mark.omalley@ucd.ie

Luiz Antônio F. Manso  Electrical Engineering Department, Federal University 
of São João del-Rei – UFSJ, São João del-Rei, MG 36.307-440, Brazil, e-mail: 
lmanso@ufsj.edu.br

Kostas Margellos  Automatic Control Laboratory, Department of Electrical Engi-
neering, ETH Zürich, Zürich, Switzerland, e-mail: margellos@control.ee.ethz.ch

Vladimiro Miranda  INESC TEC (formerly INESC Porto), University of Porto, 
Porto, Portugal, e-mail: vmiranda@inescporto.pt

Leonidas C. Resende  Electrical Engineering Department, Federal University of 
São João del-Rei – UFSJ, São João del-Rei, MG 36.307-440, Brazil, e-mail: leoni-
das@ufsj.edu.br

Suman Thapa  Power System Research Group, Department of Electrical and Com-
puter Engineering, University of Saskatchewan, Saskatoon, Canada, e-mail: suman.
thapa@usask.ca

Charles Tyson  Regulatory and Economic Studies Department, MISO, Saint Paul, 
MN, USA, e-mail: ctyson@misoenergy.org

Maria Vrakopoulou  Power Systems Laboratory, Department of Electrical Engi-
neering, ETH Zürich, Zurich, Switzerland, e-mail: vrakopoulou@eeh.ee.ethz.ch

Wijarn Wangdee  Electricity Research Centre, University College Dublin, Dublin, 
Ireland, e-mail: wijarn.wangdee@bchydro.com



1

1 � Introduction and Background

The primary objective of resource adequacy is making sure that there is enough 
generation capacity available when needed. The MISO is a Regional Transmission 
Organization and Independent System Operator in the United States that covers 
approximately 1.05 million square kilometers (406 thousand square miles), serves 
over 40 million people and comprises 135,000 MW of generation of which cur-
rently 11,000  MW is wind, Fig.  1. The wind is located at over 140 sites across 
the MISO footprint and is comprised of nearly 10,000 separate wind turbines. The 
MISO also operates a $27.5 billion annual energy market that incorporates 1,975 
Commercial Pricing Nodes (CPnodes). MISO is currently adding 1,000  MW of 
wind on its system every year, and it is expected to have 25,000 MW by 2025. As 
more new wind resources are being integrated into the MISO footprint and used 
in meeting the resource adequacy requirements, the capacity value to assign this 
intermittent resource has taken on ever-increasing importance. This chapter dis-
cusses the techniques and processes used to accurately evaluate and assign the cor-
rect value of capacity for the wind resources.

Since 2009, MISO has embarked on a process to determine the capacity 
value for the increasing fleet of wind generation in the system. The MISO pro-
cess as developed and vetted through the MISO stakeholder community consists 

Determining Capacity Credit for Wind Used 
in MISO Resource Adequacy
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of a two-step method. The first step utilizes a probabilistic approach to calculate 
the MISO system-wide effective load-carrying capability (ELCC) value for all 
wind resources in the MISO footprint. The second step employs a determinis-
tic approach using specific information about the location of each wind resource 
“period metric” to allocate the single system-wide ELCC value across all wind 
CPnodes in the MISO system, to determine a wind capacity credit for each  
wind node.

As the geographic distance between wind generation increases, the cor-
relation with the wind output decreases, as shown in Fig.  2. This leads to a 
higher average output from wind for a more geographically diverse set of wind 
plants, relative to a closely clustered group of wind plants. Due to the increas-
ing diversity and the interannual variability in wind generation over time, the 
process needs to be repeated annually to incorporate the most recent historical 
performance of wind resources into the analysis. So, for each upcoming plan-
ning year, the wind capacity credit values in MISO are updated to account for 
both the stochastic nature of wind generation and the ever-increasing integra-
tion of new resources into the system. The sections of this write-up and current 
results illustrated here are broken down to describe the details of the two-step 
method adopted by MISO for determining wind capacity credit for the 2012  
planning year.

Wind Farm Site

Fig. 1   MISO market footprint
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2 � Step-1: MISO System-Wide Wind ELCC Study

2.1 � Probabilistic Analytical Approach

The probabilistic measure of load not being served is known as loss-of-load proba-
bility, and when this probability is summed over a time frame, for example 1 year, 
it is known as loss-of-load expectation (LOLE). The industry-accepted standard 
for what has been considered a reliable system has been the “less than 1 day in 
10 years” criteria for LOLE. This measure is often expressed as 0.1 day/year, as 
that is often the time period (1 year) over which the LOLE index is calculated.

ELCC is defined as the amount of incremental load a resource, such as wind, 
can dependably and reliably serve while considering the probabilistic nature of 
generation shortfalls and random forced outages as driving factors to load not 
being served. Using ELCC in the determination of capacity value for generation 
resources has been around for nearly half a century. In 1966, Garver demonstrated 
the use of loss-of-load probability mathematics in the calculation of ELCC [1].

To measure ELCC of a particular resource, the reliability effects need to be iso-
lated for the resource in question, from those of all the other sources. This is accom-
plished by calculating the LOLE of two different cases: one “with” and one “without” 
the resource. Inherently, the case “with” the resource should be more reliable and 
consequently have fewer days per year of expected loss of load (smaller LOLE).

Wind Output Correlation vs. Distance Between Wind Sites

Fig. 2   Wind output correlation to distance between wind sites
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The new resource in the example shown in Fig. 3 made the system 0.07 day/
year more reliable, but there is another way to express the reliability contribution 
of the new resource besides the change in LOLE. This way requires establishing a 
common baseline reliability level and then adjusting the load in each case “with” 
and “without” the new resource to this common LOLE level. A common baseline 
that is chosen is the industry-accepted reliability standard of 1  day in 10  years 
(0.1 day/year) LOLE criteria.

With each case being at the same reliability level, as shown in Fig. 4, the only dif-
ference between the two cases is that the load was adjusted. This difference is the 
amount of ELCC expressed in load or megawatts, which is 300 MW (100 to −200) 
for the new resource in this example. Sometimes this number is divided by the name-
plate rating of the new resource and then expressed in percentage (%) form. The new 
resource in the ELCC example Fig. 4 has an ELCC of 30 % of the resource nameplate.

The same methodology illustrated in the simple example of Fig. 4 was utilized 
as the analytical approach for the determination of the system-wide ELCC of the 
wind resource in the much more complex MISO system. For each historic year 
studied, there were two types of cases analyzed, one with and one without the 

Fig. 4   ELCC example 
system at the same LOLE

Base System

Base System

+New

Resource
(Wind)

LOLE = 0.1 days/year
(or 1 day in 10 years)

LOLE = 0.1 days/year
(or 1 day in 10 years)

Decreased 

Load

Load

Increased

-200 MW

+100 MW
1000 MW
Nameplate

ELCC Example System at the same LOLE

Fig. 3   Example system 
“with” and “without” new 
resource

Base System

Base System

+ New
Resource

(Wind)

LOLE = 0.15 days/year

(or 1½ days in 10 years)

LOLE = 0.08 days/year

(or 0.8 days in 10 years)

Example System “With” & “Without” New Resource
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wind resources. Each case was adjusted to the same common baseline LOLE and 
the ELCC was measured off those load adjustments. Using ELCC is the preferred 
method of calculation for determining the capacity value of wind [2].

2.2 � LOLE Model Inputs and Assumptions

To apply the ELCC calculation methodology, MISO uses the Multi-Area Reliability 
Simulation (MARS) program by GE Energy to calculate LOLE values with and 
without the wind resource modeled. This model consisted of three major inputs:

1.	 Generator forced outage rates (FORs)
2.	 Actual historic hourly load values
3.	 Actual historic hourly wind output values

FORs are used for the conventional type of units in the LOLE model. These 
FORs are calculated from the Generator Availability Data System (GADS) that 
MISO uses to collect historic operation performance data for all conventional-type 
units in the MISO system as well as the capacity throughout the country.

To incorporate historical information, the actual 2005–2011 historical hourly con-
current load and wind output at the wind CPnodes are used to calculate the historic 
ELCC values for the wind generation in the MISO on a system-wide basis. The last two 
columns in Table 1 illustrate the ELCC results for the 7 years of MISO historic data.

2.3 � MISO System-Wide ELCC Results

MISO calculated ELCC percentage results for historic years 2005–2011 and at mul-
tiple scenarios of penetration levels, corresponding to 10, 20, and 30 GW of installed 
wind capacity. This creates an ELCC penetration characteristic for each year, as 
illustrated by the different curves in Fig. 5. The initial leftmost data point for each 
curve is at the lowest penetration point on each characteristic curve and represents 

Table 1   MISO historical wind ELCC values

Years MISO peak load 
(MW)

Registered wind 
max capacity 
(MW)

Historical wind 
penetration (%)

System-wide 
ELCC (MW)

System-wide 
ELCC (%)

2005 109,473 908 0.8    152 16.7
2006 113,095 1,251 1.1    495 39.6
2007 101,800 2,065 2.0      57 2.8
2008   96,321 3,086 3.2    395 12.8
2009   94,185 5,636 6.0    173 3.1
2010 107,171 8,179 7.6 1,548 18.9
2011 102,804 9,996 9.7 3,007 30.1
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the actual annual ELCC for that year, and the values are shown in the right column 
in Table 1. The values along each year’s characteristic curve at the higher penetra-
tion levels reflect what that year’s wind resource would have as an ELCC if more 
capacity had been installed in that year, over the same MISO footprint. The high-
end 30  GW level of penetration is an estimate of the amount of wind generation 
that could result in MISO, as the load-serving entities collectively meet renewable 
resource mandates of the various MISO States. Figure 5 illustrates the ELCC ver-
sus penetration characteristic of seven historical years, and how those characteristics, 
from multiple years, were merged to set an ongoing wind capacity credit percent.

The end of a second quarter is the convention used to set the capacity going 
into the next planning year. The penetration level at the end of the second quarter 
2011 was 9.7 %. Specifically as a percentage, the 2011 penetration level is the sec-
ond quarter 9,996 MW in column-4 of Table 1 divided by the 102,804 MW peak 
load in column-1. The vertical line in Fig. 5 illustrates where the most recent his-
torical 9.7  % penetration level intersects each year’s ELCC characteristic curve. 
The average of these seven intersect values is the 14.7  % system-wide ELCC 
assigned for the upcoming planning year 2012.

The ELCC characteristic of each year can be represented by a trend-line equa-
tion that has an R2 coefficient of no less than 0.9996. This is the basis for achiev-
ing accuracy with sparse or few years of data. Alternative attempts to directly find 
a composite suitable single-trend-line curve to represent the aggregate 28 ELCC 
characteristic points of all 7 years met with poor R2 coefficients in the range of 
0.04 to 0.11. Figure  6 shows the resulting trend line along with the associated 
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equation and R2 coefficient. While the trend line appears to represent a reasonable 
fit when compared to the dashed black line for the penetration trend in Fig. 5, the 
R2 value of 0.1106 indicates that the process would be mathematically inferior.

3 � Step-2: Wind Capacity Credit by CPnode Calculation

3.1 � Deterministic Analytical Technique

Since there are many wind CPnodes throughout the MISO system (143 in 2011), 
a deterministic approach involving an historic period metric is used to allocate 
the single system-wide ELCC value of wind to all the registered wind CPnodes. 
While evaluation of all CPnodes captures the benefit of the geographic diversity, 
it is important to assign the capacity credit of wind at the individual CPnode loca-
tions, because in the MISO market, the location relates to deliverability due to pos-
sible congestion on the transmission system. Also, in a market, it is important to 
convey the correct incentive signal regarding where wind resources are relatively 
more effective. The location and relative performance is a valuable input in deter-
mining the trade-offs between constructing wind facilities in high–capacity fac-
tor locations, which in the case of the MISO are located in more remote locations 
far from load centers, and requiring more transmission investment versus locating 
wind-generating facilities at less effective wind resource locations that may require 
less transmission build-out. Figure 7 illustrates that the most economical solution 
in the MISO is a combination of both remote and local wind resources.

The system-wide wind ELCC value of 14.7 % times the 2011 installed regis-
tered wind capacity of 9,996 MW results in 1,469 MW of system-wide capacity. 
The 1,469 MW is then allocated to the 143 different CPnodes in the MISO sys-
tem. The historic output has been tracked for each wind CPnode over the top 8 
daily peak hours for each year 2005–2011. The average capacity factor for each 

Fig. 6   Penetration trend 
by fitting to all 28 ELCC 
calculated points

y = -0.032 ln(x) + 0.0653
R² = 0.1106
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CPnode during all 56 (8 hours  ×  7 years) historical daily peak hours is called 
the “PKmetricCPNode” for that CPnode. The capacity factor over those 56  h and 
the installed capacity at each CPnode are the basis for allocating the 1,469 MW 
of capacity to the 143 CPnodes. MISO has developed business practice rules for 
the handling of new wind CPnodes that do not have historic output data and for 
CPnodes with less than 7 years of data.

Tracking the top 8 daily peak hours in a year is sufficient to capture the peak 
load times that contribute to the annual LOLE of 0.1 day/year. For example, in the 
LOLE run for year 2011, all of the 0.1 day/year LOLE occurred in the month of 
July, but only 4 of the top 8 daily peaks occurred in the month of July. Therefore, 
no more than 4 of the top daily peaks contributed to the LOLE. Other years have 
LOLE contributions due to more than 4 days; however, 8 days was found suffi-
cient to capture the correlation between wind output and peak load times in all 
cases. If many more years of historical data were available, one could sim-
ply utilize the single peak hour from each year as the basis for determining the 
PKmetricCPNode over multiple years.

3.2 � Wind CPn	ode Equations

Registered maximum (RMax) is the MISO market term for the installed capacity 
of a resource. The relationship of the wind capacity rating to a CPnode’s installed 
capacity value and capacity credit percent is expressed as follows:

(1)

(Wind Capacity Rating)CPnode n
= RMaxCPnode n × (Capacity Credit % )CPnode n

Fig. 7   Conceptual wind generation siting cost curve
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where RMaxCPNode n = registered maximum installed capacity of the wind facility 
at the CPnode n. The rightmost term in (1), the (capacity credit  %)CPNode n can be 
replaced by the expression (2):

where “K” for the year 2011 was found by obtaining the PKmetric at each CPnode 
over the 7-year period and solving expression (3):

This results in the sum of the MW ratings calculated for the CPnodes equal to 
the system-wide ELCC 1,479 MW. The values in (3) are

3.3 � Wind CPnode Capacity Credit Results and Examples

The individual PKmetric’sCPNode of the CPnodes ranged from zero to 39.9  %. 
The individual capacity credit percent for CPnodes therefore ranged from zero to 
32.5 %, by applying expression (2).

(2)K × (PKmetricCPnode n%)

(3)
K =

ELCC

143∑

1

RMaxCPnode n× PKmetricCPnode n

ELCC = 1, 469 MW

∑
RMaxCPnode n × PKmetricCPnode n = 1,803 MW

Therefore, K = 0. 8148 = 1, 469/1, 803.

.
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Example (1): For the best-performing CPnode through 2011 data, the 39.89 % 
PKmetric drives the capacity credit equal to 32.5  %  =  39.9  %  ×  0.8148 and 
therefore 32.5  % times that CPnode’s RMax would equal the unforced capacity 
(UCAP) rating for the best-performing CPnode.

Example (2): For the CPnode nearest the nominal 14.7  % capacity credit 
through 2011 data, the 18.2  % PKmetric drives the capacity credit equal to 
14.8  %  =  18.2  %  ×  0.8148 and therefore 14.8  % times that CPnode’s RMax 
would equal the UCAP rating for that CPnode.

Figure 8 shows how the system-wide 14.7 % ELCC value compares with the 
individual capacity credit percentages for the 143 CPnodes sorted in ascending 
order. The UCAP rating for each CPnode would equal the installed RMax capacity 
of the CPNode times the CPnode’s capacity credit percent.

4 � Conclusions

The MISO capacity credit method uses actual historical power output as a basis 
for setting the capacity rating of wind resources. While MISO is currently limited 
to applying 7 years of historical power outputs from the wind resources, by apply-
ing the developed ELCC and merging techniques, the results are converging and 
are reflective as if one had more years of historical data available for the process. 
Figure 9 illustrates the method over a range of limited data results. The leftmost 
point on the x-axis is the system-wide result while utilizing only 1 year of data; the 
second point represents having 2 years of historical data available for the process. 
Progressively, the seventh point illustrates where MISO is currently at with seven 
years of data, and a projection sensitive to penetration is shown. As data from each 
new successive year become available, the subsequent capacity credit for succes-
sive years is expected to stabilize and be more exclusively driven by penetration.

Fig. 9   Applying capacity 
credit method starting with 
2005 data
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While the process discussed here represents a consistent and repeatable way 
to calculate the MISO market needs, MISO will continue to track and consider 
adjustments that may be required to deal with further aspects of common-mode 
failure of wind generation. The MISO believes that the capacity credit for wind 
will be near 10 % as the system approaches 25,000–30,000 MW of installed wind 
generation.
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1 � Introduction

The nature of power system operation is changing worldwide. Plans are in place 
to increase the proportion of demand met through wind power throughout the 
European continent [1], Ireland [2], the Great Britain [3] and the United States [4]. 
In Europe, for example, this change is driven by EU policy which aims to reduce 
CO2 emissions and dependency on imported fuel. Primarily, this policy encour-
ages the growth of renewable generation including wind power [5]. It is expected 
that this increase in renewable generation will displace conventional generation—
causing a decrease in system operation costs as less conventional fuel is consumed 
in meeting system demand.

However, displacing conventional generation with non-synchronous renewable 
generation is creating new system operation challenges. Wind is by its nature vari-
able. It is of limited predictability, and control of the resource is limited to curtail-
ment. As wind cannot be forecast with perfect accuracy, additional reserve must 
be carried and conventional units must be operated in a more flexible, adaptable 
manner—leading to reduced efficiency through partial loading and an increase in the 
number of start-ups required for conventional power plants [6]. While the effects of 
this uncertainty can be disregarded for low wind penetrations, with high wind pen-
etrations, the uncertainty associated with wind forecasting error will impact upon the 
reliability, efficiency and economic performance of unit commitment [7, 8].

Ideally, the system will be scheduled in such a way that the expected value of 
the operating costs is minimized given the uncertainty of wind generation and the 
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constraints on the system. This can be approximated by treating unit commitment 
as a stochastic problem where the distribution of possible wind generation is rep-
resented by a number of probability-weighed time series scenarios. In many forms 
of stochastic unit commitment, the operational cost of a unit commitment is evalu-
ated for each of these scenario tree branches, similar to deterministic treatments 
of wind generation [9]. However, it is the expected cost of the entire scenario tree 
which is the objective to be minimized for the unit commitment.

While stochastic treatments of wind uncertainty have previously been investi-
gated, the contributions to solution quality of specific statistical properties of fore-
cast error have not been considered. These properties are available from analysis 
of the error between historical forecasts and realized data. In ideal circumstances, 
a system operator will have the necessary information prioritized in the form best 
suited for decision making. In practice, and in many prior studies, quantification of 
forecast error has often been limited to simple statistical properties such as variance 
and mean error and an assumed Gaussian distribution [10]. While traditional meas-
ures of forecast performance such as mean average error or root-mean-square error 
do not distinguish between distributions with the same mean and variance, more 
sophisticated methods of analysis of information content such as Renyi entropies 
indicate that significant information is missed by these simplifications [11, 12].

The WILMAR project developed a stochastic unit commitment scheduling 
model to analyse the integration of wind power in a large liberalized electricity 
system [13]. The WILMAR scheduling model uses a rolling sequence of scenario 
tree forecasts to model the impact of error information (see Fig. 1) This model has 
previously been used to study the benefits of stochastic treatment of wind uncer-
tainty over deterministic treatments as well as the impact of accounting for more 
of the wind uncertainty by increasing the frequency of rolling planning [8].

This chapter presents the methodology adopted for use in a Scenario Tree Tool 
(STT) constructed to allow for closer examination of the effect of forecast error 
assumptions and properties when combined with a suitable unit commitment model 
such as WILMAR [14]. Due to the requirement for direct control of the statistical 
properties in several areas of interest, ARMA series/scenario reduction methodolo-
gies were not considered suitable for this tool. A new STT was designed using a 
methodology based on a moment-matching technique where each time period, 
within a tree, has a defined variance, skewness and kurtosis. These statistics together 
with the autocorrelations of the scenario determine the values of the scenarios at that 
time period. While alternative heuristic methodologies have been proposed for deriv-
ing a scenario tree that matches specific moments [15], the methodology used in this 
tool is based on a nonlinear optimization moment-matching method [16, 17].

Section 2 briefly describes the sections of the STT and details the structure of 
the programme.

Section 3 describes the methodologies related to the STT. It details the meth-
odologies (moment matching and scenario grouping) used to generate wind and 
load scenarios within the current STT as well as the method used to account for 
diurnal/seasonal variations. In addition to describing the new methodology, it also 
briefly describes the preceding scenario reduction/ARMA series method which 
was used by older versions of the STT.
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Section  4 covers the methodologies used for calculating the replacement 
reserve, the amount of reserve required to be available after a short delay, from 
these trees as well as detailing, for completeness, the assumptions about spinning 
reserve, the amount of reserve required to be available from online generators at a 
given time and the semi-Markov chain methodology used to simulate forced out-
ages as required by the replacement reserve methodology.

Section 5 displays example graphical outputs from the preceding sections.
A conclusion is presented in Sect. 6.

2 � Structure of the Scenario Tree Tool

The overall structure of the STT can be seen in Fig. 2. Each functional box rep-
resents a separate module or submodule in the STT, which will be covered in the 
subsequent sections. Entries on the same level represent parallel operations which 
can be run simultaneously. The detail of these modules is as follows:

•	 Initial Inputs: this module loads and prepares data from input libraries.
•	 Scenario Generation: this module utilizes forecast error information to generate 

wind and load power scenarios and branching structures. This module contains 
multiple submodules detailed in Sect. 3 and Fig. 3.

Fig. 1   Illustration of rolling planning scenario trees
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•	 Forced Outages: this module utilizes semi-Markov Chains to calculate a random 
sequence of plant availability (Sect. 4.2).

•	 Reserve Scenarios: this module uses the outputs of the scenario generation 
and forced outage modules, along with plant capacity information to calculate 
replacement and spinning reserves (Sect. 4.1).

•	 Output Module: this module collates and converts the information from the 
other module into input files for the WILMAR model.

3 � Development and Methodology of the Scenario Tree Tool

In power plant scheduling, decisions must be made on both information known 
with certainty and uncertainty which must be forecasted. In stochastic unit com-
mitments, wind forecasts, demand forecasts and their forecast error can be 
accounted for by representative branching trees consisting of probability-weighed 
scenarios for available wind generation (Fig.  1). The number of scenarios has 
been restricted to minimize dimensionality in the unit commitment solution while 
retaining accuracy in the specified statistical information. For computational rea-
sons, the first stage of these trees is assumed to be known with perfect certainty.

Each scenario in the tree consists of an assigned probability and two time 
series values—one for load and one for wind. Each of these time series can be 

Fig. 2   Structure of the 
scenario tree tool
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represented as a forecast time series, common to all scenarios within the tree, and 
an error time series which, together with the error time series of the other scenar-
ios, represents the error distribution of the forecast.

In the All-Island Grid Study (AIGS), these scenario trees were generated by 
an STT using a methodology based on scenario reduction in ARMA series [18]. 
Specifically, the wind forecast error was based on the assumption of a Gaussian 
distribution of wind speed error with standard deviation dependent upon the fore-
cast horizon [19, 20].

In brief, scenario reduction aims to take an initially large number of scenarios 
and then remove scenarios until only the desired number remains while maintain-
ing as close a representation of the original distribution as possible according to 
the methodology given here:

1.	 Generate 1,000 wind speed scenarios, with a length of 36 periods, using 
ARMA (1,1) series of equal probability [21].

2.	 Add these scenarios to the wind speed forecast.
3.	 Convert these wind speed scenarios to wind power forecasts using a normal-

ized aggregated multi-turbine curve.
4.	 Scale these scenarios to the required level taking account of the spacial cor-

relation of the wind power forecast [22].
5.	 Calculate the Kantorovich distance between each pair of scenarios [23, 24].
6.	 Merge the probability of the scenarios with the lowest Kantorovich distance 

and delete the scenario of smaller probability.
7.	 Repeat steps 2 and 3 until the desired number of scenarios is achieved.
8.	 To create the branching scenario tree, this process is repeated omitting the 

hours in the third stage to reduce the scenarios further.

Due to the requirement for direct control of the statistical properties in several 
areas of interest, ARMA series/scenario reduction methodologies were not consid-
ered suitable for this tool. A new STT was designed using a methodology based on 
a moment-matching technique where each time period, within a tree, has a defined 
variance, skewness and kurtosis.

These statistics together with the autocorrelations of the scenario determine 
the values of the scenarios at that time period. While alternative heuristic meth-
odologies have been proposed for deriving a scenario tree that matches specific 
moments [15], the methodology used in this tool is based on a nonlinear optimiza-
tion moment-matching method [16, 17].

The overall structure of scenario generation can be seen in Fig. 3 where W is 
wind scenarios, L is load scenarios and P is the probability of each scenario. The 
steps in brief are as follows:

1.	 Set initial parameters and begin from the final stage of the tree.
2.	 Generate the scenarios for the current stage of the tree using moment 

matching (II.A).
3.	 Calculate the degree of similarity between each subset (size determined by the 

ratio of branching) in terms of Kantorovich distance and autocorrelations (II.B).
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4.	 Generate an optimal branching structure between the current stage and its 
predecessor using the subsets which minimize the disparity between merging 
scenario branches.

5.	 Repeat the preceding steps for the earlier stages using the branching structure 
and scenario values as further inputs into the objective function (1).

3.1 � Moment Matching

For each stage in the tree, a nonlinear optimization was used to produce a matrix 
of scenarios consisting of wind, demand and probability values matching the spec-
ified statistics as closely as possible. In addition, stages which have already been 

Fig. 3   Structure of the scenario generation



19Wind Power Scenario Tree Tool: Development and Methodology

determined are used to provide additional autocorrelation information for subse-
quent stages.

In each stage, the optimization acts to minimize the following objective func-
tion (1) while meeting the constraints (4, 5, 6) given the stages and branch connec-
tions that have already been defined:

where S is the set of statistical properties under consideration. Wn is the opti-
mization weight assigned to the statistical property. Sn are the components of the 
set S (mean, variance, kurtosis, skewness, the first four autocorrelations). xt , j is 
the set of values for scenario j during the given time step t . Pt are the probabilities 
assigned to the scenarios in time step t.

The individual components ( fn(x)) of the objective function (1) are calculated 
using the following formulas for the moment (2) and autocorrelation (3):

where Ml is the lth moment at time t . ACτ , j is the autocorrelation at time lag 
τ for scenario j. µt is the mean of the scenario set at time t . µk is the mean of the 
scenario k, and τ the time lag of the autocorrelation. k is the index of a given sce-
nario. jk are the indices of the scenarios which branch from scenario k.

In order to ensure probability remains consistent across scenarios and time peri-
ods, the constraints upon the objective function are as follows:

(1)
S∑

n=1

Wn ( fn (xt , Pt ) − Sn)
2

(2)Ml =

s∑

j=1

Pj

(
x j ,t − µt

)l

(3)ACτ , j =

N−τ∑

j=1

(Yi − µ j )(Yi+τ − µ j )

N∑

j=1

(Yi − µ j )
2

(4)
∑

Pjk,t = Pk,t−1

(5)
∑

Pt = 1

(6)Pjk,t > 0
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3.2 � Scenario Grouping

The scenario stages produced by moment matching are divided into groupings 
according to the branching of the scenario tree and the similarity of their autocor-
relations. This is done to ensure that when joined to the relevant scenario in the 
preceding stage, the autocorrelation of each branch of the tree is consistent across 
the stage boundaries. This prevents the creation of suboptimal scenario branch-
ing as a result of joining two disparate scenarios. Scenario ordering is determined 
by finding the ordering which minimizes the difference in autocorrelation and the 
Euclidean distance between the short term (stage II) values of each scenario.

where D ( j1, j2) is the measure of similarity, ED ( j1, j2) is the Euclidean dis-
tance and ACD ( j1, j2) is the difference in autocorrelation.

These groupings and scenarios are then used in the optimization of any subse-
quent moment-matching steps to provide consistent autocorrelations for each sce-
nario throughout the tree stages.

While the WILMAR model uses tree structures which branch evenly from each 
node at a time point and never merge, the scenario tree methodology allows for 
uneven branching and hence can generate topologies which have different scenario 
resolutions at different time horizons and in different regions of the tree.

3.3 � Diurnal and Seasonal Variation

The word “data” is plural, not singular. Wind and load forecasts exhibit different 
behaviour at different times of the year and day. In order to account for seasonal 
and diurnal variation, the error trees can be altered before being added to the indi-
vidual forecasts by the addition of a mean error adjustment time series, µ( j) to 
each scenario and the use of a scaling constant ε.

The values of µ( j) and ε are chosen through fitting the general forecast error to 
the forecast error of each seasonal period and time period within the day. This is 
achieved by subdividing the known forecast information by seasonal period, cal-
culating the same metrics as the main data and deriving the necessary adjustments 
from the proportional difference in standard deviation and mean between the gen-
eral case and the specific case. This process is repeated for the starting hour of the 
forecast to derive the adjustment for time of day.

(7)D( j1, j2) = ED( j1, j2) + ACD( j1, j2)

(8)ED( j1, j2) =

T∑

t=1

(
x j1,t − xl,t

)2

(
x j2,t

)2

(9)ACD( j1, j2) =

τ∑

z=1

(
ACτ , j1 − ACτ , j2

)2

(
ACτ , j1

)2
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4 � Replacement Reserve and Forced Outages

4.1 � Replacement Reserve

Replacement reserve is estimated for each individual scenario branch of wind and 
demand within the tree and is calculated using a similar methodology to that pre-
sented in the AIGS [18]. However, the AIGS used methods assuming prior sce-
nario reduction, which calculate reserve from the 90th percentile of the unreduced 
set of scenarios used to generate the scenario tree. This method can therefore 
not be used with the new STT as the new methodology uses moment matching 
and does not generate the large initial number of scenarios required by the AIGS 
methodology. Instead, the reserve is calculated from the 90th percentile of a dis-
tribution based on the variation in wind and demand error represented by those 
scenarios (10) according to the following method:

The n scenario combinations are mapped onto the wind scenario s from which 
they came, and the reserve is taken to be the 90th percentile of the difference 
between the reference power balance PRef  (11) and the forecasted power balance, 
P, for the scenario combinations n at each wind scenario s (12):

The power balance PRef  at time t is calculated for the realized values of wind 
WR, load L R and available conventional capacity C:

The power balance P of each combination of wind and load scenarios n is cal-
culated for the scenario wind WE and load L E as well as for the forced outages. 
Time t is calculated for the realized values of wind WR, load and available conven-
tional capacity C:

In addition to this, required spinning reserve is estimated from the largest 
infeed to the system and forecasted wind using the methodology presented in the 
AIGS [10].

4.2 � Forced Outages

While no new changes have been made to this methodology, it is included here 
for completeness as it is necessary for the reserve calculations as well as being 
a required input for the unit commitments it is currently in use with. Within the 
model, distinction is drawn between two types of outage (forced outages and 

(10)∆P (t0, f , s) = PRef (t) − P (t0, f , s)

(11)PRef (t) =

∑

gεG

C(g) + WR(t) − L R(t)

(12)P (r , t0, f , n) =

∑

gεG

C(g)Y (g, t) + WE (t0, f , n) − L E (t0, f , n)
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scheduled outages). As scheduled outages are defined by the user and by the test 
system, the STT simulates forced outages from the information provided about the 
test system including the information provided on scheduled outages.

The time series of forced outages for each conventional unit are simulated 
using semi-Markov chains [25], where the failure and repair rates are expressed 
by the mean time to failure and the mean time to repair. The methodology used 
in the STT is derived from that presented in the AIGS [18] and is detailed in brief 
below:

PAvailable is the probability that a plant will be available derived from the mean 
time to failure (MTTF) and mean time to repair (MTTR) for each plant.

PUnavailable is the probability that a plant will be unavailable and is equivalent to 
the forced outage rate (FOR. )

t f o is the total number of hours the plant is unavailable, and  is the total time 
period.

Figure 4 shows the structure of the forced outage algorithm. The initial state of 
the unit is determined by drawing a random number from a uniform distribution 
and comparing it with the full outage percentage (FOP) calculated according to 
Eq. (16).

The result of this determines whether or not the model will draw a time to 
repair (TTR) or a time to failure ((TTF)) from the Weibull distribution.

where the shape factor k = 1 is used for the TTF (as time to failure is captured 
by an exponential distribution), k = 5 is used for the TTR (time to failure repre-
sented by a bell-shaped distribution) and µ is calculated from MTTF and MTTR, 
respectively.

In the event that a forced outage extends into the period of a scheduled outage, 
the scheduled outage is run for its full time period as the scheduled repairs cannot 
be assumed to be equivalent in nature to those forced by the unscheduled outage.

(13)PAvailable =

MTTF

MTTR + MTTF

(14)PUnavailable =

MTTR

MTTR + MTTF
= FOR

(15)FOR =

t f o

t

(16)FOP =

FOR

MTTR

(17)f (t , µ, k) =

k

µ

(
t

µ

)k−1

· e
−

(
t
µ

)k
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Fig. 4   Algorithm for forced 
outage calculation
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5 � Results

This section presents example scenario tree outputs from the STT which demon-
strate the impact of changes in forecast error statistics such as kurtosis, skewness 
and autocorrelation between time periods.

Figure 5 gives an example of the points contained in a statistically accurate sce-
nario tree overlayed upon the realized and forecasted values (thick dashed line and 
line, respectively). In addition, a single scenario is shown (thin line with squared 
points) to demonstrate the impact of including autocorrelation in the optimization.

Figure 6 presents the same tree with inverted skewness. While it is similar in 
shape to Fig. 5, its shape appears transposed around the forecast as its skewness 

Fig. 5   Example autocorrelated scenario, thin line, imposed onto scenario tree points. Determin-
istic forecast is shown by the thick line, and realized value is shown by the thick dashed line

Fig.  6   Example of a figure caption. Scenario tree with inverted skewness. Note the tree is 
skewed to the opposite side of the deterministic forecast
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is of the opposite sign. The scenario tree constructed in this fashion assumes the 
opposite trend in terms of overestimating or underestimating the forecast.

Figure  7 presents a tree constructed from identical information without auto-
correlation considered. Due to this, the included scenario in this version contains 
considerably more sharp changes than the reality entails. As a result, despite the 
statistics of each individual time period being correct, the grouped scenarios do 
not present useful information due to prediction of frequent unrealistic ramp 
events.

Figure 8 demonstrates the effect of increasing kurtosis—this tree clusters close 
to the forecast and contains an increased number of extreme values.

Fig. 7   Example unautocorrelated scenario, thin line, imposed onto scenario tree points. Deter-
ministic forecast is shown by the thick line, and realized value is shown by the thick dashed line

Fig. 8   Scenario tree with increased kurtosis. Note the increase in points clustered at the mean 
and at the extremes
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In contrast, Fig. 9 demonstrates the effect of reducing kurtosis—a tree which 
is comparatively evenly spread throughout the distribution without many extreme 
values or much clustering around the forecast.

6 � Conclusion

This chapter presented the methodology of the WILMAR STT based on moment 
matching. Example outputs demonstrating some of the converted to a graphical format 
were also included. This tool is under development to examine the impact of wind fore-
cast error statistics on unit commitment for high wind penetration test systems.
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1 � Introduction

This chapter proposes a new way to detect and represent the probability of ramping 
events in short-term wind power forecasting. Ramping is one notable characteristic 
in a time series associated with a drastic change in value in a set of consecutive 
time steps. Two properties of a ramp event forecast, that is, slope and phase error, 
are important from the point of view of the system operator (SO): they have impor-
tant implications in the decisions associated with unit commitment or generation 
scheduling, especially if there is thermal generation dominance in the power sys-
tem. Unit commitment decisions, generally taken some 12–48 h in advance, must 
prepare the generation schedule in order to smoothly accommodate forecasted 
drastic changes in wind power availability. A comprehensive analysis of ramp 
modeling and prediction may be found in Ref. [1]. Some important works in this 
area are mentioned in the following paragraphs.
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The authors of Refs. [2, 3] define direction, duration and magnitude for ramps 
in two basic types: upward (or ramp-ups) and downward (or ramp-downs), related 
with meteorological phenomena [4]. To consider a ramp event, the minimum dura-
tion is assumed in Ref. [3] to be of 1 h; however, in Ref. [5], one finds events in 
intervals of 5–60 min. The magnitude of a ramp is given as a percentage of the 
wind farm nominal power.

In Ref. [2], the authors define a ramp event to be a power output change higher 
than 50 % of the wind farm nominal power, occurring over a period of 4 h or less. 
They define two metrics: forecast accuracy and ramp capture—these metrics cor-
respond to precision and recall defined in Sect. 5 below.

In Ref. [6], the authors combine feature selection and five data-mining algo-
rithms to predict power ramp rates 10–60 min ahead. They use the mean standard 
deviation, maximum and minimum wind speed over all turbines and also the meas-
ured wind farm power and power ramp rate. Considering that the huge number of 
predictors can degrade the performance, a boosting tree algorithm was adopted to 
select the most interesting features, which are used to train five data-mining algo-
rithms: multilayer perceptron, support vector machines, random forest, classifica-
tion and regression trees and pace regression.

In Ref. [7], the authors present the development, by WEPROG, of a special 
purpose tool that provides real-time uncertainty weather forecasts for wind ramp 
prediction. The tool uses data from their multi-scheme ensemble prediction system 
(MSEPS), taking 75 forecasts to represent uncertainty for several weather param-
eters. An extreme ramp event would be a change in power of more than 80 MW 
over an hour.

In Ref. [8], the authors present the development, by AWS Truepower, of a 
model that predicts wind ramps between 0 and 6 h ahead. The system capabilities 
include the following: a probabilistic ramp forecast module that can predict ramp 
rate probabilities for different time resolutions; a hybrid deterministic probabilistic 
ramp event forecast that outputs deterministic values; and a confidence interval for 
the events satisfying the ramp event definition and also the average power produc-
tion for 15 min intervals. The ramp detection methodology associates algorithms 
with ramp types. The system learns models for significantly different weather 
conditions. To access the performance of probabilistic ramp rate forecasts and to 
compare two forecast methodologies, the critical success index (CSI) [9] and the 
ranked probability skill score (RPSS) [9] were computed.

In Ref. [10], the authors identify ramps by mapping the initial wind power 
series into a signal that results from computing the average of time power differ-
ences. The authors propose two probabilistic forecasting methods aiming to pre-
dict wind power output using ramp information, as well as to predict ramp timing. 
One method uses information extracted from the translated space, ramp intensity 
and ramp forecast time information. A method predicting ramping translates the 
signal of an ensemble of wind power curves and then uses the ensemble votes to 
define a confidence interval for the ramp timing. The quality of results depends on 
the number of ensemble members predicting the interval time of ramp occurrence 
and the size of the time intervals.
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In Ref. [11], hard constraints are added to decision-making applications: for 
instance, in stochastic optimization or risk assessment. In Ref. [3], a probabilistic 
ramp event forecasting system is presented. It was shown that by using probabilis-
tic forecasting systems, higher economic benefits can be obtained.

The approach proposed in this chapter requires and departs from a probabilis-
tic wind power forecasting model. This model must allow a form of representa-
tion (implicit or explicit) of a joint probability density function (pdf) for the wind 
power, taking as variables the wind power prediction at different time stamps 
within the forecasting horizon. Such a representation already includes or takes 
into account the possible cross-time-step dependencies. This is a designation more 
general than just cross-correlations, which are called autocorrelation in the context 
of time series, and it involves cross-relations in moments of order higher than the 
second order. In theory, given such a pdf, a Monte Carlo sampling process may 
allow the generation of scenarios, each consisting of a sequence of predictions for 
a number of successive time steps, in a time series fashion.

Our new model departs from a scenario generation procedure and builds a new 
ramp detection process and a new probabilistic assessment phase. The scenario 
generation model acts as a sampling mechanism in the Monte Carlo sense. Then, 
a counting procedure to be detailed below and within the generated sample allows 
the definition of probabilities for each ramp event in each hour of the forecasting 
horizon.

A refinement of this procedure allows one to build a histogram, for each hour, 
of the probability of having a ramping event above a certain magnitude: ramping 
becomes represented as a random variable associated with a probability distribu-
tion. This leads to the use of the results for decision making because the risk (or 
probability) of having a ramp exceeding a given threshold is quantified.

The robustness of the method, its capacity to avoid false alarms or missed 
alarms and its tuning are addressed in this chapter. We present a comparative eval-
uation of performance in the ROC space (i.e., receiver operating characteristic, 
plotting true-positive vs. false-positive rates)—from a case study using data from a 
wind farm in the USA [12].

2 � Generating Wind Power Scenarios

The key piece of the method developed is the availability of an estimate for the 
probability density function (pdf) of the wind power prediction. This chapter will 
not discuss the methods to obtain such pdf estimate nor their validity. This pdf is 
taken as a multivariate function in a high-dimensional space (the number of dimen-
sions equal to the number of time steps represented in the forecasting horizon). 
The probability of a ramping event of a given nature then becomes assimilated to 
the calculation of a special marginal distribution associated with some matching 
filter describing, in the multivariate space, the ramping event defined. In order to 
do this, a discrete representation of the pdf by wind power scenarios is necessary.
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By a scenario, one understands a sequence of predicted wind power values 
spanning the entire prediction horizon, and by a discrete representation of the pdf 
one means a set of scenarios with an empirical density similar to the original pdf.

This is equivalent to some method of generating scenarios from a known pdf 
by using a sampling technique and turns the ramp event model into a Monte Carlo 
generating process.

Figure 1 shows a usual representation of the uncertainty associated with wind 
power in short-term 24-h-ahead prediction, based on quantiles [11], and a discrete 
representation. In the work reported in this chapter, a state of the art method to 
generate scenarios according to a Monte Carlo sampling was followed [11]. We 
should note that we use both historical data and weather forecasts as input to our 
scenario generator. Moreover, our ramp detection model is independent of the sce-
nario generation method used.

3 � Detecting Ramp Events

3.1 � Defining Ramps

A ramp is a change in power output (from a wind farm) with large enough amplitude 
and over a relatively short period of time. Figure 2 illustrates this concept. Ramps 
may be up or down; in both cases, when not predicted, they may cause serious prob-
lems in system operation and dispatch, with high costs and additional risks incurred.

There is no consensually accepted formal definition of a ramp. The ramp con-
cept is related with the power signal P(t), a defining threshold ΔPramp and a time 
interval Δt. Some definitions adopted by different authors are as follows.

Fig.  1   Representation of wind power forecast as intervals (quantiles gathered by pairs and  
centered in the median), on the left, and scenarios of wind power generation, on the right
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Definition 1  Reference [5]: A ramp event is considered to occur at the beginning 
of an interval, if the magnitude of the increase or decrease in the power signal, at 
time Δt ahead of the interval, is greater than the ramping threshold value, ΔPramp:

Definition 2  Reference [5]: A ramp is considered to occur in a time interval Δt if 
the difference between the maximum and the minimum power output measured in 
that interval is greater than the threshold value, ΔPramp:

Definition 3  Reference [6]: A ramp occurs if the difference between the power 
measured at the initial and final points of a time interval Δt is greater than a 
predefined reference value to the power ramp rate, ΔPramp:

The definitions above work directly with the wind power signal. Other 
approaches transform the signal into a more appropriate representation, for exam-
ple, considering k-order differences in the power amplitude (see Ref. [10]). Let, Pt 
be the wind power time series and P f

t
 the associated transformed signal that was 

obtained according to

(1)|P (t + ∆t) − P (t)| > ∆Pramp

(2)max (P [t , t + ∆t]) − min (P [t , t + ∆t]) > ∆Pramp

(3)|P (t + ∆t) − P (t)| /∆t > ∆Pramp

Fig. 2   Illustration of ramp events, defined as a change of at least 50 % in power in an interval of 4 h
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where nam stands for the number of averaged power differences to consider. 
Then,

Definition 4  Reference [9]: A ramp event is said to occur in an interval, if the 
absolute value of the filtered signal P f

t
exceeds a given threshold value, ΔPramp:

Definition 5  This is a new definition developed under the project. It uses a high-
pass filter, that is, a filter that passes high-frequency signals and attenuates (reduces 
the amplitude of) signals with frequencies lower than the cutoff frequency. The 
simpler high-pass filter can be formulated as follows:

It can only pass relatively high frequencies because it requires large (i.e., fast) 
changes and tends to quickly forget its prior output values (see Fig. 3). The parame-
ter α takes values in the interval [0;1]. Values near 1 imply that the output will decay 
very slowly but will also be strongly influenced by small changes in the input signal.

A constant input (i.e., an input with (x [i] − x [i − 1])) will always lead to an 
output decay to zero. A small α implies that the output will decay quickly, requir-
ing large changes in the input (i.e., (x [i] − x [i − 1]) is large) for the output to 
vary considerably.

Figure 3 illustrates the concept. The y signal may be further treated by a band 
filter, removing small peaks and only keeping the values above a certain threshold, 
compatible with the ramp definition accepted.

3.2 � Building a Probabilistic Ramp Representation

The detection mechanisms outlined above serve as indicator function for each time 
step in one scenario. When applied in a set of scenarios as a sample of the wind 
power pdf, we have in place a Monte Carlo process that can give as a result the 
probability of a specific ramp event and also an estimate of the ramping probabil-
ity distribution at each time step as a function of the ramp amplitude.

The general algorithm is as follows:

•	 Generate a large set of N wind power scenarios, sampled with the wind power 
forecasting model.

(4)P
f

t = mean{Pt+h − Pt+h−nam; h = 1, . . . , nam}

(5)
∣
∣
∣P

f
t

∣
∣
∣ > ∆Pramp

(6)y [i] = α(y [i − 1] + x [i] − x [i − 1])



35Probabilistic Ramp Detection and Forecasting for Wind Power Prediction 

•	 For each scenario, detect in each time step if there is a ramp event of each type 
defined.

•	 Count the total of ramp event detections in each time step for the whole sam-
pled set of scenarios, associated with each ramp type.

•	 Based on the sample ratio of number of detected events ni of type i over the size 
N of the sampled set, define probabilities for each ramp event in each time step 
of the forecasting horizon.

3.3 � Building Cumulative Ramp Probability Diagrams

A histogram may be built by defining a set of bins ∆b P, ranging from ΔPramp to 
a user-specified maximum power change, and define the vote counting for each 
histogram bin b

where the lower and upper bound of the histogram bins are bl and bu, and F is the 
ramp definition in terms of power change.

This allows the definition of a cumulative ramp probability diagram such as 
in Fig. 4. From diagrams such as these, a measure of risk can be associated with  
the probability p(ΔP  ≥  ΔPr) of having a ramp event with a change equal or 
greater than Pr.

(7)V b
k =

N∑

j=1

[∆
bl P < F(∆Pk

j ) < ∆
bu P]

Fig. 3   Top wind power, Bottom high-pass-filtered signal (α = 0.25)



36 C. Ferreira et al.

3.4 � Deciding that a Ramp Event Should be Declared

From the set of scenarios, one may thus define an empirical probability of exceed-
ing a given threshold ΔPramp:

By setting a cutoff threshold thr on the probability P(E), we may declare the 
occurrence of an event (ramp) at time step k if

This declaration converts the probabilistic ramp prediction into a binary choice 
that may lead to a decision to act and is needed in the operation context. Section 5 
presents a way to define the threshold thr in an optimal way.

4 � Application of the New Model

To verify the quality of the model, we organized an experiment built from real 
data from a large wind farm in the United States., in a time period of 12 weeks 
(21/10/2009–18/02/2010). We generated 5,000 scenarios (possible predictions 
of power) using Ref. [11]. The algorithm described above was run for each 24 h 
ahead, and cumulative ramp probability diagrams were built for windows of 3 h, 
counting and classifying possible ramps through the use of the high-pass filter to 
detect possible ramps and a band filter to eliminate small changes.

Figure  5 shows the case for one day. One can observe a point forecast, pro-
duced by the model in Ref. [13], and the actual values measured. Below, one has 
ramp cumulative probability diagrams, for 3-h steps, which provide information 
about the probability of having a ramp (given a definition) and also about the prob-
ability of the magnitude of such a ramp.

(8)P(Ek) =

1

N

N∑

j=1

[F(∆Pk
j ) > ∆Pramp]

(9)P(Ek) > thr

Fig. 4   A cumulative ramp probability diagram allowing risk evaluation for a ramping value ΔPr. 
ΔPmin is the minimum acceptable power variation that does not trigger a ramp event alarm

∆P
min

∆P
r

p(∆P≥∆P
r
)

p(∆P≥∆P
min

)
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These diagrams are rotated, relative to Fig.  4, and the vertical axis is associ-
ated with a ΔP value, while the horizontal axis corresponds to the probability of 
having a ramp event of a magnitude equal or greater than a given power threshold. 
It is possible to have at the same time some probability of having either ramp-up 
or ramp-down, representing a variety of behavior observed in the generated wind 
power scenarios for the same type of occurrence.

5 � Quality Analysis

Ramp event detection is a process where one may define hits (TP–true positives or 
TN–true negatives) and misses (FP–false positives, or false alarms, when a ramp is 
predicted but does not occur, and FN–false negatives or missed detections, when no 
ramp is predicted but occurs). The results below were obtained using a 3-h aggregation 
defining a ramp-up or -down of magnitude change higher than 25 % of the wind farm 
nominal power. This is the ΔPramp threshold value set for the time period Δt (= 3 h, in 
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this case). With this Δt value, definitions one, two and three lead to equal results. As for 
definition 4 (a moving average), the results come from setting nam = 2. With nam = 1, 
one gets almost the same results as when running definitions one, two and three.

Some widely used statistics to assess the quality of deterministic event detections 
defined in [0, 1] are precision (or sensitivity, or true-positive rate (TPR)), recall and 
specificity. Precision is defined as the ratio between the number of true positives 
and of positive forecasts. Recall is defined as the ratio between the number of true 
positives and of observed positives. Specificity is the fraction of true negatives, and 
the quantity (1–Specificity) may be called the false-positive rate (FPR).

These concepts can be used to assess the effect of the actions resulting from 
probabilistic information. It is evident that in probabilistic forecasts, a new degree 
of freedom is introduced: a threshold to define the occurrence of the event.

A technique that may help in choosing a threshold level that optimizes event 
detection is the receiver operating characteristic (ROC) curve, which is a graphi-
cal plot in the plane FPR × TPR and domain [0,1] ×  [0,1]. This plot is achieved 
by changing progressively a cutoff value that defines the detection of an event—this 
value is associated with the probability of observing a ramp, from examining all sce-
narios. In this ROC domain, the main diagonal (0,0)–(1,1) defines a prediction like 
a random guess. The optimum corresponding to perfect discrimination is the point 
(0,1) where all positives are detected and no negatives are taken as (false) positives.

Figure 6 displays the ROC curves that we obtain in the classification of ramp-
up events using definition 1, 4 and 5 and setting ΔPramp (amplitude of the band 
filter that eliminates small events) equal to 25 % of the nominal power. The model  
produces a better result than random guessing. The cutoff value that should be 

(10)Precision =

T P

T P + F P
; Recall =

T P

T P + F N
; Specificity =

T N

T N + F P

Fig. 6   ROC curves for definitions 1, 4 and 5
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adopted depends [14] on the relative costs of missing a positive and of assuming a 
positive when there is none. If these costs are equal, and assuming a uniform event 
distribution, then the slope of TPR/FPR equals 1 and the cutoff value to be adopted, 
to accept or reject an alarm, should be the one that leads to the tangent to the ROC 
curve with slope 1 that is closest to the optimum point (0,1). This is relevant in the 
application of the method to wind power ramp prediction: the cot of missing a posi-
tive may be related with emergency ramping of generators or power purchases at 
high spot prices or load disconnection; the cost of accepting a false alarm is related 
with higher unit commitment costs or higher cost of operational reserve allocated.

Assume binary forecasts, where each example can be labeled using one of 
two classes in the set {y,n}, and a forecast can output the corresponding {Y,N}. 
Consider that we know the distribution of yes and no events, that is, the proba-
bilities P(y) and P(n), and that we define the costs cost(Y;n) and cost(N;y) to be, 
respectively, the costs of predicting a event when no event occurs (false positive) 
and the cost of predicting no event when an event actually occurs (false negative). 
The slope of the line (a tangent line) that touches the ROC curve at the optimum 
operating point—a point with coordinates (FPR0, TPR0) that is associated with a 
probability threshold thr0—is given by P(n)cost(Y;n)/P(y)cost(N;y).

If this distribution is unknown, we can estimate the distribution from the obser-
vations. The point (FPR0, TPR0) where the tangent line and the curve touch is the 
optimum operating point, in the sense that this point minimizes the expected cost 
given by the following expression:

where P(Y;n) is the probability of predicting an event when it does not occur 
(probability of a false positive) and P(N;y) is the probability of predicting that an 
event does not occur when it really occurs (probability of a false negative).

Figure 7 presents the tangent lines and identifies the associated optimum oper-
ating point, including the optimal thr0 associated with Eq. (9), that we get by 
running definition 1 and setting two error cost configurations to predict ramp-up 
events. In Conf. 1, we define the error costs to be cost (N;y) = 200, that is, the cost 
of a FN (cFN), and cost (Y;n) = 10, that is, the cost of a FP (cFP). In Conf. 2, we 
consider cost (N;y) = 10 and cost (Y;n) = 200.

The ROC curve is annotated with the corresponding empirical probability val-
ues, observed on the set of scenarios. The point obtained from optimizing Eq. (11) 
is associated with the optimal threshold thr0 value. If the probability calculated 
is above thr0, one should declare the prediction of occurrence of a ramp; if not, a 
prediction of no ramp. Referring to Fig. 5, this declaration was produced for the 
intervals marked with a star, where the probability of a ramp of magnitude above 
25 % of the wind farm nominal power exceeds the optimal thr0 ≈  0.2 obtained 
from optimizing Eq. (11) over the ROC curve.

Figure 8 plots the expected cost for a set of probability thresholds. These plots 
were generated by running definition 1 to identify ramp-ups. In these figures, 
we can easily identify the minimum expected costs that define the cutoff probabil-
ity threshold corresponding to the optimum operating point.

(11)EC = P(Y ; n) × cost (Y ; n) + P(N ; y) × cost (N ; y)
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Forecasters that assign a probability to each event often use the Brier Score 
(BS) [15], which is a score function that measures the average squared deviation 
between predicted probabilities and the actual outcomes. It is computed as

where Xt is the event forecast probability; Yt is the actual outcome (0 if not 
happened, 1 if happened) and N—number of forecasting instances. It is obvi-
ous that the optimum Brier Score would be of 0, for perfect sharp predic-
tions. The  Brier Score obtained in the experiment being described gave the 
values described in Table 1. By inspecting these results, we can see that by using 

(12)BS =

1

N

N∑

t=1

(Xt − Yt )
2

Fig.  8   Expected cost using definition 1: cFN  =  200; cFP  =  10, on the left, and cFN  =  10; 
cFP = 200, on the right

Fig. 7   ROC curve and tangent lines for definition 1 and two cost configurations

Conf. 1 (cFN=200; cFP=10)

Conf. 2 (cFN=10; cFP=200)
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definition 1, we get a lower BS when detecting ramp-ups. In contrast, definitions 4 
and 5 get lower BS for detection of ramp-down events.

Another useful metric is the critical success index (CSI), defined as follows:

The CSI metric takes values in the interval [0;1], where 1 means correct predic-
tion. CSI measures the fraction of observed and/or forecast events that were cor-
rectly predicted.

In Table 2, we present CSI values obtained in experiments to predict upward 
ramp events, for definitions 1, 4 and 5 and considering phase errors for time lags 
of 2 and 4 periods. The probability cutoff value is 0.3. The results for ramp-down 
display a similar performance. Regarding other definitions and parameters, we 
can say that the performance of our model improves when we consider large sizes 
of the time step (Δt), large aggregation windows and, obviously, consider phase 
error. Overall, we can say that we obtain the best results of our experiments by 
running the detection process for ramp definitions 4 and 5.

6 � Ramp Forecasting and Unit Commitment

Figure  9 makes explicit the role of probabilistic ramp forecasting. By setting 
alarms at specific hours and by defining probabilities associated with ramp pres-
ence and amplitude, the model establishes risk levels for ramp events—in the form 
of a probability of having a ramp of a given amplitude or greater. A system opera-
tor may then decide, based on the risks he is willing to take, whether to accept a 
specific unit commitment or to hedge against the adverse event and plan for some 
extra reserve, at some cost. This also indicates how system operators may take full 

(12)CSI =
TP

TP + FN + FP

Table 1   Brier scores for the probabilistic forecasting system for both ramp types

Ramp-up Ramp-down

D1 D4 D5 D1 D4 D5

BS 0.078 0.091 0.082 0.080 0.086 0.076

Table  2   CSI comparison against a point forecast system: CSI for three ramp definitions and 
considering phase errors with a lag of 2 and 4 h

Ramp-up–CSI

Probabilistic forecast Point forecast

Phase error D1 D4 D5 D1 D4 D5

– 0.12 0.20 0.15 0.09 0.17 0.08
2 0.30 0.36 0.32 0.18 0.31 0.24
4 0.38 0.45 0.38 0.26 0.37 0.32
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advantage of probabilistic wind power forecasting models—to adopt a stochastic 
model for the unit commitment exercise. However, even if a classical model is 
used, the reasoning about ramp risks and hedging applies.

7 � Conclusions

Ramp forecasting has been recognized as a difficult exercise, related with predic-
tions about the derivative of a time series. But, it is of the utmost importance to 
take into account the possibility of ramp events, especially in systems with high 
penetration of wind and where the remainder generation resource is dominantly of 
the slow thermal type, such as coal and nuclear power. The problem is somewhat 
less serious if the power system has significant hydro generation or gas turbines—
but the system security and costs incurred in mitigating risks, that is, the cost of 
adopting hedging policies, are still very important.

To adequately assess costs and risks, a probabilistic approach is mandatory. 
This chapter brings to light a new approach to define a probabilistic model for 

Implicit pdf model

Large discrete scenario set

Condensed discrete scenario 
set

Stochastic Unit Commitment

Ramp analyzer

Alarm generator

Hedging

Fig. 9   Conceptual modules relating scenario generation, unit commitment and ramp event anal-
ysis
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ramp forecasting, in a form that is useful for system operators that have to decide 
generation unit commitment. The output is a histogram, at every hour, indicating 
the probability of a ramp exceeding a certain threshold, for all magnitudes above 
a minimum ramp level defined. The approach does not provide dispatch decision 
suggestions—however, the declaration of a ramp event based on a probability 
threshold contributes to the decision process: it may serve as input to a hedging 
process, where the operator may decide to run the risk of being subject to a ramp 
event (e.g., in the case of a low probability for an event of a damaging magnitude) 
or to hedge by changing the unit commitment in an appropriate (more costly) way 
to avoid problems in case the event materializes.

Tests with real data from a US wind farm have proved the validity and usefulness 
of the approach. The experimental results, evaluated under the ROC curve concept, 
show clear advantages of the probabilistic forecaster over point forecasts and ran-
dom guesses. It must be said that the quality of ramp forecasting depends a great deal 
on the quality of meteorological forecasts, translated into numerical weather models, 
which supply data to the general short-term wind power forecasting problem.

In sum, the work presented here, by assigning a probability to each possible ramp 
magnitude, is a clear step forward, providing a methodology useful to the industry.
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1 � Introduction

Wind power is regarded as the most suitable environment friendly alternative to 
conventional bulk power generation. Many countries around the world are rapidly 
installing wind farms, and several nations have already arrived at a position where 
a significant portion of their electric energy supply is contributed by wind power. 
Wind power generation is mainly dependant on the wind characteristics at the par-
ticular location and has an uncertain and random nature. Wind power, therefore, 
cannot be dispatched in the same way as the conventional generating units. In a 
wind-integrated power system, the system operator has to appropriately commit 
conventional generating units taking into account the wind power that may be avail-
able during the committed time period in order to satisfy the projected load with an 
acceptable degree of reliability. In an electric power system with low wind penetra-
tion, variations in wind power generation can be absorbed by the system through 
the use of the short-term reserves [1]. System operators face considerable challenges 
in keeping the balance between the generation and the demand with an acceptable 
degree of reliability when the wind power penetration is significant. Accurate wind 
power prediction becomes very important in determining adequate operating reserve 
in wind-integrated power system operation. There is a wide range of different 
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methods for short-term wind power prediction. Reference [2] presents a chrono-
logical review of the various available techniques. The methods can be broadly 
categorized into two approaches known as physical and statistical approaches. The 
physical approach makes use of numerical weather prediction (NWP) models to 
predict the wind speed which is then converted into wind power using a physical 
wind to power conversion model [3]. Statistical methods such as the autoregressive 
moving average (ARMA) model [4] have also been used for short-term wind power 
prediction [5]. Physical models are suitable for forecasting horizons of 8–48 h, and 
a pure statistical model may be more suitable for a relatively shorter horizon such as 
1–6 h. System operators often use a persistence model [6] for short-term prediction 
because of its simplicity. This model assumes that the wind condition in the next 
short time interval will be similar to the present or initial condition, and the system 
is operated assuming the wind power in the next time interval will be equal to or 
a fixed percentage of the current wind power generation. The uncertainty and the 
risks associated with such deterministic wind power commitment are, however, not 
considered. A novel method developed by the power system research group at the 
University of Saskatchewan quantifies the uncertainty of wind power generation in a 
short future time using a conditional probability approach [7]. References [8, 9] fur-
ther extend the conditional probability approach to evaluate the risk of wind power 
commitment in a short future time of 1–2 h. A simplified method to commit wind 
power in a lead time of 1 and 2 h based upon a risk criterion known as the wind 
power commitment risk (WPCR) is presented in [10]. An appreciation of the availa-
ble wind power a few hours ahead (1–4 h) can assist the system operator to optimize 
the required regulating margin. Additional knowledge of wind power availability a 
day-ahead can be used to assist in scheduling longer term reserves [3]. This chapter 
presents an investigation of the conditional probability approach in quantifying the 
risk of wind power commitment as the lead time is extended from 1–2 h to 24 h.

2 � Wind Power Model

The basic wind power model consists of a wind speed model and a wind turbine 
generator (WTG) model. The wind speed in a short future time depends upon the 
initial time wind speed at the site. The conditional probability method can be used 
to assess the risk of wind power commitment utilizing the knowledge of the initial 
condition. It requires a large number of data points to create a valid probability dis-
tribution and an ARMA model developed for a particular wind site can be employed 
to simulate the required data. The hourly wind speed data at Regina, Saskatchewan 
in Canada, obtained from Environment Canada are used in this study. The ARMA 
model for the Regina wind site is reported in [11] and is presented in (1).

(1)

yt = 0. 9336yt−1 + 0. 4506yt−2 − 0. 5545yt−3 + 0. 111yt−4

+ αt − 0. 2033αt−1 − 0. 4684αt−2 + 0. 2301αt−3

αt ∈ NID (0,0. 409423
2)
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Figure 1 presents a sample of the wind speed statistics at Regina obtained from 
Environment Canada. The annual hourly mean wind speed and standard deviation 
(SD) at Regina are 19.52 km/h and 10.99 km/h, respectively.

The wind power curve of a typical WTG is shown in Fig. 2. The power output 
is zero for all wind speeds less than a minimum value called the cut-in speed Vci. 
The wind speed and power output follow a nonlinear relationship for any wind 
speed within the range of the cut-in and the rated speed Vr. The power output is 
constant at the rated capacity for all speeds greater or equal to the rated capacity. 
The power output is, however, zero at or above the cutout speed Vco as the WTG 
is shut down for safety reasons during such extreme wind speed conditions. The 
speed power relation is shown in (2).
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Fig. 1   Hourly mean and standard deviation (SD) of the wind speed at Regina (Hour 1–48)

Fig. 2   Wind-power characteristics of a typical WTG with 15, 50 and 90 km/h as the cut-in, rated 
and cutout speed, respectively
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The A, B and C parameters of (2) are presented in [12].

3 � Wind Power Commitment Risk

The wind speed in the next few hours depends on the wind speed at the present 
time, referred to as the initial wind condition in this study. Figure 3 presents the 
probability distributions of the wind speeds at Hour 12 given the three differ-
ent initial conditions of 20, 25 and 30 km/h at Hour 10. The Regina wind speed 
ARMA model is given in (1). The probability distributions of the wind speed, con-
ditional on the initial wind speeds, are very close to the normal distribution. It can 
be observed that the wind speed distribution moves toward a higher wind speed as 
the initial speed increases. This indicates that the short-term wind speed distribu-
tion is highly dependent on the initial wind condition.

Figure 4 considers the wind speed distribution at Hour 12 conditional on the 
initial wind speed of 25  km/h at Hour 10. The wind power curve described in 
Fig. 2 is also contained in Fig. 4 which shows that initial wind power is approxi-
mately 10 % of the rated capacity. If the wind power commitment for the lead time 
of two hours was made based upon a pure persistence model, the capacity value of 
the wind power would be assessed at 10 % of the rated capacity. The wind speed 
distribution, however, shows that there is a significant probability that the wind 

(2)

Pt = 0 for Vci > SWt > Vco

=

(
A + B · SWt + C · SW

2
t

)
Pr for Vci < SWt < Vr

= Pr for Vr < SWt < Vco
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power will be less than the committed value. The shaded area in Fig. 4 gives the 
probability that the wind power in the lead time will be less than the committed 
value. This probability is designated as the WPCR [9].

It can be observed from Fig. 4 that the WPCR increases as the committed value 
of wind power increases. The capacity value of wind power in a short future time 
depends upon the initial condition and the amount of risk the system is able or pre-
pared to accept [10].

Figure  5 shows the WPCR of committing 100  % of the initial power for the 
lead times of 1, 2 and 4 h corresponding to three initial conditions designated as 
Case A, B and C at Hour 10. The three cases corresponding to the wind speeds of 
25, 30 and 34 km/h give power outputs of 10, 20 and 30 % of the rated capacity, 

Fig. 4   Evaluation of wind power commitment risk (WPCR) for a lead time of 2 h

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4

W
P

C
R

Lead Time (hours)

Case A

Case B

Case C

Fig. 5   WPCR of using a pure persistence model for short-term wind power commitment



50 S. Thapa et al.

respectively. These power output levels would be the forecast values using a pure 
persistence model approach. As shown in Fig. 5, the WPCR varies from 0.36 to 
0.51 as the lead time increases from 1 to 4 h.

Figure  6 shows the variation in WPCR as the wind power commitment is 
reduced from 100 to 80 % of the initial power for a lead time of 1 h. The WPCR 
obviously decreases as the wind power capacity value is reduced. The studies also 
show that the risk associated with a deterministic commitment policy is not con-
sistent with different initial conditions and lead times.

It might be considered desirable to have the risk maintained at a level dictated 
by a managerial decision. Figure 7 presents a scenario in which the capacity values 
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of the wind power at the specified lead times are constrained by a WPCR criterion. 
The initial condition corresponds to Case B at Hour 10 where the initial wind power 
is 20 % of the rated capacity. It can be seen that the wind capacity value goes up 
as the WPCR criterion value is increased, which indicates that wind power can be 
assessed a higher capacity value if the system is prepared to accept a higher level of 
risk. It can also be seen from Fig. 7 that the wind capacity value decreases for a given 
WPCR criterion as the lead time increases. For example, the capacity value decreases 
from 14 to 7 % of the rated capacity which is 70 and 28.6 % of the initial power, 
respectively, as the lead time is increased from 1 to 4 h at the WPCR criterion of 0.2.

3.1 � Impact of Lead Time

The studies presented in the previous sections consider short future times such as 
1–4  h. This section presents a study of wind power commitment and the associ-
ated WPCR as the lead time is extended to 24 h. Figure 8 shows the statistics of the 
wind speed distribution with lead time for the two initial conditions at Hour 10 des-
ignated as Case A and B in the previous section. It can be seen that the mean value 
of the wind speed decreases, while the SD increases as the lead time is increased. 
The increase of the SD is an indication that the variability and, therefore, the uncer-
tainty will increase moving into the future. The mean wind speed varies from 24.37 
to 20.43 km/h for Case A, while it varies from 28.78 to 21.37 km/h for Case B as 
the lead time increases from 1 to 24 h. The plots of the mean wind speed show a 
sharp decline up to a lead time of about 10 h and then settle down as the lead time 
further increases. The SD on the other hand increases from 4.86 to 9.9 km/h for 
Case A and 5.03–10.07 km/h for Case B as the lead time increases from 1 to 24 h. 
The plots of the SD rise sharply up to about 10 h and become almost constant as 
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the lead time is further increased. The two plots of mean values for the two initial 
conditions start some distant apart, gradually tend to converge up to a lead time of 
about 6 h and then maintain a spread of about 1 km/h as the lead time is further 
increased. The plots of the SDs are relatively close to each other for both cases at 
all the lead times. This indicates that the variability is quite independent of the ini-
tial conditions and is mainly dependent on the lead time.

The capacity value of wind power at a WPCR criterion of 0.4 is presented in 
Fig.  9 for the three initial conditions in Case A, B and C at Hour 10. The lead 
times considered are up to 24 h from the initial time. The capacity value of wind 
power as obtained from the conditional wind speed distribution varies from 10.17 
to 1.5 % of the rated capacity for Case A. The capacity values similarly vary from 
20.78 to 2.3 % and 31.91 to 2.3 % of the rated capacity for Case B and C, respec-
tively. The WPCR constrained wind capacity value decreases significantly with 
lead time for any initial condition and reaches a relatively small value when the 
lead time is greater than 12 h. Figure 9 shows that the three curves for the initial 
conditions are significantly apart at small lead times (e.g. 1–6 h), but become close 
to each other at a relatively small capacity value as the lead time increases beyond 
12 h. This suggests that the impact of the initial condition on a future wind capac-
ity value decreases significantly as the lead time is increased beyond 12 h, and the 
impact is insignificant in day-ahead wind power commitment analysis.

3.2 � Impact of WPCR Criteria

The selection of a suitable WPCR criterion is a management decision which 
should consider the operating strategy, types and sizes of the conventional 
units and the reserves that can be made available during fluctuations in wind 
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power generation. Figure  10 presents the wind power commitment in a short 
future time period ranging from 1 to 24  h constrained by three WPCR crite-
ria of 0.4, 0.3 and 0.2 given that the wind power at the initial time is 20  % 
of the rated capacity (Case B). The capacity value varies from 20.78 to 2.3, 
18.36–0.86 and 13.97–0 % of the rated capacity, respectively, at the WPCR cri-
teria of 0.4, 0.3 and 0.2 as the lead time increases from 1 to 24 h. Figure 10 
shows how the wind power profile rises as the risk criterion increases allowing 
a higher capacity value of the wind power to be committed in the lead time 
considered. It can also be seen that the day-ahead capacity value assigned to 
the wind power is essentially zero at WPCR criteria of 0.3 and 0.2. A higher 
risk criterion of 0.4 or higher could be applied for such long horizons as there 
is time for the system operators to employ available means to mitigate unfa-
vorable consequences due to low wind situations by making operating adjust-
ments a few hours ahead.

4 � Day-ahead WPCR

As noted earlier, knowledge of short-term wind power can assist the system to 
optimize the required regulating capacity. It is also necessary to assess the day-
ahead wind power to schedule the conventional units. Physical methods employ-
ing NWP are often used to predict wind power over such a long horizon. The 
physical methods, however, also contain forecasting errors, and hourly models 
are used to mitigate the errors of wind power prediction and determine the spin-
ning reserve requirements. It has been observed from the preceding section that 
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the impact of initial wind conditions on future wind capacity values decrease  
significantly beyond lead times of 10–12  h and have negligible impact in day-
ahead wind capacity assessment. Conditional probability considerations used for 
short-term (i.e., 1–4  h) wind power commitment are not required for day-ahead 
wind power assessments, and historic wind speed statistics at the particular hour 
without consideration of initial wind conditions can be used to provide a probabil-
istic day-ahead wind capacity value.

Figure  11 presents the probability distributions of the wind speed at Hour 
11 and Hour 14 which represent lead times of 1 and 4 h, respectively. The left 
end of the figure has the distributions shown by the solid lines without markers 
obtained from the hourly wind speed distributions in the ARMA model. These 
distributions are designated as unconditional distributions in Fig. 11 as they do 
not depend upon any initial conditions. The figure also shows the conditional 
wind speed distributions at the two lead times for the Case B and C conditions. 
The conditional wind speed distributions for lead times of 1 and 4 h move dis-
tinctively toward higher wind speeds as the initial conditions change from lower 
to higher wind speeds. The distributions for a lead time of 24  h are similarly 
presented in Fig.  12. Contrary to the distributions shown in Fig.  11, the prob-
ability distributions for a lead time of 24 h are very similar for both initial condi-
tions and they are close to one obtained from the hourly wind speed probability 
distribution. This further illustrates that the initial conditions are significant in 
short-term wind power commitment but not in longer horizons such as those in 
day-ahead commitment. More importantly, it also indicates that the historic wind 
speed statistics can be directly used to assess approximate day-ahead capacity 
values for wind power.
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4.1 � Approximate Day-ahead WPCR

The previous section illustrates that historic wind speed statistics can be directly 
used to assess the day-ahead capacity value of wind power in day-ahead gen-
eration planning. Sufficient historic wind speed data are usually not available to 
many system operators. A simplified method requiring limited data for day-ahead 
wind capacity assessments could, therefore, be very useful to system operators. 
The probability distribution obtained from historic wind speed data collected over 
a large number of years, or obtained from simulated data using the appropriate 
ARMA model as shown in Fig.  12 can, however, be approximated by a normal 
distribution based on the mean wind speed and the SD for the particular hour. 
Figure  13 shows the cumulative wind speed probability distributions obtained 
from the wind speed data simulations using the ARMA model and the normal dis-
tribution using the hourly wind speed statistics at Hour 34 which is the 24 h of 
lead time referred to Hour 10 as the initial time. In both the methods, the negative 
values of the wind speed are converted to zeroes. The ordinate in Fig. 13 gives the 
WPCR which is the probability that the wind speed would be less than the value 
given in the abscissa. It can be seen that the WPCR evaluated using the two meth-
ods are approximately equal.

The simplicity of the approximate normal distribution method makes it easy 
to apply in system operation, and the method only requires the mean wind speed 
and the SD for a particular hour. The method can be used to assess the day-
ahead capacity value of wind power for a selected WPCR criterion. The simpli-
fied normal distribution method has been applied to assess the capacity values 
of wind power for each hour of the next day. Figure 14 presents the wind power 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

P
ro

b
ab

ili
ty

Wind Speed (km/h)

24 hours, unconditional  distribution

24 hours, Case B

24 hours, Case C

Fig.  12   Wind speed probability distributions (conditional and unconditional) for a 24  h lead 
time



56 S. Thapa et al.

commitment for Hour 24–48 for WPCR criteria of 0.5, 0.4 and 0.3. The capacity 
value varies from 1.5 to 8.5 % of the rated capacity at the WPCR of 0.5 during the 
hours considered with an average of approximately 5 % of the rated capacity over 
the time considered. The capacity value decreases to 0–4.3 % with an average of 
approximately 2 % of the rated capacity at the WPCR of 0.4 over the same period. 
It follows the same hourly trend as that shown in Fig.  1. It is also noticeable 
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that the wind has almost no capacity value when the WPCR criterion is reduced 
to 0.3. It should be noted that a low WPCR criterion such as 0.3 does not totally 
negate the capacity value of wind power while making a day-ahead commitment. 
The system operator should consider accepting a higher WPCR such as 0.5 while 
scheduling the units and adjust the regulating capacity later in the day employing 
the hourly models using the conditional probability method.

5 � Conclusion

The capacity value of wind power in a short future time is driven by the initial 
conditions. The conditional probability approach can be used to quantify uncer-
tainties associated with short-term wind power commitment. Risk-based methods 
are useful in assessing the capacity value of wind power as they allow the system 
operator to appropriately manage the short- and long-term system reserves. The 
conditional probability approach is useful in assessing the WPCR and the capac-
ity value constrained by the WPCR criteria for short future times such as 1–4 h. 
The studies presented show that the impacts of initial conditions weaken as the 
lead time increases and initial conditions are not the driving factor when long lead 
times such as 24 h are considered. The historic hourly wind speed probability dis-
tributions without the consideration of any initial condition may be used to assign 
day-ahead capacity value to a wind farm based on a suitable WPCR criterion. The 
method can be simplified using a normal probability distribution of wind speeds 
for the particular hour based on the mean wind speed and the SD for the given 
hour. Sophisticated and complex methods of wind power prediction are not read-
ily applied in practice. The approximate normal distribution method presented in 
this chapter can be easily applied and should be useful for day-ahead unit schedul-
ing. The conditional hourly models may then be used for shorter term wind power 
commitment considering appropriate WPCR criteria.
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1 � Introduction

Security in power systems is an important topic of research, and it has been  
studied extensively over the last years. Following Refs. [1, 2], security of a power 
system refers to its ability to survive contingencies while avoiding any undesirable 
disruption of service. To quantify security, the concept of N-1 security assessment 
has been developed (see e.g., Ref. [3]). In this context, we consider the system to 
be in an N-1 secure state, if any single component outage does not lead to cascad-
ing failures. Therefore, designing the system to be N-1 secure provides a way to 
prevent the network from widespread blackouts, which in most cases develop as a 
result of cascading events [4].

Toward this objective, Refs. [5, 6] considered FACTS devices and designed 
their setting in an optimal way to enhance the steady state security of the system. 
In Ref. [7], the author used a metric different from the N-1 security criterion and 
proposed a model predictive control scheme to achieve a high level of security 
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against large disturbances. From a market point of view, the authors of Milano 
et al. [8] proposed a method for incorporating contingencies and stability constraints 
by making use of a voltage constrained optimal power flow.

The expected increase in the installed capacity of renewable energy sources 
highlights the necessity of revisiting the existing N-1 security assessment method-
ology, so as to take into account their intermittent nature, which can have a major 
impact on the way power is distributed across the network. From an economic per-
spective, Bouffard and Galiana [9] designed a stochastic forward electricity market 
clearing problem, allowing for higher wind power penetration while meeting the 
security requirements. The authors of Grijalva et al. [10] defined a set of security 
metrics to capture the different aspects of a large-scale wind integration project.

In Ref. [11], the authors attempt to quantify the value of wind at different net-
work locations by solving a security constrained unit commitment problem. In a 
similar setting, Wang et al. [12] formulated a stochastic unit commitment program 
for a combined wind–thermal system, but do not take security constraints explic-
itly into account in the design process. Instead, a subsequent step is performed, 
to measure the frequency of insecure instances. In Ref. [13], a simulation-based 
analysis was carried out to evaluate the N-1 security of the Finnish transmission 
system, in case of a simultaneous grid fault and a sudden decrease of the wind 
power infeed.

In this work, we propose a novel framework, which provides probabilistic 
guarantees when designing an N-1 secure day-ahead dispatch for the generating 
units in systems with high amount of fluctuating power sources. Note that, as in 
most of the related literature, we consider as preventive actions only the genera-
tion dispatches. Additional controls, including changes in the topology configura-
tion, the phase shifting transformer settings, etc., are not taken into account. We 
integrate the security constraints, emanating from the N-1 criterion, to a DC opti-
mal power flow program [14], and formulate a stochastic optimization problem 
with chance constraints, which consist a probabilistic version of the transmission 
capacity constraints. To transform this problem to a tractable one, we employ the 
so-called scenario approach [15, 16]. In Ref. [15], the authors provide a bound for 
the number of samples of the uncertain parameter (in this case the wind power) 
that one should generate to substitute the chance constraint with a number of hard 
constraints while maintaining the desired probabilistic guarantees. The resulting 
problem can be then solved easily by existing numerical tools [17].

This approach is inherently different from other stochastic optimization 
approaches, and it has only recently been applied to power system related prob-
lems (e.g., Refs. [18–21]). In the remainder of the chapter, it is assumed that 
the fluctuating power infeed consists of wind power. Typically, as proposed by 
Papaefthymiou and Klöckli [22], a Markov chain-based model is employed to gen-
erate wind power scenarios.

To evaluate the necessity of a robust N-1 security design, we compare our 
method with a benchmark approach, which assumes that the network opera-
tor determines the dispatch of the generators based only on the available wind 
power forecast. The performance of our method is then verified via Monte Carlo 
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simulations for different wind power realizations, using a modified version of the 
IEEE 30-bus network, retrieved from Ref. [23].

Section 2 provides the setup of the problem and information about how we treat 
uncertainty, whereas Sect. 3 states the resulting optimization program. In Sect. 4, 
we provide details regarding the scenario approach optimization technique and the 
Markov chain-based wind power model. Section 5 shows the obtained simulation 
results to illustrate the performance of our approach. Finally, Sect. 6 concludes the 
work and provides an outlook for open problems.

2 � Problem Setup

For the analysis of the subsequent subsections, we consider a power network com-
prising of NG generating units, NL loads, Nl lines, Nb buses and Nw wind power 
generators. It should be noted, unless stated otherwise, that by the term line, we 
refer to both lines and transformers.

2.1 � Power Flow Equations

As already mentioned, a DC power flow formulation is adopted [24], since it leads 
to a linear representation of the network, ensuring convexity of the developed opti-
mization problem. It is based on the assumptions that

1.	 The voltage at every bus of the network remains constant at 1p.u.
2.	 The active power losses are neglected.
3.	 sin θkm ≈ θkm, where θkm is the angle in radians across the branch connecting 

the buses k and m.

The resulting power flow equation for every line k → m is given by

where Pf ∈ R
Nl is a vector containing the power flows Pkm of each line, 

θ ∈ R
Nb denotes the voltage angles at every bus, and B f ∈ R

Nl×Nb.
The active power injection at a bus k is given by Pk =

∑

m∈Ωk

Pkm where 

Ωk = {m ∈ {1, . . . , Nb}| k → m is a line}. In a more compact notation

where P ∈ R
Nb is the vector of the net injections Pk, and B

BUS
∈ R

Nb×Nb

denotes the nodal admittance matrix of the network.
In the sequel, we eliminate θ from Eqs. (1), (2) so as to represent the power 

flows Pf as a function of the power injections P. Note that BBUS is singular, with 
rank Nb−1, hence it is not invertible, and Eq. (2) cannot be solved directly with 

(1)Pf = B f θ

(2)P = BBUSθ
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respect to θ. Therefore, to obtain a solution, one of the equations in Eq. (2) is 
removed, and the angle associated with this row is chosen as a reference angle and 
is set to zero. Without loss of generality, the last row of Eq. (2) is removed, that 
is, θNb

= 0. Let then B̃BUS ∈ R
(Nb−1)×(Nb−1), θ̃ ∈ R

Nb−1, P̃ ∈ R
Nb−1 denote the 

remaining parts of BBUS, θ, and P, respectively. Then,

Substituting Eqs. (3) into (2) with θ = [θ̃ 0]
T, we have

The power injection vector P can be written in a generic form as

where PGen ∈ R
NG, Pw ∈ R

Nw and PL ∈ R
NL denote the generating power, the 

wind power infeed and the load, respectively. Matrices CG, Cw, CL are of appro-
priate dimension, and their element (i, j) is “1” if generator j (respectively wind 
power/load) is connected to the bus i, and zero otherwise.

2.2 � Dynamic Considerations

An outage or a deviation of the wind power from its forecasted value, which 
will lead to generation–load mismatch, will induce frequency deviations and 
activate the active power reserves of the system. To take this into account in our 
formulation, we consider that a new steady state is reached, as an effect of the 
secondary frequency control action. This is a reasonable assumption, since the 
optimization process is carried out in hourly steps, and hence frequency deviation 
settles again to zero due to secondary frequency reserve deployment. Therefore, 
we define d ∈ R

NG to be a distribution vector, weighting the excess–deficit of 
power among the generating units participating in the frequency control. If a gen-
erator is not contributing to frequency control, the corresponding element in the 
d vector is zero. Let Pmismatch ∈ R represent the total generation–load mismatch, 
which may occur due to the difference between the actual wind from its fore-
casted value and/or as an effect of generation–load loss. Then, the new equilibrium 
operating point of the generators due to the secondary frequency control will be 
PGen = PG − d Pmismatch, where PG ∈ R

NG is the generation dispatch correspond-
ing to the forecasted wind power P f

w
∈ R

Nw.
Equation (5) can be then rewritten as

(3)P̃ = B̃
−1
BUS

θ̃ .

(4)Pf = B f

[
B̃

−1
BUS

P̃

0

]

.

(5)P = CG PGen + Cw Pw − CL PL ,

(6)P = CG(PG − d Pmismatch) + Cw Pw − CL PL ,
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Pmismatch depends each time on the outage we consider. For the N-1 security 
analysis, we consider any single component outage; however, a single line outage 
may trip a bus, and hence more than a single load, generator or wind power out-
ages are taken into account. In the general case, the generation–load mismatch is 
determined by

where Pout
L

, P
out
G

, P
out
w

∈ R represent the total load, conventional generation or 
wind power generation outage that may occur.

2.3 � Uncertainty Handling

There are two sources of uncertainty in the formulation of the preceding sections. 
The first one refers to component outages, whereas the second is the uncertain 
wind power production Pw. Therefore, we need to specify the way these uncertain-
ties are treated, or in other words, in which sense the dispatch we will compute is 
robust toward component outages and wind power fluctuations. Note that no load 
uncertainty is considered, although the proposed framework could be extended to 
include such cases as well.

For the component outages, a worst-case approach is adopted, that is, we enu-
merate all possible outages and design a generation schedule that is robust with 
respect to all these cases. Alternatively, a computational simpler problem may be 
achieved if only a few outages are selected according to some reliability index 
[25]. Following the same approach for the wind power uncertainty is not adequate, 
since the wind power takes values from a distribution with unbounded support. 
On the other hand, choosing arbitrarily some extreme values for the wind power 
production limits may lead to very conservative conclusions or, in an optimization 
context, to feasibility problems. Therefore, we follow a probabilistic approach and 
compute a generation schedule so that the limits of the generating units and the 
transmission capacity constraints are satisfied with a high probability. To achieve 
this, a scenario-based technique is adopted [15].

3 � Problem Formulation

The main objective is to design a minimum cost day-ahead dispatch while satis-
fying the N-1 security constraints in a probabilistic sense. For the N-1 security 
analysis, we take into account any single outage involving the tripping of a line, 
load generator or wind power generator. Denote then by I = {0,1, . . . , Nout} the 
outage indices, where the index “0” corresponds to the case of no outage, and 
Nout represents the total number of outages, that is, Nout = NG + NL + Nl + Nw.  

Pmismatch = 1 1×Nw
(Pw − P

f

w
) − P

out
L

+ P
out
G

+ P
out
w

,
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We introduce the superscript i to highlight the dependency of our variables and 
constant on the corresponding outage. Variable Pi

G
 denotes the remaining part of 

PG once one or more generators are tripped due to outage i.

We consider an optimization horizon Nt = 24 with hourly steps and introduce 
the subscript t in our notation to characterize the value of the quantities defined in 
the previous section for a given time instance t = 1,…, Nt. Let C1, C2 

∈ R
NG be 

generation cost vectors, and by [C2] denote a diagonal matrix with vector C2 on 
the diagonal. The resulting optimization problem is given by

subject to

1. Deterministic constraints

These constraints correspond to case where the wind power is equal to its fore-
casted value.

Power balance constraints: For all t = 1,…,Nt and i = 0

This constraint encodes the fact that the power balance in the network should 
be always satisfied when P

w,t = P
f

w,t. In other words, the sum of all generation 
dispatches of the conventional units and the total wind power production should 
match the total load of the system.

Generation and transmission capacity constraints: For all t = 1,…, Nt and all 
i ∈ I

where

P̃
i

t
=

[
C

i

G
(P

i

G,t
− d

i
P

i

mismatch,t
) + C

i

w
P

f

w,t − C
i

L
PL ,t

]

n−1
. and [·]n−1 denotes the 

fact that we eliminate the last row of the quantity inside the brackets. Pi

min
, P

i

max 
denote the minimum and maximum generating capacity of each unit, and P̄

i

line
 

denotes the line capacity limits.

2.	 Probabilistic constraints
Generation and transmission capacity constraints: For all t = 1,…, Nt

(7)min
{PG,t }

Nt

t=1

Nt∑

t=1

(
C

T

1 PG,t + P
T

G,t [C2] PG,t

)
,

(8)1 1×Nb

(
C

i

G
PG,t + C

i

w
P

f

w,t − C
i

L
PL ,t

)
= 0

(9)

−P̄
i

line ≤ B
i

f

[
(B̃

i

BUS)−1
P̃

i

t

0

]

≤ P̄
i

line ,

P
i

min ≤ P
i

G,t − d
i
P

i

mismatch, ≤ P
i

max,
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where P̃i

t
=

[
C

i

G
(P

i

G,t
− d

i
P

i

mismatch,t
) + C

i

w
Pw,t − C

i

L
PL ,t

]

n−1
.

Variable di depends on the outage i, since in case of a generator outage, its elements 
are recalculated so that they sum to one. Matrices Bi

f
 and B̃i

BUS
 depend on the out-

age i, since they are both topology-related quantities. Specifically, for a line outage 
that does not trip a bus, B

i

f
∈ R

(Nl−1)×Nb and B̃
i

BUS
∈ R

(Nb−1)×(Nb−1) , 
whereas for a line outage that trips a bus, B

i

f
∈ R

(Nl−1)×(Nb−1) and 
B̃

i

BUS
∈ R

(Nb−2)×(Nb−2) . For generation or load single outages, Bi

f
= B

0
f

∈ R
Nl×Nb 

and 
B̃

i

BUS
= B̃

0
BUS

∈ R
(Nb−1)×(Nb−1) .

The first constraint inside the probability consists a probabilistic version of the 
standard transmission capacity constraints for each outage i. It implies that the 
power flows remain inside the line capacity limits (encoded by P̄i

line
) with prob-

ability at least 1-ε with respect to the underlying wind power distribution. If, for 
example, ε = 0.1, then constraint Eq. (10) will be satisfied with probability 0.9. 
The second constraint provides guarantees that the scheduled generation dispatch 
will not result in a new operating point outside the generation capacity limits.

Note that we are assuming here that all non-scheduled capacity is available as 
reserves, represented by di

P
i

mismatch,t, and that this is enough to cover the possible 
mismatch that may occur. Therefore, when an outage results in a generation–load 
mismatch, the power balance constraint is trivially satisfied due to Eq. (8).

The resulting problem Eqs. (7)–(10) is a stochastic program with chance con-
straints and a quadratic objective function. To obtain a solution to this problem, we 
employ the method described in the following section.

4 � Wind Power Modeling and the Scenario Approach

4.1 � The Scenario Approach

In the previous section, the problem of identifying a secure generation dispatch to 
achieve N-1 security was formulated as a stochastic program with chance con-
straints. The chance constraint implies that for any component outage, the lines do 
not get overloaded with probability at least 1-ε. To obtain a solution for this problem, 
we use the so-called scenario approach [15], whose authors proposed and provided a 
bound for the number of realizations of the uncertain parameter (in this case the wind 
power) that one should generate in order to substitute the probabilistic constraint 
with this finite number of hard constraints while offering probabilistic performance 

(10)

P ( Pw,t ∈ R
Nw

| − P̄
i

line ≤ B
i

f

[
(B̃

i

BUS)−1
P̃

i

t

0

]

≤ P̄
i

line ,

P
i

min ≤ P
i

G,t − d
i
P

i

mismatch, ≤ P
i

max,

∀ i ∈ I ) ≥ 1 − ε,
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guarantees. That way, the resulting problem can be solved efficiently using existing 
numerical tools [17]. Following Ref. [16], the number of uncertainty instances that 
should be generated to maintain these ε-type guarantees is

where ε ∈ (0,1) is the violation parameter determining the desired probability level 
(see (Eq.  10)). Variable Nd denotes the number of decision variables, which for 
this case is the number of generation dispatches (i.e. Nd = NG), since the stages in 
the optimization problem are decoupled. Otherwise, one would have Nd = NGNt. 
Although this bound grows linearly with respect to Nd, we can keep the number of 
generated scenarios, and hence the complexity of the resulting optimization prob-
lem, relatively low, since even for large-scale networks Nd still leads to a manage-
able value for Ns. Parameter β characterizes our confidence regarding the obtained 
solution and captures the case of a bad multi-sample. In other words, with confi-
dence at least 1- β, the solution of the problem will satisfy the chance constraint 
with probability at least 1-ε. Note that since β appears inside the logarithm in  
Eq. (11), high confidence levels could be achieved without increasing the computa-
tional burden significantly.

There are two prerequisites to employ the scenario approach. The first requires 
the underlying optimization program to be convex (the objective function and the 
formulas inside the probabilistic constraint), which by inspection of the optimiza-
tion problem of Sect. 3 is satisfied. The second is that we should have a model to 
generate scenarios for the uncertain parameter, that is, wind power time series in 
our case.

By inspection of Eq. (11), the number of scenarios that need to be generated 
to achieve the desired probabilistic guarantees grows with the number of decision 
variables. Constraint Eq. (10) though, exhibits a specific structure; it is affine with 
respect to the uncertainty Pw,t and there is no bilinearity between the uncertainty 
and the decision variables. Therefore, instead of enforcing the constraints for each 
of the extracted scenarios, we could a-priori evaluate the uncertainty function for 
the Ns samples and keep its row-wise extrema. We then require the constraints to 
be satisfied only for the constructed values of the uncertainty function, which im-
plies that we only increase the number of constraints by a factor of 2 instead of Ns. 

Motivated by this discussion, one can exploit the recent results of Ref. [26], 
and instead of using the standard scenario approach, a two-step procedure can be 
followed. For a given ε and β, we first compute probabilistic bounds for  Pw,t, and 
then use them to compute the solution of the robust counterpart of Eqs. (7)–(10), 
which will now have hyper-rectangular uncertainty. This reformulation has been 
already employed in Refs. [20, 21], and allows us to provide probabilistic guaran-
tees even for systems that are non-convex. That way mixed-integer programs, like 
those arising in unit commitment problems could be captured as well. We will not 
pursue this discussion here, however, for more details regarding this modification 
of the standard scenario approach the reader is referred to Ref. [26].

(11)Ns ≥

2

ε

(

ln
1

β
+ Nd

)

,
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4.2 � Wind Power Modeling

We assume that the wind power at every time instance is the sum of the forecasted 
wind power, as this was disclosed to the operator at the market clearing time in a 
day-ahead context, and a stochastic component. To model the latter one and gen-
erate different wind error realizations, motivated by Papaefthymiou and Klöckli 
[22], we use a Markov chain mechanism. We used normalized hourly measured 
wind power data, both forecasts and actual values, for the total wind power infeed 
of Germany over the period 2006–2011. Following Ref. [22], we discretized the 
error between the forecast and the actual data to “train” the transition probability 
matrix, which enables us to generate various wind power error realizations.

Fig. 1   Top view of the 
transition probability matrix 
for the wind power error, 
using a 41-state Markov 
chain. The color coding 
denotes the associated 
transition probability; black 
corresponds to high, whereas 
white to low probability 
values

Fig. 2   Forecast (dashed line) 
and actual (solid black line) 
wind power, and 10,000 wind 
power scenarios (solid gray 
lines) based on different error 
realizations, initialized with 
the actual wind power
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Figure  1 shows the resulting transition probability matrix, when a 41-state 
Markov chain is constructed. As noted in Ref. [22], the block triangular structure 
of the state transition matrix suggests that the wind power error is strongly cor-
related in time. For a single day of the simulated data, Fig. 2 shows the forecast 
(solid black line) and the actual (dashed line) wind power, and also 10,000 wind 
power trajectories (solid gray line), generated by the Markov chain-based model, 
starting at the real wind power value measured at the initial time.

5 � Simulation Results

In this section, we evaluate the performance of our approach by applying it to a 
modified version of the IEEE 30-bus network Ref. [23], which includes a wind 
power generator connected at bus 22. A single line diagram of the system is 
given in Fig. 3, whereas all numerical values for the network data and the cost 
vectors are retrieved from Ref. [23]. It includes Nb = 30 buses, NG = 6 genera-
tors, Nl = 41 lines and Nw = 1 wind power generator. To quantify in terms of 
probability the improvement afforded by the proposed method, we compare it 
with what we will refer to as a benchmark approach. The benchmark approach 
involves solving a deterministic variant of the problem defined in Sect. 3, where 
only the day-ahead forecast is considered. The system operator would then 

Fig. 3   IEEE 30-bus network with a wind power generator connected to bus 22
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run a standard N-1 security routine (i.e., solve Eqs. (7)–(10)) with ε  =  0 and 
P

w,t = P
f

w,t for all t = 1,…,Nt). For the robust implementation of our algorithm, 
the stochastic program Eqs. (7)–(10) were solved using the scenario approach, 
with ε  =  0.1 and β  =  10−4. To compute the numerical solution of the prob-
lem, both for the probabilistically robust day-ahead dispatch and the bench-
mark approach, the solver CPLEX [17] was used via the MATLAB® interface 
YALMIP [27].

We used the forecast of a single day from the wind power dataset, depicted 
(together with the 200 scenarios, generated by our Markov chain model and ini-
tialized 16 h ahead at the market clearing time) in Fig. 4b. As shown in Fig. 4a, 
four different profiles, representing how the total load in the system changes over 
the day, are considered. For each case in Fig.  4a, both the benchmark forecast-
based approach and our robust technique are applied. Each dispatch was then 
tested against 10,000 wind power realizations (not including the 200 scenarios 
used for the optimization process), representing the potential “actual” wind infeed, 
and the number of insecure incidents was recorded. With the term insecurity, we 
refer to the case where after the contingency analysis that was performed, one 
or more of the lines got overloaded (i.e., the deterministic version of constraint  
Eq. (10), for Pw,t being the “actual” wind power, was violated), for at least one of 
the Nout outages.

Figure  4c, d show the probability of insecure cases, computed as the ratio 
between the number of identified insecurities over the 10,000 test cases. By 
inspection of Fig.  4c, d, we can easily deduce that the forecast-based dispatch 
leads to significantly more line overloadings compared to the proposed robust 
solution. It is also apparent that the magnitude of the load plays an important role 
on the frequency of security critical cases. In general, at the time of the day where 
the load is high, the lines operate closer to their limits, and hence it is more likely 
to end up with a constraint violation in our contingency check. Note that the load 
profile L1 (red) is high over the entire day, leading to an increased number of inse-
cure encounters. From a network perspective, the contingency analysis revealed 
that lines 10 → 22, 21 → 22, 22 → 24 are the most critical ones in the sense that 
they are more frequently overloaded in case of an outage. Note that bus 22 is the 
one where the wind power generator is connected to.

It should be also mentioned that the robust dispatch leads to a much lower 
number of constraint violations compared to its ε-type theoretical guarantees, 
confirming that the bound on the number of necessary scenarios proposed by 
Calafiore and Campi [15] is indeed conservative. Nevertheless, in case tighter 
guarantees are required, ε could be reduced resulting in a higher value for Ns, 
without an unaffordable increase in the computational overhead, reducing ε ten-
fold requires one to extract ten times more scenarios, leading to a still very much 
tractable optimization problem.

To further test our algorithm, we considered the load profile L2 and applied 
both our robust approach and the benchmark method to compute the generation 
dispatch for 90 different days of the 2007 data. In a post-processing phase, a con-
tingency analysis was carried out, using the actual wind realization (extracted 
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Fig. 4   a Four different daily load profiles. b Forecast wind power (black dotted line) and the 
generated scenarios (gray), based on different error realizations, that were used to construct the 
robust generation dispatch. c Probability of insecure instances estimated by evaluating the gen-
eration dispatch and generated by solving a deterministic problem considering only the forecast 
against 10,000 wind power realizations. The line type corresponds to the different load profiles 
of Fig. 4a. d Probability of insecure instances estimated by evaluating the robust generation dis-
patch and generated by our proposed methodology against 10,000 wind power realizations
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from the real data) for each day. The obtained results are depicted in Fig. 5. The 
“red” lines correspond to the case where the forecast-based approach is used and 
show the total number of hours per day where the system is not N-1 secure. In 
contrast to our method, which achieves secure operation for all days, the forecast-
based approach leads very frequently to insecure incidents. It should be noted that 
the cases where a low number of insecurities are recorded correspond to situations 
where the forecasted wind power is very close to its actual value. Day 26 of Fig. 5 
corresponds to the day analyzed in Fig. 4 for different load profiles. The average 
value of line overloadings per day was 2 % of the line capacity limits, high enough 
to require a preventive action by the system operator. As expected, the daily cost 
of the proposed solution is higher than the benchmark one, due to presence of 
additional constraints. However, a maximum difference of 0.6 % was encountered, 
implying that only small adjustments were needed to design a secure day-ahead 
dispatch. This additional cost could be thought of as a price to pay for security 
in networks with high penetration of renewable energy sources (in addition to the 
cost of reserves).

6 � Concluding Remarks

In this chapter, a new methodology for generating a probabilistically robust gener-
ation dispatch so as to ensure that the system is N-1 secure under wind uncertainty 
is proposed. To obtain a solution to this problem, a stochastic chance constrained 

Fig.  5   Number of insecure hours per day for the forecast-based and the proposed robust dis-
patches, encountered by the contingency analysis using the actual wind power scenarios for 
90 days
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optimization program was developed and was solved using the scenario approach. 
The efficiency of the proposed scheme was evaluated in terms of Monte Carlo 
simulations on the IEEE 30-bus network and was compared against the solution 
corresponding to the deterministic variant of the problem.

In this work, no reserve scheduling was considered, and it was assumed that 
the reserves are bounded by the generating capacity of each unit. In Refs. [20, 21], 
the current approach was combined with a mechanism for scheduling the reserves 
(i.e., optimizing also over the distribution vectors). For a more realistic study, apart 
from the dispatch of the generators additional control inputs could be considered 
(e.g., topological configuration changes) to provide more freedom when designing 
an N-1 secure system. An additional research direction is to substitute the under-
line DC power flow with a convex AC power flow relaxation and investigate the 
potential of decentralizing developed algorithm.

It should be also noted that increasing the wind power penetration in the network 
will lead to feasibility problems. Our proposed framework could be used though to 
provide an indication of the maximum possible wind power infeed, or as a guideline 
for where to place wind generation or new lines to achieve a secure system.
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1 � Introduction

Substantial integration of intermittent renewable energy resources such as wind  
generation in electric power systems dictates the need to investigate the system 
reliability implications when adding large amounts of highly variable capacity that 
differ considerably from conventional generation sources. In order to accomplish 
this, utilizing a systematic approach to effectively capture the overall reliability 
measures of a system containing large amounts of intermittent renewable energy 
sources is required.

In general, power system reliability can be subdivided into the two fundamen-
tal aspects:system adequacy and system security [1]. System adequacy relates to the 
existence of sufficient facilities within the system to satisfy the consumer demand 
load whereas system security relates to the ability of the system to respond to distur-
bances arising within that system. Wind power generation can provide capacity con-
tribution to the overall system reserve from both adequacy and security standpoints 
[2]. This chapter applies system well-being analysis [3–11] to encapsulate both gen-
eration adequacy and security concerns in order that meaningful comparisons of the 
overall reliability impacts of intermittent renewable energy sources and conventional 
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generation can be assessed. A deterministic security criterion of the loss of the  
largest online generating unit, which is widely used by many Canadian electric 
utilities [6, 12], is considered in the study as a security measure for contingency 
reserve in system operation. The healthy state probability index is used as a secu-
rity benchmark to indicate the operational reliability, and the at-risk state probability 
index, which is a loss of load probability (LOLP) indicator, is used as the adequacy  
criterion to indicate the long-term planning reliability. A sequential Monte Carlo 
simulation technique was utilized in the study in this chapter as this technique is 
ideally suited to the chronological analysis of intermittent resources such as wind 
power. The sequential simulation approach also provides accurate frequency and 
duration assessments of the system reliability indices [13, 14]. An auto-regressive 
moving average (ARMA) time series model was utilized to simulate hourly wind 
speeds [15]. Historical wind speeds from actual multiple wind farms were used in 
the studies. The study results are demonstrated using two test systems designated as 
the Roy Billinton Test System (RBTS) [16] and IEEE-RTS [17].

It should be noted that there are various types of intermittent renewable energy 
sources such as wind, solar, run-of-river hydro, tidal and wave generators, etc. The 
basic study methodology used in this chapter can also be applied to consider these 
intermittent renewable sources. This chapter is focused on the application to wind 
power generation and uses its intermittent and diffuse nature to illustrate the charac-
teristics of intermittent renewable energy sources that behave quite differently from 
conventional generating sources.

2 � Wind Power Generation Model

The wind generation model fundamentally consists of two main parts designated 
as the wind speed model and the wind farm model. These two parts are briefly 
described as follows.

2.1 � Wind Speed Modeling

An important requirement in incorporating wind power generation in power  
system reliability analysis using sequential Monte Carlo simulation is to realistically 
simulate the hourly wind speed in a chronological manner. Wind speed varies with 
time and geographical site and at a specific hour is influenced by the wind speeds 
of the immediate previous hours. Wind speed models, therefore, have unique char-
acteristics that are highly dependent on site locations. An ARMA time series model 
[15] was used to simulate hourly wind speeds of specified wind farm sites. Hourly 
wind speed time data from 2004 to 2006 (3 year time series) obtained from National 
Renewable Energy Laboratory [18] were used in the ARMA model development. 
Wind speed data for the three selected locations used in the study are shown in 
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Table 1. Wind speed correlation was applied when considering the multiple-wind-
farm scenarios in the study, that is, a three-wind-farm scenario considers the wind 
speed correlation among Sites M1, M2 and O1 as noted in Table 1.

2.2 � Wind Farm Modeling

The power output characteristics of a wind turbine generator (WTG) basically differ 
from those of conventional generating units. The wind speed has a major influence 
on the power output. There is a nonlinear relationship between the power output of 
the WTG and the wind speed. Instead of using a single wind turbine power curve, an 
entire wind farm power curve (aggregation of multiple wind turbines) was utilized in 
this study to represent the operational parameters of the combined individual WTG 
units located in that wind farm. The wind farm power curve for Site M1 is shown in 
Fig. 1. The hourly power output of the wind farm can be obtained from the simu-
lated hourly wind speed using Eq. (1).

(1)

P (SWt )=






0�
A + B × SWt + C × SW

2

t
+ D × SW

3

t

�
× Pr

Pr

(E + F × SWt ) × Pr

0

0 ≤ SWt < 3

3 ≤ SWt < 16

16 ≤ SWt < 25

25 ≤ SWt < 28

SWt ≥ 28

Table 1   Wind speed data at the three different sites

Wind farm sites (name) Site M1 Site M2 Site O1

Mean wind speed (m/s) 9.10 8.38 10.03
Standard deviation (m/s) 5.50 4.48 5.20
Geographical location Mountain Mountain Offshore
Correlation w.r.t. Site M1 1.00 0.85 0.05

Fig. 1   Wind farm power 
curve for Site M1
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where Pr and SWt are the rated power output of the WTG and the hourly simulated 
wind speed, respectively. The constants A, B, C, D, E and F were obtained using 
curve-fitting analysis of the historical wind farm power output information. The A, 
B, C, D, E and F values for Site M1 are 0.1829, −0.1268, 0.0255, –0.0009, 9.3130 
and –0.3326, respectively. Wind farm power curves and associated parameters for 
Sites M2 and O1 were derived in a similar manner. The WTG units used in the study 
are assumed to have rated capacities from 0.2 to 2 MW for the RBTS and assumed 
to have rated capacities from 1 to 4 MW for the IEEE-RTS. The failure rates and 
average repair times for all WTG units are 2 failures/year and 44 h, respectively.

3 � Study Systems and Methodology

3.1 � Study Systems

The RBTS [16] and the IEEE Reliability Test System (IEEE-RTS) [17] were used in 
the study. The RBTS is a six-bus system composed of 11 generating units. The sys-
tem peak load is 185 MW, and the total generation is 240 MW. The capacity of the 
largest unit in the RBTS is 40 MW. The IEEE-RTS is a 24-bus system consisting of 
32 generating units. The system peak load is 2,850 MW, and the total generation is 
3,405 MW. The capacity of the largest unit in the IEEE-RTS is 400 MW. Sequential 
simulation was used in this study, and therefore, the detailed load characteristics 
considering different customer types at individual load buses can be incorporated in 
the system coincident load. The individual bus load models were developed using 
a bottom-up approach [19], which recognizes the individual customer sector char-
acteristics at each bus, and therefore, the system coincident peak and chronological 
load curves differ from those described in [16, 17] in which all the load buses are 
modeled using the same chronological load profile as the entire system load profile.

3.2 � Study Methodology

Well-being analysis was utilized in this study, and the fundamental model is shown 
in Fig. 2. The system well-being method offers a combined framework that incorpo-
rates both deterministic and probabilistic considerations. The combined determinis-
tic and probabilistic perception occurs through the definition of the system operating 
states [6]. The system well-being designated by the accepted deterministic criteria 
is categorized as being healthy, marginal and at-risk states. A system operates in the 
healthy state when it has enough capacity reserve to meet a deterministic criterion 
such as the loss of the largest online generating unit. In the marginal state, the sys-
tem is not in any trouble but does not have sufficient margin to meet the specified 
deterministic criterion. The system is in the at-risk state if the load exceeds the avail-
able capacity. The probability of being in the at-risk state is the traditional LOLP.
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In the system well-being analysis presented in this chapter, the amount of gen-
eration capacity reserve required is determined by the capacity of the largest operat-
ing (online) unit at a particular point in time. This implies that the capacity of the 
largest available generating unit may not be the same under different generation sys-
tem states. Throughout the total period of study, the generating capacity reserve is 
compared against the capacity of the largest operating unit at each particular hour 
to determine the health, margin and at-risk states. The details of the methodology 
of system well-being analysis applied to the generation system reliability evaluation 
can be found in [3, 8].

The system well-being analysis framework can provide comprehensive knowl-
edge on what the degree of system vulnerability might be under a particular system 
condition. It gives system engineers and risk managers with a quantitative interpre-
tation of the degree of system security (N-1, healthy) and insecurity (marginal) in 
addition to the traditional risk measure.

The degree of system well-being can be quantified in the form of the probabili-
ties, frequencies and durations of the healthy, marginal and at-risk states defined as 
follows:

PH	 Healthy state probability (/year)
PM	 Marginal state probability (/year)
PR	 At-risk state probability (/year)
FH	 Healthy state frequency (occurrences/year)
FM	 Marginal state frequency (occurrences/year)
FR	 At-risk state frequency (occurrences/year)
DH	 Healthy state duration (hours/occurrence)
DM	 Marginal state duration (hours/occurrence)
DR	 At-risk state duration (hours/occurrence)

In this chapter, the at-risk state probability (PR) and the healthy state probability 
(PH) indices, respectively, are used as the reference points to measure the same sys-
tem adequacy and security.

Fig. 2   System well-being 
analysis framework Success

Healthy

Marginal

At Risk
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4 � RBTS Study Results

4.1 � Adequacy-Based Comparison

Table 2 presents the system well-being indices of the original RBTS and the modi-
fied RBTS in which the three scenarios are considered: (1) adding a conventional 
generating unit, (2) adding three wind farms, (3) replacing an existing conventional 
generating unit by the three wind farms. The results shown in Table 2 were obtained 
on the basis of maintaining the same adequacy level (PR = 0.00043 or 3.76 h/year). 
Adding new generation to the system while maintaining the system load at the origi-
nal level will result in system reliability improvement (i.e., PR reduced). In order to 
preserve the reliability level at the reference point (either PR-based or PH-based), the 
system load has to be scaled up to a certain level when adding new generation so 
that the system reliability can be maintained at the same level as that in the original 
system with the 1.0 per unit load level. As shown in Table 2, the system load levels 
in Cases A1 and A2 were scaled up to the 1.1156 per unit load level when adding 
the conventional unit and when adding the wind farms capacities, respectively. The 
increased load associated with adding the new generation is considered as the effec-
tive load-carrying capability. In order to provide a reasonable comparison between 
the conventional generation addition scenario (Case A1) and the wind generation 
addition scenario (Case A2), the system loads in both cases have been scaled up to 
the same level (i.e., 1.1156 p.u.), which implies that the effective load-carrying capa-
bility obtained from adding a 20-MW conventional unit is the same as that provided 
by adding 3 × 21.2 MW wind farms.

A similar approach was applied in other case studies associated with adding new 
generation discussed later in this chapter where the system load is scaled up in order 
that the specified reliability can be maintained at a similar level to that in the original 
system.

Table  2   Well-being indices of the RBTS for different generation scenarios based on the  
specified adequacy level

Index Base case Case A1 Case A2 Case A3

PH 0.98456 0.98511 0.98053 0.98054
PM 0.01501 0.01445 0.01904 0.01903
PR 0.00043 0.00043 0.00043 0.00043
FH 25.1 22.4 35.3 33.5
FM 25.8 23.1 36.1 34.3
FR 0.8 0.7 1.0 1.0
DH 403.2 456.3 267.4 285.2
DM 5.1 5.4 4.6 4.8
DR 4.6 4.8 3.6 3.8

Base case: Original system without wind power generation
Case A1: Add a 20-MW conventional unit @ 1.1156 p.u. load level
Case A2: Add 3 × 21.2 MW wind farms @ 1.1156 p.u. load level
Case A3: Replace a 20-MW conv. unit by 3 × 21.0 MW wind farms
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It should be noted that the amount of wind power capacity required in the case of 
adding wind generation (Case A2) and that required in the case of replacing an exist-
ing conventional unit by wind generation (Case A3) for maintaining the same system 
reliability is not necessarily equal. In this particular example, they are very close as 
the difference is masked due to sufficient total generation capacities in the RBTS. 
The difference in the two similar cases for the IEEE-RTS in the next section will, 
however, be larger.

The results in Table 2 show that when maintaining the system adequacy level at 
PR of 0.00043, the PH of Cases A2 and A3 associated with wind power generation is 
lower than the Base Case PH. This outcome indicates that the system security level 
is not retained by adding only wind generation to maintain the specified adequacy 
level. Table 2 also shows that the frequency indices (FH, FM and FR) increase for 
Cases A2 and A3 compared to those in the Base Case and that the system states are 
more dynamic when integrating wind power generation as there are more move-
ments between the healthy and marginal states compared to the Base Case. In other 
words, the system containing wind generation can move more frequently to the mar-
ginal state where the system is still adequate but not as secure as before. As a result 
of the increase in system state movements, the average residence time in each sys-
tem state decreases. This conclusion is, however, not true for Case A1 when adding 
a conventional unit in which FH, FM and FR slightly decrease resulting in a slightly 
increase in the average residence time in each system state. In addition, the PH of 
Case A1 is slightly higher than the Base Case PH. This indicates that the system 
security level can be retained (even further improved) when adding conventional 
generation to maintain the specified adequacy level.

4.2 � Security-Based Comparison

In Table 3, the system security level is maintained (PH = 0.98456) in all the cases. 
Under this condition, the system requires more wind power generation capacity in 
Cases S2 and S3 compared to the adequacy-based cases shown in Table 2.

When integrating wind power generation to the system (Cases S2 and S3), PR 
decreases whereas PM increases. This implies that while maintaining the same 
security level for the cases containing wind power generation, there is probabil-
ity movement from the at-risk state (where the system is inadequate and insecure) 
to the marginal state (where the system is adequate but not secure) leading to an 
improvement in system adequacy compared to the Base Case. This is beneficial 
from the long-term capacity planning viewpoint. However, FH and FM for Cases 
S2 and S3 shown in Table 3 are still greater than those of the Base Case, which 
implies that system operation performance is still adversely influenced by wind 
power integration since it leads to more frequent movements from the healthy 
state to the marginal state where the system is insecure. The DH of Cases S2 
and S3 shown in Table 3 increases compared to those in Table 2, which implies 
that the average duration for the system to reside in the healthy state is improved 
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(staying longer per visit). However, the DH of Cases S2 and S3 are still shorter 
than those of the Base Case due to the increased frequency of movements between 
the healthy and marginal states. This indicates that the frequency and duration 
indices of the RBTS could still be unfavorably affected by wind generation inte-
gration even though both system adequacy (PR) and security (PH) levels are well 
maintained.

Table  3 also indicates that all the indices of Case S1 are very similar to those 
of the Base Case, which implies that the adding conventional generation does not 
adversely affect the system reliability from either adequacy or security standpoints.

4.3 � System Well-Being Index Probability Distributions

The results shown in Tables 2 and 3 are based on the average or expected values of 
the well-being indices. One advantage when utilizing sequential Monte Carlo sim-
ulation in system well-being analysis is the ability to provide system well-being 
index probability distributions associated with the expected values. The system 
well-being index probability distributions, which provide a pictorial representation 
of the annual variability of the indices, are illustrated in this section. The prob-
ability distributions of the overall system well-being indices in Tables 2 and 3 are 
graphically presented in Figs. 3 and 4, respectively. Reliability index probability 
distributions are normally expressed as histograms using discrete intervals (bins). 
The probability distributions shown in this chapter are, however, presented using 
approximate continuous distributions for illustration purposes rather than his-
tograms, which facilitate comparisons among the various scenario results on the 
same axis. In order to differentiate the expected values of the system well-being 
indices described in Sect. 3 B from the representation of the system well-being 

Table  3   Well-being indices of the RBTS for different generation scenarios based on the  
specified security level

Index Base case Case S1 Case S2 Case S3

PH 0.98456 0.98456 0.98456 0.98456
PM 0.01501 0.01500 0.01510 0.01512
PR 0.00043 0.00044 0.00034 0.00032
FH 25.1 24.8 30.6 27.8
FM 25.8 25.6 31.4 28.3
FR 0.8 0.8 0.8 0.8
DH 403.2 404.3 312.5 350.8
DM 5.1 5.1 4.2 4.6
DR 4.6 4.5 3.4 3.6

Base case: Original system without wind power generation
Case S1: Add a 20-MW conventional unit @ 1.1193 p.u. load level
Case S2: Add 3 × 27.2 MW wind farms @ 1.1193 p.u. load level
Case S3: Replace a 20-MW conv. unit by 3 × 27.0 MW wind farms
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index probability distributions, the symbols used to represent the annual variability 
(probability distribution) of the system well-being indices are as follows:

HST	 Annual healthy state time (hours/year)
MST	 Annual marginal state time (hours/year)
RST	 Annual at-risk state time (hours/year)
fH		 Annual healthy state frequency (occurrence/year)

Fig. 3   System well-being index probability distributions of the RBTS associated with different 
generation scenarios while maintaining the specified adequacy level, PR = 0.00043

Fig. 4   System well-being index probability distributions of the RBTS associated with different 
generation scenarios while maintaining the specified security level, PH = 0.98456
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fM		 Annual marginal state frequency (occurrence/year)
fR		 Annual at-risk state frequency (occurrence/year)
dH	 Annual healthy state duration (hours/occurrence)
dM	 Annual marginal state duration (hours/occurrence)
dR		 Annual at-risk state duration (hours/occurrence)

Note that the HST, MST and RST indices were obtained by multiplying the  
relevant state probability by 8,760 in order to present the indices in a form of the 
state time in hours per year.

Figure 3 indicates that although the expected values of PR for all the four cases 
are the same (PR = 0.00043), their probability distribution profiles are different. The 
RST distribution profiles of the Base Case and Case A1 (adding conventional genera-
tion) are very similar, but different from those of Cases A2 and A3, which have wind 
power integration. It is interesting to note that the probability of having RST = 0 (no 
loss of load) for the system with wind power integration is reduced compared to the 
Base Case. In other words, the integrated wind power system will be more likely 
to encounter the loss of load situation (RST > 0) in each year than the system with 
no wind power integration. For example, the probability of having RST = 0 for the 
Base Case is greater than 0.60 whereas that for Cases A2 and A3 is only about 0.50. 
As previously mentioned, the system security level is not retained in the integrated 
wind power system while maintaining the specified adequacy level. Figure 3 clearly 
shows that the HST distribution profiles of Cases A2 and A3 shift to the left com-
pared to that of the Base Case. Figure 3 also shows that the fH distribution profiles of 
the systems containing wind power generation (Cases A2 and A3) have more disper-
sion and, therefore, more uncertainty with lower predicted probability of occurrence 
compared to those of the Base Case.

In Fig. 4, where the four generation scenarios are considered based on the same 
expected system security level (PH = 0.98456), the HST distribution profiles of the 
four cases are quite similar. The fH distribution profiles of the four cases also have a 
similar degree of dispersion. It is interesting to note that even though the expected 
values of PR for the systems with wind power integration (Cases S2 and S3) are 
lower than that of the Base Case, the probabilities of having RST = 0 for Cases S2 
and S3 are now closer to the Base Case than those shown in Fig. 3. This means that 
the integrated wind power system could increase the likelihood of having the no loss 
of load situation (RST = 0) in each year, to be similar to the system without wind 
power integration, by designing the system to maintain the system security level 
instead of solely designing it to maintain the system adequacy level.

5 � IEEE-RTS Study Results

The IEEE-RTS Base Case is not as secure (or not as healthy) as the RBTS Base 
Case from a system operation viewpoint, because the PH of the IEEE-RTS is 
lower than that of the RBTS. This indicates that there is a greater chance for 
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the IEEE-RTS to reside in states that are inadequate (PR) and/or insecure (PM) 
compared to the RBTS. The fundamental reasons are that the IEEE-RTS is a 
more generation deficient system than the RBTS and the forced outage rate of 
the largest generating unit in the IEEE-RTS is much greater than that of the  
largest generating unit in the RBTS.

5.1 � Adequacy-Based Comparison

Table  4 presents the system well-being indices of the original IEEE-RTS and 
the modified IEEE-RTS cases based on maintaining the same adequacy level 
(PR = 0.00355 or 31.10 h/year).

The results in Table 4 indicate that although PR for all the cases are the same, 
the PH values of Cases A2 and A3 containing wind power generation are both 
lower than the PH of the Base Case, which indicates that the system security level 
cannot be retained when integrating wind generation to maintain the specified ade-
quacy level. The FR values of Cases A2 and A3 are quite similar to the Base Case 
value, but FH and FM of Cases A2 and A3 are greater than those of the Base Case, 
which indicates that there are more frequent movements between the healthy and 
marginal states for the system containing wind generation. The increase in system 
state movements results in a decrease in the average residence time in each system 
state. This is, however, not the case when adding conventional generation (Case 
A1) where FH, FM, FR as well as DH, DM, DR are relatively similar to those of the 
Base Case. In addition, the PH of Case A1 is slightly higher than the PH of the 
Base Case. This implies that the system security level can also be retained (even 
further improved) when adding conventional generation to maintain the specified 
adequacy level.

Table  4   Well-being indices of the IEEE-RTS for different generation scenarios based on the 
specified adequacy level

Index Base case Case A1 Case A2 Case A3

PH 0.95961 0.96053 0.94183 0.94022
PM 0.03684 0.03592 0.05462 0.05623
PR 0.00355 0.00355 0.00355 0.00355
FH 76.4 76.7 100.3 100.2
FM 80.1 79.9 106.5 106.8
FR 8.2 8.3 8.2 8.1
DH 120.5 119.9 87.0 87.0
DM 4.0 3.9 4.5 4.6
DR 3.5 3.5 3.5 3.6

Base case: Original system without wind power generation
Case A1: Add a 155-MW conventional unit @ 1.0575 p.u. load level
Case A2: Add 3 × 139 MW wind farms @ 1.0575 p.u. load level
Case A3: Replace a 155-MW conv. unit by 3 × 133 MW wind farms
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5.2 � Security-Based Comparison

When the system is held at the same security level (PH =  0.95961) as shown in 
Table 5, the PR values of Cases S2 and S3 are lower while the PM are greater than 
that of the Base Case, which indicates that the system containing wind generation 
is more adequate than the Base Case, as there is probability movement from the  
at-risk state to the marginal state resulting in a lower risk of load curtailment. The 
FH, FM and DH values for Cases S2 and S3 are relatively similar to those of the Base 
Case, whereas there is an improvement in FR in Cases S2 and S3 compared to the 
Base Case. It should be noted, however, that the amount of wind generation required 
under the security-based consideration (Table 5) is significantly increased compared 
to the amount of wind generation required under the adequacy-based consideration 
(Table 4). This implies that the system security level of the IEEE-RTS can be more 
critically affected by wind power integration than that of the RBTS if only the ade-
quacy-based consideration is used to maintain the system reliability.

5.3 � System Well-Being Index Probability Distributions

The probability distributions of the system well-being indices given in Tables  4 
and 5 are graphically presented in Figs. 5 and 6, respectively. Figure 5 shows the 
system well-being index probability distributions for the four generation scenarios 
of the IEEE-RTS obtained on the basis of maintaining the same expected value of 
system adequacy level (PR = 0.00355). The probability of having RST = 0 for the 
IEEE-RTS with and without wind power integration are quite similar. The HST dis-
tribution profiles for the wind power integration scenarios (Cases A2 and A3) shift 

Table  5   Well-being indices of the IEEE-RTS for different generation scenarios based on the 
specified security level

Index Base case Case S1 Case S2 Case S3

PH 0.95961 0.95961 0.95961 0.95961
PM 0.03684 0.03673 0.03815 0.03825
PR 0.00355 0.00366 0.00224 0.00214
FH 76.4 78.5 77.0 75.4
FM 80.1 81.7 81.2 79.8
FR 8.2 8.6 5.6 5.3
DH 120.5 116.9 117.1 119.8
DM 4.0 3.9 4.1 4.2
DR 3.5 3.5 3.3 3.3

Base case: Original system without wind power generation
Case S1: Add a 155-MW conventional unit @ 1.0592 p.u. load level
Case S2: Add 3 × 233 MW wind farms @ 1.0592 p.u. load level
Case S3: Replace a 155-MW conv. unit by 3 × 227 MW wind farms
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to the left and have more dispersion compared to those for the cases without wind 
power integration (Base Case and Case A1).

In Fig. 6, where the four generation scenarios are evaluated based on the same 
expected system security level (PH = 0.95961), the HST distribution profiles of the 
four cases are quite similar. The RST distribution profiles for the system with wind 

Fig.  5   System well-being index probability distributions of the IEEE-RTS associated with 
different generation scenarios while maintaining the specified adequacy level, PR = 0.00355

Fig. 6   System well-being index probability distributions of the IEEE-RTS associated with dif-
ferent generation scenarios while maintaining the specified security level, PH = 0.95961
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power integration (Cases S2 and S3) obviously shift to the left, which indicates a 
considerable improvement on the system adequacy. Nonetheless, the probability of 
having RST = 0 (no loss of load situation) in each year for the system with a large 
amount of wind power integration does not improve, even with significant wind 
power integration, compared to the cases without wind power integration. It should 
be emphasized that the probability distribution profiles of Case A1 (adding conven-
tional generation) shown in Figs. 5 and 6 are very similar to those of the Base Case.

6 � Conclusions

This chapter investigates the reliability impacts of an intermittent renewable energy 
resource, in this case wind power generation, from both generation adequacy and 
security perspectives. The system well-being analysis approach was utilized in the 
studies to provide quantitative knowledge from both reliability perspectives. The 
results based on the RBTS and IEEE-RTS indicate that the system adequacy and 
security levels can be well maintained when adding conventional generating units. 
This is, however, not the case for the wind generation integrations where the sys-
tem security level could deteriorate considerably due to wind generation integration, 
even though the specified system adequacy level can be maintained to satisfy the 
long-term capacity planning reserve requirement. The degree of security degradation 
is, however, system dependent. The impact of wind generation integration from both 
system adequacy and security standpoints should be investigated and comprehended 
in order that the system reliability from both long-term planning and operational 
points of view are not compromised.
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1 � Introduction

Probabilistic reliability evaluation of power systems can be performed by two 
distinct representations of the system: state space and chronological simulation. 
In the state space representation, the system states are randomly sampled by non-
sequential Monte Carlo simulation (MCS). In the chronological representation, the 
states are sequentially sampled to simulate system operation by sequential MCS.

Sequential MCS tends to produce more accurate results in the presence of 
time-varying elements, such as load curves and wind generation, because the 
time series are explicitly represented, and therefore, the correlation and statistical 
dependency between them are preserved. Some papers are based on this approach 
[1–3]. However, sequential MCS has a high computational cost and can become 
prohibitive for practical large systems.

Non-sequential MCS has a much lower computational cost, but the representation 
of time-varying elements is not straightforward. Usually, non-sequential MCS-based 
models do not consider the statistical dependence between time series because the sys-
tem states are obtained by sampling the state space based on the hypothesis that the 
events are independent. However, disregarding the statistical dependency may lead to 
incorrect reliability indices since the occurrence of load shedding depends on the states 
of the time-varying generation and the time-varying load. By considering that there is 
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no correlation between them may conduct to a sampled state that does not represent an 
actual state of the system. In general terms, the independent approach produces pre-
cise results if all time-varying elements are fully correlated or are totally uncorrelated. 
Since this cannot be known in advance, the representation of the actual correlation 
between the time-varying elements is necessary to produce accurate indices.

Therefore, this chapter proposes a model for considering the correlation between 
any numbers of time series in non-sequential MCS. The correlation may occur 
between wind generations located at different sites, wind generation and system 
time-varying load, individual buses time-varying loads, etc. The consideration of 
correlation in non-sequential simulations has been applied to systems with at most 
two wind series [4] or without consideration of time-varying load [5]. The proposed 
model may be applied to any reliability study (generating system, composite system, 
etc.) where several time series are present. The results shown in this chapter are for 
generating system reliability evaluation, and the accuracy of the calculated indices is 
demonstrated by the comparison with those obtained by sequential MCS.

2 � Reliability Evaluation by Non-Sequential MCS

The calculation of the reliability indices in non-sequential MCS can be summa-
rized by evaluating Eq. (1):

where N is the number of simulated states, F is the test function for calculating the 
indices for each system state xi, and E(F)is the estimate of the annual reliability 
indices.

The system states are obtained by combining the states of all its components, 
which are obtained by sampling the cumulative probability distribution function of 
the operating states of each component. For a system with m components, a sys-
tem state can be represented by the random vector x = [x1, x2,…, xk,…, xm] where 
xk represents the state of the k-th component.

The models usually used by non-sequential MCS assume that the states of the 
components are statistically independent, and therefore, defining P(xk) as the prob-
ability of occurrence associated with the k-th component, the probability of the 
i-th system state P(xi) may be calculated by

Sampling the component state is done by applying the inverse transformation 
method to the cumulative distribution function (CDF) of the component, by generat-
ing a random number Uk uniformly distributed between [0,1], so that the state of a 
component modeled by n states is given by

(1)E(F) =

1

N

N∑

i=1

F
(

xi
)

(2)P
(

xi
)

= pi =

m∏

k=1

P (xk).
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However, power systems are not only composed by components that may be 
accurately represented by independent random variables (transmission lines, trans-
formers, generators, etc.) but also by time-varying elements (wind, loads, etc.) that 
are represented by time series. These time-varying elements can be statistically 
correlated, and therefore, the consideration of statistical independence becomes 
invalid. Therefore, an appropriate approach is required for a correct representation 
of the correlation between them in non-sequential MCS.

3 � Representation of Correlated Time-Varying Elements

3.1 � Two Elements

Consider, at first, two different time-varying elements which could be two series of 
wind, for example, and assume that random variable x1 represents the state of the 
first element, and x2 represents the state of the second. Equation (2) can be rewrit-
ten by separating the terms related to the two variables:

If x1 and x2 are not statistically independent, P(x1, x2) can be more generally 
written as

Therefore, the probability of the i-th state of the system can be written as

In the proposed model, the states sampling process is adapted to be able to 
incorporate the conditional probability present in (6). This is done after obtaining a 
distribution function for the conditional probability P (x

1

|x
2

.), as will be described 
later.

Considering, for simplicity, that the two variables have the same number of 
states n, the conditional probability distribution function will consist of n distinct 
distributions like

(3)
xk =






1 if 0 ≤ Uk < P1

2 if P1 ≤ Uk < P2

...
...

n if Pn−1 ≤ Uk ≤ 1.

(4)pi = P (x1, x2) ·

m∏

k=3

P (xk).

(5)P (x1, x2) = P (x1 |x2 ) · P (x2) .

(6)pi = P (x1 |x2 ) · P (x2) ·

m∏

k=3

P (xk).
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The model, therefore, represents the two correlated variables by a vector of 
probability distributions of variable x1 associated with a single probability function 
of variable x2, where each element in the array is the distribution associated with 
one state of x2. Figure 1 illustrates this representation for an example with n = 5.

The conceptual algorithm for sampling a state considering two dependent vari-
ables is given by

1.	 Sample the state of x2 from its CDF P(x2), as Eq. (3);
2.	 Select the appropriate distribution P (x1 |x2 ) according to the sampled state of 

x2 as Eq. (7);
3.	 Sample the state of x1 by applying the inverse transformation method to the 

distribution P (x
1

|x
2

) selected;
4.	 Sample the states of the independent components xk, as Eq. (3).

3.2 � Three or More Elements

This model can be extended for the consideration of several statistically dependent 
time-varying elements. For the particular case of three dependent variables, it can 
be written based on the chain rule:

And therefore, the probability of the i-th state of the system can be written as

(7)
P (x1|x2.) =






P (x1|x2 = 1.) if x2 = 1

P (x1|x2 = 2.) if x2 = 2

...
...

P (x1|x2 = n.) if x2 = n.

(8)P (x
1

, x
2

, x
3

) = P (x
1

|x
2

, x
3

.) · P (x
2

|x
3

.) · P (x
3

) .

(9)pi = P (x
1

|x
2

, x
3

.) · P (x
2

|x
3

.) · P (x
3

) ·

m∏

k=4

P (xk).

Fig. 1   Model for two 
correlated variables
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Similarly to the case of two dependent variables, the following conditional 
probability distribution functions can be defined for three dependent variables:

Therefore, the model represents the three correlated variables by a chain of vec-
tors of probability distributions, similarly to the way done for two variables.

The conceptual algorithm for sampling a system state considering three 
dependent variables becomes

1.	 Sample the state of x3 from its CDF P(x3), as Eq. (3);
2.	 Select the appropriate distribution P (x2 |x3 ) according to the sampled state of 

x3, as Eq. (10);
3.	 Sample the value of x2 by applying the inverse transformation method to the 

distribution P (x2 |x3 ) selected;
4.	 Select the appropriate distribution P (x1 |x2, x3) according to the sampled 

states of x2 and x3, as Eq. (11);
5.	 Sample the value of x1 by applying the inverse transformation method to the 

distribution P (x1 |x2, x3) selected;
6.	 Sample the states of the independent components xk, as Eq. (3).

4 � Obtaining Conditional Probability Distribution Functions

The conditional probability distribution functions are obtained by a recursive 
algorithm that depends on the number of dependent variables. For the case of 
three dependent variables, for example, P(x3), P (x

2

|x
3

.) and P (x
1

|x
2

,. x
3

) are 
obtained from the respective time series by the following conceptual algorithm:

1.	 Choose n the number of states to represent x1, x2 and x3;
2.	 Cluster the time series of x1, x2 and x3 into n states using the k-means algo-

rithm [6];
3.	 Obtain the probability distribution function of x3 P(x3);
4.	 Fix the first state of x3(k = 1);

(10)P (x2|x3.) =






P (x2|x3 = 1.) if x3 = 1

P (x2|x3 = 2.) if x3 = 2

...
...

P (x2|x3 = n.) if x3 = n

(11)P (x1|x2. , x3) =






P (x1|x2 = 1. , x3 = 1) if x2 = 1; x3 = 1

P (x1|x2 = 2. , x3 = 1) if x2 = 2; x3 = 1

P (x1|x2 = 1. , x3 = 2) if x2 = 1; x3 = 2

P (x1|x2 = 2. , x3 = 2) if x2 = 2; x3 = 2

...
...

P (x1|x2 = n. , x3 = n) if x2 = n; x3 = n
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5.	 For this state of x3, calculate the probability of occurrence of each state of x2, 
thereby obtaining P(x

2

|x
3

= k.);
6.	 Fix the first state of x2 (j = 1);
7.	 For these states of x3 and x2, calculate the probability of occurrence of each 

state of x1, thereby obtaining P(x
1

|x
2

= j , x
3

= k.);
8.	 Repeat step 7 for j = 2 → n;
9.	 Repeat steps from 5 to 8 for k = 2 → n.

5 � Results

To evaluate the model proposed in this chapter, two systems are used. The first is 
a small test system composed only of time-varying elements, while the second is 
a RTS [7]-based generation system containing conventional generation and time-
varying elements (wind and load).

5.1 � Test System

In order to evaluate the model accuracy, a system composed of wind generation 
and time-varying load is used, as shown in Fig. 2.

The generation system consists of two wind power plants that are chosen from 
three different plant models, whose characteristics are presented in Table 1.

The characteristics of the wind turbines A, B and C as well as the wind time 
series Southeast, South and Northeast are described in [8]. The frequency distribu-
tions of the three wind time series are shown in Fig. 3.

Fig. 2   Test system

Table 1   Wind power plants characteristics

Characteristics WP-I WP-II WP-III

Installed capacity 75 MW 125 MW 55 MW
No. of turbines 50 × 1.5 MW 50 × 2.5 MW 50 × 1.1 MW
Turbine type A B C
Wind time series Southeast (Wind1) South (Wind2) Northeast (Wind3)
Average wind speed 6.59 m/s 7.0 m/s 7.58 m/s
Capacity factor 0.34 0.21 0.30
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The system load is represented by the time series Load described in [7], and the 
average annual system load is 4.65 MW, as shown in Fig. 4.

The simulations are performed using the computational model RelSim [9], 
based on object-oriented modeling (OOM) and composed by a system of classes 

Fig. 3   Frequency 
distribution of the three wind 
time series
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that allows the description of the whole structure of a power system. Two basic 
types of simulators are implemented for composite reliability evaluation: the 
sequential simulator and the non-sequential simulator, as shown in Fig. 5.

Table  2 presents the correlations between the time series of the variables 
Wind1, Wind2, Wind3 and Load. It can be observed that the largest correlations 
occur between Wind2 and Wind3 and between Wind1 and Load.

Fig. 4   System load curve

Fig. 5   Structure of RelSim computational model



99Representation of Wind and Load Correlation

5.2 � Variable Wind and Constant Load

In this first analysis, the load is kept constant at a fixed value. The objective of this 
analysis is to observe only the influence of the correlation between winds in the reli-
ability indices. Seven different load conditions are simulated, from 0.5 to 2 pu of 
the average load value, for the three scenarios obtained by combination between the 
three wind power plants (WP-I and WP-II, WP-I and WP-III, WP-II and WP-III).

The first scenario consists of the generation system composed of wind power 
plants I and II. Tables 3, 4 present the values obtained for the loss of load prob-
ability (LOLP) and expected power not supplied (EPNS) indices. The second col-
umn of each table shows the values obtained by sequential MCS, which are used 
as reference for the calculation of the errors. The third column contains the values 
obtained, considering that the time-varying variables are independent, while the 
fourth column contains the values obtained using the proposed model.

Table 2   Correlation between 
time series

Time series Correlation

Wind1 × Wind2 0.042
Wind1 × Wind3 0.054
Wind2 × Wind3 0.135
Wind1 × Load 0.172
Wind2 × Load 0.125
Wind3 × Load 0.337

Table 3   LOLP—scenario WP-I and WP-II

Load (pu) Sequential 
simulation (pu)

Independent 
variables (pu)

Proposed  
model (pu)

Error to sequential (%)

Independent Proposed

0.50 0.072 0.071 0.072 2.2 0.1
0.75 0.072 0.071 0.072 2.2 0.1
1.00 0.072 0.071 0.072 2.2 0.1
1.25 0.072 0.071 0.072 2.2 0.1
1.50 0.114 0.111 0.113 2.4 0.2
1.75 0.159 0.151 0.159 5.1 0.1
2.00 0.159 0.151 0.159 5.1 0.1

Table 4   EPNS—scenario WP-I and WP-II

Load (pu) Sequential  
simulation (MW)

Independent 
variables (MW)

Proposed  
model (MW)

Error to sequential (%)

Independent Proposed

0.50 0.033 0.032 0.033 2.1 0.0
0.75 0.157 0.154 0.157 2.2 0.0
1.00 0.281 0.275 0.281 2.2 0.0
1.25 0.406 0.397 0.406 2.2 0.0
1.50 0.598 0.585 0.597 2.2 0.1
1.75 0.795 0.778 0.795 2.2 0.1
2.00 1.068 1.035 1.068 3.1 0.0
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The results show errors between 2.1 and 5.1 % for the indices obtained con-
sidering independent variables. The indices obtained by the proposed model, on 
the other hand, present very low errors, varying from 0 to 0.2 % at most. The dif-
ference between the results obtained by the two approaches is more visible to the 
larger load profiles, 1.75 and 2.00 pu, especially for the LOLP index. In this sce-
nario, since the correlation between the time series is small, the error of the inde-
pendent approach might be considered acceptable for some load profiles.

The second scenario consists of the generation system composed of wind power 
plants I and III. The errors observed for this scenario considering independent variables 
are lower than in the first scenario, varying from 0.1 to 2.1 % for LOLP and from 0 to 
1.6 % for EPNS. This fact is expected since the correlation between these two wind 
series is even smaller than the correlation of two series of the first scenario. The results 
obtained by the proposed model are once again better than those obtained by the inde-
pendent one, the largest error being 0.6 % for LOLP and 0.5 % for EPNS.

The third scenario consists of the generation system composed of wind power plants 
II and III. Table 5 shows the values obtained for the LOLP index, Table 6 for the EPNS 
index, and Fig. 6 shows a plot of the errors, where IND_LOLP and IND_EPNS corre-
spond to the errors obtained by the independent variables approach, while PROP_LOLP 
and PROP_EPNS correspond to the errors obtained by the proposed model.

The errors observed in this scenario are quite high for the independent 
approach, reaching 15 %. This fact is justified by the existence of a higher cor-
relation between the series of wind 2 and 3. In this case, the variables cannot be 
considered independent, and therefore, the independent model cannot correctly 
represent the behavior of the system. The results obtained by the proposed model, 
however, show that it perfectly captures the dependence between the variables, 
with all indices calculated with an error smaller than 0.5 %.

5.3 � Variable Wind and Variable Load

In this analysis, the load curve is considered, thus adding another time-varying 
element to the two wind series of the wind power plants. The same load conditions 

Table 5   LOLP—scenario WP-II and WP-III

Load (pu) Sequential  
simulation (pu)

Independent 
variables (pu)

Proposed  
model (pu)

Error to sequential (%)

Independent Proposed

0.50 0.000 0.000 0.000 0.0 0.0
0.75 0.075 0.065 0.075 14.0 0.5
1.00 0.075 0.065 0.075 14.0 0.5
1.25 0.149 0.127 0.150 15.0 0.2
1.50 0.149 0.127 0.150 15.0 0.2
1.75 0.193 0.171 0.194 11.7 0.3
2.00 0.230 0.206 0.231 10.3 0.2
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for the three scenarios of combination of wind power plants are simulated. The 
results for the first scenario are shown in Tables 7, 8 and in Fig. 7.

It can be seen that the errors of the indices obtained by the proposed model are 
all smaller than 4.4 %, except for the load curve of 0.5 pu where the error reached 
9.4  % for LOLP. This fact is due to the very low load profile, what makes the 
system reliability indices very small and, therefore, any difference between val-
ues represents a significant percentage. The errors of the independent approach for 
the low load profiles, however, are much higher than those of the proposed model 
indicating the higher accuracy of the last, while for the other load profiles the error 
level is of the same order.

Based on the difference between the LOLP index calculated by the pro-
posed model and the independent approach, one might think that the depend-
ence between variables does not affect significantly the accuracy of the reliability 
indices. However, observing the values of the EPNS index calculated by both 
approaches, it can be noticed that the errors for the independent one are extremely 
high, indicating that the dependence between variables strongly affects the value 
of the expected energy not supplied. Therefore, the independent approach is inad-
equate and might not be used.

Table 6   EPNS—scenario WP-II and WP-III

Load (pu) Sequential 
simulation 
(MW)

Independent  
variables (MW)

Proposed 
model (MW)

Error to sequential (%)

Independent Proposed

0.50 0.000 0.000 0.000 0.0 0.0
0.75 0.113 0.098 0.113 14.0 0.4
1.00 0.242 0.209 0.241 14.0 0.5
1.25 0.463 0.396 0.462 14.4 0.2
1.50 0.720 0.615 0.719 14.6 0.1
1.75 0.992 0.849 0.992 14.5 0.0
2.00 1.366 1.182 1.366 13.5 0.0

Fig. 6   Errors—WP-II and 
WP-III and constant load Wind2 x Wind3
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For the second scenario, the indices obtained by the proposed model are much 
better than those obtained by the independent approach. Table 9 shows the results 
for the EPNS index which is the most sensitive to the time series correlation, while 
Fig. 8 shows the errors for the two indices calculated.

Table 8   EPNS—scenario WP-I and WP-II and variable load

Load (pu) Sequential  
simulation (MW)

Independent 
variables (MW)

Proposed  
model (MW)

Error to sequential (%)

Independent Proposed

0.50 0.001 0.002 0.001 58.3 8.3
0.75 0.032 0.046 0.031 44.8 3.2
1.00 0.093 0.121 0.089 31.0 3.5
1.25 0.168 0.206 0.170 22.7 1.4
1.50 0.248 0.294 0.237 18.6 4.4
1.75 0.336 0.391 0.321 16.5 4.4
2.00 0.437 0.492 0.432 12.7 1.1

Table 7   LOLP—scenario WP-I and WP-II and variable load

Load (pu) Sequential  
simulation (pu)

Independent 
variables (pu)

Proposed  
model (pu)

Error to sequential (%)

Independent Proposed

0.50 0.005 0.009 0.006 77.4 9.4
0.75 0.041 0.052 0.041 26.3 0.2
1.00 0.066 0.068 0.065 2.4 2.7
1.25 0.072 0.072 0.073 0.7 1.4
1.50 0.076 0.079 0.073 4.2 3.4
1.75 0.082 0.084 0.079 2.8 3.6
2.00 0.096 0.098 0.094 1.5 2.3

Fig. 7   Errors—WP-I and WP-II and variable load
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The maximum error observed for the proposed model is 4.2  % for LOLP 
and 5.0 % for EPNS, whereas the errors of the independent approach vary from 
18 to 158  % for LOLP and from 47.5 to 203  % for EPNS, what is completely 
unacceptable.

The results for the third scenario are presented in Table 10 for the EPNS index, 
and the errors for both indices are shown in Fig.  9. All errors for the proposed 
model are smaller than 4 % except for the 0.75 pu load level due again to the low 

Table 9   EPNS—scenario WP-I and WP-III and variable load

Load (pu) Sequential  
simulation (MW)

Independent  
variables (MW)

Proposed  
model (MW)

Error to sequential (%)

Independent Proposed

0.50 0.000 0.000 0.000 0.0 0.0
0.75 0.006 0.019 0.006 203.1 0.0
1.00 0.031 0.066 0.032 109.2 2.2
1.25 0.076 0.128 0.072 69.3 4.6
1.50 0.134 0.211 0.140 57.9 5.0
1.75 0.204 0.310 0.212 52.2 4.1
2.00 0.291 0.428 0.305 47.5 4.8

Fig. 8   Errors—WP-I and 
WP-III and variable load Wind1 x Wind3 x Load
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Table 10   EPNS—scenario WP-II and WP-III and variable load

Load (pu) Sequential  
simulation (MW)

Independent  
variables (MW)

Proposed  
model (MW)

Error to sequential (%)

Independent Proposed

0.50 0.000 0.000 0.000 0.0 0.0
0.75 0.008 0.021 0.010 157.3 22.0
1.00 0.043 0.072 0.044 68.0 3.5
1.25 0.109 0.138 0.110 26.9 0.7
1.50 0.197 0.230 0.198 16.6 0.3
1.75 0.302 0.339 0.296 12.4 1.9
2.00 0.424 0.464 0.408 9.4 4.0
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value of the indices calculated. However, the errors for the independent approach 
are again very high, confirming its inadequacy to capture the influence of multiple 
correlated variables on the reliability indices.

5.4 � Modified RTS Generating System

In order to evaluate the model performance at a more complex system, a modi-
fied RTS is used where the original generation, composed of thermal, hydro and 
nuclear units with installed capacity of 3,405 MW, is enlarged by two wind power 
plants chosen from the three plant models of Table 1. The original load curve is 
increased by 10 % with an average annual load is 1,862 MW. All the simulations 
are done for a maximum coefficient of variation (α) of 3  % for both reliability 
indices.

In the first scenario, wind power plants I and II are added and the results are 
shown in Table 11.

The errors of the proposed model are 0.0 and 2.9  % for LOLP and EPNS, 
respectively, whereas the correspondent errors of the independent approach are 
24.0 and 26.3  %. These results confirm that the proposed model can accurately 
represent the dependence between time and varying elements also in the presence 
of independent components.

Table 11   MRTS—scenario WP-I and WP-II and variable load

Index Sequential 
simulation

Independent 
variables

Proposed model Error to sequential (%)

Independent Proposed

LOLP (α) 0.354 % (0.021) 0.439 % (0.022) 0.354 % (0.022) 24.0 0.0
EPNS (α) 513 Kw (0.03) 648 kW (0.03) 498 kW (0.03) 26.3 2.9
No. of states 18,536,160 521,007 585,401

Fig. 9   Errors—WP-II and 
WP-III and variable load Wind 2 x Wind 3 x Load
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The computational effort of the three simulation approaches can also be seen in 
Table 11. The proposed model requires 31.66 times less states adequacy analysis 
than the sequential simulation and only an additional effort of 12 % in relation to 
the independent approach.

In the second scenario, wind power plants I and III are added and the results 
are shown in Table 12. The errors of the proposed model are 1.8 and 0.7 % for 
LOLP and EPNS, respectively, whereas the correspondent errors of the independ-
ent approach are 31.4 and 33.9 %. It is interesting to compare the errors of the first 
and second scenarios of the MRTS with those of the small test system, where the 
same trend of increasing errors of the independent model can be observed. As a 
general conclusion, these errors are completely unacceptable.

In terms of computational effort, the proposed model requires 38.19 times less 
adequacy analysis than the sequential simulation and an additional effort of 25 % 
in relation to the independent approach.

6 � Conclusion

The results showed that the proposed model can correctly represent the effect of 
the statistical dependence between time-varying elements with about 30 times less 
processing time than the sequential simulation and only 12–25 % more effort than 
the independent approach. However, the independent approach may be very inac-
curate when the time series correlation is significant and in some cases fails very 
badly. Therefore, the model proposed represents a good alternative to correctly 
represent multiple wind power plants and the load curve in non-sequential simula-
tions with an acceptable processing time.
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1 � Introduction

The constant increase in oil prices and the concern over the reduction of gas emissions 
causing the greenhouse effect favor the creation of policies to encourage the produc-
tion of energy through renewable sources. The recent restructuring of the electricity 
sector has introduced new concepts such as power market, transmission open access, 
cogeneration, independent production, etc., which enabled the decentralized energy 
generation, strengthening such policies. Thus, non-conventional energy sources, 
namely wind power, mini-hydro, solar, and cogeneration (e.g., biomass), start hav-
ing a significant contribution in the energy production matrix [1, 2]. However, if the 
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volatility of the available capacity from such sources is not properly considered, the 
decisions taken in power systems expansion and/or operation planning can severely 
endanger the reliability of the power supply. Thus, systems planners and operators will 
require new computational tools capable of coping with these characteristics, in addi-
tion to the recent power system market implementation in a deregulated environment.

Several works to evaluate the reliability of power systems with high penetration of 
renewable sources have been proposed in the literature [3–21]. Most of these works 
deal with generating capacity reliability assessment (both static adequacy and operat-
ing reserve) and/or with small isolated power systems. In general, some of these meth-
ods propose simplified models or represent energy constraints through clustered data. 
Therefore, there is a need to develop more detailed models and tools, which are able to 
evaluate, in an accurate and efficient way, the composite generation and transmission 
reliability under this new context. The concern is not only to represent an important 
structural change, but also the need to consider a large number of new random vari-
ables and complexities arising from the floating capacity of the renewable sources.

This chapter presents an application of non-sequential Monte Carlo simulation 
(MCS) to evaluate the main reliability indices of composite generation and trans-
mission systems, considering renewable energy sources. The idea is to study the 
behavior of the reliability indices, when a major portion of the energy sources are 
renewable, comprising mainly hydro, mini-hydro, wind, and solar sources. Moreover, 
the production of renewable power will be calculated based on hourly/monthly series 
(different for each region/basin) of wind speed, solar radiation, and water inflow. 
The proposed non-sequential MCS will be validated against the chronological MCS 
through several case studies with variants of the IEEE Reliability Test System (RTS) 
[22, 23]. Finally, an application to a real power system (the Portuguese network [13]) 
will demonstrate the feasibility of the proposed methodology.

2 � Composite Reliability Assessment

2.1 � Basic Concepts

For generation and transmission systems, the estimates of loss of load indices 
are obtained through composite reliability assessment algorithms, based on two  
distinct representations: state space and chronological modeling. Usually, state-
space-based algorithms follow three major steps [24]:

(a)	 Select a system state (i.e., load level, equipment availability, energy availabil-
ity, etc.);

(b)	 Analyze the performance of the selected state (i.e., check if the available  
generating units and circuits are able to satisfy the associated load without 
violating any operating limits; if necessary, activate corrective measures such 
as generation redispatch, load curtailment, etc.);

(c)	 Estimate reliability indices (i.e., loss of load indices, etc.); if the accuracy of 
the estimates are acceptable, stop; otherwise, go back to step (a).
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State enumeration and non-sequential MCS methods are examples of 
state-space-based algorithms, where Markov models [25, 26] are used for both 
equipment and load state transitions. Therefore, states are selected and evaluated 
without considering any chronological connection. The necessary steps to evalu-
ate reliability indices considering the chronological representation (sequential  
MCS) are conceptually the same described for the state-space representation 
[27–29]. The basic difference is how system states are selected; that is, step (a) 
of algorithm. In this case, the sequential approach moves chronologically through 
system states, while the non-sequential approach randomly selects system states. 
The sequential simulation can, therefore, perceive all chronological aspects and, 
hence, is able to correctly represent renewable energy sources and their natural 
uncertainties, due to hydrologic inflow sequences, wind speed, and solar radiation 
variations, etc. However, the chronological modeling implies that two consecutive 
state samples differ from each other in only one state component. Therefore, this 
method requires a more substantial computational effort than the other approach.

Recently, the non-sequential MCS was improved receiving some features as 
non-aggregate Markov load models [29] and a new process for estimating fre-
quency and duration indices, named one-step forward state transition [30]. These 
features gave the non-sequential MCS the necessary flexibility to accurately  
represent renewable sources and they will be used in this work. This special non-
sequential MCS tool is similar to the quasi-sequential MCS proposed in [31] to 
deal with generating capacity reliability assessment. The only restrictions of these 
tools are the limitations to compute reliability worth-related indices and probabil-
ity distributions as discussed in [32].

2.2 � Traditional Composite Reliability Indices

In this chapter, loss of load indices are estimated by flexible non-sequential simu-
lation techniques, as the mean over N-sampled system state values Xk of the test 
function F(Xk):

All the basic reliability indices can be obtained by Eq. (1), depending on the 
definition of the test function F. The estimate uncertainty is given by the variance 
of the estimator:

where V(F) is the variance of the test function. This uncertainty is usually repre-
sented as the coefficient of variation:

(1)Ẽ [F] =

1

N

N∑

k=1

F(X
k),

(2)V

(
Ẽ [F]

)
= V (F)

/
N ,
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The traditional reliability indices to assess composite generation and transmission 
adequacy are as follows:

•	 LOLP—loss of load probability;
•	 LOLE—loss of load expectation (h/year);
•	 EPNS—expected power not supplied (MW);
•	 EENS—expected energy not supplied (MWh/year);
•	 LOLF—loss of load frequency (occ./year);
•	 LOLD—loss of load duration (h).

All these indices are obtained from the statistics of the MCS process as follows. 
For instance, non-sequential simulation can easily provide unbiased estimates for 
the loss of load probability (LOLP) and expected power not supplied (EPNS) indi-
ces. In this case, the test functions FLOLP and FEPNS are given by [29]:

and,

where X  =  XS ∪ XF is the set of all possible states x (i.e., the state space), 
divided into two subspaces XS of success states and XF of failures states; ΔPk 
is the amount of curtailed power at the failure state xk. The period of analysis, 
for example, T    =    8,760 or 8,736  h for annualized values, can be established 
and, thus, LOLE and EENS indices are obtained by: LOLE  =  LOLP  ×  T and 
EENS = EPNS × T.

Non-sequential simulation can also provide unbiased estimates for the LOLF 
and LOLD indices. In this case, the test function FLOLF is given by [30]:

and,

where λout
k

 is the summation of all the transition rates between failure state 
xk and any state directly connected to it. The state xm is a state reached from 
xk in one transition. The proposed estimating process must simulate only one 

(3)β =

√

V

(
˜E [F]

)
/

˜E [F],

(4)FLOLP(x
k) =

{
0 if x

k
∈ X S

1 if x
k

∈ X F

(5)FEPNS(x
k) =

{
0 if x

k
∈ X S

∆Pk if x
k

∈ X F

(6)FLOLF(x
k) =






0 if x
k

∈ X S

λout
k

if x
k

∈ X F and x
m

∈ X S

0 if x
k

∈ X F and x
m

∈ X F

(7)LOLD = LOLP/LOLF
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possible transition from failure state xk to a neighbor state xm. That is the rea-
son why this process is named the one-step forward state transition [30]. This 
process to estimate LOLF index is a very efficient approach to reduce compu-
tational effort. Moreover, it does not assume any coherent behavior in the system.  
This process makes it possible the modeling of time-varying loads by non-sequential 
techniques, which can be extended to model fluctuations in generating capacities.

2.3 � Complementary Indices

Loss of Load Cost

Other indices may also be evaluated during the simulation process and among the 
most interesting ones is the loss of load cost (LOLC). Besides providing a rela-
tively easy figure for discussions, that is, dollars instead of probabilities, kWh, 
occurrences, etc., per year, these indices can be directly included into the objec-
tive function to be minimized, according to the least-cost planning approach. 
Reliability worth is a relevant issue in power systems planning, and operation, and 
many publications have been dedicated to this subject, for example, [5, 7, 8, 13, 
15, 26, 29, 32].

Another set of interesting indices can be obtained by the well-being framework 
[30], which classifies the operating states into three groups: healthy, marginal, and 
at-risk (or failure). To identify these states, the power system is submitted to a pre-
specified deterministic criterion. The details of this framework and the way the 
corresponding indices are evaluated can be found in [30].

Relative and Conditioned Contributions

Composite reliability programs can be used to assess the relative contribution of 
generation and transmission outages to overall system reliability [24]. Let, the 
LOLP, EPNS, and LOLF be expressed as a general system reliability index (RI) as 
follows:

where RIG represents the contribution of generation outages (G), which are severe 
enough to lead to load curtailment, even if there are no limitations in transmission 
capacity; RIT represents the contribution of transmission outages (T), which are 
severe enough to lead to load curtailment, even if the full generation capacity is 
available; RIC represents the composite problems (C), that is, the combined effects 
of simultaneous generation and transmission failures plus the impact of generation 
failures with transmission restrictions on the system.

It can be seen from the above definitions that RIG corresponds to the values 
calculated by a “pure” generation reliability program; in turn, RIT corresponds 

(8)RI = RIG + RIT + RIC
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to the values calculated by a “pure” transmission reliability evaluation program; 
and finally, the “composite” index RIC measures the degree of interaction between 
generation and transmission in the system [24]. Usually, a composite reliability 
tool can assess within a single-run both RI and RIG indices and, therefore, the 
influence of the transmission equipment can be evaluated through the index:

Composite reliability programs can also be used to assess the conditioned 
contribution of generation and transmission outages to overall system reliability. 
For instance, RI[G/T_UP] represents the system indices obtained by a composite 
reliability evaluation tool, where only the unavailabilities of generators are 
sampled; all transmission equipment are completely reliable (i.e., at the up state), 
but their capacities are fully considered. Similarly, RI[T/G_UP] represents the 
system indices obtained by a composite reliability evaluation tool, where only 
the unavailabilities of transmission are sampled; all generation equipment are 
completely reliable (up state), obviously their capacities must be considered. 
Observe that the RI[T/G_UP] index is an unbiased estimate for RIT and, therefore, 
RIC can be evaluated as “RIT&C – RIT.” The latter value is an approximation since 
RI[T/G_UP] is obtained from a separated simulation.

Area and Load Point Indices

Area and load point or bus reliability indices provide information on the spatial 
distribution of steady-state reliability and help identify “problem” areas and buses, 
which may need to be reinforced. The same previous set of system indices can 
be evaluated at the area or bus level. Obviously, to ensure the convergence of bus 
reliability indices will be more difficult, since these events are naturally rarer than 
area or system reliability indices.

Chronological Power Flow Indices

In order to obtain the amount of wind energy spilled for systems with high  
penetration of wind energy sources, the chronological power flow (CPF) algorithm 
was recently proposed [20]. It consists in a MCS-based chronological process, 
performing load-flow assessments throughout the study period, for example, one 
year or 8,760 h. Thus, through (10), the expected wind energy spilled (EWES) is 
estimated for both cases: without transmission restrictions, that is, under single-
bus dispatch (EWESG) and with transmission restrictions (EWESG&T):

where WESk is the amount of WES in year k and NY the number of simulated years. 
The estimation of (10) can also be carried out through a special non-sequential or 

(9)RIT &C = RI − RIG

(10)EWES =

1

NY

NY∑

k=1

WESk ,
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quasi-sequential MCS, based on the same methodology to be used in this chapter. 
The corresponding models will be described in the next subsection.

2.4 � System Modeling

In this work, the network performance will be evaluated by a DC linear model. 
Therefore, DC power flow and/or optimal power flow (OPF) algorithms will be 
used together with the following models.

Load and Renewable Source Capacity

The proposed method uses a non-aggregate Markov load model with 8,760 states, 
sequentially connected in the same chronological order as they appear in the 
hourly load curve. The main idea is to keep some chronological representation in 
the Markov load model [29, 31]. Since the load will remain, on average, one hour 
at each state, therefore, state h corresponds, on average, to hour h in the actual 
chronological sequence. To select the load level, the composite reliability assess-
ment tool may sample a state/hour h from a uniform distribution U[1, 8760] (special 
non-sequential MCS) or just follow hour-by-hour the load curve (quasi-sequential 
MCS).

In order to explain this model, Fig.  1 shows a sampled state h and the next 
state h + 1, where Lh(Am) represents the load level at state h in area m and lL is 
the load transition rate. Therefore, if a load transition occurs, the load level in all 
areas will be changed from Lh to Lh+1. Note that the load in a certain area may 
be increasing, while, at the same time, it may be decreasing in a different area. If 
the load is followed hour-by-hour by the simulation process, other time-dependent 
phenomena can be tracked as well.

The volatility of the available capacity from renewable sources can be modeled 
by historical yearly series [14, 31]. All of these series can be converted into non-
aggregate Markov models. Thus, load states will be chronological connected with 

Fig. 1   Multi-level non-
aggregated Markovian load 
model

λLλL

Lh+1(A1)

Lh+1(A2)

Lh+1(Am)

Lh(A1)

λL

Lh(A2)

Lh(Am)
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the maximum capacity of each renewable source through h hour. These models 
allow to observe the complementarities between renewable and non-renewable 
sources and to evaluate the impact of transmission network on the reliability indices.

Thermal and Hydro units

A two-state Markov model is used for modeling the up/down cycle of all thermal 
and hydro generating units. They are specified through their failure (l) and repair 
(m) rates. Figure 2a shows the well-known two-state Markov model. The generat-
ing capacity of the thermal units is fixed and pre-specified. However, the capacities 
of the hydro units will be defined for each month, according to the corresponding 
hydrological series. These series are defined for each hydraulic basin based on his-
torical data and aim at capturing the historical inflows, reservoir volumes, and type 
of operation. Mathematical polynomials convert the storage volumes into momen-
tary power capacities [7, 8, 10, 14].

Wind and Solar Generating Stations

Usually, in wind or photovoltaic (PV) solar generating station, there are several 
generating units/cells and they will be grouped into an equivalent multi-state 
Markov model, as shown in Fig.  2b. Only two stochastic parameters are neces-
sary: unit failure and repair rates. Parameter N represents the number of generating 
units of the renewable model. If C is the unit capacity, the amount of power asso-
ciated with the kth state is given by Ck = (N − k) × C, k = 0,…, N. The cumula-
tive probability Pk (from 0 to k) associated with this state can be easily calculated. 

(a)

(b)

Fig. 2   (a) Two-state (b) Multi-state Markov models
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In order to reduce the number of these states during the non-sequential MCS, a 
simple truncation process sets the desired order of accuracy. Therefore, instead of 
N + 1 states, a much smaller number up to the capacity CL will limit this model; 
for example, 1  −  PL  ≤  tolerance. The productions of the renewable generating 
units will be defined for each hour, according to the hourly primary energy series 
for each geographic region. In a wind generating station, the series try to capture 
the wind speed and power conversion characteristics. Similarly, in a PV and con-
centrating solar generating stations, the series try to capture the irradiation and 
power conversion characteristics.

Mini-Hydro Units

Mini-hydro units are modeled similarly to the hydro generating units, but in order 
to simplify the modeling process, they are grouped into multi-state-units. Due 
to the lack of specific data in relation to the hydrological basin where they are 
located, only one average series per year is used to model the capacity variations 
with time.

Cogeneration Units

Co-generating units are modeled similarly to the thermal units, but like in the pre-
vious case, they are clustered as well. Also, an hourly utilization factor is speci-
fied, which models the actual co-generation power used by the system. This factor 
varies during the year following the tariff attractiveness and/or the industry pro-
duction cycle [8].

2.5 � Computational Procedure

The proposed algorithm to assess composite reliability indices in systems with 
large penetration of renewable sources is structured as follows:

1.	 Read all the information regarding generation and transmission parameters, 
hourly load levels, hydrological, wind, and solar series, and maintenance 
schemes. Besides that, the following parameters must be defined: (a) maxi-
mum sample size Nmax; (b) coefficient of variation β;

2.	 Set N = 1 and h = 1, where N represents the sample counter and h the load 
vector hour index;

3.	 Sample the hydrological, wind, solar, and co-generation series according to 
their probabilities of occurrence;

4.	 Evaluate the actual capacity of the generating units during hour h, from the 
sampled hydro, wind, etc. series;
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5.	 Sample the state of each generating and transmission equipment based on 
their own stochastic up/down model, accounting for the maintenance scheme;

6.	 Evaluate all corresponding test functions F, that is, (4), (5), and (6), associ-
ated with the performance of state xk, (k = h), by means of DC power flow 
and/or OPF algorithms;

7.	 Estimate all indices and their related coefficients of variation. If any interrup-
tion criterion is met (β or Nmax), stop the simulation; otherwise, go to Step 8;

8.	 Set N = N + 1 and h = h + 1. If h = T + 1, set h = 1 and return to Step 3, 
otherwise, go to Step 4.

The primary idea of the previous quasi-sequential MCS is to keep tracking the 
load model on hourly bases, so that one can capture the time dependence of the 
generating capacities of renewable sources (e.g., hydro, wind, and solar units). 
The proposed algorithm is conceptually similar to the pseudo-chronological MCS 
[29], although much simpler. It incorporates some features of the one-step forward 
state transition [30], but it does not have the ability to calculate the distribution 
functions associated with the reliability indices, as in the case of the chronological 
MCS [29]. Moreover, the evaluation of LOLC indices can also be calculated but 
not with the same accuracy of the pseudo- or full-chronological MCS.

In the previous simplified computational procedure, the load states are sequen-
tially selected, that is, hour-by-hour, which characterizes the quasi-sequential MCS. 
However, the load state (i.e., hour h) could also have been sampled after step 3, and, 
therefore, step 8 would be properly modified by disregarding the counting process 
“h = h + 1.” In this case, a special or flexible non-sequential MCS is characterized.

Both MCS-based algorithms provide unbiased reliability index estimations. 
Moreover, they properly allow the representation of maintenance schedules under 
hour/monthly bases.

3 � Applications to the IEEE Standard System

The proposed method is applied to the RTS96-RES (i.e., renewable sources) sys-
tem. It consists of a modified version of the IEEE RTS 1996 [23], with high pen-
etration of the renewable sources. The original hourly load curve [22] is used in 
all simulations. The convergence criterion of the MCS is to have a β ≤ 5 %, for all 
indices. All computations are performed in a Pentium Core 2 Duo 2.0 GHz.

3.1 � Characteristics of the RTS96-RES

The original system (RTS96) has 900  MW of hydroelectric sources, representing 
9 % of the total installed capacity (10,215 MW). In order to build a new configu-
ration with high penetration of renewable sources, 3,150 MW of thermal sources, 
presented in Table 1 (31 % of the total installed capacity), are selected to be replaced 
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by wind and new hydro generators. In order to maintain a correspondence between 
the thermal and the effective wind power capacity, the number of wind units and 
new hydro units was obtained based on some statistics from the wind and hydrologi-
cal series [20]. The total installed capacity of the RTS96-RES is 13,996 MW, which 
represents an increase of 37 % in relation to the RTS96. Figure 3 shows Area 1 with 
the new changes. The other two areas are similar. The new changes also include 
the addition of circuits 901 (101–102), 903 (101–105), 909 (105–110), and 980  
(301–302). These network reinforcements were obtained by the CPF algorithm pro-
posed in [20] in order to reduce the EWESG&T index from 132.230 to 17.017 GWh/
year. Therefore, the final RTS96-RES provides a robust system configuration.

To represent the volatility of renewable sources, each area of the RTS96-RES 
system, which corresponds to an IEEE reliability test system [22], is considered 
as a distinct geographic region. For the wind sources, five series, based on actual 
historical series from the Netherlands [33], are used, with 8,736 hourly levels, for 
each area of the system.

The application of the proposed methodology is described in the next subsec-
tions, through four case studies considering two wind scenarios. To illustrate the 
variability of these series in each area of the system, Fig. 4 shows the mean values 
of the wind generator output powers, in per unit, based on the five collected series, 
which make up Scenario 1. In the case of hydrological sources, five series are also 
considered, with 12 monthly levels for each plant or reservoir [7, 8]. Scenario 2 is 
a variant of Scenario 1 in which the wind in the October–March period is increased 
by a factor of 20 %, and the April–September period is decreased by 80 % (see 
Fig. 5). Also during the October–March months, the series of Areas 1 and 3, whose 
peak production occurs at the diurnal period, are shifted 12  h later in the day. 

Table 1   Thermal sources replaced by wind and new hydro sources

Bus RTS96 RTS96-RES

No. of  
units

Capacity (MW) Type No. of units Capacity (MW)

Per unit Total Per unit Total

101 2 76 152 WINa 319 2.5 797.5
102 2 76 152 HYD 2 84.0 168.0
113 3 197 591 HYD 3 212.0 636.0
115 1 155 155 WIN 325 2.5 812.5
201 2 76 152 WIN 181 2.5 452.5
202 2 76 152 HYD 2 80.0 160.0
213 3 197 591 HYD 3 253.0 759.0
215 1 155 155 WIN 184 2.5 460.0
301 2 76 152 WIN 285 2.5 712.5
302 2 76 152 HYD 2 96.0 192.0
313 3 197 591 HYD 3 352 1056.0
315 1 155 155 WIN 290 2.5 725.0
Total (MW) 3,150 Total (MW) 6,931.0

a Each wind unit has λ = 4 f/year and μ = (1/90) r/h
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Fig. 4   Moving average 
yearly curve of the output 
from wind generators—
Scenario 1
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Thus, in this scenario, the wind conditions are stronger during the winter period 
(October–March) and also during the evening/morning hours from 6 p.m. to 6 a.m.

The studies carried out with this system can be divided into four cases 
described in Sects. 3.3–3.6. However, before presenting these case studies, it is 
necessary to validate the proposed non-sequential MCS-based method.

3.2 � Validation of the Proposed Method

In order to validate the proposed method, the RTS96-RES with wind Scenario 1 is 
evaluated by both MCS tools: the sequential/chronological algorithm (Seq-MCS) 
and the proposed flexible quasi-sequential/non-sequential (NSeq-MCS) algorithm. 
Table 2 presents the traditional composite reliability indices for this system con-
figuration. One can notice that the differences are within the uncertainty margin 
(β ≤ 5 %), which confirms the validity of the proposed methodology. The sequen-
tial MCS algorithm took 116 min to evaluate approximately 310 × 106 states, dis-
tributed in 14,106  years. On the other hand, the non-sequential MCS algorithm 
evaluated approximately 38 × 106 states, in 14 min, presenting a speed-up of 8.3 
times in relation to the sequential MCS. Thus, from this point on, only the pro-
posed flexible non-sequential MCS algorithm is used to evaluate all cases studied.

Fig. 5   Moving average yearly curve of the output from wind generators—scenario 2
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Table 2   Composite indices for RTS96-RES with wind scenario 1: validation of non-sequential 
MCS

Algorithm LOLE (h/year) EENS (MWh/ 
year)

LOLF (occ./year) LOLD (h)

Seq-MCS 0.652 130.834 0.223 2.922
NSeq-MCS 0.661 126.325 0.239 2.759
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3.3 � Case 1: RTS96-RES with Scenario 1

In Case 1, only hydro and wind sources are used to replace thermal sources. 
Scenario 1 is utilized for the hourly wind power series. Table 3 shows the complete 
set of reliability indices obtained with the proposed non-sequential MCS method. 
The LOLE index for the system is 0.661 h per year (LOLP = 7.54 × 10−5), which 
characterizes a very good performance from the reliability point of view. From this 
amount, 0.618 h/year refers to generation problems, and, thus, the direct or indirect 
influence of the transmission (i.e., LOLET&C = 0.043 h/year) is very small; circa 
7 %. The EENS index for the system is 126.3 MWh per year and the LOLF index 
is 0.239 occurrences per year. As previously stated, the proposed MCS tool took 
14 min of CPU time.

3.4 � Case 2: RTS96-RES with Scenario 2

In Case 2, again, only hydro and wind sources are used to replace thermal sources. 
Scenario 2 (Fig.  5) is employed for the wind power series. Table  4 shows the 
reliability indices obtained with the proposed non-sequential MCS method. The 
EENS index is 66.3  MWh/year, which is again a very good performance from 
the reliability point of view. From this amount, 62.9 MWh/year is due to genera-
tion problems, and, thus, the direct or indirect influence of the transmission (i.e., 
EENST&C ∼

=
 3.4 MWh/year) is very small; circa 5 % of the total. The EENS due to 

only transmission failures is 2.65 MWh/year and, therefore, the composite fraction 
is 0.74 MWh/year. This is indeed an estimated value since the conditioned indices 
are obtained from two extra runs with the proposed flexible non-sequential MCS 
algorithm. All these reliability indices indicate the large dominance of generation 
problems, though their consequences on the overall system are very small.

In relation to Case 1, one can observe a slight improvement in performance 
due to the fact that the wind became stronger during the winter, when the load 

Table 4   Case 2: reliability indices—scenario 2

Indices RI RIG RIT&C RIT RIC

LOLE (h/year) 0.380 0.338 0.042 0.032 0.010
EENS (MWh/year) 66.289 62.894 3.395 2.654 0.741
LOLF (occ./year) 0.139 0.118 0.021 0.005 0.016

Table 3   Case 1: reliability indices—scenario 1

Indices RI RIG RIT&C RIT RIC

LOLE (h/year) 0.661 0.618 0.043 0.032 0.011
EENS (MWh/year) 126.325 123.024 3.301 2.654 0.647
LOLF (occ./year) 0.239 0.203 0.036 0.005 0.031
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curve is more intense. The proposed MCS tool took 23 min of CPU time, and circa 
65 × 106 states were analyzed.

3.5 � Case 3: RTS96-RES with Scenario 1—Additional Solar 
Power and Co-generation Power Sources

Case 3 is similar to Case 1, but an additional generation capacity is added to the 
system, as shown in Table  5. Table 6 shows the complete set of reliability indi-
ces obtained with the proposed non-sequential MCS method. The EENS index is 
87.1  MWh/year, which is again a high-quality performance from the reliability 
point of view. From this amount, 84.9 MWh/year is due to generation problems, 
and, thus, the influence of the transmission (i.e., EENST&C ∼

=
  2.3 MWh/year) is 

very small. The addition of generating capacity slightly improves the system relia-
bility performance as compared with Case 1. The proposed MCS tool took 18 min 
of CPU time, and circa 48 × 106 states were analyzed.

3.6 � Case 4: RTS96-RES with Scenario 1, Additional Power 
Sources and Stressed Transmission Network

In Case 4, Scenario 1 is used together with the additional generation defined in 
Case 3. However, in order to stress the transmission network, all loads and gener-
ating capacities are doubled. Table 7 shows the complete set of reliability indices 
obtained with the proposed non-sequential MCS method. The LOLE index is now 

Table 5   Addition of solar 
and co-generation power 
sources

Type Bus
No. of
units

Capacity (MW)

Per unit Total

Co-generationa 104 3 10 30
Solarb 106 4 20 80
Co-generation 204 3 30 30
Solar 206 4 20 80
Co-generation 304 3 30 30
Solar 306 4 20 80

a Each co-generation unit has λ = 10 f/year and μ = (1/90) r/h
b Each solar unit has λ = 6 f/year and μ = (1/90) r/h

Table 6   Case 3: reliability indices—scenario 1 and additional sources

Indices RI RIG RIT&C RIT RIC

LOLE (h/year) 0.461 0.425 0.036 0.032 0.004
EENS (MWh/year) 87.133 84.878 2.255 2.231 0.024
LOLF (occ./year) 0.190 0.147 0.043 0.005 0.038
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12.28 h/year (LOLP =  1.40 ×  10−3), which characterizes a significant decrease 
in the system reliability performance. From this amount, only 0.39 h/year refers 
to generation problems and, thus, the total influence of the transmission (i.e., 
LOLET&C =  11.88 h/year) is very dominant now; circa 97 %. In relation to the 
unsupplied energy, EENS[G/T_UP]–EENSG  =  552.10–164.48  =  387.76  MWh/
year shows the influence of the transmission capacity restrictions on the sys-
tem, when generating unit failures occur. The influence of pure transmis-
sion failures is EENST  =  136.73  MWh/year and of composite problems is 
EENSC =  391.59  MWh/year. All previous values show the dominance of com-
posite problems on the system performance. The proposed MCS tool spent one 
minute of CPU time, and circa 2 × 106 states were analyzed.

Finally, observe that if failure events are rare, as in Case 2 (LOLP =   4.33 × 
10−5), the CPU time becomes high (23 min). Conversely, if the failures are fre-
quent, as in Case 4 (LOLP = 1.40 × 10−3), the CPU time decreases (1 min). This 
performance can be greatly improved by using importance sampling and cross-
entropy concepts as demonstrated in [34] and [35].

4 � Applications to the Portuguese System

The cases presented in this section are based on planned configurations by the 
Portuguese Transmission System Operator (REN–Redes Energéticas Nacionais). 
The Transmission Network Development and Investment Plan entitled as “PDIRT 
2009–2014 (2019)” is available in [36] and represents the groundwork to the 2020 
configuration used in this reliability study. A complete description about data col-
lection and the 2020 configuration supplied by REN can be found in [13].

4.1 � Portuguese System Scenarios

Two different scenarios of the Portuguese system, entitled “Business-as-Usual” 
(BAU) and “High Renewables” (HiRES) for the 2020 horizon, were considered 
to explore the reliability impact of the integration of renewable sources on the 
Portuguese network. A study entitled as “Base” that considers all historical hydro-
logical and wind series will be performed for both scenarios. Moreover, some spe-
cific conditions will be considered as follows: (1) the driest hydrological series 
(H); (2) an extremely pessimistic (zero) wind production (ZW); (3) an extremely 

Table  7   Case 4: reliability indices—scenario 1, additional sources, and stressed transmission 
network

Indices RI RIG RIT&C RIT RIC

LOLE (h/year) 12.278 0.394 11.884 7.101 4.783
EENS (MWh/year) 692.786 164.475 528.311 136.725 391.586
LOLF (occ./year) 4.197 0.104 4.093 2.311 1.782
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pessimistic wind production combined with the driest hydro condition (ZW_H). A 
brief description of BAU and HiRES scenarios is provided as follows.

BAU Scenario

The generation system capacity consists of 29.2  GW divided into three main 
components in the total Portuguese production: special regime (43.0  %), which 
includes renewable technologies; hydro power plants (30.5  %), with large and 
mini-hydro technologies; and thermal power plants (26.5  %), with several tech-
nologies. In 2020, there will be 49 hydropower plants in Portugal. In this study,  
6 hydrological basins were considered, referring to 16 years of monthly hydrological 
conditions (1990–2005) [13]. A chronological load model with 8,760 levels for each 
hour of the year is used, with a peak of 13.5 GW. There will be about 3,750 wind 
turbines (units) in the system. Bearing the wind series in mind, Portugal was divided 
into 7 regions, and the average per unit value (capacity factor) remains around 0.26.

The transmission system consists of 836 circuit branches with four differ-
ent voltage levels (63, 150, 220, and 400 kV), including 299 power transformers. 
There are 573 buses in this system including 102 load buses and 227 generating 
buses. It is important to emphasize that a great share of renewable production is 
connected to the 63 kV level, even though a small part of the wind farms may be 
connected to the 220 and 400 kV. In general, the hydro and thermal technologies 
are connected to the 220 and 400 kV, especially those power plants with a higher 
capacity for the energy production.

HiRES Scenario

In this scenario, renewable resources will be increased and the same generation 
capacity of BAU will remain for the hydro and thermal technologies. The same 
transmission circuits used before will be kept. This second scenario consists of 
30.8 GW divided as Ssecial regime (45.8 %), which has increased in wind, photo-
voltaic and concentrating solar power capacity, consequently, mitigating the partici-
pation of hydro (29.0 %) and thermal power plants (25.2 %) in the total Portuguese 
production. The same chronological load model with 8,760 points representing 
each hour of the year is used, considering the same peak load on 13.5  GW. As 
mentioned before, the “HiRES” scenario will be submitted to the same conditions 
described previously; that is, H, ZW, and ZW_H. The aim is to compare the perfor-
mance of the Portuguese system under the HiRES and BAU scenarios.

4.2 � Composite Reliability Analysis

In the studies that follow, β = 5 % is set for the EENS and LOLF indices. Also, 
no maintenance activity will be scheduled with both BAU and HiRES scenarios, 
although the proposed methodology is capable of coping with that.
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Reliability Performance of the BAU Scenario

Table  8 shows that, for the BAU “Base” case, the LOLE index is 0.768  h/year 
and the EENS index is 39.85 MWh/year. The failure events have occurred with a 
LOLF of 0.356 occ./year, which can be interpreted as 1 failure every 2.8 years. All 
indices revealed that the BAU scenario assessed through the “Base” case is very 
robust, with a LOLE lower than 1 h per year.

As stated previously, the “H” study explores the BAU configuration under a 
poor hydrological condition. As shown in Table 8, the risk level of the BAU sce-
nario under this constraint slightly increases in relation to the “Base” case. The 
LOLE index is 0.842  h/year (the EENS index is now 55.64  MWh/year), which 
represents an increase of 10 % on the risk level for the overall system in relation to 
the “Base” case.

The “ZW” study explores the BAU scenario under a very aggressive con-
dition, where all wind production is considered to be zero in the entire 
Portuguese system. The BAU configuration decreases its installed capac-
ity circa 7,500  MW, and, consequently, impacts on the system risk level. The 
LOLE index increases to 12.324 h/year and the EENS index to 3,946.01 MWh/
year. This result shows the importance of the wind production for the future of 
the Portuguese system.

Finally, “ZW_H” combines the zero wind condition described before with the 
poorest hydrological series. As expected, this combination revealed that the risk 
increases in relation to the “Base” study and to all others conditions studied. The 
LOLE index goes up to 15.564  h/year and the EENS index to 5,276.18  MWh/
year. Thus, the analyzed configuration can be considered unacceptable for the 
Portuguese system. Clearly, it is very unlikely that this combination will happen 
and only represents an illustrative result, so that it is possible to see the limits of 
the BAU scenario in this study. Different scenarios involving the BAU configura-
tion were also explored [13].

Reliability Performance of the HiRES Scenario

The main difference between BAU and HiRES scenarios is the quantity of the 
renewable production that is added to the Portuguese system. The HiRES sce-
nario consists of 1,000  MW more in wind turbines, performing 8,500  MW of 

Table 8   Composite reliability indices: BAU scenario

Case LOLP LOLE (h/year) EENS  
(MWh/year)

LOLF (occ./year)

Base 8.760 × 10−5 0.768 39.85 0.356
H 9.616 × 10−5 0.842 55.64 0.423
ZW 1.407 × 10−3 12.324 3,946.01 6.632
ZW_H 1.777 × 10−3 15.564 5,276.18 7.922
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wind installed capacity, 450 MW more in solar photovoltaic, performing 700 MW 
of the solar photovoltaic installed capacity, and 117  MW more in concentrating 
solar power, performing 300 MW of installed capacity. These additional capacities 
are equally distributed at the same buses of the BAU network configuration. It is 
important to highlight that both hydro and thermal capacity were not added nor the 
transmission system was expanded.

As the capacity of the Portuguese generating system increases, a better perfor-
mance in comparison with the previous evaluation emerges. Table 9 shows that the 
HiRES “Base” case presents a LOLE index equals to 0.666 h/year and the EENS 
index is 13.30 MWh/year. The LOLF index is 0.292 occ./year and can be inter-
preted as one failure every 3.4 years, approximately. The average duration of each 
event is 2.28 h. These indices revealed that the HiRES scenario under the “Base” 
case can also be considered as a robust configuration, with a LOLE index lower 
than 1 h per year.

The “H” study explores the HiRES scenario under the poorest hydrologi-
cal condition. In this case, the HiRES performance is similar to the previous 
“Base” case, with a slight deterioration for the composite reliability indices. The 
“ZW” study proposes a very aggressive condition for the HiRES configuration, 
where all wind production is considered to be zero in the entire Portuguese sys-
tem. Consequently, the HiRES configuration decreases its installed capacity circa 
8,500  MW, which, in turn, increases the system risk levels. The LOLE index 
increases to 5.305  h/year and the EENS index increases to 1,387.13  MWh/year. 
Similarly to what happens with BAU under “ZW” study, in the HiRES configura-
tion the wind capacity, is significantly reduced, thus showing how this technology 
is important to the future of the Portuguese energy matrix.

The “ZW_H” case combines the previous zero wind condition with the poor-
est hydro case. As expected, this combination revealed that the risk level increases 
in relation to the “Base” case and all other studied conditions. The LOLE index 
increases to 6.862  h/year and the EENS index to 1,902.20  MWh/year. Under 
these conditions, HiRES is definitely better than the BAU configuration, although 
it might be considered improper for the Portuguese system. In conclusion, the 
increased diversity in renewable resources is always welcome, allowing for a more 
robust composite reliability performance.

Finally, the efficiency of the proposed composite reliability method can be 
demonstrated for the “Base” case with the BAU scenario: 1.6  h of CPU time 
against 7.4 h of a chronological MCS-based algorithm.

Table 9   Composite reliability indices: HiRES scenario

Case LOLP LOLE (h/year) EENS  
(MWh/year)

LOLF (occ./year)

Base 7.607 × 10−5 0.666 13.30 0.292
H 7.937 × 10−5 0.695 17.06 0.311
ZW 6.056 × 10−4 5.305 1,387.13 3.020
ZW_H 7.833 × 10−4 6.862 1,902.20 3.919
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5 � Conclusions

This chapter presented a new methodology to evaluate composite reliability indi-
ces in power systems with high participation of renewable energy sources. Based 
on a flexible non-sequential Monte Carlo simulation (MCS) algorithm, which con-
siders non-aggregate Markov models and a process for estimating frequency and 
duration indices named one-step forward state transition, the proposed methodol-
ogy is able to cope with the volatility of renewable power sources.

Several case studies using modified configurations of the IEEE reliability test 
system 1996 and also a real network were carried out. The results based on vari-
ous reliability indices indicated that the greater participation of renewable sources 
might make the restrictions imposed by the transmission network more critical. 
Thus, the reliability assessment algorithms of composite generation and transmis-
sion systems should be viewed as an essential tool for the decision-making process 
in activities related to planning or operation of new power systems, which will 
have an increasingly more significant participation of renewable sources.

Finally, the proposed method proved to be very accurate and efficient from the 
computational point of view.
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