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Preface

For many years, digital signal processing has been completely governed by the theory of
Fourier transformation and its numerical implementation – the Fast Fourier Transform
(FFT).

The main disadvantage of the Fourier theory is the underlying assumption that the
signals to be processed have time-wise or space-wise invariant statistical properties.
In many applications the deviation from such a stationary behavior is exactly the
information to be extracted from the signal. Such patterns occur for instance in seismic
reflection signals. Hence one of the first contributions to a field, which is now called
wavelet analysis, comes from the analysis of seismic signals. Without mentioning the
name wavelet, the paper [43] marks somehow the beginning of the signal processing
by wavelets. Even more, one of the most frequently used wavelet is named after Morlet
– one of the authors of this paper.

The simplest thinkable wavelet is derived from the Haar base which has already
been known since 1910. The disadvantage of this Haar wavelet is its low degree of
smoothness. The French mathematician Y. Meyer [73] succeeded in the construction
of a family of orthogonal smooth wavelets. With the concept of multi-resolution
analysis (MRA), introduced by Mallat and Meyer, the gap between wavelet analysis
and filtering was bridged. Unfortunately, the wavelets were either irregular and with
a finite support – as the Haar wavelet – or smooth and with an infinite support. Due
to the contribution of I. Daubechies [15] a method was found to construct wavelets
which are both smooth and of finite support. An extensive historic overview of the
development of wavelet theory can be found in [48].

Despite the fact that the first applications of wavelet transformation were in geo-
sciences, it was not before the nineties that the geo-science community started to use
wavelets. Meanwhile numerous applications of wavelet theory in geo-sciences can be
found. In this book we present the mathematical foundations of wavelet theory as well
as its applications in geo-sciences. The presentation of the material is somehow a com-
promise between a popular and a strictly mathematical presentation: The definitions
and results will be given in a rigorous mathematical way. Proofs of the results will be
included only if the respective proof is comparatively short and helps to understand the
subject. In other cases the reader is referred to the literature and illustrating examples
and remarks are given instead.

Since nowadays wavelet theory is a wide field, the selection of material which is
included here is naturally subjective. It is governed by the personal experience and
taste of the author.

The book has developed from a graduate course on wavelets held at the Depart-
ment of Geomatics Engineering at The University of Calgary (Alberta), Canada. It
is addressed to graduate students who are interested in digital signal processing. The
reader is assumed to have a mathematical background at graduate level. Mathematical
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tools which are necessary for the understanding and which are beyond this level are
included in the appendices.

The book consists of three main chapters. Since wavelet theory developed from
Fourier theory on the one side and filter theory on the other side, both subjects are
shortly sketched in the first chapter. The second chapter is devoted to the basics of
wavelet theory. It includes the continuous as well as the discrete wavelet transform,
both in the one- and in the two-dimensional case. A special emphasis is laid on orthog-
onal wavelets with finite support, as they play an important role in most applications.
Other wavelets, such as spline wavelets or Meyer wavelets are excluded, which does
not mean they are less important.

Since geo-sciences deal with data given on a sphere, spherical wavelets are exten-
sively discussed. They come in two forms: harmonic wavelets, which have a special
spherical harmonics expansion, and triangulation based wavelets, which are wavelets
on a polyhedral approximation of the sphere.

In the last chapter some applications of wavelets in geo-sciences are reviewed.
Also here the selection of the material presented is not claimed to be representative.
A more important criterion for the inclusion of a subject is that its geophysical back-
ground can be explained with comparatively little effort. In some examples the original
data material was not available. Therefore the wavelet analysis was carried out with
synthetical data which reflect the main features of the missing original data.

I would like to thank the Walter de Gruyter Publishing Company for including
this book into its Geodesy series, Dr. Manfred Karbe for his support, and Dr. Irene
Zimmermann for her advice in the LATEX typesetting of this textbook.

Stuttgart, January 2004 Wolfgang Keller
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Notation

〈f, g〉 Scalar product
‖f ‖ Norm
A� Transposed matrix
A−� Inverse of the transposed matrix
A−1 Inverse matrix
A∗ Adjoint operator
A−1 Inverse operator
z̄ Complex conjugate of z
σ Unit sphere

Sets

N Natural numbers
Z Integers
R Real numbers
C Complex numbers

Special functions

Pn Legendre polynomial
Ȳnm Fully normalized surface spherical harmonic
Hnm Spherical harmonic
J0 Bessel function of first kind and order 0

Signals

f (t), f (x) Continuous time or space dependent signal
{xn} Discrete signal sequence
δ(t) Delta distribution
δij Kronecker symbol
χ[a,b] Characteristic function of the interval [a, b]
� = χ[−1,1] Characteristic function of the interval [−1, 1]

Spaces

C∞
0 (R) Space of all infinitely often differentiable function

having a compact support
L2(R) Space of square integrable functions on R
L2([a, b]) Space of square integrable functions on [a, b]
l2(C) Space of square summable complex sequences



x Notation

Harmp,...,q Span of all spherical surface harmonics of degree
p up to degree q

H({An}, σ ) Sobolev space of all functions harmonic outside the
unit sphere σ which have degree variances
decaying faster than A−1

n

U ⊕ V Direct sum of the spaces U and V

Operators

∂ |α|f (x1,...,xn)

∂x
α1
1 ·∂xαnn Partial derivative of f

∇f Gradient of f
f ∗ g Convolution of f and g

Transforms

f̂ ,F {f } Fourier transform of f
F −1{g} Inverse Fourier transform of g
H(z) z-transform of the sequence {hn}
G{f } Garbor transform of f
W{f } Continuous wavelet transform
W eu{f } Two-dimensional continuous wavelet transform



1 Fourier analysis and filtering

1.1 Fourier analysis

Let f be a periodic function with the period 2π . It is well known that f has the
following series expansion:

f (x) =
∑
n∈Z

cne
ınx, (1.1)

cn = 1

2π

∫ π

−π
f (x)e−ınx dx. (1.2)

This series representation is called Fourier series of f . It can be interpreted as a super-
position of oscillations of different wavelengths λn = 2π/n, having the amplitudes
cn. If the period changes from 2π to 2T , the Fourier series changes to

f (x) =
∑
n∈Z

cne
ı 2π

2T nx, (1.3)

cn = 1

2T

∫ T

−T
f (x)e−ı

2π
2T nx dx. (1.4)

The spectral lines are now at the frequencies ωn = 2π
2T n. This means the distance

between the spectral lines gets smaller if the period 2T gets larger than 2π . If the
assumption of periodicity is dropped by increasing T to infinity, the line spectrum
changes to a continuous spectrum. For this limit process the following notations have
to be introduced:


ω = 2π

2T
, ωn = n
ω, c(ωn) = cn


ω
.

With these notations the Fourier series can be written as

f (x) =
∑
n∈Z

c(ωn)e
ıωnx
ω, (1.5)

c(ωn) = 1

2π

∫ T

−T
f (x)e−ıωnx dx. (1.6)

The series (1.5) can be considered as Riemann’s partial sum of the integral∫ ∞

−∞
c(ω)eıωx dω.
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Hence in the limit T → ∞ the following representation of the non-periodic function
f is obtained:

f (x) =
∫ ∞

−∞
c(ω)eıωx dω, (1.7)

c(ω) = 1

2π

∫ ∞

−∞
f (x)e−ıωx dx. (1.8)

The interpretation of these relations is that f can be represented as a superposition
of oscillations having all frequencies between −∞ and ∞. Of course, every frequency
has a different intensity in this superposition. The function c(ω) indicates the energy
in the infinitesimal frequency-band (ω, ω + dω). The function c(ω) is usually called
the amplitude spectrum of f and the transition from f to c is called Fourier transform.

For a detailed mathematical discussion the Fourier transform of functions, defined
on Rn, will be introduced.

Definition 1.1.1. Let f, g be functions which are defined on Rn and fulfill∫
Rn

|f | dx <∞,

∫
Rn

|g| dx <∞. (1.9)

The following functions are called Fourier transform of f and inverse Fourier trans-
form of g, respectively:

nF {f }(ω) = f̂ (ω) = (2π)−n/2
∫

Rn

f (x)e−ıx�ω dx, (1.10)

nF −1{g}(x) = (2π)−n/2
∫

Rn

g(ω)eıx
�ω dω (1.11)

with x, ω ∈ Rn.

Obviously, the following relation holds:

nF −1{ nF {f }} = f.

Additionally, the Fourier transform is an isometric operation, because∫
Rn

f (x)g(x) dx =
∫

Rn

f̂ (ω)ĝ(ω) dω (1.12)

is valid. The special case of f = g is known as Parseval’s identity:

Lemma 1.1.1 (Parseval’s identity). Let f fulfill (1.9). Then∫
Rn

f 2(x) dx =
∫

Rn

f̂ 2(ω) dω (1.13)

is true.
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The Fourier transform has some interesting properties:

Lemma 1.1.2 (Shift relation). For a function f fulfilling (1.9) the following relation
holds:

nF {f (• − b)} = e−ıb
�ω · nF {f }(ω). (1.14)

This means, the shift of the signal by a vector b produces a modulation of its
spectrum by e−ıb�ω.

Lemma 1.1.3 (Scaling relation). For a function f fulfilling (1.9) the following rela-
tion holds:

nF {f (a · •)}(ω) = 1

a

nF {f }
(ω
a

)
. (1.15)

In other words, compressing the signal f by the factor a results in a dilatation of
the spectrum by the same factor.

The most important properties of the Fourier transform are the convolution the-
orem and the differentiation theorem. These two theorems reduce the infinitesimal
operations convolution and differentiation to algebraic operations.

Definition 1.1.2. Let the functions f, g be sufficiently regular. The new function
(f ∗ g), defined by

(f ∗ g)(x) :=
∫

Rn

f (y)g(x − y) dy =
∫

Rn

f (x − y)g(y) dy (1.16)

is called the convolution of f and g.

By means of the Fourier transform the integral operation convolution is transformed
into the algebraic operation multiplication of the corresponding spectra.

Theorem 1.1.1 (Convolution theorem). Let the functions f , g be sufficiently regular.
Then

nF {f ∗ g} = (2π)n/2 · nF {f } · nF {g} (1.17)

holds.

Proof.

nF {f ∗ g}(ω) = (2π)−n/2
∫

Rn

∫
Rn

f (y)g(x − y) dye−ıx�ω dx

= (2π)−n/2
∫

Rn

∫
Rn

g(x − y)e−ıx�ω dx f (y) dy

= (2π)−n/2
∫

Rn

∫
Rn

g(z)e−ı(z+y)�ω dz f (y) dy

= (2π)−n/2
∫

Rn

g(z)e−ız�ω dz ·
∫

Rn

f (y)e−ıy�ω dy

= (2π)n/2 · nF {f } · nF {g}. ��
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Many integral transformations of Physical Geodesy are convolutions. Perhaps the
most important one is the Stokes formula in planar approximation:

N = 1

4πγ

(
1

‖x‖ ∗
g
)
. (1.18)

It computes geoid undulations N from given gravity anomalies 
g. The numerical
evaluation of the convolution integral is very time-consuming. Thanks to very efficient
numerical algorithms for the Fourier transform and the inverse Fourier transform, this
direct evaluation of the convolution integral can be bypassed:

N = (2π)−n/2 · nF −1
{
nF

{
1

4πγ

1

‖x‖
}
· nF {
g}

}
,

which is given as a schematic view in Figure 1.1.

direct convolution

Filtering

Fourier transformation

Spectrum

geoid undulation

filtered spectrum

Signal

∆ g N

inverse 
Fourier 
transform

F
{

1
4πγ ‖x‖

}
F {
g}F {
g}

Figure 1.1. Schematic view of by-passed convolution

Let α ∈ (N ∪ {0})n be a so-called multi-index. With |α| = ∑n
i=1 αi the order of

the multi-index is denoted. With the help of this multi-index a compact notation for
partial derivatives is introduced:

Dαf := ∂ |α|f
∂x

α1
1 ∂x

α2
2 . . . ∂x

αn
n

. (1.19)

Theorem 1.1.2. For sufficiently regular f the equality

nF {Dαf } = ı|α|ωα · nF {f }(ω) (1.20)

holds with ωα defined by
ωα := ω

α1
1 ω

α2
2 . . . ωαnn .
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If the signal f has certain symmetry properties, these properties propagate to its
Fourier transform. Let f : R2 → R1 be sufficiently regular. Suppose f is of the
following structure:

f (x) = f̄ (r), r := ‖x‖.
Then the following relations are valid:

f̂ (|ω|) = 2F {f }(ω) =
∫ ∞

0
f̄ (r)J0(r|ω|)r dr, (1.21)

f̄ (r) = 2F
−1{f̂ (|ω|)} =

∫ ∞

0
f̂ (|ω|)J0(r|ω|)|ω| d|ω|. (1.22)

In these formulae, J0 is the Bessel function of first kind and order zero.

The two formulae above indicate that for a so-called isotropic function, i.e. a
function which is invariant with respect to rotations, the two-dimensional Fourier
transform can be replaced by a one-dimensional integral transformation. This integral
transformation is called Hankel transform.

Recalling the interpretation of the Fourier transform f̂ of a signal f as its spectrum,
one has to realize that signals having spectra with a non-compact support are pure
mathematical fiction. Real signals are always recorded by some measuring device.
No measuring device is capable to follow arbitrarily short-wavelength oscillations.
Therefore every recorded signal f is somehow band-limited:

f̂ (ω) = 0, |ω| > ν.

Band-limited signals have very interesting properties:

Theorem 1.1.3 (Sampling theorem). Let f : R → R be a one-dimensional band-
limited signal,

f̂ (ω) = 0, |ω| > ν.

Then f can be exactly reconstructed from its sampling values:

f (x) =
∑
n∈Z

f (xn)
sin(ν(x − xn))

ν(x − xn)
, xn = nπ

ν
. (1.23)

Proof. Since f̂ is band-limited, it can be represented by a Fourier series

f̂ (ω) =
∑
n∈Z

fne
ın 2π

2ν ω,

fn = 1

2ν

∫ ν

−ν
f̂ (ω)e−ın

2π
2ν ω dω.
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Because f̂ (ω) = 0, |ω| > ν, the following relation holds:

fn = 1

2ν

∫ ∞

−∞
f̂ (ω)e−ın

2π
2ν ω dω

=
√

2π

2ν
f (−nπ

ν
)

=
√

2π

2ν
f (−xn).

Consequently, the spectrum f̂ can be determined completely by the sampled values
of the signal

f̂ (ω) =
√

2π

2ν

∑
n∈Z

f (−xn)eıxnω.

Applying the inverse Fourier transform one obtains

f (x) = 1√
2π

∫
R

f̂ (ω)eıxω dω

= 1√
2π

∫ ν

−ν
f̂ (ω)eıxω dω

= 1√
2π

√
2π

2ν

∑
n∈Z

f (−xn)
∫ ν

−ν
eıω(x+xn) dω

=
∑
n∈Z

f (xn)
1

2ν

∫ ν

−ν
eıω(x−xn) dω

=
∑
n∈Z

f (xn)
1

2νı(x − xn)
(eıν(x−xn) − e−ıν(x−xn))

=
∑
n∈Z

f (xn)
sin(ν(x − xn))

ν(x − xn)
.

��

Sampling step-size 
x and limiting frequency ν are in a close relationship

ν = π


x
. (1.24)

The limiting frequency ν is called Nyquist frequency. The wavelength λ belonging to
the Nyquist frequency is

λ = 2π

ν
. (1.25)

Ergo the sampling step-size 
x has to be chosen accordingly


x = π

ν
= λ

2
, (1.26)
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to be able to resolve the shortest wavelength occurring in the signal. In other words:
It is impossible to resolve wavelengths shorter than λ = 2
x from data sampled at
the sampling rate 
x.

In many cases the sampling rate is given by the measuring device. On the other
hand, the signal f to be measured could contain wavelengths smaller than twice the
sampling rate. If in this case the spectrum f̂ is determined from the sampled values
f (xn), the frequencies above the Nyquist frequency ν corrupt the frequencies below ν.

Theorem 1.1.4 (Aliasing). Let f be band-limited f̂ (ω) = 0, |ω| > ν. If f is under-
sampled by the sampling rate


x = π

ν(1 − α)
, 0 < α <

2

3
, (1.27)

the function

f̄ (x) :=
∑
n∈Z

f (xn)
sin(ν(1 − α)(x − xn))

ν(1 − α)(x − xn)
, xn = nπ

ν(1 − α)
, (1.28)

reconstructed from the sampling values, has the spectrum

ˆ̄f (ω) = f̂ (ω)+ f̂ (ω + 2ν(1 − α))+ f̂ (ω − 2ν(1 − α)). (1.29)

Proof.

f̄ (xn)

= f (xn) = 1

2π

∫ ν

−ν
f̂ (ω)e

ıω nπ
ν(1−α) dω

= 1

2π

∫ −ν(1−α)

−ν
f̂ (ω)e

ıω nπ
ν(1−α) dω + 1

2π

∫ ν(1−α)

−ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω

+ 1

2π

∫ ν

ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω

= 1

2π

∫ −ν(1−α)

−3ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω + 1

2π

∫ ν(1−α)

−ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω

+ 1

2π

∫ 3ν(1−α)

ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω

= 1

2π

∫ ν(1−α)

−ν(1−α)
f̂ (ω − 2ν(1 − α))e

ıω nπ
ν(1−α) dω + 1

2π

∫ ν(1−α)

−ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω

+ 1

2π

∫ ν(1−α)

−ν(1−α)
f̂ (ω + 2ν(1 − α))e

ıω nπ
ν(1−α) dω

= 1

2π

∫ ν(1−α)

−ν(1−α)
[f̂ (ω)+ f̂ (ω − 2ν(1 − α))+ f̂ (ω + 2ν(1 − α))]eıω nπ

ν(1−α) dω.
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Since ˆ̄f is band-limited it has the Fourier expansion

ˆ̄f (ω) =
∑
n∈Z

f̄ne
ın 2π

2ν(1−α) ω, f̄n = 1

2ν(1 − α)

∫ ν(1−α)

−ν(1−α)
f̂ (ω)e

ıω nπ
ν(1−α) dω.

As in the previous lemma it can be shown that

f̄n =
√

2π

2ν(1 − α)
f̄ (xn)

=
∫ ν(1−α)

−ν(1−α)
[
f̂ (ω)+ f̂ (ω − 2ν(1 − α))+ f̂ (ω + 2ν(1 − α))

]
e
ıω nπ

ν(1−α) dω

holds. This means the coefficients f̄n are simultaneously the Fourier coefficients of ˆ̄f
and of

[
f̂ (ω)+ f̂ (ω− 2ν(1 − α))+ f̂ (ω+ 2ν(1 − α))]. Since there is a one-to-one

relationship between a function and its Fourier coefficients, the relation

ˆ̄f = [f̂ (ω)+ f̂ (ω − 2ν(1 − α))+ f̂ (ω + 2ν(1 − α))
]

follows. ��

 ˆ̄f (ω)

f̂ (ω)

−ν −ν(1 − α) ν(1 − α) ν
ω

Figure 1.2. Aliasing

Remark. The theorem has several consequences.
First of all it is clear that due to the under-sampling the spectrum f̂ (ω) cannot be

resolved up to the Nyquist frequency ν. As a consequence of the sampling theorem
only a resolution up to ν̄ = ν(1 − α) can be expected.

Additionally, one has to keep in mind that the sampling theorem can only be applied
if the signal f is band-limited to the frequency-band [−ν(1 − α), ν(1 − α)]. But this
is not the case. The signal is band-limited to the larger frequency band [−ν, ν]. Hence
the resolved spectrum does not only contain the influence of f̂ between −ν(1 − α)

and ν(1 − α), but also the influence of f̂ in the frequency bands [−ν,−ν(1 − α))
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and (ν(1−α), ν]. The theorem describes how these frequency-bands interact with the
resolved spectrum: The frequencies |ω| > ν(1 − α) outside the resolution limit are
aliased by the frequencies ν(1−2α) ≤ |ω| ≤ ν(1−α). Only the small frequency band
|ω| ≤ ν(1 − 2α) can be resolved exactly. For this reason the theorem is frequently
called aliasing theorem.

The discrete sampling is not the only difference between the theoretical Fourier
spectrum and the spectrum computed from the data. The second difference is due to the
finite sampling time t ∈ [−T , T ]. Considering the finite sampling length, the question
has to be discussed how the spectrum, computed from a finite sampling length, differs
from the theoretical Fourier spectrum. Basically, there are two possibilities to continue
a signal sampled in [−T , T ] to the whole R1:

1. continuation by zero values and

2. periodic continuation.

Lemma 1.1.4 (Zero padding).

F
{
f ·�

( •

T

)}
(ω) = 1√

2π
F {f } ∗ (T sinc(T •))(ω). (1.30)

Proof.

F
{
f ·�

( •

T

)}
(ω) = F −1

{
f ·�

( •

T

)}
(−ω)

= F −1
{
F {F −1{f }} · F

{
F −1

{
�
( •

T

)}}}
(−ω)

= 1√
2π

(
F −1{f } ∗ F −1

{
�
( •

T

)})
(−ω)

= 1√
2π

∫
R

F −1{f }(−ω − y)F −1
{
�
( •

T

)}
(y) dy

= 1√
2π

∫
R

F {f }(ω + y)F
{
�
( •

T

)}
(−y) dy

= 1√
2π

∫
R

F {f }(ω − y)F
{
�
( •

T

)}
(y) dy

= 1√
2π

F {f } ∗ (T sinc(T •))(ω).
��

The lemma states that a continuation by zero values maintains the continuous
nature of the spectrum but causes a blurring by the convolution with the sinc function
(sine cardinal or sampling function). The bigger T , the smaller is this effect, which is
frequently called spectral leakage.

The other possibility is the periodic continuation

f̃ (x) = f (x − 2kT ), t ∈ [(2k − 1)T , (2k + 1)T ]. (1.31)
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In this case the periodic continued function has a discrete line-spectrum. The spectral
lines can be computed as Fourier coefficients

f̃ (x) =
∑
n∈Z

cne
ın π
T
x, cn = 1

2T

∫ T

−T
f̃ (x)e−ın

π
T
x dx. (1.32)

The question arises, how the Fourier coefficients cn can be related to the Fourier
spectrum f̂ (ω).

Lemma 1.1.5 (Periodic continuation). Let f̃ be the periodic continuation of f corre-
sponding to (1.31). Then

cn = 1

2

(
f̂ ∗ sinc(T •)

) (
n
π

T

)
(1.33)

holds.

Proof.

cn = 1

2T

∫ T

−T
f̃ (x)e−ın

π
T
x dx =

√
2π

2T

1√
2π

∫ ∞

−∞
f̃ (x)�

( x
T

)
e−ın

π
T
x dx

=
√

2π

2T
F
{
f ·�

( •

T

)} (
n
π

T

)
= 1

2

(
f̂ ∗ sinc(T •)

) (
n
π

T

)
. ��

The Fourier coefficients of the periodically continued function f̃ are the values
of the spectrum f̂ of f , sampled at the discrete places nπ

T
and blurred by the finite

sampling length.
The next question which has to be dealt with is the numerical computation of

the Fourier spectrum of a sampled signal. Since there are only a finite number of
sampled values, only a finite number of spectral values can be computed. Hence the
numerically computed spectrum is implicitly the spectrum of the periodic continuation.
Consequently, the integrals

cn = 1

2T

∫ T

−T
f̃ (x)e−ın

π
T
x dx (1.34)

have to be approximated by some numerical quadrature formula. The simplest quadra-
ture formula one could think of is the trapezian rule:

cn = 1

2T

∫ T

−T
f̃ (x)e−ın

π
T
x dx

≈ 1

2T


x

2

(
f (−T )eınπ + 2

N−1∑
i=−N+1

f (i
x)e−ın
π
T
i
x + f (T )e−ınπ

)
,


x = T

N
, n = −N, . . . , N − 1,
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which approximates the integral by the area of a polygon. Due to the periodic contin-
uation f (T ) = f (−T ) holds. This leads to the following simplification

cn ≈ 1

2N

1

2

(
f (−T )e−ınπ + 2

N−1∑
i=−N+1

f (i
x)e−ın
π
T
i
x + f (−T )eınπ

)

= 1

2N

N−1∑
i=−N

f (i
x)e−ıni
π
N .

Definition 1.1.3. The coefficients

c̄n := 1

2N

N−1∑
j=−N

f (j
x)e−ınj
π
N (1.35)

are called the discrete Fourier transform (DFT) of the function f sampled at the places
j
x, j = −N, . . . , N − 1.

In the general case the DFT coefficients c̄n are more or less accurate approximations
of the Fourier coefficients cn of the periodic continuation of f . Nevertheless, if f is
band-limited the DFT even gives the exact Fourier-coefficients.

Lemma 1.1.6. Let f be periodic on [−T , T ]. Furthermore, let f be band-limited,
i.e., let cn = 0, |n| > N hold for the Fourier coefficients

cn := 1

2T

∫ T

−T
f (t)e−ı

nπ
T
t dt. (1.36)

Finally, let {c̄n} be the DFT of f . Then
cn = c̄n (1.37)

holds.

Proof.

c̄n = 1

2N

N−1∑
j=−N

f (j
x)e−ıj
nπ
N

= 1

2N

N−1∑
j=−N

( N−1∑
k=−N

cke
ık
jπ
T

x
)
e−ıj

nπ
N

= 1

2N

N−1∑
j=−N

( N−1∑
k=−N

cke
ıkj π

N

)
e−ıjn

π
N =

= 1

2N

N−1∑
k=−N

ck

N−1∑
j=−N

eıj
π
N
(k−n) =

N−1∑
k=−N

ckδkn = cn.

��
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As a preliminary summary of the results obtained so far, it can be said that

• the DFT gives the exact Fourier coefficients cn, if the signal f is periodic and
band-limited,

• these Fourier coefficients are the sampling values of the Fourier spectrum cn =
f̂ (nπ

T
) of the periodic continuation of a band-limited non-periodic signal and

that

• these coefficients are the sampling values of the aliased spectrum of an arbitrary
but sufficiently regular signal.

This means that the result of the DFT is a reasonable approximation of the spectrum
if both the sampling length T and the sampling step-size 
x are properly chosen.

The most important disadvantage of the DFT is its computational inefficiency.
Suppose that there are 2N sampling values. Then it needs O(4N2) operations to
compute the 2N spectral values. If the periodicity of the factors e−ıjn πN is exploited,
the computation sequence of the DFT can be rearranged in such a way that only
O(4N(ld(N)+ 1)) operations are necessary.

This rearrangement of the computation sequence is called Fast Fourier Transform
(FFT) and it is only due to the dramatic reduction of the computational load by the
FFT that spectral methods found their way into many applications.

The basic idea which leads to the FFT is to compute the DFT separately for the
even and for the odd sampling points and to combine the results: In this way the DFT
can be rewritten as

cn = 1

2N

2N−1∑
j=0

f (j
x)e−ıjn
π
N

= 1

2N

N−1∑
j=0

f (2j
x)e−ı2jn
π
N + 1

2N

N−1∑
j=0

f ((2j + 1)
x)e−ı(2j+1)n π
N (1.38)

= 1

2N

N−1∑
j=0

f (2j
x)
(
e−ıjn

π
N
)2 + e−ın

π
N

1

2N

N−1∑
j=0

f ((2j + 1)
x)
(
e−ıjn

π
N
)2
.

Now two cases have to be distinguished.
a) n < N :

cn = 1

2N

N−1∑
j=0

f (2j
x)
(
e−ıjn

π
N
)2

+ e−ın
π
N

1

2N

N−1∑
j=0

f ((2j + 1)
x)
(
e−ıjn

π
N
)2
.

(1.39)
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b) n = N + k ≥ N :

cN+k = 1

2N

N−1∑
j=0

f (2j
x)
(
e−ıjk

π
N
)2(
e−ıjπ

)2
− e−ık

π
N

1

2N

N−1∑
j=0

f ((2j + 1)
x)
(
e−ıjk

π
N
)2(
e−ıjπ

)2 (1.40)

= 1

2N

N−1∑
j=0

f (2j
x)
(
e−ıjk

π
N
)2 − e−ık

π
N

1

2N

N−1∑
j=0

f ((2j + 1)
x)
(
e−ıjk

π
N
)2
.

If now the coefficients c0
n, c1

n are defined by

c0
n = 1

2N

N−1∑
j=0

f (2j
x)
(
e−ıjk

π
N
)2 (1.41)

c1
n = 1

2N

N−1∑
j=0

f ((2j + 1)
x)
(
e−ıjk

π
N
)2
, (1.42)

the DFT reads

cn = c0
n +
(
e−ın

π
N
)
c1
n, n = 0, . . . , N − 1 (1.43)

cN+k = c0
k −
(
e−ık

π
N
)
c1
k, k = 0, . . . , N − 1. (1.44)

The computation of the c0
n and the c1

n coefficients is basically a DFT for the even
and for the odd sampling points. Therefore, for this rearrangement of the computation
sequence, 2O(N2) instead of 4O(N2) operations are necessary. This reduces the
computational load by 50 %.

This idea can be repeated by the rearrangement of the computation of the c0
n and

c1
n and this iterated rearrangement leads to the FFT with O(4N ld(N)) necessary

operations.
Finally it should be mentioned once again that the results of the FFT completely

coincide with the results of the DFT. But the computational efficiency of the FFT is
much higher.

One of the classical textbooks about Fourier transform and its applications is [9].
Since 1984 FFT methods have been applied to geoid computation and terrain reduction.
Representative for the many publications about this item we only mention the papers
[94], [96], [98] and [99].
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1.2 Linear filters

A function f ∈ L2(R) is uniquely determined by its Fourier spectrum. Frequently it
is useful to split the signal f into several frequency channels:

f̂ (ω) =
n∑
j=1

f̂j (ω), (1.45)

f (x) =
n∑
j=0

fj (x). (1.46)

If these channels are orthogonal, i.e. if∫
R

fi(x)fj dx =
∫

R

f̂i (ω)f̂j (ω) dω = δij (1.47)

holds, the frequency decomposition is called orthogonal.
The simplest way to construct an orthogonal frequency decomposition would be

the splitting of the frequency domain into n non-overlapping frequency bins, and f̂j
could be defined as the restriction of f̂ to the j -th bin. Since every channel becomes an
ideal bandpass such a frequency decomposition is practically not realizable. Therefore
the question arises how to construct realizable orthogonal frequency decompositions.
This question leads to the theory of filter banks.

In filter theory, instead of the signal f ∈ L2(R) itself the series of its values
{f (n)} ∈ l2(Z), sampled at the integers is considered. Please keep in mind that for a
band limited signal the sequence of its sampling values is equivalent to the continuous
signal (sampling theorem).

Definition 1.2.1. A digital convolution filter H is a mapping

H : l2(Z)→ l2(Z)

x �→
{
(Hx)n :=

∑
k∈Z

hkxn−k
}
. (1.48)

Many properties of a digital convolution filter can be described by the z-transform
of the sequence {hk} of its filter coefficients.

Definition 1.2.2. The z-transform of the sequence of the filter coefficients of a con-
volution filter H

H(z) :=
∑
k∈Z

hkz
−k (1.49)

is called its transfer function.
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Remark. The transfer function H describes how the corresponding filter amplifies
or attenuates a certain frequency eı2πωx : Let f be the signal eı2πωx sampled at the
integers, i.e.

f (n) = eı2πωn. (1.50)

The filtered signal is the sequence

g(n) =
∑
k∈Z

hke
ı(n−k)2πω = eın2πω

∑
k∈Z

hke
−ık2πω = H(eı2πω)f (n). (1.51)

Therefore the result of the filtering of a periodic signal with the frequency ω is again a
periodic signal of the same frequencyω, but with the amplitude multiplied by the factor
H(eı2πω). Since every signal can be represented by a superposition of periodic signals,
the transfer function describes the attenuation or amplification of each frequency,
contained in the signal.

The most important property of the z-transform is that it maps the convolution of
two signals into the product of their z-transforms:

Theorem 1.2.1 (Convolution theorem). Let u, v ∈ l2(Z) be two signals with the z-
transforms

U(z) =
∑
k∈Z

ukz
−k, V (z) =

∑
k∈Z

vkz
−k. (1.52)

The convolution w = u ∗ v defined by

wn :=
∑
k∈Z

ukvn−k (1.53)

has the z-transform
W(z) = U(z) · V (z). (1.54)

Proof.

W(z) =
∑
n∈Z

wnz
−n

=
∑
n∈Z

z−n
∑
k∈Z

ukvn−k

=
∑
k∈Z

uk
∑
n∈Z

vn−kz−n

=
∑
k∈Z

uk
∑
l∈Z

vlz
−(k+l)

=
∑
k∈Z

ukz
−k∑

l∈Z

vlz
−l

= U(z) · V (z). ��
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A filter bank is an array of filters, which are used in order to decompose a given
signal {x(n)} into several frequency channels and to reconstruct the signal from the
individual channel information. In its simplest version it is a two-channel filter bank:

reconstruction filter bankdecomposition filter bank

x

H

G 2

2

2

2 u

v

ũ

ṽ

H∗

G∗

+ x̃

Figure 1.3. Two channel filter bank

In the analysis filter bank the signal passes a high-pass filter G and a low-pass
filter H . After passing these filters it will be down-sampled by the factor 2.

. . . , x(−2), x(−1), x(0), x(1), x(2), · · · ↓2−−→ . . . , x(−2), x(0), x(2), . . . (1.55)

In order to guarantee that the reconstructed signal has the same number of samples
as the original signal, the signals in the individual channels have to be up-sampled by
the factor 2 before passing through the reconstruction filters H ∗,G∗.

. . . , x(−2), x(0), x(2), · · · ↑2−−→ . . . , x(−2), 0, x(0), 0, x(2), . . . (1.56)

Now the question arises under which conditions the reconstructed signal x̃ coin-
cides with the original signal.

Lemma 1.2.1. LetH ,G,H ∗,G∗ be the z-transforms of the decomposition and recon-
struction filters H ,G, H ∗,G∗. If the reconstructed signal coincides with the original
signal

x = x̃,

then the following conditions are fulfilled:

H(−z)H ∗(z)+G(−z)G∗(z) = 0, (1.57)

H(z)H ∗(z)+G(z)G∗(z) = 2. (1.58)

Proof. Consider a signal y, which is obtained from a signal x, first by down-sampling
and then by up-sampling it:

. . . , y(−2), y(−1), y(0), y(1), y(2), · · · = · · · , x(−2), 0, x(0), 0, x(2), . . .
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Hence for the z-transform of the signal y we have

Y (z) =
∑
k∈Z

ykz
−k =

∑
k∈Z

x2kz
−2k

=
∑
k∈Z

1

2
(x(k)z−k + x(k)(−z)−k)

= 1

2
(X(z)+X(−z)).

Consequently, the z-transform of the reconstructed signal x̃ is

X̃(z) = H ∗(z) · 1

2
(H(z)X(z)+H(−z)X(−z))

+G∗(z) · 1

2
(G(z)X(z)+G(−z)X(−z))

= 1

2
((H(z)H ∗(z)+G(z)G∗(z))X(z)

+ (H(−z)H ∗(z)+G(−z)G∗(z))X(−z)).
From the condition X̃(z) = X(z) follows

H(−z)H ∗(z)+G(−z)G∗(z) = 0,

H(z)H ∗(z)+G(z)G∗(z) = 2. ��

The conditions (1.57) and (1.58) are only necessary conditions. Condition (1.57)
is already fulfilled for the special choice

G(−z) := zlH ∗(z), G∗(z) := −z−lH(−z), l ∈ Z. (1.59)

The remaining condition (1.58) leads to

H(z)H ∗(z)− (−1)lH(−z)H ∗(−z) = 2. (1.60)

Consequently, the problem to construct an exact reconstructing filter bank is reduced
to the problem to determine a Laurent polynomial, which satisfies (1.60). For the
product M of the two filters H and H ∗

M(z) := H(z)H ∗(z)

the condition (1.58) leads to

2 = M(z)− (−1)lM(−z) =
∑
k∈Z

mk(z
−k − (−1)l(−z)−k). (1.61)

Obviously, this condition can only be fulfilled for an odd l . Therefore one has to find
a filter M with the property

2 = M(z)+M(−z) (1.62)
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and to decompose this filter afterwards according to (1.2). From the resulting low-pass
filter H the corresponding high-pass filter can be derived using (1.59).

Example 1.2.1. In order to illustrate the construction ideas for a filter bank, here a
small example is given.

Starting from condition (1.62) for the coefficients of the filter M follows:

2 =
∑
k∈Z

mk(z
−k + (−z)−k) =

∑
k∈Z

mk(1 + (−1)k)z−k.

Consequently, m0 = 1 and m2k = 0, k �= 0 holds. The shortest possible filter which
fulfills (1.62) has the filter coefficients m0 = 1 and m−1,m1 �= 0. Hence

M(z) = (m−1z+ 1 +m1z
−1)

must hold. According to (1.2) the relation

(m−1z+ 1 +m1z
−1) = M(z) = H(z)H ∗(z)

has to be valid. Obviously

M(z) = m−1z

(
m1

m−1
z−2 + 1

m−1
z−1 + 1

)
= m−1z

[(√
m1

m−1
z−1 + 1

2
√
m1m−1

)2

+
(

1 − 1

4m1m−1

)]
is valid. Hence the filter M is of the product form (1.2), if m1m−1 = 1

4 holds. The
coefficientm−1 can be chosen arbitrarily. For the sake of simplicitym−1 = m1 = 1/2
is set. This yields

M(z) = 1

2
(z+ 2 + z−1) = 1

2
(1 + z−1)2 · z.

Immediately one can conclude

H ∗(z) = 1√
2
(1 + z−1), H(z) = 1√

2
(1 + z).

Using (1.59) this leads to

G(z) = 1√
2
(1 − z), G∗(z) = 1√

2
(1 − z−1).

Finally, the analysis filters

(Hx)n := 1√
2
xn + 1√

2
xn−1, (Gx)n := 1√

2
xn − 1√

2
xn−1
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and the reconstruction filters

(H ∗x)n := 1√
2
xn + 1√

2
xn+1, (G∗x)n := 1√

2
xn − 1√

2
xn+1.

are obtained.
The transfer functions of the low-pass filter H and of the high-pass filter G are

given by

|H(eı2πω)| = 1√
2
|1 + eı2πω| = 1√

2
(1 + eı2πω + e−ı2πω)1/2

= 1√
2
(2 + 2 cos(2πω))1/2

and

|G(eı2πω)| = 1√
2
|1 − eı2πω| = 1√

2
(2 − eı2πω − e−ı2πω)1/2

= 1√
2
(2 − 2 cos(2πω))1/2.

For ω between minus and plus the Nyquist frequency ν = 1/2, the transfer functions
of both the high- and the low-pass filter, are displayed in Figure 1.4.

0.6 0.4 0.2 0 0.2 0.4 0.6

3

2.5

2

1.5

1

0.5

0
_ _ _

ω

Figure 1.4. Transfer functions of high- and low-pass filter

It is clearly visible that these two simple filters do not separate the high- and the
low-frequency channel very well.
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Now we demonstrate for a simple example the effect of the decomposing and of
the reconstructing filter bank. The following test signal will be used:

x(n) = eı
nπ
2 . (1.63)

The results of the high- and low-pass filtering of the signal followed by a down-
sampling are the signals u and v:

un = (Hx)2n = 1√
2

(
eı

2nπ
2 + eı

(2n−1)π
2
) = 1√

2
eınπ (1 − ı) (1.64)

vn = (Gx)2n = 1√
2

(
eı

2nπ
2 − eı

(2n−1)π
2
) = 1√

2
eınπ (1 + ı). (1.65)

Let ũ and ṽ denote the up-sampled versions of the signals u, v. Then

ũn =
{
un

2
, n even

0, n odd,

ṽn =
{
vn

2
, n even

0, n odd

(1.66)

holds. Consequently

(H ∗ũ)n + (G∗ṽ)n =
{

1√
2
(ũ n

2
+ ṽ n

2
) = 1

2e
ı nπ2 · 2, n even

1√
2
(ũ n+1

2
− ṽ n+1

2
) = 1

2e
ı nπ2 · 2, n odd

(1.67)

= x(n)

is valid. Indeed, the reconstruction filters recover the previously decomposed signal
exactly.

At the beginning of this section it has been already mentioned that the orthogonality
of different frequency channels∫

R

fi(x)f̄j dx =
∫

R

f̂i (ω)
¯̂
fj (ω) dω = δij (1.68)

is a desirable property of a filter bank. Now the question will be discussed, how the
orthogonality of the filtered signal components reflects itself in the transfer functions
of the filters.

A particular signal is the so-called unit pulse

δn :=
{

1, n = 0

0, n �= 0.
(1.69)
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If this unit pulse is filtered by a filterH , the filter output are exactly the coefficients of
the filter H :

(Hδ)n =
∑
k∈Z

hkδn−k = hk. (1.70)

Therefore the sequence of filter coefficients is the so-called impulse response of the
filter.

Definition 1.2.3. If the impulse response of a filter H contains only a finite number
of non-vanishing filter coefficients hn, the filter is called finite impulse response filter
(FIR).

For an FIR filter the condition of perfect reconstruction of a filter bank can be
simplified.

Theorem 1.2.2. A perfect reconstruction filter (PR) satisfies

H(z)H ∗(z)+H(−z)H ∗(−z) = 2. (1.71)

For FIR filters, there exist numbers a ∈ R and l ∈ Z, such that

G(z) = az−(2l+1)H ∗(−z), G∗(z) = a−1z−(2l+1)H(−z) (1.72)

Proof. The conditions (1.57) and (1.58) are a system of linear equations for the deter-
mination of H ∗,G∗ from H,G. Its solution is[

H ∗(z)
G∗(z)

]
= 2

D(z)

[−G(−z)
H(−z)

]
with the determinant

D(z) = H(−z)G(z)−H(z)G(−z).
Hence

G(z)G∗(z) = −D(−z)
2

H ∗(−z) · 2

D(z)
H(−z) = −D(−z)

D(z)
H ∗(−z)H(−z)

is valid. Since

D(−z) = H(z)G(−z)−H(−z)G(z) = −D(z)
holds, by inserting this in equation (1.58) the condition

H(z)H ∗(z)+H(−z)H ∗(−z) = 2

follows.
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If H is an FIR filter both D(z) and D−1(z) must be a finite sum. This is only
possible if both sums contain only one element −2azk and − 1

2a
−1z−k respectively.

Since D(−z) = −D(z), k = 2l + 1 must hold. This proves

G(z) = az−(2l+1)H ∗(−z), G∗(z) = a−1z−(2l+1)H(−z). ��

A filter bank with H(z) = H ∗(z) and G(z) = G∗(z) is called a conjugate mirror
filter. For a conjugate mirror filter condition (1.71) simplifies to

|H(z)|2 + |H(−z)|2 = 2. (1.73)

Definition 1.2.4. A filter bank H , G is called quadrature mirror filter (QMF) if for
each signal x ∈ l2(Z) the relation

‖Hx‖2 + ‖Gx‖2 = ‖x‖2 (1.74)

holds.

Interpreting condition (1.74), the filter bank splits the signal into two orthogonal
components. There is no signal component which occurs both in the high-frequency
and in the low-frequency channel. Indeed, in the case of orthogonal channels the
following equation is true:

‖x‖2 = 〈Hx +Gx,Hx +Gx〉
= 〈Hx,Hx〉 + 2〈Hx,Gx〉 + 〈Gx,Gx〉 (1.75)

= ‖Hx‖2 + ‖Gx‖2.

We now discuss the question under which circumstances an FIR filter becomes a
QMF filter.

Theorem 1.2.3. A perfect reconstruction conjugate mirror filter is a QMF filter.

Proof. For a PR filter the decomposition and the reconstruction filters are in the fol-
lowing relationship: [

H ∗(z)
G∗(z)

]
= 2

D(z)

[−G(−z)
H(−z)

]
with the determinant

D(z) = H(−z)G(z)−H(z)G(−z).
Inserting this into equation (1.58) the following equation is obtained:

0 = 2

D(z)
[−H(−z)G(−z)−H ∗(z)G∗(z)].
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For a conjugate mirror filter this relation simplifies to

H(−z)G(−z)+H(z)G(z) = 0.

Now let u := Hx, v := Gx be the high- and the low-pass filtered components of a
signal x ∈ l2(Z) and let U , V be their z-transforms. Using the convolution theorem
for the z-transform, the scalar product between u and v can be expressed as follows:

〈u, v〉 = (u ∗ v)0 = U(0) · V (0)
= H(0) ·G(0) · (X(0))2

= 1

2
(H(−0)G(−0)+H(0)G(0)) · (X(0))2

= 0

Hence the filter bank is a QMF filter. ��



2 Wavelets

2.1 Motivation

The theory and application of wavelets is a comparatively young branch in digital signal
processing. It was developed in order to overcome some deficiencies of classical
Fourier analysis. One of the disadvantages of Fourier analysis is the lack of time-
localization. What has to be understood by time-localization will be shown by the
following example.

Consider the following signal s:

s(t) =



sin(440πt), 0 ≤ t < 0.5

0, 0.5 ≤ t < 1.0

sin(440πt), 1.0 ≤ t < 1.5

0, 1.5 ≤ t < 2.0

sin(440πt), 2.0 ≤ t < 2.5

0, 2.5 ≤ t < 3.0

sin(220πt), 3.0 ≤ t < 4.0.

(2.1)

The graph of this signal is shown in Figure 2.1.

time [    

1

0.5

0

0.5

1
0 0.5 1 1.5 2 2.5 3 3.5 4

s]

Figure 2.1. Four isolated notes

Obviously, the signal consists of four parts: Three tones of the frequency 220 Hz with
a short duration and one tone of frequency 110 Hz with a long duration. They are
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separated from each other by a short break. The classical Fourier spectrum of this
signal is displayed in the Figure 2.2.

frequency [Hz]

400

350

300
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200

150

100

50

0
0 50 100 150 200 250 300

Figure 2.2. Fourier spectrum of the signal

The spectrum clearly shows the two frequencies occurring in the signal. But it does
not contain any information on the time of occurrence of the individual frequencies.
This is because the Fourier analysis always includes the whole time span of the signal.
It would be much better to have a time-and-frequency analysis which resembles the
notation in music: Not only the frequency of a tone but also the time span of its
occurrence must be visible. Figure 2.3 shows the music notation of the signal under
consideration.

Figure 2.3. Music notation of the signal

In order to recover the time information, the windowed or short-time Fourier trans-
form is used. The essence of the windowed Fourier transform is the masking of the
signal by a moving window g(t):

G{f }(ω, t) := 1√
2π

∫ ∞

∞
f (u)g(u− t)e−ıuω du (2.2)
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or in a different notation

G{f }(ω, t) = 1√
2π

∫ ∞

−∞
f (u)gω,t (u) du, gω,t (u) := g(u− t)e−ıωu. (2.3)

The window functiong is usually a real, even function with the maximum concentration
of energy in the low frequency band. A frequently used window function is

g(t) := π−1/4e−
t2
2 . (2.4)

For this choice of the window function the windowed Fourier transform is also called
Gabor transform.

The short-time Fourier transform has some interesting properties. Similar to the
usual Fourier transform the total energy of the signal equals the total energy of its
short-time spectrum (Parseval’s identity):∫ ∞

−∞
|f (t)|2 dt = 1

2π

∫ ∞

−∞

∫ ∞

−∞
|G{f }(ω, t)|2 dω dt, (2.5)

provided
∫∞
−∞ g2(t) dt = 1. The short-time Fourier transform has also an inverse

transformation:

f (t) = 1√
2π

∫ ∞

−∞

∫ ∞

−∞
G{f }(t, ω)g(u− t)eıωt dω dt. (2.6)

Figure 2.4 shows the result of the Garbor transform of the signal (2.1).
It is clearly visible that in contrast to the classical Fourier transform the short-

time transform has as well a time as a frequency resolution. The short-time spectrum
resembles very much the music notation of the signal. Obviously, the time resolution
of the Gabor transform is very good. The individual tones are clearly separated, but
the frequency resolution is rather bad. Instead of a single frequency every tone is
represented by a whole frequency band. The balance between time and frequency
resolution is controlled by the length of the window g. The longer the window the
better the frequency – but the worse the time resolution. This can be demonstrated by
analyzing the same signal with an wider window. The result of the Garbor transform
using a wider window is displayed in Figure 2.5. A wider window yields a better
frequency but a worse time resolution.

The balance between time and frequency resolution can be quantified by the un-
certainty principle: Since the window function is supposed to fulfill∫ ∞

−∞
g2(t) dt = 1,

its square can be considered as a probability density. Consequently, mean value and
variance of this probability density can be computed:

µg :=
∫ ∞

−∞
tg2(t) dt =

∫ ∞

−∞
ug2
ω,t (u)du− t, (2.7)
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Figure 2.4. Short-time Fourier spectrum of the signal
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Figure 2.5. Short-time Fourier spectrum for a wider window



28 2 Wavelets

σg :=
∫ ∞

−∞
(t − µg)

2g2(t) dt =
∫ ∞

−∞
(u− (t + µg))

2|gω,t |2(u) du. (2.8)

Following Parseval’s identity, the square of the Fourier transform ĝ := F {g} of the
window function is a probability density function too. Thus mean value and variance
can be computed for ĝ as well:

µĝ :=
∫ ∞

−∞
ωĝ2(ω) dω, (2.9)

σĝ :=
∫ ∞

−∞
(ω − µĝ)

2ĝ2(ω) dω =
∫ ∞

−∞
(ω′ − (ω + µĝ)

2|ĝω,t |2(ω′) dω′. (2.10)

These parameters have an intuitively clear interpretation: The square of the window
function |gω,t |2 is centered at t + µg and has a width of σg . The same is true for the
spectrum: |ĝω,t |2 is centered at ω + µĝ . Figure 2.6 is to illustrate this situation.
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Figure 2.6. Window function and its spectrum

Using Parseval’s identity the short-time Fourier transform can be expressed in two
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different ways:

G{f }(ω, t) = 1√
2π

∫ ∞

−∞
f (u)gω,t (u) du (2.11)

= 1√
2π

∫ ∞

−∞
f̂ (ω′)ĝω,t (ω′) dω′. (2.12)

The first equation states that G{f } is the signal looked through a window of width
σg centered at t , and the second equation explains that the same quantity is also the
spectrum of the signal looked through a window of width σĝ . So, for every t the
quantity G{f }(ω, t) can be considered as the intensity of the signal f around the time
t and at frequencies close to ω. The vague expressions around and close to can be
quantified by the time resolution σg and the frequency resolution σĝ .

Unfortunately, time and frequency resolution cannot be made arbitrarily small
simultaneously. There is something like the uncertainty principle in quantum physics.

Theorem 2.1.1 (Uncertainty principle). Let g ∈ L2(R), ‖g‖ = 1. Then∫ ∞

−∞
(t − t0)

2|g(t)|2 dt ·
∫ ∞

−∞
(ω − ω0)

2|ĝ(ω)|2 dω = σ 2
g σ

2
ĝ
≥ 1

4
(2.13)

holds for all t0, ω0 ∈ R.

Proof. The proof can be found in [75]. ��

Numerical implementation of short-time Fourier transform. Let si , i = 0, . . . ,
2N − 1 be the sampled values of the signal to be analyzed. In order to reduce edge-
effects an extended signal si , i = 0, . . . , 2N+1 − 1 of the length 2N+1 is generated by
the reflection

si =


s2N−1−i , i = 0, . . . , 2N−1 − 1

si−2N−1 , i = 2N−1, . . . , 3 · 2N−1 − 1

s5·2N−1−i−1, i = 3 · 2N−1, . . . 2N+1 − 1.

(2.14)

In the next step a sequence of shifting parameters tk , k = 0, . . . ,M has to be chosen.
How this choice has to be made depends on the goal the short-time Fourier analysis is
aiming at.

For each shifting parameter tk the following operations have to be carried out:

• The window function gtk (•) := g(• − tk) has to be sampled with the same sam-
pling width as the signal s yielding the sampled values gk,i , i = 0, . . . , 2N+1−1.

• The signal and the shifted window have to be multiplied

hk,j := sj · gk,j , j = 0, . . . , 2N+1 − 1.

• Gsj,k := G{s}(ωj , tk) can be computed as the FFT of hk,j .
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• The edges of the spectrum have to be stripped off

G{s}(ωj , tk) := Gsk,j+2N−1 , j = 0, . . . , 2N − 1.

The great disadvantage of the short-time Fourier transform is that the time resolu-
tion is the same for all frequencies. For high frequencies already a short time span is
sufficient to resolve them; for lower frequencies a longer time span is necessary. This
means the time and the frequency resolution should be coupled: for higher frequencies
a better time resolution than for lower frequencies. This can be achieved by varying the
window-width according to the frequency. This idea led to the invention of wavelets.

2.2 Continuous wavelet transformation

2.2.1 Concept

In the short-time Fourier transform the analyzing function gω,t was a hat-shaped con-
tour filled with a sinusoidal as it is indicated in Figure 2.7.
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Figure 2.7. Analyzing function of short-time Fourier transform

Due to the fixed envelope g the time and frequency resolution is the same for every
value of t, ω. It would be better to have an analyzing function with a high time
resolution for high frequencies and a low time resolution for low frequencies. Such a
function is a wavelet.

Definition 2.2.1. A function ψ ∈ L2(R) is called a wavelet if it fulfills the admissi-
bility condition

0 < cψ := 2π
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω <∞, (2.15)
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and the continuous wavelet transform of a function f ∈ L2(R) with respect to this
wavelet is given by

W{f }(λ, t) := 1√
cψ

|λ|−1/2
∫ ∞

−∞
f (u)ψ

(
u− t

λ

)
du, λ ∈ R\ {0}, t ∈ R. (2.16)

From the definition of a wavelet some important conclusions can be drawn. First,
the admissibility condition implicates

0 = ψ̂(0) = (2π)−1/2
∫ ∞

−∞
ψ(t) dt. (2.17)

Therefore the wavelet has to have a vanishing mean value. It has to oscillate in some
way. On the other hand there is the conditionψ ∈ L2(R). For this reason the function
ψ has to decay in some way for t → ∞. Hence the oscillation cannot last forever, it
has to stop after a certain time span. The function ψ does not represent a wave but a
small wave – a wavelet.

Figure 2.8 shows two examples of wavelets together with their spectra. On the left
side the so-called Mexican hat wavelet and on the right side the Daubechies wavelet
of order 4.

200 200400 400600 60000

15

10

5

0
0.4_ _ 0.2 0 0.2 0.4 0.40.20.20.4 0__

8

6

4

2

0

0.2

0.2 0.3

0.1
0.1

0.1

0.1

0
0

0.2_

_

_

Figure 2.8. Mexican hat wavelet (top left) with its spectrum (bottom left) and Daubechies
wavelet (top right) with its spectrum (bottom right)

In the continuous wavelet transformation (2.16) the analyzing function is ψ(u−t
λ
).

Similar to the short-time Fourier transform case, here the analyzing function is also
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a certain shape filled with oscillations. The big difference to the short-time Fourier
transform is the change of the envelopes shape with the change of the scale λ.

• The shorter the scale λ is the more compressed is the envelope and the higher is
the frequency of the oscillation.

Consequently, the time resolution increases with decreasing scale size and the fre-
quency resolution decreases with decreasing scale size. In order to demonstrate the
difference between continuous wavelet transformation and short-time Fourier trans-
formation, an example similar to that given by I. Daubechies will be discussed. The
following signal will be considered:

f (t) = sin(1000πt)+ sin(2000πt)+ [δ(t − t1)+ δ(t − t2)], (2.18)

t1 = 0.075, t2 = 0.079.

The signal is displayed in Figure 2.9.
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Figure 2.9. Signal with two frequencies and two impulses

If this signal is analyzed using the short-time Fourier transform then, depending on
the window length, either the two frequencies can be resolved and the impulses get
lost, or the impulses can be detected but the frequencies cannot be separated. This is
visible in the two Figures 2.10 and 2.11.
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Figure 2.10. Short-time Fourier transform with wide window
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Figure 2.11. Short-time Fourier transform with small window

The great advantage of the continuous wavelet transformation is the ability to resolve
both the two long-waved frequencies and the two extremely short impulses. This can
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be seen in Figure 2.12. The signal was analyzed by the so-called Morlet wavelet and
this analysis shows both the two frequencies and the two impulses.
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Figure 2.12. Continuous wavelet transformation

As in the case of the Fourier and the short-time Fourier transform also the continuous
wavelet transformation has the isometry property and an uniquely determined inverse
transformation.

Theorem 2.2.1. The following equation is valid:∫ ∞

−∞
f 2(t) dt =

∫ ∞

−∞

∫ ∞

−∞
|W{f }(λ, t)|2 dλdt

λ2 . (2.19)

Theorem 2.2.2. The following equation is valid:

f (u) = c
−1/2
ψ

∫ ∞

−∞

∫ ∞

−∞
|λ|−1/2ψ

(
u− t

λ

)
W{f }(t, λ)dλdt

λ2 . (2.20)

The proofs of both theorems are given in [68].

Usually, Fourier transform is discussed in the context of filtering. In order to
get a bit more familiar with wavelet transform it will be discussed now, how wavelet
transform and filtering are related to each other. With the function

ψλ(t) := |λ|−1/2ψ

(
− t
λ

)
(2.21)
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the continuous wavelet transform formally can be written as a convolution

W{f }(t, λ) = c
−1/2
ψ ψλ ∗ f. (2.22)

Since ψ̂λ(0) = 0 and limω→∞ ψ̂λ(ω) = 0 the wavelet transform is a band-pass
filter. The spectrum of a wavelet ψ is concentrated around a certain frequency ω0.
Therefore ψ̂λ is concentrated around ω0/λ. Consequently, the wavelet transformation
W{f }(λ, •) contains only those Information about f , which are related to frequencies
around ω0/λ. The wavelet transformation is similar to a slicing of the signal f into
separated frequency bands. In digital signal processing this decomposition of the
signal is referred to as sub-band coding.

Numerical implementation of continuous wavelet transformation

• Let si , i = 0, . . . , 2N − 1 be the sampled values of the signal to be analyzed. In
order to reduce edge-effects an extended signal si, i = 0, . . . , 2N+1 − 1 of the
length 2N+1 is generated by reflection

si =


s2N−1−i , i = 0, . . . , 2N−1 − 1

si−2N−1 , i = 2N−1, . . . , 3 · 2N−1 − 1

s5·2N−1−i−1, i = 3 · 2N−1, . . . 2N+1 − 1.

(2.23)

• The spectrum ŝj , j = 0, . . . , 2N+1−1 of the extended signal has to by computed
by FFT.

• In the next step a sequence of scale parameters λk , k = 0, . . . ,M has to be
chosen. This choice depends on the goal the continuous wavelet analysis is
aiming at. For each scale parameter λk the following operations have to be
carried out:

– The wavelet c−1/2
ψ ψλk has to be sampled with the same sampling width as

the signal s yielding the sampled values ψk,i .

– The spectrum of the dilated wavelet c−1/2
ψ ψλk has to be computed from

the samples ψk,i using FFT, yielding the spectral values ψ̂k,j , j = 0, . . . ,
2N+1 − 1.

– The spectra of the signal and of the dilated wavelet have to be multiplied

hk,j := ŝj · ψ̂k,j , j = 0, . . . , 2N+1 − 1.

– The inverse FFT has to be applied to the sequence hk,j giving the values
Wsi,k

– Stripping off the edges

W{s}(λk, ti) := Wsi−2N−1,k, i = 0, . . . , 2N − 1.
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2.2.2 Time-frequency resolution

Let us introduce the function

ψλ,t (u) := |λ|−1/2ψ

(
u− t

λ

)
. (2.24)

As in the case of the short-time Fourier transform, the continuous wavelet transform
can also be written in two equivalent ways:

W{f }(λ, t) = c
−1/2
ψ

∫ ∞

−∞
f (u)ψλ,t (u) du = c

−1/2
ψ

∫ ∞

−∞
f̂ (ω)ψ̂λ,t (ω) dω. (2.25)

If the wavelet ψ fulfills ‖ψ‖ = 1, both |ψλ,t |2 and |ψ̂λ,t |2 have the properties of
probability densities. Consequently, expectations and variances can be computed:

tλ,t :=
∫ ∞

−∞
u|ψλ,t (u)|2 du, (2.26)

σ 2
ψλ,t

=
∫ ∞

−∞
(u− tλ,t )2|ψλ,t (u)|2 du, (2.27)

ωλ,t :=
∫ ∞

0
ω|ψ̂λ,t (ω)|2 dω, (2.28)

σ 2
ψ̂λ,t

:=
∫ ∞

0
(ω − ωλ,t )2|ψ̂λ,t (ω)|2 dω. (2.29)

It is easy to verify that the following relations hold:

σψλ,t = λσψ1,0 , σ
ψ̂λ,t

=
σ
ψ̂1,0

λ
. (2.30)

Finally, also

ωλ,t = ω1,0

λ
(2.31)

is true.
If one recalls the wavelet transform as a band-pass filter, the centerωλ,t0 of the filter

characteristic changes with changing scale length λ. For increasing scale size λ the
center of the passing band moves to the low frequencies, the window length σ

ψ̂λ,t
in the

spectral domain decreases and the window length σψλ,t in the time domain increases.
Therefore, the larger the scale size the better the frequency – and the worse is the time
resolution.

In the (t, λ) phase-space the wavelet ψλ,b cuts out a window which is centered at
(tλ,b, ωλ,b) and has a center-dependent size. The situation is displayed in Figure 2.13.

Quite similar to the short-time Fourier transform, also for the continuous wavelet
transform time and frequency resolution cannot be improved simultaneously. Also
here the uncertainty inequality

σψλ,t · σψ̂λ,t ≥
1

4
(2.32)

is valid.
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Figure 2.13. Phase-space window of ψλ,b for different values of λ and b

2.2.3 Approximation properties

There is an infinite variety of wavelets. As a criterion to classify different types of
wavelets and to give different wavelets certain meanings in terms of digital signal
processing, the wavelets will be classified according to their behavior for decreasing
scale sizes.

The basic idea is that the wavelet transform of a signalf approximates the derivative
of f of a certain order. The wavelets can be classified according to the order of the
derivative they approximate.

Definition 2.2.2. A wavelet ψ is called of order N ∈ N, if the following relations
hold:

1. ∫ ∞

−∞
tkψ(t) dt = 0, 0 ≤ k < N, (2.33)

2. ∫ ∞

−∞
tNψ(t) dt �= 0. (2.34)

As already mentioned, the order of a wavelet is in close relationship with the order
of the derivative the wavelet transform approximates.
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Theorem 2.2.3. Let ψ ∈ L2(R) be a wavelet of order N and let f be sufficiently
smooth. Define µ by

µ := (−1)N
(∫ ∞

−∞
tNψ(t) dt

)
/N !.

Then

lim
λ→0

∥∥∥∥ sgnN(−λ)
|λ|N+ 1

2

√
cψW{f }(λ, •)− µf (N)(•)

∥∥∥∥ = 0. (2.35)

Proof. [68]. ��

In order to illustrate the content of this theorem, following trigonometric function
will be used as the signal f :

f (u) := sin(u). (2.36)

As analyzing wavelet, the most simple wavelet – the Haar wavelet – will be applied:

ψ(u) :=


1, 0 ≤ u < 0.5

−1, 0.5 ≤ u < 1

0, else.

(2.37)

For this wavelet the quantity µ is

µ = −
∫ ∞

−∞
uψ(u) du = 1

4
. (2.38)

For cψ the following value is obtained:

cψ = 2π
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω =
∫ ∞

−∞
sin2(ω/4) sinc2(ω/4)

|ω| dω = 2 ln 2. (2.39)

Then the continuous wavelet transformation of f with respect to the Haar wavelet is

W{f }(λ, t) = 1√
λcψ

∫ ∞

−∞
f (u)ψ

(
u− t

λ

)
du

= 1√
λcψ

{∫ t+λ/2

t

f (u) du−
∫ t+λ

t+λ/2
f (u) du

}
(2.40)

= 1√
λcψ

{
− cos(u)

∣∣t+λ/2
t

+ cos(u)
∣∣t+λ
t+λ/2

}
= 1√

λcψ
{cos(t)− 2 cos(t + λ/2)+ cos(t + λ)} .
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Therefore one obtains

sgn(−λ)√cψ
|λ|3/2 W{f }(λ, t) = − 1

λ2
{cos(t)− 2 cos(t + λ/2)+ cos(t + λ)}

= − 1

λ2
{cos t

− 2 cos t + 2 sin t
λ

2
+ cos t

λ2

4
+O(λ3) (2.41)

+ cos t − sin tλ− 1

2
cos tλ2 +O(λ3)}

= −
{
−1

4
cos t +O(λ)

}
= µ

{
(sin t)′ +O(λ)

}
,

and hence

lim
λ→0

sgn(−λ)√cψ
|λ|3/2 W{f }(λ, t) = µ(sin t)′. (2.42)

0
2

4
6

8 0

2

4

6

8

10

0.4

0.2

0

0.2

0.4

_

_

t

λ

Figure 2.14. Wavelet transformation of sine function

This expression is displayed in Figure 2.14. A comparison withF ′(u) = cos(u) as it is
displayed in Figure 2.15 shows that for decreasing scales λ→ 0 the wavelet transform
tends to the first derivative.
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Figure 2.15. First derivative of the sine function

So far the order of a wavelet has been identified as one criterion for the classification
of different types of wavelets. Now it will be shown that, depending of the order of
the wavelet, the wavelet transformation of a function f can be used to characterize its
smoothness. The situation is comparable to the Fourier spectrum. The decay of the
Fourier spectrum is closely related to the regularity of the function. Something quite
similar also holds for wavelets.

Theorem 2.2.4. Let ψ be a wavelet of order N . For some k ∈ {1, . . . , N} let hold
|f (k)| <∞ then

|W{f }(λ, t)| = O(|λ|k+1/2), λ→ 0. (2.43)

Proof. [68]. ��

Quite similar to the case of Fourier transform the decay of the wavelet transform
is determined by the order of differentiability. The difference is that the decay of the
wavelet transform is determined not only by the order of differentiability but also by
the order of the wavelet.

2.3 Discrete wavelet transformation

2.3.1 Frames

The computation of the wavelet transform of a signal and the reconstruction of a signal
from its wavelet spectrums requires the evaluation of a single or a double integral
respectively. For an efficient numerical implementation these integrals have to be dis-
cretized. The question arises, whether or not it is really necessary to know W{f }(λ, t)
for all values of λ and t in order to reconstruct the signal.
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Fortunately, it will turn out that the representation of a signal by its wavelet-
spectrum is highly redundant. Therefore it will be possible to replace the integrals by
sums. To be more precise, we consider the grid

{(λm0 , nt0) | m, n ∈ Z} (2.44)

and ask ourselves, if it will be possible to reconstruct the signal f completely from
the restriction of the wavelet spectrum to this grid. On the grid the following set of
functions is considered:

{ψ(λ0,t0)
m,n (•) := λ

−m/2
0 ψ(λ−m0

• − nt0) | m, n ∈ Z}. (2.45)

The question is: Under which circumstances can a signal f be completely represented
using this discrete set of functions only? The answer is: A complete representation is
possible, if these functions form a so-called frame.

Definition 2.3.1. Let λ0 > 1, t0 > 0 and let ψ ∈ L2(R) be a wavelet. The set of
functions {ψ(λ0,t0)

m,n | m, n ∈ Z} is called a wavelet frame forL2(R) if there are positive
constants A,B with

A‖f ‖2 ≤
∑
m∈Z

∑
n∈Z

|〈ψ(λ0,t0)
m,n , f 〉|2 ≤ B‖f ‖2. (2.46)

The constants A,B are called the bounds of the frame. If A = B holds, the frame is
called tight frame.

The coefficients 〈ψ(λ0,t0)
m,n , f 〉 have a very instructive interpretation. Since

〈ψ(λ0,t0)
m,n , f 〉 = W{f }(λm0 , nt0) (2.47)

holds, the values of the frame coefficients indicate the intensity of the signal at scales
close to λm0 in the vicinity of the time nt0.

Frames are important, since for them a unique relationship between the signalf and
its coefficients 〈ψ(λ0,t0)

m,n , f 〉 can be established. To every frame {ψ(λ0,t0)
m,n | m, n ∈ Z}

a uniquely determined operator T : L2(R)→ l2(Z2) can be assigned in the following
way:

(Tf )m,n := 〈ψ(λ0,t0)
m,n , f 〉.

From equation (2.46) the following relation can be deduced
√
A‖f ‖ ≤ ‖Tf ‖ ≤ √

B‖f ‖.
Consequently, the operator T is bounded and has a bounded inverse operator. The
existence of a bounded inverse is very important since it guarantees that the signal
can be uniquely and stably reconstructed from its coefficients.

Hence, if the wavelet ψ together with the scale spacing λ0 and the time spacing
t0 forms a frame, the signal is completely characterized by its wavelet spectrum on
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Figure 2.16. Grid for a wavelet frame

a discrete grid. This grid is not uniformly shaped but denser for smaller scales and
wider for larger scales. The situation is displayed in Figure 2.16

The frame property is very important for the establishment of a unique relationship
between a signal and its coefficients, but it does not answer the question of how the
reconstruction has to be done. A simple answer is only possible for tight frames.

Theorem 2.3.1. Letψ be normalized, i.e. ‖ψ‖ = 1, and let {ψ(λ0,t0)
m,n | m, n ∈ Z} be a

tight frame with the bounds A = B = 1. Then the functions ψ(λ0,t0)
m,n form a complete

orthonormal system in L2(R).

Proof. In the first step it will be shown that for the system {ψ(λ0,t0)
m,n } Parseval’s identity

is valid: The relation

‖f ‖2 =
∑
m∈Z

∑
n∈Z

|〈ψ(λ0,t0)
m,n , f 〉|2 (2.48)

immediately follows from (2.46).

As a next step it will be shown that with ψ also the ψ(λ0,t0)
m,n are normalized:

‖ψ(λ0,t0)
m,n ‖2 =

∫
R

(ψ(λ0,t0)
m,n (t))2 dt

=
∫

R

(λ
−m/2
0 ψ(λ−m0 t − nt0))

2 dt

=
∫

R

(ψ(x))2 dx

= 1.
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In the last step the orthogonality will be proved: From (2.48) follows

1 = ‖ψ(λ0,t0)
m,n ‖2

=
∑
µ,ν∈Z

|〈ψ(λ0,t0)
m,n , ψ(λ0,t0)

µ,ν 〉|2

= ‖ψ‖2 +
∑

(µ,ν) �=(m,n)
|〈ψ(λ0,t0)

m,n , ψ(λ0,t0)
µ,ν 〉|2.

Hence ∑
(µ,ν) �=(m,n)

|〈ψ(λ0,t0)
m,n , ψ(λ0,t0)

µ,ν 〉|2 = 0

must hold. This is only possible for

〈ψ(λ0,t0)
m,n , ψ(λ0,t0)

µ,ν 〉 = δn,νδm,µ.

Orthonormality together with the validity of Parseval’s identity guarantees complete-
ness. ��

For a complete orthonormal system the reconstruction of a signal from its coeffi-
cients is fairly easy, it is just the generalized Fourier series

f (t) =
∑
m∈Z

∑
n∈Z

〈ψ(λ0,t0)
m,n , f 〉 · ψ(λ0,t0)

m,n (t). (2.49)

For practical reasons dyadic frames, i.e. frames with λ0 = 2, t0 = 1 are preferred.
The question remains how a wavelets can be constructed in such a way that it

forms a tight frame. This question will be discussed in the chapter on multi-resolution
analysis.

2.4 Multi-resolution analysis

The concept of multi-resolution analysis is the key to the construction of orthogo-
nal wavelet bases and for the fast decomposition of a signal into disjunct frequency
bands. Before starting with a mathematical definition of the multi-resolution analy-
sis a motivating example will be given. Let f be a signal from a certain subspace
V−1 ⊂ L2(R). This signal is to be decomposed into a high- and a low-frequency part.
The low-frequency part is obtained by an orthogonal projection P0f into a smaller
subspaceV0 ⊂ V−1, which contains only the smooth functions ofV−1. The orthogonal
complement of V0 in V−1 will be denoted by W0. The projection of the signal f into
W0 will be denoted by Q0f . In this way we have

f = P0f +Q0f, (2.50)

V−1 = V0 ⊕W0. (2.51)
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The procedure can be repeated for P0f by representing V0 as the orthogonal sum of
V1, containing the smoother part, and of W1, containing the rougher part of V0. The
corresponding projectors are called P1 and Q1.

P0f = P1P0f +Q1P0f (2.52)

and therefore

f = P0f +Q0f

= P1P0f +Q1P0f +Q0f. (2.53)

The two-stage decomposition is illustrated in Figure 2.17. Iterating this technique,

W0

V1

P1P0f

V−1

Q0f

P0f

Q1P0f

V0

W1

f

Figure 2.17. Two-stage decomposition

one obtains the relation

f = PnPn−1 . . . P0f +QnPn−1 . . . P0f +Qn−1Pn−2 . . . P0f + · · · +Q0f, (2.54)

which is schematically displayed in Figure 2.18. This scheme corresponds to a decom-
position of the signal f into different frequency-bands, as it is shown in Figure 2.19.

The decomposition of a signal into different frequency bands is the core of the
multi-resolution analysis.

Definition 2.4.1. A nested sequence

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R) (2.55)
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L2(R)
P0 P1 P2

V−1 V0 V1 V2

Q0 Q1 Q2

W0 W1 W2

Figure 2.18. Multi-resolution analysis
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Q2n−1f

Q2n−1f

Q2n−1f

ω

ω

ω

Qn−1f

Qn−1fPn−1f

Pnf Qnf

Figure 2.19. Decomposition into separate frequency bands

of closed subsets Vm ⊂ L2(R) is called a multi-resolution analysis (MRA) of L2(R),
if the following four statements hold:

(i) ⋃
m∈Z

Vm = L2(R). (2.56)

(ii) ⋂
m∈Z

Vm = {0}. (2.57)

(iii)
f (•) ∈ Vm ⇔ f (2m•) ∈ V0. (2.58)
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(iv) There is a function ϕ ∈ L2(R) with

V0 = span{ϕ(• − k) | k ∈ Z} (2.59)

and

A
∑
k∈Z

c2
k ≤ ‖

∑
k∈Z

ckϕ(• − k)‖2
L2

≤ B
∑
k∈Z

c2
k, 0 < A,B (2.60)

for all {ck}k∈Z ∈ l2(Z).
Some of these properties are more of a technical nature. The essential property is

(2.58). This equation expresses the fact that all spaces of an MRA are scaled versions
of the base space V0. The space V0 itself is spanned by shifted versions of the so-called
scaling function ϕ. For m → ∞ the elements of Vm are getting more extended and
dilated. For m→ −∞ the spaces Vm contain increasingly finer structures.

The space V0 is spanned by the shifted versions of the scaling function ϕ. Due
to equation (2.58) the spaces Vm are spanned by the shifted versions of ϕm,k(x) :=
2−m/2ϕ(2−mx − k):

Vm = span{ϕm,k | k ∈ Z}. (2.61)

The following simple example is to illustrate the concept of MRA.

Example 2.4.1. Define the sequence of subspaces {Vm}m∈Z as follows:

Vm := {f ∈ L2(R) | supp F {f } ⊂ [−π2−m, π2−m]}. (2.62)

This means that all the subspaces consist of band-limited signals. Obviously,

f ∈ Vm ⇒ supp F {f } ⊂ [−π2−m, π2−m] ⊂ [−π2−(m−1), π2−(m−1)]
⇒ f ∈ Vm−1

holds, which induces Vm ⊂ Vm−1. Since for f ∈ Vm the relation

supp F {f (2m•)} = supp 2−mF {f }(2−mω) = {ω | |2−mω| ≤ π2−m}
= {ω | |ω| ≤ π}

is valid,
f ∈ Vm ⇒ f (2m•) ∈ V0 (2.63)

can be concluded.
From equation (1.23) in the sampling theorem (p. 5) it is easy to see that

ϕ(x) = sin(πx)

πx
(2.64)

is the scaling function of V0.
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Let g ∈⋂m∈Z
Vm. Hence supp F {g} = {0} must hold. Consequently,

F {g} =
{
a, ω = 0

0, else,
(2.65)

i.e., the Fourier transform of g differs from zero in one single point only. Since the
Lebesgue integral does not change if the integrant is changed on a set of zero measure
one can conclude

g(x) = 1√
2π

∫
R

F {g}(ω)eıωx dω = 1√
2π

∫
R

0eıωx dω = 0. (2.66)

Summarizing, one can say that the conditions (ii), (iii), (iv) and (v) in the definition
of an MRA are fulfilled. The condition (i), which is of a bit more technical is not
verified. We will suppose for the moment that this condition is fulfilled as well. Then
the spaces (2.62) form an MRA of L2(R).

Now the question arises how the MRA is connected to the original goal, the con-
struction of a tight wavelet frame. The answer is that the bases of the difference spaces
Wm of an MRA will form a tight wavelet frame, provided the scaling function ϕ of
the MRA has some nice properties. For this reason the properties of ϕ will be studied
first.

Lemma 2.4.1. Let ϕ be the scaling function of an MRA. There exist a uniquely deter-
mined sequence of real numbers {hk}k∈Z with

ϕ(x) = √
2
∑
k∈Z

hkϕ(2x − k). (2.67)

Proof. The scaling function ϕ is an element of V0. Since V0 ⊂ V−1 holds, ϕ ∈ V−1
can be concluded. The functions {√2ϕ(2•− k)}k∈Z} form a Riesz base of V−1. Hence
there are uniquely determined real numbers hk with

ϕ(x) = √
2
∑
k∈Z

hkϕ(2x − k).

��
Definition 2.4.2. Equation (2.67) is called scaling equation of the MRA and the co-
efficients hk are called scaling coefficients.

As we remember, the shifted versions of the scale function ϕ form a Riesz base of
V0. Such a Riesz base is particularly nice if it is orthogonal:

〈ϕ(• − k), ϕ(• − l)〉 = δkl . (2.68)

Whether or not a scaling function forms an orthogonal Riesz base can be read from
its scaling coefficients.
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Lemma 2.4.2. Let ϕ be the scaling function of an MRA. Let the shifted versions of ϕ
form an orthogonal base of V0. Then∑

k∈Z

hkhk+2m = δ0m (2.69)

holds.

Proof. A simple calculation yields

δ0m = 〈ϕ(•), ϕ(• +m)〉
=
〈√

2
∑
k∈Z

hkϕ(2x − k),
√

2
∑
l∈Z

hlϕ(2(x +m)− l)
〉

= 2
∑
k∈Z

∑
l∈Z

hkhl〈ϕ(2x − k), ϕ(2x − l + 2m)〉

= 2
∑
k∈Z

∑
l∈Z

hkhl+2m〈ϕ(2x − k), ϕ(2x − l)〉

=
∑
k∈Z

∑
l∈Z

hkhl+2mδkl

=
∑
k∈Z

hkhk+2m.

��

Lemma 2.4.3. Let ϕ be the scaling function of anMRA. Then {ϕ(•−k) | k ∈ Z} forms
an orthogonal system if and only if∑

n∈Z

|ϕ̂(ω + 2πn)|2 = 1

2π
(2.70)

holds.

Proof. Suppose that {ϕ(• − k) | k ∈ Z} is an orthogonal system. Then

〈ϕ(• − k), ϕ(• − n)〉 = δk,n

holds. As a consequence one obtains

δ0k = 〈 ˆϕ(•), ϕ̂(•)e−ık•〉
=
∫

R

|ϕ̂(ω)|2eıkω dω

=
∫ 2π

0

∑
n∈Z

|ϕ̂(ω + 2πn)|2eıkω dω.
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The equation can be interpreted as the computation of the k-th Fourier coefficient of∑
n∈Z

|ϕ̂(ω + 2πn)|2, which is shown to be 2π · δ0k . For k = 0 the result

∑
n∈Z

|ϕ̂(ω + 2πn)|2 = 1

2π

follows immediately. ��

For many purposes it will be convenient, to express the scaling equations in the
Fourier domain. On this behalf a transfer function of the scaling coefficients is defined
by

H(ω) :=
√

2

2

∑
k∈Z

hke
−ıkω. (2.71)

Consequently, the Fourier transformation of the scaling equation (2.67) results in the
following simple product:

ϕ̂(ω) = H
(ω

2

)
ϕ̂
(ω

2

)
. (2.72)

The orthogonality of the scaling function is characterized by the following theorem.

Theorem 2.4.1. Let {Vm} be an MRA of L2(R), which is generated by the orthogonal
scaling function ϕ. Then the following relations are true:

|H(ω)|2 + |H(ω + π)|2 = 1, (2.73)

H(0) = 1, H(π) = 0, (2.74)

and ∑
k∈Z

hk = √
2,

∑
k∈Z

(−1)khk = 0. (2.75)

Proof. Obviously ϕ̂(0) �= 0 holds. With the help of (2.72) one obtains

H(0) = ϕ̂(0)

ϕ̂(0)
= 1.

Let us now assume that the orthogonality condition (2.70) is fulfilled. Together with
H(0) = 1 this leads to H(π) = 0. Since the scaling function ϕ is supposed to be
orthogonal, equation (2.73) holds. If the relation (2.72) is inserted, the following result
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is obtained:

1

2π
=
∑
n∈Z

|ϕ̂(ω + 2πn)|2

=
∑
n∈Z

∣∣∣H (ω
2

+ nπ
)
ϕ̂
(ω

2
+ nπ

)∣∣∣2
=
∑
m∈Z

∣∣∣H (ω
2

+ 2πm
)
ϕ̂
(ω

2
+ 2πm

)∣∣∣2
+
∑
m∈Z

∣∣∣H ((ω
2

+ π
)
+ 2πm

)
ϕ̂
((ω

2
+ π
)
+ 2πm

)∣∣∣2
=
∣∣∣H (ω

2

) ∣∣∣2 ∑
m∈Z

∣∣∣ϕ̂ (ω
2

+ 2πm
)∣∣∣2 +

∣∣∣H (ω
2

+ π
)∣∣∣2 ∑

m∈Z

∣∣∣ϕ̂ ((ω
2

+ π
)
+ 2πm

) ∣∣∣2
=
∣∣∣H (ω

2

)∣∣∣2 1

2π
+
∣∣∣H (ω

2
+ π
)∣∣∣2 1

2π
.

Hence
1 = |H(ω)|2 + |H(ω + π)|2

holds. ��

At the moment we have the decomposition V−1 = V0 ⊕W0 and we have a base
of V0. What is still needed is a base of W0. Since W0 is the orthogonal complement
of V0 in V−1, any base function ψ of W0 has to be orthogonal to every element of V0.
This is certainly true, if ψ is orthogonal to every base function ϕ(• − k) of V0. Due to
(2.67) the base function has the representation

ϕ(x − k) = √
2
∑
l∈Z

hlϕ(2x − 2k − l).

Hence the orthogonality condition reads

0 =
〈
ψ,

√
2
∑
l∈Z

hlϕ(2x − 2k − l)
〉
. (2.76)

Since ψ ∈ W0 ⊂ V−1, there are coefficients gm with

ψ(x) = √
2
∑
m∈Z

gmϕ(2x −m). (2.77)

Inserting this in (2.76) one obtains

0 =
〈√

2
∑
m∈Z

gmϕ(2x −m),
√

2
∑
l∈Z

hlϕ(2x − 2k − l)
〉

= 2
∑
m∈Z

∑
l∈Z

gmhl〈ϕ(2x −m), ϕ(2x − 2k − l)〉 =
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= 2
∑
m∈Z

∑
l∈Z

gmhl−2k〈ϕ(2x −m), ϕ(2x − l)〉

=
∑
m∈Z

hm−2kgm.

This relation is an infinite-dimensional homogeneous linear system of equations for
the coefficients gm of the base function ψ ∈ W0. Of course the system has several
solutions. One solution is

gm = (−1)mh1−m, (2.78)

which can easily be verified:∑
m∈Z

hm−2kgm =
∑
m∈Z

hm−2k(−1)mh1−m

=
∑
m∈Z

hm(−1)mh1−m−2k

=
∑
m∈Z

h2mh1−2(m+k) −
∑
m∈Z

h2m+1h−2(m+k)

=
∑
µ∈Z

h−2(µ+k)h2µ+1 −
∑
m∈Z

h2m+1h−2(m+k) (µ = −(m+ k))

= 0.

In this way we have found a special element ψ ∈ W0. But this particular element has
additional properties:

• ψ is a wavelet,

• the shifted versions of ψ form a Riesz base of W0.

Theorem 2.4.2. Let {Vm}∈Z be anMRAofL2(R), generated by the orthogonal scaling
function ϕ. Let {hk}k∈Z be the scaling coefficients of ϕ. The functionψ ∈ V−1 defined
by

ψ(x) := √
2
∑
k∈Z

gkϕ(2x − k), gk := (−1)kh1−k (2.79)

has the following properties:

(i) ψ is a wavelet with cψ = 2 ln 2.

(ii) {ψm,k(x) := 2−m/2ψ(2−mx − k) | k ∈ Z} is a CONS 1 ofWm.

(iii) {ψm,k | m, k ∈ Z} is a tight wavelet frame in L2(R).

1Complete orthonormal system, see Definition A.2.5 on p. 224
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Proof. The proof can be found in [68]. ��

The theorem shows the way for the systematic construction of tight wavelet frames

1. Construction of an MRA with an orthogonal scaling function ϕ.

2. Determination of the scaling coefficients {hk}k∈Z.

3. Construction of the mother-wavelet ψ by (2.79).

Example 2.4.2. The earlier discussed example of an MRA spanned by the sinc func-
tion is not directly suited for the construction of a tight wavelet frame. Since〈

sin(π(x − k))

π(x − k)
,

sin(π(x − l))

π(x − l)

〉
=
〈
F

{
sin(π(x − k))

π(x − k)

}
,F

{
sin(π(x − l))

π(x − l)

}〉
=
〈
�
(ω
π

)
e−ıπkω,�

(ω
π

)
eıπlω

〉
=
∫ π

−π
e−ı(l−k)ω dω

= 2πδlk

holds, the scaling function ϕ is orthogonal. From (1.23) in the sampling theorem one
can conclude

ϕ(x) = sin πx

πx

=
∑
n∈Z

sin(πn/2)

πn/2

sin(2π(x − n/2))

2π(x − n/2)

=
∑
n∈Z

sin(πn/2)

πn/2

sin(π(2x − n))

π(2x − n)

=
∑
n∈Z

sin(πn/2)

πn/2
ϕ(2x − n).

This leads to the scaling coefficients

hn = sin(πn/2)

πn/2
(2.80)

and to the mother wavelet

ψ(x) =
∑
n∈Z

(−1)n
sin(π(1 − n)/2)

π(1 − n)/2)

sin(π(2x − n))

π(2x − n)
. (2.81)

The resulting Shannon wavelet is displayed in Figure 2.20.
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Figure 2.20. Shannon wavelet

Nevertheless, for practical applications the Shannon wavelet is not particularly
suited, since it has an infinite number of non-vanishing scaling coefficients. Wavelets
with a small number of non-vanishing scaling coefficients are much better to handle.
For this reason in the next example a wavelet with the smallest possible number of
non-vanishing scaling coefficients will be discussed.

Example 2.4.3 (Haar wavelet). Following our previously mentioned algorithm, let
us start with the construction of an MRA of L2(R). The spaces Vm are defined by

Vm := {f ∈ L2(R) | f (x) = const for x ∈ [2mk, 2m(k + 1)[, k ∈ Z}. (2.82)

It is easy to show that

f ∈ Vm ⇒ f (x) = const for x ∈ [2mk, 2m(k + 1)[
⇒ f (x) = const for x ∈ [2(m−1)k, 2(m−1)(k + 1)[ (2.83)

⇒ f ∈ Vm−1

holds. Hence

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R) (2.84)

is valid. Furthermore,

f ∈ Vm ⇒ f (x) = const for x ∈ [2mk, 2m(k + 1)[
⇒ f (2mx) = const for x ∈ [k, k + 1[ (2.85)

⇒ f (2m•) ∈ V0
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is valid. Let

ϕ(x) :=
{

1, 0 ≤ x < 1

0, else,
(2.86)

then obviously
V0 = span{ϕ(• − k) | k ∈ Z} (2.87)

holds. Consequently, the spaces Vm form an MRA of L2(R) with the scaling function
ϕ, the so-called Haar scaling function. The scaling function is displayed in Figure 2.21.
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Figure 2.21. Haar scaling function

The next step is the determination of the scaling coefficients. Obviously,

ϕ1,k(x) =
√

2ϕ(2x − k) = √
2

{
1, k

2 ≤ x < k+1
2

0, else
(2.88)

holds. Hence

ϕ(x) =
(

1√
2
ϕ1,0(x)+ 1√

2
ϕ1,1(x)

)
(2.89)

is valid. Consequently, the scaling coefficients of the Haar scaling function are

h0 = h1 = 1√
2
, hk = 0 else. (2.90)

The last step is the determination of the Haar wavelet

ψ(x) = (h1ϕ1,0(x)− h0ϕ1,1(x)) =


1, 0 ≤ x < 0.5

−1, 0.5 ≤ x < 1

0, else.

(2.91)
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The graph of the Haar wavelet ψ is plotted in Figure 2.22.
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Figure 2.22. Haar wavelet

So far a systematic tool for the construction of a tight wavelet frame was developed.
Now the question has to be addressed, how the Fourier coefficients of a given signal f
with respect to a wavelet frame can be computed. This will lead to the famous Mallat
algorithm.

2.5 Mallat algorithm

Using the technique of MRA, it was possible to construct a tight wavelet frame
{ψm,n}m,n∈Z in L2(R). Therefore every signal f ∈ L2(R) can be represented by

f (x) =
∑
m∈Z

∑
n∈Z

d(m)n ψm,n(x), d(m)n = 〈f,ψm,n〉. (2.92)

Of course it does not make much sense to compute the coefficients d(m)n by the nu-
merical evaluation of the scalar products. Especially for large values ofm the support
of ψm,n will grow very large and the numerical evaluation would require numerical
quadrature formulas with many nodes. This would make discrete wavelet transforma-
tion very unattractive from the numerical point of view. Fortunately, there are possi-
bilities to compute the coefficients of the scale m recursively from the coefficients on
scale m− 1. This is the core of Mallat’s algorithm.

Let {Vm} be an MRA of L2(R) and let us consider a signal f ∈ V0. Then this
signal has the following representation with respect to the scaling function ϕ:

f (x) =
∑
k∈Z

c
(0)
k ϕ(x − k). (2.93)
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Let us further introduce the following abbreviations

d
(m)
k = 〈f,ψm,k〉, c

(m)
k = 〈f, ϕm,k〉. (2.94)

Then with the help of the scaling equation (2.67) and the definition equation of the
wavelet (2.79) one can conclude:

d
(m)
k = 〈f,ψm,k〉

= 〈f, 2−m/2ψ(2−mx − k)〉
=
〈
f, 2−m/2√2

∑
l∈Z

glϕ(2(2
−mx − k)− l)

〉
=
∑
l∈Z

gl〈f, 2−m−1
2 ϕ(2−(m−1)x − (2k + l))〉

=
∑
l∈Z

gl〈f, ϕm−1,2k+l〉

=
∑
l∈Z

gl−2k〈f, ϕm−1,l〉

=
∑
l∈Z

gl−2kc
(m−1)
l .

In a completely analog way the corresponding result

c
(m)
k =

∑
l∈Z

hl−2kc
(m−1)
l

can be proved. Together, we have the two recursions

c
(m)
k =

∑
l∈Z

hl−2kc
(m−1)
l , (2.95)

d
(m)
k =

∑
l∈Z

gl−2kc
(m−1)
l . (2.96)

The two equations (2.95) and (2.96) constitute already the Mallat algorithm for the fast
computation of the wavelet coefficients of a given signal f ∈ V0. If the representation
(2.93) of the signal f with respect to the Riesz base of V0 is already known, formula
(2.95) computes the coefficients c(1)k of the projection P1f of f in the space V1.

Formula (2.96) computes the coefficients d(1)k of the representation of the projection

Q1f of f in the spaceW1. The coefficients d(1)k are already a final result. They are the
coefficients of the wavelet spectrum of f on the scale 1. In order to obtain the wavelet
spectrum on the coarser scales 2, 3, . . . the procedure will be repeated for c(1)k . The

application of (2.95) will give the coefficients c(2)k and formula (2.96) computes the
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wavelet spectrum d
(2)
k on the scale 2. In this way the complete wavelet spectrum d

(m)
k

can be computed recursively. No integral has to be evaluated.
To be a bit more precise, the procedure will be described using decomposition

operators H and G. Let us define

H : l2(Z)→ l2(Z)

c �→ Hc =
{
(Hc)k =

∑
l∈Z

hl−2kcl

}
(2.97)

and

G : l2(Z)→ l2(Z)

c �→ Gc =
{
(Gc)k =

∑
l∈Z

gl−2kcl

}
. (2.98)

This leads to the following scheme (Figure 2.23) for the computation of the wavelet
spectrum.

H HH
c(0) c(1) c(2) c(3)

G GG

d(0) d(1) d(2)

Figure 2.23. Scheme of the Mallat algorithm

Now the inverse problem has to be discussed. Suppose that the wavelet spectrum
{d(1), d(2), d(3), . . . } is given. How can the signal f be reconstructed?

To answer this question, we consider the decomposition V0 = V1 ⊕W1. For an
element of V0 holds∑

k∈Z

c
(0)
k ϕ0,k =

∑
j∈Z

c
(1)
j ϕ1,j +

∑
j∈Z

d
(1)
j ψ1,j

=
∑
j∈Z

c
(1)
j

∑
l∈Z

hlϕ0,2j+l +
∑
j∈Z

d
(1)
j

∑
l∈Z

glϕ0,2j+l

=
∑
j∈Z

c
(1)
j

∑
l∈Z

h2j−lϕ0,l +
∑
j∈Z

d
(1)
j

∑
l∈Z

g2j−lϕ0,l

=
∑
l∈Z

(∑
j∈Z

c
(1)
j h2j−l + d

(1)
j g2j−l

)
ϕ0,l .
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A comparison of coefficients yields

c
(0)
k =

(∑
j∈Z

c
(1)
j h2j−k + d

(1)
j g2j−k

)
. (2.99)

This means, given the coefficients c(1) of P1f ∈ V1 and the coefficients d(1) of
Q1f ∈ W1 the coefficients of the original signal f ∈ V0 can be reconstructed by
means of (2.99).

Again, this reconstruction can be expressed by operators H ∗,G∗.

Lemma 2.5.1. Let H , G be the decomposition operators (2.97), (2.98). Then their
adjoint operators H ∗,G∗ are given by

H ∗ : l2(Z)→ l2(Z)

c �→ H ∗c =
{
(H ∗c)k =

∑
l∈Z

hk−2lcl

}
(2.100)

and

G∗ : l2(Z)→ l2(Z)

c �→ G∗c =
{
(G∗c)k =

∑
l∈Z

gk−2lcl

}
. (2.101)

Proof.

〈Hc, b〉l2 =
∑
k

(Hc)kbk

=
∑
k

(∑
l

hl−2kcl

)
bk

=
∑
l

cl

(∑
k

hl−2kbk

)
=
∑
l

cl(H
∗b)l

= 〈c,H ∗b〉l2 .
Hence H ∗ is the adjoint operator of H . In the same way it can be shown that G∗ is
the adjoint operator of G. ��

With the help of the adjoint operators a single reconstruction step can be written
as

c(m−1) = H ∗c(m) +G∗d(m). (2.102)

A schematic view of the inverse Mallat algorithm is shown in Figure 2.24.
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   H∗ H∗H∗
c(M) c(M−1) c(M−2) c(M−3)

G∗ G∗G∗

d(M) d(M−1) d(M−2)

Figure 2.24. Scheme of inverse Mallat algorithm

So far, we have only considered signals from the space L2(R) having an infinite
coefficient sequence c(0) ∈ l2. In practical applications the number of sampled signal
values and therefore the number of coefficients c(0)k will be finite. For a finite number
of coefficients and for scaling equations of finite length the Mallat algorithm can be
represented as a sequence of matrix multiplications.

Let us assume that the signal has a finite number of initial coefficients c(0)0 , . . . , c
(0)
15

and let us further assume that the scaling equation (2.67) has only four non-vanishing
coefficients h0 . . . , h3. The smoothing step (2.95) is

c
(1)
0 = h0 · c(0)0 + h1 · c(0)1 + · · · + h4 · c(0)4

c
(1)
1 = h0 · c(0)2 + h1 · c(0)3 + · · · + h4 · c(0)6

...

c
(1)
6 = h0 · c(0)12 + h1 · c(0)13 + · · · + h4 · c(0)15

c
(1)
7 = h2 · c(0)0 + h3 · c(0)1 + h0 · c(0)14 + h1 · c(0)15 .

The last equation of this group is generated by periodic continuation of the input stream
c
(0)
0 , . . . , c

(0)
15 . Basically, the last equation would be

c
(1)
7 = h0 · c(0)14 + h1 · c(0)15 + h2 · c(0)16 + h3 · c(0)17 .

But since the coefficients c(0)16 , c
(0)
17 do not exist, they are replaced by the periodic

continuation c(0)0 , c
(0)
1 . In matrix notation this can be written as

c
(1)
0

c
(1)
1
...

c
(1)
7

 =


h0 h1 h2 h3

h0 h1 h2 h3
...
... h0 h1 h2 h3

h2 h3 . . . h0 h1

 ·


c
(0)
0

c
(1)
1
...

c
(0)
15

 . (2.103)
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In a completely analog way the differencing step (2.96) can be written as

d
(1)
0 = g0 · c(0)0 + g1 · c(0)1 + · · · + g4 · c(0)4

d
(1)
1 = g0 · c(0)2 + g1 · c(0)3 + · · · + g4 · c(0)6

...

d
(1)
6 = g0 · c(0)12 + g1 · c(0)13 + · · · + g4 · c(0)15

d
(1)
7 = g2 · c(0)0 + g3 · c(0)1 + g0 · c(0)14 + g1 · c(0)15 ,

or in matrix form
d
(1)
0

d
(1)
1
...

d
(1)
7

 =


g0 g1 g2 g3

g0 g1 g2 g3
...
... h0 g1 g2 g3

g2 g3 . . . g0 g1

 ·


c
(0)
0

c
(1)
1
...

c
(0)
15

 . (2.104)

Therefore, for finite signals the operators H,G are the matrices

H =


h0 h1 h2 h3

h0 h1 h2 h3
...
... h0 h1 h2 h3

h2 h3 . . . h0 h1

 (2.105)

and

G =


g0 g1 g2 g3

g0 g1 g2 g3
...
... h0 g1 g2 g3

g2 g3 . . . g0 g1

 . (2.106)

For a finite signal the reconstruction (2.99) of c(0) from c(1) and d(1) can be written as

c
(0)
0 = h0 · c(1)0 + h2 · c(1)15 + g0 · d(1)0 + g2 · d(1)15

c
(0)
1 = h1 · c(1)0 + h3 · c(1)15 + g1 · d(1)0 + g3 · d(1)15

c
(0)
2 = h0 · c(1)1 + h2 · c(1)0 + g0 · d(1)1 + g2 · d(1)0

c
(0)
3 = h3 · c(1)0 + h1 · c(1)1 + h3 · c(1)0 + h1 · c(1)1

...

c
(0)
14 = h0 · c(1)7 + h2 · c(1)6 + g0 · d(1)7 + g2 · d(1)6

c
(0)
15 = h1 · c(1)7 + h3 · c(1)6 + g1 · d(1)7 + g3 · d(1)6 ,
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or in matrix form 
c
(0)
0

c
(0)
1
...

c
(0)
14

c
(0)
15

 =


h0 h2
h1 h3

. . .

h2 h0
h3 h1

 ·


c
(1)
0

c
(1)
1
...

c
(1)
6

c
(1)
7



+


g0 g2
g1 g3

. . .

g2 g0
g3 g1

 ·


c
(1)
0

c
(1)
1
...

c
(1)
6

c
(1)
7

 . (2.107)

Evidently, the reconstruction operators H ∗, G∗ are the matrices

H ∗ =


h0 h2
h1 h3

. . .

h2 h0
h3 h1

 , (2.108)

G∗ =


g0 g2
g1 g3

. . .

g2 g0
g3 g1

 . (2.109)

Obviously H ∗ = H�, G∗ = G� holds, which is quite natural since for matrices the
adjoint operator coincides with the transposed matrix.

Example 2.5.1. As an example the Mallat decomposition and reconstruction is to be
considered for a simple 16-elements c(0) sequence:

c(0) = {0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5}.

The initial sequence is displayed in Figure 2.25.
The smoothing and the differencing filters are assumed to have only two non-

vanishing elements

h0 = 0.707107, h1 = 0.707107, g0 = 0.707107, g1 = −0.707107. (2.110)
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Figure 2.25. Initial sequence

Consequently, after the first decomposition step the following sequences are obtained:

c(1) ={0, 1.414214, 1.414214, 3.535535, 6.363963, (2.111)

7.07107, 7.07107, 7.07107},
d(1) ={0, 0, 0,−0.707107,−0.707107, 0, 0, 0}. (2.112)

The smoothed and differenced sequences are shown in the Figure 2.26.
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Figure 2.26. Outcome of the first decomposition step
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This procedure can be repeated leading to the sequences

c(2) = {1, 3.5, 9.5, 10}, (2.113)

d(2) = {−1,−3.5,−0.707107, 0}, (2.114)

which are plotted in the Figure 2.27.
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Figure 2.27. Outcome of the second decomposition step

Conversely, the reconstruction step applied to c(2), d(2) recovers c(1) and the recon-
struction step applied to c(1), d(1) gives back c(0).

2.6 Wavelet packages

Frequently, in a frame λ0 = 2 is chosen as scale spacing. Therefore the frame coeffi-
cients for different scales indicate the signal behavior in different octaves. For some
applications it is necessary to have a finer frequency resolution. The simplest way to
achieve this goal would be to decrease the frequency spacing parameter. But this would
increase the computational load to an unacceptable value. To avoid this disadvantage,
wavelet packages can be applied. Wavelet packages are generalizations of wavelets in
such a way that each octave is split into finer frequency bands. This splitting trick is
due to I. Daubechies.

Theorem 2.6.1. Let {f (• − k) | k ∈ Z} be an orthonormal base of L2(R), fulfilling
the scaling equation

f (x) =
∑
k∈Z

hkf (2x − k). (2.115)
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With the scaling coefficients hh and the corresponding coefficients

gk := (−1)kh1−k, (2.116)

two new functions can be defined:

F1(x) :=∑k∈Z
hkf (x − k), (2.117)

F2(x) :=∑k∈Z
gkf (x − k). (2.118)

Then {F1(• − 2k), F2(• − 2k)} is an orthonormal base for span{f (• − k)}.

Proof. [15]. ��

The equations (2.117), (2.118) can be considered as two filters applied to the signal
f . Their filter characteristics are:

H(ω) = √
2
∑
k∈Z

hke
−ıkω, (2.119)

G(ω) = √
2
∑
k∈Z

gke
−ıkω. (2.120)

As Figure 2.28 shows, H is a low-pass and G is a high-pass filter.

2

1.5
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0.5

0
2.5 3 3.521.510.50

Figure 2.28. Filter characteristics H and G

Hence the functions F1 and F2 are the lower and the higher frequency part of f as it
is shown in Figure 2.29.
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Figure 2.29. Spectra of f , F1 and F2

The functions F1 and F2 obtained by the splitting of f have a better frequency
localization but of course at the price of having larger supports.

Now the idea of wavelet packages is to use a wavelet ψ as the function f to be
split. This will give two new wavelets

ψ(1)(x) =
∑
k∈Z

hkψ(x − k), (2.121)

ψ(2)(x) =
∑
k∈Z

gkψ(x − k), (2.122)

which together span the space W1:

W1 = span{ψ(• − k) | k ∈ Z}
= span{ψ(1)(• − 2k) | k ∈ Z} ⊕ {ψ(2)(• − 2k) | k ∈ Z}
= W 1

1 ⊕W 2
1 .

The spaceW 1
1 contains the lower frequency part and the spaceW 2

1 contains the higher
frequency part of the original space W1. Using in the next step f (x) = 1√

2
ψ(2−1x)

as function to be split, the space W2 can be split into two bands:

W2 = W 1
2 ⊕W 2

2 . (2.123)

This procedure can be repeated again and again leading to the MRA scheme shown in
Figure 2.30. In contrast to the standard MRA scheme, for every differentiation step
an additional differentiation and smoothing step has to be carried out.
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L2(R) V0

H H

HH
V1 V2

G G

GG

W1 W1
1 W2 W1

2

W2
1 W2

2

Figure 2.30. MRA scheme for a wavelet package

Example 2.6.1. For the simple Haar wavelet

ψ(x) = χ[0, 1
2 ] − χ[ 1

2 ,1],

having the scaling coefficients

h0 = h1 = 1√
2
, g0 = 1√

2
, g1 = − 1√

2

the corresponding wavelet packages are

ψ(1)(x) = h0ψ(x)+ h1ψ(x − 1) = 1√
2

(
χ[0, 1

2 ] − χ[ 1
2 ,1] + χ[1, 3

2 ] − χ[ 3
2 ,2]
)

and

ψ(1)(x) = g0ψ(x)+ g1ψ(x − 1) = 1√
2

(
χ[0, 1

2 ] − χ[ 1
2 ,

3
2 ] + χ[ 3

2 ,2]
)
.

The graph of the wavelet packages is shown in Figure 2.31.

Now a modified form of the Mallat algorithm for wavelet packages has to be
developed. Let

cm,k = 〈f, ϕm,k〉, (2.124)

dm,k = 〈f,ψm,k〉, (2.125)

d
(1)
m,k = 〈f,ψ(1)m,k〉, (2.126)

d
(2)
m,k = 〈f,ψ(2)m,k〉. (2.127)



2.6 Wavelet packages 67

ψ(1)

1.0

1.0

2.0

2.0

ψ(2)

xx

Figure 2.31. Haar wavelet packages

Then, using the scaling equations, one obtains

cm,k =
〈
f,
∑
l∈Z

hlϕm−1,2k+l
〉

=
∑
l∈Z

hlcm−1,2k+l (2.128)

=
∑
l∈Z

hl−2kcm−1,l ,

dm,k =
〈
f,
∑
l∈Z

glϕm−1,2k+l
〉

=
∑
l∈Z

glcm−1,2k+l (2.129)

=
∑
l∈Z

gl−2kcm−1,l ,

d
(1)
m,k = 〈f, 2−m/2ψ(1)(2−m• − 2k)〉

=
〈
f, 2−m/2∑

n∈Z

hnψ(2
−m• − 2k − n)

〉
=
∑
n∈Z

hn〈f,ψm,2k+n〉 (2.130)

=
∑
n∈Z

hndm,2k+n =
∑
n∈Z

hn−2kdm,n,
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d
(2)
m,k = 〈f, 2−m/2ψ(2)(2−m• − 2k)〉

=
〈
f, 2−m/2∑

n∈Z

gnψ(2
−m• − 2k − n)

〉
=
∑
n∈Z

gn〈f,ψm,2k+n〉 (2.131)

=
∑
n∈Z

gndm,2k+n

=
∑
n∈Z

gn−2kdm,n.

Using again the operatorsH andG, defined in (2.97) and (2.98), the Mallat algorithm
for wavelet packages can be written in a more compact form:

cm = Hcm−1, (2.132)

dm = Gcm−1, (2.133)

d(1)m = Hdm, (2.134)

d(2)m = Gdm. (2.135)

In the same way, with the help of the adjoint operators H ∗ and G∗ from formulas
(2.100) and (2.101) the reconstruction scheme can be written as

dm = H ∗d(1)m +G∗d(2)m , (2.136)

cm−1 = H ∗cm +G∗dm. (2.137)

Of course, the splitting trick can be also applied to ψ(1) and ψ(2) leading to a further
increased frequency resolution on the price of a reduced time resolution.

Example 2.6.2. In order to convey an impression on the effect of wavelet package
analysis, a piecewise constant signal is analyzed once by the Haar wavelet and once
by the Haar wavelet package. The analysis is visualized in Figure 2.32.

In both spectra the signal is entirely located in at the scale 4, i.e. the only scales
which occur in the signal are between 8 and 16. The wavelet spectrum cannot discrim-
inate scales between 8 and 12 from scales between 12 and 16. It is wildly oscillating in
this range. In contrast to the wavelet spectrum the wavelet package spectrum clearly
shows that the signal consists of a superposition of a signal with a scale of 8 and a
signal of scale 12. The first having twice the amplitude of the second. This proves
the increased scale resolution of a wavelet package compared to the scale resolution
of the simple wavelet.

2.7 Biorthogonal wavelets

Orthogonal wavelets have the advantage that for the decomposition and for the re-
construction the same filter coefficients can be used. On the other hand, orthogonal
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Figure 2.32. Piecewise constant signal (top), its wavelet spectrum (middle) and its wavelet
package spectrum (bottom)
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wavelets are always asymmetric and have comparatively large supports.
If one is interested in wavelets with smaller supports or in symmetric wavelets the

only way out is to use different filters for decomposition and for reconstruction:

f =
∑
m∈Z

∑
k∈Z

〈f, ψ̃m,k〉ψm,k =
∑
m∈Z

∑
k∈Z

〈f,ψm,k〉ψ̃m,k. (2.138)

This is only possible if scaling functions and wavelets of the decomposition and of the
reconstruction filters are mutually orthogonal.

Definition 2.7.1. The wavelets {ψ, ψ̃} are called biorthogonal, if for their scaled trans-
lates

ψm,k(t) := 2−m/2ψ(2−mt − n), ψ̃m,k(t) := 2−m/2ψ̃(2−mt − n) (2.139)

the following relation holds:

〈ψm,k, ψ̃µ,ν〉 = δm,µδn,ν . (2.140)

As in the case of orthogonal wavelets also in the case of biorthogonal wavelets the
waveletψ and the dual wavelet ψ̃ are related to a scaling function ϕ and a dual scaling
function ϕ̃ by a pair of scaling equations:

ϕ(t) = √
2
∑
k∈Z

hkϕ(2t − k), (2.141)

ϕ̃(t) = √
2
∑
k∈Z

h̃kϕ̃(2t − k). (2.142)

The equations (2.140), (2.141) and (2.142) express that in the case of biorthogo-
nality we have two multi-resolution analyses of L2(R):

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R), (2.143)

{0} ⊂ · · · ⊂ Ṽ−2 ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 · · · ⊂ L2(R). (2.144)

The scaling spaces Vj and the dual scaling spaces Ṽj are the spans of the integer
translates of the scaling function ϕ and the dual scaling function ϕ̃:

Vj = spank∈Z{2−j/2ϕ(2−j • − k)}, Ṽj = spank∈Z{2−j/2ϕ̃(2−j • − k)}. (2.145)

Quite similar, the wavelet spaces are the spans of the scaled and translated wavelets:

Wj = spank∈Z{2−j/2ψ(2−j • − k)}, W̃j = spank∈Z{2−j/2ψ̃(2−j • − k)}. (2.146)

The important difference to orthogonal wavelets is that the wavelet spaceWj is not the
orthogonal complement of Vj in Vj+1 ! This role is played by W̃j :

Vj⊥W̃j , Ṽj⊥Wj . (2.147)
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The decomposition and reconstruction algorithms for biorthogonal wavelets are
only a slight modification of the Mallat algorithm for the decomposition and recon-
struction with orthogonal wavelets.

First the operators H , G, H̃ , G̃ have to be defined:

H : l2(Z)→ l2(Z)

c �→
{
(Hc)k =

∑
l∈Z

hl−2kcl

}
(2.148)

G : l2(Z)→ l2(Z)

c �→
{
(Gc)k =

∑
l∈Z

gl−2kcl

}
, gk = (−1)kh̃1−k, (2.149)

H̃ : l2(Z)→ l2(Z)

c �→
{
(H̃ c)k =

∑
l∈Z

h̃l−2kcl

}
(2.150)

G̃ : l2(Z)→ l2(Z)

c �→
{
(G̃c)k =

∑
l∈Z

g̃l−2kcl

}
, g̃k = (−1)kh1−k. (2.151)

Let us now assume that for an element f ∈ V0 the representation with respect to
the base {ϕ(• − k)} is already given:

f (t) =
∑
k∈Z

c
(0)
k ϕ(t − k). (2.152)

As for orthogonal wavelets, the scaling and the wavelet coefficients on scale m are
defined by

c
(m)
k := 〈f, ϕm,k〉, d

(m)
k := 〈f,ψm,k〉. (2.153)

Then the following relations are valid:

d
(m)
k = 〈f,ψm,k〉

=
∑
l∈Z

gl〈f, ϕm−1,2k+l〉

=
∑
l∈Z

glc
(m−1)
2k+l (2.154)

=
∑
l∈Z

gl−2kc
(m−1)
l

= (Gc(m−1))k,
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c
(m)
k = 〈f, ϕm,k〉

=
∑
l∈Z

hl〈f, ϕm−1,2k+l〉

=
∑
l∈Z

hlc
(m−1)
2k+l (2.155)

=
∑
l∈Z

hl−2kc
(m−1)
l

= (Hc(m−1))k.

This means that also in the case of biorthogonal wavelets the decomposition follows
the scheme displayed in Figure 2.33.

H HH
c(0) c(1) c(2) c(3)

G GG

d(0) d(1) d(2)

Figure 2.33. Decomposition for biorthogonal wavelets

Now let us consider the reconstruction. In contrast to the orthogonal wavelets case
instead of the adjoint operators H ∗,G∗ the corresponding operators H̃ ∗ and G̃∗ will
be used. These operators are defined in the following way:

H̃ ∗ : l2(Z)→ l2(Z)

c �→
{
(H̃ ∗c)k =

∑
l∈Z

h̃k−2lcl

}
(2.156)

G̃∗ : l2(Z)→ l2(Z)

c �→
{
(G̃∗c)k =

∑
l∈Z

g̃k−2lcl

}
, g̃k = (−1)kh1−k. (2.157)

Lemma 2.7.1. It holds

H̃ ∗H + G̃∗G = I. (2.158)

Proof. Since ϕ, ϕ̃ and ψ , ψ̃ are scaling functions and wavelet respectively, which are
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constructed according to Definition 2.7.1, the following relation holds:

δ0,k =
∫

R

ϕ(x)ϕ̃(x − k) dx

=
∫

R

√
2
∑
l∈Z

hlϕ(2x − l) · √2
∑
m∈Z

h̃mϕ̃(2x − 2k −m) dx

= 2
∑
l,m∈Z

hlh̃m

∫
R

ϕ(2x − l) · ϕ̃(2x − 2k −m) dx

=
∑
l,m∈Z

hlh̃m

∫
R

ϕ(ξ) · ϕ̃(ξ + l − 2k −m) dξ

=
∑
l,m∈Z

hlh̃m · δl,2k+m

=
∑
l∈Z

hl · h̃l−2k.

In the same way the validity of

δ0,k =
∑
l∈Z

gl · g̃l−2k

can be shown. Finally, it can be concluded that

([H̃ ∗H + G̃∗G]c)k = (H̃ ∗Hc)k + (G̃∗Gc)k

=
∑
l∈Z

h̃k−2l (Hc)l +
∑
l∈Z

g̃k−2l (Gc)l

=
∑
l∈Z

h̃k−2l

∑
m∈Z

hm−2lcm +
∑
l∈Z

g̃k−2l

∑
m∈Z

gm−2lcm

=
∑
m∈Z

cm

(∑
l∈Z

h̃k−2lhm−2l +
∑
l∈Z

g̃k−2lgm−2l

)
=
∑
m∈Z

cm

(∑
l∈Z

h̃k+2lhm+2l +
∑
l∈Z

g̃k−2lgm−2l

)
=
∑
m∈Z

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)
.

Now four cases have to be distinguished:

1. Both m and k are even.

2. Both m and k are odd.
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3. m is even and k is odd.

4. m is odd and k is even.

Case 1:

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

= cm

(∑
l∈Z

h̃2l+(k−m)h2l +
∑
l∈Z

h2l+1h̃2l+1+(k−m)
)

= cm
∑
l∈Z

h̃l+(k−m)hl

= cm · δk,m.
Case 2:

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

= cm

(∑
l∈Z

h̃2l+1+(k−m)h2l+1 +
∑
l∈Z

h2l h̃2l+(k−m)
)

= cm
∑
l∈Z

h̃l+(k−m)hl

= cm · δk,m.
Case 3:

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

= cm

(∑
l∈Z

h̃2l+(k−m)h2l −
∑
l∈Z

h2l h̃2l+(k−m)
)

= 0.

Case 4:

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

= cm

(∑
l∈Z

h̃2lh2l+(m−k) −
∑
l∈Z

h2l+(m−k)h̃2l

)
= 0.

Consequently, for the computation of ([H̃ ∗H + G̃∗G]c)k again two cases have to be
considered.
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Case 1: k even

([H̃ ∗H + G̃∗G]c)k
=
∑
m∈Z

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

=
∑
m∈Z

c2m

(∑
l∈Z

h̃k+2lh2m+2l + (−1)2m+k∑
l∈Z

h2l+1−kh̃2l+1−2m

)
+
∑
m∈Z

c2m+1

(∑
l∈Z

h̃k+2lh2m+1+2l + (−1)2m+1+k∑
l∈Z

h2l+1−kh̃2l+1−2m−1

)
=
∑
m∈Z

c2mδk,2m

= ck.

Case 2: k odd

([H̃ ∗H + G̃∗G]c)k
=
∑
m∈Z

cm

(∑
l∈Z

h̃k+2lhm+2l + (−1)m+k∑
l∈Z

h2l+1−kh̃2l+1−m
)

=
∑
m∈Z

c2m

(∑
l∈Z

h̃k+2lh2m+2l + (−1)2m+k∑
l∈Z

h2l+1−kh̃2l+1−2m

)
+
∑
m∈Z

c2m+1

(∑
l∈Z

h̃k+2lh2m+1+2l + (−1)2m+1+k∑
l∈Z

h2l+1−kh̃2l+1−2m−1

)
=
∑
m∈Z

c2m+1δk,2m+1

= ck. ��
Schematically, the reconstruction step for biorthogonal wavelets is displayed in

Figure 2.34.

 
c(M)

H̃∗ H̃∗H̃∗
c(M−1) c(M−2) c(M−3)

G̃∗ G̃∗G̃∗

d(M) d(M−1) d(M−2)

Figure 2.34. Reconstruction for biorthogonal wavelets

As in the case of orthogonal wavelets, also for biorthogonal wavelets their con-
struction starts with scaling functions {ϕ, ϕ̃} and their scaling equations (2.141) and
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(2.142). If the Fourier series of the scaling coefficients {hk, h̃k} are denoted by H(ω)
and H̃ (ω), i.e.

H(ω) = 1

2

√
2
∑
k∈Z

hke
−ıkω, (2.159)

H̃ (ω) = 1

2

√
2
∑
k∈Z

h̃ke
−ıkω, (2.160)

the procedure for the construction of biorthogonal wavelets is described in the following
theorem.

Theorem 2.7.1. Let H, H̃ be trigonometric polynomials which fulfill

H(ω)H̃ (ω)+H(ω + π)H̃ (ω + π) = 1, (2.161)

H(0) = H̃ (0) = 1. (2.162)

Additionally, suppose

H(ω) =
(

1 + eıω

2

)N
p(ω), (2.163)

H̃ (ω) =
(

1 + eıω

2

)Ñ
p̃(ω), (2.164)

with trigonometric polynomials p, p̃ having the properties

Bj := max
ω∈R

|
j∏
k=1

p(2−kω)|1/j , suppj∈N Bj < 2N−1/2, (2.165)

B̃j := max
ω∈R

|
j∏
k=1

p̃(2−kω)|1/j , suppj∈N B̃j < 2Ñ−1/2. (2.166)

Then the following results are true:

1.
ϕ(t) =

∏
j≥1

H(2−jω), ϕ̃(t) =
∏
j≥1

H̃ (2−jω), (2.167)

2. ∫
R

ϕ(t)ϕ̃(t − k) dt = 0, k ∈ Z \ {0}, (2.168)
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3. the functions

ψ̂(ω) := e−ıω/2H̃ (ω/2 + π) · ϕ̂(ω/2), (2.169)

ˆ̃
ψ(ω) := e−ıω/2H(ω/2 + π) · ˆ̃ϕ(ω/2) (2.170)

fulfill

• ψ(t) = √
2
∑
k∈Z

(−1)kh̃1−kϕ(2t − k),

• ψ̃(t) = √
2
∑
k∈Z

(−1)kh1−kϕ̃(2t − k),

•
∫

R
ψm,n(t)ψ̃µ,ν(t) dt = δm,µδn,ν .

Proof. [15], [12]. ��

In order to illustrate the concept of biorthogonal wavelets in the following example
a pair of biorthogonal wavelets is constructed.

Example 2.7.1. The simplest possible orthogonal wavelet is the Haar wavelet with
the box-function

ϕ(x) =
{

1, 0 ≤ x < 1

0, else

as scaling function. The next better choice for a scaling function is the hat-function,
i.e. the convolution of the box-function B0(x) := χ[−1,1](2x) with itself:

ϕ(x) :=
∫

R

B0(t)B0(x − t) dt =
∫ 1

0
ϕ(x − t) dt =


x + 1, −1 ≤ x < 0

1 − x, 0 ≤ x < 1

0, else.

The hat-function is displayed in Figure 2.35.
The Fourier spectrum of the hat function ϕ can be computed with the help of the

convolution theorem:

ϕ̂(ω) = √
2πB̂0

2
(ω) = 1√

2π

(
1

ω/2
sin(ω/2)

)2

= 1√
2π

1

(ω/2)2
sin2(ω/2).

A short computation yields

ϕ̂(ω) = 1√
2π

1

4(ω/4)2
4 sin2(ω/4) cos2(ω/4).

Hence, defining H by

H(ω) = 1

2
+ 1

2
cos(ω),
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Figure 2.35. Hat-function

the following scaling equation in the frequency domain holds:

ϕ̂(ω) = cos2(ω/4) ·
(

1√
2π

1

4(ω/4)2
4 sin2(ω/4)

)
= H(ω/2) · ϕ̂(ω/2).

This means that the coefficients hk of the scaling equations are the Fourier coefficients
of the filter function H ,

H(ω) = 1

4
e−ıω + 1

2
+ 1

4
eıω,

i.e. the decomposition low-pass filter H has the filter coefficients

h−1 = 1/4
√

2, h0 = 1/2
√

2, h1 = 1/4
√

2.

The coefficients gk of the corresponding reconstruction high-pass filter easily can be
derived from the relation g̃k = (−1)kh1−k , i.e.

g̃0 = 1/4
√

2, g̃1 = −1/2
√

2, g̃2 = 1/4
√

2.

The filter characteristics of the decomposition high-pass filter and the decomposition
low-pass filter are shown in Figure 2.36.

The determination of the coefficients h̃k of the reconstruction low-pass filter is
governed by the equation ∑

l∈Z

hlh̃l−2k = δ0,k.

Due to the condition (2.161) the unknown coefficients h̃k have to fulfill the normal-
ization condition ∑

k∈Z

h̃k = √
2. (2.171)
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Figure 2.36. Filter characteristic of decomposition high-pass filter and decomposition low-pass
filter

Looking for a reconstruction filter with 5 coefficients, this condition yields 3 equations
for the 5 unknown parameters:

1

2
h̃−2 + 1

4
h̃−1 = 0,

1

4
h̃−1 + 1

2
h̃0 + 1

4
h̃1 = 1/

√
2, (2.172)

1

2
h̃2 + 1

4
h̃1 = 0.

In order to have a unique solution of these linear equations, two additional conditions
can be imposed:

• a normalization condition (2.171) and

• a symmetry condition h̃−2 = h̃2, h̃−1 = h̃1.

Hence the remaining system of linear equations is

1

2
h̃2 + 1

4
h̃1 = 0,

1

2
h̃0 + 1

2
h̃1 = 1√

2
, (2.173)

2h̃2 + 2h̃1 + h̃0 = √
2.
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One of the solutions of these equations is

h̃ =
{
−1

8

√
2,

1

4

√
2,

3

4

√
2,

1

4

√
2,−1

8

√
2

}
and to the corresponding reconstruction high-pass filter has the coefficients

g =
{

1

8

√
2,

1

4

√
2,−3

4

√
2,

1

4

√
2,

1

8

√
2

}
.

The filter characteristics of these reconstruction filters are displayed in Figure 2.37.
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Figure 2.37. Filter characteristics of reconstruction low- and high-pass filter

Using the iterative technique for the solution of the scaling equation a graphical
representation of the reconstruction scaling function ϕ̃ can be computed. With the
known scaling functions ϕ, ϕ̃ and the known wavelet coefficients gk, g̃k the recursions
of Theorem 2.7.1 can be used for the computation of the decomposition and the re-
construction wavelet ψ and ψ̃ . The graphical representations of these four function is
given in Figure 2.38.

In the example given above, the decomposition and the reconstruction filter differ
considerably in length. This is a typical feature of biorthogonal wavelets. Several
studies, e.g. in [12] were carried out to construct biorthogonal wavelet bases, where
the reconstruction and the decomposition filters have similar lengths. Some of the
filters which are taken from [72] are given below:
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Figure 2.38. Biorthogonal pair of scaling functions and wavelets

n hn h̃n

−4 0.0 0.037828445554969

−3 −0.06453888262876 −0.02384946501956

−2 −0.04068941760920 −0.11062440441844

−1 0.41809227322204 0.37740285561283

0 0.78848561640637 0.85269867900889

1 0.41809227322204 0.37740285561283

2 −0.04068941760920 −0.11062440441844

3 −0.06453888262876 −0.02384946501956

4 0.0 0.037828445554969

−5 0.00992177208685 0.0

−4 0.02183057133337 0.05382683783789

−3 0.00027989343090 −0.11843354319764

−2 0.06115645341349 −0.36378609009851
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n hn h̃n

−1 0.34335173921766 0.47198693379091

0 0.541132373169141 1.32702528570780

1 0.34335173921766 0.47198693379091

2 0.06115645341349 −0.36378609009851

3 0.00027989343090 −0.11843354319764

4 0.02183057133337 0.05382683783789

5 0.00992177208685 0.0

The first biorthogonal wavelet filter given in the above table is of particular im-
portance. It belongs to the class of Cohen–Daubechies–Feauveau [12] biorthogonal
wavelets, which were used in the FBI Fingerprint Compression Standard.

Orthogonal and biorthogonal wavelet bases differ in some important items:

• Orthogonal wavelet filters and scaling filters must be of the same length, and the
length must be even. This restriction can be dropped for biorthogonal wavelet
bases.

• Symmetric wavelets and symmetric scaling functions are possible in the frame-
work of biorthogonal wavelets. In the framework of orthogonal wavelet bases
this is impossible.

• For biorthogonal wavelet bases Parseval’s identity does no longer hold. This is
probably the main disadvantage of biorthogonal systems.

From the practical point of view, in many cases it will be more suitable to use
biorthogonal bases instead of orthogonal wavelet bases for the signal processing. Bior-
thogonal bases give more freedom in their construction. So they can be better adapted
to the problem under consideration.

2.8 Compactly supported orthogonal wavelets

Mallat’s algorithm is only useful if the length of the filter sequences {hk} and {gk} is
finite. Combined with their orthogonality this will lead to wavelets with a compact
support. The way how to construct such wavelets was found by I. Daubechies. Here,
we will follow the basic ideas of the construction of the so-called Daubechies wavelets.
The complete theory is rather complicated so that some steps have to be skipped. The
reasoning starts with a consideration of the filter properties of the wavelet transforma-
tion.
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2.8.1 Daubechies wavelets

The idea of the Daubechies wavelets is to construct orthogonal wavelets with a com-
pact support. Here we will follow this construction in its main features. Some steps
have to be left out since their proofs are a bit tedious and of technical nature.

Let us construct an orthogonal wavelet with 2N non-vanishing scaling coefficients
h0, . . . , h2N−1. Since the wavelet is to be orthogonal, the scaling coefficients have to
fulfill the following two equations:

√
2 =

2N−1∑
n=0

hn, (2.174)

δ0m =
2N−1−2m∑

k=0

hkhk+2m, m = 0, . . . , N − 1. (2.175)

These are N + 1 quadratic equations for 2N unknown coefficients. In order to get a
unique solution, N − 1 additional equations have to be supplemented. Usually, these
additional equations express that the wavelet to be constructed has an sufficiently high
order.

The question of how to solve this system of quadratic equations is open in most
cases. Therefore an alternative technique for the construction of compactly supported
orthogonal wavelets will be sketched here. It is based on the following idea.

The filter characteristicH(ω) of an orthogonal scaling function ϕ has to fulfill the
following conditions:

• orthogonality |H(ω)|2 + |H(ω + π)|2 = 1, (2.176)

• regularity H(ω) =
(

1 + e−ıω

2

)N
L(ω), L(ω) a trigonometric polynomial.

Theorem 2.8.1. There exists a polynomial P fulfilling

(1 − y)NP (y)+ yNP (1 − y) = 1, y ∈ [0, 1], (2.177)

such that

|H(ω)|2 =
(

cos2 ω

2

)N |L(ω)|2,

|H(ω)|2 =
(

cos2 ω

2

)N
P
(

sin2 ω

2

)
holds.

Proof. Obviously,∣∣∣∣∣
(

1 + e−ıω

2

)N ∣∣∣∣∣
2

=
(∣∣∣∣1 + e−ıω

2

∣∣∣∣2
)N

=
(

1 + cosω

2

)N
=
(

cos2 ω

2

)N
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holds, which leads to

|H(ω)|2 =
∣∣∣∣(cos2 ω

2

)N ∣∣∣∣2 |L(ω)|2.
Since L is a trigonometric polynomial its square |L(ω)|2 is a polynomial p in cosω.
Because of

sin2 ω

2
= 1 − cosω

2

it is convenient to write |L(ω)|2 as a polynomial P in sin2 ω/2:

|H(ω)|2 =
(

cos2 ω

2

)N
P
(

sin2 ω

2

)
.

Since

cos2 ω + π

2
=
(

cos
ω

2
cos

π

2
− sin

ω

2
sin

π

2

)2 = sin2 ω

2

is valid, it can be concluded that

1 = |H(ω)|2 + |H(ω + π)|2

=
(

cos2 ω

2

)N
P
(

sin2 ω

2

)
+
(

cos2 ω + π

2

)N
P

(
sin2 ω + π

2

)
=
(

cos2 ω

2

)N
P
(

sin2 ω

2

)
+
(

sin2 ω

2

)N
P
(

cos2 ω

2

)
.

Setting y = sin2(ω/2),

1 = (1 − y)NP (y)+ yNP (1 − y)

follows. ��

Remark. The theorem allows the construction of H 2 and L2 from the solution of
(2.177). Hence there are two problems left:

1. The solution of (2.177) and

2. the extraction of the square roots of H 2 and L2.

The first problem will be tackled by Bezouz’s theorem.

Theorem 2.8.2 (Bezouz’s theorem). If p1, p2 are two polynomials of degree n1, n2
with no common zeros, then there exist unique polynomials q1, q2 of degree n2 − 1,
n1 − 1 with

p1(x)q1(x)+ p2(x)q2(x) = 1.
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Proof. [15]. ��

Bezouz’s theorem guarantees the existence of unique polynomials q1, q2 of degree
≤ N − 1 with

(1 − y)Nq1(y)+ yNq2(y) = 1.

Substituting u = 1 − y yields

(1 − u)Nq2(u)+ uNq1(u) = 1.

Due to the uniqueness of q1, q2 the relation q1 = q2 = P follows. This leads to

q1(y) = (1 − y)−N(1 − yNq1(y))

= (1 − y)−N − yN
N−1∑
k=0

qk(1 − y)k−N

=
∞∑
k=0

(−N
k

)
(−1)kyk −

N−1∑
l=0

ql

∞∑
k=0

(
l−N
k

)
(−1)kyk+N

=
N−1∑
k=0

(−N
k

)
(−1)kyk +O(yN)

=
N−1∑
k=0

(
N+k+1
k

)
yk +O(yN).

Since q1 is a polynomial of degree ≤ N − 1, the equation

PN(y) = q1(y) =
N−1∑
k=0

(
N+k−1
k

)
yk

follows. This is an explicit solution of (2.177).
Once having the solution P(y) at hand one could compute |H(ω)|2 and by ex-

tracting the square root, the coefficients hk of the scaling equation would be available.
But P =: PN is only the solution of the lowest possible degree N − 1. Besides this
solution there are many other solutions of higher degree. For a solution P of degree
higher than N − 1 we have

(1 − y)N [P(y)− PN(y)] + yN [P(1 − y)− PN(1 − y)] = 0. (2.178)

The polynomial yN has 0 as a zero of the multiplicity N . Hence 0 has to be a zero of
multiplicityN of P(y)−PN(y) as well. This implies that P −PN is divisible by yN :

P(y) = PN(y)+ yNP̃ (y), (2.179)
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with P̃ being a polynomial of degree smaller than the degree of P . Obviously,

P̃ (y)+ P̃ (1 − y) = P(y)− PN(y)

yN
+ P(1 − y)− PN(1 − y)

(1 − y)N

= (1 − y)N(P (y)− PN(y))+ yN(P (1 − y)− PN(1 − y))

yN(1 − y)N

= 0. (2.180)

Consequently, P̃ is symmetric with respect to 1/2. The results obtained so far are to
be summarized in the following lemma.

Lemma 2.8.1. A trigonometric polynomial H of the form

H(ω) =
(

1 + e−ıω

2

)N
L(ω) (2.181)

satisfies (2.176) if and only if

|L(ω)|2 = P
(

sin2 ω

2

)
(2.182)

with

P(y) = PN(y)+ yNR

(
1

2
− y

)
, (2.183)

where

PN(y) =
N−1∑
k=0

(
N−1+k
k

)
yk (2.184)

and R is an odd polynomial chosen such that P(y) ≥ 0 for y ∈ [0, 1].
The lemma provides a tool to characterize |H(ω)|2. For the determination of the

scaling equation coefficients H(ω) is needed instead. The proof of the following
lemma is constructive and describes how – so to say – the square root of |H(ω)|2 can
be drawn.

Lemma 2.8.2. Let

A =
M∑
m=0

am cosmω, am ∈ R (2.185)

be a positive trigonometric polynomial. Then there exist a polynomial

B(ω) =
M∑
m=0

bme
ımω, bm ∈ R, (2.186)

such that |B(ω)|2 = A(ω).
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Proof. 1. Since

cosmω = cosm ω −
(m

2
)

cosm−2 ω sin2 ω +
(m

4
)

cosm−4 ω sin4 ω − · · · ,

it can be written
A(ω) = pA(cosω),

with pA being a polynomial of degree M . This polynomial has the product represen-
tation

pA(c) = α

M∏
j=1

(c − cj ),

where the zeros cj are either real or conjugate complex. On the other hand

A(ω) =
M∑
m=0

am cosmω

=
M∑
m=0

am
e−ımω + eımω

2

= eıMω
M∑
m=0

e−ı(m+M)ω + eı(m−M)ω

2

= eıMωPA(e
−ıω),

where PA is a polynomial of degree 2M . Hence for |z| = |e−ıω| = 1 we have

pA(cosω) = A(ω) = eıMωPA(e
−ıω)

or

PA(e
−ıω) = e−ıMωpA(cosω) = e−ıωpA

(
eıω + e−ıω

2

)
.

For z = e−ıω it follows that

PA(z) = zMα

M∏
j=1

(
z+ z−1

2
− cj

)
= α

M∏
j=1

(
1

2
− cj z+ 1

2
z2
)
.

2. If cj is real, then the zeros of qj (z) := 1
2 − cj z + 1

2z
2 are cj ±

√
c2
j − 1. For

|cj | ≥ 1 the two zeros are real. Since(
cj +

√
c2
j − 1

) (
cj −

√
c2
j − 1

)
= c2

j − (c2
j − 1) = 1
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holds, these real zeros are of the form rj , r
−1
j . For |cj | < 1 these two zeros are

conjugate complex and of the absolute value 1, i.e. they are of the form eıγj , e−ıγj . In
this case

A(γj ) = eıMγj α

M∏
j=1

(
1

2
− cj e

−ıγj + 1

2
(e−ıγj )2

)
= 0

holds, i.e., the γj are zeros of A.

3. If cj is not real the conjugate complex pair cj , c̄j is considered. The polynomial

qj (z) =
(

1

2
− cj z+ 1

2
z2
)(

1

2
− c̄j z+ 1

2
z2
)

has four zeros: cj ±
√
c2
j − 1 and c̄j ±

√
c̄2
j − 1. Since

(
cj +

√
c2
j − 1

) (
cj −

√
c2
j − 1

)
= c2

j − (c2
j − 1) = 1,

(
c̄j +

√
c̄2
j − 1

) (
c̄j −

√
c̄2
j − 1

)
= c̄2

j − (c̄2
j − 1) = 1

holds, the zeros form a quadruple zj , z
−1
j , z̄j , z̄

−1
j .

4. As a preliminary summary, the following factorization of PA is obtained:

PA(z) = 1

2
αM

J∏
j=1

(z− zj )(z− z̄j )(z− z−1
j )(z− z̄−1

j )

L∏
l=1

(z− rl)(z− r−1
l ).

5. For z = e−ıω holds

|(e−ıω − z0)(e
−ıω − z̄−1

0 )| =
√
(e−ıω − z0)(eıω − z̄0)(e−ıω − z̄−1

0 )(eıω − z−1
0 )

=
√
(2 − e−ıωz−1

0 − eıωz0)(2 − e−ıωz̄0 − eıωz̄−1
0 )

=
√

−eıω
z0

(−2z0e−ıω + e−2ıω + z2
0)

×
√

−e−ıω
z̄0

(−2z̄0eıω + z̄2
0 + e2ıω)

= 1

|z0|
√
(e−ıω − z0)2(eıω − z̄0)2

= 1

|z0| |e
−ıω − z0|2.
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This relation can be used for a factorization of the polynomial A(ω):

A(ω) = |A(ω)|
= |PA(e−ıω)|

=
∣∣∣1
2
αM

J∏
j=1

(e−ıω − zj )(e
−ıω − z̄j )(e

−ıω − z−1
j )(e−ıω − z̄−1

j )

∣∣∣
×
∣∣∣ L∏
l=1

(e−ıω − rl)(e
−ıω − r−1

l )

∣∣∣
×
∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣2

=
∣∣∣∣12αM

J∏
j=1

(
1

|zj | |e
−ıω − zj |2 1

|z̄j | |e
−ıω − z̄j |2

) ∣∣∣∣
×
∣∣∣ L∏
l=1

1

|rl | (e
−ıω − rl)

2
∣∣∣∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣

=
[

1

2
|αM |

J∏
j=1

1

|zj |2
L∏
l=1

1

|rl |
]∣∣∣∣ J∏
j=1

(e−ıω − zj )(e
−ıω − z̄j )

∣∣∣∣2

×
∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣2∣∣∣ L∏

l=1

1

|rl | (e
−ıω − rl)

∣∣∣2
=
([

1

2
|αM |

J∏
j=1

1

|zj |2
L∏
l=1

1

|rl |
]1/2)2∣∣∣∣ J∏

j=1

(e−ıω − zj )(e
−ıω − z̄j )

∣∣∣∣2

×
∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣2∣∣∣ L∏

l=1

1

|rl | (e
−ıω − rl)

∣∣∣2.
This means with

B(ω) =
([

1

2
|αM |

J∏
j=1

1

|zj |2
L∏
l=1

1

|rl |
]1/2)∣∣∣∣ J∏

j=1

(e−ıω − zj )(e
−ıω − z̄j )

∣∣∣∣
×
∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣∣∣∣ L∏
l=1

1

|rl | (e
−ıω − rl)

∣∣∣
we derive B2(ω) = A(ω). ��

The proof of the theorem is constructive and provides an algorithm for the deter-
mination of H(ω):
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1. Choose a degree N of regularity.

2. Construct the polynomial

PN(y) =
N−1∑
k=0

(
N−1+k
k

)
yk.

3. Find an odd polynomial R such that

P(y) := PN(y)+ yNR

(
1

2
− y

)
≥ 0, y ∈ [0, 1].

4. Compute

A(ω) := P
(

sin2 ω

2

)
.

5. Find the polynomial pA with A(ω) = pA(cosω).

6. Find the zeros cj of pA(c).

7. For real cj with |cj | ≥ 1 denote the zeros of 1
2 − cj z+ 1

2z
2 by rj , r−1

j .

8. For real cj with |cj | < 1 denote the zeros of 1
2 − cj z+ 1

2z
2 by eıγj , e−ıγj .

9. For conjugate complex zeros cj , c̄j denote the zeros of( 1
2 − cj z+ 1

2z
2
) ( 1

2 − c̄j z+ 1
2z

2
)

by zj , z−1
j , z̄j , z̄−1

j .

10. Set

H(ω) =
(

1 + e−ıω

2

)N ([1

2
|αM |

J∏
j=1

1

|zj |2
L∏
l=1

1

|rl |
]1/2)

× |
J∏
j=1

(e−ıω − zj )(e
−ıω − z̄j )|×

×
∣∣∣ K∏
k=1

(e−ıω − eıγk )(e−ıω − e−ıγk )
∣∣∣∣∣∣ L∏
l=1

(e−ıω − rl)

∣∣∣.
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Example 2.8.1. In order to illustrate this procedure, the simplest exampleN = 1 will
be discussed here. The polynomial P1(y) is given by

P1(y) = 1.

Since this polynomial is already non-negative, no other solution is needed:

P(y) = P1(y) = 1.

This polynomial P is so simple that it is not necessary to apply the factorization
algorithm. The function H can be found directly. Following Theorem 2.8.1,

H(ω) =
(

1 + e−ıω

2

)
|P(sin2 ω)|2 =

(
1 + e−ıω

2

)
defines the scaling equation of an orthogonal scaling function of order N = 1. The
coefficients hk of this scaling equation are given by the Fourier series of H :

H(ω) = 1√
2

(
1√
2
+ 1√

2
e−ıω

)
.

In other words, the scaling coefficients are

h0 = h1 = 1√
2
.

Therefore the simplest orthogonal wavelet with compact support is the well-known
Haar wavelet.

This algorithm only generates the scaling coefficients hk and gk of the scaling func-
tion and the wavelet. How to find these functions themselves will be discussed later.
First of all we will illustrate the above mentioned algorithm for another examples of
Daubechies wavelets. The greatest disadvantage of the Haar wavelet is its irregularity.
Since the regularity increases with in creasing lengthN of the filters, the next possible
candidate will be N = 2.

Example 2.8.2 (Daubechies 4 wavelet). For N = 2 one obtains

P2(y) =
(

1
0

)
+
(

2
1

)
y = 1 + 2y.

Since P2 is already non-negative on [0, 1], the relation

P(y) = P2(y) = 1 + 2y
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follows. Consequently,

A(ω) =
(

1 + 2 sin2 ω

2

)
= (2 − cosω)

=
(

2 − 1

2
(eıω + e−ıω)

)
= eıωe−ıω

(
2 − 1

2
(eıω + e−ıω)

)
= eıω

(
2e−ıω − 1

2
− 1

2
e−2ıω

)
= −e

ıω

2
(e−2ıω − 4e−ıω + 1)

= −e
ıω

2
(e−ıω − (2 +√

3))(e−ıω − (2 −√
3))

= −e
ıω

2

1

|2 +√
3| |e

−ıω − (2 +√
3)|2.

Since

H(ω) ∼
(

1 + e−ıω

2

)2

|A(ω)|1/2

is true, it follows that

H(ω) ∼
(

1 + e−ıω

2

)2 1√
2

1√
2 +√

3
(e−ıω − (2 +√

3))

=
(

1 + e−ıω

2

)2 1√
2

1

(
√

2 +√
3)(1 −√

3)
(e−ıω(1 −√

3)+ (1 +√
3))

= 1√
2

1

(
√

2 +√
3)(1 −√

3)

1 + 2e−ıω + e−2ıω

4
(e−ıω(1 −√

3)+ (1 +√
3))

= 1√
2

1

(
√

2 +√
3)(1 −√

3)

[
1 +√

3

4
+ 3 +√

3

4
e−ıω

+ 3 −√
3

4
e−2ıω + 1 −√

3

4
e−3ıω

]
.

The normalization condition

|H(ω)|2 + |H(ω + π)|2 = 1

yields

H(ω) = 1√
2

[
1 +√

3

4
√

2
+ 3 +√

3

4
√

2
e−ıω + 3 −√

3

4
√

2
e−2ıω + 1 −√

3

4
√

2
e−3ıω

]
.
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A comparison of coefficients gives

h0 = 1

4
√

2
(1+√

3), h1 = 1

4
√

2
(3+√

3), h2 = 1

4
√

2
(3−√

3), h3 = 1

4
√

2
(1−√

3).

(2.187)
The following table contains the scaling coefficients for Daubechies wavelets of

different orders.

order N index n scaling coefficient hn
N = 1 0 0.70710678119

1 0.70710678119

N = 2 0 0.48296291314

1 0.83651630374

2 0.22414386804

3 −0.12940952255

N = 3 0 0.33267055295

1 0.80689150931

2 0.45987750212

3 −0.13501102001

4 −0.08544127388

5 0.03522269189

N = 4 0 0.23037781331

1 0.71484657055

2 0.63088076794

3 −0.02798376942

4 −0.18703481172

5 0.03084138184

6 0.03288301167

7 −0.01059740179

So far we have a procedure to construct the scaling coefficients hk, gk of an orthog-
onal compactly supported wavelet ψ and its scaling function ϕ. Now the questions
arises how do these function look like? One possible answer comes with the Mallat
algorithm. The inverse Mallat algorithm allows the reconstruction of a signal with
given wavelet coefficients.

Let ψ ∈ W1. Since W1 ⊂ V−N the mother wavelet ψ has the representation

ψ(x) =
∑
k∈Z

c
(−N)
k ϕ−N,k(x).
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On the other hand, like any other element of V−N it also has the representation

ψ(x) =
1∑

m=−N

∑
k∈Z

d
(m)
k ψm,k(x)+

∑
k∈Z

c
(1)
k ϕ1,k(x)

with

d
(1)
0 = 1, d

(m)
k = 0 else, c

(1)
k = 0.

With the help of the inverse Mallat algorithm the coefficients c(−N)k can be computed

recursively from the given coefficients d(m)k , c
(1)
k . Under certain circumstances, which

will be discussed later, the coefficients c(−N)k are close to the sampled values

ψ(k2−N) ≈ c
(−N)
k

and in this way the mother wavelet and the scaling function respectively can be com-
puted pointwise. The scaling function ϕ and the waveletψ for the Daubechies wavelet
with four non-vanishing coefficients, computed with the above mentioned procedure,
are displayed in Figure 2.39 and Figure 2.40.

1.5

1

0.5

0

2 2.5 3 3.5 41.5
1

10.5

0.5

0

_

_

Figure 2.39. Scaling function of Daubechies 4 wavelet

Obviously, the Daubechies 4 wavelet is rather irregular and the question arises, if for
an increasing number of coefficients the regularity increases. The following theorem
gives a positive answer to this question.
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Figure 2.40. Daubechies 4 wavelet

Theorem 2.8.3. Let ϕN and ψN be the scaling function and the wavelet with 2N
scaling coefficients. Then

ψn ∈ Hs, s < (lnN)/4 ln 2 (2.188)

holds.

Proof. [68]. ��

The setHs is a so-called Sobolev space. Without going deeply into details, a rough
imagination can be given by the statement that Hs contains all functions which are
s-times differentiable. Here the differentiation is meant in the generalized sense. This
means that the regularity of the wavelet increases indeed, but very slowly.

In some applications the regularity of the wavelet is not so important. Frequently
it is more important that the wavelet is orthogonal to all polynomials of maximum
degree N . ∫

R

xnψ(x) dx = 0, n = 0, . . . , N. (2.189)

Lemma 2.8.3. Let ψN be the Daubechies wavelet with 2N scaling coefficients. Then∫
R

xnψN(x) dx = 0, n = 0, . . . , N − 1. (2.190)

Proof. [68]. ��
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2.8.2 Solution of scaling equations

In many cases the only knowledge about a scaling function ϕ is the sequence {hk} of
its scaling coefficients:

ϕ(x) =
∑
k∈Z

hkϕ(2x − k). (2.191)

It remains the question of how the scaling equation (2.191) can be solved for the
unknown scaling function ϕ. Of course there is a larger number of possible solution
techniques, each of them with specific advantages and disadvantages. Here, only one
methods will be discussed. This method is

• particularly simple,

• well-suited to generate a graphical representation of the scaling function ϕ.

The basic idea of this method is, to representϕ ∈ V0 with respect to a base ofV−m ⊃ V0:

ϕ(x) =
∑
k∈Z

c
(−m)
k 2m/2ϕ(2mx − k). (2.192)

For increasing numbers of m the scaled and shifted version 2m/2ϕ(2mx − k) ap-
proximates the delta distribution δ(x − 2−mk) better and better. Hence

ϕ(2−mk) = (δ(x − 2−mk), ϕ(x)) ≈ 〈2−m/2ϕ(2mx − k), ϕ(x)〉
= 〈2m/2ϕ(2mx − k),

∑
l∈Z

c
(−m)
l 2m/2ϕ(2mx − l)〉

=
∑
l∈Z

c
(−m)
l 〈2m/2ϕ(2mx − k), 2m/2ϕ(2mx − l)〉

=
∑
l∈Z

c
(−m)
l δl,k

= c
(−m)
k .

This means, for m large enough the unknown development coefficients c(−m)k can be
approximated by the sample values of the scaling function ϕ at the places x = 2−mk.

Under certain circumstances it can be expected that the step-function

ϕm(x) :=
∑
k∈Z

c
(−m)
k χ[−1/2,1/2](2mx − k) (2.193)

with χ[a,b] being the indicator function of the interval [a, b]

χ[a,b](x) :=
{

1, x ∈ [a, b]
0, else

(2.194)
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converges to the scaling function ϕ. The only question remaining is: How to compute
the development coefficients c(−m)k ? For this purpose the inverse Mallat algorithm can
be used. Obviously

ϕ(x) =
∑
k<0

0 · ϕ(x − k)+ 1 · ϕ(x)+
∑
k>0

0 · ϕ(x − k)

holds. Hence, setting
c
(0)
k = δ0,k, d

(0)
k = 0

and
c(−1) = H ∗c(0) +G∗d(0) = H ∗c(0),

the scaling function can be represented with respect to a base of V−1:

ϕ(x) =
∑
k∈Z

c
(−1)
k 2−1/2ϕ(2−1x − k)+

∑
k∈Z

0 · 2−1/2ψ(2−1x − k). (2.195)

Iterating again,
c(−2) = H ∗c(−1) +G∗d(−1) = H ∗c(−1), (2.196)

the coefficients c(−2)
k of the representation of ϕ with respect to a base of V−2 are

obtained. Consequently, after m steps of inverse Mallat algorithm the coefficients
c
(−m)
k are obtained:

c
(0)
k = δ0,k, (2.197)

c(−m) = (H ∗)mc(0). (2.198)

The precise conditions which a sequence {hk} of scaling coefficients has to fulfill
in order to guarantee convergence are rather complicated. They will not be discussed
here. An intensive study of these coefficients can be found in [68].

Example 2.8.3. As an example for the convergence of this iteration process to the scal-
ing function and to the wavelets respectively, the scaling coefficients of the Daubechies
wavelet of order 6 will be used. The scaling coefficients are given in the following
table:

n hn

0 0.3326705529500825

1 0.8068915093110924

2 0.4598775021184914

3 −0.1350110200102546

4 −0.0854412738820267

5 0.0352262918857095

With the help of these scaling coefficients the iteration was carried out up tom = 8. In
Figure 2.41 the elements ϕ−4, ϕ−5, ϕ−8 and ψ−4, ψ−5, ψ−8 respectively are shown.
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Figure 2.41. Iteration steps 4, 5 and 8 for scaling function ϕ (left) and wavelet ψ (right)

2.9 Wavelet bases on an interval

So far we have only considered MRAs onL2(R), i.e. we only dealt with the representa-
tion of signals which are defined on the whole real axis. In practical applications there
is always only a finite registration length of a signal, meaning that only a signal defined
on a finite interval is available. For this reason, an MRA of L2([0, 1]) is needed. One
very simple method is to take the scaling function ϕ and the wavelet ψ of an MRA of
L2(R) and make them periodic:

ϕ
period
m,n (x) :=

∑
l∈Z

ϕm,n(x + l), ψ
period
m,n (x) :=

∑
l∈Z

ψm,n(x + l). (2.199)

Of course, this method is only applicable if both ϕ and ψ have a finite support.
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Lemma 2.9.1. For fixed m the scaling functions ϕperiod
m,n and the wavelets ψperiod

m,n are
orthogonal to each other:

〈ϕperiod
m,n , ψ

period
m,k 〉 = 0. (2.200)

Proof.

〈ϕperiod
m,n , ψ

period
m,k 〉 =

〈∑
p∈Z

ϕm,n(x + p),
∑
q∈Z

ψm,k(x + q)
〉

=
∑
p∈Z

∑
q∈Z

〈ϕm,n(x + p),ψm,k(x + q)〉

= 0. ��

The scaling spaces V period
m and the wavelet spacesW period

m are now defined as the linear
span of the scaling functions ϕperiod

m,n and the wavelets ψperiod
m,k , respectively:

V
period
m := span{ϕperiod

m,n | 0 ≤ n ≤ 2|m|−1}, (2.201)

W
period
m := span{ψperiod

m,n | 0 ≤ n ≤ 2|m|−1}. (2.202)

Lemma 2.9.2. The spaces V period
m form an MRA of L2([0, 1]).

Proof. Let f ∈ V period
m . Then with certain coefficients αk the following representation

is valid:

f (x) =
2|m|−1∑
k=0

αk · ϕperiod
m,k (x)

=
2|m|−1∑
k=0

αk ·
(∑

l

ϕm,k(x + l)
)

=
2|m|−1∑
k=0

αk ·
(∑

l

2−m/2ϕ(2−m(x + l)− k)
)

=
2|m|−1∑
k=0

αk ·
(∑

l

√
2
∑
p∈Z

hp2−m/2ϕ(2−m+1x + (2−m+1l − 2k − p))
)

=
2|m|−1∑
k=0

αk ·
(∑

l

∑
p∈Z

hp2−(m−1)/2ϕ(2−(m−1)x + (2−m+1l − 2k − p))
)
=
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=
2|m|−1∑
k=0

αk ·
∑
l

∑
p∈Z

hpϕm−1,2k+p(x + l)

=
2|m|−1∑
k=0

αk
∑
p∈Z

hpϕ
period
m−1,2k+p(x)

=
2|m−1|−1∑
i=0

βiϕ
period
m−1,i (x).

Consequently, f ∈ V period
m−1 holds, which leads to the hierarchical decomposition

{0} ⊂ · · · ⊂ V
period
1 ⊂ V

period
0 ⊂ V

period
−1 ⊂ · · · ⊂ L2([0, 1]).

Additionally,

f (2x) =
2|m|−1∑
k=0

αk · ϕperiod
m,k (2x)

=
2|m|−1∑
k=0

αk · 1√
2
ϕ

period
m−1,k(x)

is valid. This means

f (x) ∈ V period
m ⇔ f (2x) ∈ V period

m−1 .

These two conditions are the basic properties of an MRA. The proof of the remaining,
more technical conditions is left out. ��

The scaling spacesV period
m and the wavelet spacesW period

m inherit not only the MRA
property but also the orthogonality between scaling and wavelet space.

Lemma 2.9.3. For the scaling and wavelet spaces V period
m , W period

m and for j ≤ 0
holds

V
period
j ⊥ W

period
j , V

period
j−1 = V

period
j ⊕W

period
j . (2.203)

Proof. The relation V period
j ⊥ W

period
j follows immediately from (2.200).

Let f ∈ L2[0, 1]. By extending this function with zeros outside [0, 1] a function
f̄ ∈ L2(R) is generated:

f̄ (x) :=
{
f (x), x ∈ [0, 1]
0, x ∈ R \ [0, 1].
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On the other hand, a function g ∈ L2(R) can be transformed into a function
gperiod ∈ L2([0, 1]) by setting

gperiod(x) =
∑
l∈Z

g(x + l).

Obviously, for an arbitrary f ∈ L2([0, 1])
f̄ period = f

holds. Now let f ∈ Vj . For its periodic equivalent holds

f period(x) =
∑
l∈Z

f (x + l)

=
∑
l∈Z

∑
k∈Z

fkϕj,k(x + l)

=
∑
k∈Z

fk
∑
l∈Z

ϕj,k(x + l)

=
∑
k∈Z

fkϕ
period
j,k (x)

∈ V period
j .

In the same way f ∈ Wj ⇒ f period ∈ W
period
j can be shown. For an arbitrary

f ∈ V
period
j−1 its extension f̄ belongs to Vj−1. Due to the MRA properties of the

sequence {Vj }, f̄ can be decomposed in

f̄ = Pj f̄ +Qj f̄ , Pj f̄ ∈ Vj , Qj f̄ ∈ Wj .

Finally, for f ∈ V period
j−1 follows

f (x) = f̄ period(x)

= (Pj f̄ )
period + (Qj f̄ )

period

∈ V period
j ⊕W

period
j . ��

With the MRA properties also the fast wavelet decomposition and reconstruction
is carried over to the finite-interval case.

Lemma 2.9.4. Suppose

f =
∑
k

c
(j−1)
k ϕ

period
j−1,k ∈ V period

j−1 . (2.204)
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The function f has a unique decomposition

f =
∑
k

c
(j)
k ϕ

period
j,k +

∑
k

d
(j)
k ψ

period
j,k , (2.205)

with the coefficients c(j)k , d
(j)
k related to c(j−1)

k by

c
(j)
k =

∑
l

hlc
(j−1)
l+2k , d

(j)
k =

∑
l

glc
(j−1)
l+2k , (2.206)

where the coefficients fulfill c(j)
l+2−j = c

(j)
l .

2.10 Two-dimensional wavelets

2.10.1 Continuous two-dimensional wavelets

As in the one-dimensional case, also in the two-dimensional case there are two kinds
of wavelet transforms: the continuous and the discrete wavelet transform. Follow-
ing the outline in the one-dimensional case, first the definition of a two-dimensional
wavelet will be given. Then the two-dimensional continuous wavelet transform will
be discussed before going to the two-dimensional discrete wavelet transform.

Definition 2.10.1. A function ψ ∈ L2(R2) is called a two-dimensional wavelet if it
fulfills the admissibility condition

0 < cψ := 4π2
∫

R2

|ψ̂(ω)|2
‖ω‖2 dω <∞. (2.207)

Similar to the one-dimensional case, also here some important conclusions about
the nature of a two-dimensional wavelet can be drawn from this definition. Obviously,

0 = ψ̂(0) = 1

2π

∫
R2
ψ(x)e−ı0�x dx = 1

2π

∫
R2
ψ(x) dx (2.208)

must hold. This means that the function ψ has to oscillate in some way.
In the one-dimensional case the signal was compared to scaled and shifted versions

of the mother wavelet. In the two-dimensional case besides the translation the rotation
is an additional movement of the Euclidean plane. Therefore in the two-dimensional
case there are four wavelet parameters:

• the scale parameter a,

• the translation vector b = (b1, b2)
�,

• the rotation angle ϑ .
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Therefore, the scaled, shifted and rotated version of the two-dimensional mother-
wavelet ψ is

1

a
ψ

(
1

a
R�(ϑ)(x − b)

)
,

with the rotation matrix R defined by

R(ϑ) =
[

cosϑ − sin ϑ

sin ϑ cosϑ

]
. (2.209)

Naturally, also in the two-dimensional case the wavelet transform is a comparison
of the signal with scaled, rotated and shifted versions of the mother-wavelet.

Definition 2.10.2. Let ψ be a two-dimensional wavelet and let f ∈ L2(R2). Then

W eu{f }(a, ϑ, b) := 1√
cψ

∫
R2

1

a
ψ

(
1

a
R�(ϑ)(x − b)

)
· f (x) dx (2.210)

is called the two-dimensional continuous wavelet transform of f .

The two-dimensional wavelet transform measures the intensity of the signal com-
ponents at scales of the size a close to the location b, which have direction preference
of ϑ . If the two-dimensional continuous wavelet transform is used for example for
image analysis, not only the location of edges in the image can be detected but also
their orientations.

Surprisingly, the inverse two-dimensional wavelet transform requires only a single
integration over all scales a and all rotations ϑ . An integration over the translation can
be omitted.

Lemma 2.10.1. Let ψ be a two-dimensional wavelet and let f ∈ L2(R2). Let their
Fourier transforms ψ̂ and f̂ be integrable. Then

f (x) = 2π√
cψ

∫ 2π

0

∫ ∞

0
W eu{f }(a, ϑ, b)da

a2 dϑ. (2.211)

Proof. [68]. ��

Example 2.10.1. The simplest way to construct a two-dimensional wavelet is the
tensor product of two one-dimensional wavelets ψ :

ψ(x1, x2) = ψ(x1) · ψ(x2). (2.212)

Since
ψ̂(ω1, ω2) = ψ̂(ω1)ψ̂(ω2)

and the inequality
‖ω‖2 ≥ 2|ω1||ω2|
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is valid, for the admissibility condition it can be concluded that∫
R2

|ψ̂(ω1, ω2)|2
‖ω2‖2 dω ≤ 1

2

∫
R

|ψ̂(ω1)|2
|ω1| dω1 ·

∫
R

|ψ̂(ω2)|2
|ω2| dω2

= c2
ψ

8π2 (2.213)

<∞.

If the rotation parameter ϑ and the scale parameter a are arbitrary but fixed, for
the numerical implementation of the two-dimensional wavelet transformation the FFT
method can be used. Let

ψϑ(x) := ψ(−R�(ϑ)x). (2.214)

Then the wavelet transformation can be expressed as a convolution:

W eu
ψ (a, ϑ, b) =

1√
cψ

∫
R2

1

a
ψ

(
1

a
R�(ϑ)(x − b)

)
· f (x) dx

= 1√
cψ

∫
R2

1

a
ψϑ

(
−1

a
(x − b)

)
f (x) dx

= 1√
cψ

(
f ∗ ψϑ

(
1

a
•
))

(b) (2.215)

= 2πa2

√
cψ

2

F −1{f̂ (ω)ψ̂ϑ(aω)}.

For the computation of the spectra f̂ and ψ̂ϑ FFT can be efficiently used.

2.10.2 Discrete two-dimensional wavelets

One of the main application field of wavelets is image processing. Since images are
two-dimensional data, they can only be analyzed by two-dimensional wavelets. The
construction of two-dimensional wavelets is the straightforward generalization of the
construction of one-dimensional wavelets.

It starts with a two-dimensional MRA.

Definition 2.10.3. A nested sequence

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R
2) (2.216)

of closed subsetsVm ⊂ L2(R2) is called amulti-resolution analysis (MRA) ofL2(R2),
if the following four statements hold:

(i) ⋃
m∈Z

Vm = L2(R
2). (2.217)
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(ii) ⋂
m∈Z

Vm = {0}. (2.218)

(iii)
f (•) ∈ Vm ⇔ f (Am•) ∈ V0, A a regular 2 × 2 matrix. (2.219)

(iv) There is a function ϕ ∈ L2(R2)with

V0 = span{ϕ(• − k) | k ∈ Z2} (2.220)

and

A
∑
k∈Z2

c2
k ≤
∥∥∥ ∑

k∈Z2

ckϕ(• − k)

∥∥∥2

L2
≤ B

∑
k∈Z2

c2
k, 0 < A,B (2.221)

for all {ck}k∈Z2 ∈ l2(Z2).

The matrix A is called dilatation matrix. As in the one-dimensional case, the space
V0 can be decomposed into its smoothed version V1 and the orthogonal complement
W1 of V1 in V0:

V0 = V1 ⊕W1.

In contrast to the one-dimensional case the orthogonal complement is not spanned
any longer by a single function ψ but by | det(A)| − 1 independent functions.

Theorem 2.10.1. Let {Vm}m∈Z be an MRA with the dilatation matrix A. Then there
are | det(A)− 1| wavelets

ψ(1), ψ(2), . . . , ψ(| det(A)|−1) ∈ V−1 (2.222)

which span a CONS 2 of the orthogonal complement of V0 in V−1.
In other words

{ψ(j)
m,k(x) = | det(A)|−m/2ψ(j)(A−mx−k) | j = 1, . . . , | det(A)|−1,m ∈ Z, k ∈ Z2}

(2.223)
is a CONS of L2(R

2).

Proof. [73]. ��

A natural choice for the dilatation matrix is

A =
(

2 0

0 2

)
, (2.224)

2Complete orthonormal system, see Definition A.2.5 on p. 224
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i.e. a dilatation in each coordinate direction by the factor 2. Since | det(A)| = 4,
there are three independent wavelets ψ(1), ψ(2), ψ(3). The simplest way to find these
two-dimensional wavelets is to form the tensor products from their one-dimensional
counterparts.

Lemma 2.10.2. Let ϕ be an orthogonal scaling function and letψ be the correspond-
ing wavelet. Then

ϕ(x) := ϕ(x1) · ϕ(x2) (2.225)

is the two-dimensional scaling function, and the functions

ψ(1)(x) = ψ(x1)ϕ(x2), ψ
(2)(x) = ϕ(x1)ψ(x2), ψ

(3)(x) = ψ(x1)ψ(x2) (2.226)

are the two-dimensional wavelets belonging to the dilatation matrix (2.224).

Proof. [68]. ��

Let us now consider the Mallat algorithm for two-dimensional tensor wavelets.
The scaling equations for the two-dimensional wavelets can be derived from their
one-dimensional counterparts.

ϕ(x) := ϕ(x1)ϕ(x2)

= √
2
∑
k1∈Z

hk1ϕ(2x1 − k1)×
√

2
∑
k2∈Z

hk2ϕ(2x2 − k2) (2.227)

= 2
∑

(k1,k2)∈Z2

hk1hk2ϕ(Ax − (k1, k2)).

ψ(1)(x) := ψ(x1)ϕ(x2)

= √
2
∑
k1∈Z

gk1ϕ(2x1 − k1)×
√

2
∑
k2∈Z

hk2ϕ(2x2 − k2) (2.228)

= 2
∑

(k1,k2)∈Z2

gk1hk2ϕ(Ax − (k1, k2)).

ψ(2)(x) := ϕ(x1)ψ(x2)

= √
2
∑
k1∈Z

hk1ϕ(2x1 − k1)×
√

2
∑
k2∈Z

gk2ϕ(2x2 − k2) (2.229)

= 2
∑

(k1,k2)∈Z2

hk1gk2ϕ(Ax − (k1, k2)).
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ψ(3)(x) := ψ(x1)ψ(x2)

= √
2
∑
k1∈Z

gk1ϕ(2x1 − k1)×
√

2
∑
k2∈Z

gk2ϕ(2x2 − k2) (2.230)

= 2
∑

(k1,k2)∈Z2

gk1gk2ϕ(Ax − (k1, k2)).

With the help of these scaling equations the decomposition of V0 into V1 and its
orthogonal complement can be described. Let f ∈ V0 and k = (k1, k2), l = (l1, l2).
Then

f (x) =
∑
k∈Z2

c0,kϕ(x − k) (2.231)

holds. The coefficients on the next coarser scale can be computed by

c0,k = 〈f, ϕ0,k〉
=
∑
l∈Z2

2hl1hl2〈f, ϕ(Ax − Ak − l)〉

=
∑
l∈Z2

hl1hl2〈f, ϕ−1,2k1+l1ϕ−1,2k2+l2〉 (2.232)

=
∑
l1∈Z

hl1−2k1

∑
l2∈Z

hl2−2k2〈f, ϕ−1,l1ϕ−1,l2〉

=
∑
l1∈Z

hl1−2k1

∑
l2∈Z

hl2−2k2c−1,l.

The same argumentation can be applied to ψ(i), leading to the final results

c0,k =
∑
l1∈Z

hl1−2k1

∑
l2∈Z

hl2−2k2c−1,l, (2.233)

d
(1)
0,k =

∑
l1∈Z

gl1−2k1

∑
l2∈Z

hl2−2k2c−1,l, (2.234)

d
(2)
0,k =

∑
l1∈Z

hl1−2k1

∑
l2∈Z

gl2−2k2c−1,l, (2.235)

d
(3)
0,k =

∑
l1∈Z

gl1−2k1

∑
l2∈Z

gl2−2k2c−1,l. (2.236)

If the coefficients c0,k are considered as a two-dimensional array of real numbers,

the coefficients c1,k, d
(1)
1,k, d

(2)
1,k, d

(3)
1,k on the next coarser scale are the result of the

column- and row-wise application of the one-dimensional operators H and G. If we
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define

(HRc)k1,k2 :=
∑
l∈Z

hl−2k2ck1,l , (2.237)

(HCc)k1,k2 :=
∑
l∈Z

hl−2k1cl,k2 , (2.238)

(GRc)k1,k2 :=
∑
l∈Z

gl−2k2ck1,l , (2.239)

(GCc)k1,k2 :=
∑
l∈Z

gl−2k1cl,k2 , (2.240)

the two-dimensional Mallat algorithm can be written as

c0 = HRHCc−1, d
(1)
0 = GRHCc−1 (2.241)

d
(2)
0 = HRGCc−1, d

(3)
0 = GRGCc−1. (2.242)

For a finite set of coefficients c−1 the new coefficients c0, d
(1)
0 , d

(2)
0 , d

(3)
0 can be stored

in the place of the old coefficients. This is shown in Figure 2.42.

c−1

c0 d
(2)
0

d
(1)
0 d

(3)
0

Figure 2.42. One step of two-dimensional Mallat algorithm

In a second step c0 can be decomposed into c1, d
(1)
1 , d

(2)
1 , d

(3)
1 and these coefficients

can be stored in the place of c0 as it is shown in Figure 2.43.

Example 2.10.2. In order to demonstrate the effect of the two dimensional Mallat
algorithm, the gray-values of the Lena-image 2.44 are considered as the c(0) coefficients
of an input signal.

The results of the first two steps of Mallat’s algorithm are displayed in Figure 2.45.
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0

d
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(2)
0
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(3)
0d

(3)
0

c1 d
(2)
1

d
(1)
1 d

(3)
1

Figure 2.43. Second step of two-dimensional Mallat algorithm

Figure 2.44. Test image

Figure 2.45. Results of the first (left) and the second (right) step of Mallat’s algorithm
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It is visible that the c0 coefficients give a smoothed version of the original picture.
The d(1)0 and d(2)0 coefficients contain the diagonal elements of the picture and finally

the d(3)0 coefficients give the remaining smaller-scale content of the picture.

2.11 Wavelets on a sphere

2.11.1 Harmonic wavelets

Spherical Harmonics. Here, first some compact notations related to spherical har-
monics on and outside the unit sphere σ will be introduced. Recalling the definition
of a fully normalized surface spherical harmonics given in (A.60), we have

Ȳnm(ϑ, λ) :=
√

1

π(1 + δ0n)

{
P̄
(|m|)
n (cosϑ) cos(mλ), m ≥ 0

P̄
(|m|)
n (cosϑ) sin(|m|λ), m < 0.

(2.243)

The first index n is called the degree and the second index m is called the order of the
fully normalized surface spherical harmonic Ȳnm.

The fully normalized surface spherical harmonics are closely related to the har-
monic functions outside the unit sphere. This relationship will be discussed later. For
the time being this postulated relationship will only give a motivation for the denotation
of the span of all surface spherical harmonics of the same degree n as Harmn.

Definition 2.11.1. The span of all surface spherical harmonics Ȳnm of the same degree
n is called Harmn:

Harmn := span{Ȳnm | m = −n, . . . , n}. (2.244)

The direct sum of all spaces Harmk for k = p, . . . , q will be denoted by Harmp,...,q .

Harmp,...,q =
q⊕
k=p

Harmk . (2.245)

Legendre polynomials are special cases of the associated Legendre functions de-
fined in (A.51):

Pn(t) := P (0)n (t). (2.246)

The fully normalized surface spherical harmonics are closely related to the Legendre
polynomials by the addition theorem:

Theorem 2.11.1 (Addition theorem of spherical harmonics). Let ξ andη be twopoints
on the unit sphere σ . Then the following relation is true:

n∑
m=−n

Ȳmn(ξ)Ȳmn(η) = 2n+ 1

4π
Pn(ξ

�η). (2.247)
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Proof. [27]. ��

Now the already mentioned relationship between the surface spherical harmonics
and the harmonic functions will be addressed.

Definition 2.11.2. Let x ∈ R3 \ σ be a point in the exterior of the unit sphere. The
functions

Hn,m(x) = |x|−n−1Ȳn,m

(
x

|x|
)

(2.248)

are called spherical harmonics of degree n and order m.

Lemma 2.11.1. The spherical harmonics are harmonic outside the unit sphere.

Proof. [27]. ��

Obviously, the spherical harmonics are the harmonic continuations of the corre-
sponding surface spherical harmonics using the Poisson integral. Let Pot(σ ) be the
set of all harmonic functions f , which are regular at infinity, i.e. which fulfill

lim|x|→∞ f (x) = 0. (2.249)

Then
Pot(σ ) = span n=0,1,...

m=−n,...,n
Hn,m. (2.250)

In plain words (2.250) means that every harmonic function has a unique series expan-
sion

f (x) =
∞∑
n=0

n∑
m=−n

fn,mHn,m(x). (2.251)

Correspondingly, let us denote the set of all infinitely often differentiable harmonic
functions, which are regular at infinity by Pot(∞)(σ ).

Sobolev spaces. In many cases only such harmonic functions are important, which
have special spectral properties. Since the relationship between harmonic functions
and their traces on the surface of the unit sphere are unique, the spectral behavior of a
harmonic function is completely defined by the spectral behavior of its trace. Sobolev
spaces collect all functions with traces of a certain spectral decay.

Let {An} be a sequence of positive real numbers and let f, g ∈ Pot(∞)(σ ). Then
f , g have series expansions according to (2.251). Suppose now that the coefficients
fn,m, gn,m of these expansions fulfill

∞∑
n=0

n∑
m=−n

f 2
n,mA

2
n <∞,

∞∑
n=0

n∑
m=−n

g2
n,mA

2
n <∞. (2.252)
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Then

〈f, g〉 :=
∞∑
n=0

n∑
m=−n

A2
nfn,mgn,m (2.253)

defines a scalar product in Pot(∞)(σ ). The corresponding norm is

‖f ‖ :=
( ∞∑
n=0

n∑
m=−n

A2
nf

2
n,m

)1/2
. (2.254)

Let E({An}) be the subset of all f which have a finite norm:

E({An}) := {f ∈ Pot(∞)(σ ) | ‖f ‖ <∞}. (2.255)

Definition 2.11.3. The Sobolev space H({An}, σ ) is the completion of E({An}) under
the norm (2.254).

An intuitive but very unprecise interpretation of a Sobolev space is that this space
consists of all harmonic functions with series development coefficients decaying faster
than A−1

n for n→ ∞. This means the membership to a Sobolev space is restricted to
functions which have a certain decay of their short wavelength spectrum.

Definition 2.11.4. Let {An} be a sequence of positive real numbers fulfilling

∞∑
n=0

A2
n

2n+ 1

4π
<∞, (2.256)

then

KH ,An(x, y) =
∞∑
n=0

A−2
n

n∑
m=−n

Hn,m(x)Hn,m(y) (2.257)

is called a reproducing kernel of H({An}, σ ).

The name reproducing kernel is motivated by the property

〈KH ,An(x, •), f 〉 =
∞∑
n=0

n∑
m=−n

A2
n(A

−2
n Hn,m(x)fn,m)

= f (x).

Example 2.11.1. Here, some examples for reproducing kernels are given.
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Shannon kernel. The Shannon kernel is characterized by the following setting of
the weight coefficients An:

An :=
{

1, 0 ≤ n < M

0, M ≤ n <∞.
(2.258)

Due to this particular definition of the weight coefficients, a closed expression for the
Shannon kernel can be found:

KH ,An(x, y) =
M−1∑
n=0

n∑
m=−n

Hn,m(x)Hn,m(y)

=
M−1∑
n=0

(|x||y|)−n−1
n∑

m=−n
Ȳn,m

(
x

|x|
)
Ȳn,m

(
y

|y|
)

(2.259)

=
M−1∑
n=0

(|x||y|)−n−1 2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)
.

Using the well-known recurrence relation for Legendre polynomials,

(n+ 1)[Pn+1(t)− Pn(t)] − n[Pn(t)− Pn−1(t)] = (2n+ 1)(t − 1)Pn(t), (2.260)

for |x| = |y| = 1 the closed expression

KH ,An(x, y) =
(

x

|x|
� y

|y| − 1

)−1
M

4π

[
PM

(
x

|x|
� y

|y|
)
− PM−1

(
x

|x|
� y

|y|
)]
(2.261)

is found. Figure 2.46 shows the Shannon kernel for M = 16 and M = 32.

Abel–Poisson kernel. For the Abel–Poisson kernel the weights are equal to the
elements of a converging geometrical sequence

An = ρn, 0 < ρ < 1.

The series expansion of the Abel–Poisson kernel is

KH ,An(x, y) =
∞∑
n=0

ρn

(|x||y|)n+1

2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)
. (2.262)

For |x| = |y| = 1 also this series has a closed expression, the kernel of the Abel–
Poisson integral formula

KH ,An(x, y) =
1

4π

1 − ρ2(
1 + ρ2 − 2ρx�y

)3/2 . (2.263)

TheAbel–Poisson kernel and the corresponding weight sequence for the valuesρ = 0.7
and ρ = 0.9 are shown in Figure 2.47.
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Figure 2.46. Shannon kernels for M = 16 and M = 32

Harmonic wavelets. Now all preparing steps have been taken to give the definition
of a harmonic wavelet on the sphere. As in the Euclidean case the definition of a
harmonic wavelet on the sphere starts with an MRA of H({An}, σ ).
Definition 2.11.5. The subsets Vj ⊂ H({An}, σ ) defined by

Vj =
⊕

0≤n≤2j

Harmn = Harm0,...,2j (2.264)

are called scaling spaces. The spaces Wj defined by

Wj = Vj+1 � Vj (2.265)

are called detail spaces.

Obviously, the scaling spaces are nested

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · (2.266)
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Figure 2.47. Weights An and Abel–Poisson kernel K for ρ = 0.7 and ρ = 0.9
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and the detail space Wj is the complement of Vj in Vj+1:

Vj+1 = Vj ⊕Wj . (2.267)

In addition, the following equation holds:⋃
j∈N

Vj = H({An}, σ ). (2.268)

These properties are quite similar to the MRA in the Euclidean case. For this
reason the nested sequence {Vj } is also called an MRA of H({An}, σ ).

Some properties which are expected from the Euclidean case cannot be carried
over directly, since the operations scaling and shifting have a different meaning in
the spherical case. Therefore it has to be discussed now what is to be understood by
translation and by dilatation in the spherical case.

For this purpose the following sequences of kernel functions will be considered:

�j(x, y) :=
2j∑
n=0

A−2
n

n∑
m=−n

Hn,m(x)Hn,m(y), (2.269)

�j(x, y) :=
2j+1∑
n=2j

A−2
n

n∑
m=−n

Hn,m(x)Hn,m(y). (2.270)

For these kernel functions the dilatation operator DJ can be defined easily by

DJ�j (x, y) := �j+J (x, y), DJ�j (x, y) := �j+J (x, y). (2.271)

In order to be able to define a shifting operator, a relationship between the kernel
functions �j(x, y),�j (x, y) and a point y/|y| on the sphere has to be established.
The neatest way to do this is to fix one argument of the kernel functions to y:

�j,y(•) := �j(•, y), �j,y(•) := �j(•, y). (2.272)

Now the translation operator can be defined quite naturally by

Sy�j (•, •) := �j,y(•), Sy�j (•, •) := �j,y(•). (2.273)

The function�0(•, •) is called the mother scaling function and the function�0(•, •)
the mother wavelet. By the combination of the translation and the dilatation operator
scaled and shifted versions of the mother functions can be generated:

SyDj�0(•, •) = �j,y(•, y), SyDj�0(•, •) = �j,y(•, y). (2.274)

In this way quite a number of similarities between the MRA in the Euclidean space
and on the sphere have been established. Only the scaling property

f (•) ∈ Vj ⇔ f (2•) ∈ Vj+1 (2.275)
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is not valid in the spherical case. Since this scaling property is the key to the algorithms
of fast wavelet transform, on the sphere an analog of Mallat’s algorithm cannot be
found.

Example 2.11.2. As an example the scaling function and the wavelet will be con-
structed for Sobolev spaces based on the Shannon and the Abel–Poisson kernel, re-
spectively.

Shannon kernel. For the Shannon kernel the scaling function �j is given by

�j(x, y) =
min{2j ,M−1}∑

n=0

(|x||y|)−n−1 2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)

(2.276)

and the wavelet �j by

�j(x, y) =
min{2j+1,M−1}∑

min{2j ,M−1}
(|x||y|)−n−1 2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)
. (2.277)

For j = 4 both functions are shown in Figure 2.48.
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Figure 2.48. Shannon scaling function �j and wavelet �j for the scale j = 4
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Abel–Poisson kernel. For the Abel–Poisson kernel the scaling function �j is given
by

�j(x, y) =
2j∑
n=0

ρn(|x||y|)−n−1 2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)

(2.278)

and the wavelet �j by

�j(x, y) =
2j+1∑
2j+1

ρn(|x||y|)−n−1 2n+ 1

4π
Pn

(
x

|x|
� y

|y|
)
. (2.279)

For the value ρ = 0.7 both the scaling function and the wavelet are shown in Fig-
ure 2.49.
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Figure 2.49. Abel–Poisson scaling function �j and wavelet �j for the scale j = 4

Spherical wavelet transform. The spherical wavelet transform aims at a decom-
position of a scalar function, defined in the exterior of the unit sphere, into parts,
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where every part represents a certain frequency band in the function. As in the Eu-
clidean case the wavelet transformation is carried out by comparing the given signal
f ∈ H({An}, σ ) with the scaled and shifted versions �j,y of a particular wavelet.

Definition 2.11.6. Let f ∈ H({An}, σ ) and let � be the wavelet belonging to an
MRA of H({An}, σ ). The function

(WT )f (j, y) := 〈�j,y, f 〉 (2.280)

is called scale discrete spherical wavelet transform of f .

The value (WT )f (j, y) indicates the amount of energy, which is contained in the
signal f in a neighborhood of the point y ∈ σ and on the scale j . The scale j contains
all spherical harmonics of the order 2j+1 to 2j+1. This wavelet transform is invertible
as it is shown in the following lemma.

Lemma 2.11.2. Let f ∈ H({An}, σ ) and let (WT )f (j, y) be its scale discrete spher-
ical wavelet transform. Then the following reconstruction formula is valid:

f (x) =
∞∑
j=0

〈�j(x, •), (WT )f (j, •)〉. (2.281)

Proof. Let f ∈ H({An}, σ ). Then f has a spherical harmonics expansion

f (x) =
∞∑
n=0

n∑
m=−n

fn,mHn,m(x)

with ∞∑
n=0

A2
n

n∑
m=−n

f 2
n,m <∞.

The wavelet �j,y(x) has a spherical harmonics expansion as well:

�j,y(x) =
2j+1∑
n=2j

n∑
m=−n

�n,mHn,m(x),

with
�n,m = A−2

n Hn,m(y).

Consequently, the wavelet transform (WT )f (j, y) has the series expansion

(WT )f (j, y) =
2j+1∑
n=2j

n∑
m=−n

fn,mHn,m(y).
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Inserting this into the reconstruction formula (2.281) yields

∞∑
j=0

〈�j(x, •), (WT )f (j, •)〉 =
∞∑
j=0

〈 2j+1∑
n=2j

n∑
m=−n

�n,mHn,m,

2j+1∑
ν=2j

ν∑
µ=−ν

fν,µHν,µ

〉

=
∞∑
j=0

〈 2j+1∑
n=2j

n∑
m=−n

A−2
n Hn,m(x)Hn,m(•),

2j+1∑
ν=2j

ν∑
µ=−ν

fν,µHν,µ

〉

=
∞∑
j=0

2j+1∑
n=2j

n∑
m=−n

fn,mHn,m(x)

=
∞∑
n=0

n∑
m=−n

fn,mHn,m(x)

= f (x). ��
The scale discrete spherical wavelet transform is closely related to an MRA of

H({An}, σ ) since
(WT )f (j, •) ∈ Wj . (2.282)

In contrast to the Euclidean case the spherical wavelet decomposition follows the
scheme displayed in Figure 2.50.

f

〈�1, •〉

W1

〈�2, •〉

W2

〈�3, •〉

W3

Figure 2.50. Schematic view of the spherical wavelet decomposition

Instead of being recursive, in the spherical case each decomposition step hast to
start from the original signal f . The reason for this non-recursive character of the
spherical wavelet decomposition is the absence of a scaling relation (2.275) between
two consecutive scaling spaces.
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Example 2.11.3. In order to give a certain feeling for the effect of the spherical
wavelet transform, the so-called disturbing potential T of the Earth will be subjected
to such a transformation. The potential of the gravity field of the Earth is usually
denoted by W . Since the potential W is very irregular a model U is often used as
an approximation for W . The function U is the potential of a homogeneous ellipsoid
having the same mass as the Earth and being in an hydrostatic equilibrium. The model
potential U is called normal potential and can be expressed by a simple formula. The
disturbing potential T is defined as the difference between the actual potentialW and
the normal potential U :

T := W − U. (2.283)

Since, bothW andU contain the centrifugal potential the difference T is harmonic
and can therefore be analyzed by harmonic wavelets.

As input data the EGM96 model for the disturbing potential T is used. The so-
called geoid undulations, i.e. the values

N := T

‖∇U‖ (2.284)

are computed based on the EGM96 model and displayed in Figure 2.51, in the upper
left corner. For the wavelet analysis of the geoid undulation fieldN the Shannon kernel
for M = 360 is used. The field N is analyzed on the scales 3, 5, 7. The results of
the wavelet transforms on these scales are displayed in Figure 2.51 from top right to
bottom right.

As a rough estimate it can be said that the scale J corresponds to details in the
signal with a size between 4 ·104/2J+1 km to 4 ·104/2J km, as it is given in Table 2.1.

Table 2.1. Scale dependent detail sizes

Scale J detail size [km]

1 20 000–40 000

2 10 000–20 000

3 5 000–10 000

4 2 500–5 000

5 1 250–2 500

6 625–1 250

7 312–625

Figure 2.51 shows clearly that the spherical wavelet analysis is a filter bank return-
ing on the scaleJ only features of the original signal with sizes between 4·104/2J+1 km
and 4 · 104/2J km.
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Figure 2.51. MRA of the Earth’s gravitational field. From top left to bottom right: complete
field, scales 3, 5, 7

Basically, in the simple form presented here, the spherical wavelet analysis is a
method for a sub-band coding of a signal given on the sphere. Though this is very useful
for many practical problems, the general acceptance in the geo-scientific community
is still pending. The main obstacle for the application of spherical wavelet techniques
is the lack of numerical algorithms, which have an efficiency comparable to Mallat’s
algorithm in the Euclidean case.

The spherical wavelet theory was mainly developed by theGeomathematics Group
of the University in Kaiserslautern. It reaches far beyond the ideas and techniques
explained here. Profound references to the theory of spherical wavelets are [27], or
[22]. The applicability of the spherical wavelet technique to geodetic problems has
been discussed in a larger number of papers. The publications [16] and [17] deal with
the approximation of data given on the sphere. The recovery of the Earth’s gravity field
from terrestrial and satellite observations by means of spherical wavelets is treated in
the papers [35], [37] and [36].
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2.11.2 Triangulation based wavelets

Classically, wavelet constructions have been employed in Euclidean spaces (the real
line R or the plane R2). Since most data are given on a finite interval or a finite
rectangle the wavelet theory has been extended to wavelets on an interval.

However, the underlying geometry is still Euclidean. The wavelet theory on curved
surfaces is still at its beginning. Besides the spherical wavelets, which make a special
use of the spherical harmonics expansion on the sphere, here a different technique,
based on a uniform approximation of the sphere by regular polyhedra will be presented.

In the classical setting wavelets are built with the help of a scaling functions.
Both wavelets and scaling functions fulfill so-called scaling equations, i.e. wavelet
and scaling functions on a certain scale j can be expressed as linear combinations of
the same scaling function on the next finer level j − 1. As in the Euclidean case also
for the sphere the wavelet will be derived from a multi-resolution analysis (MRA).

Definition 2.11.7. LetL2(σ ) be the Hilbert space of all square integrable functions on
the unit sphere σ . A nested sequence of closed subspacesVj is called amulti-resolution
analysis (MRA) of L2(σ ), if

{0} ⊂ · · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ L2(σ ), (2.285)

⋃
j∈Z

Vj = L2(σ ) (2.286)

holds and for each j scaling functions ϕj,k, k ∈ K(j) exist, such that

span{ϕj,k | k ∈ K(j)} = Vj (2.287)

is valid and for the index sets K(j)

K(j) ⊂ K(j − 1) (2.288)

holds.

In contrast to the classical case the scaling functionsϕj,k do not have to be translates
of one particular mother function ϕj . Relation (2.285) implies the existence of scaling
coefficients hj,k,l such that

ϕj,k =
∑

l∈K(j−1)

hj,k,lϕj−1,l (2.289)

is valid. As in the Euclidean case the wavelets code the difference between the signal
representation on two consecutive resolution levels. In more detail: Wavelets are base
function of the wavelet spaces Wj , which themselves are defined as the orthogonal
complement of Vj in Vj−1:

Vj ⊕Wj = Vj−1. (2.290)
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Definition 2.11.8. Consider the set of functions

W := {ψj,m | j ∈ Z,m ∈ M(j)}, (2.291)

where M(j) ⊂ K(j − 1) is an index set again. If

1. W is a base of L2(σ ) and

2. the set {ψj,m | m ∈ M(j)} is a base of Wj ,

then the functions ψj,m are called a spherical wavelet base.

Since Wj ⊂ Vj−1 there have to exist coefficients gj,m,l with

ψj,m =
∑

l∈K(j−1)

gj,m,lϕj−1,l , m ∈ M(j). (2.292)

So far the orthogonality of the wavelet has not been mentioned. In fact it is difficult or
even impossible to construct orthogonal wavelets on the sphere with a support smaller
than the whole surface of the sphere. Therefore our considerations will be restricted
to biorthogonal wavelets on the sphere.

The dual scaling functions ϕ̃l,m are defined by the condition

〈ϕj,k, ϕ̃j,l〉 = δk,l . (2.293)

For a dual scaling function the scaling equation

ϕ̃j,k =
∑

l∈K(j−1)

h̃j,k,l ϕ̃j−1,l (2.294)

holds. Additionally, for a given set of spherical waveletsψj,k there exist dual wavelets
ψ̃n,m, which are biorthogonal to each other,

〈ψj,k, ψ̃n,m〉 = δj,nδk,m. (2.295)

This implies 〈ψ̃j,k, ϕn,m〉 = 〈ψj,k, ϕ̃n,m〉 = 0. The essence of biorthogonality is the
use of dual bases for the decomposition and for the reconstruction of a signal f :

f =
∑
j,m

〈ψ̃j,m, f 〉ψj,m =
∑
j,m

〈ψj,m, f 〉ψ̃j,m. (2.296)

Once the scaling coefficients hj,k,l and gj,m,l are given, an analog of Mallat’s
algorithm can be constructed. Let

c
(n)
k := 〈f, ϕ̃n,k〉 (2.297)

be the Fourier coefficients of a signal f with respect to the base of the scaling spaceVn.
The Fourier coefficients c(n+1)

k of the projection Pn+1f into the coarser space Vn+1



2.11 Wavelets on a sphere 125

and the Fourier coefficients d(n+1)
k of the projection Qn+1f of f into the difference

space Wn+1 can be computed recursively according to

c
(n+1)
k =

∑
l∈K(n)

h̃n,k,lc
(n)
l , (2.298)

d(n+1) =
∑
l∈K(n)

g̃n,k,lc
(n)
l . (2.299)

The reconstruction step then is as follows:

c
(n)
k =

∑
l∈K(n+1)

hn+1,k,lc
(n+1)
l +

∑
l∈K(n+1)

gn+1,k,ld
(n+1)
l . (2.300)

In order to get a clearer picture of the situation, a simple example of biorthogonal
wavelets will be given now.

Example 2.11.4. In preparation of the construction of biorthogonal wavelets on the
sphere biorthogonal wavelets on the real line, which are related to the Haar wavelet
will be discussed here. Suppose

ϕj,k(x) := χ[2j k,2j k+2j ](x), (2.301)

where χM is the characteristic function of the setM , are the primal scaling functions.
Obviously, the dual scaling functions are

ϕ̃j,l := 1

2j
χ[2j k,2j k+2j ](x), (2.302)

which leads to the orthogonality condition

〈ϕj,l, ϕ̃j,m〉 = δl,m.

It is not difficult to see that the primal wavelets are

ψj,k(x) = ϕj−1,2k(x)− ϕj−1,2k+1, (2.303)

and the dual wavelets are

ψ̃j,k(x) = ϕ̃j−1,2k(x)− ϕ̃j−1,2k+1. (2.304)

Both, the primal and the dual scaling function and the primal and dual wavelet are
shown in Figure 2.52.

Evidently, the scaling coefficients are

hj,k.0 = hj,k,1 = 1, gj,k.0 = 1, gj,k,1 = −1, (2.305)

h̃j,k.0 = h̃j,k,1 = 1, g̃j,k.0 = 1, g̃j,k,1 = −1. (2.306)

All other coefficients are equal to zero.
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Figure 2.52. Primal scaling function and wavelet (top); dual scaling function and wavelet
(bottom)

Haar wavelets on the sphere. This simple example is the starting point for the
construction of a Haar wavelet base on the sphere. In order to achieve this, a nested
sequence of triangulation of the sphere is necessary. The construction of such a nested
sequence starts from a subdivision of the sphere into four spherical triangles, as it is
indicated in Figure 2.53, where one of the four spherical triangles is marked by solid
lines.

To generate the next finer grid, the midpoints of each side of each triangle are
connected by lines. In this way each triangle is divided in four smaller triangles, as it
is shown in Figure 2.54.

So in each refinement level j the surface of the sphere σ is the union of the triangles
Tj,k:

σ =
⋃

k∈K(j)

Tj,k. (2.307)

For each j and k the triangle Tj,k is the union of four child triangles Tj−1,l :

Tj,k =
3⋃
l=0

Tj−1,l . (2.308)
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T0,0

Figure 2.53. Subdivision of the sphere into four spherical triangles

T−1,1

T−1,3

T−1,0

T−1,2

Figure 2.54. Refinement of the subdivision of the sphere

On a certain level j the spherical Haar scaling functions ϕj,k are defined as

ϕj,k := χTj,k , (2.309)

with χ being the characteristic function of the triangle Tj,k . Then the dual scaling
function ϕ̃j,k is

ϕ̃j,k = 1

µ(Tj,k)
χTj,k , (2.310)

where µ(Tj,k) is the Lebesgue measure of the triangle Tj,k . In Figure 2.55 a spherical
Haar scaling function and its dual are displayed.

For each spherical Haar scaling function ϕj,k there are three independent spherical
Haar wavelets defined by

ψ
(m)
j,k := 2

(
ϕj−1,m − Ij−1,m

Ij−1,0
ϕj−1,0

)
, m = 1, 2, 3, (2.311)
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ϕj,k

ϕ̃j,k

Figure 2.55. Spherical Haar scaling function and its dual.

with Ij,k being the integral of the scaling function

Ij,k :=
∫
σ

ϕj,k dσ = µ(Tj,k). (2.312)

In Figure 2.56 the spherical Haar scaling function ϕj,k and one of the corresponding

spherical Haar wavelets ψ(m)j,k are displayed.

ϕj,k

ψ
(2)
j,2

Figure 2.56. Spherical Haar scaling function and one of its spherical Haar wavelets

Quite similar the dual spherical Haar wavelet is defined by

ψ̃
(m)
j,k := 1

2
(ϕ̃j−1,m − ϕ̃j,k), m = 1, 2, 3. (2.313)

In Figure 2.57 the dual spherical Haar scaling function ϕ̃j,k and one of the correspond-

ing dual spherical Haar wavelets ψ̃(m)j,k are shown.
Obviously, the following relations are true

〈ϕj,k, ϕ̃j,l〉 = δk,l,
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ϕ̃j,k ψ̃
(1)
j,1

Figure 2.57. Dual spherical Haar scaling function and one of its dual spherical Haar wavelets

〈ψ(l)j,k, ψ̃(p)n,m〉 = δj,nδk,m · 〈ψ(l)j,k, ψ̃(p)j,k 〉

= δj,nδk,m

〈(
ϕj−1,l − Ij−1,l

Ij−1,0
ϕj−1,0

)
, (ϕ̃j−1,p − ϕ̃j,k)

〉
(2.314)

= δj,nδk,m

(
〈ϕj−1,l , ϕ̃j−1,p〉 − 〈ϕj−1,l , ϕ̃j,k〉 + Ij−1,l

Ij−1,0
〈ϕj−1,0, ϕ̃j,k〉

)
= δj,nδk,m

(
δl,p − Ij−1,j

µ(Tj,k)
+ Ij−1,l

Ij−1,0

Ij−1,0

µ(Tj,k)

)
= δj,nδk,mδl,p,

〈ϕj,k, ψ(l)j,k〉 =
〈
ϕj,k, ϕj−1,l − Ij−1,l

Ij−1,0
ϕj−1,0

〉
= Ij−1,l − Ij−1,l

Ij−1,0
Ij−1,0 (2.315)

= 0,

and

〈ϕ̃j,k, ψ̃(l)j,k〉 = 〈ϕ̃j,k, ϕ̃j−1,l − ϕ̃j,k〉
= 1

µ(Tj,k)µ(Tj−1,l)
〈ϕj,k, ϕj−1,l〉 − 1

µ(Tj,k)2
〈ϕj,k, ϕj,k〉

= µ(Tj−1,l)

µ(Tj,k)µ(Tj−1,l)
− µ(Tj,k)

µ(Tj,k)2
(2.316)

= 0.

Hence the functions ϕj,k , ψ
(l)
j,k . ϕ̃j,k , ψ̃

(l)
j,k indeed form a biorthogonal wavelet base

on the sphere.
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More information about triangulation based wavelets on the sphere and their ap-
plications in Geosciences and Computer vision can be found in [92] and [100].



3 Applications

3.1 Pattern recognition

3.1.1 Polar motion

The rotation axis of the Earth is neither fixed in inertial space nor is it with respect to
the Earth’s body. The gravitative forces of the Sun and Moon acting on the equatorial
bulge of the Earth are changing the orientation of the rotation axis in inertial space.
These changes are called precession and nutation and can be predicted with a very
high accuracy.

Additionally, there is a small movement of the Earth’s rotation axis with respect to
its crust, which is called polar motion. Both nutation and polar motion are the super-
position of Earth’s response to external forces and free nutation of the Earth. Nutation
is primarily the forced response of the Earth and can be predicted by geophysical and
orbital models. The polar motion represents the forced and the free response of the
Earth to external forces in almost equal parts. Again, the forced part can be predicted
but the free part can only be determined by Space Geodesy methods. Moon and Sun
and the planets exert gravitational forces on the equatorial bulge. Since the rotating
Earth behaves like a gyro, it reacts to these forces by a clockwise movement of its
rotation axis. This movement consist of two constituents:

• precession,

• nutation.

Definition 3.1.1. Luni-solar precession is the circular motion of the celestial pole with
a period of 25 800 years and an amplitude equal to the obliquity of the ecliptic of 23 .5.
The precession causes a westerly movement of the equinox of about 50′′.3 per year.

Planetary precession consist of a 0 .5 per year rotation of the ecliptic resulting in
an easterly motion of the equinox by about 12′′.5 per century and an decrease of the
obliquity of the ecliptic by about 47′′ per century.

Definition 3.1.2. The combined effect of luni-solar and planetary precession is called
general precession or simply precession.

Definition 3.1.3. The short periodic motion of the pole superimposed on the pre-
cession with oscillations of 1 day to 18.6 years (the main period) and a maximum
amplitude of 9′′.2 is called nutation.

Besides the movement of the Earth’s rotation axis in space there is an additional
variation of the rotation axis relative to the Earth’s crust. This motion is primarily due
to the elastic properties of the Earth and the exchange of angular momentums between
the solid Earth, the oceans and the atmosphere.
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Ecliptic pole

Ecliptic

γ

23˚.5

Earth’s rotation axis

Equator

Figure 3.1. Precession

Definition 3.1.4. Polar motion is the rotation of the true celestial pole as defined by the
precession and nutation models with respect to the z-axis of a conventionally chosen
terrestrial reference system.

Ecliptic pole

23˚.5

18.6 yrs

Figure 3.2. Nutation

Polar motion consists of a free and a forced oscillation. The free oscillation is
counterclockwise with a period of 430 days (Chandler period) and an amplitude of
3–6 m.

The forced component again consists of two parts. The first part is excited by
the tidal forces and therefore has a diurnal period, with an amplitude of one order of
magnitude smaller than the free oscillation. The second part has an annual period since
it is excited by the annual changes in the atmosphere. Its amplitude is about as large
as the free oscillation.
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Polar motion cannot be predicted by models, it has to be observed by space tech-
niques. The accuracy of those observation has achieved a very high level, accounting
for 0.2–0.5 milliarcseconds which is equivalent to 6–15 mm at the Earth’s surface.
Polar motion values can be downloaded from the International Earth Rotation Service
(IERS) as tables of daily values of pole coordinates.

In Figure 3.3 a part of the polar motion time series between 1925.0 and 1976.15
with a sampling rate of 0.05 yr is displayed.
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Figure 3.3. x- and y-component of polar motion

The results of the analysis of these time series with the Morlet wavelet is shown
in Figure 3.4. For this analysis the value of the Morlet parameter ω0 was chosen as
ω0 = 5.0.

Three features of the polar motion are clearly visible from the wavelet spectra:

1. the forced annual oscillation,

2. the Chandler wobble with a period of 435 days,

3. the attenuation of the energy of the polar motion between 1940.0 and 1950.0.

The attenuation is due to the three-decade oscillation, the so-called Markowitz wobble.
Since the time span of the polar motion is only 50 years, the Markowitz wobble does
not show up as a separate frequency band in the wavelet spectrum.

These three effects cannot be separated in a Fourier spectrum. In Figure 3.5 the
results of the short-time Fourier transformation of the x-component of the polar motion
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Figure 3.4. Wavelet spectrum of the x- and y-component of polar motion

both for a narrow and for a wide window are displayed. It is clearly visible that the
short-time Fourier transformation does not separate annual oscillation and Chandler
wobble as clearly as the wavelet transformation.
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Figure 3.5. Short-time Fourier spectrum of the x-component of polar motion; narrow win-
dow (left) and wide window (right)

The time series of the coordinates of the instantaneous position of the Earth’s
rotation axis is frequently analyzed by different kinds of wavelets. Such studies aim
at the detection of time varying features of the polar motion. Contributions, which
belong to this group of investigations are [85], [86], [89] and [84]. In the papers [90]
and [91] a special emphasis is given to the analysis of short-periodic variations in the
Earth’s polar motion. In a more general setting the time series of the polar motion
can be considered as realizations of stochastic processes. A systematic extension of
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the theory of stochastic processes to wavelet bases can be found in [83] and [87] and
[88]. The localization properties of wavelets enable the extension of the Wiener–
Kolmogorov prediction to cases with a stationary signal but an non-stationary noise.
These developments are reported in [56] and [55].

3.1.2 Atmospheric turbulence

Fully developed turbulence occurs in incompressible flows at high Reynolds numbers.
It shows features of self-similarity and is therefore closely related to fractals. Conse-
quently, the discussion of the application of wavelets for the study of turbulence will
be started with the introduction of some concepts of fractal theory. The turbulence
analysis aims at the identification of places where the velocity field suddenly changes
its regularity. The regularity of a function f can be measured by its Hölder exponent h:

|f (x0 + l)− f (x0)| ∼ Clh(x0). (3.1)

The larger the Hölder exponent h(x0) the more regular is the function f at the place
x0. The Hausdorff dimension is a concept for the characterization of fractal sets:

Definition 3.1.5. Let h ⊂ Rm be an arbitrary subset of Rm. Let N(ε) be the number
of balls of radius ε which are necessary to cover h completely. The number

D(h) := lim
ε→0

lnN(ε)

ln ε
(3.2)

is called the Hausdorff dimension of h.

It is easy to see that for simple sets h the Hausdorff dimension coincides with the
usual definition of its dimension. For more complicated sets, the Hausdorff dimension
can have a non-integer value. For this reason sets with a fractal Hausdorff dimension
are called fractals.

Intuitively,
Nh(l) ∼ l−D(h) (3.3)

gives the number of balls of diameter l, which are necessary to cover the set of all
points, where the velocity field has the Lipschitz regularity h.

The connection between the Lipschitz regularity and wavelet analysis is given by
the following theorem:

Theorem 3.1.1. Suppose that ψ is a wavelet with n vanishing moments, having a
compact support. Let θ be a function with∫

R

θ(t) dt �= 0, ψ = (−1)nθ(n)(t). (3.4)

Let f ∈ L1([a, b]). If there exists s0 > 0 such that |Wf (u, s)| has no local maximum
for u ∈ [a, b] and s < s0, then f is uniformly Lipschitz n on [a + ε, b − ε], for any
ε > 0.
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Proof. [71]. ��

In plain words the theorem states that a function f is Lipschitz α0 < n at x0 if
there is a sequence {(up, sp)}p of wavelet maxima points with

lim
p→∞ up = x0, lim

p→∞ sp = 0. (3.5)

Consequently, if the local maxima of the wavelet spectrum are connected by lines,
the prolongation of these lines towards the scale s = 0 end at a point x0, where f is
Lipschitz α0 < n. For a fixed scale s the set of local maxima of the wavelet spectrum
|Wf (u, s)| can be considered as a covering of the set of singularity points of f by
wavelets of the scale s. At these maxima locations

|Wf (u, s)| ∼ sα0+1/2 (3.6)

holds.

Definition 3.1.6. Let {up(s)} be the positions of all local maxima of |Wf (u, s)| at the
fixed scale s. The function

Z(q, s) =
∑
p

|Wf (up, s)|q (3.7)

is called the partition function.

Of course, Z decays for the scale s tending to zero. The scaling exponent τ(q)

τ (q) := lim inf
s

lnZ(q, s)

ln s
(3.8)

measures the decay of Z. The scaling exponent τ and the Hausdorff dimensionD are
closely related to each other.

Theorem 3.1.2. Let � = [αmin, αmax] be the support of D(α). Let ψ be a wavelet
with n > αmax vanishing moments. Then it holds

τ(q) = min
q∈�

(
q

(
α + 1

2

)
−D(α)

)
. (3.9)

Proof. [3]. ��

In numerical calculations τ(q) is computed by evaluating the sum Z(s, q). Solving
(3.9) for D(α) gives the unknown Hausdorff dimension.

In Figure 3.6 the typical behavior of the Hausdorff dimension as a function of α is
displayed.



3.1 Pattern recognition 137

D(α)

q > 0

αmin

q = 0

α0

q < 0

αmax α

Figure 3.6. Hausdorff dimension as function of Hölder exponent α

Hence the computation of the Hausdorff dimension consists of four steps:

1. Compute Wf (u, s) and the modulus maxima at each scale s. Concatenate the
maxima across scales.

2. Compute the partition function

Z(q, s) =
∑
p

|Wf (up, s)|q .

3. Compute τ(q) as a linear regression of ln Z(q, s) with respect to ln s.

4. Compute Hausdorff dimension as

D(α) = min
q∈R

(q(α + 1/2)− τ(q)) . (3.10)

The statistical theory of turbulence was introduced by the contributions of Kol-
mogorov [59] and Obuchov [76]. This theory applies the tools of the theory of station-
ary stochastic processes to understand the partition of energy, at different scales, in
the solution of the Navier–Stokes equation. Only the inertial zone, which lies between
the smallest scales (where dynamic energy is dissipated in heat) and the largest scales
(where exterior forces supply energy), is treated in the statistical theory of turbulence.
In this inertial zone it is supposed that energy is neither produced nor dissipated but
only transferred from one scale to another according to a constant rate ε. Additionally,
it is assumed that the statistical properties of the velocity components of the transport
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are invariant and isotropic in the probabilistic sense. The main result of Kolmogorov’s
statistical theory is

E{|ui(x +
x, t)− ui(x, t)|n} = Kn · (E{ε}) n3 · |
x| n3 , (3.11)

where ui, i = 1, 2, 3 are the velocity components, ε is energy dissipation rate

ε = ν

2

(
∂ui

∂xj
+ ∂uj

∂xi

)2

, (3.12)

ν is the kinematic viscosity andKn is an universal constant. The pendant to the scaling
law in the space domain is the 5/3 -law

S(ω) ∼ ε2/3|ω|−5/3 (3.13)

for the power density.
For n = 2 the scaling law (3.11) has been confirmed by many experiments. How-

ever, it is not accurate for n > 2 as evidenced by many other experiments. The
deviation from the scaling law (3.11) can be attributed to the fact the dissipation of
turbulent energy occurs only in a small fraction of the fluid volume. This intermit-
tency results in a ε(x)with a turn-on turn-off behavior. This means that turbulence has
features which change not only in scale but also in space. Hence the Fourier power
spectrum does not elucidate the multi-fractal structure of fully developed turbulence.
Therefore it is a natural idea to use wavelets in order to unfold turbulence signals in
scale and space.

In general, turbulence studies means the identification of sets with small Hölder
exponents. This leads to the following interpretation of the scaling law (3.11): The
velocity field is statistically homogeneous with a Lipschitz regularity 1/3. For purpose
of isolating singular structures a link between the so-called structure function

D
q
f (x) := E{|f (x0 + x)− f (x0)|q} (3.14)

and the Hölder exponent is used. Due to Parisi and Fritsch 1984 [77] this relationship
is

D
q
f (r) ∼ r infα>0[pα+1−D(α)], (3.15)

where D(α) is the Hausdorff dimension of the set

{x | h(x) = α}. (3.16)

Practical computations of the Hausdorff dimensionD(α) show that it has its maximum
at α = 1/3 as it is predicted by Kolmogorov’s theory. Nevertheless, the support of
D(α) is not reduced to {1/3}, which means that a turbulent flow is not a statistically
homogeneous field.

Practical applications of wavelets for the study of atmospheric turbulence can be
found in [8], [49] and [46].
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3.1.3 Fault scarps from seafloor bathymetry

A wavelet decomposition of bathymetric data reveals structures which are easily over-
looked in the raw data. Additionally, isolated features such as fault scarps can be
extracted by an wavelet analysis.

Usually most of the bathymetry data are collected from ship traverses. These tracks
are densely spaced in along-track direction but the tracks are often several kilometers
apart. Hence these data are basically one-dimensional spatial series. Those series can
be successfully analyzed by one-dimensional wavelet analysis. In [64] a 1600 km
long profile near to Hawaii is analyzed. For this analysis a Morlet wavelet is used and
the returned wavelet spectrum shows clearly two distinct zones:

• a small zone with large wavelet coefficients on long scales,

• the rest of the profile showing dominating wavelet coefficients on the short
scales.

The anomalous small zone is interpreted as the site of a short-lived, abandoned spread-
ing center.

Up to now only few areas of the seafloor have been mapped by a swath bathymetric
survey, meaning that only in these few areas two-dimensional bathymetry data are
available. Nevertheless, a two-dimensional analysis can give a much deeper insight
than only a track-wise analysis. A typical two-dimensional bathymetry image is shown
in Figure 3.7. It results from a bathymetric survey of the Mid-Atlantic Ridge.

Figure 3.7. Bathymetry of a section of the Mid-Atlantic Ridge

The deep central median valley and the surrounding faulted blocks are clearly
visible in the image. These faulted blocks tend to be long linear ridges running parallel
to the axis of spreading. To find the location of the faults is one goal of the bathymetric
survey. Therefore one tries to extract relatively long linear features with a preferred
orientation from the image. For this purpose a wavelet has to be constructed, which
is sensitive to exactly those features. This goal can be achieved by the construction
of a two-dimensional wavelet ψ(x1, x2) with a quick decay in x1 and a slow decay
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in x2 direction. Then the bathymetry data d(x) can be subjected a continuous two-
dimensional wavelet transform

W eu{d}(a, ϑ, b) = 1√
cψ

∫
R2

1

a
ψ

(
1

a
R�(ϑ)(x − b)

)
· d(x) dx (3.17)

with a fixed orientation angle ϑ . The orientation angle has to be chosen so that it
coincides with the orientation of the mid-valley of the Mid-Atlantic Ridge.

As an example for a wavelet with different scales in different coordinate directions
the tensor product of the Mexican hat wavelet

ψ(x1) = (1 − x2
1 )e

− x2
1
2 (3.18)

and the scaling function of the linear spline wavelet

ϕ(x2) =


1
4 (x2 + 2), −2 ≤ x2 < 0
1
4 (2 − x2), 0 ≤ x2 < 2

0, otherwise

(3.19)

can be used. The resulting wavelet is displayed in Figure 3.8.
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Figure 3.8. Two-dimensional wavelet for the analysis of Sea-floor faults

With the help of this wavelet the bathymetry data can be analyzed twice. Once
with the rotation angle ϑ = 85 and another time with the rotation angle ϑ = −5 .
In the first case the faults running across the Mid-Atlantic Ridge in the second case
the faults running parallel to the Mid-Atlantic Ridge are emphasized. A threshold
operation applied to the wavelet spectra extracts the across and the parallel faults.
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In Figure 3.9 the wavelet spectra and the results of thresholding these spectra are
shown.

From Figure 3.9 it is clearly visible that in the case of ϑ = 85 the faults running
across the Mid Atlantic Ridge are extracted, the choice of ϑ = −5 reveals the faults
running parallel the Mid-Atlantic Ridge.

Figure 3.9. Wavelet spectra for rotation angles ϑ = 85 (top left) and ϑ = −5 (bottom left)
and corresponding thresholded spectra (right)

Similar investigations are reported in [67]. In this paper bathymetric data of
a 100 km × 70 km section of the Mid-Atlantic Ridge are analyzed. With a linear
B-spline wavelet the fault scarps parallel to the Mid-Atlantic Ridge were extracted
from the bathymetry data. The obtained information about preferred fault spacing,
fault orientation and densities can help to understand the complex process the geo-
physical process of ocean floor spreading.

3.1.4 Seismic reflection horizons

The source of seismic waves can be natural or artificial. The natural sources of seis-
mic waves are earthquakes. Since earthquakes are not readily available a continuous
recording of seismographs and waiting for earthquakes is highly inefficient. For this
reason the use of explosives can generate widely control-able artificial sources of
seismic waves. The artificially generated seismic waves are recorded at an array of
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geophones located at a regular grid around the place, where the waves are generated.
Basically, there are two different sets of seismic data acquired using artificial sources,
one is obtained by refraction the other by reflection.

• In the refraction method the arrival time of wave as a function of the distance
from the sources is measured.

• In the reflection method the travel time of the reflected signal from the source
to the reflection horizon and back to the receiver is measured.

The relationship between the travel time of the reflected signal and the elastic properties
of the soil is given by the one-dimensional wave equation

ρ(x)
∂2u

∂t2
= ∂

∂x

[
E(x)

∂u

∂x

]
, (3.20)

where ρ is the density E an elastic constant and u(x, t) the longitudinal displacement
due to compression waves. If we assume that the medium consists of a stack of
homogeneous layers as shown in Figure 3.10, the equation simplifies to

ρi
∂2ui

∂t2
= Ei

∂2ui

∂x2
, (3.21)

where Ei and ρi are constants. Using arbitrary functions fi(t), the solution of (3.21)
can be written as

ui = fi(t ± x/ci), ci =
√
Ei/ρi. (3.22)

0

E1, ρ1

E2, ρ2

E3, ρ3

E4, ρ4

x

Figure 3.10. Medium of homogeneous layers

Without any loss of generality the thicknesses
xi of the layers can be chosen in such
a way that the travel-time


ti = 
xi

ci
= δt = const (3.23)
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through every layer is the same. Let us now consider the reflection and transmission
at the interface from the i-th to the (i + 1)-th layer. The situation is sketched in
Figure 3.11.

Layer i
1
ri

Ti

Interface
Layer i + 1

ti

1
Ri

Figure 3.11. Interface between layers i and (i + 1)

Applying the condition of continuity of displacement across the interface

ui = ui+1, (3.24)

and the condition of continuity of traction

Ei
∂ui

∂x
= Ei+1

∂ui+1

∂x
, (3.25)

the following relations between the amplitudes of the transmitted and reflected pulses
are obtained:

1 + ri = ti , (3.26)

1 + Ri = Ti, (3.27)

ri = −Ri = ciρi − ci+1ρi+1

ciρi + ci+1ρi+1
. (3.28)

If now an impulse at x = 0 is sent to the layered medium the geophones receive the
reflections from many interfaces as it is shown in Figure 3.12.

This means, the impulses, which are reflected at the different interfaces arrive at
the receiver with a time spacing of 2
t . A receiver placed directly at the point where
the impulse was injected to the material would register a time series of the form shown
in Figure 3.13.

In practical applications not only one geophones but a whole array of geophones
placed at different distances from the seismic source are used. These geophones
receive besides the direct wave also the reflected wave as it is indicated at the left side
of Figure 3.14.
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Figure 3.12. Transmission and reflection at interfaces
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Figure 3.13. Direct registration of the reflected impulses

If the seismograms of the registered signals at the individual geophones are stacked
according to the distance to the seismic source the typical form of a reflection seismo-
gram as it is shown at the right side of Figure 3.14 is obtained.

Obviously, in the seismogram the signature of the reflection horizons is given by a
succession of features on a precisely defined scale. This leads in a natural way to the
application of wavelets for the analysis of seismic data. Information like lengths of an
event, its tip, frequency and amplitude are essential for geophysical interpretation of
seismic data. In Figure 3.15 a section of a seismogram is displayed as a gray-coded
image.
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Figure 3.14. Array of geophones (left) and the registered seismogram (right)

Figure 3.15. Gray-coded section of a seismogram

The inversion of seismograms aims at an identification of the individual seismic
reflection horizons, their lengths and their dip-angles. Since the scale of the reflected
signal is approximatively known a wavelet analysis of each individual record at exactly
this scale reveals the location of the reflection horizon as the occurrence of large values
in the wavelet spectrum. An subsequent thresholding operation can suppress those
parts in the spectrum which are not related to reflection horizons and will leave only
the reflection incidences.

This process is indicated in Figure 3.16. For the wavelet analysis the Mexican-
hat wavelet with the scale parameter a = 15.0 was used. A hard-thresholding was
applied by setting to zero all spectral lines with a modulus smaller than 40 % of the
maximum modulus. Obviously by this strategy only the reflection horizons with a
strong reflection are detected. If also the weak reflections should be detected a milder
thresholding would be necessary. If this procedure is repeated for every recording and
if the results are stacked again a picture as is displayed in Figure 3.17 is obtained.
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Figure 3.16. Seismogram with three selected recordings (top left) and the recordings with their
thresholded wavelet spectra (top right to bottom right)

Figure 3.17. Reflection horizons detected by wavelet analysis
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One of the first application of wavelets for seismic studies is reported in [61].
Examples for the wavelet analysis of normal incidence seismic data, i.e. of seismic
data where source and receiver are at the same location are given in [78]. Similar ideas,
without relating the directly to wavelet theory, are used in the paper [66] and [102].

3.1.5 GPS cycle-slip detection

The NAVSTAR GPS (NAV igation System with T ime and Ranging Global Positioning
System) is a satellite based navigation system providing precise three dimensional
positions and time information. Among the observables of the GPS system carrier
phase observations have the highest accuracy potential. Carrier phase observations
are generated by comparison of the carrier received from the satellite with a copy
of this carrier generated in the receiver. Because of the travel time of the signal the
received and the generated carrier differ by a time lag, which corresponds to the travel
time of the signal between the satellite and the receiver. Due to the strict periodicity
of both the received and the generated carrier the time lag can only be determined up
to an unknown integer number of carrier cycles.

Hence a GPS carrier phase observation can be described by the following equation:

�i(t) = −
(
fi

c

)
(ρ(t)− Ii(t)+ T (t)+ fi(δ

S − δR))+Ni, (3.29)

where

• fi is the nominal Li frequency,

• ρ is the geometrical distance between satellite and receiver,

• Ii is the frequency dependent path lengthening due to ionospheric refraction,

• T is the frequency independent path lengthening due to tropospheric refraction,

• δS, δR are the satellite clock and the receiver clock errors respectively,

• Ni is the integer phase ambiguity,

• the index i refers to the two frequenciesL1, L2 implemented in the GPS system.

The values of Ni do not change as long as the connection between satellite and
receiver is not interrupted. If as a result of a bad signal to noise ratio this connection is
disturbed, the receiver has to lock the satellite again. A new acquisition also changes
the value of the integer ambiguitiesNi . This effect is called cycle -slip and is sketched
in Figure 3.18.

Therefore one of the basic steps in GPS data processing is the detection and cor-
rection of cycle slips. A large number of different techniques has been developed for
this purpose. One of the frequently used method is the analysis of the so-called phase
double differences. For the double differences observations of two receivers i, j to
two satellites p, q are used. The situation is displayed in Figure 3.19.
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Figure 3.18. Cycle slip due to loss-of-lock
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Figure 3.19. Configuration of double differences observations

The phase double difference is defined by

∇
�pqij := (�
p
i −�

p
j )− (�

q
i −�

q
j ). (3.30)
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Inserting (3.29) in this definition one obtains

∇
�pqij = −
(
f

c

) [
(ρ
p
i − ρ

p
j )− (ρ

q
i − ρ

q
j )

− (I
p
i − I

p
j )− (I

q
i − I

q
j )+ (T

p
i − T

p
j )− (T

q
i − T

q
j ) (3.31)

+ (N
p
i −N

p
j )− (N

q
i −N

q
j )
]
.

Obviously, the satellite and the receiver clock errors cancel out in the double differ-
ences. If the distance between the receivers is smaller than about 30 km, the signals
registered at both receivers have approximatively the same path lengthening due to
ionospheric and tropospheric influences. This means, the tropospheric and ionospheric
terms can be neglected, leading to

∇
�pqij = −
(
f

c

) [
(ρ
p
i − ρ

p
j )− (ρ

q
i − ρ

q
j )+ (N

p
i −N

p
j )− (N

q
i −N

q
j )
]
. (3.32)

Consequently, the change in ∇
�pqij is only due to the change in the satellite–receiver
geometry. Since the satellites move slowly – they need about 12 hours for one rev-
olution around the Earth – the change in ∇
�pqij is very smooth. Sudden jumps in

∇
�pqij indicate the occurrence of a cycle slip. In Figure 3.20 two hours of L1 phase
double differences, recorded with a sampling rate of 15 seconds are displayed.

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

1.8 · 106

1.7 · 106

1.6 · 106

1.5 · 106

1.4 · 106

1.3 · 106

1.2 · 106

Figure 3.20. Double differences with cycle slip at epoch 100

Because the modulus of ∇
�pqij is quite large the jump at epoch 100 is not visible
and it is also difficult to detect by statistical tests. For this reason the smooth trend
is eliminated by fitting a low order polynomial to ∇
�pqij . The residuals after the fit
of a cubic polynomial are displayed in Figure 3.21. In the residuals the cycle slip is
clearly visible as a sudden change in the sign of the residuals. This change of sign can
easily be detected by statistical tests.
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Figure 3.21. Residuals of a cubic polynomial fitted to phase double differences

The essence of cycle slip detection by analysis of the double differences is a two-
step algorithm,

1. a low-pass filter by extracting a polynomial trend and

2. a high-pass filter by extraction short wavelength features in the residuals.

Therefore the cycle slip detection algorithm can be considered as a band-pass filter.
Since wavelet transformation implements also a band pass filter a direct link between
cycle slip detection and wavelet transformation is given. The basic idea of this link
is to identify cycle slips as large entries in the wavelet spectrum of ∇
�pqij . For this
purpose a multi-resolution analysis based on the Daubechies wavelet of order 4 was
created and the projection of ∇
�pqij into the Wavelet space W1 was computed. The

corresponding wavelet coefficients d(1)k are displayed in Figure 3.22 in a logarithmic
scale.

In this spectrum the cycle slip clearly shows up as an isolated spike which is very
easy to detect. Used in this way, wavelet transformation is a very efficient and fast tool
for cycle slip detection.

In [14] the a different method for the detection of cycle slips with wavelets is
discussed. The idea behind the detection of cycle slips by wavelet transformation is
the observation that the wavelet spectrum has large values at places where the signal
locally has a similar shape as the analyzing wavelet. Therefore a wavelet has to be
constructed which reflects the typical signal structure of a cycle slip. Entries in the
spectrum with large values are interpreted as places, where cycle slips occurred.
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Figure 3.22. Daubechies 4 wavelet spectrum of double differences

For the cycle slip detection the phase observations on both frequencies are com-
bined

PP = �1 −
(
f1

f2

)
�2

=
(
f1

c

)
(I1(t)− I2(t))+

[
N1 −

(
f1

f2

)
N2

]
. (3.33)

Since the ionospheric refraction Ii chances slowly with time, a cycle slip will give
a jump in the PP combination. A typical PP combination containing a cycle slip is
displayed in Figure 3.23.
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Figure 3.23. Cycle slip in PP combination
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For the analysis of the PP combination the authors developed a special wavelet ψ(t)
given by its discrete values

ψ(t) =



1.0, t = −2

−1.0, t = −1

−2.0, t = 0

2.0, t = 1

1.0, t = 2

0, for all other t ∈ Z.

(3.34)

Between these discrete points the wavelet is interpolated linearly. The wavelet is
displayed in Figure 3.24.

2

1.5

1

0.5

0

468 64 22 0

2

1.5

1

0.5

____
_

_

_

_

Figure 3.24. Empirical wavelet for the detection of cycle slips

The wavelet spectrum of thePP combination with respect to the wavelet (3.34) was
computed with respect to the single scale λ = 1 and the result is plotted in Figure 3.25.

The cycle slip is clearly visible from its typical signature in the wavelet spectrum.
The slow variation of the PP combination, due to the variation of the ionospheric
influence is completely suppressed.

Despite the fact that the analysis was really carried out using a wavelet there is one
essential difference to a real wavelet analysis. Typical for a wavelet analysis is the fact
that the signal is analyzed on different scales. In the cycle slip example the analysis
was carried out only on the finest scale.
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Figure 3.25. Wavelet spectrum of the PP combination

3.1.6 Edge detection in images

Frequently, a pattern recognition in images aims at a detection of sharp edges. On first
sight edges could be understood as places in the image, where the image intensity has
a sharp transition. But this definition is not satisfactory since also textures have sharp
transitions in image density without being connected to an edge. A clear distinction
between edges and textures requires the inclusion of the scale of the phenomena into
the consideration. This leads in a natural way to a wavelet analysis of the image. The
edges can be identified as the modulus maxima of the wavelet spectrum of the image.
Edge detection algorithms, which are based on this idea are described in [80] and [11].

Maxima of wavelet spectra of images. The standard algorithm for edge detection
in images is the search for maxima of the gray value gradient

∇f (x) =
(
∂f

∂x1
(x),

∂f

∂x2
(x)

)
. (3.35)

The vector ∇f (x) points into the direction of the maximum change of f . A point
f (x) is considered an edge, if it is a local maximum of ‖∇f ‖ in the direction ∇f (x),
i.e. if

‖∇f (x)‖ ≥ ‖∇f (y)‖ (3.36)

holds for
y = x + λ∇f (x) (3.37)

and λ ∈ R small enough. In this way all sharp transitions in image density will be
detected independent of their scale. In order to implement a multi-scale version of this
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edge-detection approach, the data has to be convoluted in advance with a smoothing
kernel�(i, j), which is dilated to the respective scale. Usually, this smoothing kernel
is symmetric �(x) = �(−x) and its partial derivatives

ψ1(x) := −∂�(x1, x2)

∂x1
, ψ2(x) := −∂�(x1, x2)

∂x2
(3.38)

are wavelets. For this reason the concatenation of smoothing and gradient computation
can be interpreted as wavelet transform:

∇(� ∗ f )(u) =
(
∂

∂x1
(� ∗ f )(u), ∂

∂x2
(� ∗ f )(u)

)
=
((

∂�

∂x1
∗ f
)
(u),

(
∂�

∂x2
∗ f
)
(u)

)
=
((

∂�

∂x1
(−•) ∗ f

)
(u),

(
∂�

∂x2
(−•) ∗ f

)
(u)

)
(3.39)

=
(
(−ψ1(−•) ∗ f )(u), (−ψ2(−•) ∗ f )(u)

)
(3.40)

=
(
−〈ψ1(• − u), f 〉,−〈ψ2(• − u), f 〉

)
=
(
−W1{f }(1,u),−W2{f }(1,u)

)
.

The modulus of the wavelet spectrum is defined by

Mf (1,u) :=
√
|W1{f }(1,u)|2 + |W2{f }(1,u)|2. (3.41)

This derivation coincides with the intuitive understanding of a wavelet transform as
a band-pass filter. The concatenation of a smoothing as a low-pass filter, and the
differentiation, as a high-pass filter, yields a band-pass filter. Band-pass filtering is
typical for a wavelet transformation. Hence the maximum modulus of the wavelet
spectrum reveals places where on the preselected scale a sharp transition in the image
intensity occurs.

So far the edge detection has only be considered on the scale a = 1. For an edge
detection on other scales the smoothing kernel has to be scaled:

�j(x) := 2−j�(2−jx). (3.42)
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On this scale we have

∇(�j ∗ f )(u) =
(
∂

∂x1
(�j ∗ f )(u), ∂

∂x2
(�j ∗ f )(u)

)
=
((

∂�j

∂x1
∗ f
)
(u),

(
∂�j

∂x2
∗ f
)
(u)

)
= 2−j (2−j (−ψ1 ∗ f )(u), 2−j (−ψ2 ∗ f )(u)

)
(3.43)

= 2−j (−〈ψ1(2−j (• − u)), f 〉,−〈ψ2(2−j (• − u)), f 〉
)

= 2−j (−W1{f }(2−j ,u),−W2{f }(2−j ,u)
)

and

Mf (2−j ,u) := 2−j
√
|W1{f }(2−j ,u)|2 + |W2{f }(2−j ,u)|2. (3.44)

In this way between edges and elements of a texture in an image can be distin-
guished. On the smallest scale j = 0 the modulus maxima of the wavelet spectrum

Mf (1,u) :=
√
|W1{f }(1,u)|2 + |W2{f }(1,u)|2 (3.45)

reveals both the edges and the texture. On suitable larger scale j > 0 only the edges
show up in the modulus maxima of the wavelet spectrum

Mf (2−j ,u) :=
√
|W1{f }(2−j ,u)|2 + |W2{f }(2−j ,u)|2. (3.46)

Example 3.1.1. In order to demonstrate the effect of a wavelet transformation on the
edge detection a synthetical image was constructed, which shows a figure as well as a
texture. This image is shown in Figure 3.26. The big square in the left upper corner
represents the figure and the 9 small squares in the right lower corner represent the
pattern.

Figure 3.26 was subjected to a wavelet transformation on the scales j = 0 and
j = 3 and the wavelet spectrum maxima are displayed im Figure 3.27.

It is clearly visible that on the smallest scale both the texture and the edges are
extracted. On a larger scale the texture is suppressed and only the edges show up.

The application of wavelet techniques for edge detection in photogrammetry and
remote sensing is still in its initial phase. Examples for the application of wavelets for
fast stereo vision can be found in [101] and [65].
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Figure 3.26. Test image containing a figure and a texture

Figure 3.27. Wavelet modulus maxima on scale j = 0 (left) and on scale j = 3 (right)

3.2 Data compression and denoising

3.2.1 Wavelet filters and estimation

Frequently, a signal is hidden in some background noise. An estimation of signal is
computed by attenuating the noise while amplifying the signal. For decades this tech-
nique is predominated by linear estimators because of their simplicity. In this section
some examples of wavelet based non-linear estimators with an improved performance
will be presented.

Let

f : [�,A, P ] → RN (3.47)
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be a random vector which is considered the signal. The random vector

n : [�,A, P ] → RN (3.48)

is considered the noise. The observations which are available are the sum of signal
and noise:

x := f + n. (3.49)

Usually, f , n are assumed to be uncorrelated. The goal is to construct an estimation
f̂ of f which is linear in the observations

f̂ := Lx, L ∈ L(RN,RN) (3.50)

in such a way that the average loss of f̂ compared to f is minimal. In most applications
the loss is measured as the square norm of the difference between f̂ and f :

r(L,f ) := E{‖Lx − f ‖2}. (3.51)

Definition 3.2.1. A linear estimator L∗ is calledWiener estimator, if it minimizes the
loss among all linear estimators:

r(L∗,f ) = inf
L∈L(RN ,RN)

r(L,f ). (3.52)

Theorem 3.2.1. A linear estimator L∗ is a Wiener estimator if and only if

E{(f − Lx) · x�} = 0 (3.53)

holds.

Proof. The loss function

r(L,f ) = E{〈Lx − f , Lx − f 〉}
is a quadratic form in L. Therefore it reaches its minimum for that L∗ that generates
a vanishing first derivative:

0 = ∂E{〈Lx − f , Lx − f 〉}
∂L

= −2E{(Lx − f )x�}. ��

The theorem provides a characterization of the Wiener estimator independent of
the statistical properties of signal and noise. From this characterization an explicit
expression for the Wiener estimator L∗ can be derived if additional information about
the statistical properties are supplied.



158 3 Applications

Theorem 3.2.2. Without any loss of generality let us assume that both the signal f

and the noise n have a zero mean

0 = E{f } = E{n}. (3.54)

Let
Cxx = E{xx�}, Cf x = E{f x�} (3.55)

be the auto- and the cross-covariance matrix, respectively. Then theWiener estimator
is

L∗ = Cf x · C−1
xx . (3.56)

Proof.

E{(L∗x − f )x�} = E{(C−1
xx Cf xx − f )x�}

= Cf xC
−1
xx Cxx − Cf x

= 0. ��
If the observations x, as well as the signal f and the noise n are represented with

respect to the canonical base of RN , the linear equations (3.56) have to be solved for
the construction of the Wiener estimator. This can be avoided if a special base, adapted
to signal and noise, the so-called Karhunen–Loève base is used. Let

y : [�,A, P ] → RN (3.57)

be a random vector with vanishing mean and the covariance matrix

Cyy := E{yy�}. (3.58)

Definition 3.2.2. An orthogonal base {gk}0≤k<N is called a Karhunen–Loève base of
y if

Cyygk = σ 2
k gk, k = 0, . . . , N − 1 (3.59)

holds.

Theorem 3.2.3. If there exist a Karhunen–Loève basis {gk} which diagonalizes both
the covariance matrices Cff and Cnn, i.e.

Cff gk = β2
kgk, Cnngk = σ 2

k gk, k = 0, . . . , N − 1, (3.60)

then

L∗ = G diag

(
β2

0

β2
0 + σ 2

0

, . . . ,
β2
N−1

β2
N−1 + σ 2

N−1

)
G� (3.61)

holds, where G is the matrix with the base vectors gk in its rows.
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Proof.

L∗ = Cxf · C−1
xx

= Cff · C−1
xx

= G diag(β2
0 , . . . , β

2
N−1)G

� (G diag(β2
0 , . . . , β

2
N−1)G

�

+ G diag(σ 2
0 , . . . , σ

2
N−1)G

�)−1

= G diag(β2
0 , . . . , β

2
N−1) diag

(
1

β2
0 + σ 2

0

, . . . ,
1

β2
N−1 + σ 2

N−1

)
G�

= G diag

(
β2

0

β2
0 + σ 2

0

, . . . ,
β2
N−1

β2
N−1 + σ 2

N−1

)
G�.

��
Remark. As a consequence of the theorem an inversion-free representation of the
estimation f̂ can be given:

f̂ = L∗x

= G diag

(
β2

0

β2
0 + σ 2

0

, . . . ,
β2
N−1

β2
N−1 + σ 2

N−1

)
G�x (3.62)

=
N−1∑
k=0

β2
k

β2
k + σ 2

k

〈gk, x〉gk.

The interpretation of this representation is that the Wiener estimator works as an
attenuation of each signal component 〈x,gk〉gk by a factor, which depends on the
signal-to-noise ratio β2

k /σ
2
k . In this way signal components with a bad signal-to-noise

ratio are suppressed.
The disadvantage of this diagonal Wiener estimator is that even signal components

with a bad signal-to-noise ratio will be still present in the estimation. In many cases,
a thresholding estimation

f̂ =
N−1∑
k=0

ρT (〈gk, x〉)gk (3.63)

with an appropriate threshold function ρT will be superior to (3.62). Standard choices
for the threshold function are the so-called hard thresholding

ρT (x) :=
{
x, |x| > T

0, |x| ≤ T
(3.64)

and the so-called soft thresholding

ρT (x) :=


x − T , x > T

x + T , x < −T
0, |x| ≤ T .

(3.65)
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The threshold T is generally chosen in such a way that it is with a high probability
larger than the maximum noise coefficient 〈n,gk〉.

Thresholding has particular interesting properties if it is performed with respect
to a wavelet base. An extensive study of this technique can be found in [2]. The
observations are represented with respect to an orthogonal wavelet base

x =
J∑
j=1

2J−j−1∑
m=0

〈x, ψj,m〉ψj,m + 〈x, ϕJ,0〉ϕJ,0. (3.66)

with N = 2J . A thresholding estimator in this wavelet base can be written as

f̂ =
J∑
j=1

2J−j−1∑
m=0

ρT (〈x, ψj,m〉)ψj,m + ρT (〈x, ϕJ,0〉)ϕJ,0, (3.67)

where ρT can be the hard thresholding (3.64) or the soft thresholding (3.65). Generally
speaking, in a wavelet base large amplitude coefficients correspond to transient signal
variations. This means a wavelet thresholding keeps only transients coming from the
signal without adding others due to noise.

In Figure 3.28 the effect of the hard wavelet thresholding is demonstrated for a
saw-tooth like signal with superimposed noise.

Obviously, in this estimation the noise is widely suppressed while the sharp edges
of the transient signal parts are not smoothed.

If the same signal is represented with respect to a Fourier base gk(t) = e−ıkt and
if the same threshold estimation technique is applied, the removal of the noise also
smoothes the sharp edges of the signal. This effect is illustrated in Figure 3.29.

The hard thresholding is automatically a kind of an adaptive smoothing that depends
on the regularity of the signal: The wavelet coefficients of the observations are the
sum of two components

〈x, ψj,m〉 = 〈f , ψj,m〉 + 〈n, ψj,m〉, (3.68)

the wavelet coefficient of the signal and the wavelet coefficient of the noise. In general,
small wavelet coefficients 〈x, ψj,m〉 occur in regions, where the signal f is smooth.
Setting these coefficients to zero means locally smoothing the observations. Since
the signal itself is already smooth in these regions thresholding means eliminating the
noise locally.
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Figure 3.28. Transient signal with noise (top left), its Daubechies 4 spectrum (bottom left), the
hard thresholded spectrum (bottom right) and the estimated signal (top right)
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Figure 3.29. Transient signal with noise (top left), its Fourier spectrum (bottom left), the hard
thresholded Fourier spectrum (bottom right) and the estimated signal (top right)

Large wavelet coefficients 〈x, ψj,m〉 occur in the neighborhood of sharp signal
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transitions. These coefficients are kept under the thresholding policy. For this reason
the smoothing of these sharp variations is avoided.

The assumption that for a piecewise smooth signal the noise manifests itself mainly
on the finest wavelet scale leads to a simple method for the estimation of the noise
variance. Under this assumption for a signal of length N on the finest scale

〈x, ψ1,m〉 ≈ 〈n, ψ1,m〉 (3.69)

holds. Let us denote the median of the absolute values these coefficients by M .

M := Med{|〈x, ψ1,m〉|}m=0,...,N/2. (3.70)

If the lengthN = 2J is large enough, the values 〈x, ψ0,m〉 can be assumed to be normal
distributed and it holds

E{M} ≈ 0.6745σ (3.71)

(cf. [57]). Therefore the noise variance can be estimated by

σ̂ 2 =
(

M

0.6745

)2

. (3.72)

This procedure is robust against outliers, which are produced by the few large wavelet
coefficients in the vicinity of sharp signal transitions. A detailed study of noise variance
estimation based on this idea can be found in [20].

Donoho denoising. A more efficient noise suppression can be obtained by a more
sophisticated thresholding policy, such as the so-called Donoho-threshold. In [19] the
following threshold policy is proposed:

d̂m,k = sgn(dm,k)(|dm,k| − τ)+, τ :=
√

2 log(2J )σ (3.73)

with (x)+ defined by

(x)+ :=
{
x, x > 0

0, x ≤ 0.
(3.74)

This thresholding policy sets all wavelet coefficients to zero which are smaller than the
bound τ . Finally, an estimation f̂ of f is constructed from the thresholded wavelet
coefficients

f̂ (t) = ĉJ,0ϕJ (t)+
J∑
m=1

2J−m−1∑
k=0

d̂m,kψm,k(t), (3.75)

which is hopefully free of noise but still contains the sharp features of the signal.
As an example we consider the signal displayed in Figure 3.30 which imitates one

signal discussed in [19]. The signal consists of a large-scale sinusoidal component, a
singular spike at 3.8 and a superimposed noise. The logarithm of the modulus of its
wavelet spectrum is shown in Figure 3.31.
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Figure 3.31. Logarithm of wavelet spectrum

Obviously, the majority of the wavelet spectrum is smaller than 10−1. This part
of the spectrum represents the noise contained in the data. If a thresholding is ap-
plied, only 13 out of 1024 wavelet coefficients remain different from zero. The signal
reconstructed from this 13 nonzero coefficient is displayed in Figure 3.32.

The reconstructed signal is practically free of noise but the sharp features are still
preserved. They are not blurred during the denoising process. In comparison to the
wavelet denoising the result of the usual low-pass filtering is displayed in Figure 3.33.
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Figure 3.32. Reconstructed signal
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Figure 3.33. Low-pass filtered signal

Here the noise is strongly reduced but not completely eliminated. The spike in the
data is still visible. If an even stronger low-pass filter is applied the result can be seen
in Figure 3.34.

3.2.2 Deconvolution thresholding

The inversion of noisy data is often instable and amplifies the data noise considerably.
In this section data will be investigated, which are degraded by white Gaussian noise.
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Figure 3.34. Stronger low-pass filter

It will turn out that threshold estimators with respect to a base which diagonalizes the
covariance of the noise are an appropriate deconvolution technique.

It is assumed that the data y

y = k ∗ f + n (3.76)

are observed. The observation is the convolution of the signal f with the kernel k plus
a superimposed noise n. The noise n is assumed to be white and Gaussian with the
variance σ 2. The goal is an estimation of f from the noisy and convoluted data y.

It is not guaranteed that the convolution operator has a unique inverse. For this
reason, the pseudo-inverse k− will be used for the deconvolution.

Lemma 3.2.1. Let y be an observation of a signal defined on [0, N ]. Let
B := {gm(t) := N−1/2e−ı2πmt/N | m ∈ {0} ∪ N}. (3.77)

Then the pseudo-inverse k− is given by

k−(t) =
∞∑
m=0

λ−mgk(t), (3.78)

where

λ−m :=
{
〈k ∗ gm, gm〉−1, 〈k ∗ gm, gm〉 �= 0

0, 〈k ∗ gm, gm〉 = 0.
(3.79)

Proof. Let V = {k ∗ f | f ∈ L2[0, N ]} be the image of the convolution operator
k and V ⊥ the orthogonal complement of V in L2[0, N ]. The set B is a complete
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orthonormal base of L2[0, N ]. For a y ∈ L2[0, N ] the pseudo-inverse k− is defined
by

‖k− ∗ y‖2 = min{‖f ‖2 | k ∗ f = y}.
For any solution f of k ∗ f = y

〈y, gm〉 = 〈k ∗ f, gm〉 = 〈k ∗ gm, f 〉 = 〈k ∗ gm, gm〉 · 〈gm, f 〉,
m ∈ {0} ∪ N holds. Hence any solution of the equation k ∗ f = y is generated by

f =
∞∑
m=0

λm〈y, gm〉gm,

with

λm :=
{
〈k ∗ gm, gm〉−1, 〈k ∗ gm, gm〉 �= 0

arbitrary value, 〈k ∗ gm, gm〉 = 0.

Due to the orthogonality of the base functions gm the relation

‖f ‖2 =
∞∑
m=0

(λm)
2〈y, gm〉2

holds. This leads to

min ‖f ‖2 =
∞∑
m=0

(λ−m)2〈y, gm〉2.

Hence

f =
∞∑
m=0

λ−m〈y, gm〉gm

=
∞∑
m=0

∞∑
l=0

λ−m〈y, gm〉δmlgl

=
∞∑
m=0

∞∑
l=0

λ−m〈y, gm〉(gm ∗ gl)

=
( ∞∑
m=0

〈y, gm〉gm
)
∗
( ∞∑
l=0

λ−l gl
)

= k− ∗ y
holds. ��

The estimation f̂ is obtained by the application of the pseudo-inverse k− to the
data y

f̂ = k− ∗ y = (k− ∗ k) ∗ f + k− ∗ n. (3.80)
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The pseudo-inverse does not provide a complete estimation of f . It only estimates the
projection F = PV f of the signal f onto the image V of k. Since the pseudo-inverse
k− is linear, the transformed noise Z := k− ∗ n is Gaussian again with the covariance
operator

K = σ 2k− ∗ k−. (3.81)

Because the exponential functions gk are eigenfunctions of every convolution operator,
the base (3.77) diagonalizes both the covariance operator of F := (k− ∗ k) ∗ f and Z.
Hence it forms a Karhunen–Loève base for the estimation problem (3.80).

Lemma 3.2.2. Let Cff be the covariance operator of f and Cnn be the covariance
operator of n. The quantities βm, σm are defined by

β2
m = E{〈f, gm〉2} = 〈Cff gm, gm〉 (3.82)

σ 2
m = E{〈n, gm〉2} = 〈Cnngm, gm〉 = σ 2 (3.83)

Then the Wiener estimator is given by

F̂ =
∑
m∈I

β2
m

β2
m + (λ−m)2σ 2

〈f̂ , gm〉gm, (3.84)

where I := {m ∈ {0} ∪ N | λ−m �= 0}.
Proof. With the notations

F := (k− ∗ k) ∗ f, Z := k− ∗ n,
the deconvolution problem (3.80) can be reformulated as denoising problem

f̂ = F + Z.

The covariance operators of X and Z are given by

CFF = k− ∗ k− ∗ k ∗ k ∗ Cff , CZZ = k− ∗ k− ∗ Cnn = σ 2k− ∗ k−.
Hence

E{|〈F, gm〉|2} = (λ−m)2〈k ∗ gm, gm〉2β2
m

and
E{|〈Z, gm〉|2} = (λ−m)2σ 2

holds. Since {gk} is a Karhunen–Loève base the Wiener estimator is given by

F̂ =
∞∑
m=0

E{〈F, gm〉2}
E{〈F, gm〉2} + E{〈Z, gm〉2} 〈f̂ , gm〉gm

=
∞∑
m=0

(λ−m)2〈k ∗ gm, gm〉2β2
m

(λ−m)2〈k ∗ gm, gm〉2β2
m + (λ−m)2σ 2

〈f̂ , gm〉gm.

=
∑
m∈I

β2
m

β2
m + (λ−m)2σ 2

〈f̂ , gm〉gm.
��
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Many applications in geo-sciences involve convolution kernels which are compact.
This means that the image space coincides with the whole space

V = L2[0, N ] (3.85)

but the eigenvalues tend to zero

lim
m→∞ λm = 0. (3.86)

Consequently k is a smoothing kernel. A simple inversion would lead to

f̂ =
∞∑
m=0

1

λm
〈y, gm〉gm, (3.87)

which clearly is an unbounded and therefore instable deconvolution operator. If for
compact kernel the estimation formula (3.84) is used, the simple relation

F̂ =
∞∑
m=0

β2
m

β2
m + λ−2

m σ 2
〈f̂ , gm〉gm. (3.88)

is obtained. Here the amplification 1/λm is counterbalanced by a regularization pa-
rameter σ 2 resulting in a bounded and therefore stable deconvolution operator.

As in the denoising case the Wiener deconvolution has the disadvantage that signal
components with a bad signal to-noise ratio will remain in the solution. This can be
avoided by the application of a thresholding algorithm.

F̂ =
∞∑
k=0

β2
k

β2
k + λ−2

k σ 2
ρT (〈f̂ , gk〉)gk. (3.89)

Formula (3.89) describes the threshold deconvolution in a exponential base. This
exponential base has the advantage that it diagonalizes the convolution operator. On
the other hand this base is optimally suited for stationary signals. Transient signals are
better approximated with respect to a wavelet base. The price which has to be paid for
working in a wavelet base it that the convolution operator is not longer diagonal with
respect to this base. Fortunately, only a few of the off-diagonal elements are really
large and a suitable threshold will set them to zero. In this way the advantages of
representing also transient signal components and leading to a diagonal estimator can
be combined.

In a wavelet base B := {ψjm | j = 1, . . . , J,m = 0, . . . , N/2j } the observation
equation (3.76) can be written as

〈y,ψpq〉 =
J∑
j=1

N/2−j∑
m=0

〈k ∗ ψjm,ψpq〉fjm + 〈n,ψpq〉. (3.90)
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In many cases the matrix (〈k ∗ ψjm,ψpq〉) is sparse and strongly diagonal dominant.
Therefore it can be replaced by a thresholded matrix

〈y,ψpq〉 =
J∑
j=1

N/2−j∑
m=0

ρT (〈k ∗ ψjm,ψpq〉)fjm + 〈n,ψpq〉. (3.91)

For a suitable choice of the matrix and the threshold T the thresholded matrix is
diagonal

ρT (〈k ∗ ψjm,ψpq〉) = diag(〈k ∗ ψjm,ψjm〉). (3.92)

This leads to the following threshold deconvolution:

f̂ =
J∑
j=1

N/2−j∑
m=0

〈y,ψjm〉
〈k ∗ ψjm,ψjm〉ψjm. (3.93)

Example 3.2.1. Let us consider the convolution kernel

k(t) = 1

2n+ 1

n∑
l=−n

δ(t − l), (3.94)

which is the formula expression for a smoothing average operator of length 2n + 1.
For every convolution kernel the functions gk are eigenfunctions. The corresponding
eigenvalues λk can be derived from following equation:

k ∗ gk = 1

2n+ 1

n∑
l=−n

e−ı2πkl/Ngk

= 1

2n+ 1

(
1 + 2

n∑
l=1

cos(2πkl/N)
)
gk.

Obviously the eigenvalues are given by

λk = 1

2n+ 1

(
1 + 2

n∑
l=1

cos(2πkl/N)
)
. (3.95)
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For n = 4 the eigenvalue spectrum {λl} of k is plotted in Figure 3.35.
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Figure 3.35. Spectrum of the convolution operator

As input data a sawtooth signal as it is shown in Figure 3.36 is used.
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Figure 3.36. Signal f to be recovered

After convolving with the kernel (3.94) and adding noise, the resulting observations
are displayed in Figure 3.37.

The wavelet spectrum of the observations 〈y,ψjm〉 can be computed by the appli-
cation of Mallat’s algorithm. This spectrum is shown in Figure 3.38

The matrix K := (〈k ∗ ψjm,ψjm〉) is sparse but not exactly diagonal, as can be
seen in Figure 3.39.

Instead of approximating the matrix K by its diagonal K ≈ diag(〈k ∗ψjm,ψjm〉)
a thresholding policy is applied both to the matrix and to the observation spectrum

K̃ = ρT (〈k ∗ ψjm,ψjm〉), b̃jm = ρT (〈y,ψjm〉). (3.96)
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Figure 3.38. Wavelet spectrum of observations

The solution of this thresholded system is considered the wavelet spectrum of the
signal to be recovered

(〈f,ψjm〉) := K̃−1(b̃jm). (3.97)

The wavelet reconstruction of the estimated signal spectrum (〈f,ψjm〉) yields an es-
timation for the unknown signal f . This estimation is displayed in Figure 3.40.

Clearly, the noise level has strongly reduced without mollifying the sharp peaks.
On the other hand the thresholding of matrix elements leads to some undesired artefacts
in the estimation of the signal. Here, with a proper choice of the thresholds a balance
between denoising, deconvolution and the generation of artefacts has to be found.

More examples for the application of wavelet deconvolution techniques in Physical
Geodesy are listed in [39].

As it was already demonstrated in the previous example, the thresholding in the
denoising approach can lead to artefacts in the solution. In order to avoid this one
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Figure 3.39. System matrix of wavelet deconvolution

1.5

1

0.5

0

0.5

1

1.5

0 100 200 300 400 500 600

 

_

_

_

Figure 3.40. Result of thresholded wavelet deconvolution

could represent the observation and the signal to be estimated with respect to different
tight frames. These frames can be chosen in such a way, that the deconvolution matrix
gets diagonal. This second tight frame can be derived from the first one as the solution
of the following equation:

k ∗ wnm = κnmψnm, ‖wnm‖ = 1. (3.98)

If the first frame ψnm is a wavelet frame, the resulting frame wnm is called a
vaguelette frame. With respect to this wavelet-vaguelette pair the deconvolution equa-



3.2 Data compression and denoising 173

tions get diagonal,
〈f,ψnm〉 = κnm〈y,wnm〉. (3.99)

As for the wavelet also for the vaguelette Mallat’s algorithm can be used for decompo-
sition and reconstruction. Hence, if once the wavelet-vaguelette pair of a convolution
kernel k has been developed, the wavelet-vaguelette decomposition is a highly efficient
algorithm for deconvolution problems.

Results about the application of this wavelet-vaguelette decomposition for the
solution of geodetic integral equations are given in [41], [51] and [52].

3.2.3 Image compression

One of the most successful applications of discrete wavelet transformation is image
compression. The so-called pyramidal algorithm [10], which is widely used in image
processing can be considered a predecessor of the multi-resolution analysis in wavelet
theory. The multi-resolution analysis and Mallat’s algorithm for fast discrete wavelet
transform are the cornerstones for the application of wavelets in image processing.

A digital grey-coded image can be represented by a n× n matrix F = (fij ) with
integer entries fij . The value fij is the grey value of the pixel in the i-th row and the
j -th column. In general

fij ∈ {0, 1, 2, . . . , 255} (3.100)

holds. This means that the storage requirement of such an image is S = n2 byte.
The compression aims at an alternative representation of the image requiring only
Scomp < S bytes. The ratio

k := S

Scomp
(3.101)

is called compression rate. Using the scaling function ϕ of the Haar wavelet a grey-
coded image has the representation

f (x, y) =
n−1∑
i,j=0

fijϕ(x − i) · ϕ(y − j). (3.102)

This means the image is represented with respect to the tensor Haar scaling function
base. The idea of image compression is the representation of the image with respect to
an alternative base and to choose this base in such a way that in the new representation as
many coefficients as possible are so small that they can be neglected without influencing
the visual quality of the image.

Hence a typical algorithm for image compression by wavelets consists of three
steps:

• Computation of wavelet spectrum.

• Thresholding.
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• Compact coding of the remaining non-zero wavelet coefficients.

The coding itself consist again of two steps

• the quantization and

• the coding of the quantized coefficient values.

In the original image representation all coefficients can have only values out of
a finite set (in most cases only the integers between 0 and 255). Due to the wavelet
transform the image representation with respect to a wavelet base has real coefficients.
Quantization means to map these real coefficients on a finite set. The simplest form
of quantization is the uniform quantizer

Q(x) =
{

0, |x| < 
/2

sgn(x)k
, (k − 1/2)
 ≤ |x| ≤ (k + 1/2)
,
(3.103)

i.e., all values in an interval of the length 
 are quantized by the mean value of the
interval. In general the quantized value is an integer.

The last step, the coding, is an intelligent method to store these integers in such a
way that frequently occurring numbers are coded by a low number of bits. An efficient
coding algorithm is the so-called Huffmann coding:

Example 3.2.2. Suppose that the following values are obtained from quantization:

9, 123, 17, 63, 129, 17, 123, 123, 52.

In this sequence the number 123 occurs three times, 17 two times and the integers
9, 129, 52 one time each. Therefore, 123 gets the shortest binary code, 17 the next-
shortest and so on. This leads to the following coding table.

123 0

17 10

63 1100

9 1101

129 1110

52 1111

Consequently, the coded sequence is

11010101100111010001111.

Obviously, the original sequence needs 1 byte per entry accounting for 72 bits for the
whole sequence. The Huffmann coded sequence needs only 23 bits.

The choice of a proper base, which leads to a large number of small coefficients and
an efficient coding leads to a high compression rate. Currently, the JPEG compression
standard [104] is widely used.
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Fourier compression (JPEG). The JPEG image compressing uses block-wise co-
sine function as base functions. The image is decomposed in blocks of L× L pixels.
In each block the image is represented with respect to the orthogonal base

ϕk,j (n,m) = 1

γkγj

2

L
cos

(
kπ

L
(n+ 1

2
)

)
cos

(
jπ

L
(m+ 1

2
)

)
(3.104)

with

γi =
{

1/
√

2, i = 0

1, otherwise.
(3.105)

In the JPEG standard the block-sizeL is set toL = 8. Pictures ofN2 pixels are divided
in N2/64 blocks of 8 × 8 pixels each. The grey-values f8I+i,8J+j in the block (I, J )
have the following representation with respect to the base (3.104):

f8I+i,8J+j = 1

16

8∑
n=0

8∑
m=0

c(I,J )n,m ϕn,m(i, j) (3.106)

with

c(I,J )n,m = γnγm

8∑
i=0

8∑
j=0

f8I+i,8J+j ϕn,m(i, j). (3.107)

Usually, the block-cosine spectrum c
(I,J )
n,m contains a comparatively small number

of coefficients with a large modulus and a large number of very small coefficients. The
biggest part of the information about the image is carried by the small number of large
coefficients. The majority of the coefficients is small and contributes only marginally
to the information about the image. Therefore, applying a threshold strategy, the
number of coefficients which are necessary to reproduce the main information about
the image can be dramatically reduced.

Example 3.2.3. In order to demonstrate the JPEG compression principle, the JPEG
algorithm will be applied to the famous Lena image shown in Figure 3.41. The his-
togram of the block-cosine coefficients is shown in Figure 3.42. It displays for every
class the ratio of the number of coefficients belonging to this class and the total number
of coefficients. Though the modulus of the coefficients can reach the value of 7000
about 90 % of the coefficients are smaller than 200. Therefore a threshold strategy
can be applied: All coefficients which are smaller than 1 % of the value of the largest
coefficients are neglected. This lead to a compression ratio of

k = 64.1. (3.108)

It has to be mentioned, that no quantization and no coding was applied. An addi-
tional quantization and coding would still increase the compression ratio considerably.

The image, which was reconstructed from the remaining coefficients is shown in
Figure 3.43. It is clearly visible that the JPEG compression is not loss-free. The recon-
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Figure 3.41. Test image Lena
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Figure 3.42. Histogram of block-cosine coefficients of Lena image
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Figure 3.43. Reconstructed image after thresholding the block-cosine spectrum

structed image has small artefacts. Especially at Lena’s shoulder the block structure
of the JPEG compression algorithm is visible as a mosaic of small squares.

Wavelet compression. A larger compression rate as for the JPEG algorithm can be
obtained if the image base is chosen in such a way that the histogram of the coefficients
with respect to this base is even stronger concentrated around zero.

For this purpose orthogonal wavelets with a compact support can be chosen as a
base. The localization property of wavelets promises a stronger concentration and the
use of Mallat’s algorithm provides a very efficient tool for coding and decoding the
image.

Example 3.2.4. As a test image again the Lena image was used. The Daubechies
wavelet of order 6 was chosen as wavelet base. The histogram of the wavelet coeffi-
cients of the test image is displayed in Figure 3.44.

If the wavelet histogram in Figure 3.44 is compared to the block-cosine histogram
in Figure 3.42 two effects can be noticed:

1. The magnitude of the largest coefficients has increased from 7 000 to 20 000.

2. The concentration of the small coefficients has increased from 90% to 98%.
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Figure 3.44. Histogram of Daubechies 6 wavelet spectrum of Lena image

Hence a higher compression rate by thresholding should be possible. But also the
quality of the reconstructed image can be improved by keeping the same compression
rate as for the JPEG compression.

Applying the threshold policy to neglect all coefficients which are smaller than 1%
of the maximal coefficients leads to a compression rate of

k = 102.2, (3.109)

which is larger than the compression ratio of the JPEG algorithm. The reconstructed
image is displayed in Figure 3.45.

A visual comparison of both images, given in Figure 3.46 shows that the compres-
sion loss of the wavelet compression is smaller, even if the compression rate is higher.
No artefacts are visible. Especially, there is no block pattern in the reconstructed
image.

The reason for the better performance of the wavelet compression is that sharp
gray-value contrast in the image can be better detected by wavelets than by a cosine
base.

The difference between JPEG and wavelet compression can be shown more clearly
if test images with simple geometrical figures are used. Two images showing a square
and a circle in the center are used as test images. The images are shown in Figure 3.47.

Both images are compressed using JPEG and wavelet compression. The recon-
structions of the compressed square images are displayed in Figure 3.48.
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Figure 3.45. Reconstructed image after thresholding the wavelet spectrum

Figure 3.46. Comparison of JPEG and wavelet compression



180 3 Applications

Figure 3.47. Test images

Figure 3.48. JPEG (left) and wavelet (right) compressed square

Figure 3.49. JPEG (left) and wavelet (right) compressed circle
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The compression rates of both images are quite different: k = 233.1 for JPEG
and k = 4166.6 for the wavelet compression. While, the wavelet compressed square
is almost perfectly reconstructed, the JPEG compressed square shows clearly visible
artefacts on the upper and on the left side. This tendency becomes even more apparent,
if the circle image is considered. The comparison of both compression results is given
in Figure 3.49.

3.3 Sub-band coding, filtering and prediction

3.3.1 QMF filter design and wavelets

As it has already been mentioned in Section 2.2, a filter bank splits a signal x into two
parts: a low frequency part Hx and a high frequency part Gx. A similar situation
occurs in the case of a multi-resolution analysis. There a function f ∈ V0 is split in a
smoothed part Pf ∈ V1 and the difference part Qf ∈ W1. Now the question arises,
under which conditions a filter design is equivalent to a wavelet analysis.

In order to point out the similarities between wavelet multi-resolution analysis
and digital filtering, some concepts of digital signal processing theory should be re-
called here: Four digital filters H,G,H ∗,G∗ defined according to (1.48) with their
z-transforms according to (1.49) are called a PR filter bank, if

H(−z)H ∗(z)+G(−z)G∗(z) = 0 (3.110)

H(z)H ∗(z)+G(z)G∗(z) = 2 (3.111)

holds. The filter bank is called orthogonal if additionally

H(z) = H ∗(z−1) (3.112)

is valid. The filter bank is called a quadrature mirror filter (QMF), if

|H(z)|2 + |G(z)|2 = 1 (3.113)

holds. Additionally, a filter H is called a conjugate mirror filter, if

|H(z)|2 + |H(−z)|2 = 2 (3.114)

is true.

The decomposition operators H , G and the reconstruction operators H ∗, G∗ of
Mallat’s algorithm can be related to the combination of linear convolution filters H̄ ,
Ḡ, Ḡ∗, H̄ ∗ combined with dyadic down- and up-sampling. Define the convolution
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filters H̄ , Ḡ, Ḡ∗, H̄ ∗ by

(H̄x)n :=
∑
k∈Z

h̄kxn−k, h̄k = h−k, (3.115)

(Ḡx)n :=
∑
k∈Z

ḡkxn−k, ḡk = g−k, (3.116)

(H̄ ∗x)n :=
∑
k∈Z

hkxn−k, (3.117)

(Ḡ∗x)n :=
∑
k∈Z

gkxn−k. (3.118)

Then the decomposition steps of Mallat’s algorithm can be identified with the filters
H̄ , Ḡ followed by a down-sampling by the factor 2:

(Hc)n =
∑
k∈Z

hk−2nck =
∑
k∈Z

h̄2n−kck = (H̄ c)2n, (3.119)

(Gc)n =
∑
k∈Z

gk−2nck =
∑
k∈Z

ḡ2n−kck = (Ḡc)2n, (3.120)

(H ∗c)n =
∑
k∈Z

hn−2kck =
∑
k∈Z

hn−kčk = (H̄ ∗č)n, (3.121)

(G∗c)n =
∑
k∈Z

gn−2kck =
∑
k∈Z

gn−kčk = (Ḡ∗č)n, (3.122)

where

čn =
{
cn/2, n even

0, n odd
(3.123)

is the sequence which is obtained by up-sampling the sequence ck by the factor 2.
The consequence of this relationship is that all what can be said about the convo-

lution filters applies also to Mallat’s decomposition and reconstruction filters.
A multi-resolution analysis of L2(R) can be generated by the choice of a scaling

functionϕ. The coefficientshk of its scaling equation (2.67) define a digital convolution
filter by

(Hx)k :=
∑
n

hnxk−n. (3.124)

Lemma 3.3.1. The digital convolutionfilter (3.124), defined by the scaling coefficients
of the scaling function ϕ of an MRA of L2(R), is a conjugate mirror filter, if the shifted
versions of the scaling functions are orthogonal to each other, i.e. if

〈ϕ(•), ϕ(• − k)〉 = δ0k (3.125)

holds.
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Proof. For the transfer function (2.71) of the scaling equation holds

|h(ω)|2 + |h(ω + π)|2 = 1.

The z-transform H of the digital filter defined by the scaling coefficients hk is related
to the transfer function h by

h(ω) =
√

2

2

∑
k∈Z

hke
−ıkω =

√
2

2

∑
k∈Z

hk(e
ıω)−k =

√
2

2
H(eıω).

Hence

2 = 2(|h(ω)|2 + |h(ω + π)|2) = |H(eıω)|2 + ||H(−eıω)|2
= |H(z)|2 + |H(−z)|2, z = eıω.

This proves that the convolution filter is a conjugate mirror filter. ��

Remark. If for a signal f ∈ V0 with the representation

f (x) =
∑
k∈Z

c
(0)
k ϕ(x − k) (3.126)

the validity of f (k) = c
(0)
k can be imputed, then the smoothing step

c
(1)
k =

∑
n∈Z

hnc
(0)
n+k (3.127)

of Mallat’s algorithm is considered a low-pass filter. In contrast to the standard case of
digital signal processing it is not a convolution but a correlation filter. Defining related
filter coefficients by h̄k := h−k then Mallat’s smoothing step can also be expressed as
a convolution filter

c
(1)
k =

∑
n∈Z

h̄−nc(0)n+k =
∑
n∈Z

h̄nc
(0)
k−n. (3.128)

For its z-transform follows

H̄ (z) =
∑
k∈Z

h̄kz
−k =

∑
k∈Z

hk

(
1

z

)−k
= H

(
1

z

)
.

Hence, with z = 1/ζ ,

2 = |H(ζ)|2 + |H(−ζ )|2 = |H̄
(

1

ζ

)
|2 + |H̄

(
−1

ζ

)
|2 = |H̄ (z)|2 + |H̄ (−z)|2

(3.129)
holds, and Mallat’s smoothing step is also a conjugate mirror filter.
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Another important class of digital filters are the so-called quadrature mirror filters
(QMF). They are characterized by the property that their filter characteristics ad up to
1. Unfortunately the smoothing and the differencing filter of Mallat’s algorithm do not
form a QMF filter in general. Only in the simplest possible case of the Haar wavelet
this property holds.

Example 3.3.1. The coefficients of the scaling equations for the Haar wavelet are

h0 = h1 = 1√
2
, g0 = −g−1 = − 1√

2
.

With the introduction of new filter coefficients

h̄k = h−k, k = −1, 0, ḡk = g−k, k = 0, 1

the smoothing and the differencing step of Mallat’s algorithm can be expressed as
convolution filters followed by a down-sampling by the factor 2:

(Hc)n =
∑
k

hkc2n+k =
∑
k

h̄kc2n−k = (h̄ ∗ c)(2n) = D(h̄ ∗ c).

The same holds for G where D means the down-sampling operator

(Dx)n := x2n.

The z-transforms of the convolution filters h̄, ḡ are

h̄(z) =
∑
k

h̄kz
−k = h0 + h1z

ḡ(z) =
∑
k

ḡkz
−k = g0 + g−1z

−1.

If a sequence {xn} has the z-transform X(z), then the down-sampled sequence D{xn}
has the z-transform

DX(z) =
∑
k

(Dx)kz
−k

=
∑
k

x2kz
−k

= 1

2

(∑
k

xkz
−k/2 +

∑
k

xk(−1)kz−k/2
)

= 1

2

(
X(

√
z)+X(−√

z)
)
.
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Hence Mallat’s smoothing and differencing filters have the z-transforms

H(z) = 1

2

(
h0 + h1

√
z+ h0 − h1

√
z
) = h0

G(z) = 1

2

(
g−1

1√
z
+ g0 − g−1

1√
z

)
= g0.

Applying the properties
g0 = h1, h2

0 + h2
1 = 1,

the relation
|H(z)|2 + |G(z)|2 = h2

0 + g2
0 = h2

0 + h2
1 = 1

follows and consequently the Haar wavelet establishes a QMF filter.

While the smoothing filter H and the differencing filter G of Mallat’s algorithm
constitute a QMF filter only in the trivial case of the Haar wavelet, any orthogonal
wavelet generates a PR filter bank.

Theorem 3.3.1. The filters H̄ , Ḡ, H̄ ∗, Ḡ∗ (3.115)–(3.118) generated by an orthogo-
nal wavelet form a PR filter bank.

Proof. The z-transform of H̄ and Ḡ are

H̄ (z) =
∑
k∈Z

h̄kz
−k =

∑
k∈Z

hkz
k

Ḡ(z) =
∑
k∈Z

ḡkz
−k =

∑
k∈Z

gkz
k =
∑
k∈Z

(−1)kh1−kzk = −z
∑
k∈Z

(−1)khkz
−k

= −zH̄
(
−1

z

)
.

For the H̄ ∗ and the Ḡ∗ filters the z-transforms are

H̄ ∗(z) =
∑
k∈Z

hkz
−k = H̄

(
1

z

)
Ḡ∗(z) =

∑
k∈Z

gkz
−k =

∑
k∈Z

(−1)kh1−kz−k = −1

z

∑
k∈Z

(−1)khkz
k

= −1

z
H̄ (−z).

As the next preliminary step the orthogonality of the scaling function∑
k∈Z

h2m+khk = δ0m
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is used to compute

H̄ (z)H̄

(
1

z

)
=
(∑
k∈Z

hkz
k
)(∑

l∈Z

hlz
−l)

=
∑
k∈Z

∑
l∈Z

hkhlz
k−l

=
∑
m∈Z

∑
l∈Z

hm+lhlzm.

This leads to

H̄ (−z)H̄ ∗(z)+ Ḡ(−z)Ḡ∗(z) = H̄ (−z)H̄
(

1

z

)
+ (zH̄

(
1

z

)(
−1

z
H̄ (−z)

)
= 0

H̄ (z)H̄ ∗(z)+ Ḡ(z)Ḡ∗(z) = H̄ (z)H̄

(
1

z

)
+
(
−zH̄

(
−1

z

)(
−1

z
H̄ (−z)

))
= H̄ (z)H̄

(
1

z

)
+ H̄ (−z)H̄

(
−1

z

)
=
∑
m∈Z

∑
l∈Z

hm+lhlzm +
∑
m∈Z

∑
l∈Z

(−1)mhm+lhlzm

=
∑
m∈Z

2
∑
l∈Z

h2m+lhlz2m

= 2
∑
m∈Z

δ0mz
2m

= 2.

Consequently, an orthogonal wavelet produces a perfect reconstruction filter bank. ��

All in all, it can be summarized that Mallat’s algorithm for an orthogonal wavelet
is equivalent to a perfect reconstruction filter bank. In general, the reversal is not true.
The coefficients of the low- and the high-pass filter of a perfect reconstruction filter
bank in general cannot be identified with the scaling coefficients of an orthogonal
scaling function and its corresponding wavelet. For a perfect reconstruction filter
bank there are four filters H , G, H ∗, G∗, which are connected to each other by two
conditions (3.110), (3.111). Hence there are two degrees of freedom. In wavelet
theory the four filters H , G, H ∗, G∗ are descendants of the single filter H with the
filter coefficients being identical to the scaling coefficients of the underlying orthogonal
scaling function ϕ. This leads to the property that the results of the of the smoothing
and the differentiating step are orthogonal to each other. A similar result is not true
for a general perfect reconstruction filter.

Concluding it can be said, that orthogonal wavelets induce perfect reconstruction
filter banks with additional desirable properties.
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3.3.2 Prediction of stationary signals with superimposed non-stationary noise

Collocation is widely used for the treatment of geodetic measurements. The collocation
theory is based on the stationarity assumption. In practice this assumption is only
piecewise fulfilled, since the variance of the data errors differs in different areas.

A first solution of the non-stationary collocation problem is given in [82]. In this
paper the following extension for the well-known Wiener–Kolmogorov equation to the
non-stationary case is found:

(Cξξ + Cnn)a = Cξηf, 〈̂f, ξ〉 = 〈a, η〉. (3.130)

Here η is a Hilbert space valued random variable, representing the observed data
with the covariance operator Cηη and ξ is a Hilbert space valued random variable,
representing the unknown solution with the cross-covariance operator Cξη. The data
η contains white noise with a piecewise varying variance w(t), i.e.

Cnn = w(t)I, (3.131)

with I being the identity operator. Since, in contrast to the classicalWiener–Kolmogorov
equations w is not constant, the equations cannot be transformed into the frequency-
domain and solved by FFT. Therefore a wavelet solution will be given here which
exhibits the following features:

• The piecewise constancy of the noise-variance will be optimally reflected by the
underlying Haar wavelets.

• In contrast to the FFT-case the matrix is no longer diagonal but at least sparse.

Wavelet solution of Wiener–Kolmogorov equations. The equation (3.130) is an
operator equation, which in general can only be solved approximately. One standard
technique for the numerical solution of operator equations is Galerkins’s method. The
basic idea of this method is to look for a solution of (3.130) not in the whole Hilbert
space H but in a finite-dimensional subspace Hn ⊂ H. With {ei} being a base of Hn
this leads to the so-called Galerkin equations

n∑
j=1

〈ei, (Cξξ + Cnn)ej 〉αj = 〈Cξηf, ei〉, i = 1, . . . n, (3.132)

or, in more detail,

n∑
j=1

[〈ei, Cξξ ej 〉 + 〈ei, w(t)ej 〉]αj = 〈Cξηf, ei〉, i = 1, . . . n. (3.133)

The question remains how the base functions ei can be properly chosen. One criterion
can be the nature of w. The quantity w is the variance of the data-noise. The data-
noise is supposed to have a piecewise constant variance. Hence w can be optimally
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represented by Haar-wavelets

w(t) = wNϕN,0(t)+
N∑
n=0

2N−n−1∑
m=0

wn,mψn,m(t), (3.134)

with

ϕN,0(t) = 2−N
2 ϕ(2−Nt), (3.135)

ψn,m(t) = 2− n
2ψ(2−nt −m) (3.136)

and

ϕ(t) =
{

1, 0 ≤ t < 1

0, else
, (3.137)

ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, else

. (3.138)

This leads to the following form of the Galerkin equations

n∑
j=1

[
〈ei, Cξξ ej 〉 + wN 〈ei, ϕN,0ej 〉 +

N∑
n=0

2N−n−1∑
m=0

wn,m〈ei, ψn,mej 〉
]
αj = 〈ei, Cξηf 〉.

(3.139)
The Galerkin equations constitute a system of linear equations for the unknown coef-
ficients αi of the approximate solution an. For an efficient solution of these equations
it is necessary to find closed expressions for the matrix coefficients

aij = 〈ei, Cξξ ej 〉 + wN 〈ei, ϕN,0ej 〉 +
N∑
n=0

2N−n−1∑
m=0

wn,m〈ei, ψn,mej 〉 (3.140)

of those linear equations. For this purpose the base functions ei should be as simple
as possible. The simplest is the usage of Haar wavelets. This choice generates the
following form of the Galerkin equations:

[
〈ϕN,0, CξξϕN,0〉 + wN 〈ϕN,0, ϕ2

N,0〉 +
N∑
n=0

2N−n−1∑
m=0

wn,m〈ϕN,0, ψn,mϕN,0〉
]
αN,0

+
[ N∑
p=0

2N−p−1∑
q=0

[
〈ϕN,0, Cξξψp,q〉 + wN 〈ϕN,0, ϕN,0ψp,q〉 (3.141)

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ϕN,0, ψn,mψp,q〉
]]
αp,q = 〈ϕN,0, Cξηf 〉,
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[
〈ψr,s, CξξϕN,0〉 + wN 〈ψr,s, ϕ2

N,0〉 +
N∑
n=0

2N−n−1∑
m=0

wn,m〈ψr,s, ψn,mϕN,0〉
]
αN,0

+
[ N∑
p=0

2N−p−1∑
q=0

[
〈ψr,s, Cξξψp,q〉 + wN 〈ψr,s, ϕN,0ψp,q〉 (3.142)

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ψr,s, ψn,mψp,q〉
]]
αp,q = 〈ψr,s, Cξηf 〉,

r = 0, . . . N − 1, s = 0 . . . 2N−r − 1.

In matrix notation these equations have the following form
aN,0|N,0 . . . aN,0|1,2N−1−1

aN−1,0|N,0 . . . aN−1,0|1,2N−1−1
...

. . .
...

a1,2N−1−1|N,0 . . . a1,2N−1−1|1,2N−1−1

×


αN,0

αN−1,0
...

α1,2N−1−1



=


(ϕN,0, Cξηf )

(ψN−1,0, Cξηf )

...

(ψ1,2N−1−1, Cξηf )

 ,
(3.143)

with

aN,0|N,0 = 〈ϕN,0, CξξϕN,0〉 + wN 〈ϕN,0, ϕ2
N,0〉

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ϕN,0, ψn,mϕN,0〉,
(3.144)

aN,0|p,q = 〈ϕN,0, Cξξψp,q〉 + wN 〈ϕN,0, ϕN,0ψp,q〉

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ϕN,0, ψn,mψp,q〉,
(3.145)

ar,s|N,0 = 〈ψr,s, CξξϕN,0〉 + wN(ψr,s, ϕ
2
N,0〉

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ψr,s, ψn,mϕN,0〉,
(3.146)

ar,s|p,q = 〈ψr,s, Cξξ ψp,q〉 + wN 〈ψr,s, ψp,qϕN,0〉

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ψr,s, ψn,mψp,q〉.
(3.147)
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These expressions can be simplified using the relations

〈ϕN,0, ϕ2
N,0〉 = 2− 3N

2

∫ 2N

0
dt = 2−N

2 , (3.148)

〈ϕN,0, ψn,mϕN,0〉 = 2−N
∫ 2N

0
ψn,m(t) dt

= 2−N2− n
2

∫ 2N

0
ψ(2−nt −m) dt (3.149)

= 2−N2
n
2

∫ 2N−n−m

−m
ψ(z) dz

= 0,

〈ϕN,0, ψn,mψp,q〉 = 2−N
2

∫ 2N

0
ψn,m(t)ψp,q(t) dt

= 2−N
2 δnpδmq, (3.150)

leading to

aN,0|N,0 = [〈ϕN,0, CξξϕN,0〉 + wN2−N
2 ], (3.151)

aN,0|p,q = [〈ϕN,0, Cξξψp,q〉 + 2−N
2 wp,q ], (3.152)

ar,s|N,0 = [〈ψr,s, CξξψN,0〉 + 2−N
2 wr,s], (3.153)

and

ar,s|p,q =
[
〈ψr,s, Cξξψp,q〉 + wN2−N

2 δr,pδs,q

+
N∑
n=0

2N−n−1∑
m=0

wn,m〈ψr,s, ψn,mψp,q〉
]
.

(3.154)

Special case of stationary signal and non-stationary noise. At the time being no
assumptions about stationarity have been made, neither for the signal ξ nor for the
noise n . The situation is simplified substantially, if the signal ξ is stationary and only
the noise n is non-stationary. In this case one obtains

〈ϕN,0, CξξϕN,0〉 = 2−N
∫ 2N

0

∫ 2N

0
Cξξ (s − t) ds dt, (3.155)
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〈ϕN,0, Cξξψp,q〉 = 2−N+p
2

∫ 2N

0

∫ ∞

−∞
Cξξ (s − t)ψp,q(2

−pt − q) dt ds

= 2−N+p
2

∫ 2N

0

∫ 2pq+2p−1

2pq
Cξξ (s − t) dt ds

− 2−N+p
2

∫ 2N

0

∫ 2pq+2p

2pq+2p−1
Cξξ (s − t) dt ds,

(3.156)

〈ψr,s, Cξξψp,q〉 = 2− r+p
2

∫ ∞

−∞

∫ ∞

−∞
Cξξ (t

′ − t)ψ(2−r t ′ − s)ψ(2−pt − q)dt ′ dt

= 2− r+p
2 [
∫ 2r s+2r−1

2r s

∫ 2pq+2p−1

2pq
Cξξ (t

′ − t) dt ′ dt

−
∫ 2r s+2r−1

2r s

∫ 2pq+2p

2pq+2p−1
Cξξ (t

′ − t) dt ′ dt (3.157)

−
∫ 2r s+2r

2r s+2r−1

∫ 2pq+2p−1

2pq
Cξξ (t

′ − t) dt ′ dt

+
∫ 2r s+2r

2r s+2r−1

∫ 2pq+2p

2pq+2p−1
Cξξ (t

′ − t) dt ′ dt].

Introducing the abbreviation

I (a, b, c, d) :=
∫ b

a

∫ d

c

Cξξ (t
′ − t) dt ′ dt, (3.158)

the following expressions for the scalar products are obtained:

〈ϕN,0, CξξϕN,0〉 = 2−NI (0, 2N, 0, 2N), (3.159)

〈ϕN,0, Cξξψp,q〉 = 2−N+p
2 [I (0, 2N, 2pq, 2pq + 2p−1)

− I (0, 2N, 2pq + 2p−1, 2pq + 2p)],
(3.160)

and

(ψr,s, Cξξψp,q) = 2− r+p
2 [I (2r s, 2r s + 2r−1, 2pq, 2pq + 2p−1)

− I (2r s + 2r−1, 2r s + 2r , 2pq, 2pq + 2p−1)

− I (2r s, 2r s + 2r−1, 2pq + 2p−1, 2pq + 2p)

+ I (2r s + 2r−1, 2r s + 2r , 2pq + 2p−1, 2pq + 2p)].

(3.161)

Since for the most common types of covariance functions Cξξ closed expressions
can be given for (3.158), the computation of the Galerkin matrix can be done very
efficiently.
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Numerical example. For a numerical test a stationary signal ξ is chosen having a
covariance function

Cξξ (τ ) = 1

1 + (ατ)2
. (3.162)

This signal is investigated on the interval [0, T ], T = 512. For the noise n two types
of white noise are used:

• On the interval [0, T2 ] white noise with the variance σ 2
1 = 4.0.

• On the interval [T2 , T ] white noise with the variance σ 2
2 = 1.0.

The first step is the generation of a sample of the stationary signal ξ . For this purpose
the following algorithm is applied:

• Generation ofN = 512 independent random variables ηi , i = 1, . . . 512, which
are equally distributed on the interval [− 1

2 ,
1
2 ] and which have unit variance.

• Computation of the covariance matrix

C = (cij ) = Cξξ (i − j), i, j = 0, . . . , 511. (3.163)

• Cholesky decomposition of the covariance matrix

C = LL�. (3.164)

• Construction of the signal

ξi :=
i∑

j=1

lij ηj , i = 1, . . . 512. (3.165)

With the help of the rules of covariance propagation it can be shown that ξ has the
covariance function Cξξ :

E{ξiξj } = E
{ i∑
k=1

likηk

j∑
l=1

llj ηl

}
= E{η�L�Lη} = LL� = Cξξ .

Figure 3.50 shows a sample of the stationary signal ξ without and with superimposed
noise. For the functional f two instances are chosen:

f1 := ϕ0,128 and f2 := ϕ0,384. (3.166)

Since ξ is a rather long-scale featured process, with a reasonable degree of approxi-
mation

ξ(128) ≈ 〈f1, ξ〉, ξ(384) ≈ 〈f2, ξ〉 (3.167)
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Figure 3.50. Noisy signal

holds. The first estimator f1 works in a signal region with a high noise variance the
second f2 in a signal region with a low noise variance. Due to the fact that ξ and n
are uncorrelated, Cξη = Cξξ is true. Now all previously compiled results can be used
here:

I (a, b, c, d) =
∫ b

a

∫ d

c

1

1 + α2(t ′ − t)2
dt ′ dt

= 1

α2

∫ αb

αa

∫ αd

αc

1

1 + (x − y)2
dx dy

= 1

α2 [α(b − c) arctan(α(b − c))− 1

2
ln(1 + α2(b − c)2) (3.168)

− α(b − d) arctan(α(b − d))+ 1

2
ln(1 + α2(b − d)2)

− α(a − c) arctan(α(a − c))+ 1

2
ln(1 + α2(a − c)2)

+ α(a − d) arctan(α(a − d))− 1

2
ln(1 + α2(a − d)2)].

With the help of the formulae (3.159)–(3.161) and (3.168) the Galerkin matrix can be
computed. Figure 3.51 shows the structure of the Galerkin matrix for the non-stationary
noise, given by the wavelet coefficients of its variance:

w
N
= 2.5, wN,0 = 1.5, wn,m = 0 else.
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Figure 3.51. Galerkin matrix

Also the right-hand side can be computed easily

〈ϕN,0, Cξηfi〉 = (ϕN,0, Cξξϕ0,i )

= 2−N
2

∫ 2N

0

∫ i+1

i

Cξξ (t
′ − t)dt ′ dt

= 2−N
2 I (0, 2N, i, i + 1),

and

〈ψr,s, Cξηfi〉 = (ψr,s, Cξξϕ0,i )

= 2− r
2

(∫ 2r s+2r−1

2r s

∫ i+1

i

Cξξ (t
′ − t) dt ′ dt

−
∫ 2r s+2r

2r s+2r−1

∫ i+1

i

Cξξ (t
′ − t) dt ′ dt

)
= 2− r

2

(
I (2r s, 2r s + 2r−1, i, i + 1)

− I (2r s + 2r−1, 2r s + 2r , i, i + 1)
)
.

The solutions ai , i ∈ {128, 384} are displayed in Figure 3.52.
Clearly, the prediction is basically a weighted mean of the data in the neighborhood

of the value which has to be predicted. The stronger the data noise the more smoothing
this weighted mean is. In Figure 3.53 the noise-free signal and its prediction are
compared.
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Figure 3.53. Non-stationary prediction

Obviously, the lower the noise is, the better is the prediction. In Figure 3.54 the
result of the usual stationary prediction is displayed.

A comparison of the results shows that the non-stationary prediction yields better
results, especially in the area of lower noise. The price which has to be paid is that
in the non-stationary case the very efficient tool of FFT cannot be applied, which
increases the computational load.
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Figure 3.54. Conventional prediction

3.4 Operator approximation

3.4.1 Wavelet compression of operator equations

Many tasks have an integral or a differential equation as mathematical description.
Since these infinite dimensional objects cannot be treated in a computer, they have
to be approximated on finite dimensional subspaces. Depending on the choice of the
approximating subspace and its base, the approximation of the corresponding operator
can be more or less efficient. In many cases the approximation on spaces of an MRA
is especially useful.

Consider operator equation

g(x) =
∫

R

K(x, y)f (y) dy, f ∈ H, g ∈ H. (3.169)

This operator equation is to be solved by the Galerkin method. The basic idea of
Galerkin’s method is to look for an approximate solution fn not in the whole space
H but in a finite-dimensional subspace Hn ⊂ H . If {ϕ1, . . . , ϕn} is a base of Hn the
approximate solution fn has the structure

fn(x) =
n∑
i=0

αiϕi(x) (3.170)
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with unknown coefficients αi . This leads to the Galerkin equations:∫
R

(∫
R

(K(x, y) ·
N∑
i=0

αiϕi(y)) dy

)
ϕk(x)dx =

∫
R

g(x) · ϕk(x) dx, k = 0, . . . N.

(3.171)
Setting

aki :=
∫

R

∫
R

K(x, y)ϕi(y) dyϕk(x) dx, bk :=
∫

R

g(x)ϕk(x) dx, (3.172)

the linear system of equations

N∑
i=0

akiαi = bk, k = 0, . . . N (3.173)

for the coefficients αi is obtained. The representation of the Galerkin solution can be
done with the help of those coefficients by

fN(x) :=
N∑
i=0

αi · ϕi(x). (3.174)

Usually, the dimension of the matrix (3.172) is very large. Therefore direct methods
like Cholesky decomposition cannot be applied. On the other hand the matrix entries
can be computed very easily. Thus the equations could be solved by iterative methods
like Conjugate Gradients iteration. If CG is applied, the matrix has not to be stored
in the computer’s memory but can be computed on the fly. Unfortunately, the rate of
convergence of the CG iteration is proportional to

ρ = µ− λ

µ+ λ
, (3.175)

with µ being the largest and ν being the smallest eigenvalue of the matrix (3.172).
This lead to convergence rates very close to 1, which means a very slow convergence.

The rate of convergence can be increased by pre-conditioning. Let C be a regular
matrix and let us abbreviate (C�)−1 byC−�. Then the two systems of linear equations

Ax = b and Ãx̃ = b̃, (3.176)

with
Ã = CAC�, x̃ = C−�x, b̃ = Cb (3.177)

are equivalent. Since

C�CA = C�CA(C�C−�) = C�(CAC�)C−� = C�ÃC−�

holds, the matrices Ã andC�CA have the same spectrum. Hence the convergence rate
of the CG iteration for the equation Ãx̃ = b̃ can be increased if C�C ≈ A−1 holds.
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The conditioning matrices C could be computed by a Cholesky decomposition of A.
Unfortunately, for a fully occupied matrix A the numerical effort for the Cholesky
decomposition is quite close to the total effort for the solution of Ax = b.

The situation changes, if the matrix A is sparse. In this case during the process
of Cholesky decomposition the fill-in occurring in the computation of the Cholesky
factors could be neglected, which leads to sparse pre-conditioning matrices C. In this
case CC� ≈ A−1 holds only approximatively but this will already be sufficient to
speed up the convergence. One method to generate a sparse Galerkin matrix is to use
wavelets as base functions.

The structure of the matrix A := (aki) strongly depends on the choice of the
base functions ϕi . The use of wavelets as base functions leads to a sparse matrix and
provides a lot of numerical advantages.

Wavelets. Let {∅} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R) be a multi-
resolution analysis of L2(R) and let ϕ be the scaling function of this MRA. One
possibility for the choice of base function is to use the Riesz base of V0 :

ϕk(x) := ϕ(x − k). (3.178)

This leads to the following expression for the coefficients of the Galerkin matrix:

aki : =
∫

R

∫
R

K(x, y)ϕ(y − i) dy ϕ(x − k) dx

=
∫

R

∫
R

K(x + k, y + i)ϕ(y)ϕ(x) dy dx (3.179)

If the correlation length of the kernelK is large compared to the scale of ϕ, the scaling
function ϕ acts approximatively like the delta distribution, i.e.

aki ≈ K(k, i) (3.180)

holds. This has the advantage that the elements of the Galerkin matrix can be computed
very easily but it has also the disadvantage that the resulting Galerkin matrix is fully
occupied. The scaling function ϕ is connected to the corresponding wavelet ψ and to
the scaling function of the next coarser scaling space by the so-called scaling equations

ϕ(x) = √
2
∑
k∈Z

hkϕ(2x − k), (3.181)

ψ(x) = √
2
∑
k∈Z

gkϕ(2x − k). (3.182)
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The space V0 can be decomposed into V0 = V1 ⊕W1. Hence the base of V1 ⊕W1 can
also be used for the solution of the Galerkin equations.

1

2

∫
R

(∑
i∈Z

K(x, y)c
(1)
i · ϕ(2−1y − i) dy

)
ϕ(2−1y − k) dx

+ 1

2

∫
R

(∑
i∈Z

K(x, y)d
(1)
i · ψ(2−1y − i) dy

)
ϕ(2−1y − k) dx (3.183)

= 1√
2

∫
R

g(x) · ϕ(2−1x − k) dx.

1

2

∫
R

(∑
i∈Z

K(x, y)c
(1)
i · ϕ(2−1y − i) dy

)
ψ(2−1y − k) dx

+ 1

2

∫
R

(∑
i∈Z

K(x, y)d
(1)
i · ψ(2−1y − i) dy

)
ψ(2−1y − k) dx (3.184)

= 1√
2

∫
R

g(x) · ψ(2−1x − k) dx.

This again is a system of linear equations for the coefficients c(1)i , d
(1)
i and with the

help of this equation the solution of the operator equation can be approximated by

f (x) = 1√
2

∑
i∈Z

c
(1)
i ϕ(2−1x − i)+ 1√

2

∑
i∈Z

d
(1)
i ψ(2−1x − i). (3.185)

The change to the alternative representation of the solution has the consequence that
the Galerkin matrix is partitioned, i.e.

A(1) =
[
a1
ki a

2
ki

a3
ki a

4
ki

]
(3.186)

with

a1
ki =

1

2

∫
R

∫
R

K(x, y)ϕ(2−1y − i)ϕ(2−1x − k) dy dx, (3.187)

a2
ki =

1

2

∫
R

∫
R

K(x, y)ψ(2−1y − i)ϕ(2−1x − k) dy dx, (3.188)

a3
ki =

1

2

∫
R

∫
R

K(x, y)ϕ(2−1y − i)ψ(2−1x − k) dy dx, (3.189)

a4
ki =

1

2

∫
R

∫
R

K(x, y)ψ(2−1y − i)ψ(2−1x − k) dy dx. (3.190)

The advantage of this partition is that the coefficients a4
ki are very small, since they

represent the shortest wave-length component of the kernel K and this kernel was
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supposed to be of a very long wavelength nature. Hence the change from a base of
V0 to a base of V1 ⊕ W1 changes the character of the Galerkin matrix to a sparser
structure. On first sight, this has to be paid by a more complicated computation of the
matrix elements, since the support of ϕ(2−1x) and ψ(2−1x) is twice as large as the
support of ϕ(x). But due to the scaling equations the coefficients ajki can be computed
recursively from the coefficients aki :

a1
ki =

1

2

∫
R

∫
R

K(x, y)ϕ(2−1y − i)ϕ(2−1x − k) dy dx

=
∫

R

∫
R

K(x, y)
∑
l∈Z

hlϕ(y − 2i − l)
∑
m∈Z

hmϕ(x − 2k −m) dy dx (3.191)

=
∑
l∈Z

∑
m∈Z

∫
R

∫
R

K(x, y)ϕ(y − l)ϕ(x −m) dy dxhl−2ihm−2k

=
∑
l∈Z

∑
m∈Z

almhl−2ihm−2k.

In a quite similar way the recursions for the remaining parts of the Galerkin matrix
can be found

a2
ki =

∑
l∈Z

∑
m∈Z

almgl−2ihm−2k, (3.192)

a3
ki =

∑
l∈Z

∑
m∈Z

almhl−2igm−2k, (3.193)

a4
ki =

∑
l∈Z

∑
m∈Z

almgl−2igm−2k. (3.194)

A closer inspection of these recursion equations shows that the matrix A(1) is the two-
dimensional wavelet transformation of the matrixA = (aki). In a quite analog way the
right-hand side of the Galerkin equation can be considered as the wavelet transform of
the inhomogeneity g. The advantage of this procedure is that it transforms the Galerkin
equation into a sparse form.

Example 3.4.1. Let us consider the integral equation∫
R

K(x, y)f (y) dy = g(x) (3.195)

with the kernel

K(x, y) = 1

1 + α(x − y)2
, α = 10−4 (3.196)

which is displayed in Figure 3.55. The scaling spaceV0 spanned by the scaling function
of the Daubechies wavelet of order N = 2 is chosen as approximation space. The
scaling function is displayed in Figure 2.39, p. 94. The entries aik of the Galerkin
matrix are computed by (3.172) and they are displayed in Figure 3.56.
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Figure 3.55. Kernel of the integral equation

Figure 3.56. Galerkin matrix with respect to the base of V0
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The Galerkin matrix has a ridge along the main diagonal and decreases slowly
towards the edges of the matrix. All in all, the matrix is far from being sparse and all
matrix entries have to be taken into account for the solution of the resulting system of
Galerkin equations.

The maximal and minimal eigenvalues of A are

µ = 216.79, λ = 1.2375 · 10−9,

which leads to a convergence factor of

ρ = µ− λ

µ+ λ
= 0.99999999988538.

It can be expected that the iteration error ‖x− xn‖ is reduced in each iteration step
of the CG iteration by the factor ρ only, and the convergence is very slow. Possibly,
the convergence can even be prevented by the rounding errors. Figure 3.57 shows the
iteration errors of the CG iteration in a logarithmic scale.
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Figure 3.57. Norm of the iteration errors in logarithmic scale

In the beginning the error decreases quite fast, but in the end the interaction of the
low rate of convergence and of the rounding errors prevents the computation of an exact
solution. An error of about 10−8 remains independent of the number of iterations.

Since V0 = W1 ⊕W2 ⊕ · · · ⊕WN ⊕ VN holds, the base of V0 can be replaced by
the base of W1 ⊕W2 ⊕ · · · ⊕WN ⊕ VN . The transformation of the Galerkin matrix
from the base of V0 to the base of W1 ⊕W2 ⊕ · · · ⊕WN ⊕ VN can be accomplished
by two-dimensional wavelet transformation with respect to the Daubechies 4 wavelet.

The result of this transformation is shown in Figure 3.58. It is clearly visible
that the transformed matrix has only a very small number of dominant matrix entries.
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Figure 3.58. Wavelet transformed Galerkin matrix

All the other entries are small but not exactly equal to zero. The next step will be a
thresholding. All elements with a modulus smaller than 10−7 · ‖A‖ will be replaced
by zero. The skeleton of the thresholded matrix, i.e. all elements which are different
from zero are displayed in Figure 3.59.

Figure 3.59. Skeleton of the wavelet compressed matrix

Now the conditioning matrix C can be computed by incomplete Cholesky de-
composition and can be used for pre-conditioning of the Galerkin equation. When
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preconditioned, the convergence is much faster and the results are much more precise
than for the usual CG iteration. In Figure 3.60 the iteration errors of the preconditioned
CG iteration are again displayed in a logarithmic scale.
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Figure 3.60. Norm of the iteration errors of the PCG iteration

It is clearly visible that the iteration is much faster; instead of 100 steps and a final
accuracy of 10−8 after only 30 steps an accuracy of 10−16 is obtained. Hence the use
of a wavelet base for the Galerkin method is proved as a very efficient tool to increase
booth speed and accuracy.

3.4.2 Multi-grid solvers for wavelet discretized operators

We will restrict our considerations to situations where the connection between the
given data and the unknown solution can be formulated as a differential or an integral
equation. The concept of a pseudo-differential operator (PDO) is the generalization
both of the concept of a differential and an integral operator. It is defined as an operator
of the following structure

pu(x) :=
∫ ∞

−∞
û(ω) · a(ω)eıxω dω. (3.197)

In the equation (3.197) the quantity û is the Fourier transform of the signal u. This
means, the application of a PDO on a signal is a three-step procedure:

1. Computation of the spectrum û of the signal.

2. Filtering of the spectrum by the so-called symbol a(ω) of the PDO.

3. Back-transformation of the filtered signal into the space or time domain.
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In general, a PDO equation
pu = f (3.198)

cannot be solved analytically. A frequently applied technique for the generation of an
approximate solution is Galerkin’s method.

The idea of Galerkin’s method is not to look for a solution in the whole definition
space of the operator p, but in a finite-dimensional subspace. Let {ϕ1, . . . , ϕn} be a
base of such an n-dimensional subspace. Then every candidate for an approximate
solution is of the following structure:

un(x) =
n∑
i=1

ui · ϕi(x). (3.199)

This leads to the Galerkin equations for the unknown weights ui :

n∑
j=1

aij · uj = bi, i = 1, . . . , n, (3.200)

where the coefficients aij , bi are given by

aij :=
∫ ∞

−∞
pϕj · ϕi dx, bi :=

∫ ∞

−∞
f · ϕi dx. (3.201)

Equation (3.201) is valid for any kind of an operator p. If the operator p is a PDO,
the coefficients aij can also be determined by

aij = √
2π
∫ ∞

−∞
a(ω)ϕ̂j (ω)ϕ̂i(ω) dω. (3.202)

This means that for the establishment of the Galerkin equations it is not necessary to
know the PDO exactly, it is already sufficient to know its symbol a(ω).

Multi-grid solvers. Usually the dimension of the Galerkin equations is so high that
it has to be solved iteratively. Generally, it can be observed that an iterative solver
reduces the short-wavelength error constituents in the initial guess for the solution but
leaves the long-wavelength error constituents almost unchanged. For the elimination
of the remaining long-wavelength error constituents a much coarser grid is sufficient.
On such a coarse grid the dimension of the remaining problem is so small that the error
elimination can be performed by a direct solver. This alternating treatment of the same
problem on a fine grid by an iterative solver and on a coarse grid by a direct solver
is the basic principle of a multi-grid method. Multi-grid solvers discretize a given
problem on two hierarchical grids, having the mesh-widths h and H . The discretized
problems are

Ahuh = bh, AHuH = bH . (3.203)
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For the restriction to a coarser and for the uplift to a finer grid two operators are
necessary

IHh : Uh → UH , IhH : UH → Uh. (3.204)

On the fine grid the problem is solved iteratively:

ul+1
h = Thu

l
h + th, l = 0, . . . , n− 1, (3.205)

where Th denotes the iteration matrix and th the constant part of the iterative solver on
the fine grid. The iteration will leave a long-wavelength residual

dh = bh − Ahu
n
h. (3.206)

The cause of the residual can be determined on the coarse grid by

νH = A−1
H (IHh dh). (3.207)

After the uplift of the long-wavelength error νH to a finer grid the solution can be
corrected for the long-wavelength errors

uh = unh + IhH νH . (3.208)

This process has to be repeated several times. Compressed into a single formula a
multi-grid solver is of the following structure (c.f. [44]):

uk+1
h = T nh (I − IhHA

−1
H IHh Ah)T

n
h u

k
h + sh. (3.209)

For suitable operators p the multi-grid strategy provides a sufficiently high and dimen-
sion-independent convergence speed.

Multi-grid solvers on consecutive wavelet spaces. The solution spaces Uh and
UH on two hierarchical grids strongly remind of the hierarchical scaling spaces of a
wavelet multi-resolution analysis (MRA). Therefore it is naturally to identify these
solution spaces Uh and UH with two spaces V0 and V1 of an MRA. The advantage
of this choice is that the restriction operator IHh and the uplift operator IhH can be
identified with Mallat’s smoothing operator H and its adjoint H ∗. From this setting
two important conclusions can be drawn. First, the discretization of the problem on a
coarser grid can be computed efficiently from the given discretization on the fine grid
by a wavelet transformation

AH = HAhH
∗. (3.210)

Instead of a new discretization according to (3.202), a single step of Mallat’s algorithm
is sufficient to compute the matrix AH from the given matrix Ah.

Secondly, it holds

HdHh H
∗ := H(I − IhHA

−1
H IHh Ah)H

∗

= HH ∗ −HH ∗A−1
H HAhH

∗ (3.211)

= HH ∗ −HH ∗A−1
H AH

= 0.
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The interpretation of (3.211) is that the error dHh has no constituent on the coarse grid.
The error dHh is produced by inverting AH instead of Ah. This means that the direct
solver deals only with the long-wavelength features. The short-wavelength features
have do be dealt with by the iteration operator Th. This is only possible if the iteration
operator is a low-pass filter, which means in turn that the operator p has to be a high-
pass filter. In this respect, equations (3.211) characterizes operators which are suitable
for a multi-grid strategy.

Planar Stokes problem. The use of wavelet techniques for the construction of a
multi-grid solver will be tested for two examples: First the Stokes problem in planar
approximation, second the satellite gravity gradiometry boundary value problem.

The planar Stokes problem looks for a function u, which is harmonic in the upper
half-space. The normal derivatives of this function have to coincide with given values
δg at the x3 = 0 plane.


u(x) = 0, x3 > 0, (3.212)

∂u

∂n

∣∣
x3=0 = δg. (3.213)

Despite the fact that in spherical approximation the Stokes problem is a Robin-type
boundary value problem, in planar approximation the Stokes problem simplifies to a
Neumann problem.

The PDO formulation of this problem is

δg = pu = 1

2π

∫ ∞

−∞

∫ ∞

−∞
a(ω)û(ω)eıxω dω, (3.214)

a(ω) = |ω|. (3.215)

The plot of the symbol a(ω) up to the Nyquist frequency π shows that the Stokes PDO
is a high-pass filter (see Figure 3.61). Hence the construction of a multi-grid solver
for the problem might be useful.

For the MRA, generating a multi-grid solver for the planar Stokes problem, the
simplest possible choice was made: The two-dimensional Haar tensor wavelet. This
wavelet has the following scaling function

ϕ(x) := ϕ(x1) · ϕ(x2), (3.216)

ϕ(x) :=
{

1, 0 ≤ x < 1

0, else,
(3.217)

ϕ̂(ω) = 1

ıω
√

2π
[1 − e−ıω]. (3.218)
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Figure 3.61. Symbol of the planar Stokes PDO

For this choice Mallat’s smoothing operator H becomes

(Hu)ij :=
1∑
k=0

1∑
l=0

uklhk−2ihl−2j , (3.219)

h0 = h1 = 1√
2
. (3.220)

According to (3.202), the coefficients of the Galerkin matrix can be computed by

ahijkl = 2π
∫ ∞

−∞

∫ ∞

−∞
a(ω)ϕ̂ij ϕ̂kl dω

= 2π
∫ ∞

−∞

∫ ∞

−∞
|ω||ϕ̂|4e−ı(ω1(i−k)+ω2(j−l)) dω.

(3.221)

Obviously, the coefficients ahijkl of the Galerkin matrix are the Fourier transform of

2π |ω||ϕ̂|4 sampled at integer locations. Therefore these coefficients can be efficiently
computed by FFT. For an N × N grid the Galerkin matrix contains N4 coefficients.
Fortunately it is sufficient to compute only the N2 coefficients of a core block. Fig-
ure 3.62 shows the core block for the planar Stokes problem

Only this core block has to be stored in the computer’s memory. The remaining
coefficients can be determined on-the-fly by scanning this core block row wise.

In the examples to be discussed here N always is equal to 64, which means a
4096×4096 system has to be solved. In order to test the performance of the resulting
multi-grid solver the Galerkin equations are solved twice: With the usual Gauß–Seidel
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Figure 3.62. Core block for the planar Stokes Problem

iteration and by the multi-grid solver. (Of course, also other iterative solvers e.g. CG-
solvers could be used. Independently from the iterative solver the multi-grid iteration
will have a dimension-independent rate of convergence.) Both iterations start with an
identical initial error distribution, which is displayed in Figure 3.63.
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Figure 3.63. Errors of the initial guess

These initial errors consist of a long-wavelength and a short-wavelength part. The
remaining errors after 20 steps of Gauß–Seidel iteration are displayed in Figure 5.64.
The short-wavelength error constituents are completely eliminated, but the long-
wavelength errors are almost unchanged. Only a slight change in its magnitude can
be observed.
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The situation is quite different for the multi-grid solver. The remaining errors after
only 4 steps of multi-grid iteration are shown in Figure 3.65. Here, the long-wavelength
errors are reduced by a factor of about 1000. The short-wavelength errors are so small
that they are not visible in the plot.

0
5 10 15 20 25 30 35 0

5
10

15
20

25
30

35

0

0.05

0.1

0.15

0.2

0.25

Figure 3.64. Remaining error after 20 Gauss–Seidel steps
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Figure 3.65. Remaining errors after 4 multi-grid steps.

Satellite gravity gradiometry. Solving the satellite gravity gradiometry boundary
value problem means to look for a functionu, which is harmonic in the upper half-space
and which, at a certain height x3 = h, has given second order normal derivatives.


u(x) = 0, x3 > 0, (3.222)

∂2u

∂n2

∣∣
x3=h = �. (3.223)
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The PDO formulation of this problem is

� = pu = 1

2π

∫ ∞

−∞

∫ ∞

−∞
a(ω)û(ω)eıxω dω (3.224)

a(ω) = |ω|2e−h|ω|. (3.225)

In contrast to the planar Stokes problem, here the symbol is the combination of a high-
pass |ω|2 and a low-pass filter e−h|ω|. Which of the two components prevails depends
on the orbital height h of the satellite. In Figure 3.66 the symbols for two flight-height
scenarios are plotted.
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Figure 3.66. Symbols of gravity-gradient PDOs for two different orbital heights

The upper curve represents the symbol for an orbital height, which approximately
equals the desired resolution on the ground; for the lower curve the orbital altitude is
twice the desired resolution on the ground. In the first case the corresponding PDO is
almost a high-pass filter and the use of a multi-grid solver seems promising. For the
case of the higher satellite the PDO is a band-pass filter and therefore not suitable for
multi-grid procedures. Hence a multi-grid solver was only constructed for the case of
the low-flying satellite. Again the problem was solved twice: With the usual Gauß–
Seidel iteration and with a multi-grid solver. In both cases 12 iteration steps were
performed. Figure 3.67 shows the development of the error norms for both solvers.

For the Gauß–Seidel iteration the error norm is increasing, which means that the
iteration is not convergent. The reason for this divergence might be the non-perfect
high-pass filter of the underlying PDO.

The multi-grid solver is converging rapidly. After 11 steps 9 valid decimal places in
the solution are obtained. This is more than for the most gravityfield recovery purposes
is necessary. For PDOs with a high-pass symbol multi-grid solvers provide an efficient
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tool to speed up the convergence of the iterative solution of the corresponding Galerkin
equations. In principal, multi-grid solvers are possible on any kind of hierarchical
grids. On regular grids the solution spaces can be identified with consecutive scaling
spaces of an MRA. This enables the use of wavelet techniques for

• the discretization on different grids,

• the restriction from a finer to a coarser grid,

• the uplift from a coarser to a finer grid.

This technique is not restricted to planar cases. But if the underlying problem is
a planar convolution, all matrices involved can be computed on the fly from much
smaller core matrices. In this case really large problems can be tackled even on a PC.

3.5 Gravity field modelling

Usually, gravity field modeling is understood as the determination of the parameters cj
of a linear combination of known base functions ϕj such that the linear combination in
some sense is an optimal approximation of the gravitational potential V of the Earth:

V (x) ≈
M∑
j=0

cjϕj (x). (3.226)
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Traditionally, spherical harmonics are used as base functions

ϕj (x) = Hn,m(x), j = (n+ 1)(n+ 2)

2
+ n−m. (3.227)

This spherical harmonics approximation technique has been extensively developed
over the last decades and it is still the most frequently applied method. Nevertheless,
it suffers from the conceptional disadvantage that the support of the base function
covers the whole unit sphere σ . As a consequence the change of a single coefficient
cj changes the whole gravity field model. Since the coefficients cj are derived from
observations, also the change of a single observation changes all coefficients. In order
to overcome this disadvantage, localized base functions such as harmonic wavelets on
the sphere can be used for gravity field modeling purposes. In general not the values
of the gravitational potential V but the values of several functionals applied to V are
available for the determination of the coefficients cj . In the general context of Physical
Geodesy such functionals can be

• the gravity disturbancy functional Lδgx V = x
|x|∇V ,

• the gravity anomaly functional L
gx V = −( x
|x|∇ + 2

|x| I
)
V or

• the satellite-gravity-gradiometry functional Lδδgx V = ( x
|x|∇
)2
V .

Gravity field modeling by harmonic wavelets aims at the determination of the
wavelet spectrum

(WT )V (j, y) = 〈�j,y, V 〉 (3.228)

from the observed values mj = LjV of certain functionals Lj of V . In order to
accomplish this goal, the functionals cannot be arbitrarily chosen but have to form a
so-called fundamental system on σ .

Definition 3.5.1. A set ofM =∑q
l=p(2l+ 1) functionals Lj , j = 1, . . . ,M is called

a fundamental system of Harmp,...,q , if the matrix
L1Hp,−p . . . LMHp,−p

...
...

L1Hq,q . . . LMHq,q

 (3.229)

is regular.

In [35] it is shown that for pairwise distinct xj ∈ σ the gravity disturbance

functional Lδgxj , the gravity anomaly functionals L
gxj and also the satellite-gravity-

gradiometry functionals Lδδgxj form fundamental systems.
For a fundamental system a numerical quadrature formula can be developed, which

computes the scalar product (3.228) from the observed values mj of the functionals.
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Lemma 3.5.1. Let
· · ·Vj ⊂ Vj+1 ⊂ · · · ⊂ H({An}, σ ) (3.230)

be an MRA of H({An}, σ ). Let f ∈ Vj+1, let

�j(x, y) =
2j+1∑

n=2j+1

n∑
m=−n

A−2
n Hn,m(x)Hnm(y), (3.231)

and let Lj be a fundamental system of Harm0,...,j+1. If the weights anm are defined
as the solution of the linear equations

2j+1∑
n=0

n∑
m=−n

(LjHn,m)anm = mk , k = 1, . . . ,M, (3.232)

then

〈�j,y, f 〉 =
2j+1∑

n=2j+1

n∑
m=−n

anmA
−2
n Hn,m(x) (3.233)

holds.

Proof. Since f is supposed to be an element of Vj+1, it has the series expansion

f =
2j+1∑
n=0

n∑
m=−n

anmHn,m.

For k = 0, . . . ,M holds

mk = Lkf =
2j+1∑
n=0

n∑
m=−n

anmLkHn,m.

This is a linear system of equations for the coefficients anm, which has a unique solution
since the functionals Lk form a fundamental system. Consequently

〈�j,y, f 〉 = 〈
2j+1∑

n=2j+1

n∑
m=−n

A−2
n Hn,m(x)Hn,m(•), f (•)〉

=
2j+1∑

n=2j+1

n∑
m=−n

A−2
n Hn,m(x)

j+1∑
p=0

p∑
q=−p

apq〈Hn,m,Hp,q〉

=
2j+1∑

n=2j+1

n∑
m=−n

anmA
−2
n Hn,m(x).

��
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The lemma shows how the wavelet decomposition of the gravitational potential can
be obtained from the observed values mk = Lk of certain linear bounded functionals
of this potential. In this way an almost arbitrary data combination can be used for a
harmonic wavelet representation of the gravitational potential.

Nevertheless, some particularities of this approach have to me mentioned:

1. The approach uses the assumption f ∈ Vj+1 ⊂ H({An}, σ ), which is not
fulfilled in reality. But if the index j is chosen large enough, this is a sufficiently
accurate approximation to reality.

2. Even if only the wavelet approximation (WT )f (i, y) on a single scale i is to be
computed, the total number ofM = (j+1)2 linear functionalsLk are necessary,
which additionally have to form a fundamental system.

3. For the construction of exact quadrature formulas, the solution of a linear system
of equations of the dimensionM is necessary for the determination of the weights
anm of these quadrature formulas.

4. Using the fact that the wavelets are rapidly decreasing, approximate quadrature
formulas have been developed, which do not require the solution of a system of
linear equations.

A vast amount of contributions about wavelet analysis comes from the Geomathe-
matical Group of the Kaiserslautern University. For years this group, led and inspired
by W. Freeden, develops the theory and application of harmonic wavelets on the sphere.
In the period from 1999 to 2003 the application of the now mature theory to the anal-
ysis of the Earth’s gravitational and magnetic field was in the focus of the activities of
this group. Papers dealing with the spherical wavelet analysis of the Earth’s magnetic
field are [6], [5] and [4]. General questions related to the representation of scalar and
vectorial functions on a sphere by spherical wavelets are discussed in [7], [26], [25],
[28] and [32]. Since practically no data is noise free also the question of the denoising
of the given signal using spherical wavelets has been discussed in the papers [29], [30],
[31] and [33]. A great impact on geodetic research was made by the launches of the
dedicated gravity field satellite missions CHAMP and GRACE. Naturally, these new
data sources also have been reflected in techniques for the analysis of these data. Paper
which are related to data collected from CHAMP or GRACE are [26], [34], [23], [24],
[69], [70] and [74].





A Hilbert spaces

A.1 Definition of Hilbert spaces

The concept of a Hilbert space is the generalization of the familiar three-dimensional
vector space into infinite dimensions. The typical properties of the three-dimensional
vector space are:

• A scalar product 〈$x, $y〉 between vectors $x, $y is defined.

• The length |$x| of a vector $x can be deduced from the scalar product:
|$x| = √〈$x, $x〉.

• There are three mutual orthogonal vectors $e1, $e2, $e3 having unit length.

• Every vector $x can be expressed as linear combination of these three base vectors
$x = x1$e1 + x2$e2 + x3$e3.

• The weights x1, x2, x3 in this linear combination are the projections of $x to the
corresponding base-vector: xi = 〈$x, $ei〉.
The weights are frequently called coordinates of $x with respect to the base
$e1, $e2, $e3.

• The square of length of a vector is equal to the sum of the squares of its coordi-
nates

|$x|2 = x2
1 + x2

2 + x3
3 .

The theory of Hilbert spaces generalizes this concept with respect to two directions:

• First, the elements of a Hilbert space do not have to be vectors. They can also
be different mathematical objects.

• Secondly, the dimension can be infinite.

In the following, a short sketch of the theory of Hilbert spaces will be given. The
basic building-block of a Hilbert space is a so-called real linear space.

Definition A.1.1. A set V is called a linear space over the real numbers, if two oper-
ations

⊕ : V × V → V and % : R × V → V, (A.1)

called addition and scaling, are defined having the following properties:

x ⊕ y = y ⊕ x, x, y ∈ V, (A.2)

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z, x, y, z ∈ V. (A.3)
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There is a neutral element O with

x ⊕ O = x, x ∈ V. (A.4)

For each element x there is an inverse element −x, with

x ⊕ (−x) = O. (A.5)

The following distributive laws are valid:

α % (β % x) = (αβ)% x, x ∈ V, α, β ∈ R, (A.6)

(α + β)% x = (α % x)⊕ (β % x), x ∈ V, α, β ∈ R, (A.7)

α % (x ⊕ y) = (α % x)⊕ (α % y), x, y ∈ V, α ∈ R. (A.8)

Obviously, the familiar vectors in the three-dimensional space with the operations
“⊕” = vector addition and “%” = prolongation are a linear space in the sense of the
definition given above. But also other objects, like polynomials of maximum degree
n, form a linear space with respect to the operations

(P ⊕Q)(t) := P(t)+Q(t), (A.9)

(α % P)(t) := αP (t). (A.10)

Besides the operations ⊕,%, the scalar product is the next structure in a linear
space.

Definition A.1.2. A mapping 〈 •, • 〉 : V × V → R is called a scalar product in V , if
the following relations hold:

〈x, y〉 = 〈y, x〉, x, y ∈ V, (A.11)

〈x ⊕ y, z〉 = 〈x, z〉 + 〈y, z〉, x, y, z ∈ V, (A.12)

〈α % x, y〉 = α〈x, y〉, x, y ∈ V, α ∈ R, (A.13)

〈x, x〉 ≥ 0, 〈x, x〉 = 0 ⇔ x = O. (A.14)

Again, it is easy to see that the traditional scalar product of three-dimensional
vectors

〈$x, $y〉 := |$x||$y| cosϕ

fulfills all of the above mentioned conditions. Hence it is also a scalar product in the
sense of the Hilbert space theory.

For each linear space with a scalar product an important result, the so-called
Cauchy–Schwartz inequality, holds.

TheoremA.1.1. Let V be a linear space with the scalar product 〈 •, • 〉 then the in-
equality

|〈x, y〉| ≤ √〈x, x〉 ·√〈y, y〉 (A.15)

holds.
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Proof. [13]. ��

Every Hilbert space has a mapping, which measures the length of its elements.
This mapping is called a norm.

Definition A.1.3. A mapping ‖ • ‖ : V → R is called a norm in V , if the following
conditions are fulfilled:

‖αx‖ = |α| · ‖x‖, α ∈ R, x ∈ V, (A.16)

‖x‖ ≥ 0, x ∈ V, (A.17)

‖x‖ = 0 ⇔ x = O, (A.18)

‖x ⊕ y‖ ≤ ‖x‖ + ‖y‖. (A.19)

Remark. There is an instructive interpretation for these three conditions
(A.16)–(A.19): The first condition means that the length of a scaled element equals the
length of the original element multiplied by the scaling factor. The second condition
indicates that the length of an element of a linear space always has to be larger than
or equal to zero. The length zero is only possible if the element itself is the neutral
element. The last condition is also known under the name triangle inequality. It states
that the sum of the lengths of two sides of a triangle is always larger than the length
of the third side.

Once a scalar product is given, there is a simple way to derive a norm from this
scalar product.

LemmaA.1.1. The mapping ‖ • ‖ : V → R+ defined by

‖x‖ := √〈x, x〉 (A.20)

is a norm in V .

Proof. (A.17) and (A.18) are direct consequences of (A.14).
Moreover,

‖αx‖ = √〈αx, αx〉 =
√
α2〈x, x〉 = |α|√〈x, x〉 = |α| · ‖x‖,

which shows (A.16).
The triangle inequality (A.19) can by proved by using (A.15):

‖x ⊕ y‖ = √〈x ⊕ y, x ⊕ y〉 = √〈x, x〉 + 2〈x, y〉 + 〈y, y〉
≤
√
〈x, x〉 + 2

√〈x, x〉√〈y, y〉 + 〈y, y〉

=
√(√〈x, x〉 +√〈y, y〉

)2

= ‖x‖ + ‖y‖. ��
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Besides the norm, derived from the scalar product, there are many other possibilities
to define a norm. Whether a given norm is compatible with the scalar product can be
tested by the so-called parallelogram equation.

LemmaA.1.2. A norm ‖ • ‖ is compatible with the scalar product 〈 •, • 〉, if and only
if the equation

‖x ⊕ y‖2 + ‖x � y‖2 = 2(‖x‖2 + ‖y‖2) (A.21)

holds.

Proof. [50]. ��
With the help of the norm, the concept of convergence can be introduced.

Definition A.1.4. A sequence {xn} ⊂ V is called convergent to x ∈ V , if for every
ε > 0 there is an index n0 = n0(ε), with

‖xn � x‖ ≤ ε, for all n > n0. (A.22)

Every convergent sequence has an interesting property: It is a so-called Cauchy
sequence

Definition A.1.5. A sequence {xn} is called Cauchy sequence, if for every ε > 0 there
is an index n0 = n0(ε) with

‖xm � xn‖ < ε, n,m ≥ n0. (A.23)

LemmaA.1.3. Every convergent sequence is a Cauchy sequence.

Proof. Let {xn} converge to x and let ε > 0. Then there exists an n0 with

‖x � xn‖ < ε

2
, n ≥ n0.

Using the triangle inequality (A.16) one obtains for n,m > n0

‖xn � xm‖ ≤ ‖x � xn‖ + ‖x � xm‖ ≤ ε

2
+ ε

2
= ε. ��

It has to be mentioned that the reverse statement is not true. There are Cauchy
sequences which have no limit, as will be shown in the following example.

Example A.1.1. Let V be the set of rational numbers. With respect to the operations
⊕ = + and % = · , the set V is a linear space over Q. The scalar product in V is the
usual multiplication of rational numbers and the norm of a rational number equals its
absolute value.

Consider the sequence {xn} = { an+bn2 ; n = 0, 1, 2 . . . } given as follows. Let

a0 = 1, b0 = 2
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and set

an+1 =
{
an, (a2

n − 2)(x2
n − 2) < 0,

xn, else;

bn+1 =
{
bn, (b2

n − 2)(x2
n − 2) < 0,

xn, else

for n = 0, 1, 2, . . .
Obviously, ‖xn − xn−1‖ = 2−n−1 holds. Hence, for m > n the following relation

ist true:

‖xm − xn‖ = ‖xm − xm−1 + xm−1 − · · · − xn‖
≤ ‖xm − xm−1‖ + ‖xm−1 − xm−2‖ + · · · + ‖xn+1 − xn‖
= 2−n−2(1 + 2 + · · · + 2−m+n+1)

= 2−n−2(2 − 2−m+n+1)

≤ 2−n−1

On the other hand from the definition of the sequence {xn} follows

|an − bn| = 2−n, an <
√

2 and
√

2 < bn.

This leads to the conclusion

|xn −
√

2| = |bn − an −
√

2 + an − bn + xn| ≤ |bn − an| + |an −
√

2| + |xn − bn|
≤ |bn − an| + |an − bn| + |an − bn| = 3|bn − an|
= 3 · 2−n → 0 for n→ ∞.

Since
√

2 /∈ V = Q, and since a sequence cannot have more than one limit, the
sequence {xn} is not convergent.

The deeper reason for the fact that in the previous example a Cauchy sequence is not
convergent is that the rational numbers are not complete. The space of rational numbers
has – as one might say – holes: The irrational numbers. Therefore an indication of the
completeness of a linear space is that all Cauchy sequences are convergent.

Definition A.1.6. A linear spaceV with scalar product is called complete, if all Cauchy
sequences in V are convergent.

Now all preparations for the definition of a Hilbert space have been made:

Definition A.1.7. A linear space H with scalar product 〈 •, • 〉 which is complete, is
called a Hilbert space.
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A.2 Complete orthonormal systems in Hilbert spaces

So far the concept of a Hilbert space has been defined. We now introduce the dimension
of a Hilbert space. The concept of the dimension of a linear space is closely connected
to the concept of a base of a linear space.

Definition A.2.1. The elements x1, x2. . . . , xn ∈ V of a linear space V are called
linear independent, if

O = α1 % x1 ⊕ α2 % x2 ⊕ · · · ⊕ αn % xn ⇔ α1 = α2 = · · · = αn = 0 (A.24)

holds. Otherwise they are called linear dependent.

Remark. The concept of linear dependence is motivated by the fact that for linear
dependent elements it is always possible to express one element by the remaining
elements: Let for instance x1, . . . , xn be linear dependent. Then there are real numbers
α1, . . . , αn, such that

O = α1 % x1 ⊕ · · · ⊕ αn % xn

holds and at least one αi is not zero. Without any restriction of generality let α1 �= 0.
Then

x1 = α2

−α1
% x2 ⊕ · · · ⊕ αn

−α1
% xn

follows, i.e. the element x1 is dependent on x2, . . . , xn.

Definition A.2.2. The maximal number of linear independent elements of a linear
space V is called the dimension of V .

The idea behind the introduction of linear independent elements in a linear space is
to represent every element of the linear space as a linear combination of the independent
elements. This representation is particularly simple, if the linear space is a Hilbert
space.

Definition A.2.3. Let H be a Hilbert space. Two elements x, y ∈ H are called
orthogonal, if

〈x, y〉 = 0 (A.25)

holds. A subset D ⊂ H is called an orthogonal system in H , if any two different
elements of D are orthogonal.

If for all elements z ∈ D of an orthogonal system ‖z‖ = 1 holds, D is called an
orthonormal system.

Remark. The definition of orthogonality is again motivated from the prototype of the
three-dimensional vectors. For two orthogonal vectors $x, $y the relation

〈$x, $y〉 = |$x| · |$y| cos
(π

2

)
= 0
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holds. This motivates the usage of a vanishing scalar product as an indicator of or-
thogonality.

An important property of an orthogonal system is the linear independence of its
elements. Let D = {e1, e2, . . . , en} be an orthogonal system in H and let hold

O = α1 % e1 ⊕ · · · ⊕ αn % en.

Then it follows that

0 = 〈ei,O〉 = αi〈ei, ei〉, i = 1, . . . , n.

This is only possible for αi = 0, i = 1, . . . , n, i.e. the elements of D are linear
independent. Since with the help of a linear independent system the representation of
all other elements of a Hilbert space as a linear combination of them is possible, the
question remains, how to choose the weights in this linear combination. The answer
is particularly simple, if the independent elements form an orthonormal system.

Definition A.2.4. Let D = {en} be an orthonormal system in a Hilbert space H . For
an arbitrary element x ∈ H the numbers

〈x, ek〉, k = 1, 2, . . . (A.26)

are called the Fourier coefficients of x with respect to the orthonormal system D.

The name Fourier coefficient for the scalar product 〈x, ek〉 can be motivated by a
simple example.

Example A.2.1. LetH be the set of all functions x, defined on [−π, π ] which fulfill
the condition ∫ π

−π
x2(t) dt <∞.

Then H is a linear space with respect to the operations (x ⊕ y)(t) := x(t)+ y(t) and
(α % x)(t) := α · x(t). By

〈x, y〉 := 1

2π

∫ π

−π
x(t) · y(t) dx

a scalar product is introduced in H . The elements

e0 = 1, e2n = √
2 cos(nt), e2n−1 = √

2 sin(nt), n = 1, 2, . . .

form an orthonormal system in H . If now, according to (A.26), the abstract Fourier
coefficients are computed, one obtains

〈x, e0〉 = 1

2π

∫ π

−π
x(t) dt =: a0,
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〈x, e2n〉 =
√

2

2π

∫ π

−π
x(t) cos(nt) dt =: an,

〈x, e2n−1〉 =
√

2

2π

∫ π

−π
x(t) sin(nt) dt =: bn.

For the complex numbers an + ıbn holds

an + ıbn =
√

2

2π

∫ π

−π
x(t)(cos(nt)+ ı sin(nt)) dt

= √
2

1

2π

∫ π

−π
x(t)eınt dt.

If this is compared to the classical definition (1.1) of the Fourier coefficients, one
obtains 〈x, en〉 =

√
2c−n, i.e. the abstract definition (A.26) of Fourier coefficients is a

generalization of its classical definition.

The Fourier coefficients 〈x, en〉 of an element x with respect to an orthonormal
system {ek} define the best approximation of x by the orthonormal system: If one
considers the approximation error r := x −∑n

k=1〈x, ek〉ek , the relation

〈r, en〉 = 〈x, en〉 −
n∑
k=1

〈x, ek〉〈ek, en〉 = 〈x, en〉 − 〈x, en〉 = 0

holds, i.e. the approximation cannot be improved further by the orthonormal system.
An improvement would only be possible if the orthonormal system was enhanced
by additional independent elements. If such an enhancement is not necessary, the
orthonormal system is called complete.

Definition A.2.5. Let {en} be an orthonormal system in H . The orthonormal system
is called a complete orthonormal system (CONS), if

0 = 〈z, en〉 ⇔ z = 0, n = 1, 2, . . . (A.27)

holds.

For complete orthonormal systems the so-called orthonormal expansion theorem
is valid.

TheoremA.2.1. Let H be a Hilbert space and {en} be an orthonormal system in H .
Then the following statements are equivalent:

• The orthonormal system {en} is complete.
• Every x ∈ H has a Fourier expansion

x =
∞∑
n=1

〈x, en〉en. (A.28)
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• For every x ∈ H Parseval’s identity

‖x‖2 =
∞∑
n=1

〈x, en〉2 (A.29)

holds.

Proof. [18]. ��

A.3 Linear functionals – dual space

The theory of Hilbert spaces is the core of a mathematical discipline, calledFunctional
Analysis. In this context the concept of a functional is the generalization of the concept
of a function. A function is an injective mapping from the real numbers into the real
numbers. A functional is more general, it is a mapping from a linear space into the
real numbers. The linear functionals are especially important.

Definition A.3.1. Let V be a linear space. A mapping f : V → R is called a linear
functional, if the following conditions are fulfilled

f (x ⊕ y) = f (x)+ f (y), x, y ∈ V, (A.30)

f (α % x) = α · f (x), α ∈ R, x ∈ V. (A.31)

If the linear space is equipped with a scalar product the concepts of continuity and
boundedness can also be defined for linear functionals.

Definition A.3.2. Let V be a linear space with the scalar product 〈 •, •〉. A linear
functional f : V → R is called continuous, if

lim
n→∞ xn = x ⇒ lim

n→∞ f (xn) = f (x) (A.32)

holds.

Definition A.3.3. Let V be a linear space with the scalar product 〈 •, •〉. A linear
functional f : V → R is called bounded, if there is a constant M > 0 with

|f (x)| ≤ M · ‖x‖, x ∈ V. (A.33)

In contrast to the case of classical functions, where a continuous function is not au-
tomatically bounded, for linear functionals the concepts of continuity and boundedness
coincide.

TheoremA.3.1. A linear functional on a linear space with scalar product is contin-
uous if and only if it is bounded.

Definition A.3.4. The set V ∗ of all linear, bounded functionals on V is called the dual
space of V .
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If the linear space V is even a Hilbert space H , the elements of the dual space H ∗
can be characterized by the elements ofH . This is the content ofRiesz’s representation
theorem.

TheoremA.3.2 (Riesz’s representation theorem). LetH be a Hilbert space. For each
f ∈ H ∗ there is a uniquely determined g ∈ H , such that

f (x) = 〈g, x〉, x ∈ H (A.34)

holds.

Proof. [60]. ��

A.4 Examples of Hilbert spaces

After compiling the most important concepts and theorems of the theory of Hilbert
spaces, now some examples will be given. The examples are all taken from geodetic
applications.

Example A.4.1 (The space of real n-tuples). The space Rn of the real n-tuples
x = (x1, . . . , xn) form a linear space with respect to the operations

x ⊕ y := (x1 + y1, . . . , xn + xn),

α % x := (αx1, . . . , αxn).

This can be proved by verifying that the conditions starting with (A.1) are fulfilled.

x ⊕ y = (x1 + y1, . . . , xn + yn) = (y1 + x1, . . . , yn + xn) = y ⊕ x.

x ⊕ (y ⊕ z) = x ⊕ (y1 + z1, . . . , yn + zn) = (x1 + y1 + z1, . . . , xn + yn + zn)

= (x1 + y1, . . . , xn + ynn)⊕ z = (x ⊕ y)⊕ z.

x ⊕ O = (x1, . . . , xn)⊕ (0, . . . , 0) = (x1 + 0, . . . , xn + 0)

= (x1, . . . , xn) = x.

x ⊕ (−x) = (x1, . . . , xn)⊕ (x1 + (−x1), . . . , xn + (−xn)) = O.

α % (β % x) = α % (β1x1, . . . , βnxn) = (α1β1x1, . . . , αnβnxn) = (αβ)% x.

α % (x ⊕ y) = α % (x1 + y1, . . . , xn + yn) = (αx1 + αy1, . . . , αxn + αyn)

= α % x ⊕ α % y.

(α + β)% x = ((α + β)x1, . . . , (α + β)xn) = (αx1, . . . , αxn)⊕ (βx1, . . . , βxn)

= α % x ⊕ β % x.
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A scalar product in Rn can be defined by

〈x, y〉 :=
n∑
i=1

xi · yi . (A.35)

Obviously, the conditions (A.11)–(A.14) are fulfilled:

〈x, y〉 =
n∑
i=1

xi · yi =
n∑
i=1

yi · xi = 〈y, x〉,

〈x, y ⊕ z〉 =
n∑
i=1

xi(yi + zi) =
n∑
i=1

xi · yi +
n∑
i=1

xi · zi = 〈x, y〉 + 〈x, z〉,

〈x, x〉 =
n∑
i=1

x2
i ≥ 0,

〈α · x, y〉 =
n∑
i=1

(αxi)yi = α

n∑
i=1

xi · yi = α〈x, y〉.

Hence the norm in Rn is

‖x‖ :=
√√√√ n∑

i=1

x2
i . (A.36)

Let now {xn} be a Cauchy sequence in Rn. Then for every i ∈ {1, . . . , n} one has

|xi,n − xi,m| =
√
(xi,n − xi,m)2 ≤

√√√√ n∑
i=1

(xi,n − xi,m)2 = ‖xn − xm‖.

Since {xn} is a Cauchy sequence, each component {xi,n} is a Cauchy sequence in R.
Due to the completeness of R there are limits of all component sequences

lim
n→∞ xi,n = xi.

Therefore, for every ε > 0, there is an n0 = n0(ε) with

|xi − xi,n| ≤ ε√
n
, n ≥ n0.

Hence

‖x − xn‖ =
√√√√ n∑

i=1

(xi − xi,n)2 ≤
√√√√ n∑

i=1

(
ε√
n

)2

= ε.
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Consequently, {xn} converges to x and therefore the space Rn is complete, i.e. Rn is a
Hilbert space.

A set of vectors {e1, . . . , ek} ⊂ Rn is linear independent, if the matrix

E :=


e1,1 e2,1 . . . ek,1

e1,2 e2,2 . . . ek,2
...

e1,n e2,n . . . ek,n


formed from these vectors has the full rank. Since the rank of an n× k matrix cannot
exceed n, the maximal number of linear independent vectors in Rn, the maximal
number of independent vectors is n. Hence the dimension of Rn equals n. It is easy
to see that the vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

form a complete orthonormal system in the Hilbert space Rn: Obviously,

〈ei, ej 〉 =
n∑
k=1

ei,kej,k = δij

holds, which means that the ei are orthonormal. Furthermore, if for an arbitrary x ∈ Rn

the relation
0 = 〈x, ei〉, i = 1, . . . , n (A.37)

is valid, then

0 = 〈x, ei〉 =
n∑
k=1

xkei,k = xi i = 1, . . . , n,

follows, which implicates x = 0. Therefore the orthonormal system {e1, . . . , en} is
complete. This orthonormal system is frequently called the canonical base of the
Hilbert space Rn.

Let f be an arbitrary linear functional from the dual space (Rn)∗, and let

gi := f (ei), i = 1, . . . , n.

For the vector
g := (g1, . . . , gn) ∈ Rn

holds

f (x) = f
( n∑
k=1

xkek

)
=

n∑
k=1

xkf (ek) =
n∑
k=1

xkgk = 〈g, x〉.

Ergo, the vector g is the Riesz-representer of the linear bounded functional f .
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Example A.4.2 (The space of complex 2N -tuples). The space C2N of the complex
2N -tuples x = (x0, . . . , x2N−1) forms a linear space with respect to the operations

x ⊕ y := (x0 + y0, . . . , x2N−1 + y2N−1),

α % x := (αx0, . . . , αx2N−1).

The scalar product in C2N is defined in the following way:

〈x, y〉 :=
2N−1∑
i=0

xiyi (A.38)

and the norm is again
‖x‖ := √〈x, x〉.

The linear space C2N is a Hilbert space with respect to the scalar product (A.38).

Besides the canonical base there is a different complete orthogonal system in Cn,
the so-called discrete trigonometric base.

Definition A.4.1. The vectors

fk := (e−ı(−N)·k
π
N , e−ı(−N+1)·k π

N , . . . , e−ı(N−1)·k π
N )/2N, (A.39)

k = −N, . . . , N − 1

are called discrete trigonometric base.

It is easy to see that the discrete trigonometric base forms a complete orthogonal
system in C2N . The Fourier coefficients of a given vector g with respect to the discrete
trigonometric base have a special meaning.

LemmaA.4.1. Let gi := g
(
(i−N) π

N

)
, i = 0, . . . , 2N−1 and g̃ := (g0, . . . , g2N−1).

Then the Fourier coefficients of g̃ are identical with the DFT (1.35), see p. 11, of g:

c̄n = 〈g̃, fn〉, n = −N, . . . , N − 1. (A.40)

Proof. With the relation (1.35) the following is true:

〈g̃, fn〉 =
N−1∑
k=−N

gk+Ne−ıkn
π
N

=
N−1∑
k=−N

g(k
π

N
)e−ıkn

π
N

= c̄n. ��
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Let h be an arbitrary linear functional h ∈ (C2N)∗, and let hk := h(fk) =
h((e−ı(−N)·k πN , e−ı(−N+1)·k π

N , . . . , e−ı(N−1)·k π
N )/2N), then for every x ∈ C2N holds

h(x) = h
( N−1∑
k=−N

xkfk

)
=

N−1∑
k=−N

xkh(fk)

=
∑

xkh̄k

=
〈
x,

N−1∑
k=−N

hkfk

〉
.

Hence the Riesz representer of h is
∑N−1
k=−N hkfk .

Example A.4.3. The space of summable sequences of complex numbers
Let l2(C) be the set of all complex sequences {xn}, fulfilling∑

n∈Z

|xn|2 <∞.

The set l2(C) forms a linear space with respect to the operations

x ⊕ y := {xn + yn},
α % x := {αxn}.

The operation

〈x, y〉 :=
∑
n∈Z

xnȳn

defines a scalar product in �2(C), and with respect to the norm

‖x‖ := √〈x, x〉 =
√∑
n∈Z

|xn|2

the set l2(C) is a Hilbert space.

Example A.4.4. The square integrable functions on [−π, π ]

Definition A.4.2. A functionf : [−π, π ] → R is called square integrableon [−π, π ],
if the relation ∫ π

−π
f 2(x) dx <∞ (A.41)

holds. The set of all square integrable functions on [−π, π ] is denoted byL2([−π, π ]).
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With respect to the operations

(f ⊕ g)(x) := f (x)+ g(x) f, g ∈ L2([−π, π ]) (A.42)

(α % f )(x) := α · f (x) f ∈ L2([−π, π ]), α ∈ R (A.43)

the set L2([−π, π ]) is a linear space. A scalar product can be introduced by

〈f, g〉 :=
∫ π

−π
f (x) · g(x) dx. (A.44)

With respect to the scalar product (A.44) the linear space L2([−π, π ]) becomes a
Hilbert space. The dimension of L2([−π, π ]) is infinite and the trigonometric func-
tions {

e−ınx
√

1

2π

}
, n ∈ Z (A.45)

form a complete orthonormal system. The Fourier coefficients with respect to this
orthonormal system are proportional to the classical Fourier coefficients:〈

e−ınx
√

1

2π
, f (x)

〉
=
√

1

2π

∫ π

−π
f (x)eınx dx = √

2πcn.

Let again h be an arbitrary linear bounded functional on L2[−π, π ]. Define

hn := h

(
e−ınx

√
1

2π

)
, n ∈ Z (A.46)

and then the Riesz representer of h is given by

∑
n∈Z

hne
−ınx
√

1

2π
.

Example A.4.5 (Square integrable functions on [−1, 1]). A function f : [−1, 1] →
R is called square integrable on [−1, 1], if the relation∫ 1

−1
f 2(x) dx <∞ (A.47)

holds. The set of all square integrable functions on [−1, 1] is denoted by L2([−1, 1]).
With respect to the operations

(f ⊕ g)(x) := f (x)+ g(x) f, g ∈ L2([−1, 1]) (A.48)

(α % f )(x) := α · f (x) f ∈ L2([−1, 1]), α ∈ R (A.49)
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the set L2([−1, 1]) is a linear space. A scalar product can be introduced by

〈f, g〉 :=
∫ 1

−1
f (x) · g(x) dx. (A.50)

With respect to the scalar product (A.50) the linear spaceL2([−1, 1]) becomes a Hilbert
space. There are several complete orthogonal systems in L2([−1, 1]) which will be
introduced now.

LemmaA.4.2. Let m ≥ 0. Then the so-called associated Legendre functions

P (m)n (t) := (1 − t2)m/2
1

2nn!
dn+m

dtn+m
(t2 − 1)n, n ≥ m (A.51)

fulfill

〈P (m)n , P (m)p 〉 = 2

2n+ 1

(n+m)!
(n−m)!δnp, n, p ≥ m. (A.52)

For an arbitrary but fixed m the Legendre functions (A.51) are orthogonal but not
orthonormal in L2([−1, 1]). Hence, by simply normalizing the Legendre functions, a
complete orthonormal system in L2([−1, 1]) is obtained.

LemmaA.4.3. The functions

P̄ (m)n (t) :=
√

2n+ 1

2

(n−m)!
(n+m)!P

(m)
n , n ≥ m (A.53)

are called fully normalized Legendre functions. They form a complete orthonormal
system on L2([−1, 1]).
Example A.4.6 (Square integrable functions on the unit sphere σ ). A function
f : σ → R is called square integrable on σ , if the relation∫

σ

f 2(x) dx <∞ (A.54)

holds. The set of all square integrable functions on σ is denoted by L2(σ ).
With respect to the operations

(f ⊕ g)(x) := f (x)+ g(x) f, g ∈ L2(σ ), (A.55)

(α % f )(x) := α · f (x) f ∈ L2(σ ), α ∈ R (A.56)

the set L2(σ ) is a linear space. A scalar product can be introduced by

〈f, g〉 :=
∫
σ

f (x) · g(x) dx. (A.57)

With respect to the scalar product (A.57) the linear space L2(σ ) becomes a Hilbert
space.
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Now local surface coordinates are introduced in σ :

x :=
 sin(ϑ) cos(λ)

sin(ϑ) sin(λ)

cos(ϑ)

 ∈ σ, ϑ ∈ [0, π ], λ ∈ [−π, π ].

In these local coordinates the scalar product is expressed as

〈f, g〉 =
∫ π

0

∫ π

−π
f (ϑ, λ)g(ϑ, λ) sin(ϑ)dλ dϑ. (A.58)

With the substitution t := cos(ϑ) the representation

〈f, g〉 =
∫ 1

−1

∫ π

−π
f (arccos t, λ)g(arccos t, λ) dλ dt (A.59)

can be found. Recalling example A.4.5 and example A.4.4, a complete orthonor-

mal system of L2(σ ) can be found by P̄ (m)n (cosϑ)eımλ
√

1
2π , n = 0, 1, . . . , m =

0, . . . , m, since〈
P̄ (m)n (cosϑ)eımλ

√
1

2π
, P̄

(q)
n (cosϑ)eıqλ

√
1

2π

〉
=
∫ π

0

∫ π

−π
P̄ (m)n (cosϑ)eımλ

√
1

2π
· P̄ (q)p (cosϑ)eıqλ

√
1

2π
sin ϑ dλ dϑ

=
∫ π

0
P̄ (m)n (cosϑ)P̄ (q)p (cosϑ) sin ϑ

∫ π

−π
eımλeıqλ dλ dϑ · 1

2π︸ ︷︷ ︸
δmq

=
∫ π

0
P̄ (m)n (cosϑ)P̄ (m)p (cosϑ) sin ϑ dλ dϑ

= δnpδmq.

Changing from the complex to the real notation of the orthonormal base in L2(σ ) the
so-called surface spherical harmonics are found.

Definition A.4.3. The functions

Ȳnm(ϑ, λ) :=
√

1

π(1 + δ0n)

{
P̄
(|m|)
n (cosϑ) cos(mλ) , m ≥ 0

P̄
(|m|)
n (cosϑ) sin(|m|λ) , m < 0

(A.60)

are called fully normalized surface spherical harmonics.

LemmaA.4.4. The fully normalized surface spherical harmonics Ȳnm formacomplete
orthonormal system in L2(σ ).
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For later use an important property of the fully normalized surface spherical har-
monics will be given now:

LemmaA.4.5. Let (ϑ, λ) and (ϑ ′, λ′) be two points on the unit sphere σ . Let ψ with

cosψ = cosϑ cosϑ ′ + sin ϑ sin ϑ ′ cos(λ− λ′) (A.61)

be the spherical distance between these two points. Then

P (0)n (cosψ) = 4π

2n+ 1

n∑
m=−n

Ȳnm(ϑ, λ)Ȳnm(ϑ
′, λ′) (A.62)

holds.

A.5 Linear operators – Galerkin method

Besides linear functionals, mapping a Hilbert space into the real numbers, also linear
operators, mapping a Hilbert space to another Hilbert space, have to be considered.

Definition A.5.1. Let G, H be two Hilbert spaces. A mapping T : G → H is called
a linear operator from G to H , if

T (x ⊕ y) = T x + Ty, x, y ∈ G, (A.63)

T (α % x) = α · (T x), α ∈ R, x ∈ G (A.64)

holds.

Definition A.5.2. A linear operator T : G→ H is called bounded, if anM > 0 exists
such that

‖T x‖H ≤ ‖x‖G, for all x ∈ G (A.65)

is true. The space of all linear bounded operators is denoted by L(G,H).

Definition A.5.3. Let H be a Hilbert space. An operator T ∈ L(H,H) fulfilling

〈T x, x〉 ≥ γ ‖x‖2, γ > 0, (A.66)

for all x ∈ H is called strictly positive.

Definition A.5.4. Let H be a Hilbert space and let T ∈ L(H,H). An operator
T ∗ ∈ L(H,H) is called the adjoint operator of T , if for all x, y ∈ H

〈T x, y〉 = 〈x, T ∗y〉 (A.67)

holds.
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If an operator coincides with its adjoint operator, it is called a self-adjoint operator.

Definition A.5.5. Let H be a Hilbert space. An operator T ∈ L(H,H) is called
selfadjoint, if

〈T x, y〉 = 〈x, T y〉 (A.68)

holds for all x ∈ H .

Let us consider the operator equation

T x = y, x, y ∈ H. (A.69)

The operator equation (A.69) has a unique solution, if T is strictly positive. In this
case numerical methods have to be constructed for the approximation of the unique
solution. One frequently used technique is Galerkin’s method. The basic idea of
Galerkin’s method is to search for a solution of (A.69) not in the complete Hilbert
space H , but in a finite dimensional subspace Hn ⊂ H . Let {e1, . . . , en} be a base of
Hn, then the approximate solution xn ∈ Hn has the following representation:

xn =
n∑
j=1

αj · ej . (A.70)

No matter how the weights αj are chosen, it cannot be expected that xn fulfills the
operator equation (A.69) exactly. There always remains a residual

r := y −
n∑
j=1

αj · ej . (A.71)

A reasonable choice for the weights αj is to make this residual as small as possible.
In the context of Galerkin’s method a residual is considered small, if it is orthogonal
to all base functions:

0 = 〈r, ei〉 = 〈y, ei〉 −
n∑
j=1

〈T ej , ei〉αj , i = 1, . . . , n. (A.72)

The equations (A.72) are a linear system of equations for the determination of the
unknown optimal weights αj . They are called Galerkin equations. The convergence
of Galerkin’s method is described by Cea’s lemma.

TheoremA.5.1 (Cea’s lemma). LetH be aHilbert space and T ∈ L(H,H) a strictly
positive operator. Then equations (A.69) and (A.72) have unique solutions x, xn and

‖x − xn‖ ≤ M

γ
inf
v∈Hn

‖x − v‖ (A.73)

holds.

Proof. [44]. ��
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A.6 Hilbert space valued random variables

LetH be a Hilbert space with the scalar product 〈•, •〉 and let [�A, P ] be a probability
space.

The mathematical model for a random event giving real numbers as output is a
random variable. Random variables are mappings from a probability space to the
real numbers. In many applications the result of a random event is not only a single
number, but a time or space dependent function. If these functions are members of
some Hilbert space, these random events can be described mathematically by a Hilbert
space valued random variable.

Definition A.6.1. A mapping ξ : [�A, P ] → H is called Hilbert space valued
random variable.

For a Hilbert space valued random variable, moments of first and second order
have to be defined.

Definition A.6.2. m ∈ H is called the mean value of a Hilbert space valued random
variable ξ , if

E{〈f, ξ〉} = 〈f,m〉 for all f ∈ H (A.74)

holds.

Definition A.6.3. An operator C : H → H is called the covariance operator of a
Hilbert space valued random variable ξ , if

E{〈f, ξ −m〉 · 〈g, ξ −m〉} = 〈f,Cg〉 for all f, g ∈ H (A.75)

holds.

Completely analog the cross-covariance between twoHilbert space valued random
variables ξ and η is defined.

Definition A.6.4. An operator Cξη : H → H is called the cross-covariance operator
of the two random variables ξ and η, if

E{〈f, ξ −mξ 〉 · 〈g, η −mη〉} = 〈f,Cξηg〉, for all f, g ∈ H (A.76)

holds.

Let ξ be a random variable with the mean value zero and the covariance operator
Cξξ . To the unknown signal ξ some random noise will be added. This random noise is
modeled by a Hilbert space valued random variable nwith the mean value zero and the
covariance operatorCnn. The signal ξ itself cannot be observed but the sum η = ξ+n
of the signal and the noise is supposed to be observable. The goal is to find an optimal
prediction of z = 〈f, ξ〉, f ∈ H , from the noisy data η. In this context the concept of
an optimal prediction is given by three requirements:
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• The prediction has to be linear

ẑ = 〈a, η〉. (A.77)

• The prediction has to be unbiased

E{̂z} = z. (A.78)

• Among all linear unbiased estimations it must have the minimal error variance

E{(̂z− z)2} = min . (A.79)

TheoremA.6.1. The optimal prediction of z = 〈f, ξ〉 is

ẑ = 〈a, η〉 (A.80)

with

(Cξξ + Cnn)a = Cηξf. (A.81)

Proof. Since both ξ and n have zero mean values, the unbiasedness condition is au-
tomatically fulfilled. The estimation ẑ is linear per definitionem. The only condition
which has to be verified is the condition of minimal error variance:

E{(ẑ− z)2} = E{(〈f, ξ〉 − 〈a, η〉)2}
= 〈f,Cξξf 〉 − 2〈f,Cξηa〉 + 〈a, Cηηa〉
→ min .

The necessary extremal condition is

0 = −2Cξηf + 2Cηηa,

which leads to the following Wiener–Kolmogorov equations for the determination of a:

(Cξξ + Cnn)a = Cξηf. ��
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Many mathematical operations like differentiation or Fourier transform are only de-
fined for functions being sufficiently regular. On the other hand, functions lacking this
regularity or which are only piecewise regular occur in applications frequently. Hence
the mathematical operations have to be generalized to be applicable to these functions
as well. This is done by the generalization of the concept of a function and by the
definition of mathematical operations for these generalized functions. This twofold
generalization is performed using the so-called regular test functions.

Definition B.1. The space C∞
0 (R) of all functions ϕ which have a bounded support

and which are infinitely often differentiable is called the space of the test functions.

In the space of the test functions the concept of convergence is introduced:

Definition B.2. A function ϕ ∈ C∞
0 (R) is called the limit of a sequence {ϕk} ⊂

C∞
0 (R) if

lim
k→∞

dn

dxn
ϕk(x) = dn

dxn
ϕ(x) (B.1)

holds for all n and for all x.

Definition B.3. A mapping f : C∞
0 (R)→ R is called generalized function or distri-

bution, if

1. (f, αϕ) = α(f, ϕ), α ∈ R, ϕ ∈ C∞
0 (R)

2. (f, ϕ + ψ) = (f, ϕ)+ (f, ψ), ϕ,ψ ∈ C∞
0 (R)

3. limk→∞(f, ϕk) = (f, ϕ) for limk→∞ ϕk = ϕ

holds.

Remark. The definition of a generalized function is rather abstract and has little to do
with the usual understanding of a function. Nevertheless, each traditional function f
can be understood as a special case of a generalized function.

With the help of the traditional function f a mapping f̄ : C∞
0 (R)→ R is defined

by

(f̄ , ϕ) :=
∫

R

f (x)ϕ(x) dx. (B.2)

Obviously

(f̄ , αϕ) = α(f̄ , ϕ),

(f̄ , ϕ + ψ) = (f̄ , ϕ)+ (f̄ , ψ),

lim
k→∞(f̄ , ϕk) = (f̄ , ϕ)
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holds. Hence f is a generalized function. Those generalized functions which are
induced by classical functions are called regular generalized functions or regular dis-
tributions.

Nevertheless, the concept of generalized functions is indeed an extension of the
classical concept of functions, since there are generalized functions which cannot be
induced by classical functions. An example for such an irregular distribution is the
famous δ-function, defined by

(δ, ϕ) := ϕ(0). (B.3)

The δ-function is the mathematical model of the unit-pulse, i.e. the limit of rectangle
functions with decreasing widths and unit integral

δε(x) := 1

2ε
�
(x
ε

)
. (B.4)

1
2ε1

1
2ε2

ε1 ε2

Figure B.1. Approximation of delta-distribution by rectangular functions

Obviously, for all ε > 0 ∫
R

δε(x) dx = 1

holds, but the pointwise limit has no proper meaning:

δ(x) := lim
ε→0

δε(x) =
{
∞, x = 0

0, x �= 0,
(B.5)

which contradicts the condition ∫
R

δ(x) dx = 1.
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This means that the δ-function cannot be the limit of rectangle functions in the classical
but rather in a generalized sense:

(δ, ϕ) := lim
ε→0

∫
R

δε(x)ϕ(x) dx

= lim
ε→0

1

2ε

∫ ε

−ε
ϕ(x) dx

= lim
ε→0

1

2ε

∫ ε

−ε
ϕ(0)+ ϕ′(τ )x dx

= lim
ε→0

(
ϕ(0)+ ϕ′(τ )

2ε

(
ε2

2
− ε2

2

))
= ϕ(0).

Now mathematical operations have to be defined for generalized functions.

Definition B.4. A generalized function Df is called the derivative of a generalized
function f , if

(Df, ϕ) = −(f, ϕ′), ϕ ∈ C∞
0 (R) (B.6)

holds.

First of all, it can be shown that if f is a regular distribution, the newly defined
concept of a derivative coincides with the classical one:

(Df, ϕ) = −(f, ϕ′) = −
∫

R

f (x)ϕ′(x) dx

= −
(
f (x)ϕ(x)

∣∣∞−∞ −
∫

R

f ′(x)ϕ(x) dx
)

= (f ′, ϕ).

Additionally, the derivative in the distributional sense exists even for functions which
do not have a classical derivative. Let us, for example, consider the ramp-function

r(x) :=


0, x < −1
1
2 (x + 1), |x| ≤ 1

1, x > 1.

(B.7)

At the points x = ±1 the function r does not have a derivative in the classical sense.



241

For its distributional derivative we have

(Dr, ϕ) = −(r, ϕ′)

= −
∫ 1

−1

1

2
(x + 1)ϕ′(x) dx −

∫ ∞

1
ϕ′(x) dx

= −1

2
(x + 1)ϕ

∣∣1−1 +
∫ 1

−1

1

2
ϕ(x) dx − ϕ

∣∣∞
1 +

∫ ∞

1
0 · ϕ dx

=
∫ 1

−1

1

2
ϕ(x) dx

=
∫ ∞

−∞
1

2
�(x)ϕ(x) dx.

This means that in the generalized sense the derivative of r exists and is equal to 1
2�.

1

0.8

0.6

0.4

0.2

0
02 21.51.5 1 10.5 0.5__ _ _

Figure B.2. Generalized derivative of ramp function

Another example is the generalized derivative of the Heaviside function

H(x) :=
{

0, x < 0

1, x ≥ 0,
(B.8)

which represents a unit-jump. For its generalized derivative the following relation
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holds:

(DH, ϕ) = −
∫

R

H(x)ϕ′(x) dx

= −
∫ ∞

0
ϕ′(x) dx

= −ϕ(∞)+ ϕ(0) = ϕ(0)

= (δ, ϕ).

This means that the δ -distribution is the generalized derivative of the Heaviside func-
tion.

The next important generalized operation is the generalized Fourier transform.

Definition B.5. A generalized function f̂ is called generalized Fourier transform of
a distribution f , if

(f̂ , ϕ) := (f,F {ϕ}), ϕ ∈ C∞
0 (R). (B.9)

Again, it can be shown that if F {f } exists in the classical sense the generalized
Fourier transform coincides with the classical one.

Lemma B.1. For the generalized Fourier transform the following rules apply:

D̂nf = ınωnf̂ , (B.10)

̂(f (a•))(ω) = 1

|a| f̂
(
ω

|a|
)
, (B.11)

̂f (• + b)(ω) = e−ıωbf̂ (ω), (B.12)

f̂ ∗ g(ω) = √
2πf̂ (ω) · ĝ(ω). (B.13)

Here the operations convolution and differentiation have to be understood in the gen-
eralized sense.

Proof. See [103]. ��

Example B.1. If δ(x − x0) is defined by (δ(x − x0), ϕ) = ϕ(x0), the following
relations hold:

• ̂δ(x − x0) = e−ıx0ω 1√
2π

,

• 1̂ = √
2πδ(x),

• δ̂ = 1√
2π

.



243

Proof.

( ̂δ(x − x0), ϕ) = (δ(x − x0), ϕ̂) = ϕ̂(x0)

= 1√
2π

∫
R

ϕ(ξ)e−ıx0ξ dξ

= 1√
2π
(e−ıx0ξ , ϕ(ξ)).

(δ̂, ϕ) = (δ, ϕ̂) = ϕ̂(0)

= 1√
2π

∫
R

e−ı0xϕ(x) dx =
∫

R

(
1√
2π

· 1

)
ϕ(x) dx

=
(

1√
2π

· 1, ϕ

)
.

(1̂, ϕ) = (1, ϕ̂) =
∫

R

ϕ̂(ω) dω

=
√

2π√
2π

∫
R

eı0ωϕ̂(ω) dω = √
2πϕ(0)

= (√2πδ, ϕ
)
. ��

Naturally, the theory of distributions is much more extended than the material
presented here. This appendix serves as only the compilation of material, which is
used in the main part of this book.
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Fourier analysis

Exercise 1. Prove the relation

nF {f (• − b)} = e−ıb
�ω · nF {f }(ω).

Exercise 2. Show that

nF {f (a · •)}(ω) = 1

a

nF {f }(ω
a
)

is valid.

Exercise 3. Prove that

F {f ′}(ω) = ıωF {f }(ω)
holds.

Exercise 4. Compute the Fourier transform of the following functions

ϕ(x) =
{

1, 0 ≤ x ≤ 1

0, else,

ψ(x) =


−1, 0 ≤ x < 0.5

1, 0.5 ≤ x < 1

0, else

and plot |ϕ̂|, |ψ̂ |.

Exercise 5. With the help of the differentiation theorem compute the Fourier trans-
form of

ψ(x) = (1 − x2)e−
x2
2

and plot |ψ̂(ω)|.

Exercise 6. Compute the Fourier transformation of

ψ(x) = π−1/4eıω0xe−
x2
2
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Exercise 7. Let

B0(x) :=
{

1, −0.5 ≤ x ≤ 0.5

0, else

and Bn+1(x) := B0 ∗ Bn(x). With the help of the convolution theorem compute the
Fourier transform of Bn. For n = 0, 1, 2, 3 plot B̂n.

Exercise 8. Compute B1(x). Additionally, compute Bi(x), i = 1, 2, 3, 4 on the in-
terval [−3, 3] numerically with the help of a FFT algorithm. Compare the numerically
computed B1 with the exact B1.

Exercise 9. Let gt,ω0(x) := π−1/4e−
(x−t)2

2 e−ıxω0 . Compute

• ĝt,ω0
(ω)

•
∫∞
−∞ |gt,ω0 |2 dx

•
∫∞
−∞ |ĝt,ω0 |2 dω.

Exercise 10. Compute, for the same g as in Exercise 9,

• x̄ = ∫∞−∞ x|gt,ω0 |2 dx

• ω̄ = ∫∞−∞ ω|ĝt,ω0 |2 dω

• σ 2
x := ∫∞−∞(x − x̄)2|gt,ω0 |2 dx

• σ 2
ω := ∫∞−∞(ω − ω̄)2|ĝt,ω0 |2 dω.

Linear Filters

Exercise 1. Compute the z-transform H(z) of the convolution filters with the fol-
lowing coefficients:

• high pass filter: h0 = 1, h1 = −1,

• low -pss filters: hn = 1
2N+1 , n = −N, . . . , N ,

and plot |H(eıω)|2, ω ∈ [−π, π ], N = 1, 2, 3.
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Exercise 2. Show that the filters H,G,H ∗,G∗, defined by

(Hu)n :=
∑
k∈Z

hkun−k

(H ∗u)n :=
∑
k∈Z

h∗kun−k

(Gu)n :=
∑
k∈Z

gkun−k

(G∗u)n :=
∑
k∈Z

g∗kun−k

with coefficients given by

h0 = 1

4
√

2
(1 +√

3), h−1 = 1

4
√

2
(3 +√

3),

h−2 = 1

4
√

2
(3 −√

3), h−3 = 1

4
√

2
(1 −√

3)

gk = (−1)kh−k−1, h∗k = h−k, g∗k = g−k

form a PR filter bank.

Exercise 3. Determine all filters h of length 2, which fulfill∑
k∈Z

hkhk−2n = δ0n and
∑
k∈Z

hk = √
2.

.

Exercise 4. To the low-pass filter H of Exercise 3 compute the corresponding high-
pass filter G according to

G(−z) = zlH

(
1

z

)
.

Garbor transform

Exercise 1. Compute the Garbor transform G{f }(ω, t) of the signal

f (t) = eıνt

and discuss the result.
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Exercise 2. Besides the traditional Garbor transform a modified Garbor transform,
including an additional parameter a, is frequently considered:

Ga {f } (ω, t) := 1√
2π

∫ ∞

−∞
f (u) · gt,ω,a(u) du

with

gt,ω,a(u) = π−1/4a−1/4e−
(u−t)2

2a e−ıωu.
Compute µg , µĝ , σ 2

g , σ 2
ĝ

as functions of a.

Exercise 3. For any choice of the window parametera, determine grid-points (ti , ωj ),
i, j ∈ Z in such a way that the resolution windows

[ti − σg, ti + σg] × [ωj − σĝ, ωj + σĝ]
covers the whole (t, ω) phase-space.

Exercise 4.

Compute the parameter dependent Garbor transform

Ga{f }(ω, t)
of the signal

f (t) = eıνt

and discuss the influence of the parameter a on the result.

Continuous wavelet transformation

Exercise 1. Show that the function

ψ1(x) = (1 − x2)e−
x2
2

is a wavelet and determine the corresponding constants cψ .

Exercise 2. The continuous wavelet transform

W {f } (λ, t) = 1√
cψ

|λ|−1/2
∫ ∞

−∞
f (u)ψ(

u− t

λ
) du

can be considered as a linear filter applied to the signal f . Compute the filter charac-
teristic of these filters for the wavelets

ψ(x) =


−1, 0 ≤ x < 0.5

1, 0.5 ≤ x < 1

0, else,

,
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ψ(x) = (1 − x2)e−
x2
2 ,

ψ(x) = π−1/4eıω0xe−
x2
2 .

Exercise 3. For ω0 = 5.0 and for λ ∈ {1.0, 2.0, 4.0, 8.0} make plots of the filter
characteristics of the three wavelets from Exercise 2.

Exercise 4. For the Haar wavelet, the Mexican hat wavelet and the Morlet wavelet
compute the moments

x̄ :=
∫ ∞

−∞
x|ψ2(x)| dx,

σ 2
x =

∫ ∞

−∞
(x − x̄)2|ψ(x)|2 dx,

ω̄ =
∫ ∞

−∞
ω|ψ̂(ω)|2 dω,

σ 2
ω =

∫ ∞

−∞
(ω − ω̄)2|ψ̂(ω)|2 dω.

Exercise 5. Let x̄, σx2 , ω̄, σ 2
ω be the moments for a waveletψ . Compute the moments

for the shifted and dilated wavelet λ−1/2ψ(x−t
b
).

Exercise 6. The resolution window of the wavelet λ−1/2ψ(x−t
λ
) is

[x̄λ,t − σx,λ,t , x̄λ t + σx,λ,t ] × [ω̄λ t − σω λ,t , ω̄λ t + σω,λ,t ].
Find grid points ti , λj in such a way that the corresponding resolution windows

[x̄λj ,ti − σx,λj ,ti , x̄λj ti + σx,λj ,ti ] × [ω̄λj ,ti − σω λj ,ti , ω̄λj ,ti + σω,λj ,ti ]
cover the whole (x, ω) phase plane.

Exercise 7. Let the signal f be sampled with a spacing 
x. Define the dilatation
parameter λmin such that the ω̄

λmin
= ν, with ν being the Nyquist frequency.

Let T be the sampling interval. Define the dilatation parameter λmax such that
ω̄
λmax

= 2π
T

holds.

Mallat algorithm

Exercise 1. Let ψ be the Haar wavelet. Show that the functions

ψm,n(x) = 2−m/2ψ(2−mx − n)

form an orthonormal system.
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Exercise 2. For ϕ ∈ L2(R) let hold

〈ϕ(• − k), ϕ(• − n)〉 = δkn.

Show that this property is equivalent to

∑
n∈Z

|ϕ̂(ω + 2πn)|2 = 1

2π
.

Hilbert spaces

Exercise 1. Prove that all square matrices of the dimension n form a vector space
L(Rn)with respect to the operations ⊕ (= matrix addition) and % (= multiplication
with a real number).

Exercise 2. Prove that

‖A‖ := max
i

n∑
j=1

|aij |

is a norm in L(Rn).

Exercise 3. Let V := {f : [a, b] → R1| ∫ b
a
f 2(x) dx < ∞}. Show that V forms a

linear space with respect to the operations

⊕: V × V → V : (f ⊕ g)(x) = f (x)+ g(x)

%: R1 × V → V : (α % f )(x) := α · f (x)

Prove that the product,

〈f, g〉 :=
∫ b

a

f (x)g(x) dx

is always defined and that 〈f, g〉 is a scalar product in V .

Exercise 4. Let V := {f : [0, 2π ] → R1 | ∫ 2π
0 f 2(x) dx

}
. Show that the functions{

cos(mx), sin(mx),m = 0, 1, . . .
}

are orthogonal with respect to the scalar product

〈f, g〉 :=
∫ 2π

0
f (x) · g(x) dx
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Exercise 5. Let Cn := {c = (c1, . . . cn) | ci ∈ C} equipped with the scalar product

〈c, d〉 := 2

n

n∑
i=1

ci d̄i .

Let

ck =
(

cos

(
2πk0

n

)
, . . . , cos

(
2πk(n− 1)

n

))
dk =

(
sin

(
2πk0

n

)
, . . . , sin

(
2πk(n− 1)

n

))
.

Show that ck, dk are orthogonal elements of Cn.

Exercise 6. Let C[a, b] be the set of all functions which are continuous on [a, b].
Show that

‖f ‖ = max
x∈[a,b] |f (x)|

is a norm on C[a, b].

Exercise 7. Show that f : C[a, b] → R1, f (x) := ∫ b
a
x(t) dt is a linear bounded

functional on C[a, b]. Compute the norm of f .

Exercise 8. Show that the evaluation functional evt0(x) := x(t0) is a linear bounded
functional on C[a, b].

Exercise 9. Let

xn(t) :=


0, −1 ≤ t ≤ − 1

n
n
2 (t + 1

n
), − 1

n
≤ t ≤ 1

n

1, 1
n
≤ t ≤ 1

and

x(t) =
{

0, −1 ≤ t < 0

1, 0 ≤ t ≤ 1.

Show that limn→∞ xn = x holds in L2([−1, 1]).

Exercise 10. Show that the evaluation functional ev0(x) := x(0) is not a linear
bounded functional on L2([−1, 1]).
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Solutions

Fourier analysis

Exercise 1.

nF {f (• − b)}(ω) = (2π)−n/2
∫

Rn
f (x − b)e−ıx�ωdx

= (2π)−n/2
∫

Rn
f (x)e−ı(x+b)�ωdx

= e−ıb�ω(2π)−n/2
∫

Rn
f (x)e−ıx�ωdx

= e−ıb�ω ·n F {f (•)}(ω).

Exercise 2.

nF {f (a · •)}(ω) = (2π)−n/2
∫

Rn
f (ax)e−ıx�ωdx

= 1

a
(2π)−n/2

∫
Rn
f (x)e−ıx� ω

a dx

= 1

a

n

F {f (•)}
(ω
a

)
.

Exercise 3. Integration by parts yields

F {f ′(•)}(ω) = 1√
2π

∫
R

f ′(x)e−ıxωdx

= 1√
2π

(
f (x) · e−ıxω)∞−∞ − 1√

2π

∫
R

f (x)(−ıω)e−ıxωdx

= ıω√
2π

∫
R

f (x)e−ıxωdx = ıωF {f (•)}(ω).

Exercise 4.

ϕ̂(ω) = 1√
2π

∫ ∞
−∞

ϕ(x)e−ıxωdx = 1√
2π

∫ 1

0
e−ıxωdx

= 1√
2π

[
− 1

ıω
e−ıxω

]1

0
= 1√

2π

(
− 1

ıω
(e−ıω − 1)

)
= 1

ıω
√

2π
(1 − e−ıω) = e−ıω/2√

2π

eıω/2 − e−ıω/2
ıω

= e−ıω/2√
2π

sin(ω/2)

ω/2
.
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ψ̂(ω) = 1√
2π

∫ ∞
−∞

ψ(x)e−ıxωdx

= −1√
2π

∫ 1/2

0
e−ıxωdx + 1√

2π

∫ 1

1/2
e−ıxωdx

= 1√
2π

−1

ıω

(
e−ıω − 2 · e−ıω/2 + 1

)
= e−ıω/2√

2π

−1

ıω

(
e−ıω/2 − 2 + eıω/2

)
= e−ıω/2√

2π

−1

ıω

(
eıω/4 − e−ıω/4

)2

= ıe−ıω/2√
2π

sin(ω/4) sin(ω/4)

(ω/4)
.

0
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0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

ω

|ψ̂ |
|ϕ̂|

Spectra |ϕ̂|, |ψ̂ | of the Haar scaling function ϕ and the Haar wavelet ψ

Exercise 5. Obviously

ψ(x) = − d2

dx2 e
− x2

2

is true. Consequently

ψ̂(ω) = ω2 · F
{
e− x2

2

}
= ω2e− ω2

2 .
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Spectrum of the Mexican hat wavelet

Exercise 6.

ψ̂(ω) = 1√
2π

∫ ∞
−∞

π−1/4e− x2
2 e−ı(ω−ω0)xdx

= π−1/4F
{
e− x2

2

}
(ω − ω0)

= π−1/4e−(ω−ω0)
2/2.

0.1

0.05

0

0.05

0.1
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0.25

0.3
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_

_

ω

B̂0

B̂1

B̂2

Spectra of spline wavelets B0, B1, B2
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Exercise 7. Obviously B0(x) = ϕ(x + 1
2 ). Using the shifting theorem, one obtains

B̂0(ω) = eıω/2ϕ̂(ω) = 1√
2π

sinc(ω/2).

Hence

B̂n = √
2π

n
(B̂0)

n+1 = 1√
2π

sincn+1(ω/2).

Exercise 8.

B1(x) =
∫ ∞
−∞

B0(y)B0(x − y)dy =
∫ 1

2

− 1
2

B0(x − y)dy

= −
∫ x−1/2

x+1/2
B0(z)dz =

∫ x+1/2

x−1/2
B0(z)dz

=


0, |x| > 1∫ x+1/2
−1/2 dz, −1 ≤ x ≤ 0∫ 1/2
x−1/2 dz, 0 ≤ x < 1

=


0, |x| > 1

x + 1, −1 ≤ x ≤ 0

1 − x, 0 ≤ x ≤ 1.

Exercise 9.

ĝt,ω0 (ω) =
1√
2π

∫ ∞
−∞

π−1/4e−
(x−t)2

2 e−ı(ω+ω0)xdx

= π−1/4F
{
e−

(x−t)2
2

}
(ω + ω0) = π−1/4e−ıωtF

{
e− x2

2

}
(ω + ω0)

= π−1/4e−ıωt e−
(ω+ω0)

2

2 .

∫ ∞
−∞

|gt,ω0 (x)|2dx = π−1/2
∫ ∞
−∞

e−(x−t)2dx = 1√
2π 1

2

∫ ∞
−∞

e
− z2

2 1
2 dz = 1.

From Parseval’s theorem follows∫ ∞
−∞

|ĝt,ω0 |2dω =
∫ ∞
−∞

|gt,ω0 |2dx = 1.

Exercise 10.∫ ∞
−∞

x|gt,ω0 |2dx = π−1/2
∫ ∞
−∞

xe−(x−t)2dx = 1√
2π 1

2

∫ ∞
−∞

xe
− (x−t)2

2 1
2 dx = t.

∫ ∞
−∞

ω|ĝt,ω0 |2dω = π−1/2
∫ ∞
−∞

ωe−(ω+ω0)
2
dω = −ω0.
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σ 2
x = π−1/2

∫ ∞
−∞

(x − t)2e−(x−t)2dx = 1√
2π 1

2

∫ ∞
−∞

z2e
− z2

2 1
2 dz = 1

2
.

σ 2
ω = π−1/2

∫ ∞
−∞

(ω + ω0)e
−(ω+ω0)

2
dω = 1/2.

Linear Filters

Exercise 1.

H(z) = 1 − z−1 = z− 1

z

|H(eıω)|2 = (1 − e−ıω)(1 − eıω) = 2 − 2 cos(ω)

H(z) = 1

2N + 1

N∑
n=−N

z−n

|H(z)| =
( 1

2N + 1

N∑
n=−N

e−ınω
)2 =

( 1

2N + 1
[1 + 2

N∑
n=1

cos(nω)]
)2

_ _ 2 24 4
0

0

20

15

10

5

ω

|H
|2

High pass filter characteristic |H(eıω)|2
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4

3

4 4

2

22

1

0
0

N
N
N =

=
=

1
2
3

_ _

ω

|H
N
|2

Low pass filter characteristics |HN(eıω)|2 for N = 1, 2, 3

Exercise 2. The z -transform of the filter H,H∗ is

H(z) = h0 + h−1z+ h−2z
2 + h−3z

3,

H∗(z) = h0 + h−1z
−1 + h−2z

−2 + h−3z
−3,

G(z) = g−1z+ g0 + g1z
−1 + g2z

−2 = h0z− h−1 + h−2z
−1 − h−3z

−2,

G∗(z) = g∗1z−1 + g∗0 + g∗−1z+ g∗−2z
2 = h0z

−1 − h−1 + h−2z− h−3z
2.

Hence

H(−z)H∗(z)+G(−z)G∗(z) = (h0 − h−1z+ h−2z
2 − h−3z

3)

× (h0 + h−1z
−1 + h−2z

−2 + h−3z
−3)

+ (−h0z− h−1 − h−2z
−1 − h−3z

−2)

× (h0z
−1 − h−1 + h−2z− h−3z

2)

= (h2
0 − h2−1 + h2−2 − h2−3)

+ (h0h−1 − h−1h−2 + h−2h−3)(z
−1 − z)

+ (h0h−2 − h−1h−3)(z
−2 + z2)+ h0h−3(z

−3 − z3)

+ (−h2
0 + h2−1 − h2−2 + h2−3)

+ (−h0h−1 + h−1h−2 − h−2h−3)(z
−1 − z)

+ (−h0h−2 + h−1h−3)(z
−2 + z2)

− h0h−3(z
−3 − z3)

= 0
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and

H(z)H∗(z)+G(z)G∗(z) = (h0 + h−1z+ h−2z
2 + h−3z

3)×
× (h0 + h−1z

−1 + h−2z
−2 + h−3z

−3)

+ (h0z− h−1 + h−2z
−1 − h−3z

−2)

× (h0z
−1 − h−1 + h−2z− h−3z

2)

= (h2
0 + h2−1 + h2−2 + h2−3)

+ (h0h−1 + h−1h−2 + h−2h−3)(z+ z−1)

+ (h0h−2 + h−1h−3)(z
2 + z−2)

+ h0h−3(z
3 + z−3)

+ (h2
0 + h2−1 + h2−2 + h2−3)

+ (−h0h−1 − h−1h−2 − h−2h−3)(z+ z−1)

+ (h0h−2 + h−1h−3)(z
2 + z−2)

+ (−h0h−3)(z
3 + z−3)

= 2((h2
0 + h2−1 + h2−2 + h2−3)+ (h0h−2 + h−1h−3)(z

2 + z−2))

= 1

16
((1 +√

3)2 + (3 +√
3)2 + (3 −√

3)2 + (1 −√
3)2)

+ 1

32
((1 +√

3)((3 −√
3)+ (3 +√

3)(1 −√
3))(z2 + z−2)

= 1

16
(8 + 24)+ 1

32
(2
√

3 − 2
√

3)(z2 + z−2)

= 2

Exercise 3. The two conditions form a system of two nonlinear equations for four unknowns:

h2
0 + h2

1 = 1

h0 + h1 = √
2

The geometric interpretation of these two equations is the intersection of a straight line with the
unit circle. The straight line has the normal vector n = (1, 1)� and the distance of the straight
line form the origin equals 1.0, which is also the radius of the circle. The two intersection points
therefore coincide. They form the so-called contact pointp. The contact point is the intersection
of the prolongation of the normal vector n with the unit circle. This yields

p =
[
h0

h1

]
=
[

cosπ/4

sin π/4

]
=
[

1
2

√
2

1
2

√
2

]

Exercise 4. Obviously,

H(z) = 1

2

√
2(1 + z−1)
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holds. This leads to

g0 − g1z
−1 = G(−z)

= zlH(
1

z
)

= zl
1

2

√
2(1 + z)

This is only possible if l = −1 holds and leads to

g0 = 1

2

√
2, g1 = −1

2

√
2.

Garbor transform

Exercise 1.

G{f }(ω, t) = 1√
2π

∫
R

eıνu · π−1/4e−(u−t)2/2e−ıuωdu

= 1√
2π

∫
R

π−1/4e−(u−t)2/2e−ıu(ω−ν)du = π−1/4F {e−(u−t)2/2}(ω − ν)

= π−1/4e−ıtωF {e−u2/2}(ω − ν) = π−1/4e−ıtωe−
(ω−ν)2

2 .

For a fixed frequencyω the Garbor transform of eıνt is a harmonic oscillation with this frequency
ω. The amplitude of this oscillation is the smaller the more the frequency ω differs from the
frequency ν of the transformed signal.

Exercise 2.∫ ∞
−∞

x|gt,ω0,a |2dx = π−1/2a−1/2
∫ ∞
−∞

xe−
(x−t)2
a dx = 1√

2π 1
2a

∫ ∞
−∞

xe
− (x−t)2

2 1
2 a dx = t.

σ 2
x = π−1/2a−1/2

∫ ∞
−∞

(x − t)2e−
(x−t)2
a dx = 1√

2π 1
2a

∫ ∞
−∞

z2e
− z2

2 1
2 a dz = 1

2
a.

ĝt,ω0,a(ω) =
1√
2π

∫ ∞
−∞

π−1/4a−1/4e−
(x−t)2

2a e−ı(ω+ω0)xdx

= π−1/4F
{
a−1/4e−

(x−t)2
2a

}
(ω + ω0)

= π−1/4a1/4e−ıωtF
{
e− x2

2

}
(a1/4(ω + ω0))

= π−1/4a1/4e−ıωt e−
a1/2(ω+ω0)

2

2 .

Hence ω̄ = −ω0 and σ 2
ω = 1

2a holds.
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Exercise 3.

ti := i
√

2a, ωj := j

√
2

a
.

Exercise 4.

Ga{f }(ω, t) = 1√
2π

∫
R

eıνu · π−1/4a−1/4e−
(u−t)2

2a e−ıuωdu

= 1√
2π

∫
R

π−1/4a−1/4e−
(u−t)2

2a e−ıu(ω−ν)du

= π−1/4a−1/4F
{
e−

(u−t)2
2a

}
(ω − ν)

= π−1/4a1/4e−ıtωF {e−u2/2}(a1/2(ω − ν))

= π−1/4a1/4e−ıtωe−
a1/4(ω−ν)2

2 .

The parametera controls the speed of amplitude attenuation. The largera the faster the amplitude
decreases for ω departing from the signal frequency ν.

Continuous wavelet transformation

Exercise 1.

cψ = 2π
∫ ∞
−∞

|ψ̂1(ω)|2
|ω| dω = 2π

∫ ∞
−∞

ω4e−ω2

|ω| dω = 4π
∫ ∞

0
ω3e−ω2

dω = 2π.

Exercise 2.

F

{
|λ|−1/2ψ

(
(x − t)

λ

)}
(ω) = |λ|1/2F {ψ(x − t)} (|λ|ω)

= |λ|1/2e−ıtωψ̂(|λ|ω).
Hence

U(ω) = |F
{
|λ|−1/2ψ

(
(x − t)

λ

)}
|2 = λψ̂2(λω).

This leads to

U1(ω) = λ

2π

sin4(λω/4)

(λω/4)2

for the Haar Wavelet, to

U2(ω) = λ(λω)2e−(λω)2

for the Mexican hat wavelet and to

U3(ω) = λ√
π
e−(λω−ω0)

2

for the Morlet wavelet.
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Exercise 3.

Haar
Mexican hat
Morlet
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Filter characteristic of the Haar, Mexican hat and Morlet wavelet for scale parameters λ = 1 (top left),
λ = 2 (top right), λ = 4 (bottom left) and λ = 8 (bottom right)

Exercise 4. Haar wavelet:

x̄ =
∫ 1

0
xdx = 1

2
.

σ 2
x =

∫ 1

0
(x − 1

2
)2dx =

∫ 1

0
x2 − x + 1

4
dx = 1

3
− 1

2
+ 1

4
= 1

12
.

ω̄ = 1

2π

∫ ∞
0

ω
sin4(ω/4)

(ω/4)2
dω = 16

2π

∫ ∞
0

sin4 z

z
dz = 8.3848.

Mexican hat wavelet:

x̄ =
∫ ∞
−∞

x(1 − x2)2e−x2
dx = 0.

σ 2
x =

∫ ∞
−∞

x2(1 − x2)2e−x2
dx =

∫ ∞
−∞

(x2 − 2x4 + x6)e−x2
dx = 2

√
π

(
1

4
− 3

4
+ 15

16

)
= √

π
7

8
.
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ω̄ =
∫ ∞

0
ω · ω4e−ω2

dω = 1.

σ 2
ω =

∫ ∞
0
(ω − 1)2ω4e−ω2

dω =
∫ ∞

0
(ω6 − 2ω5 + ω4)e−ω2

dω

= √
π

15

16
− 2 +√

π
3

4
= √

π
3

2
− 2.

Morlet wavelet:

x̄ = π−1/2
∫ ∞
−∞

xe−x2
dx = 0.

σ 2
x = π−1/2

∫ ∞
−∞

x2e−x2
dx = 1√

2π 1
2

∫ ∞
−∞

x2e
− x2

2 1
2 dx = 1

2
.

ω̄ = π−1/2
∫ ∞
−∞

ωe−(ω−ω0)
2
dω = 1√

2π 1
2

∫ ∞
−∞

ωe
− (ω−ω0)

2

2 1
2 dω = ω0.

σ 2
ω = π−1/2

∫ ∞
−∞

(ω − ω0)
2e−(ω−ω0)

2
dω = 1

2
.

Exercise 5.

x̄λ,t = λ−1
∫ ∞
∞

xψ2
(
x − t

λ

)
dx =

∫ ∞
−∞

(λz+ t)ψ2(z)dz = λx̄ + t.

σ 2
x,λ t = λ−1

∫ ∞
−∞

(x − λx̄ − t)2ψ2(
x − t

λ
)dx =

∫ ∞
−∞

λ2z2ψ2(z)dz = λ2σ 2
x .

ω̄λ,t = λ

∫ ∞
−∞

ωψ̂2(λω)dω = 1

λ

∫ ∞
−∞

zψ̂2(z)dz=̄ ω̄
λ
.

σ 2
ω λ t = λ

∫ ∞
−∞

(ω − ω̄

λ
)2ψ̂2(λω)dω = 1

λ2

∫ ∞
−∞

(z− ω̄)2ψ̂2(z)dz = σω2

λ2 .

Exercise 6. Centers in x-direction: λj x̄ + ti . Interval length in x direction: λj σx . Hence

ti+1 − ti = 2λj σx ⇔ ti = 2λj σx.

Centers in ω direction ω̄
λj

. Interval length in ω direction: 2 σωλj . Therefore

ω̄

λj+1
= ω̄

λj
− σω

λj
− σω

λj+1
⇔ ω̄ + σω

λj+1
= ω̄ − σω

λj

⇔ λj+1 = ω̄ + σω

ω̄ − σω
λj .

Hence

λj =
(
ω̄ + σω

ω̄ − σω

)j
and ti = 2λj σx.
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Exercise 7. Haar wavelet:

λmin = 8.3848
x

π
, λmax = 8.3848T

2π
.

Mexican hat wavelet:

λmin = 
x

π
, λmax = T

2π
.

Morlet wavelet:

λmin = ω0
x

π
, λmax = ω0T

2π
.

Mallat algorithm

Exercise 1. Obviously suppψm,n = [2mn, 2m(n+ 1)]. Without any restriction of generality
let m ≥ p. Thus mes(suppψm,n) ≥ mes(suppψp,q), where mes(M) stands for the Lebesgue
measure of the set M . Therefore

〈ψm,n, ψp,q 〉 = 0 ⇔ m �= p ∨ n �= q.

On the other hand

〈ψm,n, ψm,n〉 =
∫ ∞
−∞

ψ2
m,n(x)dx = 2−m

∫ ∞
−∞

ψ2(2−mx − n)dx

= 2−m
∫ 2m(n+1)

2mn
dx = 1.

Exercise 2.

δ0k = 〈ϕ(•), ϕ(• − k)〉 = 〈ϕ̂, ϕ̂e−ıkω〉 =
∫ ∞
−∞

|ϕ̂|2eıkωdω

=
∑
n∈Z

∫ 2π(n+1)

2πn
|ϕ̂|2eıkωdω

=
∫ 2π

0

∑
n∈Z

|ϕ(ω + 2πn)|2eıkωdω.

Obviously, f (ω) :=∑n |ϕ̂(ω + 2πn)|2 is a 2π periodic function. Hence its Fourier series is

f (ω) =
∑
k∈Z

cke
−ıkω, ck := 1

2π

∫ 2π

0
f (ω)eıkωdω.

This means that all Fourier coefficients of f except of c0 = 1/2π vanish. Therefore∑
n∈Z

|ϕ̂(ω + 2πn)|2 = f (ω) = c0e
−ı0ω = 1

2π
.
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Hilbert spaces

Exercise 1.

A⊕ B = (A⊕ B)ij = aij + bij = bij + aij = (B ⊕ A)ij = B ⊕ A.

A⊕ (B ⊕ C) = (A⊕ (B ⊕ C))ij = aij + (B ⊕ C)ij = aij + (bij + cij )

= (aij + bij )+ cij = (A⊕ B)ij + cij = (A⊕ B)⊕ C.

Let O = (oij ), oij = 0 for all i, j , then

A⊕O = (A⊕O)ij = aij + oij = aij = A

holds.
Let A = (aij ). Define −A by −A = (−aij ). Then

A⊕−A = aij + (−aij ) = 0 = oij = O,

α % (β % A) = α % (β · aij ) = (α · β · aij ) = ((α · β) · aij ) = (α · β)% A,

and so on, and so on.

Exercise 2.

‖A‖ = max
i

n∑
j=1

|aij | >
n∑
i

|a1j | > |a11| ≥ 0.

Let 0 = ‖A‖ and suppose that there is at least one i and one j with aij �= 0. Then

0 = ‖A‖ > |aij | > 0

follows. Hence ‖A‖ = 0 ⇔ A = 0.

‖αA‖ = max
i

n∑
j=1

|α · aij | = max
i

|α|
n∑
j=1

|aij | = |α| · ‖A‖.

‖A⊕ B‖ = max
i

n∑
j=1

|aij + bij | ≤ max
i

n∑
j=1

(|aij | + |bij |)

= max
i

( n∑
j=1

|aij | +
n∑
j=1

|bij |
)
≤ max

i

n∑
j=1

|aij | + max
i

n∑
j=1

|bij |

= ‖A‖ + ‖B‖.
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Exercise 3. Let f, g ∈ V . Then

∫ b

a
(f ⊕ g)2dx =

∫ b

a
(f (x)+ g(x))2dx

≤
∫ b

a
(f (x)+ g(x))2dx +

∫ b

a
(f (x)− g(x))2dx

= 2

(∫ b

a
f 2(x)dx +

∫ b

a
g2(x)dx

)
<∞.

Consequently, f ⊕ g ∈ V .

|〈f, g〉| =
∣∣∣ ∫ b

a
f · gdx

∣∣∣ ≤ 2 ·
∫ b

a
|f · g|dx ≤

∫ b

a
(f + g)2 + f 2 + g2dx

=
∫ b

a
(f + g)2dx +

∫ b

a
f 2dx +

∫ b

a
g2dx <∞.

〈f, g〉 =
∫ b

a
f · gdx =

∫ b

a
g · f dx = 〈g, f 〉.

〈f ⊕ g, h〉 =
∫ b

a
(f ⊕ g)(x) · h(x)dx =

∫ b

a
(f (x)+ g(x)) · h(x)dx

=
∫ b

a
f (x) · h(x)+ g(x) · h(x)dx =

∫ b

a
f · hdx +

∫ b

a
g · hdx

= 〈f, h〉 + 〈g, h〉.

〈α % f, g〉 =
∫ b

a
α · f · gdx = α ·

∫ b

a
f · gdx = α〈f, g〉.

0 = 〈f, f 〉 =
∫ b

a
f 2dx ⇔ f 2 = 0 ⇔ f = 0.

Exercise 4. Obviously

∫ 2π

0
sin2(mx)dx ≤

∫ 2π

0
1dx = 2π <∞,∫ 2π

0
cos2(mx)dx ≤

∫ 2π

0
1dx = 2π <∞.
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holds. Hence the functions sinmx, cosmx indeed belong to V .

〈cosmx, cos nx〉 =
∫ 2π

0

1

2
(eımx + e−ımx)1

2
(eınx + e−ınx)dx

= 1

4

∫ 2π

0
eı(m+n)x + e−ı(m−n)x + eı(m−n)x + e−ı(m+n)xdx

= 1

2

∫ 2π

0
cos(m+ n)xdx + 1

2

∫ 2π

0
cos(m− n)xdx

= 1

2(m+ n)
(sin(m+ n)2π − sin(m+ n)0)

+ 1

2(m− n)
(sin(m− n)2π − sin(m− n)0)

=
{
π, m = n

0, m �= n.

The orthogonality of 〈cosmx, sin nx〉, 〈sinmx, cos nx〉 is proved completely analog.

Exercise 5. Let ωj
k
:= eıj

2πk
n . Obviously

0 = ωnk − 1 = (ωk − 1)(ωn−1
k

+ ωn−2
k

+ · · · + 1)

holds. Since ωk �= 1, the following relations follow:

n−1∑
i=0

ω
j
i
ω̄ki =

n−1∑
i=0

ω
j−k
i

=
n−1∑
i=0

ωij−k = (ωn−1
j−k + · · · + 1) =

{
n, j = h

0, j �= h.

〈ck, cl〉 = 2

n

n−1∑
i=0

cos

(
2πki

n

)
cos

(
2πli

n

)

= 1

2n

n−1∑
i=0

(
eı

2πki
n + e−ı 2πki

n
)(
eı

2πli
n + e−ı 2πli

n
)

= 1

2n

n−1∑
i=0

(ωik + ω̄ik)(ω
i
l + ω̄il ) =

1

2n

n−1∑
i=0

ωik+l + ωik−l + ωil−k + ωi−l−k

=
{

1, l = k

0, l �= k.

Exercise 6.
0 = ‖f ‖ ⇔ max

x∈[a,b] |f (x)| = 0 ⇔ f (x) = 0.

‖αf ‖ = max
x∈[a,b] |αf (x)| = |α| max

x∈[a,b] |f (x)| = |α| · ‖f ‖.
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‖f + g‖ = max
x∈[a,b] |f (x)+ g(x)| ≤ max

x∈[a,b] |f (x)| + |g(x)|
≤ max
x∈[a,b] |f (x)| + max

x∈[a,b] |g(x)| = ‖f ‖ + ‖g‖.

Exercise 7. Linearity of f is obvious. The only thing, which has to be shown is that it is
bounded.

|f (x)| =
∣∣∣∣ ∫ b

a
x(t)dt

∣∣∣∣ ≤ ∫ b

a
|x(t)|dt ≤

∫ b

a
max
t∈[a,b] |x(t)|dt = (b − a)‖x‖.

Consequently, ‖f ‖ ≤ (b − a). Now let x′(t) = 1.

|f (x′)| =
∣∣∣∣ ∫ b

a
1dt

∣∣∣∣ = (b − a).

Hence
‖f ‖ = sup

‖x‖≤1
|f (x)| ≥ |f (x′)| = (b − a).

Together ‖f ‖ = (b − a) follows.

Exercise 8.
|evt0 (x)| = |x(t0)| ≤ max

t∈[a,b] |x(t)| = ‖x‖.
Hence ‖evt0‖ ≤ 1 holds.

Exercise 9.

‖xn − x‖ =
(∫ 1

−1
(xn(t)− x(t))2dt

)1/2

=
(∫ 1

n

− 1
n

(xn(t)− x(t))2dt

)1/2

=
(∫ 0

− 1
n

(
2

n

(
t + 1

n

))2
dt +

∫ 1
n

0

(
2

n
(t + 1

n

)
− 1)2dt

)1/2

=
(∫ 0

− 1
n

4

n2

(
t2 + 2

n
t + 1

n2

)
dt +

∫ 1
n

0

4

n2

(
t2 + 2 − n2

n
t + (2 − n2)2

4n2

)
dt

)1/2

=
− 4

n2

(
− 1

3n3 + 1

n3 − 1

n3

)
+ 4

n2

(
1

3n3 + 2 − n2

2

1

n3 + (2 − n2)2

4

1

n3

)1/2


=
(

4

n2

(
1

n3

(
2

3
+ (2 − n2)

2
+ (2 − n2)2

4

)))1/2

=
(

8

3n5
+ 2

(
2

n5
− 1

n3

)
+ 1

n

(
2

n2 − 1

)2
)1/2

.
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Hence

lim
n→∞‖xn − x‖ = lim

n→∞

(
8

3n5
+ 2

(
2

n5
− 1

n3

)
+ 1

n

(
2

n2 − 1

)2 )1/2
= 0.

Exercise 10. Let xn, x be defined as in Exercise 9. Let yn := x − xn, then

|ev0(yn)| = 1

2
.

LetM be an arbitrary positive real number. Since ‖yn‖ → 0 there is an n0 such that 1
2‖yn‖ > M

holds for all n > n0. Consequently, there is no ‖ev0‖ > 0 with

|ev0(x)| ≤ ‖ev0‖ · ‖x‖.
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