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Real-Time Systems

Real-time systems need to react to certain input stimuli within given time bounds.
For example, an airbag in a car has to unfold within 300 milliseconds in a crash.
There are many embedded safety-critical applications and each requires real-time
specification techniques. This textbook introduces three of these techniques, based
on logic and automata: Duration Calculus, Timed Automata, and PLC-Automata.
The techniques are brought together to form a seamless design flow, from real-

time requirements specified in the Duration Calculus, via designs specified by PLC-
Automata, and into source code for hardware platforms of embedded systems. The
syntax, semantics, and proof methods of the specification techniques are introduced;
their most important properties are established; and real-life examples illustrate their
use. Detailed case studies and exercises conclude each chapter.
Ideal for students of real-time systems or embedded systems, this text will also be

of great interest to researchers and professionals in transportation and automation.
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Preface

Computers are used more and more to provide high-quality and reliable

products and services, and to control and optimise production processes.

Such computers are often embedded into the products and thus hidden to

the human user. Examples are computer-controlled washing machines or

gas burners, electronic control units in cars needed for operating airbags

and braking systems, signalling systems for high-speed trains, or robots and

automatic transport vehicles in industrial production lines.

In these systems the computer continuously interacts with a physical envi-

ronment or plant. Such systems are thus called reactive systems. Moreover,

common to all these applications is that the computer reactions should obey

certain timing constraints. For example, an airbag has to unfold within mil-

liseconds, not too early and not too late. Reactive systems with such con-

straints are called real-time systems. They often appear in safety-critical

applications where a malfunction of the controller will cause damage and

risk the lives of people. This is immediately clear for all applications in the

transport sector where computers control cars, trains and planes.

Therefore the design of real-time systems requires a high degree of pre-

cision. Here formal methods based on mathematical models of the system

under design are helpful. They allow the designer to specify the system

at different levels of abstraction and to formally verify the consistency of

these specifications before implementing them. In recent years significant

advances have been made in the maturity of formal methods that can be

applied to real-time systems.

Structure of this book

In this advanced textbook we shall present three such formal approaches:

vii
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• Duration Calculus (DC for short), a logic and calculus for specifying high-

level requirements of real-time systems;

• timed automata (TA for short), a state-transition model of real-time sys-

tems with the advantage of elaborate tool support for the automatic ver-

ification of real-time properties;

• PLC-Automata, a state-transition model of real-time systems with the

advantage of being implementable, for example in the programming lan-

guage C or on Programmable Logic Controllers (PLCs for short), a hard-

ware platform that is widespread in the automation industry.

This book is the first one that presents the above three approaches to the

specification of real-time systems in a coherent way. This is achieved by

combining the approaches into a design method for real-time systems, reach-

ing from requirements down to executable code as illustrated in Figure 0.1.

Here:

• Real-time requirements are specified in the Duration Calculus or subsets

thereof.

• Designs are specified by PLC-Automata.

• Implementations are written as C programs with timers or as programs

that are executable on PLCs.

• Automatic verification of requirements is performed using the model-

checking tool UPPAAL for timed automata.

• A tool Moby/RT, built for PLC-Automata, allows the user to invoke

algorithms for generating C or PLC code from such automata, and to

automatically verify properties specified in a subset of Duration Calculus

by using UPPAAL as a back-end verification engine.

The connection is that PLC-Automata have both a semantics in terms of

the Duration Calculus and an equivalent one in terms of timed automata.

To verify that a PLC-Automaton satisfies a given real-time requirement

expressed in the Duration Calculus, there are two possibilities: either a proof

can be conducted in the Duration Calculus exploiting the corresponding

semantics of the PLC-Automaton, or, for certain types of requirement, an

automatic verification is possible using the tool UPPAAL and the timed

automata semantics of the PLC-Automaton.

How to read this book

The titles and dependencies of the chapters are shown in Figure 0.2. First,

the introduction in Chapter 1 should be read. Here two case studies (railroad
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Requirements

Designs

Implementations

DC

Subsets of DC

PLC-Automata

C code or
PLC code

TA
Automatic
verification

Fig. 0.1. Overview of design method

crossing and gas burner) provide a feeling for the delicacies of real-time

systems. Then one can continue with Chapter 2 (Duration Calculus) or

Chapter 4 (Timed automata).

Chapter 2 presents the basic knowledge of the Duration Calculus. First,

the syntax and semantics of the logic are defined. Then the proof rules of

the calculus are introduced, including a simple induction rule. These rules

are applied to the case study of the gas burner.

Chapter 3 presents advanced topics on the Duration Calculus. First,

decidability results are discussed for the cases of discrete and continuous

time domains. Then a subset of the Duration Calculus that is closer to

the implementation level is presented, the so-called DC implementables.

Finally, Constraint Diagrams are introduced as a graphic representation for

requirements with a semantics in the Duration Calculus.

Chapter 4 presents the basic facts of timed automata. In particular, the

most prominent result of timed automata is shown: the decidability of the

reachability problem. It is then explained which variant of timed automata

and properties the model checker UPPAAL can decide.

Chapter 5 introduces PLC-Automata as a class of implementable real-time

automata. First, these automata are motivated using an example of a real-

time filter. Then it is described how PLC-Automata can be compiled into

code that is executable on Programmable Logic Controllers (PLCs). To link

the PLC-Automata with the Duration Calculus, their semantics are defined

in terms of this logic. As a consequence, a general result estimating the

reaction times of PLC-Automata to input stimuli can be proved. Also, an
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algorithm is discussed that synthesises a PLC-Automaton from a given set

of DC implementables provided this set is consistent. Finally, hierarchical

PLC-Automata are defined.

Chapter 6 ties together the results of Chapters 4 and 5 for the purposes of

automatic verification. It turns out that certain real-time properties of PLC-

Automata can be proven automatically using the model checker UPPAAL

for timed automata. To this end, an alternative and equivalent semantics

of PLC-Automata in terms of timed automata is defined. Then it is shown

that real-time requirements expressed in a subset of Constraint Diagrams

can be verified against PLC-Automata by checking the reachability of certain

states with UPPAAL. This is all supported by the tool Moby/RT, which

is described briefly as well. Also, Moby/RT enables the user to compile

PLC-Automata into PLC code or C code.

1 Introduction

2 Duration Calculus

3 Properties and subsets

4 Timed automata

5 PLC-Automata

6 Automatic verification

Fig. 0.2. Dependency of chapters

Actually, only Section 5.5 (Synthesis) of Chapter 5 depends on Section 3.2

(DC implementables) of Chapter 3. The remainder of Chapter 5 can thus

also be read immediately after Chapter 2.

Intended audience

This textbook is appropriate for either a course on formal methods for real-

time systems in the upper division of undergraduate studies or for graduate
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studies in computer science and engineering. It can also be used for self

study, and will be of interest for engineers of embedded real-time systems.

Readers are expected to have a basic understanding of mathematical and

logical notations.

Courses based on this book

Our own course on real-time systems at the University of Oldenburg is for

M.Sc. and advanced B.Sc. students in computer science with an interest in

embedded systems; it proceeds as follows:

Course at Oldenburg

Introduction 1

Duration Calculus 2

Properties and subsets 3.1–3.2

Timed automata 4

PLC-Automata 5.1–5.5

Automatic verification 6 (only short indication)

The course takes one semester with three hours of lectures and one hour of

exercises per week.

At Oldenburg an in-depth study of Chapter 6 (Automatic verification)

with the use of the tools UPPAAL and Moby/RT is delegated to practical

work of the students in separate labs on real-time systems. There LEGO

Mindstorm robots are used for implementing the systems. Once desirable

real-time properties have been verified, the compiler from PLC-Automata

to C is applied to generate code for the LEGO Mindstorms.

An alternative usage of the material of this book could be in (part of) a

course on timed automata as follows:

Course based on timed automata

Introduction 1

Timed automata 4

PLC-Automata 5.1–5.3 and 5.6

Automatic verification 6

Further information and additional material can be found on the webpage

http://csd.informatik.uni-oldenburg.de/rt-book.
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Duration Calculus to cope with space and time. Under the guidance of Josef

Tapken the tool Moby/RT was developed to provide support for the theory

presented in this book. We are particularly grateful to the following peo-

ple who helped create this tool: Hans Fleischhack, Marc Lettrari, Michael
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Introduction

1.1 What is a real-time system?

This book is about the design of certain kinds of reactive systems. A re-

active system interacts with its environment by reacting to inputs from the

environment with certain outputs. Usually, a reactive system is not sup-

posed to stop but should be continuously ready for such interactions. In the

real world there are plenty of reactive systems around. A vending machine

for drinks should be continuously ready for interacting with its customers.

When a customer inputs suitable coins and selects “coffee” the vending ma-

chine should output a cup of hot coffee. A traffic light should continuously

be ready to react when a pedestrian pushes the button indicating the wish

to cross the street. A cash machine of a bank should continuously be ready

to react to customers’ desire for extracting money from their bank account.

Reactive systems are seen in contrast to transformational systems, which

are supposed to compute a single input–output transformation that satisfies

a certain relation and then terminate. For example, such a system could

input two matrices and compute its product.

We wish to design reactive systems that interact in a well-defined relation

to the real, physical time. A real-time system is a reactive system which, for

certain inputs, has to compute the corresponding outputs within given time

bounds. An example of a real-time system is an airbag. When a car is forced

into an emergency braking its airbag has to unfold within 300 milliseconds to

protect the passenger’s head. Thus there is a tight upper time bound for the

reaction. However, there is also a lower time bound of 100 milliseconds. If

the airbag unfolds too early, it will deflate and thus lose its protective impact

before the passenger’s head sinks into it. This shows that both lower and

upper time bounds are important. The outputs of a real-time system may

depend on the behaviour of its inputs over time. For instance, a watchdog

1



2 Introduction

has to raise an alarm (output) if an input signal is absent for a period of

t seconds.

Real-time constraints often arise indirectly out of safety requirements. For

example, a gas burner should avoid a critical concentration of unburned gas

in the air because this could lead to an explosion. This is an untimed safety

requirement. To achieve it, a controller for a gas burner could react to a

flame failure by shutting down the gas valve for a sufficiently large period of

time so that the gas can evaporate during that period. This way the safety

requirement is reduced to a real-time constraint.

The gas burner is an example of a safety critical system: a malfunction of

such a system can cause loss of goods, money, or even life. Other examples

are the airbag in a car, traffic controllers, auto pilots, and patient monitors.

Real-time constraints are sometimes classified into hard and soft . Hard

constraints must be fulfilled without exception, whereas soft ones should not

be violated. For example, a car control system should meet the real-time

requirements for the air condition, but must meet the real-time constraints

for the airbag.

In constructing a real-time system the aim is to control a physically exist-

ing environment, the plant, in such a way that the controlled plant satisfies

all desired timing requirements: see Figure 1.1.

plant controller

sensors

actuators

Fig. 1.1. Real-time system

The controller is a digital computer that interacts with the plant through

sensors and actuators. By reading the sensor values the controller inputs

information about the current state of the plant. Based on this input the

controller can manipulate the state of the plant via the actuators. A precise

model of controller, sensors, and actuators has to take reaction times of

these components into account because they cannot work arbitrarily fast.

In many cases the plant is distributed over different physical locations.

Also the controller might be implemented on more than one machine. Then

one talks of distributed systems. For instance, a railway station consists of

many points and signals in the field together with several track sensors and

actuators. Often the controller is hidden to human beings. Such real-time
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systems are called embedded systems. Examples of embedded systems range

from controllers in washing machines to airbags in cars.

When we model the plant in Figure 1.1 in more detail we arrive at hy-

brid systems. These are defined as reactive systems consisting of continuous

and discrete components. The continuous components are time-dependent

physical variables of the plant ranging over a continuous value set, like tem-

perature, pressure, position, or speed. The discrete component is the digital

controller that should influence the physical variables in a desired way. For

example, a heating system should keep the room temperature within cer-

tain bounds. Real-time systems are systems with at least one continuous

variable, that is time. Often real-time systems are obtained as abstractions

from the more detailed hybrid systems. For example, the exact position

of a train relative to a railroad crossing may be abstracted into the values

far away, near by, and crossing.

Figure 1.2 summarises the main classes of systems discussed above and

shows their containment relations: hybrid systems are a special class of

real-time systems, which in turn are a special class of reactive systems.

reactive systems interact with their environment

real-time systems have to compute outputs
within certain time intervals

hybrid systems work with both
discrete and continuous compo-
nents

Fig. 1.2. Classes of systems

Since real-time systems often appear in safety-critical applications, their

design requires a high degree of precision. Here, formal methods based on

mathematical models of the system under design are helpful. They allow

the designer to specify the system at different levels of abstraction and to

formally verify the consistency of these specifications before implementing
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them. In recent years significant advances have been made in the maturity

of formal methods that can be applied to real-time systems.

When considering formal methods for specifying and verifying systems

we have the reverse set of inclusions of Figure 1.2, as shown in Figure 1.3:

formal methods for hybrid systems can also be used to analyse real-time sys-

tems, and formal methods for real-time systems can also be used to analyse

reactive systems.

methods for hybrid systems

methods for real-time systems

methods for reactive systems

Fig. 1.3. Formal methods for systems classes

1.2 System properties

To describe real-time systems formally, we start by representing them by

a collection of time-dependent state variables or observables obs, which are

functions

obs : Time −→ D

where Time denotes the time domain and D is the data type of obs. Such

observables describe an infinite system behaviour, where the current data

values are recorded at each moment of time.

For example, a gas valve might be described using a Boolean, i.e. {0,1}-
valued observable

G : Time −→ {0, 1}

indicating whether gas is present or not, a railway track by an observable

Track : Time −→ {empty, appr, cross}

where appr means a train is approaching and cross means that it is crossing

the gate, and the current communication trace of a reactive system by an

observable

trace : Time −→ Comm∗
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where Comm∗ denotes the set of all finite sequences over a set Comm of

possible communications. Thus depending on the choice of observables we

can describe a real-time system at various levels of detail.

There are two main choices for time domain Time:

• discrete time: Time = N, the set of natural numbers, and

• continuous time: Time = R≥0, the set of non-negative real numbers.

A discrete-time model is appropriate for specifications which are close to

the level of implementation, where the time rate is already fixed. For higher

levels of specifications continuous time is well suited since the plant models

usually use continuous-state variables. Moreover, continuous-time models

avoid a too-early introduction of hardware considerations. Throughout this

book we shall use the continuous-time model and consider discrete time as

a special case.

To describe desirable properties of a real-time system, we constrain the

values of their observables over time, using formulas of a suitable logic. In

this introduction we simply take predicate logic involving the usual logical

connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), =⇒ (implica-

tion), and ⇐⇒ (equivalence) as well as the quantifiers ∀ (for all) and ∃
(there exists). When expressing properties of real-time systems quantifica-

tion will typically range over time points, i.e. elements of the time domain

Time. Later in this book we introduce dedicated notations for specifying

real-time systems.

In the following we discuss some typical types of properties. For reactive

systems properties are often classified into safety and liveness properties.

For real-time systems these concepts can be refined.

Safety properties. Following L. Lamport, a safety property states that

something bad must never happen. The “bad thing” represents a

critical system state that should never occur, for instance a train

being inside a crossing with the gates open. Taking a Boolean ob-

servable C : Time −→ {0, 1}, where C(t) = 1 expresses that at

time t the system is in the critical state, this safety property can be

expressed by the formula

∀t ∈ Time • ¬C(t). (1.1)

Here C(t) abbreviates C(t) = 1 and thus ¬C(t) denotes that at time

t the system is not in the critical state. Thus for all time points it

is not the case that the system is in the critical state.

In general, a safety property is characterised as a property that
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can be falsified in bounded time. In case of (1.1) exhibiting a single

time point t0 with C(t0) suffices to show that (1.1) does not hold.

In the example, a crossing with permanently closed gates is safe,

but it is unacceptable for the waiting cars and pedestrians. Therefore

we need other types of properties.

Liveness properties. Safety properties state what may or may not occur,

but do not require that anything ever does happen. Liveness prop-

erties state what must occur. The simplest form of a liveness prop-

erty guarantees that something good eventually does happen. The

“good thing” represents a desirable system state, for instance the

gates being open for the road traffic. Taking a Boolean observable

G : Time −→ {0, 1}, where G(t) = 1 expresses that at time t the

system is in the good state, this liveness property can be expressed

by the formula

∃t ∈ Time • G(t). (1.2)

In other words, there exists a time point in which the system is in the

good state. Note that this property cannot be falsified in bounded

time. If for any time point t0 only ¬G(t) has been observed for

t ≤ t0, we cannot complain that (1.2) is violated because eventually

does not say how long it will take for the good state to occur.

Such liveness property is not strong enough in the context of real-

time systems. Here one would like to see a time bound when the

good state occurs. This brings us to the next kind of property.

Bounded response properties. A bounded response property states that

a desired system reaction to an input occurs within a time interval

[b, e] with lower bound b ∈ Time and upper bound e ∈ Time where

b ≤ e. For example, whenever a pedestrian at a traffic light pushes

the button to cross the road, the light for pedestrians should turn

green within a time interval of, say, [10, 15]. The need for an upper

bound is clear: the pedestrian wants to cross the road within a short

time (and not eventually). However, also a lower bound is needed

because the traffic light must not change from green to red instan-

taneously, but only after a yellow phase of, say, 10 seconds to allow

cars to slow down gently.

With P (t) representing the pushing of the button at time t and

G(t) representing a green traffic light for the pedestrians at time t,

we can express the desired property by the formula

∀t1 ∈ Time • (P (t1) =⇒ ∃t2 ∈ [t1 + 10, t1 + 15] •G(t2)). (1.3)
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Note that this property can be falsified in bounded time. When

for some time point t1 with P (t1) we find out that during the time

interval [t1 +10, t1 +15] no green light for the pedestrians appeared,

property (1.3) is violated.

Duration properties. A duration property is more subtle. It requires that

for observation intervals [b, e] satisfying a certain condition A(b, e)

the accumulated time in which the system is in a certain critical

state has an upper bound u(b, e). For example, the leak state of a

gas burner, where gas escapes without a flame burning, should occur

at most 5% of the time of a whole day.

To measure the accumulated time t of a critical state C(t) in a

given interval [b, e] we use the integral notion of mathematical cal-

culus: ∫ e

b
C(t)dt.

Then the duration property can be expressed by a formula

∀b, e ∈ Time •
(
A(b, e) =⇒

∫ e

b
C(t)dt ≤ u(b, e)

)
. (1.4)

Again this property can be falsified in finite time. If we can point

out an interval [b, e] satisfying the condition A(b, e) where the value

of the integral is too high, property (1.4) is violated.

1.3 Generalised railroad crossing

This case study is due to C. Heitmeyer and N. Lynch [HL94]. It concerns a

railroad crossing with a physical layout as shown in Figure 1.4, for the case of

two tracks. In the safety-critical area “Cross” the road and the tracks inter-

sect. The gates (indicated by “Gate”) can move from fully “closed” (where

the angle is 0◦) to fully “open” (where the angle is 90◦). Moving the gates

up and down takes time. Sensors at the tracks will detect whether a train

is approaching the crossing, i.e. entering the area marked by “Approach”.

1.3.1 The problem

Given are two time parameters ξ1, ξ2 > 0 describing the reaction times

needed to open and close the gates, respectively. In the following problem

description time intervals are used that collect all time points in which at

least one train is in the area “Cross”. These are called occupancy intervals

and denoted by [τi, νi] where the subscripts i ∈ N enumerate their successive
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Fig. 1.4. Generalised railroad crossing

occurrences. As usual, a closed interval [τi, νi] is the set of all time points t

with τi ≤ t ≤ νi. Moreover, for a time point t let g(t) denote the angle of

the gates, ranging from 0 (closed) to 90 (open).

The task is to construct a controller that operates the gates of the railroad

crossing such that the following two properties hold for all time points t:

• Safety: t ∈
⋃

i∈N [τi, νi] =⇒ g(t) = 0, i.e. the gates are closed inside all

occupancy intervals.

• Utility: t /∈
⋃

i∈N [τi−ξ1, νi+ξ2] =⇒ g(t) = 90, i.e. outside the occupancy

intervals extended by the reaction times ξ1 and ξ2 the gates are open.

This problem statement is taken from the article of Heitmeyer and Lynch

[HL94]. Note that the safety and utility properties are consistent, i.e. the

gate is never required to be simultaneously open and closed. To see this,

take a time point t satisfying the precondition (the left-hand side of the

implication) of the utility property. Then in particular,

t /∈
⋃
i∈N

[τi, νi],

which implies that t does not satisfy the precondition of the safety property.

Thus never both g(t) = 0 and g(t) = 90 are required.

Note, however, that depending on the choice of the time parameters ξ1, ξ2
and the timing of the trains it may well be that in between two successive

trains there is not enough time to open the gate, i.e. two successive time

intervals

[τi − ξ1, νi + ξ2] and [τi+1 − ξ1, νi+1 + ξ2]

may overlap (see also Figure 1.5).



1.3 Generalised railroad crossing 9

In the following we formalise and analyse this case study in terms of

predicate logic over suitable observables.

1.3.2 Formalisation

The railroad crossing can be described by two observables:

Track : Time −→ {empty, appr, cross} (state of the track)

g : Time −→ [0, 90] (angle of the gate).

Note that via the three values of the observable Track we have abstracted

from further details of the plant like the exact position of the train on the

track. The value empty expresses that no train is in the areas “Approach”

or “Cross”, the value appr expresses that a train is in the area “Approach”

and none is in “Cross”, and the value cross expresses that a train is in the

area “Cross”. The observable g ranges over all values of the gate angle in

the interval [0, 90]. We will use the following abbreviations:

E(t) stands for Track(t) = empty

A(t) stands for Track(t) = appr

Cr(t) stands for Track(t) = cross

O(t) stands for g(t) = 90

Cl(t) stands for g(t) = 0.

Requirements. With these observables and abbreviations we can specify

the requirements of the generalised railroad crossing in predicate logic. The

safety requirement is easy to specify:

Safety
def⇐⇒ ∀t ∈ Time • Cr(t) =⇒ Cl(t) (1.5)

where
def⇐⇒ means equivalence by definition. Thus whenever a train is in the

crossing the gates are closed. Note that this formula is logically equivalent

to the property Safety above because by the definition of Cr(t) we have

∀t ∈ Time • Cr(t) ⇐⇒ t ∈
⋃
i∈N

[τi, νi],

i.e. Cr(t) holds if and only if t is in one of the occupancy intervals.

Without the reaction times ξ1 and ξ2 of the gate the utility requirement

could simply be specified as

∀t ∈ Time • ¬Cr(t) =⇒ O(t).
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However, the property Utility refers to (the complements of) the intervals

[τi − ξ1, νi + ξ2], which are not directly expressible by a certain value of the

observable Track. In Figure 1.5 the occupancy intervals [τi, νi] and their

extensions to [τi − ξ1, νi + ξ2] are shown for i = 0, 1, 2. Only outside of the

latter intervals, in the areas exhibited by the thick line segments, are the

gates required to be open.

0

ξ1

τ0 ν0

ξ2 ξ1

τ1 ν1

ξ2 ξ1

τ2 ν2

ξ2

Fig. 1.5. Utility requirement

We specify this as follows. Consider a time point t. If in a suitable time

interval containing t there is no train in the crossing then O(t) should hold.

Calculations show that this interval is given by [t− ξ2, t+ ξ1]. Thus ¬Cr(t̃)
should hold for all time points t̃ with t− ξ2 ≤ t̃ ≤ t+ ξ1. This is expressed

by the following formula:

Utility
def⇐⇒ ∀t ∈ Time • (1.6)

(∀t̃ ∈ Time • t− ξ2 ≤ t̃ ≤ t+ ξ1 =⇒ ¬Cr(t̃))
=⇒ O(t).

Note the subtlety that t − ξ2 may be negative whereas t̃ ∈ Time is by defi-

nition non-negative. It can be shown that this formula Utility is equivalent

to the property Utility above (see Exercise 1.2).

For the generalised railroad crossing all functions Track and g are admissi-

ble that satisfy the two requirements above. These functions can be seen as

interpretations of the observables Track and g. They are presented as timing

diagrams. Figure 1.6 shows an admissible interpretation of Track and g.

Assumptions. In this case study Track is an input observable which can

be read but not influenced by the controller. By contrast, g is an output

observable since it can be influenced by the controller via actuators. The

correct behaviour of the controller often depends on some assumptions about

the input observables. Here we make the following assumptions about Track:

• Initially the track is empty: Init
def⇐⇒ E(0).
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Fig. 1.6. An admissible interpretation of the observables Track and g

• Trains cannot enter the crossing without approaching it:

E-to-Cr
def⇐⇒ ∀b, e ∈ Time • (b ≤ e ∧ E(b) ∧ Cr(e))

=⇒ ∃t ∈ Time • b < t < e ∧A(t).

• Approaching trains eventually cross:

A-to-E
def⇐⇒ ∀b, e ∈ Time • (b ≤ e ∧A(b) ∧ E(e))

=⇒ ∃t ∈ Time • b < t < e ∧ Cr(t).

Some assumptions about the speed of the approaching trains are also needed.

If a train could approach the crossing arbitrarily fast, a typical reaction time

of half a minute for the gates to close would not suffice. We assume that the

fastest train will take a time of ρ to reach the crossing after being detected

in the approaching area. Here ρ > 0 is another time parameter. On the

other hand, trains which are arbitrarily slow in the approaching area are
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not acceptable in the presence of the utility requirement. Therefore we

assume that trains need not more than ρ′ to pass through the approaching

area.

• Fastest train:

T-Fast
def⇐⇒ ∀c, d ∈ Time • (c < d ∧ E(c) ∧ Cr(d)) =⇒ d− c ≥ ρ.

• Slowest train:

T-Slow
def⇐⇒ ∀c ∈ Time • A(c) =⇒ (∃d ∈ Time• c < d < c+ρ′∧¬A(d)).

1.3.3 Design

For the design of the controller we stipulate that the gate is closed at most

ξ1 seconds after detection of an approaching train:

Des-G
def⇐⇒ ∀c, d ∈ Time • d− c ≥ ξ1∧

(∀t ∈ Time • c < t < d =⇒ ¬E(t)) =⇒ Cl(d).

Under the assumptions

Asm
def⇐⇒ Init ∧ T-Fast ∧ ρ ≥ ξ1

we can then prove that the following implication holds:

(Asm ∧ Des-G) =⇒ Safety.

Thus for all interpretations of Track and g satisfying Asm and Des-G, the

safety requirement Safety holds.

Proof:

See Exercise 1.3. �

1.4 Gas burner

This case study was introduced in [RRH93, HHF+94] during the EU project

ProCoS (Provably Correct Systems, 1989–95, [BHL+96]). The physical com-

ponents of the plant are shown in Figure 1.7.

1.4.1 The problem

The desired functionality of the gas burner is as follows:

• If the thermostat signals to switch on the heating the gas valve opens and

the burner tries to ignite it for a short period of time.
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gas valve

flame sensor�
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Fig. 1.7. Gas burner

• If the thermostat signals to switch off the heating the gas valve closes.

Important is the following safety-critical aspect of the gas burner. If gas

effuses without a burning flame in front of the gas valve the concentration

of unburned gas can reach critical limits and thus cause an explosion. This

has to be avoided. To this end, the following real-time constraint on the

system is introduced:

• For each time interval with a duration of at least 60 seconds the (accu-

mulated) duration of gas leaks is at most 5% of the overall duration.

Note that this requirement does not exclude short gas leaks because they

are unavoidable before ignition. If the system satisfies this requirement the

gas burner is safe.

1.4.2 Formalisation

We concentrate on the safety aspect of the gas burner and introduce two

Boolean observables: G describes whether the gas valve is open, and F

whether the flame is burning as detected by the flame sensor.

G : Time −→ {0, 1}
F : Time −→ {0, 1}.
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The safety-critical state L describes when gas leaks, i.e. when G holds but F

does not. It is formalised by the Boolean expression L
def⇐⇒ G∧¬F , which

is time dependent just as G and F are:

L : Time −→ {0, 1}.

Figure 1.8 exhibits an example of interpretations for F and G and the re-

sulting value for L.

Time

G
0

1

F
0

1

L
0

1

≥ 60

Fig. 1.8. Interpretations for F , G, and L

The real-time requirement is that for each time interval of at least 60 sec-

onds duration the shaded periods do not exceed 5%, i.e. one-twentieth of

that duration. To measure in a given interval [b, e] the sum of the durations

of all subintervals in which L(t) = 1 holds, we use the integral notation

∫ e

b
L(t)dt.

Here L is considered as a function from real numbers to real numbers, which

is integrable under suitable assumptions. The requirement can now be for-

malised as follows:

Req
def⇐⇒ ∀b, e ∈ Time •

(
e− b ≥ 60 =⇒

∫ e

b
L(t)dt ≤ e− b

20

)
. (1.7)

Looking at this high-level requirement it is difficult to see how to construct

a controller that guarantees it.
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1.4.3 Design

As a step towards a controller we make the design decision to introduce two

real-time constraints that seem easier to implement and that together imply

the requirement Req.

(i) The controller can stop each leak within a second :

Des-1
def⇐⇒ ∀b, e ∈ Time • (∀t ∈ Time • b ≤ t ≤ e =⇒ L(t))

=⇒ e− b ≤ 1.

This constraint restricts the duration of each leak state to at most one

second.

(ii) After each leak the controller waits for 30 seconds before opening the

gas valve again:

Des-2
def⇐⇒ ∀b, e ∈ Time • (L(b) ∧ L(e)∧

∃t ∈ Time • (b < t < e ∧ ¬L(t)))

=⇒ e− b ≥ 30.

This constraint requests a distance of at least 30 seconds between any

two subsequent leak states. This is illustrated in Figure 1.9.

b

L ¬L

e

L

≥ 30

Fig. 1.9. Real-time constraint Des-2

From these design constraints it is possible to prove the desired requirement

because the following implication holds:

(Des-1 ∧ Des-2) =⇒ Req,

i.e. for all interpretations of G and F satisfying Des-1 and Des-2, the safety

requirement Req holds.

1.5 Aims of this book

Using predicate logic as a specification language for real-time systems has

several disadvantages. First, as we have seen in the examples above, we
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have to spell out explicitly all quantifications over time. Second, there is no

support for an automatic verification of properties that one might want to

prove about such specifications. Third, there is no obvious way to implement

a real-time system once it is specified in predicate logic.

To overcome these disadvantages we shall consider three dedicated for-

mal specification languages for real-time systems: Duration Calculus, timed

automata, and PLC-Automata.

1.5.1 Duration Calculus

The Duration Calculus (abbreviated DC) was introduced by Zhou Chaochen

in collaboration with M.R. Hansen, C.A.R. Hoare, A.P. Ravn, and H. Rischel.

The DC is a temporal logic and calculus for describing and reasoning about

properties that time-dependent observables satisfy over time intervals. In

particular, safety properties, bounded response, and duration properties

(hence the name of the calculus) can be expressed in DC.

Example 1.1

The safety requirement Req for the gas burner that we formalised in Section

1.4.2 using predicate logic can be expressed in DC more concisely by the

duration formula

�

(
� ≥ 60 =⇒

∫
L ≤ �

20

)
.

It states that for all observation intervals (�) of length at least 60 seconds

(� ≥ 60) the accumulated duration of a gas leak
(∫
L
)

is at most 5%, i.e. one-

twentieth of the length of the interval
(
≤ �

20

)
. Note that in contrast to the

formula in predicate logic this DC formula avoids any explicit quantification

over time points. �

An advantage of DC is that it enables us to express a high-level declarative

view of real-time systems without implementation bias. We shall therefore

use DC as a specification language for system requirements. The price to pay

is that for the continuous-time domain the satisfiability problem of the DC

is in general undecidable. Thus we cannot hope for automatic verification

procedures for the full DC. Also direct tool support for the DC is at present

rather limited.
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1.5.2 Timed automata

Timed automata (abbreviated TA) were introduced by R. Alur and D. Dill

as operational models of real-time systems that extend finite-state automata

by explicit, real-valued clock variables.

Example 1.2

The timed automaton in Figure 1.10 is due to K.G. Larsen and models a light

controller. It has three states called off, light, bright and four transitions

labelled with the input action press? modelling the effects of pressing the

light switch. Additionally, this timed automaton uses a clock variable x.

The value of this clock can be tested and reset with the transitions.

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

Fig. 1.10. Timed automaton

The timed behaviour specified by this automaton is as follows. Initially, the

automaton is in state off. When the switch is pressed once, the light goes

on. If the switch is pressed twice quickly (within 3 seconds) the light gets

bright. Otherwise the light will be switched off with the second pressing.

�

A strong advantage of TA is that they come with automatic verifica-

tion procedures for certain properties like reachability of states. The model

checker UPPAAL developed at the universities of Uppsala and Aalborg is

the leading tool for carrying out such verifications. We shall therefore use

TA and UPPAAL when we want to verify properties of real-time systems

automatically. In particular, a subset of DC can be translated into semanti-

cally equivalent TA and thus used as a specification language for properties

in such an automatic verification.
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However, since the complexity of automatic verification grows exponen-

tially with the number of clocks, the current verification technology based

on TA quickly reaches its limits when the real-time systems get larger. An-

other limitation of TA is that they are not always implementable because

they allow for nondeterministic backtracking, perfect timing, and time-locks.

1.5.3 PLC-Automata

PLC-Automata were introduced by H. Dierks as a special class of real-time

automata that model a cyclic behaviour consisting of sensor reading, state

transformation, and actuator writing.

Example 1.3

Figure 1.11 shows a PLC-Automaton specifying a watchdog. The automaton

0.25 s
OK

0 s

Test

9 s, {n}
Alarm

0 s
q0 q1 q2

s

n n

s s ∨ n

Fig. 1.11. PLC-Automaton

has three states q0, q1, q2 and polls with a cycle time of 0.25 seconds the

current sensor value. If in its initial state q0 the sensor value s (signal

present) is read, the automaton outputs OK. If n (no signal) is read the

automaton switches to the state q1 and outputs Test. The inscription in

the lower part of this state indicates that here further readings of the sensor

value n will be ignored for 9 seconds. However, reactions to the sensor value

s are still possible and will cause a switch to the initial state q0 with output

OK. If after having been 9 seconds in state q1 still the sensor value n is

read, the automaton switches into the state q2 and outputs Alarm. The

automaton will then stay in this state. �

A strong advantage of PLC-Automata is that they can be implemented

on a standard hardware platform known as Programmable Logic Controllers

(abbreviated PLCs). This explains the name of the automata model. We

shall therefore use PLC-Automata as a stepping stone towards an implemen-

tation of real-time systems. Once such a system is represented as a network
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of cooperating PLC-Automata it can be compiled automatically into PLC

code. Moreover, it is also possible to compile it into code for other hardware

platforms as long as they satisfy certain minimal requirements.

1.5.4 Tying it all together

Figure 1.12 gives an overview of a design process for real-time systems that

forms the backbone of our exposition on formal specification and automatic

verification in this book.

abstraction

level

Requirements

Designs

Programs

formal description

language

Duration

Calculus

Moby/RT

Constraint

Diagrams

satisfied by

PLC-Automata

C code

PLC code

automatic

verification

UPPAAL

timed

automata

||

timed

automata

semantic

integration

DC

⇑

DC

equiv.

equiv.

logical

semantics

logical

semantics

operational semantics

operational semantics
compiler

Fig. 1.12. Overview

We consider three levels of abstraction:

• requirements will be specified in Duration Calculus,

• designs will be specified as PLC-Automata,

• programs will be written as C code or PLC code.

Further on,

• automatic verification will be performed using timed automata and the

model checker UPPAAL.
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PLC-Automata are connected to the two other specification languages, DC

and timed automata, in that they have a logical semantics in terms of DC for-

mulas and an equivalent operational semantics in terms of timed automata.

This enables us to automatically verify properties specified in subsets of DC

via translation into timed automata. The verification can be performed us-

ing any model checker for timed automata. In this book we shall use the

tool UPPAAL for this purpose.

1.6 Exercises

Exercise 1.1 (System properties)

State for each of the following classes of system properties one requirement

for an elevator:

• safety properties,

• liveness properties,

• bounded response properties,

• duration properties.

Exercise 1.2 (Utility)

Prove that the formula Utility in (1.6) is equivalent to the original property

Utility required for the generalised railroad crossing.

Exercise 1.3 (Safety property)

Prove that in the generalised railroad crossing case study the following im-

plication holds:

(Asm ∧ Des-G) =⇒ Safety

where Asm, Des-G, and Safety are defined as in Section 1.3.

Exercise 1.4 (Single-track line segment)

Consider the railroad system in Figure 1.13. The two circular tracks share

a safety-critical section: a line segment with a single track only. Suppose

that there are exactly two trains driving in opposite directions along this

segment. We assume that the trains cannot change their direction. Each

entry of the critical section is guarded by a block signal. The points can be

assumed to be switched into the right direction when a train is approaching

the critical section.
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Sig1

Sig2

CriticalApproach1 Leave1

Approach2Leave2

Fig. 1.13. Single-track line segment

(a) How can the positions of the trains and the states of the block signals

be described by observables? Give suitable data types for these observ-

ables and argue whether a discrete- or continuous-time domain is a more

suitable choice.

(b) Use formulas of predicate logic as in the case study of the generalised

railroad crossing to describe the following requirements:

– Safety: “There are never two trains at the same time in the critical

section.”

– Bounded response: “If a train approaches a block signal, it will show a

green light within ξwait time.”

(c) Formalise the following design specifications in predicate logic:

– A train needs at most ξcross time units to pass the critical section.

– A train enters the critical section only if the block signal shows green.

– If one of the block signals shows green, the other one shows red.

(d) Explain in which case a railroad system that satisfies all design specifica-

tions of (c) can nevertheless fail to satisfy the safety requirement.

1.7 Bibliographic remarks

Real-time (and hybrid) systems is a very active field of research. The cur-

rent research on real-time systems is presented in journals, at various spe-

cialised conferences such as RTSS (IEEE Real-Time Systems Symposium),

EuroMicro, FTRTFT (Formal Techniques in Real-Time and Fault-Tolerant

Systems), FORMATS (Formal Modelling and Analysis of Timed Systems),

Hybrid Systems and HSCC (Hybrid Systems: Computation and Control),
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and as part of more general conferences. The IEEE Computer Society has

a special Technical Committee on Real-Time Systems.

Only a few books summarising aspects of this large area exist today. The

book by H. Kopetz [Kop97] discusses a wide range of concepts needed for

the design of distributed embedded real-time systems, including the notion

of time, fault-tolerance, real-time communications, time-triggered protocols

and architectures. It contains a wealth of examples drawn from industrial,

in particular automotive applications. The presentation is mostly informal,

it does not introduce formal methods to reason about properties of real-time

systems. A. Burns and A. Wellings introduce in their book [BW01] many

concepts of real-time systems including scheduling, and present in depth im-

portant concepts and languages for programming concurrent and real-time

systems. They do not discuss formal methods for specifying and verifying

real-time systems. The book by J.W.S. Liu [Liu00] is devoted to scheduling

algorithms for real-time systems, but also discusses real-time communica-

tion protocols and real-time operating systems. A very good overview on

different methods in scheduling theory, and the specification and verification

of real-time systems, is provided in a book edited by M. Joseph [Jos96]. An-

other collective work is the book edited by C. Heitmeyer and D. Mandrioli

where the generalised railroad crossing (see Section 1.3) case study is used

to illustrate and compare various formal specification methods for real-time

systems [HM96]. A monograph devoted to the Duration Calculus and its

extensions is authored by Zhou Chaochen and M.R. Hansen [ZH04]. The

book by J.C.M. Baeten and C.A. Middelburg presents a process-algebraic

approach to real-time systems [BM02]. A specific process algebra, i.e. Real-

Time CSP, is presented in [Dav93]. Reactive systems, specified by Milner’s

Calculus of Communicating Systems (CCS) and timed automata, are pre-

sented in the book [AILS07].

In the following we give some pointers to the literature on topics touched

upon in this introduction. Subsequent chapters of this book give more de-

tailed bibliographic remarks on the topics discussed there.

Case studies. The case study of the Generalised Railroad Crossing was

introduced by C. Heitmeyer and N. Lynch [HL94]. Since then it has been

used as a benchmark to compare different approaches to the specification

and verification of real-time systems (see e.g. [HM96]).

The case study of the Gas Burner was introduced in the collaborative

European research project ProCoS (Provably Correct Systems) [HHF+94,

BHL+96]. The safety requirement Req (see Subsection 1.4.2) was defined
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in cooperation with engineers of a company producing gas burners. The

first formal specification and correctness proof of the gas burner appeared

in [RRH93].

Another prominent case study is the Steam Boiler by J.R. Abrial, E. Bör-

ger and H. Langmaack, to which various approaches to the specification and

verification of real-time systems have been applied and compared [ABL96].

Temporal logics. For reasoning about the infinite computations of reac-

tive systems temporal logic has been introduced by A. Pnueli [Pnu77]. In

this logic safety and liveness properties of reactive systems [OL82] can be

specified and proven [MP91, MP95]. Whereas safety properties represent

requirements that should be continuously maintained by the system, live-

ness properties represent requirements whose eventual realisation must be

guaranteed, for instance that every query is eventually answered or that a

process has infinitely often access to a critical resource. Safety properties can

be checked by looking at the finite prefixes of a computation, but liveness

properties can be checked only by looking at the whole infinite computa-

tion, and are thus more difficult to prove. B. Alpern and F.B. Schneider

[AS85, AS87] and Z. Manna and A. Pnueli [MP90] presented different char-

acterisations of safety and liveness properties, as a partition or as a hierarchy

of properties, respectively.

Logics for reasoning about properties of real-time systems are mostly ex-

tensions of temporal logics for reactive systems. Only if the time domain

is discrete can one use the same temporal logic as for reactive systems, for

example CTL (Computation Tree Logic) [CES86]. For the continuous-time

domain MTL (Metric Temporal Logic) [Koy90] and TCTL (Timed Compu-

tational Tree Logic) [ACD93] have been proposed. Lamport advocates an

“old-fashioned recipe” for real time which rejects using any special notation

but takes a normal temporal logic augmented with explicit clock variables

[AL92]. In our opinion this leads to complicated reasoning similar to that

in Sections 1.3 and 1.4 based on predicate logic. These are all point-based

temporal logics. By contrast, the Duration Calculus, which is used in this

book, is an interval-based temporal logic for real time extending previous

work on Interval Temporal Logic [Mos85].

Logic is often claimed to be an obstacle for direct use by engineers. There-

fore formal graphic notations have been proposed for the specification of

behavioural properties. Well known are MSCs (Message Sequence Charts)

developed for applications in telecommunication systems [ITU94, MR94]. In

their original form MSCs describe only typical communication traces of a re-
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active system. To overcome this shortcoming, MSCs have been extended to

LSCs (Live Sequence Charts), a graphic notation for a fragment of temporal

logic [DH01]. To specify real-time properties graphically, Constraint Dia-

grams have been proposed [Die96]. Their semantics is defined in terms of the

Duration Calculus. We shall introduce Constraint Diagrams in Chapter 3

of this book.

State-transition models. The most popular description technique for re-

active systems is state-transition models. Finite automata are well under-

stood since the early days of computing and come with a graphic representa-

tion that appeals to engineers. This basic model has been extended in many

ways: Büchi automata accept infinite sequences [Tho90], Petri nets have an

explicit representation of concurrency [Rei85], statecharts have this as well

but also a concept of hierarchy [Har87], action systems add infinite data

domains to the finite control state space [Bac90]. All these state-transition

models have been extended to deal with time. In this book we shall deal

with two such models for continuous real time.

Timed automata were introduced by R. Alur and D. Dill as an extension

of Büchi automata by real-valued clocks [AD94]. The most interesting result

on timed automata is that certain important properties like the emptiness

problem for timed languages and the reachability problem for states are

decidable [ACD93, AD94]. This is remarkable because timed automata,

although they have only finitely many control points, describe systems with

infinitely many (in fact, uncountably many) states due to their use of clocks

ranging over the real numbers. This result has triggered the development

of tools for the automatic verification of properties of timed automata, in

particular UPPAAL [LPW97], KRONOS [Yov97], and HyTech [HHW97].

Although timed automata are an operational model of real-time systems,

they cannot always be implemented. This is because a timed automaton

is just an acceptor of the desired infinite runs of a real-time system. If

after finitely many steps the timed automaton cannot extend its computa-

tion to an infinite run meeting the required timing conditions, these steps

are just not accepted. Operationally speaking, the timed automaton has

then to backtrack, which is impossible for an implementation representing a

controller of a real-time system.

PLC-Automata were developed by H. Dierks as a state-transition model of

real-time systems that can be implemented on a simple hardware platform,

i.e. PLCs (Programmable Logic Controllers) [Die00a]. PLCs are widespread

in industrial control and automation applications [Lew95]. PLC-Automa-
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ta are not only useful when PLCs serve as an implementation platform.

They can be implemented on any hardware platform that performs a non-

terminating loop consisting of inputting sensor values, updating the state in

accordance with timer values, and outputting actuator values.

PLC-Automata are well connected to both the Duration Calculus and

timed automata in that they have (equivalent) semantics in each of these

other specification languages [DFMV98]. This enables us to use PLC-Au-

tomata as design specifications for real-time systems and verify their proper-

ties, specified in subsets of the Duration Calculus, using the model-checking

techniques that are available for timed automata.

Process algebras. The essence of process algebras is to use composition op-

erators like parallel composition to structure state-transition models and to

study algebraic laws of these operators under certain notions of behavioural

equivalence of state-transition models like bisimulation [Mil89]. The most

prominent process algebras are CCS (Calculus of Communicating Systems)

[Mil89], CSP (Communicating Sequential Processes) [Hoa85, Ros98], and

ACP (Algebra of Communicating Systems) [BW90].

All these process algebras have been extended by timing operators, for

instance CCS to Timed CCS [Yi91], CSP to Timed CSP [Dav93, DS95,

Sch95], ACP to a Real-Time Process Algebra [BB91]. A difficulty with these

algebras is that their semantics is based on certain scheduling assumptions

on the actions like urgency, which are difficult to calculate with. We do

not pursue the process algebraic approach here, but apply some of their

composition operators such as parallel composition and restriction to timed

automata.

Synchronous languages. The so-called synchronous languages like ES-

TEREL [BdS91], LUSTRE [CPHP87], and SIGNAL [BlGJ91] are specifi-

cation languages for real-time systems that are based on the discrete-time

model and the synchrony hypothesis that there is no reaction time between

input and output. This idealised model is justified when the computation

time is negligibly small, for example when the system is implemented on

a single computer but does not suffice for reasoning about distributed sys-

tems. By contrast, PLC-Automata, our model reflecting the implementa-

tion level, are based on the continuous-time model and the assumption that

computation and reaction do take time. The latter is essential for their

implementability on hardware platforms like distributed networks of PLCs.
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Programming languages. To program real-time systems several well-

known programming languages offer (extensions with) real-time constructs

like timers and scheduling facilities, in particular Ada, Real-Time Java,

C/POSIX, and occam2. For details we refer to the book by A. Burns and

A. Wellings [BW01]. Additionally, some languages dedicated to particular

hardware platforms have been developed, for instance ST (Structured Text)

for programming PLCs. ST is a standard in the automation industry; it

comprises control structures of an imperative programming language and

timers [IEC93]. This language will be discussed briefly in Chapter 5 of this

book.

Scheduling theory. Scheduling theory can be viewed as a verification tech-

nique for real-time systems that are specified as sets of tasks [LL73]. In its

simplest setting, only certain time parameters of each task are known, for

instance the period (when the task has to be executed), the worst-case ex-

ecution time (an upper bound of how long the execution may take), and

the deadline (an upper time bound before which the execution needs to be

completed). A scheduling algorithm will then order the execution of the

tasks in an attempt to meet all deadlines, and it will compute the worst-

case behaviour. Thus it constructively solves the problem of whether certain

bounded response properties are satisfied. For more details see for example

the books [Jos96, Liu00, BW01].

A task system abstracts from the input and output data and their func-

tional dependency, which is specified along with the real-time constraints in

a high-level specification of a real-time system as shown in this introduc-

tion. Task systems appear when a real-time system is to be implemented

using a real-time operating system [But02]. The topics of real-time operating

systems, scheduling theory, and the analysis of worst-case execution times

(WCET) of programs is not part of this book. Our considerations on imple-

mentation of real-time systems end at the level of distributed programs with

certain assumptions on the upper bounds of their execution cycles. These

assumptions have to be discharged separately.

Verification tools. For the verification of properties of specifications at the

requirements or design level we discuss automatic and deductive approaches.

Since the pioneering work by Clarke and Emerson [CE81] and by Queille

and Sifakis [QS82] model checking, i.e. the automatic verification of (mostly

temporal) properties of (mostly finite state) systems, has been developed

and applied to an impressive range of cases [CGP00]. As mentioned earlier,

Alur, Courcoubetis and Dill have shown that model checking can also be
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applied to verify properties of real-time systems modelled as timed automata

[ACD93, AD94]. This is remarkable because timed automata have an infinite

state space due to their real-valued clocks. This has led to the development

of tools like UPPAAL [LPW97], KRONOS [Yov97], and HyTech [HHW97].

However, the complexity of this automatic verification grows exponentially

with the number of clocks.

Despite the successes in model checking, tackling the huge state spaces

that easily arise when considering systems consisting of a parallel compo-

sition of many components or of many real-time clocks remains a problem

of current research. To apply model-checking techniques, some preparatory

abstraction from the details of the system is therefore necessary. To reason

about such abstractions interactive theorem provers can be used.

In the area of real-time PVS (Prototype Verification System) [ORS92] is

often used because it combines the expressive power of higher-order logic

with some efficient decision algorithms, in particular for real-number arith-

metic. Mostly, PVS is used to build a direct model of the application prob-

lem in higher-order logic and to reason about this model (see e.g. [FW96]).

Other approaches proceed by first embedding a more specific real-time logic

into PVS and then using the embedded logic for dealing with applications

[Ska94].

For the Duration Calculus some tools supporting verification have been

developed. For the case of discrete time the validity problem of the Dura-

tion Calculus is decidable [ZHS93]. P.K. Pandya has exploited this result for

the construction of the tool DCVALID [Pan01]. For the case of continuous-

time Duration Calculus, J.U. Skakkebæk provided proof support via an em-

bedding of the calculus into the logic of PVS [Ska94]. Similar work was

done by S. Heilmann on the basis of the interactive theorem prover Isabelle

[Hei99]. The Moby/DC tool provides a semi-decision procedure for a subset

of (continuous-time) Duration Calculus [DT03], and the Moby/RT tool of-

fers model checking of PLC-Automata against specifications written in this

subset [OD03].



2

Duration Calculus

The Duration Calculus (DC for short) was introduced by Zhou Chaochen,

C.A.R. Hoare, and A.P. Ravn. It is an interval temporal logic for continu-

ous time that enables the user to specify desirable properties of a real-time

system without bothering about their implementation. A DC formula de-

scribes how time-dependent state variables or observables of the real-time

system should behave in certain time intervals. In particular, this interval-

based view can measure the accumulated duration of states. Depending on

the choice of observables both abstract, high-level and concrete, low-level

specifications can be formulated in the Duration Calculus.

This chapter is organised as follows. After an informal preview of the Du-

ration Calculus, we introduce its syntax, semantics, and proof rules. Among

the proof rules we present an induction rule that is simpler to apply than

the classic induction rule of the Duration Calculus. We explain how to use

the Duration Calculus as a specification language for real-time systems and

illustrate this with the gas burner example introduced in the introductory

chapter. Properties and subsets of the Duration Calculus will be discussed

in the subsequent chapter.

2.1 Preview

In Chapter 1 we modelled (examples of) real-time systems by collections of

time-dependent state variables or observables obs, i.e. functions of the form

obs : Time −→ D

where Time denotes the time domain, usually the non-negative real numbers,

and D is the data type of obs. Duration Calculus is a logic (and calculus)

that is tailored to expressing properties of such observables in a concise way.

28
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As a first contact with Duration Calculus, let us look once more at the

examples of Chapter 1.

Examples 2.1

For the railroad crossing of Section 1.3 let us take E,A,Cr,O, and Cl,

introduced as abbreviations in Subsection 1.3.2, as independent Boolean

observables

E,A,Cr,O,Cl : Time −→ {0, 1}

denoting an empty track, an approaching train, a train crossing the gate

area, an open gate, and a closed gate, respectively.

Often one wishes to specify that a certain property holds throughout an

observation interval. To this end, the Duration Calculus offers the every-

where operator written by embracing the property with ceiling brackets � �.
For example, an arbitrary time interval where the track is empty is expressed

by the formula �E�. Similarly, �A� and �Cr� denote intervals where a train

is approaching and where a train is crossing the gate area, respectively.

To specify behaviour patterns consisting of several intervals, the Duration

Calculus offers the chop operator ; of interval logic. It “chops” larger in-

tervals into smaller subintervals. For example, a behaviour where first the

track is empty, then a train is approaching, and finally it is crossing the gate

area is expressed by the formula

�E� ; �A� ; �Cr� .

To measure the length of an interval the operator � is used. For example,

�A� ∧ � = 10

expresses an interval of length 10 (seconds) where a train is approaching.

To specify that any approaching phase cannot last longer than 15 (seconds),

we use implication and write

�A� =⇒ � ≤ 15.

Informally, this formula states that approaching trains are not driving too

slow. To specify that every E–A–Cr behaviour pattern has a duration of at

least 10 (seconds) we write

(�E� ; �A� ; �Cr�) =⇒ � ≥ 10. (2.1)

There is one subtlety with this formula. Since the implication should hold

for every E–A–Cr pattern, the boundary intervals �E� and �Cr� may be
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arbitrarily small. Thus in (2.1), � actually measures the length of the ap-

proaching phase �A�. Informally, it states that approaching trains are not

driving too fast.

To specify the safety property that the gate is closed whenever a train is

in the crossing, we simply state the implication

�Cr� =⇒ �Cl� ,

i.e. for every interval where a train is in the crossing the gate is closed. In

contrast to the predicate calculus formula (1.5) in Section 1.3, no explicit

quantification over time is needed in this Duration Calculus formula.

The Utility property requires that the gate must open when there is no

train in the crossing for a sufficiently long time. In Duration Calculus, this

can be expressed as follows:

(�¬Cr� ∧ � > ξ1 + ξ2) =⇒ � �O� . (2.2)

This formula states that in every observation interval where there is no train

in the crossing and which has a sufficient length (here greater than ξ1 + ξ2,

the time needed to open and close the gate), a subinterval can be found

where the gate is open. The existence of this subinterval is formalised by

the diamond operator �, which in Duration Calculus is an abbreviation:

� �O� ⇐⇒ (true ; �O� ; true).

Thus the subinterval where O holds throughout is surrounded by two arbi-

trary intervals specified by true. Note that (2.2) is much shorter than the

corresponding predicate calculus formula (1.6) in Section 1.3.

For the gas burner of Section 1.4 let us take L as an independent Boolean

observable

L : Time −→ {0, 1}

standing for a gas leak. In Duration Calculus, the safety requirement (1.7)

of Section 1.4 that gas must not leak too long can be expressed using the

integral operator
∫

:

� ≥ 60 =⇒
∫
L ≤ �

20
.

This formula states that in each observation interval of length at least 60

(seconds) the duration of L, i.e. the accumulated time where the gas burner

leaks, is one-twentieth of that length. In contrast to the predicate calculus

formula (1.7), no explicit quantification over the integral time bounds is

needed in this Duration Calculus formula. The name Duration Calculus
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stems from the ability to (conveniently) specify accumulated durations of

states with the integral operator. �

The examples show two characteristics of the Duration Calculus:

• Whereas the predicate calculus formulas of Chapter 1 used time points to

express properties of observables, the Duration Calculus uses time inter-

vals. This allows for a convenient way of specifying patterns of behaviour

sequences.

• Unlike the predicate calculus formulas of Chapter 1, the Duration Cal-

culus avoids references to time at the explicit syntactic level and pushes

quantification over time interval to the implicit semantics level. This re-

sults often in very concise specifications.

2.2 Syntax and semantics

We now turn to the formal definition of the Duration Calculus. In this

section we introduce its syntactic constituents together with their meaning

or semantics. The calculus consists of state assertions, terms, and formulas,

constructed from certain symbols which we introduce first.

2.2.1 Symbols

We start from the following sets of symbols:

• A set of function symbols with typical elements f, g, each one with a

certain arity n ∈ N. Function symbols of arity 0 are called constants . We

assume the presence of the constants 0, 1 and in fact m for all m ∈ N,

and of the binary function symbols + and ·.
• A set of predicate symbols with typical elements p, q, each one with a

certain arity n ∈ N. We assume the presence of two predicate symbols

of arity 0, namely true and false, and of the binary predicate symbols

=, <,>,≤, and ≥.

• A set GVar of global variables with typical elements x, y, z, to be used as

parameters of a real-time system that do not change over time.

• A set Obs of time-dependent state variables or observables with typical el-

ements X,Y, Z, each one of a certain (mostly finite) data type D. Boolean

observables are those of data type {0, 1}.
• A set of further symbols comprising the logical connectives ¬, ∧, ∨, =⇒,

and ⇐⇒ , the quantifiers ∀ and ∃, and the symbols �,
∫

, ; , •, and

elements d taken from the data types D of observables.



32 Duration Calculus

Semantics. The meaning of the symbols involves the sets {tt,ff} of the

truth values “true” and “false”, R of the real numbers, and Time of time,

with typical element t. Mostly we consider Time = R≥0 (continuous time)

and only in Subsection 3.1.1 alternatively Time = N (discrete time).

The semantics of an n-ary function symbol f is a function, denoted by f̂ ,

with

f̂ : Rn −→ R,

and the semantics of an n-ary predicate symbol p is a function, denoted by

p̂, with

p̂ : Rn −→ {tt,ff}.

In particular, for n = 0 we have f̂ ∈ R and p̂ ∈ {tt,ff}.

Examples 2.2

The semantics of the function and predicate symbols mentioned above is

fixed throughout this book. The most important cases are as follows:

• ˆtrue = tt and ˆfalse = ff,

• 0̂ ∈ R is the number zero,

• 1̂ ∈ R is the number one,

• +̂ : R2 −→ R is the addition of real numbers,

• ·̂ : R2 −→ R is the multiplication of real numbers,

• =̂ : R2 −→ {tt,ff} is the equality relation on real numbers,

• <̂ : R2 −→ {tt,ff} is the less than relation on real numbers.

The remaining cases can be defined as abbreviations in the usual way. Since

this semantics is the expected one, we shall often simply use the symbols

0, 1,+, ·,=, < when we mean their semantics 0̂, 1̂, +̂, ·̂, =̂, <̂. �

The semantics of a global variable is not fixed, but given by a valuation.

This is a mapping V that assigns to each global variable x a real number

V(x) ∈ R.

We use Val to denote the set of all valuations, i.e. Val = GVar −→ R. The

adjective global indicates that the value of a global variable is independent

of the time.

By contrast, the semantics of a state variable is time-dependent. It is

given by an interpretation I, which is a mapping that assigns to each state

variable X of type D a function

I(X) : Time −→ D
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such that I(X)(t) denotes the value in D that X has at t ∈ Time. For

the interpretation of X we shall also write XI instead of I(X). Such an

interpretation can be displayed by a timing diagram.

Example 2.3

Consider an observable X of data type {up, down}. The following timing

diagram shows (an initial part) of an interpretation I of X, i.e. a function

XI : Time −→ {up, down}:

Time

XI

0 1 2 3 4

down

up

Thus in the formal account on Duration Calculus we carefully distinguish

between syntax and semantics of observables. An observable like X is just

a syntactic name which can be interpreted semantically by any function XI

from Time to the data type of X, here {up, down}. Later in Subsection 2.2.3

we restrict the set of admissible functions XI somewhat. �

The meaning of the logical connectives and the quantifiers is standard: ¬
denotes negation, ∧ denotes conjunction, ∨ denotes disjunction, =⇒ denotes

logical implication, ⇐⇒ denotes logical equivalence, ∀ denotes the universal

quantifier for all, and ∃ denotes the existential quantifier there exists. The

meaning of the symbols �,
∫

, ; , •, and d ∈ D will be explained in the

following subsections when they are needed.

2.2.2 State assertions

State assertions are Boolean combinations of basic properties of state vari-

ables. The set of state assertions, with typical elements P,Q,R, is defined

by the following abstract syntax:

P ::= 0 | 1 | X = d | ¬P | P1 ∧ P2

where d belongs to the data type D of the observable X. For a Boolean

observable X (with D = {0, 1}) we abbreviate the basic property X = 1 to

X. In the case P1 ∧ P2 the subscripts 1 and 2 serve to distinguish the first
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and second subassertion. This notation is helpful when structural induction

on state assertions is used as in the definition of semantics below.

For conciseness we show here only the logical connectives ¬ and ∧. The

other connectives ∨, =⇒, and ⇐⇒ are considered as abbreviations in

the usual way. It is well known that the presence of several binary infix

operators may lead to syntactic ambiguities when assertions are written as

strings. Consider for instance

P ∧Q ⇐⇒ R.

Does this mean P ∧ (Q ⇐⇒ R) or (P ∧ Q) ⇐⇒ R ? There are two

standard solutions to this problem: either use brackets (as above) or define

priorities for the connectives such that a connective of higher priority binds

stronger than one of lower priority. We define the following priority groups

from highest to lowest priority:

• negation ¬ ,

• the binary connectives ∧ and ∨ ,

• the binary connectives =⇒ and ⇐⇒ .

For example, ¬P ∧Q stands for (¬P ) ∧Q. Note that brackets may always

be used to clarify the intended structure of an assertion.

Semantics. Obviously, the semantics of a state assertion depends on the

interpretation of the state variables occurring in it and is thus time de-

pendent. Given an interpretation I, assigning to each state variable X a

function XI : Time −→ D, the semantics of a state assertion P is a function

I[[P ]] : Time −→ {0, 1}

such that I(P )(t) denotes the value of P at t ∈ Time. This value is defined

inductively on the structure of P :

I[[0]](t) = 0,

I[[1]](t) = 1,

I[[X = d]](t) =

{
1, if XI(t) = d

0, otherwise,

I[[¬P ]](t) = 1− I[[P ]](t),

I[[P1 ∧ P2]](t) =

{
1, if I[[P1]](t) = 1 and I[[P2]](t) = 1

0, otherwise.
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For a Boolean observable X we have the following special case of the third

clause of this definition:

I[[X]](t) = I[[X = 1]](t) = XI(t).

The function I[[P ]] is also called an interpretation of P and often written as

PI instead of I[[P ]]. Using numbers 0 and 1 as values of this interpretation

instead of truth values tt and ff is convenient in the next subsection when

defining the semantics of terms which are constructed from state assertions.

Again, the interpretation PI can be displayed by a timing diagram.

Example 2.4

For Boolean observables G and F let L be the state assertion G ∧ ¬F .

Recall our convention for Boolean observables: G abbreviates G = 1 and F

abbreviates F = 1. Thus L actually stands for G = 1∧¬ (F = 1). Consider

the following interpretations FI : Time −→ {0, 1} and GI : Time −→ {0, 1}
and the induced semantics LI : Time −→ {0, 1} of the state assertion L:

GI
0

1

FI
0

1

LI
0

1

Time

0 1 1.2 2 3 4

Fig. 2.1. Interpretations for F , G, and L

From the interpretations of Figure 2.1 we see that LI(1.2) = 1 and LI(2) =

0. Formally, this is calculated as follows. At time 1.2 we have

LI(1.2) = I[[L]](1.2)

= I[[G ∧ ¬F ]](1.2)

= 1
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because I[[G]](1.2) = GI(1.2) = 1 and

I[[¬F ]](1.2) = 1− I[[F ]](1.2)

= 1− FI(1.2)

= 1− 0

= 1 .

At time 2 we calculate

LI(2) = I[[L]](2)

= I[[G ∧ ¬F ]](2)

= 0

because I[[G]](2) = GI(2) = 0. �

2.2.3 Terms

Duration terms, abbreviated DC terms or just terms, are expressions that

denote real numbers that depend on time intervals. The set of terms, with

the typical element θ, is defined by the following abstract syntax:

θ ::= x | � |
∫
P | f(θ1, . . . , θn)

where according to our conventions x is a global variable, P is a state asser-

tion, and f is an n-ary function symbol. The symbol � stands for the length

operator and the symbol
∫

for the integral operator. A term without the

symbols � and
∫

is called rigid.

Note that in this abstract syntax we write function symbols f in prefix

notation. However, concrete binary function symbols like + and · we shall

write in infix notation as usual. For example, we write θ1 + θ2 rather than

+(θ1, θ2). As for assertions, this may lead to syntactic ambiguities when

terms are written as strings, which have to be removed by using brackets or

priorities.

Semantics. The semantics of a term depends not only on a given inter-

pretation of the state variables occurring in its state assertions and a given

valuation of its global variables, but also on a given time interval. To this

end, we introduce the set Intv of all closed intervals in the time domain:

Intv
def

= { [b, e] | b, e ∈ Time and b ≤ e}
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where
def

= means equal by definition. Intervals of the form [b, b] are called

point intervals. The semantics of a term θ is a function

I[[θ]] : Val× Intv −→ R

such that I[[θ]](V, [b, e]) is the real number that θ denotes under the inter-

pretation I, the valuation V, and the interval [b, e]. This value is defined

inductively on the structure of θ:

I[[x]](V, [b, e]) = V(x),

I[[�]](V, [b, e]) = e− b,

I[[
∫
P ]](V, [b, e]) =

∫ e

b
PI(t)dt,

I[[f(θ1, . . . , θn)]](V, [b, e]) = f̂(I[[θ1]](V, [b, e]), . . . , I[[θn]](V, [b, e])).

Thus the value of a global variable x depends only on the valuation V, the

value of the symbol � is the length of the given interval [b, e], the value of

the term
∫
P is calculated by the integral of the function PI from b to e, and

the value of a composed term f(θ1, . . . , θn) is determined by applying the

function f̂ inductively to the arguments I[[θ1]](V, [b, e]), . . . , I[[θn]](V, [b, e]).
The integral

∫ e
b PI(t)dt measures the accumulated duration that the state

assertion P holds (has the value 1) in the time interval [b, e], but we have

to ensure that it exists. Since PI : Time −→ {0, 1}, this function correctly

maps (in the case of continuous time) real numbers to real numbers, but

it might not be (Riemann-)integrable. For instance, the so-called Dirichlet

function

PI(t) =

{
1, if t ∈ Q

0, if t /∈ Q

yielding 1 for rational t and 0 for irrational t is discontinuous everywhere

and thus not integrable.

Convention. To exclude such functions, the Duration Calculus considers

only interpretations I satisfying the following condition of finite variability :

For each state variable X and each interval [b, e] there is a

finite partition of [b, e] such that the interpretationXI is con-

stant on each part. Thus on each interval [b, e] the function

XI has only finitely many points of discontinuity.

This is sufficient to guarantee integrability of the functions PI . The following

annotated timing diagram illustrates this condition:
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Time

PI

b e

Remark 2.5

The semantics I[[θ]](V, [b, e]) of a term θ is insensitive against changes of the

interpretation I at individual time points. This is a simple consequence of

the fact that the integral
∫ e
b PI(t)dt is insensitive against such changes.

Remark 2.6

The semantics I[[θ]](V, [b, e]) of a rigid term θ does not depend on the interval

[b, e]. Thus semantically, rigid terms behave like global variables in that they

denote a value that depends only on the valuation V.

Example 2.7

Consider θ = x ·
∫
L. Assume that V(x) = 20 and that LI is given by the

following timing diagram:

Time

LI

0 1 2 3 4

0

1

Then the semantics I[[θ]](V, [1, 4]) can be calculated as follows:

I[[θ]](V, [1, 4]) = I[[x]](V, [1, 4]) ·̂ I[[
∫
L]](V, [1, 4])

= V(x) ·̂
∫ 4

1
LI(t)dt

= 20 ·̂ 2
= 40.
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Note that in this calculation we used theˆnotation for the meaning of the

symbol ·, i.e. multiplication of real numbers, but we omitted it for the mean-

ing of the constants 1, 4, 20, 2, and 40. �

2.2.4 Formulas

Duration formulas, abbreviated DC formulas or just formulas, are the core of

the Duration Calculus. They describe properties of observables depending

on time intervals. The set of formulas, with typical elements F,G,H, is

defined by the following abstract syntax:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ;F2

where p is an n-ary predicate symbol, θ1, . . . , θn are terms, the symbol • is

used for separation in quantified formulas, and the symbol ; denotes the

so-called chop operator.

Formulas of the form p(θ1, . . . , θn) are called atomic formulas. Note that

true and false are special cases of atomic formulas where the predicate symbol

p has arity n = 0. A formula is called rigid if it contains only rigid terms,

i.e. if it does not contain symbols � or
∫

. A formula is called chop-free if it

does not contain the ; operator. Note that quantification is only possible

over (first-order) global variables x (representing real numbers), not over

(second-order) state variables (representing functions from real numbers to

data values).

For conciseness we show here only the logical connectives ¬ and ∧, and

the universal quantifier ∀. The connectives ∨, =⇒, and ⇐⇒ , and the

existential quantifier ∃ are considered as abbreviations in the usual way.

Also we write predicate symbols p here in prefix notation. However, concrete

binary predicate symbols like = and < we shall write in infix notation as

usual. For example, we write θ1 < θ2 rather than < (θ1, θ2). As for state

assertions, this may lead to syntactic ambiguities when formulas are written

as strings, which have to be removed by using brackets or priorities. We

define the following five priority groups from highest to lowest priority:

• negation ¬ ,

• the chop operator ; ,

• the binary connectives ∧ and ∨ ,

• the binary connectives =⇒ and ⇐⇒ ,

• the quantifiers ∀ and ∃.

For example, ¬F ;G ∨H stands for ((¬F ) ;G) ∨H, and ∀x • F ∧G stands

for ∀x • (F ∧G).
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As usual, quantification leads to the notion of free and bound variables.

A global variable x is called a free variable of a formula F if it occurs in F

outside all subformulas of the form ∀x •Q or ∃x •Q, and x is called a bound

variable of F if it occurs in F inside some subformula of the form ∀x •Q or

∃x • Q. By free(F ) we denote the set of all free global variables in F . For

example, x ∈ free(� ≤ x ∧ ∀x • x + 0 = 0). In fact, x occurs also bound in

this formula.

An important syntactic operation on formulas F is the substitution of a

term θ for a variable x in F . We write

F [x := θ]

to denote the formula that results from F by performing the following two

steps:

(i) F is transformed into F̃ by a renaming of bound variables in F such

that no free occurrence of x in F̃ appears within a quantified subfor-

mula of the form ∃z •G or ∀z •G for some z occurring in θ.

(ii) F [x := θ] results from F̃ by textually replacing all free occurrences of

x in F̃ by θ.

The first step ensures that there is no clash of a variable z in θ with a bound

variable in F . If such a clash cannot occur this step can be omitted. Note

that free(F ) = free(F̃ ) and that the formula F [x := θ] is unique up to a

renaming of bound variables only.

Example 2.8

Consider F
def⇐⇒ (x ≥ y =⇒ ∃z • z ≥ 0 ∧ x = y + z) and θ1

def

= �. Then

F [x := θ1]
def⇐⇒ (� ≥ y =⇒ ∃z • z ≥ 0 ∧ � = y + z).

In this substitution no bound renaming of z is needed. This is different if we

consider θ2
def

= � + z. Now z needs to be renamed in F , say into z̃, yielding

F̃
def⇐⇒ (x ≥ y =⇒ ∃z̃ • z̃ ≥ 0 ∧ x = y + z̃), before the replacement of x by

θ2 can take place, yielding

F [x := θ2]
def⇐⇒ (�+ z ≥ y =⇒ ∃z̃ • z̃ ≥ 0 ∧ �+ z = y + z̃)

as the result of the substitution. �

Semantics. The semantics of a formula depends on a given interpretation

of the state variables occurring in its terms, a given valuation of the global
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variables occurring in its terms, and a given time interval. The semantics of

a formula F is a function

I[[F ]] : Val× Intv −→ {tt,ff}

such that I[[F ]](V, [b, e]) is the truth value of F under the interpretation I,
the valuation V, and the interval [b, e]. This value is defined inductively on

the structure of F :

I[[p(θ1, . . . , θn)]](V, [b, e]) = p̂(I[[θ1]](V, [b, e]), . . . , I[[θn]](V, [b, e])),
I[[¬F1]](V, [b, e]) = tt iff I[[F1]](V, [b, e]) = ff,

I[[F1 ∧ F2]](V, [b, e]) = tt iff I[[F1]](V, [b, e]) = tt and

I[[F2]](V, [b, e]) = tt,

I[[∀x • F1]](V, [b, e]) = tt iff for all d ∈ R the following holds:

I[[F1]](V[x := d], [b, e]) = tt,

I[[F1 ;F2]](V, [b, e]) = tt iff there is an m ∈ [b, e] such that

I[[F1]](V, [b,m]) = tt and

I[[F2]](V, [m, e]) = tt.

The first four cases are standard. In case of an atomic formula p(θ1, . . . , θn)

the truth value is determined by applying the function p̂ to the values

I[[θ1]](V, [b, e]), . . . , I[[θn]](V, [b, e]) of the terms θ1, . . . , θn. In the cases of

negation and conjunction the truth values are defined as expected. In case

of the universal quantifier we refer to the modified valuation V[x := d] which

agrees with V on all global variables except for x, where the value is modified

to d:

V[x := d](y) =

{
V(y), if x �= y

d, otherwise.

The chop operator deserves attention. Intuitively, a formula F1 ;F2 holds on

an interval [b, e] if this interval can be “chopped” into an initial subinterval

[b,m] and a final subinterval [m, e] such that F1 holds on [b,m] and F2 holds

on [m, e].

Example 2.9

With the same LI as in Example 2.7 we obtain

I[[
∫
L = 0 ;

∫
L = 1]](V, [0, 2]) = tt
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because

I[[
∫
L = 0]](V, [0, 1]) =

(∫ 1

0
LI(t)dt =̂ 0

)
= tt

and I[[
∫
L = 1]](V, [1, 2]) =

(∫ 2

1
LI(t)dt =̂ 1

)
= tt

holds. �

Remark 2.10 (Rigid and chop-free)

Let F be a duration formula, I be an interpretation, V be a valuation, and

[b, e] ∈ Intv.

• If F is rigid then its semantics I[[F ]](V, [b, e]) does not depend on the

interval [b, e], i.e.

I[[F ]](V, [b, e]) = I[[F ]](V, [b′, e′])

holds for all [b, e], [b′, e′] ∈ Intv.

• Consider a term θ occurring in F . If F is chop-free or θ is rigid then in

the calculation of the semantics I[[F ]](V, [b, e]) of F , every occurrence of

θ in F denotes the same value.

By contrast, in Example 2.9 above, the formula
∫
L = 0 ;

∫
L = 1 is not chop-

free, and in the calculation of its semantics I[[
∫
L = 0 ;

∫
L = 1]](V, [0, 2]) the

two occurrences of the term θ =
∫
L denote different values, i.e. 1 and 2.

The following Substitution Lemma states that the syntactic operation of

substitution corresponds on the semantic side to a suitable modification of

the valuation.

Lemma 2.11 (Substitution)

Consider a formula F , a global variable x, and a term θ such that F is

chop-free or θ is rigid. Then the following holds for all interpretations I,
valuations V, and intervals [b, e]:

I[[F [x := θ]]](V, [b, e]) = I[[F ]](V[x := d], [b, e])

where d = I[[θ]](V, [b, e]).

Proof idea:

Use induction on the structure of F and exploit Remark 2.10. �

Note that without the restrictions on F and θ the lemma does not hold.

For instance, consider

F
def⇐⇒ � = x ; � = x =⇒ � = 2 · x
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and θ = �. Then I[[F ]](V, [b, e]) = tt for every interpretation I, every valua-

tion V, and every interval [b, e]. Thus in particular,

I[[F ]](V[x := d], [b, e]) = tt

for d = I[[θ]](V, [b, e]). However, for b < e

I[[F [x := θ]]](V, [b, e]) = I[[� = � ; � = � =⇒ � = 2 · �]](V, [b, e]) = ff

because � = � is trivially true whereas � = 2 · � is false.

Abbreviations. The following abbreviations of formulas are often used:

• point interval

�� def⇐⇒ � = 0.

The formula �� holds in an interval [b, e] if this is a point interval, i.e. if

b = e holds.

• almost everywhere P

�P � def⇐⇒
∫
P = � ∧ � > 0.

The formula �P � holds in an interval [b, e] if b < e and P is 1 almost

everywhere in [b, e] so that the integral
∫
P yields e− b, the length of the

interval. “Almost” reflects the fact that P can be 0 at finitely many time

points in the interval [b, e] without affecting the value of the integral. The

following two variants of this notation constrain the length of the interval

by a time bound t ∈ Time:

• P holds for time t

�P �t def⇐⇒ �P � ∧ � = t.

• P holds up to time t

�P �≤t def⇐⇒ �P � ∧ � ≤ t.

• For some subinterval F holds

�F
def⇐⇒ true ;F ; true.

The � operator is a modal operator of interval logic, read as diamond.

The formula �F holds in an interval [b, e] if F holds in some subinterval

of [b, e], i.e. if [b, e] can be chopped into an arbitrary initial subinterval,

a subinterval where F holds, and an arbitrary final subinterval. This is

illustrated by the following figure:
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Time

b ; ; e

F

�F

• For all subintervals F holds

�F
def⇐⇒ ¬�¬F.

The � operator is the dual modal operator of interval logic, read as box. Its

definition by double negation means that there should be no subinterval

where F is false. In other words, the formula �F holds in an interval [b, e]

if F holds in every subinterval of [b, e]. This is illustrated by the following

diagram:

Time

b e

F

�F

Example 2.12

Assume the following interpretation I of the observable L:

Time

LI

0 1 2 3 4 5 6

0

1
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Let V be an arbitrary valuation. Then the following statements hold:

I[[
∫
L = 0 ]](V, [0, 2]) = 1,

I[[
∫
L = 1 ]](V, [2, 6]) = 1,

I[[
∫
L = 0 ;

∫
L = 1 ]](V, [0, 6]) = 1,

I[[ �¬L� ]](V, [0, 2]) = 1,

I[[ �L� ]](V, [2, 3]) = 1,

I[[ �¬L� ; �L� ]](V, [0, 3]) = 1,

I[[ �¬L� ; �L� ; �¬L� ]](V, [0, 6]) = 1,

I[[ � �L� ]](V, [0, 6]) = 1,

I[[ � �¬L� ]](V, [0, 6]) = 1,

I[[ � �¬L�2 ]](V, [0, 6]) = 1,

I[[ �¬L�2 ; �L�1 ; �¬L�3 ]](V, [0, 6]) = 1.

Note how the chop operator is used to describe sequential behaviour. For

example, the formula �¬L� ; �L� ; �¬L� expresses that a phase where ¬L
holds is followed by a phase where L holds, which is followed by a phase

where again ¬L holds. �

2.2.5 Validity, satisfiability, and realisability

In the following let I be an interpretation, V be a valuation, [b, e] be an

interval, and F be a DC formula. Then F holds in I, V, [b, e], in symbols

I,V, [b, e] |= F,

iff I[[F ]](V, [b, e]) = tt. The formula F is satisfiable iff F holds in some

interpretation I, some valuation V, and some interval [b, e].

We say that I and V realise (or are a model of ) F , in symbols

I,V |= F,

iff I,V, [b, e] |= F holds for all intervals [b, e]. We call F realisable iff some

interpretation I and some valuation V realise F . We say that I realises (or

is a model of ) F , in symbols

I |= F,

iff I,V, [b, e] |= F holds for all valuations V and all intervals [b, e].

The formula F is valid , in symbols

|= F,

iff all interpretations I and all valuations V realise F .
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Remark 2.13

For all DC formulas F the following properties hold:

(i) Duality : F is satisfiable iff ¬F is not valid.

F is valid iff ¬F is not satisfiable.

(ii) If F is valid then F is realisable, but not vice versa.

(iii) If F is realisable then F is satisfiable, but not vice versa.

Example 2.14

The formulas

� ≥ 0,

� =
∫

1,

� = 30 ⇐⇒ � = 10 ; � = 20,

((F ;G) ;H) ⇐⇒ (F ; (G ;H)) (associativity of ; )

are all valid. Note that in the third formula the three occurrences of � all

refer to different lengths. For a given interval [b, e] the formula � = 30 refers

to the length e − b = 30, whereas (due to the chop operator) � = 10 and

� = 20 refer to two adjacent subintervals [b,m] and [m, e] of lengthm−b = 10

and e−m = 20. The formula ∫
L ≤ x

is realisable (and hence satisfiable) by an appropriate interpretation LI and

valuation of x, but it is not valid. The formula

� = 2

is satisfiable, but not realisable. �

Initial values of state variables are often important for the correctness

of real-time systems. Therefore, we introduce a specialised version of the

realisation relation that considers only intervals starting at time 0. We say

that I and V realise F from 0 (or are a model of F from 0 ), in symbols

I,V |=0 F,

iff I,V, [0, t] |= F holds for all time points t. Intervals of the form [0, t] are

called initial intervals. We call F realisable from 0 iff some interpretation I
and some valuation V realise F from 0. Again, we simplify the notation if

F is independent of the valuation V. Then we say that I realises F from 0

(or is a model of F from 0 ), in symbols

I |=0 F,
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iff I,V, [0, t] |= F holds for all valuations V and all time points t.

The formula F is valid from 0 , in symbols

|=0 F,

iff all interpretations I and all valuations V realise F from 0.

Proposition 2.15

For all interpretations I, valuations V, and DC formulas F the following

properties hold:

(i) I,V |= F implies I,V |=0 F , but not vice versa.

(ii) If F is realisable then F is realisable from 0, but not vice versa.

(iii) F is valid iff F is valid from 0.

Proof:

Re (i): By definition, I,V |= F implies I,V |=0 F . To see that the converse

is false, consider F = �� ∨ �X = 1� ; true. Then I |=0 F means that XI is 1

initially, but I |= F requires that XI is 1 (almost) everywhere.

Re (ii): Again by definition, if F is realisable then F is realisable from 0.

To see that the converse is false, we refine the argument above and consider

F = (�� ∨ �X = 1� ; true) ∧ (� ≥ 2 =⇒ � �X = 0�). Then F is realisable

from 0, e.g. by the following interpretation XI :

XI(t) =

{
1, if t ≤ 1

0, if t > 1.

However, F is not realisable in the general sense because the first conjunct

of F requires that XI is 1 (almost) everywhere whereas the second conjunct

requires that XI is 0 infinitely often.

Re (iii): See [ZH04], Theorem 3.1 on p. 44. �

2.3 Specification and correctness proof

In this section we give an overview of how we shall use the Duration Calculus

in the specification and correctness proof of real-time systems. To specify a

real-time system we first choose a collection of observables that determine

in how much detail we wish to model the system. Then we constrain the

possible interpretations of these observables by stating DC formulas whose

conjunction we take as the specification Spec of the system. Note that the

DC formula Spec may contain free global variables. They can be used to

represent time parameters of the system, for instance an unknown reaction
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time. Spec represents the set of all interpretations I and all valuations V
that realise Spec from 0, i.e. with

I,V |=0 Spec.

Mostly, we wish to compare this specification against a second description of

the real-time system, representing it at a different level of detail, for example

as a controller. If this description is again given as a DC formula, say Ctrl,

then we can verify its correctness w.r.t. the specification Spec by proving

that the implication

Crtl =⇒ Spec (2.3)

is valid. Then every interpretation I and all valuations V that realise Ctrl

from 0 also realise Spec from 0. This presupposes that Ctrl and Spec use

the same observables. This is the simplest possible setting of a correctness

relation. We discuss now several variants of (2.3).

If Ctrl and Spec use different observables, say Ctrl uses more concrete

observables C and Spec uses more abstract observables A, then we need a

linking invariant that relates the data values of C and A. If this invariant is

described by a DC formula, say LinkC,A, then correctness of Ctrl w.r.t. Spec

can be verified by proving the validity of the implication

Crtl ∧ LinkC,A =⇒ Spec.

The linking invariant corresponds to a refinement relation as used in the

theory of data refinement.

Often the controller will operate correctly only under some assumptions

on the behaviour of the plant. We shall specify such assumptions as a

DC formula Asm on the input observables and verify correctness of Ctrl

w.r.t. Spec by proving the validity of the implication

Asm ∧ Crtl =⇒ Spec.

Neither the specification nor the controller need to be given in terms

of DC formulas. For instance, later in this book we present other formal

description techniques for real-time systems such as Constraint Diagrams

for the specification and PLC-Automata for the controller. However, for

these description techniques we shall define a predicative semantics in terms

of DC formulas. If Ctrl is given as a PLC-Automaton let [[Crtl]] denote

a DC formula defining its semantics. Analogously, if Spec is given as a

Constraint Diagram let [[Spec]] denote a DC formula defining its semantics.

Then verifying correctness of Ctrl w.r.t. Spec is done by proving the validity
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of the implication

[[Crtl]] =⇒ [[Spec]].

So far we have compared only two different levels of descriptions of a real-

time system, controller and specification. In general, the development of a

real-time system can involve intermediate levels. For instance, a top-down

fashion might involve a specification Spec, a design Des, and a controller Ctrl.

The correctness is established by proving the validity of the implications

Crtl =⇒ Des and Des =⇒ Spec

and then concluding by the transitivity of implication that indeed

Crtl =⇒ Spec

is valid. In our examples, these different variants of correctness arguments

will often be combined.

How do we actually prove the validity of the implications ? In this book,

we use several approaches. In simple cases we conduct the correctness proof

by hand on the basis of the semantics of DC formulas supported by the

proof rules of the DC to be introduced in Section 2.4. We may also be able

to apply a general theorem on the real-time behaviour of certain descrip-

tions like PLC-Automata (Subsection 5.4.1). Finally, for certain classes of

controllers and specifications we use algorithms to prove their correctness.

These algorithms may even synthesise controllers from specifications (Sec-

tion 5.5). Mostly, we rely on a semantics preserving translation of controllers

and specification into timed automata to exploit the UPPAAL tool for the

automatic verification of the correctness relation.

2.3.1 Gas burner revisited

Following up the discussion of the gas burner in Section 1.4, we choose two

observables G and F of Boolean data type {0, 1}. The state assertion G = 1

(G for short) represents the flow of gas and F = 1 (F for short) the presence

of the flame. Then the state assertion L
def⇐⇒ G∧¬F represents the critical

leak state: gas flows but the flame is off. The safety requirement for the gas

burner can now be expressed by the DC formula

Req
def⇐⇒ �(� ≥ 60 =⇒ 20 ·

∫
L ≤ �).

The two design decisions discussed in Section 1.4 can be expressed by the

following two DC formulas:
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• The controller can stop each leak within a second

Des-1
def⇐⇒ �(�L� =⇒ � ≤ 1).

• After each leak the controller waits for 30 seconds and thus enforces a

non-leak period of that duration

Des-2
def⇐⇒ �(�L� ; �¬L� ; �L� =⇒ � > 30).

We want to prove the following statement:

Theorem 2.16

|= (Des-1 ∧ Des-2) =⇒ Req.

To this end, we first consider a simplified requirement that constrains the

duration of the leak period only for short observation intervals:

Req-1
def⇐⇒ �(� ≤ 30 =⇒

∫
L ≤ 1).

Lemma 2.17

|= Req-1 =⇒ Req.

Proof:

Assume Req-1. Consider an interval [b, e] of length � = e− b ≥ 60 and let

n
def

=

⌈
e− b
30

⌉

so that n − 1 < e−b
30 ≤ n. We split the interval [b, e] into n adjacent subin-

tervals in the following way:

b e

b+ 30 b+ 60 b+ 30(n− 2) b+ 30(n− 1) b+ 30n

Each of the first n − 1 subintervals has a length of 30, the last subinterval

has a length of at most 30. With this partition we estimate an upper bound
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for the duration of leaks as follows:

20 ·
∫ e

b
LI(t)dt

= 20 ·

⎛
⎜⎝n−2∑

i=0

b+30(i+1)∫
b+30·i

LI(t)dt+

e∫
b+30·(n−1)

LI(t)dt

⎞
⎟⎠

≤ {by Req-1 and e− b− 30 · (n− 1) ≤ 30}

20 ·
(

n−2∑
i=0

1

)
+ 20 · 1

= 20 · n

< {since n− 1 < e−b
30 }

20 ·
(
e− b
30

+ 1

)
=

2

3
· (e− b) + 20

≤ {since e− b ≥ 60 and thus 20 ≤ 1
3 · (e− b)}

e− b
= �.

Thus Req holds on every interval of length � ≥ 60. �

For the next part of the proof we need some laws of the Duration Calculus

about the integral operator.

Theorem 2.18

For all state assertions P and all real numbers r1, r2 ∈ R the following

properties hold:

(i) |=
∫
P ≤ �,

(ii) |= (
∫
P = r1) ; (

∫
P = r2) =⇒

∫
P = r1 + r2,

(iii) |= �¬P � =⇒
∫
P = 0,

(iv) |= �� =⇒
∫
P = 0.
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Proof:

(of (ii))

|= (
∫
P = r1) ; (

∫
P = r2) =⇒

∫
P = r1 + r2

iff ∀I,V, [b, e] • I[[(
∫
P = r1) ; (

∫
P = r2) =⇒

∫
P = r1 + r2]](V, [b, e])

iff ∀I,V, [b, e] • I[[(
∫
P = r1) ; (

∫
P = r2)]](V, [b, e])

=⇒ I[[
∫
P = r1 + r2]](V, [b, e])

iff ∀I,V, [b, e] •
(
∃m ∈ [b, e]• I[[

∫
P = r1]](V, [b,m])

∧ I[[
∫
P = r2]](V, [m, e])

)
=⇒ I[[

∫
P = r1 + r2]](V, [b, e])

iff ∀I,V, [b, e] •
(
∃m ∈ [b, e] •

∫ m

b
PI(t)dt = r1 ∧

∫ e

m
PI(t)dt = r2

)
=⇒

∫ e

b
PI(t)dt = r1 + r2.

The last formula follows from the mathematical laws about integrals. The

proofs for the remaining claims are left to the reader (see Exercise 2.8). �

With these laws we can prove the following implication:

Lemma 2.19

|= (Des-1 ∧ Des-2) =⇒ Req-1.

Proof:

Assume Des-1 and Des-2. Then

� ≤ 30

=⇒ {by finite variability}
��

∨ �L� ; (�� ∨ �¬L�)
∨ �¬L� ; (�� ∨ �L�)
∨ �¬L� ; �L� ; �¬L�
∨ (� ≤ 30 ∧�(�L� ; �¬L� ; �L�))
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=⇒ {by Des-2}
��

∨ �L� ; (�� ∨ �¬L�)
∨ �¬L� ; (�� ∨ �L�)
∨ �¬L� ; �L� ; �¬L�

=⇒ {by Des-1}
��

∨ (� ≤ 1) ; (�� ∨ �¬L�)
∨ �¬L� ; (�� ∨ (� ≤ 1))

∨ �¬L� ; (� ≤ 1) ; �¬L�

=⇒ {by Theorem 2.18 (i)}
��

∨ (
∫
L ≤ 1) ; (�� ∨ �¬L�)

∨ �¬L� ; (�� ∨ (
∫
L ≤ 1))

∨ �¬L� ; (
∫
L ≤ 1) ; �¬L�

=⇒ {by Theorem 2.18 (iii), (iv)}

(
∫
L = 0)

∨ (
∫
L ≤ 1) ; (

∫
L = 0)

∨ (
∫
L = 0) ; ((

∫
L = 0) ∨ (

∫
L ≤ 1))

∨ (
∫
L = 0) ; (

∫
L ≤ 1) ; (

∫
L = 0)

=⇒ {by Theorem 2.18 (ii)}∫
L ≤ 1.

Thus Req-1 holds. �

Lemmas 2.17 and 2.19 together yield Theorem 2.16.

2.4 Proof rules

So far we have presented syntax and semantics of the Duration Calculus. In

this section the calculus is introduced. In general, a proof system or calculus

C for DC formulas consists of a set of proof rules of the form

F1, . . . , Fn

F
where cond(F1, . . . , Fn, F ). (2.4)

The formulas F1, . . . , Fn are called the premises of the proof rule (2.4), and

the formula F is called the conclusion of (2.4). All formulas F1, . . . , Fn, F
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have to fulfil the application condition cond(F1, . . . , Fn, F ), which has to

be decidable. Typically, this condition is a simple syntactic constraint like

“F1, . . . , Fn do not have x as a free variable”. In case of n = 0 we call the

proof rule an axiom and simplify the notation a bit:

F where cond(F ).

If cond(F ) is always satisfied we omit it.

The central concepts of a calculus are that of proof and provability. A

proof of a formula F from a set H of formulas in C is a finite sequence

G1
...

Gm

of formulas with Gm = F such that each formula Gi with i = 1, . . . ,m

• is either in the set H or

• is an axiom of C or

• is a conclusion of a proof rule of C applied to some predecessor formulas

in the proof, i.e. there exists a proof rule

F1, . . . , Fn

Gi
with cond(F1, . . . , Fn, Gi)

such that {F1, . . . , Fn} ⊆ {G1, . . . , Gi−1} and cond(F1, . . . , Fn, Gi) hold.

The formulas in the set H are called assumptions or hypotheses of the proof.

The natural number m is also called the length of the proof. We say that F

is provable from H in C, in symbols

H �C F,

if there exists a proof of F from H in C. We need a few variations of

this notation. For a finite set of hypotheses, H = {H1, . . . , Hk}, we write

H1, . . . , Hk �C F instead of {H1, . . . , Hk} �C F . If H = ∅ we write �C F
instead of ∅ �C F . A formula F with �C F is also called a theorem of C. If

the calculus C is clear from the context, we omit the subscript C.
A proof rule

(R)
F1, . . . , Fn

F
where cond(F1, . . . , Fn, F )

is said to be a derived proof rule of a calculus C iff

{F1, . . . , Fn} �C F
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holds whenever the application condition cond(F1, . . . , Fn, F ) is satisfied.

Thus assuming all the premises F1, . . . , Fn of R, its conclusion F can be

proved in C. Hence R does not increase the proving power of the calculus

C. This is made precise in the following remark:

Remark 2.20

For a derived rule R of a calculus C the following holds for every set H of

formulas and every formula F :

H �C ∪ {R} F iff H �C F.

Thus every proof with the rule R can also be done without this rule in the

calculus C. Nevertheless, it may be convenient to have a derived rule R as a

shortcut in a proof. In the coming subsections we shall see a number of de-

rived proof rules for operators of the Duration Calculus that were introduced

as abbreviations.

Provability is defined by application of purely syntactic proof rules. The

question arises of how this is connected to the semantics of the proven for-

mulas. The answer is given by the concepts of soundness and completeness

of a calculus. A calculus C is sound if

H �C F implies H |= F .

Here H |= F means that for all interpretations I the following holds:

if I |= G for all formulas G ∈ H then I |= F .

Recall that I |= F iff I,V, [b, e] |= F holds for all valuations V and all

intervals [b, e]. In case of H = ∅ soundness thus requires that

�C F implies |= F ,

i.e. every theorem of C should be valid.

Of course, every calculus C should be sound. To show this it suffices to

check that all proof rules of C are sound in the following sense. A proof rule

(2.4) is sound if whenever the application condition cond(F1, . . . , Fn) holds,

I |= F1, . . . , I |= Fn implies I |= F .

By induction on the lengths of proofs in C, one can prove the following result:

Remark 2.21

If all proof rules of a calculus C are sound, then C itself is sound.

The reverse direction of soundness is called completeness. A calculus C is

complete if
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H |= F implies H �C F .

In particular, every valid formula should be provable in C. It is desirable to

have a (sound and) complete calculus, but due to reasons of computability

this goal is not always achievable.

Let us investigate what is to be expected for the Duration Calculus. We

first state two well-known general facts about proof systems (see for example

[EFT96]).

Lemma 2.22

For every calculus C, every set H of formulas, and every formula F the

following holds:

(i) If H �C F then there exists a finite subset Hfin ⊆ H with Hfin �C F .

(ii) It is semi-decidable whether F is a theorem of C.

Proof:

Re (i): The claim follows from the fact that every proof of F in C is a finite

sequence that can use only finitely many of the hypotheses from H.

Re (ii): Since each proof rule (2.4) has a decidable application condition,

it is decidable whether a given sequence of formulas constitutes a proof in

C. To check whether F is a theorem of C, systematically enumerate all

possible sequences of formulas with F as a final formula. For each such

sequence decide whether it is a proof in C. If F is indeed a theorem of C,
this procedure will find a corresponding proof of F in C. Otherwise the

procedure will never terminate. �
We now apply this lemma to the case of DC formulas.

Theorem 2.23

A sound calculus C for DC formulas cannot be complete.

Proof:

Consider for an arbitrary state assertion P the formula F
def⇐⇒ �� ∨ �P �

and the following infinite set:

H = {� = n =⇒ F | n ∈ N}

of DC formulas. Then H |= F because every time interval [b, e] ⊆ Time has

a bounded length, but Hfin �|= F for every finite subset Hfin ⊆ H.

Suppose there exists a sound and complete calculus C for DC formulas.

The completeness of C yields that H |= F implies H �C F . By Lemma 2.22,

there exists a finite subset Hfin ⊆ H with Hfin �C F . The soundness of C
yields Hfin |= F . Contradiction. �
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What are the reasons for this incompleteness? The problem is that the

validity of DC formulas may depend on facts of the real numbers. For

example, H |= F in the above proof depends on the fact that every real

number is bounded by some natural number. Unfortunately, it is impossible

to give a complete set of proof rules that characterise all valid facts of the

real numbers. (For more details see Subsection 2.4.3.) As a consequence it

is impossible to find a complete set of proof rules for the Duration Calculus.

Nevertheless, there is a set of proof rules for DC formulas that is relatively

complete in the following sense: given an “oracle” for the valid arithmetic

formulas over real numbers we can always find a proof of F from H provided

H |= F holds.

In the following we shall present such a proof system. It is structured into

several layers.

2.4.1 Predicate calculus

It is clear that a proof system for DC formulas requires reasoning on the

underlying first-order predicate logic. The predicate calculus is a sound and

complete proof system for all valid formulas in predicate logic. Here we

need these rules for proving true facts about the logical connectives and the

quantifiers in DC formulas. We list only the most prominent rules of the

predicate calculus, and note one subtle difference concerning substitution of

terms for variables.

Modus Ponens:

F, F =⇒ G

G
· (2.5)

∀-Introduction:

F

∀x • F · (2.6)

∀-Elimination:

∀x • F
F [x := θ]

where F is chop-free or θ is a rigid term. (2.7)

Note that the application condition of the rule for ∀-Elimination is

not present in the usual predicate calculus. Here it is necessary to

guarantee its soundness in the presence of DC formulas F and DC

terms θ. When substituting a term θ for the free occurrences of the

global variable x in F we have to ensure that all occurrences of θ in
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F [x := θ] denote the same value. By Remark 2.10, the application

condition ensures this.

Without this condition, we could for instance (erroneously) deduce

from

∀x • � = x ; � = x =⇒ � = 2 · x

the formula

� = � ; � = � =⇒ � = 2 · �.

Whereas the first formula is valid, the latter one is not. The dual

rule for ∃-Introduction requires the same application condition.

∃-Introduction:

F [x := θ]

∃x • F where F is chop-free or θ is a rigid term. (2.8)

2.4.2 Equality

Basic predicate logic does not contain the equality symbol =, which is needed

prominently in our context when evaluating DC terms. However, it is well

known that equality can be axiomatised completely by the following axioms:

Reflexivity:

x = x. (2.9)

Symmetry:

x = y =⇒ y = x. (2.10)

Transitivity:

(x = y ∧ y = z) =⇒ x = z. (2.11)

Leibniz Property:

(x1 = y1 ∧ . . . ∧ xn = yn) =⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

(x1 = y1 ∧ . . . ∧ xn = yn) =⇒ p(x1, . . . , xn) = p(y1, . . . , yn).

(2.12)

2.4.3 Real numbers

Since the semantics of Duration Calculus is based on the continuous-time

domain Time = R≥0, its calculus needs rules for proving properties of the

real numbers. It is known from logic and model theory that this is a difficult
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issue. Here we discuss only some of the highlights of the axiomatisability of

the structure

R = (R, +̂, ·̂, <̂, 0̂, 1̂)

of the real numbers with the standard constituents: the set R of real numbers

with addition +̂ and multiplication ·̂, the strict order <̂, and the constants

zero 0̂ and one 1̂. The structure R is a completely ordered field. Thus to

begin with, we need the axioms of fields and orders expressed in first-order

predicate logic.

Fields. A field is a structure with constants 0 and 1, and with binary

function symbols + and · that satisfy the following axioms:

Associativity: (x+ y) + z = x+ (y + z)

(x · y) · z = x · (y · z).

Commutativity: x+ y = y + x

x · y = y · x.

Neutral Elements: x+ 0 = x

x · 1 = x.

Zero and One: ¬(0 = 1).

Inverse Elements: ∀x∃y • x+ y = 0

∀x • ¬x = 0 =⇒ ∃y • x · y = 1.

Distributivity: x · (y + z) = (x · y) + (x · z).

Orders. An (irreflexive) order is a structure with one binary predicate

symbol < that satisfies the following axioms:

Irreflexivity: ¬(x < x).

Transitivity: (x < y ∧ y < z) =⇒ x < z.

Totality: (x < y) ∨ (x = y) ∨ (y < x).

The reflexive order symbol ≤ is introduced as an abbreviation:

x ≤ y
def⇐⇒ x < y ∨ x = y.

Ordered fields. An ordered field is a structure with constants 0 and 1,

binary function symbols + and ·, and a binary predicate symbol < that in

addition to the field and order axioms satisfies the following axioms stating

the intended interplay between the order and the constants and function

symbols of the field:
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Zero Smaller One: 0 < 1.

Monotonicity: x < y =⇒ x+ z < y + z

(x < y ∧ 0 < z) =⇒ x · z < y · z.

Completely ordered fields. For the following definition we briefly recall

some concepts of ordered structures (D,<). A subset S ⊆ D is bounded

from above if there exists an element d ∈ D such that

∀s ∈ S • s ≤ d.

Then d is called an upper bound of S. A supremum of S is a least upper

bound, i.e. an element d0 ∈ D such that d0 is an upper bound of S and

d0 ≤ d holds for all upper bounds d of S. Note that the supremum d0 does

not necessarily exist.

Definition 2.24

An ordered field is called complete if for every non-empty subset which is

bounded from above there exists a supremum.

While there are many structurally different ordered fields, for instance

the rational numbers and the real numbers, the following theorem from

mathematical analysis states that the structure of a completely ordered field

is unique:

Theorem 2.25

The structure R of the real numbers is up to isomorphism the only com-

pletely ordered field.

Recall that an isomorphism may rename the values representing the real

numbers by a bijective mapping but must preserve the structure. Thus the

structure R is unique up to such renamings of its elements. Concerning

axiomatisability of R we recall the following facts from model theory:

(1) The structure R of the real numbers can be completely axiomatised

in second-order predicate logic, where quantification is possible not

only over real-valued global variables but also over set-valued variables.

In particular, Definition 2.24 of completely ordered is expressible by a

second-order formula.

However, for second-order predicate logic there does not exist any

complete proof system for deducing all valid formulas – in contrast to

first-order predicate logic for which there is a sound and complete proof

system, the predicate calculus.
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(2) Let T denote the set of all first-order predicate logic formulas that are

valid in the structure R. By a theorem of Tarski, the set T is decidable

(by using a technique of quantifier elimination). The decision procedure

can also be seen as a complete proof system for T . However, in contrast

to (1), formulas in this set T cannot state facts about suprema of subsets

of real numbers.

We summarise:

For the structure R of real numbers there is no sound and complete proof

system in which one can prove exactly all formulas that are valid in the

structure R. In the following we assume the existence of an oracle for R,

i.e. we assume that all valid formulas over real numbers are given as axioms.

2.4.4 Interval logic

The following axioms and proof rules are due to B. Dutertre and represent

a complete axiomatisation of first-order interval logic relative to R:

Length-Pos: � ≥ 0. (2.13)

Chop-Asm: ((F ;G) ;H) ⇐⇒ (F ; (G ;H)). (2.14)

Chop-Overlay: ((F ;G1) ∧ ¬(F ;G2)) =⇒ (F ; (G1 ∧ ¬G2)) (2.15)

((G1 ;F ) ∧ ¬(G2 ;F )) =⇒ ((G1 ∧ ¬G2) ;F ).

Chop-Elim: (F ;G) =⇒ F (2.16)

(G ;F ) =⇒ F

where F is a rigid formula.

Chop-Ex: ((∃x • F ) ;G) =⇒ ∃x • (F ;G) (2.17)

(G ; (∃x • F )) =⇒ ∃x • (G ;F )

where x �∈ free(G).

Chop-Length: (F ; (� = x)) =⇒ ¬((¬F ) ; (� = x)) (2.18)

((� = x) ;F ) =⇒ ¬((� = x) ; (¬F )).

Add-Length: (x ≥ 0 ∧ y ≥ 0) =⇒
((� = x+ y) ⇐⇒ (� = x) ; (� = y)). (2.19)



62 Duration Calculus

Chop-Pnt: F =⇒ (F ; (� = 0)) (2.20)

F =⇒ ((� = 0) ;F ).

Necessary:
F

¬((¬F ) ;G)
(2.21)

F

¬(G ; (¬F ))
·

Chop-Mon:
F =⇒ G

(F ;H) =⇒ (G ;H)
(2.22)

F =⇒ G

(H ;F ) =⇒ (H ;G)
·

We comment on (the soundness of) some of these rules. For the rule Chop-

Overlay note that F ;G chops any given interval [b, e] into a first part [b,m]

where F holds and a second part [m, e] whereG holds. Thus ¬(F ;G) implies

that ¬G holds on [m, e] so that indeed (F ; (G1 ∧ ¬G2)) holds.

The rule Chop-Elim exploits the fact that F is rigid and thus its truth

value is independent of any given interval. An instance of this rule is

x+ 1 > x ; � ≥ 1 =⇒ x+ 1 > x.

Without F being rigid the rule becomes unsound, as the counterexample

� = 1 ; � ≥ 1 �=⇒ � = 1

shows. The rule Chop-Ex can expand the scope of the existential quantifier

from F to F ;G because x does not occur freely in G and thus the truth

value of G does not depend on the valuation of x.

The rule Chop-Length exploits the fact that F ; (� = x) chops any given

interval [b, e] into a first part [b,m] where F holds and a second part [m, e]

of length e −m = x. Therefore it is impossible to chop the same interval

[b, e] according to the formula ¬F ; (� = x) because this would imply that

¬F holds on the first part [b,m]. Note that in the rule Add-Length the

condition x ≥ 0∧y ≥ 0 is needed because the global variables x and y range

over R whereas the lengths of intervals are non-negative as stated in axiom

Length-Pos.

According to the premise of the rule Necessary the formula F holds on

every interval. Therefore it is impossible to chop a given interval [b, e] into

a first part [b,m] where ¬F holds (and a second part [m, e] where G holds).
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Derived rules for the modal operators

In Subsection 2.2.4 the modal operators � (for some subinterval) and � (for

all subintervals) of the Duration Calculus were defined as follows:

�F
def⇐⇒ true ;F ; true and �F

def⇐⇒ ¬�¬F.

With these definitions the axioms and proof rules of the classical modal logic

S4 can be derived [HC68]:

Box-Impl: �(F =⇒ G) =⇒ (�F =⇒ �G). (2.23)

Box-Elim: �F =⇒ F. (2.24)

Box-Trans: �F =⇒ ��F. (2.25)

Box-Intro:
F

�F
· (2.26)

2.4.5 Durations

Zhou Chaochen and M.R. Hansen presented the following axioms and proof

rules for durations:

Dur-Zero:
∫

0 = 0. (2.27)

Dur-One:
∫

1 = �. (2.28)

Dur-Pos:
∫
P ≥ 0. (2.29)

Dur-Add:
∫
P +

∫
Q =

∫
(P ∧Q) +

∫
(P ∨Q). (2.30)

Dur-Chop: (
∫
P = x) ; (

∫
P = y) =⇒

∫
P = x+ y. (2.31)

Dur-Logic:
∫
P =

∫
Q where P ⇐⇒ Q is a tautology. (2.32)

Note that to calculate the sum
∫
P +

∫
Q in the axiom Dur-Add the duration∫

(P ∧Q) needs to be added to the duration
∫

(P ∨Q) to cover the case that

the durations of P and Q overlap in time.

Derived rules for the everywhere operator

In Subsection 2.2.4 the point interval �� and the (almost) everywhere oper-

ator �P � were defined as follows:

�� def⇐⇒ � = 0 and �P � def⇐⇒
∫
P = � ∧ � > 0.



64 Duration Calculus

With these definitions the following axioms and proof rules can be derived:

P-Mon: �P � =⇒ �Q� where P =⇒ Q is a tautology. (2.33)

P-Chop: �P � ; �P � ⇐⇒ �P � . (2.34)

P-Box: �P � =⇒ �(�� ∨ �P �). (2.35)

P-Neg: ¬ �P � ⇐⇒ (�� ∨� �¬P �). (2.36)

P-And: �P ∧Q� ⇐⇒ �P � ∧ �Q� . (2.37)

P-Chop-Neg: ¬(�P � ; true) ⇐⇒ �� ∨ �¬P � ; true (2.38)

¬(true ; �P �) ⇐⇒ �� ∨ true ; �¬P � .

P-Chop-And: ((�P � ; true) ∧ �Q� ; true) ⇐⇒ �P ∧Q� ; true (2.39)

((true ; �P �) ∧ (true ; �Q�)) ⇐⇒ true ; �P ∧Q� .

P-Chop-Or: ((�P � ; true) ∨ �Q� ; true) ⇐⇒ �P ∨Q� ; true (2.40)

((true ; �P �) ∨ true ; �Q�) ⇐⇒ true ; �P ∨Q� .

2.4.6 Induction

Since DC is based on the continuous-time domain, it is at first sight sur-

prising that an induction rule can be stated for the DC. However, the idea

behind this induction is to exploit the fact that the interpretations of its

observables and hence all state assertions are finitely varying.

In the following let F be a DC formula and P be a state assertion:

Induction-R:

(1) �� =⇒ F

(2) F ; �P � =⇒ F

(3) F ; �¬P � =⇒ F

(4) F
. (2.41)

The conclusion (4) of this rule is the DC formula F . The three premises

(1)–(3) simplify the proof in that F needs to be shown only under certain

assumptions. Premise (1) considers as the induction basis the point interval

��. Premise (2) assumes by induction hypothesis that F holds on an initial

subinterval; of the remainder of the interval we can assume only that �P �
holds. The idea is that from �P � we can deduce that F holds on the whole

interval. Premise (3) considers the complementary case that �¬P � holds on

the rest of the interval.

There is also the following variant of the rule in which the subintervals �P �
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and �¬P � are chopped off on the left-hand side of the considered interval:

Induction-L:

�� =⇒ F

�P � ;F =⇒ F

�¬P � ;F =⇒ F

F
. (2.42)

Example 2.26

As a first application we prove for an arbitrary state assertion P :

P -Cover: �� ∨ (�P � ; true) ∨ (�¬P � ; true) (2.43)

�� ∨ (true ; �P �) ∨ (true ; �¬P �).

Consider the second of these two formulas and put

F
def⇐⇒ �� ∨ true ; �P � ∨ true ; �¬P � .

We check whether for this particular choice of F the three premises of the

rule Induction-R (2.41) hold.

(1) �� =⇒ F is trivially satisfied.

(2) By (Chop-Mon), the following implication chain holds:

F ; �P � =⇒ true ; �P � =⇒ F .

(3) Analogously to (2).

The first formula of P -Cover is proven analogously by rule Induction-L. �

Next we prove the soundness of the induction rule.

Theorem 2.27

The induction rule (2.41) is sound, i.e. for all interpretations I

I |= �� =⇒ F, I |= F ; �P � =⇒ F and I |= F ; �¬P � =⇒ F

always imply I |= F .

Proof:

Consider an arbitrary interpretation I. Suppose that for a DC formula F

and a state assertion P the three premises (1)–(3) of the DC induction rule

are realisable. For k ∈ N we define inductively the DC formula FAk(P ):

FA0(P )
def⇐⇒ ��

FAk+1(P )
def⇐⇒ FAk(P ) ∨ FAk(P ) ; �P � ∨ FAk(P ) ; �¬P � .

Here FA stands for “Finite Alternation”. For example,
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FA1(P ) ⇐⇒ �� ∨ �P � ∨ �¬P � ,

FA2(P ) ⇐⇒ �� ∨ �P � ∨ �¬P �
�P � ; �¬P � ∨ �¬P � ; �P � ,

FA3(P ) ⇐⇒ �� ∨ �P � ∨ �¬P �
�P � ; �¬P � ∨ �¬P � ; �P �
�P � ; �¬P � ; �P � ∨ �¬P � ; �P � ; �¬P � .

In general, FAk(P ) describes all combinations of up to k − 1 alternations

between �P � and �¬P �.

Proposition 2.28

For all P , I, V, [b, e] there exists a k ∈ N with I,V, [b, e] |= FAk(P ).

This proposition follows immediately from the finite variability of the inter-

pretation I of the observables and thus of the state assertion P .

Proposition 2.29

Let the premises (1)–(3) of the DC induction rule be given. Then for all

k ∈ N we have I |= FAk(P ) =⇒ F .

The proof of this proposition is by (normal) induction on k ∈ N.

• Induction basis: k = 0.

By premise (1) of the DC induction rule, we have I |= �� =⇒ F .

• Induction step: k −→ k + 1.

Suppose I |= FAk(P ) =⇒ F holds. By rule (Chop-Mon), this implies

I |= FAk(P ) ; �P � =⇒ F ; �P �. Thus by premise (2) of the DC induction

rule, we conclude I |= FAk(P ) ; �P � =⇒ F . Analogously we infer from

premise (3) of the DC induction rule that I |= FAk(P ) ; �¬P � =⇒ F

holds. Altogether we have I |= FAk+1(P ) =⇒ F as desired.

To prove the realisability of the conclusion (4) of the DC induction rule

consider now arbitrary valuation V and interval [b, e]. By Proposition 2.28,

there exists a k ∈ N with

I,V, [b, e] |= FAk(P ).

By Proposition 2.29, this implies I,V, [b, e] |= F as desired. �
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Remark 2.30

Often we wish to prove implications with the DC induction rule. For the

case

F
def⇐⇒ (�F1 =⇒ F2)

the premises (2) and (3) of the DC induction rule (2.41) can be specialised

as follows:

(2) reduces to (�F1 ∧ F2 ; �P �) =⇒ F2, (2.44)

(3) reduces to (�F1 ∧ F2 ; �¬P �) =⇒ F2. (2.45)

Proof:

We prove (2.44):

(2) ⇐⇒ (�F1 =⇒ F2) ; �P � =⇒ (�F1 =⇒ F2)

⇐⇒ ((�F1 =⇒ F2) ; �P � ∧�F1) =⇒ F2

⇐⇒ (�F1 ∧ F2 ; �P �) =⇒ F2.

(2.45) can be shown analogously. �

Remark 2.31

For the case

F
def⇐⇒ (�F1 =⇒ �F2)

the premises (2) and (3) of the DC induction rule (2.41) can be specialised

as follows:

(2) reduces to (�F1 ∧�F2 ; �P �) =⇒ F2, (2.46)

(3) reduces to (�F1 ∧�F2 ; �¬P �) =⇒ F2. (2.47)

Proof:

We prove (2.46). By (2.44), premise (2) is equivalent to

(�F1 ∧�F2 ; �P �) =⇒ �F2.

To prove �F2 on the right-hand side of the implication, we have to show

that F2 holds for all subintervals of a given interval. To this end, we investi-

gate the possible forms of subintervals satisfying the assumption �F2 ; �P �.
There are three cases:

(i) (�F1 ∧�F2) =⇒ F2,

(ii) (�F1 ∧ �P �) =⇒ F2,

(iii) (�F1 ∧�F2 ; �P �) =⇒ F2.
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Case (i) is trivial and case (ii) is a special case of (iii). Thus it remains to

show (iii), which is just (2.46). (2.47) can be shown analogously. �

2.4.7 Application to the gas burner

We shall now apply the induction rule (2.41) to prove the implication

|= Req-1 =⇒ Req

of the case study of the gas burner. We recall the definitions:

Req-1
def⇐⇒ �(� ≤ 30 =⇒

∫
L ≤ 1),

Req
def⇐⇒ �(� ≥ 60 =⇒ 20 ·

∫
L ≤ �).

By Remark 2.31, it suffices to show the two implications

(Req-1 ∧ Req ; �L�) =⇒ (� ≥ 60 =⇒ 20 ·
∫
L ≤ �), (I2)

(Req-1 ∧ Req ; �¬L�) =⇒ (� ≥ 60 =⇒ 20 ·
∫
L ≤ �) (I3)

as premises of the induction rule. To prove (I2) we need the following upper

bound of the duration of �L�:

Lemma 2.32

|= Req-1 ∧ �L� =⇒ � ≤ 1.

Proof:

Suppose Req-1 ∧ �L� ∧ � > 1. Then

Req-1 ∧ �L� ∧ � > 1

=⇒ Req-1 ∧ (�L� ∧ 1 < � ≤ 30) ; true

=⇒ {by Req-1}
(� =

∫
L ≤ 1 ∧ 1 < � ) ; true

=⇒ false ; true

=⇒ false.

Contradiction! This proves the lemma. �

From Lemma 2.32 we deduce the following interesting remark concerning

the design formula Des-1
def⇐⇒ �(�L� =⇒ � ≤ 1):

Remark 2.33

|= Req-1 =⇒ Des-1.



2.4 Proof rules 69

Proof:

Consider an interpretation I, a valuation V, and an interval [b, e] with

I,V, [b, e] |= Req-1. We have to show I,V, [b, e] |= Des-1. To this end,

take a subinterval [c, d] of [b, e] with I,V, [c, d] |= �L�. We have to show

d − c ≤ 1. Note that I,V, [c, d] |= Req-1 and thus I,V, [c, d] |= Req-1 ∧ �L�
holds. By Lemma 2.32, we conclude d− c ≤ 1, as required. �

Proof of (I2). We are now prepared for the proof of (I2). Nothing is to be

shown if � < 60 holds. In case of � ≥ 60 we distinguish two cases:

Case 1: � ≥ 90. Here we argue as follows:

Req-1 ∧ Req ; �L� ∧ � ≥ 90

=⇒ {by Lemma 2.32}

Req-1 ∧ Req ; (�L� ∧ � ≤ 1) ∧ � ≥ 90

=⇒ Req-1 ∧ (Req ∧ � ≥ 60) ; � = 30

=⇒ {by Req}

Req-1 ∧ (20 ·
∫
L ≤ �) ; � = 30

=⇒ {by Req-1}

(20 ·
∫
L ≤ �) ; (

∫
L ≤ 1 ∧ � = 30)

=⇒ (20 ·
∫
L ≤ �) ; (20 ·

∫
L ≤ �)

=⇒ 20 ·
∫
L ≤ �.

Case 2: 60 ≤ � < 90. Then we reason as follows:

Req-1 ∧ Req ; �L� ∧ 60 ≤ � < 90

=⇒ Req-1 ∧ 60 ≤ � < 3 · 30

=⇒ {by Req-1}
60 ≤ � ∧

∫
L ≤ 3

=⇒ 20 ·
∫
L ≤ 60 ≤ �.

Proof of (I3). We now distinguish the following two cases:
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Case 1: Req ∧ � ≥ 60. Then we conclude as follows:

Req-1 ∧ (Req ∧ � ≥ 60) ; �¬L�
=⇒ {by Req}

20 ·
∫
L ≤ � ; �¬L�

=⇒ 20 ·
∫
L ≤ � ;

∫
L = 0

=⇒ 20 ·
∫
L ≤ �.

Case 2: Req ∧ � < 60. Here we argue as follows:

� ≥ 60 ∧ Req-1 ∧ (Req ∧ � < 60) ; �¬L�
=⇒ {by Req-1}

� ≥ 60 ∧
∫
L ≤ 2 ; �¬L�

=⇒ � ≥ 60 ∧
∫
L ≤ 2 ;

∫
L = 0

=⇒ 20 ·
∫
L ≤ 20 · 2 < 60 ≤ �.

This concludes the proof of the implication |= Req-1 =⇒ Req. �

2.4.8 Further rules∗

The following derived axioms and proof rules for the Duration Calculus are

due to A.P. Ravn. They provide additional insights into the operators of

the logic.

Interval logic

Chop-False: F ; false =⇒ false (2.48)

false ;F =⇒ false.

Chop-Or: F ; (G ∨H) ⇐⇒ (F ;G ∨ F ;H) (2.49)

(G ∨H) ;F ⇐⇒ (G ;F ∨H ;F ).

Chop-Length: F ;G ⇐⇒ ∃x • ((F ∧ � = x) ; true) ∧ (� = x ;G). (2.50)

Chop-And: F1 ; (G1 ∧ � = x) ∧ F2 ; (G2 ∧ � = x) (2.51)

⇐⇒ (F1 ∧ F2) ; (G1 ∧G2 ∧ � = x)

(G1 ∧ � = x) ;F1 ∧ (G2 ∧ � = x) ;F2

⇐⇒ (G1 ∧G2 ∧ � = x) ; (F1 ∧ F2).
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Chop-Neg1: ¬(F ;G) ⇐⇒ ∀x • � < x ∨ ((¬F ) ; � = x)

∨ true ; (� = x ∧ ¬G)

(2.52)

¬(F ;G) ⇐⇒ ∀x • � < x ∨ (� = x ;¬G)

∨ (¬F ∧ � = x) ; true.

Chop-Neg2: ¬(F ; true) ⇐⇒ ∀x • � < x ∨ (¬F ) ; � = x (2.53)

¬(true ;F ) ⇐⇒ ∀x • � < x ∨ � = x ;¬F.

Chop-All: ((∀x • F ) ∧ � = y) ;G ⇐⇒ ∀x • ((F ∧ � = y) ;G) (2.54)

G ; ((∀x • F ) ∧ � = y) ⇐⇒ ∀x • (G ; (F ∧ � = y))

where x is not a free variable in G.

Modal operators

Box-Mon:
F =⇒ G

�F =⇒ �G
. (2.55)

Box-Idem: ��F ⇐⇒ �F. (2.56)

Box-Neg: ¬�F ⇐⇒ �¬F (2.57)

�¬F ⇐⇒ ¬�F.

Box-Or: (�F ∨�G) =⇒ �(F ∨G). (2.58)

Box-And: �(F ∧G) ⇐⇒ (�F ∧�G). (2.59)

Box-Chop: (�F ∧�G) =⇒ �(F ;G). (2.60)

Dia-Mon:
F =⇒ G

�F =⇒ �G
· (2.61)

Dia-Idem: ��F ⇐⇒ �F. (2.62)

Dia-Neg: ¬�F ⇐⇒ �¬F (2.63)

�¬F ⇐⇒ ¬�F.

Dia-Or: �(F ∨G) ⇐⇒ (�F ∨�G). (2.64)

Dia-And: �(F ∧G) =⇒ (�F ∧�G). (2.65)

Dia-Chop: �(F ;G) =⇒ (�F ∧�G). (2.66)
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Duration operator

Dur-Real:
R |= p(x1, . . . , xn)

p(
∫
P1, . . . ,

∫
Pn)

. (2.67)

Dur-Dis:
∫
P +

∫
¬P = �. (2.68)

Dur-Bounds: 0 ≤
∫
P ≤ �. (2.69)

Dur-Neg: (
∫
¬P = �) ⇐⇒ (

∫
P = 0). (2.70)

Dur-Impl: (
∫

(P1 =⇒ P2) = �) =⇒ (
∫
P1 ≤

∫
P2). (2.71)

Dur-And: (
∫

(P1 ∧ P2) = �) ⇐⇒ (
∫
P1 =

∫
P2 = �). (2.72)

Dur-Or: (
∫

(P1 ∨ P2) = �) =⇒ (
∫
P1 +

∫
P2 ≥ �). (2.73)

Dur-Equiv: (
∫

(P1 ⇐⇒ P2) = �) =⇒ (
∫
P1 =

∫
P2). (2.74)

Dur-Exact: (x ≤
∫
P ) =⇒ (

∫
P = x) ; true. (2.75)

Dur-Chop-Add: (2.76)

R |= (p(x1, . . . , xn) ∧ p(y1, . . . , yn)) =⇒ p(x1 + y1, . . . , xn + yn)

(p(
∫
P1, . . . ,

∫
Pn) ; p(

∫
P1, . . . ,

∫
Pn)) =⇒ p(

∫
P1, . . . ,

∫
Pn)

·

Classic induction rule

In the original Duration Calculus a more general and more complex induc-

tion rule appears. It requires DC formulas of an extended syntax, H(X ),

where X is a free formula variable of type Intv −→ {tt,ff}. With this exten-

sion the rule can be stated as follows:

ClassicInduction-R:

H(��)
H(X ) =⇒ H(X ∨ X ; �P � ∨ X ; �¬P �)
H(true)

. (2.77)

In this rule H(F ) denotes the formula obtained from H(X ) by replacing

every occurrence of X in H with F . In particular, H(��) is the induction

basis andH(X ) is the induction hypothesis which should imply the induction

step H(X ∨ X ; �P � ∨ X ; �¬P �).
There is also the following variant of the rule in which the subintervals �P �
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and �¬P � are chopped off on the left-hand side of the considered interval:

ClassicInduction-L:

H(��)
H(X ) =⇒ H(X ∨ �P � ;X ∨ �¬P � ;X )

H(true)
. (2.78)

By contrast, in our induction rules (2.41) and (2.42) normal DC formu-

las suffice in their premises and conclusion. This makes the rule easier to

comprehend and to apply.

In the following we prove that for the case

H(X )
def⇐⇒ (X =⇒ F )

the new induction rule (2.41) is equivalent to the classical induction rule

(2.77). We first show two lemmas.

Lemma 2.34

For H(X ) as above the premises H(��) and H(X ) =⇒ H(X ∨ X ; �P � ∨
X ; �¬P �) are equivalent to the conjunction of the following formulas:

(i) H(��),
(ii) H(X ) =⇒ H(X ; �P �),

(iii) H(X ) =⇒ H(X ; �¬P �).

Proof:

We use the following equivalences:

H(X ) =⇒ H(X ∨ X ; �P � ∨ X ; �¬P �)
⇐⇒ {by definition of H}

H(X ) =⇒ ((X ∨ X ; �P � ∨ X ; �¬P �) =⇒ F )

⇐⇒ {predicate calculus}
H(X ) =⇒ ((X =⇒ F ) ∧ (X ; �P � =⇒ F ) ∧ (X ; �¬P � =⇒ F ))

⇐⇒ {by definition of H}
H(X ) =⇒ (H(X ) ∧H(X ; �P �) ∧H(X ; �¬P �))

⇐⇒ {predicate calculus}
(H(X ) =⇒ H(X ))∧
(H(X ) =⇒ H(X ; �P �))∧
(H(X ) =⇒ H(X ; �¬P �)).

This proves the lemma. �
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Using this lemma the classic induction rule can be simplified as follows:

Induction:

(i) H(��)
(ii) H(X ) =⇒ H(X ; �P �)

(iii) H(X ) =⇒ H(X ; �¬P �)
(iv) H(true)

.

We compare the premises and the conclusion of this rule with those of the

new induction rule (2.41).

Lemma 2.35

The following equivalences hold:

(1) ⇐⇒ (i), (2) ⇐⇒ (ii), (3) ⇐⇒ (iii) and (4) ⇐⇒ (iv).

Proof:

Obviously the equivalences

(1) ⇐⇒ (�� =⇒ F ) ⇐⇒ H(��) ⇐⇒ (i)

and

(4) ⇐⇒ F ⇐⇒ (true =⇒ F ) ⇐⇒ H(true) ⇐⇒ (iv)

hold. Next, we show the implication (2) =⇒ (ii):

(2)

⇐⇒ (F ; �P � =⇒ F )

⇐⇒ (F ; �P � =⇒ F ) ∧ (H(X ) =⇒ H(X ))

⇐⇒ {by definition of H}
(F ; �P � =⇒ F ) ∧ (H(X ) =⇒ (X =⇒ F ))

=⇒ {by Chop-Mon}
(F ; �P � =⇒ F ) ∧ (H(X ) =⇒ (X ; �P � =⇒ F ; �P �))

=⇒ {by the transitivity of =⇒}
H(X ) =⇒ (X ; �P � =⇒ F )

⇐⇒ {by definition of H}
(ii).
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Finally, we prove the implication (ii) =⇒ (2):

(ii)

⇐⇒ H(X ) =⇒ (X ; �P � =⇒ F )

=⇒
{

instantiate X with F using the sound rule
H(X )

H(F )

}
H(F ) =⇒ (F ; �P � =⇒ F )

⇐⇒ {by definition of H}
(F =⇒ F ) =⇒ (F ; �P � =⇒ F )

⇐⇒ F ; �P � =⇒ F

⇐⇒ (2).

Together, this establishes the equivalence (2) ⇐⇒ (ii). The equivalence

(3) ⇐⇒ (iii) is shown analogously. �

With Lemma 2.34 and Lemma 2.35, we obtain the desired equivalence

result for both induction rules:

Theorem 2.36

• If F is provable with the new induction rule (2.41) then it is also provable

with the classic induction rule (2.77).

• IfH(true) forH(X )
def⇐⇒ (X =⇒ F ) is provable with the classic induction

rule (2.77) then it is also provable with the new induction rule (2.41).

2.5 Exercises

Exercise 2.1 (Evaluating DC expressions)

A traffic light for pedestrians is modelled by the observables Light of data

type {red, yellow, green} and Button of data type DButton = {press, release}.
Consider an interpretation I of these observables as given by the timing

diagrams in Figure 2.2.

(a) Draw the interpretation of the following state assertion:

I[[Light = green ∧ ¬(Button = release)]]

on the interval [0, 7].

(b) Let V(x) = 5. Calculate the real value of the following DC term:

I[[x ·
∫

(Light = green ∧ ¬(Button = release))]](V, [1, 7]).

(c) Calculate the truth values of the following DC formulas:
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Time

1 2 3 4 5 6 7

Time

1 2 3 4 5 6 7

LightI

green

yellow

red

ButtonI

press

release

Fig. 2.2. Interpretations LightI and ButtonI

I[[(true;
(∫

Light = green
)

= �); true]](V, [1, 6])

and

I[[
∫

(Button = press ∧ Light = red) ≤ 1]](V, [1, 6]).

Exercise 2.2

Prove Lemma 2.11.

Exercise 2.3 (Validity and realisability)

(a) State a DC formula Fa containing an integral term that is valid. Fa

should be different from the formulas given in Example 2.14.

(b) State a DC formula Fb containing an integral term that is realisable

from 0, but not realisable. Fb should be different from the formula used

in the proof of Proposition 2.15.

Prove your claims.

Exercise 2.4 (Interval relations)

In the article “Maintaining knowledge about temporal intervals” published
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in Communications of the ACM, 26 (1983), J.F. Allen introduced a number

of basic relations between intervals. It is proven that from the seven relations

between intervals F and G shown in Figure 2.3 together with their inverses,

all other possible relations between F and G can be deduced.

State DC formulas specifying these seven relations where F and G are

considered as given DC formulas describing the displayed intervals.

F before G F G

F meets G F G

F overlaps G
F

G

F starts G
F

G

F during G
F

G

F finishes G
F

G

F equals G
F

G

Fig. 2.3. Allen’s basic interval relations

Exercise 2.5 (Measuring length)

Let P be a state assertion. Prove the following equivalence with the help of
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the DC semantics:

|=
(
∀x • �((�¬P � ; (�P � ∧ � = x); �¬P �) =⇒ x ≥ 30)

)

⇐⇒
(

�((�¬P � ; �P � ; �¬P �)⇒ � > 30)

)
.

Exercise 2.6 (Generalised railroad crossing)

In Section 1.3 we formalised the generalised railroad crossing using predicate

logic. Consider now the following DC specification of some of the properties:

�(�Cr� =⇒ �Cl�), (Safety)

(�E� ; true) ∨ �� , (Init)

�((�E� ; true; �Cr�) =⇒ � ≥ ε), (T-Fast)

�((�¬E� ∧ � ≥ ε) =⇒ true; �Cl�). (G-Close)

Explain informally the meaning of each of these formulas. Prove the follow-

ing implication by using the DC semantics:

Init ∧ T-Fast ∧ G-Close =⇒ Safety.

Exercise 2.7 (Everywhere operator)

Let P,Q,R be state assertions. Which of the following DC formulas are

valid? Explain your argument or give a counterexample for the claimed

implication or reverse implication.

(a1) ¬ �P � =⇒ �¬P �,
(a2) ¬ �P � ⇐= �¬P �,
(b1) (�P � ∧ �Q�) =⇒ �P ∧Q�,
(b2) (�P � ∧ �Q�)⇐= �P ∧Q�,
(c1) �(�P ∧Q�) =⇒ (� �P �) ∧ (� �Q�),
(c2) �(�P ∧Q�)⇐= (� �P �) ∧ (� �Q�).

Exercise 2.8 (Integral)

Prove that for all state assertions P the following properties hold:

(a) |= �� =⇒
∫
P = 0,

(b) |= �¬P � =⇒
∫
P = 0,

(c) |= �� =⇒
∫
P = 0.

Exercise 2.9 (Proof rules)

Explain the meaning of the following proof rules and argue why they are
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sound:

(�F ∧�G) =⇒ �(F ;G), (box-chop)

F ; (G ∨H) ⇐⇒ (F ;G) ∨ (F ;H), (chop-or)

F

�F
. (box-intro)

Exercise 2.10 (Proofs with DC rules)

Prove the following implication using the rules Chop-Mon, Chop-Asm, the

definition �F = true; (F ; true), and the proof rules from predicate logic:

��F =⇒ �F.

Exercise 2.11 (Induction rule)

Prove the following DC formula with the help of the induction rule:

�� ∨ �P � ∨� �¬P � .

2.6 Bibliographic remarks

The Duration Calculus was invented in the context of the European Com-

munity Basic Research Action ProCoS (Provably Correct Systems, 1989–

1995) [HHF+94, BHL+96] as a new logic and calculus for specifying the

behaviour of real-time systems. The first publication on the Duration Calcu-

lus is by Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn [ZHR91]. Duration

Calculus is an extension of the Interval Temporal Logic of B. Moskowski

[Mos85, Mos86] to deal with continuous time. In particular, the ProCoS

case study of the gas burner with its safety requirement Req motivated the

main new ingredient of the calculus compared with other logics for contin-

uous time: the integral operator enabling the specifier to express duration

properties.

Duration Calculus is based on the notion of an observable interpreted as

a function from the continuous-time domain to some data domain. A real-

time system is described by a set of such observables. This links up well to

the mathematical basis found in classical dynamic systems theory [Lue79]

and enables extensions to cover hybrid systems [GNRR93]. By choosing

the right set of observables, real-time systems can be described at various

levels of abstraction in the Duration Calculus (see e.g. [RRH93, ORS96,

SO99, Sch99, Die00a, HO02]). The calculus has been investigated care-

fully and several extensions of the original form have been developed (see
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e.g. [ZHS93, Rav95, HZ97, Frä04, FH07]). The most comprehensive ex-

position of its foundation, containing numerous further references, is the

monograph [ZH04].

In the proof system for Duration Calculus, the application conditions of

the rules for ∀-Elimination and ∃-Introduction in Subsection 2.4.1 are taken

from [ZH04]. The completeness of the axioms for equality in Subsection 2.4.2

is often attributed to [Bir35]. For more details on the structure R of the

real numbers, discussed in Subsection 2.4.3, we refer to books on logic like

[EFT96, Dal04] or on mathematical analysis like [Rud76]. More specifically,

Tarski’s quantifier elimination theory for first-order formulas over the real

numbers is discussed in [Dri88]. The axiomatisation of interval logic given in

Subsection 2.4.4 is due to B. Dutertre [Dut95]. In that paper it is shown that

this axiomatisation along with the proof rules of predicate logic is complete

relative to the theory of an abstract time domain, which may be chosen as

R, the structure of real numbers.

The induction rule introduced in Subsection 2.4.6 appears in the Signed

Duration Calculus (SDC) of [Ras02]. It avoids the use of free formula vari-

ables as in the classic induction rule [ZH04]. In Subsection 2.4.8, we have

shown that for proof goals of the form H(X )
def⇐⇒ (X =⇒ F ) both in-

duction rules are equally powerful. It is interesting to notice that all appli-

cations of the classic induction rule in [ZH04] are of this form. The other

axioms and proof rules (2.48)–(2.76) stated in Subsection 2.4.8 are taken

from [Rav95]. Various examples of formal proofs with the proof rules of the

Duration Calculus can be found in [Rav95, ZH04].

A. Schäfer extended the Duration Calculus to a multi-dimensional logic

called Shape Calculus [Sch05, Sch06]. It is intended for the specification

and verification of mobile real-time systems like robots moving in a physical

space over continuous time. As for the Duration Calculus, the logic of

the full Shape Calculus has no sound and complete axiomatic proof system.

However, a sound proof system that is complete relative to an axiomatisation

of a multi-dimensional interval logic has been developed [Sch07].
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Properties and subsets of DC

The Duration Calculus can be used as a high-level specification language

for properties of real-time systems. The question arises whether reasoning

about such specifications can be automated. To this end, we first discuss the

decidability of the realisability problem of the Duration Calculus: is there

an algorithm that for a given Duration Calculus formula decides whether

this formula can be realised. By using proof techniques of Zhou Chaochen,

M.R. Hansen, and P. Sestoft, we show that for a subset of the Duration

Calculus and the discrete-time domain this problem is indeed decidable.

However, for the general case of continuous time it is not. The proofs of

these results shed light on the difference between these two time domains.

Next we introduce the subset of implementables due to A.P. Ravn. This

subset provides certain patterns of formulas formalising concepts like sta-

bility and progress that are convenient for specifying the behaviour of con-

trollers. Finally, we introduce Constraint Diagrams due to C. Kleuker as a

graphical representation of a subset of Duration Calculus. These diagrams

specify timed behaviours in an assumption/commitment style. We show that

the implementables all have lucid representations as Constraint Diagrams.

In general, Constraint Diagrams are more expressive than implementables.

3.1 Decidability results

Zhou Chaochen, M.R. Hansen, and P. Sestoft showed that the problem

whether a given DC formula is satisfiable is decidable for a subset of DC

when discrete time is assumed [ZHS93]. This result has been exploited by

P.K. Pandya in a tool called DCVALID for automatically checking satisfia-

bility and validity of formulas in this subset [Pan01]. The authors of [ZHS93]

also proved undecidability of the satisfiability problem for several interest-

ing subsets of DC in the case of continuous time. Since the proofs of both

81
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results use very interesting constructions, we present them in this section.

However, we are not interested in satisfiability but in the question whether

a DC formula can be realised by an interpretation. Therefore we consider

the decidability of the realisability problem. We first present the positive

result for discrete time and then explain the negative result for continuous

time.

3.1.1 Decidability for discrete time

We consider the subset RDC (Restricted DC) of DC formulas, defined by

the following abstract syntax:

F ::= �P � | ¬F1 | F1 ∨ F2 | F1 ;F2

where P is a state assertion as defined in Subsection 2.2.2, but with ob-

servables of Boolean type {0, 1} only. The logical connectives ∧,=⇒, and

⇐⇒ can be considered as abbreviations. Note that global variables are not

allowed in this restricted syntax. Thus the truth of an RDC formula F does

not depend on any valuation V, so we can omit this parameter here.

Discrete time is modelled by discrete interpretations and discrete intervals.

We call I a discrete interpretation if each observable X is interpreted by a

function

XI : Time −→ {0, 1},

where Time = R≥0 but all discontinuities are in N. The following timing

diagram gives an example of such a function:

Time

XI

0 1 2 3 4 5

0

1

We call an interval [b, e] ⊂ Time discrete if b, e ∈ N holds. We also change

the inductive definition of the semantics of the chop operator such that only

discrete chopping points are allowed:

I, [b, e] |= F1 ;F2
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iff there exists an m ∈ [b, e] with m ∈ N such that

I, [b,m] |= F1 and I, [m, e] |= F2.

Expressiveness of RDC

At first sight RDC seems to be a very restricted subset of the DC. How-

ever, under the assumption of discrete time we can express many interesting

properties in RDC. First, we show that we can express � = 1. Indeed, the

formula

� = 1 ⇐⇒ (�1� ∧ ¬(�1� ; �1�)),

with its right-hand side expressed in RDC, is equivalent to the DC formula

� = 1 ⇐⇒ (� > 0 ∧ ¬(� > 0 ; � > 0)),

which is valid because in discrete time intervals of length 1 are the only

non-point intervals that cannot be chopped into two non-point subintervals.

By contrast, in continuous time the implication

�1� =⇒ (�1� ; �1�)

and its equivalent

� > 0 =⇒ (� > 0 ; � > 0)

are valid, i.e. every non-point interval can be chopped into two non-point

subintervals. In this way we may obtain arbitrarily small non-point intervals.

More generally, for every state assertion P the implication

�P � =⇒ (�P � ; �P �)

is valid in continuous time, but not in discrete time. Note that the reverse

implication

(�P � ; �P �) =⇒ �P �

is valid in both time domains (cf. also rule (2.34)).

Using � = 1, other interesting properties can also be expressed in RDC.

The following examples show how some typical DC formulas can be ex-
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pressed by equivalent RDC formulas:

� = 0 ⇐⇒ ¬�1� ,
� = 1 ⇐⇒ �1� ∧ ¬(�1� ; �1�),
true ⇐⇒ � = 0 ∨ ¬(� = 0),∫
P = 0 ⇐⇒ �¬P � ∨ � = 0,∫
P = 1 ⇐⇒ (

∫
P = 0) ; (�P � ∧ � = 1) ; (

∫
P = 0),∫

P = k + 1 ⇐⇒ (
∫
P = k) ; (

∫
P = 1),∫

P ≥ k ⇐⇒ (
∫
P = k) ; true,∫

P > k ⇐⇒
∫
P ≥ k + 1,∫

P ≤ k ⇐⇒ ¬(
∫
P > k),∫

P < k ⇐⇒
∫
P ≤ k − 1,

where k ∈ N.

Realisability problem

Let F be an RDC formula. A discrete interpretation I realises F from 0 in

discrete time, iff I, [0, n] |= F holds for all n ∈ N. We call F realisable from

0 in discrete time iff there is a discrete interpretation I that realises F from

0 in discrete time. The realisability problem is described as follows.

Given: An RDC formula F .

Question: Is F realisable from 0 in discrete time ?

This problem can be reduced algorithmically to the infinity problem of reg-

ular languages: to each RDC formula F we will assign a regular language

L′(F ) such that the following holds:

F is realisable from 0 in discrete time

⇐⇒ L′(F ) is infinite.

By the decidability of the latter problem, we shall conclude the decidability

of the realisability problem of RDC for discrete time.

Construction of L(F )

Given an RDC formula F we take as the alphabet Σ for the regular language

the set of all basic conjuncts of the state variables in F .

Example 3.1

Assume that F contains exactly the state variables X,Y, Z. Then

Σ =

{
X ∧ Y ∧ Z, X ∧ Y ∧ ¬Z, X ∧ ¬Y ∧ Z, X ∧ ¬Y ∧ ¬Z,
¬X ∧ Y ∧ Z, ¬X ∧ Y ∧ ¬Z, ¬X ∧ ¬Y ∧ Z, ¬X ∧ ¬Y ∧ ¬Z

}
is the associated alphabet. �
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The idea of this alphabet is that each basic conjunct, i.e. each letter a ∈ Σ,

describes a discrete interpretation I on an interval of length 1. Therefore,

a word a1 . . . an ∈ Σ∗ describes a discrete interpretation of length n.

Definition 3.2

A word w = a1 . . . an ∈ Σ∗ with n ≥ 0 and a1, . . . , an ∈ Σ describes a discrete

interpretation I on [0, n] iff for all j ∈ {1, . . . , n} the property

∀t ∈ (j − 1, j) • I[[aj ]](t) = 1

holds. Here (j − 1, j) denotes the open interval {t ∈ Time | j − 1 < t < j}.
For n = 0 we put w = ε.

Note that each letter aj of the word is a basic conjunct and therefore a state

assertion. Thus, I[[aj ]] is defined as a function of type Time −→ {0, 1}.

Example 3.3

The word

w = (¬X ∧ ¬Y ∧ ¬Z) · (X ∧ ¬Y ∧ ¬Z) · (X ∧ Y ∧ ¬Z) · (X ∧ Y ∧ Z) ∈ Σ∗

describes the following discrete interpretation

Time
0 1 2 3 4

XI
0

1

YI
0

1

ZI
0

1

on the interval [0, 4]. �

Following Zhou, Hansen, and Sestoft, we construct a language L(F ). For

this purpose, we need an auxiliary definition. Since each state assertion P of

RDC can be transformed into an equivalent disjunctive normal form
∨m

i=1 ai
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with ai ∈ Σ, we write DNF (P ) to denote the set of all basic conjuncts of

this disjunctive normal form. Thus

DNF (P ) = {a1, . . . , am} ⊆ Σ.

We can now define L(F ) inductively:

L(�P �) = DNF (P )+,

L(¬F1) = Σ∗ \ L(F1),

L(F1 ∨ F2) = L(F1) ∪ L(F2),

L(F1 ;F2) = L(F1) · L(F2).

For languages L,L1, L2 ⊆ Σ∗ we write L1 · L2 to denote the concatenation

and L+ = L · L∗ to denote the non-empty iteration.

Lemma 3.4

For all RDC formulas F , all discrete interpretations I, all n ≥ 0 and all

words w ∈ Σ∗ which describe I on [0, n] the following holds:

I, [0, n] |= F iff w ∈ L(F ).

Thus the words w ∈ L(F ) describe the values of I for an initial part.

Proof:

We proceed by induction on the structure of F .

Induction basis: F
def⇐⇒ �P �.

Suppose w = a1 . . . an describes I on [0, n]. Then

I, [0, n] |= F iff I, [0, n] |= �P � and n ≥ 1

iff n ≥ 1 and ∀j ∈ {1, . . . , n} • I, [j − 1, j] |= �P �
iff n ≥ 1 and ∀j ∈ {1, . . . , n} • I, [j − 1, j] |= �P � ∧ �aj�

∧ aj ∈ DNF (P )

iff n ≥ 1 and ∀j ∈ {1, . . . , n} • aj ∈ DNF (P )

iff w ∈ DNF (P )+

iff w ∈ L(F ).

Induction hypothesis: Assume that the claim holds for F1 and F2.

Induction step: We distinguish three cases of which the first two are easy,

but the third one needs some care.
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Case F
def⇐⇒ ¬F1. Then

I, [0, n] |= ¬F1 iff I, [0, n] �|= F1

iff {induction hypothesis}
w /∈ L(F1)

iff w ∈ Σ∗ − L(F1)

iff w ∈ L(¬F1)

iff w ∈ L(F ).

Case F
def⇐⇒ F1 ∨ F2. Then

I, [0, n] |= F1 ∨ F2 iff I, [0, n] |= F1 or I, [0, n] |= F2

iff {induction hypothesis}
w ∈ L(F1) or w ∈ L(F2)

iff w ∈ L(F1) ∪ L(F2)

iff w ∈ L(F1 ∨ F2)

iff w ∈ L(F ).

Case F
def⇐⇒ F1 ;F2.

Suppose w = a1 . . . an describes I on [0, n]. Then

I, [0, n] |= F iff ∃m ≤ n • (I, [0,m] |= F1 and I, [m,n] |= F2)

iff {consider the interpretation Im which for

all observables X satisfies the condition

Im(X)(t) = I(X)(t+m)}

∃m ≤ n • (I, [0,m] |= F1 and Im, [0, n−m] |= F2)

iff {induction hypothesis:

a1 . . . am describes I on [0,m] and

am+1 . . . an describes Im on [0, n−m]}

∃m ≤ n • (a1 . . . am ∈ L(F1) and am+1 . . . an ∈ L(F2))

iff w ∈ L(F1) · L(F2)

iff w ∈ L(F ).

This completes the proof of the lemma. �

Zhou, Hansen, and Sestoft used the language L(F ) to answer the question

of satisfiability. First, they prove the following lemma:
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Lemma 3.5

For all RDC formulas F the following holds:

F is satisfiable in discrete time

iff L(F ) is non-empty.

For a proof of this lemma we refer to [ZH04], Chapter 6. Since the regu-

lar language L(F ) can be constructed effectively from F and emptiness of

regular languages is decidable, the following theorem holds:

Theorem 3.6

The satisfiability problem for the Restricted Duration Calculus with discrete

time is decidable.

We are interested in realisability rather than satisfiability. For this pur-

pose, we need one further concept.

Definition 3.7 (Kernel)

The prefix closed kernel of a language L ⊆ Σ is defined by

kern(L) = {w ∈ Σ∗ | w ∈ L ∧ ∀v ≤ w • v ∈ L}.

Here ≤ denotes the prefix relation on words. Thus kern(L) contains all those

words of L whose prefixes are again in L.

It can be shown that for each regular language L also the language kern(L)

is regular (see Exercise 3.3). Moreover, the relations

kern(L) = L \ (L · Σ∗) ⊆ L

hold. Now we can prove the main result of this subsection.

Lemma 3.8

For all RDC formulas F the following holds:

F is realisable from 0 in discrete time

iff kern(L(F )) is infinite.

Proof:

“Only if”: Let I be a discrete interpretation such that I, [0, n] |= F holds

for all n ∈ N. By Lemma 3.4, for all n ∈ N there exists a word wn ∈ Σ∗

of length n that describes I on [0, n]. Hence, wn ∈ L(F ). Since all prefixes

of wn are also of the form wj ∈ L(F ), we have wn ∈ kern(L(F )). Thus

kern(L(F )) is infinite.

“If”: Since the alphabet Σ is finite, we can represent the infinite and

prefix closed set kern(L(F )) of words as an infinite, but finitely branching
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tree. By König’s Lemma†, there exists an infinite path in this tree. This

path represents a discrete interpretation I which realises F from 0 in discrete

time. �

Since the regular language kern(L(F )) can be constructed effectively from

F and infinity of regular languages is decidable, we obtain the following

result:

Theorem 3.9

The realisability problem for the Restricted Duration Calculus with discrete

time is decidable.

3.1.2 Undecidability for continuous time

Zhou Chaochen, M.R. Hansen, and P. Sestoft also proved that in the case

of continuous time the satisfiability problem of the Duration Calculus and

certain subsets of it is undecidable [ZHS93]. To this end, they showed that

the halting problem for two-counter machines can be reduced to the satisfi-

ability problem of Duration Calculus in continuous time. Since two-counter

machines are known to be as powerful as Turing machines, their halting

problem is undecidable [Min67]. This implies the undecidability for the sat-

isfaction problem. In the following we present the main idea of this reduction

and apply it to obtain also the undecidability of the realisability problem.

Two-counter machines

A two-counter machine is a structure M = (Q, q0, qfin, P rog) where

• Q is a finite set of states with initial state q0 and final state qfin.

• Prog is the machine program consisting of a finite set of commands of the

form

q : inci : q′ and q : deci : q′, q′′

with i ∈ {1, 2}. We assume that M is deterministic, i.e. for each state q

there exists at most one command starting in q, and qfin is the only state

in which no command starts.

M manipulates configurations of the form K = (q, n1, n2) where q ∈ Q is

the current state and n1, n2 ∈ N are the current values of two counters.

The initial configuration is (q0, 0, 0), i.e. both counters are initially set to 0.

Executing a command of the machine program yields a transition K � K ′

† König’s Lemma: Every finitely branching tree is either finite or it has an infinite path.
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between configurations. The following table describes the semantics of the

commands:

Command Semantics: K � K ′

q : inc1 : q′ (q, n1, n2) � (q′, n1 + 1, n2)

q : dec1 : q′, q′′ (q, 0, n2) � (q′, 0, n2)

(q, n1 + 1, n2) � (q′′, n1, n2)

q : inc2 : q′ (q, n1, n2) � (q′, n1, n2 + 1)

q : dec2 : q′, q′′ (q, n1, 0) � (q′, n1, 0)

(q, n1, n2 + 1) � (q′′, n1, n2)

The increment commands increment the corresponding counter by 1 and

change the state accordingly. The decrement commands first test whether

the corresponding counter is 0. If this is the case the counter is left un-

changed and the first successor state is taken. Otherwise the counter is

decremented by 1 and the second successor state becomes the current state.

Since M is deterministic, it has exactly one computation, which is the

maximal sequence of configurations obtained by successive transitions ofM
starting in K0 = (q0, 0, 0). This sequence is either finite and of the form

K0 = (q0, 0, 0) � · · · � (qfin, n1, n2)

because qfin is the only state without a starting command or it is infinite

and of the form

K0 = (q0, 0, 0) � K1 � K2 � . . .

In the first case we say that M halts and otherwise we say that M diverges.

From the theory of computation it is known that it is undecidable whether

a given deterministic two-counter machine M halts or diverges [Min67].

Reduction of two-counter machines to DC

We now describe the reduction of two-counter machines to the Duration

Calculus. Let a two-counter machine M be given. The main issue is how to

represent the configurations and transitions of M by suitable DC formulas.

Idea: Use a single observable obs ranging over the following data values:

all states of M plus the four auxiliary values C1, C2, B,X. The values C1

and C2 are needed for the counters, and B and X serve as delimiters. A

configuration K = (q, n1, n2), say with n1 = 2 and n2 = 3, is represented by
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a formula of the following form:⎛
⎝ �q�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �B� ; �C1� ; �B� ; �C1� ; �B�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �X�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �B� ; �C2� ; �B� ; �C2� ; �B� ; �C2� ; �B�

∧
� = 1

⎞
⎠ .

The initial configuration K0 = (q0, 0, 0) is represented by⎛
⎝ �q0�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �B�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �X�

∧
� = 1

⎞
⎠ ;

⎛
⎝ �B�

∧
� = 1

⎞
⎠ ,

more concisely written as

�q0�1 ; �B�1 ; �X�1 ; �B�1 .

It is important to notice that this representation exploits the continuous-

time domain by encoding unboundedly large values of the counters by un-

boundedly many changes �C1� ; �B� resp. �C2� ; �B� on an interval of length

1. As a consequence, a configuration is represented by a formula that holds

only on intervals of fixed length 4. Thus, a computation of M of the form

K0 � K1 � K2 � . . . can be represented as the concatenation of the formulas

of the configurations:

formula for K0︸ ︷︷ ︸
�=4

; formula for K1︸ ︷︷ ︸
�=4

; formula for K2︸ ︷︷ ︸
�=4

. . .

The two-counter machine M will be modelled by a conjunction of DC

formulas which describe

• the initial configuration,

• the general form of configurations,

• the transitions between configurations,

• the handling of the final state.

The initial configuration is specified by the DC formula

initM
def⇐⇒ (� ≥ 4 =⇒ �q0�1 ; �B�1 ; �X�1 ; �B�1 ; true).

The sequence of configurations is enforced by:

keep
def⇐⇒ �( �Q�1 ; �B ∨ C1�1 ; �X�1 ; �B ∨ C2�1 ; � = 4

=⇒ � = 4 ; �Q�1 ; �B ∨ C1�1 ; �X�1 ; �B ∨ C2�1),
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where Q stands for ¬(X ∨ C1 ∨ C2 ∨B).

Illustration:

� = 1

�Q�

� = 1

�B ∨ C1�

� = 1

�X�

� = 1

�B ∨ C2�

� = 4

=⇒

� = 1

�Q�

� = 1

�B ∨ C1�

� = 1

�X�

� = 1

�B ∨ C2�

� = 4

For each type of command we add four DC formulas to encode the correct

behaviour ofM. For a better readability we define an auxiliary formula pat-

tern copy expressing that the values of the observable are repeated exactly

4 time units later, i.e. in the next configuration:

copy(F, {P1, . . . , Pn}) def⇐⇒
∀c, d •�((F ∧ � = c) ; (�P1 ∨ . . . ∨ Pn� ∧ � = d) ; �P1� ; � = 4

=⇒ � = c+ d+ 4 ; �P1�)
...

∧∀c, d •�((F ∧ � = c) ; (�P1 ∨ . . . ∨ Pn� ∧ � = d) ; �Pn� ; � = 4

=⇒ � = c+ d+ 4 ; �Pn�),

where F is a DC formula and P1, . . . , Pn are state assertions. This formula

expresses that after each interval where in the first part F is true and in

the second part P1 ∨ . . . ∨ Pn is true the same pattern of P1, . . . , Pn is re-

peated exactly 4 time units later. This copying process stops when a value

is encountered that does not satisfy P1 ∨ . . . ∨ Pn any more.

Illustration:

∀i, c, d•
� = c

F

� = d

�P1 ∨ . . . ∨ Pn� �Pi�

� = 4

=⇒

� = c � = d � = 4

�Pi�
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To express an increment command q : inc1 : q′ we represent the following

four activities in corresponding DC formulas:

(i) Change the state from q to q′:

�(�q�1 ; �B ∨ C1�1 ; �X�1 ; �B ∨ C2�1 ; � = 4

=⇒ � = 4 ;
⌈
q′
⌉1

; true).

Illustration:

� = 1

�q�

� = 1

�B ∨ C1�

� = 1

�X�

� = 1

�B ∨ C2�

� = 4

=⇒

� = 1

�q′�

� = 4

(ii) Increment the first counter by splitting the first B-interval into B −
C1 −B:

∀d •�(�q�1 ; �B�d ; (� = 0 ∨ �C1� ; �¬X�) �X�1 ; �B ∨ C2�1 ; � = 4

=⇒ � = 4 ;
⌈
q′
⌉1

; (�B� ; �C1� ; �B� ∧ � = d) ; true).

Illustration:

∀d•
� = 1

�q�

� = d

�B�

� = 0

∨
�C1� �¬X�

� = 1− d � = 1

�X�

� = 1

�B ∨ C2�

� = 4

=⇒

� = 4 � = 1

�q′�

� = d

�B� ; �C� ; �B�

(iii) Keep the rest of the first counter unchanged:

copy(�q�1 ; �B ∨ C1� ; �C1� , {B,C1}).

(iv) Leave the second counter unchanged:

copy(�q�1 ; �B ∨ C1�1 ; �X�1 , {B,C2}).
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To express a decrement command q : dec1 : q′, q′′ we represent the following

four activities in corresponding DC formulas:

(i) If the first counter is zero change the state from q to q′ and keep the

value of the first counter:

�(�q�1 ; �B�1 ; �X�1 ; �B ∨ C2�1 ; � = 4

=⇒ � = 4 ;
⌈
q′
⌉1

; �B�1 ; true).

(ii) If the first counter is not zero change the state from q to q′′ and decre-

ment the first counter by replacing the first B − C1 sequence by a

B − interval:

∀d •�(�q�1 ; (�B� ; �C1� ∧ � = d) ; �B� ; �B ∨ C1� ;

�X�1 ; �B ∨ C2�1 ; � = 4

=⇒ � = 4 ;
⌈
q′′
⌉1

; �B�d ; true).

(iii) Leave the rest of the first counter unchanged:

copy(�q�1 ; �B� ; �C1� ; �B� , {B,C1}).

(iv) Leave the second counter unchanged:

copy(�q�1 ; �B ∨ C1�1 ; �X�1 , {B,C2}).

Analogously, we express increment and decrement commands for the second

counter.

Since no command starts in the final state qfin, we force the observable

obs to repeat the final configuration ad infinitum. This is expressed by the

DC formula

copy(�qfin�1 ; �B ∨ C1�1 ; �X�1 ; �B ∨ C2�1 , {qfin, B,X,C1, C2}.

Let encoding(M) denote the conjunction of all these DC formulas. Then

encoding(M) is a DC formula with one observable, obs, and without free

global variables. It encodes the behaviour of the two-counter machine M in

the following sense: each interpretation realising encoding(M) from 0 rep-

resents the (diverging or halting) computation ofM such that the following

equivalence result holds:

M diverges iff the DC formula

encoding(M) ∧ ¬� �qfin�
is realisable from 0.

Since the divergence of two-counter machines is undecidable, not even semi-

decidable, we obtain the following result:
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Theorem 3.10

The realisability problem for the Duration Calculus with continuous time is

undecidable, not even semi-decidable.

Following Zhou and Hansen [ZH04] we can also observe that

M halts iff the DC formula (3.1)

encoding(M) ∧� �qfin�
is satisfiable.

This yields the following theorem:

Theorem 3.11

The satisfiability problem for the Duration Calculus with continuous time

is undecidable.

With a rather elaborate proof that is beyond the scope of this chapter

it can be shown that the satisfiability problem for the Duration Calculus

is semi-decidable. Further on, by taking the contraposition of equivalence

(3.1), we obtain

M diverges iff M does not halt

iff the DC formula

encoding(M) ∧� �qfin�
is not satisfiable.

Thus the problem of whether a DC formula is not satisfiable is undecidable,

not even semi-decidable. Since by Remark 2.13, a DC formula F is valid iff

¬F is not satisfiable, we obtain the following corollary of Theorem 3.11:

Corollary 3.12

The validity problem for the Duration Calculus with continuous time is

undecidable, not even semi-decidable.

This corollary provides us with an alternative proof of Theorem 2.23:

there is no sound and complete calculus C for DC formulas. Suppose there

is such a calculus C. By Lemma 2.22, it is semi-decidable whether a given

DC formula F is a theorem in C. By the soundness and completeness of C, a

formula F is a theorem in C iff F is valid. Thus it is semi-decidable whether

a given DC formula F is valid. Contradiction.
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Discussion

An analysis of the above reduction shows that we did not exploit all con-

structs of the Duration Calculus. In fact the subset of DC formulas defined

by the following abstract syntax suffices for the reduction:

F ::= �P � | ¬F1 | F1 ∨ F2 | F1 ;F2 | � = 1 | � = x | ∀x • F1,

where P is a state assertion involving observables ranging over a finite data

domain and x is a global variable.

Note that in this subset further formulas used in the reduction can be

expressed as abbreviations:

� = 4 ⇐⇒ � = 1 ; � = 1 ; � = 1 ; � = 1,

� ≥ 4 ⇐⇒ � = 4 ; true,

� = x+ y + 4 ⇐⇒ � = x ; � = y ; � = 4.

Of course, the logical connectives ∧,=⇒,⇐⇒, and the quantifier ∃ can also

be considered as abbreviations.

Even the formula � = 1 can be dropped in the above subset because

instead of the unit length 1 we may use any positive time z. Thus we may

replace the formula encoding(M) by

∃z • encodingz (M),

where encodingz (M) results from encoding(M) by first using the above ab-

breviations and then replacing every occurrence of � = 1 by � = z for a fresh

global variable z. Note that this subset is the Restricted Duration Calculus

of Subsection 3.1.1 augmented by � = x and ∀x, which we abbreviate by

RDC + � = x,∀x.
The following table gives an overview of the results on decidability and un-

decidability of the satisfiability problem for subsets of the Duration Calculus

obtained by Zhou, Hansen, and Sestoft [ZHS93, ZH04]. We use suggestive

abbreviations for the subsets. In the table r is a constant.

Subset Discrete time Continuous time

RDC decidable∗ decidable

RDC + � = r decidable for r ∈ N undecidable for r ∈ R>0

RDC +
∫
P1 =

∫
P2 undecidable undecidable

RDC + � = x,∀x undecidable undecidable∗

In this book we have shown the results marked ∗.
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3.2 Implementables

In this section we introduce the notion of control automata which are closer

to implementations of real-time systems. Control automata are equipped

with a real-time semantics that is described by a collection of DC formulas

taken from the subset of so-called DC implementables due to A.P. Ravn.

Having a semantics in DC eases correctness proofs that control automata

satisfy their requirements, which are also given as DC formulas.

A system of k control automata describes the behaviour of k state variables

X1, . . . , Xk ranging over finite data domains D1, . . . , Dk, respectively. A

state assertion of the ith control automaton that constrains the values of Xi

is called a phase. More precisely, a basic phase of Xi is a state assertion of

the form

Xi = di with di ∈ Di,

and a phase of Xi is a Boolean combination of basic phases of Xi.

Example 3.13

Let di1 , di2 ∈ Di. Then Xi = di1 ∨Xi = di2 is a phase of Xi. �

We use the following abbreviations for phases:

• If Xi is a Boolean state variable and thus Di = {0, 1} we write

Xi for the basic phase Xi = 1

(as in Subsection 2.2.2). Hence, the following equivalences hold:

¬Xi ⇐⇒ ¬(Xi = 1) ⇐⇒ Xi = 0.

• If Di is disjoint from all Dj with i �= j, we write

di for the basic phase Xi = di,

where di ∈ Di.

Example 3.14

We model a gas burner implementation as a system of four control automata,

represented by the following state variables:

• a Boolean state variable H representing heat request,

• a Boolean state variable F representing the flame,

• a state variable C ranging over {idle, purge, ignite, burn} representing the

controller, and

• a Boolean state variable G representing the gas valve.
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The untimed transition behaviour of the state variables H, F , C, and G is

given by the following transition diagrams of their basic phases:

H

¬H

F

¬F

G

¬Gidle purge

burn ignite

The initial phase of each control automaton is marked by an incoming edge.

The four control automata behave independently from each other except

for certain real-time constraints of these phases that will be specified in the

sequel by DC implementables. From the viewpoint of the controller C, the

state variables H and F are inputs and G is an output, i.e. controllable by

C. �

Standard forms. DC implementables make use of so-called standard forms

of the Duration Calculus, which we introduce now as abbreviations of certain

patterns of formulas. In the following let F be a DC formula, P be a state

assertion, and θ a rigid DC term.

• Followed-by:

F −→ �P � def⇐⇒ ¬�(F ; �¬P �) ⇐⇒ �¬(F ; �¬P �).

This definition uses a formula with a double negation, which is diffi-

cult to understand. It is equivalent to the following formula with a

modal operator � and a quantifier over a length restriction:

∀x •�((F ∧ � = x) ; � > 0) =⇒
(F ∧ � = x) ; �P � ; true)).

Thus F −→ �P � holds on an interval [b, e] if every subinterval (of

length x) where F holds is followed by an interval where P holds.

Visualisation:

Time

b e

F

= x P

F −→ �P �
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We use the followed-by operator to describe the transition behaviour

of control automata. For instance, the formula

�idle� −→ �idle ∨ purge�

expresses that whenever the controller of Example 3.14 is in the idle

phase, it subsequently stays in this phase or moves to the purge

phase.

• Followed-by-initially:

F −→0 �P � def⇐⇒ ¬(F ; �¬P �).

In contrast to F −→ �P �, no modal operator is used in the definition

of this variant of the followed-by operator. It is equivalent to the

following formula without modal operator � but with a quantifier

over a length restriction:

∀x • ((F ∧ � = x) ; � > 0) =⇒
(F ∧ � = x) ; �P � ; true)).

It will be interpreted on initial intervals [0, e]. Thus F −→0 �P �
holds on [0, e] if every initial subinterval (of length x) where F holds

is followed by an interval where P holds.

Visualisation:

Time

0
e

F

= x P

F −→0 �P �

• (Timed) leads-to:

F
θ−−−−→ �P � def⇐⇒ (F ∧ � = θ) −→ �P � .

Intuitively, the formula F
θ−−−−→ �P � holds on an interval [b, e] if

every subinterval where F holds for a duration of θ is followed by an

interval where P holds.

Visualisation:
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Time

b e

F

= θ P

F
θ−−−−→ �P �

With the leads-to operator we can describe time restrictions for tran-

sitions of control automata. For instance, the formula

�purge� 30+ε−−−−→ �¬purge�

requires the controller of Example 3.14 to leave the purge phase after

at most 30 + ε time units. Similarly, we can express synchronisation

constraints of different control automata. For instance, the formula

�burn ∧ (¬H ∨ ¬F )� ε−−−−→ �¬burn�

forces the controller to leave the burn phase if there is no heat request

or no flame (¬H ∨ ¬F ) for a period of ε time units.

• (Timed) up-to:

F
≤θ−−−−→ �P � def⇐⇒ (F ∧ � ≤ θ) −→ �P � .

Intuitively, the formula F
≤θ−−−−→ �P � holds on an interval [b, e] if

every subinterval where F holds for a duration of up to θ is followed

by an interval where P holds.

Visualisation:

Time

b e

F

≤ θ P

F
≤θ−−−−→ �P �

We shall use the up-to operator (in combination with the chop op-

erator) to describe the stability of phases. For instance, the formula

�¬purge� ; �purge� ≤30−−−−→ �purge�

expresses that the controller of Example 3.14 has to keep the purge

phase stable for at least 30 time units. We stipulate that standard
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forms have the least priority. Thus ; binds stronger than
≤30−−−−→ in

this formula.

• (Timed) up-to-initially:

F
≤θ−−−−→ 0 �P � def⇐⇒ (F ∧ � ≤ θ) −→0 �P � .

Intuitively, the formula F
≤θ−−−−→ 0 �P � holds on an initial interval

[0, e] if every initial subinterval where F holds for a duration of up

to θ is followed by an interval where P holds.

Visualisation:

Time

0 e

F

≤ θ P

F
≤θ−−−−→ 0 �P �

This variant of the up-to operator can be used to express initial

stability requirements.

• Initial phases: To specify that P is the initial phase of a control au-

tomaton, we write

�� ∨ �P � ; true.

Recall that ; binds stronger than ∨. Intuitively, this formula holds

on an initial interval [0, e] if this interval is either empty or it starts

with a non-empty subinterval where P holds.

Visualisation:

Time

0

P

; e

For instance, the formula

�� ∨ �idle� ; true

expresses that the controller of Example 3.14 has idle as its initial

phase.
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DC implementables. Equipped with these standard forms, we now in-

troduce DC implementables, a subset of the Duration Calculus defined by

A.P. Ravn. Implementables are certain patterns of DC formulas that are

well suited for specifying the behaviour of control automata. In each of the

following patterns the letters π, π1, . . . , πn with n ≥ 0 denote phases of the

same state variable Xi, the letter ϕ denotes a state assertion that does not

depend on Xi, and the letter θ denotes a rigid DC term. Of course, different

patterns can constrain different state variables.

• Initialisation:

�� ∨ �π� ; true.

This pattern expresses that initially, the control automaton is in phase π.

Formally, each observation interval is either empty or starts with π.

• Sequencing :

�π� −→ �π ∨ π1 ∨ . . . ∨ πn� .

This pattern expresses that when the control automaton is in phase π it

subsequently stays in π or moves to one of the phases π1, . . . , πn.

• Progress:

�π� θ−−−−→ �¬π� .

This pattern expresses that after the control automaton stayed for θ sec-

onds in phase π, it subsequently leaves this phase and thus progresses.

• Synchronisation:

�π ∧ ϕ� θ−−−−→ �¬π� .

This pattern expresses more generally that after the control automaton

stayed for θ seconds in phase π, with the condition ϕ being true, it sub-

sequently leaves this phase.

• Bounded stability :

�¬π� ; �π ∧ ϕ� ≤θ−−−−→ �π ∨ π1 ∨ . . . ∨ πn� .

This pattern expresses that when the control automaton changed its phase

to π with the condition ϕ being true and the time since this change not

exceeding θ seconds, it subsequently stays in π (i.e. π is stable) or it moves

to one of the phases π1, . . . , πn.

• Unbounded stability :

�¬π� ; �π ∧ ϕ� −→ �π ∨ π1 ∨ . . . ∨ πn� .
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This pattern expresses that when the control automaton changed its phase

to π with the condition ϕ being true, it subsequently stays in π or moves

to one of the phases π1, . . . , πn.

• Bounded initial stability :

�π ∧ ϕ� ≤θ−−−−→ 0 �π ∨ π1 ∨ . . . ∨ πn� .

This pattern expresses bounded stability of an initial phase π, i.e. when the

control automaton initially is in phase π with the condition ϕ being true

and the time since this change not exceeding θ seconds, it subsequently

stays in π or moves to one of the phases π1, . . . , πn.

• Unbounded initial stability :

�π ∧ ϕ� −→0 �π ∨ π1 ∨ . . . ∨ πn� .

This pattern expresses unbounded stability of an initial phase π, i.e. when

the control automaton initially is in phase π with the condition ϕ being

true, it subsequently stays in π or moves to one of the phases π1, . . . , πn.

3.2.1 A controller for the gas burner

To specify the time-dependent behaviour of the control automata for C, H,

F , and G we take a global variable ε representing a parameter for reaction

time and introduce the implementables shown in Table 3.1.

Let GB-Ctrl denote the conjunction of all implementables above and the

formula ε > 0:

GB-Ctrl
def⇐⇒ Init-1 ∧ . . . ∧ Stab-7 ∧ ε > 0.

Then GB-Ctrl is a DC formula with the free global variable ε and the ob-

servables C, H, F , and G. It specifies all interpretations I and valuations

V of ε that realise GB-Ctrl from 0, i.e. with

I,V |=0 GB-Ctrl.

Note that the implementables Init-1, . . . ,Seq-4 specify the (untimed) transi-

tion diagrams of the observables C, H, F , and G, as shown in Example 3.14.

Informally, the specified behaviour of the controller C is as follows. Initially,

the controller of the gas burner is in the idle phase (Init-1), and heat request,

flame, and gas are all switched off (¬H,¬F,¬G due to Init-2, Init-3, Init-4).

If no heat request occurs (¬H), the controller stays in the idle phase (Stab-1

and Stab-1-Init). By Stab-5, Stab-5-Init and Stab-6, Stab-6-Init, the flame

and the gas remain switched off in this phase. If a heat request occurs (H),
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Init-1: �� ∨ �idle� ; true,
Init-2: �� ∨ �¬H� ; true,
Init-3: �� ∨ �¬F � ; true,
Init-4: �� ∨ �¬G� ; true,
Seq-1: �idle� −→ �idle ∨ purge� ,
Seq-2: �purge� −→ �purge ∨ ignite� ,
Seq-3: �ignite� −→ �ignite ∨ burn� ,
Seq-4: �burn� −→ �burn ∨ idle� ,

Prog-1: �purge� 30+ε−−−−→ �¬purge� ,

Prog-2: �ignite� 0.5+ε−−−−→ �¬ignite� ,
Syn-1: �idle ∧H� ε−−−−→ �¬idle� ,
Syn-2: �burn ∧ (¬H ∨ ¬F )� ε−−−−→ �¬burn� ,
Syn-3: �G ∧ (idle ∨ purge)� ε−−−−→ �¬G� ,
Syn-4: �¬G ∧ (ignite ∨ burn)� ε−−−−→ �G� ,

Stab-1: �¬idle� ; �idle ∧ ¬H� −→ �idle� ,
Stab-1-init: �idle ∧ ¬H� −→0 �idle� ,

Stab-2: �¬purge� ; �purge� ≤30−−−−→ �purge� ,

Stab-3: �¬ignite� ; �ignite� ≤0.5−−−−→ �ignite� ,
Stab-4: �¬burn� ; �burn ∧H ∧ F � −→ �burn� ,
Stab-5: �F � ; �¬F ∧ ¬ignite� −→ �¬F � ,

Stab-5-init: �¬F ∧ ¬ignite� −→0 �¬F � ,
Stab-6: �G� ; �¬G ∧ (idle ∨ purge)� −→ �¬G� ,

Stab-6-init: �¬G ∧ (idle ∨ purge)� −→0 �¬G� ,
Stab-7: �¬G� ; �G ∧ (ignite ∨ burn)� −→ �G� .

Table 3.1. Implementables specifying the gas burner controller

the controller leaves the idle phase (Syn-1). By Seq-1, the new phase is the

purge phase. The design idea of the controller is that the purge phase takes

some time, here 30 seconds due to Stab-2, to let gas evaporate. When 30

seconds are elapsed the controller can leave the purge phase. After at most

30+ε seconds this transition has been performed (Prog-1). The summand ε

takes care of the reaction time of the controller, which in reality is non-zero.

By Seq-2, the new phase is the ignite phase. In this phase the gas valve

is opened (Syn-4) and the flowing gas is ignited so that a flame appears.

However, we cannot force the flame to appear because a flame failure may

occur and thus gas may leak. To increase the chance for a proper ignition,

the ignite phase takes some period, here 0.5 seconds due to Stab-3, and is

left after at most 0.5 + ε seconds (Prog-2) to the burn phase (Seq-3). The

burn phase is stable as long as the heat request and the flame continue to be
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on (Stab-4), and the gas valve is kept open in this phase (Stab-7). As soon

as the heat request is switched off or the flame disappears the burn phase is

left (Syn-2) for the idle phase (Seq-4). Here the controller cycle starts again.

In both the idle phase and the purge phase the gas valve is closed (Syn-3).

3.2.2 Correctness proof

In this subsection we derive a sufficient condition for the reaction time ε

which ensures that the controller for the gas burner is correct w.r.t. the

safety requirement

Req ⇐⇒ �(� ≥ 60 =⇒ 20 ·
∫
L ≤ �)

introduced in Subsection 2.3.1. Recall that the state assertion L
def⇐⇒

G ∧ ¬F represents the gas leak. In Lemma 2.17 we proved

|= Req-1 =⇒ Req

for the simplified requirement

Req-1
def⇐⇒ �(� ≤ 30 =⇒

∫
L ≤ 1).

Here we show, for a certain condition A(ε) on the values of ε, the validity

|= (GB-Ctrl ∧A(ε)) =⇒ Req-1.

First, we prove upper bounds for the durations of the constituents G and

¬F of L in the individual phases of the gas burner controller.

Lemma 3.15

|= GB-Ctrl =⇒ �

⎛
⎜⎜⎝

(�idle� =⇒
∫
G ≤ ε)

∧ (�purge� =⇒
∫
G ≤ ε)

∧ (�ignite� =⇒ � ≤ 0.5 + ε)

∧ (�burn� =⇒
∫
¬F ≤ 2 · ε)

⎞
⎟⎟⎠ .

Proof:

Consider an interpretation I, a valuation V, and an interval [b, e] with

I,V, [c, d] |= GB-Ctrl. We have to show that for this choice of I,V, [c, d]
the right-hand side of the implication holds. To this end, take an arbitrary

subinterval [b, e] of [c, d], i.e. with c ≤ b ≤ e ≤ d. We distinguish four cases

corresponding to the four phases of the controller.
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Case 1: I,V, [b, e] |= �idle�.
Due to (Syn-3) and (Stab-6) we can conclude

I,V, [b, e] |=�(�G� =⇒ � ≤ ε)

∧ ¬�(�G� ; �¬G� ; �G�),

i.e. during an idle phase there is at most one G-phase and the duration of

this G-phase is at most ε. Thus

I,V, [b, e] |=
∫
G ≤ ε.

Case 2: I,V, [b, e] |= �purge�.
This case is shown analogously to Case 1, again by considering (Syn-3) and

(Stab-6).

Case 3: I,V, [b, e] |= �ignite�.
With (Prog-2) we can conclude

I,V, [b, e] |= � ≤ 0.5 + ε.

Case 4: I,V, [b, e] |= �burn�.
By (Syn-2) and (Stab-5), the following holds:

I,V, [b, e] |=�(�¬F � =⇒ � ≤ ε)

∧ ¬�(�F � ; �¬F � ; �F �),

i.e. during a burn phase each ¬F -phase has a maximum duration of ε, and

there are at most two ¬F -phases. Hence, we have

I,V, [b, e] |=
∫
¬F ≤ 2 · ε

in this case. �

Now we can show the following lemma:

Lemma 3.16

|= ∃ε • GB-Ctrl =⇒ Req-1.

Proof:

Consider an interpretation I, a valuation V, and an interval [b, e] with

I,V, [c, d] |= GB-Ctrl. We shall derive a sufficient condition for ε such that

I,V, [c, d] |= Req-1 holds. To this end, take a subinterval [b, e] of [c, d] of

length e− b ≤ 30. We have to show

I,V, [b, e] |=
∫
L ≤ 1
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for a suitable condition A(ε) for ε. Due to the finite variability and the

domain of the controller observable C it is clear that

I,V, [b, e] |= ��
∨ (�idle� ; true ∧ � ≤ 30)

∨ (�purge� ; true ∧ � ≤ 30)

∨ (�ignite� ; true ∧ � ≤ 30)

∨ (�burn� ; true ∧ � ≤ 30)

holds. Following this disjunction we distinguish five cases, but proceed

“backwards” by considering the phases in the order idle, burn, ignite, purge.

Case 0: I,V, [b, e] |= ��.
Then I,V, [b, e] |=

∫
L ≤ 1 is trivially true.

Case 1: I,V, [b, e] |= �idle� ; true ∧ � ≤ 30.

Due to (Seq-1) and (Stab-2), the following holds:

I,V, [b, e] |= �idle� ∨ �idle� ; �purge� .

By Lemma 3.15, we can conclude

I,V, [b, e] |=
∫
L ≤ ε ∨

∫
L ≤ ε ;

∫
L ≤ ε,

which we can simplify to

I,V, [b, e] |=
∫
L ≤ 2 · ε.

Therefore, ε ≤ 0.5 is sufficient for achieving Req-1 in this case.

Case 2: I,V, [b, e] |= �burn� ; true ∧ � ≤ 30.

By (Seq-4), the following holds:

I,V, [b, e] |=(�burn� ∨ (�burn� ; �idle� ; true)) ∧ � ≤ 30.

By Lemma 3.15 and the conclusions in Case 1, we can conclude

I,V, [b, e] |=(
∫
L ≤ 2 · ε ∨ (

∫
L ≤ 2 · ε ;

∫
L ≤ 2 · ε)) ∧ � ≤ 30,

which we can simplify to

I,V, [b, e] |=
∫
L ≤ 4 · ε.

Therefore, ε ≤ 0.25 is sufficient for achieving Req-1 in this case.
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Case 3: I,V, [b, e] |= �ignite� ; true ∧ � ≤ 30.

Due to (Seq-3), the following holds:

I,V, [b, e] |=(�ignite� ∨ (�ignite� ; �burn� ; true)) ∧ � ≤ 30.

By Lemma 3.15 and the conclusions in Case 2, we can conclude

I,V, [b, e] |=(
∫
L ≤ 0.5 + ε ∨ (

∫
L ≤ 0.5 + ε ;

∫
L ≤ 4 · ε),

which we can simplify to

I,V, [b, e] |=
∫
L ≤ 0.5 + 5 · ε.

Therefore, ε ≤ 0.1 is a sufficient condition for achieving Req-1 in this case.

Case 4: I,V, [b, e] |= �purge� ; true ∧ � ≤ 30.

By (Seq-2), the following holds:

I,V, [b, e] |=(�purge� ∨ (�purge� ; �ignite� ; true)) ∧ � ≤ 30.

By Lemma 3.15 and the conclusions in Case 3, we can conclude

I,V, [b, e] |=
∫
L ≤ ε ∨ (

∫
L ≤ ε ;

∫
L ≤ 0.5 + 5 · ε),

which we can simplify to

I,V, [b, e] |=
∫
L ≤ 0.5 + 6 · ε.

Therefore, ε ≤ 1
12 is sufficient for achieving Req-1 in this case.

The following diagram visualises the arguments of this proof. The phases

of GB-Ctrl are shown with their lengths (if known) and with proven upper

bounds of the duration
∫
L. Then in any observation interval [b, e] of length

� ≤ 30 the overall duration
∫
L is at most 1 provided ε ≤ 1

12 holds.

purge ignite burn idle purge

← � ≥ 30 → ← � ≥ 0.5 → ← � ≥ 30 →∫
L ≤ ε

∫
L ≤ 0.5 + ε

∫
L ≤ 2 · ε

∫
L ≤ ε

∫
L ≤ ε

b ←− � ≤ 30 −→ e∫
L ≤ 0.5 + 6 · ε ≤ 1

Altogether, we proved that the condition

A(ε)
def⇐⇒ ε ≤ 1

12
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is sufficient for establishing |= (GB-Ctrl ∧A(ε)) =⇒ Req-1. �

Combining Lemma 2.17 and (the proof of) Lemma 3.16 we obtain the

following theorem:

Theorem 3.17

The correctness result

|=
(

GB-Ctrl ∧ ε ≤ 1

12

)
=⇒ Req

holds.

An immediate consequence of the theorem is that

I,V |=0 GB-Ctrl ∧ ε ≤ 1

12
implies I,V |=0 Req

for all interpretations I and all valuations V, i.e. all I and V that realise

GB-Ctrl ∧ ε ≤ 1
12 from 0 also realise Req from 0.

Discussion

In the correctness proof of GB-Ctrl we used only a subset of its implementa-

bles, i.e.

Seq-1, Seq-2, Seq-3, Seq-4,

Prog-2, Syn-2, Syn-3,

Stab-2, Stab-5, Stab-6.

Thus also a controller without the constraint Prog-1, forcing it to leave the

purge phase, satisfies Req. Indeed, such a controller would switch off the gas

in the idle phase and the purge phase within ε time and then never turn it

on again. However, this controller would not satisfy a customer who wants

a warm room. The implementable Prog-1 is needed as soon as we consider

the utility requirement “Upon a heat request H, the controller should turn

on the gas valve G” (see Exercise 3.8).

In Subsection 2.3.1 we introduced two design decisions Des-1 (every leak

phase L lasts at most 1 second) and Des-2 (every non-leak phase ¬L lasts

more than 30 seconds), and showed that together they imply Req-1 and

thus Req. The question arises whether they are implied by GB-Ctrl ? Due to

Remark 2.33 we know that Req-1 implies Des-1. Consequently, also GB-Ctrl

implies Des-1. By contrast, GB-Ctrl does not imply Des-2. For example,

GB-Ctrl does not prevent that during a burn phase a ¬L-phase ends. This

happens when a flame failure occurs, where the flame suddenly vanishes.
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3.3 Constraint Diagrams

When discussing and formalising the requirements of a system, application

experts and computer science experts have to come to an agreement. The

direct use of logic is often claimed to be an obstacle for engineers. Therefore

graphical notations for specifying behavioural properties have been devel-

oped. In this section we present a graphical language which is inspired by

timing diagrams that are used to describe the behaviour of hardware compo-

nents (cf. Figure 1.6): the Constraint Diagrams (CDs for short) introduced

by C. Kleuker for the specification of real-time requirements. Since the for-

mal semantics of Constraint Diagrams is given in terms of the Duration

Calculus, these diagrams can be integrated seamlessly into a design process

based on the Duration Calculus. To give a first idea of Constraint Diagrams

we discuss an example.

Example 3.18 (Watchdog)

A watchdog is a real-time system that observes a Boolean input signal S.

If S does not hold for a period of 10 seconds, an alarm signal A should

be raised within 1 second. To model this system we consider two Boolean

observables S and A. The desired timing behaviour of these observables can

be specified by the following Constraint Diagram:

S
¬S
10 2

A
A�

[0, 1]

The two horizontal lines describe the behaviour of S and A in isolation.

The arrow establishes a link between S and A. Semantically, a Constraint

Diagram C represents an implication in an assumption/commitment style:

if the assumptions of C hold then also the commitments of C hold. In the

diagram above the assumption is that we see no signal (¬S) for a duration

of 10 seconds and wait 2 more seconds. Then the commitment is that an

alarm is raised (A) at most 1 second after the 10 seconds where ¬S holds.

The extra 2 seconds in the assumption guarantee that we will observe the

alarm A. The boxes around A and [0, 1] indicate that these are commitments

whereas the remaining parts are all assumptions. The dashed parts of the

lines represent arbitrary behaviour of S and A.

Formally, the semantics of a Constraint Diagram will be defined in terms of
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the Duration Calculus. For the watchdog example, the intended implication

is expressed by the following formula:

∀ε • (� = ε ; (�¬S� ∧ � = 10) ; � = 2 ; true (3.2)

=⇒ ∃δ • (� = δ ; �A� ; true (3.3)

∧ δ − (ε+ 10) ∈ [0, 1])). (3.4)

The formula uses two quantified global variables ε and δ as parameters for

the unknown durations of the first phases of S and A. Line (3.2) formalises

the assumption part: after ε seconds ¬S holds for 10 seconds and at least

2 more seconds follow. The lines (3.3) and (3.4) formalise the commitment

part of the diagram. Line (3.3) expresses that the alarm A is raised after

δ seconds. In line (3.4) the meaning of the arrow is formalised by constrain-

ing the corresponding durations: the time δ (when the alarm is raised) is

at most 1 second more than ε + 10 (when ¬S holds for 10 seconds). The

additional 2 seconds after ¬S imply that ε+ 10 + 2 ≥ δ holds so that there

is sufficient time to observe the alarm A.

For the watchdog we stipulate that initially S holds. This can be specified

by the following Constraint Diagram:

S
S

Here the assumption is trivial, i.e. equivalent to true. The commitment

is that the signal S is present initially. The semantics of this Constraint

Diagram is equivalent to the formula �� ∨ �S� ; true. �

3.3.1 Syntax and semantics

In this subsection we explain the general structure (“syntax”) and semantics

of Constraint Diagrams. Throughout, we consider observables X1, . . . , Xk

with k ≥ 1 and global variables taken from the set GVar. Let X,Y be

different elements of {X1, . . . , Xk}.
A Constraint Diagram C for X1, . . . , Xk displays for each observable X ∈

{X1, . . . , Xk} a sequence of phases phX
1 , ph

X
2 , . . . , ph

X
#(X) with #(X) ≥ 1

where subsequent phases are delimited by small vertical bars. Arrows may

link the phase sequences of different observables. Let arX,Y
i,j denote an arrow

from the start of phase phX
i of X to the end of phase phY

j of Y .
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X
phX

1 phX
2 phX

i
phX

#(X)

...

Y
phY

1 phY
2

phY
j

phY
#(Y )

�

arY,X
2,1

�

arX,Y
i,j

There are two mappings π and π̃ that assign to each phase phX
i :

• DC formulas π(phX
i ) and π̃(phX

i ) each of which is either true or a state

assertion P about X, i.e.

P ::= 0 | 1 | X = d | ¬P | P1 ∧ P2,

where d belongs to the data type of X. For a Boolean observable X we

abbreviate the basic property X = 1 to X. The other logical connectives

∨, =⇒, and ⇐⇒ are considered as abbreviations. We write πX
i and

π̃X
i as shorthands for π(phX

i ) and π̃(phX
i ), respectively. The formula πX

i

represents an assumption and π̃X
i a commitment.

Furthermore, there are two mappings I and Ĩ that assign to each phase phX
i

and each arrow arX,Y
i,j :

• Non-empty time intervals I(phX
i ) and Ĩ(phX

i ) as well as I(arX,Y
i,j ) and

Ĩ(arX,Y
i,j ). They may be open, half-open, or closed of the form (b, e) or

[b, e) with b ∈ Time and e ∈ Time∪{∞}, and (b, e] or [b, e] with b, e ∈ Time.

Intervals (b,∞) and [b,∞) denote the unbounded sets {t ∈ Time | b < t}
and {t ∈ Time | b ≤ t}, respectively. The interval bounds b and e may also

be given by rigid DC terms involving global variables. We write IX
i and

IX,Y
i,j as shorthands for I(phX

i ) and I(arX,Y
i,j ), and ĨX

i and ĨX,Y
i,j as short-

hands for Ĩ(phX
i ) and Ĩ(arX,Y

i,j ), respectively. The intervals IX
i and IX,Y

i,j

represent timing assumptions, and ĨX
i and ĨX,Y

i,j timing commitments.

Graphically, a phase phX
i of X is represented as follows:
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X
πX

i
π̃X

i

IX
i ĨX

i

...

Unboxed state assertions describe assumptions whereas boxed state asser-

tions are commitments constraining X. If πX
i = true this annotation is

dropped and if π̃X
i = true this annotation together with the surrounding box

are dropped. If IX
i = [0,∞) the time interval is not shown and if ĨX

i = [0,∞)

the time interval and the surrounding box are not shown. If πX
i = true and

IX
i = [0,∞) both annotations are dropped and the phase phX

i is visualised

as a dashed line (cf. the diagram of Example 3.18).

Graphically, an arrow arX,Y
i,j is annotated with the interval IX,Y

i,j and the

interval ĨX,Y
i,j inside a box.

X
phX

i

...

Y
phY

j �

IX,Y
i,j

ĨX,Y
i,j

Unboxed intervals describe assumptions and boxed intervals commitments.

If IX,Y
i,j = [0,∞) the interval is not shown and if ĨX,Y

i,j = [0,∞) the interval

together with the surrounding box are not shown. Point intervals [b, b] are

abbreviated to the annotation b in the diagram.

The semantics of Constraint Diagrams will be expressed using two types

of Duration Calculus formulas, called sequence and difference formulas.

Sequence formulas. The set of sequence formulas, with typical element

Sequ, is defined by the following syntax:

Sequ ::= � = x | (�P � ∧ � = x) | Sequ1 ;Sequ2.
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Here P is a state assertion and x is a global variable. A formula (�P �∧� = x)

represents a (timed) phase.

For sequence formulas we define the prefix operator, denoted by Pref, in-

ductively as follows:

Pref(� = x)
def⇐⇒ � ≤ x,

Pref(�P � ∧ � = x)
def⇐⇒ �� ∨ (�P � ∧ � ≤ x),

Pref(Sequ1 ;Sequ2)
def⇐⇒ Pref(Sequ1) ∨ Sequ1 ;Pref(Sequ2).

The application of the prefix operator weakens a sequence formula, as

stated in the following remark.

Remark 3.19

For every sequence formula Sequ the following holds:

|= Sequ =⇒ Pref(Sequ).

Difference formulas. A difference formula has the form⎛
⎝ m∑

i=1

xi −
n∑

j=1

yj

⎞
⎠ ∈ I,

where xi and yj are global variables and I is an interval of the form described

above. There are two special cases: if I = [0, 0] then the above difference

formula is written as an equality

m∑
i=1

xi =
n∑

j=1

yj

and if I = [0,∞) then it is written as an inequality

m∑
i=1

xi ≥
n∑

j=1

yj .

We are now prepared to introduce the formal semantics of Constraint

Diagrams.

Definition 3.20 (DC semantics of Constraint Diagrams)

The DC semantics of a Constraint Diagram C is given by the formula

[[C]]DC
def⇐⇒ ∀AsmV ar(C) •

(PSAsm(C) ∧ TimeAsm(C)) (3.5)

=⇒ ∃ComV ar(C) •
(PSCom(C) ∧ TimeCom(C) ∧ LenReq(C)). (3.6)
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The formula (3.5) describes the assumption part and (3.6) the commitment part

of the diagram. AsmV ar(C) and ComV ar(C) are two lists of global variables

used in these subformulas. The list AsmV ar(C) contains for each observable

X and each phase i in the phase sequence of X a distinguished global variable

εX
i , and the list ComV ar(C) contains for each observable X and each phase i

in the phase sequence of X a distinguished global variable δX
i . These variables

serve to describe the duration of the individual phases of X.

Next we define the various subformulas of (3.5) and (3.6). We distinguish

phase sequence constraints PSAsm(C) and PSCom(C), time constraints

TimeAsm(C) and TimeCom(C), and length requirements LenReq(C).

Phase sequence constraints

Each phase sequence for a state variable X in C

X
phX

1
phX

#(X)

contributes to both assumptions and commitments.

• For the assumption part we define for X and C:

PSAsm(X)
def⇐⇒

(⌈
πX

1

⌉
∧ � = εX1

)
; . . . ;

(⌈
πX

#(X)

⌉
∧ � = εX

#(X)

)
,

PSAsm(C) def⇐⇒
∧

X∈{X1,...,Xk}

PSAsm(X).

• For the commitment part we define for X and C:

PSCom(X)
def⇐⇒ Pref

( (⌈
πX

1 ∧ π̃X
1

⌉
∧ � = δX

1

)
; . . . ;(⌈

πX
#(X) ∧ π̃X

#(X)

⌉
∧ � = δX

#(X)

))
,

PSCom(C) def⇐⇒
∧

X∈{X1,...,Xk}

PSCom(X).

Note that in the definitions of PSAsm(X) and PSCom(X) subformulas of

the form (�true�∧� = εX
i ) or (�true ∧ true�∧� = δX

i ) can occur which have to

be read as (� = εX
i ) or (� = δX

i ), respectively. Note that the prefix operator

is applied in the commitment part. We shall explain the effect of this in

Example 3.21.
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Time constraints

Each phase phX
i of a state variable X in C and each arrow arX,Y

m,n from the

start of phase phX
m to the end of phase phY

n of two different state variables

X and Y in C as shown in

X
phX

m

Y
phY

n �

IX,Y
m,n

ĨX,Y
m,n

contribute time constraints to both assumptions and commitments.

• For the assumption part we define for phases and arrows:

TimeAsm(phX
i )

def⇐⇒ εX
i ∈ IX

i ,

T imeAsm(arX,Y
m,n )

def⇐⇒

⎛
⎝ n∑

j=1

εY
j −

m−1∑
i=1

εX
i

⎞
⎠ ∈ IX,Y

m,n .

The time constraint in the assumption part of the diagram C is the con-

junction of these formulas taken over all phases and arrows:

TimeAsm(C) def⇐⇒
∧

X ∈ {X1, . . . , Xk}
1 ≤ i ≤ #(X)

TimeAsm(phX
i )

∧
∧

all arrows arX,Y
m,n present in C

TimeAsm(arX,Y
m,n ).

The sub- and superscripts of the arrows arX,Y
m,n are constrained as follows:

X,Y ∈ {X1, . . . , Xk} with X �= Y and 1 ≤ m ≤ #(X) and 1 ≤ n ≤ #(Y ).

• For the commitment part we define for phases and arrows:

TimeCom(phX
i )

def⇐⇒ δX
i ∈ IX

i ∩ ĨX
i ,

T imeCom(arX,Y
m,n )

def⇐⇒

⎛
⎝ n∑

j=1

δY
j −

m−1∑
i=1

δX
i

⎞
⎠ ∈ IX,Y

m,n ∩ ĨX,Y
m,n .

The time constraint in the commitment part of the diagram C is the
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conjunction of these formulas taken over all phases and arrows:

TimeCom(C) def⇐⇒
∧

X ∈ {X1, . . . , Xk}
1 ≤ i ≤ #(X)

TimeCom(phX
i )

∧
∧

all arrows arX,Y
m,n present in C

TimeCom(arX,Y
m,n ).

The sub- and superscripts of the arrows arX,Y
m,n are constrained as above.

Length requirements

To connect the global variables εX
i and δX

i used in assumptions and com-

mitments we formulate additional length requirements in the commitment

part of the semantics. These requirements are expressed in terms of specified

parts, consisting of phases with formulas �= true or time intervals �= [0,∞)

as assumptions, and their surrounding unspecified parts.

Let us first consider a simple case as shown in the diagram

X
unspecified

phX
m phX

m+1

unspecified

with πX
m �= true and πX

m+1 �= true but πX
m−1 = true and πX

m+2 = true. Here the

specified part is sp = phX
m, ph

X
m+1 and the corresponding length requirement

is given by the formula

LenReq(sp)
def⇐⇒

m−1∑
i=1

δX
i ≤

m−1∑
i=1

εX
i (3.7)

∧
m∑

i=1

δX
i =

m∑
i=1

εX
i (3.8)

∧
m+1∑
i=1

δX
i ≥

m+1∑
i=1

εX
i . (3.9)

The purpose of these (special cases of difference) formulas is to ensure that

the lengths of the phases phX
m and phX

m+1 in the assumption part are properly

connected to those in the commitment part. The formula (3.8) ensures that

the chop point between phase phX
m and phX

m+1 (inside the specified part)

in the assumption part occurs at the same time as the corresponding chop

point in the commitment part, and the formulas (3.7) and (3.9) ensure that
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the margins to unspecified parts in the assumption part may expand in the

commitment part in the direction of the unspecified parts.

In general, a specified part of an observable X is a segment

spX
r,s = phX

r , . . . , ph
X
s

of the phase sequence of X with 1 ≤ r ≤ s ≤ #(X) and maximal length

s − r such that for each m ∈ {r, . . . , s} either πX
m �= true or IX

m �= [0,∞)

holds. The parts of the phase sequence of X surrounding spX
r,s are called

unspecified. This is illustrated by the following diagram:

X
unspec.

phX
r phX

m phX
s

unspec.

specified part

The length requirement for a specified part is defined as follows:

LenReq(spX
r,s)

def⇐⇒
r−1∑
i=1

δX
i ≤

r−1∑
i=1

εX
i (3.10)

∧
∧

m∈{r,...,s−1}

(
m∑

i=1

δX
i =

m∑
i=1

εX
i

)
(3.11)

∧
s∑

i=1

δX
i ≥

s∑
i=1

εX
i . (3.12)

Formula (3.10) states that in the commitment part the left margin of a

specified part can be expanded to the left and formula (3.12) states that in

the commitment part the right margin of a specified part can be expanded

to the right. Formula (3.11) states that inside a specified part the lengths

of the assumption part are preserved in the commitment part. The length

requirement of the diagram C is the conjunction of these formulas taken over

all specified parts:

LenReq(C) def⇐⇒
∧

X ∈ {X1, . . . , Xk}
1 ≤ r ≤ s ≤ #(X)

spX
r,s is a specified part of X

LenReq(spX
r,s).

This completes the definition of all constituents of the semantics [[C]]DC.
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In an application a Constraint Diagram C is used to specify the set of all

interpretations I that realise from 0 the DC formula [[C]]DC representing its

semantics. The meaning of several Constraint Diagrams is given by the set of

interpretations that satisfy all of them. This corresponds to the conjunction

of the DC formulas representing the semantics of the Constraint Diagrams.

Example 3.21 (Watchdog, continued)

Thanks to the prefix operator in the commitment part of the DC semantics

of Constraint Diagrams, we can simplify the specification of the watchdog

by dropping the assumption of a phase of duration 2 after the ¬S-phase.

The simplified Constraint Diagram looks as follows:

S
¬S
10

A
A�

[0, 1]

Literally, the DC semantics of this Constraint Diagram yields the formula

∀εS
1 , ε

S
2 , ε

S
3 , ε

A
1 , ε

A
2 , ε

A
3 •

⎛
⎜⎝ � = εS

1 ; (�¬S� ∧ � = εS
2 ) ; � = εS

3

∧ � = εA
1 ; � = εA

2 ; � = εA
3

∧ εS
2 ∈ [10, 10]

⎞
⎟⎠

=⇒ ∃δS
1 , δ

S
2 , δ

S
3 , δ

A
1 , δ

A
2 , δ

A
2 •⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pref(� = δS
1 ; (�¬S� ∧ � = δS

2 ) ; � = δS
3 )

∧ Pref(� = δA
1 ; (�A� ∧ � = δA

2 ) ; � = δA
3 )

∧ δS
2 ∈ [10, 10]

∧ δA
1 − (δS

1 + δS
2 ) ∈ [0, 1]

∧ δS
1 ≤ εS

1

∧ (δS
1 + δS

2 ) ≥ (εS
1 + εS

2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The formulas εS
2 ∈ [10, 10] and δS

2 ∈ [10, 10] result from TimeAsm(phS
2 ) and

TimeCom(phS
2 ), respectively. They imply εS

2 = δS
2 = 10. The difference

formula δA
1 − (δS

1 + δS
2 ) ∈ [0, 1] is the time commitment TimeCom(arS,A

3,1 ).

The last two subformulas represent the length requirement LenReq(spS
2,2).

Since εS
2 = δS

2 = 10 holds, they imply εS
1 = δS

1 . Hence, with a change of the
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bound variables, the DC semantics can be simplified to

∀ε • (� = ε ; (�¬S� ∧ � = 10) ; true)

=⇒ ∃δ •
(

Pref(� = δ ; �A� ; true)

∧ δ − (ε+ 10) ∈ [0, 1]

)
,

where the prefix operator yields

Pref(� = δ ; �A� ; true) ⇐⇒ � ≤ δ ∨ (� = δ ; �A� ; true).

This ensures that in the commitment part A is required only if in the as-

sumption part there is sufficient time after the ¬S-phase. If this is not the

case the interval of the assumption part is matched with the first disjunct

of the prefix operator, i.e. with � ≤ δ. �

3.3.2 Generalised railroad crossing revisited

To specify the railroad crossing, we introduced in Section 1.3 the observables

• Track ranging over {empty, appr, cross} representing the state of the track,

• g ranging over the interval [0, 90] representing the gate angle,

and the following abbreviations for state assertions:

E
def

= Track = empty,

A
def

= Track = appr,

Cr
def

= Track = cross,

O
def

= g = 90,

Cl
def

= g = 0.

Using Constraint Diagrams, we can capture the requirements for the gener-

alised railroad crossing in a very intuitive way.

Safety. The safety requirement is formalised by the following diagram:

Track
Cr

g
Cl�

0

�

0
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This diagram expresses that whenever a train is in the crossing (assumption

Cr) the gate should be closed (commitment Cl). The arrows annotated with

0 express simultaneity, i.e. the commitment has to occur without delay. The

DC semantics of this diagram is equivalent to the formula �(�Cr� =⇒ �Cl�).

Utility. The utility requirement is formalised by the following diagram:

Track
¬Cr

g
O�

ξ2
	
ξ1

This diagram is an excellent example to demonstrate the conciseness of

Constraint Diagrams. It expresses that whenever for a certain time interval

there is no train in the crossing (assumption ¬Cr) the gate should be open

ξ2 seconds after the beginning of that interval and stay open until ξ1 seconds

before the end of the interval (commitment O). Recall that the parameters

ξ2 and ξ1 represent the time it takes to open the gate and to close the gate,

respectively. The DC semantics of this Constraint Diagram is equivalent to

the formula

∀ε1, ε2 • (� = ε1 ; (�¬Cr� ∧ � = ε2) ; true)

∧ ε2 > ξ1 + ξ2

=⇒ � = ε1 + ξ2 ; (�O� ∧ � = ε2 − ξ1 − ξ2) ; true.

It is also possible to use Constraint Diagrams to specify assumptions about

the behaviour of the observable Track.

Initial value. The commitment is that initially the track is empty (E).

Track
E

Similarly to Example 3.21, we can simplify the DC semantics of this diagram

to the formula �� ∨ �E� ; true.

State changes. If the track is empty (E) it remains empty or a train

approaches (A). We can specify this by the following Constraint Diagram:
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Track
E A

Analogously, we require that an approaching train cannot leave the track

without passing the crossing:

Track
A Cr

Note that we do not need a diagram to specify the state changes when a train

crosses. There are two choices and both are legal: either the track is empty

after the train has crossed or there is another train already approaching.

Hence, all values of the observable track have been covered.

Let us analyse the DC semantics of the last Constraint Diagram in more

detail. After a simplification we obtain the following DC formula:

∀ε1, ε2 • � = ε1 ; (�A� ∧ � = ε2) ; true

=⇒ ∃δ1, δ2 •
(

Pref(� = δ1 ; (�A� ∧ � = δ2) ; �Cr� ; true)

∧ δ1 ≤ ε1 ∧ ε1 + ε2 ≤ δ1 + δ2

)
,

where the prefix operator yields

Pref(� = δ1 ; (�A� ∧ � = δ2) ; �Cr� ; true) ⇐⇒
� ≤ δ1

∨ (� = δ1 ; (�A� ∧ � ≤ δ2))

∨ (� = δ1 ; (�A� ∧ � = δ2) ; �Cr� ; true).

This ensures that in the commitment part Cr is required only if in the as-

sumption part there is sufficient time after the A-phase. If this is not the

case the interval of the assumption part is matched with the second disjunct

of the prefix operator. In other words, Cr is the only possible successor

state of A but it is not assured that state A will be left. Formally, the

Constraint Diagram describes exactly the same property as the DC imple-

mentable �A� −→ �A ∨ Cr�.

3.3.3 A real-time filter

This application considers a fault-tolerance problem that occurs when using

sensors. It is taken from an industrial case study performed in collaboration
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with a company designing software for railway control. The full context of

this application will be explained in Chapter 5.

Suppose an entry sensor ES has to detect whether a train has entered

a certain line segment of a track. A technical problem is that sensors may

stutter, i.e. issue (for a limited period of time) more than one output signal

when in reality only a single train has passed the sensor. We assume here

that the sensor hardware guarantees that after 4 seconds any stuttering of

the sensor has ceased. We also assume that successive trains are at least 6

seconds apart. To avoid wrong data in the drive controller for the trains a

suitable filter is needed for each sensor. The idea is that the filter exploits

the timing assumptions to achieve fault-tolerance.

We consider here a filter FES reading input values no tr (no train is

passing), tr (train is passing), and Error (erroneous sensor value) issued

by the (possibly stuttering) entry sensor ES and transforming them into

(reliable) output values N (no train detected), T (train detected), and X

(exception). To model the filter we introduce the observables

• in ranging over {no tr, tr, Error},
• out ranging over {N,T,X},

and a global variable ρ as a parameter for the reaction time of the filter.

The desired real-time behaviour is shown in the timing diagram in Fig-

ure 3.1. When an input tr is issued by the sensor ES the filter FES should

(after a reaction time of at most ρ) output T (train detected ). In the sub-

in

no tr

tr

out

N

T

≤ ρ

= 5

≤ ρ ≤ ρ

= 5

≤ ρ

Fig. 3.1. Timing diagrams for the filter

sequent 5 seconds the filter should ignore any further stuttering of inputs

no tr or tr from the sensor and stay with output T . After 5 seconds, when

by our assumption any stuttering of the sensor has ceased and the next train



124 Properties and subsets of DC

has not yet arrived, the input is no tr and the filter (after a reaction time of

at most ρ) can return to output N . Afterwards any further input tr will be

treated as signalling that a new train approaches, causing output T again.

There is one input though which the filter FES must not ignore: the input

Error indicating an erroneous sensor value. Then the filter should proceed

as fast as possible and (after a reaction time of at most ρ) output X.

These informal requirements can be formalised using Constraint Dia-

grams. In the sequel we show CDs for the most important aspects of the

desired filter behaviour.

Initial state. The commitment is that initially the output is N .

out
N

Filtering inputs for 5 seconds. Assuming that input tr is present for ρ

seconds while output is N , the filter is committed to change its output to

T . Note that if the input tr is present for less than ρ seconds, nothing

is required from the filter. The assumption of tr being present for some

duration of time anticipates that hardware cannot react arbitrarily fast.

in
tr
ρ

out
N T�

0

�

0

The filter should keep the output T for up to 5 seconds provided only no tr

or tr (i.e. no Error) occurs as input during that period.

in
tr
ρ

no tr ∨ tr
[0, 5]

out
N T�

0

�

0

�

0

Reset after 5 seconds. Assuming that after a period of 5 seconds of output

T an input no tr is present for ρ seconds while output is still T , the filter is

committed to change its output to N .
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in
no tr
ρ

out
T

5

T N�

0

�

0

Error handling. Assuming the input Error is present for ρ seconds, the

filter is committed to output X after this time.

in
Error
ρ

out
X�

0

Exceptional state is kept. Assuming the filter is in X it is committed to stay

in this state.

out
X X

3.3.4 Expressiveness

C. Kleuker showed that conjunctions of Constraint Diagrams are Turing

powerful. The proof exploits the density of the continuous-time domain

Time = R≥0 and proceeds by giving Constraint Diagrams for all the DC

formulas used in the proof of Zhou Chaochen, Hansen, and Sestoft that

the DC can express the behaviour of any given two-counter machine (see

Subsection 3.1.2). As a consequence, it is not decidable whether a given

set of Constraint Diagrams represents a satisfiable or realisable real-time

specification.

C. Kleuker also proved the following specific result on expressiveness of

the DC implementables introduced in Section 3.2:

Theorem 3.22 (Expressiveness)

The DC implementables can be expressed by Constraint Diagrams.
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Sketch of proof:

We show how Constraint Diagrams can be used to express the implementable

patterns graphically. LetX be an observable and let π, π1, . . . , πn with n ≥ 0

be state assertions (phases) over X. We assume that Y is a finite set of

observables with X /∈ Y and ϕ is a state assertion over Y. Further on, let θ

be a rigid DC term.

Then the following Constraint Diagrams express the DC implementables.

• Initialisation. The CD

X
π

expresses the implementable

�� ∨ �π� ; true.

• Sequencing. The CD

X
π

π1 ∨ . . . ∨ πn

expresses the implementable

�π� −→ �π ∨ π1 ∨ . . . ∨ πn� .

By the prefix operator in the semantics of its commitment π1∨. . .∨πn, this

Constraint Diagram implicitly allows the system to stay in the π-phase as

it is explicitly stated in the sequencing implementable. This enables the

equivalence proof for this case.

• Progress. The CD

X
π

θ

¬π

expresses the implementable

�π� θ−−−−→ �¬π� .
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• Synchronisation. The CD

X
π

θ

¬π

Y
ϕ�

0

�

0

expresses the implementable

�π ∧ ϕ� θ−−−−→ �¬π� .

Here we use the set of observables Y in the lower line of the Constraint

Diagram and the state assertion ϕ. This can be conceived as an abbre-

viation for the Cartesian product of the observables and a corresponding

transformation of ϕ in a state assertion over this Cartesian product.

• Unbounded stability. The CD

X
¬π π

π1 ∨ . . . ∨ πn

Y
ϕ�

0

�

0

expresses the implementable

�¬π� ; �π ∧ ϕ� −→ �π ∨ π1 ∨ . . . ∨ πn� .

• Bounded stability. The CD

X
¬π π

[0, θ)

π ∨ π1 ∨ . . . ∨ πn

Y
ϕ�

0

�

0

expresses the implementable

�¬π� ; �π ∧ ϕ� ≤θ−−−−→ �π ∨ π1 ∨ . . . ∨ πn� .
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Note that in the stability formula θ appears as an upper time bound of

the sequence �¬π� ; �π ∧ ϕ�. Hence, a positive amount of time is spent in

the �¬π�-phase. However, in the Constraint Diagram we constrain only

the phase �π ∧ ϕ�. Therefore we use the half-open interval [0, θ) to keep

the equivalence between implementable and Constraint Diagram.

• Unbounded initial stability. The CD

X
π

π1 ∨ . . . ∨ πn

Y
ϕ �

0

expresses the implementable

�π ∧ ϕ� −→0 �π ∨ π1 ∨ . . . ∨ πn� .

• Bounded initial stability. The CD

X
π

[0, θ]

π ∨ π1 ∨ . . . ∨ πn

Y
ϕ �

0

expresses the implementable

�π ∧ ϕ� ≤θ−−−−→ 0 �π ∨ π1 ∨ . . . ∨ πn� .

This concludes the sketch of the proof. We leave the calculation that the

semantics of the Constraint Diagrams shown above are equivalent to the

corresponding implementables as an exercise. �

3.4 Exercises

Exercise 3.1 (Decidability)

Explain how to decide whether a regular language is

(a) empty,

(b) infinite.
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Exercise 3.2 (Discrete DC)

Construct automata accepting the languages L(� �P �) and kern(L(� �P �)).
Use these automata to decide whether the formula � �P � is

(a) satisfiable,

(b) realisable from 0.

Exercise 3.3 (Kernel)

(a) Prove that for a regular language L the language kern(L) is also regular.

Show how to modify a finite automaton A accepting L to an automaton

kern(A) accepting kern(L).

(b) Prove that Lemma 3.8 is wrong if L(F ) instead of kern(L(F )) is con-

sidered.

Exercise 3.4 (Standard forms)

Consider an interpretation of P as shown in the timing diagram below. Give

interpretations of Q and Q′ so that

(a) �P �−→�Q�,
(b) �P � 2−→ �Q′�

are satisfied.

0 1 2 3 4 5 6 7 8 9

PI

Time

0

1

Exercise 3.5 (Standard forms)

Let P,Q,R be state assertions and θ1, θ2 be rigid terms. Prove the validity

of the following implications:

(a) (�P � −→ �Q�) ∧ (�Q� −→ �R�) =⇒ (�P � −→ �R�),
(b) (�P � t1−−−−→ �Q�) ∧ (�Q� t2−−−−→ �R�) =⇒ (�P � t1+t2−−−−→ �R�).

Exercise 3.6 (Stability)

Discuss the difference of the stability pattern �¬π� ; �π� ≤θ−−−−→ �π� and the
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following pattern: �π� ≤θ−−−−→ �π�. As an example take the constraint Stab-2

of the gas burner controller in Subsection 3.2.1:

�¬purge� ; �purge� ≤30−−−−→ �purge� .

What does �purge� ≤30−−−−→ �purge� specify ?

Exercise 3.7 (Inboard light)

Consider the control of an inboard light of a car that switches the light inside

the car on or off depending on the state of the doors. The light should be

switched on if one of the doors is open. If the last door is closed the light

should continue to shine for tstable time units and then go off.

Let the state of the doors be described by an observable ranging over two

values O (“one door open”) and Cl (“all doors closed”). Let the state of a

control automaton for the light be described by an observable ranging over

three values off, light, and wait, and let its untimed transition behaviour be

given by the following diagram:

off light wait

In the state wait the control automaton should stay for tstable time after

closing the last door and the light should continue to shine. Further on,

assume that the reaction time of the controller to changes of the doors’

state is treact.

Specify the intended timed behaviour of the control automaton by DC im-

plementables. Check whether the specification indeed satisfies the informal

requirements for the inboard light.

Exercise 3.8 (Gas burner)

Reconsider the controller for the gas burner in Subsection 3.2.1. A utility

requirement is that a customer gets a warm room when the heat request is

turned on. However, since we cannot exclude flame failures, we guarantee

only that upon a heat request the gas valve is switched on and the burn phase

is reached within some period of time. Also, a customer does not want over-

heating. Thus when the heat request is switched off, the gas valve should

be closed.

(a) Prove that

|= GB-Crtl ∧ ε ≤ 0.5 =⇒ �(�burn� =⇒ �G�)
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holds and keep track which of the implementables are needed in the

proof.

(b) Prove that

|= GB-Crtl ∧ ε ≤ 0.5 =⇒ �¬G ∧H� t1−−−−→ �G�

for t1 = 30+3 ·ε and keep track which of the implementables are needed

in the proof.

(c) Prove that

|= GB-Crtl =⇒ �¬burn ∧H� t2−−−−→ �burn�

for t2 = 30.5 + 3 · ε and keep track which of the implementables are

needed in the proof.

(d) Prove that

|= GB-Crtl =⇒ �¬H� t3−−−−→ �¬G�

for t3 = 30.5 + 4 · ε and keep track which of the implementables are

needed in the proof.

Exercise 3.9 (Constraint Diagrams)

Specify the implementables of the gas burner in Subsection 3.2.1 graphically

in terms of Constraint Diagrams.

Exercise 3.10 (Constraint Diagrams)

Specify the following requirements for a Boolean observable X formally in

terms of CDs:

(a) Whenever ¬X holds it lasts for at least 2 seconds.

(b) If ¬X holds for more than 5 seconds the subsequent X-phase lasts at

least 10 seconds.

(c) Each X-phase with a duration of less than 1 second has a preceding

¬X-phase with at most 3 seconds.

Exercise 3.11 (Constraint Diagrams)

The following CD describes a stability property:

X
X

≥ 42

(a) Construct the DC semantics of this CD.
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(b) Explain why the length requirements are necessary here to meet the

intended meaning of the CD.

Exercise 3.12 (Expressiveness proof)

Complete the proof of Theorem 3.22 by showing that in each case the se-

mantics of the Constraint Diagram shown is indeed equivalent to the imple-

mentable.
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Timed automata

Timed automata were introduced by R. Alur and D. Dill as an operational

model of real-time systems. In their simplest form timed automata extend

classical finite automata, having only finitely many control states, by clock

variables ranging over the non-negative real numbers (continuous time).

Constraints on the values of the clock variables serve as guards of the tran-

sitions and as invariants in the control states. Timed automata can be

combined into networks by using parallel composition and restriction op-

erators of process algebras like CCS or CSP. One of the most important

results on timed automata is that it is decidable whether a given control

state is reachable. This led to the development of several tools for the au-

tomatic verification of behavioural properties of timed automata. Here we

shall present in more detail the tool UPPAAL.

4.1 Timed automata

Timed automata engage in transitions from locations to locations when cer-

tain timing conditions are satisfied. These transitions either perform input

and output actions on channels that will synchronise with other timed au-

tomata working in parallel or they perform internal actions that are invisible

from the outside.

As a first contact with timed automata let us look at an example.

Example 4.1 (Light controller)

We wish to model a light controller with the following behaviour. Initially,

the light is off. When the switch is pressed once, the light goes on (into a dim

mode). If the switch is pressed twice quickly the light gets bright. Otherwise,

if the switch is pressed only after a while the light goes off again. Let us

try to model this behaviour with an automaton with three locations called

134
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off, light, and bright. The initial location is off. There are four transitions

marked with a symbol press? where the question mark expresses that the

transition is waiting for an input (pressing the switch) by the environment

(the user). Graphically, the automaton is depicted as follows:

off light bright
press? press?

press?

press?

A problem with this model is that the time-related concepts “quickly” and

“after a while” are not represented. Instead, the automaton exhibits nonde-

terminism in the location light : when the switch is pressed it can go either

to the location bright or the location off.

Here timed automata can help. They extend ordinary automata with

clocks for continuous time. Initially, clocks start with the value 0. Then

the values of the clocks grow continuously. Transitions can depend on the

current values of the clocks. Also, they can reset clocks to 0.

For the light controller we take one clock named x and extend the above

automaton to the following timed automaton due to K.G. Larsen:

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

When the switch is pressed first the clock is reset by the assignment x := 0.

Only if the second pressing of the switch occurs within 3 seconds after the

first one (represented by the timing condition x ≤ 3 at the transition) does

the light get bright. If it occurs later than 3 seconds (represented by the
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timing condition x > 3) the light goes off again. This is also the case when

the switch is pressed in the location bright. Note that the disjoint timing

conditions have removed the nondeterminism at the location light. �

To define timed automata formally, we need the following sets of symbols:

• A set Chan of channel names or simply channels, with typical elements

a, b or suggestive names like press in Example 4.1.

• For each channel a there are two visible actions: a? denotes an input and

a! the corresponding output on the channel a, where a?, a! �∈ Chan.

• τ �∈ Chan represents an internal action, not visible from outside.

• Act = {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ} is the set of all actions,

with typical elements α, β.

• Lab = Time ∪Act is the set of all labels, with typical element λ, that can

occur at transitions of timed automata.

• Alphabets B are sets of channels: B ⊆ Chan.

• For each alphabet B we define the corresponding action set B?! by

B?! = {a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ}.

Note that B?! ⊆ Act = Chan?! holds. Input and output are complemen-

tary actions that can synchronise when timed automata work in parallel.

It is convenient to introduce an operation of complementation on actions.

Formally,

· : Act −→ Act

is defined by a! = a? and a? = a! and τ = τ . Note that α = α holds for all

α ∈ Act. Also we introduce an operation yielding the underlying channel

name of an input or output:

chan : Act
part−→ Chan

is defined by chan(a!) = chan(a?) = a. Note that chan(τ) is undefined.

Also, we need to define what clock constraints may appear as guards of

transitions and as invariants of locations in timed automata.

Definition 4.2 (Clock constraints)

Let X be a set of clock variables, with typical elements x, y. The set Φ(X)

of clock constraints over X, with typical element ϕ, is defined by the following

syntax:

ϕ ::= x ∼ c | x− y ∼ c | ϕ1 ∧ ϕ2

where x, y ∈ X, c ∈ Q≥0, and ∼ ∈ {<, >, ≤, ≥}. Constraints of the form

x− y ∼ c are called difference constraints.



4.1 Timed automata 137

The restriction to rational time constants c is needed to obtain decidability

results (see Section 4.3). Note that further clock constraints like true or

x = c are expressible by the operators in the definition of Φ(X).

We now introduce the “syntax” of timed automata, i.e. their structural

components.

Definition 4.3 (Timed automaton)

A (pure) timed automaton A is a structure A = (L,B,X, I, E, �ini) where:

• L is a finite set of locations or control states, with typical element �.

• B ⊆ Chan is a finite alphabet of channels, with typical elements α, β.

• X is a finite set of clocks, with typical elements x, y.

• I : L→ Φ(X) is a mapping that assigns to each location a clock constraint,

its invariant.

• E ⊆ L × B?! × Φ(X) × P(X) × L is the set of directed edges. An element

(�, α, ϕ, Y, �′) ∈ E describes an edge from location � to location �′ labelled

with the action α, the guard ϕ, and the set Y of clocks that will be reset.

• �ini ∈ L is the initial location.

A timed automaton can be represented graphically. Each location � is

drawn as a circle inscribed with � and the location invariant I(�); the initial

location is marked by an ingoing arc:

�

I(�)
and

�ini

I(�ini)

An edge (�, α, ϕ, Y, �′) ∈ E can be represented graphically as an arrow from

location � to location �′ labelled with α,ϕ, and assignments of the form

y := 0 for all clocks y ∈ Y . This is illustrated by the following example:
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�

x ≤ 3

�′

y < 10

a!
x ≤ 3 ∧ y > 2

x := 0
a!

location

edge with action

successor location

location invariant

reset

guard

This diagram represents the edge (�, a!, x ≤ 3 ∧ y > 2, {x}, �′). The con-

straints in the locations � and �′ represent the invariants I(�)
def⇐⇒ x ≤ 3

and I(�′)
def⇐⇒ y < 10. Constraints equivalent to true are not shown in the

graphical representation.

A location � is called isolated if there is no chain of directed edges from �ini

to �. Since isolated locations are not reachable in the operational semantics

(see Definition 4.4), they and all edges directly connected to them are usually

not shown in the graphical representation.

For the semantics of a timed automaton we need valuations of clocks. A

valuation ν of clocks in X is a mapping

ν : X −→ Time

assigning to each clock x ∈ X a time value, the current time. We write

ν |= ϕ,

if ν satisfies the clock constraint ϕ, which is defined inductively:

ν |= x ∼ c iff ν(x) ∼ c,

ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c,

ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2.

Two clock constraints ϕ1 and ϕ2 are called (logically) equivalent if for all
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valuations ν the following holds: ν |= ϕ1 iff ν |= ϕ2. In that case we write

|= ϕ1 ⇐⇒ ϕ2 .

Further on, we need two operations on valuations. The first one increases

all clocks uniformly by a given amount of time and the second one modifies

the value of a given set of clocks to t but leaves all other clocks unchanged.

• Time-shift. For a clock valuation ν for X and t ∈ Time we write ν + t to

denote the valuation with

(ν + t)(x) = ν(x) + t

for all x ∈ X.

• Modification. For a clock valuation ν for X, a set Y ⊆ X of clocks, and

t ∈ Time we write ν[Y := t] to denote the valuation with

ν[Y := t](x) =

{
t, if x ∈ Y,
ν(x), otherwise.

The operational semantics of a timed automaton is defined by a transition

system in the sense of G.D. Plotkin. It performs transitions between so-

called configurations that combine control (here the locations) with data

(here the valuations of the clock variables). The transitions are labelled

either by time values or by actions.

Definition 4.4 (Operational semantics)

The operational semantics of a timed automaton A = (L,B,X, I, E, �ini) is

defined by the (labelled) transition system

T (A) = (Conf (A),Time ∪B?!, {
λ−→ | λ ∈ Time ∪B?!}, Cini),

where the following hold:

• Conf (A) = {〈�, ν〉 | � ∈ L ∧ ν : X −→ Time ∧ ν |= I(�)} is the set of

configurations of A.

• The set Time ∪B?! contains all labels that may appear at transitions.

• For each λ ∈ Time ∪B?! the transition relation
λ−→ ⊆ Conf (A)×Conf (A)

has one of the following two types:

– In a time or delay transition some time t ∈ Time elapses, but the location

is left unchanged. Formally,

〈�, ν〉 t−→ 〈�, ν + t〉

iff ν + t′ |= I(�) holds for all t′ ∈ [0, t].
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– In an action or discrete transition an action α ∈ B?! occurs and some

clocks may be reset, but time does not advance. Formally,

〈�, ν〉 α−→ 〈�′, ν ′〉

iff there exists an edge (�, α, ϕ, Y, �′) ∈ E with ν |= ϕ and ν ′ = ν[Y := 0]

and ν ′ |= I(�′).

• Cini = {〈�ini, νini〉} ∩ Conf (A) with νini(x) = 0 for all clocks x ∈ X is the

set of initial configurations.

Thus a configuration is a pair 〈�, ν〉 consisting of a location � and a valua-

tion ν of the clocks that satisfies the invariant of �. Although there are only

finitely many locations, the set Conf (A) of configurations is infinite due to

infinitely many clock valuations. In fact, this set is uncountable, i.e. of a

larger cardinality than the set N of natural numbers because we consider

Time = R≥0.

Note that a delay transition in a location � is only possible as long as the

location invariant I(�) holds. Therefore location invariants can be used to

model progress in timed automata. Before the invariant I(�) ceases to hold,

the location � has to be left by an action transition. There are two special

cases. First, if the invariant I(�) is equivalent to true the timed automaton

can stay in � forever. Second, if neither a delay transition is possible in �

nor an action transition can be taken to leave �, the timed automaton is

ill-defined because it would prevent time from advancing. We come back to

this problem when defining computation paths and runs.

The set Cini of initial configurations contains at most one element, the

configuration 〈�ini, νini〉 where the valuation νini assigns 0 to all clocks. The

set is empty if νini does not satisfy the invariant I(�ini). In that case the

timed automaton is ill-defined as well because it cannot even start.

Since all the transitions
λ−→ are binary relations on the set Conf (A) of

configurations, we may apply relational composition. Thus

λ1−→◦ λ2−→

is the binary relation on Conf (A) defined by first applying
λ1−→ and then

λ2−→.

At the level of configurations this means: for all 〈�1, ν1〉, 〈�2, ν2〉 ∈ Conf (A)

〈�1, ν1〉
λ1−→◦ λ2−→ 〈�2, ν2〉
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iff there exists some 〈� ′, ν ′〉 ∈ Conf (A) with

〈�1, ν1〉
λ1−→〈� ′, ν ′〉 and 〈� ′, ν ′〉 λ2−→ 〈�2, ν2〉 .

Remark 4.5 (Time-additivity)

For all t1, t2 ∈ Time the following property of time-additivity holds:

t1−→◦ t2−→ =
t1+t2−−−−→ .

This property relies on the requirement that I(�) holds invariantly while

time is progressing.

A transition sequence is any finite or infinite sequence of the form

〈�0, ν0〉
λ1−→ 〈�1, ν1〉

λ2−→ 〈�2, ν2〉
λ3−→ . . .

with 〈�0, ν0〉 ∈ Cini showing all the intermediate configurations of the tran-

sitions taken. Thus if Cini = ∅ there does not exist any transition sequence.

A configuration 〈�, ν〉 is reachable iff there is a transition sequence of the

form

〈�0, ν0〉
λ1−→ . . .

λn−→ 〈�, ν〉.

A location � is reachable iff a configuration of the form 〈�, ν〉 is reachable.

Note that an isolated location is not reachable.

Example 4.6 (Light controller, continued)

Look at a timed automaton L for the light controller of Example 4.1:

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?
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A finite transition sequence of the corresponding transition system T (L) is

〈off , x = 0〉 2.5−→ 〈off , x = 2.5〉 1.7−→ 〈off , x = 4.2〉

press?−−−−→ 〈light, x = 0〉 2.1−→ 〈light, x = 2.1〉

press?−−−−→ 〈bright, x = 2.1〉 10−→ 〈bright, x = 12.1〉
press?−−−−→ 〈off , x = 12.1〉 .

Here and in the following examples we write x = t for a valuation ν with

ν(x) = t. This sequence shows that all three control locations of L are

reachable. �

Since clocks can be reset in action transitions, a configuration 〈�, ν〉 does

not tell us how much time has elapsed since the start of the transition se-

quence. To record this information, we consider time-stamped configurations

of the form

〈�, ν〉, t

where the time stamp t ∈ Time corresponds to the value of a special clock

that is never reset. We extend the two types of labelled transitions accord-

ingly:

• In a time-stamped delay transition the time stamp advances by some value

t′ ∈ Time, but the location is left unchanged. Formally,

〈�, ν〉, t t′−→ 〈�, ν + t′〉, t+ t′

where 〈�, ν〉 t′−→ 〈�, ν + t′〉 is a (normal) delay transition.

• In a time-stamped action transition an action α ∈ B?! occurs and some

clocks may be reset, but time does not advance. Formally,

〈�, ν〉, t α−→ 〈�′, ν ′〉, t

where 〈�, ν〉 α−→ 〈�′, ν ′〉 is a (normal) action transition.

Definition 4.7 (Computation path)

A computation path (or simply path) of A starting in the time-stamped con-

figuration 〈�0, ν0〉, t0 is a sequence

ξ : 〈�0, ν0〉, t0
λ1−→ 〈�1, ν1〉, t1

λ2−→ 〈�2, ν2〉, t2
λ3−→ . . .

of time-stamped configurations of A which is either infinite or maximally finite,
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i.e. the sequence cannot be extended any further by some time-stamped transi-

tion. A computation path (or simply path) of A is a computation path starting

in 〈�0, ν0〉, 0 where 〈�0, ν0〉 ∈ Cini.

Intuitively, each computation path should be infinite because time should

be able to progress beyond any given bound. However, it is easy to construct

timed automata that violate this property.

Example 4.8 (Zeno behaviour)

Consider the following timed automaton A:

A :
�0

x ≤ 2

The clock invariant x ≤ 2 tells us that the initial location �0 must be left after

2 seconds. However, there is no outgoing edge. Thus in any computation

path of A time cannot progress beyond 2. Note that there are both finite

and infinite computation paths satisfying this property. For instance, a finite

computation path is

ξfin : 〈�0, x = 0〉, 0 2−→ 〈�0, x = 2〉, 2,

and an infinite computation path is

ξ∞ : 〈�0, x = 0〉, 0 1/2−−−−→ 〈�0, x = 1/2〉, 1
2

1/4−−−−→ 〈�0, x = 3/4〉, 3
4

. . . 1/2n

−−−−→ 〈�0, x = (2n − 1)/2n〉, 2
n − 1

2n
. . . (for all n ∈ N).

In ξfin a timelock occurs, i.e. time is stopped. In ξ∞ time progresses with

each transition but in smaller and smaller quantities. Such a computation

path is known as a Zeno behaviour , named after the Greek philosopher Zeno

of Elea. �

Such computation paths are deficient. In a “realistic” path the time

stamps should constitute a real-time sequence in the sense of the follow-

ing definition:
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Definition 4.9 (Real-time sequence)

A real-time sequence is an infinite sequence

t0, t1, t2, t3, . . .

of values ti ∈ Time for i ∈ N with the following properties:

(1) Monotonicity : ∀i ∈ N • ti ≤ ti+1.

(2) Non-Zeno behaviour or unboundedness: ∀t ∈ Time ∃i ∈ N • t < ti.

Now we define a run as a computation path where the time stamps enjoy

these properties.

Definition 4.10 (Run)

A run of A starting in the time-stamped configuration 〈�0, ν0〉, t0 is an infinite

computation path of A

ξ : 〈�0, ν0〉, t0
λ1−→ 〈�1, ν1〉, t1

λ2−→ 〈�2, ν2〉, t2
λ3−→ . . . ,

where t0, t1, t2, t3, . . . is a real-time sequence. If 〈�0, ν0〉 ∈ Cini and t0 = 0 we

call ξ a run of A.

While monotonicity holds by definition for any infinite computation path,

unboundedness need not hold as shown in Example 4.8. We give an example

of a run.

Example 4.11 (Watchdog)

A watchdog can be specified by the following timed automaton W with the

alphabet {a, s} and a clock x:

�0
x ≤ 10

�1
a!

x ≥ 10

s?, x < 10, x := 0 a!

Intuitively, W checks whether an input signal s? arrives before every 10

seconds. If the signal s? is absent for at least 10 seconds an alarm a! is
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raised. A run of W is

〈�0, x = 0〉, 0 3.5−→ 〈�0, x = 3.5〉, 3.5 1.5−→ 〈�0, x = 5〉, 5 s?−→ 〈�0, x = 0〉, 5
6−→ 〈�0, x = 6〉, 11

s?−→ 〈�0, x = 0〉, 11

4.1−→ 〈�0, x = 4.1〉, 15.1
5.9−→ 〈�0, x = 10〉, 21

a!−→ 〈�1, x = 10〉, 21

. . .

7−→ 〈�1, x = 10 + 7 · n〉, 21 + 7 · n
a!−→ 〈�1, x = 10 + 7 · n〉, 21 + 7 · n (for all n ∈ N)

. . .

The location invariant in �0 forces W to leave �0 once the clock x shows

10 seconds and thus raise the alarm a!. Note that all computation paths

of W are infinite, but not all of them are runs. For instance, among the

computation paths is the Zeno path ξ∞ shown in Example 4.8; it is not a run

because the time stamps of ξ∞ are not unbounded. In fact, the automaton

A of Example 4.8 does not have any runs. It can thus be considered as an

ill-defined timed automaton. �

4.2 Networks of timed automata

Real-time systems mostly consist of a number of components that work in

parallel but also interact with each other from time to time. To model such

systems, we consider networks of timed automata built up from single timed

automata by two composition operators: parallel composition and restric-

tion. Any notion of parallel composition of process algebra can be taken to

combine timed automata. Here we choose the setting of R. Milner’s Cal-

culus of Communicating Systems (CCS) because this is implemented in the

tool UPPAAL that we use for the automatic verification of properties of

timed automata. The idea of CCS is that parallel processes, or in our case

timed automata, communicate in a one-to-one fashion via handshake com-

munication. To this end, complementary actions a! and a? of two parallel

automata can synchronise to yield the internal action τ but they can also

be performed individually to be prepared for a later synchronisation. This

is important for parallel composition to be an associative binary operator
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on timed automata. To enforce synchronisation the channel a has to be

declared as a local channel.

Definition 4.12 (Parallel composition)

The parallel composition A1 || A2 of two timed automata

Ai = (Li, Bi,Xi, Ii, Ei, �ini,i),

i = 1, 2, with disjoint sets of clocks X1 and X2 yields the timed automaton

A1 || A2
def

= (L1 × L2, B1 ∪B2,X1 ∪ X2, I, E, (�ini,1, �ini,2))

where the following hold:

• Conjunction of location invariants: I(�1, �2)
def⇐⇒ I1(�1) ∧ I2(�2).

• The transition relation E is constructed by the following rules:

– Handshake communication: synchronising a! with a? yields τ (internal

action), i.e. if (�1, α, ϕ1, Y1, �
′
1) ∈ E1 and (�2, α, ϕ2, Y2, �

′
2) ∈ E2 with

{a!, a?} = {α, α} then also

((�1, �2), τ, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (�′1, �
′
2)) ∈ E.

– Asynchrony: if (�1, α, ϕ1, Y1, �
′
1) ∈ E1 then for all �2 ∈ L2 also

((�1, �2), α, ϕ1, Y1, (�′1, �2)) ∈ E

and conversely, if (�2, α, ϕ2, Y2, �
′
2) ∈ E2 then for all �1 ∈ L1 also

((�1, �2), α, ϕ2, Y2, (�1, �
′
2)) ∈ E.

Definition 4.13 (Restriction)

A local channel b is introduced by the restriction operator chan b•A which, for

a timed automaton A = (L,B,X, I, E, �ini), yields the timed automaton

chan b • A def

= (L,B \ {b},X, I, E′, �ini),

where the following holds:

• Restriction: if (�, α, ϕ, Y, �′) ∈ E and α �∈ {b!, b?} then (�, α, ϕ, Y, �′) ∈ E′.

For lists of channels we introduce the abbreviation

chan b1 . . . bm • A def

= chan b1 • . . . chan bm • A.

When comparing timed automata we are often not interested in the exact

names of locations but only in the structure of the edges modulo logical

equivalence of the clock constraints. To this end, we introduce the following

notion of isomorphism:
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Definition 4.14 (Isomorphism)

Two timed automata Ai = (Li, Bi,Xi, Ii, Ei, �ini,i), with i = 1, 2, are called

isomorphic, abbreviated A1 � A2, if B1 = B2 and X1 = X2, and there exist two

bijections βL : L1 → L2 and βE : E1 → E2 satisfying the following conditions:

• If � ∈ L1 then |= I1(�) ⇐⇒ I2(βL(�)).

• If (�, α, ϕ1, Y, �
′) ∈ E1 then βE(�, α, ϕ1, Y, �

′) = (βL(�), α, ϕ2, Y, βL(�′)) for

some constraint ϕ2 with |= ϕ1 ⇐⇒ ϕ2.

• βL(�ini,1) = �ini,2.

The bijection βL is called a location isomorphism between A1 and A2.

Thus in A2 each location � of A1 is renamed into β(�). The location

invariants of � and β(�) are required to be logically equivalent. For each edge

in A1 there is a corresponding edge in A2 between the renamed locations

which is guarded by a logically equivalent clock constraint. It is easy to see

that � is an equivalence relation on timed automata.

Proposition 4.15 (Algebraic laws)

Up to isomorphism, parallel composition of timed automata is commutative

and associative:

A1 || A2 � A2 || A1,

A1 || (A2 || A3) � (A1 || A2) || A3.

The chan operator is idempotent and the order of applications of the chan

operator is irrelevant:

chan b • chan b • A = chan b • A,
chan b1 • chan b2 • A = chan b2 • chan b1 • A.

Here equality of the automata holds.

Proof:

To show the commutativity law of parallel composition consider the location

isomorphism that maps each location (�1, �2) of A1 || A2 to the location

(�2, �1) of A2 || A1, and use the fact that set union and logical conjunction

are commutative. To show the associativity law of parallel composition

consider the location isomorphism that maps each location (�1, (�2, �3)) of

A1 || (A2 || A3) to the location ((�1, �2), �3) of (A1 || A2) || A3, and use the

fact that set union and logical conjunction are associative. The laws of the

chan operator follow immediately from its definition. �
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In applications one often considers networks N of timed automata working

in parallel and communicating over channels, some of which are local:

N = chan b1, . . . , bm • (A1 || . . . || An).

Since both parallel composition of timed automata and the restriction op-

erator again yield timed automata, Definition 4.4 can be applied to obtain

the operational semantics of such networks. In a network N each compo-

nent automaton Ai has its own control location �i. Hence, for the whole

network a control vector �� = (�1, . . . , �n) collects the control locations of the

components. We denote a change of the ith component’s location from �i to

�′i by �� [�i := �′i]. The following lemma calculates the operational semantics

T (N ):

Lemma 4.16 (Operational semantics of networks)

For timed automata Ai = (Li, Bi,Xi, Ii, Ei, �ini,i) with i = 1, . . . , n and

pairwise disjoint sets Xi of clocks consider the network

N = chan b1, . . . , bm • (A1 || . . . || An).

Then the operational semantics of N yields the labelled transition system

T (N ) = (Conf (N ),Time ∪B?!, {
λ−→ |λ ∈ Time ∪B?!}, Cini)

where:

• X =
⋃n

k=1 Xk and B = (
⋃n

k=1Bk) \ {b1, . . . , bm}.
• Conf (N ) = {〈��, ν〉 | �i ∈ Li ∧ ν : X −→ Time ∧ ν |=

∧n
k=1 Ik(�k)}.

• For each λ ∈ Time∪B?! the transition relation
λ−→ ⊆ Conf (N )×Conf (N )

has one of the following three types:

(i) A local transition 〈��, ν〉 α−→〈��′, ν ′〉 occurs if for some i ∈ {1, . . . , n}
there is an edge (�i, α, ϕ, Y, �

′
i) ∈ Ei with α ∈ B?! in the ith automaton

such that

– ν |= ϕ, i.e. the guard is satisfied,

–
��′ = �� [�i := �′i],

– ν ′ = ν[Y := 0] and ν ′ |= Ii(�
′
i).

(ii) A synchronisation transition 〈��, ν〉 τ−→〈��′, ν ′〉 occurs if for some i, j ∈
{1, . . . , n} with i �= j and some channel b ∈ Bi ∩ Bj there are edges

(�i, b!, ϕi, Yi, �
′
i) ∈ Ei and (�j , b?, ϕj , Yj , �

′
j) ∈ Ej , i.e. the ith and the jth

automaton can synchronise their output and input on the channel b,

such that

– ν |= ϕi ∧ ϕj , i.e. both guards are satisfied,
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–
��′ = �� [�i := �′i][�j := �′j ],

– ν ′ = ν[Yi ∪ Yj := 0] and ν ′ |= Ii(�
′
i) ∧ Ij(�′j).

(iii) A delay transition 〈��, ν〉 t−→〈��, ν + t〉 occurs if ν + t′ |=
∧n

k=1 Ik(�k) for

all t′ ∈ [0, t], i.e. all invariants are satisfied during the passage of time.

• Cini = {〈−→�ini, νini〉}∩Conf (N ) with
−→
�ini = (�ini,1, . . . , �ini,n) and νini(x) = 0

for all clocks x ∈ X.

Proof:

By the definition of parallel composition and restriction, the locations of

N are of the form �� = (�1, . . . , �n), where �i ∈ Li, and have
∧n

k=1 Ik(�k) as

their location variant. The labelled transition system T (N ) contains delay

transitions 〈��, ν〉 t−→〈��, ν + t〉 and discrete transitions 〈��, ν〉 α−→〈��′, ν ′〉. By

Definition 4.4, applied to T (N ), the delay transitions are exactly as claimed

for transitions of type (iii) in the lemma.

For a discrete transition 〈��, ν〉 α−→〈��′, ν ′〉, Definition 4.4 requires that

there is an edge (��, α, ϕ, Y, ��′) ∈ E, the set of edges in N , such that

• ν |= ϕ,

• ν ′ = ν[Y := 0],

• ν ′ |= I(��′), i.e. ν ′ |=
∧n

k=1 Ik(�
′
k).

By Definition 4.12 of parallel composition and Definition 4.13 of restriction,

the edge (��, α, ϕ, Y, ��′) ∈ E can have two forms.

(i) Asynchrony : α ∈ B?! and for some i ∈ {1, . . . , n} there is an edge of

the form (�i, α, ϕ, Y, �
′
i) ∈ Ei such that

• ��′ = �� [�i := �′i].

Since Y ⊆ Xi, the disjointness of the sets of clocks yields Y ∩Xk = ∅ for

k �= i. Thus the claim (i) of the lemma follows since ν ′ |=
∧n

k=1 Ik(�
′
k)

iff ν ′ |= Ii(�
′
i).

(ii) Synchronisation: α = τ and for some i, j ∈ {1, . . . , n} with i �= j

and some b ∈ Bi ∩ Bj there are edges (�i, b!, ϕi, Yi, �
′
i) ∈ Ei and

(�j , b?, ϕj , Yj , �
′
j) ∈ Ej such that

• ϕ = ϕi ∧ ϕj ,

• Y = Yi ∪ Yj ,

• ��′ = �� [�i := �′i][�j := �′j ].

Since Yi ⊆ Xi and Yj ⊆ Xj , the disjointness of the sets of clocks yields

Y ∩Xk = ∅ for k �= i, j. Thus the claim (ii) of the lemma follows since

ν ′ |=
∧n

k=1 Ik(�
′
k) iff ν ′ |= Ii(�

′
i) ∧ Ij(�′j).
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This completes the proof of the lemma. �

A network N = chan b1, . . . , bm • (A1 || . . . || An) is called closed if

all channels of the automata are local, i.e. if {b1, . . . , bm} is the set of all

channels used in one of the Ai. Since then B = ∅ holds in Lemma 4.16, the

operational semantics of closed networks has only transitions labelled with

the internal action τ or with a delay time t ∈ Time. Let us now consider

some examples.

Example 4.17 (Timed buffers)

The following timed automata P and Q model two different timed one-place

buffers. When P has been engaged in an input action on channel a it has to

perform the corresponding output action on channel b in less than 2 seconds.

For Q the following behaviour is specified. Initially, Q has to wait for more

than 1 second before the first input action on channel b can occur. Once a

corresponding output action on channel c has occurred, the next input on b

can only happen more than 1 second later.

Q:

q0 q1

b?
y > 1

c!
y := 0

P:

p0
p1

x < 2

a?
x := 0

b!

The parallel composition of P and Q yields the timed automaton P || Q:

(p1, q1)

x < 2

(p1, q0)

x < 2

(p0, q1)(p0, q0)

a?
x := 0

a?
x := 0b! b!

b? y > 1

b? y > 1

c! y := 0

c! y := 0

τ

y > 1

In P || Q the first τ -transition is possible only more than 1 second after the

start (due to the guard y > 1 of the τ -transition) and less than 2 seconds

after the initial a?-transition (due to the reset of the clock x at the initial a?-

transition and the invariant x < 2 in the location (p0, q0)). All subsequent



4.2 Networks of timed automata 151

τ -transitions are possible only more than 1 second after the last c!-transition

(due to the reset of the clock y at the c!-transitions and the guard y > 1 at

the τ -transition) and less than 2 seconds after the last a?-transition (due to

the reset of the clock x at the a?-transitions and the invariant x < 2 in the

location (p0, q0)).

Restricting the communications on the channel b yields chan b • (P || Q)

as a network. In the corresponding timed automaton all transitions labelled

with b! and b? are removed:

(p1, q1)

x < 2

(p1, q0)

x < 2

(p0, q1)(p0, q0)

a?
x := 0

a?
x := 0

c! y := 0

c! y := 0

τ

y > 1

Thus restriction enforces synchronisation between P and Q along the com-

mon channel b yielding an internal τ -transition. �

Example 4.18 (Generalised railroad crossing)

Consider the following two timed automata T and G modelling the track

and the gate of the generalised railroad crossing introduced in Section 1.3.

T :

Empty Appr

Cross

dn!

x := 0

τ

ρ ≤ x

τup!

G:

Open Closing

y ≤ ξ1

ClosedOpening

y ≤ ξ2

dn?

y := 0

τ

up?

y := 0

τ
dn?

y := 0
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Initially, the track is empty and the gate is open. When a train is ap-

proaching, the track automaton communicates dn (for “down”) to the gate

automaton which then starts closing the gate. By the invariant y ≤ ξ1 in

the location Closing, this location will be left to the safe location Closed

within ξ1 time. The train automaton models that each train takes at least ρ

time to reach the crossing. Provided that ξ1 and ρ are suitably constrained,

the gate will be closed before the train reaches the crossing. After the train

leaves the crossing, either a new train approaches or the track is empty. In

the latter case the track automaton communicates up to the gate, which

then starts opening within ξ2 time.

The timed automata for the closed network

N = chan up, dn • (T || G)

has 3 · 4 = 12 locations but six of them are isolated. With all isolated

locations removed, the automaton looks as follows:

N :

Empty

Open

Empty

Opening
y ≤ ξ2

Appr

Closing
y ≤ ξ1

Appr

Closed

Cross
Closing
y ≤ ξ1

Cross

Closed

τ

x := 0, y := 0

τ

τ, ρ ≤ x

τ, ρ ≤
x

τ

τ

τ

τ

y := 0

τ

τ
x := 0, y := 0

An example of an isolated combined location is Appr/Open. In T || G
this location is connected to the combined initial location Empty/Open

only via an edge with the action dn! which is removed when applying the

operator chan up, dn to T || G. This leaves Appr/Open isolated in N , so

it is not shown in the timed automaton above.

Note that the combined location Cross/Closing represents an unsafe

location: a train is in the crossing while the gate is still closing. However, by

assuming ξ1 < ρ, i.e. the fastest train takes longer to approach the crossing
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than the closing of the gate, we can show that this unsafe location is not

reachable. Indeed, in the combined location Appr/Closing the clocks x

and y show the same time t ∈ Time:

〈Empty/Open, x = y = 0〉 τ−→◦ t−→ 〈Appr/Closing, x = y = t〉.

By the location invariant y ≤ ξ1, this location has to be left by time ξ1, at

which the guard ρ ≤ x of transition to Cross/Closing is not yet enabled.

Thus under the assumption ξ1 < ρ the network N is safe: the only combined

location with a train being in the crossing is Cross/Closed where the gate

is closed. �

4.3 Reachability is decidable

In this section we show that for timed automata the reachability of configu-

rations is decidable. More precisely, we consider two variants of reachability.

4.3.1 Location reachability

First we consider the following location reachability problem.

Given: A timed automaton A and one of its control locations �.

Question: Is � reachable, i.e. is there a transition sequence of the form

〈�ini, νini〉
λ1−→ . . .

λn−→ 〈�, ν〉

in the labelled transition system T (A) ?

A key result on timed automata due to R. Alur and D. Dill is the decid-

ability of this question. This is remarkable because the clocks range over

real numbers and thus yield infinitely many configurations that need to be

checked. To explain this result, we proceed in several steps.

First, we assume without loss of generality that in A only time conditions

ϕ ∈ Φ(X) with constants c ∈ N appear. For a timed automaton A with time

constants c ∈ Q≥0, we define the scaling factor

t
def

= least common multiple of the denominators

of all time constants that appear in A.

Let t · A be the timed automaton A where all time constants are multiplied

by t. Then the following hold:

• In t · A all time constants are in N.

• A location � is reachable in t · A iff � is reachable in A.
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Hence, we can assume without loss of generality that A uses only time

constants in N. Second, we introduce the time-abstract transition relation.

Definition 4.19 (Time-abstract transition system)

For a timed automaton A the time-abstract transition system U(A) is obtained

from the transition system T (A) of Definition 4.4 by taking

U(A)
def

= (Conf (A), B?!, {
α

=⇒ | α ∈ B?!}, Cini)

where { α
=⇒ | α ∈ B?!} is a family of labelled time-abstract transition relations

α
=⇒ ⊆ Conf (A)× Conf (A)

defined as follows: for configurations 〈�, ν〉, 〈�′, ν ′〉 of A and actions α ∈ B?!

〈�, ν〉 α
=⇒ 〈�′, ν ′〉

iff there exists some t ∈ Time with

〈�, ν〉 t−→◦ α−→ 〈�′, ν ′〉.

Thus a time-abstract transition combines two steps of A: first time passes

and then an action transition is taken. The following lemma shows that

it suffices to consider U(A) instead of T (A) when solving the reachability

problem:

Lemma 4.20

For all locations � of a given timed automaton A the following holds:

� is reachable in T (A) iff � is reachable in U(A).

Proof:

“Only if”: Let � be reachable in T (A). Then there exists a transition

sequence of the form

〈�ini, νini〉 t0,1−−−−→◦ . . . ◦ t0,n0−−−−→ ◦ α1−→ 〈�1, ν1〉
...

. . .
...

tk−1,1−−−−→◦ . . . ◦ tk−1,nk−1−−−−−−→ ◦ αk−→ 〈�k, νk〉
tk,1−−−−→◦ . . . ◦ tk,nk−−−−→ 〈�, ν〉

with � = �k. By Remark 4.5 on time-additivity, we have

〈�ini, νini〉
Pn0

i=1
t0,i−−−−−−→ ◦ α1−→ 〈�1, ν1〉 . . .

Pnk−1

i=1
tk−1,i−−−−−−−−→ ◦ αk−→ 〈�k, νk〉 = 〈�, νk〉.

By the definition of the time-abstract transition relations,

〈�ini, νini〉
α1=⇒ 〈�1, ν1〉 . . .

αk=⇒ 〈�k, νk〉 = 〈�, νk〉.
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Thus � is reachable in U(A).

“If”: Expand the definition of the time-abstract transition relation
α

=⇒.

�

Note that U(A) has still infinitely (even uncountably) many configura-

tions. The third step is therefore to collapse these configurations into finitely

many so-called regions, which are equivalence classes of a suitably defined

equivalence relation on clock valuations. For this equivalence to be respected

by the abstract transition relations, it should be a bisimulation.

Definition 4.21 (Bisimulation)

An equivalence relation ∼= on valuations is a (strong) bisimulation iff whenever

ν1
∼= ν2 and 〈�, ν1〉 α

=⇒ 〈�′, ν ′1〉

holds then there exists a valuation ν ′2 with

ν ′1
∼= ν ′2 and 〈�, ν2〉 α

=⇒ 〈�′, ν ′2〉.

This can be visualised by the following commuting diagram:

〈�, ν1〉 〈�, ν2〉

〈�′, ν ′1〉 〈�′, ν ′2〉

ν1
∼= ν2

α α
ν ′1
∼= ν ′2

Then we can lift the transition relation on the equivalence classes and

know that this is well-defined. Now we are interested in the coarsest equiv-

alence relation ∼= on clock valuations that has this property. These equiva-

lence classes are called clock regions. Let us first study an example.

Example 4.22

Let A0 be the timed automaton with the alphabet B = {a, b, c, d} and the

clocks x and y shown in the following diagram:

�2 �4

�0 �0 �1 �3
a?

y := 0

b?, y = 1

c?, x < 1

b?, x > 1

d?, x > 1

c?, x < 1

a?, y < 1, y := 0
�
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For each location � ∈ {�0, �1, �2, �3, �4} the set of configurations 〈�, ν〉 can

be visualised as a point in a two-dimensional space with the coordinates

(ν(x), ν(y)), as illustrated by the following diagram:

(0, 0) 2

2

x

y

ν

In the following we investigate which clock valuations cannot be distin-

guished by a timed automaton and hence belong to the same equivalence

class ∼=.

The regions depend on the number of clocks and, for each clock x, on the

maximum cx of the time constants with which x is compared in the timed

automaton.

Definition 4.23 (Maximal constant)

For a timed automaton A = (L,B,X, I, E, �ini) and a clock x ∈ X let cx ∈ N

be the maximum of the time constants c that appear in constraints of the form

x ∼ c or difference constraints of the form x− y ∼ c or y − x ∼ c in A.

In case of one clock x it is clear that all valuations ν1 and ν2 with νi(x) > cx
cannot be distinguished by the automaton because there is no such compar-

ison beyond cx. Each valuation ν with ν(x) ∈ {0, 1, . . . , cx} builds an equiv-

alence class because it is possible for the timed automaton to distinguish

valuations with ν(x) = k and ν(x) �= k if k ∈ N and k ≤ cx. Furthermore, it

is clear that valuations ν1 and ν2 with νi(x) ∈ (k, k + 1), the open interval

with lower bound k and upper bound k + 1, belong to the same class if

k ∈ {0, . . . , cx−1}. Hence, for cx ≥ 1 we get the following set of equivalence

classes:

{{0}, (0, 1), {1}, (1, 2), . . . , {cx}, (cx,∞)}.

For instance, cx = 1 yields four equivalence classes. In general, we have

2cx + 2 equivalence classes.

In case of two clocks x and y it is not sufficient to take the Cartesian

product of the corresponding equivalence relations for the individual clocks
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x and y as shown in Figure 4.1, part (a). Additionally, the difference con-

straints x − y ∼ c and y − x ∼ c come into play; they yield the diagonal

regions as shown in Figure 4.1, part (b).

(a)

y

1

0
0 1 x

x
=

0

0
<
x
<

1

x
=

1

1
<
x

y = 0

0 < y < 1

y = 1

1 < y

(b)

y

1

0
0 1 x

1
<
y
− x

y
− x

=
1

0
<
y
− x

<
1

x
− y

=
0

0
<
x
− y
<

1

x
− y

=
1

1
<
x
− y

Fig. 4.1. Regions for individual clocks and clock differences

Altogether, the regions for two clocks x and y with cx = cy = 1 are

depicted in Figure 4.2. Instead of 4×4 = 16 regions we see 32 regions. Why

are all these regions needed? Suppose the valuations in the grey square

(0, 1) × (0, 1) were all equivalent. Then the successor relation would not

satisfy the bisimulation property. For example, if at a location � there

exists an edge (�, a, true,∅, �), which is always enabled and leaves both clocks

unchanged, we would get for the valuations (0.5, 0.4), (0.5, 0.5), and (0.4, 0.5)

different equivalences classes as successors when exactly 0.5 seconds elapse.

Hence, the grey square is split into three regions because there are three

different successor regions when time passes.

We can generalise this observation to more than two clocks. This leads

us to the final definition of the equivalence ∼= on clock valuations. From

mathematical calculus it is known that each real number q ∈ R≥0 can be

split in a unique way into an integer part �q�, the floor of q, and a fraction

frac(q). Formally,

q = �q�+ frac(q), where �q� ∈ N and 0 ≤ frac(q) < 1.

Definition 4.24 (Equivalence on valuations)

Let X be a set of clocks and the constant cx ∈ N be given for each clock

x ∈ X. Then we define a relation ∼= on the set of valuations for X as follows:
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0

1

y

0 1 x

y = 0 ∧ 0 < x < 1 y = 0 ∧ 1 < x

y = 1 ∧ 0 < x < 1 y = 1 > x − y > 0 y = 1 < x− y

x
=

0
∧

0
<
y
<

1
x

=
0
∧

1
<
y

x
=

1
∧

0
<
y
<

1
x

=
1

>
y
−

x
>

0
x

=
1
<
y
−
x

0
<
x
=
y
<

1

1
<
x
=
y

1
<
y
∧ 1
<
x
− y

1
<
y
∧ 1

=
x
− y

1
<
y
∧ 0
<
x
− y
<

1

0
<
y
<

1
∧ 1

=
x
− y

1
>
x
− y

∧y
<

1
∧ x
>

1

0
<
y
<

1
∧ 1
<
x
− y

0
<
x
<

1
∧ 1

=
y
− x

y
>

1
∧ x
<

1

∧1
>
y
− x

0
<
x
<

1
∧ 1
<
y
− x

1
<
x
∧ 1
<
y
− x

1
<
x
∧ 1

=
y
− x

1
<
x
∧ 0
<
y
− x

<
1

0
<
y
<
x
<

1

0
<
x
<
y
<

1

x = 1 ∧ y = 0
x = 0
∧y = 0

x
=

1
∧ y

=
1

x
=

1
∧ y
− x

=
1

y
=

1
∧ x
− y

=
1

x = 0
∧y = 1

Fig. 4.2. Regions for two clocks x and y with cx = cy = 1

for valuations ν and ν ′ for X

ν ∼= ν ′

holds iff the following four conditions are satisfied:

(1) For all x ∈ X the following holds:

�ν(x)� = �ν ′(x)�
or both ν(x) > cx and ν ′(x) > cx.

(2) For all x ∈ X with ν(x) ≤ cx the following holds:

frac(ν(x)) = 0 iff frac(ν ′(x)) = 0.
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(3) For all x, y ∈ X the following holds:

�ν(x)− ν(y)� = �ν ′(x)− ν ′(y)�
or both |ν(x)− ν(y)| > c and |ν ′(x)− ν ′(y)| > c

where c = max{cx, cy}.
(4) For all x, y ∈ X with −c ≤ ν(x)− ν(y) ≤ c the following holds:

frac(ν(x)− ν(y)) = 0 iff frac(ν ′(x)− ν ′(y)) = 0

where c = max{cx, cy}.

While conditions (1) and (2) deal with individual clocks, conditions (3)

and (4) deal with clock differences as illustrated by the following example.

Example 4.25

For the valuations ν1 = (0.5, 0.4), ν2 = (0.5, 0.5), and ν3 = (0.4, 0.5) we

calculate

• ν1 �∼= ν2 because frac(ν1(x)− ν1(y)) = 0.1 and frac(ν2(x)− ν2(y)) = 0,

• ν2 �∼= ν3 because frac(ν2(y)− ν2(x)) = 0 and frac(ν3(y)− ν3(x)) = 0.1,

• ν1 �∼= ν3 because �ν1(x)− ν1(y)� = 0 and �ν3(x)− ν3(y)� = −1.

�

It is easy to check that ∼= is an equivalence relation on valuations. In fact,

the following lemma holds. The proof is left as an exercise.

Lemma 4.26 (Bisimulation)

The equivalence relation ∼= is a strong bisimulation.

Definition 4.27 (Region)

For a given valuation ν we denote by [ν] the equivalence class of ν. We call

equivalence classes of ∼= regions.

As shown in Figure 4.2, we can describe regions by a clock constraint ϕ

over the given clocks. Hence, we also use the notation [ϕ] for the region [ν]

that is characterised by ϕ, i.e. with ν ′ |= ϕ iff all ν ′ ∼= ν. For example, the

lower triangle region of the shaded area in Figure 4.2 is given by [0 < y <

x < 1].

Lemma 4.28 (Number of regions)

Let X be the set of clocks, cx ∈ N be the maximal constant for each x ∈ X,

and c = max{cx | x ∈ X}. Then

(2c+ 2)|X| · (4c+ 3)
1

2
|X|·(|X|−1)
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is an upper bound of the number of regions.

Proof:

We calculate the upper bound of the number of regions as follows:

• Considering individual clocks yields the left-hand factor of the product.

Since cx ≤ c, we get at most 2c+2 intervals for the values of a given clock

x that can be distinguished by the timed automaton. These intervals can

be characterised by the following constraints:

[x = 0], [0 < x < 1], [x = 1], [1 < x < 2], . . . , [x = c], [x > c].

Considering all clocks x ∈ X together thus yields at most (2c + 2)|X|

regions.

• Considering clock differences yields the right-hand factor of the product.

Extending the argument from above, it is easy to see that for each two-

element set {x, y} of clocks x and y we have 4c+3 intervals for the values of

clock differences x−y that can be distinguished by the timed automaton.

These intervals can be characterised by the following constraints:

[x− y < −c], [x− y = −c], . . . , [−1 < x− y < 0],

[x− y = 0], [0 < x− y < 1], . . . , [x− y = c], [x− y > c].

The constraints with negative constants −c can be rewritten into equiv-

alent ones with positive constants c, which are in the set Φ(X) of clock

constraints. For instance, x − y < −c is equivalent to y − x > c. Thus

when we exchange the role of x and y, we get constraints equivalent to

the ones above. Therefore we need to count only all two-element sets

{x, y} instead of all ordered pairs (x, y) of clocks x and y. The number of

two-element sets of clocks from the set X is 1
2 |X| · (|X| − 1).

This completes our calculations. �

In particular, the lemma proves that there is a finite number of regions.

We note that it is possible to find tighter bounds than the one presented.

In our example we have |X| = 2 and cx = cy = 1. So the bound calculated

by the lemma is 42 · 71 = 112 whereas in reality there are (only) 32 regions

as shown in Figure 4.2.

Definition 4.29 (Region automaton)

For a timed automaton A = (L,B,X, I, E, �ini) the region automaton R(A) is

defined as the labelled transition system

R(A)
def

= (Conf (R(A)), B?!, {
α−→R(A) | α ∈ B?!}, Cini)
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where:

• Conf (R(A)) = {〈�, [ν]〉 | � ∈ L ∧ ν : X −→ Time ∧ ν |= I(�)} is the set of

(region) configurations, where [ν] is the region of ν constructed in accordance

with the maximal constants cx for the clocks x ∈ X.

• For each α ∈ B?! the transition relation

α−→R(A) ⊆ Conf (R(A))× Conf (R(A))

defined as follows:

〈�, [ν]〉 α−→R(A) 〈�′, [ν ′]〉 iff 〈�, ν〉 α
=⇒ 〈�′, ν ′〉

holds in the time-abstract transition system U(A) of Definition 4.19.

• Cini = {〈�ini, [νini]〉} ∩ Conf (R(A)) with νini(x) = 0 for all clocks x ∈ X is

the set of initial (region) configurations.

By Lemma 4.28, the set Conf (R(A)) of region configurations is finite.

The bisimulation Lemma 4.26 implies that the transition relation −→R(A)

is well-defined, i.e. independent of the choice of the representative ν of a

region [ν]. If νini |= I(�ini) then Cini consists of 〈�ini, [νini]〉 as the unique

initial region configuration, otherwise Cini = ∅.

Remark 4.30

In a configuration 〈�, [ν]〉 of R(A) the region [ν] represents the clock valu-

ations that hold when the location � is just entered. For the initial config-

uration 〈�ini, [νini]〉 the region [νini] is characterised by the initial constraint∧
x∈X x = 0. The clock values obtained when staying longer in a location

are not represented by the regions of R(A).

Example 4.31

The region automaton for the timed automaton A0 of Example 4.22, re-

stricted to the reachable configurations, is shown in Figure 4.3. The initial

configuration is 〈�0, [x = y = 0]〉. We see that the locations �1, �2, and �3 are

reachable from this configuration, but the location �4 is not reachable (and

thus not shown in Figure 4.3). �

By the following lemma, it suffices to consider R(A) instead of U(A) when

solving the reachability problem:

Lemma 4.32 (Correctness)

For all locations � of a given timed automaton A the following holds:

� is reachable in U(A) iff � is reachable in R(A).
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�2
x = 1
y = 1

�2
y = 1

0 < x − y < 1

�2
y = 1

x − y = 1

�2
y = 1

x − y > 1

�0
x = y = 0

�1
x = y = 0

�1
0 < x < 1

y = 0

�1
x = 1
y = 0

�1
x > 1
y = 0

�3
x = y = 0

�3
0 < x = y < 1

�3
0 < x < 1

y = 0

�3
x > 1, 0 < y < 1
0 < x − y < 1

�3
0 < y < x < 1

�3
x = y > 1

�3
y = 1

0 < x − y < 1

�3
y > 1

0 < x − y < 1

a?

a? a? a?b?
b? b? b?

c?

c?

c?

c?

a?

a?

a? a?
a?

a?

a?

a?

a?

a?

d?
d?

d?

d?
d?

d?

d?
d?

d?

d?
d? d?

d?

d?

d?

Fig. 4.3. Region automaton for A0 of Example 4.22

Proof:

The claim follows from the definitions: � is reachable in U(A)

iff there exists a time-abstract transition sequence in U(A) of the form

〈�ini, νini〉
α1=⇒ . . .

αk=⇒ 〈�, ν〉

iff there exists a transition sequence in R(A) of the form

〈�ini, [νini]〉
α1−→R(A) . . .

αk−→R(A) 〈�, [ν]〉

iff � is reachable in R(A). �
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Since the region automaton R(A) can be constructed effectively from A
and has only finitely many configurations, we obtain the following main

theorem:

Theorem 4.33 (Decidability)

The location reachability problem for timed automata is decidable.

4.3.2 Constraint reachability

Now we consider a more demanding variant of the reachability problem, the

constraint reachability problem.

Given: A timed automaton A, one of its control locations �, and a clock

constraint ϕ.

Question: Is a configuration reachable with the location � and the clock

valuation satisfying ϕ, i.e. is there a transition sequence of the form

〈�ini, νini〉
λ1−→ . . .

λn−→ 〈�, ν〉 with ν |= ϕ

in the labelled transition system T (A) ?

For a clock region [ν] we introduce a delay operation

delay[ν] = {ν ′ + t | ν ′ ∼= ν and t ∈ Time}.

We remark that delay[ν] can be represented as a finite union of regions. For

example, in Figure 4.2 we have

delay[x = y = 0] = [x = y = 0]∪ [0 < x = y < 1]∪ [x = y = 1]∪ [1 < x = y].

These regions are obtained from Figure 4.2 by pursuing the diagonal in the

x–y-area starting at x = y = 0.

Theorem 4.34 (Decidability)

The constraint reachability problem for timed automata is decidable.

Proof:

Let a timed automaton A, a location �, and a clock constraint ϕ be given.

First construct Rϕ(A), the region automaton of A but modified so that the

constraint ϕ is taken into account in the definition of the maximal constants

cx for each clock variable x appearing in A or ϕ.

Then check whether there exist a configuration 〈�, [ν]〉 in Rϕ(A) and a re-

gion in the finite union forming delay[ν], say characterised by the constraint

[ϕ0], such that the formula

ϕ0 ∧ I(�) ∧ ϕ (4.1)



164 Timed automata

is satisfiable. The conjunct I(�) checks whether the location invariant of � is

preserved while time is progressing as described by ϕ0. The formula (4.1) can

be effectively constructed and it can be represented as a finite disjunction

of region formulas taken from Rϕ(A). The formula (4.1) is satisfiable if

and only if this disjunction is non-empty. Since this can easily be checked,

satisfiability of (4.1) is decidable. This proves the theorem. �

Example 4.35

Consider the timed automaton A0 of Example 4.22. Note that in this au-

tomaton all location invariants are true. So we can drop the conjunct I(�)

when checking formula (4.1).

First, we pose the question: is the location �3 reachable with ϕ ⇐⇒
y ≥ 2 ? Due to the new constant 2 in ϕ we have to construct the modified

region automatonRϕ(A0) for cx = 1 and cy = 2. The regions are sketched in

Figure 4.4, with the area marked grey where ϕ is satisfied. We do not present

the automaton Rϕ(A0) in detail, but remark that in Rϕ(A0), the reachable

configuration 〈�3, [x = y > 1]〉 of R(A0) is split into three configurations,

namely

〈�3, [1 < x = y < 2]〉, 〈�3, [x = y = 2]〉, and 〈�3, [x = y > 2]〉.

Take 〈�3, [x = y = 2]〉. By looking at the region diagram in Figure 4.4, we

see the black area representing

delay[x = y = 2] = [x = y = 2] ∪ [x = y > 2].

Thus formula (4.1) amounts to

(x = y = 2 ∨ x = y > 2) ∧ y ≥ 2 ⇐⇒ x = y = 2 ∨ x = y > 2,

which is a non-empty disjunction of regions. So the answer to our question

is: yes.

Second, consider the question: is the location �2 reachable with x = 0 ?

For this constraint it suffices to consider the region automaton R(A0) in

Figure 4.3. It contains four (reachable) configurations with location �2:

〈�2, [x = 1 ∧ y = 1]〉, 〈�2, [y = 1 ∧ 0 < x− y < 1]〉,
〈�2, [y = 1 ∧ x− y = 1]〉, 〈�2, [y = 1 ∧ x− y > 1]〉.

By looking at the region diagram in Figure 4.2, we see that applying the

delay operator to the four clock regions of these configurations yields a

triangle formed by eight regions within the area x ≥ 1 ∧ y ≥ 1 marked grey

in Figure 4.5. However, the constraint x = 0 in question is represented
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y

2

1

0
0 1 2 x

y ≥ 2

Fig. 4.4. Reachable constraint y ≥ 2 in location �3

by four regions, all with x = 0 and marked black in Figure 4.5. We see

that the grey and black areas in Figure 4.5 do not intersect. Formally, the

conjunction of the regions representing the delays of the �2-regions with the

regions representing x = 0 in formula (4.1) yields false, i.e. is represented by

the empty disjunctions of regions. So the answer to the second question is:

no. �

4.4 The model checker UPPAAL

UPPAAL is a tool for modelling, simulating, and verifying real-time sys-

tems. The name is an acronym for the universities of Uppsala, Sweden and

Aalborg, Denmark, where the tool was developed under the guidance of

K.G. Larsen and Wang Yi. The tool is designed for real-time systems that

can be modelled as networks of timed automata. To increase the applica-

bility of this system model, UPPAAL extends the “pure” timed automata

introduced in Definition 4.3 by supporting

(1) data variables,

(2) high-level structuring facilities,

(3) concepts for restricting the nondeterminism, and
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y

2

1

0
0 1 2 x

x = 0 regions reachable

in location �2

Fig. 4.5. Non-reachable constraint x = 0 in location �2

(4) a logic for specifying behavioural properties.

4.4.1 Data variables

Data variables range over finite subsets of integers with finite range and

may be grouped into arrays. Just as clock variables, also data variables

may appear in the guards of edges. The values of these variables can be

changed by assignments that are executed when a transition fires. UPPAAL

provides expressions with all standard integer operations, and their syntax

and semantics are as usual. We do not give full details of the expressions

here because we only need a tiny subset of them in this book.

Definition 4.36

Let V be a set of data variables, with typical element v.

• The set Ψ(V ) of integer expressions over V , with typical element ψint, is

defined by the usual syntax, using variables in V and the operator symbols

+,−, . . .
• The set Φ(V ) of integer constraints or data constraints over V , with typical

element ϕint, is defined as the set of Boolean expressions with the usual
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syntax, using variables in V , the operator symbols +,−, . . . , and the predicate

symbols =, <,>,≤,≥.

• Let X be a set of clock variables, with typical element x. The set Φ(X, V )

of guards, with typical element ϕ, is defined by the following syntax:

ϕ ::= ϕclk| ϕint | ϕ1 ∧ ϕ2,

where ϕclk ∈ Φ(X) is a clock constraint and ϕint ∈ Φ(V ) is an integer

constraint.

Valuations ν now assign values to both clocks and data variables. The

satisfaction relation ν |= ϕ between valuations and guards extends the defi-

nition in Section 4.1 for data constraints in the straightforward way.

For the extended definition of valuations we adapt the operations of time-

shift and modification. The time-shift operator ν + t for t ∈ Time is now

defined for clocks x and data variables v:

(ν + t)(x) = ν(x) + t,

(ν + t)(v) = ν(v).

As before, the value of each clock x is increased by the time t; the values of

the data variables v remain unchanged.

A modification or reset operation is an assignment to a clock x ∈ X

x := 0

or an assignment to a data variable v ∈ V of the form

v := ψi

where ψi ∈ Ψ(V ). Let R(X, V ) denote the set of these reset operations, with

typical element r. The modification of a valuation ν under a reset operation

r is denoted by ν[r] and defined as follows:

ν[x := 0](v′) =

{
0, if v′ = x,

ν(v′), otherwise,

ν[v := ψi](v
′) =

{
ν(ψi), if v′ = v,

ν(v′), otherwise.

By �r we denote a finite list of reset operations on clocks and data variables,

�r = 〈 r1, . . . , rn 〉, and we extend the definition of modification appropriately:

ν[〈 r1, . . . , rn 〉] = ν[r1] . . . [rn].

We use R(X, V )∗ to denote the set of these lists of reset operations and 〈 〉
to denote the empty list of reset operations. Note that we omit the brackets

in the graphical representation of extended timed automata.
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Remark 4.37

It is possible to construct data constraints or assignments to data variables

that lead to exceptions like division by zero, violation of array bounds, etc. If

UPPAAL encounters such an exception during the evaluation of a transition

it considers this transition as disabled. In this book we assume that such

exceptions do not occur, by construction of the extended timed automata.

4.4.2 Structuring facilities

UPPAAL provides several structuring facilities for networks of automata.

• Global declarations of clocks, data variables, channels, and constants can

be introduced. Channels for binary synchronisation are declared as chan c

and have a semantics as defined in Section 4.2. Thus at each moment a

sender can only interact with one receiver, and a send action c! is only

possible if simultaneously a corresponding receive action c? is executed.

UPPAAL also offers broadcast channels declared as broadcast chan b.

On a broadcast channel one sender b! can synchronise with an arbitrary

number of receivers b?. Any receiver that can synchronise in its current

state must do so. If there are no receivers available the sender can still

execute the b! action. Thus unlike binary synchronisation, broadcast send-

ing is never blocking. Figure 4.6 gives a graphic impression of a network

of timed automata with channels a, c, d for binary synchronisation and a

broadcast channel b. The picture suggests that only the automata A1 and

A3 listen to the sender A4 during its broadcast. However, in this book we

shall not treat broadcast channels in more detail.

• Templates are timed automata equipped with lists of formal parameters of

types like int or chan and with local declarations of clocks, data variables,

channels, and constants.

• Process assignments instantiate the templates by substituting actual pa-

rameters for the formal ones. An instantiated template is called a process.

• A system definition consists of a list of processes.

4.4.3 Restricting nondeterminism

To restrict the nondeterminism arising from the interleaving semantics of

parallel composition, UPPAAL extends networks of timed automata by

the following concepts:

• Urgent locations. In an urgent location time is not allowed to pass.
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global declarations: clocks, variables, channels, constants

A1

local
decl.

A2 A3

A4

b? b?

b!

broadcast chan b

chan c
c! c?

chan a
a! a?

chan d
d? d!

Fig. 4.6. Network of timed automata in UPPAAL

• Committed locations. A committed location restricts the possible transi-

tion sequences even further. If at least one automaton of a network is in

a committed location, time is not allowed to pass and the next transition

must involve an outgoing edge of at least one of the committed locations.

Committed locations serve to model atomic regions consisting of several

transitions that should be executed without interference by transitions of

any other automaton.

• Urgent channels. Once a synchronisation between two automata along

an urgent channel is enabled, a transition must happen without delay.

Note that this transition does not necessarily synchronise over the urgent

channel.

Let us look at an example.

Example 4.38 (Urgency and commitments)

For the three timed automata P,Q, and R shown in Figure 4.7, consider the

network N = chan b • (P || Q || R). There are two clocks x and y, and two

data variables v and w, all initialised to 0. In N the component automata

P,Q,R can wait arbitrarily long in all locations because there is no location

invariant requiring progress. At the start, each component automaton can

take its initial τ -transition. The τ -transition of P enables the b?-transition,
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which can be taken only together with the complementary b!-transition of Q,

which in turn is enabled by the initial τ -transition of Q. Whenever Q fires

a transition it changes the value of the data variable v. When R executes

its τ -transition it copies the current value of v into the data variable w.

P
p0

p1

p2

τ x := 0

b?

Q
q0

q1

q2 q3

τ y := 0, v := 1

b!, v := 2 τ, v := 3

R
r0

r1

τ w := v

Fig. 4.7. Urgent locations and channels, committed locations

We now discuss three variants of the network N .

Variant 1. If q1 is declared as an urgent location the automaton Q is no

longer allowed to wait in q1, i.e. the clock y must stay at 0. However, it is

possible that the τ -transition in P or R is taken because this does not take

any time. Once these τ -transitions have occurred, Q must leave the location

q1, either by taking the b!-transition synchronising with the b?-transition of

P or by taking its own τ -transition to location q3.

Variant 2. If q1 is declared as a committed location the automaton Q is

forced to take a transition leaving q1 as its next step. Thus staying in q1 is

not allowed any more, not even a τ -transition may be performed by P or

R. Again, the process Q has two alternatives to leave q1 described above.

Variant 3. Suppose now that b is declared as an urgent channel. Then once

a synchronisation along channel b is enabled it must happen without delay.

However, other transitions may occur before the synchronisation because

transitions do not take time. In this example, the τ -transition in P or R
can be taken. With urgent channels a conditional urgent location can be

modelled, which becomes urgent only if an outgoing communication along

the urgent channel is enabled.
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Note that N and its variants above all have distinct semantics. This can

be demonstrated by the following three properties.

Property 1. It is possible that the variable w is assigned the value 1.

This can only happen if the τ -transition of R can be fired while Q stays

in q1. This property is satisfied except for Variant 2 where q1 is committed.

Property 2. Whenever Q is in location q1 the clock x has the value 0.

This property says that time cannot progress as soon as Q has reached

location q1. This is only true if q1 is urgent or even committed.

Property 3. Whenever Q enters the location q1 while P is in location p1

the clock y has the value 0 as long as Q stays in q1.

Consider the case that P has already executed the τ -transition to p1. If

then Q enters q1 we know that y has been reset to 0 after x has been reset,

i.e. x ≥ y holds. Moreover, the synchronisation via channel b is enabled.

The property now requires that time cannot pass. This is only true if q1 is

either committed or urgent or b is declared as an urgent channel.

These differences are summarised in the following table:

Property 1 Property 2 Property 3

w can be-

come 1

y ≤ 0 holds

when Q is in q1

x ≥ y ⇒ y ≤ 0

holds when P is in

p1 and Q is in q1
N √

wrong wrong

V.1 N , q1 urgent
√ √ √

V.2 N , q1 committed wrong
√ √

V.3 N , b urgent
√

wrong
√

Here V.1–V.3 refer to the three variants of N , and
√

denotes that the cor-

responding property is satisfied. �

The semantics of urgent locations can easily be expressed by a transfor-

mation. Replace a given urgent location with an ordinary location �, take

a new clock z that is reset on all edges pointing to �, and add z = 0 as

an invariant for � (see Figure 4.8). Because of this transformation we shall

not introduce urgent locations explicitly in the following Definition 4.39, but

restrict ourselves to committed locations and urgent channels.
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Replace
�

urgent
with

z := 0 �

z = 0

Fig. 4.8. Transformation eliminating urgent locations

For efficiency reasons, UPPAAL restricts location invariants to conjunc-

tions of constraints

x ! n with ! ∈ {<, ≤} and n ∈ N.

With this restriction, location invariants I(�) are downward closed , i.e. when-

ever ν + t |= I(�) then also ν + t′ |= I(�) for all t′ ∈ [0, t].

Summarising, UPPAAL uses the following notion of an extended timed

automaton:

Definition 4.39 (Extended timed automaton)

An extended timed automaton Ae is a structure

Ae = (L,C,B,U,X, V, I, E, �ini)

where L,B,X, I, �ini are defined as in Definition 4.3 of pure timed automata

(but I is restricted as just explained) and where:

• C ⊆ L is the set of committed locations.

• U ⊆ B is the set of urgent channels.

• V is a set of data variables, with typical element v.

• E ⊆ L × B?! × Φ(X, V ) × R(X, V )∗ × L is the set of directed edges. An

element (�, α, ϕ, �r, �′) ∈ E describes an edge from location � to �′ with action

α, guard ϕ, and a list �r of reset operations.

• If (�, α, ϕ, r, �′) ∈ E and chan(α) ∈ U then ϕ = true. This condition prevents

that urgent actions are prohibited by guards.

Referring to Definition 4.3 for I means that it assigns to each location

� an invariant I(�) ∈ Φ(X) = Φ(X,∅). Thus location invariants constrain

only clocks but not data variables. Extended timed automata specialise to

pure timed automata if C = U = V = ∅ and if all clock resets are of the

form x := 0. Then a list of such resets can be replaced by a set of resets as

used in Definition 4.3.

In the graphic representation of extended timed automata we shall in-

dicate that a location � is committed by writing c : � inside the location

circle:
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c : �

I(�)

Urgent channels will be declared so in the running text.

4.4.4 Operational semantics of networks

Both pure and extended timed automata serve as building blocks for net-

works of such automata. However, semantically there is a major difference.

Whereas the semantics of a network of pure timed automata can be reduced

to the semantics of a single timed automaton by two composition operators

(parallel composition and restriction), this is no longer possible for extended

timed automata. The reason is that the meaning of committed locations and

urgent channels can be defined only in the presence of all automata in the

network. To make this difference explicit, we write

C(A1, . . . ,An)

for a closed network of extended timed automata A1, . . . ,An with disjoint

sets of clocks. In case of pure timed automata we would express this as

chan b1, . . . , bm • (A1 || . . . || An),

where {b1, . . . , bm} is the set of all channels used in one of the Ai. In a

network C(A1, . . . ,An) each component automaton Ai has its own control

location �i. Hence, for the whole network a control vector �� = (�1, . . . , �n)

collects the control locations of the components. As before, we denote a

change of the ith component’s location from �i to �′i by �� [�i := �′i].

Definition 4.40 (Semantics of extended timed automata)

For extended timed automata Ae = (Li, Ci, Bi, Ui,Xi, Vi, Ii, Ei, �ini,i) with

i = 1, . . . , n and pairwise disjoint sets Xi of clocks consider the closed net-

work C(A1, . . . ,An). Then its operational semantics is defined by the labelled

transition system

Te(C(A1, . . . ,An)) = (Conf ,Time ∪ {τ}, { λ−→ |λ ∈ Time ∪ {τ}}, Cini)

where:

• X =
⋃n

k=1 Xk and V =
⋃n

k=1 Vk.

• Conf = {〈��, ν〉 | �i ∈ Li ∧ ν : X −→ Time ∧ ν |=
∧n

k=1 Ik(�k)} is the set of

configurations of C(A1, . . . ,An).
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• For each λ ∈ Time ∪ {τ} the transition relation
λ−→ ⊆ Conf × Conf has

one of the following three types:

(i) An internal transition 〈��, ν〉 τ−→〈��′, ν ′〉 occurs if for some i ∈ {1, . . . , n}
there is a τ -edge (�i, τ, ϕ, �r, �

′
i) ∈ Ei in the ith automaton such that

– ν |= ϕ, i.e. the guard is satisfied,

–
��′ = �� [�i := �′i],

– ν ′ = ν[�r] and ν ′ |= Ii(�
′
i),

– (♣) if �k ∈ Ck for some k ∈ {1, . . . , n} then �i ∈ Ci, i.e. if there is a

committed location in � then the ith automaton is in such a location.

(ii) A synchronisation transition 〈��, ν〉 τ−→〈��′, ν ′〉 occurs if for some i, j ∈
{1, . . . , n} with i �= j and some channel b ∈ Bi ∩ Bj there are edges

(�i, b!, ϕi, �ri, �
′
i) ∈ Ei and (�j , b?, ϕj , �rj , �

′
j) ∈ Ej , i.e. the ith and the jth

automaton can synchronise their output and input on the channel b, such

that

– ν |= ϕi ∧ ϕj , i.e. both guards are satisfied,

–
��′ = �� [�i := �′i][�j := �′j ],

– ν ′ = ν[�ri][�rj ] and ν ′ |= Ii(�
′
i) ∧ Ij(�′j),

– (♣) if �k ∈ Ck for some k ∈ {1, . . . , n} then �i ∈ Ci or �j ∈ Cj , i.e.

if there is a committed location in � the ith or the jth automaton is in

such a location.

(iii) A delay transition 〈��, ν〉 t−→〈��, ν + t〉 occurs if

– ν + t |=
∧n

k=1 Ik(�k) holds, i.e. all invariants are satisfied at the end of

the delay,

– (♣) there are no i, j ∈ {1, . . . , n} and b ∈ U with (�i, b!, ϕi, �ri, �
′
i) ∈ Ei

and (�j , b?, ϕj , �rj , �
′
j) ∈ Ej , i.e. there is no urgent action enabled,

– (♣) there is no i ∈ {1, . . . , n} with �i ∈ Ci, i.e. no automaton is in a

committed location.

• Cini = {〈−→�ini, νini〉} ∩ Conf , where the vector
−→
�ini consists of the initial loca-

tions of all component automata Ai and the valuation νini assigns 0 to all

clocks and data (here: integer) variables in the set X∪V , is the set of initial

configurations.

Whereas clocks of different component automata Ai are required to be dis-

joint, data variables may be shared by several component automata. Since

C(A1, . . . ,An) is a closed network, each transition is either labelled by the

internal action τ or by a delay time t ∈ Time. Observe that the reset opera-

tions of synchronisation transitions are executed sequentially. First the reset

operations ri of the (output) b!-transition are executed and afterwards the
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reset operations rj of the (input) b?-transition. This way, a data flow from

output to input is modelled. For the delay transition the downward closure

of the invariants Ik(�k) guarantees that ν+t |= Ik(�k) implies ν+t′ |= Ik(�k)

for all t′ ∈ [0, t]. Thus checking the invariant at the end of the delay implies

that it holds for all smaller values as well. The meaning of committed loca-

tions and urgent channels is specified in the conditions marked (♣). Note

that these conditions are formulated negatively (e.g. if no urgent action is

enabled). Thus they can be evaluated only if all automata in the network

are known because they may become invalid if we add one more automaton.

The notions of transition sequence, computation path, and run introduced

for pure timed automata (see Definitions 4.7 and 4.10) apply also to networks

C(A1, . . . ,An) of extended timed automata since these notions rely only on

sequences of (time-stamped) configurations, here taken from the transition

system Te(C(A1, . . . ,An)).

We now relate the semantics of closed networks of extended and pure

timed automata.

Theorem 4.41 (Semantics of extended and pure timed automata)

If A1, . . . ,An specialise to pure timed automata as in Definition 4.3 the

operational semantics of C(A1, . . . ,An) and

N = chan b1, . . . , bm • (A1 || . . . || An),

where {b1, . . . , bm} is the set of all channels used in one of the Ai, coincide.

Formally,

Te(C(A1, . . . ,An)) = T (N ).

Proof:

If A1, . . . ,An are pure timed automata, the conditions in Definition 4.40

marked (♣), which deal with committed locations and urgent channels, do

not apply. We compare the remaining clauses with those describing the

transitions of T (N ), as established in Lemma 4.16. Since N is closed, all

local transitions of N are labelled by τ . Thus the only remaining differences

between the clauses in Definition 4.40 and Lemma 4.16 are as follows.

First, for a synchronisation transition 〈��, ν〉 τ−→〈��′, ν ′〉 the new valuation

ν ′ is obtained for extended timed automata by two sequential reset op-

erations ν ′ = ν[�ri][�rj ] and for pure timed automata by the simultaneous

modification ν ′ = ν[Yi ∪ Yj := 0]. Since the clocks in Yi and Yj are all reset

to 0, both definitions of ν ′ coincide. An analogous but simpler argument

applies if 〈��, ν〉 τ−→〈��′, ν ′〉 is a local, hence internal transition.
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Second, for a delay transition 〈��, ν〉 t−→〈��, ν + t〉 the location invariant

Ii(�i) is checked only for the final valuation ν + t in case of extended timed

automata and for all valuations ν + t′ with t′ ∈ [0, t] in case of timed au-

tomata. The simplified check for extended timed automata is justified be-

cause by syntactic restrictions the invariants are downward closed, and this

property is inherited when extended timed automata specialise to pure timed

automata. �

In case of pure timed automata A1, . . . ,An we continue to use the more

informative notation

N = chan b1, . . . , bm • (A1 || . . . || An),

instead of C(A1, . . . ,An) for closed networks.

4.4.5 The logic of UPPAAL

The logic of UPPAAL is a subset of the Timed Computation Tree Logic,

tailored towards an efficient model-checking procedure. Informally, this logic

allows us to express that the following properties ϕ of configurations should

hold along the computation paths of a given network

C(A1, . . . ,An) (4.2)

of extended timed automata:

• ∃�ϕ expresses that there exists a computation path along which eventu-

ally ϕ holds.

• ∀�ϕ expresses that along all computation paths ϕ always holds.

• ∃�ϕ expresses that there exists a computation path along which ϕ always

holds.

• ∀�ϕ expresses that along all computation paths ϕ eventually holds.

• ϕ1 −→ ϕ2 expresses that each occurrence of ϕ1 eventually leads to an

occurrence of ϕ2.

The following diagrams illustrate the semantics of path formulas by repre-

senting the set of computation paths as a computation tree and highlighting

the node(s) where any of the formulas ϕ,ϕ1, or ϕ2 hold.
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∃�ϕ : there exists a computation path along which eventually ϕ holds:

ϕ

∀�ϕ : along all computation paths ϕ always holds:

ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

∃�ϕ : there exists a computation path along which ϕ always holds:

ϕ

ϕ

ϕ
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∀�ϕ : along all computation paths ϕ eventually holds:

ϕ

ϕ ϕ

ϕ1 −→ ϕ2 : each occurrence of ϕ1 eventually leads to an occurrence of ϕ2:

ϕ1

ϕ2

ϕ2 ϕ2

Formally, the logic comprises basic formulas BF , configuration formulas

CF , and path formulas PF , divided into existential path formulas EPF

and universal path formulas APF , and is defined by the following syntax:

BF ::= Ai.� | ϕ,

CF ::= BF | ¬CF | CF1 ∧ CF2,

EPF ::= ∃�CF | ∃�CF,

APF ::= ∀�CF | ∀�CF | CF1 −→ CF2,

PF ::= EPF | APF.
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The basic formula Ai.� expresses that the automaton Ai of the network

C(A1, . . . ,An) is at location �, and basic formula ϕ is a constraint on the

clock and data values. In configuration formulas CF the logical connectives

∨,=⇒, and ⇐⇒ are considered as abbreviations. In path formulas PF the

quantifiers ∃ and ∀ express existential and universal quantification over com-

putation paths, respectively, and the modalities � and � express existential

and universal quantification over configurations, respectively. For example,

∃�Ai.�

expresses that there exists a computation path on which there exists a con-

figuration where the automaton Ai is at location �. In other words, the

location � is reachable in Ai.

We need one more notation for the formal definition of the semantics of

the logic. Given a path ξ of C(A1, . . . ,An) starting in the time-stamped

configuration 〈��0, ν0〉, t0 of the form

ξ : 〈��0, ν0〉, t0
λ1−→〈��1, ν1〉, t1

λ2−→〈��2, ν2〉, t2
λ3−→ . . .

and a value t ∈ Time we denote by ξ(t) the set of configurations at time t,

defined as follows:

ξ(t) = {〈��, ν〉 | ∃i ∈ N• (ti ≤ t ≤ ti+1 ∧
�� = ��i ∧ ν = νi + t− ti)}.

Note that ξ(t) is defined as a set because in ξ a sequence of transitions

can occur at the same time. This set may be empty if the time stamps

t0, t1, t2, t3, . . . do not form a real-time sequence, i.e. do not grow unbound-

edly. In that case there may be no index i with ti ≤ t ≤ ti+1.

Formally, we introduce a binary satisfaction relation |= between time-

stamped configurations 〈��0, ν0〉, t0 of the network (4.2) and formulas F of

the UPPAAL logic, written as

〈��0, ν0〉, t0 |= F

and defined inductively as follows:

〈��0, ν0〉, t0 |= Ai.� iff �0,i = �, i.e. the ith component of the

location vector ��0 is �,

〈��0, ν0〉, t0 |= ϕ iff ν0 |= ϕ,

〈��0, ν0〉, t0 |= ¬CF iff 〈��0, ν0〉, t0 �|= ¬CF,

〈��0, ν0〉, t0 |= CF1 ∧ CF2 iff 〈��0, ν0〉, t0 |= CF1 and 〈��0, ν0〉, t0 |= CF2,
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〈��0, ν0〉, t0 |= ∃�CF iff ∃ path ξ of (4.2) starting in 〈��0, ν0〉, t0
∃t ∈ Time, 〈��, ν〉 ∈ Conf • t0 ≤ t

∧〈��, ν〉 ∈ ξ(t) ∧ 〈��, ν〉, t |= CF,

〈��0, ν0〉, t0 |= ∀�CF iff ∀ path ξ of (4.2) starting in 〈��0, ν0〉, t0
∀t ∈ Time, 〈��, ν〉 ∈ Conf • t0 ≤ t

∧〈��, ν〉 ∈ ξ(t) =⇒ 〈��, ν〉, t |= CF,

〈��0, ν0〉, t0 |= ∃�CF iff ∃ path ξ of (4.2) starting in 〈��0, ν0〉, t0
∀t ∈ Time, 〈��, ν〉 ∈ Conf • t0 ≤ t

∧〈��, ν〉 ∈ ξ(t) =⇒ 〈��, ν〉, t |= CF,

〈��0, ν0〉, t0 |= ∀�CF iff ∀ path ξ of (4.2) starting in 〈��0, ν0〉, t0
∃t ∈ Time, 〈��, ν〉 ∈ Conf • t0 ≤ t

∧〈��, ν〉 ∈ ξ(t) ∧ 〈��, ν〉, t |= CF,

〈��0, ν0〉, t0 |= CF1 −→ CF2 iff ∀ path ξ of (4.2) starting in 〈��0, ν0〉, t0
∀t ∈ Time, 〈��, ν〉 ∈ Conf • t0 ≤ t

∧〈��, ν〉 ∈ ξ(t) ∧ 〈��, ν〉, t |= CF1

implies 〈��, ν〉, t |= ∀�CF2.

We lift the satisfaction relation |= to networks C(A1, . . . ,An), existential

path formulas EPF , and universal path formulas APF as follows:

C(A1, . . . ,An) |= EPF iff 〈��0, ν0〉, 0 |= EPF for some 〈��0, ν0〉 ∈ Cini,

C(A1, . . . ,An) |= APF iff 〈��0, ν0〉, 0 |= APF for all 〈��0, ν0〉 ∈ Cini,

where Cini is the set of initial configurations in Te(C(A1, . . . ,An)), the tran-

sition system of the network.

Recall that Cini contains at most one element. If Cini = ∅ the formula

EPF is never satisfied whereas APF is trivially satisfied. If 〈−→�ini, νini〉 ∈ Cini

both definitions agree on all path formulas PF and simplify to

C(A1, . . . ,An) |= PF iff 〈−→�ini, νini〉, 0 |= PF.

Let us now look at some examples.

Example 4.42 (Light controller and user)

The following two pure timed automata represent the light controller L of

Example 4.6 together with a user U :
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L :

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U :

�0
�1

y < 2
�2 �3

�4
y > 3

press!

y := 0

press! press!

press!

y := 0

press!

Let N be the closed network chan press•(L || U). Then the liveness property

N |= ∃�L.bright

holds as the following initial segment of a path of N shows:

〈(off , �0), x = y = 0〉 2.5−→ 〈(off , �0), x = y = 2.5〉
1.7−→ 〈(off , �0), x = y = 4.2〉
τ−→ 〈(light, �1), x = y = 0〉

1.9−→ 〈(light, �1), x = y = 1.9〉
τ−→ 〈(bright, �2), x = y = 1.9〉
10−→ 〈(bright, �2), x = y = 11.9〉
τ−→ 〈(off , q0), x = y = 11.9〉 . . .

On the other hand, N �|= ∀�L.bright because the network N can stay in the
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initial location vector (off , �0) for ever. Since in (off , �0) time may progress

unboundedly, staying there is even possible for a run of N . �

Example 4.43 (Generalised railroad crossing)

For the pure timed automata T and G of Example 4.18 consider once more

the closed network N = chan up, dn • (T || G). If the constraint ξ1 < ρ is

satisfied the desired safety property

N |= ∀� (T .Cross =⇒ G.Closed)

holds. �

Example 4.44 (Fischer’s protocol)

Fischer’s protocol exploits time to achieve mutual exclusion of the critical

sections cs1 and cs2 accessed by two processes. The processes are modelled

by the following two extended timed automata A1 and A2 with clocks x and

y, respectively, which use a shared data variable id ranging over the values

0, 1, and 2, but have no common channel for synchronisation:

A1 :

req1

x ≤ 10

wait1cs1

τ, id = 0

x := 0

τ
id := 1
x := 0

τ
id = 0
x := 0

τ, id = 1

∧x > 10

id := 0τ

A2 :

req2

y ≤ 10

wait2cs2

τ, id = 0

y := 0

τ
id := 2
y := 0

τ
id = 0
y := 0

τ, id = 2

∧y > 10

id := 0τ

The variable id has the value 0 when none of the processes wishes to enter

their critical sections. If A1 wishes to enter its critical section cs1 it sets id to

1, and likewise for A2. Altogether, the following mutual exclusion property

holds:

C(A1,A2) |= ∀�¬(A1.cs1 ∧A2.cs2).

Let us now consider the property of alternating entry, i.e. none of the pro-

cesses A1 and A2 may access the critical section twice in a row. To check



4.4 The model checker UPPAAL 183

this property, we introduce two channels p1 and p2 and extend the automata

A1 and A2 by outputs p1! and p2!, respectively, notifying their entry of the

critical section. These outputs have to synchronise with a separate test

automaton T , which has a distinguished location called bad.

A1 :

req1

x ≤ 10

wait1cs1

τ, id = 0

x := 0

τ
id := 1
x := 0

τ
id = 0
x := 0

p1!, id = 1

∧x > 10

id := 0τ

A2 :

req2

y ≤ 10

wait2cs2

τ, id = 0

y := 0

τ
id := 2
y := 0

τ
id = 0
y := 0

p2!, id = 2

∧y > 10

id := 0τ

T :

bad

p1?

p2?

p1?

p2?

p1?

p2?

The automaton T is constructed in such a way that the alternating entry

property is violated iff

C(A1,A2, T ) |= ∃� T .bad

holds, i.e. iff T can reach its “bad” location. For Fischer’s protocol this is

indeed the case. �
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4.5 Exercises

Exercise 4.1 (Traffic lights)

Consider traffic lights for cars and pedestrians wishing to cross a road, in-

formally described as follows. The lights LC for the cars proceed through

the following cycle of phases: Idle (showing no light), Yellow, Red, and Red–

Yellow (showing both a red and a yellow light). The initial phase is Idle, it

should last at least 20 seconds (to let cars pass) and otherwise can be arbi-

trarily long (if no pedestrians wish to cross). The phase Yellow should take

5 seconds, the phase Red 15 seconds, and the phase Red–Yellow 5 seconds.

The lights LP for the pedestrians have the following phases: idle (showing

no light), red1, red2 (both showing a red light), and green. The initial

phase idle lasts as long as no pedestrian pushes a button at the traffic light.

When a button is pushed the phase red1 is entered and held for 35 seconds,

afterwards the phase green is entered and held for 10 seconds. Then the

phase red2 is entered for at most 5 seconds. If a button is pushed during

this phase the phase red1 is re-entered, otherwise the light controller returns

to the phase idle and the light is switched off. Pushing a button during the

phases red1 and green has no effect.

Model LC and LP as well as the pedestrian P as a network N of three

timed automata working in parallel and synchronising on suitable channels.

The pedestrian’s behaviour is modelled only as far as it is noticeable at the

button, i.e. the timed automaton should be able to engage at any moment

in an output b! on a channel b (representing the button). The corresponding

input b? is used in the timed automaton for LP. To synchronise LC and LP
appropriately, the timed automata should use a further common channel s.

Argue why the following safety properties hold:

• Whenever the pedestrian’s light is in the phase green the light for the cars

is in the phase Red.

• Whenever the light for the cars is in the phase Idle the pedestrian’s light

is not in the phase green.

Exercise 4.2 (Compositionality)

Show that parallel composition of (pure) timed automata behaves composi-

tionally over labelled transition systems. For this purpose, define an appro-

priate parallel operator ||T directly on labelled transition systems as used

for the operational semantics of timed automata and prove for all timed

automata A1 and A2 the following compositionality result:

T (A1||A2) = T (A1) ||T T (A2).
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Exercise 4.3 (Shared clocks)

In Definitions 4.12 and 4.40 we required that the components of a parallel

composition have disjoint clocks. Generalise these definitions by removing

this constraint, thus introducing shared clocks. Discuss the impact on com-

positionality and the consequences for Lemma 4.16 and Theorem 4.41.

Exercise 4.4 (Clock differences)

Let A = (L,B,X, I, E, �ini) be a timed automaton. Prove that there exists

a timed automaton A′ = (L′, B,X, I ′, E′, �′ini) without clock differences (of

the form x− y ∼ c) that satisfies the following property. For each transition

sequence

〈�0, ν0〉
λ1−→ 〈�1, ν1〉

λ2−→ 〈�2, ν2〉
λ3−→ . . .

of A there exists a transition sequence of A′ of the form

〈�′0, ν0〉
λ1−→ 〈�′1, ν1〉

λ2−→ 〈�′2, ν2〉
λ3−→ . . .

and vice versa.

Hints:

• It suffices to construct an automaton A′ where only a single clock differ-

ence is removed.

• Consider what happens to clock differences when time passes.

Exercise 4.5 (Bisimulation)

Prove Lemma 4.26.

Exercise 4.6 (Equivalence relation)

Consider a timed automaton of the form k · A with k ≥ 2.

(a) Show that there is a coarser equivalence relation than ∼= of Defini-

tion 4.24.

(b) Improve the upper bound of the number of regions given in Lemma 4.28.

Exercise 4.7 (Region construction)

Consider the following timed automaton A:
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�0
x < 2

�1 �2

a?

x = 1

y := 0

b?

x− y > 1

a?

x := 0

b?

x ≥ 2

(a) Construct the region automatonR(A) and give a graphic representation

of the clock regions.

(b) Determine whether the location �2 of A is reachable.

(c) Is there a non-Zeno computation path in A ?

Exercise 4.8 (Constraint reachability)

Show that constraint reachability for timed automata is decidable by a re-

duction of this problem to a suitable instance of the location reachability

problem.

Hint: Add a dedicated location and appropriate transitions to the given

automaton.

Exercise 4.9 (Determining the winner)

For i ∈ {1, 2} consider the following schema of a timed automaton Ai where

li, ui ∈ Q≥0 are two constants with li < ui:

idlei

runi

li ≤ xi

xi ≤ ui

fini

xi ≤ 0
endi

starti?

xi := 0

τ

xi := 0 stopi!

Construct a (possibly extended) timed automaton R modelling a referee

that starts A1 and A2 simultaneously and determines by reaching one of the

three locations win1, win2, and draw which of the following three situations

has occurred:

• win1 means that A1 finished before A2,

• win2 means that A2 finished before A1,
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• draw means that A1 and A2 finished simultaneously.

To this end, R should interact with A1 and A2 in a network by synchronising

over the channels start1, start2, stop1, and stop2.

Hint: Think of using committed locations and urgent channels.

Exercise 4.10 (Expressing properties)

The logic of UPPAAL is somewhat restricted in its expressiveness. First,

to express timing properties appropriate clocks need to be present in the

system of timed automata under test. Second, negation is not allowed at

the level of path formulas. To express properties involving such features

the given system of timed automata has to be extended either by adding

suitable clocks with corresponding invariants and guards or by adding a

separate test automaton with a distinguished location indicating violation

of the property and extra communications with the system under test, as

shown in Example 4.44.

Formalise the following properties in the logic of UPPAAL, possibly

preparing the system under test as outlined above:

(i) The location � is never visited for more than 5 seconds.

(ii) The data variable v never has the value 3.

(iii) There exists a path in which first the location �1 and then the location

�2 is visited.

(iv) There is no path in which first the location �1 and then the location

�2 is visited.

(v) There exists a path in which first the location �1 is visited for 2 seconds

and then the location �2 for 3 seconds.

4.6 Bibliographic remarks

Originally, R. Alur and D. Dill defined timed automata as an extension of

Büchi automata by real-valued clocks [AD94]. Büchi automata are finite-

state automata equipped with an acceptance condition for infinite words

[Tho90]. Alur and Dill’s timed automata were acceptors of timed languages

consisting of infinite real-time words. The Büchi acceptance condition was

used to enforce progress. Their main results were the decidability of im-

portant properties like the emptiness problem for timed languages and the

reachability problem for locations [ACD93, AD94]. These results have trig-

gered the development of tools for the automatic verification of properties of

timed automata, in particular UPPAAL [LPW97], KRONOS[Yov97], and

HyTech [HHW97].
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A simplified definition of timed automata, originally called timed safety

automata in [HNSY94], dropped the Büchi acceptance condition and intro-

duced instead location invariants to enforce progress. This version is now

widespread [Alu98] and forms the basis of tools for the verification of prop-

erties of timed automata like UPPAAL [LPW97] and KRONOS [Yov97].

Therefore we introduced this definition in this chapter.

The main obstacle for verification of timed automata is that the number of

regions grows exponentially with the number of clocks. Hence, for an efficient

tool support suitable data structures for regions are needed. UPPAAL uses

Difference Bounded Matrices (DBMs, [Bel57, BY03]) to represent so-called

zones, which are convex unions of regions that can be characterised by clock

constraints [Alu98, CGP00].

The notion of a transition system is due to R.M. Keller [Kel76]. The

systematic and structured use of transition systems for the definition of the

semantics of programming and specification languages was advocated by

G.D. Plotkin [Plo81, Plo04].

The parallel composition and the local channel operator of Section 4.2

was introduced by R. Milner [Mil89] in the context of his process algebra

CCS (Calculus of Communicating Systems) and further developed for the

π-calculus [Mil99]. Also the notion of bisimulation was developed in the

context of the process algebra CCS. An alternative is the parallel compo-

sition operator of CSP (Communicating Sequential Processes) that allows

(multiple) synchronisation of events with the same name [Hoa85]. This is

also used for timed automata [Alu98].

In Subsection 4.4.1 we introduced data variables ranging over (finite sub-

sets) of integers for UPPAAL. Recent extensions of UPPAAL permit C-

like data types and operations in the extended timed automata. However,

the model-checking algorithms build on an explicit-state representation of

all non-clock components and thus limit data objects to small finite do-

mains. Timed Computation Tree Logic (abbreviated TCTL) was introduced

in [ACD93]. Here we considered only the subset that is supported by UP-

PAAL. An overview of the implementation details of UPPAAL is given in

[BBD+02]. The examples of the light controller and of Fischer’s protocol are

taken from a tutorial for UPPAAL [Lar02]. More information on the model

checker UPPAAL can be found on the website http://www.uppaal.com.



5

PLC-Automata

In industrial automation the aim is to control and optimise production pro-

cesses and to provide high-quality and reliable products and services by

minimising material, cost, and energy waste. Automation systems rely on

smart sensors, actuators, and other industrial equipment like robotic and

mechatronic components. Open and standardised communication networks

are employed for the communication as well as configuration and control

of the various automation components. The standard architecture consists

of PLCs (Programmable Logic Controllers) or DCS (Distributed Control

Systems), fieldbus systems, and PCs serving as man/machine interfaces as

well as intelligent sensors and actuators (e.g. frequency converters). The

fieldbus systems gather the signals from the process level or the sensors and

actuators with fieldbus interfaces, and are directly connected to distributed

or centralised control devices, such as PLCs.

The standard IEC 61131-3 of the International Electrotechnical Commis-

sion provides a range of programming notations suitable for implementation

on PLCs. It comprises basic notations close to those in electrical engineering

like contact plans, instruction lists, and function plans as well as graphical

and textual programming notations called sequential function charts and

structured text. Currently, the development of software in automation tech-

nology proceeds step by step along the life cycle using the notations of this

standard and different tools provided by different PLC vendors.

A problem is that different PLC vendors use their own variants of the stan-

dard with different syntax, semantics, and tool sets. Also, the approaches

based on the standard are not well suited for the development of distributed

applications and applications with hard real-time requirements. An attempt

to overcome this shortcoming is the standard IEC 61499, which embeds

IEC 61131-3 and allows distributed systems to be described. However, the

189
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semantics remains formally ambiguous. This hampers the integration of

formal methods and tools for verification.

As a contribution to overcome these problems, we present in this chapter a

formal model of the computational essence of PLCs, called PLC-Automata.

These automata enjoy the following important properties:

• Implementability. PLC-Automata can be automatically compiled into

real-time programs (source code) that are executable on Programmable

Logic Controllers and other hardware platforms (see Section 5.3).

• Semantics. A formal semantics of PLC-Automata in terms of the Dura-

tion Calculus describes how the PLC hardware behaves when the compiled

code is executed (see Section 5.4). An alternative operational semantics

in terms of timed automata is given later in Chapter 6.

• Verifiability. In the Duration Calculus, proofs can be conducted that a

given PLC-Automaton satisfies a given real-time requirement (see Subsec-

tion 5.4.1). Assuming the correctness of the compiler such a proof implies

that the source code generated from the PLC-Automaton satisfies the re-

quirement. Alternatively, using the timed automata semantics, automatic

verification of real-time properties is possible (see Chapter 6).

5.1 Programmable Logic Controllers

Programmable Logic Controllers (PLCs for short) are often used in industry

to control real-time systems. Typical application areas of PLCs are produc-

tion lines and traffic control systems. The hardware is constructed in a

robust manner to resist environmental influences like heat, cold, dust, and

vibration. A reason for the relevance of PLCs in real-time applications is

that each PLC has a built-in real-time operating system. For safety rea-

sons it cannot be disturbed by application programs to guarantee a minimal

functionality in case of a program failure.

Given an application program, the operating system executes the following

cycle consisting of three phases:

Polling. In this first phase input busses are read and the results are copied

to a reserved area in the memory of the PLC. This phase is executed

autonomously by the operating system and cannot be manipulated

by the application program.

Computing. In this phase the operating system executes the application

program once. The program itself is allowed to do arbitrary compu-

tations and has access to both the saved values of the input busses

and the designated values for the output busses.
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To handle time the program can use timers. The timers are im-

plemented by the operating system and the program may set, read,

and reset them. Setting a timer defines a time span for how long

the timer should run. Reading a timer returns a Boolean value that

signals whether the given time span has elapsed. Resetting a timer

is a prerequisite for a new set operation.

Updating. The last phase of the cycle sets the values of the output busses

by copying values from the reserved memory location. This is the

moment where the environment would observe a change of outputs.

The following timing diagram shows possible changes of input and output

values (here indicated by white and grey) together with three PLC cycles,

each one consisting of the three phases just explained. Arrows indicate

when input values are read and when output values are written, respectively.

Notice that only at the end of each cycle does the effect of the computing

phase become visible by a corresponding update of the output values. Notice

also that input changes in between two polling phases cannot be observed by

the PLC. For example, the grey value during the first cycle is not observed.
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The time consumption of a cycle is influenced by several factors. The

time needed for the polling and updating phases depends on the number

of busses. The time consumption of the computing phase depends on the

application program and may vary from cycle to cycle.
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We want to stress that each computing device which is

equipped with a clock can be programmed to behave like

a PLC. Hence, the exposition in this chapter is not restricted

to PLCs as an implementation platform.

5.2 PLC-Automata

In this section we motivate and introduce the model of PLC-Automata by

examples taken from a case study of an industrial project partner engaged in

the application domain of railway control: the safe control of a single-track

line segment (SLS) for trams shown in Figure 5.1. Single-track line segments

can occur in case of repair work along one of the tracks and represent a

possible danger for the traffic.

ES1 CS1 LS1

LS2 C
S2

ES2

PLC 1 PLC 2

Fig. 5.1. Single-track line segment

The task of a controller for the SLS is to safely guide trams driving in

opposite directions through a single-track line segment so that no collision

can occur on this segment. To this end, suitable sensors and traffic lights are

installed along the track. For each direction i ∈ {1, 2} of the trams there are

three sensors called ESi (entry sensor), CSi (critical sensor), and LSi (leave

sensor) as shown in Figure 5.1. From the values of these sensors the control

under development has to compute the signals for the traffic lights of both

directions. For each direction there are three possible signals: Go, Stop,

and Ack, an acknowledgement for the tram drivers requesting to pass the

single-track segment. The controller for the SLS should satisfy the following

informal requirements:

• Safety. No collision should occur on the single-track segment, i.e. this

critical segment should be used in mutual exclusion.
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• Utility. Trams operate according to several driving policies. One such pol-

icy requires that first all trams from one direction are guided through the

single-track segment and then all trams from the other direction. Another

policy gives the right of way alternatively to one tram from one direction

and then one from the other direction.

• Target hardware. The control software should run on Programmable Logic

Controllers (PLCs).

Here we concentrate on a further requirement concerning fault tolerance.

In physical devices along the track subtle faults can occur. For example, the

purpose of the sensors ESi, CSi, and LSi is to enable counting how many

trams are in the corresponding track segments. A sensor at the track should

detect the passage of trains by outputting the values no tr (“no passing

train”) or tr (“a train is passing”). A change from no tr to tr signals the

arrival of a train at the sensor’s position on the track.

Stuttering problem. However, the sensor’s signal may stutter when a

train passes, i.e. it may alternate several times between no tr and tr. This

is potentially dangerous because the control could misinterpret a stuttering

sensor’s signal and assume that several trains are on the track.

Suppose the sensor hardware guarantees that stuttering ceases after 4 sec-

onds. Further on, suppose the minimal time distance between trains is 6 sec-

onds. Given these assumptions the problem is to construct a system that

filters the stuttering reliably.

The idea is that the filter should ignore the possible stuttering of the

sensor for a short period of time, say 5 seconds. This requirement indicates

that the whole control software is indeed a real-time software. A possible

solution to this problem could be the following design:

0.2 s
N

0 s

T

5 sno tr

tr

no tr tr

This is an automaton consisting of two states with output N (“no train”)

and T (“train”). It reacts to an input signal with values no tr and tr

according to the transitions given in the picture. The state T should be

stable for at least 5 seconds. To implement such an automaton on a PLC

we assume that during each cycle the system reacts at most once to a read
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input value. In case of a delay as in state T the executing PLC ignores the

input value as long as the delay time has not been exceeded.

Hence, a PLC implementing this automaton should behave as follows:

• Initially, it is in state N.

• If it is in state N and the read input value is tr, it takes the transition to

state T. Otherwise, it will stay in state N.

• In state T the system will stay for at least 5 seconds regardless of the

polled input value. After that period it will stay in this state as long as

tr is polled. Otherwise, it will change to N.

A sample behaviour is shown in the following timing diagram:
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Solid arrows in the computing phase stand for fired transitions while dotted

arrows symbolise a computing phase where the given transition was not

taken due to the delay constraint. In the timing diagram above the fourth

cycle did not fire a transition due to the delay constraint of 5 seconds. Note

that otherwise the system would have changed to output N. The transition

of the third cycle can be taken regardless of whether the delay has elapsed

or not because it does not change the current state.

The picture of the automaton contains a circle with the inscription “0.2 s”.

This specifies the upper bound for the worst case execution time (WCET)

of a complete cycle “polling–computing–updating”. In the example the time

distance between trains is at least 6 seconds. Due to the upper bound of

0.2 seconds we ensure that the system will be in the state with output N

when the next train arrives. Otherwise, it would be possible for the system

to filter the signals of a real train as stuttering of the sensor.
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The automaton above is a very simple PLC-Automaton. Further exten-

sions are motivated by the following example:

Example 5.1

Consider the filter of the previous example again but assume now that the

track sensor can also send a signal Error. This should inform the system

that the sensor has a technical problem. We want to extend our filtering

automaton such that it reacts to the Error signal immediately by outputting

a value X (“exception”). �

A solution could be the following automaton:

0.2 s
N

0 s

T

5 s

X

0 s

no tr

tr

Error Error

no tr tr

true
However, the problem of this solution is that the Error signal could arise

just after a change to the state with output T. Then it would take about

5 seconds to observe the desired output X due to the delay constraint. To

solve this problem we extend the delay annotation by a set of inputs for

which the delay should hold:

0.2 s
N

0 s, ∅

T

5 s, {no tr, tr}

X

0 s, ∅

q1 q2

q3

no tr

tr

Error Error

no tr tr

true

Fig. 5.2. Filtering PLC-Automaton (final version)
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The idea of this annotation is that the Error-transition from T to X can

be fired without checking whether the delay time of 5 seconds has elapsed.

By contrast, the transition from T to N has to check the delay time.† The

effect of this construction is that the T state can only be left by changing to

X during the first 5 seconds. In case of the N and X states the set of delayed

inputs is meaningless since there is no delay. Hence, we took the empty set

there.

The following timing diagram shows a sample behaviour of the extended

automaton:
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≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2

Note that during the first cycle there is a short phase where input tr holds

but this value is not read by the system. To ensure that a physical signal

will be read eventually we have to know the minimal duration for which the

signal will be stable and specify the upper time bound for the execution of

a cycle accordingly.

Having motivated all components of PLC-Automata, we present the for-

mal definition:

Definition 5.2 (PLC-Automaton)

A PLC-Automaton is a structure A = (Q,Σ, δ, q0, ε, St, Se,Ω, ω) where:

• Q is a non-empty, finite set of states, with q as typical element;

• Σ is a non-empty, finite set of inputs, with σ as typical element;

• δ is a transition function of type Q× Σ −→ Q;

• q0 ∈ Q is the initial state;

• ε > 0 is an upper time bound for the execution of a cycle;

† It is easy to see that we do not need to define whether the self-loop with input tr has to obey
the delay time. It would not change the behaviour of the system.
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• St is a function of type Q −→ R≥0 that assigns a delay time to each state;

• Se is a function of type Q −→ 2Σ that assigns a set of delayed inputs to each

state;

• Ω is a non-empty, finite set of outputs; and

• ω is a function of type Q −→ Ω that assigns an output to each state.

Note that this definition gives only the “syntax” of PLC-Automata, i.e.

their structural components. The semantics was explained informally in this

section. It will be made more precise in the next section by a translation

into programs. A formal semantics in terms of Duration Calculus will be

presented in Section 5.4.

As shown in this section, a PLC-Automaton can be represented graphi-

cally. Each state q is drawn as a box (sometimes annotated with the letter

q) with two compartments. The upper compartment displays the output

value ω(q). The lower compartment exhibits the delay time St(q) and the

set Se(q) of delayed outputs. A transition δ(q, σ) = q′ is represented as an

arrow from state q to state q′ labelled with the input value σ. The time

bound for the cycle is shown in a separate circle.

5.3 Translation into PLC source code

This section presents a translation of PLC-Automata into programs that

are executable on PLCs. The translation puts the informal description of

the expected behaviour of PLC-Automata into practice. As a programming

language we use ST, which stands for “Structured Text”, a Pascal-like im-

perative programming language that is defined in the IEC 61131-3 standard

for Programmable Logic Controllers.

The PLC operating system implements the cyclic behaviour of the PLC

with an implicit non-terminating WHILE loop repeating the three phases

Polling, Computing, and Updating in each cycle:

WHILE TRUE DO

• input from sensors (* Polling Phase *)

• perform state transformation

depending on timers (* Computing Phase *)

• output to actuators (* Updating Phase *)

END

The translation of a PLC-Automaton has only to produce the state trans-

formation implementing the Computing phase of this loop. To this end, we

use one outer IF statement to distinguish the states and additional inner IF
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statements to distinguish the currently polled input values. Together, these

statements identify the unique transition that can fire in a given computing

phase. The only thing that remains to be checked is whether or not a delay

time has elapsed and thus an appropriate action is required.

To illustrate this approach, we consider the final version of the filtering

PLC-Automaton in Figure 5.2. It is translated into the following ST code:

1: PROGRAM PLC_PRG_FILTER

2: VAR

3: state : INT := 0; (* 0:=N, 1:=T, 2:=X *)

4: tmr : TP;

5: ENDVAR

6:

7: IF state=0 THEN

8: %output:=N;

9: IF %input = tr THEN

10: state:=1;

11: %output:=T;

12: ELSIF %input = Error THEN

13: state:=2;

14: %output:=X;

15: ENDIF

16: ELSIF state=1 THEN

17: tmr(IN:=TRUE,PT:=t#5.0s);

18: IF (%input = no_tr AND NOT tmr.Q) THEN

19: state:=0;

20: %output:=N;

21: tmr(IN:=FALSE,PT:=t#0.0s);

22: ELSIF %input = Error THEN

23: state:=2;

24: %output:=X;

25: tmr(IN:=FALSE,PT:=t#0.0s);

26: ENDIF

27: ENDIF

We comment on this ST program by referring to its line numbers:

1–5: These lines constitute the program header, which declares two vari-

ables: an integer variable called state, storing the current state

of the PLC-Automaton and initialised with 0, and a timer variable

called tmr, indicated by the standard type TP. In the program, states
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are coded as integers (here 0, 1, and 2). In the comments below we

shall also identify them with their output values N, T, and X, respec-

tively. The timer tmr can be set to a certain time value d. Once

set, the timer output tmr.Q holds the value true for d time units.

Afterwards the output tmr.Q switches to false and stays there until

the next set operation. The handling of the timer is explained in the

comment on line 17.

7: Here an IF statement begins that distinguishes the current state of the

PLC-Automaton.

8: For the initial state (here 0) we set the initial output value (to N). For

all other states we will update the output value when we change the

state. The symbol % is used to address reserved areas of the PLC’s

memory. In the pseudo code the names %input and %output are

used to represent the program interface to sensors and actuators,

respectively. These names are implicitly declared and can be used

as ordinary variables.

9: Here we test the polled input value in the state (with output) N. Only

those values which cause a state change have to be tested. In this

state these are tr and Error. For the self-loop with input value

no tr no code needs to be generated.

10–11: The PLC is in state N and has polled the input value tr. By the

transition function of the PLC-Automaton, the system assigns 1 to

the state variable and sets the output value to T.

16–26: This part deals with the state that has output T.

17: Since this state has a delay time of 5 seconds, we start the timer tmr.

This is done by calling a corresponding procedure

tmr(IN:=TRUE,PT:=t#5.0s)

with two parameters. The parameter IN represents a start flag and

the parameter PT the desired duration. Only if the operating system

observes a rising edge at the start flag will it start the timer with the

value of the duration parameter. Otherwise, this call has no effect.

In other words, the timer is set only if this call has a start flag true

and the previous call had start flag false. Initially, the start flag is

treated as being false.

18: In this line we test whether the transition to N can be fired. This is

the case only if the polled input value is no tr and the timer tmr

has elapsed. The latter condition is represented by the timer output

tmr.Q. This output is true as long as the duration d of the last

setting has not been exceeded, and false afterwards.
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19–21: The transition from T to N can be fired. Therefore, the variables

state and %output are set appropriately. In line 21 we reset the

start flag of the timer in order to enable later setting. Recall that

the operating system starts a timer only if it observes a rising edge

at this flag.

22–25: In case that the system is in state 1 and Error was polled it does

not need to test the value of the timer.

We conclude with some further remarks. Note that the above program does

not handle state 2 with output X in its outer IF statement. Indeed, there

is no need for this because state 2 is never left by any transition. Also, as

stated for line 9, no code needs to be generated for self-loops like the loop

with input value tr at state T.

Further on, there is no statement implementing the upper time bound

(here 0.2 seconds) of the PLC cycle. Indeed, this bound represents the

assumption that the PLC hardware is fast enough to stay within the bound

in each cycle. There are two ways to discharge this assumption:

(1) One can compute the Worst Case Execution Time of the ST code on the

given PLC hardware (by a so-called WCET analysis) and check whether

it does not exceed the upper time bound for the execution of a cycle of

the PLC-Automaton. Since the generated code is relatively simple, this

is feasible.

(2) One can inform the operating system of a PLC about the upper time

bound. If it detects a violation of this bound at runtime it changes to

an error state and signals this by appropriate output values.

The program above uses only one timer to implement the intended be-

haviour of the filtering PLC-Automaton. It turns out that a single timer is

sufficient in the translation of any PLC-Automaton of Definition 5.2. This

is because in each state of a PLC-Automaton at most one delay time needs

to be observed. As soon as the state is left its delay time becomes irrelevant.

Thus a single timer can be reused when implementing several states with

delayed inputs.

PLC-Automata are not only useful when PLCs serve as implementation

platforms. They can be implemented on any hardware platform that per-

forms a non-terminating loop consisting of inputting sensor values, updating

the state in accordance with timer values, and outputting actuator values.
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5.4 Duration Calculus semantics

In this section we formally describe the real-time behaviour of a system

that executes a PLC-Automaton and satisfies the upper time bound for

the execution of a cycle. For the formal description we choose Duration

Calculus. The idea of this formal semantics is not to describe exactly how

the system behaves, but to give only a safe approximation. That is, all

observable behaviours of the real physical system belong to the semantics

but the semantics might contain behaviours that are not possible in the

physical world:

unconstrained behaviours of the system observables

behaviours in the DC semantics

observable behaviours

Let A = (Q,Σ, δ, q0, ε, St, Se,Ω, ω) be a PLC-Automaton. Then the DC

semantics of A (in symbols: [[A]]DC) defines a subset of all interpretations

of the three observables

InA ranging over Σ representing the input,

StA ranging over Q representing the state,

OutA ranging over Ω representing the output.

We describe this set of interpretations by formulas that have to be realised

from 0 by these interpretations. First we require that the PLC-Automaton

starts in its initial state q0:

�� ∨ �q0� ; true. (DC-1)

Read �q0� as an abbreviation for �StA = q0�. Then we specify which states

are reachable from a given state q of the automaton. This depends on the

inputs and we model two phenomena:

• The system can only poll input values which were observable since q holds.

• If state q is left this must be caused by an input value that was observable

at most ε seconds ago.
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time

input

state

output

· · · no tr tr no tr Error

· · · q2 q1

· · · T N

t0 t1

= ε

t2

= ε

t3

= ε

t4

= ε

t5

= ε

t6

Fig. 5.3. A behaviour of the filter satisfying the requirements (DC-2) and (DC-3)

We can specify these properties in DC as follows:

�¬q� ; �q ∧A� −→ �q ∨ δ(q,A)� , (DC-2)

�q ∧A� ε−−−−→ �q ∨ δ(q,A)� . (DC-3)

In these formulas the set A with ∅ �= A ⊆ Σ is arbitrary. Read �q ∧A�
as �StA = q ∧ InA ∈ A� and the expression δ(q,A) as StA ∈ {δ(q, a)|a ∈ A}.
The idea of quantifying all non-empty subsets A of the input alphabet is

to gain a maximum of knowledge for a given interval about the possible

behaviour.

Figure 5.3 exhibits a possible behaviour of the filter in Figure 5.2. Due to

(DC-2) we can draw some conclusions for intervals that begin at t0:

�q1 ∧A� holds in with input After state output

[t0, t1] A = {no tr} t1 {q1} {N}
[t0, t2] A = {no tr, tr} t2 {q1, q2} {N, T}
[t0, t3] A = {no tr, tr} t3 {q1, q2} {N, T}
[t0, t4] A = {no tr, tr} t4 {q1, q2} {N, T}
[t0, t5] A = {no tr, tr, Error} t5 {q1, q2, q3} {N, T, X}
[t0, t6] A = {no tr, tr, Error} t6 {q1, q2, q3} {N, T, X}

With (DC-3) we can ensure the following:

�q1 ∧A� holds in with input After state output

[t1, t2] A = {no tr, tr} t2 {q1, q2} {N, T}
[t2, t3] A = {no tr, tr} t3 {q1, q2} {N, T}
[t3, t4] A = {no tr} t4 {q1} {N}
[t4, t5] A = {no tr, Error} t5 {q1, q3} {N, X}
[t5, t6] A = {Error} t6 {q1, q3} {N, X}

In case of St(q) > 0 the assertions made by (DC-2) and (DC-3) may be

too weak because for the first St(q) seconds the system stays in state q. The
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time

input

state

output

· · · no tr tr Error no tr Error

· · · q1 q2

· · · N T

t0 t1

= ε

t2

= ε

t3

= ε

t4

= ε

t5

= ε

t6

< 5s

Fig. 5.4. A behaviour of the filter satisfying the requirements (DC-4) and (DC-5)

formulas do not take the delay feature into account. To make this knowledge

available in the semantics, we add the following formulas:

St(q) > 0 =⇒ �¬q� ; �q ∧A� ≤St(q)−−−−→ �q ∨ δ(q,A \ Se(q))� , (DC-4)

St(q) > 0 =⇒ �¬q� ; �q� ; �q ∧A�ε ≤St(q)−−−−→ �q ∨ δ(q,A \ Se(q))� . (DC-5)

By (DC-4), we arrive at the following conclusions for the behaviour shown

in Figure 5.4:

�q2 ∧A� holds in with input After state output

[t0, t1] A = {no tr} t1 {q2} {T}
[t0, t2] A = {no tr, tr} t2 {q2} {T}
[t0, t3] A = {no tr, tr, Error} t3 {q2, q3} {T, X}
[t0, t4] A = {no tr, tr, Error} t4 {q2, q3} {T, X}
[t0, t5] A = {no tr, tr, Error} t5 {q2, q3} {T, X}
[t0, t6] A = {no tr, tr, Error} t6 {q2, q3} {T, X}

With (DC-5) we can ensure:

�q2 ∧A� holds in with input After state output

[t1, t2] A = {no tr, tr} t2 {q2} {T}
[t2, t3] A = {tr, Error} t3 {q2, q3} {T, X}
[t3, t4] A = {no tr, Error} t4 {q2, q3} {T, X}
[t4, t5] A = {no tr} t5 {q2} {T}
[t5, t6] A = {no tr, Error} t6 {q2, q3} {T, X}

By (DC-2)–(DC-5), we can draw conclusions on the set of possible suc-

cessor states, but not when the current state must be left. For a state q

without delay (St(q) = 0) we know that there has to be a state change after
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input

state

output

· · · tr no tr tr no tr tr Error no tr

· · · q2 q1

· · · T N

t0 t1 t2 t3 t4 t5

Fig. 5.5. A behaviour of the filter satisfying the requirements (DC-6) and (DC-7)

a complete cycle in which only inputs A could be observed that cause a state

change, i.e. q /∈ δ(q,A).

From the external observer’s point of view we can ensure two properties

for a state q without delay and a set A of inputs that cause a state change:

• It cannot happen that there is an interval of length 2ε in which �q ∧A�
holds because within this interval there is at least one complete cycle of

the system.

• If we observe a state change leading to state q, we also gain the information

that a new cycle starts. This new cycle has to end within ε seconds. If in

this period only inputs in A are observable, we know that there has to be

a state change.

We can express these properties in DC as follows:

St(q) = 0 ∧ q /∈ δ(q,A) =⇒�(�q ∧A� =⇒ � < 2ε), (DC-6)

St(q) = 0 ∧ q /∈ δ(q,A) =⇒�¬q� ; �q ∧A�ε −→ �¬q� . (DC-7)

Figure 5.5 exhibits another behaviour of the filter. Due to (DC-6) we are

able to conclude that t5− t4 < 2ε and t3− t2 < 2ε must hold. With (DC-7)

we also know that t1 − t0 < ε is true because otherwise the formulas would

require a change of the output.

Having described when changes have to happen in states without delay,

we now consider the states with delays. First, we collect some observations:

• If we observe that state q holds for St(q) seconds and afterwards there is

a period where �q ∧A� with q /∈ δ(q,A), then it is clear that the latter

period cannot exceed 2ε seconds. The reason is that we know the delay

time has already passed and a period of at least 2ε seconds ensures at

least one complete cycle.

• There cannot be an interval of length 2ε in which �q ∧A� holds with

q /∈ δ(q,A) and A ∩ Se(q) = ∅. The reason is that otherwise at least one
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input
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output

· · · Error no tr tr Error tr no tr Error tr

· · · q1 q2

· · · N T

t0 t1 t2 t3 t4 t5

= 5s

Fig. 5.6. A behaviour of the filter satisfying the requirements (DC-8)–(DC-10)

complete cycle can be found in that interval where an input in A is polled

and a state change must happen.

• In the moment where the system enters state q it also starts a new cycle

that ends within ε seconds. If in this period only inputs in A with q /∈
δ(q,A) and A∩Se(q) = ∅ hold we know that a state change must happen.

Now, we formalise these properties as follows:

St(q) > 0 ∧ q /∈ δ(q,A) =⇒
�(�q�St(q) ; �q ∧A� =⇒ � < St(q) + 2ε), (DC-8)

St(q) > 0 ∧A ∩ Se(q) = ∅ ∧ q /∈ δ(q,A)

=⇒ �(�q ∧A� =⇒ � < 2ε), (DC-9)

St(q) > 0 ∧A ∩ Se(q) = ∅ ∧ q /∈ δ(q,A)

=⇒ �¬q� ; �q ∧A�ε −→ �¬q� . (DC-10)

Consider the behaviour of the filter shown in Figure 5.6. By (DC-10),

it is clear that t1 − t0 < ε must be true. With (DC-9) we can derive that

t3 − t2 < 2ε holds and finally (DC-8) allows us to conclude t5 − t4 < 2ε.

All formulas above do not constrain the behaviour of the Out observable.

The idea of the semantics is that it describes only the external behaviour

and considers the hardware as a black box behaving like a PLC. Hence, there

should be no means to distinguish the changes of the St observable and the

changes of the Out observable. In other words: the externally observed

changes happen synchronously. This is covered by the following formula:

�(�q� =⇒ �ω(q)�). (DC-11)

The formulas above handle all phenomena that we want to cover. How-

ever, some formulas depend on a state change and this is expressed by a
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subformula like �¬q� ; �q ∧A�. The subformula is not applicable at time 0,

when the system starts its computation. Hence, we need to handle these

initial intervals separately by the following formulas:

�q0 ∧A� −→0 �q0 ∨ δ(q0, A)� , (DC-2′)

St(q0) > 0 =⇒ �q0 ∧A�
<St(q0)−−−−−→

0
�q0 ∨ δ(q0, A \ Se(q0))� , (DC-4′)

St(q0) > 0 =⇒ �q0� ; �q0 ∧A�ε
<St(q0)−−−−−→

0
�q0 ∨ δ(q0, A \ Se(q0))� , (DC-5′)

St(q0) = 0 ∧ q0 /∈ δ(q0, A) =⇒ �q0 ∧A�ε −→0 �¬q0� , (DC-7′)

St(q0) > 0 ∧A ∩ Se(q0) = ∅ ∧ q0 /∈ δ(q0, A) =⇒
�q0 ∧A�ε −→0 �¬q0� . (DC-10′)

Each of these formulas corresponds to a previous one, as indicated by the

primed numbers.

We now conjoin all formulas introduced above.

Definition 5.3 (Duration Calculus semantics of PLC-Automata)

The Duration Calculus semantics of a PLC-Automaton A is defined by the

following DC formula:

[[A]]DC
def⇐⇒

∧
q ∈ Q,

∅ �= A ⊆ Σ

⎛
⎝ 11∧

j=1

(DC-j)
∧ (DC-2′) ∧ (DC-4′) ∧ (DC-5′)

∧ (DC-7′) ∧ (DC-10′)

⎞
⎠ .

This is a formula in the observables InA,StA,OutA and without global vari-

ables. It represents the set of all interpretations I of these observables that

realise [[A]]DC from 0, i.e. with I |=0 [[A]]DC. The DC semantics can be used

to prove that an implementation meets its requirement by showing that the

DC semantics implies the requirement. To simplify this task it is useful to

find theorems tailored to prove frequently used requirement patterns.

5.4.1 Reaction times

As a first application of the DC semantics we present a theorem estimating

upper bounds of the reaction times of PLC-Automata. For example, we

might wish to establish for such an automaton A with a state set Q that

�StA ∈ Q ∧ InA = emergency signal� 0.1−−−−→ �StA = motor switched off�
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holds, i.e. in case of an emergency signal the motor is switched off after at

most 0.1 seconds, independent of the state in which the emergency occurred.

In general, let

Π ⊆ Q be a set of start states,

A ⊆ Σ be a set of inputs,

c ∈ Time be a time bound, and

Πtarget ⊆ Q be a set of target states.

Then we wish to prove statements of the form

�StA ∈ Π ∧ InA ∈ A�
c−−−−→ �StA ∈ Πtarget� ,

abbreviated by

�Π ∧A� c−−−−→ �Πtarget� .

The point is that we consider only sets of target states of a special form. To

this end, we extend the transition function δ to sets:

δ(Π, A) = {δ(q, a) | q ∈ Π ∧ a ∈ A}.

Note that δ satisfies the following monotonicity property:

Proposition 5.4

If Π ⊆ Π′ ⊆ Q and A ⊆ A′ ⊆ Σ then δ(Π, A) ⊆ δ(Π′, A′).

Next we define inductively for n ∈ N the set δn(Π, A) of all states that

can be reached from Π in n steps using only A-transitions:

δ0(Π, A)
def

= Π,

δn+1(Π, A)
def

= δ(δn(Π, A), A).

To estimate the reaction times we stipulate that

δ(Π, A) ⊆ Π

holds. By Proposition 5.4, this implies

δn+1(Π, A) ⊆ δn(Π, A) ⊆ · · · ⊆ δ(Π, A) ⊆ Π.

Thus applying δ repeatedly yields a contraction as illustrated by the follow-

ing diagram:
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δn(Π, A)

δ(Π, A)
Π

Example 5.5

We consider the filter in Figure 5.2 and identify its states with the corre-

sponding outputs N, T, and X. Then

δ0({N, T}, {no tr}) = {N, T}
δ({N, T}, {no tr}) = {N} ⊆ {N, T}
δn({N, T}, {no tr}) = {N} for n ≥ 1

and

δ0({N, T, X}, {Error}) = {N, T, X}
δ({N, T, X}, {Error}) = {X} ⊆ {N, T, X}
δn({N, T, X}, {Error}) = {X} for n ≥ 1

are examples for contractions, whereas

δ({T}, {no tr}) = {N} �⊆ {T}

is not a contraction. �

We first state a special case of the announced theorem on reaction times,

with Πtarget = δ(Π, A).

Theorem 5.6

Let A = (Q,Σ, δ, q0, ε, Se, St,Ω, ω) be a PLC-Automaton, Π ⊆ Q and A ⊆ Σ

with

δ(Π, A) ⊆ Π.

Then the following holds:

�Π ∧A� c−−−−→ �δ(Π, A)� ,

where

c
def

= ε+ max({0} ∪ {s(π,A) | π ∈ Π \ δ(Π, A)}) (5.1)
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and

s(π,A)
def

=

{
St(π) + 2ε, if St(π) > 0 and A ∩ Se(π) �= ∅,

ε, otherwise.

Note that c = ε if Π = δ(Π, A) holds in (5.1) because then the max-operator

yields 0.

Example 5.7

We apply this theorem to estimate the reaction times of the filter in Fig-

ure 5.2.

(1) We estimate �{N, T} ∧ {no tr}� 5+3ε−−−−→ �N� as the following calculation

shows. By Example 5.5, we have

δ({N, T}, {no tr}) = {N}

and thus Theorem 5.6 yields

�{N, T} ∧ {no tr}� c−−−−→ �N� ,

where c is calculated as follows:

c = ε+ max({0} ∪ {s(π, {no tr}) | π ∈ {N, T} \ {N}})
= ε+ max({0} ∪ {s(T, {no tr})})
= ε+ 5 + 2ε

= 5 + 3ε.

(2) We have the following reaction �{N, T, X} ∧ {Error}� 2ε−−−−→ �X� as the

following calculation shows. By Example 5.5, we have

δ({N, T, X}, {Error}) = {X}

and thus Theorem 5.6 yields

�{N, T, X} ∧ {Error}� c−−−−→ �X� ,

where c is calculated as follows:

c = ε+ max({0} ∪ {s(π, {Error}) | π ∈ {N, T, X} \ {X}})
= ε+ max({0} ∪ {s(N, {Error}), s(T, {Error})})
= ε+ ε

= 2ε.
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(3) We have the following reaction �{N, T} ∧ {no tr, tr}� ε−−−−→ �N, T� as

the following calculation shows. By Example 5.5, we have

δ({N, T}, {no tr, tr}) = {N, T}

and thus Theorem 5.6 yields

�{N, T} ∧ {no tr, tr}� c−−−−→ �N, T� ,

where c is calculated as follows:

c = ε+ max({0} ∪ {s(π, {Error}) | π ∈ {N, T} \ {N, T}})
= ε+ max({0} ∪∅)

= ε+ 0

= ε.

The set {0} prevents that the max-operator is applied to the empty set.

�

We conclude this section by formulating the general theorem on reaction

times, with Πtarget = δn(Π, A).

Theorem 5.8

Let A = (Q,Σ, δ, q0, ε, Se, St,Ω, ω) be a PLC-Automaton, Π ⊆ Q and A ⊆ Σ

with

δ(Π, A) ⊆ Π.

Then the following holds for all n ∈ N:

�Π ∧A� cn−−−−→ �δn(Π, A)� ,

where

cn
def

= ε+ max

⎛
⎜⎜⎝{0} ∪

⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

s(πi, A)

∣∣∣∣∣∣∣∣
1 ≤ k ≤ n ∧
∃ π1, . . . , πk ∈ Π \ δn(Π, A) •
∀j ∈ {1, . . . , k − 1} •
πj+1 ∈ δ(πj , A)

⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠

and where s(π,A) is defined as in Theorem 5.6.

For n = 1 this theorem specialises to the previous Theorem 5.6. In-

tuitively, this general theorem states a worst-case estimate of the reaction

times on all possible paths from Π to δn(Π, A) as illustrated by the following

diagram:
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δn(Π, A)

δ2(Π, A)

δ(Π, A)

Π

π1

π2

π3

Sketch of proof:

Proof by contradiction:

¬(�Π ∧A� cn−−−−→ �δn(Π, A)�)

⇐⇒ ¬(¬(true; �Π ∧A�cn ; �¬δn(Π, A)� ; true))

⇐⇒ true; �Π ∧A�cn ; �¬δn(Π, A)� ; true.

Due to the finite variability we can find a partitioning such that the following

holds:

=⇒ ∃m ∈ N, π0, . . . , πm ∈ Π • ∀ 0 ≤ i < m • πi �= πi+1

∧ true; (�A�cn ∧ �π0� ; . . . ; �πm�); �¬δn(Π, A)� ; true.

By (DC-2), we have π2 ∈ δ(π1, A), . . . , πm ∈ δ(πm−1, A). Thus

=⇒ ∃m ∈ N, π0, . . . , πm ∈ Π • ∀ 0 ≤ i < m • πi �= πi+1

∧ true; (�A�cn ∧ �π0� ; . . . ; �πm�); �¬δn(Π, A)� ; true

∧ ∀i ∈ {2, . . . ,m} • πi ∈ δi−1(π1, A).

We can conclude that πm /∈ δn(Π, A) holds due to cn ≥ ε and (DC-3).

Moreover, we have m ≤ n and πi /∈ δ(πi, A) for all i ≥ 1. Hence

=⇒ ∃m ∈ {0, . . . , n}, π0, . . . , πm ∈ Π • ∀ 0 ≤ i < m • πi �= πi+1

∧ true; (�A�cn ∧ �π0� ; . . . ; �πm�); �¬δn(Π, A)� ; true

∧ πm /∈ δn(Π, A) ∧ ∀i ∈ {2, . . . ,m} • πi ∈ δi−1(π1, A)

∧ ∀i ∈ {1, . . . ,m} • πi /∈ δ(πi, A).

Now we can find upper time bounds for πi with i ≥ 1 due to (DC-7), (DC-8),
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and (DC-10):

=⇒ ∃m ∈ {0, . . . , n}, π0, . . . , πm ∈ Π • ∀ 0 ≤ i < m • πi �= πi+1

∧ true; (�A�cn ∧ �π0� ; �π1�≤s(π1,A) ; . . . ; �πm�≤s(πm,A));

�¬δn(Π, A)� ; true

∧ πm /∈ δn(Π, A) ∧ ∀i ∈ {2, . . . ,m} • πi ∈ δi−1(π1, A)

∧ ∀i ∈ {1, . . . ,m} • πi /∈ δ(πi, A).

If the �π0�-phase is shorter than ε seconds, we can derive a contradiction

because the sum of durations would be shorter than cn. For the remaining

case we can exploit (DC-3) to conclude that π1 ∈ δ(π0, A) holds. Therefore

we conclude by (DC-6), (DC-8), and (DC-9) that the �π0�-phase lasts at

most ε+ s(π0, A) seconds. �

5.5 Synthesis from DC implementables

In Chapter 3 we introduced DC implementables as a sublanguage of the

Duration Calculus. In this section we investigate how to implement a speci-

fication given as a set of DC implementables by a PLC-Automaton. To this

end, we consider the following synthesis problem:

Given: A set Spec of DC implementables.

Task: Generate a PLC-Automaton A that implements Spec.

We will present an algorithm that synthesises a PLC-Automaton from Spec

provided this specification is consistent. We will explain what consistency

means in this setting.

Formally, we stipulate that Spec constrains the values of two observables:

an input observable† InA ranging over a set Σ and an output observable

OutA ranging over a set Ω. The synthesised PLC-Automaton A should then

determine an observable StA ranging over a set of states Q. In particular,

the synthesis should generate the set Q from InA and OutA. As notation we

use the following typical letters, possibly decorated by indices:

σ ∈ Σ, ϕ ⊆ Σ, π ∈ Ω, q ∈ Q.

Inside DC implementables we use the following abbreviations:

σ abbreviates InA = σ,

ϕ abbreviates InA ∈ ϕ,
π abbreviates OutA = π.

† Several input observables can be handled by taking their Cartesian product.
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In the specification Spec the following patterns of DC implementables may

appear (cf. Section 3.2):

• Initialisation:

�� ∨ �π0� ; true.

• Sequencing:

�π� −→ �π ∨ π1 ∨ . . . ∨ πn� (n ≥ 0).

• Unbounded stability:

�¬π� ; �π ∧ ϕ� −→ �π ∨ π1 ∨ . . . ∨ πn� (n ≥ 0).

• Bounded stability:

�¬π� ; �π ∧ ϕ� ≤t−−−−→ �π ∨ π1 ∨ . . . ∨ πn� (n ≥ 0).

• Synchronisation:

�π ∧ ϕ� t−−−−→ �¬π� .

Note that by taking ϕ = Σ this synchronisation pattern specialises to the

progress pattern �π� t−−−−→ �¬π�.

To each unbounded stability of the above form we implicitly add the follow-

ing initial requirement:

• Unbounded initial stability:

�π ∧ ϕ� −→0 �π ∨ π1 ∨ . . . ∨ πn� (n ≥ 0).

Analogously, to each bounded stability of the above form we implicitly add

the following initial requirement:

• Bounded initial stability:

�π ∧ ϕ� ≤t−−−−→ 0 �π ∨ π1 ∨ . . . ∨ πn� (n ≥ 0).

Example 5.9

A two-tier watchdog should supervise input values n, m, s with the following

intuition:

n stands for a normal value,

m signals a major problem,

s signals a small problem.



214 PLC-Automata

The output values are as follows:

N stands for Normal,

W stands for Warning,

A stands for Alarm.

The watchdog starts in a state with output N. It stays there as long as it

reads n as input value. If the watchdog discovers a (small or major) problem,

it issues a warning W. If after 5 seconds it still senses the major problem m,

the watchdog outputs an alarm A. In case of a small problem s the watchdog

waits for 15 seconds to see whether it disappears on its own. If this is not

the case, it will also output an alarm A.

We specify this desired behaviour with the help of DC implementables:

Init : �� ∨ �N� ; true ,

Sequ-1 : �N� −→ �N ∨ W� ,
Sequ-2 : �A� −→ �A� ,

Unb.Stab-1 : �¬N� ; �N ∧ n� −→ �N� ,
Unb.Stab-2 : �¬W� ; �W ∧ n� −→ �W ∨ N� ,
Unb.Stab-3 : �¬W� ; �W ∧ {ms}� −→ �W ∨ A� ,

Bd.Stab-1 : �¬W� ; �W ∧ {m, s}� ≤5−−−−→ �W� ,

Bd.Stab-2 : �¬W� ; �W ∧ {s}� ≤15−−−−→ �W� ,

Syn-1 : �N ∧ {m, s}� 0.1−−−−→ �¬N� ,

Syn-2 : �W ∧ n� 0.2−−−−→ �¬W� ,

Syn-3 : �W ∧ m� 5.1−−−−→ �¬W� ,

Syn-4 : �W ∧ s� 15.1−−−−→ �¬W� .

Our aim is now to synthesise a PLC-Automaton that implements these re-

quirements. To this end, we introduce a synthesis algorithm and illustrate

its steps with the watchdog as a running example. �

5.5.1 Synthesis algorithm

The synthesis algorithm constructs a PLC-Automaton from Spec in a se-

quence of steps:

(1) Computing the state space. The idea is that for each output π ∈ Ω a set
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of states {qπ,t1 , . . . , qπ,tn} is computed where t1 < · · · < tn are the time

bounds that appear in bounded stabilities for π. We refer to this set

of states when ordered according to the time bounds as the π-cascade.

Intuitively, a state qπ,ti in the cascade represents the knowledge that π

holds for at least ti−1 seconds and at most ti + 2i · ε seconds where ε is

the (to be determined) cycle time of the (to be synthesised) PLC-Au-

tomaton.

Formally, for each output value π ∈ Ω we compute the set

bounds(π)
def

= {t ∈ Time | ∃ bounded stability

�¬π� ; �π ∧ ϕ� ≤t−−−−→ �π ∨ π1 ∨ . . . ∨ πn�

∈ Spec}.

The state space Q is then defined as

Q
def

= {qπ,0 | π ∈ Ω ∧ bounds(π) = ∅} ∪ {qπ,t | π ∈ Ω ∧ t ∈ bounds(π)}.

In our example we get the following sets of bounds:

bounds(N) = ∅,

bounds(W) = {5, 15},
bounds(A) = ∅.

This yields the state space Q = {qN,0, qW,5, qW,15, qA,0}.

(2) Initial Δ-table. The synthesis algorithm manipulates an over-approxi-

mation of the possible transitions as a function

Δ : Q× Σ −→ P(Ω)

represented as a so-called Δ-tablethat contains for each state qπ,t ∈ Q

and each input value σ ∈ Σ a set of output values that are not yet

forbidden by the specification. In the Δ-table, the sets are represented

as lists of output values:

Δ · · · qπ,t · · ·
...

. . .
...

σ · · · π1, . . . , πm · · ·
...

...
. . .

Initially, nothing is forbidden and hence each entry of the Δ-table con-

tains all output values. From the final Δ-table the transition function δ

of the PLC-Automaton is derived.
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The initial Δ-table of the watchdog specification is

Δ qN,0 qW,5 qW,15 qA,0

n N, W, A N, W, A N, W, A N, W, A

m N, W, A N, W, A N, W, A N, W, A

s N, W, A N, W, A N, W, A N, W, A

In the following steps we will examine the various types of imple-

mentables and manipulate the Δ-table accordingly.

(3) Sequencing requirements. For each sequencing formula

�π� −→ �π ∨ π1 ∨ . . . ∨ πn�

in Spec we intersect all entries in qπ,t-columns with {π, π1, . . . , πn}.
Processing the two sequencing formulas Sequ-1 and Sequ-2 of our

example yields the following Δ-table:

Δ qN,0 qW,5 qW,15 qA,0

n N, W N, W, A N, W, A A

m N, W N, W, A N, W, A A

s N, W N, W, A N, W, A A

(4) Unbounded stabilities. Now we consider all unbounded stabilities. If

�¬π� ; �π ∧ ϕ� −→ �π ∨ π1 ∨ . . . ∨ πn�

is in Spec we take all entries that are in a qπ,t-column and in a σ-row

where σ satisfies ϕ and intersect these entries with {π, π1, . . . , πn}.
In our example there are three unbounded stabilities. Processing the

formula Unb.Stab-1 yields

Δ qN,0 qW,5 qW,15 qA,0

n N N, W, A N, W, A A

m N, W N, W, A N, W, A A

s N, W N, W, A N, W, A A

Next we take Unb.Stab-2 and obtain

Δ qN,0 qW,5 qW,15 qA,0

n N N, W N, W A

m N, W N, W, A N, W, A A

s N, W N, W, A N, W, A A

The remaining unbounded stability Unb.Stab-3 leads to the following
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Δ-table as the final result of this step:

Δ qN,0 qW,5 qW,15 qA,0

n N N, W N, W A

m N, W W, A W, A A

s N, W W, A W, A A

(5) Bounded stabilities. If there are bounded stabilities of the form

�¬π� ; �π ∧ ϕ� ≤t−−−−→ �π ∨ π1 ∨ . . . ∨ πn�

in Spec, we intersect all entries of qπ,t′-columns where t′ < t holds and

ϕ-rows with the set {π, π1, . . . , πn}. Thus the outputs are restricted only

to those states qπ,t′ where the waiting time t′ has not yet exceeded the

time bound t.

In our example the bounded stability Bd.Stab-2 yields

Δ qN,0 qW,5 qW,15 qA,0

n N N, W N, W A

m N, W W, A W, A A

s N, W W W, A A

(6) Synchronisation requirements. Synchronisations and progress formulas

(which are special cases of synchronisations with ϕ = Σ) of the form

�π ∧ ϕ� t−−−−→ �¬π�

are handled as follows: we remove π in each entry of a ϕ-row and qπ,t′-

column provided that either t ≤ t′ or t′ < t such that there is no

qπ,t′′-column with t′ < t′′ < t. The latter condition ensures that the

output π is changed as late as possible before the deadline t.

Our example has four synchronisation formulas. Processing the for-

mula Syn-1 yields

Δ qN,0 qW,5 qW,15 qA,0

n N N, W N, W A

m W W, A W, A A

s W W W, A A

Processing Syn-2 yields

Δ qN,0 qW,5 qW,15 qA,0

n N N N A

m W W, A W, A A

s W W W, A A
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Processing Syn-3 yields

Δ qN,0 qW,5 qW,15 qA,0

n N N N A

m W A A A

s W W W, A A

Processing Syn-4 finally yields

Δ qN,0 qW,5 qW,15 qA,0

n N N N A

m W A A A

s W W A A

(7) Determining delayed inputs. We define the Se-function of the PLC-Au-

tomaton as follows:

Se(qπ,t)
def

= Σ \ {σ ∈ Σ | ∃ �π ∧ ϕ� t′−−−−→ �¬π� ∈ Spec • t′ ≤ t ∧ σ ∈ ϕ}.

Informally, the reaction is delayed for all inputs for which there is no

explicit requirement for an output change before the delay time t.

In the example we obtain:

Se(qW,5) = {n, m, s} \ {n} = {m, s} by Syn-2,

Se(qW,15) = {n, m, s} \ {n, m} = {s} by Syn-2 and Syn-3.

(8) Estimating the cycle time. In this step we calculate upper bounds for

the cycle time ε. Each synchronisation formula

�π ∧ ϕ� t−−−−→ �¬π� ∈ Spec

yields one upper time bound. Let the set of predecessor states be

Pred(π, t)
def

= {qπ,t′ | 0 < t′ < t}.

Then the upper time bound for ε induced by �π ∧ ϕ� t−−−−→ �¬π� is

given by

ε ≤
{

t
2 , if Pred(π, t) = ∅,
t−max{t′ | qπ,t′∈Pred(π,t)}

2·|Pred(π,t)| , otherwise.

In the first case we take into account that it takes at most two cycles

for a PLC-Automaton to react to an input ϕ (cf. (DC-6) of the DC

semantics in Section 5.4). In the second case we take the quotient of the



5.5 Synthesis from DC implementables 219

time difference to the last predecessor in the π-cascade and the worst-

case estimate that in each predecessor in the π-cascade two cycles could

be consumed.

In our example the four synchronisation formulas yield the following

upper time bounds for ε:

ε ≤ 0.1
2 = 0.05 due to Syn-1,

ε ≤ 0.2
2 = 0.1 due to Syn-2,

ε ≤ 5.1−5
2·1 = 0.05 due to Syn-3,

ε ≤ 15.1−15
2·2 = 0.025 due to Syn-4.

For Syn-3 we calculate Pred(W, 5.1) = {qW,5} and thus |Pred(W, 5.1)| = 1,

and in case of Syn-4 we obtain Pred(W, 15.1) = {qW,5, qW,15} and thus

|Pred(W, 15.1)| = 2.

(9) Eliminating contradictions. We have to remove outputs π for which

there is a bounded stability �¬π� ; �π ∧ ϕ� ≤t−−−−→ �π ∨ π1 ∨ . . . ∨ πn� in

the specification and a time bound t′ ≤ t with ϕ �⊆ Se(qπ,t′). The reason

is the existence of an input σ ∈ ϕ \ Se(qπ,t′) for which the delay time

t′ is not relevant (/∈ Se(qπ,t′)) although the bounded stability requires

the system to stay in π for at least t seconds provided σ holds from the

beginning of π. For instance, consider two formulas in Spec of the form

�¬π� ; �π ∧ ϕ� ≤t−−−−→ �π� and
⌈
π ∧ ϕ′

⌉ t′−−−−→ �¬π�

where ϕ∩ϕ′ �= ∅ and t′ ≤ t holds. Then a problem arises if the system

changes the output to π and subsequently reads only inputs from ϕ∩ϕ′.

In that case the system on the one hand has to stay in π for at least

t seconds and on the other hand has to leave π after t′ seconds. This is

realisable only for t < t′.†
Now we consider the Δ-table again and remove all states for which

an empty entry exists. That means if for output π there is a t and an

input σ ∈ Σ such that the entry in column qπ,t and row σ is empty, then

we can conclude that the given specification contains formulas that in

conjunction imply that π should never be observable. As a consequence

we remove all columns with output π and remove all π’s in the remaining

entries.

We have to repeat step (9) as long as states are found that have to

be removed.

† Even the case t = t′ is a problem because then the specification requires perfect timing, which
is not realisable in practice.
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In our example no output has to be removed because there is no

empty entry in the Δ-table and the sets of delayed inputs Se(qW,5) and

Se(qW,15) are not in conflict with the bounded stabilities Bd.Stab-1 and

Bd.Stab-2.

(10) Consistency check. In this step we determine whether the synthesis was

successful or not. To this end, we perform the following consistency

check depending on Spec and the final Δ-table:

The specification Spec contains at most one initialisation formula

�� ∨ �π0� ; true. If �� ∨ �π0� ; true is in Spec then there exists a state

of the form qπ0,t in the final Δ-table (which was not removed in

step (9)).

In case this consistency check is successful, we proceed with step (11) and

construct a PLC-Automaton that meets Spec. Otherwise the synthesis

algorithm stops without producing any automaton.

In our example, the consistency check is successful because the initial

constraint �� ∨ �N� ; true is in the specification and the state qN,0 is in

the final Δ-table of step (6).

(11) Construction of the PLC-Automaton. We need two auxiliary functions.

For an output value π and t ∈ Time we introduce

first(π)
def

= min({t ∈ Time | qπ,t ∈ Q})

to determine the time stamp of the first state in the π-cascade, and

next(π, t)
def

=

⎧⎪⎨
⎪⎩

min({t′ ∈ Time | t′ > t ∧ qπ,t′ ∈ Q})
if {t′ ∈ Time | t′ > t ∧ qπ,t′ ∈ Q} �= ∅,

t, otherwise

to determine the time stamp of the next state after time t in the π-

cascade.

Then the PLC-Automaton synthesised from the specification Spec is

defined by

A(Spec) = (Q,Σ, δ, q0, ε, St, Se,Ω, ω)

where the following holds:

• Q is as defined in step (1) and possibly reduced in step (9).

• Σ is the data type of the input observable.

• The transition function δ : Q×Σ −→ Q is determined as follows. For
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each state qπ,t ∈ Q and each input σ ∈ Σ choose an arbitrary output

π′ from the corresponding entry in the Δ-table and define

δ(qπ,t, σ)
def

=

{
qπ′, first(π′), if π �= π′,

qπ, next(π,t), otherwise.

• The initial state is

q0 =

{
qπ0, first(π0), if �� ∨ �π0� ; true ∈ SPEC,
qπ, first(π), for an arbitrary π otherwise.

• The cycle time ε is chosen to satisfy the bounds given in step (8).

• The delay time St(qπ,t̃) of inputs in a state qπ,t̃ is calculated as follows:

St(qπ,t̃) =

⎧⎪⎨
⎪⎩

t̃−max{ t′ | qπ,t′ ∈ Q and t′ < t̃ }
if { t′ | qπ,t′ ∈ Q and t′ < t̃ } �= ∅,

t̃, otherwise.

In the first case the time difference to the last state before time t̃ in

the π-cascade is taken as the delay time.

• The set of delayed inputs Se(qπ,t) in a state qπ,t is defined as in step (7).

• Ω is the data type of the output observable.

• The output function ω is given by ω(qπ,t) = π for each state qπ,t.

For our running example let us look at the cases of the transition

function δ where a state in the W-cascade {qW,5, qW,15} is entered:

δ(qN,0, m) = qW,first(W) = qW,5,

δ(qN,0, s) = qW,first(W) = qW,5,

δ(qW,5, s) = qW,next(W,5) = qW,15.

All other cases are straightforward to extract from the final Δ-table at

the end of step (6). For instance, δ(qN,0, n) = qN,0. Altogether, we have

synthesised the following PLC-Automaton:



222 PLC-Automata

0.025 s

N

0 s, {n, m, s}

W

5 s, {m, s}

W

10 s, {s}

A

0 s, {n, m, s}

qN,0
qW,5

qW,15

qA,0

n

m, s s

m

n

m, s

n

n, m, s

To discuss step (9) of the synthesis algorithm further, consider as an

alternative to Syn-3 the synchronisation constraint

Syn-3 ′ : �W ∧ m� 4.5−−−−→ �¬W� .

This constraint is inconsistent with

Bd.Stab-1 : �¬W� ; �W ∧ {m, s}� ≤5−−−−→ �W� .

How would the synthesis algorithm have discovered this inconsistency ? Un-

til step (6) the algorithm would proceed as above. However, in step (7) we

would have obtained

Se(qW,5) = {n, m, s} \ {n, m} = {s}.

In this set of delayed inputs m is missing, which should be ignored for 5

seconds due to constraint Bd.Stab-1. Step (9) would thus have deleted the

output W from the Δ-table obtained in step (6). As a consequence also the

columns corresponding to the states qW,5, qW,15, and (in the next iteration)

qN,0 have to be deleted. Thus only the column for state qA,0 remains. In

step (10) the algorithm would then have noticed that the initial state qN,0

is missing. Thus the synthesis would have been unsuccessful.

It is possible to define the notion of consistency used in the synthesis

algorithm purely at the specification level.

Definition 5.10 (Consistency)

Let Spec be a set of DC implementables constraining an output observable OutA
(ranging over Ω) dependent on an input observable InA (ranging over Σ). We
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call Spec consistent if there is a non-empty subset Ω′ ⊆ Ω with the following

properties:

• There is at most one initialisation formula ��∨�π0� ; true in Spec and if there

is one πo ∈ Ω′ holds.

• For all synchronisation formulas �π ∧ ϕ� s−−−−→ �¬π� with π ∈ Ω′ and all

σ ∈ Σ satisfying ϕ there is a π′ ∈ Ω′ with

(i) π′ �= π,

(ii) for all �π ∧ ϕ� −→ �π ∨ π1 ∨ . . . ∨ πn� in Spec it is π′ ∈ {π1, . . . , πn},
(iii) for all �¬π� ; �π ∧ ϕ′� −→ �π ∨ π1 ∨ . . . ∨ πn� in Spec with σ satisfying

ϕ′ it is π′ ∈ {π1, . . . , πn}, and

(iv) for all �¬π� ; �π ∧ ϕ′� ≤t−−−−→ �π ∨ π1 ∨ . . . ∨ πn� in Spec with σ satisfying

ϕ′ and s ≤ t it is π′ ∈ {π1, . . . , πn}.

Otherwise Spec is called inconsistent.

Intuitively, Ω′ is a set of outputs for which no problems with the specifica-

tion can occur. The definition requires that the initial output (if specified)

must be in this set and that – whenever an output change is required by the

specification – there must be a successor output in Ω′ that is not forbidden

by the specification. It is possible to show that inconsistent specifications re-

strict the admissible interpretations of the input observable, i.e. the system

environment, which is not desirable (see Exercise 5.6).

Theorem 5.11 (Correctness and completeness)

(i) If the synthesis terminates with a PLC-Automaton A(Spec) then the

implication [[A(Spec)]]DC =⇒
∧

Spec is valid.†
(ii) The synthesis terminates with a PLC-Automaton iff the specification

is consistent.

Proof idea:

The first statement claims the partial correctness of the algorithm. In the

proof it is shown that each implementable is handled by the synthesis such

that the resulting PLC-Automaton cannot violate the constraint. For ex-

ample, for a sequencing formula the algorithm removes some output values

in the Δ-table. As a consequence the resulting PLC-Automaton cannot

execute output changes which would violate the sequencing formula.

It is easy to see that the algorithm always terminates but not necessar-

ily successfully, yielding a PLC-Automaton. The second statement says

that for each consistent specification the algorithm terminates successfully

† Here
V

Spec denotes the conjunction of all formulas in the set Spec.
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with a PLC-Automaton and for inconsistent specifications it is not success-

ful. In other words, the synthesis algorithm is a decision procedure for

the consistency of Spec. It is rather obvious that the algorithm produces

a PLC-Automaton for a consistent specification because the definition of

consistency requires the existence of a subset of outputs where no contra-

dicting requirements appear. For inconsistent specifications it can be shown

that the algorithm subsequently removes outputs from the Δ-table until no

output remains or the initial output (if specified) is removed.

The details of the proof can be found in [Die99]. �

The semantics [[A(Spec)]]DC of the synthesised automaton is a DC formula

in the observables InA,StA,OutA whereas Spec is a DC formula in the ob-

servables InA and OutA only. None of the formulas contains a global variable.

Thus property (i) of the correctness theorem implies that all interpretations

I of the three observables InA,StA,OutA that realise [[A(Spec)]]DC from 0

also realise Spec from 0, in symbols:

I |=0 [[A(Spec)]]DC implies I |=0

∧
Spec.

We conclude with a further application of the synthesis algorithm.

Example 5.12

Consider as a specification of the filter as shown in Figure 5.2 the set Spec

consisting of the following DC implementables:

Init : �� ∨ �N� ; true ,

Sequ : �X� −→ �X� ,
Unb.Stab-1 : �¬N� ; �N ∧ no tr� −→ �N� ,
Unb.Stab-2 : �¬N� ; �N ∧ ¬Error� −→ �N ∨ T� ,
Unb.Stab-3 : �¬T� ; �T ∧ tr� −→ �T� ,
Unb.Stab-4 : �¬T� ; �T ∧ ¬Error� −→ �T ∨ N� ,

Bd.Stab : �¬T� ; �T ∧ ¬Error� ≤5−−−−→ �T� ,

Syn-1 : �N ∧ ¬no tr� 0.1−−−−→ �¬N� ,

Syn-2 : �T ∧ no tr� 5.1−−−−→ �¬T� ,

Syn-3 : �T ∧ Error� 0.1−−−−→ �¬T� .

Here no tr, tr, Error are the values of the input observable InA and N, T,

X are the values of the output observable OutA.
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(1) We calculate the following sets of bounds:

bounds(N) = ∅,

bounds(T) = {5},
bounds(X) = ∅.

This yields the state space Q = {qN,0, qT,5, qX,0}, without any cascade.

(2) The synthesis starts with the full Δ-table:

Δ qN,0 qT,5 qX,0

no tr N, T, X N, T, X N, T, X

tr N, T, X N, T, X N, T, X

Error N, T, X N, T, X N, T, X

(3) The sequencing formula Sequ reduces this table to

Δ qN,0 qT,5 qX,0

no tr N, T, X N, T, X X

tr N, T, X N, T, X X

Error N, T, X N, T, X X

(4) In our example there are four unbounded stabilities. Processing the

stability formula Unb.Stab-1 yields

Δ qN,0 qT,5 qX,0

no tr N N, T, X X

tr N, T, X N, T, X X

Error N, T, X N, T, X X

Next we take Unb.Stab-2 and obtain

Δ qN,0 qT,5 qX,0

no tr N N, T, X X

tr N, T N, T, X X

Error N, T, X N, T, X X

The remaining unbounded stabilities Unb.Stab-3 and Unb.Stab-4 lead

to the following Δ-table as the final result of this step:

Δ qN,0 qT,5 qX,0

no tr N N, T X

tr N, T T X

Error N, T, X N, T, X X
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(5) Now look at the bounded stability Bd.Stab. Since there is no qT,t-column

in the Δ-table with t < 5, nothing needs to be done in this step.

(6) The example provides three synchronisation formulas. Processing the

formula Syn-1 yields

Δ qN,0 qT,5 qX,0

no tr N N, T X

tr T T X

Error T, X N, T, X X

Processing Syn-2 yields

Δ qN,0 qT,5 qX,0

no tr N N X

tr T T X

Error T, X N, T, X X

Processing Syn-3 finally yields the following Δ-table:

Δ qN,0 qT,5 qX,0

no tr N N X

tr T T X

Error T, X N, X X

(7) The sets of delayed inputs Se are computed as follows:

Se(qN,0) = {no tr, tr, Error},
Se(qT,5) = {no tr, tr},
Se(qX,0) = {no tr, tr, Error}.

(8) The synchronisation constraints generate the following inequalities as

upper time bounds for the cycle time ε:

ε ≤ 0.1
2 = 0.05 due to Syn-1 and Syn-3,

ε ≤ 5.1−5
2·1 = 0.05 due to Syn-2.

(9) Now we examine the final Δ-table of step (6) again. No output has to

be removed because there is no empty entry in the table and for the

only bounded stability Bd.Stab we have ¬Error ⊆ Se(qT,5).

(10) We see that the synthesis is successful because the initial constraint

�� ∨ �N� ; true is in Spec and the state qN,0 is in the final Δ-table.

(11) From the specification Spec the algorithm can synthesise the PLC-Au-

tomaton of Figure 5.2, but with ε = 0.05 as its cycle time.

However, this is not the only choice the algorithm has because the
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final Δ-table contains two entries with two elements. The reason is that

Spec specifies that both N and T have to be left when the Error signal

holds for longer than 0.1 seconds, but there is no formula specifying to

which state the system should change.

�

5.6 Extensions of PLC-Automata

The definition of PLC-Automata presented so far can be extended either to

increase the expressiveness or to allow for more convenient specifications.

In this section we present three extensions of PLC-Automata. First, we

increase the expressiveness by introducing hierarchical states. Then, we

simplify the handling of the discrete state space by introducing data vari-

ables, similarly to extended timed automata. Finally, we discuss networks

of PLC-Automata formed by two composition operators.

5.6.1 Hierarchical PLC-Automata

The PLC-Automata introduced so far are restricted in their expressiveness.

An indication for this is that the PLC source code for a PLC-Automaton

uses only a single timer. However, there are cases where states need several

simultaneously active timers.

Example 5.13

Consider the stuttering problem of Section 5.2 again. Assume now that

there is the possibility of glitches in the Error signal. These are Error

signals that appear for a short period of time even if there is no real error.

We require that the filter is able to handle this problem and output X only

if the Error signal was not a glitch. More precisely, we want the filter to

interpret an Error signal lasting for less than 0.2 seconds as a glitch and an

Error signal lasting for at least 0.4 seconds as a real Error signal. �

An attempt to implement this by a PLC-Automaton is the automaton in

Figure 5.7. Unfortunately, this automaton has a problem. Consider the case

where it detects a train and changes from state q1 to q2. By this transition,

a timer is started that runs for 5 seconds. If 3 seconds after starting the

timer a glitch occurs, the system will enter state q4 and return to q2 again.

However, this returning transition will start the timer with 5 seconds again.

Hence, the system has “forgotten” the initial time period in which stuttering

is filtered and it assumes now that a new phase begins in which stuttering
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has to be filtered. This can result in a failure to detect a newly arriving

train because the system might consider the change from no tr to tr as

stuttering instead of a real train.

0.05 s

N

0 s, ∅

T

5 s, {no tr, tr}

N

0.2 s, {Error}
T

0.2 s, {Error}

X

0 s, ∅

q1 q2

q3 q4

q5

no tr

tr

Error Error
no tr

tr
no tr

tr

Error Error

no tr tr

true

Fig. 5.7. Attempt to implement the problem given in Example 5.13

The core of the problem is that the system is restricted to one timer per

state while it should have more than one. Since PLC-Automata can be

translated into source code using only one timer, they are not able to solve

this problem. Instead, we will extend the previous definition of PLC-Au-

tomata to cope with systems that need more than one timer. The basic idea

of this extension is the notion of hierarchy. By grouping states together into

a “superstate” we can structure the state space of large automata. We will

also exploit hierarchy to introduce additional timers by adding the timing

annotations to both states and superstates.

A hierarchical PLC-Automaton for Example 5.13 could have the structure

as shown in Figure 5.8. We have extended the previous automaton by a

superstate s1 containing q2 and q4. As before, the state q4 handles the
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0.05 s

5 s, {no tr, tr}
s1

N

0 s, ∅

N

0.2 s, {Error}

T

0 s, ∅

T

0.2 s, {Error}

X

0 s, ∅

q1 q2

q3 q4

q5

no tr

tr

Error Error
no tr

tr
no tr

tr

Error

Error

no tr tr

true

Fig. 5.8. Hierarchical filter

detection of Error glitches. The handling of the stuttering period is now

done by the superstate s1 instead of q2, which is undelayed. The meaning

of the delay annotation of s1 is that the system has to stay for 5 seconds

in s1 unless it can leave s1 via an Error transition. In other words: the

Error transition from q4 to q5 can be fired without checking the stutter

time whereas the transition from q2 to q1 can only be fired if s1 is stable for

at least 5 seconds. Note that in state q4 the two system timers are active.

The following definition formalises these ideas:

Definition 5.14 (HPLC-Automaton)

A hierarchical PLC-Automaton (abbreviated HPLC-Automaton) is a structure

H = (Q,S,Tr ,Σ, δ, q0, ε, St, Se,Ω, ω) where:

• Q, Σ, δ, q0, ε, Ω, and ω are as in Definition 5.2.

• S is a finite set of so-called superstates with Q ∩ S = ∅.

• Tr = (V,E) is the so-called hierarchy tree with the set V = {r} ∪Q ∪ S of

vertices, the root r /∈ Q∪S, and the set E ⊆ (V \Q)× (V \{r}) of directed

edges. The set of leaves of Tr is exactly Q.
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• St is a function of type Q ∪ S −→ R≥0 that assigns a delay time to each

state and superstate.

• Se is a function of type Q∪S −→ 2Σ that assigns a set of delayed inputs to

each state and superstate.

Example 5.15

The hierarchical PLC-Automaton above has the following hierarchy tree:

r

q1 q3 q5 s1

q2 q4

Here s1 is the only superstate. The normal states are q1, q2, q3, q4, q5, and r

is the root. �

Since hierarchy trees can have an arbitrary depth, an arbitrary nesting of

superstates is possible in (the graphic representation of) HPLC-Automata.

This implies that in a state q with n ancestors in the hierarchy tree, n timers

may be active.

5.6.2 Data and timer variables

A PLC-Automaton has only one input variable and one output variable.

This simplifies the formal definition but is unnecessarily restrictive when

more complex specifications have to be developed. For example, an imple-

mentation of the gas burner controller should have two input variables: H

for heat request and F for flame. Although this could be handled by a PLC-

Automaton using a single input variable ranging over the Cartesian product

of the values of H and F , it is clearer to declare H and F separately.

In this subsection we informally present generalised PLC-Automata, ex-

tending PLC-Automata with data and timer variables. The declaration of

a data variable consists of a name, a direction (input or output), a data

type, and an initial value in case of an output variable. The declaration of

a Boolean timer variable consists of a name, the indication “Timer”, a time

constant (the timer period), and an activity set , which is a set of states in

which the timer is active. A timer variable is initialised to false. The idea is

that a timer variable tmr is set to true when a state of its activity set is en-

tered by a transition. The timer value stays true as long as the timer period
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has not elapsed and the automaton is in one of the states in the activity

set of tmr. When the timer period has elapsed or the activity set is left

the value of the timer variable switches back to false. Both data and timer

variables can appear in the guards of transitions. This concept of timer

variables corresponds to the timers that are available in the programming

language ST (Structured Text) for PLCs (cf. Section 5.3).

An example of a generalised PLC-Automaton is shown in Figure 5.9. It

is intended to implement the gas burner controller GB-Ctrl specified in Sub-

section 3.2.1. This PLC-Automaton declares two Boolean input variables

F : Input B
H : Input B
C : Output {idle, purge, ignite, burn} Init: idle
G : Output B Init: false
t1 : Timer (30 s) Active in: {purge}
t2 : Timer (0.5 s) Active in: {ignite}

1
12

s

idle purge

t1

ignite

t2

burn

H

C := purge

C := ignite
G := true

¬t1

C := burn

¬t2

¬(H ∧ F )
C := idle
G := false

H ∧ F

¬H

t1

t2

Fig. 5.9. Gas burner controller as a PLC-Automaton with data variables

H and F for heat request and flame, respectively. Moreover, two output

variables are declared: G with Boolean type stands for an open gas valve

and is initialised with false. The second output variable C mirrors the in-

ternal state of the PLC-Automaton so that it becomes visible from outside.

Further on, there are two timer variables t1 and t2, each with a singleton

activity set.

The four states of the PLC-Automaton are called idle, purge, ignite, and

burn. The transitions are annotated with guards over data and timer vari-

ables and with assignments to the output variables which are executed when

the transition fires. For example, the variable G is set to true when the tran-

sition from purge to ignite is fired and reset to false when idle is entered.
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Note that the transition from purge to ignite is only possible if the timer

variable t1 is false. This is the case when the controller has been for 30 sec-

onds in purge because entering the activity set of t1, i.e. entering purge,

starts the timer t1 and it keeps the value true for the given time period.

In a generalised PLC-Automaton, a state q can be a member of the activity

sets of several timers. Graphically, the state q is then annotated with the

set of timers that are active in q. Thus as in hierarchical PLC-Automata,

several timers may be active in a state of a generalised PLC-Automaton.

Moreover, activity sets may overlap without being contained in each other.

For example, consider a system with three states q1, q2, and q3. To specify

that outside q1 the system should wait for 3 seconds and outside q3 it should

wait for 5 seconds one may introduce two timers t1 and t2, where q1, q2 are

in the activity set of a timer t1 and q2, q3 are in the activity set of a timer

t2. This is not possible with hierarchical PLC-Automata.

5.6.3 Networks of PLC-Automata

In more complex applications a real-time system will be specified by a col-

lection of, say, k PLC-Automata that have to be implemented on, say, n

computing devices, which may be PLCs or other suitable hardware plat-

forms. The point is that in general k �= n holds so that some PLC-Automata

may have to be implemented on the same computing device and others are

distributed over several computing devices.

In this subsection we informally present two composition operators on

PLC-Automata: a parallel composition describing the effect of a distributed

implementation and a sequential composition describing the effect of an im-

plementation on the same computing device. The parallel composition is

parameterised with the specification of a transmission medium between the

composed PLC-Automata. With these two operators, networks of PLC-Au-

tomata can be specified. Figure 5.10 illustrates a parallel composition of

two computing devices linked by a medium m, which in turn are sequen-

tially composed of PLC-Automata A1 ; A2 and A3 ; A4 ; A5, respectively.

Parallel composition

The parallel composition depends on the transmission medium. Such me-

dia can introduce transmission delays or errors. We present a uniform ap-

proach to model the transmission of information between different PLCs.

Abstractly, the transmission between two PLC-Automata is a relation be-
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tween the output of the first automaton and the input of the second one.

We describe this relation by DC formulas speaking about both observables.

For the parallel composition of two PLC-Automata A and B connected

via the medium m we write

A [m]B.

The DC semantics of A [m]B is defined as follows:

[[A [m]B]]DC
def⇐⇒ [[A]]DC ∧ [[B]]DC ∧ [[m]]A,B,

where [[A]]DC and [[B]]DC are the DC semantics of A and B and where [[m]]A,B

is a DC formula specifying a relation between the interpretations of the input

and output observables of A and B.

Note that this definition of transmission is not very restrictive. For in-

stance, it is possible to interpret a PLC-Automaton as a medium because it

represents a relation between its input and output. Typically, we are inter-

ested in the delay time of the transmission. For this purpose, we introduce a

standard medium sm that is parameterised by a delay time t. Its semantics

defines a relation between the input and output observables I and O of type

D as follows:

[[sm(t)]]OI
def

=
∧

∅
=A⊆D

(�I ∈ A� t−−−−→ �O ∈ A�).

Informally speaking, the possible outputs of sm(t) at time t0 ∈ Time are the

inputs that were valid during (max(0, t0 − t), t0).
We return to the gas burner controller of Figure 5.9. Suppose its im-

plementation has to be distributed over two computing devices. The first

device should not manipulate the gas valve directly, but compute the inter-

nal state only and communicate it to the second device. The first device is

modelled by the generalised PLC-Automaton G1 shown in Figure 5.11. The

output C of G1 is input by another generalised PLC-Automaton G2 which

controls the gas valve. This one is depicted in Figure 5.12.

computing device 1

A1 ; A2

computing device 2

A3 ; A4 ; A5

medium m

Fig. 5.10. Example for a composition of PLC-Automata
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G1:

F : Input B
H : Input B
C : Output {idle, purge, ignite, burn} Init: idle
t1 : Timer (30 s) Active in: {purge}
t2 : Timer (0.5 s) Active in: {ignite}

ε1 s

idle purge

t1

ignite

t2

burn

H

C := purge

C := ignite¬t1

C := burn

¬t2

¬(H ∧ F ) C := idle

H ∧ F

¬H

t1

t2

Fig. 5.11. A distributed implementation of the gas burner: the automaton G1

G2:

C : Input {idle, purge, ignite, burn}
G : Output B Init: false

ε2 s
off on

C = idle ∨ C = purge C = ignite ∨ C = burn

C = ignite ∨ C = burn

G := true

G := false

C = idle ∨ C = purge

Fig. 5.12. A distributed implementation of the gas burner: the automaton G2

Assuming that both PLC-Automata G∞ and G∈ are connected using a

standard medium sm(t) we have the following system:

G1 [sm(t)]G2.

Since neither G1 nor G2 uses the features of hierarchy or timer variables,

we can apply Theorem 5.8 on reaction times (adapted to PLC-Automata of
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data variables only) to conclude that the following properties hold:

G1 : �¬H� ε1+30+2ε1+0.5+2ε1+ε1−−−−−−−−−−−−−−−→ �CG1
= idle� ,

G2 : �CG2
= idle� 2ε2−−−−→ �off � .

Further on, the standard medium sm(t) ensures the property

sm(t) : �CG1
= idle� t−−−−→ �CG2

= idle� .

By Exercise 3.5, these formulas imply the following timed leads-to property

of the parallel composition G1 [sm(t)]G2:

�¬H� 30.5+6ε1+t+2ε2−−−−−−−−−−→ �off � .

Sequential composition

Sequential composition assumes that two (or more) PLC-Automata are to

be implemented on the same computing device. This could be modelled by

a parallel composition with an “internal transmission” of data between the

automata, but we can do better by exploiting the information of a shared

implementation.

• We know that the result computed by the first automaton during a cycle

can be immediately used in the same cycle by the second automaton as

input. That is, every output of the first automaton will be readable by

the second one. If both automata change their state in the same cycle, an

external observer will notice these changes simultaneously.

• In case the PLC-Automata are implemented on the same computing de-

vice they share the cyclic behaviour and the input values. Then we can

benefit from the knowledge that during each cycle the same input value

is read by both automata.

Suppose that we have to implement two PLC-Automata A and B on the

same computing device, and A has to be executed before B. We stipulate

that a connector relation f between the data variables of A and B is given

describing which input variable of B is driven by an output variable ofA, and

vice versa. Formally, f consists of pairs (inB, outA) or (inA, outB) where the

elements of the pairs describe type-consistent data variables of the automata.

For the sequential composition of two PLC-Automata A and B using the

connector f we write

A ;f B.
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The semantics of sequential composition can be defined by a transforma-

tion of A;f B into a single PLC-Automaton, for which the DC semantics is

defined. We skip this formal definition here but present the result of the

transformation for two sequential compositions of the separated gas burner

controllers G1 and G2. With the connector f = {(CG2
, CG1

)} the automata

for

G1;f G2 and G2;f G1

are shown in Figures 5.13 and 5.14, respectively.

F : Input B
H : Input B

CG1
: Output {idle, purge, ignite, burn} Init: idle

G : Output B Init: false
t1 : Timer (30 s) Active in: {purge, off }
t2 : Timer (0.5 s) Active in: {ignite, on}

ε s

idle, off purge, off

t1

ignite, on

t2

burn, on

H

CG1
:= purge

CG1
:= ignite

G := true
¬t1

CG1
:= burn

¬t2

¬(H ∧ F )
CG1

:= idle
G := false

H ∧ F

¬H

t1

t2

Fig. 5.13. Semantics of the sequential composition G1;f G2

The upper time bound for the execution of a cycle in the sequential com-

position G1;f G2 is the minimum of both upper time bounds ε1 of G1 and

ε2 of G2, i.e. ε = min(ε1, ε2). The examples in Figures 5.13 and 5.14 show

that sequential composition is not commutative. In the second variant the

computation of the output G happens one cycle after the computation of

the gas burner’s state because G2 is executed first and hence it operates with

the C value of the previous cycle.

Finally, we mention that an implementation of the sequential composition

A ;f B can be obtained by compiling the following code sequence:

1. The declaration part. It has to contain uniquely named variables for both

automata.
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F : Input B
H : Input B

CG1
: Output {idle, purge, ignite, burn} Init: idle

G : Output B Init: false
t1 : Timer (30 s) Active in: {purge, off }
t2 : Timer (0.5 s) Active in: {ignite, on}

ε s

idle, off purge, off

t1

ignite, off

t2

ignite, on

t2

burn, on

idle, on

H

CG1
:= purge

CG1
:= ignite¬t1

G := truet2

¬t2

G
:=

tru
e

CG1

:=
bu

rn

CG1
:= burn

¬t2

¬(H ∧ F ) CG1
:= idle

G := false ¬H
H

G
:=

fal
se

CG1

:=
pu

rge

H ∧ F

¬H

t1

t2

Fig. 5.14. Semantics of the sequential composition G2;f G1

2. Connector assignments for inputs of A. Each pair (inA, outB) ∈ f yields

an assignment of the form inA:=outB.

3. The body of A. It has to precede the body of B.

4. Connector assignments for inputs of B. Each pair (inB, outA) ∈ f yields

an assignment of the form inB:=outA.

5. The body of B.

5.7 Exercises

Exercise 5.1 (Semantics)

Let Aε be a PLC-Automaton with the upper bound ε for its cycle time and

let Aε′ be the same automaton except for a smaller bound ε′ ≤ ε. Prove

that [[Aε′ ]]DC =⇒ [[Aε]]DC is valid.
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Hint: Conduct the proof by showing the implications of the corresponding

formulas in the DC semantics of Aε and Aε′ .

Exercise 5.2 (PLC-Automata are input-open)

Consider a PLC-Automaton A and a function I0 : Time −→ Σ. Show that

there exists an interpretation I with I(InA) = Io and I |=0 [[A]]DC. In other

words, a PLC-Automaton cannot reject any input behaviour.

Exercise 5.3 (Reaction time)

Consider the following PLC-Automaton A with states q0, q1, q2, q3, input

values x,y, output values A,B,C, and a cycle time ε = 0.5 seconds:

0.5 s

A

0 s,{x, y}

B

5 s,{x, y}

B

15 s,{x}

C

0 s,{x, y}

x,y

x

y

x

y

x,y

q0 q1

q2

q3

Calculate an upper bound of the reaction time c with

�StA ∈ {q0, q1, q2, q3} ∧ InA = y}� c−−−−→ �StA = q3� .

Exercise 5.4 (Synthesis)

Consider a traffic light for pedestrians wishing to cross a street. The light

reacts to the two input values b (“button depressed”) and n (“button not

depressed”) with one of the following three output values: I (“idle”, i.e. no

light shown), R (“red light” shown to pedestrians), G (“green light” shown

to pedestrians). The intended timed behaviour is specified by the set Spec
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consisting of the following implementables:

Init-1 : �� ∨ �I� ; true ,

Sequ-1 : �I� −→ �I ∨ R� ,
Sequ-2 : �R� −→ �R ∨ G� ,
Sequ-3 : �G� −→ �G ∨ I� ,

Unb.Stab-1 : �¬I� ; �I ∧ n� −→ �I� ,

Bd.Stab-1 : �¬R� ; �R� ≤30−−−−→ �R� ,

Bd.Stab-2 : �¬G� ; �G� ≤60−−−−→ �G� ,

Syn-1 : �I ∧ b� 0.5−−−−→ �¬I� ,

Syn-2 : �R� 30.5−−−−→ �¬R� ,

Syn-3 : �G� 60.5−−−−→ �¬G� .

Synthesise a PLC-Automaton satisfying Spec.

Exercise 5.5 (Synthesis)

Consider Example 5.12 again. Extend the specification by implementables

such that the result of the synthesis algorithm is deterministic.

Exercise 5.6 (Consistency)

Consider a specification Spec that is inconsistent in the sense of Defini-

tion 5.10. Prove that in this case there exists a function I0 : Time −→ Σ

such that for all interpretations I

I(InA) = I0 implies I �|=
∧

Spec.

In other words, there exists an input behaviour that is rejected by Spec.

Exercise 5.7 (Hierarchical PLC-Automaton)

Translate the HPLC-Automaton shown in Figure 5.8 into ST code.

Hint: Extend the translation scheme of Section 5.3 appropriately.

Exercise 5.8 (Hierarchical PLC-Automaton)

Generalise the DC semantics of PLC-Automata to HPLC-Automata.

Hint: Note that a HPLC-Automaton has the same observables as a PLC-

Automaton. Generalise the DC formulas (DC-1)–(DC-11) appropriately if

necessary.
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Exercise 5.9 (Hierarchical PLC-Automaton)

Translate the PLC-Automaton given in Figure 5.9 into ST code. Assume

that ST provides all standard data types.

5.8 Bibliographic remarks

The standard IEC 61131-3 of the International Electrotechnical Commission

provides a range of programming notations suitable for implementation on
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platforms. In fact, they can be implemented on any hardware platform

that performs a non-terminating loop consisting of inputting sensor values,

updating the state in accordance with timer values, and outputting actuator

values. For instance, at the University of Oldenburg a compiler has been

developed that generates C code from PLC-Automata. It is used in student

labs where the C code is executed on the experimental robot platform of

LEGO Mindstorms [LEG01]. The advantage is that real-time properties of

the PLC-Automata can be verified before the code is executed on the robots.

The synthesis algorithm from DC implementables to PLC-Automata was

first published in [Die97]. The idea of using hierarchy to structure large state

spaces of automata, here employed in the definition of Hierarchical PLC-Au-

tomata, is due to D. Harel, who introduced it in the definition of statecharts

[Har87]. Generalised PLC-Automata with the operators for parallel and

sequential composition as outlined in Section 5.6 are defined and studied in

[Die00b, Die06].
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Automatic verification

In this chapter we present an approach to the automatic verification of

behavioural properties of PLC-Automata. The properties are specified by

Constraint Diagrams. Since both PLC-Automata and Constraint Diagrams

have a semantics in the Duration Calculus, it is well-defined when a PLC-

Automaton satisfies a given Constraint Diagram (cf. Section 2.3). However,

tool support for the Duration Calculus with continuous time is not very

much developed. Therefore our approach to an automatic verification is to

translate both PLC-Automata and Constraint Diagrams into (semantically

equivalent) timed automata, for which tool support is very well developed

(cf. Chapter 4). As a first step we define an alternative semantics of both

Constraint Diagrams and PLC-Automata in terms of timed automata. Later

we describe a tool Moby/RT, which incorporates these semantics and ex-

ploits the model-checking facilities of UPPAAL for an automatic verifica-

tion. To illustrate this approach we will use the generalised railroad crossing

(GRC) as a running example.

6.1 The approach

Our aim is to show that a real-time system S satisfies or is correct w.r.t a

requirement P , abbreviated

S |=1 P. (6.1)

In this chapter, S will be given by a PLC-Automaton and P by a Constraint

Diagram. In that case both S and P have a semantics in the Duration

Calculus so that |=1 can be defined by logical implication between the DC

formulas expressing the semantics of S and P :

S |=1 P iff |= [[S]]DC =⇒ [[P ]]DC . (6.2)

241
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Our approach is automatic verification based on (extended) timed automata

(using the model checker UPPAAL). To this end, we proceed in three steps:

(I) Represent S as a network C(A1, . . . ,An) of (extended) timed au-

tomata.

(II) Represent P as a formula F(P ) (in the logic of UPPAAL) such that

the following equivalence holds:

S |=1 P iff C(A1, . . . ,An) |= F(P ) (6.3)

where |= is the satisfaction relation defined in Subsection 4.4.5.

(III) Check C(A1, . . . ,An) |= F(P ) using the model checker UPPAAL.

However, the logic of UPPAAL may be too weak to express P as a for-

mula F(P ) satisfying (6.3). Recall that for efficiency reasons the model

checker UPPAAL covers only a subset of the Timed Computation Tree

Logic (TCTL). To overcome this problem, we modify the steps (II) and

(III) as follows:

(II*) Represent P as a test automaton T (P ) together with a formula F(P )

(in the logic of UPPAAL). The purpose of a test automaton is to

act as an observer of the system. The test automaton should react to

the observed system’s behaviour such that the following equivalence

holds:

S |=1 P iff C(A′
1, . . . ,A′

n, T (P )) |= F(P ). (6.4)

The automata A′
1, . . . ,A′

n may differ somewhat from A1, . . . ,An to

allow for a communication with the test automaton T (P ). These

changes must not change the behaviour of the system as far as P is

concerned.

(III*) Check C(A′
1, . . . ,A′

n, T (P )) |= F(P ) using the model checker UP-

PAAL.

An example of a test automaton appeared already in Example 4.44. In

our setting, the test automaton T (P ) will have a distinguished bad location

called qbad such that the formula F(P ) is defined as follows:

F(P )
def⇐⇒ ∀� ¬T (P ).qbad. (6.5)

Thus combining (6.4) with (6.5) yields: S |=1 P iff in the context of the

network C(A′
1, . . . ,A′

n, T (P )) the test automaton T (P ) never reaches its

bad location.

Moreover, T (P ) will have edges labelled with the input action step? that

have to synchronise with corresponding output actions step! which are added
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in a transformation of Ai into A′
i. More precisely, A′

i differs from Ai by an

additional communication step! without passage of time after each discrete

transition. This modification is done by introducing for each location � of

Ai an auxiliary committed location �c and redirecting all edges with target �

to �c. An unconstrained step! edge from �c to � is then the only ingoing edge

of �. This transformation of Ai into A′
i is shown in Figure 6.1. As indicated

in this figure, a self-loop at � in Ai becomes an edge from � to �c in A′
i. If �

is the initial location of Ai then �c becomes the new initial location of A′
i.

Replace

Ai

� with

A′
i

c : �c �
step!

Fig. 6.1. Transformation of Ai into A′
i by adding a step! edge

In the remainder of this chapter we begin with step (II*) and discuss how

to represent requirements given by Constraint Diagrams as test automata,

both for the running example GRC and in general. Then we turn to step (I)

and explain how to represent design specification given by PLC-Automata as

timed automata, both for the running example and in general. Afterwards

we consider step (III*) and discuss for the running example how to verify

automatically that the GRC design specification satisfies its requirements.

Further on, we address the questions of how to represent assumptions on

the system environment and how to represent a more realistic system model

with plant, sensors, and actuators. Finally, we give an overview of the tool

Moby/RT that supports the verification steps.

Convention. Throughout this chapter we shall drop the internal action τ

in the graphical representation of (extended) timed automata.

6.2 Requirements

In a top-down development of a system one first fixes the requirements in

an informal way. When using formal methods these informal requirements

are then formalised.
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6.2.1 Railroad crossing

In case of the GRC we dealt with this problem already in Subsection 1.3.2

where we formalised the requirements Safety and Utility using notations

of predicate logic. To simplify this step we introduced Constraint Diagrams

(CDs) in Section 3.3 as graphical notation for real-time properties. In Sub-

section 3.3.2 the following Constraint Diagrams were proposed.

Safety:

Track
Cr

g
Cl�

0

�

0

This diagram requires – as marked by the box around Cl – that the gate

is closed during intervals in which a train is crossing (Cr). We will refer

to this diagram as CDS. The following constraint diagram – called CDU –

captures the Utility requirement for the GRC.

Utility:

Track
¬Cr

g
O�

ξ2
	
ξ1

This diagram restricts the behaviour of the gate in case there is a period of

at least ξ1 + ξ2 time units in which no train crosses (¬Cr). For such periods

it requires the gate to be open at latest ξ2 time units after the beginning

and it has to stay open until at least ξ1 time units before the end of the

non-crossing period.

6.2.2 Constructing test automata

The GRC has two CDs with a Duration Calculus semantics. For the purpose

of automatic verification we have to construct test automata that capture the

desired property. For this construction we assume that the test automaton

has access to those variables of the system that represent the observables

appearing in the CD.
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Safety

In case of safety it is easy to construct an appropriate test automaton

(cf. Figure 6.2). The construction of the automaton assumes that the timed

automata model of the system informs without a delay the test automata

about discrete transitions via a new channel step. It is important that the

test automaton never blocks this communication to avoid interference with

the behaviour of the system.

T (CDS)

q0 q1 qbad

¬(Cr ∧ ¬Cl), step?

Cr ∧ ¬Cl, step?

x := 0

Cr ∧ ¬Cl ∧ x = 0, step?

¬(Cr ∧ ¬Cl) ∧ x = 0, step?

Cr ∧ ¬Cl ∧ x > 0

step?

Fig. 6.2. A test automaton for Safety

The idea of the test automaton is to observe whether the system reaches

a situation in which a train is crossing while the gate is not closed. This

observation is done by appropriate edges between the locations q0 and q1.

If the automaton enters the location q1 it also resets an auxiliary clock x to

0. If time passes in q1 the automaton may switch to qbad where it has to

reside for ever. Hence, reachability of qbad coincides with the fact that the

proposition Cr ∧ ¬Cl holds for a non-point interval in time. Note that the

semantics of CDs requires a phase to be observable for longer than a time

point. That is why we check the timing condition x > 0 at the edge from q1
to qbad. The following property holds:

S |=1 CDS

iff (6.6)

C(A′
1, . . . ,A′

n, T (CDS)) |= ∀� ¬T (CDS).qbad

where |=1 is defined as in (6.2) and A′
i differs from Ai by an additional

communication step! without passage of time after each discrete transition.

Utility

Constructing a test automaton for Utility by hand is rather difficult. A

good recipe is to think in terms of counterexamples: what kind of behaviour
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violates the property? For Utility we have to observe the following sequence

of phases for a counterexample:

(i) Arbitrary behaviour of the system, i.e. no constraints on duration,

track, and gate.

(ii) A phase of duration ξ2 in which the track satisfies ¬Cr.
(iii) After this phase the diagram CDU requires the gate to be open pro-

vided that all assumptions of the CD which lay in the future will be

satisfied. In order to observe a counterexample we have to find a phase

in which the gate is not open. Nevertheless, we may have a phase in

which the gate is open as committed by the CD. The track still satisfies

¬Cr.
(iv) Then there is a phase in which ¬Cr ∧ ¬O holds. The duration of this

phase may be arbitrarily small as long as it is not 0.

(v) After that we only need to observe ¬Cr for ξ1 time units.

Note that phase (iii) is not mandatory for a counterexample.

In Figure 6.3 a test automaton for Utility is given that corresponds to the

description of a counterexample above. During the phase (i) the observer

is either in location q0 or q1 depending on the current status of the track.

As soon as ξ2 time units have elapsed in q1 the test automaton has seen a

behaviour that satisfies the phases (i) and (ii). Hence, it checks the status

of the gate to decide whether it can skip phase (iii): If the gate is open it

proceeds to state q2 that corresponds to phase (iii). Otherwise it switches

to state q3 because ¬Cr∧¬O holds. In order to check whether phase (iv) is

found it awaits this condition remaining stable for more than just a point in

time. If this is true it proceeds to q4 and otherwise it steps back to q2 and

waits for the next change of the observed system. If the observer reaches

state q4 it is clear that it has found a trace that fulfils the phases (i) to

(iv). Hence, it checks the behaviour of the track to observe the last phase

in which ¬Cr has to hold for at least ξ1 time units.

As soon as this is found it proceeds to the location qbad where it remains

for ever. Reaching qbad is equivalent to observing a counterexample for

Utility. Altogether, the following property holds:

S |=1 CDU

iff (6.7)

C(A′
1, . . . ,A′

n, T (CDU)) |= ∀� ¬T (CDU).qbad

where |=1 and A′
i are defined as in (6.6).
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T (CDU)

q0
q1

x ≤ ξ2

q2

q3

q4

qbad

Cr, step?

¬Cr, step?, x := 0

¬Cr, step?

Cr, step?

¬Cr ∧O ∧ x = ξ2
x := 0

¬Cr ∧ ¬O ∧ x = ξ2
x := 0

¬Cr, step?
Cr, step?

¬Cr ∧ ¬O
step?

x := 0

¬Cr ∧O
step?

¬Cr ∧ ¬O ∧ x = 0, step?
Cr, step?

¬Cr ∧ ¬O ∧ x > 0

¬Cr ∧ x ≤ ξ1, step?
Cr ∧ x ≤ ξ1, step?

x > ξ1, step?

step?

Fig. 6.3. A test automaton for Utility

6.2.3 Discussion

The approach presented above has several drawbacks:

(i) The construction of test automata was done manually. Hence, this

step introduces a risk of errors and thus of misleading verification re-

sults, which is unacceptable for safety-critical systems. However, test

automata have to be constructed due to the limited expressiveness of

UPPAAL’s temporal logic.

(ii) To get confidence in the verification result a proof is necessary that
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the test automaton represents exactly the desired property, i.e. the

if-and-only-if relation of (6.4) should hold.

(iii) The size of model that has to be analysed by the model checker in-

creases with the complexity of the test automaton. The best case is a

deterministic test automaton as for the requirement Safety. Then the

reachable state space of the model is not increased by the tester, only

the memory consumption during model checking is higher because the

tester needs additional memory.

(iv) A minor obstacle is the need to transform the original automata Ai

into A′
i, but the transformation described in Figure 6.1 can easily be

automated.

An approach to solve the first two problems is presented in the following sub-

section where for subsets of CDs automatic translations into test automata

are defined. The fact that the construction is done automatically solves the

first problem, whereas the second one is solved by proofs for certain subsets

of CDs.

6.2.4 Automatically generated test automata

As explained above, generating test automata from CDs automatically is

desirable. However, it is not possible to find a test automaton for every CD.

We first give an example of a CD for which an appropriate test automaton

does not exist. Afterwards we will consider subsets of CDs:

• which express properties often used to capture requirements, and

• for which test automata are constructible.

Definition 6.1 (Testable CD)

We call a CD P testable if a test automaton T (P ) exists such that for all

specifications S with timed automaton semantics C(A1, . . . ,An) it holds that:

S |=1 P iff C(A′
1, . . . ,A′

n, T (P )) |= ∀� ¬T (P ).qbad.

Otherwise it is called untestable.

Note that this notion of testability requires that the CD can be encoded as

a reachability problem. This is sufficient for our purposes in the rest of this

chapter.

Example 6.2 (Untestable CD)

Consider the following diagram CDN:
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A
A ¬A

B
B ¬B

C
C ¬C




[0, 1]




1

The meaning of CDN is that whenever we observe a change from A to ¬A
at time tA the system has to produce a change from B to ¬B at some time

tB ∈ [tA, tA + 1] and a change from C to ¬C at time tB + 1. In order to

detect a counterexample to this behaviour the test automaton has to verify

that all possible instances of tB do not satisfy the commitment. However,

the decision on whether an instance of tB satisfies the commitment depends

on the future. Therefore the test automaton has to remember all possible

candidates for tB, i.e. all time points when the system changes from B to

¬B. Intuitively, this is not possible with a finite number of clocks in a test

automaton because it is possible that more changes happen than clocks are

available. �

This is made precise in the following proposition:

Proposition 6.3

CDN is untestable.

Sketch of proof:

Suppose there is a test automaton T (CDN) for CDN which has a location

qbad and satisfies – as an instance of (6.4) and (6.5) – for all systems S
and corresponding timed automata networks C(A1, . . . ,An) the following

equivalence:

S |=1 CDN iff C(A′
1, . . . ,A′

n, T (CDN)) |= ∀� ¬T (CDN).qbad.

Assume that T (CDN) has n clocks and consider the following time points:

tA := 1,

tiB := tA +
2i− 1

2(n+ 1)
for i = 1, . . . , n+ 1,

tiC ∈
(
tiB + 1− 1

4(n+ 1)
, tiB + 1 +

1

4(n+ 1)

)
for i = 1, . . . , n+ 1
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where for all 1 ≤ i ≤ n + 1 we have tiC − tiB �= 1. Now we assume that the

observed system behaves as shown in Figure 6.4, where n = 3.

A

0

1

B

0

1

C

0

1

1

t1B t2B t3B t4B

2

t1C t2C t3C t4C

3

Fig. 6.4. Interpretation for A, B, and C for n = 3

Thus the computation path satisfies the assumptions of CDN and it has

n+1 candidates of B-changes for which a C-change can be observed 1 time

unit later. But due to the choice of the tiC the commitment is not satisfied.

Since T (CDN) is a test automaton for CDN, it must have a computation

path that reaches qbad. As it has n clocks only, it is not possible for T (CDN)

to save all n+ 1 time points tiB by resetting a clock. Hence at time point 2

we can find an i0 such that all clocks of the test automaton have a value that

is not in 2− ti0B +
(
− 1

4(n+1) ,
1

4(n+1)

)
. Then we construct a new computation

path by setting ti0C := ti0B+1. This path satisfies CDN but the test automaton

can reach qbad the same way as before because it cannot observe the changed

timing. In other words, T (CDN) would claim that the property is violated

although it is not. This is a contradiction to the assumption that there

exists a test automaton for CDN. �

Test automata for DC implementables

Since not all CDs are testable we study subsets of CDs. An important subset

are the CDs that represent DC implementables (cf. Theorem 3.22). It turns

out that all of these CDs are testable.
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Theorem 6.4

The CDs representing DC implementables are testable.

Sketch of proof:

For each Constraint Diagram CD representing a DC implementable we

present a test automaton T (CD). However, we omit the proof that CD

and T (CD) are equivalent in the sense of (6.4) and (6.5) in step (II*):

S |=1 CD iff C(A′
1, . . . ,A′

n, T (CD)) |= ∀� ¬T (CD).qbad. (*)

We mention only that this equivalence is decomposed into the following

proof obligations:

• Each violation of the requirement expressed by CD is detected by the test

automaton T (CD). To this end, it suffices to show that a violation can

be detected by T (CD) because on the right-hand side of (*) all possible

behaviours of the system together with the test automaton are examined.

• Reaching the location qbad in the test automaton T (CD) is only possible

by violating the requirement expressed by CD. To this end, one has to

examine all possible paths of T (CD) leading into qbad. The construction

of the test automaton must then allow us to conclude that a violation of

the requirement has occurred.

Now we consider each pattern of a DC implementable, repeat the equiv-

alent CD of Theorem 3.22, and present a corresponding test automaton:

• Initialisation. The formula �� ∨ �π� ; true is represented by the CD

X
π

and it can be tested by the following automaton:

q0

qbad

q1
x = 0, step?

x > 0, step?

x > 0 ∧ ¬π

step?

step?

Initially, this test automaton accepts all state changes of the observed

system as long as no time has passed (x = 0). If time point 0 is left by the
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system the test automaton can check whether the constraint π is violated

in the initial phase (x > 0∧¬π) and in that case switch to qbad. The edge

to q1 is necessary to abort the search when the initial phase is over.

• Sequencing. For presentation purposes we assume that the sequencing

formula has the form �π� −→ �π ∨ π1� . The corresponding CD is

X
π

π1

and it can be tested by the following automaton:

q0

q1

q2
q3

x ≤ 0

q4

qbad

qabort

step?

π, step?

x := 0

π, step?

x > 0

π, step?
¬π, step?, x := 0

¬π, step?

π, step?, x = 0

¬π ∧ ¬π1, step?

x := 0
¬π ∧ ¬π1

step?
x := 0

¬π ∧ ¬π1, step?

x > 0

step?

step?

true

true

true

Initially, this test automaton accepts arbitrary behaviour in q0 until it

decides nondeterministically to switch to the location q1 provided that

the observed system satisfies π. Being in state q1 the observer can verify

that π holds for more than a point interval. This is represented by the

edge from q1 to q2 which is enabled as soon as the clock x is no longer

0. The states q2 and q3 represent the knowledge that the observer has

found a �π� phase and that this phase still holds on. The construction
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of the states q2 and q3 is necessary to deal with the possibility that π is

not valid for point intervals within the �π�-phase. If the observed system

invalidates π only for a point in time the observer can switch to q3 and

back to cope with this situation. However, if the observer detects that

¬π and ¬π1 is satisfied, then it may switch to q4. Here it remains to be

checked that this holds for a non-point interval. If this is the case the

observer can switch to qbad.

Note that the basic idea of this test automaton is to find a sequence

of phases �π� ; �¬π ∧ ¬π1� in order to disprove the sequencing property.

However, the test automaton might fail to do so because it might choose

a time point to switch to q1 when no counterexample can be observed. To

avoid a blocking behaviour of the test automaton there are unconstrained

edges from all appropriate locations towards qabort.

• Progress. The formula �π� θ−−−−→ �¬π� is represented by the CD

X
π

θ

¬π

and a test automaton for this property checks for a phase of the form

�π� ∧ � > θ:

q0

q1
q2

y ≤ 0

qbad

qabort

step?

π, step?

x := 0

π, step?
¬π, step?, y := 0

¬π, step?

π, step?

x > θ

step?

step?

true

true

• Synchronisation. The formula �π ∧ ϕ� θ−−−−→ �¬π� is a generalisation of

the progress pattern and is represented by the CD



254 Automatic verification

X
π

θ

¬π

Y
ϕ�

0

�

0

and a test automaton for this property checks for a phase sequence of the

form (�π ∧ ϕ� ∧ � = θ) ; �π�:

q0

q1
q2

y ≤ 0

q3

qbad

qabort

step?

π ∧ ϕ, step?

x := 0

π ∧ ϕ, step?
¬(π ∧ ϕ), step?, y := 0

¬(π ∧ ϕ), step?

π ∧ ϕ, step?

π, x = θ
π, x = θ

π, step?

x > θ

step?

step?

true

true

true

• Stability. For presentation purposes we assume that the stability formula

has the form

�¬π� ; �π ∧ ϕ� ≤θ−−−−→ �π ∨ π1� .

The corresponding CD is

X
¬π π

[0, θ)

π ∨ π1

Y
ϕ�

0

�

0
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and a test automaton for this property checks for a phase sequence of the

form �¬π� ; (�π ∧ ϕ� ∧ � < θ) ; �¬(π ∨ π1)�:

q0

q1

q2
x ≤ 0

q3
q4

y ≤ 0

q5

qbad

qabort

step?

¬π, step?

x := 0

¬π, step?

x > 0
x := 0

step?

π ∧ ϕ
x := 0

π ∧ ϕ, step?
¬(π ∧ ϕ), step?, y := 0

¬(π ∧ ϕ), step?

π ∧ ϕ, step?

¬(π ∨ π1), 0 < x < θ

x := 0

¬(π ∨ π1), step?

x > 0

step?

step?
true

true

true

This completes the case analysis of the different CD implementables. �

Test automata for counterexample formulas

So far the test automata were all motivated by concrete CDs or CD pat-

terns. Thus we can generate test automata systematically only when the

given CD represents a DC implementable (cf. Theorem 6.4). We now present

a construction of test automata for the more general class of so-called coun-

terexample formulas. Thus if we can translate a CD (or a DC formula) into

a semantically equivalent counterexample formula (or a finite set thereof)

then a test automaton can be constructed systematically.
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Definition 6.5 (Counterexample formulas)

• A counterexample formula (CE formula for short) is a DC formula of the

following form:

true ; (�π1� ∧ � ∈ I1) ; . . . ; (�πk� ∧ � ∈ Ik) ; true (6.8)

where for i ∈ {1, . . . , k} the πi are state assertions and the Ii are non-empty

time intervals. They may be open, half-open, or closed of the form (b, e) or

[b, e) with b ∈ Q≥0 and e ∈ Q≥0 ∪ {∞}, and (b, e] or [b, e] with b, e ∈ Q≥0.

Intervals (b,∞) and [b,∞) denote the unbounded sets {t ∈ Time | b < t}
and {t ∈ Time | b ≤ t}, respectively.†

• Let F be a DC formula. We call a CE formula CEF a counterexample

formula for F if

|= F ⇐⇒ ¬(CEF )

holds.

• Let C be a Constraint Diagram. We call a CE formula CEF a counterexample

formula for C if

|= [[C]]DC ⇐⇒ ¬(CEF ).

Example 6.6

A counterexample formula for CDS is

true ; (�Cr ∧ ¬Cl� ∧ � ∈ (0,∞)) ; true

and a counterexample formula for CDU is

true ; (�¬Cr� ∧ � ∈ [ξ2, ξ2]) ;

(�¬Cr ∧ ¬O� ∧ � ∈ (0,∞)) ;

(�¬Cr� ∧ � ∈ [ξ1, ξ1]) ; true.

We will now show how to construct test automata for such formulas. �

Theorem 6.7

Counterexample formulas are testable.

Sketch of proof:

The test automaton in Figure 6.5 checks whether a given real-time system

(represented as a network of timed automata and augmented with commu-

nications step! introduced by the transformation shown in Figure 6.1) is able

to perform the counterexample specified by formula (6.8). �

† Interval bounds are chosen from Q≥0 instead of Time because we wish to construct timed test
automata representing counterexample formulas.
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q0

q1
q′1

c2 ≤ 0

q12
c2 ≤ 0

q2
q′2

c2 ≤ 0

q23
c2 ≤ 0

qk
q′k

c2 ≤ 0

qbad

step?

π1

c1 := 0

π1, step? ¬π1, step?
¬π1, step? c2 := 0

π1, step?
c1 ∈ I1
c2 := 0

step?

π2

c1 := 0

π2, step? ¬π2, step?
¬π2, step? c2 := 0

π2, step?
c1 ∈ I2
c2 := 0

step?

. . .

. . .

...

πk, step? ¬πk, step?
¬πk, step? c2 := 0

πk, step?

c1 ∈ Ik

step?

qabort

step?

true

true

true

...
...

Fig. 6.5. Test automaton for the counterexample formula (6.8)

6.3 Specification

In this section we explain how to express design specifications given by PLC-

Automata in terms of (networks of extended) timed automata. We begin

with the running example and then present a general construction.
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6.3.1 Railroad crossing

We first specify the controller for the GRC in terms of PLC-Automata and

then represent this controller by two timed automata. The control laws of

a PLC-Automaton implementing the GRC are simple:

• If the track is not empty the controller should close the gate.

• If the track is empty the controller should open the gate.

The first control law is necessary to satisfy the safety requirement whereas

the second one is needed for the utility requirement. In other words, the

functionality of the controller is simple and the main concern is the correct-

ness of the timing. The question of correct timing with respect to safety is

whether the controller reacts sufficiently fast to close the gate in time (before

the train arrives). The utility constraint raises two timing issues. On the

one hand, it requires the controller to open the gate sufficiently fast, and on

the other hand, it forbids closing the gate too early.

We use these ideas to construct a PLC-Automaton for the GRC, depicted

in Figure 6.6. Note that this controller waits a certain amount of time

(κ seconds) before it closes the gate. This enables us to implement a de-

layed closing of the gate which might be necessary to implement the utility

property correctly. As usual, ε is the upper time bound for executing a

cycle.

ε s

O

0 s

O

κ s, {A,Cr}

Cl

0 s

q1
q2

q3
E

E

A ∨ Cr

A ∨ Cr

E

A ∨ Cr

Fig. 6.6. Controller for the GRC

Now we construct a network of extended timed automata that represents

the behaviour of the PLC-Automaton in Figure 6.6 operationally.
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• First we identify the observables and their data types. The input ob-

servable of the PLC-Automaton ranges over {E,A,Cr} and the output

observable over {O,Cl}. To keep the intuition we will use Track and g

as names for the data variables in the extended timed automaton. How-

ever, recall from Definition 4.39 of extended timed automata that data

variables range over finite sets of integers only. Thus the data values have

to be encoded, which is straightforward.

Convention. Throughout this chapter a finite data type {val0, . . . , valn}
of a data variable var is encoded as follows:

var = val0 is encoded by var = 0,

...
...

...

var = valn is encoded by var = n.

If an initial value is given we assume that it is val0 so that it is encoded

by 0, the standard initial value in an extended timed automaton. As-

signments are encoded analogously. In the graphic representation of the

timed automata we shall use the data values val0, . . . , valn.

• The input observable Track is unconstrained, i.e. it may change its value

arbitrarily. This can be modelled by the simple automaton AIn shown in

Figure 6.7. It resets a clock x with each transition. The purpose of this

� Track := E, x := 0

Track := A, x := 0

Track := Cr, x := 0

Fig. 6.7. The input automaton AIn for the GRC

construction is to enable the following automaton to check whether the

current value was stable for longer than just a point in time.

• The output observable g is under control of the PLC-Automaton. In the

corresponding timed automaton we have to represent how g is changed

depending on the state of the PLC-Automaton and its input values. To

this end, we present two general construction patterns for a given state q

in a PLC-Automaton.

Pattern 1. State q without delay: St(q) = 0.
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We introduce the locations qp and qcu, clocks y and z, and the following

edges:

qp
z ≤ ε

qcu
z ≤ ε

δ(q, InP )p

x > 0 ∧ z > 0

InP := In

δ(q, InP ) = q

z := 0

δ(q, InP ) �= q,

y := 0, z := 0,

Out := ω(δ(q, InP ))

This part of a timed automaton cycles from location qp (“polling”) to

location qcu (“computing” and “updating”) and back. The assignment

InP := In models the polling of the input variable In. The current value

of In is copied into an auxiliary variable InP (“polled In”). The clock

constraint x > 0∧ z > 0 ensures that the automaton can only poll a value

that holds for a non-point interval during the current cycle.

As long as the transition function satisfies δ(q, InP ) = q the cycle con-

tinues and the construction of the invariants and transitions ensures that

each cycle lasts at most ε seconds. It uses the clock z to measure the

duration of the current cycle and both locations have the invariant z ≤ ε.

Only transitions towards qp reset this clock because the execution of these

transitions marks the beginning of a new cycle.

If δ(q, InP ) �= q holds, the timed automaton fires a transition towards

a location q′p with q′ = δ(q, InP ) and resets both clocks y and z. The

clock y measures the duration for which the system is in the state q. As

St(q) = 0 holds in this case we only have to take care that y is reset when

the PLC-Automaton changes the state. If such a state change happens

the output variable Out is set to the output value of the target state. Note

that the destination δ(q, InP ) is not necessarily unique, i.e. it depends on

InP . Hence, the edge may occur in several instances, one instance for each

element of δ(q,Σ) \ {q}.

Pattern 2. State q with delay: St(q) > 0.

We introduce four locations called qp, qc (“computing”), qu (“updating”),

and qd (“delayed”) in the following edges:
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qp
z ≤ ε

qc
z ≤ ε

qd
z ≤ ε

qu
z ≤ ε

δ(q, InP )p

x > 0 ∧ z > 0
InP := In

y ≤ St(q)

∧InP ∈ Se(q)

y > St(q)

∨InP /∈ Se(q)
z := 0

δ(q, InP ) = q

z := 0

δ(q, InP ) �= q,

y := 0, z := 0,

Out := ω(δ(q, InP ))

Again, the outgoing edge of qp models the polling of the PLC-Automaton.

Since the system has to consider a delay time the destination location qc
checks whether the PLC-Automaton can ignore the input or not. De-

pending on the current value of the clock y and the polled input value

the timed automaton can switch either to qd or to qu. In qd the timed

automaton just finishes the cycle by changing to qp and resetting the cycle

clock z. In qu it behaves as in the previous pattern, i.e. if the transition

function requires a state change of the PLC-Automaton, then the timed

automaton switches to a location q′p with q′ = δ(q, InP ). Moreover, the

output variable is set to ω(q′) and the clocks y and z are reset. Otherwise,

the system switches back to qp and resets the cycle clock z only.

• Finally, the initial location has to be defined. If q0 is the initial state of

the PLC-Automaton, then q0,p is the initial location of the corresponding

timed automaton.

The complete timed automaton AOut for the PLC-Automaton of Fig-

ure 6.6 is shown in Figure 6.8. It instantiates the pattern for a state without

delay twice (q1 and q3) and the pattern for a state with delay once (q2). The

latter is shown in the middle and the positions of the locations are rear-

ranged for optical reasons. Note that in the PLC-Automaton δ(q2, E) = q1
holds and δ(q2, {A,Cr}) = {q3}. Hence, there are two outgoing edges from

q2,u. One towards q1,p and one towards q3,p and the guards are appropri-

ately rewritten. Note that there is no self-loop at q2 in the PLC-Automaton.

Therefore, the edge from q2,u to q2,p, which is drawn dotted in Figure 6.8,

would have a guard equivalent to false and thus can be omitted without

changing the behaviour. The initial location of the timed automaton is q1,p

because q1 is the initial state of the PLC-Automaton. Note that the variables
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q1,p

z ≤ ε

q1,cu

z ≤ ε

x > 0 ∧ z > 0
TP := Track

TP = E
z := 0

q2,p

z ≤ ε

q2,c

z ≤ ε

q2,d

z ≤ ε

q2,u

z ≤ ε

x > 0 ∧ z > 0
TP := Track

y ≤ κ
∧TP �= E)

y > κ
∨TP = E

z := 0

q3,p

z ≤ ε

q3,cu

z ≤ ε

x > 0 ∧ z > 0
TP := Track

TP �= E,
z := 0

TP �= E,
y := 0, z := 0,

g := O

TP = E,
y := 0, z := 0,
g := O

TP �= E,
y := 0, z := 0,
g := Cl

TP = E,
y := 0, z := 0,

g := O

Fig. 6.8. The timed automaton AOut describing the semantics of the PLC-Autom-
aton in Figure 6.6

In and Out of the pattern are instantiated with Track and g, respectively.

The variable InP of the pattern is instantiated with TP , which stores the

polled value of the input observable Track .

6.3.2 Timed automata semantics of PLC-Automata

The previous example prepares the general approach: the formal definition

of a timed automata semantics for PLC-Automata. We assign to each PLC-
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Automaton a pair of timed automata. The first one is responsible for driving

the input variable arbitrarily. The second one represents the operational

behaviour of the device executing the PLC-Automaton, i.e. it takes the

cycle time and delay times into account. Moreover, it realises the polling

behaviour and the reaction of the system.

Definition 6.8 (Timed automata semantics of PLC-Automata)

For a given PLC-Automaton A = (Q,Σ, δ, q0, ε, St, Se,Ω, ω) the following net-

work T (A) of two extended timed automata defines the operational behaviour

of A:

T (A)
def

= C(AIn ,AOut).

The timed automaton AIn = (L,C,B,U,X, V, I, EΣ, �ini) is defined by

L = {�}, C = B = U = ∅, X = {x}, V = {In}, I(�) = true, �ini = �

and has the following set of edges:

EΣ = {(�, τ, true, 〈 In := σ, x := 0 〉, �) | σ ∈ Σ}.

The timed automaton AOut = (L,C,B,U,X, V, I, E, �ini) has the following

components:

• The set L of locations is given by

L = {qp, qcu | q ∈ Q ∧ St(q) = 0} ∪ {qp, qc, qd, qu | q ∈ Q ∧ St(q) > 0}

and none of these locations is committed, i.e. C = ∅

.

• B = U = ∅, i.e. no channels are used.

• X = {x, y, z} is the set of clocks.

• V = {In, InP ,Out} is the set of data variables.

• I(�) = z ≤ ε for all � ∈ L.

• �ini = q0,p is the initial location.

• The set E of edges is given by E = E1 ∪ E2 where E1 describes the three

edges of Pattern 1 for all states q without a delay, i.e. satisfying the condition

cond1(q)
def⇐⇒ q ∈ Q ∧ St(q) = 0

and E2 describes the six edges of Pattern 2 for all states q with a delay, i.e.

satisfying the condition

cond2(q)
def⇐⇒ q ∈ Q ∧ St(q) > 0.

E1 and E2 are defined as follows:
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E1 =

{
(qp, τ, x > 0 ∧ z > 0, 〈 InP := In 〉, qcu)

∣∣∣ cond1(q)

}

∪
{

(qcu, τ, InP = σ, 〈 z := 0 〉, qp
∣∣∣

cond1(q) ∧ σ ∈ Σ ∧ δ(q, σ) = q

}

∪
{

(qcu, τ, InP = σ, 〈 y := 0, z := 0,Out := ω(q′) 〉, q′p)
∣∣∣

cond1(q) ∧ q′ ∈ Q ∧ σ ∈ Σ ∧ δ(q, σ) = q′ �= q

}
and

E2 =

{
(qp, τ, z > 0, 〈 InP := In 〉, qc)

∣∣∣ cond2(q)

}

∪
{

(qc, τ, y ≤ St(q) ∧ InP = σ, 〈 〉, qd)
∣∣∣

cond2(q) ∧ σ ∈ Se(q)

}

∪
{

(qd, τ, true, 〈 z := 0 〉, qp)
∣∣∣ cond2(q)

}

∪
{

(qc, τ, y > St(q) ∨ InP = σ, 〈 z := 0 〉, qu)
∣∣∣

cond2(q) ∧ σ ∈ Σ \ Se(q)

}

∪
{

(qu, τ, InP = σ, 〈 z := 0 〉, qp)
∣∣∣

cond2(q) ∧ σ ∈ Σ ∧ δ(q, σ) = q

}

∪
{

(quS, τ, InP = σ, 〈 y := 0, z := 0,Out := ω(q′) 〉, q′p)
∣∣∣

cond2(q) ∧ q′ ∈ Q ∧ σ ∈ Σ ∧ δ(q, σ) = q′ �= q

}
.

Note that neither AIn nor AOut uses channels for communication. How-

ever, in conjunction with test automata we need to add appropriate labels

step! to notify the tester about changes of observables. This can be done

by applying the transformation shown in Figure 6.1. In case of the AIn
automaton we obtain the following transformed automaton A′

In :
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c : �c �

Track := E, x := 0

Track := A, x := 0

Track := Cr, x := 0

step!

For AOut we need to apply the modification only to the locations qp for

all states q of PLC-Automaton A because only edges towards locations qp
modify the Out observable which is accessible to test automata. For the

automaton in Figure 6.8 we get the automaton given in Figure 6.9 where

the changes are marked by the shaded areas.

Having a semantics of PLC-Automata in terms of timed automata raises

the question of how this semantics is related to its DC semantics given

in Definition 5.3. Based on an appropriately defined relation ≈ between

interpretations (satisfying the DC semantics) and computation paths (of

the timed automaton semantics) it is possible to prove the following theorem

(cf. [DFMV98]):

Theorem 6.9 (Equivalence of DC and TA semantics)

Let A be a PLC-Automaton. Then the following holds:

T (A) ≈ [[A]]strong
DC and |= [[A]]strong

DC =⇒ [[A]]DC.

The strong DC semantics [[A]]strong
DC is a conjunction of [[A]]DC and some

additional DC formulas.

6.4 Verification

In this section we bring the results of the previous two sections together

and discuss the automatic verification of requirements given by Constraint

Diagrams for real-time systems given by PLC-Automata on the basis of

extended timed automata using the model checker UPPAAL. As we shall

illustrate with our running example, an attempt to verify a requirement

for a system may fail and yield a counterexample. In that case either the

requirement is too strong or the system is too weak.

For the running example we argue that the requirements are too strong

and need to be weakened by making explicit hidden assumptions about
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c : qc
1,p

q1,p

z ≤ ε
q1,cu

z ≤ ε

step!

x > 0 ∧ z > 0
TP := Track

TP = E
z := 0

c : qc
2,p

q2,p

z ≤ ε

q2,c

z ≤ ε

q2,d

z ≤ ε

q2,u

z ≤ ε

step!

x > 0 ∧ z > 0
TP := Track

y ≤ κ
∧TP �= E)

y > κ
∨TP = E z := 0

c : qc
3,p

q3,p

z ≤ ε
q3,cu

z ≤ ε

step!

x > 0 ∧ z > 0
TP := Track

TP �= E,
z := 0

TP �= E,
y := 0, z := 0,

g := O
TP = E,
y := 0, z := 0,
g := O

TP �= E,
y := 0, z := 0,
g := Cl

TP = E,
y := 0, z := 0,

g := O

Fig. 6.9. A′

Out , the modified AOut

the system’s environment. With such assumptions the verification succeeds

under certain conditions of system parameters like the duration of phases.

We then address two methodological points. First we describe an ap-

proach to represent assumptions of the environment as separate timed au-

tomata. Then we discuss in more detail sensors and actuators and discuss

an approach to represent them by separate timed automata as well.
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6.4.1 Railroad crossing

We begin with our running example as a check on whether the PLC-Autom-

aton of Figure 6.6 satisfies the safety and utility requirements.

Verifying safety

For safety, we have to verify

C(A′
In ,A

′
Out , T (CDS)) |= ∀� ¬T (CDS).qbad (6.9)

by applying the model checker UPPAAL. However, the model checker re-

veals a counterexample shown in Figure 6.10. The figure lists a sequence

of configurations of the network, called c0 to c5, with c0 being the initial

configuration. A configuration of the network consists of the locations of

the automata involved, the values of integer variables Track , TP and g, and

a clock constraint satisfied by the clock values of the configuration. The

downward arrows indicate the automata in which a transition is fired. In

case of synchronised transitions we use two downward arrows connected by

a horizontal arrow. The direction of this arrow and the annotation with the

symbols ! and ? indicate the direction of the communication. The name of

the channel is also annotated.

The counterexample given in Figure 6.10 reaches the location qbad as fol-

lows. First, the system leaves the initial locations of A′
In and A′

Out by firing

transitions which synchronise with T (CDS). With these transitions the sys-

tem reaches configuration c2. Since time may pass in this configuration the

clocks can change their value uniformly. This is only limited by the invari-

ant z ≤ ε of location q1,p of A′
Out . In this trace the system now fires the

transition of A′
In that sets the variable Track to Cr (configuration c3). In

the next step the test automaton T (CDS) is informed via the step channel.

Due to this the test automaton reaches location q1. In order to reach qbad

only time has to pass, which is not forbidden in the current configuration.

Hence, in the next configuration c5 the location of T (CDS) is qbad, which

disproves the safety property.

The explanation of why the current system does not implement the safety

property is simple. The reason is that the environment is able to change

the status of the track without any restriction. In the given counterexample

the value of Track changes from E to Cr without an approaching phase

(representing the value A). In other words, the current system does not

reflect assumptions about the physical world.

To cope with that, we have to revise the safety property appropriately

such that it incorporates relevant assumptions about the environment. The
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Conf.

c0:

c1:

c2:

c3:

c4:

c5:

A′

In

lc

l

l

lc

l

l

A′

Out

qc
1,p

qc
1,p

q1,p
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Fig. 6.10. The counterexample for the safety property (6.9)

counterexample above clearly demonstrates that we need to consider as-

sumptions about the trains. In Subsection 1.3.2 we specified several as-

sumptions about the train behaviour. For our purposes we need that the

track is initially empty and that trains are not too fast, i.e. need a given min-

imal time ρ to approach the crossing. These assumptions allow us to weaken

the safety property as formalised by the following Constraint Diagram called

CD′
S:

Track
E A

≥ ρ

A ∨ Cr Cr

g
Cl�

0

�

0

To construct a test automaton for CD′
S we apply the approach described
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for counterexample formulas. The following CE formula captures all coun-

terexamples of CD′
S:

true ; (�E� ∧ � ∈ (0,∞)) ;

(�A� ∧ � ∈ [ρ,∞)) ;

(�A ∨ Cr� ∧ � ∈ (0,∞)) ;

(�Cr ∧ ¬Cl� ∧ � ∈ (0,∞)) ; true.

Putting the resulting test automaton in parallel with the Timed Automata

semantics of the PLC-Automaton, we can verify that

ρ ≥ κ+ 4ε implies C(A′
In ,A

′
Out , T (CD′

S)) |= ∀� ¬T (CD′
S).qbad. (6.10)

Note that UPPAAL is not able to derive inequalities like ρ ≥ κ + 4ε

automatically, it needs concrete instances for the parameters ρ, κ, ε. If (6.10)

must be verified formally, then we can apply Theorem 5.8 on reaction times

of PLC-Automata (with Π = {q1, q2, q3}, A = ¬E, and n = 2) to show that

�¬E� κ+4ε−−−−→ �q3�

holds. With this knowledge and the DC formula (DC-11) of the DC seman-

tics of PLC-Automata we can conclude that

�¬E� κ+4ε−−−−→ �Cl�

holds, from which (6.10) obviously follows.

Verifying utility

Now we examine whether the current specification satisfies the utility prop-

erty, i.e. we check whether

C(A′
In ,A

′
Out , T (CDU)) |= ∀� ¬T (CDU).qbad (6.11)

holds. Similar to the safety property, UPPAAL is able to disprove this

constraint. The details of the counterexample are omitted here because they

depend on the concrete instance of the parameters ξ1, ξ2, ε, and κ. But the

way the counterexample disproves utility is as follows. After initialisation

the whole system fires the transition of A′
In that sets Track to A, i.e. a train

is approaching. The rest of the counterexample consists of the appropriate

transitions of A′
Out . Eventually, this automaton reaches the states qc

3,p, q3,p

and q3,cu in which the variable g is set to Cl. Since Track remains A the

value of g cannot change anymore.

This pattern can be extended to an arbitrarily long duration and hence
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the test automaton T (CDU) has no problem in finding a sequence of the

following form:

true ; (�¬Cr� ∧ � ∈ [ξ2, ξ2]) ;

(�¬Cr ∧ ¬O� ∧ � ∈ (0,∞)) ;

(�¬Cr� ∧ � ∈ [ξ1, ξ1]) ; true

because the above pattern satisfies A ∧ Cl arbitrarily long after some time.

As in the previous case the lack of constraints for the trains is the core

of the problem. In the introduction we assumed that trains are not too

fast and this assumption was necessary to prove that the given controller

satisfies the safety property. In this case the model checker exploits the fact

that our model does allow trains which are too slow. In Subsection 1.3.2,

this could be avoided by the assumption T-Slow. Here, it is assumed that an

approaching train needs at most ρ′ time units to reach the crossing. In other

words, there is no A-phase with a duration longer than ρ′. We additionally

assume that ρ′ < ξ1 + ξ2 holds. This allows us to choose a new parameter ρ̄

with

0 < ρ̄ ≤ min{ξ2, ξ1 + ξ2 − ρ′}

and revise CDU to the following Constraint Diagram called CD′
U:

Track
E
ρ̄

¬Cr

g
O�

ξ2
	
ξ1

This diagram strengthens the assumptions of utility for the first ρ̄ seconds.

It requires that the track is empty (E) and not just ¬Cr. A test automaton

can be constructed from the following CE formula for this CD:

true ; (�E� ∧ � ∈ [ρ̄, ρ̄]) ;

(�¬Cr� ∧ � ∈ [ξ2 − ρ̄,∞)) ;

(�¬Cr ∧ ¬O� ∧ � ∈ (0,∞)) ;

(�¬Cr� ∧ � ∈ [ξ1, ξ1]) ; true.

Putting the resulting test automaton in parallel with the timed automaton
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semantics of the PLC-Automaton we can verify that

ρ′ < ξ1 + ξ2
∧ κ ≥ ξ2 − ρ̄
∧ ε ≤ 1

2 ρ̄

⎫⎬
⎭ implies

C(A′
In ,A

′
Out , T (CD′

U)) |= ∀� ¬T (CD′
U).qbad. (6.12)

6.4.2 Discussion

The previous verification results prove correctness of the specification with

respect to revised versions of the requirements Safety and Utility. An

overview of the verified behaviour is given in the timing diagram of Figure

6.11.

Time

= ξ2 = ξ1
Requirements

Track
Cr E

≥ ρ̄

A

[ρ, ρ′]
Assumptions

Cr

g
Cl O Cl

∈ [κ, κ+ 4ε]< 2ε
Verified Results

Fig. 6.11. Verified behaviour of the PLC-Automaton for the GRC

For the safety requirement we assumed that the A-phase lasts at least ρ

seconds and verified that during this phase the output changes to Cl (and

remains there) within at most κ+ 4ε seconds.

For the utility requirement we first ruled out situations in which the gate

should be opened to satisfy this requirement but the track was not empty,

i.e. when a train is approaching while its predecessor is still in the crossing.

The problem with this situation is that the controller gets no information

when the second train enters the approaching area of the crossing. Hence,

it cannot compute when it has to open or close the gate. Therefore, we

assumed that the slowest approaching train needs at most ρ′ seconds to
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reach the crossing and that the sum of the time parameters ξ1 and ξ2 of

utility exceeds this duration. As a consequence, the utility requirement

does not restrict anymore the system’s behaviour in the above case.

To verify the utility property for the remaining case, in which the track

is empty between two crossing trains, we can conclude from the previous

assumption that there is a minimal duration (ρ̄) of that E-phase. There are

two constraints that together are sufficient to verify that utility is satisfied.

One constraint is ε ≤ 1
2 ρ̄. It ensures that the gate is open in less than

ξ2 seconds (cf. Figure 6.11) because of ρ̄ ≤ ξ2. The other constraint is

κ ≥ ξ2 − ρ̄. One would expect that it ensures that the gate does not close

too early. Thus it is surprising that ξ2 appears in this inequality and not ξ1.

Nevertheless, this condition indeed implies that the gate is open sufficiently

long. We have to prove that the O-phase ends at most ξ1 seconds before the

Cr-phase begins. We know that the A-phase takes at most ρ′ seconds and

that the closing reaction of the controller is delayed at least κ seconds. We

have to show that ρ′ − κ ≤ ξ1. This is calculated as follows:

ρ′ − κ ≤ ρ′ − (ξ2 − ρ̄)
= ρ′ − ξ2 + ρ̄

≤ ρ′ − ξ2 + (ξ1 + ξ2 − ρ′)
= ξ1.

There are two shortcomings of the verification approach presented so far

that will be addressed in the following subsections:

• We failed to verify the original requirements, and to overcome this prob-

lem we added assumptions into the requirements. In general, it is not

surprising that initial verification attempts fail; there are three possible

reasons for this:

– The system specification contains an error.

– An implicit assumption about the environment is not formalised.

– The requirement is too restrictive.

In the previous attempts to verify safety and utility we revealed miss-

ing assumptions about the train behaviour. However, it is hardly accept-

able to revise the requirements such that the missing assumptions become

part of the modified requirements. An approach to formally verified cor-

rect software should clearly separate the assumptions from the verified

requirements.

• The network of Timed Automata considered so far does not take sensors

and actuators into account. In a more realistic setting the latter represent
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interface devices between environment and controller. They introduce

delays that should be addressed in the verification. In some cases they

also introduce specific problems like sporadically occurring wrong sensor

results (so-called “glitches”) or new requirements that restrict the design

space of the controller (for instance, that a motor must not run for more

than 5 minutes to avoid overheating).

6.4.3 Separated assumptions

In this subsection we separate the environmental assumptions from the re-

quirements and the system specification. Such a separation improves the

structure of the whole verification approach. The idea is to represent the

environment as a component in the network of timed automata. The com-

munication structure of the network is shown in Figure 6.12.

AAsm

In
A′

Out

T (P )

In

step

Out

step

plant

Fig. 6.12. Communication structure of the system model with separated assump-
tions

The automaton AAsm
In models the environment and the assumptions about

its behaviour. It manipulates the input observable In which is read by both

the automaton A′
Out representing the controller and the test automaton

T (P ) representing the property. The latter is notified by a synchronisation

via the channel step about input changes immediately after they have hap-

pened. This is marked by dashed arrows in the figure. The automaton A′
Out

does not need such a notification because it represents a PLC-Automaton,

which polls its input variables frequently. Since changes of its output Out

have to be observed by the test automaton T (P ), a synchronisation via the
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channel step is needed here as well. In general, the model of the environment

needs to be informed about the actions of A′
Out . Hence there is an arrow

from A′
Out to AAsm

In together with a notification channel called plant .

Application to railroad crossing

We instantiate the communication structure in Figure 6.12 for the GRC

case study by taking In = Track ,Out = g, and as property P the Constraint

Diagrams CDS or CDU, respectively. Recall that the input automaton

AIn modifies the environmental observable In arbitrarily. For the GRC it is

shown in Figure 6.7. To represent assumptions about the environment, it has

to be changed to an automaton AAsm
In that produces admissible behaviour

only. For the GRC this automaton is called ATrack and shown in Figure 6.13.

It captures all assumptions about Track stated in Subsection 6.4.1. This

model of the environment needs no information about the system’s reaction

and hence there is no need for synchronisation via a channel plant .

c : e1

c : a1
a2

d ≤ ρ′

c : cr1

cr2c : e2

e3

c : a3

a4

d ≤ ρ′

Track := E
d := 0

step!

Track := Cr
d := 0

d ≥ ρ

step!

d > 0

Track := E
d := 0

step!

Track := A

d > 0
d := 0

d > 0

Track := A
d := 0

step!

d > 0

Track := Cr
d := 0

Fig. 6.13. The model ATrack for the assumptions about Track

Note that ATrack is equipped with appropriate committed locations and

step edges to notify the test automaton about the changes of Track . The
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clock d is used to model duration constraints on the phases. This envi-

ronment automaton starts (from location e1) with an empty track and can

proceed with an approaching phase only. The latter has to obey the assump-

tions about its duration, i.e. this phase has to last at least ρ seconds (the

time the fastest train takes to reach the crossing) and at most ρ′ seconds

(the time the slowest one takes). This is represented by the invariant d ≤ ρ′

of the location a2 and the guard d ≥ ρ of the outgoing edge modelling the

start of the crossing phase. For this crossing phase there are no constraints

about its duration except that it should be non-zero as represented by the

guards d > 0 of the outgoing edges of location cr2. After the crossing phase

the environment can proceed with an empty phase or an approaching phase.

In the first case the empty phase has to have a non-zero duration. In the

second case the automaton switches back to crossing within the upper bound

ρ′ for the slowest train. This is represented by the invariant d ≤ ρ′ of the

location a4.

Indeed, we are now able to verify

• For the safety requirement:

ρ ≥ κ+ 4ε implies

C(ATrack ,A′
Out , T (CDS)) |= ∀� ¬T (CDS).qbad. (6.13)

• For the utility requirement:

ρ′ < ξ1 + ξ2
∧ ρ′ − ξ1 ≤ κ

∧ ε ≤ 1
2 min(ξ2, ξ1 + ξ2 − ρ′)

⎫⎬
⎭ implies

C(ATrack ,A′
Out , T (CDU)) |= ∀� ¬T (CDU).qbad. (6.14)

Note that in contrast to (6.10) and (6.12) in Subsection 6.4.1 we check here

the original requirements CDS and CDU (because the assumptions about

the environment are incorporated in the automaton ATrack ).

Similar to the approach presented there we need some constraints for the

parameters to establish the results. We discuss them in the following.

ρ ≥ κ+ 4ε: As in (6.10) this constraint is necessary for the safety require-

ment; it prevents the PLC-Automaton staying in state q2 for too

long. If κ > ρ − 4ε holds a train with maximum speed could enter

the crossing before the gate is closed because in the worst case the

PLC-Automaton needs 2ε to reach q2 and κ+2ε afterwards to reach

q3 where the gate is closed.
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ρ′ < ξ1 + ξ2: This assumption is needed to exclude the following scenario:

two successive trains are approaching and the time distance between

them is large enough that, by the utility requirement, the system has

to open the gate. The problem with this scenario is that the system

cannot measure this time distance by observing the value of Track .

Indeed, if the distance is too short the system could violate safety.

Thus the physical design of the GRC does not allow us to open the

gate in between two approaching trains because we have no means

to observe the time distance between these trains and to compute

whether the assumptions of the utility requirement are met.

ρ′ − ξ1 ≤ κ: This lower bound for κ is needed to avoid the gate being closed

too early. Remember that utility requires the gate to be open at

least ξ1 time units before the approaching train reaches the gate.

Hence, whenever the controller detects a new approaching train it

must assume that this train runs at minimal speed and thus needs

ρ′ seconds to reach the crossing. In order to satisfy the utility re-

quirement even in this case the controller must wait at least ξ1 − ρ′
seconds before closing.

ε ≤ 1
2 min(ξ2, ξ1 + ξ2 − ρ′): This constraint avoids that the gate opens too

late for the utility requirement. Remember that the controller keeps

the gate closed if it is closed and the track is not empty. As soon

as it becomes empty the controller will react to this and open the

gate within two cycles, i.e. in less than 2ε seconds. However, this

behaviour is only guaranteed if the track is empty during that period.

The minimal duration of the empty phase is given by the constant

ξ1+ξ2−ρ′, thus 2ε must be less than or equal to this term. However,

if ξ2 < ξ1 + ξ2 − ρ′ holds the utility requirement is stricter than the

minimal duration of the empty phase and the controller must be able

to execute two cycles within ξ2 seconds.

Note that (6.12) and (6.14) have different constraints for the parameters.

These difference are due to the fact that CD′
U uses the parameter ρ̄ which

does not appear in CDU. However, if the constraint ε ≤ 1
2 ρ̄ of (6.12) is

expanded by the definition of ρ̄ the last inequality of (6.14) follows imme-

diately. Moreover, in Subsection 6.4.2 we showed that κ ≥ ξ2 − ρ̄ implies

ρ′−ξ1 ≤ κ, i.e. the second inequality of (6.12) is replaced by its consequence

in (6.14).
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Discussion

The approach of this subsection has clear advantages in comparison to the

previous one. Isolating the environmental assumptions in a dedicated com-

ponent of the timed automata network makes it simple to find out what the

assumptions and what the verified properties are.

The drawback of this approach is that we are forced to construct the

automaton model of the environment by hand. Although the assumptions

are simple for the GRC, the environmental model is manageable but non-

trivial. This model should be the most liberal automaton that satisfies

all assumptions. However, there is no obvious way to check whether the

constructed environment is the most liberal one. If it allows only for a strict

subset of the admissible behaviour – and this can happen easily in such a

handmade automaton – then it may lead to a verification result that holds

in theory but not in practice. As an extreme case consider an environment

automaton that leaves the track empty all the time. In this case even a

controller that leaves the gate open for all times would satisfy both the

safety and utility requirement.

6.4.4 Plant, sensors, and actuators

In the introduction of this book we described a real-time system as con-

sisting of a plant, a controller, and sensors and actuators (cf. Figure 1.1).

However, the previous variants of the GRC did not consider sensors and

actuators at all. In reality they can make the design more complicated as

they come with delays and in some cases with problems of unreliability. One

can conceive sensors and actuators as parts of the environment, but this has

two disadvantages:

• As physical devices, sensors and actuators are indeed part of the environ-

ment. However, it makes sense to separate the assumptions made about

their behaviour from the assumption made about the plant.

• Usually, requirements refer to those variables that are observed by the

sensors or manipulated by the actuators. If sensors and actuators are not

separated from the plant this can be a source of misunderstandings be-

tween the engineers responsible for the requirements and those responsible

for the implementation.

In this subsection we integrate sensors and actuators into the system

model, leading to a communication structure shown in Figure 6.14. In con-

trast to Figure 6.12 the changes of In are now read by an additional timed

automaton ASens modelling the sensor. It will be constructed in such a way
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Aplant ACtrl

ASens

AAct

T (P )

In

step

sens

Sens In

Ctrl Out

act

Out

step

plant

Fig. 6.14. Communication structure of the system model with plant, sensors, and
actuators

that it requires a synchronisation on a new channel called sens. Therefore,

the plant model Aplant has to be extended with additional communications

sens! in the same way as with communications step! before. The sensor

automaton computes a value for a new variable Sens In that is polled by

ACtrl which represents the controller. However, ACtrl has now Sens In in-

stead of In as its input variable and Ctrl Out instead of Out as its output

variable. The output of ACtrl is read by a second additional automaton AAct

modelling the behaviour of the actuator. It reads the output on Ctrl Out if

triggered via a channel act and computes a new value for Out. Both T (P )

and Aplant are triggered via channel step or plant , respectively to notify this

new value.

Application to railroad crossing

We instantiate the communication structure in Figure 6.14 for the GRC case

study by taking

In = Track ranging over {E,A,Cr},
Sens In = Sens Track ranging over {E,A,Cr},

Ctrl Out = Ctrl cmd ranging over {open, close}, and

Out = Act Out ranging over {up, dn}.

Sensor model ASens: We specify a simple sensor behaviour by the au-

tomaton ASens given in Figure 6.16. The idea of this specification is
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ATrack ,

Agate

ACtrl

ASens

AAct

T (P )

Track

Track , g step

sens

Sens Track

Ctrl cmd

act

Act Out

plant

Fig. 6.15. Communication structure of the GRC with sensors and actuators

s1
s2

s ≤ β

sens?
Next Track := Track ,
s := 0

Sens Track := Next Track

sens?
Next Track := Track ,
s := 0

Fig. 6.16. The sensor model ASens

that the sensor transmits the values from Track to Sens Track with

a nondeterministic delay that is bounded by a time parameter β.

This is modelled by a clock s and the invariant s ≤ β of the location

s2.

Controller model ACtrl: The controller is given by the PLC-Automaton

GRC-Ctrl in Figure 6.17. For verification we employ the extended

timed automaton ACtrl = (GRC-Ctrl)′Out of the timed automata

semantics where the variables are appropriately renamed.

Actuator model AAct: The simplest way to construct an actuator model

is to design an extended timed automaton that is similar to the

sensor model and reacts to changes of Ctrl cmd by manipulating

the value up and dn of Act Out appropriately. Here, up stands for

a mode of the actuator where it opens the gate and dn stands for a

mode where it closes the gate.
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ε s

open

0 s

open

κ s, {A,Cr}

close

0 s

q1
q2

q3
E

E

A ∨ Cr

A ∨ Cr

E

A ∨ Cr

Fig. 6.17. Revised controller GRC-Ctrl

Our model of the actuator is given in Figure 6.18. In its initial

location a1 it expects that the controller wants an open gate. There-

fore, the initial value of Act Out is up and as long as the controller

keeps open as output the actuator model remains in a1. As soon as

the controller switches its output to close and triggers the actuator

model via channel act the timed automaton fires the transition to a2

and resets its clock a. In location a2 it can stay for at most α1 time

unit due to the invariant. It can always leave a2 by firing the uncon-

strained transition to a3 which sets the output Act Out to dn, i.e.

the actuator now starts to close the gate. In order to notify the gate

model about this change, location a3 is committed and therefore it

has to fire the transition to a4 without delay. This transition triggers

via channel plant the gate model. In a4 the actuator model can stay

as long as the controller keeps the output close. If the controller

changes the output to open again, then the model can execute the

transitions to a1 via a5 and a6 analogously. In case the controller

changes its output faster than the actuator can react, the actuator

model can fire the transitions between a2 and a5.

Plant model ATrack ,Agate : In Subsection 6.4.3 we constructed a model of

the track behaviour (Figure 6.13). Here we add a second timed

automaton Agate as a specification given in Figure 6.19 of the gate.

Similar to the actuator model the gate model reacts to commands of

the actuator (triggered via a new channel called plant) immediately

with a change in the value of g. In contrast to the previous models,
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a1
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a ≤ α1
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a4
a5

a ≤ α1

c : a6

plant!
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Act Out := dn

Ctrl cmd = open

act?, a := 0
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Fig. 6.18. The actuator model AAct

g now has three values. The new value is called X and stands for

a gate that is currently moving and thus neither fully open (O)

nor fully closed (Cl). Consider that the gate is open and Agate is

in (the initial) location g1. As long as the actuator outputs the

value up on variable Act Out the gate model remains in g1 and

does not change g. As soon as Act Out is set to the value dn by

the actuator the gate model fires the transition to g2 and sets the

value of g to X. The purpose of g2 being committed is to trigger

the test automaton via channel step by the only outgoing edge to

g3. Here the automaton may stay for a nondeterministic duration

limited by the time parameter α2. This models that the gate needs

at most α2 seconds to close. The event of the gate being closed

is modelled by firing the unconstrained transition to g4. This is

again a committed location used to trigger the test automaton by

the only edge to location g5 where the automaton stays as long as

the controller does not change the value of Act Out . If the system

is in g5 and the actuator wants the gate to be open the gate model



282 Automatic verification

g1

c : g2

g3
b ≤ α2

c : g4g5

c : g6

g7
b ≤ α2

c : g8

step!

step!

step!

step! Act Out = dn
plant?
g := X, b := 0

g := Cl
Act Out = up
plant?
g := X, b := 0

g := O

Act Out = up
plant?

Act Out = dn
plant?

Act Out = dn
plant?

Act Out = up
plant?

Act Out = dn, plant?

b := 0

Act Out = up, plant?

b := 0

Fig. 6.19. The gate model Agate

moves towards g1 via g6, g7, and g8 in an analogous manner. Again,

the duration to open the gate is limited by α2.

In the locations g3 and g7 the gate model reacts to commands of

the actuator although the gate has not reached the desired position.

If the actuator has “changed its mind”, i.e. the actuator changes

Act Out during the movement of the gate, the gate model will react

to this appropriately. This is modelled by the transitions from g3
to g6 (the gate is closing but the actuator suddenly wants to open

it) and from g7 to g2 (the gate is opening but the actuator suddenly

wants to close it).

Requirement T (P): As the property P we take the requirements of the

GRC given by the Constraint Diagrams CDS or CDU, respectively.

Therefore, we have the corresponding test automata as T (P) at this

place.
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Introducing a sensor and an actuator into the GRC model changes the

behaviour of the overall system, especially timing is affected. Figure 6.20

refines Figure 6.11 and shows where the new timing parameters of both

sensor and actuator come into play. Model checking this network of extended

Timed Automata yields

• For the safety requirement:

ρ ≥ κ+ β + α1 + α2 + 4ε implies

C(ATrack ,Agate ,ASens,ACtrl ,AAct, T (CDS)) |= ∀� ¬T (CDS).qbad.

(6.15)

• For the utility requirement:

ρ′ < ξ1 + ξ2
∧ ρ′ − ξ1 ≤ κ

∧ ε ≤ 1
2 min(ξ2 − β − α1 − α2, ξ1 + ξ2 − ρ′ − β)

⎫⎬
⎭ implies

C(ATrack ,Agate ,ASens,ACtrl ,AAct, T (CDU)) |= ∀� ¬T (CDU).qbad.

(6.16)

Note that these results generalise the results in the previous subsections

without the sensor and actuator model. In fact, setting the parameters β,

α1, and α2 to 0 leads to the same inequalities as in the previous subsection.

When applying UPPAAL to verify (6.15) and (6.16) the user has to

instantiate all parameters with concrete integer values because the model

checker is not able to derive or prove these inequalities. For a given instan-

tiation of the parameters it is possible to check whether the property holds.

By varying a single parameter, the user is able to examine the influence of

this parameter on the verification result. This leads to the inequalities as

above.

6.5 The tool Moby/RT

In this section we give an overview of the tool Moby/RT that implements

many results presented in the previous chapters within a single framework.

The architecture of Moby/RT is given in Figure 6.21. It comprises:

• Graphical editors for CDs and PLC-Automata.

• A simulator for networks of PLC-Automata with recording and playback

functionality.
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Fig. 6.20. Behaviour of the GRC with sensor and actuator

• Compilers generating code from (networks of) PLC-Automata into the

programming language ST for (networks of) PLCs and for (infrared net-

works of) LEGO Mindstorms (so-called RCX bricks).

• A synthesis algorithm for generating PLC-Automata from DC imple-

mentables as described in Section 5.5.

• Algorithms that enable the user to verify specifications (PLC-Automata)

against requirements (CDs) even without knowing the theory behind it.

For LEGO Mindstorms, Moby/RT generates C++ code that can be com-

piled into executable code for the open source operating system “brickOS”

(formerly known as “legOS”) for Mindstorms. For verification, the tool of-
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fers the translation of an arbitrary set of PLC-Automata together with a

CD into the input syntax of UPPAAL. Moreover, the necessary invocation

is done automatically and the results of the model checker are presented

to the user appropriately: either the requirement is satisfied or the model

checker returns a counterexample. In the latter case the counterexample

can be executed by the simulator of Moby/RT.

Design Analysis

Requirements
Editor
for CDs

UPPAAL

Specifications
Editor for
PLC-Automata

Simulator

Programs ST C++

Hardware PLCs RCX

Synthesis
Counter-
examples

Visuali-

sation

Fig. 6.21. Architecture of Moby/RT

Figure 6.22 demonstrates the “look and feel” of Moby/RT. The upper-

most box shows a screen-shot of a system that consists of a single PLC-Au-

tomaton that corresponds to the automaton in Figure 1.11. The differences

are the additional concept of typed variables and assignments to them when

transitions are taken. Moreover, self-loop transitions can be omitted in

Moby/RT. The tool can also cope with hierarchical PLC-Automata.

Each of the two boxes in the middle represents a CD. Since both CDs

belong to the “testable” patterns for which a timed automata semantics is

given, model checking is possible. The results are displayed in the nodes

below the CDs, saying that the current model has not changed semantically

since the last model-checking attempt (“Export: valid”), that the result

of the model checking was positive (“Result: passed”), and that hence no

simulation of a counterexample is available (“Simfile: no”). The CD on the

left requires the system to hold the output Test for less than 9.5 seconds.

The CD on the right is the CD for the synchronisation implementable (cf.

the proof of Theorem 3.22 in Section 3.3), instantiated for the watchdog.
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Fig. 6.22. Screen-shot of Moby/RT

The challenge of model checking is to avoid the state-space explosion.

Moby/RT helps to do this by constructing abstractions of the timed au-

tomata models. If a PLC-Automaton A should satisfy a requirement R
given in terms of a CD, then Moby/RT feeds UPPAAL with an abstrac-

tion abs(T (A)) instead of T (A). The abstraction is specified by the user

by selecting entities of PLC-Automata like variables or delays before the

translation into UPPAAL input takes place.

In Figure 6.23 it is shown how verification with abstraction proceeds.

There are three possible outcomes of the model-checking process:

(a) The requirement (here the CD R) is satisfied for the abstract model

(here abs(T (A)). Then R holds also for the full model A due to the

construction of the abstractions.

(b) Otherwise, the property does not hold for the abstract model and the

model checker returns an abstract counterexample. Then Moby/RT in-

vokes UPPAAL again with the full model T (A) together with a special

test automaton which is generated from the abstract counterexample.

The outcome of the second model-checking process determines the final

result:
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Fig. 6.23. Automatic abstraction refinement loop for PLC-Automata

(b1) If UPPAAL returns another counterexample then it is a coun-

terexample of the full model and the original CD due to the con-

struction of the special test automaton.

(b2) Otherwise the abstraction applied to the model was too coarse and

has to be refined.

6.6 Summary

At the end of this chapter let us look back at Figure 1.12 in Chapter 1.

It gives an overview of a design process which forms the backbone of the

approach to formal specification and automatic verification of real-time sys-

tems proposed in this book. The approach covers three levels of abstraction:

• Requirements, specified in Duration Calculus.

• Designs, specified as PLC-Automata.

• Programs, written as C code or PLC code.

Further on:

• Automatic verification is based on timed automata and the model checker

UPPAAL.
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Fig. 6.24. Overview with pointers to the chapters, sections, definitions, and theo-
rems in this book

In Figure 6.24 we refine Figure 1.12 by annotating it with pointers to the

chapters, sections, definitions, and theorems in this book that support the

approach.

As the most abstract way of specifying real-time requirements we intro-

duced the declarative view of the Duration Calculus (Chapter 2). Since ap-

plication experts may not be used to reading and writing logical formulas,

we introduced Constraint Diagrams as a graphical way of specifying certain

subsets of Duration Calculus formulas, among them DC implementables

(Section 3.3). To achieve implementability of real-time systems we intro-

duced PLC-Automata and networks thereof (Chapter 5). It was shown how

to translate them into code that is executable on PLCs or any other com-
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puting device with a simple concept of timers (Section 5.3). Since both

Constraint Diagrams and PLC-Automata have a logical semantics in terms

of DC formulas (Definitions 3.20 and 5.3), one can employ logical implication

to show that a PLC-Automaton satisfies a real-time requirement specified

by a Constraint Diagram (or any other DC formula). However, such logical

implication could only be established by a manual proof (which is difficult)

or by applying general theorems that are proven in advance, like Theorems

5.6 and 5.8 on reaction times.

To achieve a fully automatic verification we resorted to timed automata

as an operational model of real-time systems (Chapter 4) because this model

comes with a well-developed model checker like UPPAAL (Section 4.4). In

this book we therefore presented an automata-based approach to the ver-

ification of real-time systems. To this end, we presented in this chapter

alternative operational semantics in terms of timed automata for both Con-

straint Diagrams and PLC-Automata. In separate publications it has been

shown that the logical and the operational semantics are indeed equivalent.

In this chapter we sketched only the ideas of these equivalence results (The-

orems 6.4 and 6.9). The key idea of automatic verification is that a real-time

system S (given as a PLC-Automaton) satisfies a requirement P (given as

a Constraint Diagram) if and only if the parallel composition of a network

of timed automata representing S and a timed test automaton representing

P cannot reach a distinguished “bad location” in the test automaton. This

reachability problem is decidable (Section 4.3) and can be verified automat-

ically with the model checker UPPAAL. This approach is supported by the

tool Moby/RT (Section 6.5).

A proviso for the success of the automatic verification is that the network

of timed automata does not get too large in the number of clocks or the

number of parallel components or the size of the data. It is an ongoing

research challenge to automatically verify properties of very large real-time

systems (see Section 6.8).

6.7 Exercises

Exercise 6.1 (Testing counterexample formulas)

Consider Definition 6.5 and Theorem 6.7 again. Generalise both to cases

where a formula or a CD can only be replaced by more than one counterex-

ample formula.

Exercise 6.2 (Constructing test automata)

In Example 6.6 counterexample formulas for CDS and CDU are given. Con-
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struct the test automaton for both formulas using the pattern given in Fig-

ure 6.5 and compare the results with Figures 6.2 and 6.3, respectively.

Exercise 6.3 (Test automata for track assumptions)

In Subsection 6.4.3 we constructed a timed automaton ATrack to model

the assumptions about the track. All assumptions are expressed by DC

implementables, which are testable. Is it possible to replace ATrack by the

set of test automata constructed from the CDs specifying the assumptions

about the track?

Exercise 6.4 (Parameters)

The model checker UPPAAL is not able to handle parameters as needed

for example in (6.15). However, the tool can handle clock constraints of the

form x ∼ v in which clocks are compared with data variables. Show that

this can be used to verify propositions like (6.15) at least for a limited data

range of the variables.

Hint: Instead of concrete integer values the parameters can appear as data

variables in the models. Now add an automaton to the network that can

guess all instances satisfying the inequalities up to a given limit before time

passes the first time.

6.8 Bibliographic remarks

The specification of the safety and utility requirements for the case study

“Generalised Railroad Crossing” in terms of Constraint Diagrams is taken

from [DD97]. The construction of test automata for certain classes of Con-

straint Diagrams together with semantic equivalence proofs was first de-

scribed by M. Lettrari in [Let00]. A conference paper on this topic is [DL02].

Counterexample formulas generalising DC implementables as in Subsec-

tion 6.2.4 appeared in [Tap01]. An extended version of these formulas allow-

ing for the specification of events is taken as the set of real-time requirements

in [Hoe06].

A timed automata semantics for PLC-Automata together with a proof

of equivalence to the Duration Calculus semantics of PLC-Automata was

first published in [DFMV98]. For a generalised version of PLC-Automata a

corresponding result appeared in [Die00b].

The tool Moby/RT is the result of a long-standing activity on tool sup-

port around PLC-Automata. It has been developed on top of two one-year

projects, in which several students at the University of Oldenburg partici-

pated, with several Master and Ph.D. theses. An overview of the tool and
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its underlying theory is presented in the article [OD03], from which Sec-

tion 6.5 has been adapted. As a comparative benchmark case study, the

“Cash-Point Service” has been modelled and verified with Moby/PLC, a

pre-runner of Moby/RT [DT00]. A variant of Moby/RT dealing with

parametric real-time specifications is Moby/DC [DT03].

Automatic verification of real-time systems against requirements specified

in the Duration Calculus is pushed forward in the context of the research

centre AVACS (Automatic Verification and Analysis of Complex Systems,

since 2004) [BPD+07]. One of its subprojects is called “R1: Beyond Timed

Automata”; it is motivated by the observation that model checking with

timed automata is limited to real-time systems with finite data only. How-

ever, reactive systems often exhibit both real-time and complex, infinite data

structures. The goal of R1 is to advance the state of the art in automatic

verification of high-level specifications of systems with the three dimensions

of process behaviour, data, and real time – beyond the capabilities of timed

automata.

In the first phase of R1, the core activities comprised the development of

a system specification language, an approach to the automatic verification

of real-time properties, and the application to the case study ETCS (Eu-

ropean Train Control System). As system specification language, CSP-OZ-

DC (combining subsets from Communicating Sequential Processes, Object-

Z, and Duration Calculus) was developed [HO02, Hoe06]. A key result

in this development was a compositional semantics on the basis of Phase

Event Automata (PEA), an extension of timed automata to represent data

[Hoe06]. It involves a translation of the DC subsets of counterexample for-

mulas (with events) and so-called test formulas into equivalent PEA. It

was shown that PEA can be translated into Transition Constraint Systems

(TCS), which serve as input for the abstraction refinement model checker

ARMC [PR07] and the deductive slicing abstraction model checker SLAB

[BDFW07]. While ARMC is based on predicate abstraction, SLAB is a

combination of deductive model checking (based on Craig interpolation)

and slicing. Both tools call decision procedures when checking entailment of

constraints [GSSW06, SSI07] as well as methods for computing interpolants

[SS06, RSS07]. By combining CSP-OZ-DC with ARMC (or SLAB) and de-

cision procedures, properties of systems with both real-time constraints and

(certain) infinite data types can be verified automatically, as demonstrated

by case studies [HM05]. In particular, real-time properties of emergency

messages in the ETCS case study were verified [MFR06, FJSS07].

These core activities were complemented by research into reducing the size

of the state spaces of specifications with the help of slicing techniques. This
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approach has been applied both at the level of CSP-OZ-DC [BMW06, Brü07]

and at the level of TCS [BDFW07].

Another subproject of AVACS that addresses the issues of this chapter

is called “R3: Heuristic Search and Abstract Model Checking of Real-Time

Systems”. It develops directed model-checking techniques that accelerate

the detection of error states in real-time systems with many clocks and

many concurrent components. In R3, the real-time systems are represented

as networks of timed automata or of PLC-Automata (with a semantics in

terms of timed automata as described in Subsection 6.3.2). Model checking

is directed by heuristics that estimate the distance to an error state in a

given real-time system by computing an abstraction of the system. These

heuristics are integrated in a version of UPPAAL called UPPAAL/DMC

[KDH+07]. Using this tool, error states in the benchmark case study “Single-

track Line Segment” for trams (cf. Section 5.2) could be automatically de-

tected. Without the abstraction-based heuristics, this case study had been

intractable for automatic verification.

In R3, also a fully automatic approach for counterexample guided ab-

straction refinement [CGJ+03] of real-time systems modelled in a subset of

timed automata was developed [DKL07]. This approach is implemented in

the Moby/RT tool environment and thus automates the abstraction re-

finement loop shown in Figure 6.23. Verification in Moby/RT is done by

constructing variable-based abstractions of the semantics in terms of timed

automata which are fed into the model checker UPPAAL. Since the ab-

stractions are over-approximations, the absence of abstract counterexam-

ples implies a valid result for the full model. The new approach deals with

the situation in which an abstract counterexample is found by UPPAAL.

The generated abstract counterexample is used to construct either a con-

crete counterexample for the full model or, in case of a counterexample

that is caused only by the abstraction, to identify a slightly refined abstrac-

tion in which this so-called spurious counterexample cannot occur anymore.

Hence, the approach allows for a fully automatic abstraction refinement loop

starting from the coarsest abstraction towards an abstraction for which a

valid verification result is found. Nontrivial case studies demonstrate that

this approach computes small abstractions fast without any user interaction

[DKL07].
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In this Appendix we collect basic mathematical notations and concepts used

throughout this book because they may vary in different sources.

Logic

We assume the reader to be familiar with propositional and predicate logic.

In logical formulas we use the connectives

• ¬ (negation, read as not),

• ∧ (conjunction, read as and),

• ∨ (disjunction, read as or),

• =⇒ (implication, read as implies), and

• ⇐⇒ (equivalence, read as if and only if )

as well as the quantifiers

• ∀ (universal quantifier, read as for all) and

• ∃ (existential quantifier, read as there exists or for some).

We put the symbol • as a separator between the quantified variables and

the subsequent formula, for example,

∀x∃z • x < z and ∀t ∈ Time • ¬C(t).

In normal text we write “iff” as a shorthand for if and only if. Often

one wishes to introduce a shorthand for a complex logical formula or a

complex expression (not yielding a truth value). In case of a formula we

write F
def⇐⇒ formula if F is a shorthand for the formula on the right-hand

side. In case of an expression we write e
def

= expression if e is a shorthand for

the expression on the right-hand side.

293
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Mathematical proofs are often chains of equivalences between formulas.

We present such chains in a special format:

formula1

⇐⇒ {explanation why formula1 ⇐⇒ formula2}
formula2

. . .

formulan−1

⇐⇒ {explanation why formula formulan−1 ⇐⇒ formulan}
formulan.

An analogous format is used for =⇒, and relations like = or ≤ between

expressions. Obvious explanations are omitted.

Sets

Informally, a set is a collection of elements. Finite sets may be specified by

enumerating their elements between curly brackets. Examples are {0, 1} and

{empty, appr, cross}. Of particular interest is the set {tt,ff} of truth values,

standing for “true” and “false”, respectively. A special case is the empty set

{}, usually denoted by ∅. For a finite set X let |X| denote its cardinality,

i.e. the number of elements of X. For example, |{empty, appr, cross}| = 3

and |∅| = 0.

In this book, we shall consider several infinite sets of numbers:

• N denotes the set of all natural numbers {0, 1, 2, 3, . . . },
• Z the set of all integers {. . . ,−1, 0, 1, 2, . . . },
• Q the set of all rational numbers,

• Q≥0 the set of all non-negative rational numbers,

• R the set of all real numbers, and

• R≥0 the set of all non-negative real numbers.

The notation x ∈ X expresses that x is an element of the set X and y �∈ X
that y in not an element of X. Sets obey the principle of extensionality

stating that two sets are equal if they have the same elements. For example,

{empty, appr, cross} = {cross, empty, appr, empty, cross}.

The notation X ⊆ Y expresses that X is a subset of Y , i.e. x ∈ Y for every

x ∈ X. If X is not a subset of Y we write X �⊆ Y . For example, N ⊆ R and

(trivially) N ⊆ N, but Z �⊆ N.

From a given set X a new set can be defined by considering only those
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elements of X that satisfy some property P . This method is called compre-

hension. We denote the new set by {x ∈ X |P }; it is a subset of X. For

example,

M = {n ∈ N | ∃m ∈ N • n = 2 ·m}

describes the set of all even natural numbers. For sets X,Y ⊆ Z the follow-

ing operations are well known:

union X ∪ Y = {z ∈ Z | z ∈ X ∨ z ∈ Y } ,

intersection X ∩ Y = {z ∈ Z | z ∈ X ∧ z ∈ Y } ,

difference X \ Y = {z ∈ Z | z ∈ X ∧ z �∈ Y } ,

complement X = Z \X .

Sets X and Y are called disjoint if they have no element in common, i.e. if

X ∩ Y = ∅. The definitions of intersection and union can be generalised to

the case of more than two sets. Let Xi be a set for every element i of an

index set I. Then⋂
i∈I Xi = {a | a ∈ Xi for all i ∈ I},⋃
i∈I Xi = {a | a ∈ Xi for some i ∈ I}.

Let P(X) denote the power set of a set X, i.e. the set of all subsets of X:

P(X) = {X |Z ⊆ X}.

Note that in particular ∅ ∈ P(X) and X ∈ P(X).

The Cartesian product X × Y of two sets X and Y is the set consisting

of all pairs where the first component is an element of X and the second

component is an element of Y :

X × Y = {(x, y) |x ∈ X ∧ y ∈ Y }.

More generally, the n-fold Cartesian product X1×· · ·×Xn of sets X1, . . . , Xn

is the set consisting of all n-tuples where the ith component is an element

of Ai for all i ∈ {1, . . . , n}:

X1 × · · · ×Xn = {(x1, . . . , xn) |x1 ∈ X1 ∧ · · · ∧Xn}.

If all the Xi are the same set X, the n-fold Cartesian product X × · · · ×X
of X with itself is also written as Xn, the nth power of X.

Relations

Relations are special sets. A (binary) relation R between sets X and Y is a

subset of the Cartesian product X × Y ; that is, R ⊆ X × Y . If X = Y then
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R is called a relation on X. For example, the set

{(a, 1), (b, 2), (c, 2)}

is a binary relation between {a, b, c} and {1, 2}. For elements (x, y) of a

binary relation R we also write x $→ y, and membership (x, y) ∈ R is often

written in infix notation xR y.

More generally, for any natural number n an n-ary relation R between

X1, . . . , Xn is a subset of the n-fold Cartesian product X1 × · · · ×Xn; that

is, R ⊆ X1 × · · · × Xn. Note that 2-ary relations are the same as binary

relations. Instead of 1-ary and 3-ary relations one talks of unary and ternary

relations, respectively.

The identity relation on X is defined by idX = {(x, x) | x ∈ X}. The

inverse relation of R ⊆ X × Y is R−1 ⊆ Y ×X, defined as follows:

∀x ∈ X, y ∈ Y • (x, y) ∈ R ⇐⇒ (y, x) ∈ R−1.

The composition ◦ of two relations R ⊆ X × Y and S ⊆ Y × Z is defined

for all x ∈ X and z ∈ Z as follows:

(x, z) ∈ R ◦ S ⇐⇒ ∃ y ∈ Y • (x, y) ∈ R ∧ (y, z) ∈ S.

Consider a relation R on a set X. R is called reflexive if (a, a) ∈ R for

all x ∈ X, it is called symmetric if for all x, y ∈ X whenever (x, y) ∈ R

then also (y, x) ∈ R, and it is called transitive if for all x, y, z ∈ X whenever

(x, y) ∈ R and (y, z) ∈ R then also (x, z) ∈ R.

A relation R on X that is reflexive, symmetric and transitive is called an

equivalence relation. To each element x ∈ X we can associate the set of

elements that are equivalent to x. This set is called the equivalence class of

x and denoted by

[x]R = {y ∈ X | (x, y) ∈ R}.

If R is clear from the context we write [x] instead of [x]R. The element x is

called a representative of [x] because the whole class can be generated from

x by taking equivalent elements. Note that for all elements x, y ∈ X

(x, y) ∈ R ⇐⇒ [x] = [y] and (x, y) �∈ R ⇐⇒ [x] ∩ [y] = ∅.

Thus the set X is partitioned into disjoint equivalence classes of R.

The reflexive, transitive closure R∗ of a relation R on a set X is the

smallest reflexive and transitive relation on X that contains R as a subset.

The relational composition R1 ◦ R2 of relations R1 and R2 on a set X is

defined as follows:

R1 ◦R2 = {(a, c) | ∃ b ∈ A • (a, b) ∈ R1 ∧ (b, c) ∈ R2}.
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For any natural number n the n-fold composition Rn of a relation R on a

set X is defined inductively as follows:

R0 = idX and Rn+1 = R ◦Rn.

Then the equation

R∗ =
⋃
n∈N

Rn

holds.

Functions

Functions are special relations. A relation f ⊆ X × Y is called a partial

function (or partial mapping) from X to Y if for each element x ∈ X there

is at most one element y ∈ Y with x f y. In that case we write

f : X
part−→ Y.

The set X is called the domain of f and Y the co-domain of f . Instead of

(x, y) ∈ f or x f y we write function application in prefix notation: f(x) = y.

If for each element x ∈ X there is exactly one element y ∈ Y with f(x) = y

then f is called a (total) function (or mapping or operation) from X to Y .

In that case we write

f : X −→ Y.

Here X −→ Y denotes the set of all functions from X to Y . It can itself

be the domain or co-domain of a function. For example, for sets X,Y, Z we

may consider a function

g : X −→ (Y −→ Z).

Then for all x ∈ X and y ∈ Y we have g(x) : Y −→ Z and g(x)(y) ∈ Z.

We are sometimes interested in functions with special properties. A func-

tion f : X −→ Y is called an injection if f(x1) �= f(x2) for any two distinct

elements x1, x2 ∈ X; it is called a surjection if for every element y ∈ Y

there exists an element x ∈ X with f(x) = y; it is called a bijection if it is

both an injection and a surjection.

Real numbers

In this book (non-negative) real numbers are taken as the time domain.

Therefore, we use various notations for real numbers. The binary relations

<,≤, >,≥ ⊆ R × R denoting less than, at most, greater than and at least,
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respectively, should be clear, as well as the binary functions +,−, · : R −→ R

of addition, subtraction and multiplication, respectively. Division x/y or x
y

is defined only partially when the divisor satisfies y �= 0.

Real numbers can be approximated by integers. For x ∈ R let �x� ∈ Z,

the floor of x, be the unique integer m with m ≤ x < m+ 1, and �x� ∈ Z,

the ceiling of x, be the unique integer n with n − 1 < x ≤ n. Further on,

we define the fraction of x by frac(x) = x− �x�. For example, �1.314� = 1

and �1.314� = 2 and frac(x) = 0.314.

For a non-empty finite set X ⊆ R let minX denote the minimum of all

real numbers in X, and analogously maxX the maximum. For two elements,

we write min(x, y) instead of min{x, y}, and analogously for the maximum.

We often consider intervals. For b, e ∈ R the closed interval of real num-

bers between b and e is

[b, e] = {x ∈ R | b ≤ x ≤ e},

and the open interval is (b, e) = {x ∈ R | b < x < e}. Half-open intervals

like (b, e] or [b, e) are defined analogously.

From mathematical analysis we use the concept of Riemann integral. For

an integrable function f : R −→ R and an interval [b, e] ⊆ R let∫ e

b
f(t)dt

denote the integral of f on [b, e]. In the applications it will be clear that the

functions considered are indeed integrable.

Words and languages

An alphabet is a finite set of symbols. We use Σ as a typical name for an

alphabet and a, b, c for symbols, i.e. elements of Σ. A word over Σ is a finite

string of symbols from Σ. Special cases are the empty word ε (without any

symbol) and words consisting of a single symbol only. We use u, v, w as

typical names for words. Let Σ∗ denote the set of all words over Σ. Then

ε ∈ Σ∗ and Σ ⊆ Σ∗. By |u| we denote the length of the word u, i.e. the

number of symbols from Σ occurring in it. Note that |ε| = 0.

The concatenation u·v of words u and v yields the word uv formed by first

writing u and then writing v, without intervening space. By ≤ we denote

the prefix relation over words defined as follows:

u ≤ w iff ∃u : w = u · v.

We then say that u is a prefix of w. Special cases are ε ≤ w and w ≤ w.
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Example A.1

Consider the alphabet Σ = {1, 2,+}. Then 1+ and 2 + 0 are words over Σ

with |1 + | = 2 and |2 + 0| = 3. The concatenation of 1+ and 2 + 0 yields

1 + 2 + 0. The prefixes of 1 + 2 + 0 are ε, 1, 1+, 1 + 2, 1 + 2+, and 1 + 2 + 0.

�

A (formal) language over the alphabet Σ is a subset of Σ∗. We use L as

a typical name for a language. To languages L,L1, L2 we can apply the set

operations of

union L1 ∪ L2 ,

intersection L1 ∩ L2 ,

difference L1 \ L2 ,

complement L = Σ∗ \ L .

Moreover, there are special operations on languages. The concatenation is

lifted from words to languages L1 and L2 by defining

L1 · L2 = {u · v | u ∈ L1 and v ∈ L2}.

The nth power of a language L is defined inductively:

L0 = {ε} and Ln+1 = L · Ln.

The iteration or Kleene star of L is defined by

L∗ =
⋃
n∈N

Ln = {w1 . . . wn | n ∈ N and w1, . . . , wn ∈ L}.

Note that ε ∈ L∗. To exclude the empty word, one also considers the non-

empty iteration L+ defined by L+ = L · L∗.

Finite automata and regular languages

To represent computational processes one uses abstract machines. The sim-

plest model of such a machine is the finite automaton. It is a structure

A = (Q,Σ, δ, q0, F ) where

• Q is a finite set of states, with typical element q,

• Σ is a finite input alphabet, with typical elements a, b, c,

• δ : Q× Σ −→ P(Q) is the transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states.
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In classical automata theory, finite automata serve as acceptors of languages.

Note that A is defined as a nondeterministic automaton since δ(q, a) yields

a set of possible successor states. A deterministic finite automaton is one

where δ(q, a) always yields a singleton set. In that case the transition func-

tion is defined as δ : Q×Σ −→ Q. For finite automata, nondeterminism does

not extend the class of accepted languages but it can result in substantially

smaller state spaces.

It is convenient to represent the transition function as a ternary transition

relation → ⊆ Q× Σ×Q or as a set of labelled binary transition relations

a−→ ⊆ Q×Q,

one for each symbol a ∈ Σ. By definition, these notations are related as

follows:

q′ ∈ δ(q, a) iff (q, a, q′) ∈ → iff q
a−→ q′

for all q, q′ ∈ Q and a ∈ Σ. Informally, q
a−→ q′ expresses that the automaton

A can move from state q to state q′ by accepting input a. We say that q
a−→ q′

is a transition labelled with a. At the level of transitions, nondeterminism is

visible if at a given state several transitions are possible for the same input

label, for example,

q
a−→ q1 and q

a−→ q2.

An advantage of this representation is that binary relations can be com-

posed. For example,

a−→◦ b−→

denotes the two-step transition of first accepting input a and then input b.

This way, the relations
a−→ for individual symbols a can easily be extended

to relations
w−→ for words w ∈ Σ∗. The definition proceeds inductively.

• Induction basis: w = ε.

Then
ε−→ = idQ.

That is, q
ε−→ q′ iff q = q′ holds for all q, q′ ∈ Q.

• Induction step: w = av for a ∈ Σ and v ∈ Σ∗.

Then
av−→ =

a−→◦ v−→.

That is, q
av−→ q′ iff ∃ q′′ ∈ Q • q a−→ q′′ and q′′

v−→ q′ holds for all q, q′ ∈ Q.
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A state q is called reachable in A if q0
w−→ q holds for some w ∈ Σ∗. The

automaton A accepts a word w if q0
w−→ q for some final state q. Thus the

accepted language of A is defined as

L(A) = {w ∈ Σ∗ | ∃ q ∈ F • q0 w−→ q } .

A language L is called regular if L = L(A) for some finite automaton A.

The set of regular languages over Σ contains

• the empty set ∅,

• the set {ε} containing the empty word,

• the singleton set {a}, for every symbol a ∈ Σ,

and is closed under the operations of

• union,

• intersection,

• complement,

• concatenation,

• iteration, and

• non-empty iteration.

It is well known that finite automata can be represented graphically.

Example A.2

The automaton A = (Q,Σ, δ, q0, F ) with Q = {q0, q1, q2},Σ = {a, b, c},
δ(q0, a) = {q0, q1}, δ(q0, b) = {q0}, δ(q0, c) = {q0}, δ(q1, b) = {q2} and F =

{q2} is represented as follows:

q2q1q0 � ��
�

a, b, c

a b

Note that A is indeed nondeterministic: when accepting a in the initial state

q0 it can either stay in q0 or move to q1. The accepted language is

L(A) = {wab | w ∈ Σ∗},

the set of all words over Σ ending in ab. For example, abcaacab ∈ L(A) but

abcaaca �∈ L(A). �
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For finite automata and regular languages various problems are algorith-

mically decidable. In this book, we refer to three problems.

The reachability problem is defined as follows:

Given: A finite automaton A and a state q.

Question: Is q reachable in A ?

The emptiness problem is defined as follows:

Given: A regular language L.

Question: Is L = ∅ ?

The infinity problem is defined as follows:

Given: A regular language L.

Question: Is L an infinite set ?

The decidability proofs of the last two problems rest on the pumping lemma

for regular languages, which in turn exploits the finiteness of the set of states

of the accepting automata.

Transition systems

In this book we consider certain kinds of reactive systems that continuously

interact with their environment by reacting to inputs from the environment

with certain outputs. Operationally, such systems can be described by an

extension of the finite automaton model called a (labelled) transition system.

This is a structure

T = (C,Λ, { λ−→ |λ ∈ Λ}, C0)

where:

• C is a (possibly infinite) set of configurations, with typical element c.

• Λ is a (possibly infinite) set of labels, with typical element λ.

• For each label λ ∈ Λ there is a transition relation
λ−→ ⊆ C×C, consisting

of all transitions of T labelled with λ.

• C0 ∈ C is the set of initial configurations.

Notice the following differences compared with finite automata. The finite

sets of states and input symbols are replaced by possibly infinite sets of

configurations and labels. The unique initial state is replaced by a set of

initial configurations. There are no final states because the purpose of a

labelled transition system is not to accept words of labels but to define in
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which computation paths it can engage. Formally, a computation path of a

labelled transition system T is a sequence

c0
λ1−→ c1

λ2−→ c2
λ3−→ . . .

of labelled transitions starting in an initial configuration c0 ∈ C0 with ci ∈ C
and λi ∈ Λ for i ≥ 1 that is either infinite or maximally finite, i.e. the

sequence cannot be extended any further by some transition.

Bibliographic remarks

For an introduction to logic the reader may consult the books by D. Gabbay

[Gab98], or by H.-D. Ebbinghaus, J. Flum and W. Thomas [EFT96]. The

symbol • as a separator in quantified formulas is taken from the specifica-

tion language Z (see e.g. [WD96]). Mathematical proofs are often chains of

equalities between expressions. The proof format for chains of equivalences

or equalities was suggested by E.W. Dijkstra and C.S. Scholten [DS90].

The concepts and notations for sets, relations, and functions are intro-

duced in most undergraduate mathematical textbooks (see e.g. [Hal98]).

An introduction to mathematical analysis can be found, for example, in the

book by W. Rudin [Rud76]. For an introduction to automata theory, formal

languages and decidability we refer to the classic book by J.E. Hopcroft and

J.D. Ullman [HU79] or its extended version [HMU01].

The notion of a transition system is due to R.M. Keller [Kel76]. The

systematic and structured use of transition systems for the definition of the

semantics of programming and specification languages was advocated by

G.D. Plotkin [Plo81].
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