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Changes to the Quartus Edition 

Rapid Prototyping of Digital Systems provides an exciting and challengng 
laboratory component for undergraduate digital logic and computer design courses 
using FPGAs and CAD tools for simulation and hardware implementation. The 
more advanced topics and exercises also make this text useful for upper level 
courses in digital logic, programmable logic, and embedded systems. The third 
edition now uses Altera's new Quartus I1 CAD tool and includes laboratory projects 
for Altera's UP 2 and the new UP 3 FPGA board. Student laboratory projects 
provided on the book's CD-ROM include video graphics and text, mouse and 
keyboard input, and three computer designs. 

Rapid Prototyping of Digital Systems includes four tutorials on the Altera Quartus 
I1 and Nios I1 tool environment, an overview of programmable logc, and IP cores 
with several easy-to-use input and output functions. These features were developed 
to help students get started quickly. Early design examples use schematic capture 
and IP cores developed for the Altera UP FPGA boards. VHDL is used for more 
complex designs after a short introduction to VHDL-based synthesis. Verilog is 
also now supported more as an option for the student projects. 

New chapters in this edition provide an overview of System-on-a-Programmable 
Chip (SOPC) technology and SOPC design examples for the UP 3 using Altera's 
new Nios I1 Processor hardware and C software development tools. A full set of 
Altera's FPGA CAD tools is included on the book's CD-ROM. 

Intended Audience 

This text is intended to provide an exciting and challenging laboratory 
component for an undergraduate digital logic design class. The more advanced 
topics and exercises are also appropriate for consideration at schools that have 
an upper level course in digital logic or programmable logic. There are a 
number of excellent texts on digital logic design. For the most part, these texts 
do not include or fully integrate modern CAD tools, logic simulation, logic 
synthesis using hardware description languages, design hierarchy, and current 
generation field programmable gate array (FPGA) technology and SOPC 
design. The goal of this text is to introduce these topics in the laboratory 
portion of the course. Even student laboratory projects can now implement 
entire digital and computer systems with hundreds of thousands of gates. 
Over the past eight years, we have developed a number of interesting and 
challenging laboratory projects involving serial communications, state 
machines with video output, video games and graphics, simple computers, 
keyboard and mouse interfaces, robotics, and pipelined RISC processor cores. 
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Source files and additional example files are available on the CD-ROM for all 
designs presented in the text. The student version of the PC based CAD tool on 
the CD-ROM can be freely distributed to students. Students can purchase their 
own UP 3 board for little more than the price of a contemporary textbook. As 
an alternative, a few of the low-cost UP 3 boards can be shared among students 
in a laboratory. Course instructors should contact the Altera University Program 
for detailed information on obtaining full versions of the CAD tools for 
laboratory PCs and UP 3 boards for student laboratories. 

Topic Selection and Organization 

Chapter 1 is a short CAD tool tutorial that covers design entry, simulation, and 
hardware implementation using an FPGA. The majority of students can enter 
the design, simulate, and have the design successfully running on the UP 3 
board in less than thirty minutes. After working through the tutorial and 
becoming familiar with the process, similar designs can be accomplished in less 
than 10 minutes. 
Chapter 2 provides an overview of the UP 3 FPGA development boards. The 
features of the board are briefly described. Several tables listing pin 
connections of various I10 devices serve as an essential reference whenever a 
hardware design is implemented on the UP 3 board. 
Chapter3 is an introduction to programmable logic technology. The 
capabilities and internal architectures of the most popular CPLDs and FPGAs 
are described. These include the Cyclone FPGA used on the UP 3 board, and 
the Xilinx 4000 family FPGAs. 
Chapter 4 is a short CAD tool tutorial that serves as both a hierarchical and 
sequential design example. A counter is clocked by a pushbutton and the output 
is displayed in the seven-segment LED'S. The design is downloaded to the UP 3 
board and some real world timing issues arising with switch contact bounce are 
resolved. It uses several functions from the UP3core library which greatly 
simplify use of the UP 3's input and output capabilities. 
Chapter 5 describes the available UP3core library I10 functions. The I10 
devices include switches, the LCD, a multiple output clock divider, VGA 
output, keyboard input, and mouse input. 
Chapter 6 is an introduction to the use of VHDL for the synthesis of digital 
hardware. Rather than a lengthy description of syntax details, models of the 
commonly used digital hardware devices are developed and presented. Most 
VHDL textbooks use models developed for simulation only and they frequently 
use language features not supported in synthesis tools. Our easy to understand 
synthesis examples were developed and tested on FPGAs using the Altera CAD 
tools. 
Chapter 7 is an introduction to the use of Verilog for the synthesis of digital 
hardware. The same hardware designs as Chapter 6 as modeled in Verilog. It is 
optional, but is included for those who would like an introduction to Verilog. 
Chapter 8 is a state machine design example. The state machine controls a 
virtual electric train system simulation with video output generated directly by 
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the FPGA. Using track sensor input, students must control two trains and three 
track switches to avoid collisions. 
Chapter 9 develops a model of a simple computer. The fetch, decode, and 
execute cycle is introduced and a brief model of the computer is developed 
using VHDL. A short assembly language program can be entered in the FPGA's 
internal memory and executed in the simulator. 
Chapter 10 describes how to design an FPGA-based digital system to output 
VGA video. Numerous design examples are presented containing video with 
both text and graphics. Fundamental design issues in writing simple video 
games and graphics using the UP 3 board are examined. 
Chapter 11 describes the PSI2 keyboard and mouse operation and presents 
interface examples for integration in designs on the UP 3 board. Keyboard scan 
code tables, mouse data packets, commands, status codes, and the serial 
communications protocol are included. VHDL code for a keyboard and mouse 
interface is also presented. 
Chapter 12 describes several of the common I10 standards that are likely to be 
encountered in FPGA systems. Parallel, RS232 serial, SPI, and I ~ C  standards 
and interfacing are discussed. 
Chapter 13 develops a design for an adaptable mobile robot using the UP 3 
board as the controller. Servo motors and several sensor technologies for a low 
cost mobile robot are described. A sample servo driver design is presented. 
Commercially available parts to construct the robot described can be obtained 
for as little as $60. Several robots can be built for use in the laboratory. 
Students with their own UP 3 board may choose to build their own robot 
following the detailed instructions found in section 13.6. 
Chapter 14 describes a single clock cycle model of the MIPS RISC processor 
based on the hardware implementation presented in the widely used Patterson 
and Hennessy textbook, Computer Organization and Design The 
Hardware/Software Interface. Laboratory exercises that add new instructions, 
features, and pipelining are included at the end of the chapter. 
Chapters 15, 16, and 17 introduce students to SOPC design using the Nios I1 
RISC processor core. Chapter 15 is an overview of the SOPC design approach. 
Chapter 16 contains a tutorial for the Nios I1 IDE software development tool 
and examples using the Nios I1 C/C++ compiler. Chapter 17 contains a tutorial 
on the processor core hardware configuration tool, SOPC builder. A UP 3 board 
is required for this new material since it is not supported on the UP 2's FPGA. 
We anticipate that many schools will still choose to begin with TTL designs on 
a small protoboard for the first few labs. The first chapter can also be started at 
this time since only OR and NOT logic functions are used to introduce the 
CAD tool environment. The CAD tool can also be used for simulation of TTL 
labs, since a TTL parts library is included. 
Even though VHDL and Verilog are complex languages, we have found after 
several years of experimentation that students can write HDL models to 
synthesize hardware designs after a short overview with a few basic hardware 
design examples. The use of HDL templates and online help files in the CAD 
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tool makes this process easier. After the initial experience with HDL synthesis, 
students dislike the use of schematic capture on larger designs since it can be 
very time consuming. Experience in industry has been much the same since 
huge productivity gains have been achieved using HDL based synthesis tools 
for application specific integrated circuits (ASICs) and FPGAs. 
Most digital logic classes include a simple computer design such as the one 
presented in Chapter 9 or a RISC processor such as the one presented in 
Chapter 14. If this is not covered in the first digital logic course, it could be 
used as a lab component for a subsequent computer architecture class. 
A typical quarter or semester length course could not cover all of the topics 
presented. The material presented in Chapters 7 through 17 can be used on a 
selective basis. The keyboard and mouse are supported by UP3core library 
functions, and the material presented in Chapter 11 is not required to use these 
library functions for keyboard or mouse input. A UP 3 board is required for the 
SOPC Nios designs in Chapters 16 and 17. 
A video game based on the material in Chapter 10 can serve as the basis for a 
team design project. For a final team design project, we use robots with sensors 
from chapter 13 that are controlled by the simple computer in chapter 9. Our 
students really enjoyed working with the robot described in Chapter 13, and it 
presents almost infinite possibilities for an exciting design competition. A more 
advanced class could develop projects based on the Nios I1 processor reference 
designs in Chpater 16 and 17 using C/C++ code. 

Software and Hardware Packages 

The new 5.0 SPl web version of Quartus I1 FPGA CAD tool is included with 
this book. Software was tested using this version and it is recommended. UP 3 
boards are available from Altera at special student pricing. A board can be 
shared among several students in a lab, or some students may wish to purchase 
their own board. Details and suggestions for additional cables that may be 
required for a laboratory setup can be found in Section 2.4. Source files for all 
designs presented in the text are available on the CD-ROM. 

Additional Web Material and Resources 

There is a web site for the text with additional course materials, slides, text 
errata, and software updates at: 
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2 Rapid Prototyping of Digital Systems Chapter 1 

1 Tutorial I: The 15 Minute Design 

The purpose of this tutorial is to introduce the user to the Altera CAD tools and the 
University Program (UP 3 or UP 2) Development Board in the shortest possible time. 
The format is an aggressive introduction to schematic, VHDL, and Verilog entry for 
those who want to get started quickly. The approach is tutorial and utilizes a path that 
is similar to most digital design processes. 

Once completed, you will understand and be able to: 

Navigate the Altera schematic entry environment, 

Compile a VHDL or Verilog design file, 

Simulate, debug, and test your designs, 

Generate and verify timing characteristics, and 

Download and run your design on a UP 3 or UP 2 board. 

Figure 1.1 The Altera UP 3 FPGA Development board. 
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Figure 1.2 The Altera UP 2 FPGA development board. 

In this tutorial, an OR function will be demonstrated to provide an introduction 
to the Altera Quartus I1 CAD tools. After simulation, the design will then be 
used to program a field programmable gate array (FPGA) on a UP 3 or UP 2 
development board. 

The inputs to the OR logic will be two pushbuttons and the output will be 
displayed using a light emitting diode (LED). Both the pushbuttons and the 
LED are part of the development board, and no external wiring is required. 
Of course, any actual design will be more complex, but the objective here is to 
quickly understand the capabilities and flow of the design tools with minimal 
effort and time. 
More complex designs including computers will be introduced later in this text 
after you have become familiar with the development tools and hardware 
description languages (HDLs) used in digital designs. 
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Granted, all this may not be accomplished in just 15 minutes; however, the 
skills acquired from this demonstration tutorial will enable the first-time user 
to duplicate similar designs in less time than that! 

. ..THE QUARTUS n WEB VERSION SOFTWARE USING THE CD-ROM AND OBTAIN I 

WEB UCBNSB FILE FROM ALl'ERA. CHECK FQRALTERAQCIA~~TUS XI WEB VERSION 
iE UPDATES AT 

Designs can be entered via schematic capture or by using a HDL such as 
VHDL or Verilog. It is also possible to combine blocks with different entry 
methods into a single design. As seen in Figure 1.3, tools can then be used to 
simulate, calculate timing delays, synthesize logic, and program a hardware 
implementation of the design on an FPGA. 

The Board 

The board that will be used is the Altera UP 3. Although the following tutorial 
can be done with either the UP 3 or a UP 2, some modifications (mainly device 
and pin number assignments) will be needed for the UP 2. 

The Pushbuttons 

The UP 3's two pushbutton switch inputs, PB1 and PB2, are connected to pins 
62 (labeled SW7 on board) and 48 (labeled SW4 on board). On the UP 2, PBl 
and PB2 are connected directly to the FLEX FPGA chip at pins 28 and 29 
respectively. Each pushbutton input is tied High with a pull-up resistor and 
pulled Low when the respective pushbutton is pressed. One needs to remember 
that when using the on-board pushbuttons, this "active low" condition ties zero 
volts to the input when the button is pressed and the V,, high supply to the 
input when not pressed. See Figure 1.4. V,, is 3.3V on the UP 3 and 5V on the 
UP 2. As seen in Figure 1.4, on the UP 2 board a logic "0" turns on the LED. 

dcc (Gnd on U P  3) 

I /2f 
LED 

Figure 1.4 Connections between the pushbuttons, the LEDs, and the Altera FPGA. 
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The LED Outputs 

The UP 3 has four discrete LEDs located on the lower left side of the board. 
On the UP 3 board, the LED in Figure 1.4 is reversed and connected to ground 
so that a logic "1" on the FPGA's output pin turns on the LED and a logic "0" 
turns off the LED. 

The Problem Definition 

To illustrate the capabilities of the software in the simplest terms, we will be 
building a circuit that turns off the LED when one OR the other pushbutton is 
pushed. In a simple logic equation, one could write: 

LED-OFF = PB1-HIT + PB2-HIT 

At first, this may seem too simple; however, the active low inputs and outputs 
add just enough complication to illustrate some of the more common errors, 
and it provides an opportunity to compare some of the different syntax features 
of VHDL and Verilog. (Students needing an exercise in DeMorgan's Law will 
also find these exercises particularly enlightening.) 
We will first build this circuit with the graphical editor and then implement it 
in VHDL and Verilog. As you work through the tutorial, note how the design 
entry method is relatively independent of the compile, timing, and simulation 
steps. 

Resolving the Active Low Signals 

Since the pushbuttons generate inverted signals and the LED will require an 
inverted or low level logic signal to turn off (UP 3), we could build an OR 
logic circuit using the layout in Figure 1.5a. Recalling that a bubble on a gate 
input or output indicates inversion, careful examination shows that the two 
circuits in Figure 1.5 are functionally equivalent; however, the circuit in Figure 
1.5a uses more gates and would take a bit longer to enter in the schematic 
editor. We will therefore use the single gate circuit illustrated in Figure 1 Sb.  

Figure 1.5a and 1.5b. Equivalent circuits for ORing active low inputs and outputs. 

This form of the OR function is known as a "negative-logic OR." If you are 
confused, try writing a truth table to show this Boolean equality. (In Exercise 1 
at the end of the chapter, this circuit will be compared with its DeMorgan's 
equivalent, the "positive-logic AND."). On the UP 2 board, the LED'S output 
state will appear inverted since its LED output circuit is inverted, so pushing 
one of the UP 2 pushbuttons will turn on the UP 2's LED. 

www.ebook3000.com

http://www.ebook3000.org
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Design Entry using the Graphic Editor 
Examine the CAD tool overview diagram in Figure 1.3. The initial path in this 
section will be from schematic capture (Graphical Entry) to downloading the 
design to the UP 3 board. On the way, we will pass through some of the 
nuances of the Compiler along with setting up and controlling a simulation. 
Later, after having actually tested the design, we will examine the Timing 
Analysis information of the design. Although relatively short, each step is 
carefully illustrated and explained. Install the Altera Quartus I1 software on 
your PC using the book's CD-ROM, if it is not already installed. 

New Project Creation 

Start the Quartus I1 program. In Quartus 11, the New Project wizard is used to 
create a new project. Choose File * New Project Wizard. Click next in the 
Introduction window, if it appears to continue. A second dialog box will appear 
asking for the working directory for your new project. Enter an appropriate 
directory. For the project name and top-level design entity boxes, enter orgate. 
Click Next. If you need to create a new project directory with that name, click 
Yes. An Add Files dialog box then appears. This page is used to enter all of the 
design files (other than the top-level file). Since this simple project will only 
use a single top-level design file, click Next. 

Figure 1.6 Creating a new Quartus I1 Project. 
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Select the Device to be Used 

The next dialog box is used to select the FPGA type. If you are using the UP 3 
board, select Cyclone family and for the UP 1 or 2 select FLEXlOK. You will 
then need to select the specific FPGA on your board. The UP 3 is available 
with two different sizes of Cyclone FPGAs: an EPlC6Q240C8 or the larger 
EPlC12Q240C8. On the UP 2, it will be a EPFlOK70RC240-X (-X is the 
speed grade of the chip). Check the large square chip in the middle of the 
board to verify the FPGA part number. The last digit in the FPGA part number 
is the speed grade. The correct speed grade is needed for accurate delays in 
timing simulations. You may need to change the setting of the Speed Grade 
dialog box to Any to display your specific device. Always choose the correct 
speed grade to match your board's FPGA. 
If you choose the wrong device type, you will have errors when you attempt to 
download your design to the FPGA. (In any existing project, it is a good idea 
to always verify the correct FPGA setting for your UP board by selecting 
Assignments E3 Device in any new design before compiling it for the first 
time.) 

Figure 1.7 Setting the FPGA Device Type. 
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After selecting the correct FPGA part number, click Next on the third-party 
EDA tools settings box since we will not be using any third-party EDA tools - 
only Quartus 11. Double check the information summary page that appears and 
click Finish. In case of problems, use the back option to make changes. 

Establishing Graphics (Schematic) as the Input Format 

After creating your new project, choose File New, and a popup menu will 
appear. Select Block DiagramISchematic File, then click OK. This will create 
a blank schematic worksheet - a graphics display file (*.gdf file). Note that the 
toolbar options in Quartus I1 are context sensitive and change as different tools 
are selected. An empty schematic window with grids will appear named 
Block1 .bdf. 

Enter and Place the OR Symbol in Your Schematic 

Click on the AND gate icon on the left-side toolbar. This selects the symbol 
tool. In the symbol library window, click the library path to expand the 
options. Find the library named primitives and click on it to expand it. Then 
click to expand the logic library. Scroll down the list of logic symbols and 
select BNOR2. An OR gate with inverted inputs and outputs should appear in 
the symbol window. (The naming convention is B-bubbled NOR with 2 inputs. 
Although considered to be a NOR with active low inputs, it is fundamentally 
an OR gate with active low inputs and output.) Click OK at the bottom of the 
Symbol window. 

Figure 1.8 Creating the top-level project schematic design file. 
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Select the Blockl.bdf window and the BNOR2 symbol will appear : i ' . .  > 
in the schematic. Drag the symbol to the middle of the window and 
left click to place it. Click on the arrow icon on the left side ...................... i 
toolbar or hit escape to stop inserting that symbol. 

- 
T O  USE THE ONLINE HELP SYSTEM, CLICK HELP ON THE TOP MENU, SELFCT SEARCH AND 
rHEN ENTER BNOR. AT ANY POINT IN THE TUTOIUAL, EXTENSIVE ONLINE HELP IS ALWAYS 
VAILABLE. T O  SEARCH BY TOPIC OR KEYWORD SELECT THE HELP MENU AND FOLLOW THE 

INSTRUCTIONS THERE. 

.... " ................................................................................. 
Assigning the Output Pin for Your Schematic : ...................................................................................... pin_- : 

Select the AND gate symbol again on the left side toolbar, expand the pin 
library, select output, and click OK. Using the mouse and the left mouse 
button, drag the output symbol to the right of the BNORZ symbol leaving 
space between them - they will be connected later. 

Svm bo i 

Figure 1.9 Selectine a new svmbol with the Svmbol Tool. 
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..................................................................................... 
Assigning the Input Pins for Your Schematic 

Find and place two pin input symbols to the left of the BNOR2 symbol in the 
same way that you just selected and placed the output symbol. (Another hint: 
Once selected, a symbol can be copied with Right Click*Copy and pasted 
multiple times using the Right Click*Paste function.). Hit the arrow symbol 
on the left tool bar and deselect the new symbol by moving the cursor away 
and clicking the left mouse button a second time. 

Connecting the Signal Lines 

Using the mouse, move to the end of one of the wires. A cross-symbol mouse 
cursor should appear when the mouse is near a wire. Move to one end of a wire 
you need to add and push and hold down the left mouse button. Hold down the 
left mouse button and drag the end of the wire to the other point that you want 
to connect. Release the left button to connect the wire. If you need to delete a 
wire, click on it - the wire should turn blue when selected. Hit the delete key 
to remove it. You can also use the Right Click4 Delete function. Connect 
the other wires using the same process so that the diagram looks something 
like Figure 1.10 

Figure 1.10 Active low OR-gate schematic example with I10 pins connected. 

Enter the PIN Names 

Right click on the first D INPUT symbol. It will be outlined in blue 
and a menu will appear. Select Properties. Type PB1 for the pin name and 
click OK. Name the other input pin PB2 and the output pin for the LED in a 
similar fashion. 
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Assign the PIN Numbers to Connect the Pushbuttons and the LED 

Since the FPGA chip on the UP 3 or UP 2 board is prewired to the pushbuttons 
and the LED, you need to look up the pin numbers and designate them in your 
design. The information in Table 1.1 is from the documentation on the pinouts 
for the UP 3 and UP 2 board user's manuals. (See Table 2.4.) 

Table 1.1 Hardwired connections on the FPGA chips for the design. 

110 Device 

I PB2 

In the main menu, select Assignments C3 Pin. (If the option to select the pin is 
unavailable, you need to go back and select Assignments c3 Device, and make 
sure that your device is selected correctly.) In the To column, type the name of 
the new pin, PB1. In the Location column, just enter 62 in the space provided 
(NOTE: pin numbers will be different on the UP 2). The software adds PIN- to 
the pin number. Repeat this process assigning PB2 to PIN-48 and LED to 
PIN-56. After assigning all three pins and verifying your entries, close the 
assignment editor and click Yes to save. Device and pin information is stored 
in the project's *.qsf file. Pin names are case sensitive. 

UP 3 Pin Number 
Connections 

62 (SW7) 

48 (SW4) 
I1 I1  

I Quartus II - C:/your-project-directory/orgate - orgate - [A.. . 1, --- ,,UI/N 
- 

UP 1 & UP 2 Pin o umber 

28 (FLEX PBI ) 

29 (FLEX PB2) 

LED 

Figure 1.11 Assigning Pins with the Assignment Editor. 

Saving Your Schematic 

56 (D3) 

Select File c3 Save As and your project directory. Name the file ORGATE. 
Throughout the remainder of this tutorial you should always refer to the same 

14 (7Seg LED DEC. PT.) 
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project directory path when saving or opening files. A number of other files are 
automatically created by the Quartus I1 tools and maintained in your project 
directory. 

Set Unused Pins as Inputs 

The memory chips on the UP 3 board could all be turned on at the same time 
by unused pins on the FPGA, causing their tri-state output drivers to try to 
force output data bus bits to different states. This causes high currents, which 
can overheat and damage devices after several minutes. To eliminate the 
possibility of any damage to the board, the following option should always be 
set in a new project. On the menu bar, select Assignments +Device + Device 
and Pin Options. Click on the Unused Pins tab and check the As inputs, tri- 
stated option. Click OK and then OK in the first window. This setting is saved 
in the projects *.qsf file. Any time you create a new project repeat this step. 

1.2 Compiling the Design 
Compiling your design checks for syntax errors, synthesizes the logic design, 
produces timing information for simulation, fits the design on the selected 
FPGA, and generates the file required to download the program. After any 
changes are made to the design files or pin assignments, the project should 
always be re-compiled prior to simulation or downloading. 

Compiling your Project 

Compile by selecting Processing c3 Start Compilation. The compilation 
report window will appear in the Quartus I1 screen and can be used to monitor 
the compilation process, view warnings, and errors. 

Checking for Compile Warnings and Errors 

The project should compile with 0 Errors. If a popup window appears that 
states, "Full Compilation was Successful," then you have not made an error. 
Info messages will appear in green in the message window. Warnings appear in 
blue in the message window and Errors will be red. Errors must be corrected. 
If you forget to assign pins, the compiler will select pins based on the best 
performance for internal timing and routing. Since the pins for the pushbuttons 
and the LED are pre-wired on the UP 3 or UP 2 board, their assignment cannot 
be left up to the compiler. 

Examining the Report File 

After compilation, the compiler window shows a summary of the compiled 
design including the FPGA logic and memory resources used by the design. 
Select the orgate.bdf schematic window. Use View + Show Pin and Location 
Assignments and check the pins to verify the correct pin numbers have been 
assigned. If a pin is not assigned you may have a typo somewhere in one of the 
pin names or you did not save your pin assignments earlier. You will need to 
recompile whenever you change pin assignments. 
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You can also check all of the FPGA's pins by going to the compiler report 
window with Processing c3 Compilation Report, expanding the Fitter entry, 
and clicking on the Pin-out file. 

1.3 Simulation of the Design 
For complex designs, the project is normally simulated prior to downloading to 
a FPGA. Although the OR example is straightforward, we will take you 
through the steps to illustrate the simulation of the circuit. 

Set Up the Simulation Traces 

Choose File c3 New, select the Other Files tab, and then from the popup 
window select Vector Waveform File and click OK. A blank waveform 
window should be displayed. Right click on the Name column on the left side. 
Select Insert Nodes or Bus. Click on the Node Finder and then the LIST 
button. PB1, PB2 and LED should appear as trace values in the window. Then 
click on the center >> button and click OK and OK again. The signals should 
appear in the waveform window. 

Generate Test Vectors for Simulation 

A simulation requires external input data or "stimulus" data to test the circuit. 
Since the PB1 and PB2 input signals have not been set to a value, the 
simulator sets them to a default of zero. The 'X' on the LED trace indicates 
that the simulator has not yet been run. (If the simulator has been run and you 
still get an 'X,' then the simulator was unable to determine the output 
condition.) 
Right click on PB1. The PBl trace will be highlighted. Select Value E3 Count 
Value ..., click on the Timing tab and change the entry for Multiplied By from 
1 to 5 and click OK. An alternating pattern of Highs and Lows should appear 
in the PBl trace. Right click on PB2. Select Value E3 Count Value ..., click on 
the Timing tab and change the entry for Multiplied By from 1 to 10, and click 
OK. PB2 should now be an alternating pattern of ones and zeros but at twice 
the frequency of PB1. (Other useful options in the Value menu will generate a 
clock and set a signal High or Low. It is also possible to highlight a portion of 
a signal trace with the mouse and set it High or Low manually.) 
When you need a longer simulation time in a waveform, you can change the 
default simulation end time using Edit c3 End Time. 

Performing the Simulation with Your Timing Diagram 

Select File E3 Save and click the Save button to save your project's vector 
waveform file. Select Processing Start Simulation and click OK on the 
window that appears. The simulation should run and the output waveform for 
LED should now appear in the Simulation Report window. You may want to 
right click on the timing display and use the Zoom options to adjust the time 
scale as seen in Figure 1.12. Note that the simulation includes the actual 
timing delays through the device and that it takes almost 10 ns (ns = 10'~ sec.) 
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for the delayed output to reflect the new inputs. Taking this LED output delay 
into account, examine the Simulation Waveform to verify that the LED output 
is Low only when either PB1 OR PB2 inputs are Low. 

Figure 1.12 Active low OR-gate timing simulation with time delavs. 

1.4 Downloading Your Design to the UP 3 Board 

Hooking Up the UP 3 Board to the Computer 

If you have a UP 2 board skip to Section 1.5. To try your design on a UP 3 
board, plug the ByteblasterTM I1 cable into the UP 3 board's JTAG connector 
(innermost of the two connectors on the left side of the board) and attach the 
other end to the parallel port on the PC (USB port if you are using a USB 
Blaster). If you have not done so already, make sure that the PC's BIOS 
settting for the printer port is ECP or EPP mode. Using the 6V AC to DC wall 
transformer attach power to the DC power connector (DC-IN) located on the 
lower right side of the UP 3 board. Press in the power switch located on the 
right edge of the board above the power connector. When properly powered, 
two LEDs on the bottom of the UP 3 board near the power connector should 
light up. 

Preparing for Downloading 

After checking to make sure that the cables and jumpers are hooked up 
properly, you are ready to download the compiled circuit to the UP 3 board. 
Select Tools + Programmer. Click on Hardware Setup, select the proper 
hardware, a ByteBlasterII on LPT1. (If a window comes up that displays, "No 
Hardware" to the right of the Hardware Setup button, use the Hardware Setup 
button to change currently selected hardware from "No Hardware" to 
"ByteblasterIIW. If a red JTAG error message appears or the start button is not 
working, close down the Programmer window and reopen it. If this still 
doesn't correct the problem, then there is something else wrong with the setup 
or cable connection. Go back to the beginning of this section and check each 
step and connection carefully.) 
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Final Steps to Download 

The filename orgate.sof should be displayed in the programmer window. The 
*.sof file contains the FPGA's configuration (programming) data for your 
design. To the right of the filename in the ProgramIConfigure column, check 
the ProgramIConfigure box. To start downloading your design to the board, 
click on the Start button. Just a few seconds are required to download. If 
download is successful, a green info message displays in the system window 
notifying you the programming was successful. 

Testing Your Design 

The locations of PB1, PB2, and the decimal LED are indicated in Figure 1 .l3. 
After downloading your program to the UP 3 board, the LED in the lower right 
comer should turn off whenever a pushbutton is hit. Since the output of the OR 
gate is driving the LED signal, it should be on when no pushbuttons are hit. 
Since the buttons are active low, and the BNOR2 gate also has active low 
inputs and output, hitting either button should turn off the LED. 

Figure 1.13 ALTERA UP 3 board showing Pushbutton and LED locations used in design. 
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Congratulations! You have just entered, compiled, simulated, downloaded a 
design to a FPGA device, and verified its operation. Since you are using a UP 
3 board, you can skip the next section on the UP 2 board and go directly to 
Section 1.6. 
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1.5 Downloading Your Design to the UP 2 Board 

Hooking Up the UP 1 or UP 2 Board to the Computer 

To try your design on a UP 1 or UP 2 board, plug the ByteBlaster cable into 
the UP board and attach the other end to the parallel port on a PC. If you have 
not done so already, make sure that the PC's BIOS settting for the printer port 
is ECP or EPP mode. Using a 9V AC to DC wall transformer or another 7 to 
9V DC power source, attach power to the DC power connector (DC-IN) 
located on the upper left-hand corner of the UP 3 board. When properly 
powered, one of the green LEDs on the board should light up. 

Chip Select Jumpers, Decimal Point LED-, 

FLEX ~ushbuttons' 

Figure 1.14 ALTERA UP 2 board with jumper settings and PB 1, PB2, and LED locations. 

Verify that the device jumpers are set for the FLEX chip as shown in Table 1.2. 
The locations of the pushbuttons, PBl and PB2, and the LED decimal point are 
also highlighted in Figure 1.14. (Note that for the MAX EPM7128 chip, the 
jumper pins are all set to the top position as indicated in Table 1.2.) 

Table 1.2 Jumper settings for downloading to the MAX and FLEX devices. 

I MAX ! FLEX I 
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Preparing for Downloading 

After checking to make sure that the cables and jumpers are hooked up 
properly, you are ready to download the compiled circuit to the UP 2 board. 
Select Tools r3 Programmer. Click on Hardware Setup, select the proper 
hardware, a ByteBlasterII on LPT1. (If a window comes up that displays, "No 
Hardware" to the right of the Hardware Setup button, use the Hardware Setup 
button to change currently selected hardware from "No Hardware" to 
"ByteBlasterII". If a red JTAG error message appears or the start button is not 
working, close down the Programmer window and reopen it. If this still 
doesn't correct the problem, then there is something else wrong with the setup 
or cable connection. Go back to the beginning of this section and check each 
step and connection carefully.) 

Final Steps to Download 

Make sure that the Device Name has changed to EPlOK2O or 
EPFlOK20RC240 for the UP 1 or EPFlOK70RC240 for the UP 2 (depending 
on the UP board and Quartus I1 version that you are running). Make sure you 
have also assigned the pin numbers for a UP 2 board and not the UP 3 (see 
Table 1.1). If it does not display the correct device, then return to your 
schematic, assign the correct device first and then the pin numbers (See section 
1. I.), recompile, and try again. Next, check the ProgramIConfigure box. 
The Start button in the programming window should now be highlighted. 
Click on the Start button to download to the UP 2 board. Just a few seconds 
are required to download. If download is successful, a green info successful 
programmer operation message displays in the system window. (If the Start 
button is not highlighted, click Hardware Setup from the programmer 
window. Confirm the port settings and click OK. If you still have problems 
confirm that the printer port BIOS settings use ECP or EPP mode.) 

Testing Your Design 

The locations of PBl,  PB2, and the decimal LED are indicated in Figure 1 . l4 .  
On the UP 2, one of the seven-segment LED'S decimal points is used for 
monitoring the output. 

Figure 1.15 UP 2's FLEX FPGA pin connection to seven-segment display decimal point. 

All of these LEDs are pre-wired to the FPGA chip with a pull-up resistor as 
illustrated earlier in Figure 1.4. This configuration allows the external resistor 
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to control the amount of current through the LED; however, it also requires the 
FPGA chip to output a Low signal to turn on the LED. (Students regularly 
forget this point and have a fully working project with an inverted pattern on 
the LEDs.). Vcc is 5V on the UP2. 
Figure 1.15 shows the UP 2's Flex FPGA pin number 14 hard wired to the 
seven-segment LED'S decimal point. On the UP 2, in this tutorial, only the 
decimal point will be used for output. 
After downloading your program to the UP 2 board, locate the two rightmost 
seven-segment displays. Since the output of the BNOR2 gate is driving the 
decimal LED signal on the left digit of the two seven-segment displays, it 
should be off (LED state is inverted on UP3). Since the buttons are active low, 
and the BNOR2 gate also has active low inputs and output, hitting either 
button should turn on the LED. 

Congratulations! You have just entered, compiled, simulated, and downloaded 
a design to a FPGA device, and verified its operation. 

1.6 The 10 Minute VHDL Entry Tutorial 
As an alternative to schematic capture, a hardware description language such 
as VHDL or Verilog can be used. In large designs, these languages greatly 
increase productivity and reduce design cycle time. Logic minimization and 
synthesis to a netlist are automatically performed by the compiler and 
synthesis tools. (A netlist is a textual representation of a schematic.) As an 
example, to perform addition, the VHDL statement: 

A <= B + C; 
will automatically generate an addition logic circuit with the correct number of 
bits to generate the new value of A. Using the OR-gate design from the 
Schematic Entry Tutorial, we will now create the same circuit using VHDL. 
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Using a Template to Begin the Entry Process 

Choose File c3 New, select VHDL File and OK. Place the cursor within the 
text area, right click the mouse, and select Insert Template. Make sure VHDL 
is selected. (Note the different prewritten templates. These are provided to 
expedite the entry of VHDL.) Select Entity Declaration- this template is the 
one you will generally start with since it also sets up the input and output 
declarations. The template for the ENTITY declaration appears in the Insert 
Template preview window. Click OK to paste the template in your VHDL 
window. Since the editor knows that it is a VHDL source file, the text will 
appear in different context-sensitive colors. VHDL keywords appear in blue 
and strings in green. The coloring information should be used to detect syntax 
errors while still in the text editor. 

Saving the VHDL Source File 

Select File c3 Save As and save the file as orgate.vhd - click Save. 

Replacing Comments in the VHDL Code 

The entire string indicating the position of the entity name, -entity-name, 
should be set to the name used for the filename - in this case, orgate. There 
are two occurrences of -entity-name in the text. Find and change both 
accordingly. 

Declaring the 110 Pins 

The input and output pins, PB1, PB2 and LED need to be specified in the 
PORT declaration. Since there are no input vectors, bi-directional 110 pins, or 
GENERIC declarations in this design, remove all of these lines. The source 
file should look like Figure 1.16. 

I :' Quartus II - C:lyourgroject-directorylor~ate - orga. .. I 1% //O IIXlI 

Figure 1.16 VHDL Entitv declaration text. 
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Setting up the Architecture Body 

Click the mouse at the bottom of the text field. (We will be inserting another 
template here.) Following the earlier procedure for selecting a VHDL template 
(start with a right click), select an Architecture Body. (The Architecture 
Body specifies the internal logic of the design.) The syntax for the 
Architecture Body appears in the text window after the other text. (You can 
now see why the template is left highlighted - had you not placed your cursor 
first, text would have appeared at your last cursor position. If you do misplace 
the template, hitting the Edit Undo key removes the new text.) 

Editing the Architecture Body 

Change the entity name in the ARCHITECTURE statement to orgate. 
Template lines with a 'I--" preceding a comment, need to be edited for each 
particular design. Delete the two signal declaration lines since this simple 
design does not require internal signals. Delete the remaining comment lines 
that start with "--", and insert LED <= NOT ( NOT PB1 OR NOT PB2 ) as a 
single line. (This line contains a deliberate syntax error that will be detected 
and fixed later.) Insert the following two lines at the beginning of the text file 
to define the libraries for the STD-LOGIC data type. 

LIBRARY IEEE; 
USE 1EEE.STD-LOGIC-1164,all; 

This is the preferred data type for bits in VHDL. The file should now appear as 
in Figure 1.17. 

IaB,Eile Edit yew Project Assignments Ppxessing 1001s Window @dp.;=,I 

12 END orgate: 
3: ARCHITECTURE a OF orgate IS 
iZ BEGIN 
13 LED <= NOT( NOT P B 1  OR NOT PB2 )I 
1.: END a; 

Figure 1.17 VHDL OR-gate model (with syntax error). 
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Before You Compile 

Before you compile the VHDL code, the FPGA device type and pin numbers 
need to be assigned with Assignments + Device and Assignments + Pin. If 
your pins are already defined from the earlier Schematic Entry Tutorial, just 
confirm the pin assignments. If you did not do this step earlier in the tutorial 
see the device and pin assignment instructions at the end of section 1.1. At this 
point, VHDL code is generally ready to be compiled, simulated, and 
downloaded to the board using steps identical to those used earlier in the 
schematic entry method. Once pin assignments are made, they are stored in the 
project's * .qsf file. 

1.7 Compiling the VHDL Design 
The Compile process checks for syntax errors, synthesizes the logic design, 
produces timing information for simulation, fits the design on the FPGA, and 
generates the file required to program the FPGA. After any changes are made 
to the design files or pin assignments, the project should always be re- 
compiled prior to simulation or programming. 
Select Project + ADDIRemove Files in Current Project. Confirm that the 
new orgrate.vhd file is now part of project and remove the tutorial's earlier 
orgate.bdf file that the new VHDL file replaces from the project's file list, if it 
is present. Click OK. Start the compiler with Processing + Start 
Compilation. 

4 ENTITY orgare IS 
5 PORT 
6 ( 

PBI ,  PB2 : I N  SIT-LOGIC: 
e LED : om STD-LOGIC 
9 1 ;  

10 END orgate; 
11 ARCHITCCTORL a OF orgate IS 
12 BEGIN 
l3 LCD <- NOT( NOT P B l  OR NOT PB2 1 
14 UJD a; 

Figure 1.18 VHDL comvilation with a syntax error. 
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Checking for Compile Warnings and Errors 

The project should compile with an error. After compiling the VHDL code, a 
window indicating an error should appear. The result should look something 
like Figure 1.18. 
Double click on the first red error line and note that the cursor is placed in the 
editor either on or after the line missing the ";" (semicolon). VHDL statements 
should end with a semicolon. Add the semicolon to the end of the line so that it 
is now reads: 

LED <= NOT ( NOT PB1 OR NOT PB2 ); 

Now, recompile, and you should have no errors. You can simulate your VHDL 
code using steps identical to the tutorial's earlier schematic version of the 
project. 

I .8 The 10 Minute Verilog Entry Tutorial 
Verilog is another widely used hardware description language (HDL). Verilog 
and VHDL have roughly the same capabilites. VHDL is based on a PASCAL 
style syntax and Verilog is based on the C language. In large designs, HDLs 
greatly increase productivity and reduce design cycle time. Logic minimization 
and synthesis are automatically performed by the compiler and synthesis tools. 
Just like the previous VHDL example, to perform addition, the Verilog 
statement: 

A = B + C ;  
will automatically generate an addition logic circuit with the correct number of 
bits to generate the new value of A. 
Using the OR-gate design from the Schematic Entry Tutorial and the VHDL 
Tutorial, we will now create the same circuit in Verilog. 

Using a Template to Begin the Entry Process 

Choose File + New, select Verilog HDL File and OK. Place the cursor within 
the text area, right click the mouse, and select Insert Template and then select 
Verilog HDL. (Note the different prewritten templates. These are built to 
expedite the entry of Verilog.) Select Module Declaration - this declaration is 
the one you will generally start with since it also sets up the input and output 
declarations. Click OK and the template for the module declaration appears in 
the Text editor. Since the editor knows that it is a Verilog source file, the text 
will appear in different context-sensitive colors. Verilog keywords appear in 
blue and strings in green. The coloring information should be used to detect 
syntax errors while still in the text editor. 



Tutorial 1: The 15-Minute Design 2 5 

Saving the new Verilog File 

Select File * Save As. Note the automatic extension is .v (Verilog) and save 
the file as 0rgate.v - click Save. 

Replacing Comments in the Verilog Code 

The entire string indicating the position of the entity name, -module-name, 
should be set to the name used for the filename - in this case, orgate. There is 
one occurrence of -module-name in the text. Find and change it accordingly. 
Lines starting with 11 are comments and these will need to be replaced with the 
appropriate Verilog code. 

Declaring the 110 Pins 

The input pins, PB1, PB2 and the output pin LED need to be specified in the 
arguments of the Module statement and Port declaration. Since there are no 
inout pins, wire or integer declarations, or Always statements in this design, 
remove all of these lines. The source file should now look like Figure 1.19. 

i n p u t  PB1, PB2: 
4 o u t p u t  LED: 

5 i /  Concurrent  Assignment 

Figure 1.19 Verilog module declaration text. 

Setting up the Behavioral Code 

Click the mouse to just after the line starting with 11 Concurrent Assignment. 
(We will be inserting another template here.) Following the earlier procedure 
for selecting a Verilog template (start with a right click), select a Continuous 
Assignment Statement. (A single assign statement will specify the internal 
logic of this design.) The syntax for a Continuous Assignment Statement 
appears in the text window after the other text. (You can now see why the 
template is left highlighted - had you not placed your cursor first, text would 
have appeared at your last cursor position. If you do misplace the template, 
hitting the delete key removes the highlighted text.) 

Editing the Continuous Assignment Statement 

Change the identify name in the assign statement to "LED" and value to: 
! ( !  PB1 I ! PB2); 
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Verilog is based on C and "I" (vertical line) is the bit wise OR operator. The "!" 
(exclamation point) is the NOT operator. Delete the remaining comment lines 
that start with "11". Delete the ";" at the end of the assign LED statement (This 
causes a deliberate syntax error that will be detected and fixed later.) The file 
should now appear as in Figure 1.20. 

Before You Compile 

Before you compile the Verilog code, the FPGA device type and pin numbers 
need to be assigned with Assignments * Device and Assignments * Pin. If 
your pins are already defined from the earlier Schematic Entry Tutorial, just 
confirm the pin assignments. If you did not do this step earlier in the tutorial 
see the device and pin assignment instructions at the end of Section 1.1. At this 
point, Verilog code is generally ready to be compiled, simulated, and 
downloaded to the board using steps identical to those used earlier in the 
schematic entry method. Once pin assignments are made, they are stored in the 
project's *.qsf file. 

.=E Eile Edit View project Assignments Pr_ocessing Im l s  Wlndow Blp -ja!_xt 
i module orgate (PB1 ,  PBZ, LED):  IEt! 
^ input PB1,  PB2: 

output LED: 
5 
6 ess lgn LED = 1 ( ! P B 1  I ! PB2 ) 
7 

3 endmodule 

a:a mJ 
J 

Figure 1.20 Verilog active low OR-gate model (with syntax error). 

1.9 Compiling the Verilog Design 
The Compile process checks for syntax errors, synthesizes the logic design, 
produces timing information for simulation, fits the design on the FPGA, and 
generates the file required to program the FPGA. After any changes are made 
to the design files or pin assignments, the project should always be re- 
compiled prior to simulation or programming. 

Select Project * ADDIRemove Files in Current Project. Confirm that the 
new 0rgrate.v file is now part of project and remove the tutorial's earlier 
orgate.bdf or orgate.vhd files that the new Verilog file replaces from the 
project if either file is present. Click OK. Start the compiler with Processing 

Start Compilation. 



Tutorial I: The 15-Minute Design 2 7 

Checking for Compile Warnings and Errors 

The project will compile with an error. After compiling the Verilog code, a 
window indicating an error should appear. (See Figure 1.21 .) 
Double click on the first red error line and note that the cursor is placed in the 
editor either on or after the line missing the ";" (semicolon). Verilog 
statements should end with a semicolon. Add the semicolon to the end of the 
line so that it is now reads: 

assign LED = ! ( ! PB1( ! PB2 ); 

Now, recompile, and you should have no errors. You can simulate your Verilog 
code using steps identical to the tutorial's earlier schematic version of the 
project. 

Figure 1.21 Verilog compilation with a syntax error. 

I . I0 Timing Analysis 
With every physical device, there are timing considerations. An FPGA's timing 
is affected by: 

Input buffer delays, 
Signal routing interconnect delays within the FPGA, 

The internal logic delays (in this case the OR), and 
Output buffer delays. 
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The timing analysis tool can be used to determine: 

The physical delay times and 
The maximum clock rates in your design. 

Starting the Analyzer 

At the top menu, select Tools * Timing Analyzer and click the tPd 
(propagation delay time) tab at the top of the Timing Analyzer window. A 
matrix of input to output delay times for the project will be computed and 
displayed as seen in Figure 1.22. 

Quartus I1 - C:/your-project-directorylorgate - orgat.. . / -- - / I  01lM 

Fieure 1.22 Timing analvzer showing inuut to oubut  timing delavs. 

Note that this is the same delay time seen in the simulator. These times include 
the input-to-output buffer delays at the pins and the interconnect delays inside 
the FPGA. The internal OR logic delay is only around a nanosecond relative to 
the rest of the device delay. The actual time shown will vary with different 
versions of the Altera CAD tools and different FPGA chip speed grades. Other 
timing analysis options include setup times, hold times, and clock rates for 
sequential circuits. 

I .I 1 The Floorplan Editor 
A floorplan editor is a visual tool to assist expert users in manually placing and 
moving portions of logic circuits to different logic cells inside the FPGA. This 
is done in an attempt to achieve faster timing or better utilization of the FPGA. 
Floorplanning is typically used only on very large designs that contain 
subsections of hardware with critical high-speed timing. Since the interconnect 
delays are as large as the design's logic delays, logic element and 110 pin 
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placement is very critical in high speed designs. Vertical and horizontal 
interconnect buses are used through the FPGA to connect Logic Elements. 
For all but expert users, the compiler's automatic place-and-route tools should 
be used. Automatic place-and-route was already performed by the fitter in the 
compile process of the tutorial. Timing constraints for critical signals can also 
be specified in some FPGA place and routing tools to help the fitter meet the 
design's timing goals. 
To see the fitter's automatic placement of the design inside the FPGA, select 
Assignment + Back-Annotate Assignments click OK and then 
Assignments + Timing Closure Floorplan. In the display that opens, zoom 
in and scroll around to find the yellow logic element and gray shaded I t 0  pins 
used in your design. Find and select the yellow LE (blue on UP 2), then View 
+ Routing + show fan in and then show fan out, and a view like Figure 
1.23 showing the design will be produced. 

Figure 1.23 Floorvlan view showing internal FPGA vlacement of OR-gate in LE and I10 vins. 
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There is a lot of empty space since the Cyclone EPIC6 contains 5,980 Logic 
Elements (LEs) and the larger EPIC12 contains 12,060 LEs. Only 1 LE was 
used in this design. If you move the logic cell or 110 pins to other locations, it 
will make small changes to the circuit timing because of changes in the 
interconnect delays inside the FPGA. Due to the vast number of combinations, 
FPGA CAD tools cannot explore every possible placement and routing option. 
The Quartus I1 Design Space Explorer tool can also be used to search and 
explore other design options in the design space. Large FPGA designs 
containing millions of gates can require several hours or even days of CPU 
time to examine many of the different place and route alternatives in the 
design space. 

I . I2  Symbols and Hierarchy 
The Symbol Editor is used to edit or create a symbol to represent a logic 
circuit. Symbols can be created for a design whenever a VHDL or Verilog file 
is compiled. Create a symbol for your VHDL design by opening the orgate.vhd 
file, and then select File + CreateIUpdate + Create Symbol Files for 
Current File. 
Select File * Open, change the file type setting for *.bsf, find and chose 
orgate.bsf to see the new symbol for your VHDL based design as shown in 
Figure 1.24. Inputs are typically shown on the left side of the symbol and 
outputs on the right side. Symbols are used for design hierarchy in more 
complex schematics. This new symbol can be used to add the circuit to a 
design with the graphic editor just like the BNOR2 symbol that was used 
earlier in the tutorial. Clicking on a symbol in the graphic editor will take the 
user to the underlying logic circuit or HDL code that the symbol represents. 

Figure 1.24 ORgate design symbol. 

I . I3  Functional Simulation 
In large designs with long compile and simulation times, another type of 
simulation that runs faster is commonly used. A functional simulation does not 
include device delay times and it is used to check for logical errors only. A 
timing simulation that included device delay times, was used earlier in the 
tutorial. After fixing logical errors using functional simulation, a timing 
simulation is still necessary to check for any timing related errors in a design. 
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Performing a Functional Simulation 

To perform a functional simulation, set the simulator for functional simulation 
with Assignments + Settings. Select Simulator in the left column and then 
change the simulation mode from Timing to Functional. Run Processing * 
Generate Functional Simulation Netlist. Finally, select Processing 
+ Start Simulation. Open the Simulation Report waveform and note that 
the output changes without any delay in response to an input unlike the earlier 
timing simulation. To switch back to a timing-mode simulation, change the 
simulator setting back to timing, recompile, and restart the simulation. 
This short tutorial has gone through the basics of a simple design using a 
common path through the design tools. As you continue to work with the tools, 
you will want to explore more of the menus, options and shortcuts. Chapter 4 
contains a tutorial that will introduce a more complex design example. In 
Quartus 11, Help + Tutorial also contains more tutorials. Quartus I1 video 
tutorials and reference manuals are also available online at Altera's website, 
wu~w.altera.com . A number of files such as the *.q* files are maintained in the 
project directory to support a design. Appendix B contains a list of different 
file extensions used by Quartus 11. 

1 . I4  Laboratory Exercises 
1. The tutorials ORed the active low signals from the pushbuttons and produced an output 

that was required to be low to tum off an LED. This was accomplished with the 
"negative-logic OR" gate illustrated to the left in Figure 1.25. 

- 
A + B = A ' B  

Figure 1.25 Equivalent gates: A negative logic OR and a positive-logic AND. 

We know from DeMorgan's Law that the equation in Figure 1.25 represents an 
equivalence. We should therefore be able to substitute a simple two-input AND gate as 
illustrated in Figure 1.25 and accomplish the same task as the single gate used in the 
tutorial. Substitute the AND2 gate for the BNOR2 gate in the schematic capture, then 
compile, simulate, and download the AND circuit. What can you conclude? 

2. Substitute in the VHDL code: 

LED <= PB1 AND PB2; 

Or into the Verilog code: 
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assign LED = PBl & PB2; 

Compile, simulate, and download and test the new circuit. What can you conclude about 
gate equivalence using DeMorgan's Theorem? 

Design a logic circuit to turn on the LED when both pushbuttons are pressed. Compile, 
simulate, and download the new circuit. 

Try a different logic function such as XOR. Start at the beginning or edit your existing 
schematic by deleting and replacing the BNOR2 symbol. Next repeat the tutorial steps to 
compile, simulate, download and test. 

Repeat problem 2 for all of the basic gates including, OR, NOR, NAND, XOR, XNOR, 
and NOT. Try using different LEDs and output your results simultaneously. Look up the 
pin connections to the Cyclone chip in Appendix C and be sure to give each pinout a 
different name. 

Design, enter, simulate and implement a more complex logic gate network. One 
suggestion is a half adder. You will need two LED outputs. 

In the schematic editor, try building the design with some 74xx TTL parts from the 
others maxplus2 symbol library. 

Draw a schematic and develop a simulation to test the 2-to-1 Mux function in the others 
maxplus2 symbol library. 

View the orgateqt file and find the device utilization, the pin assignments, and the 
netlist. A substantial portion of the time delay in this simple logic design is the input and 
output buffer delays and the internal routing of this signal inside the FPGA. Find this 
delay time by removing the BNOR2 gate and one of the inputs in the schematic. 
Connect the input pin to the output pin, recompile and rerun the timing analyzer to 
estimate this time delay. 

10. Use the chip editor to move the logic cell used in the OR-gate design to another location 
inside the FPGA. For information of the chip editor, use the Quartus I1 Help function. 
Try moving the LE used several columns farther away from the pushbutton and LED 
pins. Not all locations of the logic cell will work and some trial and error will be 
required. Save the edited design, rerun the timing analyzer, and compare the resulting 
time delays with the original time delays. See if you are able to achieve a faster 
implementation than the automatic place-and-route tools. 

11. Remove the pin number constraints from the schematic and let the compiler assign the 
pin locations. Rerun the timing analyzer and compare the time delays. Are they faster or 
slower than having specified the input pins? 
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12. If you are using a UP 2 board, retarget the example design to the MAX chip. Pin 
numbers for the MAX decimal point LED can be found in Appendix C. It will be 
necessary to connect jumper wires from the MAX header to the pushbuttons. Select pins 
near the pushbuttons. Pin numbers can be seen on the board's silk-screen. Compare the 
timing from the MAX implementation to the Flex implementation. 

13. If a storage oscilloscope or a fast logic analyzer is available, compare the predicted 
delay times from the simulation and timing analysis to the actual delays measured on the 
FPGA board. Force the pins to a header connector so that you can attach probes to the 
signal wires. 

14. Draw a schematic that uses the LPM-ADD-SUB megafunction to add two signed 
numbers on the Cyclone device. Use Tools + Megawizard to start the megawizard to 
help configure LPM symbols. Verify the proper operation using a simulation with two 4- 
bit numbers. Do not use pipelining, clock, or carry in. Vary the number of bits in the 
adder and find the maximum delay time using the timing analyzer. Plot delay time 
versus number of bits for adder sizes of 4, 8, 16, 32, and 64 bits. Using the LC 
percentages listed in the compiler's report file, estimate the hardware size in LEs. Plot 
LEs required versus number of bits. 

15. Use the DFF part from the primitives storage library and enter the symbol in a schematic 
using the graphical editor. Develop a simulation that exercises all of the features of the 
D flip-flop. Use Help on DFF for more information on this primitive. 

16. Use the DFFE part from the primitives storage library and enter the symbol in a 
schematic using the graphical editor. Develop a simulation that exercises all of the 
features of the D flip-flop with a clock enable. Use Help on DFFE for more information 
on this primitive. 

17. Use gates and a DFF part from the primitives storage library with graphical entry to 
implement the state machine shown in the following state diagram. Verify correct 
operation with a simulation using the Altera CAD tools. The simulation should exercise 
all arcs in the state diagram. A and B are the two states, X is the output and Y is the 
input. Use the timing analyzer's Tools e Timing Analysis e Registered 
performance option tab to determine the maximum clock frequency on the Cyclone 
device. Reset is asynchronous and the DFF Q output should be high for state B. 
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1 

Reset 

18. Repeat the previous problem but use one-hot encoding on the state machine. For one-hot 
encoding use two flip-flops with only one active for each state. For state A the flip-flop 
outputs would be " 10" and for state B "01 ". One-hot encoding is common in FPGAs. 



The Altera UP 3 Board 

Photo: The Altera UP 3 board contains a Cyclone FPGA, external SRAM, SDRAM & 
Flash memory, and a wide assortment of 110 devices and connectors. 
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2 The Altera UP 3 Board 
The Altera University Program 3 (UP 3), FPGA design laboratory board is 
shown in Figures 2.1 and 2.2. This board contains a Cyclone FPGA, several 
external memory devices and a wide range of I10 features. Two versions of the 
UP3 board are currently available with either a Cyclone EPlC6Q240 or the 
larger EPlC12Q240 FPGA. The FPGA and memory devices can be 
programmed using a JTAG ByteBlasterII cable attached to a PC printer port. An 
external 6V DC power supply or an AC to DC wall adapter is used to provide 
power. An on-board clock oscillator and clock chip provides several clock 
signals that are selectable with the board's jumpers. 
Note the orientation of the LCD Display module in Figure 2.1 and how it 
extends beyond to edge of the board. Do not plug the module in backwards as it 
may damage the LCD by reversing its power connections. 
A ByteBlasterII programming adapter cable is supplied with the UP 3 board 
and it connects the UP 3 board to the PC's parallel port (LPT) for device 
programming. The printer port mode of the PC should be set in the PC's BIOS 
to ECP or EPP. 

Figure 2.1 The Altera UP 3 board. 

www.ebook3000.com

http://www.ebook3000.org
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Figure 2.2 The Altera UP 3 board's features. 

2.1 The UP 3 Cyclone FPGA Features 
The Cyclone FPGA is the large square chip located in the center of the UP 3 
board as seen in Figure 2.1. Two versions of the UP 3 are currently available. 
The 3 12 model has the larger EPIC12 and the 306 model uses the EPIC6 as 
seen in Table 2.1. There are some minor pin changes between the EPIC6 and 
EPIC12 board's LCD and memory devices. You must also compile your design 
for the correct Cyclone device assignment or it will not download the device. 

Table 2.1 UP 3 Board's Cyclone FPGA Features 

Cvclone FPGA Feature 

I 4K bit RAM blocks (M4Ks) I 20 1 52 1 

I I 

I Total Internal RAM bits I 92.1 60 I 239,616 I 

EPI  C6Q240 

Loaic Elements (LEs) 

I Phase Locked Loops (PLLs) I 2 I 2 I 

EPlC12Q240 

I User I10 pins I 185 I 173 I 

5.980 12.060 
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The UP 3 Board's Memory Features 
In addition to the Cyclone FPGA's internal memory, the UP 3 board provides 
several external ROM and RAM memory devices as seen in Table 2.2. 
Capacities of external memory are much larger than the internal memory, but 
they will have a longer access time. FPGA processor cores such as the Nios use 
external memory for program and data memory and the FPGA's internal 
memory for register files and cache. Flash and EEPROM are used to provide 
non-volatile memory storage. The EPCSl serial Flash chip is used to 
automatically load the FPGA's serial configuration data at power up in systems 
where you do not want to download the board with the ByteBlaster I1 each time 
power is applied. Links to datasheets for all of the UP 3 board's chips can be 
found at the book's website. 

Table 2.2 UP 3 Board's Memory Features 

I I 

Serial Flash Memory 1 M by I bit Altera EPCSI 

Memory Device 
SRAM 

SDRAM 

Flash Memory 

1% EEPROM 

2.3 The UP 3 Board's 110 Features 
The UP 3 board provides a wide variety of I10 features as summarized in Table 
2.3. For most devices, the UP 3 board's hardware provides only an electrical 
interface to the FPGA's I10 pins. Logic that provides a device interface circuit 
or controller will need to be constructed using the FPGA's internal logic. Many 
design examples of interfacing these various 110 devices can be found in the 
following chapters of this book. 
The Cyclone FPGA is a surface-mount chip that it is soldered directly to the 
board. It is difficult if not impossible to replace the Cyclone chip without 
expensive surface mount soldering equipment, so extreme care should be 
exercised when interfacing the Cyclone I10 pins to any external devices. 
Also, remember to assign pins as shown in the tutorials to avoid randomly 
turning on several of the memory devices at the same time. A tri-state bus 
conflict occurs when several tri-state outputs are turned on and they attempt to 
drive a single signal line to different logic levels. It is possible that such a tri- 
state bus conflict on the memory data bus could damage the devices by 
overheating them after several minutes of operation. 

Size 

64K by 16 bits 

1 M by 16 bits 

I M by I 6  bits 

16K bv I bit 

Part Number 

ISSl lS61C6416 

ISSl lS42S16400B 

Toshiba TC58FVB106AFT-70 

ISSl lS24C16 
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I VGA Port for Video I ROB three I-bit signals State machine for sync signals & user 
Display on Monitor provide 8 colors I logic to generate RGB color sianals 

Table 2.3 Overview of the UP 3 Board's 110 Features 

I IDE Port I Connector I Processor & IDE Device Driver 

110 Device 

USB 1.1 
Serial Port 

Parallel Port 
PSI2 Port 

I Reset Switch I Use for Global Reset I Must use a reset in design 1 4 Non-debounced (O=HIT) I Most applications will need a switch 
debounce Circuit 

Description 

Full Speed and Low Speed 
RS 232 Full Modem 

IEEE 1284 
PC Kevboard or Mouse 

Hardware Interface Needed 

Processor & USB SIE engine core 
UART to send and receive data 

State machine or Proc. for handshake 
Serial Data - PSI2 state machine 

I Real Time Clock I I'C clock chip 1 Serial Data - 12c state machine 

Expansion Card 
LEDs 

LCD Display 

I DIP Switch 1 4 Switches (I=ON) I None or Synchronizer Circuit 

Table 2.4 contains the pin assignments and names used for the UP 3 board's 
most commonly used 110 devices. Pin differences for the larger 1C12 UP 3 
board are listed in parenthesis. The larger 1C12 has twelve additional power 
and ground pins, so fewer pins are left for general purpose 110. 
NOTE: If you ever switch between 1C6 and 1C12 boards, you will need to 
change the device, fix the pin assignments, and then recompile for the new 
FPGA device. A complete table including all I10 devices can be found in 
Appendix C. The voltage levels on FPGApins can vary, so be sure to check for 
the proper voltage levels when selecting an I10 pin to interface new external 
hardware to the board. 5V logic levels are available on 53. 
Do not connect high current devices such as motors or relay coils directly to 
FPGA 110 pins. These pins cannot provide the high current levels needed, and it 
may damage the FPGA's output circuit. 

Santa Cruz Long 72 110 
4 User Definable (1 =ON) 

16 Character by 2 line 
ASCll Characters 

Depends on expansion card used 
None 

State machine or Processor to send 
ASCll characters and LCD commands 
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Table 2.4 UP 3 Board's most commonly used FPGA I10 pin names and assignments 

( Reset = 0 ) 

Pin Name 
PS2-CLK 

PS2-DATA 

RESET 

I USER CLOCK 1 38 1 Input I External Clock from J2 Pin 2 I 

Pin 110 Type 
Bidirectional 

Bidirectional 

Input 

Pin# 
12 

13 

23 

I 
I PBSWITCH-4 1 48 1 Input I Pushbutton SW4 I 

Function of Pin 
PS2 Connector 

PS2 Connector 

Power on or SW8 pushbutton reset 

USB-CLK 1 29 

(non-debounced, 0 = button hit) 

Input 

PBSWITCH-5 

I LCD E 1 50 1 Output I LCD Enable line I 

USB 48MHz Clock -jumper 

I LED D6 ( 53 1 Output I LED D3 (0 =LED ON, I =  LED OFF) I 

49 

D IPSWITCH 1 61 Input I DIP Switch SW3 #4 ( ON = 1, OFF = 0) I 

Input 

LED-D5 

LED-D4 

LED-D3 

PBSWITCH-6 

DIPSWITCH-1 

DIPSWITCH-2 

DIPSWITCH-3 

Input I Pushbutton SW7 (non-debounced. 0 = 
hit) 

(non-debounced, 0 = button hit) 

Pushbutton SW5 

I LCD RW 1 73 1 Output I LCD RNV control line I 

54 

55 

56 

57 

58 

59 

60 

- . .  

1 MEM-DQPI 1 100 1 Bidirectional I MemoryILCD Data Bus 1 

Output 

Output 

Output 

Input 

Input 

Input 

Input 

MEM-DQ[O] 

MEM-DQ[l] 

MEMpDQ[2] 

MEM-DQ[6] 1 106 

LCD RS 1 108 

LED D4 (0 = LED ON, I =  LED OFF) 

LED 05  (0 = LED ON, I =  LED OFF) 

LED D6 (0 = LED ON, I =  LED OFF) 

Pushbutton SW6 (non-debounced, 0 = 
hit) 

DIP Switch SW3 # I  ( ON = 1, OFF = 0) 

DIP Switch SW3 #2 ( ON = 1, OFF = 0) 

DIP Switch SW3 #3 ( ON = 1, OFF = 0)" 

VGA GREEN 

94 

96(133) 

98 

VGA BLUE - 
VGA VSYNC I 

I 

226 

Bidirectional 

Bidirectional 

Bidirectional 

I VGA HSYNC 1 
I 

227 

MemoryILCD Data Bus 

MemoryILCD Data Bus 

MemoryILCD Data Bus 

Bidirectional I MemoryILCD Data Bus 

Bidirectional I MemorvILCD Data Bus 4 

Outout I VGA Connector Blue Video Sianal I 

Bidirectional 

Output 

Bidirectional 

Output 

Inout 

Outout I VGA Connector Vert Svnc Sianal I 

MemoryILCD Data Bus 

LCD Register Select Line 

MemoryILCD Data Bus 

VGA Connector Green Video Signal 

CPU Clock 100 or 66MHz - iumoer 

Outout I VGA Connector Horiz Svnc Sianal I 
I VGA RED 1 228 1 Outout I VGA Connector Red Video Sianal I 
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2.4 Obtaining a UP 3 Board and Cables 
UP 3 boards are available for purchase from Altera's University Program at 
special educational pricing for schools and students (www.altera.com). UP 3 
education kits come with an AC to 6V DC power supply, a special serial cable, 
and a ByteBlasterII cable. 

A Longer Cable for the ByteBlaster 

For use with the UP 3 or UP 2 board, a longer 25pin to 25pin PC MIF parallel 
printer cable is useful since the 1 foot Byteblaster I1 cable provided with 
the boards is often too short to reach the PC's printer port. All 25 wires must be 
connected in the printer extension cable. Any computer store should have these 
cables. A three-foot well-shielded cable works best. Avoid using extra long 
cables or very low-cost cables without good shielding as they can cause 
problems. 



Programmable Logic 
Technology 

Photo: An Altera Flex lOKlOO FPGA containing 10,000,000 Transistors and 100,000 
gates. The FPGA is in a pin grid array (PGA) package. The cover has been removed so 
that the chip die is visible in the center of the package. 
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3 Programmable Logic Technology 
A wide spectrum of devices is available for the implementation of digital logic 
designs as shown in Figure 3.1. Traditional off-the-shelf integrated circuit 
chips, such as SSI and MSI TTL, perform a fixed operation defined by the 
device manufacturer. A user must connect different chip types to build a circuit. 
Application specific integrated circuits (ASICs), complex programmable logic 
devices (CPLDs), and field programmable gate arrays (FPGAs) are integrated 
circuits whose internal functional operation is defined by the user. ASICs 
require a final customized manufacturing step for the user-defined function. A 
CPLD or FPGA requires user programming to perform the desired operation. 

Progammable 
Logic (FPLDs) 

el 
Custom 

Figure 3.1 Digital logic technologies. 

The design tradeoffs of the different technologies are seen in Figure 3.2. Full 
custom VLSI development of a design at the transistor level can require several 
years of engineering effort for design and testing. Such an expensive 
development effort is warranted only for the highest volume devices. This 
approach can generate the highest performance devices. Examples of full 
custom devices include the microprocessor and RAM chips used in PCs. 
ASICs can be divided into three categories, Gate Arrays, Standard Cell and 
Structured. Gate Arrays are built from arrays of pre-manufactured logic cells. A 
single logic cell can implement a few gates or a flip-flop. A final manufacturing 
step is required to interconnect the sea of logic cells on a gate array. This 
interconnection pattern is created by the user to implement a particular design. 
Standard Cell devices contain no fixed internal structure. For standard cell 
devices, the manufacturer creates a custom photographic mask to build the chip 
based on the user's selection of devices, such as controllers, ALUs, RAM, 
ROM, and microprocessors from the manufacturer's standard cell library. New 
Structured ASICs are similar to gate arrays but each array element contains 
more logic. They offer tradeoffs somewhere between other ASICs and FPGAs. 
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Since ASICs require custom manufacturing, additional time and development 
costs are involved. Several months are normally required and substantial setup 
fees are charged. ASIC setup fees can be as high as a few million dollars. 
Additional effort in testing must be performed by the user since chips are tested 
after the final custom-manufacturing step. Any design error in the chip will lead 
to additional manufacturing delays and costs. For products with long lifetimes 
and large volumes, this approach has a lower cost per unit than CPLDs or 
FPGAs. Economic and performance tradeoffs between ASICs, CPLDs, and 
FPGAs are changing with each new generation of devices and design tools. 

Speed, 
Density, 
Complexity, 
Market 
Volume 
needed for 
Product 

VLSl Design -., ' 

b 
Engineering Cost, Time to Develop Product 

Figure 3.2 Digital logic technologv tradeoffs. 

Simple programmable logic devices (PLDs), such as programmable array logic 
(PALS), and programmable logic arrays (PLAs), have been in use for over thirty 
years. An example of a small PLA is shown in Figure 3.3.  First, the logic 
equation is minimized and placed in sum of products (SOP) form. The PLA has 
four inputs, A, B, C, and D shown in the upper left corner of Figure 3.3. Every 
input connects to an inverter, making the inverted values of A, B, C, and D 
available for use. Each product term is implemented using an AND gate with 
several inputs. Outputs from the two product term's AND gates then feed into 
an OR gate. 
A special shorthand notation is used in PLAs and PALS to represent the large 
number of inputs present in the AND and OR gate arrays. A gate input is 
present at each point where the vertical and horizontal signal lines cross in 
Figure 3.3. Note that this means that the two AND gates actually have eight 
inputs and the OR gate has two inputs in the PLA. Every input signal and its 
complement is available as an input to the AND gates. Each gate input in the 
PLA is controlled by a fuse. Initially all fuses are intact. By blowing selected 
fuses, or programming the PLA, the desired SOP equation is produced. The top 
AND gate in Figure 3.3 has fuses intact to the A and B inputs, so it produces 
the AB product term. The lower AND gate has fuses set to produce 6. The 
OR gate has both fuses intact, so it ORs both product terms from the AND 
gates to produce the final output, F = AB +cD. 
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Small PLDs can replace several older fixed function TTL-style parts in a 
design. Most PLDs contain a PLA-like structure in which a series of AND gates 
with selectable or programmable inputs, feed into an OR gate. In PALS, the OR 
gate has a fixed number of inputs and is not programmable. The AND gates and 
OR gate are programmed to directly implement a sum-of-products Boolean 
equation. On many PLDs, the output of the OR gate is connected to a flip-flop 
whose output can then be feed back as an input into the AND gate array. This 
provides PLDs with the capability to implement simple state machines. A PLD 
can contain several of these AND/OR networks. 

x - Fuse Intact 

Figure 3.3 Using a PLA to implement a Sum of  Products equation. 

In more recent times, higher densities, higher speed, and cost advantages have 
enabled the use of programmable logic devices in a wider variety of designs. 
CPLDs and FPGAs are the highest density and most advanced programmable 
logic devices. Designs using a CPLD or FPGA typically require several weeks 
of engineering effort instead of months. These devices are also sometimes 
collectively called field programmable logic devices (FPLDs). 
ASICs and full custom designs provide faster clock times than CPLDs or 
FPGAs since they are hardwired and do not have programmable interconnect 
delays. Since ASICs and full custom designs do not require programmable 
interconnect circuitry they use less chip area, less power, and have a lower per 
unit manufacturing cost in large volumes. Initial engineering and setup costs for 
ASICs and full custom designs are much higher. 
For all but the most time critical design applications, CPLDs and FPGAs have 
adequate speed with maximum clock rates typically in the range of 50- 
400MHz; however, clock rates up to lGHz have been achieved on new 
generation FPGAs and many have a few high-speed 1-10 GHz output pins. 
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CPLDs and FPGAs 
Internally, CPLDs and FPGAs typically contain multiple copies of a basic 
programmable logic element (LE) or cell. The logic element can implement a 
network of several logic gates that then feed into 1 or 2 flip-flops. Logic 
elements are arranged in a column or matrix on the chip. To perform more 
complex operations, logic elements can be automatically connected to other 
logic elements on the chip using a programmable interconnection network. The 
interconnection network is also contained in the CPLD or FPGA. The 
interconnection network used to connect the logic elements contains row and/or 
column chip-wide interconnects. In addition, the interconnection network often 
contains shorter and faster programmable interconnects limited only to 
neighboring logic elements. 
When a design approaches the device size limits, it is possible to run out of 
either gate, interconnect, or pin resources when using a CPLD or FPGA. 
CPLDs tend to have faster and more predictable timing properties while FPGAs 
offer the highest gate densities and more features. 
Clock signals in large FPGAs normally use special low-skew global clock 
buffer lines. These are dedicated pins connected to an internal high-speed bus. 
This special bus is used to distribute the clock signal to all flip-flops in the 
device at the same time to minimize clock skew. If the global clock buffer line 
is not used, the clock is routed through the chip just like a normal signal. The 
clock signal could arrive at flip-flops at widely different times since 
interconnect delays will vary in different parts of the chip. This delay time can 
violate flip-flop setup and hold times and can cause metastability or 
unpredictable operation in flip-flops. Most large designs with a common clock 
that is used throughout the FPGA will require the use of the global clock buffer. 
The size of CPLDs and FPGAs is typically described in terms of useable or 
equivalent gates. This refers to the maximum number of two input NAND gates 
available in the device. This should be viewed as a rough estimate of size only. 

Figure 3.4 Examples o f  FPGAs and advanced high pin count package types. 
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The internal architecture of three examples of CPLD and FPGA device 
technologies, the Altera MAX 7000, the Altera Cyclone, and the Xilinx 4000 
family will now be examined. An example of each of these devices is shown in 
Figure 3.4. From left to right the chips are an Altera MAX 71283 CPLD in a 
Plastic J-Lead Chip Carrier (PLCC), an Altera Cyclone 10K70 FPGA in a 
Plastic Quad Flat Pack (PQFP), and a Xilinx XC4052 FPGA in a ceramic Pin 
Grid Array Package (PGA). The PGA package has pins on .I" centers while the 
PQFP has pins on .05" centers at the edges of the package. Both Altera and 
Xilinx devices are available in a variety of packages. 
Packaging can represent a significant portion of the FPGA chip cost. The 
number of I 1 0  pins on the FPGA package often limits designs. Larger ceramic 
packages such as a PGA with more pins are more expensive than plastic. 

3.2 Altera MAX 7000s Architecture - A Product Term CPLD Device 
The multiple array matrix (MAX) 7000s is a CPLD device family with 600 to 
20,000 gates. This device is configured by programming an internal electrically 
erasable programmable read only memory (EEPROM). Since an EEPROM is 
used for programming, the configuration is retained when power is removed. 
This device also allows in-circuit reprogrammability. 

36 Signals 16 Expander 
from PIA Product 

Figure 3.5 MAX 7000 macrocell. 
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The 7000 device family contains from 32 to 256 macrocells of the type seen in 
Figure 3.5. Similar to the early PALS, an individual macrocell contains five 
programmable AND gates with wide inputs that feed into an OR gate with a 
programmable inversion at the output. Just like a PAL, the AND/OR network is 
designed to implement Boolean equations expressed in sum-of-products form. 
Inputs to the wide AND gate are available in both normal and inverted forms. 
Parallel expanders are included that are used to borrow extra product terms 
from adjacent macrocells for logic functions needing more than five product 
terms. 
The output from the AND/OR network can then be fed into a programmable 
flip-flop. Inputs to the AND gates include product terms from other macrocells 
in the same local block or signals from the chip-wide programmable 
interconnect array (PIA). The flip-flop contains Bypass, Enable, Clear and 
Preset functions and can be programmed to act as a D flip-flop, Toggle flip- 
flop, JK flip-flop, or SR latch. 
Macrocells are combined into groups of 16 and called logic array blocks 
(LABs), for the overall device architecture as shown in Figure 3.6. The PIA can 
be used to route data to or from other LABs or external pins on the device. 
Each 110 pin contains a programmable tri-state output buffer. An FPGA's 110 
pin can thus be programmed as input, output, output with a tri-state driver, or 
even tri-state bi-directional. 

Figure 3.6 MAX 7000 CPLD architecture. 

Macrocell: 
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Altera Cyclone Architecture - A Look-Up Table FPGA Device 
The Cyclone device is configured by loading internal static random access 
memory (SRAM). Since SRAM is used in FPGAs, the configuration will be 
lost whenever power is removed. In actual systems, a small external low-cost 
serial flash memory or programmable read only memory (PROM) is normally 
used to automatically load the FPGA's programming information when the 
device powers up. 
FPGAs contain a two-dimensional row and column-based architecture to 
implement user logic. A column and row interconnection network provides 
signal connections between Logic Array Blocks (LABs) and embedded memory 
blocks. Interconnect delay times are on the same order of magnitude as logic 
delays. 
The Cyclone FPGA's logic array consists of LABs, with 10 Logic Elements 
(LEs) in each LAB. An LE is a small unit of logic providing efficient 
implementation of user logic functions. LABs are grouped into rows and 
columns across the device. Cyclone devices range from 2,910 to 20,060 LEs. 
M4K RAM embedded memory blocks are dual-port memory blocks with 4K 
bits of memory plus parity (4,608 bits). These blocks provide dual-port or 
single-port memory from 1 to 36-bits wide at up to 200 MHz. These blocks are 
grouped into columns across the device in between certain LABs. The Cyclone 
EPIC6 and EPIC12 contain 92K and 239K bits of embedded RAM. 
Each of the Cyclone device's I10 pins is fed by an I10 element (IOE) located at 
the ends of LAB rows and columns around the periphery of the device. I10 pins 
support various single-ended and differential 110 standards. Each IOE contains 
a bidirectional I10 buffer and three registers for registering input, output, and 
output-enable signals. 
Cyclone devices also provide a global low-skew clock network and up to two 
Phase Locked Loops (PLLs). The global clock network consists of eight global 
clock lines that drive throughout the entire device. The global clock network 
can provide clocks for all resources within the device, such as IOEs, LEs, and 
memory blocks. Cyclone PLLs provide general-purpose clocking with clock 
multiplication/division and phase shifting as well as external outputs for high- 
speed differential I10 support. 
Figure 3.7 shows a Cyclone logic element. Logic gates are implemented using 
a look-up table (LUT). The LUT is a high-speed 16 by 1 SRAM. Four inputs 
are used to address the LUT's memory. The truth table for the desired gate 
network is loaded into the LUT's SRAM during programming. A single LUT 
can therefore model any network of gates with four inputs and one output. The 
multiplexers seen in Figure 3.7 are all controlled by bits in the FPGA's SRAM 
configuration memory. 
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Figure 3.7 Cyclone Logic Element (LE). 

An example showing how a LUT can model a gate network is shown in Figure 
3.8. First, the gate network is converted into a truth table. Since there are four 
inputs and one output, a truth table with 16 rows and one output is needed. The 
truth table is then loaded into the LUT's 16 by 1 high-speed SRAM when the 
FPGA is programmed. 
Note that the four gate inputs, A, B, C, and D, are used as address lines for the 
RAM and that F, the output of the truth table, is the data that is stored in the 
LUT's RAM. In this manner, the LUT's RAM implements the gate network by 
performing a RAM based table lookup instead of using actual logic gates. 
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Figure 3.8 Using a look-up table (LUT) to model a gate network. 

More complex gate networks require interconnections with additional 
neighboring logic elements. The output of the LUT can be fed into a D flip-flop 
and then to the interconnection network. The clock, Clear, and Preset can be 
driven by internal logic or an external 110 pin. The flip-flop can be 
programmed to act as a D flip-flop, T flip-flop, JK flip-flop, or SR latch. Carry 
and Cascade chains connect to all LEs in the same row. 
Figure 3.9 shows a logic array block (LAB). A logic array block is composed of 
ten logic elements (LEs). Both programmable local LAB and chip-wide row 
and column interconnects are available. Carry chains are also provided to 
support faster addition operations. 
Input-output elements (IOEs) are located at each of the device's I10 pins. IOEs 
contain a programmable tri-state driver and an optional 1-bit flip-flop register. 
Each 110 pin can be programmed as input, output, output with a tri-state driver, 
or even tri-state bi-directional with or without a register. Four clock I10 pins 
connect to the eight low-skew global clock buffer lines that are provided in the 
device. 
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Figure 3.9 Cyclone Logic Array Blocks (LAB) and Interconnects. 
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3.4 Xilinx 4000 Architecture - A Look-Up Table FPGA Device 
The Xilinx 4000 Family was a popular first generation FPGA device family 
with 2,000 to 180,000 usable gates. It is configured by programming internal 
SRAM. Figure 3.10 is a photograph of a six-inch silicon wafer containing 
several XC4010E 10,000 gate FPGA chip dice. Figure 3.11 is a contrast- 
enhanced view of a single XC4010E die. If you look closely, you can see the 20 
by 20 array of logic elements and the surrounding interconnect lines. Die that 
pass wafer-level inspection and testing are sliced from the wafer and packaged 
in a chip. FPGA yields are typically 90% or higher after the first few 
production runs. 
As seen in Figure 3.12, this device contains a more complex logic element 
called a configurable logic block (CLB). Each CLB contains three SRAM- 
based lookup tables. Outputs from the LUTs can be fed into two flip-flops and 
routed to other CLBs. A CLB's lookup tables can also be configured to act as a 
16 by 2 RAM or a dual-port 16 by 1 RAM. High-speed carry logic is provided 
between adjacent CLBs. 
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Figure 3.10 Silicon wafer containing XC4010E 10,000 gate FPGAs. 

Figure 3.11 Single XC4010E FPGA die showing 20 by 20 array of logic elements and interconnect. 
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Figure 3.12 Xilinx 4000 Family Configurable Logic Block (CLB). 

CLBs are arranged in a square matrix with a programmable hierarchical 
interconnection network. Devices in the family contain from 100 to 3,136 
CLBs. The multiplexers seen in Figure 3.12 are all controlled by bits in the 
FPGA's SRAM configuration memory. 
The complex hierarchical interconnection network contains varying length 

row, column, and neighboring CLB interconnect structures. Eight low-skew 
global clock buffers are also provided. Input-output blocks (IOBs), contain 
programmable tri-state drivers and optional registers. Each 110 pin can be 
programmed as input, output, output with a tri-state driver, or tri-state bi- 
directional with or without a register. In the more recent Xilinx Virtex 4 
FPGAs, each CLB now contains four circuits similar to the earlier 4000 CLBs. 

3.5 Computer Aided Design Tools for Programmable Logic 
Increasing design complexity and higher gate densities are forcing digital 
designs to undergo a paradigm shift. Old technology, low-density logic 
families, such as the TTL 7400 or simple PLD families are rarely if ever used in 
new designs. With logic capacities of an individual FPGA chip approaching 
10,000,000 gates, manual design at the gate level is no longer a viable option in 
complex systems. Rapid prototyping using hardware description languages 
(HDLs), IP cores, and logic synthesis tools has all but replaced traditional gate- 
level design with schematic capture entry. These new HDL-based logic 
synthesis tools can be used for both ASIC and FPGA-based designs. The two 
most widely used HDLs at the present time are VHDL and Verilog. 
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The typical FPGA CAD tool design flow is shown in Figure 3.13. After design 
entry using an HDL or schematic, the design is automatically translated, 
optimized, synthesized, and saved as a netlist. (A netlist is a text-based 
representation of a logic diagram.) A functional simulation step is often added 
prior to the synthesis step to speed up simulations of large designs. 
An automatic tool then fits the design onto the device by converting the design 
to use the FPGA's logic elements, first by placing the design in specific logic 
element locations in the FPGA and then by selecting the interconnection 
network routing paths. The place and route process can be quite involved and 
can take several minutes to compute on large designs. On large devices, 
combinatorial explosion (exponential growth) will prevent the tool from 
examining all possible place and route combinations. When designs require 
critical timing, some tools support timing constraints that can be placed on 
critical signal lines. These optional constraints are added to aid the place and 
route tool in finding a design placement with improved performance. 

Design _, ~ ~ ~ ~ ~ l ~ ~ i ~ ~  - Optimization & 1 r y  1 I I I Synthesis 1-1 %~~~ 1-1 1-1 PriF:kiing 1 
I 

Figure 3.13 CAD tool design flow for FPGAs. 

After place and route, simulation can be performed using actual gate and 
interconnect time delays from a detailed timing model of the device. Although 
errors can occur at any step, the most common path is to find errors during an 
exhaustive simulation. The final step is device programming and hardware 
verification on the FPGA. 

3.6 Next Generation FPGA CAD tools 
A few HDL synthesis tools now support behavioral synthesis. Unlike the more 
widely used register transfer level (RTL) models contained in this book, 
behavioral synthesis models do not specify the exact states and sequence of 
register transfers. A separate constraint file specifies the number of clocks 
needed to obtain selected signals and the tool automatically generates the state 
machines, logic, and register transfers needed. 
Although not currently in widespread use for current designs, newer FPGA 
CAD tools are also appearing based on other languages such as C and Java. 
Some of these system-level tools output VHDL or Verilog models as an 
intermediate step. New HDLs such as SystemVerilog (www.svstemverilog.org) 
and SystemC (www.svstemC.org) provide enhanced support for verification. 
Tools that automatically generate an FPGA design from other engineering tools 
such as MATLAB-Simulink or LabVIEW have also been introduced. These 
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graphical based tools are primarily aimed at DSP application development for 
FPGAs using a library of specialized DSP blocks. 

3.7 Applications of FPGAs 
The last decade has seen ever increasing application areas for FPGAs. A recent 
market study found over twelve times as many new FPGA-based designs as 
ASIC-based designs and ASIC costs continue to increase. New generation 
FPGAs can have nearly ten million gates with clock rates approaching 1GHz. 
Example application areas include single chip replacements for old multichip 
technology designs, Digital Signal Processing (DSP), image processing, 
multimedia applications, high-speed communications and networking 
equipment such as routers and switches, the implementation of bus protocols 
such as peripheral component interconnect (PCI), microprocessor glue logic, 
co-processors, and microperipheral controllers. 
Several large FPGAs with an interconnection network are used to build 
hardware emulators. Hardware emulators are specially designed commercial 
devices used to prototype and test complex hardware designs that will later be 
implemented on gate arrays or custom devices. Hardware emulators are 
commonly used to build a prototype quickly during the development and 
testing of microprocessors. Several of the recent Intel and AMD processors 
used in PCs were tested on FPGA-based hardware emulators before the full 
custom VLSI processor chip was produced. 
A newer application area is reconfigurable computing. In reconfigurable 
computing, FPGAs are quickly reprogrammed or reconfigured multiple times 
during normal operation to enable them to perform different computations at 
different times for a particular application. 

3.8 Features of New Generation FPGAs 
Each new generation of FPGAs increases in size and performance. In addition 
to more logic elements, embedded memory blocks, and interconnect other new 
features are appearing. Some FPGAs contain a mix of both product term and 
lookup tables to implement logic. Such product term structures typically 
require less chip area to implement the complex gating logic present in large 
state machines and address decoders. Many FPGAs include several phase- 
locked loops (PLLs). These PLLs are used to multiply, divide, and adjust high- 
speed clock signals. Similar to microprocessors used in PCs, many new FPGAs 
use a lower 1.5 to 3 Volt internal core power supply. To easily interface to 
external processor and memory chips, new FPGAs feature selectable I10 
standards on I10 pins. 
High-speed hardware multipliers and multiply accumulators (MACs) are also 
available in FPGA families targeted for multiply intensive DSP and graphics 
applications. Several FPGAs from Altera and Xilinx are available with 
commercial internal RISC microprocessor intellectual property (IP) cores. 
These include the Nios, ARM, Microblaze, and PowerPC. The Nios and 
Microblaze processors are an HDL model that is synthesized using the FPGA's 
standard logic elements. The ARM, and PowerPC are commercial IP cores with 
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custom VLSI layouts. These new devices are a hybrid that contains both ASIC 
and FPGA features. Several processors can be implemented in a single FPGA. 
These FPGAs come with additional software tools for the processor, including 
C/C++ compilers. Some processor cores are available with a small operating 
system kernel. These new large FPGAs with a microprocessor IP core are 
targeted for system on-a-chip (SOC) applications. When an FPGA is used for 
SOC applications it is also called system on-a-programmable chip (SOPC). 
On many of the largest FPGAs, redundant rows of logic elements are included 
to increase yields. As any VLSI device gets larger the probability of a 
manufacturing defect increases. If a defective logic element is found during 
initial testing, the entire row is mapped out and replaced with a spare row of 
logic elements. This operation is transparent to the user. 

3.9 For additional information 
This short overview of programmable logic technology has provided a brief 
introduction to FPGA architectures. Altera and Xilinx have the largest market 
share of current FPGA vendors. Additional CPLD and FPGA manufacturers 
include Lattice, Actel, Quicklogic, and Cypress. Actel, Quicklogic, and Cypress 
have one-time programmable FPGA devices. These devices utilize antifuse 
programming technology. Antifuses are open circuits that short circuit or have 
low impedance only after programming. Trade publications such as Electronic 
Design News periodically have a comparison of the available devices and 
manufacturers. 
Altera MAX 7000, Cyclone, and the new Cyclone I1 and Stratix I1 family data 
manuals with a more in-depth explanation of device hardware details are 
available free online at Altera's website, http://www.altera.com. 
For other examples of FPGA architectures, details on the newer Xilinx Spartan 
and Virtex families can be found at http:/lwww.xilinx.com. 
An introduction to the mathematics and algorithms used internally by digital 
logic CAD tools can be found in Synthesis and Optimization of Digital Circuits 
by Giovanni De Micheli, McGraw-Hill, 1994 and Logic Synthesis and 
VeriJication Algorithms by Hactel and Somenzi, Springer Publishers, 1996. The 
Design Warrior k Guide to FPGAs by Clive Maxfield, Elsevier, 2004 contains 
an overview of commercial FPGA devices and commercial EDA tool flows for 
FPGA design. 

3.10 Laboratory Exercises 
1. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be 

implemented using the following: 

A. The PLA in Figure 3.3 
B. The LUT in Figure 3.9 

Be sure to include the PLA fuse pattern and contents of the LUT 
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2. Examine the compiler report file and use the chip editor to explain how the OR-gate 
design in the tutorial in Chapter 1 was mapped into the Cyclone device. 

3. Retarget the design from Chapter 1 to a MAX 7000s device. Examine the compiler 
report file and use the chip editor to explain how the OR-gate design in the tutorial in 
Chapter 1 was mapped into the MAX device. 

4. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be 
implemented in the following: 

A. A MAX Logic Element 
B. A Cyclone Logic Element 
C. An XC4000 CLB 

Be sure to include the contents of any LUTs required and describe the required mux 
settings. 

5. Using data sheets available on the web, compare and contrast the features of newer 
generation FPGAs such as Altera's Cyclone I1 and Stratix I1 and Xilinx's Virtex I1 and 
Virtex 4 families. 



Tutorial 11: Sequential 
Design and Hierarchy 

Quartus II - C:/qbooksoft/CHAP5/tutor2 - tutor2 - [tutor3,bdf] 
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4 Tutorial II: Sequential Design and Hierarchy 
The second tutorial contains a more complex design containing sequential logic and 
hierarchy with a counter and an LCD display. To save time, much of the design has 
already been entered. The existing design will require some modifications. 
Once completed, you will: 

Understand the fundamentals of hierarchical design tools, 

Complete an example of a sequential logic design, 

Use the UP3core library designed for the UP 3 board, 

Use the LCD display, pushbuttons, and the onboard clock, 

Use buses in a schematic, and 

Be able to perform automatic timing analysis of sequential circuits. 

4.1 Install the Tutorial Files and UP3core Library 
Locate the booksoft\chap4 directory on the CD-ROM that came with the book. 
For the UP 3 board, copy all of the Chapter 4 tutorial files in this directory to 
your drive:\mydesigns directory or another subdirectory. A special version of 
the files for the larger 1C12 UP 3 board is in the subdirectory \1C12. If you are 
using the UP 2, a version of the files for the UP 2 board is in the subdirectory 
\UP2 along with special instructions for UP 2 users. 

Figure 4.1 The tutor2.gdf schematic for the UP 3. 
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4.2 Open the tutor2 Schematic 
After setting up the files in your directory, select File c3 Open Project 
c3 drive:\mydesigns\tutor2.qpf. Open the top-level schematic by selecting 
File c3 Open c3 drive:\mydesigns\tutor2.bdf and the schematic in Figure 
4.1 should be displayed. This design has been partially entered to save time. 
This is an 8-bit counter design that outputs the counter value to the UP 3's LCD 
display panel. On the UP 2 version of the tutorial, you will see the counter 
value in the seven segment LED displays. 
Click on the Ipm-counter0 symbol to activate the MegaWizard Plug-In 
Manager. The MegaWizard can be used to create and edit megafunctions. In 
this case, you can see that lpm-counter0 is an 8-bit binary counter that counts 
up. You can click on the documentation button and then generate sample 
waveforms to view more details about the counter's operation. You can create 
new functions with the MegaWizard using Tools c3 MegaWizard Plug-In 
Manager. Close the MegaWizard windows to continue. 

I 

Figure 4.2 Lpm-counter0 MegaWizard edit window. 

Special hardware blocks have been designed to support the easy use of the 
advanced 110 features found on the UP 3 board. They include pushbuttons, 
LCD displays, keyboard, mouse, and video output. More details on all of these 
UP3core functions are provided in Chapter 5. The UP3core function needed for 
this tutorial have already been placed in this project's directory. Several 
symbols from the UP3core library appear in the project library and are 
available to be entered in a design. As an alternative to copying these files to 
each project's directory, under Project c3 AddIRemove Files in Project, you 
can click on User Libraries and enter another path to an external library such 
as the UP3core library. 

4.3 Browse the Hierarchy 
In engineering, the principle of functional decomposition is normally used in 
large designs. Complex designs are typically broken into smaller design units. 
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The smaller design units are then more easily understood and implemented. The 
smaller designs are interconnected to form the complex system. The overall 
design is a hierarchy of interconnected smaller design units. This also promotes 
the re-use of portions of the design. 
The current schematic is a view of the top level of the design. In this design, 
the problem was decomposed into a design unit or symbol with logic for a 
counter and another design unit to display the count. Each symbol also has an 
internal design that can be any combination of another schematic, 
megafunction, VHDL, or Verilog file. 

Figure 4.3 Internal VHDL code for LCD Disvlav function. 

On scehamtic for the UP 3, double click on the LCD-Display symbol to see the 
underlying VHDL code that describes the internal operation of the 
LCD-Display block. UP 2 users should click on the DEC-7SEG symbol. As 
shown in Figure 4.3, it contains a complex state machine that sends commands 
and ASCII character data to the LCD controller. As an alternative, it could be 
designed in Verilog or even at the gate level using basic logic symbols (if you 
had infinite time and patience to work at that low of a level!). Close the VHDL 
text editor and return to the graphic editor. 
To see the overall hierarchy of the design, select View + Utility Windows 
Project Navigator and make sure the Hierarchy tab is selected. After 
expanding this window as seen in Figure 4.4, note that the tutor2 schematic is 
comprised of two symbols. For the UP 3, the LCD-Display symbol is used in 
the design to output the count to the LCD display. The Ipm-counter0 symbol 
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contains the 8-bit binary counter. If you click on the "+" block on each symbol, 
you will see that they each contain lpm-counter megafunctions. In this case, 
the design hierarchy is three levels deep. After examining the hierarchy display 
window, close it and return to the graphic editor window that contains the 
tutor2 schematic. 

Figure 4.4 Hierarchy display window for the tutor2 design. 

4.4 Using Buses in a Schematic 
In Figure 4.5, find the heavy purple lines flowing out of the lpm-counter0 
symbol in the upper right corner and into the LCD-Display symbol in the lower 
left corner. This is an example of a bus. A bus is just a parallel collection of 
bits. The bus is labeled Q[7..0] indicating the bus has eight signals (bits) named 
Q[7], Q[6] ... Q[O]. This bus sends the counter's eight output bits to the LCD 
display function. 

Figure 4.5 Enlarged view of tutor2 design showing Q[7..0] bus connnections. 
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To connect single node lines to a bus, it is necessary to assign a name such as 
Q[7..0] to the bus. Then the node line that needs to connect to a bus line is 
given the name of one of the bus elements. As an example, the counter output 
MSB signal line is labeled Q[7]. To label a bus or node, right click on the node 
or bus line and select Properties. You can then type in or edit the name. When 
signal lines have the same name, they are automatically connected in the 
graphic editor. A physical node line connecting a node and a bus with the same 
name is optional. Leaving it out often times makes a complex schematic easier 
to follow since there will be fewer lines crossing on the schematic. Node and 
bus names must be assigned first when connecting a node to a bus. 

4.5 Testing the Pushbutton Counter and Displays 
Compile the design with Processing C3 Start Compilation. Wait a few 
seconds for the "Full Compilation was successful" message to appear. Select 
Tools C3 Timing Analyzer Tool. This counter circuit is a sequential design. The 
primary timing issue in sequential circuits is the maximum clock rate. 
Whenever you compile, a timing analysis tool automatically runs that will 
determine the maximum clock frequency of the logic circuit. 

Figure 4.6 Timing analysis of a Sequential Circuit 

The Timing Analyzer shows the maximum clock frequency of this logic circuit 
to be approximately 120 MHz. Clock rates you may obtain will vary depending 
on the complexity and size of the logic circuits, the speed grade of the chip, and 
the CAD tool version and settings. In this design, the clock is supplied by a 
pushbutton input so a clock input of only a few hertz will be used for the 
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counter. Since the UP 3's clock input is only 48 MHz for the LCD-Display core 
this simple counter cannot be overclocked. Close and exit the timing analyzer. 

4.6 Testing the Initial Design on the Board 
Download the design to the FPGA board. If you need help downloading to the 
board, refer to Section 1.4 for the UP 3 or Section 1.5 for the UP 2 board. 
Press the top UP 3 pushbutton (SW4) several times to clock the counter and 
watch the count display as it counts up. On the UP 2, use the left FLEX 
pushbutton. When the pushbutton is pressed, it will occasionally count up by 
more than one. This is a product of mechanical bounce in the pushbutton. The 
pushbutton contains a metal spring that actually forces contact several times 
before stabilizing. The high-speed logic circuits will react to the switch contact 
bounce as if several clock signals have occured. This makes the counter count 
up by more than one. 
The actual output of the pushbutton as it appears on a digital oscilloscope is 
shown in Figure 4.7. When the pushbutton is hit, a random number of pulses 
appear as the switch contacts bounce several times and then finally stabilize. 
Several of the pulses will have a voltage and duration long enough to generate 
extra clock pulses to the counter. An FPGA will respond to pulses in the ns 
range, and these pulses are in the ps range. 

Figure 4.7 Oscillosope display of pushbutton switch contact bounce. 
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This problem occurs with all pushbuttons in digital designs. If the pushbutton is 
a DPDT, double-pole double-throw (i.e., has both an ON and an OFF contact), 
an SR latch is commonly used to remove the contact bounce. The pushbutton 
on the UP 3 is SPST, single pole single throw, so a time averaging filter is used. 
This example demonstrates why designs must be tested on actual hardware 
after simulation. This problem would not have shown up in a simulation-Verify 
that the UP 3 board's global reset pushbutton on the lower left corner of the 
board (SW8) resets the display and the counter. On the UP 2, the right FLEX 
pushbutton should reset the count. 

Fixing the Switch Contact Bounce Problem 
For the hardware implementation to work correctly, the switch contact bounce 
must be removed. A logic circuit that filters the pushbutton output using a small 
shift register can be added to filter the output. This process is called switch 
debouncing. Add the symbol debounce from the project library to the 
schematic. 

-- 
' Quartus II - C:/qbooksoft/CHAP4/tutor3 - tutor3 - [tutor3.bdf] !-- 110 SX-I 1 

Figure 4.8 Modified tutor2 design schematic. 

Disconnect the pushbutton from the lpm-countero's clock pin and connect it to 
the pushbutton input pin, PB, on the debounce symbol. Now connect the 
PB-DEBOUNCED pin to the lpm-countero's clock pin. The debounce circuit 
needs a lOOHz clock signal for the time averaging filter. The clock needed is 

www.ebook3000.com
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much slower than the 48MHz system clock, so a clock prescalar is needed. A 
clock prescalar is a logic circuit that divides a clock signal. 
Add the clk-div symbol from the project library to the schematic. Connect the 
lOOHz input pin on the debounce symbol to the lOOHz output pin on the clock 
prescalar. Connect the 48MHz clock input on the clk-div symbol to an the 
clk-48MHz input pin. 
The internal VHDL design in the debounce module generates the switch 
debounce circuit. The debounce circuit contains a 4-bit shift register that is 
clocked at 100Hz. The shift register shifts in the inverted pushbutton output. 
When any of the four bits of the shift register (i.e., four 10 ms time-spaced 
samples of the pushbutton's output) are High the output of the debounce circuit 
changes to High. When all four bits of the shift register are Low the output 
goes Low. This delays the High to Low change until after the switch contact 
bounce stops. 

4.8 Testing the Modified Design on the UP 3 Board 
Verify that your schematic has the same connections as seen in Figure 4.8. 
Compile the design and download the design to the board again. Hit the count 
pushbutton several times to clock the counter and watch the LCD display as it 
counts up. It should now count up reliably by one whenever the pushbutton is 
hit. The UP3core functions LCD-Display, clk-div, and debounce will be useful 
in future design projects using the UP 3 board. They can be used in any VHDL, 
Verilog, or schematic designs by using the graphical editor and UP3core 
symbols or by using an HDL component instantiation statement. 

4.9 Laboratory Exercises 
1. Simulate the initial design without the switch debounce circuit by setting up an initial 

reset pulse and a periodic 200 ns clock input in the simulator. In sequential simulations, 
turn on the setup and hold time violation detection simulator setting option before 
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running the simulator. This will check for flip-flop timing problems that would otherwise 
go undetected in the simulation. Adjust the reset pulse so that it changes right before the 
clock edge and run another simulation to see if you can produce a setup or hold violation. 

Modify the counter circuit so that it counts down or up depending on the state of UP 3's 
DIP switch 1. 

Modify the counter circuit so that it parallel loads a count value from the four DIP 
switches on the UP 3 board when PB2 is pushed. Zero out the low four counter bits 
during a load. Since the Cyclone DIP switch inputs are only used when PB2 is hit, they 
do not need to be debounced. Here are the pin connections for the Cyclone DIP switches. 

I Input Pin I Pin I 

DIPswitch-3 

Dl Pswitch-4 

(I = Open, 0 = Closed) 

Build a stopwatch with the following modifications to the design. Disconnect the counter 
clk line and connect it to the clock-l0hz pin on the clock-div symbol. Clock a toggle 
flip-flop with the pb-debounced output. A toggle flip-flop, tff, can be found in the prim 
symbol library. A toggle flip-flop's output changes state every time it is clocked. Connect 
the output of the toggle flip-flop to a new count enable input added to the counter with 
the megawizard. The count should start and stop when PBI is hit. Elapsed time in tenths 
of seconds should be displayed in hexadecimal. Pushing PB2 should reset the stopwatch. 

The elapsed time in the stopwatch from problem 3 is displayed in hexadecimal. Replace 
the counter with two cascaded binary-coded-decimal (BCD) counters so that it displays 
the elapsed time as two decimal digits. 

Build a watch by expanding the counter circuit to count seconds, hours, and minutes. The 
two pushbuttons reset and start the watch. 

Replace the Ipm-counter0 logic with a VHDL counter design, simulate the design, and 
verify operation on the UP 3 board. Read Chapter 5 and note the example counter design 
in section 6.10. 

Draw a schematic, develop a simulation, and download a design to the UP 3 board that 
uses the LCD displays for outputs and the DIP switch for input, to test the 74161 4-bit 
TTL counter function found in the /others/maxplus2 symbol library. Use the Cyclone 
DIP switch to provide four inputs for a parallel load of the count. Use a debounced 
pushbutton input for the clock. Use the second pushbutton for the load input. 
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9. Draw a schematic, develop a simulation, and download a design to the UP 3 board to test 
the following functions that can be created with the Megawizard: 

LPM-ADD-SUB: a 2-bit adderlsubtractor; test the add operation 

LPM-ADD-SUB: a 2-bit adderlsubtractor; test the subtract operation 

LPM-COMPARE: compare two 2-bit unsigned numbers 

LPM-DECODE: a 4 to 16-bit decoder 

LPM-CLSHIFT: a 4-bit shift register 

LPMMULT: a 2-bit unsigned multiply 

The LPM megafunctions require several parameters to specify bus size and other various 
options. For this problem, do not use pipelining and use the unregistered input options. 
Refer to the online help files for each LPM function for additional information. In the 
enter symbol window, use the megawizard button to help configure LPM symbols. Use 
the UP 3's DIP switches for four inputs as needed and display the output in hex on the 
two seven-segment displays. Use a debounced pushbutton input for the clock, if one is 
required. Use the second pushbutton for a Clear or Reset input. Use the timing analyzer 
to determine the worst-case delay time for each function. 

10. Draw a schematic and develop a simulation to test the LPM-ROM megafunction. Create 
a sixteen word ROM with eight data bits per word. Specify initial values in hex for the 
ROM in a memory initialization file (*.mif) file. The contents of each memory location 
should be initialized to four times its address. See MIF in the online help for details on 
the syntax of a MIF file. Enter the address in four Cyclone DIP switches and display the 
data from the ROM in the two seven-segment LEDs. Determine the access time of the 
ROM. 

11. Using gates and the DFF part from the primitiveslstorage library, design a circuit that 
implements the state machine shown below. Use two D flip-flops with an encoded state. 

Reset 
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For the encoded states use A = "OO", B = "Ol", and C = "10". Ensure that the undefined 
"1 1" state enters a known state. Enter the design using the graphical editor. Develop a 
simulation that tests the state machine for correct operation. The simulation should test 
all states and arcs in the state diagram and the "1 1" state. Use the Tools Timing 
Analyzer Tool option to determine the maximum clock frequency on the Cyclone 
device. Use an asynchronous reset. 

12. Repeat the previous problem using one-hot encoding. Recall that one-hot encoding uses 
one flip-flop per state, and only one flip-flop is ever active at any given time in valid 
states. The state encoding for the one-hot state machine would be A = "10OW, B = "OlO", 
and C = "001 ". Start with a reset in the simulation. It is not necessary to test illegal states 
in the one-hot simulation. One-hot state machine encoding is recommended by many 
FPGA device manufacturers. 



UP3core Library 
Functions 
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5 UP3core Library Functions 
In complex hierarchical designs, intellectual property (IP) cores are frequently 
used. An IP core is a previously developed synthesizable hardware design that 
provides a widely used function. Commercially licensed IP cores include 
functions such as microprocessors, microcontrollers, bus interfaces, multimedia 
and DSP functions, and communications controllers. IP cores promote design 
reuse and reduce development time by providing common hardware functions 
for use in a new design. 
The UP3core functions listed in Table 5.1 are designed to simplify use of the 
UP 3 board's pushbuttons, keyboard, mouse, LCD display, and video output 
features. They can be used in schematic capture, VHDL, or Verilog based 
designs. Full source code is provided on the CD-ROM. 

UP3cores can be used as symbols from the UP3core library, accessed via a 
VHDL package, or used as a component in other VHDL or Verilog files. An 
example of using the UP3core package in VHDL can be found in the file 
\booksoft\chap5\UP3pack.~hd available on the CD-ROM. The use of 
UP3packYs VHDL package saves retyping lengthy component declarations for 
the core functions in each VHDL-based design. 
This section contains a one-page summary of each UP3core interface. VHDL 
source code is provided for all UP3cores on the CD-ROM. Additional 
documentation, examples, and interface details can be found in later chapters 
on video signal generation, the keyboard, and the mouse. The Clk-Div, 
LCD-Display, and Debounce functions were already used in the tutorial design 
example in Chapter 4. 

For correct operation of the UP3core functions, 110 pin assignments must be 
made as shown in the description of each UP3core function. Clock inputs are 
also required on several of the UP3core functions. The Clk-Div UP3core is 
setup to provide the slower clock signals needed by some of the core functions. 

Table 5.1 The UP3core Functions. 

UP3core Name 
LCD-Display 
Debounce 
OnePulse 

Description 
Displays ASCII Characters and Hex Data on the UP3's LCD Panel 
Pushbutton Debounce Circuit 
Pushbutton Single Pulse Circuit 

Clk-Div 
VGA-Sync 
Video-PLL 
Char-ROM 
Keyboard 
Mouse 

48MHz Clock Prescaler with 7 frequency outputs (1MHz to 1 hz) 
VGA Sync signal generator for UP 3 that outputs pixel addresses 
Used by VGA Sync to generate the video pixel clock using a PLL 
Small Character Font ROM for video character generation 
Reads keyboard scan codes from the UP 3's PSI2 connector 
Reads PSI2 mouse data and outputs cursor row and column address 
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Source code for the UP3core functions must be in the project directory or in the 
user's library search path. Review Section 4.2 for additional information on 
checking the library path. The VGA-Sync, Video-PLL, and LCD-Display core 
functions are often modified by the user to support different display resolutions 
and message options for each design. Be sure to select the right version of these 
core functions when adding file paths for a new project. 
For UP 2 users, the same functionality is provided in the UP2core library 
functions found on the CD-ROM in the \UP2 subdirectory. Since the UP 2 does 
not have an LCD display, the seven segment display core, DECw7SEG, must be 
used instead. On the UP 2, only the 640 by 480 video mode is possible since the 
FPGA does not have a PLL to generate the higher clock frequencies needed for 
other video display resolutions. 
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5.1 UP3core LCD-Display: LCD Panel Character Display 

Figure 5.1 Symbol for LCD Disvlav UP3core. 

The LCD-Display core is used to display static ASCII characters and changing 
hex values from hardware on the UP 3's 16 by 2 line LCD display panel. The 
core's VHDL code can be configured internally by the user to display different 
ASCII strings and hex data fields. Instructions can be found in comments in the 
core's VHDL code. A Generic, Num-Hex-Digits, is used to set the size of the 
Hex Display Data input (Each hex digit displayed requires a 4-bit signal). The 
~ ~ D c o n t r o l l e r  datasheet contains information on graphics characters and LCD 
commands. A state machine is used to send data and commands to the LCD 
controller and to generate the required handshake signals. An ASCII to hex 
table can be found in Appendix D. See LCD-Display.vhd for more information. 

5.1.1 VHDL Component Declaration 
COMPONENT LCD-Display 

PORT(Hex-Display-Data: 
IN STD-LOGIC-VECTOR((Num-Hex-Digits*4)-I DOWNTO 0); 

reset, clock-48MHz: IN STD-LOGIC; 
LCD-RS, LCD-E: OUT STD-LOGIC; 
LCD-RW: INOUT STD-LOGIC; 

DATA-BU S : INOUT STD-LOGIC-VECTOR(7 DOWNTO 0)); 
END COMPONENT; 

5.1.2 Inputs 

Hex Display Data contains the 4-bit hexadecimal hardware signal values to 
convert to ASCII hex digits and send to the LED display. The Generic, 
Num-Hex-Digits, adjusts the size of the input hex data. Generics can be 
assigned a value in an HDL file or with a block's parameter assignment in a 
schematic. In a schematic, use View + Parameter assignment to see the 
generic value and the symbol's properties parameters tab to set it. 

5.1.3 Outputs 

Outputs control a tri-state bidirectional data bus on the LCD panel. 
LCD-RS is pin 108, LCD-E is pin 50, and LCD-RW is pin 73. 
Data-Bus(7 DOWNTO 0) is pins 113, 106, 104, 102(128-1C12), 100, 98, 
96(133-1C12), and 94. 
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5.2 UP3core Debounce: Pushbutton Debounce 

Figure 5.2 Svmbol for Debounce UP3core. 

The UP3core Debounce shown in Figure 5.2 is a pushbutton debounce circuit. 
This function is used to filter mechanical contact bounce in the UP 3's 
pushbuttons. A shift register is used to filter out the switch contact bounce. The 
shift register takes several time spaced samples of the pushbutton input and 
changes the output only after several sequential samples are the same value. 

5.2.1 VHDL Component Declaration 

COMPONENT debounce 
PORT( pb, clock-1 00Hz : IN 

pb-debounced : OUT 
END COMPONENT; 

STD-LOGIC; 
STD-LOGIC; 

5.2.2 Inputs 

PB is the raw pushbutton input. It should be tied to an input pin connected to a 
UP 3 pushbutton. See Chapter 2 for pushbutton pin numbers. 
Clock is a clock signal of approximately lOOHz that is used for the internal 
50ms switch debounce filter circuits. 

5.2.3 Outputs 

PB debounced is the debounced pushbutton output. The output will remain 
LO; until the pushbutton is released. If a pulse is needed to be only 1 clock 
period long, add the OnePulse core function to the debounced switch output. 
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5.3 UP3core OnePulse: Pushbutton Single Pulse 

Figure 5.3 Symbol for OnePulse UP3core. 

The UP3core OnePulse shown in Figure 5.3 is a pushbutton single-pulse 
circuit. Output from the pushbutton is High for only one clock cycle no matter 
how long the pushbutton is pressed. This function is useful in state machines 
that read external pushbutton inputs. In general, fewer states are required when 
it is known that inputs only activate for one clock cycle. Internally, an edge- 
triggered flip-flop is used to build a simple state machine. 

5.3.1 VHDL Component Declaration 
COMPONENT onepulse 

PORT( PB-debounced, clock : IN STD-LOGIC; 
PB-single-pulse : OUT STD-LOGIC ); 

END COMPONENT; 

5.3.2 Inputs 

PB-debounced is the debounced pushbutton input. It should be connected to a 
debounced pushbutton. 
Clock is the user's state-machine clock. It can be any frequency. In some 
deisgns, the user may want to edit the VHDL code to add a reset input. 

5.3.3 Outputs 

PB-singlequlse is the output, which is High for only one clock cycle when a 
pushbutton is hit. 
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5.4 UP3core Clk-Div: Clock Divider 

clk-div 

inst 

Figure 5.4 Symbol for Clk-Div UP3core. 

The UP3core Clk-Div shown in Figure 5.4 is used to provide clock signals 
slower than the on-board 48MHz oscillator. These signals are obtained by 
dividing down the 48MHz clock input signal. Multiple output taps provide 
clock frequencies in powers of ten. 

5.4.1 VHDL Component Declaration 

COMPONENT clk-div 
PORT( clock-48MHz 

clock-I MHz 
clock-I OOkHz 
clock-I OkHz 
clock-I kHz 
clock-I OOHz 
clock-I OHz 
clock-I Hz 

END COMPONENT: 

: IN 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 

STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC ); 

5.4.2 Inputs 

Clock-48MHz is an input pin that should be connected to the UP 3 on-board 
48MHz USB clock. The pin number for the UP 3's 48MHz USB clock is 29. 
Make sure the JP3 jumper selects the 48MHz USB clock (default setting). 

5.4.3 Outputs 

Clock-lMHz through clock-lHz provide output signals of the specified 
frequency. The actual frequency is 1.007 h .005% times the listed value. 
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5.5 UP3core VGA-Sync: VGA Video Sync Generation 

Figure 5.5 Symbol for VGA-Sync UP3core. 

The UP3core VGA-Sync shown in Figure 5.5 provides horizontal and vertical 
sync signals to generate an 8-color 640 by 480 pixel VGA video image. For 
more detailed information on video signal generation see Chapter 9. 
A table of the common screen resolutions and refresh rates along with the 
required pixel clocks and sync count values can be found at the end of the 
VGA-Sync IP core. When changing resolutions or refresh rates, use the 
Megawizard edit feature to adjust the videoqll.vhd code to output a different 
pixel clock rate and change the horizontal and vertical sync counter limits to 
the six new values found in the table. Videoqll.vhd must be present to compile 
VGA-Sync since it uses this component for the clock. 

5.5.1 VHDL Component Declaration 
COMPONENT vga-sync 

PORT( clock_48MHz, red, green, blue:IN STD-LOGIC; 
red-out, green-out, blue-out, 
horiz-sync-out, vert-sync-out: OUT ST D-LOGIC; 
pixel-row, pixel-column: OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ) ); 

END COMPONENT; 

5.5.2 Inputs 
Clock-48MHz is an input pin that must be connected to the on-board 48MHz 
USB clock. One of the Cyclone's two Phase Locked Loops (PLL) is used to 
generate a video clock. Red, Green, and Blue inputs provide the color 
information for the video signal. External user logic must generate the RGB 
signals. One of the Cyclone's two PLLs is used to generate the required pixel 
clock on the UP 3. An external reference clock of 48MHz (USB clock) is 
needed by the PLL for the input clock. 
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5.5.3 Outputs 

Horiz-sync is an output pin that should be tied to the horizontal sync, pin 226, 
on the Cyclone chip. 
Vert-sync is an output pin that should be tied to the vertical sync, pin 227, on 
the Cyclone chip. 
Red-out is an output pin that should be tied to the red RGB signal, pin 228, on 
the Cyclone chip. 
Green-out is an output pin that should be tied to the green RGB signal, pin 122, 
on the Cyclone chip. 
Blue-out is an output pin that should be tied to the blue RGB signal, pin 170, 
on the Cyclone chip. 
An interface circuit on the UP 3 board converts the digital red, green, and blue 
video color signals to the appropriate analog voltage for the monitor. Eight 
colors are possible using the three digital color signals. 

Pixel-clock, pixel-row, and pixel-column are outputs that provide the current 
pixel clock and the pixel address. Video-on indicates that pixel data is being 
displayed and a retrace cycle is not presently occurring. These outputs are used 
by user logic to generate RGB color input data. 
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5.6 UP3core Char-ROM: Character Generation ROM 

clock rm-mux-output 

character-&dms[5. .0] 

font-m$2..0] 

font_col[2. .0] 

Figure 5.6 Symbol for Char-ROM UP3core. 

The UP3core Char-ROM shown in Figure 5.6 is a character generation ROM 
used to generate text in a video display. Each character is represented by an 8 
by 8 pixel font. For more information on video character generation see 
Chapter 9. Character codes are listed in Table 9.1 of Section 9.9. Font data is 
contained in the memory initialization file, tcgrom.mif. One Cyclone M4K 
memory block is required for the ROM that holds the font data. 

5.6.1 VHDL Component Declaration 
COMPONENT char-rom 

PORT( clock 
character-address 
font-row, font-cot 
rom-mux-output 

END COMPONENT; 

: IN STD-LOGIC; 
: IN STD-LOGIC-VECTOR( 5 DOWNTO 0 ); 
: IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
: OUT STD-LOGIC); 

5.6.2 Inputs 

Character-address is the address of the alphanumeric character to display. 
Font-row and font-col are used to index through the 8 by 8 font to address the 
single pixels needed for video signal generation. Clock loads the address 
register and should be tied to the video pixel-clock. 

5.6.3 Outputs 

Rom~mux~output is the pixel font value indexed by the address inputs. It is 
used by user logic to generate the RGB pixel color data for the video signal. 
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5.7 UP3core Keyboard: Read Keyboard Scan Code 

Figure 5.7 Symbol for Keyboard UP3core. 

The UP3core Keyboard shown in Figure 5.7 is used to read the PSI2 keyboard 
scan code from a keyboard attached to the UP 3's PSI2 connector. This function 
converts the serial data from the keyboard to parallel format to produce the 
scan code output. For detailed information on keyboard applications and scan 
codes see Table 11.2 in Chapter 11. 

5.7.1 VHDL Component Declaration 
COMPONENT keyboard 

PORT( keyboard-clk, keyboard-data, clock_48MHz, 
reset, read : IN STD-LOGIC; 
scan-code : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
scan-ready : OUT STD-LOGIC); 

END COMPONENT; 

5.7.2 Inputs 

Clock-48MHz is an input pin that must be connected to the on-board 48MHz 
oscillator. The pin number for the 48MHz clock is 29 on the Cyclone chip. 

Keyboard-clk and keyboard-data are PSI2 input data lines from the keyboard. 
Keyboard-clk is pin 12 and keyboard-data is pin 13. 

Read is a handshake input signal. The rising edge of the read signal clears the 
scan ready signal. Reset is an input that clears the internal registers and flags 
used for serial-to-parallel conversion. 

5.7.3 Outputs 

Scan-code contains the bytes transmitted by the keyboard when a key is 
pressed or released. See Table 11.2 in Chapter 11 for a listing of scan codes. 
Scan codes for a single key are a sequence of several bytes. A make code is sent 
when a key is hit, and a break code is sent whenever a key is released. 

Scan-ready is a handshake output signal that goes High when a new scan code 
is sent by the keyboard. The read input clears scan-ready. The scan-ready 
handshake line should be used to ensure that a new scan code is read only once. 
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5.8 UP3core Mouse: Mouse Cursor 

W S E  

Figure 5.8 Symbol for Mouse UP3core. 

The UP3core Mouse shown in Figure 5.8 is used to read position data from a 
mouse attached to the UP 3's PSI2 connector. It outputs a row and column 
cursor address for use in video applications. The mouse must be attached to the 
UP 3 board prior to downloading for proper initialization. Detailed information 
on mouse applications, commands, and data formats can be found in Chapter 
11. 

5.8.1 VHDL Component Declaration 
COMPONENT mouse 

PORT( clock_48MHz, reset : IN STD-LOGIC; 
mouse-data : INOUT STD-LOGIC; 
mouse-clk : INOUT STD-LOGIC; 
left-button, right-button : OUT STD-LOGIC; 
mouse~cursor~row : OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ) ); 
mouse~cursor~column : OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ) ); 

END COMPONENT; 

5.8.2 Inputs 

Clock-48MHz is an input pin that must be connected to the on-board 
25.175MHz oscillator. The pin number for the 48MHz USB clock is 29 on the 
Cyclone chip. 
Mouse-clk and mouse-data are bi-directional data lines from the mouse. 
Mouse-clk is pin 12 and mouse-data is pin 13. 

5.8.3 Outputs 

Mouse~cursor~row and mouse~cursor~column are outputs that contain the 
current address of the mouse cursor in the 640 by 480 screen area. The cursor is 
initialized to the center of the screen. Left-button and right-button outputs are 
High when the corresponding mouse button is pressed. 
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5.9 For additional information 
The FPGA cores summarized in this chapter are used extensively in the 
textbook's design examples, and complete source code is provided on the CD- 
ROM. They are provided to support any new FPGA designs that you may 
develop. Extensive lists of more complex commercial third-party IP cores 
available for purchase can be found at the major FPGA vendor web sites, 
www.altera.com and www.xilinx.com. Pricing on commercial cores can be 
expensive and access to source code may not be provided. An assortment of 
free open source IP cores for FPGAs is available at www.opencores.org. 
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6 Using VHDL for Synthesis of Digital Hardware 
In the past, most digital designs were manually entered into a schematic entry 
tool. With increasingly large and more complex designs, this is a tedious and 
time-consuming process. Logic synthesis using hardware description languages 
is becoming widely used since it greatly reduces development time and cost. It 
also enables more exploration of design alternatives, more flexibility to 
changes in the hardware technology, and promotes design reuse. 
VHDL is a language widely used to model and design digital hardware. VHDL 
is the subject of IEEE standards 1076 and 1164 and is supported by numerous 
CAD tool and programmable logic vendors. VHDL is an acronym for VHSIC 
Hardware Description Language. VHSIC, Very High Speed Integrated Circuits, 
was a USA Department of Defense program in the 1980s that sponsored the 
early development of VHDL. VHDL has syntax similar to ADA and PASCAL. 
Conventional programming languages are based on a sequential operation 
model. Digital hardware devices by their very nature operate in parallel. This 
means that conventional programming languages cannot accurately describe or 
model the operation of digital hardware since they are based on the sequential 
execution of statements. VHDL is designed to model parallel operations. 

In VHDL, variables change without delay and signals change with a small 
delay. For VHDL synthesis, signals are normally used instead of variables so 
that simulation works the same as the synthesized hardware. 
A subset of VHDL is used for logic synthesis. In this section, a brief 
introduction to VHDL for logic synthesis will be presented. It is assumed that 
the reader is already familiar with basic digital logic devices and PASCAL, 
ADA, or VHDL. 
Whenever you need help with VHDL syntax, VHDL templates of common 
statements are available in the Quartus I1 online help. In the text editor, just 
click the right mouse button and Insert c3Templates and select VHDL. 

6.1 VHDL Data Types 
In addition to the normal language data types such as Boolean, integer, and 
real, VHDL contains new types useful in modeling digital hardware. For logic 
synthesis, the most important type is standard logic. Type standard logic, 
STD-LOGIC, is normally used to model a logic bit. To accurately model the 
operation of digital circuits, more values than "0" or "1" are needed for a logic 
bit. In the logic simulator, a standard logic bit can have nine values, U, X, 0, 1, 
Z, W, L, H, and "-". U is uninitialized and X is forced unknown. Z is tri-state or 
high impedance. L and H are weak "0" and weak "1". "-" is don't care. Type 
STD-LOGIC-VECTOR contains a one-dimensional array of STD-LOGIC bits. 
Using these types normally requires the inclusion of special standard logic 
libraries at the beginning of each VHDL module. The value of a standard logic 
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bit can be set to '0' or ' 1 '  using single quotes. A standard logic vector constant, 
such as the 2-bit zero value, "00" must be enclosed in double quotes. X"F" is 
the four bit hexadecimal value F. 

6.2 VHDL Operators 
Table 6.1 lists the VHDL operators and their common function in VHDL 
synthesis tools. 

Table 6.1 VHDL Operators. 

11 Subtraction I 

VHDL Operator 
+ 

11 Multiplication* I 

Operation 

Addition 

1 

~p 

II 

& 11 Concatenation - used to combine bits 1 

Division* 

MOD 

logical shift left 

logical shift right 
arithmetic shift left 

Modulus* 

SRA** 11 arithmetic shift right I 
ROL** 11 rotate left I 

REM Remainder* 

ROR** 

c 11 less than I 

rotate right 
- - 

c= 11 less than or equal I 

equality 

> 11 greater than 

>= 11 greater than or equal 

I= I Inequality 

U 

*Not supported in many VHDL synthesis tools. In the Quartus I1 tools, only 
multiply and divide by integers are supported. Mod and Rem are not 
supported in Quartus 11. Efficient design of multiply or divide hardware may 
require the user to specify the arithmetic algorithm and design in VHDL. 

** Supported only in 1076-1993 VHDL only. 

NOT 

AND 

OR 

NAND 

NOR 

XOR 

XNOR* 

Table 6.2 illustrates two useful conversion functions for type STD-LOGIC and 
integer. 

logical NOT 

logical AND 

logical OR 

logical NAND 

logical NOR 

logical XOR 

logical XNOR 
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Table 6.2 STD-LOGIC conversion functions. 

Function I Example: 

vector. Useful to enter constants. "01 11". 
CONV-SIGNED and CONV-1JNSIG;"IED 

CONV-STD-LOGIC-VECTOR( integer, bits ) I CONV-STD-LOGIC-VECTOR( 7 , 4  ) 

work in a similar way to produce signed 
and unsigned values. I 

Converts an integer to a standard logic 

- I 

coxv-rN'rEGER( std-logi~_vector ) I coF;yIN'rEGER( "01 1 1" ) i l  

Produces a standard logic vector of 

- 
I 

Converts a standard logic vector to an Produces an integer value of 7. 11 
integer. Useful for array indexing when 
using a std-logic-vector signal for the array 
index. 

6.3 VHDL Based Synthesis of Digital Hardware 
VHDL can be used to construct models at a variety of levels such as structural, 
behavioral, register transfer level (RTL), and timing. An RTL model of a circuit 
described in VHDL describes the inputloutput relationship in terms of dataflow 
operations on signal and register values. If registers are required, a synchronous 
clocking scheme is normally used. Sometimes an RTL model is also referred to 
as a dataflow-style model. 
VHDL simulation models often include physical device time delays. In VHDL 
models written for logic synthesis, timing information should not be provided. 
For timing simulations, the CAD tools automatically include the actual timing 
delays for the synthesized logic circuit. A FPGA timing model supplied by the 
CAD tool vendor is used to automatically generate the physical device time 
delays inside the FPGA. Sometimes this timing model is also written in VHDL. 
For a quick overview of VHDL, several constructs that can be used to 
synthesize common digital hardware devices will be presented. 

6.4 VHDL Synthesis Models of Gate Networks 
The first example consists of a simple gate network. In this model, both a 
concurrent assignment statement and a sequential process are shown which 
generate the same gate network. X is the output on one network and Y is the 
output on the other gate network. The two gate networks operate in parallel. 
In VHDL synthesis, inputs and outputs from the port declaration in the module 
will become I10 pins on the programmable logic device. Comment lines begin 
with "--". The Quartus I1 editor performs syntax coloring and is useful to 
quickly find major problems with VHDL syntax. 
Inside a process, statements are executed in sequential order, and all processes 
are executed in parallel. If multiple assignments are made to a signal inside a 
process, the last assignment is taken as the new signal value. 
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LIBRARY IEEE; -- lnclude Libraries for standard logic data types 
USE IEEESTD-LOGIC-I I64.ALL; 

-- Entity name normaIly the same as file name 
ENTITY gate-network IS -- Ports: Declares module inputs and outputs 

PORT( A, B, C : IN STD-LOGIC; 
-- Standard Logic Vector ( Array of 4 Bits ) 

D : IN STD-LOGIC-VECTOR( 3 DOWNTO 0 ); 
-- Output Signals 

X, Y : OUT STD-LOGIC ); 
END gate-network; 

-- Defines internal nlodule architecture 
ARCHITECTURE behavior OF gate-network IS 
BEGIN -- Concurrent assignment statements operate in parallel 

-- D(1) selects bit 1 of standard logic vector D 
X<=AANDNOT(BORC)AND(D( I  )XORD(2 ) ) ;  

-- Process must declare a sensitivity list, 
-- In this case it is (A ,  6, C. D ) 
-- List includes all sigr~als that can change the outputs 

PROCESS ( A, B, C, D ) 
BEGIN -- Statements inside process execute sequer~tially 

Y<=AANDNOT(BORC)AND(D( I )XORD(2) ) ;  
END PROCESS; 

END behavior; 

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder 
The following VHDL code implements a seven-segment decoder for seven- 
segment LED displays. A 7-bit standard logic vector is used to assign the value 
of all seven bits in a single case statement. In the logic vector, the most- 
significant bit is segment 'a' and the least-significant bit is segment 'g'. The 
logic synthesis CAD tool automatically minimizes the logic required for 
implementation. The signal MSD contains the 4-bit binary value to be 
displayed in hexadecimal. MSD is the left or most-significant digit. Another 
identical process with a different input variable is needed for the second display 
digit. 
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LED-MSD-DISPLAY: -- BCD to 7 Segment Decoder for LED Displays 

PROCESS (MSD) 
BEGIN 

-- Case statement implements a logic truth table 
CASE MSD IS 

WHEN "0000" => 
MSD]SEG <= "1 11 11 10"; 

WHEN "0001" => 
MSD-7SEG <= "01 10000"; 

WHEN "001 0" => 
MSD]SEG <= "1 101 101"; 

WHEN "001 1" => 
MSD]SEG <= "1 11 1001"; 

WHEN "0100" => 
MSD]SEG <= "01 1001 1"; 

WHEN "0101" => 
MSD]SEG <= "101 101 1"; 

WHEN "01 10" => 
MSD-7SEG <= "101 11 11"; 

WHEN "01 11" => 
MSD]SEG <= "1 1 10000"; 

WHEN "1000" => 
MSD]SEG <= "1 11 11 11"; 

WHEN "1001" => 
MSD]SEG <= "1 11 101 1"; 

WHEN OTHERS => 
MSD]SEG <= "01 11 110"; 

END CASE; 

END PROCESS LED-MSD-DISPLAY; 

The following VHDL concurrent assignment statements provide the value to be 
displayed and connect the individual segments. NOT is used since a logic zero 
actually turns on the LED. Automatic minimization in the synthesis process 
will eliminate the extra inverter in the logic circuit. Pin assignments for the 
seven-segment display must be included in the project's *.qsf file or in the top- 
level schematic. 

-- Provide 4-bit value to display 
MSD <= PC ( 7 DOWNTO 4 ); 

-- Drive the seven-segments (LEDs are active low) 
MSD-a <= NOT MSD_7SEG( 6 ); 
MSD-b <= NOT MSDd7SEG( 5 ); 
MSD-c <= NOT MSD]SEG( 4 ); 
MSD-d <= NOT MSD]SEG( 3 ); 
MSD-e <= NOT MSD]SEG( 2 ); 
MSD-f <= NOT MSD_7SEG( 1 ); 
MSDJ <= NOT MSD-7SEG( 0 ); 
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6.6 VHDL Synthesis Model of a Multiplexer 
The next example shows several alternative ways to synthesize a 2-to-1 
multiplexer in VHDL. Four identical multiplexers that operate in parallel are 
synthesized by this example. In VHDL, IF and CASE statements must be inside 
a process. The inputs and outputs from the multiplexers could be changed to 
standard logic vectors if an entire bus is multiplexed. Multiplexers with more 
than two inputs can also be easily constructed. Nested IF-THEN-ELSE 
statements generate priority-encoded logic that requires more hardware and 
produce a slower circuit than a CASE statement. 

LIBRARY IEEE; 
USE 1EEE.STD-LOGIC-1164.ALL; 

ENTITY multiplexer IS -- Input Signals and Mux Control 
PORT( A, B, Mux-Control : IN STD-LOGIC; 

Mux-Control 
Mux-Out1 , Mux-Out2, 
Mux-Out3, Mux-Out4 : OUT STD-LOGIC ); 

END multiplexer; 
B 

ARCHITECTURE behavior OF multiplexer IS 
BEGIN -- selected signal assignment statement. 

Mux-Out1 <= A WHEN Mux-Control = '0' ELSE B; 
-- . . . with Select Statement 

WITH Mux-control SELECT 

Mux-Out2 <= A WHEN '0'. 
B WHEN 'I*, 
A WHEN OTHERS; -- OTHERS case required since STD-LOGIC 

-- has values other than "0" or "I" 
PROCESS ( A, B, Mux-Control) 
BEGIN -- Statements inside a process 

IF Mux-Control = '0' THEN -- execute sequentially. 
Mux-Out3 <= A; 

ELSE 
Mux-out3 <= B; 

END IF; 

CASE Mux-Control IS 
WHEN '0' => 

Mux-Out4 <= A; 
WHEN '1' => 

Mux-Out4 <= B; 
WHEN OTHERS => 

Mux-Out4 <= A; 
END CASE; 

END PROCESS; 
END behavior; 
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6.7 VHDL Synthesis Model of Tri-State Output 
Tri-state gates are supported in VHDL synthesis tools and are supported in 
many programmable logic devices. Most programmable logic devices have tri- 
state output pins. Some programmable logic devices do not support internal tri- 
state logic. Here is a VHDL example of a tri-state output. In VHDL, the 
assignment of the value "Z" to a signal produces a tri-state output. 

Control 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1 I64.ALL; 

Tri-Out 
ENTITY tristate IS 

PORT( A, Control : IN STD-LOGIC; 
Tri-out : INOUT STD-LOGIC); -- Use lnout for A+ bi-directional tri-state 

-- signals or out for output only 
END tristate; 

ARCHITECTURE behavior OF tristate IS 
BEGIN 

Tri-out <= A WHEN Control = '0' ELSE 'Z'; 
END behavior; 

-- defines internal module architecture 

-- Assignment of 2' value generates 
-- tri-state output 

6.8 VHDL Synthesis Models of Flip-flops and Registers 
In the next example, several flip-flops will be generated. Unlike earlier 
combinational hardware devices, a flip-flop can only be synthesized inside a 
process. In VHDL, Clock'EVENT is true whenever the clock signal changes. 
The positive clock edge is selected by (clock'EVENT AND clock = ' 1 ' )  and 
positive edge triggered D flip-flops will be used for synthesis. The following 
module contains a variety of Reset and Enable options on positive edge- 
triggered D flip-flops. Processes with a wait statement do not need a process 
sensitivity list. A process can only have one clock or reset type. 
The negative clock edge is selected by (clock'EVENT AND clock = '0') and 
negative edge-triggered D flip-flops will be used for synthesis. If (Clock = '1') 
is substituted for (clock'EVENT AND clock = ' 1 ') level-triggered latches will 
be selected for logic synthesis. Rising-edge(c1ock) can also be used instead of 
clock'EVENT AND clock = '1'. Falling-edge(c1ock) is also supported for 
negative clock edges. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 

ENTITY DFFs IS 
PORT( D, Clock, Reset, Enable : IN STD-LOGIC; 

Q1, Q2, Q3, Q4 : OUT STD-LOGIC ); 
END DFFs; 

ARCHITECTURE behavior OF DFFs IS 
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BEGIN 

PROCESS -- Positive edge triggered D flip-flop 
BEGIN -- If WAIT is used no sensitivity list is used 

WAlT UNTIL ( Clock 'EVENT AND Clock = '1' ); 
Q1 <= D; 

END PROCESS; 

PROCESS -- Positive edge triggered D flip-flop 
BEGIN -- with synchronous reset 

WAlT UNTIL ( Clock 'EVENT AND Clock = '1' ); 
IF reset = '1' THEN 

Q2 <= '0'; 
ELSE 

Q2 <= D; 
END IF; 

END PROCESS; 

Reset . - 

PROCESS (Reset,Clock) 
BEGIN 

IF reset = '1' THEN 
Q3 <= '0'; 

ELSIF ( clock 'EVENT AND clock = '1' ) THEN 
Q3 <= D; 

END IF; 
END PROCESS; 

PROCESS (Reset,Clock) 
BEGlN 

-- Positive edge triggered D flip-flop 
-- with asynchronous reset 

Reset 

4 Clock 

-- Positive edge triggered D flip-flop 
-- with asynchronous reset and 
-- enable 

Reset IF reset = '1' THEN 
Q4 <= '0'; 

ELSIF ( clock 'EVENT AND clock = '1' ) THEN 
IF Enable = 'I' THEN 

Q4 <= D; 
END IF; 

END IF; 
END PROCESS; 

END behavior; 

Enable 

';$5(-tQ4 

In VHDL, as in any digital logic designs, it is not good design practice to AND 
or gate other signals with the clock. Use a flip-flop with a clock enable instead 
to avoid timing and clock skew problems. In some limited cases, such as power 
management, a single level of clock gating can be used. This works only when 
a small amount of clock skew can be tolerated and the signal gated with the 
clock is known to be hazard or glitch free. A particular programmable logic 
device may not support every flip-flop or latch type and SetJReset and Enable 
option. 
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If D and Q are replaced by standard logic vectors in these examples, registers 
with the correct number of bits will be generated instead of individual flip- 
flops. 

6.9 Accidental Synthesis of Inferred Latches 
Here is a very common problem to be aware of when coding VHDL for 
synthesis. If a non-clocked process has any path that does not assign a value to 
an output, VHDL assumes you want to use the previous value. A level triggered 
latch is automatically generated or inferred by the synthesis tool to save the 
previous value. In many cases, this can cause serious errors in the design. 
Edge-triggered flip-flops should not be mixed with level-triggered latches in a 
design or serious timing problems will result. Typically this can happen in 
CASE statements or nested IF statements. In the following example, the signal 
OUTPUT2 infers a latch when synthesized. Assigning a value to OUTPUT2 in 
the last ELSE clause will eliminate the latch. 

LIBRARY IEEE; 
USE 1EEE.STD-LOGIC-11 WALL; 
ENTITY ilatch IS 

PORT( A, B 
Outputl , Output2 

END ilatch; 

: IN STD-LOGIC; 
: OUT STD-LOGIC ); 

ARCHITECTURE behavior OF ilatch IS 
BEGIN 

PROCESS ( A, B ) 
BEGIN 

IF A = '0' THEN 
Outputl <= '0'; 
Output2 <= '0'; 

ELSE 
IF B = '1' THEN 

Outputl <= '1'; 
Output2 <= '1'; 

ELSE -- Latch inferred since no value is assigned 
Outputl <= '0'; -- to output2 in the else clause! 

END IF; 
END IF; 

END PROCESS; 
END behavior; 

6.10 VHDL Synthesis Model of a Counter 
Here is an 8-bit counter design. This design performs arithmetic operations on 
standard logic vectors. Since this example includes arithmetic operations, two 
new libraries must be included at the beginning of the module. Either signed or 
unsigned libraries can be selected, but not both. Since the unsigned library was 
used, an 8-bit magnitude comparator is automatically synthesized for the 
internal-count < max-count comparison. 
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Compare operations between standard logic and integer types are supported. 
The assignment internal-count <= internal-count + 1 synthesizes an 8-bit 
incrementer. An incrementer circuit requires less hardware than an adder that 
adds one. The operation, "+Iw, is treated as a special incrementer case by 
synthesis tools. VHDL does not allow reading of an "OUT" signal so an 
internal-count signal is used which is always the same as count. This is the first 
example that includes an internal signal. Note its declaration at the beginning 
of the architecture section. 

LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 

ENTITY Counter IS 
PORT( Clock, Reset : IN STD-LOGIC; 

Max-count : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
Count : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ) ); 

END Counter; 

ARCHITECTURE behavior OF Counter IS -- Declare signal(s) internal to module 
SIGNAL internal-count: STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

BEGIN 
count <= internal-count; 

-- Reset counter 
PROCESS ( Reset,Clock ) 

BEGIN 
IF reset = '1' THEN 

internal-count <= "00000000"; 
ELSIF ( clock 'EVENT AND clock = '1' ) THEN 

IF internal-count < Max-count THEN -- Check for maximum count 
internal-count <= internal-count + 1; -- Increment Counter 

ELSE -- Count 2= Max-Count 
internal-count <= "00000000"; -- reset Counter 

END IF; 
END IF; 

END PROCESS; 
END behavior; 

6.11 VHDL Synthesis Model of a State Machine 
The next example shows a Moore state machine with three states, two inputs 
and a single output. A state diagram of the example state machine is shown in 
Figure 6.1. In VHDL, an enumerated data type is specified for the current state 
using the TYPE statement. This allows the synthesis tool to assign the actual 
"Olt or "1" values to the states. In many cases, this will produce a smaller 
hardware design than direct assignment of the state values in VHDL. 
Depending on the synthesis tool settings, the states may be encoded or 
constructed using the one-hot technique. Outputs are defined in the last 
WITH ... SELECT statement. This statement lists the output for each state and 
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eliminates possible problems with inferred latches. To avoid possible timing 
problems, unsynchronized external inputs to a state machine should be 
synchronized by passing them through one or two D flip-flops that are clocked 
by the state machine's clock. 

Reset 

Figure 6.1 State Diagram for st-mach VHDL example 

LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 

ENTITY st-mach IS 
PORT( clk, reset : IN STD-LOGIC; 

Inputl, Input2 : IN STD-LOGIC; 
Output1 : OUT STD-LOGIC); 

END st-mach; 

ARCHITECTURE A OF st-mach IS 
-- Enumerated Data Type for State 

TYPE STATE-TYPE IS ( state-A, state-B, state-C ); 
SIGNAL state: STATE-TYPE; 

BEGIN 
PROCESS ( reset, clk ) 
BEGIN 

IF reset = '1' THEN -- Reset State 
state <= state-A; 

ELSlF clk 'EVENT AND clk = '1' THEN 

CASE state IS 

WHEN state-A => 

-- Define Next State Transitions using a Case 
-- Statement based on the Current State 
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IF Input1 = '0' THEN 
state <= state-B; 

ELSE 
state <= state-C; 

END IF; 

WHEN state-B => 
state <= state_(=; 

WHEN state-C => 
IF Input2 = '1' THEN 

state <= state-A; 
END IF; 

WHEN OTHERS => 
state <= state-A; 

END CASE; 
END IF; 

END PROCESS; 

WITH state SELECT -- Define State Machine Outputs 
Output1 <= '0' WHEN state-A, 

'1' WHEN state-B, 
'0' WHEN state-C; 

END a; 

6.12 VHDL Synthesis Model of an ALU with an AdderISubtractor 
and a Shifter 
Here is an 8-bit arithmetic logic unit (ALU), that adds, subtracts, bitwise 
ANDs, or bitwise ORs, two operands and then performs an optional shift on the 
output. The most-significant two bits of the Op-code select the arithmetic 
logical operation. If the least-significant bit of the op-code equals '1' a 1 -bit 
left-shift operation is performed. An addition and subtraction circuit is 
synthesized for the "+" and "-" operator. Depending on the number of bits and 
the speed versus area settings in the synthesis tool, ripple carry or carry- 
lookahead circuits will be used. Several "+" and "-" operations in multiple 
assignment statements may generate multiple ALUs and increase the hardware 
size, depending on the VHDL CAD tool and compiler settings used. If a single 
ALU is desired, muxes can be placed at the inputs and the "+" operator would 
be used only in a single assignment statement. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 
USE IEEESTD-LOGIC-ARITH.ALL; 
USE IEEESTD-LOGIC-UNSIGNED.ALL; 

ENTITY ALU IS 
PORT( Op-code : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
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A-input, B-input 
ALU-output 

END ALU; 

: IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
: OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ) ); 

ARCHITECTURE behavior OF ALU IS 

SIGNAL temp-output 
BEGIN 

-- Declare signal(s) internal to module here 
STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

PROCESS ( Op-code, A-input, B-input ) 
BEGIN 

CASE Op-Code ( 2 DOWNTO 1 ) IS -- Select Arithmetic/Logical Operation 
WHEN "00" => 

temp-output <= A-input + B-input; A-input 6-input 

WHEN "01" => 
temp-output <= A-input - B-input; 

WHEN "10" => 
temp-output <= A-input AND B-input; op-co,, 

WHEN "1 1" => (2 downlo 1) 
+, -,AND. OR 

temp-output <= A-input OR B-input; 
WHEN OTHERS => 

temp-output <= "00000000"; 
END CASE; OP-code (0) 

-- Se,ect Shiff Operation: Shift bits left with zero (I11 using concatenation operator? 
-- Can also use VHDL 1076-1993 shiff operator such as SLL ALU-OU~PU~ 

IF Op-Code( 0 ) = 'I' THEN 
Alu-output <= temp-output( 6 DOWNTO 0 ) & '0'; 

ELSE 
Alu-output <= temp-output; 

END IF; 
END PROCESS; 

END behavior; 

6.1 3 VHDL Synthesis of Multiply and Divide Hardware 
In the Quartus I1 tool, integer multiply and divide is supported using VHDL's 
"*" and "I" operators. Mod and Rem are not supported in Quartus 11. In current 
generation tools, efficient design of multiply or divide hardware typically 
requires the use of a vendor-specific library function or even the specification 
of the arithmetic algorithm and hardware implementation in VHDL. 
A wide variety of multiply and divide algorithms that trade off time versus 
hardware size can be found in most computer arithmetic texts. Several such 
references are listed at the end of this chapter. These algorithms require a 
sequence of addlsubtract and shift operations that can be easily synthesized in 
VHDL using the standard operators. The LPM-MULT function in Quartus I1 
can be used to synthesize integer multipliers. LPM-DIVIDE, is also available. 
When using LPM functions, Tools c3 Megawizard Plug-in Manager can be 
used to help generate VHDL code. The LPM functions also support pipeline 
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options. Array multiply and divide hardware for more than a few bits requires 
extensive hardware and a large FPGA. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 
LIBRARY Ipm; 
USE Ipm.lpm-components.ALL; 

ENTITY mult IS 
PORT( A, B : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

Product : OUT STD-LOGIC-VECTOR( 15 DOWNTO 0 ) ); 
END mult; 

-- LPM 8x8 multiply function P = A * B 
ARCHITECTURE a OF mult IS 
BEGIN 

multiply: Ipm-mult 
GENERIC MAP( LPM-WIDTHA 

LPM-WIDTHB 
LPM-W IDTHS 
LPM-W IDTHP 
LPM-REPRESENTATION 

=> 8, 
=> 8, 
=> 16, 
=> 16, 
=> "UNSIGNED" ) 

PORT MAP ( data =>A, 
datab => B, 
result => Product ); 

END a; 

Floating-point operations can be implemented on very large FPGAs; however, 
performance is lower than current floating-point DSP and microprocessor 
chips. The floating-point algorithms must be coded by the user in VHDL using 
integer add, multiply, divide, and shift operations. The LPM-CLSHIFT 
function is useful for the barrel shifter needed in a floating-point ALU. Some 
floating point IP cores are starting to appear. Many FPGA vendors also have 
optimized arithmetic packages for DSP applications such as FIR filters. 

6.14 VHDL Synthesis Models for Memory 
Typically, it is more efficient to call a vendor-specific function to synthesize 
RAM. These functions typically use the FPGA's internal RAM blocks rather 
than building a RAM using FPGA logic elements. The memory function in the 
Altera toolset is the ALTSYNCRAM function. On the UP 2 board's older 
FPGA, the LPM-RAM-DQ memory function can also be used. The memory 
can be set to an initial value using a separate memory initialization file with the 
extension *.mif. A similar call, LPM-ROM, can be used to synthesize ROM. 
If small blocks of multi-ported or other special-purpose RAM are needed, they 
can be synthesized using registers with address decoders for the write operation 
and multiplexers for the read operation. Additional read or write ports can be 
added to synthesized RAM. An example of this approach is a dual-ported 
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register file for a computer processor core. Most RISC processors need to read 
two registers on each clock cycle and write to a third register. 

VHDL Memory Model - Example One 

The first memory example synthesizes a memory that can perform a read and a 
write operation every clock cycle. Memory is built using arrays of positive 
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address 
decoder output and used as an enable to load each memory location during a 
write operation. A synchronous write operation is more reliable. Asynchronous 
write operations respond to any logic hazards or momentary level changes on 
the write signal. As in any synchronous memory, the write address must be 
stable before the rising edge of the clock signal. A non-clocked mux is used for 
the read operation. If desired, memory can be initialized by a reset signal. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-I 164.ALL; 

ENTITY memory IS 
PORT( read-data : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

read-address : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
write-data : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
write-address : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
Memwrite : IN STD-LOGIC; 
clock,reset : IN STD-LOGIC ); 

END memory; 

ARCHITECTURE behavior OF memory IS 
SIGNAL memo, meml : STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

BEGIN 
PROCESS (read-address, memo, meml) -- Process for memory read operation 
BEGIN 

CASE read-address IS 
WHEN "000" => 

read-data <= memo; 
WHEN "001" => 

read-data <= meml ; 
WHEN OTHERS => -- Unimplemented memory locations 

read-data <= X"FFV ; 
END CASE; 

END PROCESS; 

PROCESS 
BEGIN 

WAIT UNTIL clock 'EVENT AND clock = '1'; 
IF ( reset = '1' ) THEN 

memo <= X"55" ; -- Initial values for memory (optional) 
meml <=X"AA" ; 

ELSE 
IF memwrite = '1' THEN -- Write to memory? 
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CASE write-address IS -- Use a flip-flop with 
WHEN "000" => -- an enable for memory 

memo <= write-data; 
WHEN "001" => 

meml <= write-data; 
WHEN OTHERS => -- unimplemented memory locations 

NULL; 
END CASE; 
END IF; 

END IF; 
END PROCESS; 

END behavior; 

VHDL Memory Model - Example Two 

The second example uses an array of standard logic vectors to  implement 
memory. This approach i s  easier to  wri te in VHDL since the array index 
generates the address decoder and multiplexers automatically; however, i t  i s  a 
l i t t le  more di f f icul t  to  access the values o f  individual array elements during 
simulation. There are a few VHDL synthesis tools that do not  support array 
types. Synthesizing RAM requires a vast amount o f  programmable logic 
resources. On ly  a few hundred b i ts  o f  RAM can be synthesized, even o n  large 
devices. Each bit o f  RAM requires 10 to 20 logic gates and a large amount o f  
FPGA interconnect resources. Some tools may  automatically detect synthesized 
RAM and use the FPGA's embedded memory blocks. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 

ENTITY memory IS 
PORT( read-data : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

read-address : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
write-data : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
write-address : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
Memwrite : IN STD-LOGIC; 
Clock : IN STD-LOGIC ); 

END memory; 
ARCHITECTURE behavior OF memory IS 

-- define new data type for memory array 
TYPE memory-type IS ARRAY ( 0 TO 7 ) OF STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL memory : memory-type; 

BEGIN 
-- Read Memory and convert array index to an integer with CONV-INTEGER 
read-data c= memory( CONV-INTEGER( read-address( 2 DOWNTO 0 ) ) ); 

PROCESS -- Write Memory? 
BEGIN 

WAIT UNTIL clock 'EVENT AND clock = '1'; 
IF ( memwrite = '1' ) THEN 

-- convert array index to an integer with CONV-INTEGER 
memory( CONV-INTEGER( write-address( 2 DOWNTO 0 ) ) ) c= write-data; 
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END IF; 
END PROCESS; 

END behavior; 

VHDL Memory Model - Example Three 

The third example shows the use of the ALTSYNCRAM megafunction to 
implement a block of memory. An additional library is needed for the 
megafunctions. For more information on the megafunctions see the online help 
guide in the Quartus I1 tool. In single port mode, the ALTSYNCRAM memory 
can do either a read or a write operation in a single clock cycle since there is 
only one address bus. In dual port mode, it can do both a read and write. If this 
is the only memory operation needed, the ALTSYNCRAM function produces a 
more efficient hardware implementation than synthesis of the memory in 
VHDL. In the ALTSYNCRAM megafunction, the memory address must be 
clocked into a dedicated address register located inside the FPGA's 
synchronous memory block. Asynchronous memory operations without a clock 
can cause timing problems and are not supported on many FPGAs including the 
Cyclone. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 
LIBRARY Altera-mf; 
USE altera-mf.altera-mf-components.all; 

ENTITY amemory IS 
PORT( read-data 

memory-address . 
write-data 
Memwrite 
clock,reset 

END amemory; 

OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
IN STD-LOGIC; 
IN STD-LOGIC ); 

ARCHITECTURE behavior OF amemory IS 
BEGIN 

data-memory: altsyncram -- Altsyncram memory function 
GENERIC MAP ( operation-mode => "SINGLE-PORT", 

width-a => 8, 
widthad-a => 3, 
Ipm-type => "altsyncram", 
outdata-reg-a =r "UNREGISTERED", 

-- Reads in mif file for initial data values (optional) 
init-file => "memory.mif', 
intended-device-family => "Cyclone" ) 

PORT MAP (wren-a => Memwrite, clock0 => clock, 
address-a => memory-address( 2 DOWNTO 0 ), 
data-a => write-data, q-a => read-data ); 

END behavior; 



Using VHDL for Synthesis of Digital Hardware 105 

On the Cyclone FPGA chip, the memory can be implemented using the M4K 
memory blocks, which are separate from the FPGA's logic cells. In the Cyclone 
EPIC6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160 
bits. In the Cyclone EPIC12 there are 52 M4K blocks for a total of 239,616 
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8, 
256 by 16, 256 by 18, 128 by 32 or 128 by 36 bits wide. The Tools 
+ Megawizard Plug-in Manager feature is useful to configure the 
Altsyncram parameters. 

6.15 Hierarchy in VHDL Synthesis Models 
Large VHDL models should be split into a hierarchy using a top-level structural 
model in VHDL or by using the symbol and graphic editor in the Quartus I1 
tool. In the graphical editor, a VHDL file can be used to define the contents of a 
symbol block. Synthesis tools run faster using a hierarchy on large models and 
it is easier to write, understand, and maintain a large design when it is broken 
up into smaller modules. 
An example of a hierarchical design with three submodules is seen in the 
schematic in Figure 6.2. Following the schematic, the same design using a top- 
level VHDL structural model is shown. This VHDL structural model provides 
the same connection information as the schematic seen in Figure 6.2. 
Debounce, Onepulse, and Clk-div are the names of the VHDL submodules. 
Each one of these submodules has a separate VHDL source file. In the Quartus 
I1 tool, compiling the top-level module will automatically compile the lower- 
level modules. 
In the example, VHDL structural model, note the use of a component 
declaration for each submodule. The component statement declares the module 
name and the inputs and outputs of the module. Internal signal names used for 
interconnections of components must also be declared at the beginning of the 
component list. 
In the final section, port mappings are used to specify the module or component 
interconnections. Port names and their order must be the same in the VHDL 
submodule file, the component instantiations, and the port mappings. 
Component instantiations are given unique labels so that a single component 
can be used several times. 
Note that node names in the schematic or signals in VHDL used to interconnect 
modules need not always have the same names as the signals in the components 
they connect. Just like signal or wire names in a schematic are not always the 
same as the pin names on chips that they connect. As an example, 
pb-debounced on the debounce component connects to an internal signal with a 
different name, pbl-debounced. 
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Figure 6.2 Schematic of Hierarchical Design Example 

LIBRARY IEEE; 
-LOGIC-1 164.ALL; 

USE IEEESTD-LOGIC-ARITH.ALL; 
USE IEEESTD-LOGIC-UNSIGNEDALL; 
ENTITY hierarch IS 

PORT ( clock_48MHz, pb l  : LOGIC; 
pbl-single-pulse : D-LOGIC); 

E structural OF hierarch IS 
-- Declare internal signals needed to connecf subn~odules 
SIGNAL clock-IMHz, clock~100Hz, pbl-debounced : STD-LOGIC; 
-- Use Components to Defile Subrnodules and Parameters 

COMP~NENT debounce 
PORT( pb, clock~100Hz : 

pb-debounced 

COMPONENT onepulse 
ORT(pb-debounced, clock : 

COMPONENT clk-div 
PORT( clock-48MHz 

clock-I MHz 
clock-I OOkHz 
clock-l0kHz 
clock-I kHz 
clock-I OOHz 
clock-I OHz 
clock-I Hz 

D COMPONENT; 

: I 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 

STD-LOGIC); 

STD-LOGIC; 
STD-LOGiC); 

STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 

STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC); 
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-- Use Port Map to connect signals between components in the hierarchy 
debouncel : debounce PORT MAP (pb => pbl, clock~100Hz = ~clock~100Hz, 

pb-debounced = >pbl-debounced); 

prescalar : clk-div PORT MAP (clock-48MHz = >clock48MHz, 
clock-I MHz =>clock-I MHz, 

clock-1 00hz = ~clock~100hz); 

single-pulse : onepulse PORT MAP (pb-debounced = >pbl-debounced, 
clock => clock-1 MHz, 
pb-singlegulse => pbl-singlejulse); 

END structural; 

6.16 Using a Testbench for Verification 
Complex VHDL synthesis models are frequently verified by simulation of the 
model's behavior in a specially written entity called a testbench. As seen in 
Figure 6.3, the toplevel testbench module contains a component instantiation 
of the hardware unit under test (UUT). The testbench also contains VHDL code 
used to automatically generate input stimulus to the UUT and automatically 
monitor the response of the UUT for correct operation. 
The testbench contains test vectors and timing information used in testing the 
UUT. The testbench's VHDL code is used only for testing, and it is not 
synthesized. This keeps the test-only code portion of the VHDL model separate 
from the UUT's hardware synthesis model. Third party simulation tools such as 
ModelSIM or Active-HDL are typically required for this approach. 
Unfortunately, full versions of these third party simulation tools are currently 
very expensive for students or individuals. 

Testbench 

Generator 

I Hardware UUT I 
Response 

Figure 6.3 Using a testbench for automatic verification during simulation. 
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The testbench approach is critical in large ASIC designs where any errors are 
costly. Automatic Test Equipment (ATE) can also use a properly written 
testbench and its test vector and timing information to physically test each 
ASIC chip for correct operation after production. In large designs, the testbench 
can require as much time and effort as the UUT's synthesis model. By 
performing both a functional simulation and a timing simulation of the UUT 
with the same test vectors, it is also possible to check for any synthesis-related 
errors. 

6.17 For additional information 
The chapter has introduced the basics of using VHDL for digital synthesis. It 
has not explored all of the language options available. The Altera online help 
contains VHDL syntax and templates. A large number of VHDL reference 
textbooks are also available. Unfortunately, only a few of them currently 
examine using VHDL models that can be used for digital logic synthesis. One 
such text is HDL Chip Design by Douglas J .  Smith, Doone Publications, 1996. 
A number of alternative integer multiply, divide, and floating-point algorithms 
with different speed versus area tradeoffs can be found in computer arithmetic 
textbooks. Two such examples are Digital Computer Arithmetic Design and 
Implementation by Cavanagh, McGraw Hill, 1984, and Computer Arithmetic 
Algorithms by Israel Koren, Prentice Hall, 1993. 

6.1 8 Laboratory Exercises 
1. Rewrite and compile the VHDL model for the seven-segment decoder in Section 6.5 

replacing the PROCESS and CASE statements with a WITH.. .SELECT statement. 

2. Write a VHDL model for the state machine shown in the following state diagram and 
verify correct operation with a simulation using the Altera CAD tools. A and B are the 
two states, X is the output, and Y is the input. Use the timing analyzer to determine the 
maximum clock frequency on the Cyclone EP1 C6Q240C8 device. 

3. Write a VHDL model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation 
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and 
Y is the output. A shift operation follows the arithmetic and logical operation. The 
opcode controls ALU functions as follows: 
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Use the Cyclone chip as the target device. Determine the worst case time delay of the 
ALU using the timing analyzer. Examine the report file and find the device utilization. 
Use the logic element (LE) device utilization percentage found in the compilation report 
to compare the size of the designs. 

Explore different synthesis options for the ALU from problem 3. Change the area and 
speed synthesis settings in the compiler under Assignments *Settings +Analysis and 
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report 
file for hardware size estimates. Include data points for the default, optimized for speed, 
balanced, and optimized for area settings. Build a plot showing the speed versus area 
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization 
percentage found in the compilation report to compare the size of the designs. 

Develop a VHDL model of one of the TTL chips listed below. The model should be 
functionally equivalent, but there will be timing differences. Compare the timing 
differences between the VHDL FPGA implementation and the TTL chip. Use a data 
book or find a data sheet using the World Wide Web. 

A. 7400 Quad nand gate 

B. 74LS241 Octal buffer with tri-state output 

C. 74LS273 Octal D flip-flop with Clear 

D. 74163 4-bit binary counter 

E. 74LS181 Cbit ALU 

Replace the 8count block used in the tutorial in Chapter 4, with a new counter module 
written in VHDL. Simulate the design and download a test program to the UP 3 board. 

Implement a 128 by 32 RAM using VHDL and the Altsyncram function. Do not use 
registered output options. Target the design to the Cyclone EPlC6240C8 device. Use the 
timing analyzer to determine the worst-case read and write access times for the memory. 

Study the VHDL code in the LCD Display UP3core function and draw a state diagram of 
the initialization and data transfer operations and explain its operation. You may find it 
helpful to examine the data sheet for the LCD display's microcontroller. 
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7 Using Verilog for Synthesis of Digital Hardware 
Verilog is another language that, like VHDL, is widely used to model and 
design digital hardware. In the early years, Verilog was a proprietary language 
developed by one CAD vendor, Gateway. Verilog was developed in the 1980's 
and was initially used to model high-end ASIC devices. In 1990, Verilog was 
released into the public domain, and Verilog now is the subject of IEEE 
standard 1364. Today, Verilog is supported by numerous CAD tool and 
programmable logic vendors. Verilog has a syntax style similar to the C 
programming language. Schools are more likely to cover VHDL since it was in 
the public domain several years earlier; however, in the FPGA industry, VHDL 
and Verilog have an almost equal market share for new design development. 
Conventional programming languages are based on a sequential operation 
model. Digital hardware devices by their very nature operate in parallel. This 
means that conventional programming languages cannot accurately describe or 
model the operation of digital hardware since they are based on the sequential 
execution of statements. Like VHDL, Verilog is designed to model parallel 
operations. 

In this section, a brief introduction to Verilog for logic synthesis will be 
presented. It is assumed that the reader is already familiar with basic digital 
logic devices and some basic C syntax. 
Whenever you need help with Verilog syntax, Verilog templates of common 
statements are available in the Quartus I1 online help. In the text editor, just 
click the right mouse button and Insert *Templates select Verilog. 

7.1 Verilog Data Types 
For logic synthesis, Verilog has simple data types. The net data type, wire, and 
the register data type, reg. A model with a net data type, wire, has a 
corresponding electrical connection or wire in the modeled device. Type reg is 
updated under the control of the surrounding procedural flow constructs 
typically inside an always statement. Type reg does not necessarily imply that 
the synthesized hardware for a signal contains a register, digital storage device, 
or flip-flop. It can also be purely combinational logic. 
Table 7.1 lists the Verilog operators and their common function in Verilog 
synthesis tools. 

7.2 Verilog Based Synthesis of Digital Hardware 
Verilog can be used to construct models at a variety of abstraction levels such 
as structural, behavioral, register transfer level (RTL), and timing. An RTL 
model of a circuit described in Verilog describes the inputloutput relationship in 
terms of dataflow operations on signal and register values. If registers are 
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required, a synchronous clocking scheme is normally used. Sometimes an RTL 
model is also referred to as a dataflow-style model. 

Verilog simulation models often include physical device time delays. In Verilog 
models written for logic synthesis, timing information should not be provided. 

For timing simulations, the CAD tools automatically include the actual timing 
delays for the synthesized logic circuit. An FPGA timing model supplied by the 
CAD tool vendor is used to automatically generate the physical device time 
delays inside the FPGA. Sometimes this timing model is also written in 
Verilog. For a quick overview of Verilog, several constructs that can be used to 
synthesize common digital hardware devices will be presented. 

7.3 Verilog Operators 
Table 7.1 lists the Verilog operators and their common function in Verilog 
synthesis tools. 

Table 7.1 Verilog Operators. 

Verilog Operator I Operation 
+ 

I 
% Modulus* 

I { )  11 Concatenation - used to combine bits I 
I << 11 rotate left I 
I >> 11 rotate right I 
I - - 11 equality I 
I != 11 Inequality I 
I < 11 less than I 
I <= 11 less than or equal I 
I z 11 greater than I 
I >= 11 greater than or equal I 

! logical negation 

11 
& 

I 
A 

- 

logical OR 
Bitwise AND 
Bitwise OR 

Bitwise XOR 

Bitwise Negation 

a 

*Not supported in some Verilog synthesis tools. In the Quartus I1 tools, 
multiply , divide, and mod of  integer values is supported. Efficient design of  
multiply or divide hardware may require the user to specify the arithmetic 
algorithm and design in Verilog. 

I logical AND 
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7.4 Verilog Synthesis Models of Gate Networks 
The first example consists of a simple gate network. In this model, both a 
concurrent assignment statement and a sequential always block are shown that 
generate the same gate network. X is the output on one network and Y is the 
output on the other gate network. The two gate networks operate in parallel. 
In Verilog synthesis, inputs and outputs from the module will become I10 pins 
on the programmable logic device. For comments "I/" makes the rest of a line a 
comment and "I*" and "*I" can be used to make a block of lines a comment. 
The Quartus I1 editor performs syntax coloring and is useful to quickly find 
major problems with Verilog syntax. Verilog is case sensitive just like C. 
Verilog concurrent statements are executed in parallel. Inside an always 
statementstatements are executed in sequential order, and all of the always 
statements are executed in parallel. The always statement is Verilog's 
equivalent of a process in VHDL. . 

module gatenetwork(A, B, C, D, X, Y); 
input A; 
input B; 
input C; 
input [2:1] D; 
output X, Y; 
reg Y; 

// concurrent assignment statenlent 
wire X = A  & -(BIG) & (D[l] D[2]); 

/* Always concurrent statement- sequential execution inside */ 
always @( A or B or C or D) 

Y = A & -(BIG) & (D[l] A D[2]); 

endmodule 

7.5 Verilog Synthesis Model of a Seven-segment LED Decoder 
The following Verilog code implements a seven-segment decoder for seven- 
segment LED displays. A 7-bit vector is used to assign the value of all seven 
bits in a single case statement. In the 7-bit logic vector, the most-significant bit 
is segment 'a' and the least-significant bit is segment 'g'. The logic synthesis 
CAD tool automatically minimizes the logic required for implementation. The 
signal Hex-digit contains the 4-bit binary value to be displayed in hexadecimal. 
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module DEC]SEG(Hex-digit, segment-a, segment-b, segment-c, 
segment-d, segment-e, segment-f, segmentg); 

input [3:0] Hex-digit; 
output segment-a, segment-b, segment-c, segment-d; 
output segment-e, segment-f, segment-g; 
reg [6:0] segment-data; 

always @(Hex-digit) 
/* Case statement implements a logic truth table using gates*/ 

case (Hex-digit) 
4'b 0000: segment-data = 7'b 11 11 11 0; 
4'b 0001: segment-data = 7'b 01 10000; 
4'b 0010: segment-data = 7'b 1101 101; 
4'bOOll: segment~data=7'b1111001; 
4'b 0100: segment-data = 7'b 01 1001 1; 
4'b 0101: segment-data = 7'b 101 101 1; 
4'b 01 10: segment-data = 7'b 101 11 11; 
4'b 01 11 : segment-data = 7'b 11 10000; 
4'b 1000: segment-data = 7'b 1 11 1 1 1 1; 
4'b 1001: segment-data = 7'b 11 1101 1; 
4'b 1010: segment-data = 7'b 11101 11; 
4'b 101 1 : segment-data = 7'b 001 11 11; 
4'b 11 00: segment-data = 7'b 1001 110; 
4'b 1101: segment-data = 7'b 01 11 101; 
4'b 11 10: segment-data = 7'b 1001 1 1 1 ; 
4'b 11 11: segment-data = 7'b 10001 11; 
default: segment-data = 7'b 01 11 110; 

endcase 

The following Verilog concurrent assignment statements extract the seven 1-bit 
values needed to connect the individual segments. The not operator (-) is used 
since a logic zero actually turns on most LEDs. Automatic minimization in the 
synthesis process will eliminate the extra inverter in the logic circuit. 

/* extract segment data bits and invert */ 
/* LED driver circuit is inverted */ 

wire segment-a = -segment-data[6]; 
wire segment-b = -segment_data[5]; 
wire segment-c = -segment-data[4]; 
wire segment-d = -segrnent_data[3]; 
wire segment-e = -segment_data[2]; 
wire segment-f = -segment-data[l]; 
wire segment4 = -segment-data[O]; 

endmodule 

7.6 Verilog Synthesis Model of a Multiplexer 
The next example shows several alternative ways to synthesize a 2-to-1 
multiplexer in Verilog. Three identical multiplexers that operate in parallel are 
synthesized by this example. The wire conditional continuous assignment 
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statement can be used for a 2-to-l mux. A concurrent assign statement can also 
be used instead of wire, if the output signal is already declared. In Verilog, IF 
and CASE statements must be inside an always statement. The inputs and 
outputs from the multiplexers could be changed to bit vectors if an entire bus is 
multiplexed. Multiplexers with more than two inputs can also be easily 
constructed and a case statement is preferred. Nested IF statements generate 
priority-encoded logic that requires more hardware and produce a slower circuit 
than a CASE statement. 

/* Multiplexer example shows three ways to model a 2to 1 mux V 
module nnultiplexer(A, B, mux_control, mux_out1, mux_out2, mux_out3); 

input A; /* Input Signals and Mux Control V 
input B; 
input mux_control; 
output mux_out1,mux_out2, nnux_out3; 
reg nnux_out2, mux_out3; 

/* Conditional Continuous Assignment Statement V 
/* works like an IF ~ ELSE V 

wire mux_out1 = (mux_control)? B:A; 
/* If statement inside always statement */ Mux_Controi 

always @(A or B or nnux_control) 
if (mux_control) A — 

mux_out2 = B; , . 
1 D L v ^ Mux Outjc 

else B— '- ^ 
mux_out2 = A; 

/* Case statement inside always statement V 
always @(A or B or mux_control) 

case {mux_Gontrol) 
0: nnux_out3 = A; 
1: mux_out3 = B; 
default: mux_out3 = A; 

endcase 
endmodule 

7.7 Verilog Synthesis iVIodel of Tri-State Output 
Tri-state gates are supported in Verilog synthesis tools and are supported in 
many programmable logic devices. Most programmable logic devices have tri-
state output pins. Some programmable logic devices do not support internal tri-
state logic. Here is a Verilog example of a tri-state output. In Verilog, the 
assignment of the value "Z" to a signal produces a tri-state output. 

module tristate (a, control, tri_out); 
input a, control; 
output tri_out; 
reg trJ_out; 
always ©(control or a) ^̂ ^̂ ^̂ , 

if (control) 
/* Assignment ofZ value generates a tri-state output V 
tri_out = 1*bZ; A . 

else I ^ TrLOut 
tri_out = a; 

endmodule 
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7.8 Verilog Synthesis Models of Flip-flops and Registers 

Reset 

In the next example, several flip-flops will be generated. Unlike earlier 
combinational hardware devices, a flip-flop can only be synthesized inside an 
always statement. The positive clock edge is selected by posedge clock and 
positive edge triggered D flip-flops will be used for synthesis. The following 
module contains a variety of Reset and Enable options on positive edge- 
triggered D flip-flops. The negative clock edge is selected by negedge clock 
and negative edge-triggered D flip-flops will be used for synthesis. 

module DFFs(D, clock, reset, enable, Q1, Q2, Q3, Q4); 
input D; 
input clock; 

input input enable; reset; 
DoQ1 clock 

output Q1, Q2, Q3, Q4; 
reg Q1, Q2, Q3, Q4; 

/" Positive edge triggered D flip-flop */ 
always @(posedge clock) 

Q1= D; 
/" Positive edge triggered D flip-flop */ 
/" with synchronous reset */ 

always @(posedge clock) 
if (reset) 

Q2 = 0; 
else 

Q2 = D; 
/"Positive edge triggered D flip-flop */ 
/" with asynchronous reset */ 

always @(posedge clock or posedge reset) 
if (reset) 

Q3 = 0; 
else 

Q3 = D; 
/" Positive edge triggered D flip-flop */ 
/" with asynchronous reset and enable */ 

always @(posedge clock or posedge reset) 
if (reset) 

Q4 = 0; 
else if (enable) 

Q4 = D; 
endmodule 

Reset 
Enable 

a ~ ~ ~ 4  
I 

Clock 

In Verilog, as in any digital logic designs, it is not good design practice to AND 
or gate other signals with the clock. Use a flip-flop with a clock enable instead 
to avoid timing and clock skew problems. In some limited cases, such as power 
management, a single level of clock gating can be used. This works only when 
a small amount of clock skew can be tolerated and the signal gated with the 
clock is known to be hazard or glitch free. A particular programmable logic 
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device may not support every flip-flop or latch type and all of the SetIReset and 
Enable options. 
If D and Q are replaced by bit vectors in any of these examples, registers with 
the correct number of bits will be generated instead of individual flip-flops. 

7.9 Accidental Synthesis of Inferred Latches 
Here is a very common problem to be aware of when coding Verilog for 
synthesis. If a non-clocked process has any path that does not assign a value to 
an output, Verilog assumes you want to use the previous value. A level 
triggered latch is automatically generated or inferred by the synthesis tool to 
save the previous value. In many cases, this can cause serious errors in the 
design. Edge-triggered flip-flops should not be mixed with level-triggered 
latches in a design or serious timing problems will result. Typically this can 
happen in CASE statements or nested IF statements. In the following example, 
the signal Output2 infers a latch when synthesized. Assigning a value to 
Output2 in the last ELSE clause will eliminate the latch. Warning messages 
may be generated during compilation when a latch is inferred on some tools. 
Note the use of begin.. .end is somewhat different than the use of braces in C. 

module ilatch( A, B, Outputl, Output2); 
input A, B; 
output Outputl , Output2; 
reg Outputl , Output2; 

always@( A or B) 
if (!A) 

begin 
Outputl = 0; 
Output2 = 0; 

end 
else 

if (B) 
begin 

Outputl = I; 
Output2 = 1 ; 

end 
else Platch inferred since no value */ 

Outputl = 0; /*is assigned to Output2 here Y 
endmodule 

7.10 Verilog Synthesis Model of a Counter 
Here is an 8-bit counter design. Compare operations such as "<" are supported 
and they generate a comparator logic circuit to test for the maximum count 
value. The assignment count = count+l; synthesizes an 8-bit incrementer. An 
incrementer circuit requires less hardware than an adder that adds one. The 
operation, "+I", is treated as a special incrementer case by synthesis tools. 
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module counter(clock, reset, max-count, count); 
input clock; 
input reset; 
input [7:0] max-count; 
output [7:0] count; 
reg [7:0] count; 

P use positive clock edge for counter */ 
always @(posedge clock or posedge reset) 

begin 
if (reset) 

count = 0; P Reset Counter */ 
else if (count e max-count) P Check for maximum count Y 

count = count + 1; P Increment Counter */ 
else 

count = 0; P Counter set back to 0*/ 
end 

endmodule 

7.1 1 Verilog Synthesis Model of a State Machine 
The next example shows a Moore state machine with three states, two inputs 
and a single output. A state diagram of the example state machine is shown in 
Figure 7.1. Unlike VHDL, A direct assignment of the state values is required in 
Verilog's parameter statement. The first Always block assigns the next state 
using a case statement that is updated on the positive clock edge, posedge. 

Reset 

Figure 7.1 State Diagram for state mach Verilog example 

module state-mach (clk, reset, inputl, input2 ,outputl); 
input clk, reset, inputl, input2; 
output outputl; 
reg outputl; 
reg [1:0] state; 
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P Make State Assigments */ 
parameter [1:0] state-A = 0, state-B = 1, state_(: = 2; 

always@(posedge clk or posedge reset) 
begin 

if (reset) 
state = state-A; 

else 
/* Define Next State Transitions using a Case */ 
P Statement based on the Current State */ 

case (state) 
state-A: 

if (input1 -0) 
state = state-B; 

else 
state = state-C; 

state-B: 
state = state-C; 

state-C: 
if (input2) state = state-A; 

default: state = state-k, 
endcase 

end 
r Define State Machine Outputs */ 

always @(state) 
begin 

case (state) 
state-A: outputl = 0;  
state-B: outputl = I ;  
state-C: outputl = 0; 
default: outputl = 0; 

endcase 
end 

endmodule 

7.12 Verilog Synthesis Model of an ALU with an AdderISubtractor 
and a Shifter 
Here is an 8-bit arithmetic logic unit (ALU), that adds, subtracts, bitwise 
ANDs, or bitwise ORs, two operands and then performs an optional shift on the 
output. The most-significant two bits of the Op-code select the arithmetic 
logical operation. If the least-significant bit of the op-code equals '1' a l-bit 
left-shift operation is performed. An addition and subtraction circuit is 
synthesized for the "+" and "-" operator. 
Depending on the number of bits and the speed versus area settings in the 
synthesis tool, ripple carry or carry-lookahead circuits will be used. Several "+" 
and "-" operations in multiple assignment statements may generate multiple 
ALUs and increase the hardware size, depending on the Verilog CAD tool and 
compiler settings used. If a single ALU is desired, muxes can be placed at the 
inputs and the "+" operator would be used only in a single assignment 
statement. 
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module ALU ( ALU-control, Ainput, Binput, Clock, Shift-output); 
input [2:0] ALU-control; 
input [15:0] Ainput; 
input [15:0] Binput; 
input Clock; 
output[l5:0] Shift-output; 
reg [15:0] Shift-output; 
reg [15:0] ALU-output; 

ALU-mtrd (2 . 1) 

P Select A LU Arith~netic/Logical Operation */ 
always @(ALU-control or Ainput or Binput) 

ALU-ottw 
case (ALU-control[P:l]) 

0: ALU-output = Ainput + Binput; 
1: ALU-output = Ainput - Binput; 
2: ALU-output = Ainput & Binput; 
3: ALU-output = Ainput I Binput; 
default: ALU-output = 0; 

endcase 

/* Shift bits left using shift left oper6 
always @(posedge Clock) 

if (ALU-control[O]==l) 
Shift-output = ALU-output Cc 1; 

else 
Shift-output = ALU-output; 

endmodule 

,tor if required anc Y load register */ 

7.13 Verilog Synthesis of Multiply and Divide Hardware 
In the Quartus I1 tool, integer multiply and divide is supported using Verilog's 
11*" and "I" operators. In current generation tools, efficient design of multiply or 
divide hardware typically requires the use of a vendor-specific library function 
or even the specification of the arithmetic algorithm and hardware 
implementation in Verilog. 
A wide variety of multiply and divide algorithms that trade off time versus 
hardware size can be found in most computer arithmetic texts. Several such 
references are listed at the end of this chapter. These algorithms require a 
sequence of addlsubtract and shift operations that can be easily synthesized in 
Verilog using the standard operators. The LPM-MULT function in Quartus I1 
can be used to synthesize integer multipliers. LPM-DIVIDE, is also available. 
When using LPM functions, Tools e3 Megawizard Plug-in Manager can be 
used to help generate Verilog code. The LPM functions also support pipeline 
options. Array multiply and divide hardware for more than a few bits requires 
extensive hardware and a large FPGA. A few large FPGAs now contain 
multiplier blocks. 
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module mult (dataa, datab, result); 
input [7:0] dataa; 
input [7:0] datab; 
output [I 5:0] result; 

wire [15:0] sub-wire0; 
wire [15:0] result = sub-wire0[15:0]; 

P Altera LPM 8x8 multiply function result = dataa * datab '/ 
Ipm-mult Ipm-mult-component ( 

.dataa (dataa), 

.datab (datab), 

.result (sub-wireO) ); 
defparam 

Ipm~mult~component.lpm~widtha = 8, 
1pm~mult~component.lpm~widthb = 8, 
Ipm~mult~component.lpm~widthp = 16, 
Ipm~mult~component.lpm~widths = 1, 
Ipm~mult~component.lpm~type = "LPM-MULT", 
Ipm~mult~component.lpm~representation = "UNSIGNED, 

endmodule 

Floating-point operations can be implemented on very large FPGAs; however, 
performance is lower than current floating-point DSP and microprocessor 
chips. The floating-point algorithms must be coded by the user in Verilog using 
integer add, multiply, divide, and shift operations. The LPM-CLSHIFT 
function is useful for the barrel shifter needed in a floating-point ALU. Some 
floating point IP cores are starting to appear. Many FPGA vendors also have 
optimized arithmetic packages for DSP applications such as FIR filters. 

7.14 Verilog Synthesis Models for Memory 
Typically, it is more efficient to call a vendor-specific function to synthesize 
RAM. These functions typically use the FPGA's internal RAM blocks rather 
than building a RAM using FPGA logic elements. The memory function in the 
Altera toolset is the ALTSYNCRAM function. On the UP 2 board's older 
FPGA, the LPM-RAM-DQ memory function should be used. The memory can 
be set to an initial value using a separate memory initialization file with the 
extension *.mif. A similar call, LPM-ROM, can be used to synthesize ROM. 
If small blocks of multi-ported or other special-purpose RAM are needed, they 
can be synthesized using registers with address decoders for the write operation 
and multiplexers for the read operation. Additional read or write ports can be 
added to synthesize RAM. An example of this approach is a dual-ported 
register file for a computer processor core. Most RISC processors need to read 
two registers on each clock cycle and write to a third register. 

Verilog Memory Model - Example One 

The first memory example synthesizes a memory that can perform a read and a 
write operation every clock cycle. Memory is built using arrays of positive 
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address 



Using Verilog for Synthesis of Digital Hardware 123 

decoder output and used as an enable to load each memory location during a 
write operation. A synchronous write operation is more reliable. Asynchronous 
write operations respond to any logic hazards or momentary level changes on 
the write signal. As in any synchronous memory, the write address must be 
stable before the rising edge of the clock signal. A non-clocked mux is used for 
the read operation. If desired, memory can be initialized by a reset signal. 

module memoryjread-data, read-address, write-data, write-address, 
memwrite, clock, reset); 

output [7:0] read-data; 
input [2:0] read-address; 
input [7:0] write-data; 
input [2:0] write-address; 
input memwrite; 
input clock; 
input reset; 
reg [7:0] read-data, memo, meml; 

/" Block for memory read */ 
always @(read-address or memO or meml) 

begin 
case(read-address) 

3'b 000: read-data = memo; 
3'b 001: read-data = meml; 
/* Unimplemented memory */ 
default: read-data = 8'h FF; 

endcase 
end 

P Block for memory write */ 
always @(posedge clock or posedge reset) 

begin 
if (reset) 

begin 
P Initial vali~es for memory (optional) */ 
memO = 8'h AA ; 
meml = 8'h 55; 

end 
else if (memwrite) 

/* write new value fo memory */ 
case (write-address) 

3'b 000 : memO = write-data; 
3'b 001 : meml = write-data; 

endcase 
end 

endmodule 

Verilog Memory Model - Example Two 

The second example shows the use of Altera7s ALTSYNCRAM megafunction 
to implement a block of memory. For more information on the megafunctions 
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see the online help guide in the Quartus I1 tool. In single port mode, the 
ALTSYNCRAM memory can do either a read or a write operation in a single 
clock cycle since there is only one address bus. In dual port mode, it can do 
both a read and write. If this is the only memory operation needed, the 
ALTSYNCRAM function produces a more efficient hardware implementation 
than synthesis of the memory in Verilog. In the ALTSYNCRAM megafunction, 
the memory address must be clocked into a dedicated address register located 
inside the FPGA's synchronous memory block. Asynchronous memory 
operations without a clock can cause timing problems and are not supported on 
many FPGAs including the Cyclone. 

module amemory ( write-data, write-enable, address, clock, read-data); 

input [7:0] write-data; 
input write-enable; 
input [2:0] address; 
input clock; 
output [7:0] read-data; 
wire [7:0] sub-wire0; 
wire [7:0] read-data = sub_wire0[7:0]; 

P Use Altera Altsyncram function for memory */ 
altsyncram altsyncram-component ( 

.wren-a (write-enable), 

.clock0 (clock), 

.address-a (address), 

.data-a (write-data), 

.q-a (sub-wireO)); 
defparam 

altsyncram~component.operation~mode = "SINGLE-PORT", 
/" 8 data bits, 3 address bits, and no register on read data */ 

altsyncram~component.width~a = 8, 
altsyncram~component.widthad~a = 3, 
altsyncram~component.outdata~reg~a = "UNREGISTERED", 

/* Reads in mif file for initial memory data values (optional) Y 
altsyncram-component.init-file = "memory.mif'; 

endmodule 

On the Cyclone FPGA chip, the memory can be implemented using the M4K 
memory blocks, which are separate from the FPGA's logic cells. In the Cyclone 
EPIC6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160 
bits. In the Cyclone EPIC12 there are 52 M4K blocks for a total of 239,616 
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8, 
256 by 16,256 by 18, 128 by 32 or 128 by 36 bits wide. The Tools 
+ Megawizard Plug-in Manager feature is useful to configure the 
Altsyncram parameters. 
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7.15 Hierarchy in Verilog Synthesis Models 
Large Verilog models should be split into a hierarchy using a top-level 
structural model in Verilog or by using the symbol and graphic editor in the 
Quartus I1 tool. In the graphical editor, a Verilog file can be used to define the 
contents of a symbol block. Synthesis tools run faster using a hierarchy on 
large models and it is easier to write, understand, and maintain a large design 
when it is broken up into smaller modules. 
An example of a hierarchical design with three submodules is seen in the 
schematic in Figure 7.2. Following the schematic, the same design using a top- 
level Verilog structural model is shown. This Verilog structural model provides 
the same connection information as the schematic seen in Figure 7.2. 
Debounce, Onepulse, and Clk-div are the names of the Verilog submodules. 
Each one of these submodules has a separate Verilog source file. In the Quartus 
I1 tool, compiling the top-level module will automatically compile the lower- 
level modules. 
In the example Verilog structural model for Figure 7.2, note the use of a 
component instantiation statement for each of the three submodules. The 
component instantiation statement declares the module name and connects 
inputs and outputs of the module. New internal signal names used for 
interconnections of modules should also be declared at the beginning of the top 
level module. 
The order of each module's signal names must be the same as in the Verilog 
submodule files. Each instantiation of a module is given a unique name so that 
a single module can be used several times. As an example, the single 
instantiation of the debounce module is called debouncel in the example code. 

Figure 7.2 Schematic of Hierarchical Design Example 

Note that node names in the schematic or signals in Verilog used to 
interconnect modules need not always have the same names as the signals in 
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the components they connect. As an example, PB-debounced on the debounce 
component connects to an internal signal with a different name, 
PB 1-debounced. 

module hierarch(Clock_48MHz, PBI, ~~ l l s in~ le -pu l se ) ;  
input Clock_48MHz, PBI ; 
output PBI-Single-Pulse; 

/* Declare internal interconnect signals */ 
reg Clock-IOOHz, Clock-IMHz, PBI-Debounced; 

/* declare and connect ail three modules in the hiearchy */ 
debounce debouncel( PBI, Clock-IOOHz, PBI-Debounced); 

clk-div clk-divl ( Clock_48MHz, Clock-I MHz, Clock-1 00Hz); 

onepulse onepulsel( PBI-Debounced, Clock-IOOHz, PB1-Single-Pulse); 

endmodule 

7.1 6 For additional information 
The chapter has introduced the basics of using Verilog for digital synthesis. It 
has not explored all of the language options available. The Altera online help 
contains Verilog syntax and templates. A number of Verilog reference textbooks 
are also available. Unfortunately, not all of them currently contain Verilog 
models that can be used for digital logic synthesis. Two recommendations are 
HDL Chip Design by Douglas J .  Smith, Doone Publications, 1996 and 
Modeling, Synthesis, and Rapid Prototyping with the Verilog HDL by Michael 
Ciletti, 1999. An interesting free VHDL to Verilog conversion program is also 
available at www.ocean-lo~ic.com!downloads.htm. 

7.1 7 Laboratory Exercises 
1. Write a Verilog model for the state machine shown in the following state diagram and 

verify correct operation with a simulation using the Altera CAD tools. A and B are the 
two states, X is the output, and Y is the input. Use the timing analyzer to determine the 
maximum clock frequency on the Cyclone EP1 C6Q240C8 device. 

1 

/ 
Reset 

2. Write a Verilog model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation 
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and 
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Y is the output. A shift operation follows the arithmetic and logical operation. The 
opcode controls ALU functions as follows: 

Use the Cyclone chip as the target device. Determine the worst case time delay of the 
ALU using the timing analyzer. Examine the report file and find the device utilization. 
Use the logic element (LE) device utilization percentage found in the compilation report 
to compare the size of the designs. 

Explore different synthesis options for the ALU from problem 3. Change the area and 
speed synthesis settings in the compiler under Assignments +Settings +Analysis and 
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report 
file for hardware size estimates. Include data points for the default, optimized for speed, 
balanced, and optimized for area settings. Build a plot showing the speed versus area 
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization 
percentage found in the compilation report to compare the size of the designs. 

Develop a Verilog model of one of the TTL chips listed below. The model should be 
functionally equivalent, but there will be timing differences. Compare the timing 
differences between the Verilog FPGA implementation and the TTL chip. Use a data 
book or find a data sheet using the World Wide Web. 

F. 7400 Quad nand gate 

G. 74LS241 Octal buffer with tri-state output 

H. 74LS273 Octal D flip-flop with Clear 

I. 741 63 4-bit binary counter 

J. 74LS181 4-bit ALU 

Replace the 8count block used in the tutorial in Chapter 4, with a new counter module 
written in Verilog. Simulate the design and download a test program to the UP 3 board. 

Implement a 128 by 32 RAM using Verilog and the Altsyncram function. Do not use 
registered output options. Target the design to the Cyclone device. Use the timing 
analysis tools to determine the worst-case read and write access times for the memory. 
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8 State Machine Design: The Electric Train Controller 

8.1 The Train Control Problem 
The track layout of a small electric train system is shown in Figure 8.1. Two 
trains, we'll call A and B, run on the tracks, hopefully without colliding. To 
avoid collisions, the trains require a safety controller that allows trains to move 
in and out of intersections without mishap. 
In Figure 8.1, assume for a moment that Train A is at Switch 3 and moving 
counterclockwise. Let's also assume that Train B is moving counterclockwise 
and is at Sensor 2. Since Train B is entering the common track (Track 2), Train 
A must be stopped when it reaches Sensor 1, and must wait until Train B has 
passed Sensor 3. At this point, Train A will be allowed to enter Track 2, and 
Train B will move toward Sensor 2. 
The controller is a state machine that uses the sensors as inputs. The 
controller's outputs control the power to the tracks, the direction of the trains, 
and the position of the switches. However, the state machine does not control 
the speed of the train. This means that the system controller must function 
correctly independent of the speed of the two trains. 

Switch 3 
I I Track I 

Sensor I Sensor 2 

Switch 1 Switch 2 

Figure 8.1 Track Layout with Input Sensors and Output Switches and Output Tracks. 

The following sections describe how the state machine should control each 
signal to operate the trains properly. Figure 8.2 demonstrates how the actual 
electric train system was built with relays. A relay is an electrically controlled 
switch. A UP 3-based "virtual" train simulation will be used that emulates this 
relay setup. Since there are no actual relays on the UP 3 board, it is only 
intended to give you a visual diagram of how the output signals work in the real 
system. 
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Power for 
Train A 

Q 

Power for 
Train B 

4 

Controls 
Power On 
and Off 

Controls 
Direction 

Indicates a joined relay that is 
controlled by the signal name. 

Track 1 # 

Track 2 Lt  

Ties Power A or Power 
B to each Track 

Four Tracks all 
powered by 

Power A 
or 

Power B 

Figure 8.2 Electric train controller relay schematic. 
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8.2 Track Power (TI, T2, T3, and T4) 
The track power signals (TI, T2, T3, T4) determine which power supply is 
attached to which track. Note that since these are binary signals, one of the 
power supplies is always connected to a track. 
The track power connections are based on the actual switching relay system. 
There are two power supplies (Power A and Power B) that can be connected to 
the tracks. What these two power supplies actually allow you to do on the real 
system is assign different speeds to each train. This is part of the simulator and 
is controlled by the DIP switches on the UP 3 board. Speed will NOT be 
controlled by your state machine, only Stop, Forward, and Reverse. 
As illustrated in Figure 8.2, if either direction switch is set, the power supply is 
connected to the next level of switches. Another set of relays determines the 
polarity (direction of trains), while a third connects either Power A or Power B 
to each track. Each track is either assigned power from source A (Tn = 0) or 
from source B (Tn = 1). In other words, if all four signals (TI, T2, T3, and T4) 
are asserted high, all tracks will be powered from power source B and would all 
be assigned the same Direction (see the next section under Track Direction for 
controlling train direction). See Figure 8.3 for an example. 

8.3 Track Direction (DAI-DAO, and DBI-DBO) 
The direction for each track is controlled by four signals (two for each power 
source), DA (DAl-DAO) for source A, and DB (DBl-DBO) for source B. When 
these signals indicate forward "01" for a particular power source, any train on a 
track assigned to that power source will move counterclockwise (on track 4, the 
train moves toward the outer track). When the signals imply reverse "lo", the 
train(s) will move clockwise. The "11" value is illegal and should not be used. 
When these signals are set to "OO", any train assigned to the given source will 
stop. (See Figures 8.2 and 8.3.) 

DA = 01 : Supply A Forward /- T1 = 0 : Track 1 set to Supply A 

Sensor 1 Sensor 2 

Switch 1 Switch 2 

Figure 8.3 Track Power is connected to one of Two Power Sources: A and B. 
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8.4 Switch Direction (SWI, SW2, and SW3) 
Switch directions are controlled by asserting SW1, SW2, and SW3 either high 
(outside connected with inside track) or low (outside tracks connected). That is, 
anytime all of the switches are set to 1, the tracks are setup such that the 
outside tracks are connected to the inside tracks. (See Figure 8.4.) 
If a train moves the wrong direction through an open switch it will derail. Be 
careful. If a train is at the point labeled "Track 1" in Figure 8.4 and is moving 
to the left, it will derail at Switch 3. To keep it from derailing, SW3 would need 
to be set to 0. 
Also, note that Tracks 3 and 4 cross at an intersection and care must be taken to 
avoid a crash at this point. 

Sensor 

Swii ' - r [cn J 
1 Track I 

u u 
Switch 1 Switch 2 

Figure 8.4 Track Direction if all Switches are Asserted (SWl = SW2 = SW3 = 1) 

8.5 Train Sensor Input Signals (SI, S2, S3, S4, and S5) 
The five train sensor inputs (Sl, S2, S3, S4, and S5) go high when a train is 
near the sensor location. It should be noted that sensors (Sl ,  S2, S3, S4, and 
S5) do not go high for only one clock cycle. In fact, the sensors fire 
continuously for many clock cycles per passage of a train. This means that if 
your design is testing the same sensor from one state to another, you must wait 
for the signal to change from high to low. 
As an example, if you wanted to count how many times that a train passes 
Sensor 1, you can not just have an "IF S1 GOT0 count-one state" followed by 
"IF S1 GOT0 count-two state." You would need to have a state that sees 
Sl='l ', then S1='0', then S1='lY again before you can be sure that it has 
passed S1 twice. If your state machine has two concurrent states that look for 
Sl='17, the state machine will pass through both states in two consecutive 
clock cycles although the train will have passed S1 only once. 
Another way would be to detect S 1=' 1 ', then S4=' 1 ', then S 1 =' 1 ' if, in fact, the 
train was traversing the outside loop continuously. Either method will ensure 
that the train passed S1 twice. 
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The signal inputs and outputs have been summarized in the following figure: 

Reset -* 
Sensor-5 (S5) -* 
Sensor-4 (S4) -L 

Sensor-3 (S3) 

Sensor-2 (S2) 

Sensor-I ( S I )  

CLK - 
FPGA 

State 
Machine 

Switch-3 (Sw3) - Switch-2 (Sw2) 

Switch-I (Swl )  

Track-4 (T4) 

Track-3 (T3) - Track-2 (T2) - Track-I (T I )  

Direction A1 (DAI )  

Direction A2 (DAO) - Direction B1 (DBI )  - Direction BO (DBO) 

Sensor (SI, S2, S3, S4, S5) = 1 Train Present 

= 0 Train not Present 

Switches (SWI, SW2, SW3) = 0 Connected to Outside Track 

= 1 Connected to Inside Track 

Track (TI, T2, T3, T4) = 0 A Virtual Power on Track n 

= 1 B Virtual Power on Track n 

Direction (DAI-DAO) and (DBI-DBO) = 00 Stop 

= 01 Foward (Counterclockwise) 

= 10 Backward (Clockwise) 

Figure 8.5 Train Control State Machine 110 Configuration 

8.6 An Example Controller Design 
This is a working example of a train controller state machine. For this 
controller, two trains run counterclockwise at various speeds and avoid 
collisions. One Train (A) runs on the outer track and the other (B) runs on the 
inner track. Only one train at a time is allowed to occupy the common track. 
Both an ASM chart and a classic state bubble diagram are illustrated in Figures 
8.6 and 8.7 respectively. In the ASM chart, state names, ABout, Ain, Bin, 
Bstop, and Astop indicate the active and possible states. The rectangles contain 
the active (High) outputs for the given state. Outputs not listed are inactive 
(Low). 
The diamond shapes in the ASM chart indicate where the state machine tests 
the condition of the inputs (Sl, S2, etc.). When two signals are shown in a 
diamond, they are both tested at the same time for the indicated values. 
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A state machine classic bubble diagram is shown in Figure 8.7. Both Figures 
8.6 and 8.7 contain the same information. They are simply different styles of 
representing a state diagram. The track diagrams in Figure 8.8 show the states 
visually. In the state names, "in" and "out" refer to the state of track 2, the track 
that is common to both loops. 

Description of States in Example State Machine 

All States 
T3 Asserted: The B power supply is assigned to track 3. 
All signals that are not "Asserted" are zero and imply a logical result as described. 

ABout: "Trains A and B Outside" 
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward). 
DBO Asserted: Train B is on the inner track (not the common track) and also moving forward. 
Note that by NOT Asserting DAl, it is automatically zero -- same for DB 1. Hence, the outputs are 
DA = "01" and DB = "01". 

"Train A moves to Common Track" 
Sensor 1 has fired either first or at the same time as Sensor 2. 
Either Train A is trying to move towards the common track, or 
Both trains are attempting to move towards the common track. 
Both trains are allowed to enter here; however, state Bstop will stop B if both have entered. 
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward). 
DBO Asserted: Train B is on the inner track (not the common track) and also moving forward. 

Bstop: "Train B stopped at S2 waiting for Train A to clear common track" 
DAO Asserted: Train A is moving from the outside track to the common track. 
Train B has arrived at Sensor 2 and is stopped and waits until Sensor 4 fires. 
SWl and SW2 are NOT Asserted to allow the outside track to connect to common track. 
Note that T2 is not asserted making Track 2 tied to the A Power Supply. 

"Train B has reached Sensor 2 before Train A reaches Sensor 1 " 
Train B is allowed to enter the common track. Train A is approaching Sensor 1. 
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward). 
DBO Asserted: Train B is on the inner track moving towards the common track. 
SWl Asserted: Switch 1 is set to let the inner track connect to the common track. 
SW2 Asserted: Switch 2 is set to let the inner track connect to the common track. 
T2 Asserted: The B Power Supply is also assigned to the common track. 

Astop: "Train A stopped at S1 waiting for Train B to clear the common track" 
DBO Asserted: Train B is on the inner track moving towards the common track. 
SWl and SW2 Asserted: Switches 1 and 2 are set to connect the inner track to the common track. 
T2 Asserted: The B Power Supply is also assigned to the common track. 
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Figure 8.6 Example Train Controller ASM Chart. 

Fieure 8.7 Examvle Train Controller State Diagram. 
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SWI sw2 

ABout: T3. DAO. DBO (13. DA = I. DB = 1 ) 

Aln: 73, DAO. DBO(T3, DA= I ,  D B =  I ) 

SWI TZ sw2 

Estop: T3. DAO ( T3. DA = 1 ) 

Swl TZ Sw2 

Bin: T2. T3. DAO. DBO. SwI. SwZ 
(T2 .T3 .DA=I .DB=I .Swl .SwZ)  

Figure 8.8 Working diagrams o f  train vositions for each state. 

SWl T2 S WZ 

Astop: TZ, T3.080. Swl. SwZ 
(TZ .T3 ,DB=I ,Swl .SwZ)  

Table 8.1 Outputs corresponding to states. 
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8.7 VHDL Based Example Controller Design 
The corresponding VHDL code fo r  the state machine in Figures 8.6 and 8.7 i s  
shown below. A CASE statement based o n  the current state examines the inputs 
to  select the next state. At each clock edge the next state becomes the current 
state. WITH ... SELECT statements at the end o f  the program specify the 
outputs for each state. For  additional VHDL help, see the help f i les in the 
Altera C A D  tools or look at the VHDL examples in Chapter 6. 

-- Exampie State machine to control trains-- File: Tcontrol.vhd 
-- 

-- These libraries are required in all V f D L  source @/es 

USE IEEESTD~LOGIC-ARITH.ALL; 
USE IEEESTD-LOGIC-UNSIGNED.ALL; 

-- This section defines state rnachine inputs and outputs 
-- No modifications should be needed in this section 

TlTY Tcontrol IS 
PORT( reset, clock, sensor1 , sensor2, 

sensor3, sensor4, sensor5 : IN STD-LOGIC; 
switch1 , switch2, switch3 : OUT STD-LOGIC; 
trackl, track2, track3, track4 : OUT STD-LOG1C; 

-- dirA and dirB are 2-bit logic vectors(i.e. an array of 2 bits) 
dirA, dirB : OUT STD-LOGIC-VECTOR( 1 DQWNTO 0 )); 

END Tcontrol; 

-- This code describes how the state rnachine operates 
-- This section will need changes for a different state machine 

ARCHITECTURE a OF Tcontrol IS 

-- Define local signak (Le. non inpuf or output signals) here 
TYPE STATEJYPE IS ( ABout, Ain, Bin, Astop, Bstop ); 
SIGNAL state: STATE-TYPE; 
SIGNAL sensor12, sensorl3, sensor24 : STD-LOGIC-V 

BEGIN 
-- This section describes how the state machine behaves 
-- this process runs once every time reset or the clock changes 

PROCESS ( reset, clock ) 

eset to this state (ie. asynchronous reset') 
IF reset = '1' THE 

state <= ABout; 
ELSlF clock'EVENT AND clock = '1' THEN 

-- clocklEVENT means value of clock just changed 
--This section wi!l execute once on each positive clock edge 
--Signal assignments i n  this section will generate D flip-flops 
-- Case statement to determine next state 

CASE state IS 
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WHEN ABout => 
-- This Case checks both sensor? and sensor2 bits 

CASE Sensor1 2 IS 
-- Note: VHDL's use of double quote for bit vector versus 
-- a single quote for only one bit! 

EN "00" => state <= About; 
EN "01" => state <= Bin; 
EN "1 0" => state <= Ain; 
EN "1 1" =z state <= Ain; 

-- Default case is always required 
S => state <= ABout; 

END CASE; 

HEN Ain => 
CASE Sensor24 IS 

"00" => state <= Ain; 
"01" => state <= ABout; 
"1 0" =r state <= Bstop; 

EN " I  I "  => state <= ABout; 
OTHERS => state <= ABout; 

END CASE; 

HEN Bin => 
CASE Sensor13 IS 

"00" => state <= Bin; 
"01" =r state <= ABout; 
"1 0" => state <= Astop; 
"1 1 " => state <= About; 

HEN OTHERS => state <= ABout; 
END CASE; 

IF Sensor3 = '1' THEN 
state <= Ain; 

ELSE 
state <= Astop; 

END IF; 

state <= Bin; 
ELSE 

END IF; 
END PROCESS; 

-- combine sensor bits for case statements above 
-- "&" operator combines bits 

sensor12 <= sensorl & sensor2; 
sensor13 <= sensorl & sensor3; 
sensor24 <= sensor2 & sensor4; 
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-- These outputs do not depend on tl?e state 

-- Outputs that depend on state; use state to select value 
-- Be sure to specify every output for every sirate 
-- values will not defa~lt  to zero! 

Track3 <= '1 ' 
'1 ' HEN Ain, 
'1 ' 
'1 ' 
'1 ' 

Track2 <- '0' 
'0' 
'1 ' 
'1 ' 
'0' WHEN Bstop; 

Switch1 <= '0' 
'0' 
'1 ' 
'1 ' 
'0' 

'0' 
'0' 
'1 ' 
'1 ' 
'0' 

DirA <= "01" 
"01" 
"01" 
"00" 
"01" 

DirB <- "01" 
"01" 
"01" 
"01" 
"00" 

WHEN Bin, 
Astop, 
Bstop; 

WHEN ABout, 
WHEN Ain, 

WHEN Bstop; 

8.8 Simulation Vector file for State Machine Simulation 
The vector waveform file, tcontrol.vwf, controls the simulation and tests the 
state machine. A vector waveform file specifies the simulation stimulus and 
display. This file sets up a 40ns clock and specifies sensor patterns (inputs to 
the state machine), which will be used to test the state machine. These patterns 
were chosen by picking a path in the state diagram that moves to all of the 
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different states. The sensor-input patterns will need to be changed to test a 
different state machine. Sensor inputs should not change faster than the clock 
cycle time of 4011s. As a minimum, try to test all of the states and arcs in your 
state machine simulation. 

Figure 8.9 Tcontrol.vwf vector waveform file for simulation. 

Figure 8.10 Simulation of TcontroLvhd using the Tcontrol.vwf vector waveform file in Figure 8.9. 
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8.9 Running the Train Control Simulation 
Follow these steps to compile and simulate the state machine for the electric 
train controller. 

Select Current Project 

Make Tcontrol.vhd the current project with File c3 Open Project 4 Name 
Then find and select Tcontrol.vhd. 

Compile and Simulate 

Select Processing 4 Start Compilation and Simulation. The simulator will 
run automatically if there are no compile errors. Select Processing c3 
Simulation Report to see the timing diagram display of your simulation as 
seen in Figure 8.10. Whenever you change your VHDL source you need to 
repeat this step. If you get compile errors, clicking on the error will move the 
text editor to the error location. The Altera software has extensive online help 
including VHDL syntax examples. 
Make any text changes to Tcontrol.vhd or Tcontrol.vwf (test vector waveform 
file) with File c3 Open. This brings up a special editor window. Note that the 
menus at the top of the screen change depending on which window is currently 
open. 

Updating new Simulation Test Vectors 

To update the simulation with new test vectors from a modified TcontroLvwf, 
select Processing * Start Simulation. The simulation will then run with the 
new test vectors. If you modify Tcontrol.vhd, you will need to recompile first. 

8.10 Running the Video Train System (After Successful Simulation) 
A simulated or "virtual1' train system is provided to test the controller without 
putting trains and people at risk. The simulation runs on the Cyclone chip. The 
output of the simulation is displayed on a VGA monitor connected directly to 
the UP 3 board. A typical video output display is seen in Figure 8.11. This 
module is also written in VHDL and it provides the sensor inputs and uses the 
outputs from the state machine to control the trains. The module tcontrol.vhd is 
automatically connected to the train simulation. 

Here are the steps to run the virtual train system simulation: 

Select the top-level project 

Make Train.vhd the current project with File 4 Open Project c3 Name 
Then find and select Train.qpf. Train.qsf must be in the project directory since 
it contains the Cyclone chip pin assignment information needed for video 
outputs and switch inputs. Double check that your FPGA Device type is 
correct. 
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Compile the Project 

Select Processing + Start Compilation. Train.vhd will link in your 
tcontroLvhd file if it is in the same directory, when compiled. This is a large 
program, so it will take a few seconds to compile. 

Download the Video Train Simulation 

Select Tools 4 Programmer. When the programmer window opens click on 
the Program/Configure box if it is not already selected. In case of problems, see 
the UP 3 board tutorial in Chapter 1 for more details. The UP3 board must be 
turned on the power supply must be connected, and the Byteblaster* cable must 
be plugged into the PC's printer port. When everything is setup, the start button 
in the programming window should highlight. If the start button is not 
highlighted, try closing and reopening the programmer window. Under 
Hardware setup the Byteblaster should be selected. To download the board, 
click on the highlighted start button. Attach a VGA monitor to the UP 3 board. 

Figure 8.11 Video Image from Train System Simulation. 

Viewing the Video Train Simulation 

Train output should appear on the VGA monitor after downloading is complete. 
UP3 SW7 is run/step/stop and UP3 SW8 is the reset. Train A is displayed in 
black and Train B is displayed in red. Hit SW7 once to start the train simulation 
running. Hitting SW7 again will stop the simulation. If you SW7 twice quickly 
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while trains are stopped, it will single step to the next track sensor state - 
change. 

Sensor and switch values are indicated with a green or red square on the 
display. Switch values are the squares next to each switch location. Green 
indicates no train present on a sensor and it indicates switch connected to 
outside track for a switch. The UP 3's LCD display top line shows the values of 
the sensor (s), track (t) and switch (sw) signals in binary and the bottom line 
indicates the values of DirA and DirB in binary. The most significant bit in 
each field is the highest numbered bit. 
If a possible train wreck is detected by two trains running on the same track 
segment, the simulation halts and the monitor will flash. The UP3 DIP switches 
control the speed of Train A (low 2 bits) and B (high 2 bits). Be sure to check 
operation with different train speeds. Most problems occur with a fast and a 
slow train. 

8.1 1 Laboratory Exercises 
1. Assuming that train A now runs clockwise and B remains counterclockwise, draw a new 

state diagram and implement the new controller. If you use VHDL to design the new 
controller, you can modify the code presented in section 8.7. Simulate the controller and 
then run the video train simulation. 

2. Design a state machine to operate the two trains avoiding collisions but minimizing their 
idle time. Trains must not crash by moving the wrong direction into an open switch. 
Develop a simulation to verify your state machine is operating correctly before running 
the video train system. 

The trains are assumed to be in the initial positions as shown in Figure 8.12. Train A is to 
move counterclockwise around the outside track until it comes to Sensor 1, then move to 
the inside track stopping at Sensor 5 and waiting for B to pass Sensor 3 twice. Trains can 



State Machine Design: The Electric Train Controller 145 

move at different speeds so no assumption should be made about the train speeds. A train 
hitting a sensor can be stopped before entering the switch area. 

Once B has passed Sensor 3 twice, Train A moves to the outside track and continues 
around counterclockwise until it picks up where it left off at the starting position as 
shown in Figure 8.13. Train B is to move as designated only stopping at a sensor to avoid 
collisions with A. 

Switch 1 Switch 2 

Figure 8.12 Initial Positions of Trains at State Machine Reset with Initial Paths Designated. 

Figure 8.13 Return Path of Train A. 

Train B will then continue as soon as there is no potential collision and continue as 
designated. Trains A and B should run continuously, stopping only to avoid a potential 
collision. 

3. Use the single pulse UP3core functions on each raw sensor input to produce state 
machine sensor inputs that go High for only one clock cycle per passage of a train. 
Rework the state machine design with this assumption and repeat problem 1 or 2. 

4. Develop another pattern of train movement and design a state machine to implement it. 
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A partial die photograph of individual transistors about 10 microns tall on the Intel i4004 
microprocessor is seen above. The 1971 Intel 4004 was the world's first single chip 
microprocessor. Prior to the 4004, Intel made memory chips. The 4004 was a 4-bit CPU 
with a clock rate of 108 kHz that contains 2,300 transistors. Photograph 01995-2004 
courtesy of Michael Davidson, http://micro.magnet.fsu.edu/chipshots. 
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9 A Simple Computer Design: The pP 3 

A traditional digital computer consists of three main units, the processor or 
central processing unit (CPU), the memory that stores program instructions and 
data, and the inputloutput hardware that communicates to other devices. As 
seen in Figure 9.1, these units are connected by a collection of parallel digital 
signals called a bus. Typically, signals on the bus include the memory address, 
memory data, and bus status. Bus status signals indicate the current bus 
operation, memory read, memory write, or inputloutput operation. 

Processor 

Figure 9.1 Architecture of a Simwle Comwuter System. 

Memory 

Internally, the CPU contains a small number of registers that are used to store 
data inside the processor. Registers such as PC, IR, AC, MAR and MDR are 
built using D flip-flops for data storage. One or more arithmetic logic units 
(ALUs) are also contained inside the CPU. The ALU is used to perform 
arithmetic and logical operations on data values. Common ALU operations 
include add, subtract, and logical and/or operations. Register-to-bus 
connections are hard wired for simple point-to-point connections. When one of 
several registers can drive the bus, the connections are constructed using 
multiplexers, open collector outputs, or tri-state outputs. The control unit is a 
complex state machine that controls the internal operation of the processor. 
The primary operation performed by the processor is the execution of 
sequences of instructions stored in main memory. The CPU or processor reads 
or fetches an instruction from memory, decodes the instruction to determine 
what operations are required, and then executes the instruction. The control unit 
controls this sequence of operations in the processor. 

I nput1Ouput 

A A 

Address Bus . Data Bus 
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9.1 Computer Programs and Instructions 
A computer program is a sequence of instructions that perform a desired 
operation. Instructions are stored in memory. For the following simple pP 3 
computer design, an instruction consists of 16 bits. As seen in Figure 9.2 the 
high eight bits of the instruction contain the opcode. The instruction operation 
code or "opcode" specifies the operation, such as add or subtract, that will be 
performed by the instruction. Typically, an instruction sends one set of data 
values through the ALU to perfonn this operation. The low eight bits of each 
instruction contain a memory address field. Depending on the opcode, this 
address may point to a data location or the location of another instruction. 
Some example instructions are shown in Figure 9.3. 

I O p c o d e  I A d d r e s s  I 

Figure 9.2 Simple pP 3 Computer Instruction Format. 

Instruction Mnemonic Operation Preformed Opcode Value 

ADD address AC <= AC + contents of memory address 00 

STORE address contents of memory address <= AC 0 1 

LOAD address AC <= contents of memory address 02 

JUMP address PC <= address 03 

JNEG address If AC < 0 Then PC <= address 04 

Figure 9.3 Basic UP 3 Comvuter Instructions. 

An example program to compute A =  B + C is shown in Figure 9.4. This 
program is a sequence of three instructions. Program variables such as A, B, 
and C are typically stored in dedicated memory locations. The symbolic 
representation of the instructions, called assembly language, is shown in the 
first column. The second column contains the same program in machine 
language (the binary pattern that is actually loaded into the computer's 
memory). 
The machine language can be derived using the instruction format in Figure 
9.2. First, find the opcode for each instruction in the first column of Figure 9.3. 
This provides the first two hexadecimal digits in machine language. Second, 
assign the data values of A, B, and C to be stored in hexadecimal addresses 
10,11, and 12 in memory. The address provides the last two hexadecimal digits 
of each machine instruction. 
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Assembly Language Machine Laneuage 

LOAD B 0211 
ADD C 0012 
STORE A 0110 

Figure 9.4 Example Computer Program for A = B + C. 

The assignment of the data addresses must not conflict with instruction 
addresses. Normally, the data is stored in memory after all of the instructions in 
the program. In this case, if we assume the program starts at address 0, the 
three instructions will use memory addresses 0,1, and 2. 
The instructions in this example program all perform data operations and 
execute in strictly sequential order. Instructions such as JUMP and JNEG are 
used to transfer control to a different address. Jump and Branch instructions do 
not execute in sequential order. Jump and Branch instructions must be used to 
implement control structures such as an IF ... THEN statement or program 
loops. Details are provided in an exercise at the end of this section. 
Assemblers are computer programs that automatically convert the symbolic 
assembly language program into the binary machine language. Compilers are 
programs that automatically translate higher-level languages, such as C or 
Pascal, into a sequence of machine instructions. Many compilers also have an 
option to output assembly language to aid in debugging. 
The programmer's view of the computer only includes the registers (such as the 
program counter) and details that are required to understand the function of 
assembly or machine language instructions. Other registers and control 
hardware, such as the instruction register (IR), memory address register 
(MAR), and memory data register (MDR), are internal to the CPU and are not 
described in the assembly language level model of the computer. Computer 
engineers designing the processor must understand the function and operation 
of these internal registers and additional control hardware. 

9.2 The Processor Fetch, Decode and Execute Cycle 
The processor reads or fetches an instruction from memory, decodes the 
instruction to determine what operations are required, and then executes the 
instruction as seen in Figure 9.5. A simple state machine called the control unit 
controls this sequence of operations in the processor. The fetch, decode, and 
execute cycle is found in machines ranging from microprocessor-based PCs to 
supercomputers. Implementation of the fetch, decode, and execute cycle 
requires several register transfer operations and clock cycles in this example 
design. 
The program counter contains the address of the current instruction. Normally, 
to fetch the next instruction from memory the processor must increment the 
program counter (PC). The processor must then send the address value in the 
PC to memory over the bus by loading the memory address register (MAR) and 
start a memory read operation on the bus. After a small delay, the instruction 



A Simple Computer Design: The pP3 151 

data will appear on the memory data bus lines, 
memory data register (MDR). 

Instruction I Fetch I 
Decode 

Instruction , 
Execute 

Instruction 

Figure 9.5 Processor Fetch. Decode and Execute Cvcle. 

and it will be latched into the 

Execution of the instruction may require an additional memory cycle so the 
instruction is normally saved in the CPU's instruction register (IR). Using the 
value in the IR, the instruction can now be decoded. Execution of the 
instruction will require additional operations in the CPU and perhaps additional 
memory operations. 
The Accumulator (AC) is the primary register used to perform data calculations 
and to hold temporary program data in the processor. After completing 
execution of the instruction the processor begins the cycle again by fetching the 
next instruction. 
The detailed operation of a computer is often modeled by describing the 
register transfers occurring in the computer system. A variety of register 
transfer level (RTL) languages such as VHDL or Verilog are designed for this 
application. Unlike more traditional programming languages, RTL languages 
can model parallel operations and map easily into hardware designs. Logic 
synthesis tools can also be used to implement a hardware design automatically 
using an RTL description. 
To explain the function and operation of the CPU in detail, consider the 
example computer design in Figure 9.1. The CPU contains a general-purpose 
data register called the accumulator (AC) and the program counter (PC). The 
arithmetic logic unit (ALU) is used for arithmetic and logical operations. 
The fetch, decode, and execute cycle can be implemented in this computer 
using the sequence of register transfer operations shown in Figure 9.6. The next 
instruction is fetched from memory with the following register transfer 
operations: 

MAR = PC 
Read Memory, MDR = Instruction value from memory 
IR = MDR 
P C = P C + l  
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After this sequence of operations, the current instruction is in the instruction 
register (IR). This instruction is one of several possible machine instructions 
such as ADD, LOAD, or STORE. The opcode field is tested to decode the 
specific machine instruction. The address field of the instruction register 
contains the address of possible data operands. Using the address field, a 
memory read is started in the decode state. 
The decode state transfers control to one of several possible next states based 
on the opcode value. Each instruction requires a short sequence of register 
transfer operations to implement or execute that instruction. These register 
transfer operations are then performed to execute the instruction. Only a few of 
the instruction execute states are shown in Figure 9.6. When execution of the 
current instruction is completed, the cycle repeats by starting a memory read 
operation and returning to the fetch state. A small state machine called a control 
unit is used to control these internal processor states and control signals. 

*MAR=PC 

FETCH Read Memory 
IR=MDR 

PC=PC+l 

EXECYTE 1 owde=rD , Ac=~DRowdi;;;, M!z;=sm~i 

AC=AC+MDR Write Memory 

Fieure 9.6 Detailed View of Fetch. Decode. and Execute for the UP 3 Comvuter Desien. 

Figure 9.7 is the datapath used for the implementation of the pP 3 Computer. A 
computer's datapath consists of the registers, memory interface, ALUs, and the 
bus structures used to connect them. The vertical lines are the three major 
busses used to connect the registers. On the bus lines in the datapath, a "/" with 
a number indicates the number of bits on the bus. Data values present on the 
active busses are shown in hexadecimal. MW is the memory write control line. 
A reset must be used to force the processor into a known state after power is 
applied. The initial contents of registers and memory produced by a reset can 
also be seen in Figure 9.7. Since the PC and MAR are reset to 00, program 
execution will start at 00. 
Note that memory contains the machine code for the example program 
presented earlier. Recall that the program consists of a LOAD, ADD, and 
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STORE instruction starting at address 00. Data values for this example program 
are stored in memory locations, 10, 11, and 12. 

Memory 
00: 02 11 
01: 0012 10: 0000 
02: 01 10 11: 0004 
03: 03 03 12: 00 03 

Figure 9.7 Datapath used for the pP 3 Computer Design after applying reset. 

Consider the execution of the ADD machine instruction (0012) stored at 
program location 01 in detail. The instruction, ADD address, adds the contents 
of the memory location at address 12 to the contents of AC and stores the result 
in AC. The following sequence of register transfer operations will be required 
to fetch and execute this instruction. 

FETCH: REGISTER TRANSFER CYCLE I :  

MAR = PCprior to fetch, read memory, IR = MDR, PC = PC + 1 

First, the memory address register is loaded with the PC. In the example 
program, the ADD instruction (0012) is at location 01 in memory, so the PC 
and MAR will both contain 01. In this implementation of the computer, the 
MAR=PC operation will be moved to the end of the fetch, decode, and execute 
loop to the execute state in order to save a clock cycle. To fetch the instruction, 
a memory read operation is started. After a small delay for the memory access 
time, the ADD instruction is available at the input of the instruction register. To 
set up for the next instruction fetch, one is added to the program counter. The 
last two operations occur in parallel during one clock cycle using two different 
data busses. At the rising edge of the clock signal, the decode state is entered. A 
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block diagram of the register transfer operations for the fetch state is seen in 
Figure 9.8. Inactive busses are not shown. 

MAR 01 

Memory 
00: 02 11 
01: 0012 10: 0000 
02: 01 10 11: 0004 
03: 03 03 12: 00 03 

Figure 9.8 Register transfers in the ADD instruction's Fetch State. 

DECODE: REGISTER TRANSFER CYCLE 2: 

Decode Opcode to find Next State, MAR = IR, and start memory read 

Using the new value in the IR, the CPU control hardware decodes the 
instruction's opcode of 00 and determines that this is an ADD instruction. 
Therefore, the next state in the following clock cycle will be the execute state 
for the ADD instruction. 
Instructions typically are decoded in hardware using combinational circuits 
such as decoders, programmable logic arrays (PLAs), or perhaps even a small 
ROM. A memory read cycle is always started in decode, since the instruction 
may require a memory data operand in the execute state. 
The ADD instruction requires a data operand from memory address 12. In 
Figure 9.9, the low 8-bit address field portion of the instruction in the IR is 
transferred to the MAR. At the next clock, after a small delay for the memory 
access time, the ADD instruction's data operand value from memory (0003) 
will be available in the MDR. 
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\ ALU / 

1 Memory I 

MDR 00 12 

Figure 9.9 Register transfers in the ADD instruction's Decode State. 

EXECUTE ADD: REGISTER TRANSFER CYCLE 3: 
AC = AC + MDR, MAR = PC*, and GOT0 FETCH 

The two values can now be added. The ALU operation input is set for addition 
by the control unit. As shown in Figure 9.10, the MDR's value of 0003 is fed 
into one input of the ALU. The contents of register AC (0004) are fed into the 
other ALU input. After a small delay for the addition circuitry, the sum of 0007 
is produced by the ALU and will be loaded into the AC at the next clock. To 
provide the address for the next instruction fetch, the MAR is loaded with the 
current value of the PC (02). Note that by moving the operation, MAR=PC, to 
every instruction's final execute state, the fetch state can execute in one clock 
cycle. The ADD instruction is now complete and the processor starts to fetch 
the next instruction at the next clock cycle. Since three states were required, an 
ADD instruction will require three clock cycles to complete the operation. 
After considering this example, it should be obvious that a thorough 
understanding of each instruction, the hardware organization, busses, control 
signals, and timing is required to design a processor. Some operations can be 
performed in parallel, while others must be performed sequentially. A bus can 
only transfer one value per clock cycle and an ALU can only compute one 
value per clock cycle, so ALUs, bus structures, and data transfers will limit 
those operations that can be done in parallel during a single clock cycle. In the 
states examined, a maximum of three buses were used for register transfers. 
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Timing in critical paths, such as ALU delays and memory access times, will 
determine the clock speed at which these operations can be performed. 

+ MDR 00 03 

Figure 9.10 Register transfers in the ADD instruction's Execute State. 

The pP 3's multiple clock cycles per instruction implementation approach was 
used in early generation microprocessors. These computers had limited 
hardware, since the VLSI technology at that time supported orders of 
magnitude fewer gates on a chip than is now possible in current devices. 
Current generation processors, such as those used in personal computers, have 
a hundred or more instructions, and use additional means to speedup program 
execution. Instruction formats are more complex with up to 32 data registers 
and with additional instruction bits that are used for longer address fields and 
more powerful addressing modes. 
Pipelining converts fetch, decode, and execute into a parallel operation mode 
instead of sequential. As an example, with three stage pipelining, the fetch unit 
fetches instruction n + 2, while the decode unit decodes instruction n + 1, and 
the execute unit executes instruction n. With this faster pipelined approach, an 
instruction finishes execution every clock cycle rather than three as in the 
simple computer design presented here. 
Superscalar machines are pipelined computers that contain multiple fetch, 
decode and execute units. Superscalar computers can execute several 
instructions in one clock cycle. Most current generation processors including 
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those in personal computers are both pipelined and superscalar. An example of 
a pipelined, reduced instruction set computer (RISC) design can be found in 
Chapter 14. 

9.3 VHDL Model of the pP 3 
To demonstrate the operation of a computer, a VHDL model of the pP 3 
computer is shown in Figure 9.1 1. The simple pP 3 computer design fits easily 
into a Cyclone device using less than 1% of its logic. The computer's RAM 
memory is implemented using the Altsyncram function which uses the FPGA's 
internal memory blocks. 
The remainder of the computer model is basically a VHDL-based state machine 
that implements the fetch, decode, and execute cycle. The first few lines 
declare internal registers for the processor along with the states needed for the 
fetch, decode and execute cycle. A long CASE statement is used to implement 
the control unit state machine. A reset state is needed to initialize the processor. 
In the reset state, several of the registers are reset to zero and a memory read of 
the first instruction is started. This forces the processor to start executing 
instructions at location 00 in a predictable state after a reset. 
The fetch state adds one to the PC and loads the instruction into the instruction 
register (IR). After the rising edge of the clock signal, the decode state starts. In 
decode, the low eight bits of the instruction register are used to start a memory 
read operation in case the instruction needs a data operand from memory. The 
decode state contains another CASE statement to decode the instruction using 
the opcode value in the high eight bits of the instruction. This means that the 
computer can have up to 256 different instructions, although only four are 
implemented in the basic model. Other instructions can be added as exercises. 
After the rising edge of the clock signal, control transfers to an execute state 
that is specific for each instruction. 
Some instructions can execute in one clock cycle and some instructions may 
take more than one clock cycle. Instructions that write to memory will require 
more than one state for execute because of memory timing constraints. As seen 
in the STORE instruction, the memory address and data needs to be stable 
before and after the memory write signal is High, hence, additional states are 
used to avoid violating memory setup and hold times. When each instruction 
finishes the execute state, MAR is loaded with the PC to start the fetch of the 
next instruction. After the final execute state for each instruction, control 
returns to the fetch state. 
Since the FPGA's synchronous memory block requires and contains an internal 
memory address and memory write register, it is necessary to make all 
assignments to the memory address register and memory write outside of the 
process to avoid having two cascaded registers. Recall that any assignment 
made in a clocked process synthesizes registers. Two cascaded MAR registers 
would require a delay of two clocks to load a new address for a memory 
operation. 
The machine language program shown in Figure 9.12 is loaded into memory 
using a memory initialization file (*.mif). This produces 256 words of 16-bit 
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memory for instructions and data. The memory initialization file, program.mif 
can be edited to change the loaded program. A write is performed only when 
the memory-write signal is High. On a Cyclone FPGA device, the access time 
for memory operations is in the range of 5-10ns. 

-- Simple Computer Model Scomp. vhd 
LIBRARY IEEE; 
USE IEEE.STD-LOGIC-I 164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNEDALL; 
LIBRARY altera-mf; 
USE altera-mf.altera-mf-components.ALL; 

ENTITY SCOMP IS 
PORT( clock, reset 

program-counter-out 
register-AC-out 
memory-data-register-out 
memory-address-register-out 
memory-write-out 

END SCOMP; 

: IN STD-LOGIC; 
: OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
: OUT STD-LOGIC-VECTOR(15 DOWNTO 0 ); 
: OUT STD-LOGIC-VECTOR(15 DOWNTO 0 )); 
: OUT STD-LOGIC-VECTOR(7 DOWNTO 0 ); 
: OUT STD-LOGIC); 

ARCHITECTURE a OF scomp IS 
TYPE STATE-TYPE IS ( reset-pc, fetch, decode, execute-add, execute-load, execute-store, 

execute-store2, executejump ); 
SIGNAL state: STATE-TYPE; 
SIGNAL instruction-register, memory-data-register : STD-LOGIC-VECTOR(15 DOWNTO 0 ); 
SIGNAL register-AC : STD-LOGIC-VECTOR(15 DOWNTO 0 ); 
SIGNAL program-counter : STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL memory-address-register : STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL memory-write : STD-LOGIC; 
BEGIN 

-- Use Altsyncram function for computer's memory (256 16-bit words) 
memory: altsyncram 

GENERIC MAP ( 
operation-mode => "SINGLE-PORT", 
width-a => 16, 
widthad-a => 8, 
Ipm-type => "altsyncram", 
outdata-reg-a => "UNREGISTERED", 

-- Reads in mif file for initial program and data values 
init-file => "program.mif', 
intended-device-family => "Cyclone") 

PORT MAP (wren-a => memory-write, clock0 => clock, 
address-a =>memory-address-register, data-a => Register-AC, 
q-a => memory-data-register ); 

-- Output major signals for simulation 
program-counter-out <= program-counter; 
register-AC-out <= register-AC; 
memory-data-register-out <= memory-data-register; 
memory~address~register~out <= memory-address-register; 
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PROCESS ( CLOCK, RESET ) 
BEGIN 
IF reset = '1' THEN 

state <= reset-pc; 
ELSIF clocklEVENT AND clock = '1' THEN 

CASE state IS 
-- reset the computer, need to clear some registers 

WHEN reset-pc => 
program-counter <= "00000000"; 
register-AC <= "0000000000000000"; 
state <= fetch; 

-- Fetch instruction from memory and add 1 to PC 
WHEN fetch => 

instruction-register <= memory-data-register; 
program-counter <= program-counter + I; 
state <= decode; 

-- Decode instruction and send out address of any data operands 
WHEN decode => 

CASE instruction-register( 15 DOWNTO 8 ) IS 
WHEN "00000000" => 

state <= execute-add; 
WHEN "00000001" => 

state <= execute-store; 
WHEN "00000010" => 

state <= execute-load; 
WHEN "0000001 1" => 

state <= execute jump; 
WHEN OTHERS => 

state <= fetch; 
END CASE; 

-- Execute the ADD instruction 
WHEN execute-add => 

register-ac <= register-ac + memory-data-register; 
state <= fetch; 

-- Execute the STORE instruction 
-- (needs two clock cycles for memory write and fetch mem setup) 

WHEN execute-store => 
-- write register_A to memory, enable memory write 

state 
-- load memory address and data registers for memory write 

<= execute-store2; 
--finish memory write operation and load memory registers 
--for next fetch memory read operation 

WHEN execute-store2 => 
state <= fetch; 

-- Execute the LOAD instruction 
WHEN execute-load => 

register-ac <= memory-data-register; 
state <= fetch; 

-- Execute the JUMP instruction 
WHEN executejump => 

program-counter <= instruction-register( 7 DOWNTO 0 ); 
state c= fetch; 

WHEN OTHERS => 
state <= fetch: 
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END CASE; 
END IF; 
END PROCESS; 

-- memory address register is already inside synchronous memory unit 
- need to load its value based on current state 
- (no second register is used - not inside a process here) 

WlTH state SELECT 
memory-address-register <= "00000000" WHEN reset-pc, 

program-counter WHEN fetch, 
instruction-register(7 DOWNTO 0)  WHEN decode, 
program-counter WHEN execute-add, 
instruction-register(7 DOWNTO 0)  WHEN execute-store, 
program-counter WHEN execute-store2, 
program-counter WHEN execute-load, 
instruction-register(7 DOWNTO 0)  WHEN executejump; 

WlTH state SELECT 
memory-write <= '1 ' WHEN execute-store, 

'0' WHEN Others; 
END a; 

Figure 9.11 VHDL Model of pP 3 Computer. 

DEPTH = 256; 
WIDTH = 16; 

% Memory depth and width are required % 
% Enter a decimal number % 

ADDRESS-RADIX = HEX; % Address and value radixes are optional % 
DATA-RADIX = HEX; % Enter BIN, DEC, HEX, or OCT; unless % 

% otherwise specified, radixes = HEX % 

CONTENT 
BEGIN 

[OO..FF] : 
00 : 
01 : 
02 : 
03 : 
04 : 
10 : 
11 : 
12 : 

END ; 

-- Specify values for addresses, which can be single address or range 

% Range--Evefy address from 00 to FF = 0000 (Default) % 
% LOAD AC with MEM(l0) % 
% ADD MEM(l1) to AC % 
96 STORE AC in MEM(1.2) % 
O/u LOAD AC with MEM(12) check for new value of FFFF % 
% JUMP to 04 (loop forever) % 
% Data Value of €3 % 
% Data Value of C% 
% Data Value of A - should be FFFF after running program % 

Figure 9.12 Progam.mif file containg pP 3 Computer Program and DATA. 
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9.4 Simulation of the pP3 Computer 

A simulation output from the VHDL model is seen in Figure 9.13. After a reset, 
the test program seen in Figure 9.12, loads, adds, and stores a data value to 
compute A = B + C. The final value is then loaded again to demonstrate that the 
memory contains the correct value for A. The program then ends with a jump 
instruction that jumps back to its own address producing an infinite loop. After 
running the program, FF is stored in location 12. Memory can be examined in 
the Simulator after running a program by clicking on the Logical Memories 
section in the left column of the Simulation Report. An example is shown in 
Figure 9.14. Note that the clock period is set to 20ns for simulation. 

Figure 9.13 Simulation of the Simple pP 3 Computer Program. 

Fieure 9.14 Simulation display of uP 3 Computer Memory showing result stored in memory 
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9.5 Laboratory Exercises 

1. Compile and simulate the pF' 3 computer VHDL or Verilog model. Rewrite the machine 
language program in the program.mif file to compute A = (B + C) + D. Store D in 
location 13 in memory. End the program with a Jump instruction that jumps to itself. Be 

sure to select the Cyclone device as the target. Find the maximum clock rate of the yP 3 
computer. Examine the project's compiler report and find the logic cell (LC) percentage 
utilized. 

2. Add the JNEG execute state to the CASE statement in the model. JNEG is Jump if AC < 
0. If A >= 0 the next sequential instruction is executed. In most cases, a new instruction 
will just require a new execute state in the decode CASE statement. Use the opcode value 
of 04 for JNEG. Test the new instruction with the following test program that implements 
the operation, IF A>= 0 THEN B = C 

Assembly Language Machine Language Memorv Address 
LOAD A 0210 00 
JNEG End-of-If 0404 01 
LOAD C 0212 02 
STORE B 0111 03 

End-of-If: JMP End-of-If 0304 04 

End-of-If is an example of a label; it is a symbolic representation for a location in the 
program. Labels are used in assembly language to mark locations in a program. The last 
line that starts out with End-of-If: is the address used for the End-of-If symbol in the 
Jump instruction address field. Assuming the program starts at address 00, the value of 
the End-of-If label will be 04. Test the JNEG instruction for both cases A < 0 and 
A >= 0. Place nonzero values in the *.mif file for B and C so that you can verify the 
program executes correctly. 
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3. Add the instructions in the table below to the VHDL model, construct a test program for 
each instruction, compile and simulate to verify correct operation. In JPOS and JZERO 
instructions, both cases must be tested. 

In the logical XOR instruction each bit is exclusive OR'ed with the corresponding bit in 

Instruction 

SUBT address 
XOR address 
OR address 
AND address 
JPOS address 
JZERO address 
ADD1 address 

each operation for a total of sixteen independent exclusive OR operations. This is called a 
bitwise logical operation. OR and AND are also bitwise logical operations. The add- 
immediate instruction, ADDI, sign extends the 8-bit address field value to 16 bits. To 
sign extend, copy the sign bit to all eight high bits. This allows the use of both positive 
and negative two's complement numbers for the 8-bit immediate value stored in the 
instruction. 

Function 

AC=AC-MDR 

AC = AC XOR MDR 

AC=ACORMDR 

AC = AC AND MDR 

IF AC > 0 THEN PC = address 
IF AC = 0 THEN PC = address 
AC = AC + address 

4. Add the following two shift instructions to the simple computer model and verify with a 

Opcode 

05 

06 

07 

08 

09 

0 A 
OB 

test program and simulation. 

The function LPM-CLSHIFT is useful to implement multiple bit shifts. SHL and SHR 
can also be used if 1993 VHDL features are enabled in the compiler. Only the low four 
bits of the address field contain the shift amount. The other four bits are always zero. 

Instruction 

SHL address 

SHR address 

Run the pP 3 computer model using the Cyclone chip on the UP 3 board. Use a 
debounced pushbutton for the clock and the other pushbutton for reset. Output the PC in 
hex to the UP 3's LCD display. Run a test program on the board and verify the correct 
value of the PC appears in the LCD display by stepping through the program using the 
pushbutton. On the UP 2, use the seven LED segment displays for the PC display. 

Add these two inputloutput (YO) instructions to the pP 3 computer model running on the 
UP 3 board. 

Function 

AC = AC shifted left address bits 

AC = AC shifted right address bits 

Opcode 

OC 

OD 

Instruction 

IN ilo address 

OUT ilo address 

Function 

AC = UP3 DIPswitch bits (low 4 bits) 

UP 3's LCD displays hex value of AC 

Opcode 

OE 

0 F 
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These instructions modify or use only the low eight bits of AC. Remove the PC display 
feature from the previous problem, if it was added or for more of a challenge place the 
AC value on the second line of the hex display by modifying the LCD display code. Test 
the new I/0 instructions by writing a program that reads in the switches, adds one to the 
switch value, and outputs this value to the LED display. Repeat the input, add, and output 
operation in an infinite loop by jumping back to the start of the program. Add a new 
register, register-output, to the input of the seven-segment decoder that drives the LED 
display. The register is loaded with the value of AC only when an OUT instruction is 
executed. Compile, download, and execute the program on the UP 3 board. When several 
VO devices are present, they should respond only to their own unique i/o address, just 
like memory. 

7. Use the timing analyzer to determine the maximum clock rate for the pP 3 computer. 
Using this value, compute the execution time for the example program in Figure 9.4. 

8. Modify the Cyclone video output display described in Chapter 9 for the MIPS computer 

example to display the pF' 3's internal registers. While running on the UP 3 board, use 
the pushbuttons for clock and reset as suggested in problem 5. 

9. Add video character output and keyboard input to the computer, after studying the 
material presented in Chapters 9 and 10. 

10. Add the WAIT instruction to the simple computer model and verify with a test program 
and simulation. WAIT value, loads and starts an 8-bit ten-millisecond (lo-' second) timer 
and then waits value*lO ms before returning to fetch for the next instruction. Use an 
opcode of 10 for the WAIT instruction. 

11. Expand the memory address space of the pP 3 computer from eight bits to nine bits. 
Some registers will also need an additional bit. Use 512 locations of 16-bit memory. 
Expand the address field by 1-bit by reducing the size of the opcode field by 1-bit. This 
will limit the number of different instructions to 128 but the maximum program size can 
now increase from 256 locations to 5 12 locations. 

12. Modify the pP 3 computer so that it uses two different memories. Use one memory for 

instructions and a new memory for data values. The new data memory should be 256 or 
5 12 (see previous problem ) locations of 16-bit data. 

13. Add a subroutine CALL and RETURN instruction to the pP 3 computer design. Use a 
dedicated register to store the return address or use a stack with a stack pointer register. 
The stack should start at high addresses and as it grows move to lower addresses. 

14. Implement a stack as suggested in the previous problem and add instructions to PUSH or 
POP register AC from the stack. At reset, set the stack pointer to the highest address of 
data memory. 
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15. Add all of the instructions and features suggested in the exercises to the pP 3 computer 

and use it as a microcontroller core for one of the robot projects suggested in Chapter 12. 
Additional instructions of your own design along with an interval timer that can be read 
using the IN instruction may also be useful. 

16. Using the two low-bits from the opcode field, add a register address field that selects one 
of four different data registers A, B, C, or D for each instruction. 

17. Use the implementation approach in the pP 3 computer model as a starting point to 
implement the basic instruction set of a different computer from your digital logic 
textbook or other reference manual. 



VGA Video Display 
Generation 

The video image above was produced by a UP 3 board design. 
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10 VGA Video Display Generation 
To understand how it is possible to generate a video image using an FPGA 
board, it is first necessary to understand the various components of a video 
signal. A VGA video signal contains 5 active signals. Two signals compatible 
with TTL logic levels, horizontal sync and vertical sync, are used for 
synchronization of the video. Three analog signals with 0.7 to 1 .O-Volt peak-to- 
peak levels are used to control the color. The color signals are Red, Green, and 
Blue. They are often collectively referred to as the RGB signals. By changing 
the analog levels of the three RGB signals all other colors are produced. 

10.1 Video Display Technology 
The first technology used to display video images dictated the nature of the 
video signals. Even though LCD monitors are now in common use, the major 
component inside early VGA computer monitors was the color CRT or Cathode 
Ray Tube shown in Figure 10.1. The electron beam must be scanned over the 
viewing screen in a sequence of horizontal lines to generate an image. The 
deflection yoke uses magnetic or electrostatic fields to deflect the electron 
beam to the appropriate position on the face of the CRT. The RGB color 
information in the video signal is used to control the strength of the electron 
beam. Light is generated when the beam is turned on by a video signal and it 
strikes a color phosphor dot or line on the face of the CRT. The face of a color 
CRT contains three different phosphors. One type of phosphor is used for each 
of the primary colors of red, green, and blue. 
In standard VGA format, as seen in Figure 10.2, the screen contains 640 by 480 
picture elements or pixels. The video signal must redraw the entire screen 60 
times per second to provide for motion in the image and to reduce flicker. This 
period is called the refresh rate. The human eye can detect flicker at refresh 
rates less than 30 to 60Hz. 
To reduce flicker from interference from fluorescent lighting sources, refresh 
rates higher than 60 Hz at around 70Hz are sometimes used in PC monitors. 
The color of each pixel is determined by the value of the RGB signals when the 
signal scans across each pixel. In 640 by 480-pixel mode, with a 60Hz refresh 
rate, this is approximately 40 ns per pixel. A 25MHz clock has a period of 40 
ns. A slightly higher clock rate will produce a higher refresh rate. 

10.2 Video Refresh 
The screen refresh process seen in Figure 10.2 begins in the top left corner and 
paints 1 pixel at a time from left to right. At the end of the first row, the row 
increments and the column address is reset to the first column. Each row is 
painted until all pixels have been displayed. Once the entire screen has been 
painted, the refresh process begins again. 
The video signal paints or refreshes the image using the following process. The 
vertical sync signal, as shown in Figure 10.3 tells the monitor to start 
displaying a new image or frame, and the monitor starts in the upper left corner 
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with pixel 0,O. The horizontal sync signal, as shown in Figure 10.4, tells the 
monitor to refresh another row of 640 pixels. 
After 480 rows of pixels are refreshed with 480 horizontal sync signals, a 
vertical sync signal resets the monitor to the upper left comer and the process 
continues. During the time when pixel data is not being displayed and the beam 
is returning to the left column to start another horizontal scan, the RGB signals 
should all be set to the color black (all zeros). 

Scanning Electron Beam, 

Deflection 

Phosphor- 
Screen 

Blue 

Red 

Metal 
Mask 

Phosphor Dots 
on Glass Face 
Plate 

Figure 10.1 Color CRT and Phosphor Dots on Face o f  Display. 
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f- 640 Pixels in a row - 
- 

480 Horizontal Scan Lines and Retrace 

480 
Pixels 
in a 
column 

Figure 10.2 VGA Image - 640 by 480 Pixel Layout. 

480 Holizontal Refresh Cycles 

Blue 
Pixel Data 

Vertical 
Sync 

Figure 10.3 Vertical Sync Signal Timing for 640 by 480 at 60Hz. 

Red, Green, 1 
Blue 
I 

+I .89 ps-25.17 ps-0.94 ps+ 
Pixel Data 

Horizontal 
Sync 

Figure 10.4 Horizontal Svnc Signal Timing for 640 bv 480 at 60Hz. 
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Many VGA monitors will shut down if the two sync signals are not the correct 
values. Most PC monitors have an LED that is green when it detects valid sync 
signals and yellow when it does not lock in with the sync signals. Modern 
monitors will sync up to an almost continuous range of refresh rates up to their 
design maximum. In a PC graphics card, a dedicated video memory location is 
used to store the color value of every pixel in the display. This memory is read 
out as the beam scans across the screen to produce the RGB signals. There is 
not enough memory inside current generation FPGA chips for this approach, so 
other techniques will be developed which require less memory. 

10.3 Using an FPGA for VGA Video Signal Generation 
To provide interesting output options in complex designs, video output can be 
developed using hardware inside the FPGA. Only five signals or pins are 
required, two sync signals and three RGB color signals. A simple resistor and 
diode circuit is used to convert TTL output pin signals from the FPGA to the 
low voltage analog RGB signals for the video signal. This supports two levels 
for each signal in the RGB data and thus produces a total of eight colors. This 
circuit and a VGA connector for a monitor are already installed on the Altera 
UP 3 board. The FPGA's Phase Locked Loop (PLL) can be used to generate 
clocks for a wide variety of video resolutions and refresh rates. 

Ver t ica l  
R o w  C o l  

S y n c  

25 M h z  
C lock  

Da ta  , .f .f , I V G A  Signals  I 

S y n c  Genera t i on  
Coun te rs  

f rom 
P ixe l  R A M  o r  Des- 
Cha rac te r  
G e n e r a t o r  R O M  

Figure 10.5 FPGA based generation o f  VGA Video Signals. 

As seen in Figure 10.5, a 25.175 MHz clock, which is the 640 by 480 VGA 
pixel data rate of approximately 40ns is used to drive counters that generate the 
horizontal and vertical sync signals. Additional counters generate row and 
column addresses. In some designs, pixel resolution will be reduced from 640 
by 480 to a lower resolution by using a clock divide operation on the row and 
column counters. The row and column addresses feed into a pixel RAM for 
graphics data or a character generator ROM when used to display text. The 
required RAM or ROM is also implemented inside the FPGA chip. 
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10.4 A VHDL Sync Generation Example: UP3core VGA-SYNC 

The UP3core function, VGA-SYNC is used to generate the timing signals 
needed for a VGA video display. Although VGA-SYNC is written in VHDL, 
like the other UP3core functions it can be used as a symbol in a design created 
with any entry method. 
The following VHDL code generates the horizontal and vertical sync signals, 
by using 10-bit counters, H-count for the horizontal count and V-count for the 
vertical count. H-count and V-count generate a pixel row and column address 
that is output and available for use by other processes. User logic uses these 
signals to determine the x and y coordinates of the present video location. The 
pixel address is used in generating the image's RGB color data. The internal 
logic uses a 25 MHz clock generated by a PLL in the design file 
Video-PLL.vhd with counters to produce video sync timing signals like those 
seen in figures 10.3 and 10.4. This process is used in all of the video examples 
that follow. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 
USE IEEESTD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 

ENTITY VGA-SYNC IS 
PORT( clock-25MHz, red, green, blue : IN STD-LOGIC; 

red-out, green-out, blue-out : OUT STD-LOGIC; 
horiz-sync-out, vert-sync-out : OUT STD-LOGIC; 
pixel-row, pixel-column : OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 )); 

END VGA-SYNC; 

ARCHITECTURE a OF VGA-SYNC IS 
SIGNAL horiz-sync, vert-sync : STD-LOGIC; 
SIGNAL video-on, video-on-v, video-on-h : STD-LOGIC; 
SIGNAL h-count, v-count : STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 

BEGIN 

-- video-on is High only when RGB data is displayed 
video-on <= video-on AND video-on-V; 
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PROCESS 
BEGIN 
WAIT UNTIL( clock-25MHz'EVENT ) AND ( clock-25MHz = '1' ); 

--Generate Horizontal and Vertical Timing Signals for Video Signal 
-- H-count counts pixels (640 + extra time for sync signals) 

IF ( h-count = 799 ) THEN 
h-count <= "0000000000"; 

ELSE 
h-count <= h-count + 1; 

END IF; 

--Generate Horizontal Sync Signal using H-count 
IF ( h-count <= 755 ) AND (h-count => 659 ) THEN 

horiz-sync <= '0'; 
ELSE 

horiz-sync <= '1'; 
END IF; 

--V-count counts rows of pixels (480 + extra time for sync signals) 

-- 
IF ( v-count >= 524 ) AND ( h-count => 699 ) THEN 

v-count <= "0000000000"; 
ELSlF ( h-count = 699 ) THEN 

v-count <= v-count + 1; 
END IF; 

-- Generate Vertical Sync Signal using V-count 
IF ( v-count <= 494 ) AND ( v-count = >493 ) THEN 

vert-sync <= '0'; 
ELSE 

vert-sync <= '1'; 
END IF; 

-- Generate Video on Screen Signals for Pixel Data 
IF ( h-count <= 639 ) THEN 

video-on-h <= '1'; 
pixel-column <= h-count; 

ELSE 
video-on-h <= '0'; 

END IF; 

IF ( v-count <= 479 ) THEN 
video-on-v <= '1'; 
pixel-row <= v-count; 

ELSE 
video-on-v <= '0'; 
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END IF; 

-- Put all video signals through DFFs to eliminate 
-- any delays that can cause a blurry image 
-- Turn off RGB outputs when outside video display area 

red-out c= red AND video-on; 
green-out <= green AND video-on; 
blue-out <= blue AND video-on; 
horiz-sync-out <= horiz-sync; 
vert-sync-out <= vert-sync; 

END PROCESS; 
END a; 

To turn off RGB data when the pixels are not being displayed the video-on 
signals are generated. Video-on is gated with the RGB inputs to produce the 
RGB outputs. Video-on is low during the time that the beam is resetting to the 
start of a new line or screen. They are used in the logic for the final RGB 
outputs to force them to the zero state. VGA-SYNC also puts the all of video 
outputs through a final register to eliminate any timing differences in the video 
outputs. VGA-SYNC outputs the pixel row and column address. See the 
comments at the end of VGA-SYNC-VHD for information on setting up other 
screen resolutions and refresh rates. 

10.5 Final Output Register for Video Signals 
The final video output for the RGB and sync signals in any design should be 
directly from a flip-flop output. Even a small time delay of a few nanoseconds 
from the logic that generates the RGB color signals will cause a blurry video 
image. Since the RGB signals must be delayed a pixel clock period to eliminate 
any possible timing delays, the sync signals must also be delayed by clocking 
them through a D flip-flop. If the outputs all come directly from a flip-flop 
output, the video signals will all change at the same time and a sharper video 
image is produced. The last few lines of VHDL code in the UP3core 
VGA-SYNC design generate this final output register. 

10.6 Required Pin Assignments for Video Output 
The UP 3 board requires the following Cyclone chip pins be defined in the 
project's *.qsf file, or elsewhere in your design in order to display the video 
signals: 

Red : OUTPUT-PIN = 228; 
Blue : OUTPUT-PIN = 170; 
Green : OUTPUT-PIN = 122; 
Horiz-Sync : OUTPUT-PIN = 227; 
Vert-Sync : OUTPUT-PIN = 226; 

-- Red Data Signal Output Pin 
-- Blue Data Signal Output Pin 
-- Green Data Signal Output Pin 
-- Horizontal Sync Signal Output Pin 
-- Vertical Sync Signal Output Pin 

These pins are hard wired on the UP 3 board to the VGA connector and cannot 
be changed. A pixel clock is also needed at the appropriate rate for the screen 
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resolution and refresh rate. One of the Cyclone's two PLLs is an easy way to 
generate this clock on the UP 3. The UP 3's 48MHz reference clock is used as 
input for the PLL. A table of the common screen resolutions and refresh rates 
with the required pixel clocks and sync counter values can be found at the end 
of the VGA-SYNC IP core code. 

10.7 Video Examples 
For a simple video example with the VGA-SYNC function, the following 
schematic produces a video simulation of a red LED. When the PB1 pushbutton 
is hit, the color of the entire video screen will change from black to red. 

VGA-SYNC outputs the pixel row and column address. Pixel-row and 
Pixel-column are normally inputs to user logic that in turn generates the RGB 
color data. Here is a simple example that uses the pixel-column output to 
generate the RGB inputs. Bits 7, 6, and 5 of the pixel-column count are 
connected to the RGB data. Since bits 4 through 0 of pixel column are not 
connected, RGB color data will only change once every 32 pixels across the 
screen. This in turn generates a sequence of color bars in the video output. The 
color bars display the eight different colors that can be generated by the three 
digital RGB outputs. 
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10.8 A Character Based Video Design 
One option is a video display that contains mainly textual data. For this 
approach, a pixel pattern or font is needed to display each different character. 
The character font can be stored in a ROM implemented inside the Cyclone 
FPGA. A memory initialization file, *.mif, can be used to initialize the ROM 
contents during download. Given the memory limitations inside the Cyclone 
FPGA, one option that fits is a display of 40 characters by 30 lines. 
Each letter, number, or symbol is a pixel image from the 8 by 8 character font. 
To make the characters larger, each dot in the font maps to a 2 by 2 pixel block 
so that a single character requires 16 by 16 pixels. This was done by dividing 
the row and column counters by 2. Recall that in binary, division by powers of 
two can be accomplished by truncating the lower bits, so no hardware is needed 
for this step. The row and column counters provide inputs to circuits that 
address the character font ROM and determine the color of each pixel. The 
clock used is the onboard 25.175MHz clock and other timing signals needed 
are obtained by dividing this clock down in hardware. 

10.9 Character Selection and Fonts 
Because the screen is constantly being refreshed and the video image is being 
generated on-the-fly as the beam moves across the video display, it is necessary 
to use other registers, ROM, or RAM inside the FPGA to hold and select the 
characters to be displayed on the screen. Each location in this character ROM 
or RAM contains only the starting address of the character font in font ROM. 
Using two levels of memory results in a design that is more compact and uses 
far less memory bits. This technique was used on early generation computers 
before the PC. 
Here is an example implementation of a character font used in the UP3core 
function, char-ROM. To display an "A" the character ROM would contain only 
the starting address 000001 for the font table for "A". The 8 by 8 font in the 
character generation ROM would generate the letter "A" using the following 
eight memory words: 

Address 
00000 1 000 : 
000001001 : 
000001 01 0 : 
00000101 1 : 
000001 1 00 : 
000001 101 : 
000001 1 10 : 
000001 11 1 : 

Font Data 
0001 1000 ; 
00111100; 
01100110; 
01111110; 
01100110 ; 
01100110; 
01100110 ; 
00000000 ; 

Figure 10.6 Font Memory Data for the Character "A". 
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Figure 10.7 Accessing a Character Font Using a ROM. 

The column counters are used to select each font bit from left to right in each 
word of font memory as the video signal moves across a row. This value is used 
to drive the logic for the RGB signals so that a "0" font bit has a different color 
from a "1". Using the low three character font row address bits, the row counter 
would select the next memory location from the character font ROM when the 
display moves to the next row. 
A 3-bit font column address can be used with a multiplexer to select the 
appropriate bit from the ROM output word to drive the RGB pixel color data. 
Both the character font ROM and the multiplexer are contained in the UP3core 
char ROM as shown below. The VHDL code declares the memory size using 
the GM-ROM function and the tcgrom.mif file contains the initial values or 
font data for the ROM. 

clock rwn_m=.mput 

character_aXlress[5.. 01 

f ort-rN2. .q 
font-colt2 01 

imt 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-I $WALL;  
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 
LIBRARY Ipm; 
USE Ipm.lpm-components.ALL; 

ENTITY Char-ROM IS 
PORT( character-address : IN STD-LOGIC-VECTOR( 5 DOWNTQ 0 ); 
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font-row, font-col : IN STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
rom~mux~output : OUT STD-LOGIC); 

END Char-ROM; 

ARCHITECTURE a OF Char-ROM IS 
SIGNAL rom-data : STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL rom-address : STD-LOGIC-VECTOR( 8 DOWNTO 0 ); 

BEGIN 
-- Small 8 by 8 Character Generator ROM for Video Display 
-- Each character is 8 8-bit words of pixel data 

charsen-rom: lpm-rom 
GENERIC MAP ( 

Ipm-widthad => 9, 
Ipm-numwords => 51 2, 
Ipm-outdata => "UNREGISTERED", 
Ipm-address-control => "UNREGISTERED", 

-- Reads in rnif file for character generator font data 
Ipm-file => 'Ycgrom.mif', 
Ipm-width => 8) 

PORT MAP ( address => rom-address, q = r rom-data); 
rom-address <= character-address & font-row; 

-- Mux to pick off correct rom data bit from 8-bit word 
-- for on screen character generation 

rom-mux-output <= rom-data ( 
(CONV-INTEGER( NOT font-col( 2 DOWNTO 0 ))) ); 

END a; 

Table 10.1 Character Address Map for 8 by 8 Font ROM. 

A 16 by 16 pixel area is used to display a single character with the character 
font. As the display moves to another character outside of the 16 by 16 pixel 
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area, a different location is selected in the character RAM using the high bits of 
the row and column counters. This in turn selects another location in the 
character font ROM to display another character. 
Due to limited ROM space, only the capital letters, numbers and some symbols 
are provided. Table 10.1 shows the alphanumeric characters followed by the 
high six bits of its octal character address in the font ROM. For example, a 
space is represented by octal code 40. The repeated letters A-F were used to 
simplify the conversion and display of hexadecimal values. 

10.10 VHDL Character Display Design Examples 
The UP3cores VGA-SYNC and CHAR-ROM are designed to be used together 
to generate a text display. CHAR-ROM contains an 8 by 8 pixel character font. 
In the following schematic, a test pattern with 40 characters across with 30 
lines down is displayed. Examining the RGB inputs on the VGA-SYNC core 
you can see that characters will be white (111 = RGB) with a red (100 = RGB) 
background. Each character uses a 16 by 16 pixel area in the 640 by 480 
display area. Since the low bit in the pixel row and column address is skipped 
in the font row and font column ROM inputs, each data bit from the font is a 
displayed in a 2 by 2 pixel area. Since pixel row bits 9 to 4 are used for the 
character address a new character will be displayed every 1 6 ~ ~  pixel row or 
character line. Division by 16 occurs without any logic since the low four bits 
are not connected. 

Normally, more complex user designed logic is used to generate the character 
address. The video example shown in Figure 10.8 is an implementation of the 
MIPS RISC processor core. The values of major busses are displayed in 
hexadecimal and it is possible to single step through instructions and watch the 
values on the video display. This example includes both constant and variable 
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character display areas. The video setup is the same as the schematic, but 
additional logic is used to generate the character address. 

Figure 10.8 MIPS Computer Video Output. 

Pixel row address and column address counters are used to determine the 
current character column and line position on the screen. They are generated as 
the image scans across the screen with the VGA-SYNC core by using the high 
six bits of the pixel row and pixel column outputs. Each character is a 16 by 16 
block of pixels. The divide by 16 operation just requires truncation of the low 
four bits of the pixel row and column. The display area is 40 characters by 30 
lines. 
Constant character data for titles in the left column is stored in a small ROM 
called the character format ROM. This section of code sets up the format ROM 
that contains the character addresses for the constant character data in the left 
column of the video image for the display. 

-- Character Format ROM for Video Display 
-- Displays constant format character data 
-- on left side of Display area 

format-rom: Ipm-rom 
GENERIC MAP ( 

Ipm-widthad => 6, 
lpm-numwords =>60, 
Ipm-outdata => "UNREGISTERED", 
Ipm-address-control => "UNREGISTERED", 

-- Reads in mif file for data display titles 
Ipm-file =>"format.mif", 
Ipm-width => 6) 
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Each pixel clock cycle, a process containing a series of nested CASE 
statements is used to select the character to display as the image scans across 
the screen. The CASE statements check the row and column counter outputs 
from the sync unit to determine the exact character column and character line 
that is currently being displayed. The CASE statements then output the 
character address for the desired character to the char-ROM UP3core. 
Table 10.1 lists the address of each character in the font ROM. Alphabetic 
characters start at octal location 01 and numbers start at octal location 60. Octal 
location 40 contains a space that is used whenever no character is displayed. 
When the display is in the left column, data from the format-ROM is used. Any 
unused character display areas must select the space character that has blank or 
all zero font data. 
Hexadecimal variables in the right column in Figure 10.8 are generated by 
using 4-bit data values from the design to index into the character font ROM. 
As an example, the value "11" & PC(7 DOWNTO 4), when used as the 
character address to the UP3core, char-ROM, will map into the character font 
for 0..9 and A..F. The actual hex character selected is based on the current value 
of the 4 bits in the VHDL signal, PC. As seen in the last column of Table 10.1, 
the letters, A..F, appear again after decimal numbers in the font ROM to 
simplify this hexadecimal mapping conversion. 

10.1 1 A Graphics Memory Design Example 
For another example, assume the display will be used to display only graphics 
data. The Cyclone EPIC6 FPGA contains 92K bits of memory. If only two 
colors are used in the RGB signals, one bit will be required for each pixel in the 
video RAM. If a 300 by 300 pixel video RAM was implemented in the Cyclone 
chip it would use all of the chip's 92K-bit memory. For full color RGB data of 
three bits per pixel, a 175 by 175 pixel RAM would use all of the 92K on-chip 
memory and no memory would be left for the remainder of the design. 
Pixel memory must always be in read mode whenever RGB data is displayed. 
To avoid flicker and memory access conflicts on single port memory, designs 
should update pixel RAM and other signals that produce the RGB output, 
during the time the RGB data is not being displayed. 
When the scan of each horizontal line is complete there are typically over 100 
clock cycles before the next RGB value is needed, as seen in Figure 10.9. 
Additional clocks are available when a vertical sync signal resets the monitor to 
the first display line. The exact number of clocks available depends on the 
video resolution and refresh rate. 
In most cases, calculations that change the video image should be performed 
during this off-screen period of time to avoid memory conflicts with the 
readout of video RAM or other registers which are used to produce the RGB 
video pixel color signals. Since on-chip pixel memory is limited, complex 
graphic designs with higher resolutions will require another approach. 
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Figure 10.9 Display and Compute clock cycles available in a single Video Frame. 
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10.12 Video Data Compression 
Here are some ideas to save memory and produce more complex graphics. 
Compress the video pixel data in memory and uncompress it on-the-fly as the 
video signal is generated. One compression technique that works well is run 
length encoding (RLE). The RLE compression technique only requires a simple 
state machine and a counter for decoding. 
In RLE, the pixels in the display are encoded into a sequence of length and 
color fields. The length field specifies the number of sequentially scanned 
pixels with the same color. In simple color images, substantial data 
compression can be achieved with RLE and it is used in PCs to encode color 
bitmaps. Matlab can be used to read bitmaps into a two-dimensional array and 
then write the output as an RLE encoded version directly to a *.mif file. An 
example program is available on the CD-ROM. Bitmap file formats and some C 
utilities to help read bitmaps can be found on the web. 

Compute 
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Data 
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Many early video games, such as Pong, have a background color with a few 
moving images. In such cases, the background image can be the default color 
value and not stored in video RAM. Hardware comparators can check the row 
and column counts as the video signal is generated and detect when another 
image other than the background should be displayed. When the comparator 
signals that the row and column count matches the image location, the image's 
color data instead of the normal background data is switched into the RGB 
output using gates or a multiplexer. 
The image can be made to move if its current row and column location is stored 
in registers and the output of these registers are used as the comparator input. 
Additional logic can be used to increment or decrement the image's location 
registers slowly over time and produce motion. Multiple hardware comparators 
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Vertical Sync Counter 
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can be used to support several fixed and moving images. These moving images 
are also called sprites. This approach was used in early-generation video 
games. 

10.1 3 Video Color Mixing using Dithering 
PC graphics cards use an analog to digital converter to drive the analog RGB 
color signals. Although the hardware directly supports only eight different pixel 
colors using digital color signals, there are some techniques that can be used to 
generate more colors. On analog CRTs, pixels can be overclocked at two to four 
times the normal rate to turn on and off the 1-bit color signal several times 
while scanning across a single pixel. The FPGA's PLL is handy to generate the 
higher frequency clocks need. Along the same lines, anding the final color 
signal output with the clock signal itself can further reduce the signal's on time 
to % a clock or less. Unfortunately, this technique does not work quite as well 
on LCD monitors due to the differences in the internal electronics. 
The screen is refreshed at 60Hz, but flicker is almost undetected by the human 
eye at 30Hz. So, in odd refresh scans one pixel color is used and in even refresh 
scans another pixel color is used. This 30Hz color mixing or dithering 
technique works best if large areas have both colors arranged in a checkerboard 
pattern. Alternating scans use the inverse checkerboard colors. At 30Hz, the eye 
can detect color intensity flicker in large regions unless the alternating 
checkerboard pattern is used. 

10.1 4 VHDL Graphics Display Design Example 
This simple graphics example will generate a ball that bounces up and down on 
the screen. As seen in Figure 10.10, the ball is red and the background is white. 
This example requires the VGA-SYNC design from Section 10.4 to generate 
the video sync and the pixel address signals. The pixel-row signal is used to 
determine the current row and the pixel-column signal determines the current 
column. Using the current row and column addresses, the process Display-Ball 
generates the red ball on the white background and produces the ball-on signal 
which displays the red ball using the logic in the red, green, and blue equations. 

Figure 10.10 Bouncing Ball Video Output. 
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Ba l l -Xqos  and Ba l l - yqos  are the current address o f  the center o f  the ball. 
Size i s  the size o f  the square ball. 

The process Move-Bal l  moves the ba l l  a few pixels every vertical sync and 
checks for  bounces o f f  o f  the walls. Ball-motion i s  the number o f  pixels to  
move the ba l l  at each vertical sync clock. The VGA-SYNC core i s  also used to  
generate sync signals and p ixe l  addresses, but i s  not  shown in the code below. 

ENTITY ball IS 
PORT( 

SIGNAL Red, Green, Blue : OUT STD-LOGIC; 
SIGNAL vert-sync-out : IN STD-LOGIC; 
SIGNAL pixel-row, pixel-column : IN STD-LOGIC-VECTOR( 9 DOWNTO 0 )); 

END ball; 
ARCHITECTURE behavior OF ball IS 

-- Video Display Signals 
SIGNAL reset, Ball-on, Direction : STD-LOGIC; 
SIGNAL Size : STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
SIGNAL Ball-Y-motion : STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
SIGNAL Ball-Y-pos, Ball-X-pos : STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 

BEGIN -- Size of Ball 
Size <= CONV-STD-LOGIC-VECTOR (8,lO ); 

-- BaN center X address 
Ball-X-pos <= CONV-STD-LOGIC-VECTOR( 320,lO ); 

-- Colors for pixel data on video signal 
Red <= *qV. -- Turn off Green and Blue to make 

-- color Red when displaying bail 
Green <= NOT Ball-on; 
Blue <= NOT Ball-on; 

Display-Ball: 
PROCESS ( Ball-X-pos, Ball-Y-pos, pixel-column, pixel-row, Size ) 
BEGIN -- check row & column for ball area 

-- Set Ball_on = 'I ' to display ball 
IF ( '0' & Ball-X-pos <= pixel-column + Size ) AND 

( Ball-X-pos + Size >= '0' & pixel-column )AND 
( '0' & Ball-Y-pos <= pixel-row + Size ) AND 
( Ball-Y-pos + Size r= '0' & pixel-row ) THEN 

Ball-on <= '1'; 
ELSE 

Ball-on <= '0'; 
END IF; 

END PROCESS Display-Ball; 

Move-Ball: 
PROCESS 
BEGIN 

-- Move ball once every vertical sync 
WAIT UNTIL Vert-sync9EVENT AND Vetsync  = '1'; 

-- Bounce off top or bottom of screen 
IF ('0' & Ball-Y-pos) >= CONV-STD-LOGIC-VECTOR(480,lO) - Size THEN 

Ball-Y-motion <= CONV-STD-LOGIC-VECTOR(-2,lO); 
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ELSlF Ball-Y-pos <= Size THEN 
Ball-Y-motion <= CONV-STD-LOGIC-VECTOR(2,lO); 

END IF; 
-- Compute next ball Y position 

Ball-Y-pos <= Ball-Ygos + Ball-Y-motion; 
END PROCESS Move-Ball; 

END behavior; 

10.15 Higher Video Resolution and Faster Refresh Rates 

The UP 3's Video Sync core function is designed to support higher resolutions 
and refresh rates. The UP 2 can only support its Video Sync core's existing 640 
by 480 60Hz video mode since it does not have an internal PLL to produce 
different pixel clocks. Table 10.2 shows several common screen resolutions and 
refresh rates. To change resolutions or refresh rates two changes are needed. 
First, change the UP 3 PLL's video output pixel clock to the new frequency 
value by editing the Video-PLL.vhd file using the Megawizard edit feature. 
Second, the six counter constant values used to generate the horizontal and 
vertical sync signals in the Video-Sync.vhd core need to be changed to the new 
six values for the desired resolution and refresh rate found in the large table at 
the end of the Video-Sync.vhd file. Keep in mind that higher resolutions will 
require more pixel memory and smaller hardware delays that can support the 
faster clock rates needed. 

Table 10.2 Pixel clock rates for some common video resolutions and refresh rates. 

10.1 6 Laboratory Exercises 
1. Design a video output display that displays a large version of your initials. Hint: use the 

character generation ROM, the Video Sync UP3core, and some of the higher bits of the 
row and column pixel counters to generate larger characters. 



Rapid Prototyping of Digital Systems Chapter 10 

Modify the bouncing ball example to bounce and move in both the X and Y directions. 
You will need to add code for motion in two directions and check additional walls for a 
bounce condition. 

Modify the bouncing ball example to move up or down based on input from the two 
pushbuttons. 

Modify the example to support different speeds. Read the speed of the ball from the UP 
3's DIP switches. 

Draw a more detailed ball in the bouncing ball example. Use a small ROM to hold a 
small detailed color image of a ball. 

Make a Pong-type video game by using pushbutton input to move a paddle up and down 
that the ball will bounce off of. 

Design your own video game with graphics. Some ideas include breakout, space 
invaders, Tetris, a slot machine, poker, craps, blackjack, pinball, and roulette. Keep the 
graphics simple so that the design will fit on the Cyclone chip. If the video game needs a 
random number generator, information on random number generation can be found in 
Appendix A. 

Use the character font ROM and the ideas from the MIPS character output example to 
add video character output to another complex design. 

Using Matlab or C, write a program to convert a color bitmap into a *.mif file with run- 
length encoding. Design a state machine to read out the memory and generate the RGB 
color signals to display the bitmap. Use a reduced resolution pixel size such as 160 by 
120. Find a bitmap to display or create one with a paint program. It will work best if the 
bitmap is already 160 by 120 pixels or smaller. A school mascot or your favorite cartoon 
character might make an interesting choice. 92K bits of memory are available in the 
Cyclone EPIC6 so a 12-bit RLE format with nine bits for length and three bits for color 
can be used with up to 7,600 locations. This means that the bitmap can only have 7,600 
color changes as the image is scanned across the display. Simple images such as cartoons 
have fewer color changes. A Matlab example is on the CD-ROM. 

10. Add color mixing or dithering with more than 8 colors to the previous problem. The 3-bit 
color code in the RLE encoded memory can be used to map into a color palette. The 
color palette contains the RGB patterns used for color mixing or interlacing. The color 
palette memory selects 8 different colors. The program translating the bitmap should 
select the 8 closest colors for the color palette. 

11. Modify the VGA Sync core to support a higher screen resolution and demonstrate it 
using one of the earlier example video designs. 



Interfacing to the PS/2 
Keyboard and Mouse 

A PSI2 mouse is shown above with the cover removed. The ball (upper right) rolls two 
plastic X and Y axles with a slotted wheel at one end. The slotted wheel passes through a 
square slotted case containing an IR emitter and detector pair. When the wheel rotates it 
generates pulses by interrupting the IR light beam. A microcontroller (lower left) counts 
the pulses and sends data packets containing mouse movement and button data to the PC. 
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11 Interfacing to the PSI2 Keyboard and Mouse 
The PSI2 interface was originally developed for the IBM PC/ATYs mouse and 
keyboard in 1984. The Altera UP 3 board supports the use of either a mouse or 
keyboard using a PSI2 connector on the board. This provides only the basic 
electrical connections from the PSI2 cable and the FPGA chip. It is necessary to 
design a hardware interface using logic in the FPGA chip to communicate with 
a keyboard or a mouse. Serial-to-parallel conversion using a shift register is 
required in the interface hardware. 

11 .I PSI2 Port Connections 
The PSI2 port consists of 6 pins including ground, power (VDD), keyboard 
data, and a keyboard clock line. The UP 3 board supplies the power to the 
mouse or keyboard. Two lines are not used. The keyboard data line is pin 13 on 
the UP 3's Cyclone chip, and the keyboard clock line is pin 12. Pins must be 
specified in one of the design files. 

Table 11 .I PSI2 Keyboard Commands and Messages. 

Commands Sent to Keyboard 
Reset Keyboard 

Keyboard returns AA, 00 after self-test 
Resend Message 
Set key typematic (autorepeat) 

1 Hex Value 

FB, XX 
XX-~S scan code for key .  

Set key make and break 
Set key make 
Set all key typematic, make and break 
Set all keys make 
Set all keys make and break 
Make all keys typematic (autorepeat) 
Set to Default Values 

Both the clock and data lines are open collector and bi-directional. The clock 
line is normally controlled by the keyboard, but it can also be driven by the 
computer system or in this case the Cyclone chip, when it wants to stop data 
transmissions from the keyboard. Both the keyboard and the system can drive 
the data line. The data line is the sole source for the data transfer between the 

FC, XX 
FD, XX 
FA 
F9 
F8 
F7 
F6 

Clear Buffers and start scanning keys 
Set typematic (autorepeat) rate and delay 

Set typematic (autorepeat) rate and delay 
Bits 6 and 5 are delay (250ms to 1 sec) 
Bits 4 to 0 are rate (all 0's-3OxIsec to all 1's 2xlsec) 

Read keyboard ID 
Keyboard sends FA, 83, AB 

F4 
F3, XX 

F2 

Set scan code set 
XX is 01, 02, or 03 

Echo 
Set Keyboard LEDs 

XX is 00000 Scroll, Num, and Caps Lock bits 
1 is LED on and 0 is LED off 

FO, XX 

EE 
ED, XX 
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computer and keyboard. The keyboard and the system can exchange several 
commands and messages as seen in Tables 11.1 and 11.2. 

Table 11.2 PSI2 Commands and messages sent by keyboard. 

11.2 Keyboard Scan Codes 
Keyboards are normally encoded by placing the key switches in a matrix of 
rows and columns. All rows and columns are periodically checked by the 
keyboard encoder or "scanned" at a high rate to find any key state changes. Key 
data is passed serially to the computer from the keyboard using what is known 
as a scan code. Each keyboard key has a unique scan code based on the key 
switch matrix row and column address to identify the key pressed. 
There are different varieties of scan codes available to use depending on the 
type of keyboard used. The PSI2 keyboard has two sets of scan codes. The 
default scan code set is used upon power on unless the computer system sends a 
command the keyboard to use an alternate set. The typical PC sends commands 
to the keyboard on power up and it uses an alternate scan code set. To interface 
the keyboard to the UP 3 board, it is simpler to use the default scan code set 
since no initialization commands are required. 

Messages Sent by Keyboard 
Resend Message 
Two bad messages in a row 
Keyboard Acknowledge Command 

Sent by Keyboard after each command byte 
Response to Echo command 
Keyboard passed self-test 
Keyboard buffer overflow 

11.3 Make and Break Codes 
The keyboard scan codes consist of 'Make' and 'Break' codes. One make code 
is sent every time a key is pressed. When a key is released, a break code is sent. 
For most keys, the break code is a data stream of FO followed by the make code 
for the key. Be aware that when typing, it is common to hit the next key(s) 
before releasing the first key hit. 
Using this configuration, the system can tell whether or not the key has been 
pressed, and if more than one key is being held down, it can also distinguish 
which key has been released. One example of this is when a shift key is held 
down. While it is held down, the '3' key should return the value for the '#' 
symbol instead of the value for the '3' symbol. Also note that if a key is held 
down, the make code is continuously sent via the typematic rate until it is 
released, at which time the break code is sent. 

Hex Value 
FE 
FC 

FA 

E E 
AA 
00 
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1 I .4 The PSI2 Serial Data Transmission Protocol 
The scan codes are sent serially using 11 bits on the bi-directional data line. 
When neither the keyboard nor the computer needs to send data, the data line 
and the clock line are High (inactive). 
As seen in Figure 11.1, the transmission of a single key or command consists of 
the following components: 

1. A start bit ('0') 
2. 8 data bits containing the key scan code in low to high bit order 
3. Odd parity bit such that the eight data bits plus the parity bit are an odd 
number of ones 
4. A stop bit ('1') 

The following sequence of events occur during a transmission of a command by 
the keyboard: 

1. The keyboard checks to ensure that both the clock and keyboard lines are 
inactive. Inactive is indicated by a High state. If both are inactive, the keyboard 
prepares the 'start' bit by dropping the data line Low. 
2. The keyboard then drops the clock line Low for approximately 35us. 
3. The keyboard will then clock out the remaining 10 bits at an approximate 
rate of 70us per clock period. The keyboard drives both the data and clock line. 
4. The computer is responsible for recognizing the 'start' bit and for receiving 
the serial data. The serial data, which is 8 bits, is followed by an odd parity bit 
and finally a High stop bit. If the keyboard wishes to send more data, it follows 
the 12th bit immediately with the next 'start' bit. 
This pattern repeats until the keyboard is finished sending data at which point 
the clock and data lines will return to their inactive High state. 

- 
Clock 

Data 
, 

I 

I 

! r o 1  1 0  1  

' 

t 0 0 0  
Start 
Bit=O 8 Data Bits in Low to High Order 

t 
Odd Parity Stop 

Scan Code shown is 16H for a "1" character 
Bit=O Bit=l 

which is keyboard key #2 

Figure 11.1 Kevboard Transmission of  a Scan Code. 
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In Figure 11.1 the keyboard is sending a scan code of 16 for the " 1" key and it 
has a zero parity bit. When implementing the interface code, it will be 
necessary to filter the slow keyboard clock to ensure reliable operation with the 
fast logic inside the FPGA chip. Whenever an electrical pulse is transmitted on 
a wire, electromagnetic properties of the wire cause the pulse to be distorted 
and some portions of the pulse may be reflected from the end of the wire. On 
some PSI2 keyboards and mice there is a reflected pulse on the cable that is 
strong enough to cause additional phantom clocks to appear on the clock line. 
Here is one approach that solves the reflected pulse problem. Feed the PSI2 
clock signal into an 8-bit shift register that uses a 24MHz clock. AND the bits 
of the shift register together and use the output of the AND gate as the new 
"filtered" clock. This prevents noise and ringing on the clock line from causing 
occasional extra clocks during the serial-to-parallel conversion in the Cyclone 
chip. 
A few keyboards and mice will work without the clock filter and many will not. 
They all will work with the clock filter, and it is relatively easy to implement. 
This circuit is included in the UP3cores for the keyboard and the mouse. 

As seen in Figure 11.2, the computer system or FPGA chip in this case sends 
commands to the PSI2 keyboard as follows: 

1. System drives the clock line Low for approximately 60us to inhibit any new 
keyboard data transmissions. The clock line is bi-directional. 
2. System drives the data line Low and then releases the clock line to signal 
that it has data for the keyboard. 
3. The keyboard will generate clock signals in order to clock out the remaining 
serial bits in the command. 
4. The system will send its 8-bit command followed by a parity bit and a stop 
bit. 
5. After the stop bit is driven High, the data line is released. 

Upon completion of each command byte, the keyboard will send an 
acknowledge (ACK) signal, FA, if it received the data successfully. If the 
system does not release the data line, the keyboard will continue to generate the 
clock, and upon completion, it will send a 're-send command' signal, FE or FC, 
to the system. A parity error or missing stop bit will also generate a re-send 
command signal. 
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System Data 
Ready 8 Data Bits in Low to High Order Odd Parity Stop 

to Send=O Command Code shown is F4H Bit=O Bit=l 

Figure 11.2 System Transmission of a Command to PSI2 Device. 

11.5 Scan Code Set 2 for the PSI2 Keyboard 
PSI2 keyboards are available in several languages with different characters 
printed on the keys. A two-step process is required to find the scan code. A key 
number is used to lookup the scan code. Key numbers needed for the scan code 
table are shown in Figure 11.3 for the English language keyboard layout. 

Figure 11.3 Kev Numbers for Scan Code. 

Each key sends out a make code when hit and a break code when released. 
When several keys are hit at the same time, several make codes will be sent 
before a break code. 
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The keyboard powers up using this scan code as the default. Commands must 
be sent to the keyboard to use other scan code sets. The PC sends out an 
initialization command that forces the keyboard to use the other scan code. 
The interface is much simpler if the default scan code is used. If the default 
scan code is used, no commands will need to be sent to the keyboard. The keys 
in Table 11.3 for the default scan code are typematic (i.e. they automatically 
repeat the make code if held down). 

Table 11.3 Scan Codes for PSI2 Keyboard. 
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Table 11.3 (Continued) - Scan Codes for PSI2 Keyboard. 

1 When the right Shifl Key is held down, 59 - FO 59 is sent. I 

I of codes are sent with the other scan codes. I 

Key 
# 
95 

When the lefl Shifl Key is held down, the 12 - FO 12 shifl make and break is sent with the other scan 
codes. When the right Shift Key is held down, 59 - FO 59 is sent. When both Shifl Keys are down, both sets 

Key 
# 

124 

11.6 The Keyboard UP3core 
The following VHDL code for the keyboard UP3core shown in Figure 11.4 
reads the scan code bytes from the keyboard. In this example code, no 
command is ever sent to the keyboard, so clock and data are always used as 
inputs and the keyboard power-on defaults are used. 

Shift Case * 
Make Break 

EOFO12EO4A I EO 12 FO 4A 

Scan Code 

Key # 
126 

To send commands, a more complex bi-directional tri-state clock and data 
interface is required. The details of such an interface are explained in later 
sections on the PSI2 mouse. The keyboard powers up and sends the self-test 
code AA and 00 to the Cyclone chip before it is downloaded. 

Make Break 

Scan Code 

This key does not repeat 

Make Code 

Make 

Control Key Pressed 

E0 4A 

Break 
Control Case, Shift Case 

2 1 1  EO 7E EO FO 7E 

EO FO 4A 

EO12EO7C I EOFO7CEOFO12 

Make 
Alt Case 

Break Make 
84 EO 7C I EO FO 7C 

Break 
FO 84 
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key board 

imt 

Figure 11.4 Kevboard UP3core 

LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 
USE IEEESTD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 

ENTITY keyboard IS 
PORT( keyboard-clk, keyboard-data, clock-48MHz , 

reset, read : IN STD-LOGIC; 
scan-code : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
scan-ready : OUT STD-LOGIC); 

END keyboard; 

ARCHITECTURE a OF keyboard IS 
SIGNAL INCNT 
SIGNAL SHIFTIN 
SIGNAL READ-CHAR, clock-enable 
SIGNAL INFLAG, ready-set 
SIGNAL keyboard-clk-filtered 
SIGNAL filter 

: STD-LOGIC-VECTOR( 3 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 8 DOWNTO 0 ); 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

BEGIN 
PROCESS ( read, ready-set ) 
BEGIN 

IF read = '1' THEN 
scan-ready <= '0'; 

ELSlF ready-set'EVENT AND ready-set = '1' THEN 
scan-ready <= '1'; 

END IF; 
END PROCESS; 

--This process filters the raw clock signal coming from the 
-- keyboard using a shift register and two AND gates 

Clock-filter: 
PROCESS 

BEGIN 
WAIT UNTIL clock48MHz'EVENT AND clock-48MHz = '1'; 
clock-enable <= NOT clock-enable; 
IF clock-enable = '1' THEN 
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filter ( 6 DOWNTO 0 ) <= filter( 7 DOWNTO 1 ) ; 
filter( 7 ) <= keyboard-clk; 
IF filter = "1 11 11 11 1" THEN 
keyboard-clk-filtered <= '1'; 
ELSIF filter = "00000000" THEN 
keyboard-clk-filtered <= '0'; 
END IF; 

END IF; 
END PROCESS Clock-filter; 

--This process reads in serial scan code data coming from the keyboard 
PROCESS 
BEGIN 

WAIT UNTIL (KEYBOARD-CLK-filteredlEVENT AND KEYBOARD-CLK-filtered = '1'); 
IF RESET = '0' THEN 

INCNT <= "0000"; 
READ-CHAR <= '0'; 

ELSE 
IF KEYBOARD-DATA = '0' AND READ-CHAR = '0' THEN 

READ-CHAR <= '1'; 
ready-set <= '0'; 

ELSE 
-- Shifl in next 8 data bits to assemble a scan code 

IF READ-CHAR = '1' THEN 
IF INCNT < "1001" THEN 

INCNT <= INCNT + 1; 
SHIFTIN( 7 DOWNTO 0 ) <= SHIFTIN( 8 DOWNTO 1 ); 
SHIFTIN( 8 ) <= KEYBOARD-DATA; 
ready-set <= '0'; 

-- End of scan code character, so set flags and exit loop 
ELSE 

scan-code <= SHIFTIN( 7 DOWNTO 0 ); 
READ-CHAR <=V; 
ready-set <= '1'; 
INCNT <= "0000"; 

END IF; 
END IF; 

END IF; 
END IF; 

END PROCESS; 
END a: 

The keyboard clock is filtered in the Clock-filter process using an 8-bit shift 
register and an AND gate to eliminate any reflected pulses, noise, or timing 
hazards that can be found on some keyboards. The clock signal in this process 
is the 48 MHz system clock divided by two to produce a 24 MHz clock rate 
using the clock enable signal. The output signal, keyboard-clk-filtered, will 
only change if the input signal, keyboard-clk, has been High or Low for eight 
successive 24 MHz clocks or 32011s. This filters out noise and reflected pulses 
on the keyboard cable that could cause an extra or false clock signal on the fast 
Cyclone chip. This problem has been observed to occur on some PSI2 
keyboards and mice and is fixed by the filter routine. 
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The RECV-KBD process waits for a start bit, converts the next eight serial data 
bits to parallel, stores the input character in the signal, charin, and sets a flag, 
scan-ready, to indicate a new character was read. . The scan-ready or input 
ready flag is a handshake signal needed to ensure that a new scan code is read 
in and processed only once. Scan-ready is set whenever a new scan code is 
received. The input signal, read, resets the scan ready handshake signal. 
The process using this code to read the key scan code would need to wait until 
the input ready flag, scan-ready, goes High. This process should then read in 
the new scan code value, scan-code. Last, read should be forced High and Low 
to clear the scan-ready handshake signal. 
Since the set and reset conditions for scan-ready come from different processes 
each with different clocks, it is necessary to write a third process to generate 
the scan-ready handshake signal using the set and reset conditions from the 
other two processes. Hitting a common key will send a 1-byte make code and a 
2-byte break code. This will produce at least three different scan-code values 
each time a key is hit and released. 
A shift register is used with the filtered clock signals to perform the serial to 
parallel conversion. No command is ever sent the keyboard and it powers up 
using scan code set 2. Since commands are not sent to the keyboard, in this 
example clock and data lines are not bi-directional. The parity bit is not 
checked. 

11.7 A Design Example Using the Keyboard UP3core 
Here is a simple design using the Keyboard and LCD-Display UP3cores. The 
last six bytes of scan codes will appear in the UP33 LCD display. The block 
code-FIFO saves the last six scan codes for the LCD display. 

Figure 11.5 Exam~le  design using the Keyboard UP3core. 
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11.8 Interfacing to the PSI2 Mouse 

Just like the PSI2 keyboard, the PSI2 mouse uses the PSI2 synchronous bi- 
directional serial communication protocol described in section 11.4 and shown 
in Figures 11.1 and 11.2. Internally, the mouse contains a ball that rolls two 
slotted wheels. The wheels are connected to two optical encoders. The two 
encoders sense x and y motion by counting pulses when the wheels move. It 
also contains two or three pushbuttons that can be read by the system and a 
single-chip microcontroller. The microcontroller in the mouse sends data 
packets to the computer reporting movement and button status. 
It is necessary for the computer or in this case the FPGA chip to send the mouse 
an initialization command to have it start sending mouse data packets. This 
makes interfacing to the mouse more difficult than interfacing to the keyboard. 
As seen in Table 11.4, the command value needed for initialization after power 
up is F4, enable streaming mode. 

Table 11.4 PSI2 Mouse Commands. 

Mouse returns AA, 00 after self-test 

XX is number of packets per second 

I Set Remote Mode 

I Set Wrap Mode 
Mouse returns data sent by system 

Read Remote Data 
Mouse sends 1 data packet 

Set Stream Mode 
Status Request 

Mouse returns 3-bytes with current settings 
Set Resolution 

XX is 0, 1, 2, 3 
Set Scalina 2 to 1 

I Reset Scalina 

Hex Value a 
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Table 11.5 PSI2 Mouse Messages. 

After streaming mode is enabled, the mouse sends data to the system in three 
byte data packets that contain motion and pushbutton status. The format of a 
three-byte mouse data packet is seen in Table 11.6. 

Messages Sent by Mouse 
Resend Message 
Two bad messages in a row 
Mouse Acknowledge Command 

Sent by Mouse after each command byte 
Mouse ~assed self-test 

Table 11.6 PSI2 Mouse Data Packet Format. 

Hex Value 

FA 

AA 

11 MSB LSB 
-1 7 1 6 1 5 1 4 1 3 1 2 1 1  1 0  

L = Left Key Status bit ( For buttons 1 = Pressed and 0 = Released ) 
M = Middle Key Status bit ( This bit is reserved in the standard PSI2 mouse protocol, but 

some three button mice use the bit for middle button status.) 
R = Right Key Status bit 
X7- XO = Moving distance of X in two's complement 

( Moving Left = Negative; Moving Right = Positive ) 
Y7- YO = Moving distance of Y in two's complement 

( Moving Up = Positive; Moving Down = Negative ) 
Xo= X Data Overflow bit ( 1 = Overflow ) 
Yo= Y Data Overflow bit ( I = Overflow ) 
Xs= X Data sign bit ( 1 = Negative ) 
Ys = Y Data sign bit ( I = Negative ) 

- -. 

Byte I 
Byte 2 
Byte 3 

Yo 
X7 
Y7 

Xo 
X6 
Y6 

Ys 
X5 
Y5 

Xs 
X4 
Y4 

1 
X3 
Y3 

- 

M 
X2 
Y2 

R 
X I  
Y1 

L 
XO 
YO 
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11.9 The Mouse UP3core 
The UP3core function Mouse is designed to provide a simple interface to the 
mouse. This function initializes the mouse and then monitors the mouse data 
transmissions. It outputs a mouse cursor address and button status. The internal 
operation of the Mouse UP3core is rather complex and the fundamentals are 
described in the section that follows. Like the other UP3core functions, it is 
written in VHDL and complete source code is provided. 

irst 

To interface to the mouse, a clock filter, serial-to-parallel conversion and 
parallel-to-serial conversion with two shift registers is required along with a 
state machine to control the various modes. See the earlier PSI2 keyboard 
section for an example of a clock filter design. 

11 .I 0 Mouse Initialization 
Two lines are used to interface to the mouse, PSI2 clock and data. The lines 
must be tri-state bi-directional, since at times they are driven by the mouse and 
at other times by the Cyclone chip. All clock, data, and handshake signals share 
two tri-state, bi-directional lines, clock and data. These two lines must be 
declared bi-directional when pin assignments are made and they must have tri- 
state outputs in the interface. The mouse actually has open collector outputs 
that can be simulated by using a tri-state output. The mouse always drives the 
clock signal for any serial data exchanges. The FPGA chip can inhibit mouse 
transmissions by pulling the clock line Low at any time. 
The FPGA chip drives the data line when sending commands to the mouse. 
When the mouse sends data to the FPGA chip it drives the data line. The tri- 
state bi-directional handshaking is described in more detail in the IBM PSI2 
Technical Reference manual. A simpler version with just the basics for 
operation with the UP 3 is presented here. Just like the keyboard, the mouse 
interface is more reliable if a clock filter is used on the clock line. 
At power-up, the mouse runs a self-test and sends out the codes AA and 00. The 
clock and data Cyclone chip outputs are tri-stated before downloading the UP 
3, so they float High. High turns out to be ready to send for mouse data, so AA 
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and 00 are sent out prior to downloading and need not be considered in the 
interface. This assumes that the mouse is plugged in before applying power to 
the UP 3 board and downloading the design. 
The default power-up mode is streaming mode disabled. To get the mouse to 
start sending 3-byte data packets, the streaming mode must be turned on by 
sending the enable streaming mode command, F4, to the mouse from the FPGA 
chip. The clock tri-state line is driven Low by the FPGA for at least 60us to 
inhibit any data transmissions from the mouse. This is the only case when the 
FPGA chip should ever drive the clock line. The data line is then driven Low 
by the FPGA chip to signal that the system has a command to send the mouse. 

Svstem Data 
8 Data Bits in Low to High Order 
Command Code shown is F4H 

1 1  1  t I 
Odd Parity Stop 
Bit=O Bit=l 

Figure 11.6 Transmission of Mouse Initialization Command. 

The clock line is driven High for four clocks at 24 MHz and then tri-stated to 
simulate an open collector output. This reduces the rise time and reflections on 
the mouse cable that might be seen by the fast FPGA chip logic as the clock 
line returns to the High state. As an alternative, the mouse clock input to the 
FPGA could be briefly disabled while the clock line returns to the High state. 
Next the mouse, seeing data Low and clock High, starts clocking in the serial 
data from the FPGA chip. The data is followed by an odd parity bit and a High 
stop bit. The handshake signal of the data line starting out Low takes the place 
of the start bit when sending commands to the mouse. 
With the FPGA chip clock and data drivers both tri-stated, the mouse then 
responds to this message by sending an acknowledge message code, FA, back 
to the FPGA chip. Data from the mouse includes a Low start bit, eight data bits, 
an odd parity bit, and a High stop bit. The mouse, as always, drives the clock 
line for the serial data transmission. The mouse is now initialized. 

11 .I 1 Mouse Data Packet Processing 
As long as the FPGA chip clock and data drivers remain tri-stated, the mouse 
then starts sending 3-byte data packets at the power-up default sampling rate of 
100 per second. Bytes 2 and 3 of the data packet contain X and Y motion values 
as was seen in Table 11.6. These values can be positive or negative, and they 
are in two's complement format. 



202 Rapid Prototyping of Digital Systems Chapter 11 

For a video mouse cursor such as is seen in the PC, the motion value will need 
to be added to the current value every time a new data packet is received. 
Assuming 640 by 480 pixel resolution, two 10-bit registers containing the 
current cursor row and column addresses are needed. These registers are 
updated every packet by adding the sign extended 8-bit X and Y motion values 
found in bytes 2 and 3 of the data packet. The cursor normally would be 
initialized to the center of the video screen at power-up. 

11 .I 2 An Example Design Using the Mouse UP3core 
In this example design, the mouse drives the UP33 LCD display. The mouse 
cursor powers up to the center position of the 640 by 480 video screen. Note 
that the PSI2 mouse clock and data pins must be bi-directional. The block 
Mouse-LCD-interface rearranges the mouse core output signals for use by the 
LCD-Display core function. 

Figure 11.7 Examole desien usine the Mouse UP3core. 

......... ....... ..... ... . s. LCD-RS 
j ; 
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. . . ~ , - . . ~ . . . -  

LCD_€ / 1 
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,OLITG!IT - LCD-RW 

: : DATA-3Uq7 01 ) ' .. ".; . 

11 .I 3 For Additional Information 
The IBM PSI2 Hardware Interface Technical Reference Manual, IBM 
Corporation, 1988 contains the original PSI2 information on the keyboard and 
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mouse in  the Keyboard and Auxiliary Device Controller Chapter. Scan codes 
for the alternate scan code set normally used by the PC can b e  found o n  the 
web and in  many PC reference manuals. 

11 . I4  Laboratory Exercises 
1. Write a VHDL module to read a keyboard scan code and display the entire scan code 

string in hexadecimal on the VGA display using the VGA-SYNC and CHAR-ROM 
UP3cores. It will require the use of the read and scan ready handshake lines and a small 
RAM to hold the scan code bytes. 

2. After reading the section on the PSI2 mouse, design an interface that can also send 
commands to the keyboard. Demonstrate that the design works correctly by changing the 
status of the keyboard LEDs after reading the new settings from the Cyclone DIP switch. 

3. Develop a keyboard module that uses the alternate scan code set used by the PC. 

4. Write the keyboard module in another HDL such as Verilog. 

5. Use the keyboard as a new input device for a video game, the pPl computer, or another 
application. 

6. Generate a video display that has a moving cursor controlled by the mouse using the 
Mouse and VGA-Sync UP3cores. Use the mouse buttons to change the color of the 
cursor. 

7. Use the mouse as input to a video etch-a-sketch. Use a monochrome 128 by 128 1-bit 
pixel RAM with the VGA-Sync core in your video design. Display a cursor. To draw a 
line, the left mouse button should be held down. 

8. Use the mouse as an input device in another design with video output or a simple video 
game such as pong, breakout, or Tetris. 

9. Write a mouse driver in Verilog. Use the mouse information provided in sections 11.2 
and 11.3. 
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The EIA RS-232C standard is widely used in PCs on the COM ports for serial data 
transmission. 
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12 Legacy Digital I10 Interfacing Standards 
Historically, several common digital interface standards have developed over 
the years to interface computers to their peripheral devices. This chapter will 
introduce several of the older standards and briefly describe how they function 
in a hardware design. Each standard has a unique set of hardware and 
performance tradeoffs. Many devices and ICs are available that use these 
standards. These interfaces are present in most PCs and are used on many 
FPGA systems such as the UP 3 board. 

12.1 Parallel I10 Interface 
The parallel printer interface standard was developed by Centronics in the 
1970s and is a widely used standard for transferring 8-bit parallel data. Most 
PCs have a parallel port. Data is transferred in parallel using eight data bits and 
standard digital logic voltage levels. Additional status and control bits are 
required for the sender and receiver to exchange handshake signals that 
synchronize each 8-bit data transfer. Typically, the parallel printer port is 
interfaced to two 8-bit I10 ports on a processor. One I10 port is used for 8-bit 
data transfers and one I10 port for the status and control bits that are used for 
handshake signals. 
The transfer of an 8-bit data value is shown in Figure 12.1. First, the computer 
waits for the printer's busy signal to go Low. Next, the computer outputs the 
eight data bits and the computer then sets strobe Low for at least 0 . 5 ~ s .  The 
computer then waits for the printer to pulse Ack Low. The computer must wait 
for Ack Low before changing the data or strobe lines. The printer may go Busy 
after it raises Ack. The printer handshake lines are also used to force the 
computer to wait for events like a slow carriage return or page feed on a 
mechanical printer or errors like a paper out condition. Sometimes a timeout 
loop is used to detect conditions like paper out. The UP 3 board has a standard 
printer parallel port connector. With the appropriate hardware, it can be used to 
communicate with a standard printer. 
In addition to printers, some special purpose devices also use the individual 
parallel port bits in a number of different ways to output digital logic bits to 
control external hardware. The ByteBlaster adapter you use to program the 
FPGA is one such example. 
The original parallel interface supported only unidirectional data transfers from 
a computer to a printer. Recent parallel port standards such as IEEE 1284 ECP 
and EPP support bidirectional and faster data transfers between an external 
device and the computer. In these newer modes, another control bit from the 
computer specifies the data transfer direction and tri-state gate outputs are used 
in both the computer and printer to drive the data lines bidrectionally. 
Parallel cables will only work for relatively short distances. The RS-232C 
standard in the next section supports longer cables with fewer wires, but it also 
has lower bandwidth and data transfer rates. 
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Figure 12.1 Parallel Port transfer of an 8-bit data value 

12.2 RS-232C Serial I10 Interface 

The Electronics Industry Association (EIA) RS-232C Serial interface is one of 
the oldest serial I10 standards. In Europe, is it also called V.24. 8-bit data is 
transmitted one bit at a time serially. Most PCs have an RS-232C serial COM 
port. Serial interfaces have an advantage in that they require fewer wires in the 
cable than a parallel interface and can support longer cables. In RS-232C's 
simplest implementation, only three wires are used in the cable. One wire for 
transmit data (TD), one for receive data (RD) and one for signal ground (GND). 
Individual bits are clocked in and out serially using a clock signal. The 
frequency of this bit clock is called the serial interface's baud rate. (Baudot was 
a French engineer that developed an early serial interface for the telegraph.) 
Since two different signal wires are used for receive and transmit, serial devices 
can be transferring data in both directions at the same time (full-duplex). The 
ASCII character code is typically used on serial devices, but they can also be 
used to transfer 8-bit binary values. 
The baud rate clock is not synchronized by using a signal wire connected 
between the sending and receiving devices, rather it is asynchronous and is 
derived by a state machine watching the serial data bit transitions occurring at 
the receiver. For this to function correctly, the transmitter and receiver must be 
setup to operate at the same clock or baud rate. Even though they have the same 
clock rate, the clock phase must still be synchronized between a serial 
transmitter and receiver by examining the incoming serial data line. The 
hardware logic circuit needed for this common serial interface is called a 
Universal Asynchronous Receiver Transmitter (UART). 
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Figure 12.2 RS-232C Serial interface transmission o f  an 8-bit data value 

Figure 12.2 shows the transmission of a single ASCII character over an RS- 
232C serial interface. The serial bit has two states. Mark is the high state (>3V) 
and Space is the low state (<-3V). Older generation serial devices will have 
around +12V and -12V levels for Mark and Space. Note that for the proper RS- 
232 voltage levels, a standard digital logic output bit will have to have its 
voltage levels converted for use in a serial interface. Special ICs are normally 
used for this RS-232C voltage conversion. To reduce the need for additional 
circuits, these ICs also generate the required DC supply voltages from the 
standard digital logic DC power supplies. This special IC chip is already 
present on the UP 3's serial interface. FPGA logic elements can be used to build 
the UART hardware function. 
The idle state is High (Mark). Whenever the interface starts sending a new 8-bit 
data value, the line is dropped Low (Space) for one clock cycle (baud rate 
clock). This is called the start bit. The eight data bits are then clocked out 
during the next eight baud clocks in low to high bit order. The highest data bit 
is sometimes used as a parity bit for error detection, when only seven data bits 
are used instead of eight. After the data bits are clocked out, the bit goes high 
for one clock. This is called the Stop bit. Sometimes at low baud rates, two 
Stop bits are present. Note that at least 10 clocks are required to transfer an 8- 
bit data value. 
Typically, UARTs transfer 8-bit data values in and out to other internal logic 
using an 8-bit parallel I10 port interfaced to a processor. Extra UART status 
bits can be read by the processor that indicate another 8-bit data value can be 
sent to the UART or another 8-bit data value is available to read in from the 
UART. Since serial transmission is very slow compared to a processor's clock, 
these status bits must be checked in software or hardware for their proper state 
or the processor will sendlreceive data faster than the UART can produce or 
consume it. Other status bits can also be used to detect various error conditions. 
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A UARTs transmitter uses a shift register clocked by the baud rate clock to 
convert the 8-bit parallel data to eight serial bits. Start and stop bits are 
automatically added by the UART's hardware. 
At the other end of the serial cable, another UART's receiver uses the Stop and 
Start bits to reset its internal state machine that is attempting to synchronize its 
receive clock phase to the incoming serial bit data. This state machine 
synchronizes the receive clock phase whenever it sees an edge on the incoming 
serial line. Note that several consecutive bits could be the same value inside the 
eight data bits, so there is not an edge transition on every single clock. 
A UART typically uses an internal clock that is eight or sixteen times the baud 
rate to watch for edges on the incoming serial data line. UARTs also use this 
faster clock and a counter to attempt to sample the data bits in the middle of 
each bit's time frame to minimize the possibility of reading in an incorrect 
value near an edge. Since long wires are allowed on an RS-232C serial 
interface, there will likely be noise and ringing present whenever the serial bit 
changes. Clocking in the bit in the middle of its time frame greatly increases 
the reliability of the interface. A second shift register is used for serial to 
parallel conversion in the UART's receiver circuit. 
Some serial devices also require additional hardware handshake lines to stop 
and start the flow of a new 8-bit data value over the serial interface. These 
handshake lines require additional signal wires in the cable used to connect the 
serial device. Some of the more commonly used handshake lines are RTS 
(request to send), CTS (clear to send), DCD (data carrier detect), DSR (data set 
ready), and DTR (data terminal ready). 
There are two types of serial devices defined in the RS-232C standard, data 
terminal equipment (DTE) and data carrier equipment (DCE). A standard RS- 
232C serial cable is designed to connect a DTE device to a DCE device. When 
connecting two serial devices of the same type, a special null modem cable or 
adapter is needed. A null modem exchanges the TD and RD signal lines at one 
end of the cable along with several connections on the handshake lines. If you 
experience problems when connecting a new serial device, the various 
handshake and null modem cable options can be quickly checked using a low- 
cost in-line RS-232C analyzer breakout box. 
The UP 3 board contains a RS-232 serial connector, and it has the required 
voltage conversion IC needed for serial data transmission. 

12.3 SPI Bus lnterface 
The serial peripheral interface (SPI) bus created by Motorola in the 1980s is 
used primarily for synchronous serial communication between a host processor 
and peripheral ICs. Four signal lines are used: Chip Select (CS), Serial Data 
Input (SDI), Serial Data Output (SDO), Serial Clock (SCKL). CS and SCKL 
are outputs provided by the master device. The slave devices receive their clock 
and chip select inputs from the master. If an SPI device is not selected, its SDO 
output line goes into a high impedance state (tri-state). The number of serial 
bits transferred to the slave device varies from device to device. Each slave 
device contains an internal shift register used to transfer data. 
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Two types on connections between master and slave devices are supported as 
seen in Figure 12.3. In a cascaded connection, all slaves in the chain share a 
single chip select line driven by the master. The master device outputs SDO and 
it connects as an input to a slave device's SDI input. A slave's SDO output 
connects to another slave's SDI input. The serial data cascades through all of 
the slaves and the final slave in the chain connects its SDO line to the master's 
SDI input to complete the chain. In this configuration, the slave devices appear 
as one larger slave device, the data output of one device feeds into the input of 
another device, thus forming one large shift register. 

Figure 12.3 The two SPI slave device configuration options. 

The second SPI configuration option supports independent slave devices, each 
device has its own unique chip select input line coming from the master. The 
master's SDO output connects to each slaves SDI input. The slave's SDO tri- 
state outputs are connected together and to the master's SDI input. Only the 
selected slave's SDO output is driven, the others are tri-stated. 
Multiple masters are also supported in SPI. Several SPI modes are supported 
with serial data being valid on either the rising edge or the falling edge of the 
clock. Serial clock rates can range from 30 kHz to 3 MHz depending on the 
devices used. Most commonly, devices place new data on the bus during the 
falling clock edge and data is latched off the bus on the rising edge after it 
stabilizes, but you will need to check data sheets for specific master and slave 
devices to confirm this since some devices use the opposite clock edges. 
Some Motorola literature may use different names for the SPI signals. CS may 
appear as SS, SDI as MOSI, and SDO as MISO. In National Semiconductor 
products, SPI is also known as Microwire. SPI devices are also available in 
several different voltage supply levels ranging from 2.3 to 5 volts. Since SPI 
uses a common clock, the hardware interface is simpler than RS-232C serial. 
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12.4 I*C Bus Interface 
The Inter IC (12C) bus is a widely used standard developed by Phillips in the 
1980s for connecting ICs on the same circuit board. Many small ICs now 
include 12C pins to transfer data serially to other ICs. For lower bandwidth 
signals, a serial interface has an advantage in that it requires fewer interconnect 
lines. The 12C bus uses two signal wires called SCL and SDA. SCL is the clock 
line and SDA is the 1-bit serial data & address line. A common ground signal is 
also needed. The SCL and SDA lines are open drain. This means that the output 
is only driven Low, never High. An external pull-up resistor pulls the lines 
High whenever there is not a device driving the lines Low. 
In an FPGA with tri-state output pins, you can simulate open drain outputs by 
tri-stating the output whenever the bit should go High and only driving the 
output signal Low. Even though there are multiple devices on the I ~ C  bus, only 
one pull-up resistor is used for the entire 12C bus. 
Devices on the 12C bus are masters or slaves. The slaves are the devices that 
respond to bus requests from the master. Each slave is assigned its own unique 
7-bit 12C bus address. Since both address and data information is transferred 
over the bus, the protocol is a bit more involved than SPI. When the master 
needs to talk to a slave, it issues a start sequence on the I ~ C  bus. In a start 
sequence, SDA goes from High to Low while SCL is High. To stop an 12C 
sequence, the master sends a stop sequence command. In a stop sequence, SDA 
goes from Low to High while SCL is High. Start and stop sequences are the 
only times a change may occur in SDA while SCL is High. 
The master drives the SCL clock line to transfer each new 12C serial bit. To 
force a wait, a slave device can drive SCL Low. Therfore, before each new 12C 
SCL clock, the master checks to see if SCL is being forced Low by a slave. If it 
is, the master must wait. SCL clocks are typically up to 100 kHz with 400 kHz 
available on some new devices. 

SDA 1 
I 1 MSB ACK Si nal 

from ~ g v e  from Receiver 
Clock Line Held 
Low while serviced 

' I  

I 
Is 1 4 ~m ACK t A C K  I P J  
START Address Data STOP 

Figure 12.4 I*C interface serial transmission of an 8-bit data value 

All address and data transfers contain eight bits with a final acknowledge 
(ACK) handshake bit for a total of nine bits. All address and data transfers 
send the High bits first, one per SCL clock bit High. In an address transfer, the 
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7-bit address is sent and the eighth bit is a WW bit (O=read, l=write). Some IC 
datasheets just append this final WW bit to the address field and show an 8-bit 
address field (with even 8-bit addresses for read and odd for write). 
The last bit in all data and address transfers, bit nine, is an ACK from the slave. 
The slave normally drives ACK Low on the last SCL cycle to indicate it is 
ready for another byte. If ACK is not Low, the master should send a stop 
sequence to terminate the transfer. 
As seen in Figure 12.4, when a master wants to write data to a slave device, it 
issues the following bus transactions: 

1. Master sends a start sequence. 
2. Master sends the 7-bit 12C address (high bits first) of the slave with the 

WW bit set Low. 
3. Master sends the 8-bit internal register number to write. 
4. Master sends 8-bit data value(s). Highest bits first. 
5. Master sends a stop sequence. 

When a master wants to read data from a slave device, it issues the following 
bus transactions: 

1. Master sends a start sequence. 
2. Master sends the 7-bit 12c address of the slave (high bits first) with the 

WW bit set Low. 
3. Master sends the 8-bit internal register number to read. 
4. Master sends a start sequence. 
5. Master sends the 7-bit 12C address of the slave (high bits first) with the 

WW bit set High. 
6 .  Master reads the 8-bit data value(s). Highest bits first. 
7. Master sends a stop sequence. 

In the full 12C standard, multiple bus masters are also supported with collision 
detection and bus arbitration. Collision occurs when two masters attempt to 
drive the bus at the same time. Arbitration schemes must decide which device 
can drive the bus when multiple masters are present. Some of the newest 12C 
devices can support a high-speed 3.4 MHz clock rate, 10-bit addresses, 
programmable slave addresses, and lower supply voltages. The System 
Management Bus (SMB) bus developed by Intel in 1995 that is used for 
temperature, fan speed, and voltage measurements on many PC motherboards is 
based on the I ~ C  bus. On the UP 3 board, the real-time clock chip and the serial 
EEPROM chip use an 12C bus interface. Many new TVs, automobiles, and other 
consumer electronics also contain 12C interfaces between chips for control 
features. 
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SPI and I ~ C  both offer good support for communication with low-speed 
devices. SPI is better suited to applications that need to transfer higher 
bandwidth data streams without the need for explicit address information. Some 
of the most common SPI examples are analog-to-digital (AID) and digital-to- 
analog (DIA) converters used to continuously sample or output analog signals. 
Since addressing is required for I'C, it requires more hardware, but with 
advances in VLSI technology these additional hardware costs are minimal. In 
2005, one FPGA vendor calculated that a single I10 pin on an FPGA package 
costs as much as 50,000 transistors inside the chip. 

12.5 For Additional Information 
The books Parallel Port Complete and Serial Port Complete by Jan Axelson 
published by Lakeview Research (www.lvr.corn) contain complete details on 
using parallel and serial ports. The full I*C specification is available from 
Philips Semiconductors (www.phillipssemiconductor.com) and SMB at 
(www.smbus.org). The Motorola MC68HC 11 data manual 
(www.freesca1e.com) and various National Semiconductor manuals 
(www..national.cgn) have more information on SPI. Analog Devices 
(www.analorrdevices.com) makes a wide variety of AID and DIA converters 
with SPI and parallel interfaces. 

12.6 Laboratory Exercises 
1. Interface a printer with a parallel port to the UP 3 board's parallel port. Connect the two 

devices using a printer cable. Design logic using a state machine or a processor core for 
the FPGA to transfer data and handle the handshake lines. You may want to use an older 
printer so that any problems with your design will not damage the printer. Be careful not 
to generate tri-state bus conflicts on the parallel data lines by making sure you drive the 
data direction bit to the proper state. Have the UP 3 print a short ASCII message on the 
printer ending with an ASCII form or page feed to print the message on a page. A form 
feed may be needed to cause the printer to print since most printers store characters in an 
internal page buffer. 

2. Interface the UP 3 board's serial port to a PC serial port using a serial cable. Run a serial 
communications program on the PC. Send a short message to the PC from the UP 3 and 
display the data from the PC on the UP 3 board's LCD panel. 

3. Design an I'C interface for the UP 3 board's real-time clock chip. Display the time from 
the chip on the UP 3 board's LCD display. Don't forget to check the UP 3 board's 
jumper settings and battery for the real-time clock chip. The data sheet for the clock chip 
contains address and data formats. 

4. Obtain an IC chip with an SPI interface and design an interface for it on the UP 3 board. 
Chips with SPI interfaces include analog-to-digital converters, digital-to-analog 
converters and various sensor modules. Header connections are available on the UP 3 
board with 5V or 3V logic levels. 
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Photo: The UP3-bot is a small robot controlled by the UP 3 board 
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13 UP 3 Robotics Proiects 

13.1 The UP3-bot Design 
The UP3-bot shown in Figure 13.1 is a low-cost moving robotics platform 
designed for the UP 3 board. The UP3-bot is designed to be a small 
autonomous vehicle that is programmed to move in response to sensory input. 
A wide variety of sensors can be easily attached to the UP3-bot. 
The round platform is cut from plastic and a readily available 7.2V RlC 
rechargeable battery pack is used to supply power. Two diametrically opposed 
drive motors move the robot. A third inactive castor wheel or skid is used to 
provide stability. The robot can move forward, reverse, and rotate in place. Two 
relatively inexpensive radio control servos are used as drive motors. The UP 3 
is programmed to act as the controller. The servos are modified to act as drive 
motors. The servos are controlled by timing pulses produced by the UP 3 board. 

Figure 13.1 The UP3-bot uses an R/C car battery and RfC servos for drive motors. 

13.2 UP3-bot Servo Drive Motors 
A typical radio control servo is shown in Figure 13.2. Servos have a drive 
wheel that is controlled by a coded signal. The servo shown is a Futaba S3003 
which is identical, internally, to the Tower TS53J servo. Radio control 
servomotors are mass-produced for the hobby market and are therefore 
relatively inexpensive and consistently available. They are ideally suited for 
robotics applications. Internally, the servo contains a DC drive motor (seen on 
the left in Figure 13.2), built-in control circuitry, and a gear reduction system. 
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They are small, produce a relatively large amount of torque for their size, and 
run at the appropriate speed for a robotics drive motor. 

Figure 13.2 Left: Radio Control Servo Motor and Right: Servo with Case and Gears Removed. 

The control circuitry of the servo uses a potentiometer (variable resistor) that is 
used to sense the angular position of the output shaft. The potentiometer is the 
tall component on the right in Figure 13.2. The output shaft of a servo normally 
travels 180-210 degrees. A single control bit is used to specify the angular 
position of the shaft. The timing of this bit specifies the angular position for the 
shaft. The potentiometer senses the angle, and if the shaft is not at the correct 
angle, the internal control circuit turns the motor in the correct direction until 
the desired angle is sensed. 
The control signal bit specifies the desired angle. The desired angle is encoded 
using pulse width modulation (PWM). The width of the active high pulse varies 
from 1-2 ms. A lms pulse is 0 degrees, 1.5ms is 90 degrees and a 2 ms pulse is 
approximately 180 degrees. New timing pulses are sent to the servo every 20 
ms. 

13.3 Modifying the Servos to make Drive Motors 
Normally, a servo has a mechanical stop that prevents it from traveling move 
than half a revolution. If this stop is removed along with other modifications to 
the potentiometer, a servo can be converted to a continuously rotating drive 
motor. Modifications to the servo are not reversible and they will void the 
warranty. Some robot kit vendors sell servos that are already modified. 
To modify the servo, open the housing by removing the screws and carefully 
note the location of the gears, so that they can be reassembled later. The 
potentiometer can be replaced with two 2.2K ohm % watt resistors or 
disconnected by cutting the potentiometer shaft shorter and setting it to the 
center position so that it reports the 90-degree position. A more accurate setting 
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can be achieved by sending the servo a 1.5ms pulse and adjusting the 
potentiometer until the motor stops moving. The potentiometer can then be 
glued in place with CA glue. In the center position the potentiometer will have 
the same resistance from each of the outside pins to the center pin. If the 
potentiometer is replaced with two resistors, a resistor is connected between 
each of the two outside pins and the center pin. 
In some servos, there will be less mechanical play if the potentiometer is 
disabled by cutting the center pin and modified by drilling out the stop on the 
potentiometer so that it can rotate freely. The two resistors are then added to 
replace the potentiometer in the circuit. 
The largest gear in the gear train that drives the output shaft normally has a tab 
molded on it that serves as the mechanical stop. After removing the screw on 
the output shaft and removing the large gear, the mechanical stop can be 
carefully trimmed off with a hobby saw, knife, or small rotary-grinding tool. 
The servo is then carefully re-assembled. 
After modifications, if a pulse shorter than 1.5 ms is sent, the motor will 
continuously rotate in one direction. If a pulse longer than 1.5 ms is sent the 
motor will continuously rotate in the other direction. The 1.5 ms or 90-degree 
position is sometimes called the neutral position or dead zone. The drive signal 
to the motor is proportional, so the farther it is from the neutral position the 
faster it moves. This can be used to control the speed of the motor if the neutral 
position is carefully adjusted. A pulse width of 0 ms or no pulse will stop the 
servomotor. 
A servo has three wires, +4 to +6 Volt DC power, ground, and the signal wire. 
The assignment of the three signals on the connector varies among different 
servo manufacturers. For Futaba servos, the red wire is +5, black is ground, and 
the white or yellow wire is the pulse width signal line. For JR and Hitec servos, 
the orange or yellow wire is the signal line and red is +5, and black or brown is 
ground. 
On the UP3-bot, the UP 3 board must be programmed to provide the two timing 
signals to control the servo drive motors. 

13.4VHDL Servo Driver Code for the UP3-bot 
To drive the motors a servo signal must be sent every 20 ms with a 0, 1, or 2 ms 
pulse. The UP 3 board is programmed to produce the timing signals that drive 
the motors. If no pulse is sent, the motor stops. If a 1 ms pulse is sent, the 
motor moves clockwise and if a 2 ms pulse is sent the motor moves in the 
reverse direction, counterclockwise. To move the UP3-bot forward, one motor 
moves clockwise while the other motor moves counterclockwise. This is 
because of the way the motors are mounted to the UP3-bot base. 
In the code that follows, lmotor-dir and motor-dir specify the direction for the 
left and right motor. If both signals are '1' the UP 3 bot moves forward. The 
VHDL code actually moves one motor in the opposite direction to move 
forward. If both are '0' the robot moves in reverse. If one is '1' and the other is 
'O', the UP 3 bot turns by rotating in place. The two speed controls are 
lmotor-speed and rmotor-speed. In the speed control signals, '0' is stop and ' 1 ' 
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is run. A lkHz clock is used for the counters in the module. The UP3core 
function, clk-div, can be used to provide this signal. Two more complex 
techniques for implementing variable speed control are discussed in problems 
at the end of the chapter. Acroname sells a low-cost optical encoder kit made by 
Nubotics that can be attached to standard R/C servo wheels and used for 
position feedback and more accurate motor speed control. 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE 1EEE.STD-LOGIC-UNSIGNED.ALL; 
ENTITY motor-control IS 

PORT (clock-I kHz : IN STD-LOGIC; 
Imotor-dir, rmotor-dir : IN STD-LOGIC; 
Imotor-speed, rmotor-speed : IN STD-LOGIC; 
Imotor, rmotor : OUT STD-LOGIC); 

END motor-control; 

ARCHITECTURE a OF motor-control IS 
SIGNAL count-motor: STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 

BEGIN 
PROCESS 

BEGIN 
-- Countmotor is a 20ms timer 

WAIT UNTIL clock-I kHz'EVENT AND clock-1 kHz = '1'; 
IF count-motor /=I9 THEN 

count-motor <= count-motor + 1 ; 
ELSE 

count-motor c= "00000"; 
END IF; 
IF count-motor >= 17 AND count-motor < 18 THEN 

-- Don't generate any pulse for speed = 0 
IF Imotor-speed = '0' THEN 

lmotor c= '0'; 
ELSE 

lmotor <= 'I '; 
END IF; 
IF rmotor-speed = '0' THEN 

rmotor <= '0'; 
ELSE 

rmotor <= '1'; 
END IF; 
-- Generate a I or 2ms pulse for each motor 
-- depending on direction 
-- reverse directions between the two motors because 
-- of servo mounting on the UP3-bot base 

ELSIF count-motor >=I8 AND count-motor <I9 THEN 
IF Imotor-speed I= '0' THEN 

CASE Imotor-dir IS 
-- FORWARD 
WHEN '0' => 
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lrnotor c= '1'; 
-- REVERSE 
WHEN '1' => 

lrnotor c= '0'; 
WHEN OTHERS => NULL; 
END CASE; 

ELSE 
lrnotor c= '0'; 

END IF; 
IF motor-speed I= '0' THEN 

CASE motor-dir IS 
-- FORWARD 
WHEN '1' => 

rrnotor c= 'I '; 
-- REVERSE 
WHEN '0' => 

rrnotor <= '0'; 
WHEN OTHERS => NULL; 
END CASE; 

ELSE 
motor c= '0'; 

END IF; 
ELSE 

lrnotor c= '0'; 
rrnotor c= '0'; 

END IF; 
END PROCESS; 

END a; 

13.5 Low-cost Sensors for a UP 3 Robot Project 
A wide variety a sensors can be attached to the UP 3 board. A few of the more 
interesting sensors are described here. These include infrared modules to avoid 
objects, track lines, and support communication between UP3-bots. Other 
modules include sonar and IR to measure the distance to the nearest object and 
a digital compass to determine the orientation of the UP3-bot. Most robots will 
need to combine or "fuse" data from several types of sensors to provide more 
reliable operation. 
Signal conditioning circuits are required in many cases to convert the signals to 
digital logic levels for interfacing to the digital inputs and outputs on the UP 3 
board. Analog sensors will require an analog-to-digital converter IC to interface 
to the UP 3 board, so these devices pose a more challenging problem. Small 
low-cost AID ICs are available with SPI interfaces that require a minimal 
number of FPGA pins. 
Sensor module kits are available and are the easiest to use since they come with 
a small printed circuit board to connect the parts. Sensors can also be built 
using component parts and assembled on a small protoboard attached to the 
UP3-bot. Sensor modules are interfaced by connecting jumper wires to digital 
inputs and outputs on the UP 3 board's 53 and 52 expansion header connector. 
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Sensors with a single output bit can utilize a simple control scheme, and for 
basic tasks the robot can be controlled using hardware as simple as a state 
machine. More advanced sensors that report actual distance, location, or 
heading measurements will likely require a processor core on the UP 3 running 
a program that interprets sensor readings and implements the robot's control 
algorithm. 

Line Tracker Sensor 

A line tracker module from Lynxmotion is shown in Figure 13.3. This device 
uses three pairs of red LEDs and infrared (IR) phototransistor sensors that 
indicate the presence or absence of a black line below each sensor. When the 
correct voltages are applied in a circuit, an IR phototransistor operates as a 
switch. When IR is present the switch turns on and when no IR is present the 
switch turns off. The LED transmits red light that contains enough IR to trigger 
the phototransistor. 
Each LED and phototransistor in a pair are mounted so that the light from the 
LED bounces off the floor and back to the IR phototransistor. The LED and IR 
sensor must be mounted very close to the floor for reliable operation. Black 
tape or a black marker is used to draw a line on the floor. The black line does 
not reflect light so no IR signal is returned. Three pairs of LEDs and IR 
phototransistor sensors produce the three digital signals, left, center, and right. 
The UP3-bot can be programmed to follow a line on the floor by using these 
three signals to steer the robot. The mail delivery robots used in large office 
buildings use a similar technique to follow lines or signal cables in the floor. 

Figure 13.3 -Three LEDs and phototransistors are mounted on bottom of  the Line Tracker board. 

Infrared Proximity Detector 

An IR proximity sensor module from Lynxmotion is seen in Figure 13.4. The 
UP3-bot can be outfitted with an infrared proximity detector that is activated by 
two off-angle infrared transmitting LEDs. The circuit utilizes a center-placed 
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infrared sensor (Sharp GPlU5) to detect the infrared LED return as seen in 
Figure 13.5. The Sharp GPlU5 was originally designed to be used as the IR 
receiver in TV and VCR remote control units. From the diagram, one can see 
that the sensitivity of the sensor is based on the angle of the LEDs. The LEDs 
can be outfitted with short heat-shrink tubes to better direct the infrared light 
forward. This prevents a significant number of false reflections coming from 
the floor. The IR sensor will still occasionally detect a few false returns and it 
will function more reliably with some hardware or software filtering. 

Figure 13.4 IR Proximity Sensor Module - Two IR LEDs on sides and one IR sensor in middle. 

Figure 13.5 Proximitv detector active sensor area. 
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As seen in Figure 13.6, the circuit on the IR proximity module utilizes a small 
feedback oscillator to set up a transmit frequency that can be easily detected by 
the detector module. This module utilizes a band-pass filter that essentially 
filters out ambient light. Some older first generation electronic ballasts used in 
commercial fluorescent lights can interfere with the IR sensors since they 
operate at the same frequency as the filter. Newer ballasts now operate at a 
higher frequency since they also caused problems with IR TV remote control 
signals. 

LED Enable. H 
5v 

Signal Detect.L IR Detector 

Figure 13.6 Circuit layout o f  one LED and the receiver module on the infrared detector. 

In Figure 13.6, when the Left-LED Enable signal is High, the Low side of the 
IR LED is pulled to ground. This forces a voltage drop across the LED at the 
frequency of the 5v to ground oscillating signal. In other words, the LED 
produces IR light pulses at 38 kHz. Using a 38 kHz signal helps reduce noise 
from other ambient light sources. 
Since the IR detector has an internal band-pass filter centered at 38 kHz, the 
detector is most sensitive to the transmitted oscillating light. The 5v pull-up 
resistor allows the IR Detector's open collector output to pull up the SOUT 
signal to High when no IR output is sensed. To detect right and left differences, 
the right and left LEDs are alternately switched so that the detected signals are 
not ambiguous. If both the left and right LEDs detect an object at the same 
time, the object is in front of the sensor. 
If the IR sensor was built from component parts, a hardware timer implemented 
on the UP 3 board could be used to supply the 38-40 kHz signal. Similar IR 
LEDs and IR detector modules are available from Radio Shack, #276-137B, 
and Digikey, #160-1060. Assuming two UP3-bots are equipped with IR sensor 
modules, it is also possible to use this module as a serial communication link 
between the robots. One UP3-bot transmits using its IR LED and the other 
UP3-bot receives it using its IR sensor. To prevent interference, the IR LEDs 
are turned off on the UP3-bot acting as a receiver. Just like an IR TV remote, 
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the IR LED and sensor must be facing each other. Bandwidth is limited by the 
38kHz modulation on the IR signal and the filters inside the IR detector. (An IR 
sensor strip that converts IR to visible light is available from Radio Shack. This 
sensor can be used to confirm the operation of IR LEDs. 

Wheel Encoder 
The Nubotics WWOl Wheelwatcher incremental quadrature encoder system 
from Acroname is shown in Figure 13.7. This low-cost electronics board bolts 
onto the top of a standard-size RlC servo. The adhesive-backed codewheel 
attaches to a wheel mounted on the servo's output shaft. Two pairs of optical 
emitters and receivers bounce light beams off of the codewheel. 
Note that there are 32 black stripes on the reflective codewheel. When the 
wheel is rotating, the encoder produces two series of digital pulses that are 90 
degrees out of phase. When one of the pulses changes twice before the other 
pulse changes, the direction has been reversed. 128 clock pulses per revolution 
are produced and a separate direction signal indicates the current direction of 
rotation. By counting pulses with a counter or by accurately measuring the time 
between individual pulses using a fast hardware counter on the UP 3, it is 
possible to more accurately control the position and velocity of the servo motor. 
When used on robot drive motors, this optical encoder feedback provides more 
accurate position and speed control for the robot. 

Figure 13.7 Nubotics WW-0 1 Wheel Watcher Incremental Encoder System. 



UP 3 Robotics Projects 225 

Sonar Ranging Units 

The Devantech SRFlO Sonar Module is shown in Figure 13.8. This device uses 
ultrasonic sound waves to measure distances from a few inches to around 35 
feet. They are widely used in robotics. The timing of the sound echo indicates 
distance to the nearest object. The transducer first functions as a transmitter by 
emitting several cycles of a ultrasonic signal, and then functions as a receiver to 
detect sound waves returned by bouncing off nearby objects. Even though 
ultrasound is inaudible, the transducer also generates a slight audible click each 
time the device transmits. The beamwidth is rather wide, and several sonar 
modules facing in different directions are commonly used. 
The time it takes for the ultrasonic echo signal to return is measured using an 
IC mounted on the back side of the board. This time is converted to distance 
since sound travels out and back at 0.9 ms per foot. Only around 10-20 samples 
per second are possible with the device since it takes time to wait for echoes to 
return. Some sonar modules require external hardware to measure the pulse 
timing to produce the distance to target. The SRFlO device operates off +5V 
DC, and it sends distance measurements back to the host using an I ~ C  bus. 

Figure 13.8 Devantech SRF10 Ultrasonic Range Finder. 

IR Distance Sensors 

The Sharp GPD2D02 seen in Figure 13.9 is an IR device that can provide 
distance measurements similar to the slightly more expensive sonar sensor. This 
sensor has a shorter range of 10 to 80 cm (- 4 to 32 inches). The distance is 
output by the sensor on a single pin as a digital 8-bit serial stream. 
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Figure 13.9 Sharp IR Ranging Module. 
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Figure 13.10 Operation of Sharp IR Ranging Module. 

As shown in Figure 13.10, internally the GPD2D02 contains an IR LED and a 
position-sensitive IR detector. The IR LED transmits a modulated beam of 
infrared light. When the light strikes an object, most of the light will be 
reflected back to the LED. Since no surface is a perfect optical reflector, 
scattering of the IR beam occurs at the surface of the object and some of the 
light is reflected back to the position sensitive detector. By comparing the near 
and far object beams shown in Figure 13.10, it is apparent that the position at 
which the scattered reflected IR beam hits the detector is a function of the 
reflection angle. 
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The 8-bit integer value reported by the sensor in cm is approximately 

1000 *tan-' ( lo9 )+offset. 
DISTANCE 

The constant 1.9 is the distance between the lenses in cm. The offset is the no- 
object present value returned by the sensor. This offset constant can vary by as 
much as 17 between different sensors and has a typical value of 25. Note that a 
close object reports a larger value and a distant object reports a smaller value. 
Objects closer than lOcm will report an incorrect value and should be avoided 
by placing the sensor away from the edge of the robot. Large objects beyond 80 
cm can sometimes report an incorrect value that makes them appear closer. 
A special connector (Japan Solderless Terminal #S4B-ZR) is required to 
connect to the GPD2D02. If desoldering equipment is available, the small 
connector can also be desoldered from the sensor and wires attached directly to 
the sensor. 
In addition to +5V and ground pins, the sensor has an input, Vin, and a serial 
output, Vout. Vin is an input to the sensor that clocks out the serial data on 
Vout. When Vin is Low for around 70 ms, the sensor takes a reading. When a 
reading is available, Vout goes High. 
On each of the next eight falling clock edges of Vin, the sensor will output a 
new data bit. The eight data bits should be clocked into the FPGA on the rising 
edges of Vin (when they are stable). When clocking out the data, the clock 
period on Vin should be 0.4 ms or less. The eight data bits are clocked out in 
high to low order. If Vin is not dropped Low within 1.5 ms after clocking out 
the final data bit, the sensor shuts down to save power. A shift register can be 
used to assemble the data bits. The demo program ir-dist.bdf on the CD-ROM 
contains a VHDL-based IP core for use with the GP2D02 sensor. 
The sensor's Vin pin is an open-drain input. Open-drain or open-collector 
inputs should never be driven High. An FPGA's tri-state output pin can be 
connected directly to an open-drain input, if the tri-state output is never driven 
High. When Vin should be High, tri-state the FPGA's output pin and when the 
output should be Low, drive the output pin Low with the tri-state gate turned on 
with a low output. 
Open-drain or open-collector inputs contain an internal pull-up resistor to +5V. 
Multiple open-drain (open-collector) outputs can be tied together to a single 
open drain (open-collector) input to perform a wired-AND operation. Any one 
of the outputs can pull the input Low. If no output pulls the signal Low, a single 
pull-up resistor forces the input High. This wired-AND operation occurs just by 
tying the open-drain (open-collector) outputs together and no physical AND 
gate is needed. In negative logic, a wired-OR operation occurs. 
Normal gate outputs cannot be connected. This wired-AND logic only works 
because these gates have special output circuits that do not contain a transistor 
that forces the input High. This transistor is present in normal gate outputs. If a 
normal gate output is connected to other open-drain (open-collector) outputs, 
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its transistor could turn on to force the input High at the same time another 
gate's output transistor turns on to force it Low. This would short the power 
supply to ground drawing excessive current that might damage the devices. An 
analog and longer range version of this IR distance sensor are also available. 

Magnetic Compass Sensors 

Various electronic components are available that detect the magnetic field of 
the earth to indicate direction. A low-cost digital compass sensor is shown in 
Figure 13.11. The Dinsmore model 1490, often used in electronic automobile 
compasses, is a combination of a miniature rotor jewel suspended with four 
Hall-effect (magnetic) switches. Four active-low outputs are provided for the 
four compass directions. When the module is facing North, the North output is 
Low and the other three outputs will be High. Eight directions are detected by 
the device, since two outputs can become active simultaneously. In this way, 
the device can indicate the four intermediate directions, NE, SE, SW, and NW. 
NE for example activates the active-low North and East outputs. The device 
can operate off +5V. 
Mount any compass device as far away from motors as possible to avoid 
magnetic interference from the magnets inside the motor. Four 2.2K ohm pull- 
up resistors to +5V are required to interface to the UP 3 board, since the four 
digital output pins, N, S, E, and W, all have open-collector outputs. Just like a 
real compass, a time delay is needed after a quick rotation to allow the outputs 
to stabilize. If the compass module leads are carefully bent, the compass 
module and the four required pull-up resistors can be mounted on a standard 
20-pin DIP, machined-pin, wire-wrap socket and connected to the UP 3 header 
socket. 
An analog version of the device is available with 1-degree accuracy, but it 
requires an analog-to-digital conversion chip or signal phase timing for 
interfacing. 

Figure 13.11 Dinsmore 1490 Digital Compass Sensor. 
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Electronic Compass Sensors 

Low-cost electronic compass modules are also available that detect the 
magnetic field of the earth to indicate direction. The cost is two to three times 
that of the mechanical compass described in the previous section. New 
generation electronic compass modules offer more accuracy and faster settling 
times than mechanical compass sensors. An electronic compass module from 
PNI is shown in Fig. 13.12. This module contains a 2-axis magneto-inductive 
sensor and an ASIC. Heading information and magnetic field measurement data 
is available using a digital SPI serial interface. 

Figure 13.12 PNI Electronic Comvass Module. 

Low-cost Gyros and Accelerometers 

Gyros and accelerometers are useful sensors for robots that need a balance 
sense. This can include robots that balance on two wheels like the Segway 
Human Transporter, robots that walk on two legs, and even robots that fly. 
Gyros and accelerometers have traditionally been used in aircraft autopilots and 
inertial measurement units (IMUs). Helicopters use a gyro to stabilize and 
control the tail rotor. Recently, Microelectromechanical Systems (MEMS) 
technology has produced small low-cost piezo-gyroscope and accelerometer 
ICs. These devices were originally used in automobile airbags. The gyros 
output a voltage level that is proportional to the speed or rate of the tilt angle 
changes. An analog-to-digital converter will be needed to input the gyro signal. 
The MEMS accelerometers output a voltage level or a pulse that changes its 
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duty cycle proportionally (e.g., PWM) to the tilt angle by sensing the change in 
acceleration due to gravity. Gyros will drift slowly over time and an 
accelerometer is needed to correct the gyro's drift. Without an accelerometer to 
correct for gyro drift, the tilt error slowly grows to the point where the robot 
would lose its balance. Accelerometers will respond more slowly to tilt than the 
gyro, so both a gyro and accelerometer is typically needed for each axis that 
needs a balance sense. 
A complementary filter is used to combine or fuse sensor data from both the 
gyro and accelerometer to generate a more accurate tilt angle. Kalman filtering 
techniques can be used to improve the accuracy of noisy measurements. Noise 
levels are still somewhat high at very low G forces on these low-cost gyros and 
accelerometer IC sensors, so currently they are not useful for navigation since 
they cannot accurately determine the exact location of a slow moving robot by 
integrating the sensor measurements over time. 
Analog Devices makes a variety of these sensors and sells small evaluation 
boards for them. It is likely that small low-cost sensor modules containing both 
a MEMS gyro and an accelerometer with a microcontroller will be available 
commercially in the near term. 

Figure 13.13 Small sensor board for an aircraft autopilot system. Photograph 02004 courtesy of  

Henrik Christophersen , Georgia Institute of Technology Unmanned Aerial Research Facility. 
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Figure 13.13 shows a sensor board for an autopilot system that is used for 
unmanned aircraft. In the top corner, three MEMS gyros and accelerometers are 
mounted at right angles to provide data on all three axes. The white square flat 
module between the two vertical assemblies is a GPS receiver. The black 
square ICs at each end of the vertical assemblies are airspeed and altitude 
sensors. An A/D chip with an SPI interface is used to read sensors that have 
analog voltage outputs. The three square modules near the bottom edge of the 
board are DC to DC voltage converters. The lower board contains an FPGA and 
a DSP processor. 

GPS and DGPS receivers 

The Global Positioning System was built by the US Department of Defense to 
provide highly precise worldwide positioning. Triangulation using radio signals 
from several satellites provides a position accurate to 25 meters. With an 
additional land-based correction signal, Differential GPS (DGPS) improves the 
accuracy to 3 meters. DGPS receivers provide ideal position data for robot 
navigation. Unfortunately, with current systems you are not likely to receive the 
GPS radio signals indoors in most buildings, so their use is typically limited to 
larger more rugged outdoor robots. Low-cost single chip GPS modules such as 
the Motorola FS Oncore seen in Figure 13.14 or the Ublox in Figure 13.13 are 
currently available. An SPI serial interface is supported. A new generation of 
highly sensitive GPS systems is being developed that may function indoors in 
some buildings. 

Figure 13.14 Motorola Single Chin GPS module. 

Thermal Image Sensors 

Low-cost thermal image sensors can provide thermal imaging data for robots. 
Most thermal sensors such as those used in motion detectors and burglar alarms 
detect only movement. Thermopile sensors measure the temperature of a heat 
source. One such sensor, the Devantech TPA81 Thermopile Array is shown in 
Figure 13.15. It contains 8 Pyro-electric sensors arranged in a column that 
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detect infra-red in the radiant heat range of 2um to 22um range. It contains an 
on-board PIC microcontroller. 
When the sensor is mounted on a servo, it can be used to horizontally scan an 
area and generate a thermal image. Candle flames and human body heat can be 
detected several feet away at room temperature. It uses an I*C bus for 
interfacing to the host controller. 

Figure 13.15 Devantech TPA81 Eight Pixel Thermal Array Sensor. 

Solid State Cameras 

Low-cost solid state cameras can provide visual sensors for robots. Keep in 
mind that advanced image processing and visual pattern recognition requires 
complex algorithms that need a lot of processing power. The CMUCAM2 
developed at Carnegie Mellon University seen in Figure 13.16 contains a PIC 
microcontroller and can transfer image data using a serial connection. It can 
track color blobs and report their location and size in an image at 26 to 50 
frames per second. 
Low-cost USB cameras are another option, but they will require a USB core 
interface and additional image processing. The low-cost CMOS color camera 
assembly 0V6620 or OV7620 used in the CMUCAM2 module from 
Omnivision (www.ovt.com) can also be directly interfaced to an FPGA. It uses 
an I ~ C  interface for camera control signals and a separate parallel bus is used to 
transfer image data. 
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Figure 13.16 The CMUCAM2 contains a color video camera on a chip and a microcontroller. 

13.6 Assembly of the UP3-bot Body 

Assembly of the UP3-bot can be accomplished in about an hour. A drill or drill 
press, screwdriver, scissors, a soldering iron, and a wire stripper are the only 
tools required. First, obtain the parts in the parts list. Next, drill out the holes in 
the round Plexiglas base (part #15) as shown in Figure 13.17. To prevent 
scratches, leave the paper covering on the Plexiglas until all of the holes are 
marked and drilled out. The front of the base is on the right side in Figure 
13.17. The wheel slots are symmetric with respect to the center of the circle. 
Proper alignment of the four screw mounting holes for the UP 3 board is 
critical. Unscrew the four standoffs from the bottom of the UP 3 board. 
Carefully place it towards the rear of the plastic base as shown in Figure 13.17, 
and mark the location of the screw holes using a pen or pencil. A UP 2 board 
can also be used, but the mounting holes will be in different locations. 
Locate the cable and switch holes as shown in Figure 13.17. Exact positioning 
on these holes is not critical. If one is available, use an automatic center punch 
to help align the drill holes. The Jl..J4 header pins and power switch should 
face towards the front of the base. The extra space in front of the UP 3 board on 
the plastic base is used for sensor modules. Re-attach the standoffs to the UP 3 
board and set it aside. After all holes are drilled, remove the paper covering the 
Plexiglas. 
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Figure 13.17 UP3-bot Plexiglas Base with wheel slots and drill hole locations. 

Mount the toggle switch (part #8) in the hole provided in the base. If available, 
Loctite or CA glue can be used on the switch mounting threads to prevent the 
switch nut from working lose. Solder the red wire (+7.2V) from the battery 
connector to one of the switch contacts. This is the connector with wires that 
plugs into the battery pack connector (part #4). Solder one of the twin lead 
wires (part #9) to the other switch terminal. Solder the other twin lead wire to 
the black (GND) battery connector wire and insulate the splice with heat shrink 
tubing or electrical tape (part #lo). 
Route the twin lead wire through the hole provided in the base. A small knot in 
the twin lead on the bottom side of the base can be used for strain relief. Solder 
the power connector (part #11) to the other end of the twin lead wire on the top 
of the base. The center conductor is +7.2V and the outer conductor is ground on 
the power connector. 
Check the power connections with an ohmmeter for shorts and proper polarity 
before connecting the battery. For strain relief and extra insulation, consider 
sealing up the power connector with Silicone RTV or insulating one of the wire 
connections with heat shrink tubing. Be careful, NiCAD and NiMH batteries 
have been known to explode or catch on fire, if there is a short. A fuse on the 
battery power wire might be a good idea, if you are prone to shorting out 
circuits. 
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Figure 13.18 Bottom view of UP3-bot base showing battery, servos, wheels, and cabling. 

Attach the battery pack (part #2) to the bottom of the Plexiglas base with 
sticky-back Velcro (part #16). Figure 13.18 is a close-up photo of the bottom 
side of the UP3-bot. A NiMH battery pack is shown in Figure 13.18. If you use 
a larger NiCAD battery pack, it can be mounted in the middle of the base about 
one inch off center towards the rear wheel, with the battery pack connector 
facing the rear. 
The battery is moved towards the rear for balance to place the weight on the 
rear skid. The Velcro on the base should be around 2 inches longer than the 
battery pack towards the rear of the robot to allow for positioning of the battery 
later on to balance the robot. The wire and connector on the battery pack should 
also be attached to the base to prevent it from dragging on the floor. Attach a 
small piece of Velcro on the rear of the connector so that the battery wires can 
be attached to the base. Attach the battery pack to the base. 
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Solder a 60-pin female header socket (part #7) to the Cyclone expansion B 
location. Attach the UP 3 board to the top of the base with 4-40 screws (part 
#18), using the hex spacers provided on the UP 3 board (part #14). Figure 13.19 
is a close-up photo of the top of the UP3-bot. Double check power connections 
and polarity with an ohmmeter. The inner contact on the power connector 
should be +7.2V, the outer contact is ground, and the toggle switch should turn 
it off. Then plug the power connector into the UP 3 board. Plug in the battery 
connector and flip the power switch. A green LED should light up on the UP 3 
board indicating power on. The Cyclone expansion B header socket faces the 
front of the robot. 
Mount the wheels (part #5) on two modified servos (part #3). If you are not 
using servo wheels, you may need to enlarge the hole in the center of each 
wheel by drilling it out partially with a drill bit that is the same size as the 
servo output shaft. The depth of the hole should be slightly shorter than the 
servo output shaft and not all the way through the wheel, so that the wheel does 
not contact the servo body. The servo output shaft screw is inserted on the side 
of the wheel with the smaller hole. A washer may be required on the servo 
screw. The wheel should not contact the servo case and must be mounted so 
that it is straight on the servo. CA glue or Blue Loctite can also be used to 
attach the wheels and screws more securely to the servo output shaft. 
Attach the servos to the bottom of the base using double sided foam tape (part 
#17) or a more durable servo mounting bracket. The servo body faces toward 
the center of the base. Be sure to carefully center the wheels in the plastic-base 
wheel slot. If you are using foam tape, make sure all surfaces are clean and free 
of grease, so that the foam tape adhesive will work properly. Lightly sanding 
the servo case and adding a drop of CA glue helps with tape adhesion. Route 
the servo connector and wire through the holes provided in the base. 
Attach a tail wheel to the base or a skid (part #19) at the rear of the battery 
pack using layers of foam tape as needed. Move the battery as needed so that 
the robot has proper balance and rests on the two wheels and the rear skid. 
Attach another skid to the front of the battery pack using several layers of foam 
tape. The front skid should not contact the floor and at least ?4 inch of clearance 
is recommended. The front skid only serves to prevent the robot from tipping 
forward during abrupt stops. 
Attach a 3-pin .1 inch header (part #9) to the small wire wrap protoboard in an 
open area. One is required for each servo on the robot. Solder wires from the 
appropriate pins 52 and 53 connections on the protoboard to the new header 
pins. The three wires on the servo are Vcc (4.8 to 6 volts), ground, and the 
PCM control signal wire. Some manufacturers' servos have different power 
connections, but they all have three pins. Wrap extra servo wire around the hex 
spacers underneath the UP 3 board. 



Figure 13.19 Top View of UP3-bot Base with Compass, IR, and Sonar Sensor Modules. 

Optional sensor modules such as the IR proximity detector or  line tracker can 
be attached to the base unit with foam tape. Run wires from the sensors to the 
Santa Cruz expansion connectors, 52 and 53. A small .1 inch wire wrap 
protoboard with 40-pin female header connectors soldered to the protoboard as 
shown in Figure 13.19 is handy for making servo and sensor connections to the 
UP 3 board. In Figure 13.19, a third servo is used to make a sensor turret for IR 
and Sonar distance sensors. 

Parts List for the UP3-bot 

1 .  An Altera UP 3 Board. The UP 3 board serves as the controller for the UP3-bot. It is 
attached to the UP3-bot body with screws. No modifications are required to the board. A 
UP 2 board can also be used, but mounting holes will be in different locations. 

Parts Available from a Hobby Store 

A 7.2V 1300-1700mAh Rechargeable NiCAD battery pack with the standard 
Kyosho battery connector. This is a standard R/C car part, and it is used to power the 
UP3-bot. For a small additional cost, new NiMH batteries are also available that store 
almost twice the energy per weight. The battery will need to be charged prior to first 
use. 
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3. Two modified R/C Servomotors. Two identical model servos are required so that the 
motors run at the same speed. Servo modifications are described in section 13.3. Any 
servo should work. The following servos have been tested: Tower Hobbies TS53J, 
Futaba S148 and S3003, and HS 300. Some manufacturers' servos appear to run in the 
reverse direction. This is easily fixed in the hardware design since the motor controller 
is implemented on the UP 3 board. Several robot parts vendor sell modified servos for a 
slightly higher cost. Ball bearing servos are worth the extra cost, if you intend to run the 
robot constantly for several months. A third unmodified servo will be needed if you 
want a rotating sensor turret as shown on the example UP3-bot photo. 

4. Kyosho Female Battery connector with wire leads, Duratrax or Tower Hobbies 
#DTXC2280. This is used to connect to battery. A connector is needed so that the 
battery can be disconnected from the UP3-bot and connected to a charger. 

5. Two Acroname or Lynxmotion sew0 wheels. These wheels are 2 % plastic wheels 
that are designed to attach to the servo's output shaft spline. Prather Products 2%-inch 
aluminum racing wheels with rubber 0 ring tires, Tower Hobbies #PRAQ1810 or Hayes 
Products #114,2 %-inch hard plastic racing wheels (also available from Tower Hobbies) 
can be used as a substitute. These somewhat smaller two alternative wheels will work, 
but they do not have the spline to match the servo output shaft and are a bit more 
difficult to connect reliably than the Acroname or Lynxmotion servo wheels. 

6. A Castering Wheel or Two small Teflon or Nylon Furniture Slides. There is a bit too 
much mechanical play in common furniture casters for a small robot and they tend to 
randomly deflect the robots direction after sharp turns. Lynxmotion's #TWA-01 is a 
mini castering robot tail wheel built using an R/C airplane tail wheel that works well. 
The mounting wire needs to be bent a little off center so that the wheel quickly rotates to 
the direction of travel. Other robot parts vendors such as Acroname also have robot tail 
wheels, but a spacer may be required to adjust the height. The battery will need to be 
moved a bit and perhaps rotated ninety degrees to accommodate them and still maintain 
proper balance on the robot base. Magic Sliders 718-inch diameter circular discs also 
work well on flat surfaces. The slides are used as a skid instead of a third wheel on the 
UP3-bot. Metal or hard plastic will also work. Attached to the bottom of the battery with 
several layers of foam tape, an optional front skid can be used for stability during abrupt 
stops. On flat surfaces, a Teflon skid actually works better than a common small 
furniture caster from a hardware store. 

7. A charger for the 7.2V battery pack. An adjustable DC power supply can be used to 
charge the battery if it is properly adjusted and timed so that the battery is not 
overcharged. Overcharged batteries will get hot and will have a shorter life. Automatic 
peak-detection quick chargers are the easiest and most foolproof to use. These chargers 
shut off automatically when the battery is charged. One quick charger can be used for 
several robots as a full charge is achieved in less than 30 minutes with around 5 Amps 
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maximum charge current. Inexpensive trickle battery chargers deliver only around 75 
rnA of charge current, and they will require several hours charge the battery. 

Parts Available from an Electronics Parts Store 

8. Three 40-pin .l-inch double row PC board mount female header sockets, DigiKey 
#S4310 or equivalent. These sockets are soldered into a small 0.1" center wire wrap 
protoboard that fits into the Santa Cruz Expansion connector on the UP3. This is used to 
connect servos and sensors to the UP 3 board. 

9. A 2 to 3 inch strip of .l" single row breakaway headers. DigiKey #S1021-36 or 
equivalent These headers are used to make custom servo and sensor connectors on the 
protoboard. They can be soldered to the protoboard. 

10. A small wire wrap protoboard with holes on .I" centers cut down to 2" by 2.8". A 
This is used to make a protoboard for use with the UP3 board. The protoboard contains 
connectors for servos and sensor. A protoboard with solder pads makes it easier to 
mount the connectors. 

11. A miniature toggle switch with solder lug connections. The switch should have a 
contact rating of more than two amps (Radio Shack #275-635B or equivalent). Only two 
contacts or single pole single throw (SPST) is needed on the switch to turn power on 
and off. If all of your servos and sensors connect to the UP 3 and do not use the 
Vunregulated supply, you could eliminate the switch by using the UP 3's power switch. 

12. Approximately 9 inches of small-gauge twin-lead speaker wire. This part is used to 
connect power to the UP 3 board. The wire must fit into the DC power plug (part# 11). 
Typically, 20-22 gauge wire is required. Two individual wires can also be used, but twin 
lead is preferred. 

13. A 1-inch piece of small heat shrink tubing or electrical tape. This part is used to 
insulate a splice in the twin-lead power wire. 

14. A Coaxial DC Power Plug with 5mm O.D. and 2.lmm I.D., Radio Shack Number 
274-1567 or equivalent. This power plug fits the power socket on the UP 3 board. A 
different size plug is needed for the UP2 board, use #274-1568 that has a 2.5mm I.D. 

15. An assortment of small wire jumpers and connectors to attach wires to the male 
headers on the UP 3. These are the jumper wires commonly used for protoboards. Two 
short jumpers are used to connect the two servo signal wires, and other jumpers are used 
to any connect sensor boards. 

16. Four, 1-inch hex spacers with 4-40 threads or use the shorter spacers that come 
with the board. These are used to mount the UP 3 board to the Plexiglas base using the 
holes in the UP 3 board. 
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Parts Available from a Hardware Store 

17. 3116-inch thick Plexiglas cut into a 10.5-inch diameter circle. This part is the base of 
the robot. Colored Plexiglas such as opaque white, will not show scratches as easy as 
clear. Holes to cutout and drill are shown in Figure 13.1 1 .  If a band saw, jig saw, or 
other machine tool is not available, a local plastics fabricator can cut this out. When 
using a number of very large sensors, it may be necessary to increase the size slightly or 
add another circular deck for sensor mounting. A larger robot requires more space for 
maneuvering. To prevent scratches on the Plexiglas, keep the paper backing on the 
plastic until all of the holes have been marked and drilled out. The size of the wheel 
slots may need to change depending on the wheels you select. 

18. One &inch long strip of 2-inch wide sticky-back Velcro. Two 8-inch long strips, 1 
inch wide can also be used. The Velcro is used to attach the battery to the bottom of the 
Plexiglas base. Since the battery is attached with Velcro and a connector, it can be 
quickly replaced and removed for charging. 

19. Approximately 8 inches of 1-inch wide double-sided 3M foam tape. This is used to 
attach servos, skids, and optional sensor boards to the base. Be sure to clean surfaces to 
remove any grease or oil prior to application of the tape for better adhesion. For a more 
durable servo mount, Lynxmotion has aluminum servo mounting brackets that can be 
used instead of the double sided tape. 

20. Four 4-40 Screws 5116-inch or slightly longer. The screws are used to attach the UP 3 
board to Plexiglas. The screws thread into the hex spacers attached to the UP 3 board. 

21. Blue Loctite, Cyanoacrylate (CA) Glue, and Clear Silicone RTV. These adhesives 
and glues are useful to secure screws, servos, and wheels. The mechanical vibration on 
moving robots tends to shake parts loose over time. These items can also be found at 
most hobby shops. Only a few drops are needed for a single robot. A single tube or 
container will build several robots. 

13.7 110 Connections to the UP 3's Expansion Headers 
Most servos and sensor I 1 0  signals will need to be attached to the UP 3's 53 
expansion header. The FPGA 110 Pins on 53 feed through voltage level 
converters to support 5V operation. RIC Servos and most sensors use 5V, but be 
sure to check the device's datasheet. Don't forget to connect a ground signal 
between the device and the UP 3 board, even if the device has it's own power 
supply or a direct connection to a battery. Several ground pins are available on 
53. A 5V 1A power supply pin is available on the UP 3's 52 expansion 
connector. 54 has a 3.3V supply connection pin and JP6 can be used as another 
5V supply connection. 

A small protoboard can be built to connect servos and sensors to the UP 3. All 
of the connectors and pins on the UP 3 line up on tenth inch centers. A 0.1" 
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perfboard or wire wrap protoboard can be cut down to 2" by 2 718" so that it 
fits over Jl,J2,53, and 54. 0.1" 40 pin connectors to attached the protoboard to 
connect to J1..4 can be mounted on the protoboard. A wire warp protoboard 
with holes every .1" has solder pads that can be used to attach connectors using 
solder. Point to point wiring and soldering can be used to make connections on 
the protoboard from the Jl..J4 connectors to the .Iy' connectors used to attach 
servos and sensors. Small single row strips of .l" header pins can be snapped 
apart to make male connectors on the board for the servos and most sensors. 
You may want to consider isolating your robot's servo or motor power supply 
from the supply used for the UP3's logic to control the noise generated on the 
supply lines by the DC motors. On larger robots, two batteries are sometimes 
used. A Vunregulated connection that does not go through the 5V regulator and 
is connected directly to the UP 3's power input jack is available on JP8 and 54. 
The 9V supply is connected after the input power switch on the UP 3 and to 
JP5. This also can be used to power servos and motors, assuming the battery 
voltage level is not too high. If the battery voltage is too high, another regulator 
can be used for the motors. At a minimum, decoupling capacitors connected 
across the servo's power supply connections are a good idea. If you plan on 
having several sensors on your robot, you may want to consider building a 
small PCB with header pins for the sensor power and data connections as seen 
in Figure 13.19. Suggestions for common UP3-bot servo motor and sensor 
connections are shown in parenthesis. Most R/C servos can run on 4.8 to 6V. 

Table 13.1 UP3-bot J3 Expansion Header Pins 

Header Pin I Cyclone Pin 11 Header Pin I Cyclone Pin 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

Reset 

217 (Left Servo Signal) 

21 6 (Right Servo Signal) 

25 I 201 (Elect. Compass SDA) 11 26 

215 (Sensor Turret Servo) 

206 

207 (IR distance input) 

208 (IR distance output) 

21 3(Sonar input) 

214(Sonar output) 

Gnd 

199(1C12:180) 

200 
-- -- 

Gnd 

29 

I Note: Pin numbers in parenthesis are used on the larger 1C12 UP 3 board I 

2 

4 

6 

33 

35 

37 

39 

Gnd 

220(1C12:169) 

219 

8 

10 

12 

14 

16 

18 

20 

22 

24 

27 1 202 (Elect. Compass SDL) 11 28 

205(1 C12:NA) 

21 8 

221 (1C12:168) 

222 

223 

224 -- 
225 

NC 
Gnd 

Gnd 

196 

203 

176 (IR proximity input) 

174 (left IR proximity output) 

173 (right IR proximity output) 

30 

31 

Gnd 

32 204(1C12:NA) 

34 

36 

38 

40 

197 

179 

178 

124 

Gnd 
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13.8 Robot Projects Based on RIC Toys, Models, and Robot Kits 
A second option for building an FPGA driven robot involves modifying a low- 
cost radio-controlled (WC) car or truck. Fundamentally, almost any large R/C 
car or truck can be modified to work with the Altera board, although some are 
clearly better choices than others. In our robot, we used a Radio Shack 
(www.radioshack.com) R/C 4WD SUV shown in Figure 13.20. The R/C 
platform affords a more robust drive train and control; however, turning radius 
and noise levels are sacrificed over the smaller UP3bot. The R/C SUV has a 
spring suspension and large soft tires that make it operable outdoors on rougher 
surfaces. Following are some R/C car selection considerations that will affect 
available modifications and control of the new platform. 

Figure 13.20 FPGA Controlled Toy IUC Truck with IR Distance Sensors. 

Seven-Function Controls 

When choosing an R/C car, select one that has a remote control with at least 
seven remote functions (forward, backward, forward-right, forward-left, 
backward-right, backward-left, and stop). Note that these low-cost R/C cars do 
not have variable speed or variable turning controls; however, once they are 
interfaced to the FPGA board, variable speed and turning can be accomplished 
by changing the duty cycle of the command signals. (More on this later.) 
A control module built using the FPGAs logic allows a relatively inexpensive 
R/C car to perform with the capabilities of the more expensive cars with 
"digital proportional steering" and "digital proportional speed controls." Once 
interfaced to the FPGA board, an IP core (Robot-CTL) is used to handle 
control of all direction and speed control outputs. As illustrated in Figure 13.21, 
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the IP core control module affords a higher degree of control than the original 
radio control. The outputs connect to the R/C cars internal control circuits that 
drive the DC Motors. 

FwdRev 
Direction 

Speed 

1 Bit 
3 Bits 

3 Bits 

0 = Forward1 = Reverse 
First bit LeftJRight, 2"d and 3rd bit is angle. 
0-00 = Left - Straight* 
0-01 = Left - Slight Turn 
0-10 = Left - Medium Turn 
0-1 1 = Left - Full Turn 
1-00 = Right - Straight* 
1-01 = Right - Slight Turn 
1 - 10 = Right - Medium Turn 
1 - 1 1 = Right - Full Turn 
* Note: 000 and 100 are both Straight 
000 = Stop 
001 = Slowest Speed 
... ... 
11 1 = Fastest Speed 

Figure 13.21 Robot Control IP Core with Pulsed Speed & Steering Control. 

Speed 

When considering the speed of the vehicle, a modest speed is more desirable 
than the faster speeds. At 800 feet per minute, our prototype FPGA controlled 
robot car moves fast enough to be difficult to catch. In almost all cases, the 
robot is operated at half the maximum speed or less. The limiting factor is 
generally the delay inherent in the sensor's input sampling rate and range. A 
fast moving car typically will hit the wall before a collision sensor can take the 
data samples needed to initiate avoidance. 

To control the speed (or the degree of turn) a repeated pulse train is sent to the 
forward or reverse signals (left or right signals for direction). Instead of a 
steady high signal causing the car to move forward at full speed, the pulse train 
varies the duty cycle to change speed (or degree of turn). By modulating the 
duty cycle of the pulse train, "digital proportional control" can be implemented 
on each control signal. In other words, changing the duty cycle can control the 
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speed and the degree of turn. The more the duty cycle approaches loo%, the 
harder the turn andlor the faster the speed. 
The frequency of the pulsed control signal used must be higher than the natural 
mechanical frequency response of the system. A very slow changing pulse will 
cause the motor and gears to vibrate and make additional noise. Pulse 
frequencies of a few kHz are typically used to avoid this problem. 
When reversing direction on a moving DC motor, it is common practice to 
include a small time delay with the motor turned off to reduce the inductive 
voltage spikes produced by the motor windings. Recall that changing current 
flow through an inductor produces voltage. Without the delay in some circuits, 
these high voltage spikes can damage or reduce the life of the transistors 
controlling the motor. This delay can be incorporated in the IP control core, if 
needed. 
Figure 13.22 illustrates the relationship between turn angle, speed, and duty 
cycle on the control signals. The figure implies that the duty cycle is linear, i.e., 
a 50% duty cycle produces half speed. Actually, the duty cycle is very non- 
linear and highly dependent on the type of car, size of the DC motors, and 
power. (An FUC car with a dying battery performs as if the duty cycle is 
considerably less.) By experimenting with patterns of the 16-bit speed and 
direction vectors used in the IP core controller, a more linear relationship can 
be established between the command bit patterns and the actual performance of 
the vehicle. 

Turn 
Angle Speed 

Figure 13.22 Affect of Duty Cycle on Turning Angle and Speed. 

Battery Choice 

The choice of car will also dictate the type of batteries and charger that will be 
needed. Note that some cars come with 9.6V packs and others come with 7.2V 
packs. Both should work well with the UP 3 board as a controller. The 
prototype used the 7.2V pack that discharged quickly and required a second 
pack placed in parallel with the first to support longer run times. The cars with 
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a 9.6V pack should give the UP 3 board's 5V onboard regulator a better 
regulator margin and a longer life between recharges. 

Mounting the UP 3 Board 

Before you select an R/C car, make sure that there is a good place to mount the 
FPGA board. If the car is large enough, there is usually a large flat area under 
the car body cover molding to secure the FPGA board. 

Interfacing the UP 3 Board to the RIC Car 

Remove appropriate body cover screws and expose the PC board receiver and 
control module. Most current low-cost R/C toy cars have a single electronic PC 
board that contains both control circuits. Generally, there is one 16 or 18-pin 
DIP radio command demodulator chip in the center of the board that converts 
the radio signals into simple digital control signals. These digital control 
signals then activate the H-bridge circuit that controls the DC motors that drive 
the wheels of the RIC car. 
An H-bridge is a standard electronic circuit used to control DC motors. It 
allows for both forward and reverse operation of the same DC motor. H-bridge 
circuits contain four large power transistors that are needed to turn on and 
reverse a DC motor. Discrete transistors may be used to build the H-bridge or it 
may be in an IC or packaged module that connects directly to the motors. 

If the car supports seven functions, it will have at least four pins coming off of 
the DIP chip package that break down into Left, Right, Forward, and Reverse. 
Using a voltmeter or an oscilloscope, test which pins change when the remote 
control is set to each of the four directions. From each of the designated 
command pins on the chip, the trace on the PC board will run to separate H- 
bridge circuits for each motor. 
By clipping or desoldering and pulling out the four control pins on the chip 
going to the board and soldering wires from each chip pin hole pad trace to the 
FPGA (Figures 13.23 and 13.24), the FPGA board can control the four 
directions and speed of the R/C car using the car's existing H-bridge circuits. In 
our modification, we desoldered the entire chip and put a socket on the board. 
To have the original control signals coming from the radio control module also 
sent to the FPGA board, run four more wires from the clipped chip pins to the 
one of the FPGA's headers. If the four clipped chip pins (RCx) are connected to 
the FPGA board, logic can be designed to include the original radio control 
functions supplied by the handheld remote control unit. You can also make this 
connection at the H-bridge circuit if necessary. On the UP 3, you will want to 
use the UP 3s 5V I10 pins for this interface. 
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Rev = 1 1 1 1  

Figure 13.23 Interfacing to the R/C Car's Internal Control Signals at the Demodulator IC. 

Figure 13.24 Photo Showing Control Modifications to R/C Car Control Board. 

Hobbyist RIC Models, Robot Kits, and Commercial Robot Bases 

For those with a larger budget, higher quality FUC hobbyist cars are available 
with built-in proportional steering and pulsed electronic speed controls. The 
control interface to these cars uses standard FUC PWM signals that are identical 
to the PWM servo control bit described at the end of Section 13.2. An example 
FUC Hummer can be seen in Figure 13.25. This robot is controlled using a C 
program running on the FPGA's Nios processor core. Various robot kits without 
control electronics or a computer are also available. Almost any of these robot 
kits can be controlled by the UP 2 or UP 3 board provided they are large 
enough to carry it and can power it from their battery or carry a second battery 
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for the UP 3. An interesting walking robot kit containing 12 R/C servos is seen 
in Figure 13.26. 

Figure 13.25 Hobbyist WC model with a CMU camera and WC PWM servos controlled by an FPGA 

Figure 13.26 Lvnxmotion Hexvod Walking Robot Kit with 12 WC servos 
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Figure 13.27 ActiveMediaYs Amigobot robot base controlled bv an FPGA with a Nios Processor 

Some commercial robot bases are also available such as the Amigobot as seen 
in Figure 13.27, the ER1 from Evolution Robotics and the mobile robot 
platform from Drrobot. The Amigobot uses an RS-232C serial interface and the 
ER1 uses USB for motor control. A robot base contains a motor, drive 
electronics, sensors, and a battery, but it has no high-level controller. 
Once you develop a working robot and want to run existing demos, you may 
want to program the UP 3 flash memory configuration device so that your 
design automatically runs whenever the board is turned on. Instructions are 
provided in Appendix E. 

13.9 For Additional Information 
Radio-controlled cars and parts such as batteries, battery chargers, and servos 
can be obtained at a local hobby shop or via mail order at a lower cost from: 

Tower Hobbies . h~://www.towerhobbies.com - - - 
P.O. Box 9078 
Champaign, IL 61 826-9078 
800-637-6050 

IR Proximity, Line Tracker, Sonar sensors, Servos, Wheels, and Robot kits can 
be obtained via mail order from: 

Lynxmotion, Inc. http://www.lynxmotion.com 
104 Partridge Road 
Pekin, IL 61554-1403 
309-382-1254 
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Mondotronics 
4286 Redwood Highway #226 
San Raphael, CA 94903 
800-374-5764 

Sensors & Robot kits, Servo wheels for robots, and Servo wheel encoder kits 
can also be obtained via mail order from: 

Acroname 
P.O. Box 1894 
Nederland, CO 80466 
303-258-3 161 

Low-cost digital and analog compass sensors are available via mail order from: 
Dinsmore Instrument Co. 
P.O. Box 345 
Flint, Michigan 48501 
8 10-744- 1790 

Electronic Compass Modules are available from: 
PNI Corp http://www.pnico~v.com 
5464 Skylane Blvd. Suite A 
Santa Rosa, CA 95403 

GPS and DGPS ICs and modules are available from: 
Motorola TCG 
GPS Products 
2900 South Diablo Way 
Tempe, AZ 85282 

u-blox AG 
Ziircherstrasse 68 
8800 Thalwil 
Schweiz 

A wide array of robot sensor modules is available from: 
Devantech Ltd (Robot Electronics) http:Nwww.robot-electronics.co.uk 
Unit 2B Gilray Road 
Diss 
Norfolk 
IP22 4EU 
England 

A longer list of robot parts vendors and sites can be found at: 
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13.1 0 Laboratory Exercises 
Develop a counter design to find the dead zone of a converted RIC servo motor. The dead 
or null zone is the time near 1.5ms that actually makes the servo motor stop moving. As 
in the example motor driver code, send a width adjusted pulse every 20ms. You will need 
a resolution of at least .Olms to find the dead zone, so a clock faster than the example 
code is required. For example, the motor might actually stop at 1.54ms instead of 1.50ms. 
Use the clk-div UP3core function to provide the clock. The design should increase the 
width of the timing pulse if one pushbutton is hit and decrease the width if the other 
pushbutton is hit. Display the width of the timing pulse in the seven-segment LEDs. Use 
a Cyclone DIP-switch input to select the motor to examine. By hitting the pushbuttons, 
you should be able to stop and reverse the motor. The dead zone will be between the 
settings where the drive wheel reverses direction. At the dead zone, the drive wheel 
should stop. Settings near the dead zone will make the motor run slower. Record the dead 
zone for both the left and right motor. 

Using the dead zone settings from problem 1, design a motor speed controller. Settings 
within around .2ms of the dead zone will make the motor run slower. The closer to the 
dead zone the slower the motor will run. Include at least four speed settings for each 
motor. See if you can get the robot to move in a straight line at a slow speed. 

Develop a speed controller for the robot drive motors by pulsing the drive motors on and 
off. The motors are sent a pulse of lms for reverse and 2ms for forward at full speed. If 
no pulse is sent for 20ms, the motor stops. If a motor is sent a 1 or 2ms pulse followed by 
no pulse in a repeating pattern, it will move slower. To move even slower use pulse, no 
pulse, no pulse in a repeating pattern. To move faster use pulse, no pulse, pulse in a 
repeating pattern. Using this approach, develop a speed controller for the robot with at 
least five speeds and direction. Send no pulse for the stop speed. Some additional 
mechanical noise will result from pulsing the motors at slow speeds. See if the robot will 
move in a straight line at a slow speed. 

Use an IR LED and IR sensor to add position feedback to the motors. You can build it 
yourself or a similar servo wheel encoder kit built by Nubotics is available from 
Acroname. Some sensor modules are available that have both the IR LED and IR sensor 
mounted in a single plastic case. For reflective sensors, mark the wheels with radial black 
paint stripes or black drafting tape and count the pulses from the IR sensor to determine 
movement of the wheel. Another option would be to draw the radial stripes using a PC 
drawing program and print it on clear adhesive labels made for laser printers. The labels 
could then be placed on the flat side of the wheel. If a transmissive sensor arrangement is 
used, holes can be drilled in the main wheel or a second smaller slotted wheel could be 
attached to the servo output shaft that periodically interrupts the IR light beam from the 
LED to the sensor. In this case, the LED and sensor are mounted on opposite sides of the 
wheel. This same optical sensing technique is used in many mice to detect movement of 
the mouse ball. Use the position feedback to implement more accurate variable speed and 
position control for the motors. 

Design a state machine using a counterltimer that will move the robot in the following 
fixed pattern: 

Move forward for 6 seconds. 

Turn right and go forward for 4 seconds (do not count the time it takes to turn). 

Turn left and go forward for 2 seconds. 

Stop, pause for 2 seconds, turn 180 degrees, and start over. 
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Determine the amount of time required for 90- and 180-degree turns by trial and error. A 
1 OHz or 1 OOHz clock should be used for the timer. Use the clk-div UP3core to divide the 
UP 3 on-board clock. The state machine should check the timer to see if the correct 
amount of time has elapsed before moving to the next state in the path. The timer is reset 
when moving to a new portion of the path. Use an initial state that turns off the motors 
until a pushbutton is hit, so that it is easier to control the robot during download. Since 
there is no motor position feedback, all turns and the actual distance traveled by the UP3- 
bot will vary slightly. 

Start 

6 sec. 

Turn 180 
Degrees 

Figure 13.28 Simvle vath for state machine without sensor resvonse. 

6. Using a ROM, develop a ROM-based state machine that reads a motor direction and 
time from the ROM. Put a complex pattern such as a dance step in the ROM using a 
MLF file. For looping, another field in the ROM can be used to specify a jump to a 
different next address. 

7. Using the keyboard UP3core, design an interface to the keyboard that allows the 
keyboard to be used as a remote control device to move the robot. Pick at least five 
different keys to command to robot to move, turn left, turn right, or stop. 

8. Interface an IR proximity sensor module to the UP3-bot using jumpers connected to 
the Cyclone male header socket. Attach the module in front of the header socket 
using foam tape. Alternate driving the left and right IR LEDs at 100Hz. Check for an 
IR sensor return and develop two signals, LEFT and RIGHT to indicate if the IR 
sensor return is from the left or right IR LED. The IR LEDs may need to be adjusted 
or shielded with some heat shrink tubing so that the floor does not reflect IR to the 
sensor. Use the LEFT and RIGHT signals to drive the decimal points on two LEDs to 
help adjust the sensor. It may be necessary to filter the IR returns using a counter 
with a return1110 return threshold for reliable operation. Using a clock faster than 
100Hz, for example lOkHz, only set LEFT or RIGHT if the return was present for 
several clock cycles. 

9. Using IR sensor input, develop a design for the UP3-bot that follows a person. The 
person must be within a foot or so of the UP3-bot. When a left signal is present turn 
left, when a right signal is present turn right, and when both signals are present, move 
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forward a few inches and stop. When all signals are lost, the UP3-bot should rotate 
until an IR return is acquired. 

10. Use motor speed control and a state machine with a timer to perform a small figure 
eight with the UP3-bot. 

11. Once the IR proximity sensor module from problem 8 is interfaced, design a state 
machine for the robot that moves forward and avoids obstacles. If it sees an obstacle 
to the left, turn right, and if there is an obstacle to the right, turn left. If both left and 
right obstacles are present, the robot should go backwards by reversing both motors. 

12. With two UP3-bots facing each other, develop a serial communications protocol 
using the IR LEDs and sensors. Assume the serial data is fixed in length and always 
starts with a known pattern at a fixed clock rate. The IR LEDs are pulsed at around 
40kHz and the sensor has a 40kHz filter, so this will limit the bandwidth to a few 
kHz. Transmit the 8-bit value from the Cyclone DIP switches and display the value 
in the receiving UP3-bot seven-segment LED displays. Display the raw IR sensor 
input in the decimal point LED to aid in debugging and alignment. 

13. Interface the line-following module to the UP3-bot, and design a state machine that 
follows a line. The line-following module has three sensor signals, left, center, and 
right. If the line drifts to the left, turn right, and if the line drifts to the right, turn left. 
Adjust turn constants so that the UP3-bot moves along the line as fast as possible. If 
speed control was developed for the UP3-bot as suggested in earlier problems, try 
using speed control for smaller less abrupt turns. 

14. Using a standard IR remote control unit from a television or VCR and an IR sensor 
interfaced to the UP3-bot, implement a remote control for the UP3-bot. Different 
buttons on the remote control unit generate a different sequence of timing pulses. A 
digital oscilloscope or logic analyzer can be used to examine the timing pulses. 

15. Interface the a magnetic or electronic compass module to the UP3-bot, and design a 
state machine that performs the following operation: 

Turn North. 

Move forward 4 seconds. 

Turn East. 

Move forward 4 seconds. 

Turn Southwest. 

Move fonvard 6.6 seconds. 

Stop and repeat when the pushbunon is hit. 

The mechanical compass has a small time delay due to the inertia of the magnetized 
rotor. Just like a real compass, it will swing back and forth for awhile before 
stopping. With care, the leads on the compass module can be plugged into a DIP 
socket with wire wrapped power supply and pull-up resistor connections on a small 
protoboard or make a printed circuit board for the compass with jumper wires to plug 
into the Cyclone female header socket. Make sure the compass module is mounted so 
that it is level and as far away from the motors magnets as possible. 
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16. Interface a Sonar-ranging module to the UP3-bot and perform the following 
operation : 

Scan the immediate area 360 degrees by rotating the robot 
and locate the nearest object. 

Move close to the object and stop. 
17. Attach the Sonar transducer to an unmodified servo's output shaft. Use the new servo 

to scan the area and locate the closest object. To sweep the unmodified servo back 
and forth, a timing pulse that slowly increases from lms to 2ms and back to lms is 
required. Move close to the nearest object and stop. 

18. Attach several IR ranging sensors to the UP3-bot and use the sensor data to develop a 
wall following robot. 

19. Interface additional sensors, switches, etc., to the UP3-bot so that it can navigate a 
maze. If several robots are being developed, consider a contest such as best time 
through the maze or best time after learning the maze. 

20. Use the yP 3 computer fiom Chapter 8 to implement a microcontroller to control the 
robot instead of a custom state machine. Write a yP 3 assembly language program to 
solve one of the previous problems. Interface a time-delay timer, the sensors, and the 
motor speed control unit to the yP 3 computer using VO ports as suggested in 
problem 8.6. The additional machine instructions suggested in the exercises in 
Chapter 8 would also be useful. 

21. Use a Nios processor to control the robot with C code using the UP 3 Nios I1 
reference design in Chapters 16 & 17. 

22. Develop and hold a UP3-bot design contest. Information on previous and current 
robotics contests can be found online at various web sites. Here are some ideas that 
have been used for other robot design contests: 

Robot Maze Solving 

Robot Dance Contest 

Sumo Wrestling 

Robot Soccer Teams 

Robot Laser Tag 

Fire Fighting Robots 

Robots that collect objects 

Robots that detect mines 
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A full die photograph of the MIPS R2000 RISC Microprocessor is shown above. The 
1986 MIPS R2000 with five pipeline stages and 450,000 transistors was the world's first 
commercial RISC microprocessor. Photograph 01995-2004 courtesy of Michael 
Davidson, Florida State University, http:llr,iicro.magnet.fsu.edu~chipshots. 
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14 A RISC Design: Synthesis of the MlPS Processor Core 

14.1 The MlPS lnstruction Set and Processor 
The MIPS is an example of a modem reduced instruction set computer (RISC) 
developed in the 1980s. The MIPS instruction set is used by NEC, Nintendo, 
Motorola, Sony, and licensed for use by numerous other semiconductor 
manufacturers. It has fixed-length 32-bit instructions and thirty-two 32-bit 
general-purpose registers. Register 0 always contains the value 0. A memory 
word is 32 bits wide. 
As seen in Table 14.1, the MIPS has only three instruction formats. Only I- 
format LOAD and STORE instructions reference memory operands. R-format 
instructions such as ADD, AND, and OR perform operations only on data in the 
registers. They require two register operands, Rs and Rt. The result of the 
operation is stored in a third register, Rd. R-format shift and function fields are 
used as an extended opcode field. J-format instructions include the jump 
instructions. 

Table 14.1 MlPS 32-bit lnstruction Formats. 

LW is the mnemonic for the Load Word instruction and SW is the mnemonic 
for Store Word. The following MIPS assembly language program computes 
A = B + C .  

Field Size 
R- Format 
I - Format 
J - Format 

LW $2, B 
LW $3, C 
ADD $4, $2, $3 
SW $4, A 

;Register 2 = value of memory at address B 
;Register 3 = value of memory at address C 
;Register 4 = B + C 
;Value of memory at address A = Register 4 

6-bits 
Opcode 

Opcode 

Opcode 

The MIPS I-format instruction, BEQ, branches if two registers have the same 
value. As an example, the instruction BEQ $1, $2, LABEL jumps to LABEL if 
register 1 equals register 2. A branch instruction's address field contains the 
offset from the current address. The PC must be added to the address field to 
compute the branch address. This is called PC-relative addressing. 
LW and SW instructions contain an offset and a base register that are used for 
array addressing. As an example, LW $1, 100($2) adds an offset of 100 to the 
contents of register 2 and uses the sum as the memory address to read data 
from. The value from memory is then loaded into register 1. Using register 0, 
which always contains a 0, as the base register disables this addressing feature. 

5-bits 
Rs 

Rs 

Branch target address 

5-bits 

Rt 

Rt 

5-bits 

Rd 

Addresslimmediate value 

5-bits 
Shift 

6-bits 
Function 
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Table 14.2 MlPS Processor Core Instructions. 

I I I I 

I Add R 0 32 Add I 
Addi I 8 Add Immediate 

Set if Less Than I 

Opcode 
Field 

Function 
Field 

Mnemonic Instruction Format 

I L w I I 1 3 5 1  I Load Word I 
Lui 

I Sw I 43 Store Word 
I B e q I I 1 4 1  I Branch on Equal I 

I 

A summary of the basic MIPS instructions is shown in Table 14.2. In depth 
explanations of all MIPS instructions and assembly language programming 
examples can be found in the references listed in section 14.11. 
A hardware implementation of the MIPS processor core based on the example 
in the widely used textbook, Computer Organization and Design The 
Hardware/Software Interface by Patterson and Hennessy, is shown in Figure 
14.1. This implementation of the MIPS performs fetch, decode, and execute in 
one clock cycle. Starting at the left in Figure 14.1, the program counter (PC) is 
used to fetch the next address in instruction memory. Since memory is byte 
addressable, four is added to address the next 32-bit (or 4-byte) word in 
memory. At the same time as the instruction fetch, the adder above instruction 
memory is used to add four to the PC to generate the next address. The output 
of instruction memory is the next 32-bit instruction. 
The instruction's opcode is then sent to the control unit and the function code is 
sent to the ALU control unit. The instruction's register address fields are used 
to address the two-port register file. The two-port register file can perform two 
independent reads and one write in one clock cycle. This implements the 
decode operation. 

15 

Bne 
J 

Jal 

Jr 

Load Upper Immediate 

I 
J 
J 

R 

5 

2 
3 

0 8 

Branch on Not Equal 
Jump 

Jump and Link (used for Call) 
Jump Register (used for 

Return) 
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lnstruction 

lnstruction 
[XI-161 

Instruction 

Registers 

Read 
Register 1 Read 

Read Data I 

Register 2 

W t e  
Register 

Read 
Data 2 

mite 
Data 

Control I:J 
Figure 14.1 MIPS Single Clock Cvcle Imvlementation. 

The two outputs of the register file then feed into the data ALU inputs. The 
control units setup the ALU operation required to execute the instruction. Next, 
Load and Store instructions read or write to data memory. R-format instructions 
bypass data memory using a multiplexer. Last, R-format and Load instructions 
write back a new value into the register file. 
PC-relative branch instructions use the adder and multiplexer shown above the 
data ALU in Figure 14.1 to compute the branch address. The multiplexer is 
required for conditional branch operations. After all outputs have stabilized, the 
next clock loads in the new value of the PC and the process repeats for the next 
instruction. 
RISC instruction sets are easier to pipeline. With pipelining, the fetch, decode, 
execute, data memory, and register file write operations all work in parallel. In 
a single clock cycle, five different instructions are present in the pipeline. The 
basis for a pipelined hardware implementation of the MIPS is shown in Figure 
14.2. 
Additional complications arise because of data dependencies between 
instructions in the pipeline and branch operations. These problems can be 
resolved using hazard detection, data forwarding techniques, and branch 
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flushing. With pipelining, most RISC instructions execute in one clock cycle. 
Branch instructions will still require flushing of the pipeline. Exercises that add 
pipelining to the processor core i r e  includedat the end of the chapter. 

Branch I 
Address 

Instruction JF? 

Figure 14.2 MIPS Pipelined Implementation. 

14.2 Using VHDL to Synthesize the MlPS Processor Core 
A VHDL-synthesis model of the MIPS single clock cycle model from Figure 
14.1 will be developed in this section. This model can be used for simulation 
and implemented using the UP 3 board. 
The full 32-bit model requires a couple minutes to synthesize. When testing 
new changes you might want to use the faster functional (i.e. no timing delays) 
simulation approach before using a full timing delay model. This approach is 
commonly used on larger models with long synthesis and simulation times. 
A two-level hierarchy is used in the model. MIPS.VHD is the top-level of the 
hierarchy. It consists of a structural VHDL model that connects the five 
behavioral modules. The five behavioral modules are already setup so that they 
correspond to the different stages for the MIPS. This makes it much easier to 
modify when the model is pipelined in later laboratory exercises. For many 
synthesis tools, hierarchy is also required to synthesize large logic designs. 
1FETCH.VHD is the VHDL submodule that contains instruction memory and 
the program counter. CONTROL.VHD contains the logic for the control unit. 
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1DECODE.VHD contains the multi-ported register file. EXECUTE.VHD 
contains the data and branch address ALUs. DMEMORY.VHD contains the 
data memory. 

14.3 The Top-Level Module 
The MIPS.VHD f i le  contains the top-level design file. MIPS.VHD is  a VHDL 
structural model that connects the f ive component parts o f  the MIPS. This 
module could also be created using the schematic editor and connecting the 
symbols fo r  each VHDL submodule. The inputs are the clock and reset signals. 
The values o f  major busses and important control signals are copied and output 
f rom the top level so that they are available for easy display in simulations. 
Signals that are not outputs at the top level w i l l  occasionally not  exist due to  
the compilers logic optimizations during synthesis. 

-- Top Level Structural Model for MIPS Processor Core 
LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-AR1TH.ALL; 

ENTITY MIPS IS 

PORT( reset, clock : IN STD-LOGIC; 
-- Output important signals to pins for easy display in Simulator 
PC : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
ALU-result-out, read-data-1-out, read_data2out, 
write-data-out, Instruction-out : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Branch-out, Zero-out, Mernwrite-out, 
Regwrite-out : OUT STD-LOGIC ); 

END TOP-SPIM; 

ARCHITECTURE structure OF TOP-SPIM IS 

COMPONENT lfetch 
PORT( lnstruction 

PCglus-4-out 
Add-result 
Branch 
Zero 
PC-out 
clock,reset 

END COMPONENT: 

: OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
: IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
: IN STD-LOGIC; 
: IN STD-LOGIC; 
: OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
: IN STD-LOGIC ); 

COMPONENT ldecode 
PORT( read-data-I : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

read-data-2 : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Instruction : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
read-data : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
ALU-result : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Regwrite, MemtoReg : IN STD-LOGIC; 
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RegDst 
Sign-extend 
clock, reset 

END COMPONENT; 

COMPONENT control 
PORT( Opcode 

Reg Dst 
ALUSrc 
MerntoReg 
RegWrite 
MernRead 
MernWrite 
Branch 
ALUop 
clock, reset 

END COMPONENT; 

COMPONENT Execute 
PORT( Read-data-I 

Read-data-2 
Sign-Extend 
Function-opcode 
ALUOp 
ALUSrc 
Zero 
ALU-Result 
Add-Result 
PC-plus-4 
clock, reset 

END COMPONENT; 

: IN STD-LOGIC; 
: OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: IN STD-LOGIC ); 

: IN 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: OUT 
: IN 

: IN 
: IN 
: IN 
: IN 
: IN 
: IN 
: OUT 
: OUT 
: OUT 
: IN 
: IN 

STD-LOGIC-VECTOR( 5 DOWNTO 0 ); 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC-VECTOR( 1 DOWNTO 0 ); 
STD-LOGIC ); 

STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 5 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 1 DOWNTO 0 ); 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
STD-LOGIC ); 

COMPONENT drnernory 
PORT( read-data : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

address : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
write-data : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
MemRead, Mernwrite : IN STD-LOGIC; 
Clock,reset : IN STD-LOGIC ); 

END COMPONENT; 

SIGNAL PCjlus-4 
SIGNAL read-data-I 
SIGNAL read-data-;! 
SIGNAL Sign-Extend 
SIGNAL Add-result 
SIGNAL ALU-result 
SIGNAL read-data 
SIGNAL ALUSrc 
SIGNAL Branch 
SIGNAL RegDst 

-- declare sigr~als used to connect VHDL components 
: STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC; 
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SIGNAL Regwrite 
SIGNAL Zero 
SIGNAL MemWrite 
SIGNAL MemtoReg 
SIGNAL MemRead 
SIGNAL ALUop 
SIGNAL lnstruction 

: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC; 
: STD-LOGIC-VECTOR( 1 DOWNTO 0 ); 
: STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

BEGIN 
-- copy important signals to output pins for easy 
-- display in Simulator 

Instruction-out <= Instruction; 
ALU-result-out <= ALU-result; 
read-data-1-out <= read-data-I ; 
read-data-2-out <= read-data-2; 
write-data-out <= read-data WHEN MemtoReg = '1' ELSE ALU-result; 
Branch-out <= Branch; 
Zero-out <= Zero; 
Regwrite-out <= RegWrite; 
MemWrite-out <= MemWrite; 

-- connect the 5 MIPS components 
IFE : lfetch 

PORT MAP ( Instruction => Instruction, 
PC-plus-4-out => PCglus-4, 

Add-result => Add-result, 
Branch => Branch, 
Zero =r Zero, 
PC-out => PC, 
clock => clock, 
reset => reset ); 

ID : ldecode 
PORT MAP ( read-data-1 

read-data2 
Instruction 
read-data 
ALU-result 
RegWrite 
MemtoReg 
Reg Dst 
Sign-extend 
clock 
reset 

CTL: control 
PORT MAP ( Opcode 

Reg Dst 
ALUSrc 
MemtoReg 
RegWrite 
MemRead 

=> read-data-I , 
=> read-data-2, 
=> Instruction, 
=> read-data, 
=> ALU-result, 
=> RegWrite, 
=> MemtoReg, 
=> RegDst, 
=> Sign-extend, 
=> clock, 
=> reset ); 

=> Instruction( 31 DOWNTO 26 ), 
=> RegDst, 
=> ALUSrc, 
=> MemtoReg, 
=> RegWrite, 
=> MemRead, 
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MemWrite 
Branch 
ALUop 
clock 
reset 

=> MemWrite, 
=> Branch, 
=> ALUop, 
=> clock, 
=> reset ); 

B E :  Execute 
PORT MAP ( Read-data-I => read-data-I , 

Read-data-2 => read-data-2, 
Sign-extend => Sign-extend, 
Function-opcode => Instruction( 5 DOWNTO 0 ), 
ALUOp => ALUop, 
ALUSrc => ALUSrc, 
Zero => Zero, 
ALU-Result => ALU-Result, 
Add-Result => Add-Result, 
PC-plus-4 => PCglus-4, 
Clock => clock, 
Reset => reset ); 

MEM: dmemory 
PORT MAP ( read-data 

address 
write-data 
MemRead 
Memwrite 
clock 
reset 

END structure; 

=> read-data, 
=> ALU-Result, 
=> read-data-2, 
=> MemRead, 
=> MemWrite, 
=> clock, 
=> reset ); 

14.4 The Control Unit 
The control unit of the MIPS shown in Figure 14.3 examines the instruction 
opcode bits and generates eight control signals used by the other stages of the 
processor. Recall that the high six bits of a MIPS instruction contain the 
opcode. The opcode value is used to determine the instruction type. 

Instruction 

Figure 14.3 Block Diagram of MIPS Control Unit. 
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-- control module (implements MlPS control unit) 
LIBRARY IEEE; 
USE IEEE.STD-LOGIC-11 WALL; 
USE 1EEE.STD-LOGIC-ARITH.ALL; 
USE 1EEE.STD-LOGIC-SIGNED.ALL; 

ENTITY control IS 
PORT( Opcode 

Reg Dst 
ALUSrc 
MemtoReg 
RegWrite 
MemRead 
MemWrite 
Branch 
ALUop 
clock, reset 

END control; 

: IN STD-LOGIC-VECTOR( 5 DOWNTO 0 ); 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC; 
: OUT STD-LOGIC-VECTOR( 1 DOWNTO 0 ); 
: IN STD-LOGIC ); 

ARCHITECTURE behavior OF control IS 

SIGNAL R-format, Lw, Sw, Beq : STD-LOGIC; 

BEGIN 
-- Code to generate control signals using opcode bits 

R-format <= '1' WHEN Opcode = "000000" ELSE '0'; 
Lw c= '1' WHEN Opcode = "1 0001 1" ELSE '0'; 
Sw <= '1' WHEN Opcode = "10101 1" ELSE '0'; 
Beq <= '1' WHEN Opcode = "000100" ELSE '0'; 

Reg Dst 
ALUSrc 
MemtoReg 
RegWrite 
MemRead 
MemWrite 
Branch 
ALUOp( I ) 
ALUOp( 0 ) 

<= R-format; 
<= Lw OR Sw; 
<= Lw; 
<= R-format OR Lw; 
<= Lw; 
<= Sw; 
c= Beq; 
c= R-format; 
<= Beq; 

END behavior; 
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14.5 The Instruction Fetch Stage 
The instruction fetch stage of the MIPS shown in Figure 14.4 contains the 
instruction memory, the program counter, and the hardware to increment the 
program counter to compute the next instruction address. 

Address 

Instructior 
131-0 

Zero + 
Branch + D' Clock - 

Figure 14.4 Block Diagram of MIPS Fetch Unit. 

Instruction memory is implemented using the Altsyncram megafunction. 256 by 
32 bits of instruction memory is available. This requires two of the Cyclone 
chip's M4K RAM memory blocks. Since the Altsyncram memory requires an 
address register, the PC register is actually implemented inside the memory 
block. A copy of the PC external to the memory block is also saved for use in 
simulation displays. 

-- lfetch module (provides the PC and instruction 
--memory for the MlPS computer) 

LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE 1EEE.STD-LOGIC-UNSIGNED.ALL; 
LIBRARY altera-mf; 
USE altera-mf.aItera-mf-components.ALL; 

ENTITY lfetch IS 
PORT( SIGNAL Instruction : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

SIGNAL PCglus-4-out : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL Add-result : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
SIGNAL Branch : IN STD-LOGIC; 
SIGNAL Zero : IN STD-LOGIC; 
SIGNAL PC-out : OUT STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
SIGNAL clock, reset : IN STD-LOGIC); 

END Ifetch; 
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ARCHITECTURE behavior OF lfetch IS 
SIGNAL PC, PC-plus-4 : STD-LOGIC-VECTOR( 9 DOWNTO 0 ); 
SIGNAL next-PC : STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 

BEGIN 
--ROM for Instruction Memory 

data-memory: altsyncram 

GENERIC MAP ( 
operation-mode => "ROM", 
width-a => 32, 
widthad-a => 8, 
Ipm-type => "altsyncram", 
outdata-reg-a => "UNREGISTERED", 

-- Reads in mif file for initial data memory values 
init-file => "program.mif", 
intended-device-family => "Cyclone") 

-- Fetch next instruction from memory using PC 
PORT MAP ( 

clock0 => clock, 
address-a => Mem-Addr, 
q-a =r Instruction 
); 

-- Instructions always start on a word address - not byte 
PC(l DOWNTO 0) <= "00"; 

-- copy output signals - allows read inside module 
PC-out <= PC; 
PC-plus-4-out <= PCglus-4; 

-- send word address to inst. memory address register 
Mem-Addr <= Next-PC; 

-- Adder to increment PC by 4 
PC-plus-4( 9 DOWNTO 2 ) <= PC( 9 DOWNTO 2 ) + 1; 
PC-plus-4( 1 DOWNTO 0 ) <= "00"; 

-- Mux to select Branch Address or PC + 4 
Next-PC <= X"OO" WHEN Reset = '1' ELSE 

Add-result WHEN ( ( Branch = '1' ) AND ( Zero = '1' ) ) 
ELSE PC-plus-4( 9 DOWNTO 2 ); 

-- Store PC in register and load next PC on clock edge 
PROCESS 

BEGIN 
WAIT UNTIL ( clock'EVENT ) AND ( clock = '1' ); 
IF reset = '1' THEN 

PC <= "0000000000" ; 
ELSE 

PC( 9 DOWNTO 2 ) <= Next-PC; 
END IF; 

END PROCESS; 
END behavior; 



A RlSC Design: Synthesis of the MIPS Processor Core 267 

The MIPS program is contained in instruction memory. Instruction memory is 
automatically initialized using the program.mif file shown in Figure 14.5. This 
initialization only occurs once during download and not at a reset. 
For different test programs, the appropriate machine code must be entered in 
this file in hex. Note that the memory addresses displayed in the program.mif 
file are word addresses while addresses in registers such as the PC are byte 
addresses. The byte address is four times the word address since a 32-bit word 
contains four bytes. Only word addresses can be used in the *.mif files. 

-- MlPS Instruction Memory Initialization File 

Depth = 256; 
Width = 32; 
Address-radix = HEX; 
Data-radix = HEX; 
Content 
Begin 

-- Use NOPS for default instruction memory values 
[OO..FF]: 00000000; -- nop (sN rO,rO,O) 

-- Place MlPS Instructions here 
-- Note: memory addresses are in words and not bytes 
-- i,e. next location is + I  and not +4 

00: 8C020000; 
01 : 8C030001; 
02: 00430820; 
03: ACOlOOO3; 
04: 1022FFFF; 
05: 1021 FFFA; 

End; 

-- Iw $2,0 ;memory(00) =55 
-- Iw $3, I ;memory(Ol)=AA 
-- add $1,$2, $3 
-- sw $1,3 ;memory(03)=FF 
-- beq $1,$2,-4 
-- beq $I,$?,-24 

Figure 14.5 MIPS Promam Memorv Initialization File. urogram.mif. 
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14.6 The Decode Stage 
The decode stage of the MIPS contains the register file as shown in Figure 
14.6. The MIPS contains thirty-two 32-bit registers. The register file requires a 
major portion of the hardware required to implement the MIPS. Registers are 
initialized to the register number during a reset. This is done to enable the use 
of shorter test programs that do not have to load all of the registers. A VHDL 
FOR ... LOOP structure is used to generate the initial register values at reset. 

RegDst 

Instruction 
[25 - 211 

Instruction 

Instruction "6 
[ I 5  - 111 - lX 

ALU Result 

RegWrite 

1 
Registersl 
Read I 
Register I Read 

Read Data 
Register 2 t- 
Write 
Register 

Read 
Data 2 

Write 
Data I 

Figure 14.6 Block Diagram of MIPS Decode Unit. 

-- ldecode modide (implements the register file for 
LIBRARY IEEE; -- the MIPS computer) 
USE IEEE.STD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-UNSIGNED.ALL; 

ENTITY ldecode IS 
PORT( read-data-I 

read-data-2 
lnstruction 
read-data 
ALU-result 
RegWrite 
MemtoReg 
RegDst 
Sign-extend 
clock,reset 

: OUT 
: OUT 
: IN 
: IN 
: IN 
: IN 
: IN 
: IN 
: OUT 
: IN 

STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC; 
STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
STD-LOGIC ); 

END Idewde; 
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ARCHITECTURE behavior OF ldecode IS 
TYPE register-file IS ARRAY ( 0 TO 31 ) OF STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

SIGNAL register-array: register-file; 
SIGNAL write-register-address : STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 
SIGNAL write-data : STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
SIGNAL read-register-1-address : STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 
SIGNAL read-register-2-address : STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 
SIGNAL write-register-address-I : STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 
SIGNAL write-register-address-0 : STD-LOGIC-VECTOR( 4 DOWNTO 0 ); 
SIGNAL Instruction-immediate-value : STD-LOGIC-VECTOR( 15 DOWNTO 0 ); 

BEGIN 
read-register-1-address <= Instruction( 25 DOWNTO 21 ); 
read-register-2-address <= Instruction( 20 DOWNTO 16 ); 
write-register-address-I <= Instruction( I 5  DOWNTO 11 ); 
write-register-address-0 <= Instruction( 20 DOWNTO 16 ); 
Instruction-immediate-value <= Instruction( 15 DOWNTO 0 ); 

-- Read Register 1 Operation 
read-data-I <= register-array( CONV-INTEGER( read-register-1-address) ); 

-- Read Register 2 Operation 
read-data-2 <= register-array( CONV-INTEGER( read-register-2-address) ); 

-- Mux for Register Write Address 
write-register-address <= write-register-address-I 

WHEN RegDst = '1' ELSE write-register-address-0; 
-- Mux to bypass data memory for Rformat instructions 

write-data <= ALU-result( 31 DOWNTO 0 ) 
WHEN ( MemtoReg = '0' ) ELSE read-data; 

-- Sign Extend 16-bits to 32-bits 
Sign-extend <= X"0000" & Instruction-immediate-value 

WHEN Instruction~immediate~value(l5) = '0' 
ELSE X"FFFF" & Instruction-immediate-value; 

PROCESS 
BEGIN 

WAIT UNTIL clock'EVENT AND clock = '1'; 
IF reset = ' I '  THEN 

-- Initial register values on reset are register = reg# 
-- use loop to autornaticaNy generate reset logic 
-- for all registers 

FOR i IN 0 TO 31 LOOP 
register-array(i) <= CONV-STD-LOGIC-VECTOR( i, 32 ); 

END LOOP; 
-- Write back to register - don't write to register 0 

ELSlF RegWrite = '1' AND write-register-address I= 0 THEN 
register-array( CONV-INTEGER( write-register-address)) <= write-data; 

END IF; 
END PROCESS; 

END behavior; 
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14.7 The Execute Stage 
The execute stage of the MIPS shown in Figure 14.7 contains the data ALU and 
a branch address adder used for PC-relative branch instructions. Multiplexers 
that select different data for the ALU input are also in this stage. 

PC+4 - 
Result 

Shifl 

Read Data 1 - b  

Zero - 
Read ALUI. 

Result 

~ a t a ~ h  

ALUSrc 

Figure 14.7 Block Diagram of MIPS Execute Unit. 

-- Execute module (implements the data ALU and Branch Address Adder 
-- for the MIPS computer) 
LIBRARY IEEE; 
USE IEEESTD-LOGIC-1164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-SIGNED.ALL; 

ENTITY Execute IS 
PORT( Read-data-I : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

Read-data2 : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Sign-extend : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Function-opcode : IN STD-LOGIC-VECTOR( 5 DOWNTO 0 ); 
ALUOp : IN STD-LOGIC-VECTOR( 1 DOWNTO 0 ); 
ALUSrc : IN STD-LOGIC; 
Zero : OUT STD-LOGIC; 
ALU-Result : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
Add-Result : OUT STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
PC~ lus -4  : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
clock, reset : IN STD-LOGIC ); 

END Execute; 
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ARCHITECTURE behavior OF Execute IS 
SIGNAL Ainput, Binput : STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
SIGNAL ALU-output-mux : STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
SIGNAL Branch-Add : STD-LOGIC-VECTOR( 8 DOWNTO 0 ); 
SIGNAL ALU-ctl : STD-LOGIC-VECTOR( 2 DOWNTO 0 ); 
BEGIN 

Ainput <= Read-data-I ; 
-- ALU input mux 

Bin put <= Read-data2 
WHEN ( ALUSrc = '0' ) 
ELSE Sign-extend( 31 DOWNTO 0 ); 

-- Generate ALU control bits 
ALU-ctl( 0 ) <= ( Function-opcode( 0 ) OR Function-opcode( 3 ) ) AND ALUOp(1 ); 
ALU-ctl( 1 ) <= ( NOT Function-opcode( 2 ) ) OR (NOT ALUOp( 1 ) ); 
ALU-ctl( 2 ) <= ( Function-opcode( 1 ) AND ALUOp( 1 )) OR ALUOp( 0 ); 

-- Generate Zero Flag 
Zero <= '1' 

WHEN ( ALU-output-mux( 31 DOWNTO 0 ) = X"00000000" ) 
ELSE '0'; 

-- Select ALU output for SL T 
ALU-result <= X"0000000" & B"000" & ALU-output-mux( 31 ) 

WHEN ALU-ctl = " I  I I "  
ELSE ALU-output-mux( 31 DOWNTO 0 ); 

-- Adder to compute Branch Address 
Branch-Add <= PCglus-4( 9 DOWNTO 2 ) + Sign-extend( 7 DOWNTO 0 ) ; 
Add-result <= Branch-Add( 7 DOWNTO 0 ); 

PROCESS ( ALU-ctl, Ainput, Binput ) 
BEGIN 

CASE ALU-ctl IS 

WHEN "000" 

WHEN "001" 

WHEN "010" 

WHEN "01 1" 

WHEN "100" 

WHEN "101" 

WHEN "1 10" 

WHEN "111" 

-- Select ALU operation 

-- ALU performs ALUresult = A-input AND B-input 
=> ALU-output-mux <= Ainput AND Binput; 

-- ALU performs ALUresult = A-input OR 6-input 
=> ALU-output-mux <= Ainput OR Binput; 

-- ALU performs ALUresult = A-input + B-input 
=> ALU-output-mux <= Ainput + Binput; 

-- ALU performs ? 
=> ALU-output-mux <= X"00000000" ; 

-- ALU performs ? 
=> ALU-output-mux <= X"00000000" ; 

-- A L U performs ? 
=> ALU-output-mux <= X"00000000" ; 

-- A LU performs A LUresuit = A-input - B-input 
=> ALU-output-mux <= Ainput - Binput; 

-- ALU performs SLT 
=> ALU-output-mux <= Ainput - Binput ; 

WHEN OTHERS => ALU-output-mux <= X"00000000" ; 
END CASE; 

END PROCESS; 
END behavior; 
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14.8 The Data Memory Stage 
The data memory stage of the MIPS core shown in Figure 14.8 contains the 
data memory. To speed synthesis and simulation, data memory is limited to 256 
locations of 32-bit memory. Data memory is implemented using the Altsyncram 
megafunction. Memory write cycle timing is critical in any design. The 
Altsyncram function requires an internal address register with a clock. In this 
design, the falling clock edge is used to load the data memories internal address 
register. The rising clock edge starts the next instruction. Two M4K RAM 
blocks are used for data memory. Two M4K RAM blocks are also used for the 
32-bit instruction memory. 

Figure 14.8 Block Diagram o f  MIPS Data Memory Unit. 

-- Dmemory module (implements the data 
-- memory for the MIPS computer) 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-I 164.ALL; 
USE IEEE.STD-LOGIC-ARITH.ALL; 
USE IEEE.STD-LOGIC-SIGNED.ALL; 
LIBRARY altera-rnf; 
USE altera-rnf.atlera-rnf-cornponents.ALL; 

ENTITY drnernory IS 
PORT( read-data : OUT STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 

address : IN STD-LOGIC-VECTOR( 7 DOWNTO 0 ); 
write-data : IN STD-LOGIC-VECTOR( 31 DOWNTO 0 ); 
MernRead, Mernwrite : IN STD-LOGIC; 
clock, reset : IN STD-LOGIC ); 

END drnernory; 

ARCHITECTURE behavior OF drnernory IS 
SIGNAL write-clock : STD-LOGIC; 
BEGIN 
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data-memory: altsyncram 
GENERIC MAP ( 

operation-mode => "SINGLE-PORT", 
width-a => 32, 
widthad-a => 8, 
Ipm-type => "altsyncram", 
outdata-reg-a => "UNREGISTERED", 

-- Reads in mif file for initial data memory values 
init-file => "dmemory.mif', 
intended-device-family => "Cyclone"lpm-widthad => 8 

1 
PORT MAP ( 

wren-a => memwrite, 
clock0 =r write-clock, 
address-a => address, 
data-a => write-data, 
q-a => read-data ); 

-- Load memory address & data register with write clock 
write-clock <= NOT clock; 

END behavior; 

MIPS data memory is initialized to the value specified in the file dmemory.mif 
shown in Figure 14.9. Note that the address displayed in the dmemory.mif file 
is a word address and not a byte address. Two values, 0x55555555 and 
OxAAAAAAA, at byte address 0 and 4 are used for memory data in the short 
test program. The remaining locations are all initialized to zero. 

-- MlPS Data Memory initialization File 
Depth = 256; 
Width = 32; 
Content 
Begin 

-- default value for memory 
[OO..FF] : 00000000; 

-- initial values for test program 
00 : 55555555; 
01 : AAAAAAAA; 

End: 

Figure 14.9 MIPS Data Memory Initialization File, dmemory.mif. 

14.9 Simulation of the MlPS Design 
The top-level file MIPS.VHD is compiled and used for simulation of the MIPS. 
It uses VHDL component instantiations to connect the five submodules. The 
values of major busses and important control signals are output at the top level 
for use in simulations. A reset is required to start the simulation with PC = 0. A 
clock with a period of approximately 200ns is required for the simulation. 
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Memory is initialized only at the start of the simulation. A reset does not re- 
initialize memory. 
The execution of a short test program can be seen in the MIPS simulation 
output shown in Figure 14.10. The program loads two registers from memory 
with the LW instructions, adds the registers with an ADD, and stores the sum 
with SW. Next, the program does not take a BEQ conditional branch with a 
false branch condition. Last, the program loops back to the start of the program 
at PC = 000 with another BEQ conditional branch with a true branch condition. 

Figure 14.10 Simulation of  MIPS test Dromam. 

14.10 MIPS Hardware Implementation on the UP 3 Board 
A special version of the top level of the MIPS, VIDEO-MIPS.VHD, is identical 
to MIPS.VHD except that it also contains a VGA video output display driver. 
This driver displays the hexadecimal value of major busses in the MIPS 
processor on a monitor. The video character generation technique used is 
discussed in Chapter 9. It also displays the PC on the UP33 LCD displays and 
uses the pushbuttons for the clock and reset inputs. This top-level module 
should be used instead of MIPS.VHD after the design has been debugged in 
simulations. The final design with video output is then downloaded to the 
FPGA chip on the UP 3 board. The addition of the VGA video driver slows 
down the compile and simulation step, so it is faster to not add the video output 
while running initial simulations to debug a new design. The video driver uses 
two M4K RAM memory blocks for format and character font data. 
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After simulation with MIPS.VHD, recompile using VIDEO-MIPS.VHD and 
download the design to the UP 3 board for hardware verification. Attach a VGA 
monitor to the UP 3's VGA connector. Any changes or additions made to top 
level signal names in MIPS.VHD and other modules will need to also be cut 
and pasted to VIDEO-MIPS.VHD. 

Figure 14.11 MIPS with Video Output generated by UP 3 Board. 

14.1 1 For Additional Information 
The MIPS processor design and pipelining are described in the widely-used 
Patterson and Hennessy textbook, Computer Organization and Design The 
Hardware/Software Interface, Third Edition, Morgan Kaufman Publishers, 
2005. The MIPS instructions are described in Chapter 2 and Appendix A of this 
text. The hardware design of the MIPS, used as the basis for this model, is 
described in Chapters 5 and 6 of the Patterson and Hennessy text. 
SPIM, a free MIPS R2000 assembly language assembler and PC-based 
simulator developed by James Lams, is available free from 
http://www.cs.wisc.edu/-lams/spim.I~t~~~l . The reference manual for the SPIM 
simulator contains additional explanations of all of the MIPS instructions. 
The MIPS instruction set and assembly language programming is also 
described in J. Waldron, Introduction to RISC Assembly Language 
Programming, Addison Wesley, 1999, and Kane and Heinrich, MIPS RISC 
Architecture, Prentice Hall, 1992. 
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14.1 2 Laboratory Exercises 
Use VHDL to synthesize the MIPS single clock cycle design in the file 
TOP-SPIM.VHD. After synthesis and simulation perform the following steps: 

Display and print the timing diagram from the simulation. Verify that the information on 
the timing diagram shows that the hardware is functioning correctly. Examine the test 
program in 1FETCH.VHD. Look at the program counter, the instruction bus, the register 
file and ALU outputs, and control signals on the timing diagram and carefully follow the 
execution of each instruction in the test program. Label the important values for each 
instruction on the timing diagram and attach a short write-up explaining in detail what the 
timing diagram shows relative to each instruction's execution and correct operation. 

Return to the simulator and run the simulation again. Examine the ALU output in the 
timing diagram window. Zoom in on the ALU output during execution of the add 
instruction and see what happens when it changes values. Explain exactly what is 
happening at this point. Hint: Real hardware has timing delays. 

Recompile the MIPS model using the VIDEO-MIPS.VHD file, which generates video 
output. Download the design to the UP 3 board. Attach a VGA monitor to the UP 3 
board. Single step through the program using the pushbuttons. 

Write a MIPS test program for the AND, OR, and SUB instructions and run it on the 
VHDL MIPS simulation. These are all R-format instructions just like the ADD 
instruction. Modifications to the memory initialization files, program.mif and 
dmemory.mif, (i.e. only if you use data from memory in the test program) will be 
required. Registers have been preloaded with the register number to make it easy to run 
short test programs. 

Add and test the JMP instruction. The JMP or jump instruction is not PC-relative like the 
branch instructions. The J-format JMP instruction loads the PC with the low 26 bits of 
the instruction. Modifications to the existing VHDL MIPS model will be required. For a 
suggested change, see the hardware modifications on page 317 of Computer 
Organization and Design The Hardware/Softwclre Interface. 

Add and test the BNE, branch if not equal, instruction. Modifications to the existing 
VHDL MIPS model will be required. Hint: Follow the implementation details of the 
existing BEQ, branch if equal, instruction and a change to add BNE should be obvious. 
Both BEQ and BNE must function correctly in a simulation. Be sure to test both the 
branch and no branch cases. 

6. Add and test the I-format ADDIU, add immediate unsigned, instruction. Modifications to 
the existing VHDL MIPS model will be required. 
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7. Add and test the R-format SLT, set if less than, instruction. As an example SLT $1, $2, 
$3 performs the operation, If $2<$3 Then $1 = 1 Else $1 = 0. SLT is used before BEQ or 
BNE to implement the other branch conditions such as less than or greater. 

8. Pipeline the MIPS VHDL simulation. Test your VHDL model by running a simulation of 
the example program shown in Figure 6.2 1 using the pipeline hardware shown in Figure 
6.27 in Computer Organization and Design The Hardware/Software Integace. To 
minimize changes, pipeline registers must be placed in the VHDL module that generates 
the input to the pipeline. As an example, all of the pipeline registers that store control 
signals must be placed in the control module. Synthesize and check the control module 
first, since it is simple to see if it works correctly when you add the pipeline flip-flops. 
Use the following notation which minimizes changes to create the new pipeline register 
signals, add a "D-" in front of the signal name to indicate it is the input to a D flip-flop 
used in a pipeline register. Signals that go through two D flip-flops would be "DD-" and 
three would be "DDD-". As an example, instruction would be the registered version of 
the signal, D-instruction. 

Add pipeline registers to the existing modules that generate the inputs to the pipeline 
registers shown in the text. This will prevent adding more modules and will not require 
extensive changes to the MIP.VHD module. Add signal and process statements to model 
the pipeline modules - see the PC in the ifetch.vhd module for an example of how this 
can work. A few muxes may have to be moved to different modules. 

The control module should contain all of the control pipeline registers - 1, 2, or 3 stages 
of pipeline registers for control signals. Some control signals must be reset to zero, so use 
a D flip-flop with a synchronous reset for these pipeline registers. This generates a flip- 
flop with a Clear input that will be tied to Reset. Critical pipeline registers with control 
signals such as regwrite or memwrite should be cleared at reset so that the pipeline starts 
up correctly. The MIPS instruction ADD $0, $0, $0 is all zeros and does not modify any 
values in registers or memory. It is used to initialize the WID pipeline at reset. Pipeline 
registers for instruction and data memory outputs can also be added by modifying options 
in the Altsyncram megafunction. 

The data memory clocking scheme might also change with pipelining. In Dmemory.vhd, 
the data memory address and data inputs are already pipelined inside the altsyncram 
function used for data memory (this is why it has a clock input). You will need to take 
this into account when you pipeline your design. High speed memory writes almost 
always require a clock and the design in the textbook skips over this point - since they do 
not have their design running on real hardware. As an example, in the Quartus software 
you can't even have altsyncram memory without a clock! 

Currently in the original single cycle design, data memory uses NOT CLOCK as the 
clock input so that there is time to get both the correct ALU result loaded into the 
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memories internal address and data pipeline registers (first half of clock cycle) and write 
to memory (second half of clock cycle). 

Once you pipeline the model, you will probably want to have your data memory clock 
input use CLOCK instead of NOT CLOCK for the fastest clock cycle time. With NOT 
CLOCK you would be loading the ALU Result into the pipeline register in the middle of 
the clock cycle (not the end) - so it would slow down the clock cycle time on real 
hardware. 

Since there is already a pipeline register in the data memory inputs, don't add another one 
in the address or data input paths to data memory, if you switch NOT CLOCK to 
CLOCK. You will still need to delay the ALU result two clocks (with two pipeline 
registers) for the register file write back operation. 

Sections 6.2 and 6.3 of Computer Organization and Design The Hardwarelsoftware 
Interface contain additional background information on pipelining. 

9. Once the MIPS is pipelined as in problem 8, data hazards can occur between the five 
instructions present in the pipeline. As an example consider the following program: 

Sub $2,$1,$3 
Add $4,$2,$5 

The subtract instruction stores a result in register 2 and the following add instruction uses 
register 2 as a source operand. The new value of register 2 is written into the register file 
by SUB $2,$1,$3 in the write-back stage after the old value of register 2 was read out by 
ADD $4,$2,$5 in the decode stage. This problem is fixed by adding two forwarding 
muxes to each ALU input in the execute stage. In addition to the existing values feeding 
in the two ALU inputs, the forwarding multiplexers can also select the last ALU result or 
the last value in the data memory stage. These muxes are controlled by comparing the rd, 
rt, and rs register address fields of instructions in the decode, execute, or data memory 
stages. Instruction rd fields will need to be added to the pipelines in the execute, data 
memory, and write-back stages for the forwarding compare operations. Since register 0 is 
always zero, do not forward register 0 values. 

Add forwarding control to the pipelined model developed in problem 8. Test your VHDL 
model by running a simulation of the example program shown in Figure 6.29 using the 
hardware shown in Figures 6.32 of Computer Organization and Design The 
Hardware/Software Inte$ace by Patterson and Hennessy. 

Two forwarding multiplexers must also be added to the Idecode module so that a register 
file write and read to the same register work correctly in one clock cycle. If the register 
file write address equals one of the two read addresses, the register file write data value 
should be forwarded out the appropriate read data port instead of the normal register file 
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read data value. Section 6.4 of Computer Organization and Design The 
Hardware/Software Interface contains additional background information on forwarding. 

10. Add LWISW forwarding to the pipelined model. This will allow an LW to be followed 
by an SW that uses the same register. It is possible since the MEMIWB register contains 
the load instruction register write data in time for use in the MEM stage of the store. 
Write a test program and verify correct operation in a simulation. 

1 1. When a branch is taken, several of the instructions that follow a branch have already been 
loaded into the pipeline. A process called flushing is used to prevent the execution of 
these instructions. Several of the pipeline registers are cleared so that these instructions 
do not store any values to registers or memory or cause a forwarding operation. Add 
branch flushing to the pipelined MIPS VHDL model as shown in Figures 6.38 of the 
Computer Organization and Design The Hardwarelsoftware Interface by Patterson and 
Hennessy. Note that two new forwarding multiplexers at the register file outputs (not 
shown in the Figure, currently at ALU inputs) are needed to eliminate the new Branch 
data hazards that appear when the branch comparator is moved into to the decode stage. 
Section 6.6 of Computer Organization and Design The Hardware/Software Integ5ace 
contains additional background information on branch hazards. 

12. Use the timing analyzer to determine the maximum clock rate for the pipelined MIPS 
implementation, verify correct operation at this clock rate in a simulation, and compare 
the clock rate to the original non-pipelined MIPS implementation. 

13. Redesign the pipelined MIPS VHDL model so that branch instructions have 1 delay slot 
as seen in Figure 6.40 (i.e. one instruction after the branch is executed even when the 
branch is taken). Rewrite the VHDL model of the MIPS and test the program from the 
problem 10 assuming 1 delay slot. Move instructions around and add nops if needed. 

14. Add the overflow exception hardware suggested at the end of Chapter 6 in Figure 6.42 of 
Computer Organization and Design The Hardware/Software Interface by Patterson and 
Hennessy. Add an overflow circuit that produces the exception with a test program 
containing an ADD instruction that overflows. Display the PC and the trap address in 
your simulation. For test and simulation purposes make the exception address 40 instead 
of 40000040. Section 6.8 of Computer Organization and Design The Hardware/Software 
Interface contains additional background information on exceptions. 

15. Investigate using two Altsyncram memory blocks to implement the register file in 
IDECODE. A single Altsyncram block can be configured to do a read and write in one 
clock cycle (dual port). To perform two reads, use two Altsyncrams that contain the same 
data (i.e. always write to both blocks). 

16. Add the required instructions to the model to run the MIPS bubble sort program from 
Chapter 3 of Computer Organization and Design The Hardware/Softwre Inter$ace. 
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After verifying correct operation with a simulation, download the design to the UP 3 
board and trace execution of the program using the video output. Sort this four element 
array 4, 3, 5, 1. 

17. Add programmed keyboard input and video output to the sort program from the previous 
problem using the keyboard, vga-sync, and char-rom UP3cores. Use a dedicated 
memory location to interface to YO devices. Appendix A.36-38 of Computer 
Organization and Design The Hardware/Software Inte$ace contains an explanation of 
MIPS memory-mapped terminal YO. 

18. The MIPS VHDL model was designed to be easy to understand. Investigate various 
techniques to increase the clock rate such as using two dual-port memory blocks for the 
register file, moving hardware to different pipeline stages to even out delays, or changing 
the way memory is clocked. Additional fitter effort settings may also help. Use the timing 
analysis tools to evaluate design changes. 

19. Develop a VHDL synthesis model for another RISC processor's instruction set. Possible 
choices include the Nios, Microblaze, Picoblaze, PowerPC, ARM, SUN SPARC, the 
DEC ALPHA, and the HP PARISC. CD-ROM Appendix D of Computer Organization 
and Design The HardwareISoftware Interface contains information on several RISC 
processors. Earlier hardware implementations of the commercial RISC processors 
designed before they became superscalar are more likely to fit on a UP 3. 



Introducing System-on-a- 
Programmable-Chip 

A small SOPC-based aircraft autopilot system that contains an FPGA with a Nios 
processor core, a DSP processor, and memory is seen above. The bottom sensor board 
contains a GPS receiver, an A/D converter, MEMS gyros and accelerometers for all three 
axes, an airspeed sensor, and an altitute sensor. Photograph 02004 courtesy of Henrik 
Christophersen, Georgia Institute of Technology Unmanned Aerial Research Facility. 
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15 Introducing system-on-a-programmable-chip' 
A new technology has emerged that enables designers to utilize a large FPGA 
that contains both memory and logic elements along with an intellectual 
property (IP) processor core to implement a computer and custom hardware for 
system-on-a-chip (SOC) applications. This new approach has been termed 
system-on-a-programmable-chip (SOPC). 

15.1 Processor Cores 
Processor cores can be classified as either "hard" or "soft." This designation 
refers to the flexibility/configurability of the core. Hard cores are less 
configurable; however, they tend to have higher performance characteristics 
than soft cores. 
Hard processor cores use an embedded processor core (in dedicated silicon) in 
addition to the FPGA's normal logic elements. Hard processor cores added to 
an FPGA are a hybrid approach, offering performance trade-offs that fall 
somewhere between a traditional ASIC and an FPGA; they are available from 
several manufacturers with a number of different processor flavors. For 
example, Altera offers an ARM processor core embedded in its APEX 20KE 
family of FPGAs that is marketed as an ExcaliburTM device. Xilinx's Virtex- 
I1 Pro family of FPGAs include up to four PowerPC processor cores on-chip. 
Cypress Semiconductor also offers a variation of the SOPC system. Cypress's 
Programmable-System-on-a-Chip (PSoCTM) is formed on an M8C processor 
core with configurable logic blocks designed to implement the peripheral 
interfaces, which include analog-to-digital converters, digital-to-analog 
converters, timers, counters, and UARTS.~ 
Soft cores, such as Altera's Nios I1 and Xilinx's MicroBlaze processors, use 
existing programmable logic elements from the FPGA to implement the 
processor logic. As seen in Table 15.1, soft-core processors can be very feature- 
rich and flexible, often allowing the designer to specify the memory width, the 
ALU functionality, number and types of peripherals, and memory address space 
parameters at compile time. However, such flexibility comes at a cost. Soft 
cores have slower clock rates and use more power than an equivalent hard 
processor core. 
With current pricing on large FPGAs, the addition of a soft processor core costs 
as little as thirty-five cents based on the logic elements it requires. The 
remainder of the FPGA's logic elements can be used to build application- 
specific system hardware. Traditional system-on-a-chip devices (ASICs and 
custom VLSI ICs) still offer higher performance, but they also have large 

' Portions reprinted, with permission, from T. S. Hall and J. 0. Hamblen, "System-on-a-Programmable- 
Chip Development Platforms in the Classroom," IEEE Transactions on Education, vol. 47, no. 4, pp. 502- 
507, Nov. 2004. O 2004 IEEE. 

D. Seguine, "Just add sensor - integrating analog and digital signal conditioning in a programmable 
system on chip," Proceedings of IEEE Sensors, vol. 1 ,  pp. 665468,2002. 
M. Mar, B. Sullam, and E. Blom, "An architecture for a configurable mixed-signal device," IEEE J.  Solid- 
State Circuits, vol. 38, pp. 565-568, Mar. 2003. 
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development costs and longer turnaround times.3 For projects requiring a 
hardware implementation, the FPGA-based SOPC approach is easier, faster, 
and more economical in low to medium quantity production. 

Table 15.1 Features of Commercial Soft Processor Cores for FPGAs 

I Frequency 11 Up to 200 M H Z ~  11 Up to 200 M H Z ~  1 

Register File 6 s~ecial ~ u r ~ o s e  32 s~ecial ~ u r ~ o s e  
lnstruction Word 

Instruction Cache Optional Optional 

Hardware Multiply & Divide Optional Optional 

I Hardware Floating Point 11 Third Party Optional 

Typically, additional software tools are provided along with each processor core 
to support SOPC development. A special CAD tool specific to each soft 
processor core is used to configure processor options, which can include 
register file size, hardware multiply and divide, floating point hardware, 
interrupts, and 110 hardware. This tool outputs an HDL synthesis model of the 
processor core in VHDL or Verilog. In addition to the processor, other system 
logic is added and the resulting design is synthesized using a standard FPGA 
synthesis CAD tool. The embedded application program (software) for the 
processor is typically written in C or C++ and compiled using a customized 
compiler provided with the processor core tools. 

15.2 SOPC Design Flow 
The traditional flow of commercial CAD tools typically follows a path from 
hardware description language (HDL) or schematic design entry through 
synthesis and place and route tools to the programming of the FPGA. FPGA 
manufacturers provide CAD tools such as Altera's Quartus I1 and Xilinx's ISE 
software, which step the designer through this process. As shown in Fig. 15.1, 
the addition of a processor core and the tools associated with it are a superset of 
the traditional tools. The standard synthesis, place and route, and programming 

H. Chang et al., Surviving the SOC Revolution a Guide to Platform-Based Design. Norwell, MA: Kluwer, 
1999. 
This speed is not achievable on all devices for either processor core. Some FPGAs may limit the 

maximum frequency to as low as 50 MHz. 
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functionality is still needed, and in the case of both Altera and Xilinx, the same 
CAD tools (Quartus I1 or ISE) are used to implement these blocks. 

Processor Core Configuration Tools 

Today, a number of pre-defined processor cores are available from various 
sources. GPL-licensed public processor cores can be found on the web (i.e., 
www.opencores.org and www.leox.org), while companies such as Altera (Nios 
I1 processor), Xilinx (MicroBlaze processor), and Tensilica (Xtensa processor) 
provide their processors and/or development tools for a fee. 

Additional User 
Hardware 
(optional) 

I 

Hardware : Software 
Design i Design 

Operating 
System Kernel 
and Libraries 

J (option a 1) 

Figure 15.1 The CAD tool flow for SOPC design is comprised of the traditional design process for 

FPGA-based systems with the addition of the Processor Core Configuration Tool and software design 

tools. In this figure, the program and data memory is assumed to be on-chip for simplicity. 

Processor cores provided by FPGA manufacturers are typically manually 
optimized for the specific FPGA family being used, and as such, are more 
efficiently implemented on the FPGA than a student-designed core (especially 
given the time and resource constraints of most class projects). The simple 
computer and MIPS processor cores developed earlier in this book were 
designed to be easy for students to understand and were not optimized for any 
particular FPGA. Additionally, FPGA companies provide extensive support 
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tools to ease the customization and use of their cores, including high-level 
compilers targeted at the custom cores. 
In the case of Altera and Xilinx, the Processor Core Configuration Tool block 
shown in Fig. 15.1 is realized in a user-friendly GUI interface that allows the 
designer to customize the processor for a particular project. The configurable 
parameters can include the datapath width, memory, address space, and 
peripherals (including arbitrarily defined general-purpose 110, UARTs, Ethernet 
controllers, memory controllers, etc.). Once the processor parameters are 
specified in the GUI interface, the processor core is generated in the form of an 
HDL file (in Altera) or a netlist file (in Xilinx). This file can then be included 
within a traditional HDL or schematic design using the standard CAD tools. 
Specific pin assignments and additional user logic can be included at this point 
like any other FPGA design. Next, the full hardware design (processor core and 
any additional user logic) is compiled (synthesis, place and route, etc.), and the 
FPGA can be programmed with the resulting file using the standard tools. The 
hardware design is complete, and the FPGA logic has been determined. 

High-level Compiler for Processor Core 

As shown on the right side of Fig. 15.1, the next step is to write and compile 
the software that will be executed on the soft processor core. When the 
Processor Core Configuration Tool generates the HDL or netlist files, it also 
creates a number of library files and their associated C header files that are 
customized for the specific processor core generated. A C/C++ compiler 
targeted at this processor is also provided. The designer can then program stand 
alone programs to run on the processor. Optionally, the designer can compile 
code for an operating system targeted for the processor core. Several operating 
systems for the Nios I1 are available from third-party vendors along with the 
community supported open source eCos (www.niosforun~.com). 

15.3 Initializing Memory 
Once a programldata binary file has been generated, it must be loaded into the 
processor's program and data memories. This loading can be done several ways 
depending on the memory configuration of the processor at hand. 

On-chip Memory 

If the application program is small and can fit into the memory blocks available 
on the FPGA, then the program can be initialized in the memory when the 
hardware configuration is programmed. This initialization is done through the 
standard FPGA tools, such as Altera's Quartus I1 software or Xilinx's ISE 
software. However, on-chip memory is typically very limited, and this solution 
is not usually an option. 

Bootloader 

In a prototyping environment, the application program will most likely be 
modified a number of times before the final program is complete. In this case, 
the ability to download the application code from a PC to the memory on an 
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FPGA board must be provided. This functionality, typically called a 
"bootloader" or "boot monitor," can be implemented in either software or 
hardware. 
A software bootloader is comprised of code that is loaded into an on-chip 
memory and starts running on power up. This program is small enough (1-2 
KB) to fit in most on-chip memories, and its primary function is to receive a 
program binary file over the serial port (or other interface), load it into external 
memory, and then start the new code executing. In this way, a new program can 
be stored into external memory (SRAM, SDRAM, Flash memory, etc.) by 
downloading it over the serial or JTAG port (or other interface) on the fly 
without having to reload the FPGA's hardware configuration. Xilinx provides a 
boot monitor for their MicroBlaze soft-core processor that includes the ability 
to download a program binary over the serial port (or other interface), store it 
in memory, and start the code executing. They also provide a more enhanced 
version called XMDstub that adds debugging capabilities. Altera's legacy Nios 
processors included a bootloader called GERMS. The Nios I1 processor still 
includes limited support for the GERMS monitor; however, a hardware 
bootloader is the preferred solution in Nios 11. 
A hardware bootloader provides functionality very similar to a software 
bootloader; however, it is implemented in dedicated logic within the processor 
core. Typically, the processor will be paused or stalled upon power up and the 
hardware bootloader will have direct access to memory or the memory registers 
in the processor's datapath. The bootloader hardware can start and stop the 
processor and can control the downloading of a program over the JTAG or 
serial interface to the desired memory locations. Altera's hardware bootloader 
is a part of the JTAG debug module, which resides within the Nios I1 processor. 
This logic uses the JTAG interface with the PC to receive the execution code, 
and it then writes the code to the appropriate memory. Finally, the bootloader 
hardware overwrites the processor's program counter with the start address of 
the code just downloaded and releases the pause bit to allow the processor to 
begin executing the downloaded code. 

External Non-volatile Storage 

The application program code can be stored on an external EEPROM, Flash 
memory, or other form of non-volatile memory. The application program can 
either be pre-programmed in the external memory module (for a production 
run) or a bootloader program can be used to store the application program in 
non-volatile storage. For low-speed applications, the code can be executed 
directly from the external memory. However, if high-speed functionality is 
required, then a designer could use three memories as shown in Fig. 15.2. In 
this scheme, the on-chip memory is initialized with a bootloader, which handles 
the movement of the application program between the memories. (On-chip 
memory is replaced with a hardware bootloader on some systems including the 
Nios I1 processor.) 
The fast, volatile memory (i.e., SDRAM) is used to store the application 
program during execution. Finally, the slower, non-volatile memory (i.e., Flash 
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or EEPROM) is used for the permanent storage of the application program. The 
bootloader program can be modified to initialize the system, retrieve a program 
from non-volatile memory, store it in the faster, volatile memory, and then start 
it executing from the faster memory. This scheme provides the advantages of 
permanent storage, fast execution, and the ability to modify the application 
program when needed. Of course, it comes at the expense of having additional 
memory. 

T o  P C  
(via Ser ia l  Interface) 

v 
Volatile M emory 

Program Execution) 

processor  - 
C o r e  

Non-volatile M e m o r y  
(for Application 4---+ 

Program Storage)  

I 

Figure 15.2 This arrangement o f  on-chip and external memories provides flexibility and 

performance to an SOPC system. 

t I 

15.4 SOPC Design versus Traditional Design Modalities 
The traditional design modalities are ASIC and fixed-processor design. SOPC 
design has advantages and disadvantages to both of these alternatives as 
highlighted in Table 15.2. The strengths of SOPC design are a reconfigurable, 
flexible nature and the short development cycle. However, the trade offs 
include lower maximum performance, higher unit costs in production, and 
relatively high power consumption. 
The benefit of having a flexible hardware infrastructure can not be 
overestimated. In many new designs, features and specifications are modified 
throughout the design cycle. For example, marketing may detect a shift in 
demand requiring additional features (e.g., demand drops for cell phones 
without cameras), a protocol or specification is updated (e.g., USB 2.0 is 
introduced), or the customer requests an additional feature. In traditional design 
modalities (including ASIC and fixed-processor designs), these changes can 
dramatically effect the ASIC design, processor selection, and/or printed circuit 
board design. Since the hardware architecture is often settled upon early in the 
design cycle, making changes to the hardware design later in the cycle will 
typically result in delaying a product's release and increasing its cost. 
Flexible infrastructure can also be beneficial in extending the life (and thus 
reducing the cost) of a product's hardware. With flexible, reconfigurable logic, 
often a single printed circuit board can be designed that can be used in multiple 
product lines and in multiple generations/versions of a single product. Using 

1 F P G A  
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reconfigurable logic as the heart of a design, allows it to be reprogrammed to 
implement a wide range of systems and designs. Extending the life of a board 
design even one generation can result in significant savings and can largely 
offset the increased per-unit expense of reconfigurable devices. 

Table 15.2 Comparing SOPC, ASIC, and Fixed-Processor Design Modalities 

HIW Flexibility 11 0 I1 0 II 0 I 

Feature 

-vrrl 
Equipment Costs 

performance 11 lwkl 
Production Cost 

Power Efficiency 

SOPC 

Legend: 0 - Good; 0 - Moderate; 0 - Poor 

G i G q  

The SOPC approach is ideal for student projects. SOPC boards can be used and 
reused to support an extremely wide range of student projects at a very low 
cost. ASIC development times are too long and mask setup fees are too high to 
be considered for general student projects. A fixed-processor option will often 
require additional hardware and perhaps even a new printed circuit board 
(PCB) design for each application. Given the complexity of today's multilayer 
surface mount PCB designs, it is highly unlikely that students would have 
sufficient time and funds to develop a new printed circuit board for a design 
project. 

ASIC 

15.5 An Example SOPC Design 
The SOPC-based autopilot system seen in the photograph on the first page of 
this chapter and the sensor board that mounts below it (described earlier in 
Section 13.5) makes an interesting case study in SOPC design. The autopilot 
system continuously reads in sensor data that indicates attitude, altitude, speed, 
and location. It then uses this data to solve the control system motion equations 
for the aircraft and outputs updated signals to control the aircraft. 
The flexibility of SOPC design allows the use of FPGA's logic elements to 
interface to a wide range of sensors without the need for additional I10 support 
chips that would be needed if a more traditional fixed-processor option was 

0 

Fixed-Processor 

In very large quantities. 

0 
pp 

0 
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used. This results in an extremely small and low weight PCB design. An ASIC 
could be used instead of the FPGA, but the small production quantities needed 
for this system do not justify the greatly increased development time and cost 
needed for an ASIC. 
Different types of aircraft also require markedly different I10 standards for the 
control outputs. Some aircraft controls use serial interfaces, while others use 
PWM or even parallel 110. Here again, the flexibility of using the FPGA's logic 
elements to implement the I10 interface is of great benefit. By varying the logic 
in the interface peripherals, the same programmable processor core and PCB 
board can be used to support a wide range of aircraft without any hardware 
changes to the PCB. 
The autopilot system requires intensive floating-point calculations to solve the 
complex control system equations for the aircraft. While it would be possible to 
perform floating-point calculations using a larger FPGA, the decision was made 
to use a fixed-processor DSP chip for the intensive floating-point calculations. 
By offloading the algorithmic computations to a fixed processor, the Nios I1 
processor is primarily acting as an intelligent I/O processor for the system. This 
partitioning of the system between a fixed-processor DSP and soft-core 
processor results in higher computational performance than using just an FPGA 
(with floating-point hardware logic) and higher interface flexibility than using 
just a fixed processor in the system. However, new generations of FPGAs with 
DSP features such as hardware multipliers and floating-point IP cores are 
currently changing this set of design tradeoffs. 

15.6 Hardwarelsoftware Design Alternatives 
The SOPC-based approach offers new design space alternatives. It is possible 
to explore design options that use software, dedicated hardware, or a mixture of 
both. Hardware solutions offer faster computations, but offer less flexibility 
and may require a larger FPGA. Implementation of solutions using software is 
easier to design for more complicated algorithms. 
It is also possible to consider a combination of both approaches. Some 
processor cores allow the user to add custom instructions. If an application 
program requires the same calculation repeatedly in loops, adding a custom 
instruction using extra hardware to accelerate the inner loop code can greatly 
speed up the application. 

15.7 For additional information 
This chapter has provided a brief overview of SOPC systems and designs. More 
information about SOPC systems can be found from manufacturers such as 
Altera, Xilinx, Cypress Semiconductor, Stretch Incorporated, and Tensilica. 
SOPC systems are an active area of research. Publications of interest include 
the following: 
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T. S. Hall and J. 0. Hamblen, "System-on-a-Programmable-Chip 
Development Platforms in the Classroom," IEEE Transactions on 
Education, vol. 47, no. 4, pp. 502-507, Nov. 2004. 

C. Snyder, "FPGA processor cores get serious," in Cahners Microprocessor 
Report, http://www.MPRonline.com/, Sept. 2000. 

D. Seguine, "Just add sensor - integrating analog and digital signal 
conditioning in a programmable system on chip," Proceedings of IEEE 
Sensors, vol. 1, pp. 665-668,2002. 

M. Mar, B. Sullam, and E. Blom, "An architecture for a configurable 
mixed-signal device," IEEE J. Solid-state Circuits, vol. 38, pp. 565-568, 
Mar. 2003. 

H. Chang and et. al., Surviving the SOC Revolution A Guide to Platform- 
Based Design. Kluwer Academic Publishers, 1999. 

J. Fisher, P. Faraboschi, and C. Young, Embedded Computing : A VLIW 
Approach to Architecture, Compilers and Tools, Morgan Kaufmann, 2004. 

A. Jerraya, H. Tenhunen, and W. Wolf, "Multiprocessor Systems-on-Chips," 
IEEE Computer, vol. 38, no. 7, pp. 36-41, July 2005. 

S. Liebson and J. Kim, "Configurable Processors: A New Era in Chip 
Design," IEEE Computer, vol. 38, no. 7, pp.51-59, July 2005. 

15.8 Laboratory Exercises 

Compare the instruction formats and the instruction set of the Nios I1 processor to the 
MIPS processor from Chapter 14. Information on the Nios I1 instruction set architecture 
is available at Altera's website (www.altera.com) in the Nios I1 Processor Reference 
Handbook. 

A system needs a processor to run a control program, but the application also needs to 
compute FFTs at a somewhat high data rate. FFTs require a large number of multiply 
and add operations on an array in nested loops. What SOPC hardware/software design 
tradeoffs would you need to consider? Justify your answer. 

List several types of products that could likely take advantage of the SOPC design 
approach. Explain your reasoning. 

Compare the memory read access time of the UP 3's Flash and S U M  memory chips. 
Information can be found in each chip's datasheet. If the processor did not have an 
instruction cache, how much faster could a program read instructions from S U M ?  

You are asked to specify the memory types and sizes for an SOPC design that will 
execute a program with a 60 KB length or footprint. During execution, the program 
requires 16 KB of data memory for the stack and heap. If the SOPC hardware mandates a 
single memory (for program and data memory), select the type and size of memory. 
Perform an online search to find a manufacturer and model number for the memory you 



Introducing System-on-a-Programmable-Chip 29 1 

selected. You may have to modify your initial selection based on availability and cost of 
various memories. Justify your selection considering cost, specification, performance, 
and availability. Don't forget that you need non-volatile memory to boot the system. 

Given the SOPC system outlined in Problem 5, select the type and size of memory 
needed for this system when program and data memory are separate. Justify your 
selection considering cost, specification, performance, and availability. Compare the 
single memory option from Problem 5 with the dual-memory option from this problem. 
Which memory configuration is preferable? Justify your answer. 

There are a number of different non-volatile memory technologies available to SOPC 
designers. For a system with a 256 KB code footprint, compare the cost, 
reprogrammability, configuration time, access time (reading only), and longevity for 
PROM, EEPROM, and Flash memories. 



Tutorial 111: Nios 11 
Processor Software 
Development 

The Nios I1 IDE tool compiles C/C++ code for the Nios I1 processor and provides an 
integrated software development environment for Nios I1 systems. 
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16 Tutorial Ill: Nios II Processor Software Development 
Designing systems with embeddeded processors requires both hardware and sofhare 
design elements. A collection of CAD tools developed by Altera enable you to design 
both the hardware and sofhare for a fully functional, customizable, soft-core processor 
called Nios II. This tutorial steps you through the software development for a Nios 11 
processor executing on the UP 3 board A Nios 11 processor reference design targeted 
for the UP 3 board is used here. To design a custom Nios IIprocessor refer to Tutorial 
IV (in the following chapter), which introduces the hardware design tools for the Nios 

Upon completion of this tutorial, you will be able to: 

Navigate Altera's Nios I1 Integrated Development Environment (IDE), 

Write a C-language software program that executes on the Nios I1 
reference design, 

Download and execute a software program on the Nios I1 processor, and 

Test the peripherals and memory components of the Nios I1 reference 
design on the UP 3 board. 

This tutorial will step you through writing and running two programs for the 
Nios I1 processor. First, a simple "Hello World" type of program will be 
written, compiled, downloaded to the UP 3 board, and run. Next, a test program 
that uses interrupts, pushbuttons, dipswitches, LEDs, the LCD display, SRAM, 
Flash memory, and SDRAM will be written that can be used to test the major 
peripherals on the UP 3 board. 

16.1 Install the UP 3 board files 
Locate the booksoft\chapl7 directory on the CD-ROM that came with the 
book. In this directory, there are two subdirectories called up3-tristate-lcd and 
up3-tristate-sram. Copy both of these subdirectories to the 
quartu~~install_dir\sopc~builder\components\ directory on your local hard 
drive. 

16.2 Starting a Nios II Software Project 
The Nios I1 Integrated Development Environment (IDE) is a standalone 
program that works in conjunction with Quartus 11. To design software in the 
IDE, Quartus I1 does not have to be installed on your system; however, you will 
need a valid Quartus I1 project with a Nios I1 processor in it to use the IDE. A 
Nios I1 reference design for the UP 3 board is included on the CD-ROM that 
came with this book. This hardware design will be used for the remainder of 
this tutorial. Copy the design files from booksoft\chapl6 on the CD-ROM to a 
working directory on your hard drive. (If you are using a UP 3 board with the 
1C12 FPGA on it, then copy the files from the booksoft\chapl6\1C12 folder 
on the CD-ROM.) The software design files will be stored in a subdirectory of 
this project directory. 
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Open the Nios I1 IDE software. For the default installation, the software icon 
can be found under Start C3 All Programs C3 Altera C3 Nios I1 Development 
Kit * Nios I1 IDE. 
You should be prompted to Select a Workspace. If  the dialog box in Figure 
16.1 does not appear, then select File C3 Switch Workspace .... The workspace 
is a cache for information about all projects associated with a given Nios I1 
processor design. Enter the full pathname of the Quartus I1 project directory 
you created above (the directory to which CD-ROM\booksoft\chap16 was 
copied) followed by the subdirectory \software as shown in Figure 16.1. Click 
OK to select the default location and continue. 

Select a workspace I 

Figure 16.1 Setting the Nios I1 IDE workspace to the Nios I1 reference design software directory. 

To create a new project, select File * New C3 Project .... The New Project 
wizard will begin. On the first dialog box, select C/C++ Application and click 
Next to continue. 
In the next dialog box, fill in the requested information as shown in Figure 
16.2. The name of the project is rpds-software, the SOPC Builder System 
should point to the nios32.ptf file in your hardware project directory, and the 
Project Template should be set to Blank Project. If the workspace was 
correctly set to your project directory as detailed above, then the default 
location will be correct and Use Default Location should be checked. 
However, if the workspace is set to some other directory, then unselect Use 
Default Location and enter c:\yourqroject~directory\software\rpds~software 
in the Location field. Click Next to continue. 
In the final dialog box, select the option Create a new system library named: 
rpds-software-syslib. Click Finish to create and open the project. When the 
New Project dialog box disappears, click on the Workbench icon on the 
Welcome page in the main IDE window if it does not come up automatically. 
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Figure 16.2 Create a blank project for the Nios I1 reference design. 

16.3The Nios II IDE Software 
Take a few minutes to orient yourself to the Nios I1 IDE software. The middle 
of the window will display the contents of the source files when you open 
them. The Outline pane on the right-hand side will provide links to each of the 
functions that are declared in the open C source file. Clicking on a link will 
jump the cursor to the start of that function. On the left-hand side, a list of 
projects for the current workspace is shown in the C/C++ Projects pane. 
Three projects should appear in the C/C++ Projects pane by default (after 
having created your new blank project): Nios I1 Device Drivers, 
rpds-software, and rpds-software-syslib. 

The Nios I1 Device Drivers library contains C and/or assembly- 
language source files and C header files for each of the components that 
can be added to a Nios I1 processor. This library contains all component 
drivers and not just the drivers for peripherals added to the Nios I1 
reference design. Just because a device appears in this list, does not 
mean that the Nios I1 processor you are writing software for contains 
that peripheral. 
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The rpds-software library is the location for your software. Since a 
blank project has been created, no source or header files exist in this 
library yet. 

The rpds-software-syslib library is the container for the top-level 
system header file (system.h) that contains the names and base addresses 
of peripherals in the Nios I1 reference design system for which you are 
writing software. It also contains a list of device drivers (from the Nios 
I1 Device Drivers library) for just the peripherals that are in your Nios I1 
processor. This library will be empty until the system library is 
generated in the next section. 

16.4 Generating the Nios II System Library 
Each Nios I1 system is unique. It has different peripherals, different memory- 
mapped addresses, different interrupt settings, etc. To accommodate this 
flexibility, the Nios I1 IDE creates a system library from your Nios I1 hardware 
settings file (e.g., nios32.ptf). The system library defines the names of the 
peripherals in a given system and maps them to their memory addresses, and it 
defines several system-critical definitions that are used to make several 
standard C libraries compatible with your specific Nios I1 system. 
Before the system library can be generated, several settings must be modified. 
Right click on rpds-software-syslib in the C/C++ Projects pane and select 
Properties from the drop-down menu. In the dialog box, select System 
Library from the list on the left to view the configuration options for the 
system library. 
Under System Library Contents, select the UART device for stdout, stderr, 
and stdin. The Nios I1 system allows the stdout, stderr, and stdin data streams 
to be redirected to a UART interface using a serial cable connected to your PC. 
This means that the output ofprintfand other standard output functions will be 
displayed in a console window on your PC since there is no monitor attached to 
the FPGA directly at the moment. Likewise, the use of scanf and other standard 
input functions will wait for data to be transmitted from the PC to the UART. 
Any text that you type in the Nios I1 IDE's console window will be sent via the 
serial cable and UART to the Nios I1 processor. 
Notice that the various segments of memory can be individually assigned to 
different memory devices (SRAM, SDRAM, Flash, etc.). For this tutorial, leave 
all of the memory segments set to SRAM. It is also useful to note that this 
dialog box contains an option to use a Small C library for your project. 
Selecting this option, removes many of the less common functions of the ANSI 
C standard library such as printf's floating-point number support, scanf, file 
seek (fseek), and more. Using a small standard library can result in a much 
smaller amount of memory needed for storing your software. A complete list of 
standard library functions affected by selecting the Small C Library option can 
be found in the Nios 11 Software Developer b Handbook available on Altera's 
website. For this tutorial, leave the Small C Library option unchecked as 
shown in Figure 16.3 and click OK to continue. 
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Figure 16.3 These are the system library settings that should be used for this tutorial. 

To generate the system library for this Nios I1 system, right click on 
rpds-software-syslib in the C/C++ Projects pane and select Build Project 
from the drop-down menu. Once building has completed, view the files created 
by the build by double clicking on the rpds-software-syslib item in the 
C/C++ Projects pane. Under the rpds-software-syslib folder, several folders 
appear. The Includes folder contains links to the device drivers for peripherals 
in the Nios I1 reference design processor that you are using. The Debug + 
System Description folder contains the system.h header file that includes 
definitions for all of the peripherals in this Nios I1 processor. 

16.5 Software Design with Nios II Peripherals 
Accessing and communicating with Nios I1 peripherals can be accomplished in 
three general methods: direct register access, hardware abstraction layer (HAL) 
interface, and standard ANSI C library functions. Depending on the complexity 
of the operation and the specific device being used, a programmer will often 
use each of the three methods at one point or another. In this tutorial, direct 
register access will be used to communicate with the LEDs, dipswitches, and 
LCD display. The HAL interface will be used to communicate with Flash and 
install an interrupt handler for the pushbuttons, and standard C library 
conventions will be used to access the SRAM and Timer memory devices. The 
SRAM device driver distributed by the UP 3 board manufacturer does not 
currently support standard file 110 (fread, fwrite, etc.); however, support for 
these functions may be added in the future. 



Tutorial Ill: Nios II Processor Software Development 299 

Below, each type of peripheral access is discussed. As an example, the C code 
necessary to provide a one second delay using each method is shown in Figures 

#include 'altera-avalon-timer-regs.hl' 

int main( void ) { 

IOWR-ALTERA-AVALON-TIMER-PERIODL( TIMERO-BASE, 
(48000000 & OxFFFF) ) ; 

IOWR-ALTERA-AVALON-TIMER-PERIODH( TIMERO-BASE, 
( (48OOOOOO>>l6) & OxFFFF) ) ; 

I IOWR-ALTERA-AVALON-TIMER-STATUS ( TIMERO-BASE , 0 ) ; 

I IOWR-ALTERA-AVALON-TIMER_CONTROL ( TIMERO-BASE , 0x4 ) ; 

while( (IORD-ALTERA-AVALON-TIMERRSTATUS( TIMERO-BASE ) & 

ALTERA-AVALON-TIMER-STATUS-TO-MSK) == 0 ) { )  

Figure 16.4 This is the C code necessary for providing a one second delay by directly accessing the 

system timer's registers. The timer peripheral in this system is called timer0. 

Direct Register Access 

Each peripheral's registers can be directly accessed through read and write 
macros that are defined in each component's device driver header file. This 
type of communication is the lowest level and while it provides the most 
flexibility in interfacing with peripherals, it can also be the most tedious. As 
illustrated in Figure 16.4, interfacing with the timer device can be quite 
cumbersome, even to provide a relatively straight-forward function such as a 
one second delay. If you read the actual count to determine elapsed time, you 
also need to keep in mind how your code will function when the timer count 
wraps around and starts over. 



300 Rapid Prototyping of Digital Systems Chapter 16 

int main( void ) { 
int first-val, second-val; 

second-val = 0; 
first-val = alt-ntickso; 

while( (second-val - first-val) < 1000000 ) { 
second-val = alt-nticks ( )  ; 

Figure 16.5 This is the C code necessary for providing a one second delay by using the HAL 

interface functions. 

HAL Interface 

A layer of software called a hardware abstraction layer (HAL) has been created 
that resides between the user code and the peripheral hardware registers. The 
HAL interface contains a number of very useful functions that allow the user to 
communicate with peripherals at a higher functional level. For example, the 
HAL interface provides functions altflash-open-dev, alt-readflash, 

alt-writeflash, and alt- flash-close-dev for communication with Flash 
memory. By providing these functions, Flash memory can be accessed by 
opening the device and reading from it and writing to it without having to 
create user functions that provide the read and write functionality from low- 
level peripheral register accesses. 
For the timer device, a function called alt-nticks provides convenient access to 
the timer. As illustrated in Figure 16.5, the HAL functions provide a more 
straight-forward method of creating a one second delay. 

int main( void ) { 
usleep ( 1000000 ) ; 

1 

Figure 16.6 This is the C code necessary for providing a one second delay by using the standard 

ANSI C library functions. 
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Standard Library Functions 

Access to most of Nios 11's peripherals has been incorporated into the standard 
ANSI C library functions. Using standard ANSI C libraries such as stdlib, stdio, 
string, time, malloc, etc. you can manipulate strings, access memory and 
memory-like devices through standard file I10 functions, use the timer to add a 
delay using usleep or wait functions, and much more. This is the highest level 
of abstraction provided by the Nios I1 IDE. Many of these functions use the 
peripheral-specific HAL functions to provide a single common interface to 
various types of peripherals. For example, fopen, fread, fwrite, and fclose 
functions from the stdio library can be used for memory accesses on some 
SDRAM, Flash, or SRAM memory devices. The system library functions will 
use the appropriate HAL function calls for each access depending on the 
particular memory device being used. To create a one second delay using the 
timer, a single call to the standard library function usleep can be made as 
shown in ~ i i u r e  16.6 

Figure 16.7 This is your first C program's main header file. 

16.6 Starting Software Design - main() 
Create a C header file by selecting the rpds-software item in the C/C++ 
Projects pane. Choose File c3 New c3 Header File. When the dialog box 
appears, enter rpds-s0ftware.h for the Header File and click Finish to 
continue. 
Start your program's main header file by adding the #include and definition 
statements shown in Figure 16.7. 
The C program that you will now write will print "Hello World" in the Nios I1 
IDE's console window (via the UART and serial cable), and it will blink the 
LEDs on the UP 3 board. 
Create your program's main C source file by selecting the rpds-software item 
in the C/C++ Projects pane. Choose File + New + File. When the dialog box 
appears, enter rpds-s0ftware.c for the File name and click Finish to continue. 
Start your program by including the rpds-s0ftware.h header file and typing the 
code shown in Figure 16.8. 
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i n t  main( void ) { 
unsigned char led-val = 1; 

/* P r i n t  message t o  t h e  N ios  11 I D E  c o n s o l e  v i a  UART * /  
printf( "Hello World\nu ) ;  

while(1) { 
/* Output a 4 - b i t  v a l u e  t o  t h e  LEDs */ 
IOWR-ALTERA-AVALON-PIO-DATA( LEDS-BASE, (led-val & OxF) ) ; 

if ( led-val == 8 ) 

led-val = 1; 
else 

led-val = led-val << 1; 

/* Wait  f o r  0 . 5  seconds  */ 
usleep( 500000 ) ; 

1 

return (0) ; 

1 

Figure 16.8 This is your first C program's main source file. 

16.7 Downloading the Nios II Hardware and Software Projects 
To execute your software on a Nios I1 processor, you must configure the FPGA 
with the Nios I1 hardware reference design and then you can download the 
compiled program code to the processor's program memory. 
Connect the ByteBlaster cable and then connect the UP 3's serial cable from the 
UP 3's serial port to the PC's COMl: (default) or other COM ports. (If 
necessary, you can change the default COM port setting in the Nios I1 IDE. 
Select Run and use the Target connection tab's Host COM port setting) 

BEFORE DOWNLOADING THE HARDWARE DESIGN AND SOFTWARE, ENSURE THATYOU HAVE A 
DY'Y~DLASWR OR USB BLASTER CABLE AND AN RS-232 SEWAL CABLE CONNECTING YOUR 

Select Tools + Quartus I1 Programmer ... to configure the FPGA. When the 
Quartus I1 Programmer appears, click on Add File... and select the 
rpdsl6-time-1imited.sof file from your project directory. Click Open to add 
the selected file to the download chain. Check the ProgramIConfigure box on 
the row with your configuration file on it, and click Start to begin hardware 
configuration. 
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When configuration is complete, a dialog box similar to the one in Figure 16.9 
will appear. If you are using the fully licensed version of the software, this 
dialog box will not appear. The weblstudent versions of Quartus I1 and Nios I1 
create time-limited program files, but they will work fine as long as your PC is 
attached and this dialog box remains open. Return to the Nios I1 IDE window. 

Figure 16.9 Keep this dialog box open as long as the FPGA is being used. 

From the Nios I1 IDE window, right click the rpds-software item in the 
C/C++ Projects pane and select Build Project from the drop-down menu. This 
will begin a full compilation of all libraries in your project. 
To download the compiled code to the Nios I1 processor executing on the 
FPGA, right click the rpds-software item in the C/C++ Projects pane and 
select Run As * Nios I1 Hardware. The first time you select this option a run 
settings dialog box appears. Click the Run button to close this box. 

16.8 Executing the Software 
Once the program code has been downloaded to the Nios I1 processor's 
program memory (SRAM in this configuration), your code automatically 
begins executing. If you are using one of the older ByteBlaster 11, ByteBlaster 
MV, or ByteBlaster JTAG cables, then in rare cases you may experience 
intermittent problems downloading your program to the Nios I1 processor. As a 
part of the normal download process, the Nios I1 IDE downloads your program 
to memory and then reads the program memory back to verify that the code in 
program memory is correct. If there are any problems with downloading your 
program, then the processor is stalled and a message that alerts you to this fact 
appears in the Console pane in the bottom right-hand side of the Nios I1 IDE 
window. If this happens, right click the rpds-software item in the C/C++ 
Projects pane and select Run As * Nios I1 Hardware again. If problems 
persist, consider upgrading to Altera's USB Blaster JTAG cable. 
Once your program begins executing, the Nios I1 IDE's Console pane becomes 
a standard inputloutput terminal connected to your processor via the RS-232 
UART device and cable. The text message "Hello World" should appear in the 
Console pane as soon as your program begins. Also, the four LEDs on the UP 3 
board should turn on and off one at a time. 

16.9 Starting Software Design for a Peripheral Test Program 
Now that you have written your first program and have it successfully running 
on the UP 3 board, it is time to write a longer program that will test each of the 
major peripheral components on the UP 3 board. 
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A second project can be added to the current workspace, and since the same 
Nios I1 processor is being used for all projects in this workspace, the same 
system library can be used for them all. This option will be selected in the 
dialog box shown in Figure 16.10. 
To create a new project, select File c3 New c3 Project .... The New Project 
wizard will begin. On the first dialog box, select C/C++ Application and click 
Next to continue. 
In the next dialog box, fill in the requested information. The name of the 
project is rpds_up3_test, the SOPC Builder System should point to the 
nios32.ptf file in your hardware project directory, and the Project Template 
should be set to Blank Project. If the workspace was correctly set to your 
project directory as detailed above, then the default location will be correct and 
Use Default Location should be checked. However, if the workspace is set to 
some other directory, then unselect Use Default Location and enter 
c:\yourgroject_directory\software\rpds~up3test in the Location field. Click 
Next to continue. 
In the final dialog box, select the option Select or create a system library and 
choose the rpds-software-syslib project from the list of Available System 
Library Projects for: nios32 as shown in Figure 16.10. Click Finish to create 
and open the project. 

Figure 16.10 Since this project uses the same Nios I1 processor as your first program, the same 

system library can be used. Select the rpds-software-syslib from the list of available libraries. 
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Create a C header file by selecting the rpds-up3-test item in the C/C++ 
Projects pane. Choose File '3 New '3 Header File. When the dialog box 
appears, enter rpds-up3-test.h for the Header File and click Finish to 
continue. 
Start your program's main header file by adding the #include and definition 
statements shown in Figure 16.11. 

Figure 16.11 This is the beginning o f  your C program's main header file. 

The C program that you will now write uses the four pushbuttons on the UP 3 
board to select which device to test. When a pushbutton is pressed, it will be 
decoded (in an interrupt handler) and a variable will be set. The program's main 
thread will continuously read the function variable (at 50 ms intervals) and 
initiate the appropriate peripheral test. The function variable will be cleared at 
the end of each test routine so that buttons pressed while a peripheral is being 
tested will be ignored. The mapping of pushbutton to device shown in Table 
16.1 will be used. 

Table 16.1 Pushbutton to Device Mapping for Sample C Program 

Pushbuttons 
(4-3-2-1) 

0001 

001 0 

0100 

1000 

Peripheral 
to Test 

LCD Display 

SRAM Memory 

Flash Memory - 
SDRAM Memory 
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i n t  main( void { 
volatile int function = 0; 
int ret-val; 

while(1) { 
switch( function ) { 

case 0x1: /* Test the LCD display */ 
ret-val = test-lcd0; 
break; 

case 0x2 : /* Test the SRAM */ 
ret-val = test-sram0; 
break; 

case 0x4: /* Test the Flash memory */ 
ret-val = test-flash0; 
break; 

case 0x8: /* Test the SDRAM */ 
ret-val = test-sdram0; 
break; 

default : /* Do nothing */ 
break; 

1 
function = 0; 
usleep ( 50000 ) ; /* Wait 50 ms */ 

1 
return (0) ; 

1 

Figure 16.12 This is the beginning of  your C program's main source file. 

Create your program's main C source file by selecting the rpds-up3-test item 
in the C/C++ Projects pane. Choose File + New + File. When the dialog box 
appears, enter rpds-up3-test.c for the File name and click Finish to continue. 
Start your program by including the rpds-up3-test.h header file and typing the 
code shown in Figure 16.12. 

16.1 0 Handling Interrupts 
Inputs can be evaluated using two methods-polling and interrupts. To poll an 
input, your code can periodically check the value of the input device and 
determine if the value has changed. If a change has occurred, then the 
appropriate action should be taken to evaluate the input. An interrupt-driven 
input, however, works differently. When the value of the input changes, an 
interrupt signal is activated and the processor is alerted. The processor 
immediately performs a jump into a section of code known as the interrupt 
handler. This code determines which interrupt has occurred (most processors 
support multiple interrupt signals) and calls the appropriate interrupt service 
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routine (a function that has been written to handle the specific interrupt signal). 
When the interrupt service routine has finished processing the input, the 
processor returns to the code it was executing before the interrupt occurred. 
The program you are writing will use a combination of polling and interrupt 
driven inputs. The dipswitches and function variable will be polled every 50 
ms. The value of the dipswitches will be displayed on the LEDs, and the value 
of the function variable will determine which, if any, peripheral should be 
tested. 
The pushbuttons on the UP 3 board are represented by a 4-bit parallel I10 (PIO) 
peripheral called buttons in the Nios I1 reference design that you are using for 
this tutorial. The buttons P I 0  has been configured to generate an interrupt 
whenever any pushbutton is pressed and released. 
To support interrupts you first must create a function that will execute when an 
interrupt occurs. This function is called an interrupt service routine (ISR). ISRs 
should generally be very short and execute quickly. Add the function 
buttons-isr as shown in Figure 16.13. The ISR function here reads the value of 
the PIO'S edge capture register and stores it in the function variable. Next, it 
resets the edge capture register and IRQ mask register to allow the next 
interrupt to be captured and read properly. 

static void buttons-isr( void* context, alt-u32 id ) { 
volatile int *function = (volatile int*) context; 

*function = IORD-ALTERA-AVALON-PIO-EDGEECAP( BUTTONS-BASE ) ; 

IOWR-ALTERA-AVALON-PIO-EDGEECAP( BUTTONS-BASE, 0 ) ;  

IOWR-ALTERA-AVALON-PIO-IRQQMASK( BUTTONS-BASE, OxF ) ; 

Figure 16.13 This is the interru~t  service routine for the ~ushbuttons. 

In your main function, you need to register your interrupt service routine and 
set the pushbuttons' IRQ mask register to allow interrupts to be captured. Add 
the two following lines before the while loop in your main function: 

alt-irq-register (BUTTONS-IRQ, (void * )  &function, buttons-isr) ; 

IOWR-ALTERA-AVALON-PIO-IRQ-MASK( BUTTONS-BASE, OxF ) ;  

16.1 1 Accessing Parallel I10 Peripherals 
Macros are included in the altera-avalon-pio-regs.h file that read and write 
from the control and data registers in P I 0  components. You have already used 
these macros in the pushbutton's interrupt service routine to read and write the 
edge capture register and IRQ mask register. Now, you need to use these 
macros to read the values from the dipswitches and write them to the LEDs. 
Add the following two lines immediately above the usleep(50000) line in your 
main function: 
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switches = IORD-ALTERA-AVALON-PIO-DATA( SWITCHES-BASE ) ; 
IOWR-&TERA-AVALON-PIO-DATA( LEDS-BASE, switches ) ; 

You will also need to add a declaration for the integer variable switches to your 
main function. 

void lcd-init( void ) { 

/* S e t  F u n c t i o n  Code Four T imes  - - 8-bi t ,  2 l i ne ,  5x7 mode */ 
IOWR ( LCD-BASE , LCD-WR-COMMAND-REG , Ox3 8 ) ; 

usleep (4100) ; /* W a i t  4 .1  ms */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, 0x38 ) ; 

usleep(100); / * W a i t l O O u s * /  
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, Ox3 8 ) ; 

usleep (5000) ; /* W a i t  5 .0  ms */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x38 ) ;  

usleep (100) ; 

/* S e t  D i s p l a y  t o  OFF */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, 0x08 ) ; 

usleep (100) ; 

/* S e t  D i s p l a y  t o  ON */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, OxOC ) ; 

usleep (100) ; 

/ *  S e t  E n t r y  Mode - -  C u r s o r  i n c r e m e n t ,  d i s p l a y  d o e s n ' t  s h i f t  */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x06 ) ;  

usleep(100) ; 

/* S e t  the c u r s o r  t o  the home p o s i t i o n  */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x02 ) ;  

usleep(2000) ; 

/* C l e a r  the d i s p l a y  */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x01 ) ;  

usleep (2000) ; 

1 

Figure 16.14 This is the LCD initialization function. 

16.12 Communicating with the LCD Display 
The LCD display on the UP 3 board can be treated similarly to a memory 
device. However, there are some additional initialization commands that must 
be sent to the LCD display that are not typical memory transactions. LCD 
initialization commands vary depending on the LCD controller chip that is on a 
particular LCD display. The manufacturer's datasheet will detail the proper 



Tutorial Ill: Nios II Processor Software Development 309 

initialization procedure their LCD displays. The initialization routine for the 
LCD display that ships with the UP 3 board is shown in Figure 16.14. Add this 
routine to your C source file. Also, add a call to this function in your main 
function preceding the line of code that calls the test-lcd function. 
The code for test-lcd is shown in Figure 16.15. You will notice that this code 
expects several constants to be defined. Add definitions for the following 
constants in your rpds-up3-test.h header file: 

LCD-WR-COMMAND-REG = 0 

LCD-WR-DATA-REG = 2 

The main function in your C source file should now be complete and look 
similar to the code in Figure 16.16. Note that a few printfstatements have been 
added to provide the user with the program's status while executing. 

alt-u32 test-lcd( void ) { 
int i; 
char message [l71 = "Counting.. . 
char done [l21 = "Done! II . 

/* Write a simple message on the f i r s t  l ine .  */ 
for( i = 0; i c 16; i++ ) { 
IOWR( LCD-BASE, LCD-WR-DATA-REG, message 
usleep(100) ; 

1 
/* Count along the bottom row */ 
/* Set Address */ 
IOWR( LCD - BASE, LCD-WR-COMMAND-REG, OxCO ) ; 

usleep (1000) ; 
/* Display Count */ 
for( i = 0; i c 10; i++ ) { 
IOWR ( LCD-BASE, LCD-WR-DATA-REG, (char) (i+Ox30) ) ; 

usleep(500000) ; /* Wait 0 .5  sec. */ 
1 

/* Write "Done! " message on f i r s t  l ine .  */ 
/* Set Address */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, Ox8 0 ) ; 

usleep (1000) ; 
/* Write data */ 
for( i = 0; i c 11; i++) { 
IOWR ( LCD-BASE , LCD-WR-DATA-REG , done [ i] ) ; 

usleep (100) ; 

1 
return(0) ; 

1 

Figure 16.15 This is the code to test the LCD dis~lav.  
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int main ( void ) { 
volatile int function = 0; 
alt-u32 switches, ret-val; 

printf (llWelcome to the Nios I1 Test Program\nI1 ) ; 

alt-irxregister(BUTT0NS-IRQ, (void * )  &function, buttons-isr); 
IOWR-ALTERA-AVALON-PIO-IRQ~MASK( BUTTONS-BASE, OxF ) ; 

while(1) { 
switch( function ) { 
case 0x1: /* T e s t  the LCD d i s p l a y  */ 
printf ("Testing LCD Display\n1I ) ; 
lcd-init ( ) ; 
ret-val = test-lcd 0 ; 
printf ( " .  . .Completed.\n' ) ; 

break; 
case 0x2: /* T e s t  the SRAM */ 
printf ( "Testing SRAM\nI1 ; 

ret-val = test-sram0 ; 
printf( "...Completed with %d ~rrors.\n", ret-val ) ;  

break ; 
case 0x4: /* T e s t  the F l a s h  memory */ 
printf("Testing Flash memory\nw ) ;  

ret-val = test-£lash(); 
print£( "...Completed with %d ~rrors.\n", ret-val ) ;  

break; 
case 0x8: /* T e s t  t h e  SDRAM */ 
printf ("Testing SDRAM\nrl ) ; 
ret-val = test-sdram0 ; 
printf(tl...Completed with %d Errors.\nn, ret-val ) ;  

break; 
default : /* Do n o t h i n g  */ 
break; 

1 

function = 0; 

switches = IORD-ALTERA-AVALON-PIO-DATA( SWITCHES-BASE ) ;  

IOWR-ALTERA-AVALON-PIO-DATA( LEDS-BASE, switches ) ; 

usleep ( 50000 ) ; 

1 

return (0) ; 

Fieure 16.16 This is the comvleted main function. 
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16.13 Testing SRAM 
To test the S U M ,  you will write a large number of values to memory and then 
read back from the same memory locations to verify that the contents of 
memory are what you expect. Since SRAM is currently being used for program 
and data memory, accessing SRAM is straight-forward. Any array that is 
created in a function will be stored in data memory (e.g., in SRAM). The code 
for test-sram is shown in Figure 16.17. You will notice that this code expects 
the constant value SRAM-MAX-WORDS to be defined. Add a definition for 
this constant to your rpds-up3-test.h header file and set it equal to 8000. 
This test routine assumes that there is not a data cache memory present in the 
Nios I1 system. If data cache is present, then declaring an array in a function 
like test-sram would not ensure SRAM writes, because the data cache memory 
could be used as a temporary buffer. Since this function is very short and the 
array's scope is internal to the function, it is highly likely that the array data 
would never be written to SRAM. To avoid these potential issues, the reference 
hardware design used in this tutorial does not include data cache. 

alt-1132 test-sram( void ) { 
alt-u32 i, val; 
alt-u32 errors = 0; 
alt u32 buffer [SRAM-MAX-WORDS] ; - 

/* Write data to SRAM */ 
for( i = 0; i c SRAM-MAX-WORDS; i++ ) { 
buffer[i] = i + 1000; 

1 
/* Check output from SRAM */ 
for ( i = 0; i c SRAM-MAX-WORDS; i++ ) { 

if ( buffer[il ! =  (i+1000) ) 
errors++ ; 

I 
return ( errors ) ; 

I 

Figure 16.17 This is the code to test the SRAM memory device. 
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16.14Testing Flash Memory 
Flash memory is organized into blocks of data and is accessed in a different 
manner than SRAM and SDRAM. The Nios I1 HAL interface includes memory 
access functions for Flash devices that conform to the Common Flash Memory 
Interface (CFI) standard. The functions alt-flash-open-dev, alt-read-flash, 
alt-write-flash, and alt-flash-close-dev provide an interface that is very 
similar to file 110. These subroutines and more lower-level functions are all 
declared in the syslalt-flash.h header file. 
Flash memory write operations happen at the block level meaning that to write 
a block or any portion of a block (down to a single byte of data) requires the 
entire block of data to be erased and overwritten. When writing to a partial 
block of data, the user is responsible for reading the portion of the block that is 
not to be overwritten, storing it, and passing it with the new data as a complete 
block to be written. Also, keep in mind that Flash memory typically has a life 
expectancy of 100,000 write cycles. Because of the overhead involved in 
writing partial blocks of data and the finite number of write cycles for a given 
Flash memory device, it is best to buffer data until a full block can be written to 
Flash memory. 
The code for test-flash is shown in Figure 16.18. The data to be written to 
flash is buffered in the in-buff array located in data memory. Once is it full, the 
entire buffer is sent to the alt-flash-write command which partitions it into 
blocks of data and writes the full blocks to Flash memory. Depending on the 
total length of the in-buff array the final block written may be a partial block, 
but at least it will only get written once. You will also notice that this code 
expects the constant value FLASH-MAX-WORDS to be defined. Add a 
definition for this constant to your rpds-up3-test.h header file and set it equal 
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alt-u32 test-flash( void ) { 
alt-u32 i, errors = 0; 
alt-u32 in-buf f [FLASH-MAX-WORDS] , out-buf f [FLASH-MAX-WORDS] ; 
alt-flash-fd* flash-handle; 

flash-handle = alt-flash-open-dev( FLASH-NAME ) ;  

/* Create data buffer to write to Flash memory */ 
for( i = 0; i c FLASH-MAX-WORDS; i++ ) { 
in-buff [i] = i + 1000000; 

1 

/* Write data to Flash memory */ 
alt-write-flash( flash-handle, 0, in-buff, FLASH_MAX_WORDS*4 ) ;  

/* Read data from Flash memory */ 
alt-read-flash( flash-handle, 0, out-buff, FLASH-MAX-WORDS*4 1; 

/* Check output from Flash memory */ 
for ( i = 0 ; i c FLASH-MAX-WORDS; i++ ) { 
if ( out-buf f [i] ! =  (i+1000000) ) 
errors++ ; 

I 

alt-flash-close-dev( flash-handle ) ;  

return ( errors ) ; 

1 

Fieure 16.18 This is the code to test the Flash memorv device. 

16.15 Testing SDRAM 
To test the SDRAM, write a large number of values to memory and then read 
the same memory locations and verify that the contents of memory are the 
expected values. To access the SDRAM on the UP 3 board, a pointer to the 
SDRAM memory space can be used. Once a pointer has been initialized to an 
address in the SDRAM memory space, that pointer can be dereferenced like an 
array to store values in successive SDRAM memory locations. This method of 
accessing memory would use the data cache if it were present (which it is not in 
the reference example). If you are using a Nios I1 processor with data cache and 
you want to access SDRAM directly (bypassing the data cache), then use you 
need to use the IORD and IOWR macros as shown in the previous sections. 
The code for test-sdram is shown in Figure 16.19. You will notice that this 
code expects the constant value SDRAM-MAX-WORDS to be defined. Add a 
definition for this constant to your rpds-up3-test.h header file and set it equal 
to 1000000. 
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alt-u32 test-sdram( void ) { 
alt-u32 i; 
alt-u32 errors = 0; 
alt-u32 *buffer = (alt-u32 *)SDRAM_BASE; 

/* Write data to SDRAM */ 
for( i = 0; i < SDRAM-MAX-WORDS; i++ ) { 
buffer[i] = (i + 1000000) ; 

/* Check output from SDRAM */ 
for ( i = 0 ; i < SDRAM-MAX-WORDS ; i++ ) { 
if ( buffer[il != (i+1000000) ) 
errors++; 

Figure 16.19 This is the code to test the SDRAM memory device. 

Your C source and header files should now be complete. Figure 16.20 shows 
the final rpds-up3-test.h header file, and Figure 16.21 shows the final 
rpds-up3-test.c file. 

/* LCD constants */ 
#define LCD-WR-COMMAND-REG 0 
#define LCD-WR-DATA-REG 2 

/* Memory constants */ 
#define SRAM-MAX-WORDS 
#define FLASH-MAX-WORDS 
#define SDRAM-MAX-WORDS 

Figure 16.20 This is the final copy of the rpds-up3-test.h header file. 
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static void buttons-isr( void* context, alt-1132 id ) { 
volatile int *function = (volatile int*) context; 

*function = IORD-ALTERA-AVALON-PIO-EDGEECAP( BUTTONS-BASE ) ;  

I ~ W R ~ A L T E R A ~ A V A L ~ N ~ P I O ~ E D G E ~ C A P (  BUTTONS-BASE, 0 ) ;  

IOWR-ALTERA-AVALON-PIO-IRQQMASK( BUTTONS-BASE, OxF ) ; 

1 

void lcd-init( void ) { 
/* Set Function Code Four Times - -  8-bi t, 2 line, 5x7 mode */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x38 ) ;  

usleep(4100) ; /* Wait 4.1 ms */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, Ox3 8 ) ; 

usleep (100) ; /* Wait 100 us */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x38 ) ; 

usleep(5000) ; /* Wait 5.0 ms */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x38 ) ;  

usleep (100 
/* Set Display to OFF */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, 0x08 ) ; 

usleep(100) ; 
/* Set Display to ON */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, OxOC ) ;  

usleep (100) ; 
/* Set Entry Mode - -  Cursor increment, display doesn ' t shift */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, 0x06 ) ; 

usleep(100) ; 
/* Set the cursor to the home position */ 
IOWR ( LCD-BASE, LCD-WR-COMMAND-REG, 0x02 ) ; 

usleep(2000) ; 
/* Clear the display */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x01 ) ;  

usleep(2000) ; 

1 

alt-u32 test-lcd( void ) { 
int i; 
char message[17] = "Counting.. . 
char done [l21 = "Done ! II . 

/* Write a simple message on the first line. */ 
for( i = 0; i < 16; i++ ) { 
IOWR ( LCD-BASE, LCD-WR-DATA-REG, message [i] ) ; 
usleep(100) ; 

Figure 16.21 This is the final copy of the rpds-up3-test.c source file. 
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/* Count along the bottom row */ 
/* Set Address */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, OxCO ) ; 

usleep (1000) ; 
/* Display Count */ 
for( i = 0; i c 10; i++ ) { 
IOWR ( LCD-BASE, LCD-WR-DATA-REG, (char) (i+Ox3 0 ) ) . 
usleep(500000); /* Wait 0.5 sec. */ 

I 

/* Write "Done! " message on first line. */ 
/* Set Address */ 
IOWR( LCD-BASE, LCD-WR-COMMAND-REG, 0x80 ) ; 

usleep(1000) ; 
/* Write data */ 
for( i = 0; i c 11; i++ ) { 
IOWR ( LCD-BASE , LCD-WR-DATA-REG , done [ i I ) ; 

usleep (100) ; 

I 
return (0) ; 

1 

alt-u32 test-sram( void ) { 
alt-u32 i, val; 
alt-u32 errors = 0; 
alt u32 buffer[SRAM-MAX-WORDS] ; - 

/* Write data to SRAM */ 
for( i = 0; i < SRAM-MAX-WORDS; i++ ) { 
buffer[il = i + 1000; 

1 
/* Check output from SRAM */ 
for( i = 0; i < SRAM-MAX-WORDS; i++ ) { 
if ( buffer[il ! =  (i+1000) ) 
errors++ ; 

I 
return ( errors ) ; 

1 

alt-u32 test-flash( void ) { 
alt-u32 i, errors = 0; 
alt-u32 ~~-~u~~[FLASH-MAX-WORDSI, out-buff [FLASH-MAX-WORDS] ; 
alt-flash-fd* flash-handle; 

flash-handle = alt-flash-open-dev( FLASH-NAME ) ; 

Figure 16.21 continued 
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/* Create data buffer to write to Flash memory */ 
for( i = 0; i c FLASH-MAX-WORDS; i++ ) { 
in - buff [i] = i + 1000000; 

I 

/* Write data to Flash memory */ 
alt-write-flash( flash-handle, 0, in-buff, FLASH-MAX-WORDS*4 ) ; 

/* Read data from Flash memory */ 
alt-read-flash( flash-handle, 0, out-buff, FLASH_MAX_WORDS*4 ) ;  

/* Check output from Flash memory */ 
for( i = 0; i < FLASH-MAX-WORDS; i++ ) { 
if ( out-buff [i] != (i+1000000) ) 
errors++ ; 

I 

alt-flash-close-dev( flash-handle ) 

return ( errors ) ; 

I 

alt-u32 test-sdram( void ) { 
alt-u32 i; 
alt-u32 errors = 0; 
alt-u32 *buffer = (alt-u32 *)SDRAM-BASE; 

/* Write data to SDRAM */ 
for ( i = 0; i < SDRAM-MAX-WORDS; i++ ) { 
buffer[il = i + 1000000; 

I 
/* Check output from SDRAM */ 
for( i = 0; i < SDRAM-MAX-WORDS; i++ ) { 
if ( buffer[il != (i+1000000) ) 
errors++; 

I 
return ( errors ) ; 

I 

int main( void ) { 
volatile int function = 0; 
alt-u32 switches, ret-val; 

printf ( I1Welcome to the Nios I1 Test Program\nu ) ;  

alt-ir~register(BUTT0NS-IRQ, (void * )  &function, buttons-isr); 
IOWR-ALTERA-AVALON-PIO-IRQ-MASK( BUTTONS-BASE, OxF ) ; 

Figure 16.21 continued 
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while(1) { 
switch( function ) { 
case 0x1: /* Test the LCD display */ 
printf ("Testing LCD Display\nft ) ; 
lcd-init ( )  ; 

ret-val = test-lcd0; 
printf ( "  . . .Completed. \nut ) ; 
break; 

case 0x2: /* Test the SRAM */ 
printf ("Testing SRAM\nBt ) ; 
ret-val = test-sram ( )  ; 

print£( "...Completed with %d Errors.\nn, ret-val ) ;  

break; 
case 0x4: /* Test the Flash memory */ 
printf("Testing Flash Memory\nN ) ;  

ret-val = test-flash(); 
print£(" . . .  Completed with %d Errors.\nW, ret-val ) ;  

break; 
case 0x8: /* Test the SDRAM */ 
printf ("Testing SDW\~" ) ; 

ret-val = test-sdram0; 
print£(" ... Completed with %d Errors.\n", ret-val ) ;  

break; 
default : /* Do nothing */ 
break; 

1 
function = 0; 
switches = IORD-ALTERA-AVALON-PIO-DATA( SWITCHES-BASE ) ; 

IOWR-ALTERA-AVALON-PIO-DATA( LEDS-BASE, switches ) ; 

usleep ( 50000 ) ; 

1 
return (0) ; 

Figure 16.21 continued 

16.16 Downloading the Nios II Hardware and Software Projects 
To execute your software on a Nios I1 processor, you must configure the FPGA 
with the Nios I1 hardware reference design and then you can download the 
compiled program code to the processor's program memory. 

Select Tools + Quartus I1 Programmer ... to configure the FPGA. When the 
Quartus I1 Programmer appears, click on Add File ..., and select the 
rpdsl6-time-1imited.sof file from your project directory. Click Open to add 
the selected file to the download chain. Check the ProgramIConfigure box on 
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the row with your configuration file on it and click Start to begin hardware 
configuration. 

When configuration is complete, a dialog box similar to the one in Figure 16.22 
will appear. The student version of Quartus I1 and Nios I1 creates time-limited 
program files. These programs will work fine as long as your PC is attached 
and this dialog box remains open. Therefore, leave the window open and return 
to the Nios I1 IDE window. 

LipenCole Plus Slatcis 

Click Cancel to stop usng OpenGne Plus IP 

Tune remaining 

Figure 16.22 Keep this dialog box open as long as the FPGA is being used. 

From the Nios I1 IDE window, right click the rpds-up3-test item in the 
C/C++ Projects pane and select Build Project from the drop-down menu. This 
will begin a full compilation of all libraries in your project. 

To download the compiled code to the Nios I1 processor executing on the 
FPGA, right click the rpds-up3-test item in the C/C++ Projects pane and 
select Run As * Nios I1 Hardware. 

16.1 7 Executing the Software 
Once the program code has been downloaded to the Nios I1 processor's 
program memory (SRAM in this configuration), your code should 
automatically start executing. If you are using one of the older ByteBlaster 11, 
ByteBlaster MV, or ByteBlaster JTAG cables, then in rare cases you may 
experience intermittent problems downloading your program to the Nios I1 
processor. As a part of the normal program download, the Nios I1 IDE verifies 
that the code in program memory is the same as downloaded program before 
program execution begins. If there are any problems with downloading your 
program then the processor is stalled and a message that alerts you to this fact 
appears in the Console pane in the bottom right-hand side of the Nios I1 IDE 
window. If this happens, right click the rpds-up3-test item in the C/C++ 
Projects pane and select Run As * Nios I1 Hardware again. If problems 
persist, consider upgrading to Altera's USB Blaster JTAG cable. 

Once your program begins executing, the Nios I1 IDE's Console pane becomes 
a standard inputloutput terminal connected to your processor via the RS-232 
UART device and cable. Press each of the four pushbuttons in turn. A different 
device will be tested when each button is pressed and released. Look at the text 
in the Console pane to verify that the proper test is being executed. 
Change the dipswitches' value and verify that the appropriate LEDs light. 



320 Rapid Prototyping of Digital Systems Chapter 16 

IMPORTANT NOTE: Peripheral ICs on the UP 3 board can come from 
several manufacturers. While they are generically equivalent, they may exhibit 
slightly different characteristics and timing. UP 3 boards currently contain one 
of two brands of Flash memory chips, Toshiba and Excelsemi. UP 3 boards that 
contain a Toshiba Flash memory chip currently do not program and will not 
pass the example Flash memory test. The Flash memory chip, U8, is located 
directly below the large square FPGA chip in the middle of the UP 3 board, and 
the manufacturer's name is printed on the chip. The Toshiba chip requires a 
new Flash driver that is being developed at the time of this printing. If your UP 
3 project requires Flash memory and you verify that you have the Toshiba 
chips, check for the Toshiba Flash driver, software updates, and specific 
information about different chips on UP 3 boards at the book's website: 

http://w~v.ecc.~atech.edu/users/hamblen/book/bookte.htm 

16.1 8 For additional information 
This chapter has provided a brief overview of Nios I1 Software development. 
Additional information can be found at Altera's website (www.altera.com) in 
the Nios 11 Software Developer b Handbook and at the Nios Community forum 
(www.niosforum.com). 

16.1 9 Laboratory Exercises 
Write a C program to blink the four LEDs in a reversing shift pattern on the UP 3 board. 
After the last LED in each direction turns on, reverse the direction of the shift. Run and 
demonstrate the program on the UP 3 board. Recall that C supports shift operations ("<<" 
and ">>") and you will need a time delay in your code to see the LEDs blink. 

Write a C program that displays a count of the seconds that the program has been running 
in the LCD display on the UP 3 board. Demonstrate the program on the UP 3 board. 

Expand the C program in the previous problem to display the elapsed time in hours, 
minutes, and seconds on the LCD. Have one pushbutton reset the time to zero and 
another pushbutton start and stop the timer just like a stopwatch. 

Memory test programs cannot test all possible patterns. Research the various algorithms 
widely used in more thorough memory test programs and write your own more advanced 
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memory test program for SRAM. Most memory test programs use several algorithms to 
check for different types of faults. Execute the test code from SDRAM. 

5. Write a retro version of the 1970's classic kill the bit computer game for the UP 3. The 
goal in the kill the bit game is to turn off all of the four LEDs using the four pushbuttons. 
The game starts with an initial non-zero pattern displayed in the LEDs. The pattern 
constantly does a circular shift moving through the LEDs in a loop with a time delay to 
slow down the shifts. If you hit one of the four pushbuttons exactly when the the same 
number LED is turned on, it will turn off one LED in the pattern. If you hit a pushbutton 
and it's LED is off another LED turns on. 

Here is how the program works. Each time just before the pattern shifts, the pattern is bit- 
wise exclusive or'ed with one input sample from the pushbuttons to generate a new 
pattern. When both the pushbutton is pushed and its corresponding bit in the pattern are 
High, one less bit will be High in the new pattern after the exclusive or (i.e., 1 xor 1 is 0). 
After the shift, one less LED will be turned on since there is one less "1" in the new 
pattern. If your timing is off and the LED is not turned on when you hit the pushbutton, a 
new high bit will be generated in the pattern (i.e., 1 xor 0 is 1). When this happens, the 
new "1" bit in the pattern lights another LED. Note that you need a "1" when a 
pushbutton is pressed and a "1" to turn on an LED for the xor function to work. 

Display the elapsed time in the LCD display and stop the time display when a player 
wins the game (turns out all LEDs). Adjust the shift time delay for reasonable game play. 
Blink all of the LEDs when a player wins. If you want a more challenging game, use a 
pattern and shift register larger than four bits and just display four bits at a time in the 
LEDs. 

6 .  Port an interesting C application program to the UP 3. Execute the application from 
SDRAM. 
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SOPC Builder is a GUI-based hardware design tool used to configure the Nios I1 
processor core options and to design bus and 110 interfaces for the processor. 
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17 Tutorial IV: Nios II Processor Hardware Design 
Designing systems with embeddeded processors requires both hardware and sojbvare 
design elements. A collection of CAD tools developed by Altera enable you to design 
both the hardware and sof iare  for a fully functional, customizable, sop-core processor 
called Nios II. This tutorial steps you through the hardware implementation of a Nios 11 
processor for the UP 3 board, and Tutorial 111 (in the preceding chapter) introduces the 
software design tools for the Nios Ilprocessor. 

Upon completion of this tutorial, you will be able to: 

Navigate Altera's SOPC Builder (Nios I1 processor design wizard), 

Generate a custom Nios I1 processor core, 

Create a PLL that supplies a clock signal for the on-board SDRAM, and 

Specify the top-level pin assignments and project settings necessary for 
implementing the Nios processor on the UP 3 board. 

17.1 Install the UP 3 board files 
Locate the booksoft\chapl7 directory on the CD-ROM that came with the 
book. In this directory, there are two subdirectories called up3-tristate-lcd and 
up3-tristate-sram. Copy both of these subdirectories to the 
quartu~~install_dir\sopc~builder\components\ directory on your local hard 
drive. 

Figure 17.1 Import the default pin and project assignments for the UP 3 board. 

17.2 Creating a New Project 
Create a new Quartus I1 project as illustrated in Tutorial I (see Section 1 of 
Chapter 1). Use the project name rpdsl7 and create a top-level Block 
DiagramISchematic file named rpdsl7.bdf. 
Import the pin assignments and project settings file from the CD-ROM by 
choosing Assignments C3 Import Assignments .... Enter the full path for the 
booksoft\chapl7\up3~lc6.qsf file located on the CD-ROM that came with this 
book as shown in Figure 17.1. (If you are using a UP 3 board with the larger 
1C12 FPGA on it, then you must use the booksoft\chapl7\up3~lcl2.qsf file 
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located on the CD-ROM.) Click on the Advanced button and verify that the 
settings match the dialog box in Figure 17.2. If different settings are used, then 
all of the pin and project assignments may not be made correctly, and 
downloading your project to the UP 3 board could damage it. When the settings 
are correct, click OK to exit the dialog box. Click OK in the Import 
Assignments dialog box to import the settings. 

Fieure 17.2 It is imvortant that the Advanced Imvort Ovtions be set as shown here. 

17.3 Starting SOPC Builder 
A Nios I1 processor is created using the SOPC Builder wizard. Within this 
wizard, you can specify the settings for the Nios I1 processor, add peripherals, 
and select the bus connections, 110 memory mapping, and IRQ assignments for 
the processor. To start the SOPC Builder, choose Tools E3 SOPC Builder... . 

Figure 17.3 Specifying the name of the Nios I1 processor for your system. 
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In the Create New System dialog box, enter the name nios32, and set the 
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC 
Builder with a blank project titled nios32. 
The system settings in the top part of SOPC Builder window must be set for the 
board and device that you are using. For the UP 3 board, the on-board clock 
circuit is 48.0 MHz; therefore, enter 48.0 in the clk field. Select Cyclone as 
Device Family and Unspecified Board in the Board field. When these settings 
have been entered, your SOPC Builder window should look similar to the 
screen shot in Figure 17.4. 

- .- _- 
I b ,a  9DPc hi* : oPor32 

Figure 17.4 Beginning a Nios I1 design in the SOPC Builder. 

Take a minute to familiarize yourself with the layout of the SOPC Builder 
window. Along the left-hand side, there is an expandable list of components 
organized by category that can be added to a Nios I1 system. Click on the "+" 
symbol next to the items in this list to expand the list of components for each 
category. Under the Avalon Components category, there are a number of 
development boards listed. Expanding these items will reveal components that 
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are specific to these boards. If you installed the design files as discussed in 
Section 17.1, then the UP 3 development board category will appear under 
Avalon Components. 

17.4 Adding a Nios II Processor 
The first component that you will add to your Nios I1 processor design is the 
processor core itself. In the list of components on the left-hand side of the 
SOPC Builder, expand the Avalon Components category and select the Nios I1 
Processor - Altera Corporation component. Click the Add... button at the 
bottom of the component list. 
When a component is added to your system, a dialog box will appear that 
allows you to select options and set specific parameters for this particular 
implementation. For the Nios I1 processor, the dialog box shown in Figure 17.5 
will appear. This first selection will determine the general parameters of the 
Nios I1 processor. Notice that there are three general configurations allowed 
that vary in size, performance, and functionality. Select the middle 
configuration, Nios 111s as shown in Figure 17.5. In the Hardware Multiply 
field, select Logic Elements, and click Next to continue. 
The next dialog box allows you set the size of the instruction cache in the Nios 
I1 processor. Keep the default value (4 KB), and click Next to continue. 

Figure 17.5 Nios I1 s u ~ ~ o r t s  three different general configurations. Select Nios 111s for this tutorial 

Nios I1 processors can be compiled with support for one of four different 
debugging systems. The differences between them are shown in Figure 17.6, 
along with the FPGA resources required to implement each type of debugging. 
There is an order of magnitude difference in the number of logic elements 
required to implement Level 4 debugging versus Level 1 debugging. This 
difference is significant when compared to the overall size of the Nios I1 
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processor. The Level 4 debugging system is two to three times larger then the 
Nios 111s processor itself. Since the cost of FPGAs are largely based on their 
size, the debugging logic will typically be removed before a design enters 
production to minimize the number of logic elements, and thus the size of the 
FPGA, required for the production quantities. 
The full features of Level 3 and Level 4 debugging are only available when a 
license from First Silicon Solutions, a third-party company, is purchased. The 
availability of this license within your company or school along with the 
complexity of your end system and the size of the FPGA available will be the 
primary factors in determining which debugging system should be selected- for 
a given system. For this tutorial, select Level 1 (the default), and click Next to 
continue. 
The final option in the Nios I1 processor configuration is the adding of custom 
instructions. Nios I1 processors allow the addition of up to 256 custom 
instructions into the processor's data path. These can be used to further 
customize your processor for a specific task. For this tutorial, no custom 
instructions will be added. Click Finish to complete the Nios I1 configuration 
for this system. 

Figure 17.6 Nios I1 supports four levels of debugging capabilities. Select Level 1 for this tutorial. 

When the SOPC Builder window reappears, the Nios I1 processor will appear as 
an added component in the main part of the window with the default module 
name cpu-0. Also, a number of error and warning messages will appear in the 
console at the bottom of the SOPC Builder window. These messages result 
from there not being any defined memory in the system yet. When memory is 
added in the next few sections, the messages will disappear. Right-click on the 
cpu-0 name and select Rename from the drop-down menu. Rename the 
module to cpu. 
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17.5 Adding UART Peripherals 
Two UART peripherals are needed for this system: a JTAG UART and an RS- 
232 serial UART. The ByteBlaster or USB Blaster JTAG cable that is used to 
configure the FPGA can also be used as a UART device after the FPGA is 
configured. (The JTAG cable is also used as the communication channel 
between the PC and the debugging logic selected for the Nios I1 processor.) The 
Nios I1 software integrated development environment (IDE) uses the JTAG 
UART as the default device for downloading your software instructions to the 
Nios I1 processor and was used for that purpose in the previous tutorial on 
software design. 
Add the JTAG UART device by expanding Avalon Components * 
Communication. Select JTAG UART and click Add .... When the JTAG 
UART Configuration dialog box appears, click Finish to accept the default 
values for all fields and add the component. In the SOPC Builder, rename the 
JTAG UART module to jtag. 

Figure 17.7 These are the settings for the RS-232 UART device to be added to the Nios I1 svstem. 

If you are using a USB Blaster JTAG cable, then you can use the JTAG UART 
for all serial communication between the PC and the Nios I1 processor and can 
skip to the next section. However, if you are using the older ByteBlaster 11, 
ByteBlaster MV, or ByteBlaster cables, then you need to add a second RS-232 
UART for run-time serial communication. These older JTAG cables do not 
transmit the run-time serial data robustly. Some setups have been known to 
work; however, it is more reliable to use a standard serial UART and 9-pin 
serial cable for stdin, stdout, and stderr data. 
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Add the RS-232 UART peripheral by expanding Avalon Components + 
Communication. Select UART (RS-232 serial port) and click Add... . When 
the UART configuration dialog box appears, set the options as shown in Figure 
17.7. Click Finish to add the component. In the SOPC Builder, rename the 
UART module to uart. 

17.6 Adding an Interval Timer Peripheral 
Most processor designs require at least one timer. This timer is used to delay 
the processor, coordinate transactions, timestamp events, generate time slice 
interrupts for an operating system scheduler, a watchdog timer, and more. The 
Nios I1 timer peripheral is flexible; it has several options and three predefined 
configurations. Add a full-featured interval timer to your Nios I1 processor by 
expanding Avalon Components * Other. Select Interval Timer and click 
Add. ... When the timer configuration dialog box appears, set the options as 
shown in Figure 17.8. Click Finish to add the component. In the SOPC Builder, 
rename the timer module to timer0. The "0" is appended to the timer name here 
to provide a consistent naming convention for your timers if additional timers 
are added at a later time. It is not unusual for a processor to have two or three 
timers - often of different configurations for specific uses. 

1 Avalon Timer - timer-0 [X I 

Figure 17.8 These are the settings for the interval timer device to be added to the Nios I1 system. 
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(a) (b) 

Figure 17.9 These are the settings for the vushbutton P I 0  device to be added to the Nios I1 svstem. 

17.7 Adding Parallel I10 Components 
Many processors require a certain amount of general-purpose I10 pins. These 
pins can be attached directly to pushbuttons, switches, LEDs, and similar I10 
devices. They can also be attached to relatively simple or low bandwidth 
interfaces that don't have a large amount of overhead associated with data 
transmission. Examples of these types of interfaces include PSl2, I ~ C ,  SPI, and 
parallel data interfaces. 
In addition, general-purpose I10 pins can be used to pass low-bandwidth data 
between a custom VHDL or Verilog block and the Nios I1 processor. A faster 
method of transferring data to a VHDL block is to create a custom peripheral 
that can attach to the Avalon bus. Implementing a VHDL module that is 
compliant with the Avalon bus specification is more involved and requires more 
logic elements than using general-purpose I10 pins, but it does provide a faster 
more efficient interface. 
General-purpose I10 pins are added to the Nios I1 processor with the PI0  
(Parallel 110) component. The P I 0  component has a number of options for 
customizing general-purpose I10 interfaces. PI0  interfaces can be specified as 
input only, output only, or bidirectional. If bidirectional is selected here, then 
the direction of each pin must be set in the direction register at run-time via 
software. Input PI0 interfaces can also have various interrupt and edge capture 
capabilities including the capturing of either or both edges and edge or level- 
sensitive interrupt triggers. 
For this tutorial, you will add three PI0  components: one for the pushbuttons, 
one for the dipswitches, and one for the LEDs. First, add a P I 0  component for 



332 Rapid Prototyping of Digital Systems Chapter 17 

the pushbuttons to your processor design by expanding Avalon Components + 
Other. Select P I 0  (Parallel 110) and click Add.. .. When the PI0  
configuration dialog box appears, set the Width of the interface to 4 bits (there 
are four pushbuttons) and set the Direction to Input ports only as shown in 
Figure 17.9(a). Click Next to continue. On the next configuration page, set the 
options as shown in Figure 17.9(b). Click Finish to add the component. In the 
SOPC Builder, rename the PI0 module to buttons. 
Using the same procedure as above, add a second PI0 component for the 
dipswitches. The settings for the PI0 devices are shown in Figure 17.10. 
Rename this PI0 module to switches. 

( 4  (b) 

Figure 17.10 These are the settings for the dipswitch P I 0  device to be added to the Nios I1 system. 

Finally, add a third PI0 component for the LEDs. On the first configuration 
page, set 4 bits for the Width, and set the Direction to Output ports only. 
When the PI0 is an output-only device, the interrupt and edge-capture options 
are not applicable. Rename this PI0 module to leds. 

17.8 Adding a SDRAM Memory Controller 
There are three types of memory on the UP 3 board: SDRAM, SRAM, and 
Flash. Each type of memory requires is own unique memory controller and 
must be added individually. Add the SDRAM memory controller by expanding 
Avalon Components + Memory. Select SDRAM Controller and click 
Add. ... The SDRAM controller must be configured for the timing requirements 
of the specific SDRAM brand and model being used. The configuration and 
timing values requested here are typically available in the datasheet for 
SDRAM ICs. For the SDRAM modules on the UP 3 board, set the options in 



Tutorial IV: Nios I I  Processor Hardware Design 333 

the configuration dialog boxes to the values shown in Figure 17.11. Click 
Finish to add the component. In the SOPC Builder, rename the SDRAM 
controller module to sdram. 

Figure 17.11 These are the SDRAM controller settings for use with the SDRAM on the UP 3 board. 

17.9 Adding an External Bus 
The SRAM, Flash, and LCD display devices on the UP 3 board share a 
common address and bidirectional data bus. Having multiple external devices 
like these share the same address and data bus pins can dramatically reduce the 
number of pins required on the FPGA, and the Nios I1 processor supports this 
type of bus sharing with its tristate bus components. To accommodate the 
bidirectional data bus and multiple devices on a single bus, an Avalon Tri-state 
Bridge component must be added. The Avalon tri-state bridge creates a 
peripheral (tri-state) bus to which multiple memory controllers and other 
external components can be attached. It also provides a seamless interface 
between the peripheral bus and the main system bus. A conceptual drawing of 
this arrangement is shown in Figure 17.12. 
Add the Avalon Tri-state Bridge component by expanding Avalon Components 
+ Bridges. Select Avalon Tri-state Bridge and click Add... . There is only one 
option for this component: registered or not registered. Select Registered and 
click Finish to add the component. In the SOPC Builder, rename the bridge 
module to ext-bus. 



334 Rapid Prototyping of Digital Systems Chapter 17 

(bus slave) r-l (bus slaw) Kl 
f Perhheral Tri-state Bus 

Figure 17.12 This is a conceptual drawing of the bus configuration with the Tristate Bridge 

connecting the main system bus and the shared peripheral bus. 

17.10Adding Components to the External Bus 
Once the Avalon tri-state bridge has been added, the peripherals that are going 
to connect to the external peripheral bus can be added. First, add the Flash 
memory controller by expanding Avalon Components Memory. Select 
Flash Memory (Common Flash Interface) and click Add... . When the Flash 
memory configuration dialog box appears, set the options as shown in Figure 
17.13. 

IMPORTANT NOTE: Peripheral ICs on the UP 3 board can come from 
several manufacturers. While they are generically equivalent, they may exhibit 
slightly different characteristics and timing. UP 3 boards currently contain one 
of two types of flash memory chips, Toshiba and Excelsemi. UP 3 boards that 
contain a Toshiba flash memory chip currently will not program and do not 
pass the example flash memory test. The flash memory chip, U8, is located 
directly below the large square FPGA chip in the middle of the UP 3 board. The 
manufacturer's name is printed on the flash chip. The Toshiba chips require 
new flash driver software that is being developed at the time of this printing. If 
your UP 3 project requires flash memory and you verify that you have the 
Toshiba chips, check for Toshiba flash driver software updates and specific 
information about different chips on UP 3 boards at the book's website: 

Add the SRAM memory controller to your Nios I1 processor by expanding 
Avalon Components C3 UP3 Development Board. Select up3-tristate-sram 
and click Add... . When the SRAM configuration dialog box appears, leave the 
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default values and click Finish to add the component. In the SOPC Builder, 
rename the timer module to sram. 
Add the LCD component to your Nios I1 processor by expanding Avalon 
Components c3 UP3 Development Board. Select up3-tristate-lcd and click 
Add... . This component does not have any configuration options; therefore, no 
dialog box will appear. The LCD component will be added to the list of 
peripherals in your Nios I1 processor. In the SOPC Builder, rename the LCD 
module to lcd. 

Figure 17.13 These are the Flash memory settings for use with the Flash on the UP 3 board. 

17.1 1 Global Processor Settings 
All of the necessary peripherals have been added now. The next step is to 
configure some global settings for your processor. 
The Nios I1 processor uses a memory-mapped 110 scheme for accessing 
peripherals. Each component added to the system is assigned a unique set of 
memory addresses. Any device or data registers needed for a particular 
peripheral can be accessed by reading from or writing to its respective memory 
address. In general, the specific memory address assignments do not matter as 
long as the assigned memory address spaces do not overlap. If the Nios I1 
system is going to be a part of a legacy system, there may be some constraints 
placed on the memory address assignments; however, there is nothing intrinsic 
within the Nios I1 system that restricts the settings. For this tutorial, let SOPC 
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Builder make the memory assignments automatically by selecting System + 
Auto-Assign Base Addresses. Next, select System + Auto-Assign IRQs to 
have SOPC Builder automatically assign the IRQ values to the devices that 
support interrupts. 
To view and modify the bus connections in your processor, select View + 
Show Connections. (If Show Connections is already selected, then un-select it 
and select it again.) This will expand the cpu and ext-bus modules in the table 
of peripherals and show the bus connections. The final SOPC Builder window 
should look like the screen shot in Figure 17.14. The three buses are displayed 
vertically. From left-to-right, the buses are the main system instruction, main 
system data, and tri-state data bus. Notice that the UARTs, timer, and PI0  
components are only attached to the system data bus since they don't normally 
interact with instruction memory. SDRAM and the Avalon Tri-state Bridge are 
connected to both the system instruction and system data buses, because the 
memory devices can store both data and instruction memory. Finally, the Flash 
memory, SRAM, and LCD devices are connected to the tri-state bus as 
expected. No modifications need to be made to the bus connections for this 
tutorial. 

Figure 17.14 This is the completed Nios I1 design in SOPC Builder. 
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17.12 Finalizing the Nios II Processor 
Click the Next button to modify more processor settings. The Nios I1 More 
"cpu" settings dialog box allows you to modify the program memory device 
and beginning address. For this tutorial, set the Reset and Exception addresses 
to SRAM and keep the default addresses and offsets as shown in Figure 17.15. 
Click Next to continue with the processor settings. 
The More "sdram" Settings dialog box allows you to select the tri-state bus 
bridge to which to bind the SDRAM controller. There are no possible 
modifications for this setting in the current processor. Leave the default value 
and click Next to continue with the processor settings. 

Figure 17.15 These are the processor configuration settings for the Nios I1 processor. 

The System Generation dialog box is the final group of settings. In this dialog 
box, select the files that need to be generated. For this tutorial, you will not be 
simulating the processor in ModelSim or other third-party simulation tool; 
therefore, unselect the Simulation. Create simulator project files option. 
Verify that the option HDL. Generate system module logic in VHDL is 
selected. Click the Generate button to generate the design files for your Nios I1 
processor. It will take 2-3 minutes to generate your Nios I1 processor. When it 
completes, the console should contain a message that states that your processor 
was generated successfully. If your system did not generate successfully, study 
the error log display in the console, correct the problem, and re-generate the 
Nios I1 processor. When you have successfully generated your Nios I1 system, 
click the Exit button to close SOPC Builder. 

17.1 3 Add the Processor Symbol to the Top-Level Schematic 
When SOPC Builder closes, return to your blank top-level schematic file, 
rpdsl7.bdf. Double click on a blank area of your empty top-level schematic 
file to add a component. In the Libraries pane of the Symbol dialog box, 
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expand the Project item and select the nios32 component. Click OK to add the 
selected component. Click in the middle of schematic file to place your Nios 
system. 

17.14 Create a Phase-Locked Loop Component 
SDRAM and the Nios I1 processor core operate on different clock edges. The 
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM 
would need a clock signal that is phase shifted by 180 degrees. An inverter 
would do this, but the phase shift also needs to be adjusted a bit to correct for 
the internal FPGA delays and the distance between the SDRAM and the FPGA 
on the UP 3 board. To create this SDRAM clock signal, a phase-locked loop 
(PLL) component can be implemented on the FPGA. To create a PLL, use 
Quartus 11's MegaWizard Plug-in Manager by selecting Tools + MegaWizard 
Plug-In Manager .... Click Next on page 1 of the wizard to create a new 
component. On page 2, select the Installed Plug-Ins + 110 C3 ALTPLL 
module from the list. Enter the full path of your project directory followed by 
the filename up3-pll into the output filename field. Complete the remaining 
fields with the information shown in Figure 17.16. Click Next to continue. 

Figure 17.16 These are the initial settings for the ALTPLL module. 

On page 3 of the MegaWizard manager, enter 48.00 MHz as the frequency of 
the inclock0 input. Leave the other options set to their default values. Click 
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Next to continue. On page 4 of the MegaWizard manager, un-select all 
checkmarks. Click Next to continue. 
On page 5 of the MegaWizard manager, enter a Clock phase shift of -90 deg. 
Leave the other options set to their default values. Click Finish to skip pages 6 
and 7 and jump to page 8 of the MegaWizard manager. Click Finish again to 
complete the MegaWizard manager and create the files for the PLL component. 
Double click on a blank area of the top-level schematic file. Select the Project 
+ up3911 module and add it to your top-level schematic as shown in the 
completed schematic in Figure l7.l7(a). 
IMPORTANT NOTE: Different or future versions of the Altera software may 
generate slightly different hardware time delays for the SDRAM clock. If you 
experience SDRAM errors after running memory tests on your final design or 
the program downloads to SDRAM do not verify, and after double checking 
that everything else is correct in your design, the PLL phase shift may need to 
be adjusted a small amount. Most designs seem to fall within about 30 degress 
of -90. This corresponds to a time delay adjustment of only 1 or 2 ns. 

17.15Add the UP 3 External Bus Multiplexer Component 
The Flash memory, SRAM, and LCD display devices use the same FPGA pins 
and the same tri-state bus pins. The FPGA pins must be multiplexed to the 
different tri-state bus signals available on the Nios I1 symbol. A custom 
multiplexer component has been created and is located on the CD-ROM that 
came with this book in the booksoft\chapl7 directory. Copy the 
up3-bus-mux.vhd and up3-bus-mux.bsf files from the CD-ROM to your 
project directory. 
When the up3-bus-mux files have been copied to your project directory, add 
the up3-bus-mux component to your top-level schematic by double clicking 
on a blank area of the top-level schematic. Select the Project + up3-bus-mux 
module and add it to your top-level schematic as shown in the completed 
schematic in Figure 17.17. 

17.1 6 Complete the Top-Level Schematic 
To complete the top-level schematic, add the input, output, and bi-directional 
pins (and pin names) shown in Figure 17.17(a). Also, complete the connections 
between the three top-level components as shown in the figure. Finally, name 
the FLASH-CS-N, SRAM-CS-N, and SDRAM-CS-N signals to make 
virtual connections to the output pins of the same name. If you have trouble 
reading the signal names in the figure, the file is available on the CD-ROM. 

17.17 Design Compilation 
Verify that the pin assignments discussed in Section 17.2 were made correctly 
by going to Assignments + Pins. A long list of pin numbers and names 
corresponding to the pin names you entered into the top-level schematic should 
appear. If it does not, then repeat the steps in Section 17.2 to import the pin 
assignments. 
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Figure 17.17 The final top-level schematic for the Nios II system is shown in (a). The figures in (b), 

(c), and (d) are pieces of the overall figure enlarged for better visibility of the signal names. 
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Verify that the global assignments discussed in Section 17.2 were made 
correctly by going to Assignments c3 Device... c3 Device & Pin Options c3 
Unused Pins. 
The Reserve all unused pins option should be set to As inputs, tri-stated. If it 
is not, then select this option. Click OK until all dialog boxes are closed. 

Select Processing C3 Start Compilation to begin compiling your project. 

17.18 Testing the Nios II Project 
To fully test your Nios I1 project, you will need to write a software program to 
run on the Nios I1 processor that tests each component. To complete this task, 
refer to the previous chapter, which contains Tutorial 111: Nios 11 Processor 
Software Design. 
You might want to try your test program from the previous chapter first to 
verify that memory still works in your new design. After switching to a new 
workspace for the new project in Nios I1 IDE, you can import an existing 
software project into a new design project's software directory using File C3 
Import. You will need to clean and rebuild the software project since the 
system library changes for each new hardware design. 

17.19 For additional information 
This chapter has provided a brief overview of Nios I1 hardware development. 
Additional information can be found at Altera7s website (www.altera.com) in 
the Nios 11 Processor Reference Handbook, Embedded Peripherals Handbook 
and Hardware Development Tutorial. Nios I1 components for the UP 3 board 
and other reference designs can be found at the SLS website 
(~yww.slscorp.con~). The Nios Community Forum ~www.niosforum.com) also 
contains useful information and downloads for Nios I1 projects. 

17.20 Laboratory Exercises 
1. Add two 8-bit PI0 to the Nios I1 hardware design that connect to the 5 volt I/O pins on 

the UP 3's J3 connector. Setup one port for input and one port for output. Connect the 
PI0 port's I/O pins to eight input pins and eight output pins on J3. This is a handy way to 
interface external devices and sensors like those used in the UP 3 robot projects in 
Chapter 13 to the UP 3 board's Nios I1 processor. 
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Add a PI0 port to the Nios I1 hardware design and use the PI0 port's 110 bits to design 
an I ~ C  hardware interface to the UP 3 board's real-time clock chip. Software will be 
needed to send I ~ C  commands, the PI0 port just provides a hardware interface to the I ~ C  
SDA and SLC bits (see Section 12.4). 

Add a parallel port to the Nios I1 hardware design. Use two 8-bit ports, one for data and 
one for status and control bits. Connect the PI0 port's VO bits to the parallel port 
connector on the UP 3 board. Software will be needed to monitor and control the 
handshake lines (see Section 12.1) when connecting to a device like a parallel printer. 

Add an SPI interface to the Nios I1 hardware design and use it to interface to an external 
SPI device connected to one of the UP 3 board's expansion connectors. 

Implement one of the UP 3 robotics projects from Chapter 13 using a Nios I1 processor 
running C code. See problem 1 for robot interface suggestions. 

Design an automatic setback HVAC thermostat using the UP 3. Interface a temperature 
sensor to the UP 3. Some temperature sensors are available with digital outputs that 
would not require a separate analog-to-digital IC. Display the current time, temperature, 
heat, fan, and A/C status, and the temperature settings in the LCD. Use the pushbuttons 
to change the temperature settings and setback times. Use the LEDs to indicate the heat, 
A/C, and fan control outputs from the thermostat. You can heat the temperature sensor 
with your finger to cycle the thermostat and cool it with ice or an aerosol spray can of 
dust off cleaner. 

Interface a PSI2 keyboard or mouse to the Nios I1 processor using PI0 ports. Write 
software to demonstrate the new keyboard or mouse interface. Display the output on the 
LCD or the UART. There are two major options to consider, use the keyboard and mouse 
cores from Chapter 1 1 or do everything in software. 

Use the video sync core and character generation ROM from Chapter 10 to add a video 
text display to the Nios processor. Add a dual port memory to store a screen full of 
characters. Write charcters to the dual port memory from the Nios I1 processor using PI0 
ports added to the Nios I1 design. The video system constantly reads the characters out of 
the dual port memory and then uses the character generation ROM to generate the video 
display. Write a software driver for the video display and attach a monitor to the UP 3's 
VGA connector to demonstrate your design. 

After solving the previous two problems, develop software for a video game that uses the 
mouse or keyboard for input and displays output on the monitor. If you need graphics for 
your game, consider replacing the character memory and text display with a larger 
memory containing only pixels used in a graphics display. Keep in mind that the internal 
FPGA memory is limited. 
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10. Add a custom instruction to the Nios I1 processor designed to speed up a particular 
application area. See the Nios II Custom Instruction User Guide. Demostrate the speedup 
obtained with the new instruction by running the application with and without the new 
instruction. 

1 1. Interface the dual port video display memory used in one of the earlier problems directly 
to the Avalon system bus instead of using PI0  ports. See the Avalon Inte$ace 
Specification Manual. 

12. Program the UP 3's serial flash device so that your Nios I1 hardware design loads 
automatically at power up. See Appendix E for instructions on programming the FPGA's 
serial flash configuration chip. 

13. Program a complete Nios I1 design into both Flash memories so that the UP 3 board 
loads both the FPGA hardware configuration data and the software from the two Flash 
memories automatically at power up. See the Nios 11 Flash Programmer User Guide and 
study the section on how to port the Flash programmer to a new board type. A full 
version Altera software license is required for Flash programming of Nios I1 program 
code. 

14. For a more challenging problem, port the eCos operating system to the UP 3. It is 
available free at www.niosforum.com. First, run a simple hello world application using 
the UART. For the second test, write a multithreaded application with one thread talking 
to the UART and a second thread blinking the LEDs. 
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Appendix A: Generation of Pseudo Random Binary 
Seauences 

In many applications, random sequences of binary numbers are needed. These 
applications include random number generation for games, automatic test 
pattern generation, data encryption and decryption, data compression, and data 
error coding. Since a properly operating digital circuit never produces a random 
result, these sequences are called pseudo random. A long pseudo-random binary 
sequence appears to be random at first glance. 
Table A.l shows how to make an "n" bit pseudo-random binary sequence 
generator. Here is how it works for n = 8. Build an 8-bit shift register that shifts 
left one bit per clock cycle. Find the entry in Table A.l for n = 8. This entry 
shows that bits 8,6,5,4 should all XORed or XNORed together to generate the 
next shift input used as the low bit in the shift register. Recall that the order of 
XOR operations does not matter. Note that the low-bit number is "1" and not 
"0" in this table. 
A state machine that is actually a non-binary counter is produced. The counter 
visits all 2"-1 non-zero states once in a pseudo-random order and then repeats. 
Since the counter visits every state once, a uniform distribution of numbers 
from 1 to 2"-1 is generated. In addition to a shift register, only a minimal 
number of XOR or XNOR gates are needed for the circuit. The circuit is easy to 
synthesize in a HDL such as VHDL since only a few lines are required to shift 
and XOR the appropriate bits. Note that the next value in the random sequence 
is actually 2x or 2x + 1 the previous value, x. For applications that may require 
a more truly random appearing sequence order, use a larger random sequence 
generator and select a disjoint subset of the bits and shuffle the output bits. 
The initial value loaded in the counter is called the seed. The seed or the 
random number is never zero in this circuit. If a seed of zero is ever loaded in 
the shift register it will stay stuck at zero. If needed, the circuit can be modified 
so that it generates 2" states. For the same initial seed value, the circuit will 
always generate the same sequence of numbers. In applications that wait for 
input, a random seed can be obtained by building a counter with a fast clock 
and saving the value of the counter for the seed when an input device such as a 
pushbutton is activated. 
Additional information on pseudo-random binary sequence generators can be 
found in HDL Chip Design by D.J. Smith, Doone Publications, 1996, and 
Xilinx Application Note 52, 1996. 
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Table A.l Primitive Polynomials Modulo 2. 

n XOR n 
XOR n XOR n XOR 

from bits from bits from bits from bits 
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A ~ ~ e n d i x  B: Quartus II Design and Data File Extensions 

Project Files 

Quartus I1 Project File (*.qpf) 
Quartus I1 Settings File (*.qsf) 
Quartus I1 Workspace File (*.qws) 
Quartus I1 Default Settings File (*.qdf) 

Design Files 

Altera Design File (*.ado 
Block Design File (*.bdf) 
EDIF Input File (*.edf) 
Graphic Design File (*.gdf) 
OrCAD Schematic File (*.sch) 
State Machine File (*.smf) 
Text Design File (*.tdf) 
Verilog Design File (*.v) 
VHDL Design File (*.vhd) 
Waveform Design File (*.wdf) 
Xilinx Netlist File (*.xnf) 

Ancillary Data Files 

Assignment and Configuration File (*.acf) 
Assignment and Configuration Output (*.ace) 

Block Symbol File (*.bsf) 
Command File (*.cmd) 
EDIF Command File (*.edc) 
Fit File (*.fit) 
Intel Hexadecimal Format File (*.hex) 

History File (*.hst) 
Include File (*.inc) 
JTAG chain file (*.jcf) 
Library Mapping File (*.lmf) 
Log File (*.log) 
Memory Initialization File (* .mi0 
Memory Initialization Output File (*.mio) 
Message Text File (*.mtf) 

Programmer Log File (*.plf) 
Report File (* .rpt) 
Simulator Channel File (*.scf) 
Standard Delay Format (*.sdf) 
Standard Delay Format Output File (*.sdo) 
Symbol File (*.sym) 
Table File (*.tbl) 
Tabular Text File (*.ttf) 
Text Design Export File (*.tdx) 
Text Design Output File (*.tdo) 
Timing Analyzer Output File (*.tao) 
Vector File (* .vec) 
Verilog Quartus Mapping File (*.vqm) 
VHDL Memory Model Output File (*.vmo) 

Non-Editable Ancillary 
File Types 

Compiler Netlist File (*.cnf) 
Hierarchy Interconnect File (*.hi0 
JEDEC file (*.jed) 
Node Database File (*.ndb) 
Programmer Object File (* .pof) 
Raw Binary File (*.rbf) 
Serial Bitstream File (*.sbf) 
Simulator Initialization File (*.sif) 
Simulator Netlist File (*.snf) 
SRAM Object File (*.so0 
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Appendix C: UP 3 Pin Assignments 

Table C.l UP 3 board's Cyclone FPGA 110 pin assignments. 

Bidirectional 

Bidirectional 

Pin Name 
PARALLEL D[1] 
PARALLEL S[3] 
PARALLEL D[3] 

tPUA - 
Pin# 

1 
2 
3 

1 2 ~  SCL 
12C SDA 

Parallel Port Connector Pin 3 
Parallel Port Connector Pin 17 
Parallel Port Connector Pin 2 
Parallel Port Connector Pin 14 
Parallel Port Connector Pin 1 
Not available for I10  in use 

-- 

Not available for I10 pin use 
SDRAM Clock 

Pin I10 Tvpe 
Bidirectional 
Input 
Bidirectional 

20 
2 1 
22 

RESET 

PS2 Connector 

Function of Pin 
Parallel Port Connector Pin 3 
Parallel Port Connector Pin 15 
Parallel Port Connector Pin 5 

Bidirectional 
Bidirectional 

23 I lnput 

PS2 Connector 
USB Phy Chip 
USB Phy Chip 
USB Phy Chip 
USB Phy Chip 
USB Phy Chip 
USB Phy Chip 
12C Bus EEPROM 
12C Bus EEPROM 
Not available for 110 pin use 
Power on or SW8 pushbutton reset ( Reset = 0 ) 
CSO# EPCSI 
DATA EPCSI 
Not available for I10 pin use 
Not available for I10 pin use 

USB CLK 

USER CLOCK 

29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 I lnput I External Clock from J2 Pin 2 

I ." I I 

SERIAL DSR 

Input 

SERIAL DCD 

4 1 I lnput I MAX 3243 to Serial Port Connector Pin 6 

USB 48MHz Clock 
Not available for I10 pin use 
Not available for 110 pin use 
CE# 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for I10 pin use 
DCLK EPCSI 
ASDO EPCSI 

39 ( lnput I MAX 3243 to Serial Port Connector Pin 1 
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Function of Pin 
MAX 3243 to Serial Port Connector Pin 2 
MAX 3243 to Serial Port Connector Pin 8 
MAX 3243 to Serial Port Connector Pin 9 
MAX 3243 to Serial Port Connector Pin 7 
MAX 3243 to Serial Port Connector Pin 4 
MAX 3243 to Serial Port Connector Pin 3 
Pushbutton SW4 (non-debounced, 0 = button 
hit) 
Pushbutton SW5 (non-debounced, 0 = hit) 
LCD Enable line 
Not available for I10 pin use 
Not available for I10 pin use 
LED D3 (1 = LED ON, O= LED OFF) 
LED D4 (1 = LED ON, O= LED OFF) 
LED D5 (1 = LED ON, O= LED OFF) 
LED D6 (1 = LED ON, O= LED OFF) 
Pushbutton SW6 (non-debounced, 0 = hit) 
DIP Switch SW3 # I  ( ON = 1, OFF = 0) 
DIP Switch SW3 #2 ( ON = 1, OFF = 0) 
DIP Switch SW3 #3 ( ON = 1, OFF = 0) 
DIP Switch SW3 #4 ( ON = 1, OFF = 0) 
Pushbutton SW7 (non-debounced, 0 = hit) 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for I10 pin use 
Not available for I10 pin use 
LCD RNV control line 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
Memory Address Bus, SRAM LB, SDRAM 
LDQM 
Memory Address Bus 
Memory Write Enable 
FLASH 

Pin Name 
SERIAL RX 
SERIAL CTS 
SERIAL RI 
SERIAL RTS 
SERIAL DTR 
SERIAL TX 

PBSWITCH 4 
PBSWITCH 5 
LCD E 

LED D6 
LED D5 
LED D4 
LED 03 
PBSWITCH 6 
DIPSWITCH 1 
DIPSWITCH 2 
DIPSWITCH 3 
DIPSWITCH 4 
PBSWITCH 7 
MEM AD[7] 
MEM AD[8] 
MEM AD[9] 
MEM AD[10] 
MEM AD[11] 
MEM AD[12] 

LCD RW 
MEM AD[13] 
MEM AD[14] 
MEM AD[15] 

MEM AD[16] 
MEM AD[19] 
MEM WE 
FLASH RYIBY 

MEM AD[17] 82 ( Output 1 UDQM 

MEM AD[5] 
MEM AD[4] 
MEM AD[3] 

FPG A - 
Pin# 
42 
43 
44 
45 
46 
47 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1 
72 
73 
74 
75 
76 

77 
78 
79 

80(126)* 

MEM AD[6] 83 I Output I Memory Address Bus 1 

Pin 110 Type 
Input 
Input 
Output 
Output 
Output 
Output 

Input 
Input 
Output 

Output 
Output 
Output 
Output 
Input 
Input 
Input 
Input 
Input 
Input 
Output 
Output 
Output 
Output 
Output 
Output 

Output 
Output 
Output 
Output 

Output 

Output 
Output 

84 
85 
86 

Output 
Output 
Output 

Memory Address Bus 
Memory Address Bus 
Memory Address Bus 
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Pin Name 
MEM AD[2] 
MEM AD[l] 

MEM-AD[O] 
MEM DQ[O] 
MEM DQ[8] 
MEM DQ[l] 
MEM DQ[9] 
MEM DQ[2] 
MEM DQ[10] 
MEM DQ[3] 
MEM DQ[11] 
MEM DQ[4] 
MEM DQ[12] 
MEM DQ[5] 

FPG A - 
Pin# 
87 
88 
89 
90 
9 1 
92 
93 
94 
95 

96(133)* 
97(132)* 

98 
99 
100 
101 

102(128)* 
1 03(1 27)* 

104 

Pin 110 Type 
Output 
Output 

Output 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 

Function of Pin 
Memory Address Bus 
Memory Address Bus 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for 110 pin use 
Memory Address Bus 
Memory & LCD Data Bus 
Memory Data Bus 
Memory & LCD Data Bus 
Memory Data Bus 
Memory & LCD Data Bus 
Memory Data Bus 
Memory & LCD Data Bus 
Memory Data Bus 
Memory & LCD Data Bus 
Memory Data Bus 
Memory & LCD Data Bus 
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Pin Name 

I38 

FPGA 
Pin# 
135 
136 
137 

139 
140 

I JI pin 4 
I J1 Pin 5 

PROTO CLKlN 

Pin 110 Tvpe 

161 J1 Pin 12 

Function of Pin 
J1 Pin 31 
J1 Pin 30 
J1 Pin 29 

141 
142 
143 
144 

162 
163 

VGA BLUE 

IDE DASO# 
IDE CSO# 

IDE A[1] 

I J1 Pin 6 
Not available for 110 pin use 
J1 Pin 7 
J4 Pin 11 

J1 Pin 15 
J1 Pin 16 

I78 
179 

180(NA)* 
181(NA)* 

167 
168(NA)* 
169(NA)* 

170 
171 
172 
173 
174 

175(NA)* 
176 

177(NA)* 

J1 Pin 23 
J1 Pin 24 

Output 

Output 

J1 Pin 20 
J1 Pin 21 
J1 Pin 22 
VGA Connector Blue Video Signal 
Not available for I10 pin use 
Not available for 110 pin use 
IDE Disk Connector J3 
IDE Disk Connector J3 
J1 Pin 25 
IDE Disk Connector J3 
J1 Pin 26 
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IDE Disk Connector J3 

IDE Disk Connector J3 

IDE INTRQ 
IDE A[O] 
IDE D[4] 
IDE D[3] 
IDE D[2] 

IDE D[5] 
IDE D[6] 
IDE D[7] 
IDE D[10] 
IDE D[9] 
IDE D[8] 
IDE D[11] 
IDE D[12] 
IDE D[13] 
IDE D[14] 
IDE D[15] 
VGA VSYNC 
VGA HSYNC 
VGA RED 

204(177)* 
205(175)* 

206 
207 
208 
209 
21 0 
21 1 
212 
21 3 
214 
21 5 
216 
217 
218 
219 

220(169)* 
221 (1 68)* 

222 
223 
224 
225 
226 
227 
228 
229 

Input 
Output 
Bidirectional 
Bidirectional 
Bidirectional 

Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 
Output 
Output 
Output 

IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
Not available for I10 pin use 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for I10 pin use 

IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
IDE Disk Connector J3 
VGA Connector Vertical Sync Signal 
VGA Connector Horizontal Sync Signal 
VGA Connector Red Video Signal 
Not available for I10 pin use 
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* NOTE: In the Table, differences in Pin assignments on the larger UP3 1C12 
board are noted in "(..)"s. NA indicates not available. The larger Cyclcone 
1C12 has twice the logic, but 12 fewer I 1 0  pins than the 1C6 since it needs 
more power and ground pins. 
If you switch a design from a 1C6 board to a 1C12 board, you will need to 
change the device type, fix the few pin assignments that are different, and 
recompile. Typically, only designs using the LCD or external memory devices 
will be affected by the pin changes. 
When connecting external hardware to the UP 3's header pins, note that many 
o f  the pins on the 53 header provide 5V logic levels by going through a voltage 
level conversion chip. Most other pins connected to the J1 & 52 headers have 
3V logic levels coming directly from FPGA pins. Check the UP 3 schematic for 
more details. 

Pin Name 

PARALLEL S[4] 
PARALLEL S[5] 
PARALLEL S[7] 
PARALLEL S[6] 
PARALLEL D[6] 
PARALLEL D[5] 
PARALLEL-D[7] 
PARALLEL D[4] 

FPGA - 
Pin# 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 

Pin 110 Tvpe 

Input 
Input 
Input 
Input 
Bidirectional 
Bidirectional 
Bidirectional 
Bidirectional 

Function of Pin 
Not available for 110 pin use 
Not available for 110 pin use 
Not available for I10 pin use 
Parallel Port Connector Pin 13 
Parallel Port Connector Pin 12 
Parallel Port Connector Pin 11 
Parallel Port Connector Pin 10 
Parallel Port Connector Pin 8 
Parallel Port Connector Pin 7 
Parallel Port Connector Pin 9 
Parallel Port Connector Pin 6 
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Appendix D: ASCll Character Code 

Table D.l ASCll Charcter to Hexadecimal Conversion Table. 

The American Standard Code for Information Interchange (ASCII) is a standard 
seven-bit code for computer equipment adopted in 1968. In Table D.l, locate 
"A". It is in row 4 in column 1 and the hexadecimal value for "A" is therefore 
41. The UP 3's LCD and most RS-232C serial devices and printers use the 
ASCII character code. The eighth bit may be used for parity. Codes below 0x20 
are called control codes. Control codes perform operations other than printing a 
character. Several of the most common control codes are described below: 

NUL (null) - all zeros, sometimes used for end of strings. 
BEL (bell) - Causes a beep in terminals and terminal emulation programs. 
BS (backspace) - Moves the cursor move backwards (left) one space. 
HT (horizontal tab) - Moves the cursor right to the next tab stop. The spacing 
of tab stops is dependent on the output device, but is often 8 or 10. 
LF (line feed) - Moves the cursor down to a new line, but not to the left. 
VT (vertical tab) 
FF (form feed) - Advances paper to the top of the next page on printers. 
CR (carriage return) - Moves the cursor all the way to the left, but does 
not advance to the next line. For a new line, both CR and LF are used. 
ESC (escape) - Sometimes used to terminate program commands 
SP (space) prints a blank space and cursor moves to the next character 
position. 

Note that the decimal digit characters "0" to "9" range in value from 0x30 to 
0x39. The code is setup so that "A"<"B"<"C" ... so that numeric values can be 
used for alphabetical ordering. A single bit in the code changes the case of a 
character (i.e. see "A" and "a"). Extended ASCII codes use an eight bit code to 
display another 128 special graphics characters. There are several different 
standards for these new graphics characters, so check the device manual for 
details. The first 128 characters are the same as the 7-bit original ASCII code 
standard. 
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Appendix E: Programming the UP 3's Flash Memory 

In deployed systems, FPGAs are normally automatically programmed at power 
on using a small serial non-volatile memory chip. The serial configuration 
device used on the UP 3 1C6 is the EPCSl 1-Mbit flash memory or on the UP 3 
1C12 the larger EPCS4 4-Mbit flash memory. Once a design has been tested, 
you may want to demonstrate it without having to download the design using 
the ByteBlaster and a PC each time you power on the board. One common 
example would be a UP 3 robot project. If you program the UP 3's flash 
configuration memory, the FPGA will load the design each time the robot is 
turned on. 

Steps to program the UP 3's flash memory configuration device: 

Power down the UP 3 board and unplug the ByteBlaster I1 cable connector 
from the UP 3. Plug the ByteBlaster I1 cable into the second connector 
immediately to the left and nearer the edge of the board than the JTAG 
connector normally used for programming. This connector must be used for 
programming the serial configuration memory. Turn the UP 3 board's power 
back on. 
Select Tools * Programmer and then change the Mode pull down box setting 
to Active Serial Programming. Click yes on the dialog box that appears. 
Select Add File and add yourdesign.pof (not *.sofas normally used) to the file 
list. Select yourdesign.pof and click Open so that yourdesign.pof appears as the 
programming file. Now click on the file's ProgramIConfigure check box. An 
EPCSl is used on the UP 3 1C6 and an EPCS4 is used on the larger UP 3 1C12. 
If you see the correct configuration device in the file's device entry column, 
click start to program the flash memory device. 
If the correct configuration device does not appear in the *.pof file's device 
entry or you see a can't recognize silicon ID error when you try to program, 
you will need to change the project's configuration device type. Use 
Assignments * Device and click on the Device and Pin Options button. 
Next, Click on the Configuration tab and select the correct device in the 
configuration device pull down box. Also make sure that the Generate 
compressed bitstreams box is checked. Click OK twice to exit and recompile 
the project. When you reopen the Programmer window and the 
yourdesign.pof file you should now see the correct device type. Click start and 
the device should now program without errors. 
After successfully downloading the FPGA's flash configuration memory, the 
UP 3 board will now start running the design every time it is turned on. Turn 
the UP 3 board off and then on to verify that the design is running. 
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Glossary 

Assignment & Configuration File (.acf): An ASCII file (with the extension .acf) 
used by the older MAX+PLUS tool to store information about probe, pin, location, 
chip, clique, logic option, timing, connected pin and device assignments, as well as 
configuration settings for the Comp iler, Simulator, and Timing Analyzer for an entire 
project. The ACF stores information entered with menu commands in all MAX+PLUS 
I1 applications. You can also edit an ACF manually in a Text Editor window. This 
same information is now found in the *.q* files in Quartus 11. 
Active-high (Active-low) node: A node that is activated when it is assigned a value 
one (zero) or Vcc (Gnd). 
AHDL: Acronym for Altera Hardware Description Language. Design entry language 
that supports Boolean equation, state machine, conditional, and decode logic. It also 
provides access to all Altera and user-defined macrofunctions. 
Ancillary file: A file that is associated with a Quartus I1 project, but is not a design 
file in the project hierarchy tree. 
Antifuse: Any of the programmable interconnect technologies forming electrical 
connection between two circuit points rather than making open connections. 
Architecture: Describes the behavior, RTL or dataflow, andl or structure of a VHDL 
entity. An architecture is created with an architecture body. A single entity can have 
more than one architecture. In some VHDL tools, configuration declarations are used 
to specify which architectures to use for each entity. 
Array: A collection of one or more elements of the same type that are accessed using 
one or more indices depending on dimension of array. Array data types are declared 
with an array range and array element type. 
ASIC: Acronym for Application-Specific Integrated Circuit. A circuit whose final 
photographic mask process is user design dependent. 
ASM: Acronym for Algorithmic State Machine Chart. A flow-chart based method 
used to represent a state diagram. 
Assert: A statement that checks whether a specified condition is true. If the condition 
is not true, a report is generated during simulation. 
Assignment: In VHDL, assignment refers to the transfer of a value to a symbolic 
name or group, usually through a Boolean equation. The value on the right side of an 
assignment statement is assigned to the symbolic name or group on the left. 
Asynchronous input: An input signal that is not synchronized to the device Clock. 
Attribute: A special identifier used to return or specify information about a named 
entity. Predefined attributes are prefixed with the ' character. 
Back annotation: Process of incorporating time delay values into a design netlist 
reflecting the interconnect capacitance obtained from a completed design. Also, in 
Altera's case, the process of copying device and resource assignments made by the 
Compiler into the Assignment and Configuration File for a project. This process 
preserves the current fit in future compilations. 
Block: A feature that allows partitioning of the design description within an 
architecture. 

Buried node: A combinatorial or registered signal that does not drive an output pin. 
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Cell: A logic function. It may be a gate, a flip-flop, or some other structure. Usually, a 
cell is small compared to other circuit building blocks. 
Cell library: The collective name for a set of logic functions defined by the 
manufacturer of an FPGA or ASIC. Simulation and synthesis tools use cell libraries 
when simulating and synthesizing a model. 
CLB: Acronym for Configurable Logic Block. This element is the basic building 
block of the Xilinx FPGA product family. 
Clock: A signal that triggers registers. In a flip-flop or state machine, the clock is an 
edge-sensitive signal. In edge-triggered flip-flops, the output of the flip-flop can 
change only on the clock edge. 
Clock enable: The level-sensitive signal on a flip-flop with E suffix, e.g., DFFE. 
When the Clock enable is low, clock transitions on the clock input of the flip-flop are 
ignored. 
Compiler Netlist File (.cnf): A binary file (with the extension .cnf) that contains the 
data from a design file. The CNF is created by the Compiler Netlist Extractor module 
of the MAX+PLUS I1 Compiler. 
Component: Specifies the port of a primitive or macrofunction in VHDL. A 
component consists of the name of the primitive or macrofunction, and a list of its 
inputs and outputs. Components are specified in the Component declaration. 
Component instantiation: A concurrent statement that references a declared 
component and creates one unique instance of that component. 
Configuration EPROM: A serial EPROM designed to configure (program) a FPGA. 
Concurrent statements: HDL statements that are executed in parallel. 
Configuration: It maps instances of VHDL components to design entities and 
describes how design entities are combined to form a complete design. Configuration 
declarations are used to specify which architectures to use for each entity. 
Configuration scheme: The method used to load configuration (programming) data 
into an FPGA. 
Constant: An object that has a constant value and cannot be changed. 
Control unit: The hardware of a machine that controls the data path. 
Cyclone: The FPGA family used on the UP 3 boards. 
CPLD: Acronym for complex programmable logic device. CPLDs include an array of 
functionally complete or universal logic cells with an interconnection network. 
Data Path: The hardware path that provides data processing and transfer of 
information in a machine, as opposed to the controller. 
Design entity: A file that contains description of the logic for a project and is 
compiled by the Compiler. 
Design library: Stores VHDL units that have already been compiled. These units can 
be referenced in VHDL designs. 
Design unit: A section of VHDL description that can be compiled separately. Each 
design unit must have a unique name within the project. 
Dual-purpose pins: Pins used to configure an FPGA device that can be used as VO 
pins after initialization. 
Dynamic reconfigurability: Capability of an FPGA to change its function "on -the- 
fly" 
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Embedded Array Block (EAB): A physically grouped set of 8 embedded cells that 
implement memory (RAM or ROM) or combinatorial logic in a Cyclone 10K device. 
A single EAB can implement a memory block of 256 x 8, 512 x 4, 1,024 x 2, or 2,048 
x 1 bits. 
EPLD: Acronym for EPROM programmable logic devices. This is a PLD that uses 
EPROM cells to internally configure the logic function. Also, erasable programmable 
logic device. 
Event: The change of value of a signal. Usually refers to simulation. 
Event scheduling: The process of scheduling of signal values to occur at some 
simulated time. 
Excitation function: A Boolean function that specifies logic that directs state 
transitions in a state machine. 
Exit condition: An expression that specifies a condition under which a loop should be 
terminated. 
FLEX 10K and FLEX 10KA: An Altera device family based on Flexible Logic 
Element Matrix architecture. This SRAM-based family offers high-performance, 
register-intensive, high-gate-count devices with embedded arrays. The Cyclone 10K 
device family includes the EPF 1 OK1 00, EPF 1 OKi'O, EPF 1 OKSO, EPF 1 OK40, 
EPFlOK30, EPFI OK20, and EPFI OK10 devices. The FPGA used on the UP 2 board. 
Fan-out: The number of output signals that can be driven by the output of a logic cell. 
Fast Track interconnect: Dedicated connection paths that span the entire width and 
height of a Cyclone device. These connection paths allow the signals to travel between 
all LABS in device. 
Field name: An identifier that provides access to one element of a record data type. 
File type: A data type used to represent an arbitrary-length sequence of values of a 
given type. 
For loop: A VHDL loop construct in which an iteration scheme is a for statement. 
Finite state machine: The model of a sequential circuit that cycles through a 
predefined sequence of states. 
Fitting: Process of making a design fit into a specific FPGA architecture. Fitting 
involves technology mapping, placement, optimization, and partitioning among other 
operations. 
Flash: A non-volatile memory technology that also can be programmed in-circuit. 
Flip-flop: An edge-sensitive memory device (cell) that stores a single bit of data. 
Floorplan: Physical arrangement of functions within a connection framework of 
signal routing channels. 
FPGA: Acronym for field programmable gate array. A regular array of logic cells that 
is either functionally complete or universal with an interconnection network of signal 
routing channels. 
FPLD: Acronym for field programmable logic device. An integrated circuit used for 
implementing digital hardware that allows the end user to configure the chip to realize 
different designs. Configuring such a device is done using either a special 
programming unit or by doing it " in system". FLPDs include both CPLDs and 
FPGAs. 
Functional simulation: A simulation mode that simulates the logical performance of 
a project without timing information. 
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Functional test vector: The input stimulus used during simulation to verity a VHDL 
model operates functionally as intended. 
Functionally complete: Property of some Boolean logic functions permitting them to 
make any logic function by using only that function. The properties include making 
the AND function with an invert or the OR function with an invert or the OR function 
with an invert. 
Fuse: A metallic interconnect point that can be electrically changed from short circuit 
to an open circuit by applying electrical current. 
Gate: An electronic structure, built from transistors that performs a basic logic 
function. 
Gate array: Array of transistors interconnected to form gates. The gates in turn are 
configured to form larger functions. 
Gated clock: A clock configuration in which the output of an AND or OR gate drives 
a clock. 
Generic: A parameter passed to a VHDL entity, component or block that describes 
additional, instance-specific information about that entity, component or block. 
Glitch or spike: A narrow output pulse that occurs when a logic level changes two or 
more times over a short period. 
Global signal: A signal from a dedicated input pin that does not pass through the 
logic array before performing its specified function. Clock, Preset, Clear, and Output 
Enable signals can be global signals. 
GND: A Low-level input voltage. It is the default inactive node value. 
Graphic Design File (.gdf): A schematic design file (with the extension .gdf) created 
with the MAX+PLUS I1 Graphic Editor. 
HDL: Acronym for Hardware Description Language. A special language used to 
describe digital hardware. 
Hexadecimal: The base 16 number system (radix). Hexadecimal digits are 0 through 9 
and A through F. 
Hierarchy: The structure of a design description, expressed as a tree of related 
components. 
Identifier: A sequence of characters that uniquely identify a named entity in a design 
description. 
Index: A scalar value that specifies an element or range of elements within an array. 
Input vectors: Time-ordered binary numbers representing input values sequences to a 
simulation program. 
110 cell register: A register on the periphery of a Cyclone 8000 device or a fast input- 
type logic cell that is associated with an 110 pin. 
IP core: An intellectual property (IP) core is a previously developed synthesizable 
hardware design that provides a widely used function. Commercially licensed IP cores 
include functions such as microprocessors, microcontrollers, bus interfaces, 
multimedia and DSP operations, and communications controllers. 
LAB: Acronym for Logic Array Block. The LAB is the basic building block of the 
Altera MAX family. Each LAB contains at least one macrocell, an VO block, and an 
expander product term array. 
Latch: A level-sensitive clocked memory device (cell) that stores a single bit of data. 
A High to low transition on the Latch Enable signal fixes the contents of the latch at 
the value of the data input until the next Low-to-High transition on Latch Enable. 
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Latch enable: A level-sensitive signal that controls a latch. When it is High, the input 
flows through the output; when it is Low, the output holds its last value. 
Library: In VHDL a library statement is used to store analyzed design units. 
Literal: A value that can be applied to an object to some type. 
Logic Synthesizer: The Compiler module that uses several algorithms to minimize 
gate count, remove redundant logic, and utilize the device architecture as efficiently as 
possible. Processing can be customized with logic options and logic synthesis style 
assignments. This module also applies logic synthesis techniques to help implement 
timing requirements for a project. 
Least Significant Bit (LSB): The bit of a binary number that contributes the smallest 
quantity to the value of that number, i.e., the last member in a bus or group name. For 
example, the LSB for a bus or group named a[3 1 ..0] is a[O] (or aO). 
Logic Cell (LC): The generic term for a basic building block of an Altera device. In 
MAX devices, a logic cell (also called a macrocell) consists of two parts: 
combinatorial logic and a configurable register. The combinatorial logic allows a wide 
variety of logic functions. In Cyclone and FLEX devices, a logic cell (also called a 
logic element) consists of a look-up table (LUT) and a programmable register to 
support sequential functions. 
Logic element: A basic building block of an Altera Cyclone device. It consists of a 
look-up table i.e., a function generator that quickly computes any function of four 
variables, and a programmable flip-flop to support sequential functions. 
LPM: Acronym for library of Parameterized Modules. Denotes Altera's library of 
design units that contain one or more changeable parts, and parameters that are used to 
customize a design unit as the application requires. 
Macro: When used with FPGAs, a logic cell configuration that can be repeated as 
needed. It can be a Hard or a Soft macro. Hard macros force predefined place and 
route rules between logic cells. 
Macrocell: In FPGAs, a portion of the FPGA that is smallest indivisible building 
block. In MAX devices it consists of two parts: combinatorial logic and a configurable 
register. 
MAX: Acronym for Multiple Array Matrix, which is an Altera product family. It is 
usually considered to be a CPLD. 
MAX+PLUS 11: Acronym for multiple array matrix programmable logic user system 
11. An older set of computer aided design (CAD) tools that allow design and 
implementation of custom logic circuits with Altera's MAX and Flex FPGA devices. 
Memory Initialization File (.mif): An ASCII file (with the extension .mi0 used by 
Quartus I1 to specify the initial content of a memory block (RAM or ROM), i.e., the 
initial data values for each memory address. This file is used during project 
compilation andlor simulation. 
Mealy state machine: A type of state machine in which the outputs are a function of 
the inputs and the current state. 
Microblaze: A soft core RISC processor supported on Xilinx FPGAs. 
Moore state machine: A state machine in which the present state depends only on its 
previous input and previous state, and the present output depends only on the present 
state. In general Moore states machines have more states than a Mealy machine. 
Most Significant Bit (MSB): The bit of a binary number that contributes the greatest 
quantity to the value of that number, and the first member in a bus or group name. For 
example, the MSB for a bus named a[31..0] is a[31]. 



Rapid Prototyping of Digital Systems Glossary 

Mode: A direction of signal (either in, out, inout or buffer) used as subprogram 
parameter or port. 
Model: A representation that behaves similarly to the operation of some digital 
circuit. 
MPLD: Acronym for Mask Programmed Logic Device. 
Netlist: A text file that describes a logic design. Minimal requirements are 
identification of function elements, inputs, outputs, and connections. 
Netist synthesis: Process of deriving a netlist from an abstract representation, usually 
from a hardware description language. 
Nios: A soft core RISC processor supported on Altera FPGAs. 
NRE: Acronym for Non-Recurring Engineering expense. It reefers to one-time charge 
covering the use of design facilities, masks and overhead for test development of 
ASICs. 
Object: A named entity of a specific type that can be assigned a value. Object in 
VHDL include signals, constants, variables and files. 
Octal: The base 8 number system (radix). Octal digits are 0 though 7. 
One Hot Encoding: A design technique used more with FPGAs than CPLDs. Only 
one flip-flop output is active at any time. One flip-flop per state is  used. State outputs 
do not need to be decoded and they are hazard free. 
Package: A collection of commonly used VHDL constructs that can be shared by 
more than one design unit. 
PAL: Acronym for programmable array logic. A relatively small FPLD containing a 
programmable AND plane followed by a fixed-OR plane. 
Parameter: An object or literal passed into a subprogram via that subprogram's 
parameter list. 
Partitioning: Setting boundaries between subsections of a system or between multiple 
FPGA devices. 
Physical types: A data type used to represent measurements. 
Pin Number: A number used to assign an input or output signal in a design file, 
which corresponds to the pin number on an actual device. 
PLA: (programmable logic array) a relatively small FPLD that contains two levels of 
programmable logic-an AND plane and an OR plane. 
PLL: (phase locked loop) a device that can be used to multiply and divide clock 
signals and adjust the phase delay. 
Placement: Physical assignment of a logical function to a specific location within an 
FPGA. Once the logic function is placed, its interconnection is made by routing. 
PLD: Acronym for programmable logic device. This class of devices is comprised of 
PALS, PLAs, FPGAs, and CPLDs. 
Port: A symbolic name that represents an input or output of a primitive or of a 
macrofunction design file. 
Primitive: One of the basic functional blocks used to design circuits with Quartus I1 
software. Primitives include buffers, flip-flops, latch, logical operators, ports, etc. 
Process: A basic VHDL concurrent statement represented by a collection of 
sequential statements that are executed whenever there is an event on any signal that 
appears in the process sensitivity list, or whenever an event occurs that satisfies 
condition of a wait statement within the process. 
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Product Term: Two or more factors in a Boolean expression combined with an AND 
operator constitute a product term, where "product" means "logic product." 
Programmable switch: A user programmable switch that can connect a logic element 
or inputloutput element to an interconnect wire or one interconnect wire to another. 
Project: A project consists of all files that are associated with a particular design, 
including all subdesign files and ancillary files created by the user or by Quartus I1 
software. The project name is the same as the name of the top-level design file without 
an extension. 
Propagation delay: The time required for any signal transition to travel between pins 
and/or nodes in a device. 
Radix: A number base. Group logic level and numerical values are entered and 
displayed in binary, decimal, hexadecimal, or octal radix in Quartus 11. 
Reset: An active-high input signal that asynchronously resets the output of a register 
to a logic Low (0) or a state machine to its initial state, regardless of other inputs. 
Range: A subset of the possible values of a scalar type. 
Register: A memory device that contains several latches or flip-flops that are clocked 
from the same clock signal. 
Resource: A resource is a portion of a device that performs a specific, user-defined 
task (e.g., pins, logic cells, interconnection network). 
Retargetting: A process of translating a design from one FPGA or other technology 
to another. Retargetting involves technology-mapping optimization. 
Reset: An active-high input signal that asynchronously resets the output of a register 
to a logic Low (0) or a state machine to its initial state, regardless of other inputs. 
Ripple Clock: A clocking scheme in which the Q output of one flip-flop drives the 
Clock input to another flip-flop. Ripple clocks can cause timing problems in complex 
designs. 
RTL: Acronym for Register Transfer Level. The model of circuit described in VHDL 
that infers memory devices to store results of processing or data transfers. Sometimes 
it is referred to as a dataflow-style model. 
Scalar: A data type that has a distinct order of its values, allowing two objects or 
literals of that type to be compared using relational operators. 
Semicustom: General category of integrated circuits that can be configured directly 
by the user of an IC. It includes gate arrays and FPGA devices. 

Signal: In VHDL a data object that has a current value and scheduled future values at 
simulation times. In RTL models signals denote direct hardware connections. 
Simulation: Process of modeling a logical design and its stimuli in which the 
simulator calculates output signal values. 
Slew rate: Time rate of change of voltage. Some FPGAs permit a fast or slow slew 
rate to be programmed for an output pin. 
Slice: A one-dimensional, contiguous array created as a result of constraining a larger 
one-dimensional array. 

SOPC: Acronym for System On-a Programmable Chip. SOPC systems contain a hard 
or soft core processor in the FPGA in addition to other user logic. 
Speed performance: The maximum speed of a circuit implemented in an FPGA. It is 
set by the longest delay through any for combinational circuits, and by maximum 
clock frequency at which the circuit operates properly for sequential circuits. 
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State transition diagram: A graphical representation of the operation of a finite state 
machine using directed graphs. 
State: A state is implemented in a device as a pattern of 1's and 0's (bits) that are the 
outputs of multiple flip-flops (collectively called a state machine state register). 
Structural-type architecture: The level at which VHDL describes a circuit as an 
arrangement of interconnected components. 
Subprogram: A function or procedure. It can be declared globally or locally. 
Sum-of-products: A Boolean expression is said to be in sum-of-products form if it 
consists of product terms combined with the OR operator. 
Synthesis: The process of converting the model of a design described in VHDL from 
one level of abstraction to another, lower and more detailed level that can be 
implemented in hardware. 
Test bench: A VHDL model used to verify the correct behavior of another VHDL 
model, commonly known as the unit under test. 
Tri-state Buffer: A buffer with an input, output, and controlling Output Enable 
signal. If the Output Enable input is High, the output signal equals the input. If the 
Output Enable input is Low, the output signal is in a state of high impedance. Tri-state 
outputs can be tied together but only one should ever be enabled at any given time. 
Timing Simulation: A simulation that includes the actual device delay times. 
Two's Complement: A system of representing binary numbers in which the negative 
of a number is equal to its logic inverse plus 1. In VHDL, you must declare a two's 
complement binary number with a signed data type or use the signed library. 

Type: A declared name and its corresponding set of declared values representing the 
possible values the type. 
Type declaration: A VHDL declaration statement that creates a new data type. A type 
declaration must include a type name and a description of the entire set of possible 
values for that type. 
Universal logic cell: A logic cell capable of forming any combinational logic function 
of the number of inputs to the cell. RAM, ROM and multiplexers have been used to 
form universal logic cells. Sometimes they are also called look-up tables or function 
generators. 
Usable gates: Term used to denote the fact that not all gates on an FPGA may be 
accessible and used for application purposes. 
Variable: In VHDL, a data object that has only current value that can be changed in 
variable assignment statement. 
Verilog: An HDL with features similar to VHDL with a syntax reminiscent of C. 
VCC: A high-level input voltage represented as a High (1) logic level in binary group 
values. 
VHDL: Acronym for VHSIC (Very High Speed Integrated Circuits) Hardware 
Description Language. VHDL is used to describe function, interconnect and modeling. 
VITAL: Acronym for VHDL Initiative Toward ASIC Libraries. An industry-standard 
format for VHDL simulation libraries. 
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Altera Cyclone Architecture, 50 
Embedded memory blocks, 50 
Input output elements (IOEs), 52 
logic army block (LAB), 52 
Logic elements, 50 
PLLS, 50 

Altera FLEX 10K70 CPLD, 48 
Altera MAX 7000s Architecture, 48 
ALTSYNCRAM, 104,123 
antifuse, 58 
application specific integrated circuits (ASICs), 44 
arithmetic logic unit (ALU), 99, 120 
ASCII, 355 

case statement, 91, 114 
cathode ray tube (CRT), 168 
clock edge, 94,117 
clocking in VHDL, 94, 117 
color in video display, 168 
complex programmable logic devices (CPLDs), 44 
component, 106 
computer aided design (CAD) tools, 55, 56 
concurrent assignment statement, 91 
conv-integer, 89 
conv~std~logic~vector, 89 

digital oscilloscope, 67 
dithering, 183 

electric train 
direction, 132 
example controller, 134 
I10 summary, 134 
sensors, 133 
simulation, 140 
switches, 133 
track power, I32 
video output, 142 

electrically erasable programmable read only memory 
(EEPROM), 48 

EPCSI, 357 
EPCS4,357 

field programmable gate arrays (FPGAs), 44 
field programmable logic devices (FPLDs) 

applications, 57 
floating point hardware, 101,122 
for loop, 268 

gate arrays, 44 
global clock buffer lines, 47, 52 

hardware emulator, 57 
H-bridge, 245 

I'C Bus Interface, 21 1 
if statement, 93, 116 

keyboard. See PSI2 keyboard 

logic element (LE), 47 
look-up table (LUT), 50 
LPM-DIV, 100,121 
LPM-MULT, 100,121 
LPM-RAM-DQ, 104,123 
LPM-ROM, 177 

macrocell, 49 
metastability, 47 
MicroBlaze, 282 
MIPS, 256 

control, 263 
decode, 268 
dmemory, 272 
execute, 270 
execution on UP 1,274 
hardware implementation, 257 
ifetch, 265 
instruction formats, 256 
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instructions, 257 
pipelined implementation, 258 
simulation, 273 
top-spim, 260 
VHDL synthesis model, 259 

mouse. See PSI2 mouse 
multiply and divide hardware, 100, 12 1 

Nios, 282 
Nios Hardware, 324 
Nios I1 IDE Sohare ,  296 
Nios I1 Processor, 327 

Flash, 334 
Interval Timer, 330 
JTAG UART, 329 
LCD, 335 
Parallel I/O,33 1 
pin assignments, 324 
SDRAM, 332 
SDRAM PLL, 338 
SRAM, 334 
UART, 329 
UP 3 External Bus Multiplexer, 339 

Nios I1 Software 
Flash, 312 
Handling Interrupts, 306 
LCD Display, 308 
Parallel 110,307 
Peripherals, 298 
SRAM, 31 1 
timer, 299 

Nios I1 System Library, 297 
Nios Software, 294 

open collector, 227 
open drain, 227 

Parallel I10 Interface, 206 
pin grid array package (PGA), 48 
pixels, 168 
plastic J-lead chip carrier (PLCC), 48 
plastic quad flat pack (PQFP), 48 
port map, 107 
process, 90 
process sensitivity list, 91, 94, 117 
processor fetch, decode and execute cycle, 150 
programmable array logic (PALS), 45 
programmable interconnect array (PIA), 49 
programmable logic, 44 
programmable logic arrays (PLAs), 45 

programmable logic devices, (PLDs), 45 
PSI2 keyboard, 188 

communications protocol, 190 
connections, 188 
make and break codes, 189 
scan codes, 189 
VHDL example, 195 

PSI2 mouse, I98 
commands and messages, 198 
data packet format, 199 
data packet processing, 201 
example design, 202 
initialization, 200 

Quartus I1 
assigning a device, 8 
assigning pins, 10 
buses, 65 
compilation, 13 
connecting signal lines, 11 
entering pin names, 1 1 
errors and warnings, 13 
file extensions, 347 
floorplan editor, 28 
graphic editor, 7 
hierarchy, 63 
Quartus settings file (*.qsf), 12,23,26 
report file (*.rpt), 13 
schematic capture. See graphic editor 
simulation, 14 
simulation test vectors or stimulus, 14 
simulaton vector file (*.vet), 140 
symbol editor, 30 
symbol entry, 9 
timing analysis, 27,66 
tutorial, 2,62 
waveform editor file ( * s f ) ,  14 

radio-controlled (RIC) car, 242 
reconfigurable computing, 57 
reduced instruction set computer (RISC), 256 
refresh. See VGA video display refiesh 
robot, 216 

assembly, 233 
battery, 237 
battery charger, 238 
communication, 223 
electronic compass, 229 
expansion header, 241 
GPS and DGPS receivers, 231 
gyros and accelerometers, 229 
infrared poximity detector, 221 
IR ranging, 225 
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line tracker sensor, 22 I 
magnetic compass, 228,232 
modifying servos, 217 
parts list, 237 
sensors, 220 
servo drive motors, 216 
solid state cameras, 232 
sonar, 225 
thermal image sensors, 231 
VHDL servo driver, 2 18 
wheel encoder, 224 

RS-232C Serial 110 Interface, 207 
run length encoding (RLE), 182 

W3-bot. See robot 
W3core, 74 
W3core library, 74 

char-ROM, 82 
clk-div, 69,79 
debounce, 68,77 
dec_7seg, 76 
installation, 62 
keyboard, 83,195 
mouse, 84,200 
onepulse, 78 
tutorial, 63 
vga-sync, 80,172 

seven segment decoder, 91,114 
shiA operation in VHDL, 100 
SOPC, 282 
SOPC Builder, 325 
SPI Bus Interface, 209 
SR latch, 68 
standard cells, 44 

testbench, I07 
to-stdlogicvector, 89 
train. See electric train 
hi-state, 49, 94, 116,227,366 

UART, 207 
unit under test (UUT), 107 
UP 2,3 

attaching power, 18 
downloading, 18 

UP 3,5,36 
attaching power, 15 
Cyclone device, 38 
downloading, 17 
FPGA 110 pins, 37,38,40,240 
jumper setup, 36 
LEDs, 6 
longer cable, 41 
other devices, 38 
Pin Assignments, 349 
power supplies, 41 
Programming Flash, 357 
pushbutton contact bounce, 68 
pushbuttons, 5 

UP3 computer, I48 
fetch, decode, and execute, 150 
instructions, 149 
VHDL model, 157 

Verilog 
always statement, 114 
compilation, 26 
continuous assignment statement, 25 
data types, 1 12 
errors and warnings, 27 
hierarchy in models, 125 
inferred latches, 1 18 
operators, 1 13 
regtype, 112 
shift operations, 1 13 
structural model, 125 
synthesis of a counter, 11 8 
synthesis of a multiplexer, 115 
synthesis of a state machine, 119 
synthesis of a tri-state output, 116 
synthesis of an adder, 120 
synthesis of an ALU, 120 
synthesis of an inmmenter, 11 8 
synthesis of an subtractor, 120 
synthesis of digital hardware, 1 12 
synthesis of flip-flops and registers, 1 17 
synthesis of gate networks, 114 
synthesis of memory, 122 
synthesis of multiply and divide hardware, 121 
synthesis of seven segment decoder, 1 14 
tutorial, 24 
wire statement, 114 
wire types, 1 12 

VGA video display, 168 
bouncing ball example, 183 
character based, 176 
character font ROM, 178,185 
color mixing using dithering, 183 
data compression, 182 
generation using an FPGA, 171 
graphics display, 18 1 
horizontal sync, 168 
pin assignments, 174 
refresh, 168 
RGB signals, 168 
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using a final output register, 174 
vertical sync, 168 
video examples, 175 

VHDL 
Architecture body, 22 
compilation, 23 
conversion of data types, 90 
data types, 88 
editor syntax coloring, 21,25 
Entity, 2 1,24 
errors and warnings, 24 
hierarchy in models, 105 
inferred latches, 96 
libraries, 88,96 
operators, 89 
shift operations, 89 
standard logic (STD-LOGIC), 88 
structural model, 105 
synthesis of a counter, 96 
synthesis of a multiplexer, 93 
synthesis of a state machine, 97 
synthesis of a tri-state output, 94 
synthesis of an adder, 99 
synthesis of an ALU, 99 
synthesis of an incrementer, 96 

synthesis of an subtractor, 99 
synthesis of digital hardware, 90 
synthesis of flip-flops and registers, 94 
synthesis of gate networks, 90 
synthesis of memory, 101 
synthesis of multiply and divide hardware, 100 
synthesis of seven segment decoder, 91 
train state machine, 138 
tutorial, 20 
using templates for entry, 21,24 

video display. See VGA video display 

wait statement, 95 
wired-AND, 227 
with statement, 93 

Xilinx 4000 Architecture, 53 
configurable logic block (CLB), 53 
Input output blocks (IOBs), 55 

Xilinx Virtex, 58 
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About the Accompanying CD-ROM 

Rapid Prototyping of Digital Systems, Quartus I1 Edition, includes a CD-ROM that contains Altera's 
QUARTUS I1 5.0 SPl Web Edition, Nios I1 IDE, SOPC Builder, and source code for all of the text's 
example VHDL, Verilog, Nios I1 SOPC reference designs, and Nios C/C++ example programs. 

QUARTUS@ II Software 
The free ~uar tus@II  5.0 SPI Web Edition software includes everything you need todesign 
for Altera's low-cost FPGA and CPLD families. Features include: 

0 Schematic- and text-based design entry 
Integrated VHDL and Verilog HDL logic synthesis and simulation 
SOPC Builder system generation software for the Nios I1 Processor 
C/C++ Compiler and debugger for Nios I1 Processor systems 
Place-and-route, verification, and FPGA programming functions 
Timing Optimization Advisor 
Resource Optimization Advisor 

Installing the QUARTUS@ II Software 

Insert the textbook's CD-ROM in your CD-ROM drive. Browse the file, index.html, on the CD-ROM 
using a web browser for complete step by step instructions. Click on the link to the book's website at the 
end of the index.htm1 file to check for new software updates and any errata. 

Source Code for Design Examples from the Book 
Browse the file, index.html, on the CD-ROM using a web browser for complete step by step instructions. 
Design examples from the book are located in the booksoft.zip file, in subdirectories \chapx, where x is the 
chapter number. To use the design files, unzip them to the hard disk drive to your project directory or a 
subdirectory. In addition to *.bdf, *.vhd, *.v, and *.mif design files, be sure to copy any *.qpf, *.qsf, or 
*.qws files for each Quartus project. If you want to download a demo file, be sure to copy the *.sof device 
programming file. For Nios projects copy the entire project directory including subdirectories. The 
UP3core library files are in \chap% In each \chapx directory, the subdirectory \UP2 contains files already 
setup for UP 2 board users. For users with the larger 1C12 UP 3, use the subdirectory \1C12. 

Users switching existing projects from the original UP 3 1C6 board to the larger UP 3 1C12 board will 
need to change the device type to an EPlC12Q240C8 and change a few pin assignments on each CD- 
ROM design and recompile when moving a project from a lC6 board to a larger 1C12 board - See 
Sections 1.1,2.3 and Appendix C. 

This CD-ROM is distributed by Springer Science+Business Media, Inc. with *ABSOLUTELY NO SUPPORT* and 
*NO WARRANTY* from Springer Springer Science+Business Media, Inc. Springer Springer Science+Business 
Media, Inc. and the authors shall not be liable for damages in connection with, or arising out of, the furnishing, 
performance or use of the CD-ROM. 




