
R A P I D P R O
O F D I G I T A L

T O T Y P I N G
S Y S T E M S

Q U A R T U S @ I1 E D !

www.ebook3000.com

http://www.ebook3000.org

O F D I G I T A L S Y S T E M S
Q U A R T U S @ I1 E D I T I O N

a - Springer

www.ebook3000.com

http://www.ebook3000.org

James O. Hamblen Tyson S. Hall
Georgia Institute of Technology Southern Adventist University
School of Electrical & Computer Engin. School of Computing
777 Atlantic Drive, N.W. 481 Taylor Circle
Atlanta, GA 30332-0250 Collegedale, TN 37315-0370

Michael D. Furman
University of Florida
Dept. Biomedical Engineering
141 BME Building
Gainesville, FL 32611-6131

Hamblen, James O., 1954-
Rapid prototyping of digital systems / James O. Hamblen, Tyson S. Hall, Michael D.

Furman.-- Quartus II ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-387-27728-5 (alk. paper) - ISBN 0-387-28965-8 (e-book)
1. Field programmable gate arrays—Computer-aided design. 2. Logic design. 3. VHDL

(Computer hardware description language) 4. Verilog (Computer hardware description
Language) 5. Rapid prototyping. I. Hall, Tyson S. II. Furman, Michael D. III. Title.

TK7895.G36H36 2005
621.39'5-dc22

2005051723

© Copyright 2006 Springer Science+Busincss Media, Inc.
All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher. This work may not be translated or copied in whole or in
part without the written permission of the publisher (Springer Science+Busincss Media, Inc., 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews
or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now know or hereafter
developed is forbidden. The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as
to whether or not they are subject to proprietary rights

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising out of,
the furnishing, performance, or use of these programs

This CD-ROM is distributed by Springer Science+Business Media, Inc. with *ABSOLUTELY NO
SUPPORT* and *N0 WARRANTY* from Springer Science+Business Media, Inc. Springer
Science+Business Media, Inc. and the authors shall not be liable for damages in connection with, or
arising out of, the fiimishing, performance or use of the CD-ROM and its software.

Cover Artwork Image Caffiene© 1995-2004 courtesy of Michael Davidson, Florida State University,
http://micro.magnct.fsu.edu/chipshots. Altera, Byteblaster*, Cyclone, MAX, APEX, ACEX and QUARTUS
are registered trademarks of Altera Corporation. XC4000 and Virtex are registered trademarks of Xilinx, Inc.
MIPS is a registered trademark of MIPS Technologies, Inc. Plexiglas is a registered trademark of Rohn and
Hass Company. This publication includes images from Corel Draw which are protected by the copyright
laws of the U.S., Canada and elsewhere. Used under license.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11054474
springeronline.com

www.ebook3000.com

http://micro.magnct.fsu.edu/chipshots
http://springeronline.com
http://www.ebook3000.org

R A P I D P R O T O T Y P I N G
O F D I G I T A L S Y S T E M S

E D I T I O N

Table of Contents

1 Tutorial I: The 15 Minute Design 2
1.1 Design Entry using the Graphic Editor 7

1.2 Compiling the Design 13

1.3 Simulation of the Design 14

1.4 Downloading Your Design to the UP 3 Board 15

1.5 Downloading Your Design to the UP 2 Board 18

1.6 The 10 Minute VHDL Entry Tutorial 20

1.7 Compiling the VHDL Design 23

1.8 The 10 Minute Verilog Entry Tutorial 24

1.9 Compiling the Verilog Design 26

1.10 Timing Analysis 27

1.1 1 The Floorplan Editor 28

1.12 Symbols and Hierarchy 30

1.13 Functional Simulation 30

1.14 Laboratory Exercises 31

2 The Altera UP 3 Board
2.1 The UP 3 Cyclone FPGA Features 37

2.2 The UP 3 Board's Memory Features 38

2.3 The UP 3 Board's I10 Features 38

2.4 Obtaining a UP 3 Board and Cables 4 1

3 Programmable Logic Technology 44

3.1 CPLDs and FPGAs 47

3.2 Altera MAX 7000s Architecture -A Product Term CPLD Device 48

3.3 Altera Cyclone Architecture - A Look-Up Table FPGA Device 50

3.4 Xilinx 4000 Architecture - A Look-Up Table FPGA Device 53

3.5 Computer Aided Design Tools for Programmable Logic 55

www.ebook3000.com

http://www.ebook3000.org

vi Rapid Prototyping of Digital Systems

3.6 Next Generation FPGA CAD tools 56

3.7 Applications of FPGAs 57

3.8 Features of New Generation FPGAs 57

3.9 For additional information 58

3.10 Laboratory Exercises 58

4 Tutorial 11: Sequential Design and Hierarchy 62
4.1 Install the Tutorial Files and UP3core Library 62

4.2 Open the tutor2 Schematic 63

4.3 Browse the Hierarchy 63

4.4 Using Buses in a Schematic 65

4.5 Testing the Pushbutton Counter and Displays 66

4.6 Testing the Initial Design on the Board 67

4.7 Fixing the Switch Contact Bounce Problem 68

4.8 Testing the Modified Design on the UP 3 Board 69

4.9 Laboratory Exercises 69

5 UP3core Library Functions 74
5.1 UP3core LCD-Display: LCD Panel Character Display 76

5.2 UP3core Debounce: Pushbutton Debounce 77

5.3 UP3core Onepulse: Pushbutton Single Pulse 78

5.4 UP3core Clk-Div: Clock Divider 79

5.5 UP3core VGA-Sync: VGA Video Sync Generation 80

5.6 UP3core Char-ROM: Character Generation ROM 82

5.7 UP3core Keyboard: Read Keyboard Scan Code 83

5.8 UP3core Mouse: Mouse Cursor 84

5.9 For additional information 85

6 Using VHDL for Synthesis of Digital Hardware 88
6.1 VHDL Data Types 88

6.2 VHDL Operators 89

6.3 VHDL Based Synthesis of Digital Hardware 90

6.4 VHDL Synthesis Models of Gate Networks 90

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder 91

6.6 VHDL Synthesis Model of a Multiplexer 93

6.7 VHDL Synthesis Model of Tri-State Output 94

6.8 VHDL Synthesis Models of Flip-flops and Registers 94

www.ebook3000.com

http://www.ebook3000.org

Table of Contents vi i

6.9 Accidental Synthesis of Inferred Latches 96

6.10 VHDL Synthesis Model of a Counter 96

6.1 1 VHDL Synthesis Model of a State Machine 97

6.12 VHDL Synthesis Model of an ALU with an AdderlSubtractor and a Shifter 99

6.13 VHDL Synthesis of Multiply and Divide Hardware 100

6.14 VHDL Synthesis Models for Memory 101

6.15 Hierarchy in VHDL Synthesis Models 105

6.16 Using a Testbench for Verification 107

6.17 For additional information 108

6.18 Laboratory Exercises 108

7 Using Verilog for Synthesis of Digital Hardware 112
7.1 Verilog Data Types 112

7.2 Verilog Based Synthesis of Digital Hardware 112

7.3 Verilog Operators 113

7.4 Verilog Synthesis Models of Gate Networks 114

7.5 Verilog Synthesis Model of a Seven-segment LED Decoder 114

7.6 Verilog Synthesis Model of a Multiplexer 115

7.7 Verilog Synthesis Model of Tri-State Output 116

7.8 Verilog Synthesis Models of Flip-flops and Registers 117

7.9 Accidental Synthesis of Inferred Latches 118

7.10 Verilog Synthesis Model of a Counter 118

7.11 Verilog Synthesis Model of a State Machine 119

7.12 Verilog Synthesis Model of an ALU with an AdderISubtractor and a Shifter - 120

7.13 Verilog Synthesis of Multiply and Divide Hardware 121

7.14 Verilog Synthesis Models for Memory 122

7.15 Hierarchy in Verilog Synthesis Models 125

7.16 For additional information 126

7.17 Laboratory Exercises 126

8 State Machine Design: The Electric Train Controller 130
8.1 The Train Control Problem 130

8.2 Track Power (TI, T2, T3, and T4) 132

8.3 Track Direction @A1-DAO, and DBl-DBO) 132

8.4 Switch Direction (SWI, SW2, and SW3) 133

8.5 Train Sensor Input Signals (Sl, S2, S3, S4, and S5) 133

www.ebook3000.com

http://www.ebook3000.org

viii Rapid Prototyping of Digital Systems

8.6 An Example Controller Design 134

8.7 VHDL Based Example Controller Design 138

8.8 Simulation Vector file for State Machine Simulation 140

8.9 Running the Train Control Simulation 142

8.10 Running the Video Train System (After Successful Simulation) 142

8.1 1 Laboratory Exercises 144

9 A Simple Computer Design: The ,UP 3 148
9.1 Computer Programs and Instructions 149

9.2 The Processor Fetch, Decode and Execute Cycle 150

9.3 VHDL Model of the pP 3 157

9.4 Simulation of the pP3 Computer 161

9.5 Laboratory Exercises 162

10 VGA Video Display Generation 168
10.1 Video Display Technology 168

10.2 Video Refresh 168

10.3 Using an FPGA for VGA Video Signal Generation 171

10.4 A VHDL Sync Generation Example: UP3core VGA-SYNC 172

10.5 Final Output Register for Video Signals 174

10.6 Required Pin Assignments for Video Output 174

10.7 Video Examples 175

10.8 A Character Based Video Design 176

10.9 Character Selection and Fonts 176

10.10 VHDL Character Display Design Examples 179

10.11 A Graphics Memory Design Example 181

10.12 Video Data Compression 182

10.13 Video Color Mixing using Dithering 183

10.14 VHDL Graphics Display Design Example 183

10.15 Higher Video Resolution and Faster Refresh Rates 185

10.16 Laboratory Exercises 185

11 Interfacing to the PS/2 Keyboard and Mouse 188
11.1 PSI2 Port Connections 188

11.2 Keyboard Scan Codes 189

11.3 Make and Break Codes 189

11.4 The PSI2 Serial Data Transmission Protocol 190

www.ebook3000.com

http://www.ebook3000.org

Table of Contents ix

11.5 Scan Code Set 2 for the PSI2 Keyboard 192

11.6 The Keyboard UP3core 194

11.7 A Design Example Using the Keyboard UP3core 197

11.8 Interfacing to the PSR Mouse 198

11.9 The Mouse UP3core 200

11.1 0 Mouse Initialization 200

11.1 1 Mouse Data Packet Processing 201

11.12 An Example Design Using the Mouse UP3core 202

11.13 For Additional Information 202

11.14 Laboratory Exercises 203

12 Legacy Digital Z/O Interfacing Standards 206
12.1 Parallel I10 Interface 206

12.2 RS-232C Serial I10 Interface 207

12.3 SPI Bus Interface 209

12.4 1% Bus Interface 21 1

12.5 For Additional Information 213

12.6 Laboratory Exercises 213

13 UP 3 Robotics Projects 21 6
13.1 The UP3-bot Design 216

13.2 UP3-bot Servo Drive Motors 216

13.3 Modifying the Servos to make Drive Motors 217

13.4 VHDL Servo Driver Code for the UP3-bot 218

13.5 Low-cost Sensors for a UP 3 Robot Project 220

13.6 Assembly of the UP3-bot Body 233

13.7 I10 Connections to the UP 3's Expansion Headers 240

13.8 Robot Projects Based on R/C Toys, Models, and Robot Kits 242

13.9 For Additional Information 248

13.10 Laboratory Exercises 250

14 A RZSC Design: Synthesis of the MIPS Processor Core 256
14.1 The MIPS Instruction Set and Processor 256

14.2 Using VHDL to Synthesize the MIPS Processor Core 259

14.3 The Top-Level Module 260

14.4 The Control Unit 263

14.5 The Instruction Fetch Stage 265

www.ebook3000.com

http://www.ebook3000.org

x Rapid Prototyping of Digital Systems

14.6 The Decode Stage 268

14.7 The Execute Stage 270

14.8 The Data Memory Stage 272

14.9 Simulation of the MIPS Design 273

14.10 MIPS Hardware Implementation on the UP 3 Board 274

14.1 1 For Additional Information 275

14.12 Laboratory Exercises 276

15 Introducing System-on-a-Programmable-Chip 282
Processor Cores 282

SOPC Design Flow 283

Initializing Memory 285

SOPC Design versus Traditional Design Modalities 287

An Example SOPC Design 288

HardwareISoftware Design Alternatives 289

For additional information 289

Laboratory Exercises 290

16 Tutorial 111: Nios I1 Processor Sofhvare Development 294
16.1 Install the UP 3 board files 294

16.2 Starting a Nios I1 Software Project 294

16.3 The Nios I1 IDE Software 296

16.4 Generating the Nios I1 System Library 297

16.5 Software Design with Nios I1 Peripherals 298

16.6 Starting Software Design - main() 301

16.7 Downloading the Nios I1 Hardware and Software Projects 302

16.8 Executing the Software 303

16.9 Starting Software Design for a Peripheral Test Program 303

16.10 Handling Interrupts 306

16.1 1 Accessing Parallel I10 Peripherals 307

16.12 Communicating with the LCD Display 308

16.13 Testing SRAM 311

16.14 Testing Flash Memory 312

16.15 Testing SDRAM 313

16.16 Downloading the Nios I1 Hardware and Software Projects 318

16.17 Executing the Software 319

www.ebook3000.com

http://www.ebook3000.org

Table of Contents xi

16.18 For additional information 320

16.19 Laboratory Exercises 320

1 7 Tutorial I K Nios II Processor Hardware Design 324
17.1 Install the UP 3 board files 324

17.2 Creating a New Project 324

17.3 Starting SOPC Builder 325

17.4 Adding a Nios I1 Processor 327

17.5 Adding UART Peripherals 329

17.6 Adding an Interval Timer Peripheral 330

17.7 Adding Parallel 110 Components 33 1

17.8 Adding a SDRAM Memory Controller 332

17.9 Adding an External Bus 333

17.10 Adding Components to the External Bus 334

17.1 1 Global Processor Settings 335

17.12 Finalizing the Nios I1 Processor 337

17.13 Add the Processor Symbol to the Top-Level Schematic 337

17.14 Create a Phase-Locked Loop Component 338

17.15 Add the UP 3 External Bus Multiplexer Component 339

17.16 Complete the Top-Level Schematic 339

17.17 Design Compilation 339

17.18 Testing the Nios I1 Project 341

17.19 For additional information 341

17.20 Laboratory Exercises 341

Appendix A: Generation of Pseudo Random Binary Sequences 345

Appendix B: Quartus I1 Design and Data File Extensions 347

Appendix C: UP 3 Pin Assignments 349

Appendix D: ASCII Character Code 355

Appendix E: Programming the UP 3 's Flash Memory 357

Glossary 359

Index 367

About the Accompanying CD-ROM 3 71

www.ebook3000.com

http://www.ebook3000.org

Changes to the Quartus Edition

Rapid Prototyping of Digital Systems provides an exciting and challengng
laboratory component for undergraduate digital logic and computer design courses
using FPGAs and CAD tools for simulation and hardware implementation. The
more advanced topics and exercises also make this text useful for upper level
courses in digital logic, programmable logic, and embedded systems. The third
edition now uses Altera's new Quartus I1 CAD tool and includes laboratory projects
for Altera's UP 2 and the new UP 3 FPGA board. Student laboratory projects
provided on the book's CD-ROM include video graphics and text, mouse and
keyboard input, and three computer designs.

Rapid Prototyping of Digital Systems includes four tutorials on the Altera Quartus
I1 and Nios I1 tool environment, an overview of programmable logc, and IP cores
with several easy-to-use input and output functions. These features were developed
to help students get started quickly. Early design examples use schematic capture
and IP cores developed for the Altera UP FPGA boards. VHDL is used for more
complex designs after a short introduction to VHDL-based synthesis. Verilog is
also now supported more as an option for the student projects.

New chapters in this edition provide an overview of System-on-a-Programmable
Chip (SOPC) technology and SOPC design examples for the UP 3 using Altera's
new Nios I1 Processor hardware and C software development tools. A full set of
Altera's FPGA CAD tools is included on the book's CD-ROM.

Intended Audience

This text is intended to provide an exciting and challenging laboratory
component for an undergraduate digital logic design class. The more advanced
topics and exercises are also appropriate for consideration at schools that have
an upper level course in digital logic or programmable logic. There are a
number of excellent texts on digital logic design. For the most part, these texts
do not include or fully integrate modern CAD tools, logic simulation, logic
synthesis using hardware description languages, design hierarchy, and current
generation field programmable gate array (FPGA) technology and SOPC
design. The goal of this text is to introduce these topics in the laboratory
portion of the course. Even student laboratory projects can now implement
entire digital and computer systems with hundreds of thousands of gates.
Over the past eight years, we have developed a number of interesting and
challenging laboratory projects involving serial communications, state
machines with video output, video games and graphics, simple computers,
keyboard and mouse interfaces, robotics, and pipelined RISC processor cores.

xiv Rapid Prototyping of Digital Systems

Source files and additional example files are available on the CD-ROM for all
designs presented in the text. The student version of the PC based CAD tool on
the CD-ROM can be freely distributed to students. Students can purchase their
own UP 3 board for little more than the price of a contemporary textbook. As
an alternative, a few of the low-cost UP 3 boards can be shared among students
in a laboratory. Course instructors should contact the Altera University Program
for detailed information on obtaining full versions of the CAD tools for
laboratory PCs and UP 3 boards for student laboratories.

Topic Selection and Organization

Chapter 1 is a short CAD tool tutorial that covers design entry, simulation, and
hardware implementation using an FPGA. The majority of students can enter
the design, simulate, and have the design successfully running on the UP 3
board in less than thirty minutes. After working through the tutorial and
becoming familiar with the process, similar designs can be accomplished in less
than 10 minutes.
Chapter 2 provides an overview of the UP 3 FPGA development boards. The
features of the board are briefly described. Several tables listing pin
connections of various I10 devices serve as an essential reference whenever a
hardware design is implemented on the UP 3 board.
Chapter3 is an introduction to programmable logic technology. The
capabilities and internal architectures of the most popular CPLDs and FPGAs
are described. These include the Cyclone FPGA used on the UP 3 board, and
the Xilinx 4000 family FPGAs.
Chapter 4 is a short CAD tool tutorial that serves as both a hierarchical and
sequential design example. A counter is clocked by a pushbutton and the output
is displayed in the seven-segment LED'S. The design is downloaded to the UP 3
board and some real world timing issues arising with switch contact bounce are
resolved. It uses several functions from the UP3core library which greatly
simplify use of the UP 3's input and output capabilities.
Chapter 5 describes the available UP3core library I10 functions. The I10
devices include switches, the LCD, a multiple output clock divider, VGA
output, keyboard input, and mouse input.
Chapter 6 is an introduction to the use of VHDL for the synthesis of digital
hardware. Rather than a lengthy description of syntax details, models of the
commonly used digital hardware devices are developed and presented. Most
VHDL textbooks use models developed for simulation only and they frequently
use language features not supported in synthesis tools. Our easy to understand
synthesis examples were developed and tested on FPGAs using the Altera CAD
tools.
Chapter 7 is an introduction to the use of Verilog for the synthesis of digital
hardware. The same hardware designs as Chapter 6 as modeled in Verilog. It is
optional, but is included for those who would like an introduction to Verilog.
Chapter 8 is a state machine design example. The state machine controls a
virtual electric train system simulation with video output generated directly by

Preface xv

the FPGA. Using track sensor input, students must control two trains and three
track switches to avoid collisions.
Chapter 9 develops a model of a simple computer. The fetch, decode, and
execute cycle is introduced and a brief model of the computer is developed
using VHDL. A short assembly language program can be entered in the FPGA's
internal memory and executed in the simulator.
Chapter 10 describes how to design an FPGA-based digital system to output
VGA video. Numerous design examples are presented containing video with
both text and graphics. Fundamental design issues in writing simple video
games and graphics using the UP 3 board are examined.
Chapter 11 describes the PSI2 keyboard and mouse operation and presents
interface examples for integration in designs on the UP 3 board. Keyboard scan
code tables, mouse data packets, commands, status codes, and the serial
communications protocol are included. VHDL code for a keyboard and mouse
interface is also presented.
Chapter 12 describes several of the common I10 standards that are likely to be
encountered in FPGA systems. Parallel, RS232 serial, SPI, and I ~ C standards
and interfacing are discussed.
Chapter 13 develops a design for an adaptable mobile robot using the UP 3
board as the controller. Servo motors and several sensor technologies for a low
cost mobile robot are described. A sample servo driver design is presented.
Commercially available parts to construct the robot described can be obtained
for as little as $60. Several robots can be built for use in the laboratory.
Students with their own UP 3 board may choose to build their own robot
following the detailed instructions found in section 13.6.
Chapter 14 describes a single clock cycle model of the MIPS RISC processor
based on the hardware implementation presented in the widely used Patterson
and Hennessy textbook, Computer Organization and Design The
Hardware/Software Interface. Laboratory exercises that add new instructions,
features, and pipelining are included at the end of the chapter.
Chapters 15, 16, and 17 introduce students to SOPC design using the Nios I1
RISC processor core. Chapter 15 is an overview of the SOPC design approach.
Chapter 16 contains a tutorial for the Nios I1 IDE software development tool
and examples using the Nios I1 C/C++ compiler. Chapter 17 contains a tutorial
on the processor core hardware configuration tool, SOPC builder. A UP 3 board
is required for this new material since it is not supported on the UP 2's FPGA.
We anticipate that many schools will still choose to begin with TTL designs on
a small protoboard for the first few labs. The first chapter can also be started at
this time since only OR and NOT logic functions are used to introduce the
CAD tool environment. The CAD tool can also be used for simulation of TTL
labs, since a TTL parts library is included.
Even though VHDL and Verilog are complex languages, we have found after
several years of experimentation that students can write HDL models to
synthesize hardware designs after a short overview with a few basic hardware
design examples. The use of HDL templates and online help files in the CAD

xvi Rapid Prototyping of Digital Systems

tool makes this process easier. After the initial experience with HDL synthesis,
students dislike the use of schematic capture on larger designs since it can be
very time consuming. Experience in industry has been much the same since
huge productivity gains have been achieved using HDL based synthesis tools
for application specific integrated circuits (ASICs) and FPGAs.
Most digital logic classes include a simple computer design such as the one
presented in Chapter 9 or a RISC processor such as the one presented in
Chapter 14. If this is not covered in the first digital logic course, it could be
used as a lab component for a subsequent computer architecture class.
A typical quarter or semester length course could not cover all of the topics
presented. The material presented in Chapters 7 through 17 can be used on a
selective basis. The keyboard and mouse are supported by UP3core library
functions, and the material presented in Chapter 11 is not required to use these
library functions for keyboard or mouse input. A UP 3 board is required for the
SOPC Nios designs in Chapters 16 and 17.
A video game based on the material in Chapter 10 can serve as the basis for a
team design project. For a final team design project, we use robots with sensors
from chapter 13 that are controlled by the simple computer in chapter 9. Our
students really enjoyed working with the robot described in Chapter 13, and it
presents almost infinite possibilities for an exciting design competition. A more
advanced class could develop projects based on the Nios I1 processor reference
designs in Chpater 16 and 17 using C/C++ code.

Software and Hardware Packages

The new 5.0 SPl web version of Quartus I1 FPGA CAD tool is included with
this book. Software was tested using this version and it is recommended. UP 3
boards are available from Altera at special student pricing. A board can be
shared among several students in a lab, or some students may wish to purchase
their own board. Details and suggestions for additional cables that may be
required for a laboratory setup can be found in Section 2.4. Source files for all
designs presented in the text are available on the CD-ROM.

Additional Web Material and Resources

There is a web site for the text with additional course materials, slides, text
errata, and software updates at:

Acknowledgments

Over three thousand students and several hundred teaching assistants have
contributed to this work during the past eight years. In particular, we would like
to acknowledge Doug McAlister, Michael Sugg, Jurgen Vogel, Greg Ruhl, Eric
Van Heest, Mitch Kispet, and Evan Anderson for their help in testing and
developing several of the laboratory assignments and tools. Mike Phipps, Joe
Hanson, Tawfiq Mossadak, and Eric Shiflet at Altera provided software,
hardware, helpful advice, and encouragement.

Tutorial I:
The 15-Minute Design

I J' Quartus 11 - C:/your-project-directory/orgate - orgate - [Simulation Report]

2 Rapid Prototyping of Digital Systems Chapter 1

1 Tutorial I: The 15 Minute Design

The purpose of this tutorial is to introduce the user to the Altera CAD tools and the
University Program (UP 3 or UP 2) Development Board in the shortest possible time.
The format is an aggressive introduction to schematic, VHDL, and Verilog entry for
those who want to get started quickly. The approach is tutorial and utilizes a path that
is similar to most digital design processes.

Once completed, you will understand and be able to:

Navigate the Altera schematic entry environment,

Compile a VHDL or Verilog design file,

Simulate, debug, and test your designs,

Generate and verify timing characteristics, and

Download and run your design on a UP 3 or UP 2 board.

Figure 1.1 The Altera UP 3 FPGA Development board.

Tutorial I: The 15Minute Design 3

Figure 1.2 The Altera UP 2 FPGA development board.

In this tutorial, an OR function will be demonstrated to provide an introduction
to the Altera Quartus I1 CAD tools. After simulation, the design will then be
used to program a field programmable gate array (FPGA) on a UP 3 or UP 2
development board.

The inputs to the OR logic will be two pushbuttons and the output will be
displayed using a light emitting diode (LED). Both the pushbuttons and the
LED are part of the development board, and no external wiring is required.
Of course, any actual design will be more complex, but the objective here is to
quickly understand the capabilities and flow of the design tools with minimal
effort and time.
More complex designs including computers will be introduced later in this text
after you have become familiar with the development tools and hardware
description languages (HDLs) used in digital designs.

4 Rapid Prototyping of Digital Systems Chapter 1

Tutorial I: The 15-Minute Design 5

Granted, all this may not be accomplished in just 15 minutes; however, the
skills acquired from this demonstration tutorial will enable the first-time user
to duplicate similar designs in less time than that!

. ..THE QUARTUS n WEB VERSION SOFTWARE USING THE CD-ROM AND OBTAIN I

WEB UCBNSB FILE FROM ALl'ERA. CHECK FQRALTERAQCIA~~TUS XI WEB VERSION
iE UPDATES AT

Designs can be entered via schematic capture or by using a HDL such as
VHDL or Verilog. It is also possible to combine blocks with different entry
methods into a single design. As seen in Figure 1.3, tools can then be used to
simulate, calculate timing delays, synthesize logic, and program a hardware
implementation of the design on an FPGA.

The Board

The board that will be used is the Altera UP 3. Although the following tutorial
can be done with either the UP 3 or a UP 2, some modifications (mainly device
and pin number assignments) will be needed for the UP 2.

The Pushbuttons

The UP 3's two pushbutton switch inputs, PB1 and PB2, are connected to pins
62 (labeled SW7 on board) and 48 (labeled SW4 on board). On the UP 2, PBl
and PB2 are connected directly to the FLEX FPGA chip at pins 28 and 29
respectively. Each pushbutton input is tied High with a pull-up resistor and
pulled Low when the respective pushbutton is pressed. One needs to remember
that when using the on-board pushbuttons, this "active low" condition ties zero
volts to the input when the button is pressed and the V,, high supply to the
input when not pressed. See Figure 1.4. V,, is 3.3V on the UP 3 and 5V on the
UP 2. As seen in Figure 1.4, on the UP 2 board a logic "0" turns on the LED.

dcc (Gnd on U P 3)

I /2f
LED

Figure 1.4 Connections between the pushbuttons, the LEDs, and the Altera FPGA.

6 Rapid Prototyping of Digital Systems Chapter 1

The LED Outputs

The UP 3 has four discrete LEDs located on the lower left side of the board.
On the UP 3 board, the LED in Figure 1.4 is reversed and connected to ground
so that a logic "1" on the FPGA's output pin turns on the LED and a logic "0"
turns off the LED.

The Problem Definition

To illustrate the capabilities of the software in the simplest terms, we will be
building a circuit that turns off the LED when one OR the other pushbutton is
pushed. In a simple logic equation, one could write:

LED-OFF = PB1-HIT + PB2-HIT

At first, this may seem too simple; however, the active low inputs and outputs
add just enough complication to illustrate some of the more common errors,
and it provides an opportunity to compare some of the different syntax features
of VHDL and Verilog. (Students needing an exercise in DeMorgan's Law will
also find these exercises particularly enlightening.)
We will first build this circuit with the graphical editor and then implement it
in VHDL and Verilog. As you work through the tutorial, note how the design
entry method is relatively independent of the compile, timing, and simulation
steps.

Resolving the Active Low Signals

Since the pushbuttons generate inverted signals and the LED will require an
inverted or low level logic signal to turn off (UP 3), we could build an OR
logic circuit using the layout in Figure 1.5a. Recalling that a bubble on a gate
input or output indicates inversion, careful examination shows that the two
circuits in Figure 1.5 are functionally equivalent; however, the circuit in Figure
1.5a uses more gates and would take a bit longer to enter in the schematic
editor. We will therefore use the single gate circuit illustrated in Figure 1 Sb.

Figure 1.5a and 1.5b. Equivalent circuits for ORing active low inputs and outputs.

This form of the OR function is known as a "negative-logic OR." If you are
confused, try writing a truth table to show this Boolean equality. (In Exercise 1
at the end of the chapter, this circuit will be compared with its DeMorgan's
equivalent, the "positive-logic AND."). On the UP 2 board, the LED'S output
state will appear inverted since its LED output circuit is inverted, so pushing
one of the UP 2 pushbuttons will turn on the UP 2's LED.

www.ebook3000.com

http://www.ebook3000.org

Tutorial I: The 15-Minute Design 7

Design Entry using the Graphic Editor
Examine the CAD tool overview diagram in Figure 1.3. The initial path in this
section will be from schematic capture (Graphical Entry) to downloading the
design to the UP 3 board. On the way, we will pass through some of the
nuances of the Compiler along with setting up and controlling a simulation.
Later, after having actually tested the design, we will examine the Timing
Analysis information of the design. Although relatively short, each step is
carefully illustrated and explained. Install the Altera Quartus I1 software on
your PC using the book's CD-ROM, if it is not already installed.

New Project Creation

Start the Quartus I1 program. In Quartus 11, the New Project wizard is used to
create a new project. Choose File * New Project Wizard. Click next in the
Introduction window, if it appears to continue. A second dialog box will appear
asking for the working directory for your new project. Enter an appropriate
directory. For the project name and top-level design entity boxes, enter orgate.
Click Next. If you need to create a new project directory with that name, click
Yes. An Add Files dialog box then appears. This page is used to enter all of the
design files (other than the top-level file). Since this simple project will only
use a single top-level design file, click Next.

Figure 1.6 Creating a new Quartus I1 Project.

8 Rapid Prototyping of Digital Systems Chapter 1

Select the Device to be Used

The next dialog box is used to select the FPGA type. If you are using the UP 3
board, select Cyclone family and for the UP 1 or 2 select FLEXlOK. You will
then need to select the specific FPGA on your board. The UP 3 is available
with two different sizes of Cyclone FPGAs: an EPlC6Q240C8 or the larger
EPlC12Q240C8. On the UP 2, it will be a EPFlOK70RC240-X (-X is the
speed grade of the chip). Check the large square chip in the middle of the
board to verify the FPGA part number. The last digit in the FPGA part number
is the speed grade. The correct speed grade is needed for accurate delays in
timing simulations. You may need to change the setting of the Speed Grade
dialog box to Any to display your specific device. Always choose the correct
speed grade to match your board's FPGA.
If you choose the wrong device type, you will have errors when you attempt to
download your design to the FPGA. (In any existing project, it is a good idea
to always verify the correct FPGA setting for your UP board by selecting
Assignments E3 Device in any new design before compiling it for the first
time.)

Figure 1.7 Setting the FPGA Device Type.

Tutorial I: The 15-Minute Design 9

After selecting the correct FPGA part number, click Next on the third-party
EDA tools settings box since we will not be using any third-party EDA tools -
only Quartus 11. Double check the information summary page that appears and
click Finish. In case of problems, use the back option to make changes.

Establishing Graphics (Schematic) as the Input Format

After creating your new project, choose File New, and a popup menu will
appear. Select Block DiagramISchematic File, then click OK. This will create
a blank schematic worksheet - a graphics display file (*.gdf file). Note that the
toolbar options in Quartus I1 are context sensitive and change as different tools
are selected. An empty schematic window with grids will appear named
Block1 .bdf.

Enter and Place the OR Symbol in Your Schematic

Click on the AND gate icon on the left-side toolbar. This selects the symbol
tool. In the symbol library window, click the library path to expand the
options. Find the library named primitives and click on it to expand it. Then
click to expand the logic library. Scroll down the list of logic symbols and
select BNOR2. An OR gate with inverted inputs and outputs should appear in
the symbol window. (The naming convention is B-bubbled NOR with 2 inputs.
Although considered to be a NOR with active low inputs, it is fundamentally
an OR gate with active low inputs and output.) Click OK at the bottom of the
Symbol window.

Figure 1.8 Creating the top-level project schematic design file.

10 Rapid Prototyping of Digital Systems Chapter 1

Select the Blockl.bdf window and the BNOR2 symbol will appear : i ' . . >
in the schematic. Drag the symbol to the middle of the window and
left click to place it. Click on the arrow icon on the left side i
toolbar or hit escape to stop inserting that symbol.

-
T O USE THE ONLINE HELP SYSTEM, CLICK HELP ON THE TOP MENU, SELFCT SEARCH AND
rHEN ENTER BNOR. AT ANY POINT IN THE TUTOIUAL, EXTENSIVE ONLINE HELP IS ALWAYS
VAILABLE. T O SEARCH BY TOPIC OR KEYWORD SELECT THE HELP MENU AND FOLLOW THE

INSTRUCTIONS THERE.

.... " ...
Assigning the Output Pin for Your Schematic : .. pin_- :

Select the AND gate symbol again on the left side toolbar, expand the pin
library, select output, and click OK. Using the mouse and the left mouse
button, drag the output symbol to the right of the BNORZ symbol leaving
space between them - they will be connected later.

Svm bo i

Figure 1.9 Selectine a new svmbol with the Svmbol Tool.

Tutorial I: The 15-Minute Design 11

...
Assigning the Input Pins for Your Schematic

Find and place two pin input symbols to the left of the BNOR2 symbol in the
same way that you just selected and placed the output symbol. (Another hint:
Once selected, a symbol can be copied with Right Click*Copy and pasted
multiple times using the Right Click*Paste function.). Hit the arrow symbol
on the left tool bar and deselect the new symbol by moving the cursor away
and clicking the left mouse button a second time.

Connecting the Signal Lines

Using the mouse, move to the end of one of the wires. A cross-symbol mouse
cursor should appear when the mouse is near a wire. Move to one end of a wire
you need to add and push and hold down the left mouse button. Hold down the
left mouse button and drag the end of the wire to the other point that you want
to connect. Release the left button to connect the wire. If you need to delete a
wire, click on it - the wire should turn blue when selected. Hit the delete key
to remove it. You can also use the Right Click4 Delete function. Connect
the other wires using the same process so that the diagram looks something
like Figure 1.10

Figure 1.10 Active low OR-gate schematic example with I10 pins connected.

Enter the PIN Names

Right click on the first D INPUT symbol. It will be outlined in blue
and a menu will appear. Select Properties. Type PB1 for the pin name and
click OK. Name the other input pin PB2 and the output pin for the LED in a
similar fashion.

12 Rapid Prototyping of Digital Systems Chapter 1

Assign the PIN Numbers to Connect the Pushbuttons and the LED

Since the FPGA chip on the UP 3 or UP 2 board is prewired to the pushbuttons
and the LED, you need to look up the pin numbers and designate them in your
design. The information in Table 1.1 is from the documentation on the pinouts
for the UP 3 and UP 2 board user's manuals. (See Table 2.4.)

Table 1.1 Hardwired connections on the FPGA chips for the design.

110 Device

I PB2

In the main menu, select Assignments C3 Pin. (If the option to select the pin is
unavailable, you need to go back and select Assignments c3 Device, and make
sure that your device is selected correctly.) In the To column, type the name of
the new pin, PB1. In the Location column, just enter 62 in the space provided
(NOTE: pin numbers will be different on the UP 2). The software adds PIN- to
the pin number. Repeat this process assigning PB2 to PIN-48 and LED to
PIN-56. After assigning all three pins and verifying your entries, close the
assignment editor and click Yes to save. Device and pin information is stored
in the project's *.qsf file. Pin names are case sensitive.

UP 3 Pin Number
Connections

62 (SW7)

48 (SW4)
I1 I1

I Quartus II - C:/your-project-directory/orgate - orgate - [A.. . 1, --- ,,UI/N
-

UP 1 & UP 2 Pin o umber

28 (FLEX PBI)

29 (FLEX PB2)

LED

Figure 1.11 Assigning Pins with the Assignment Editor.

Saving Your Schematic

56 (D3)

Select File c3 Save As and your project directory. Name the file ORGATE.
Throughout the remainder of this tutorial you should always refer to the same

14 (7Seg LED DEC. PT.)

Tutorial I: The 15-Minute Design 13

project directory path when saving or opening files. A number of other files are
automatically created by the Quartus I1 tools and maintained in your project
directory.

Set Unused Pins as Inputs

The memory chips on the UP 3 board could all be turned on at the same time
by unused pins on the FPGA, causing their tri-state output drivers to try to
force output data bus bits to different states. This causes high currents, which
can overheat and damage devices after several minutes. To eliminate the
possibility of any damage to the board, the following option should always be
set in a new project. On the menu bar, select Assignments +Device + Device
and Pin Options. Click on the Unused Pins tab and check the As inputs, tri-
stated option. Click OK and then OK in the first window. This setting is saved
in the projects *.qsf file. Any time you create a new project repeat this step.

1.2 Compiling the Design
Compiling your design checks for syntax errors, synthesizes the logic design,
produces timing information for simulation, fits the design on the selected
FPGA, and generates the file required to download the program. After any
changes are made to the design files or pin assignments, the project should
always be re-compiled prior to simulation or downloading.

Compiling your Project

Compile by selecting Processing c3 Start Compilation. The compilation
report window will appear in the Quartus I1 screen and can be used to monitor
the compilation process, view warnings, and errors.

Checking for Compile Warnings and Errors

The project should compile with 0 Errors. If a popup window appears that
states, "Full Compilation was Successful," then you have not made an error.
Info messages will appear in green in the message window. Warnings appear in
blue in the message window and Errors will be red. Errors must be corrected.
If you forget to assign pins, the compiler will select pins based on the best
performance for internal timing and routing. Since the pins for the pushbuttons
and the LED are pre-wired on the UP 3 or UP 2 board, their assignment cannot
be left up to the compiler.

Examining the Report File

After compilation, the compiler window shows a summary of the compiled
design including the FPGA logic and memory resources used by the design.
Select the orgate.bdf schematic window. Use View + Show Pin and Location
Assignments and check the pins to verify the correct pin numbers have been
assigned. If a pin is not assigned you may have a typo somewhere in one of the
pin names or you did not save your pin assignments earlier. You will need to
recompile whenever you change pin assignments.

14 Rapid Prototyping of Digital Systems Chapter 1

You can also check all of the FPGA's pins by going to the compiler report
window with Processing c3 Compilation Report, expanding the Fitter entry,
and clicking on the Pin-out file.

1.3 Simulation of the Design
For complex designs, the project is normally simulated prior to downloading to
a FPGA. Although the OR example is straightforward, we will take you
through the steps to illustrate the simulation of the circuit.

Set Up the Simulation Traces

Choose File c3 New, select the Other Files tab, and then from the popup
window select Vector Waveform File and click OK. A blank waveform
window should be displayed. Right click on the Name column on the left side.
Select Insert Nodes or Bus. Click on the Node Finder and then the LIST
button. PB1, PB2 and LED should appear as trace values in the window. Then
click on the center >> button and click OK and OK again. The signals should
appear in the waveform window.

Generate Test Vectors for Simulation

A simulation requires external input data or "stimulus" data to test the circuit.
Since the PB1 and PB2 input signals have not been set to a value, the
simulator sets them to a default of zero. The 'X' on the LED trace indicates
that the simulator has not yet been run. (If the simulator has been run and you
still get an 'X,' then the simulator was unable to determine the output
condition.)
Right click on PB1. The PBl trace will be highlighted. Select Value E3 Count
Value ..., click on the Timing tab and change the entry for Multiplied By from
1 to 5 and click OK. An alternating pattern of Highs and Lows should appear
in the PBl trace. Right click on PB2. Select Value E3 Count Value ..., click on
the Timing tab and change the entry for Multiplied By from 1 to 10, and click
OK. PB2 should now be an alternating pattern of ones and zeros but at twice
the frequency of PB1. (Other useful options in the Value menu will generate a
clock and set a signal High or Low. It is also possible to highlight a portion of
a signal trace with the mouse and set it High or Low manually.)
When you need a longer simulation time in a waveform, you can change the
default simulation end time using Edit c3 End Time.

Performing the Simulation with Your Timing Diagram

Select File E3 Save and click the Save button to save your project's vector
waveform file. Select Processing Start Simulation and click OK on the
window that appears. The simulation should run and the output waveform for
LED should now appear in the Simulation Report window. You may want to
right click on the timing display and use the Zoom options to adjust the time
scale as seen in Figure 1.12. Note that the simulation includes the actual
timing delays through the device and that it takes almost 10 ns (ns = 10'~ sec.)

Tutorial I: The 15-Minute Design 15

for the delayed output to reflect the new inputs. Taking this LED output delay
into account, examine the Simulation Waveform to verify that the LED output
is Low only when either PB1 OR PB2 inputs are Low.

Figure 1.12 Active low OR-gate timing simulation with time delavs.

1.4 Downloading Your Design to the UP 3 Board

Hooking Up the UP 3 Board to the Computer

If you have a UP 2 board skip to Section 1.5. To try your design on a UP 3
board, plug the ByteblasterTM I1 cable into the UP 3 board's JTAG connector
(innermost of the two connectors on the left side of the board) and attach the
other end to the parallel port on the PC (USB port if you are using a USB
Blaster). If you have not done so already, make sure that the PC's BIOS
settting for the printer port is ECP or EPP mode. Using the 6V AC to DC wall
transformer attach power to the DC power connector (DC-IN) located on the
lower right side of the UP 3 board. Press in the power switch located on the
right edge of the board above the power connector. When properly powered,
two LEDs on the bottom of the UP 3 board near the power connector should
light up.

Preparing for Downloading

After checking to make sure that the cables and jumpers are hooked up
properly, you are ready to download the compiled circuit to the UP 3 board.
Select Tools + Programmer. Click on Hardware Setup, select the proper
hardware, a ByteBlasterII on LPT1. (If a window comes up that displays, "No
Hardware" to the right of the Hardware Setup button, use the Hardware Setup
button to change currently selected hardware from "No Hardware" to
"ByteblasterIIW. If a red JTAG error message appears or the start button is not
working, close down the Programmer window and reopen it. If this still
doesn't correct the problem, then there is something else wrong with the setup
or cable connection. Go back to the beginning of this section and check each
step and connection carefully.)

16 Rapid Prototyping of Digital Systems Chapter 1

Final Steps to Download

The filename orgate.sof should be displayed in the programmer window. The
*.sof file contains the FPGA's configuration (programming) data for your
design. To the right of the filename in the ProgramIConfigure column, check
the ProgramIConfigure box. To start downloading your design to the board,
click on the Start button. Just a few seconds are required to download. If
download is successful, a green info message displays in the system window
notifying you the programming was successful.

Testing Your Design

The locations of PB1, PB2, and the decimal LED are indicated in Figure 1 .l3.
After downloading your program to the UP 3 board, the LED in the lower right
comer should turn off whenever a pushbutton is hit. Since the output of the OR
gate is driving the LED signal, it should be on when no pushbuttons are hit.
Since the buttons are active low, and the BNOR2 gate also has active low
inputs and output, hitting either button should turn off the LED.

Figure 1.13 ALTERA UP 3 board showing Pushbutton and LED locations used in design.

Tutorial I: The 15-Minute Design 17

Congratulations! You have just entered, compiled, simulated, downloaded a
design to a FPGA device, and verified its operation. Since you are using a UP
3 board, you can skip the next section on the UP 2 board and go directly to
Section 1.6.

18 Rapid Prototyping of Digital Systems Chapter 1

1.5 Downloading Your Design to the UP 2 Board

Hooking Up the UP 1 or UP 2 Board to the Computer

To try your design on a UP 1 or UP 2 board, plug the ByteBlaster cable into
the UP board and attach the other end to the parallel port on a PC. If you have
not done so already, make sure that the PC's BIOS settting for the printer port
is ECP or EPP mode. Using a 9V AC to DC wall transformer or another 7 to
9V DC power source, attach power to the DC power connector (DC-IN)
located on the upper left-hand corner of the UP 3 board. When properly
powered, one of the green LEDs on the board should light up.

Chip Select Jumpers, Decimal Point LED-,

FLEX ~ushbuttons'

Figure 1.14 ALTERA UP 2 board with jumper settings and PB 1, PB2, and LED locations.

Verify that the device jumpers are set for the FLEX chip as shown in Table 1.2.
The locations of the pushbuttons, PBl and PB2, and the LED decimal point are
also highlighted in Figure 1.14. (Note that for the MAX EPM7128 chip, the
jumper pins are all set to the top position as indicated in Table 1.2.)

Table 1.2 Jumper settings for downloading to the MAX and FLEX devices.

I MAX ! FLEX I

Tutorial I: The 15-Minute Design 19

Preparing for Downloading

After checking to make sure that the cables and jumpers are hooked up
properly, you are ready to download the compiled circuit to the UP 2 board.
Select Tools r3 Programmer. Click on Hardware Setup, select the proper
hardware, a ByteBlasterII on LPT1. (If a window comes up that displays, "No
Hardware" to the right of the Hardware Setup button, use the Hardware Setup
button to change currently selected hardware from "No Hardware" to
"ByteBlasterII". If a red JTAG error message appears or the start button is not
working, close down the Programmer window and reopen it. If this still
doesn't correct the problem, then there is something else wrong with the setup
or cable connection. Go back to the beginning of this section and check each
step and connection carefully.)

Final Steps to Download

Make sure that the Device Name has changed to EPlOK2O or
EPFlOK20RC240 for the UP 1 or EPFlOK70RC240 for the UP 2 (depending
on the UP board and Quartus I1 version that you are running). Make sure you
have also assigned the pin numbers for a UP 2 board and not the UP 3 (see
Table 1.1). If it does not display the correct device, then return to your
schematic, assign the correct device first and then the pin numbers (See section
1. I.), recompile, and try again. Next, check the ProgramIConfigure box.
The Start button in the programming window should now be highlighted.
Click on the Start button to download to the UP 2 board. Just a few seconds
are required to download. If download is successful, a green info successful
programmer operation message displays in the system window. (If the Start
button is not highlighted, click Hardware Setup from the programmer
window. Confirm the port settings and click OK. If you still have problems
confirm that the printer port BIOS settings use ECP or EPP mode.)

Testing Your Design

The locations of PBl, PB2, and the decimal LED are indicated in Figure 1 . l4 .
On the UP 2, one of the seven-segment LED'S decimal points is used for
monitoring the output.

Figure 1.15 UP 2's FLEX FPGA pin connection to seven-segment display decimal point.

All of these LEDs are pre-wired to the FPGA chip with a pull-up resistor as
illustrated earlier in Figure 1.4. This configuration allows the external resistor

20 Rapid Prototyping of Digital Systems Chapter 1

to control the amount of current through the LED; however, it also requires the
FPGA chip to output a Low signal to turn on the LED. (Students regularly
forget this point and have a fully working project with an inverted pattern on
the LEDs.). Vcc is 5V on the UP2.
Figure 1.15 shows the UP 2's Flex FPGA pin number 14 hard wired to the
seven-segment LED'S decimal point. On the UP 2, in this tutorial, only the
decimal point will be used for output.
After downloading your program to the UP 2 board, locate the two rightmost
seven-segment displays. Since the output of the BNOR2 gate is driving the
decimal LED signal on the left digit of the two seven-segment displays, it
should be off (LED state is inverted on UP3). Since the buttons are active low,
and the BNOR2 gate also has active low inputs and output, hitting either
button should turn on the LED.

Congratulations! You have just entered, compiled, simulated, and downloaded
a design to a FPGA device, and verified its operation.

1.6 The 10 Minute VHDL Entry Tutorial
As an alternative to schematic capture, a hardware description language such
as VHDL or Verilog can be used. In large designs, these languages greatly
increase productivity and reduce design cycle time. Logic minimization and
synthesis to a netlist are automatically performed by the compiler and
synthesis tools. (A netlist is a textual representation of a schematic.) As an
example, to perform addition, the VHDL statement:

A <= B + C;
will automatically generate an addition logic circuit with the correct number of
bits to generate the new value of A. Using the OR-gate design from the
Schematic Entry Tutorial, we will now create the same circuit using VHDL.

Tutorial I: The 15-Minute Design 2 1

Using a Template to Begin the Entry Process

Choose File c3 New, select VHDL File and OK. Place the cursor within the
text area, right click the mouse, and select Insert Template. Make sure VHDL
is selected. (Note the different prewritten templates. These are provided to
expedite the entry of VHDL.) Select Entity Declaration- this template is the
one you will generally start with since it also sets up the input and output
declarations. The template for the ENTITY declaration appears in the Insert
Template preview window. Click OK to paste the template in your VHDL
window. Since the editor knows that it is a VHDL source file, the text will
appear in different context-sensitive colors. VHDL keywords appear in blue
and strings in green. The coloring information should be used to detect syntax
errors while still in the text editor.

Saving the VHDL Source File

Select File c3 Save As and save the file as orgate.vhd - click Save.

Replacing Comments in the VHDL Code

The entire string indicating the position of the entity name, -entity-name,
should be set to the name used for the filename - in this case, orgate. There
are two occurrences of -entity-name in the text. Find and change both
accordingly.

Declaring the 110 Pins

The input and output pins, PB1, PB2 and LED need to be specified in the
PORT declaration. Since there are no input vectors, bi-directional 110 pins, or
GENERIC declarations in this design, remove all of these lines. The source
file should look like Figure 1.16.

I :' Quartus II - C:lyourgroject-directorylor~ate - orga. .. I 1% //O IIXlI

Figure 1.16 VHDL Entitv declaration text.

22 Rapid Prototyping of Digital Systems Chapter 1

Setting up the Architecture Body

Click the mouse at the bottom of the text field. (We will be inserting another
template here.) Following the earlier procedure for selecting a VHDL template
(start with a right click), select an Architecture Body. (The Architecture
Body specifies the internal logic of the design.) The syntax for the
Architecture Body appears in the text window after the other text. (You can
now see why the template is left highlighted - had you not placed your cursor
first, text would have appeared at your last cursor position. If you do misplace
the template, hitting the Edit Undo key removes the new text.)

Editing the Architecture Body

Change the entity name in the ARCHITECTURE statement to orgate.
Template lines with a 'I--" preceding a comment, need to be edited for each
particular design. Delete the two signal declaration lines since this simple
design does not require internal signals. Delete the remaining comment lines
that start with "--", and insert LED <= NOT (NOT PB1 OR NOT PB2) as a
single line. (This line contains a deliberate syntax error that will be detected
and fixed later.) Insert the following two lines at the beginning of the text file
to define the libraries for the STD-LOGIC data type.

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164,all;

This is the preferred data type for bits in VHDL. The file should now appear as
in Figure 1.17.

IaB,Eile Edit yew Project Assignments Ppxessing 1001s Window @dp.;=,I

12 END orgate:
3: ARCHITECTURE a OF orgate IS
iZ BEGIN
13 LED <= NOT(NOT P B 1 OR NOT PB2)I
1.: END a;

Figure 1.17 VHDL OR-gate model (with syntax error).

Tutorial I: The 15-Minute Design 23

Before You Compile

Before you compile the VHDL code, the FPGA device type and pin numbers
need to be assigned with Assignments + Device and Assignments + Pin. If
your pins are already defined from the earlier Schematic Entry Tutorial, just
confirm the pin assignments. If you did not do this step earlier in the tutorial
see the device and pin assignment instructions at the end of section 1.1. At this
point, VHDL code is generally ready to be compiled, simulated, and
downloaded to the board using steps identical to those used earlier in the
schematic entry method. Once pin assignments are made, they are stored in the
project's * .qsf file.

1.7 Compiling the VHDL Design
The Compile process checks for syntax errors, synthesizes the logic design,
produces timing information for simulation, fits the design on the FPGA, and
generates the file required to program the FPGA. After any changes are made
to the design files or pin assignments, the project should always be re-
compiled prior to simulation or programming.
Select Project + ADDIRemove Files in Current Project. Confirm that the
new orgrate.vhd file is now part of project and remove the tutorial's earlier
orgate.bdf file that the new VHDL file replaces from the project's file list, if it
is present. Click OK. Start the compiler with Processing + Start
Compilation.

4 ENTITY orgare IS
5 PORT
6 (

PBI , PB2 : I N SIT-LOGIC:
e LED : om STD-LOGIC
9 1 ;

10 END orgate;
11 ARCHITCCTORL a OF orgate IS
12 BEGIN
l3 LCD <- NOT(NOT P B l OR NOT PB2 1
14 UJD a;

Figure 1.18 VHDL comvilation with a syntax error.

24 Rapid Prototyping of Digital Systems Chapter 1

Checking for Compile Warnings and Errors

The project should compile with an error. After compiling the VHDL code, a
window indicating an error should appear. The result should look something
like Figure 1.18.
Double click on the first red error line and note that the cursor is placed in the
editor either on or after the line missing the ";" (semicolon). VHDL statements
should end with a semicolon. Add the semicolon to the end of the line so that it
is now reads:

LED <= NOT (NOT PB1 OR NOT PB2);

Now, recompile, and you should have no errors. You can simulate your VHDL
code using steps identical to the tutorial's earlier schematic version of the
project.

I .8 The 10 Minute Verilog Entry Tutorial
Verilog is another widely used hardware description language (HDL). Verilog
and VHDL have roughly the same capabilites. VHDL is based on a PASCAL
style syntax and Verilog is based on the C language. In large designs, HDLs
greatly increase productivity and reduce design cycle time. Logic minimization
and synthesis are automatically performed by the compiler and synthesis tools.
Just like the previous VHDL example, to perform addition, the Verilog
statement:

A = B + C ;
will automatically generate an addition logic circuit with the correct number of
bits to generate the new value of A.
Using the OR-gate design from the Schematic Entry Tutorial and the VHDL
Tutorial, we will now create the same circuit in Verilog.

Using a Template to Begin the Entry Process

Choose File + New, select Verilog HDL File and OK. Place the cursor within
the text area, right click the mouse, and select Insert Template and then select
Verilog HDL. (Note the different prewritten templates. These are built to
expedite the entry of Verilog.) Select Module Declaration - this declaration is
the one you will generally start with since it also sets up the input and output
declarations. Click OK and the template for the module declaration appears in
the Text editor. Since the editor knows that it is a Verilog source file, the text
will appear in different context-sensitive colors. Verilog keywords appear in
blue and strings in green. The coloring information should be used to detect
syntax errors while still in the text editor.

Tutorial 1: The 15-Minute Design 2 5

Saving the new Verilog File

Select File * Save As. Note the automatic extension is .v (Verilog) and save
the file as 0rgate.v - click Save.

Replacing Comments in the Verilog Code

The entire string indicating the position of the entity name, -module-name,
should be set to the name used for the filename - in this case, orgate. There is
one occurrence of -module-name in the text. Find and change it accordingly.
Lines starting with 11 are comments and these will need to be replaced with the
appropriate Verilog code.

Declaring the 110 Pins

The input pins, PB1, PB2 and the output pin LED need to be specified in the
arguments of the Module statement and Port declaration. Since there are no
inout pins, wire or integer declarations, or Always statements in this design,
remove all of these lines. The source file should now look like Figure 1.19.

i n p u t PB1, PB2:
4 o u t p u t LED:

5 i / Concurrent Assignment

Figure 1.19 Verilog module declaration text.

Setting up the Behavioral Code

Click the mouse to just after the line starting with 11 Concurrent Assignment.
(We will be inserting another template here.) Following the earlier procedure
for selecting a Verilog template (start with a right click), select a Continuous
Assignment Statement. (A single assign statement will specify the internal
logic of this design.) The syntax for a Continuous Assignment Statement
appears in the text window after the other text. (You can now see why the
template is left highlighted - had you not placed your cursor first, text would
have appeared at your last cursor position. If you do misplace the template,
hitting the delete key removes the highlighted text.)

Editing the Continuous Assignment Statement

Change the identify name in the assign statement to "LED" and value to:
! (! PB1 I ! PB2);

26 Rapid Prototyping of Digital Systems Chapter 1

Verilog is based on C and "I" (vertical line) is the bit wise OR operator. The "!"
(exclamation point) is the NOT operator. Delete the remaining comment lines
that start with "11". Delete the ";" at the end of the assign LED statement (This
causes a deliberate syntax error that will be detected and fixed later.) The file
should now appear as in Figure 1.20.

Before You Compile

Before you compile the Verilog code, the FPGA device type and pin numbers
need to be assigned with Assignments * Device and Assignments * Pin. If
your pins are already defined from the earlier Schematic Entry Tutorial, just
confirm the pin assignments. If you did not do this step earlier in the tutorial
see the device and pin assignment instructions at the end of Section 1.1. At this
point, Verilog code is generally ready to be compiled, simulated, and
downloaded to the board using steps identical to those used earlier in the
schematic entry method. Once pin assignments are made, they are stored in the
project's *.qsf file.

.=E Eile Edit View project Assignments Pr_ocessing Im l s Wlndow Blp -ja!_xt
i module orgate (PB1 , PBZ, LED): IEt!
^ input PB1, PB2:

output LED:
5
6 ess lgn LED = 1 (! P B 1 I ! PB2)
7

3 endmodule

a:a mJ
J

Figure 1.20 Verilog active low OR-gate model (with syntax error).

1.9 Compiling the Verilog Design
The Compile process checks for syntax errors, synthesizes the logic design,
produces timing information for simulation, fits the design on the FPGA, and
generates the file required to program the FPGA. After any changes are made
to the design files or pin assignments, the project should always be re-
compiled prior to simulation or programming.

Select Project * ADDIRemove Files in Current Project. Confirm that the
new 0rgrate.v file is now part of project and remove the tutorial's earlier
orgate.bdf or orgate.vhd files that the new Verilog file replaces from the
project if either file is present. Click OK. Start the compiler with Processing

Start Compilation.

Tutorial I: The 15-Minute Design 2 7

Checking for Compile Warnings and Errors

The project will compile with an error. After compiling the Verilog code, a
window indicating an error should appear. (See Figure 1.21 .)
Double click on the first red error line and note that the cursor is placed in the
editor either on or after the line missing the ";" (semicolon). Verilog
statements should end with a semicolon. Add the semicolon to the end of the
line so that it is now reads:

assign LED = ! (! PB1(! PB2);

Now, recompile, and you should have no errors. You can simulate your Verilog
code using steps identical to the tutorial's earlier schematic version of the
project.

Figure 1.21 Verilog compilation with a syntax error.

I . I0 Timing Analysis
With every physical device, there are timing considerations. An FPGA's timing
is affected by:

Input buffer delays,
Signal routing interconnect delays within the FPGA,

The internal logic delays (in this case the OR), and
Output buffer delays.

28 Rapid Prototyping of Digital Systems Chapter 1

The timing analysis tool can be used to determine:

The physical delay times and
The maximum clock rates in your design.

Starting the Analyzer

At the top menu, select Tools * Timing Analyzer and click the tPd
(propagation delay time) tab at the top of the Timing Analyzer window. A
matrix of input to output delay times for the project will be computed and
displayed as seen in Figure 1.22.

Quartus I1 - C:/your-project-directorylorgate - orgat.. . / -- - / I 01lM

Fieure 1.22 Timing analvzer showing inuut to oubut timing delavs.

Note that this is the same delay time seen in the simulator. These times include
the input-to-output buffer delays at the pins and the interconnect delays inside
the FPGA. The internal OR logic delay is only around a nanosecond relative to
the rest of the device delay. The actual time shown will vary with different
versions of the Altera CAD tools and different FPGA chip speed grades. Other
timing analysis options include setup times, hold times, and clock rates for
sequential circuits.

I .I 1 The Floorplan Editor
A floorplan editor is a visual tool to assist expert users in manually placing and
moving portions of logic circuits to different logic cells inside the FPGA. This
is done in an attempt to achieve faster timing or better utilization of the FPGA.
Floorplanning is typically used only on very large designs that contain
subsections of hardware with critical high-speed timing. Since the interconnect
delays are as large as the design's logic delays, logic element and 110 pin

Tutorial I: The 15-Minute Design 29

placement is very critical in high speed designs. Vertical and horizontal
interconnect buses are used through the FPGA to connect Logic Elements.
For all but expert users, the compiler's automatic place-and-route tools should
be used. Automatic place-and-route was already performed by the fitter in the
compile process of the tutorial. Timing constraints for critical signals can also
be specified in some FPGA place and routing tools to help the fitter meet the
design's timing goals.
To see the fitter's automatic placement of the design inside the FPGA, select
Assignment + Back-Annotate Assignments click OK and then
Assignments + Timing Closure Floorplan. In the display that opens, zoom
in and scroll around to find the yellow logic element and gray shaded I t 0 pins
used in your design. Find and select the yellow LE (blue on UP 2), then View
+ Routing + show fan in and then show fan out, and a view like Figure
1.23 showing the design will be produced.

Figure 1.23 Floorvlan view showing internal FPGA vlacement of OR-gate in LE and I10 vins.

30 Rapid Prototyping of Digital Systems Chapter 1

There is a lot of empty space since the Cyclone EPIC6 contains 5,980 Logic
Elements (LEs) and the larger EPIC12 contains 12,060 LEs. Only 1 LE was
used in this design. If you move the logic cell or 110 pins to other locations, it
will make small changes to the circuit timing because of changes in the
interconnect delays inside the FPGA. Due to the vast number of combinations,
FPGA CAD tools cannot explore every possible placement and routing option.
The Quartus I1 Design Space Explorer tool can also be used to search and
explore other design options in the design space. Large FPGA designs
containing millions of gates can require several hours or even days of CPU
time to examine many of the different place and route alternatives in the
design space.

I . I2 Symbols and Hierarchy
The Symbol Editor is used to edit or create a symbol to represent a logic
circuit. Symbols can be created for a design whenever a VHDL or Verilog file
is compiled. Create a symbol for your VHDL design by opening the orgate.vhd
file, and then select File + CreateIUpdate + Create Symbol Files for
Current File.
Select File * Open, change the file type setting for *.bsf, find and chose
orgate.bsf to see the new symbol for your VHDL based design as shown in
Figure 1.24. Inputs are typically shown on the left side of the symbol and
outputs on the right side. Symbols are used for design hierarchy in more
complex schematics. This new symbol can be used to add the circuit to a
design with the graphic editor just like the BNOR2 symbol that was used
earlier in the tutorial. Clicking on a symbol in the graphic editor will take the
user to the underlying logic circuit or HDL code that the symbol represents.

Figure 1.24 ORgate design symbol.

I . I3 Functional Simulation
In large designs with long compile and simulation times, another type of
simulation that runs faster is commonly used. A functional simulation does not
include device delay times and it is used to check for logical errors only. A
timing simulation that included device delay times, was used earlier in the
tutorial. After fixing logical errors using functional simulation, a timing
simulation is still necessary to check for any timing related errors in a design.

Tutorial I: The 15-Minute Design

Performing a Functional Simulation

To perform a functional simulation, set the simulator for functional simulation
with Assignments + Settings. Select Simulator in the left column and then
change the simulation mode from Timing to Functional. Run Processing *
Generate Functional Simulation Netlist. Finally, select Processing
+ Start Simulation. Open the Simulation Report waveform and note that
the output changes without any delay in response to an input unlike the earlier
timing simulation. To switch back to a timing-mode simulation, change the
simulator setting back to timing, recompile, and restart the simulation.
This short tutorial has gone through the basics of a simple design using a
common path through the design tools. As you continue to work with the tools,
you will want to explore more of the menus, options and shortcuts. Chapter 4
contains a tutorial that will introduce a more complex design example. In
Quartus 11, Help + Tutorial also contains more tutorials. Quartus I1 video
tutorials and reference manuals are also available online at Altera's website,
wu~w.altera.com . A number of files such as the *.q* files are maintained in the
project directory to support a design. Appendix B contains a list of different
file extensions used by Quartus 11.

1 . I4 Laboratory Exercises
1. The tutorials ORed the active low signals from the pushbuttons and produced an output

that was required to be low to tum off an LED. This was accomplished with the
"negative-logic OR" gate illustrated to the left in Figure 1.25.

-
A + B = A ' B

Figure 1.25 Equivalent gates: A negative logic OR and a positive-logic AND.

We know from DeMorgan's Law that the equation in Figure 1.25 represents an
equivalence. We should therefore be able to substitute a simple two-input AND gate as
illustrated in Figure 1.25 and accomplish the same task as the single gate used in the
tutorial. Substitute the AND2 gate for the BNOR2 gate in the schematic capture, then
compile, simulate, and download the AND circuit. What can you conclude?

2. Substitute in the VHDL code:

LED <= PB1 AND PB2;

Or into the Verilog code:

32 Rapid Prototyping of Digital Systems Chapter 1

assign LED = PBl & PB2;

Compile, simulate, and download and test the new circuit. What can you conclude about
gate equivalence using DeMorgan's Theorem?

Design a logic circuit to turn on the LED when both pushbuttons are pressed. Compile,
simulate, and download the new circuit.

Try a different logic function such as XOR. Start at the beginning or edit your existing
schematic by deleting and replacing the BNOR2 symbol. Next repeat the tutorial steps to
compile, simulate, download and test.

Repeat problem 2 for all of the basic gates including, OR, NOR, NAND, XOR, XNOR,
and NOT. Try using different LEDs and output your results simultaneously. Look up the
pin connections to the Cyclone chip in Appendix C and be sure to give each pinout a
different name.

Design, enter, simulate and implement a more complex logic gate network. One
suggestion is a half adder. You will need two LED outputs.

In the schematic editor, try building the design with some 74xx TTL parts from the
others maxplus2 symbol library.

Draw a schematic and develop a simulation to test the 2-to-1 Mux function in the others
maxplus2 symbol library.

View the orgateqt file and find the device utilization, the pin assignments, and the
netlist. A substantial portion of the time delay in this simple logic design is the input and
output buffer delays and the internal routing of this signal inside the FPGA. Find this
delay time by removing the BNOR2 gate and one of the inputs in the schematic.
Connect the input pin to the output pin, recompile and rerun the timing analyzer to
estimate this time delay.

10. Use the chip editor to move the logic cell used in the OR-gate design to another location
inside the FPGA. For information of the chip editor, use the Quartus I1 Help function.
Try moving the LE used several columns farther away from the pushbutton and LED
pins. Not all locations of the logic cell will work and some trial and error will be
required. Save the edited design, rerun the timing analyzer, and compare the resulting
time delays with the original time delays. See if you are able to achieve a faster
implementation than the automatic place-and-route tools.

11. Remove the pin number constraints from the schematic and let the compiler assign the
pin locations. Rerun the timing analyzer and compare the time delays. Are they faster or
slower than having specified the input pins?

Tutorial I: The 15-Minute Design 33

12. If you are using a UP 2 board, retarget the example design to the MAX chip. Pin
numbers for the MAX decimal point LED can be found in Appendix C. It will be
necessary to connect jumper wires from the MAX header to the pushbuttons. Select pins
near the pushbuttons. Pin numbers can be seen on the board's silk-screen. Compare the
timing from the MAX implementation to the Flex implementation.

13. If a storage oscilloscope or a fast logic analyzer is available, compare the predicted
delay times from the simulation and timing analysis to the actual delays measured on the
FPGA board. Force the pins to a header connector so that you can attach probes to the
signal wires.

14. Draw a schematic that uses the LPM-ADD-SUB megafunction to add two signed
numbers on the Cyclone device. Use Tools + Megawizard to start the megawizard to
help configure LPM symbols. Verify the proper operation using a simulation with two 4-
bit numbers. Do not use pipelining, clock, or carry in. Vary the number of bits in the
adder and find the maximum delay time using the timing analyzer. Plot delay time
versus number of bits for adder sizes of 4, 8, 16, 32, and 64 bits. Using the LC
percentages listed in the compiler's report file, estimate the hardware size in LEs. Plot
LEs required versus number of bits.

15. Use the DFF part from the primitives storage library and enter the symbol in a schematic
using the graphical editor. Develop a simulation that exercises all of the features of the
D flip-flop. Use Help on DFF for more information on this primitive.

16. Use the DFFE part from the primitives storage library and enter the symbol in a
schematic using the graphical editor. Develop a simulation that exercises all of the
features of the D flip-flop with a clock enable. Use Help on DFFE for more information
on this primitive.

17. Use gates and a DFF part from the primitives storage library with graphical entry to
implement the state machine shown in the following state diagram. Verify correct
operation with a simulation using the Altera CAD tools. The simulation should exercise
all arcs in the state diagram. A and B are the two states, X is the output and Y is the
input. Use the timing analyzer's Tools e Timing Analysis e Registered
performance option tab to determine the maximum clock frequency on the Cyclone
device. Reset is asynchronous and the DFF Q output should be high for state B.

34 Rapid Prototyping of Digital Systems Chapter 1

1

Reset

18. Repeat the previous problem but use one-hot encoding on the state machine. For one-hot
encoding use two flip-flops with only one active for each state. For state A the flip-flop
outputs would be " 10" and for state B "01 ". One-hot encoding is common in FPGAs.

The Altera UP 3 Board

Photo: The Altera UP 3 board contains a Cyclone FPGA, external SRAM, SDRAM &
Flash memory, and a wide assortment of 110 devices and connectors.

36 Rapid Prototyping of Digital Systems Chapter 2

2 The Altera UP 3 Board
The Altera University Program 3 (UP 3), FPGA design laboratory board is
shown in Figures 2.1 and 2.2. This board contains a Cyclone FPGA, several
external memory devices and a wide range of I10 features. Two versions of the
UP3 board are currently available with either a Cyclone EPlC6Q240 or the
larger EPlC12Q240 FPGA. The FPGA and memory devices can be
programmed using a JTAG ByteBlasterII cable attached to a PC printer port. An
external 6V DC power supply or an AC to DC wall adapter is used to provide
power. An on-board clock oscillator and clock chip provides several clock
signals that are selectable with the board's jumpers.
Note the orientation of the LCD Display module in Figure 2.1 and how it
extends beyond to edge of the board. Do not plug the module in backwards as it
may damage the LCD by reversing its power connections.
A ByteBlasterII programming adapter cable is supplied with the UP 3 board
and it connects the UP 3 board to the PC's parallel port (LPT) for device
programming. The printer port mode of the PC should be set in the PC's BIOS
to ECP or EPP.

Figure 2.1 The Altera UP 3 board.

www.ebook3000.com

http://www.ebook3000.org

The Altera UP 3 Board 37

Parallel Port

I , , H""
USE PHY for 12C

Chip
Bus Signals

'6% Buffer Chips

@
O s e r i a l c h ~ p

Olnval id Volt. LED

Cyclone FPGA
EPlC6Q240C8

~2- ~4-

Santa Crw Expansion Low Connect1

Real Time Clock 0

~$88888888888888888881
Santa CNZ Expans~on Long Connector

On/Off
Switch

3

I
Power
Connector

Figure 2.2 The Altera UP 3 board's features.

2.1 The UP 3 Cyclone FPGA Features
The Cyclone FPGA is the large square chip located in the center of the UP 3
board as seen in Figure 2.1. Two versions of the UP 3 are currently available.
The 3 12 model has the larger EPIC12 and the 306 model uses the EPIC6 as
seen in Table 2.1. There are some minor pin changes between the EPIC6 and
EPIC12 board's LCD and memory devices. You must also compile your design
for the correct Cyclone device assignment or it will not download the device.

Table 2.1 UP 3 Board's Cyclone FPGA Features

Cvclone FPGA Feature

I 4K bit RAM blocks (M4Ks) I 20 1 52 1

I I

I Total Internal RAM bits I 92.1 60 I 239,616 I

EPI C6Q240

Loaic Elements (LEs)

I Phase Locked Loops (PLLs) I 2 I 2 I

EPlC12Q240

I User I10 pins I 185 I 173 I

5.980 12.060

38 Rapid Prototyping of Digital Systems Chapter 2

The UP 3 Board's Memory Features
In addition to the Cyclone FPGA's internal memory, the UP 3 board provides
several external ROM and RAM memory devices as seen in Table 2.2.
Capacities of external memory are much larger than the internal memory, but
they will have a longer access time. FPGA processor cores such as the Nios use
external memory for program and data memory and the FPGA's internal
memory for register files and cache. Flash and EEPROM are used to provide
non-volatile memory storage. The EPCSl serial Flash chip is used to
automatically load the FPGA's serial configuration data at power up in systems
where you do not want to download the board with the ByteBlaster I1 each time
power is applied. Links to datasheets for all of the UP 3 board's chips can be
found at the book's website.

Table 2.2 UP 3 Board's Memory Features

I I

Serial Flash Memory 1 M by I bit Altera EPCSI

Memory Device
SRAM

SDRAM

Flash Memory

1% EEPROM

2.3 The UP 3 Board's 110 Features
The UP 3 board provides a wide variety of I10 features as summarized in Table
2.3. For most devices, the UP 3 board's hardware provides only an electrical
interface to the FPGA's I10 pins. Logic that provides a device interface circuit
or controller will need to be constructed using the FPGA's internal logic. Many
design examples of interfacing these various 110 devices can be found in the
following chapters of this book.
The Cyclone FPGA is a surface-mount chip that it is soldered directly to the
board. It is difficult if not impossible to replace the Cyclone chip without
expensive surface mount soldering equipment, so extreme care should be
exercised when interfacing the Cyclone I10 pins to any external devices.
Also, remember to assign pins as shown in the tutorials to avoid randomly
turning on several of the memory devices at the same time. A tri-state bus
conflict occurs when several tri-state outputs are turned on and they attempt to
drive a single signal line to different logic levels. It is possible that such a tri-
state bus conflict on the memory data bus could damage the devices by
overheating them after several minutes of operation.

Size

64K by 16 bits

1 M by 16 bits

I M by I 6 bits

16K bv I bit

Part Number

ISSl lS61C6416

ISSl lS42S16400B

Toshiba TC58FVB106AFT-70

ISSl lS24C16

The Altera UP 3 Board 39

I VGA Port for Video I ROB three I-bit signals State machine for sync signals & user
Display on Monitor provide 8 colors I logic to generate RGB color sianals

Table 2.3 Overview of the UP 3 Board's 110 Features

I IDE Port I Connector I Processor & IDE Device Driver

110 Device

USB 1.1
Serial Port

Parallel Port
PSI2 Port

I Reset Switch I Use for Global Reset I Must use a reset in design 1 4 Non-debounced (O=HIT) I Most applications will need a switch
debounce Circuit

Description

Full Speed and Low Speed
RS 232 Full Modem

IEEE 1284
PC Kevboard or Mouse

Hardware Interface Needed

Processor & USB SIE engine core
UART to send and receive data

State machine or Proc. for handshake
Serial Data - PSI2 state machine

I Real Time Clock I I'C clock chip 1 Serial Data - 12c state machine

Expansion Card
LEDs

LCD Display

I DIP Switch 1 4 Switches (I=ON) I None or Synchronizer Circuit

Table 2.4 contains the pin assignments and names used for the UP 3 board's
most commonly used 110 devices. Pin differences for the larger 1C12 UP 3
board are listed in parenthesis. The larger 1C12 has twelve additional power
and ground pins, so fewer pins are left for general purpose 110.
NOTE: If you ever switch between 1C6 and 1C12 boards, you will need to
change the device, fix the pin assignments, and then recompile for the new
FPGA device. A complete table including all I10 devices can be found in
Appendix C. The voltage levels on FPGApins can vary, so be sure to check for
the proper voltage levels when selecting an I10 pin to interface new external
hardware to the board. 5V logic levels are available on 53.
Do not connect high current devices such as motors or relay coils directly to
FPGA 110 pins. These pins cannot provide the high current levels needed, and it
may damage the FPGA's output circuit.

Santa Cruz Long 72 110
4 User Definable (1 =ON)

16 Character by 2 line
ASCll Characters

Depends on expansion card used
None

State machine or Processor to send
ASCll characters and LCD commands

Rapid Prototyping of Digital Systems Chapter 2

Table 2.4 UP 3 Board's most commonly used FPGA I10 pin names and assignments

(Reset = 0)

Pin Name
PS2-CLK

PS2-DATA

RESET

I USER CLOCK 1 38 1 Input I External Clock from J2 Pin 2 I

Pin 110 Type
Bidirectional

Bidirectional

Input

Pin#
12

13

23

I
I PBSWITCH-4 1 48 1 Input I Pushbutton SW4 I

Function of Pin
PS2 Connector

PS2 Connector

Power on or SW8 pushbutton reset

USB-CLK 1 29

(non-debounced, 0 = button hit)

Input

PBSWITCH-5

I LCD E 1 50 1 Output I LCD Enable line I

USB 48MHz Clock -jumper

I LED D6 (53 1 Output I LED D3 (0 =LED ON, I = LED OFF) I

49

D IPSWITCH 1 61 Input I DIP Switch SW3 #4 (ON = 1, OFF = 0) I

Input

LED-D5

LED-D4

LED-D3

PBSWITCH-6

DIPSWITCH-1

DIPSWITCH-2

DIPSWITCH-3

Input I Pushbutton SW7 (non-debounced. 0 =
hit)

(non-debounced, 0 = button hit)

Pushbutton SW5

I LCD RW 1 73 1 Output I LCD RNV control line I

54

55

56

57

58

59

60

- . .

1 MEM-DQPI 1 100 1 Bidirectional I MemoryILCD Data Bus 1

Output

Output

Output

Input

Input

Input

Input

MEM-DQ[O]

MEM-DQ[l]

MEMpDQ[2]

MEM-DQ[6] 1 106

LCD RS 1 108

LED D4 (0 = LED ON, I = LED OFF)

LED 05 (0 = LED ON, I = LED OFF)

LED D6 (0 = LED ON, I = LED OFF)

Pushbutton SW6 (non-debounced, 0 =
hit)

DIP Switch SW3 # I (ON = 1, OFF = 0)

DIP Switch SW3 #2 (ON = 1, OFF = 0)

DIP Switch SW3 #3 (ON = 1, OFF = 0)"

VGA GREEN

94

96(133)

98

VGA BLUE -
VGA VSYNC I

I

226

Bidirectional

Bidirectional

Bidirectional

I VGA HSYNC 1
I

227

MemoryILCD Data Bus

MemoryILCD Data Bus

MemoryILCD Data Bus

Bidirectional I MemoryILCD Data Bus

Bidirectional I MemorvILCD Data Bus 4

Outout I VGA Connector Blue Video Sianal I

Bidirectional

Output

Bidirectional

Output

Inout

Outout I VGA Connector Vert Svnc Sianal I

MemoryILCD Data Bus

LCD Register Select Line

MemoryILCD Data Bus

VGA Connector Green Video Signal

CPU Clock 100 or 66MHz - iumoer

Outout I VGA Connector Horiz Svnc Sianal I
I VGA RED 1 228 1 Outout I VGA Connector Red Video Sianal I

The Altera UP 3 Board 41

2.4 Obtaining a UP 3 Board and Cables
UP 3 boards are available for purchase from Altera's University Program at
special educational pricing for schools and students (www.altera.com). UP 3
education kits come with an AC to 6V DC power supply, a special serial cable,
and a ByteBlasterII cable.

A Longer Cable for the ByteBlaster

For use with the UP 3 or UP 2 board, a longer 25pin to 25pin PC MIF parallel
printer cable is useful since the 1 foot Byteblaster I1 cable provided with
the boards is often too short to reach the PC's printer port. All 25 wires must be
connected in the printer extension cable. Any computer store should have these
cables. A three-foot well-shielded cable works best. Avoid using extra long
cables or very low-cost cables without good shielding as they can cause
problems.

Programmable Logic
Technology

Photo: An Altera Flex lOKlOO FPGA containing 10,000,000 Transistors and 100,000
gates. The FPGA is in a pin grid array (PGA) package. The cover has been removed so
that the chip die is visible in the center of the package.

44 Rapid Prototyping of Digital Systems Chapter 3

3 Programmable Logic Technology
A wide spectrum of devices is available for the implementation of digital logic
designs as shown in Figure 3.1. Traditional off-the-shelf integrated circuit
chips, such as SSI and MSI TTL, perform a fixed operation defined by the
device manufacturer. A user must connect different chip types to build a circuit.
Application specific integrated circuits (ASICs), complex programmable logic
devices (CPLDs), and field programmable gate arrays (FPGAs) are integrated
circuits whose internal functional operation is defined by the user. ASICs
require a final customized manufacturing step for the user-defined function. A
CPLD or FPGA requires user programming to perform the desired operation.

Progammable
Logic (FPLDs)

el
Custom

Figure 3.1 Digital logic technologies.

The design tradeoffs of the different technologies are seen in Figure 3.2. Full
custom VLSI development of a design at the transistor level can require several
years of engineering effort for design and testing. Such an expensive
development effort is warranted only for the highest volume devices. This
approach can generate the highest performance devices. Examples of full
custom devices include the microprocessor and RAM chips used in PCs.
ASICs can be divided into three categories, Gate Arrays, Standard Cell and
Structured. Gate Arrays are built from arrays of pre-manufactured logic cells. A
single logic cell can implement a few gates or a flip-flop. A final manufacturing
step is required to interconnect the sea of logic cells on a gate array. This
interconnection pattern is created by the user to implement a particular design.
Standard Cell devices contain no fixed internal structure. For standard cell
devices, the manufacturer creates a custom photographic mask to build the chip
based on the user's selection of devices, such as controllers, ALUs, RAM,
ROM, and microprocessors from the manufacturer's standard cell library. New
Structured ASICs are similar to gate arrays but each array element contains
more logic. They offer tradeoffs somewhere between other ASICs and FPGAs.

Programmable Logic Technology 45

Since ASICs require custom manufacturing, additional time and development
costs are involved. Several months are normally required and substantial setup
fees are charged. ASIC setup fees can be as high as a few million dollars.
Additional effort in testing must be performed by the user since chips are tested
after the final custom-manufacturing step. Any design error in the chip will lead
to additional manufacturing delays and costs. For products with long lifetimes
and large volumes, this approach has a lower cost per unit than CPLDs or
FPGAs. Economic and performance tradeoffs between ASICs, CPLDs, and
FPGAs are changing with each new generation of devices and design tools.

Speed,
Density,
Complexity,
Market
Volume
needed for
Product

VLSl Design -., '

b
Engineering Cost, Time to Develop Product

Figure 3.2 Digital logic technologv tradeoffs.

Simple programmable logic devices (PLDs), such as programmable array logic
(PALS), and programmable logic arrays (PLAs), have been in use for over thirty
years. An example of a small PLA is shown in Figure 3.3. First, the logic
equation is minimized and placed in sum of products (SOP) form. The PLA has
four inputs, A, B, C, and D shown in the upper left corner of Figure 3.3. Every
input connects to an inverter, making the inverted values of A, B, C, and D
available for use. Each product term is implemented using an AND gate with
several inputs. Outputs from the two product term's AND gates then feed into
an OR gate.
A special shorthand notation is used in PLAs and PALS to represent the large
number of inputs present in the AND and OR gate arrays. A gate input is
present at each point where the vertical and horizontal signal lines cross in
Figure 3.3. Note that this means that the two AND gates actually have eight
inputs and the OR gate has two inputs in the PLA. Every input signal and its
complement is available as an input to the AND gates. Each gate input in the
PLA is controlled by a fuse. Initially all fuses are intact. By blowing selected
fuses, or programming the PLA, the desired SOP equation is produced. The top
AND gate in Figure 3.3 has fuses intact to the A and B inputs, so it produces
the AB product term. The lower AND gate has fuses set to produce 6. The
OR gate has both fuses intact, so it ORs both product terms from the AND
gates to produce the final output, F = AB +cD.

46 Rapid Prototyping of Digital Systems Chapter 3

Small PLDs can replace several older fixed function TTL-style parts in a
design. Most PLDs contain a PLA-like structure in which a series of AND gates
with selectable or programmable inputs, feed into an OR gate. In PALS, the OR
gate has a fixed number of inputs and is not programmable. The AND gates and
OR gate are programmed to directly implement a sum-of-products Boolean
equation. On many PLDs, the output of the OR gate is connected to a flip-flop
whose output can then be feed back as an input into the AND gate array. This
provides PLDs with the capability to implement simple state machines. A PLD
can contain several of these AND/OR networks.

x - Fuse Intact

Figure 3.3 Using a PLA to implement a Sum of Products equation.

In more recent times, higher densities, higher speed, and cost advantages have
enabled the use of programmable logic devices in a wider variety of designs.
CPLDs and FPGAs are the highest density and most advanced programmable
logic devices. Designs using a CPLD or FPGA typically require several weeks
of engineering effort instead of months. These devices are also sometimes
collectively called field programmable logic devices (FPLDs).
ASICs and full custom designs provide faster clock times than CPLDs or
FPGAs since they are hardwired and do not have programmable interconnect
delays. Since ASICs and full custom designs do not require programmable
interconnect circuitry they use less chip area, less power, and have a lower per
unit manufacturing cost in large volumes. Initial engineering and setup costs for
ASICs and full custom designs are much higher.
For all but the most time critical design applications, CPLDs and FPGAs have
adequate speed with maximum clock rates typically in the range of 50-
400MHz; however, clock rates up to lGHz have been achieved on new
generation FPGAs and many have a few high-speed 1-10 GHz output pins.

Programmable Logic Technology 47

CPLDs and FPGAs
Internally, CPLDs and FPGAs typically contain multiple copies of a basic
programmable logic element (LE) or cell. The logic element can implement a
network of several logic gates that then feed into 1 or 2 flip-flops. Logic
elements are arranged in a column or matrix on the chip. To perform more
complex operations, logic elements can be automatically connected to other
logic elements on the chip using a programmable interconnection network. The
interconnection network is also contained in the CPLD or FPGA. The
interconnection network used to connect the logic elements contains row and/or
column chip-wide interconnects. In addition, the interconnection network often
contains shorter and faster programmable interconnects limited only to
neighboring logic elements.
When a design approaches the device size limits, it is possible to run out of
either gate, interconnect, or pin resources when using a CPLD or FPGA.
CPLDs tend to have faster and more predictable timing properties while FPGAs
offer the highest gate densities and more features.
Clock signals in large FPGAs normally use special low-skew global clock
buffer lines. These are dedicated pins connected to an internal high-speed bus.
This special bus is used to distribute the clock signal to all flip-flops in the
device at the same time to minimize clock skew. If the global clock buffer line
is not used, the clock is routed through the chip just like a normal signal. The
clock signal could arrive at flip-flops at widely different times since
interconnect delays will vary in different parts of the chip. This delay time can
violate flip-flop setup and hold times and can cause metastability or
unpredictable operation in flip-flops. Most large designs with a common clock
that is used throughout the FPGA will require the use of the global clock buffer.
The size of CPLDs and FPGAs is typically described in terms of useable or
equivalent gates. This refers to the maximum number of two input NAND gates
available in the device. This should be viewed as a rough estimate of size only.

Figure 3.4 Examples o f FPGAs and advanced high pin count package types.

48 Rapid Prototyping of Digital Systems Chapter 3

The internal architecture of three examples of CPLD and FPGA device
technologies, the Altera MAX 7000, the Altera Cyclone, and the Xilinx 4000
family will now be examined. An example of each of these devices is shown in
Figure 3.4. From left to right the chips are an Altera MAX 71283 CPLD in a
Plastic J-Lead Chip Carrier (PLCC), an Altera Cyclone 10K70 FPGA in a
Plastic Quad Flat Pack (PQFP), and a Xilinx XC4052 FPGA in a ceramic Pin
Grid Array Package (PGA). The PGA package has pins on .I" centers while the
PQFP has pins on .05" centers at the edges of the package. Both Altera and
Xilinx devices are available in a variety of packages.
Packaging can represent a significant portion of the FPGA chip cost. The
number of I 1 0 pins on the FPGA package often limits designs. Larger ceramic
packages such as a PGA with more pins are more expensive than plastic.

3.2 Altera MAX 7000s Architecture - A Product Term CPLD Device
The multiple array matrix (MAX) 7000s is a CPLD device family with 600 to
20,000 gates. This device is configured by programming an internal electrically
erasable programmable read only memory (EEPROM). Since an EEPROM is
used for programming, the configuration is retained when power is removed.
This device also allows in-circuit reprogrammability.

36 Signals 16 Expander
from PIA Product

Figure 3.5 MAX 7000 macrocell.

Programmable Logic Technology 49

The 7000 device family contains from 32 to 256 macrocells of the type seen in
Figure 3.5. Similar to the early PALS, an individual macrocell contains five
programmable AND gates with wide inputs that feed into an OR gate with a
programmable inversion at the output. Just like a PAL, the AND/OR network is
designed to implement Boolean equations expressed in sum-of-products form.
Inputs to the wide AND gate are available in both normal and inverted forms.
Parallel expanders are included that are used to borrow extra product terms
from adjacent macrocells for logic functions needing more than five product
terms.
The output from the AND/OR network can then be fed into a programmable
flip-flop. Inputs to the AND gates include product terms from other macrocells
in the same local block or signals from the chip-wide programmable
interconnect array (PIA). The flip-flop contains Bypass, Enable, Clear and
Preset functions and can be programmed to act as a D flip-flop, Toggle flip-
flop, JK flip-flop, or SR latch.
Macrocells are combined into groups of 16 and called logic array blocks
(LABs), for the overall device architecture as shown in Figure 3.6. The PIA can
be used to route data to or from other LABs or external pins on the device.
Each 110 pin contains a programmable tri-state output buffer. An FPGA's 110
pin can thus be programmed as input, output, output with a tri-state driver, or
even tri-state bi-directional.

Figure 3.6 MAX 7000 CPLD architecture.

Macrocell:

50 Rapid Prototyping of Digital Systems Chapter 3

Altera Cyclone Architecture - A Look-Up Table FPGA Device
The Cyclone device is configured by loading internal static random access
memory (SRAM). Since SRAM is used in FPGAs, the configuration will be
lost whenever power is removed. In actual systems, a small external low-cost
serial flash memory or programmable read only memory (PROM) is normally
used to automatically load the FPGA's programming information when the
device powers up.
FPGAs contain a two-dimensional row and column-based architecture to
implement user logic. A column and row interconnection network provides
signal connections between Logic Array Blocks (LABs) and embedded memory
blocks. Interconnect delay times are on the same order of magnitude as logic
delays.
The Cyclone FPGA's logic array consists of LABs, with 10 Logic Elements
(LEs) in each LAB. An LE is a small unit of logic providing efficient
implementation of user logic functions. LABs are grouped into rows and
columns across the device. Cyclone devices range from 2,910 to 20,060 LEs.
M4K RAM embedded memory blocks are dual-port memory blocks with 4K
bits of memory plus parity (4,608 bits). These blocks provide dual-port or
single-port memory from 1 to 36-bits wide at up to 200 MHz. These blocks are
grouped into columns across the device in between certain LABs. The Cyclone
EPIC6 and EPIC12 contain 92K and 239K bits of embedded RAM.
Each of the Cyclone device's I10 pins is fed by an I10 element (IOE) located at
the ends of LAB rows and columns around the periphery of the device. I10 pins
support various single-ended and differential 110 standards. Each IOE contains
a bidirectional I10 buffer and three registers for registering input, output, and
output-enable signals.
Cyclone devices also provide a global low-skew clock network and up to two
Phase Locked Loops (PLLs). The global clock network consists of eight global
clock lines that drive throughout the entire device. The global clock network
can provide clocks for all resources within the device, such as IOEs, LEs, and
memory blocks. Cyclone PLLs provide general-purpose clocking with clock
multiplication/division and phase shifting as well as external outputs for high-
speed differential I10 support.
Figure 3.7 shows a Cyclone logic element. Logic gates are implemented using
a look-up table (LUT). The LUT is a high-speed 16 by 1 SRAM. Four inputs
are used to address the LUT's memory. The truth table for the desired gate
network is loaded into the LUT's SRAM during programming. A single LUT
can therefore model any network of gates with four inputs and one output. The
multiplexers seen in Figure 3.7 are all controlled by bits in the FPGA's SRAM
configuration memory.

Programmable Logic Technology 51

I m Local Routing

I ,Register Chain
output

Figure 3.7 Cyclone Logic Element (LE).

An example showing how a LUT can model a gate network is shown in Figure
3.8. First, the gate network is converted into a truth table. Since there are four
inputs and one output, a truth table with 16 rows and one output is needed. The
truth table is then loaded into the LUT's 16 by 1 high-speed SRAM when the
FPGA is programmed.
Note that the four gate inputs, A, B, C, and D, are used as address lines for the
RAM and that F, the output of the truth table, is the data that is stored in the
LUT's RAM. In this manner, the LUT's RAM implements the gate network by
performing a RAM based table lookup instead of using actual logic gates.

52 Rapid Prototyping of Digital Systems Chapter 3

4 Input

(16 x I RAM)

RAM Contents
Address I Data

Figure 3.8 Using a look-up table (LUT) to model a gate network.

More complex gate networks require interconnections with additional
neighboring logic elements. The output of the LUT can be fed into a D flip-flop
and then to the interconnection network. The clock, Clear, and Preset can be
driven by internal logic or an external 110 pin. The flip-flop can be
programmed to act as a D flip-flop, T flip-flop, JK flip-flop, or SR latch. Carry
and Cascade chains connect to all LEs in the same row.
Figure 3.9 shows a logic array block (LAB). A logic array block is composed of
ten logic elements (LEs). Both programmable local LAB and chip-wide row
and column interconnects are available. Carry chains are also provided to
support faster addition operations.
Input-output elements (IOEs) are located at each of the device's I10 pins. IOEs
contain a programmable tri-state driver and an optional 1-bit flip-flop register.
Each 110 pin can be programmed as input, output, output with a tri-state driver,
or even tri-state bi-directional with or without a register. Four clock I10 pins
connect to the eight low-skew global clock buffer lines that are provided in the
device.

Programmable Logic Technology 53

I I ROW Interconnect

Figure 3.9 Cyclone Logic Array Blocks (LAB) and Interconnects.

5
$

s

3.4 Xilinx 4000 Architecture - A Look-Up Table FPGA Device
The Xilinx 4000 Family was a popular first generation FPGA device family
with 2,000 to 180,000 usable gates. It is configured by programming internal
SRAM. Figure 3.10 is a photograph of a six-inch silicon wafer containing
several XC4010E 10,000 gate FPGA chip dice. Figure 3.11 is a contrast-
enhanced view of a single XC4010E die. If you look closely, you can see the 20
by 20 array of logic elements and the surrounding interconnect lines. Die that
pass wafer-level inspection and testing are sliced from the wafer and packaged
in a chip. FPGA yields are typically 90% or higher after the first few
production runs.
As seen in Figure 3.12, this device contains a more complex logic element
called a configurable logic block (CLB). Each CLB contains three SRAM-
based lookup tables. Outputs from the LUTs can be fed into two flip-flops and
routed to other CLBs. A CLB's lookup tables can also be configured to act as a
16 by 2 RAM or a dual-port 16 by 1 RAM. High-speed carry logic is provided
between adjacent CLBs.

2
E
C

5
3

-

n

Direct Lmk
lnterconnect

from
Adjacent

Block

Direct Lmk
lnterconnect
to Adjacent
+ Block

54 Rapid Prototyping of Digital Systems Chapter 3

Figure 3.10 Silicon wafer containing XC4010E 10,000 gate FPGAs.

Figure 3.11 Single XC4010E FPGA die showing 20 by 20 array of logic elements and interconnect.

Programmable Logic Technology 55

Figure 3.12 Xilinx 4000 Family Configurable Logic Block (CLB).

CLBs are arranged in a square matrix with a programmable hierarchical
interconnection network. Devices in the family contain from 100 to 3,136
CLBs. The multiplexers seen in Figure 3.12 are all controlled by bits in the
FPGA's SRAM configuration memory.
The complex hierarchical interconnection network contains varying length

row, column, and neighboring CLB interconnect structures. Eight low-skew
global clock buffers are also provided. Input-output blocks (IOBs), contain
programmable tri-state drivers and optional registers. Each 110 pin can be
programmed as input, output, output with a tri-state driver, or tri-state bi-
directional with or without a register. In the more recent Xilinx Virtex 4
FPGAs, each CLB now contains four circuits similar to the earlier 4000 CLBs.

3.5 Computer Aided Design Tools for Programmable Logic
Increasing design complexity and higher gate densities are forcing digital
designs to undergo a paradigm shift. Old technology, low-density logic
families, such as the TTL 7400 or simple PLD families are rarely if ever used in
new designs. With logic capacities of an individual FPGA chip approaching
10,000,000 gates, manual design at the gate level is no longer a viable option in
complex systems. Rapid prototyping using hardware description languages
(HDLs), IP cores, and logic synthesis tools has all but replaced traditional gate-
level design with schematic capture entry. These new HDL-based logic
synthesis tools can be used for both ASIC and FPGA-based designs. The two
most widely used HDLs at the present time are VHDL and Verilog.

56 Rapid Prototyping of Digital Systems Chapter 3

The typical FPGA CAD tool design flow is shown in Figure 3.13. After design
entry using an HDL or schematic, the design is automatically translated,
optimized, synthesized, and saved as a netlist. (A netlist is a text-based
representation of a logic diagram.) A functional simulation step is often added
prior to the synthesis step to speed up simulations of large designs.
An automatic tool then fits the design onto the device by converting the design
to use the FPGA's logic elements, first by placing the design in specific logic
element locations in the FPGA and then by selecting the interconnection
network routing paths. The place and route process can be quite involved and
can take several minutes to compute on large designs. On large devices,
combinatorial explosion (exponential growth) will prevent the tool from
examining all possible place and route combinations. When designs require
critical timing, some tools support timing constraints that can be placed on
critical signal lines. These optional constraints are added to aid the place and
route tool in finding a design placement with improved performance.

Design _, ~ ~ ~ ~ ~ l ~ ~ i ~ ~ - Optimization & 1 r y 1 I I I Synthesis 1-1 %~~~ 1-1 1-1 PriF:kiing 1
I

Figure 3.13 CAD tool design flow for FPGAs.

After place and route, simulation can be performed using actual gate and
interconnect time delays from a detailed timing model of the device. Although
errors can occur at any step, the most common path is to find errors during an
exhaustive simulation. The final step is device programming and hardware
verification on the FPGA.

3.6 Next Generation FPGA CAD tools
A few HDL synthesis tools now support behavioral synthesis. Unlike the more
widely used register transfer level (RTL) models contained in this book,
behavioral synthesis models do not specify the exact states and sequence of
register transfers. A separate constraint file specifies the number of clocks
needed to obtain selected signals and the tool automatically generates the state
machines, logic, and register transfers needed.
Although not currently in widespread use for current designs, newer FPGA
CAD tools are also appearing based on other languages such as C and Java.
Some of these system-level tools output VHDL or Verilog models as an
intermediate step. New HDLs such as SystemVerilog (www.svstemverilog.org)
and SystemC (www.svstemC.org) provide enhanced support for verification.
Tools that automatically generate an FPGA design from other engineering tools
such as MATLAB-Simulink or LabVIEW have also been introduced. These

Programmable Logic Technology 57

graphical based tools are primarily aimed at DSP application development for
FPGAs using a library of specialized DSP blocks.

3.7 Applications of FPGAs
The last decade has seen ever increasing application areas for FPGAs. A recent
market study found over twelve times as many new FPGA-based designs as
ASIC-based designs and ASIC costs continue to increase. New generation
FPGAs can have nearly ten million gates with clock rates approaching 1GHz.
Example application areas include single chip replacements for old multichip
technology designs, Digital Signal Processing (DSP), image processing,
multimedia applications, high-speed communications and networking
equipment such as routers and switches, the implementation of bus protocols
such as peripheral component interconnect (PCI), microprocessor glue logic,
co-processors, and microperipheral controllers.
Several large FPGAs with an interconnection network are used to build
hardware emulators. Hardware emulators are specially designed commercial
devices used to prototype and test complex hardware designs that will later be
implemented on gate arrays or custom devices. Hardware emulators are
commonly used to build a prototype quickly during the development and
testing of microprocessors. Several of the recent Intel and AMD processors
used in PCs were tested on FPGA-based hardware emulators before the full
custom VLSI processor chip was produced.
A newer application area is reconfigurable computing. In reconfigurable
computing, FPGAs are quickly reprogrammed or reconfigured multiple times
during normal operation to enable them to perform different computations at
different times for a particular application.

3.8 Features of New Generation FPGAs
Each new generation of FPGAs increases in size and performance. In addition
to more logic elements, embedded memory blocks, and interconnect other new
features are appearing. Some FPGAs contain a mix of both product term and
lookup tables to implement logic. Such product term structures typically
require less chip area to implement the complex gating logic present in large
state machines and address decoders. Many FPGAs include several phase-
locked loops (PLLs). These PLLs are used to multiply, divide, and adjust high-
speed clock signals. Similar to microprocessors used in PCs, many new FPGAs
use a lower 1.5 to 3 Volt internal core power supply. To easily interface to
external processor and memory chips, new FPGAs feature selectable I10
standards on I10 pins.
High-speed hardware multipliers and multiply accumulators (MACs) are also
available in FPGA families targeted for multiply intensive DSP and graphics
applications. Several FPGAs from Altera and Xilinx are available with
commercial internal RISC microprocessor intellectual property (IP) cores.
These include the Nios, ARM, Microblaze, and PowerPC. The Nios and
Microblaze processors are an HDL model that is synthesized using the FPGA's
standard logic elements. The ARM, and PowerPC are commercial IP cores with

58 Rapid Prototyping of Digital Systems Chapter 3

custom VLSI layouts. These new devices are a hybrid that contains both ASIC
and FPGA features. Several processors can be implemented in a single FPGA.
These FPGAs come with additional software tools for the processor, including
C/C++ compilers. Some processor cores are available with a small operating
system kernel. These new large FPGAs with a microprocessor IP core are
targeted for system on-a-chip (SOC) applications. When an FPGA is used for
SOC applications it is also called system on-a-programmable chip (SOPC).
On many of the largest FPGAs, redundant rows of logic elements are included
to increase yields. As any VLSI device gets larger the probability of a
manufacturing defect increases. If a defective logic element is found during
initial testing, the entire row is mapped out and replaced with a spare row of
logic elements. This operation is transparent to the user.

3.9 For additional information
This short overview of programmable logic technology has provided a brief
introduction to FPGA architectures. Altera and Xilinx have the largest market
share of current FPGA vendors. Additional CPLD and FPGA manufacturers
include Lattice, Actel, Quicklogic, and Cypress. Actel, Quicklogic, and Cypress
have one-time programmable FPGA devices. These devices utilize antifuse
programming technology. Antifuses are open circuits that short circuit or have
low impedance only after programming. Trade publications such as Electronic
Design News periodically have a comparison of the available devices and
manufacturers.
Altera MAX 7000, Cyclone, and the new Cyclone I1 and Stratix I1 family data
manuals with a more in-depth explanation of device hardware details are
available free online at Altera's website, http://www.altera.com.
For other examples of FPGA architectures, details on the newer Xilinx Spartan
and Virtex families can be found at http:/lwww.xilinx.com.
An introduction to the mathematics and algorithms used internally by digital
logic CAD tools can be found in Synthesis and Optimization of Digital Circuits
by Giovanni De Micheli, McGraw-Hill, 1994 and Logic Synthesis and
VeriJication Algorithms by Hactel and Somenzi, Springer Publishers, 1996. The
Design Warrior k Guide to FPGAs by Clive Maxfield, Elsevier, 2004 contains
an overview of commercial FPGA devices and commercial EDA tool flows for
FPGA design.

3.10 Laboratory Exercises
1. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be

implemented using the following:

A. The PLA in Figure 3.3
B. The LUT in Figure 3.9

Be sure to include the PLA fuse pattern and contents of the LUT

Programmable Logic Technology 59

2. Examine the compiler report file and use the chip editor to explain how the OR-gate
design in the tutorial in Chapter 1 was mapped into the Cyclone device.

3. Retarget the design from Chapter 1 to a MAX 7000s device. Examine the compiler
report file and use the chip editor to explain how the OR-gate design in the tutorial in
Chapter 1 was mapped into the MAX device.

4. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be
implemented in the following:

A. A MAX Logic Element
B. A Cyclone Logic Element
C. An XC4000 CLB

Be sure to include the contents of any LUTs required and describe the required mux
settings.

5. Using data sheets available on the web, compare and contrast the features of newer
generation FPGAs such as Altera's Cyclone I1 and Stratix I1 and Xilinx's Virtex I1 and
Virtex 4 families.

Tutorial 11: Sequential
Design and Hierarchy

Quartus II - C:/qbooksoft/CHAP5/tutor2 - tutor2 - [tutor3,bdf]

62 Rapid Prototyping of Digital Systems Chapter 4

4 Tutorial II: Sequential Design and Hierarchy
The second tutorial contains a more complex design containing sequential logic and
hierarchy with a counter and an LCD display. To save time, much of the design has
already been entered. The existing design will require some modifications.
Once completed, you will:

Understand the fundamentals of hierarchical design tools,

Complete an example of a sequential logic design,

Use the UP3core library designed for the UP 3 board,

Use the LCD display, pushbuttons, and the onboard clock,

Use buses in a schematic, and

Be able to perform automatic timing analysis of sequential circuits.

4.1 Install the Tutorial Files and UP3core Library
Locate the booksoft\chap4 directory on the CD-ROM that came with the book.
For the UP 3 board, copy all of the Chapter 4 tutorial files in this directory to
your drive:\mydesigns directory or another subdirectory. A special version of
the files for the larger 1C12 UP 3 board is in the subdirectory \1C12. If you are
using the UP 2, a version of the files for the UP 2 board is in the subdirectory
\UP2 along with special instructions for UP 2 users.

Figure 4.1 The tutor2.gdf schematic for the UP 3.

Tutorial II: Sequential Design and Hierarchy 63

4.2 Open the tutor2 Schematic
After setting up the files in your directory, select File c3 Open Project
c3 drive:\mydesigns\tutor2.qpf. Open the top-level schematic by selecting
File c3 Open c3 drive:\mydesigns\tutor2.bdf and the schematic in Figure
4.1 should be displayed. This design has been partially entered to save time.
This is an 8-bit counter design that outputs the counter value to the UP 3's LCD
display panel. On the UP 2 version of the tutorial, you will see the counter
value in the seven segment LED displays.
Click on the Ipm-counter0 symbol to activate the MegaWizard Plug-In
Manager. The MegaWizard can be used to create and edit megafunctions. In
this case, you can see that lpm-counter0 is an 8-bit binary counter that counts
up. You can click on the documentation button and then generate sample
waveforms to view more details about the counter's operation. You can create
new functions with the MegaWizard using Tools c3 MegaWizard Plug-In
Manager. Close the MegaWizard windows to continue.

I

Figure 4.2 Lpm-counter0 MegaWizard edit window.

Special hardware blocks have been designed to support the easy use of the
advanced 110 features found on the UP 3 board. They include pushbuttons,
LCD displays, keyboard, mouse, and video output. More details on all of these
UP3core functions are provided in Chapter 5. The UP3core function needed for
this tutorial have already been placed in this project's directory. Several
symbols from the UP3core library appear in the project library and are
available to be entered in a design. As an alternative to copying these files to
each project's directory, under Project c3 AddIRemove Files in Project, you
can click on User Libraries and enter another path to an external library such
as the UP3core library.

4.3 Browse the Hierarchy
In engineering, the principle of functional decomposition is normally used in
large designs. Complex designs are typically broken into smaller design units.

64 Rapid Prototyping of Digital Systems Chapter 4

The smaller design units are then more easily understood and implemented. The
smaller designs are interconnected to form the complex system. The overall
design is a hierarchy of interconnected smaller design units. This also promotes
the re-use of portions of the design.
The current schematic is a view of the top level of the design. In this design,
the problem was decomposed into a design unit or symbol with logic for a
counter and another design unit to display the count. Each symbol also has an
internal design that can be any combination of another schematic,
megafunction, VHDL, or Verilog file.

Figure 4.3 Internal VHDL code for LCD Disvlav function.

On scehamtic for the UP 3, double click on the LCD-Display symbol to see the
underlying VHDL code that describes the internal operation of the
LCD-Display block. UP 2 users should click on the DEC-7SEG symbol. As
shown in Figure 4.3, it contains a complex state machine that sends commands
and ASCII character data to the LCD controller. As an alternative, it could be
designed in Verilog or even at the gate level using basic logic symbols (if you
had infinite time and patience to work at that low of a level!). Close the VHDL
text editor and return to the graphic editor.
To see the overall hierarchy of the design, select View + Utility Windows
Project Navigator and make sure the Hierarchy tab is selected. After
expanding this window as seen in Figure 4.4, note that the tutor2 schematic is
comprised of two symbols. For the UP 3, the LCD-Display symbol is used in
the design to output the count to the LCD display. The Ipm-counter0 symbol

Tutorial II: Sequential Design and Hierarchy 65

contains the 8-bit binary counter. If you click on the "+" block on each symbol,
you will see that they each contain lpm-counter megafunctions. In this case,
the design hierarchy is three levels deep. After examining the hierarchy display
window, close it and return to the graphic editor window that contains the
tutor2 schematic.

Figure 4.4 Hierarchy display window for the tutor2 design.

4.4 Using Buses in a Schematic
In Figure 4.5, find the heavy purple lines flowing out of the lpm-counter0
symbol in the upper right corner and into the LCD-Display symbol in the lower
left corner. This is an example of a bus. A bus is just a parallel collection of
bits. The bus is labeled Q[7..0] indicating the bus has eight signals (bits) named
Q[7], Q[6] ... Q[O]. This bus sends the counter's eight output bits to the LCD
display function.

Figure 4.5 Enlarged view of tutor2 design showing Q[7..0] bus connnections.

66 Rapid Prototyping of Digital Systems Chapter 4

To connect single node lines to a bus, it is necessary to assign a name such as
Q[7..0] to the bus. Then the node line that needs to connect to a bus line is
given the name of one of the bus elements. As an example, the counter output
MSB signal line is labeled Q[7]. To label a bus or node, right click on the node
or bus line and select Properties. You can then type in or edit the name. When
signal lines have the same name, they are automatically connected in the
graphic editor. A physical node line connecting a node and a bus with the same
name is optional. Leaving it out often times makes a complex schematic easier
to follow since there will be fewer lines crossing on the schematic. Node and
bus names must be assigned first when connecting a node to a bus.

4.5 Testing the Pushbutton Counter and Displays
Compile the design with Processing C3 Start Compilation. Wait a few
seconds for the "Full Compilation was successful" message to appear. Select
Tools C3 Timing Analyzer Tool. This counter circuit is a sequential design. The
primary timing issue in sequential circuits is the maximum clock rate.
Whenever you compile, a timing analysis tool automatically runs that will
determine the maximum clock frequency of the logic circuit.

Figure 4.6 Timing analysis of a Sequential Circuit

The Timing Analyzer shows the maximum clock frequency of this logic circuit
to be approximately 120 MHz. Clock rates you may obtain will vary depending
on the complexity and size of the logic circuits, the speed grade of the chip, and
the CAD tool version and settings. In this design, the clock is supplied by a
pushbutton input so a clock input of only a few hertz will be used for the

Tutorial It: Sequential Design and Hierarchy 67

counter. Since the UP 3's clock input is only 48 MHz for the LCD-Display core
this simple counter cannot be overclocked. Close and exit the timing analyzer.

4.6 Testing the Initial Design on the Board
Download the design to the FPGA board. If you need help downloading to the
board, refer to Section 1.4 for the UP 3 or Section 1.5 for the UP 2 board.
Press the top UP 3 pushbutton (SW4) several times to clock the counter and
watch the count display as it counts up. On the UP 2, use the left FLEX
pushbutton. When the pushbutton is pressed, it will occasionally count up by
more than one. This is a product of mechanical bounce in the pushbutton. The
pushbutton contains a metal spring that actually forces contact several times
before stabilizing. The high-speed logic circuits will react to the switch contact
bounce as if several clock signals have occured. This makes the counter count
up by more than one.
The actual output of the pushbutton as it appears on a digital oscilloscope is
shown in Figure 4.7. When the pushbutton is hit, a random number of pulses
appear as the switch contacts bounce several times and then finally stabilize.
Several of the pulses will have a voltage and duration long enough to generate
extra clock pulses to the counter. An FPGA will respond to pulses in the ns
range, and these pulses are in the ps range.

Figure 4.7 Oscillosope display of pushbutton switch contact bounce.

Rapid Prototyping of Digital Systems Chapter 4

This problem occurs with all pushbuttons in digital designs. If the pushbutton is
a DPDT, double-pole double-throw (i.e., has both an ON and an OFF contact),
an SR latch is commonly used to remove the contact bounce. The pushbutton
on the UP 3 is SPST, single pole single throw, so a time averaging filter is used.
This example demonstrates why designs must be tested on actual hardware
after simulation. This problem would not have shown up in a simulation-Verify
that the UP 3 board's global reset pushbutton on the lower left corner of the
board (SW8) resets the display and the counter. On the UP 2, the right FLEX
pushbutton should reset the count.

Fixing the Switch Contact Bounce Problem
For the hardware implementation to work correctly, the switch contact bounce
must be removed. A logic circuit that filters the pushbutton output using a small
shift register can be added to filter the output. This process is called switch
debouncing. Add the symbol debounce from the project library to the
schematic.

--
' Quartus II - C:/qbooksoft/CHAP4/tutor3 - tutor3 - [tutor3.bdf] !-- 110 SX-I 1

Figure 4.8 Modified tutor2 design schematic.

Disconnect the pushbutton from the lpm-countero's clock pin and connect it to
the pushbutton input pin, PB, on the debounce symbol. Now connect the
PB-DEBOUNCED pin to the lpm-countero's clock pin. The debounce circuit
needs a lOOHz clock signal for the time averaging filter. The clock needed is

www.ebook3000.com

http://www.ebook3000.org

Tutorial II: Sequential Design and Hierarchy 69

much slower than the 48MHz system clock, so a clock prescalar is needed. A
clock prescalar is a logic circuit that divides a clock signal.
Add the clk-div symbol from the project library to the schematic. Connect the
lOOHz input pin on the debounce symbol to the lOOHz output pin on the clock
prescalar. Connect the 48MHz clock input on the clk-div symbol to an the
clk-48MHz input pin.
The internal VHDL design in the debounce module generates the switch
debounce circuit. The debounce circuit contains a 4-bit shift register that is
clocked at 100Hz. The shift register shifts in the inverted pushbutton output.
When any of the four bits of the shift register (i.e., four 10 ms time-spaced
samples of the pushbutton's output) are High the output of the debounce circuit
changes to High. When all four bits of the shift register are Low the output
goes Low. This delays the High to Low change until after the switch contact
bounce stops.

4.8 Testing the Modified Design on the UP 3 Board
Verify that your schematic has the same connections as seen in Figure 4.8.
Compile the design and download the design to the board again. Hit the count
pushbutton several times to clock the counter and watch the LCD display as it
counts up. It should now count up reliably by one whenever the pushbutton is
hit. The UP3core functions LCD-Display, clk-div, and debounce will be useful
in future design projects using the UP 3 board. They can be used in any VHDL,
Verilog, or schematic designs by using the graphical editor and UP3core
symbols or by using an HDL component instantiation statement.

4.9 Laboratory Exercises
1. Simulate the initial design without the switch debounce circuit by setting up an initial

reset pulse and a periodic 200 ns clock input in the simulator. In sequential simulations,
turn on the setup and hold time violation detection simulator setting option before

70 Rapid Prototyping of Digital Systems Chapter 4

running the simulator. This will check for flip-flop timing problems that would otherwise
go undetected in the simulation. Adjust the reset pulse so that it changes right before the
clock edge and run another simulation to see if you can produce a setup or hold violation.

Modify the counter circuit so that it counts down or up depending on the state of UP 3's
DIP switch 1.

Modify the counter circuit so that it parallel loads a count value from the four DIP
switches on the UP 3 board when PB2 is pushed. Zero out the low four counter bits
during a load. Since the Cyclone DIP switch inputs are only used when PB2 is hit, they
do not need to be debounced. Here are the pin connections for the Cyclone DIP switches.

I Input Pin I Pin I

DIPswitch-3

Dl Pswitch-4

(I = Open, 0 = Closed)

Build a stopwatch with the following modifications to the design. Disconnect the counter
clk line and connect it to the clock-l0hz pin on the clock-div symbol. Clock a toggle
flip-flop with the pb-debounced output. A toggle flip-flop, tff, can be found in the prim
symbol library. A toggle flip-flop's output changes state every time it is clocked. Connect
the output of the toggle flip-flop to a new count enable input added to the counter with
the megawizard. The count should start and stop when PBI is hit. Elapsed time in tenths
of seconds should be displayed in hexadecimal. Pushing PB2 should reset the stopwatch.

The elapsed time in the stopwatch from problem 3 is displayed in hexadecimal. Replace
the counter with two cascaded binary-coded-decimal (BCD) counters so that it displays
the elapsed time as two decimal digits.

Build a watch by expanding the counter circuit to count seconds, hours, and minutes. The
two pushbuttons reset and start the watch.

Replace the Ipm-counter0 logic with a VHDL counter design, simulate the design, and
verify operation on the UP 3 board. Read Chapter 5 and note the example counter design
in section 6.10.

Draw a schematic, develop a simulation, and download a design to the UP 3 board that
uses the LCD displays for outputs and the DIP switch for input, to test the 74161 4-bit
TTL counter function found in the /others/maxplus2 symbol library. Use the Cyclone
DIP switch to provide four inputs for a parallel load of the count. Use a debounced
pushbutton input for the clock. Use the second pushbutton for the load input.

Tutorial 11: Sequential Design and Hierarchy 71

9. Draw a schematic, develop a simulation, and download a design to the UP 3 board to test
the following functions that can be created with the Megawizard:

LPM-ADD-SUB: a 2-bit adderlsubtractor; test the add operation

LPM-ADD-SUB: a 2-bit adderlsubtractor; test the subtract operation

LPM-COMPARE: compare two 2-bit unsigned numbers

LPM-DECODE: a 4 to 16-bit decoder

LPM-CLSHIFT: a 4-bit shift register

LPMMULT: a 2-bit unsigned multiply

The LPM megafunctions require several parameters to specify bus size and other various
options. For this problem, do not use pipelining and use the unregistered input options.
Refer to the online help files for each LPM function for additional information. In the
enter symbol window, use the megawizard button to help configure LPM symbols. Use
the UP 3's DIP switches for four inputs as needed and display the output in hex on the
two seven-segment displays. Use a debounced pushbutton input for the clock, if one is
required. Use the second pushbutton for a Clear or Reset input. Use the timing analyzer
to determine the worst-case delay time for each function.

10. Draw a schematic and develop a simulation to test the LPM-ROM megafunction. Create
a sixteen word ROM with eight data bits per word. Specify initial values in hex for the
ROM in a memory initialization file (*.mif) file. The contents of each memory location
should be initialized to four times its address. See MIF in the online help for details on
the syntax of a MIF file. Enter the address in four Cyclone DIP switches and display the
data from the ROM in the two seven-segment LEDs. Determine the access time of the
ROM.

11. Using gates and the DFF part from the primitiveslstorage library, design a circuit that
implements the state machine shown below. Use two D flip-flops with an encoded state.

Reset

72 Rapid Prototyping of Digital Systems Chapter 4

For the encoded states use A = "OO", B = "Ol", and C = "10". Ensure that the undefined
"1 1" state enters a known state. Enter the design using the graphical editor. Develop a
simulation that tests the state machine for correct operation. The simulation should test
all states and arcs in the state diagram and the "1 1" state. Use the Tools Timing
Analyzer Tool option to determine the maximum clock frequency on the Cyclone
device. Use an asynchronous reset.

12. Repeat the previous problem using one-hot encoding. Recall that one-hot encoding uses
one flip-flop per state, and only one flip-flop is ever active at any given time in valid
states. The state encoding for the one-hot state machine would be A = "10OW, B = "OlO",
and C = "001 ". Start with a reset in the simulation. It is not necessary to test illegal states
in the one-hot simulation. One-hot state machine encoding is recommended by many
FPGA device manufacturers.

UP3core Library
Functions

74 Rapid Prototyping of Digital Systems Chapter 5

5 UP3core Library Functions
In complex hierarchical designs, intellectual property (IP) cores are frequently
used. An IP core is a previously developed synthesizable hardware design that
provides a widely used function. Commercially licensed IP cores include
functions such as microprocessors, microcontrollers, bus interfaces, multimedia
and DSP functions, and communications controllers. IP cores promote design
reuse and reduce development time by providing common hardware functions
for use in a new design.
The UP3core functions listed in Table 5.1 are designed to simplify use of the
UP 3 board's pushbuttons, keyboard, mouse, LCD display, and video output
features. They can be used in schematic capture, VHDL, or Verilog based
designs. Full source code is provided on the CD-ROM.

UP3cores can be used as symbols from the UP3core library, accessed via a
VHDL package, or used as a component in other VHDL or Verilog files. An
example of using the UP3core package in VHDL can be found in the file
\booksoft\chap5\UP3pack.~hd available on the CD-ROM. The use of
UP3packYs VHDL package saves retyping lengthy component declarations for
the core functions in each VHDL-based design.
This section contains a one-page summary of each UP3core interface. VHDL
source code is provided for all UP3cores on the CD-ROM. Additional
documentation, examples, and interface details can be found in later chapters
on video signal generation, the keyboard, and the mouse. The Clk-Div,
LCD-Display, and Debounce functions were already used in the tutorial design
example in Chapter 4.

For correct operation of the UP3core functions, 110 pin assignments must be
made as shown in the description of each UP3core function. Clock inputs are
also required on several of the UP3core functions. The Clk-Div UP3core is
setup to provide the slower clock signals needed by some of the core functions.

Table 5.1 The UP3core Functions.

UP3core Name
LCD-Display
Debounce
OnePulse

Description
Displays ASCII Characters and Hex Data on the UP3's LCD Panel
Pushbutton Debounce Circuit
Pushbutton Single Pulse Circuit

Clk-Div
VGA-Sync
Video-PLL
Char-ROM
Keyboard
Mouse

48MHz Clock Prescaler with 7 frequency outputs (1MHz to 1 hz)
VGA Sync signal generator for UP 3 that outputs pixel addresses
Used by VGA Sync to generate the video pixel clock using a PLL
Small Character Font ROM for video character generation
Reads keyboard scan codes from the UP 3's PSI2 connector
Reads PSI2 mouse data and outputs cursor row and column address

UP3core Library Functions 75

Source code for the UP3core functions must be in the project directory or in the
user's library search path. Review Section 4.2 for additional information on
checking the library path. The VGA-Sync, Video-PLL, and LCD-Display core
functions are often modified by the user to support different display resolutions
and message options for each design. Be sure to select the right version of these
core functions when adding file paths for a new project.
For UP 2 users, the same functionality is provided in the UP2core library
functions found on the CD-ROM in the \UP2 subdirectory. Since the UP 2 does
not have an LCD display, the seven segment display core, DECw7SEG, must be
used instead. On the UP 2, only the 640 by 480 video mode is possible since the
FPGA does not have a PLL to generate the higher clock frequencies needed for
other video display resolutions.

76 Rapid Prototyping of Digital Systems Chapter 5

5.1 UP3core LCD-Display: LCD Panel Character Display

Figure 5.1 Symbol for LCD Disvlav UP3core.

The LCD-Display core is used to display static ASCII characters and changing
hex values from hardware on the UP 3's 16 by 2 line LCD display panel. The
core's VHDL code can be configured internally by the user to display different
ASCII strings and hex data fields. Instructions can be found in comments in the
core's VHDL code. A Generic, Num-Hex-Digits, is used to set the size of the
Hex Display Data input (Each hex digit displayed requires a 4-bit signal). The
~ ~ D c o n t r o l l e r datasheet contains information on graphics characters and LCD
commands. A state machine is used to send data and commands to the LCD
controller and to generate the required handshake signals. An ASCII to hex
table can be found in Appendix D. See LCD-Display.vhd for more information.

5.1.1 VHDL Component Declaration
COMPONENT LCD-Display

PORT(Hex-Display-Data:
IN STD-LOGIC-VECTOR((Num-Hex-Digits*4)-I DOWNTO 0);

reset, clock-48MHz: IN STD-LOGIC;
LCD-RS, LCD-E: OUT STD-LOGIC;
LCD-RW: INOUT STD-LOGIC;

DATA-BU S : INOUT STD-LOGIC-VECTOR(7 DOWNTO 0));
END COMPONENT;

5.1.2 Inputs

Hex Display Data contains the 4-bit hexadecimal hardware signal values to
convert to ASCII hex digits and send to the LED display. The Generic,
Num-Hex-Digits, adjusts the size of the input hex data. Generics can be
assigned a value in an HDL file or with a block's parameter assignment in a
schematic. In a schematic, use View + Parameter assignment to see the
generic value and the symbol's properties parameters tab to set it.

5.1.3 Outputs

Outputs control a tri-state bidirectional data bus on the LCD panel.
LCD-RS is pin 108, LCD-E is pin 50, and LCD-RW is pin 73.
Data-Bus(7 DOWNTO 0) is pins 113, 106, 104, 102(128-1C12), 100, 98,
96(133-1C12), and 94.

UP3core Library Functions 77

5.2 UP3core Debounce: Pushbutton Debounce

Figure 5.2 Svmbol for Debounce UP3core.

The UP3core Debounce shown in Figure 5.2 is a pushbutton debounce circuit.
This function is used to filter mechanical contact bounce in the UP 3's
pushbuttons. A shift register is used to filter out the switch contact bounce. The
shift register takes several time spaced samples of the pushbutton input and
changes the output only after several sequential samples are the same value.

5.2.1 VHDL Component Declaration

COMPONENT debounce
PORT(pb, clock-1 00Hz : IN

pb-debounced : OUT
END COMPONENT;

STD-LOGIC;
STD-LOGIC;

5.2.2 Inputs

PB is the raw pushbutton input. It should be tied to an input pin connected to a
UP 3 pushbutton. See Chapter 2 for pushbutton pin numbers.
Clock is a clock signal of approximately lOOHz that is used for the internal
50ms switch debounce filter circuits.

5.2.3 Outputs

PB debounced is the debounced pushbutton output. The output will remain
LO; until the pushbutton is released. If a pulse is needed to be only 1 clock
period long, add the OnePulse core function to the debounced switch output.

78 Rapid Prototyping of Digital Systems Chapter 5

5.3 UP3core OnePulse: Pushbutton Single Pulse

Figure 5.3 Symbol for OnePulse UP3core.

The UP3core OnePulse shown in Figure 5.3 is a pushbutton single-pulse
circuit. Output from the pushbutton is High for only one clock cycle no matter
how long the pushbutton is pressed. This function is useful in state machines
that read external pushbutton inputs. In general, fewer states are required when
it is known that inputs only activate for one clock cycle. Internally, an edge-
triggered flip-flop is used to build a simple state machine.

5.3.1 VHDL Component Declaration
COMPONENT onepulse

PORT(PB-debounced, clock : IN STD-LOGIC;
PB-single-pulse : OUT STD-LOGIC);

END COMPONENT;

5.3.2 Inputs

PB-debounced is the debounced pushbutton input. It should be connected to a
debounced pushbutton.
Clock is the user's state-machine clock. It can be any frequency. In some
deisgns, the user may want to edit the VHDL code to add a reset input.

5.3.3 Outputs

PB-singlequlse is the output, which is High for only one clock cycle when a
pushbutton is hit.

UP3core Library Functions 79

5.4 UP3core Clk-Div: Clock Divider

clk-div

inst

Figure 5.4 Symbol for Clk-Div UP3core.

The UP3core Clk-Div shown in Figure 5.4 is used to provide clock signals
slower than the on-board 48MHz oscillator. These signals are obtained by
dividing down the 48MHz clock input signal. Multiple output taps provide
clock frequencies in powers of ten.

5.4.1 VHDL Component Declaration

COMPONENT clk-div
PORT(clock-48MHz

clock-I MHz
clock-I OOkHz
clock-I OkHz
clock-I kHz
clock-I OOHz
clock-I OHz
clock-I Hz

END COMPONENT:

: IN
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT

STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC);

5.4.2 Inputs

Clock-48MHz is an input pin that should be connected to the UP 3 on-board
48MHz USB clock. The pin number for the UP 3's 48MHz USB clock is 29.
Make sure the JP3 jumper selects the 48MHz USB clock (default setting).

5.4.3 Outputs

Clock-lMHz through clock-lHz provide output signals of the specified
frequency. The actual frequency is 1.007 h .005% times the listed value.

80 Rapid Prototyping of Digital Systems Chapter 5

5.5 UP3core VGA-Sync: VGA Video Sync Generation

Figure 5.5 Symbol for VGA-Sync UP3core.

The UP3core VGA-Sync shown in Figure 5.5 provides horizontal and vertical
sync signals to generate an 8-color 640 by 480 pixel VGA video image. For
more detailed information on video signal generation see Chapter 9.
A table of the common screen resolutions and refresh rates along with the
required pixel clocks and sync count values can be found at the end of the
VGA-Sync IP core. When changing resolutions or refresh rates, use the
Megawizard edit feature to adjust the videoqll.vhd code to output a different
pixel clock rate and change the horizontal and vertical sync counter limits to
the six new values found in the table. Videoqll.vhd must be present to compile
VGA-Sync since it uses this component for the clock.

5.5.1 VHDL Component Declaration
COMPONENT vga-sync

PORT(clock_48MHz, red, green, blue:IN STD-LOGIC;
red-out, green-out, blue-out,
horiz-sync-out, vert-sync-out: OUT ST D-LOGIC;
pixel-row, pixel-column: OUT STD-LOGIC-VECTOR(9 DOWNTO 0));

END COMPONENT;

5.5.2 Inputs
Clock-48MHz is an input pin that must be connected to the on-board 48MHz
USB clock. One of the Cyclone's two Phase Locked Loops (PLL) is used to
generate a video clock. Red, Green, and Blue inputs provide the color
information for the video signal. External user logic must generate the RGB
signals. One of the Cyclone's two PLLs is used to generate the required pixel
clock on the UP 3. An external reference clock of 48MHz (USB clock) is
needed by the PLL for the input clock.

UP3core Library Functions 81

5.5.3 Outputs

Horiz-sync is an output pin that should be tied to the horizontal sync, pin 226,
on the Cyclone chip.
Vert-sync is an output pin that should be tied to the vertical sync, pin 227, on
the Cyclone chip.
Red-out is an output pin that should be tied to the red RGB signal, pin 228, on
the Cyclone chip.
Green-out is an output pin that should be tied to the green RGB signal, pin 122,
on the Cyclone chip.
Blue-out is an output pin that should be tied to the blue RGB signal, pin 170,
on the Cyclone chip.
An interface circuit on the UP 3 board converts the digital red, green, and blue
video color signals to the appropriate analog voltage for the monitor. Eight
colors are possible using the three digital color signals.

Pixel-clock, pixel-row, and pixel-column are outputs that provide the current
pixel clock and the pixel address. Video-on indicates that pixel data is being
displayed and a retrace cycle is not presently occurring. These outputs are used
by user logic to generate RGB color input data.

82 Rapid Prototyping of Digital Systems Chapter 5

5.6 UP3core Char-ROM: Character Generation ROM

clock rm-mux-output

character-&dms[5. .0]

font-m$2..0]

font_col[2. .0]

Figure 5.6 Symbol for Char-ROM UP3core.

The UP3core Char-ROM shown in Figure 5.6 is a character generation ROM
used to generate text in a video display. Each character is represented by an 8
by 8 pixel font. For more information on video character generation see
Chapter 9. Character codes are listed in Table 9.1 of Section 9.9. Font data is
contained in the memory initialization file, tcgrom.mif. One Cyclone M4K
memory block is required for the ROM that holds the font data.

5.6.1 VHDL Component Declaration
COMPONENT char-rom

PORT(clock
character-address
font-row, font-cot
rom-mux-output

END COMPONENT;

: IN STD-LOGIC;
: IN STD-LOGIC-VECTOR(5 DOWNTO 0);
: IN STD-LOGIC-VECTOR(2 DOWNTO 0);
: OUT STD-LOGIC);

5.6.2 Inputs

Character-address is the address of the alphanumeric character to display.
Font-row and font-col are used to index through the 8 by 8 font to address the
single pixels needed for video signal generation. Clock loads the address
register and should be tied to the video pixel-clock.

5.6.3 Outputs

Rom~mux~output is the pixel font value indexed by the address inputs. It is
used by user logic to generate the RGB pixel color data for the video signal.

UP3core Library Functions 83

5.7 UP3core Keyboard: Read Keyboard Scan Code

Figure 5.7 Symbol for Keyboard UP3core.

The UP3core Keyboard shown in Figure 5.7 is used to read the PSI2 keyboard
scan code from a keyboard attached to the UP 3's PSI2 connector. This function
converts the serial data from the keyboard to parallel format to produce the
scan code output. For detailed information on keyboard applications and scan
codes see Table 11.2 in Chapter 11.

5.7.1 VHDL Component Declaration
COMPONENT keyboard

PORT(keyboard-clk, keyboard-data, clock_48MHz,
reset, read : IN STD-LOGIC;
scan-code : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
scan-ready : OUT STD-LOGIC);

END COMPONENT;

5.7.2 Inputs

Clock-48MHz is an input pin that must be connected to the on-board 48MHz
oscillator. The pin number for the 48MHz clock is 29 on the Cyclone chip.

Keyboard-clk and keyboard-data are PSI2 input data lines from the keyboard.
Keyboard-clk is pin 12 and keyboard-data is pin 13.

Read is a handshake input signal. The rising edge of the read signal clears the
scan ready signal. Reset is an input that clears the internal registers and flags
used for serial-to-parallel conversion.

5.7.3 Outputs

Scan-code contains the bytes transmitted by the keyboard when a key is
pressed or released. See Table 11.2 in Chapter 11 for a listing of scan codes.
Scan codes for a single key are a sequence of several bytes. A make code is sent
when a key is hit, and a break code is sent whenever a key is released.

Scan-ready is a handshake output signal that goes High when a new scan code
is sent by the keyboard. The read input clears scan-ready. The scan-ready
handshake line should be used to ensure that a new scan code is read only once.

84 Rapid Prototyping of Digital Systems Chapter 5

5.8 UP3core Mouse: Mouse Cursor

W S E

Figure 5.8 Symbol for Mouse UP3core.

The UP3core Mouse shown in Figure 5.8 is used to read position data from a
mouse attached to the UP 3's PSI2 connector. It outputs a row and column
cursor address for use in video applications. The mouse must be attached to the
UP 3 board prior to downloading for proper initialization. Detailed information
on mouse applications, commands, and data formats can be found in Chapter
11.

5.8.1 VHDL Component Declaration
COMPONENT mouse

PORT(clock_48MHz, reset : IN STD-LOGIC;
mouse-data : INOUT STD-LOGIC;
mouse-clk : INOUT STD-LOGIC;
left-button, right-button : OUT STD-LOGIC;
mouse~cursor~row : OUT STD-LOGIC-VECTOR(9 DOWNTO 0));
mouse~cursor~column : OUT STD-LOGIC-VECTOR(9 DOWNTO 0));

END COMPONENT;

5.8.2 Inputs

Clock-48MHz is an input pin that must be connected to the on-board
25.175MHz oscillator. The pin number for the 48MHz USB clock is 29 on the
Cyclone chip.
Mouse-clk and mouse-data are bi-directional data lines from the mouse.
Mouse-clk is pin 12 and mouse-data is pin 13.

5.8.3 Outputs

Mouse~cursor~row and mouse~cursor~column are outputs that contain the
current address of the mouse cursor in the 640 by 480 screen area. The cursor is
initialized to the center of the screen. Left-button and right-button outputs are
High when the corresponding mouse button is pressed.

UP3core Library Functions 85

5.9 For additional information
The FPGA cores summarized in this chapter are used extensively in the
textbook's design examples, and complete source code is provided on the CD-
ROM. They are provided to support any new FPGA designs that you may
develop. Extensive lists of more complex commercial third-party IP cores
available for purchase can be found at the major FPGA vendor web sites,
www.altera.com and www.xilinx.com. Pricing on commercial cores can be
expensive and access to source code may not be provided. An assortment of
free open source IP cores for FPGAs is available at www.opencores.org.

Using VHDL for
Synthesis of Digital
Hardware

NAL temr
;IN
- - - . -

' ARCHITECT1
SIG
BE(
PROCESS (Op-code, A-~nput, B-input)

BEG
-- SE
CAS

END
-- St5
IF 01

JRE beh8
)output: :

vior OF Al
5TD-LOG WNTO 0

WHEh
tern

WHEh
tern

WHEh
tern

WHEh . ..

tern
WHEh

tern
I CASE;
!lect Sllift
p-Code(C

A l t ~ nl

1 "00" =>
p-output .
I "0lW=>

-

t AND B-i

p-output <= A-input - B-inpu'
1 " lo"=>
p-output *
I "jI"=>

p-output <= A-input OR 8-in
I OTHERS =>
p-output <= "00000000";

IEN . ., *

t ;

nput;

ALU

END
END PROCEl
END behavior

88 Rapid Prototyping of Digital Systems Chapter 6

6 Using VHDL for Synthesis of Digital Hardware
In the past, most digital designs were manually entered into a schematic entry
tool. With increasingly large and more complex designs, this is a tedious and
time-consuming process. Logic synthesis using hardware description languages
is becoming widely used since it greatly reduces development time and cost. It
also enables more exploration of design alternatives, more flexibility to
changes in the hardware technology, and promotes design reuse.
VHDL is a language widely used to model and design digital hardware. VHDL
is the subject of IEEE standards 1076 and 1164 and is supported by numerous
CAD tool and programmable logic vendors. VHDL is an acronym for VHSIC
Hardware Description Language. VHSIC, Very High Speed Integrated Circuits,
was a USA Department of Defense program in the 1980s that sponsored the
early development of VHDL. VHDL has syntax similar to ADA and PASCAL.
Conventional programming languages are based on a sequential operation
model. Digital hardware devices by their very nature operate in parallel. This
means that conventional programming languages cannot accurately describe or
model the operation of digital hardware since they are based on the sequential
execution of statements. VHDL is designed to model parallel operations.

In VHDL, variables change without delay and signals change with a small
delay. For VHDL synthesis, signals are normally used instead of variables so
that simulation works the same as the synthesized hardware.
A subset of VHDL is used for logic synthesis. In this section, a brief
introduction to VHDL for logic synthesis will be presented. It is assumed that
the reader is already familiar with basic digital logic devices and PASCAL,
ADA, or VHDL.
Whenever you need help with VHDL syntax, VHDL templates of common
statements are available in the Quartus I1 online help. In the text editor, just
click the right mouse button and Insert c3Templates and select VHDL.

6.1 VHDL Data Types
In addition to the normal language data types such as Boolean, integer, and
real, VHDL contains new types useful in modeling digital hardware. For logic
synthesis, the most important type is standard logic. Type standard logic,
STD-LOGIC, is normally used to model a logic bit. To accurately model the
operation of digital circuits, more values than "0" or "1" are needed for a logic
bit. In the logic simulator, a standard logic bit can have nine values, U, X, 0, 1,
Z, W, L, H, and "-". U is uninitialized and X is forced unknown. Z is tri-state or
high impedance. L and H are weak "0" and weak "1". "-" is don't care. Type
STD-LOGIC-VECTOR contains a one-dimensional array of STD-LOGIC bits.
Using these types normally requires the inclusion of special standard logic
libraries at the beginning of each VHDL module. The value of a standard logic

Using VHDL for Synthesis of Digital Hardware 89

bit can be set to '0' or ' 1 ' using single quotes. A standard logic vector constant,
such as the 2-bit zero value, "00" must be enclosed in double quotes. X"F" is
the four bit hexadecimal value F.

6.2 VHDL Operators
Table 6.1 lists the VHDL operators and their common function in VHDL
synthesis tools.

Table 6.1 VHDL Operators.

11 Subtraction I

VHDL Operator
+

11 Multiplication* I

Operation

Addition

1

~p

II

& 11 Concatenation - used to combine bits 1

Division*

MOD

logical shift left

logical shift right
arithmetic shift left

Modulus*

SRA** 11 arithmetic shift right I
ROL** 11 rotate left I

REM Remainder*

ROR**

c 11 less than I

rotate right
- -

c= 11 less than or equal I

equality

> 11 greater than

>= 11 greater than or equal

I= I Inequality

U

*Not supported in many VHDL synthesis tools. In the Quartus I1 tools, only
multiply and divide by integers are supported. Mod and Rem are not
supported in Quartus 11. Efficient design of multiply or divide hardware may
require the user to specify the arithmetic algorithm and design in VHDL.

** Supported only in 1076-1993 VHDL only.

NOT

AND

OR

NAND

NOR

XOR

XNOR*

Table 6.2 illustrates two useful conversion functions for type STD-LOGIC and
integer.

logical NOT

logical AND

logical OR

logical NAND

logical NOR

logical XOR

logical XNOR

90 Rapid Prototyping of Digital Systems Chapter 6

Table 6.2 STD-LOGIC conversion functions.

Function I Example:

vector. Useful to enter constants. "01 11".
CONV-SIGNED and CONV-1JNSIG;"IED

CONV-STD-LOGIC-VECTOR(integer, bits) I CONV-STD-LOGIC-VECTOR(7 , 4)

work in a similar way to produce signed
and unsigned values. I

Converts an integer to a standard logic

- I

coxv-rN'rEGER(std-logi~_vector) I coF;yIN'rEGER("01 1 1") i l

Produces a standard logic vector of

-
I

Converts a standard logic vector to an Produces an integer value of 7. 11
integer. Useful for array indexing when
using a std-logic-vector signal for the array
index.

6.3 VHDL Based Synthesis of Digital Hardware
VHDL can be used to construct models at a variety of levels such as structural,
behavioral, register transfer level (RTL), and timing. An RTL model of a circuit
described in VHDL describes the inputloutput relationship in terms of dataflow
operations on signal and register values. If registers are required, a synchronous
clocking scheme is normally used. Sometimes an RTL model is also referred to
as a dataflow-style model.
VHDL simulation models often include physical device time delays. In VHDL
models written for logic synthesis, timing information should not be provided.
For timing simulations, the CAD tools automatically include the actual timing
delays for the synthesized logic circuit. A FPGA timing model supplied by the
CAD tool vendor is used to automatically generate the physical device time
delays inside the FPGA. Sometimes this timing model is also written in VHDL.
For a quick overview of VHDL, several constructs that can be used to
synthesize common digital hardware devices will be presented.

6.4 VHDL Synthesis Models of Gate Networks
The first example consists of a simple gate network. In this model, both a
concurrent assignment statement and a sequential process are shown which
generate the same gate network. X is the output on one network and Y is the
output on the other gate network. The two gate networks operate in parallel.
In VHDL synthesis, inputs and outputs from the port declaration in the module
will become I10 pins on the programmable logic device. Comment lines begin
with "--". The Quartus I1 editor performs syntax coloring and is useful to
quickly find major problems with VHDL syntax.
Inside a process, statements are executed in sequential order, and all processes
are executed in parallel. If multiple assignments are made to a signal inside a
process, the last assignment is taken as the new signal value.

Using VHDL for Synthesis of Digital Hardware 9 1

LIBRARY IEEE; -- lnclude Libraries for standard logic data types
USE IEEESTD-LOGIC-I I64.ALL;

-- Entity name normaIly the same as file name
ENTITY gate-network IS -- Ports: Declares module inputs and outputs

PORT(A, B, C : IN STD-LOGIC;
-- Standard Logic Vector (Array of 4 Bits)

D : IN STD-LOGIC-VECTOR(3 DOWNTO 0);
-- Output Signals

X, Y : OUT STD-LOGIC);
END gate-network;

-- Defines internal nlodule architecture
ARCHITECTURE behavior OF gate-network IS
BEGIN -- Concurrent assignment statements operate in parallel

-- D(1) selects bit 1 of standard logic vector D
X<=AANDNOT(BORC)AND(D(I)XORD(2)) ;

-- Process must declare a sensitivity list,
-- In this case it is (A , 6, C. D)
-- List includes all sigr~als that can change the outputs

PROCESS (A, B, C, D)
BEGIN -- Statements inside process execute sequer~tially

Y<=AANDNOT(BORC)AND(D(I)XORD(2)) ;
END PROCESS;

END behavior;

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder
The following VHDL code implements a seven-segment decoder for seven-
segment LED displays. A 7-bit standard logic vector is used to assign the value
of all seven bits in a single case statement. In the logic vector, the most-
significant bit is segment 'a' and the least-significant bit is segment 'g'. The
logic synthesis CAD tool automatically minimizes the logic required for
implementation. The signal MSD contains the 4-bit binary value to be
displayed in hexadecimal. MSD is the left or most-significant digit. Another
identical process with a different input variable is needed for the second display
digit.

92 Rapid Prototyping of Digital Systems Chapter 6

LED-MSD-DISPLAY: -- BCD to 7 Segment Decoder for LED Displays

PROCESS (MSD)
BEGIN

-- Case statement implements a logic truth table
CASE MSD IS

WHEN "0000" =>
MSD]SEG <= "1 11 11 10";

WHEN "0001" =>
MSD-7SEG <= "01 10000";

WHEN "001 0" =>
MSD]SEG <= "1 101 101";

WHEN "001 1" =>
MSD]SEG <= "1 11 1001";

WHEN "0100" =>
MSD]SEG <= "01 1001 1";

WHEN "0101" =>
MSD]SEG <= "101 101 1";

WHEN "01 10" =>
MSD-7SEG <= "101 11 11";

WHEN "01 11" =>
MSD]SEG <= "1 1 10000";

WHEN "1000" =>
MSD]SEG <= "1 11 11 11";

WHEN "1001" =>
MSD]SEG <= "1 11 101 1";

WHEN OTHERS =>
MSD]SEG <= "01 11 110";

END CASE;

END PROCESS LED-MSD-DISPLAY;

The following VHDL concurrent assignment statements provide the value to be
displayed and connect the individual segments. NOT is used since a logic zero
actually turns on the LED. Automatic minimization in the synthesis process
will eliminate the extra inverter in the logic circuit. Pin assignments for the
seven-segment display must be included in the project's *.qsf file or in the top-
level schematic.

-- Provide 4-bit value to display
MSD <= PC (7 DOWNTO 4);

-- Drive the seven-segments (LEDs are active low)
MSD-a <= NOT MSD_7SEG(6);
MSD-b <= NOT MSDd7SEG(5);
MSD-c <= NOT MSD]SEG(4);
MSD-d <= NOT MSD]SEG(3);
MSD-e <= NOT MSD]SEG(2);
MSD-f <= NOT MSD_7SEG(1);
MSDJ <= NOT MSD-7SEG(0);

Using VHDL for Synthesis of Digital Hardware 93

6.6 VHDL Synthesis Model of a Multiplexer
The next example shows several alternative ways to synthesize a 2-to-1
multiplexer in VHDL. Four identical multiplexers that operate in parallel are
synthesized by this example. In VHDL, IF and CASE statements must be inside
a process. The inputs and outputs from the multiplexers could be changed to
standard logic vectors if an entire bus is multiplexed. Multiplexers with more
than two inputs can also be easily constructed. Nested IF-THEN-ELSE
statements generate priority-encoded logic that requires more hardware and
produce a slower circuit than a CASE statement.

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164.ALL;

ENTITY multiplexer IS -- Input Signals and Mux Control
PORT(A, B, Mux-Control : IN STD-LOGIC;

Mux-Control
Mux-Out1 , Mux-Out2,
Mux-Out3, Mux-Out4 : OUT STD-LOGIC);

END multiplexer;
B

ARCHITECTURE behavior OF multiplexer IS
BEGIN -- selected signal assignment statement.

Mux-Out1 <= A WHEN Mux-Control = '0' ELSE B;
-- . . . with Select Statement

WITH Mux-control SELECT

Mux-Out2 <= A WHEN '0'.
B WHEN 'I*,
A WHEN OTHERS; -- OTHERS case required since STD-LOGIC

-- has values other than "0" or "I"
PROCESS (A, B, Mux-Control)
BEGIN -- Statements inside a process

IF Mux-Control = '0' THEN -- execute sequentially.
Mux-Out3 <= A;

ELSE
Mux-out3 <= B;

END IF;

CASE Mux-Control IS
WHEN '0' =>

Mux-Out4 <= A;
WHEN '1' =>

Mux-Out4 <= B;
WHEN OTHERS =>

Mux-Out4 <= A;
END CASE;

END PROCESS;
END behavior;

94 Rapid Prototyping of Digital Systems Chapter 6

6.7 VHDL Synthesis Model of Tri-State Output
Tri-state gates are supported in VHDL synthesis tools and are supported in
many programmable logic devices. Most programmable logic devices have tri-
state output pins. Some programmable logic devices do not support internal tri-
state logic. Here is a VHDL example of a tri-state output. In VHDL, the
assignment of the value "Z" to a signal produces a tri-state output.

Control

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1 I64.ALL;

Tri-Out
ENTITY tristate IS

PORT(A, Control : IN STD-LOGIC;
Tri-out : INOUT STD-LOGIC); -- Use lnout for A+ bi-directional tri-state

-- signals or out for output only
END tristate;

ARCHITECTURE behavior OF tristate IS
BEGIN

Tri-out <= A WHEN Control = '0' ELSE 'Z';
END behavior;

-- defines internal module architecture

-- Assignment of 2' value generates
-- tri-state output

6.8 VHDL Synthesis Models of Flip-flops and Registers
In the next example, several flip-flops will be generated. Unlike earlier
combinational hardware devices, a flip-flop can only be synthesized inside a
process. In VHDL, Clock'EVENT is true whenever the clock signal changes.
The positive clock edge is selected by (clock'EVENT AND clock = ' 1 ') and
positive edge triggered D flip-flops will be used for synthesis. The following
module contains a variety of Reset and Enable options on positive edge-
triggered D flip-flops. Processes with a wait statement do not need a process
sensitivity list. A process can only have one clock or reset type.
The negative clock edge is selected by (clock'EVENT AND clock = '0') and
negative edge-triggered D flip-flops will be used for synthesis. If (Clock = '1')
is substituted for (clock'EVENT AND clock = ' 1 ') level-triggered latches will
be selected for logic synthesis. Rising-edge(c1ock) can also be used instead of
clock'EVENT AND clock = '1'. Falling-edge(c1ock) is also supported for
negative clock edges.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;

ENTITY DFFs IS
PORT(D, Clock, Reset, Enable : IN STD-LOGIC;

Q1, Q2, Q3, Q4 : OUT STD-LOGIC);
END DFFs;

ARCHITECTURE behavior OF DFFs IS

Using VHDL for Synthesis of Digital Hardware 95

BEGIN

PROCESS -- Positive edge triggered D flip-flop
BEGIN -- If WAIT is used no sensitivity list is used

WAlT UNTIL (Clock 'EVENT AND Clock = '1');
Q1 <= D;

END PROCESS;

PROCESS -- Positive edge triggered D flip-flop
BEGIN -- with synchronous reset

WAlT UNTIL (Clock 'EVENT AND Clock = '1');
IF reset = '1' THEN

Q2 <= '0';
ELSE

Q2 <= D;
END IF;

END PROCESS;

Reset . -

PROCESS (Reset,Clock)
BEGIN

IF reset = '1' THEN
Q3 <= '0';

ELSIF (clock 'EVENT AND clock = '1') THEN
Q3 <= D;

END IF;
END PROCESS;

PROCESS (Reset,Clock)
BEGlN

-- Positive edge triggered D flip-flop
-- with asynchronous reset

Reset

4 Clock

-- Positive edge triggered D flip-flop
-- with asynchronous reset and
-- enable

Reset IF reset = '1' THEN
Q4 <= '0';

ELSIF (clock 'EVENT AND clock = '1') THEN
IF Enable = 'I' THEN

Q4 <= D;
END IF;

END IF;
END PROCESS;

END behavior;

Enable

';$5(-tQ4

In VHDL, as in any digital logic designs, it is not good design practice to AND
or gate other signals with the clock. Use a flip-flop with a clock enable instead
to avoid timing and clock skew problems. In some limited cases, such as power
management, a single level of clock gating can be used. This works only when
a small amount of clock skew can be tolerated and the signal gated with the
clock is known to be hazard or glitch free. A particular programmable logic
device may not support every flip-flop or latch type and SetJReset and Enable
option.

96 Rapid Prototyping of Digital Systems Chapter 6

If D and Q are replaced by standard logic vectors in these examples, registers
with the correct number of bits will be generated instead of individual flip-
flops.

6.9 Accidental Synthesis of Inferred Latches
Here is a very common problem to be aware of when coding VHDL for
synthesis. If a non-clocked process has any path that does not assign a value to
an output, VHDL assumes you want to use the previous value. A level triggered
latch is automatically generated or inferred by the synthesis tool to save the
previous value. In many cases, this can cause serious errors in the design.
Edge-triggered flip-flops should not be mixed with level-triggered latches in a
design or serious timing problems will result. Typically this can happen in
CASE statements or nested IF statements. In the following example, the signal
OUTPUT2 infers a latch when synthesized. Assigning a value to OUTPUT2 in
the last ELSE clause will eliminate the latch.

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-11 WALL;
ENTITY ilatch IS

PORT(A, B
Outputl , Output2

END ilatch;

: IN STD-LOGIC;
: OUT STD-LOGIC);

ARCHITECTURE behavior OF ilatch IS
BEGIN

PROCESS (A, B)
BEGIN

IF A = '0' THEN
Outputl <= '0';
Output2 <= '0';

ELSE
IF B = '1' THEN

Outputl <= '1';
Output2 <= '1';

ELSE -- Latch inferred since no value is assigned
Outputl <= '0'; -- to output2 in the else clause!

END IF;
END IF;

END PROCESS;
END behavior;

6.10 VHDL Synthesis Model of a Counter
Here is an 8-bit counter design. This design performs arithmetic operations on
standard logic vectors. Since this example includes arithmetic operations, two
new libraries must be included at the beginning of the module. Either signed or
unsigned libraries can be selected, but not both. Since the unsigned library was
used, an 8-bit magnitude comparator is automatically synthesized for the
internal-count < max-count comparison.

Using VHDL for Synthesis of Digital Hardware 97

Compare operations between standard logic and integer types are supported.
The assignment internal-count <= internal-count + 1 synthesizes an 8-bit
incrementer. An incrementer circuit requires less hardware than an adder that
adds one. The operation, "+Iw, is treated as a special incrementer case by
synthesis tools. VHDL does not allow reading of an "OUT" signal so an
internal-count signal is used which is always the same as count. This is the first
example that includes an internal signal. Note its declaration at the beginning
of the architecture section.

LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;

ENTITY Counter IS
PORT(Clock, Reset : IN STD-LOGIC;

Max-count : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
Count : OUT STD-LOGIC-VECTOR(7 DOWNTO 0));

END Counter;

ARCHITECTURE behavior OF Counter IS -- Declare signal(s) internal to module
SIGNAL internal-count: STD-LOGIC-VECTOR(7 DOWNTO 0);

BEGIN
count <= internal-count;

-- Reset counter
PROCESS (Reset,Clock)

BEGIN
IF reset = '1' THEN

internal-count <= "00000000";
ELSIF (clock 'EVENT AND clock = '1') THEN

IF internal-count < Max-count THEN -- Check for maximum count
internal-count <= internal-count + 1; -- Increment Counter

ELSE -- Count 2= Max-Count
internal-count <= "00000000"; -- reset Counter

END IF;
END IF;

END PROCESS;
END behavior;

6.11 VHDL Synthesis Model of a State Machine
The next example shows a Moore state machine with three states, two inputs
and a single output. A state diagram of the example state machine is shown in
Figure 6.1. In VHDL, an enumerated data type is specified for the current state
using the TYPE statement. This allows the synthesis tool to assign the actual
"Olt or "1" values to the states. In many cases, this will produce a smaller
hardware design than direct assignment of the state values in VHDL.
Depending on the synthesis tool settings, the states may be encoded or
constructed using the one-hot technique. Outputs are defined in the last
WITH ... SELECT statement. This statement lists the output for each state and

98 Rapid Prototyping of Digital Systems Chapter 6

eliminates possible problems with inferred latches. To avoid possible timing
problems, unsynchronized external inputs to a state machine should be
synchronized by passing them through one or two D flip-flops that are clocked
by the state machine's clock.

Reset

Figure 6.1 State Diagram for st-mach VHDL example

LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;

ENTITY st-mach IS
PORT(clk, reset : IN STD-LOGIC;

Inputl, Input2 : IN STD-LOGIC;
Output1 : OUT STD-LOGIC);

END st-mach;

ARCHITECTURE A OF st-mach IS
-- Enumerated Data Type for State

TYPE STATE-TYPE IS (state-A, state-B, state-C);
SIGNAL state: STATE-TYPE;

BEGIN
PROCESS (reset, clk)
BEGIN

IF reset = '1' THEN -- Reset State
state <= state-A;

ELSlF clk 'EVENT AND clk = '1' THEN

CASE state IS

WHEN state-A =>

-- Define Next State Transitions using a Case
-- Statement based on the Current State

Using VHDL for Synthesis of Digital Hardware 99

IF Input1 = '0' THEN
state <= state-B;

ELSE
state <= state-C;

END IF;

WHEN state-B =>
state <= state_(=;

WHEN state-C =>
IF Input2 = '1' THEN

state <= state-A;
END IF;

WHEN OTHERS =>
state <= state-A;

END CASE;
END IF;

END PROCESS;

WITH state SELECT -- Define State Machine Outputs
Output1 <= '0' WHEN state-A,

'1' WHEN state-B,
'0' WHEN state-C;

END a;

6.12 VHDL Synthesis Model of an ALU with an AdderISubtractor
and a Shifter
Here is an 8-bit arithmetic logic unit (ALU), that adds, subtracts, bitwise
ANDs, or bitwise ORs, two operands and then performs an optional shift on the
output. The most-significant two bits of the Op-code select the arithmetic
logical operation. If the least-significant bit of the op-code equals '1' a 1 -bit
left-shift operation is performed. An addition and subtraction circuit is
synthesized for the "+" and "-" operator. Depending on the number of bits and
the speed versus area settings in the synthesis tool, ripple carry or carry-
lookahead circuits will be used. Several "+" and "-" operations in multiple
assignment statements may generate multiple ALUs and increase the hardware
size, depending on the VHDL CAD tool and compiler settings used. If a single
ALU is desired, muxes can be placed at the inputs and the "+" operator would
be used only in a single assignment statement.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
USE IEEESTD-LOGIC-ARITH.ALL;
USE IEEESTD-LOGIC-UNSIGNED.ALL;

ENTITY ALU IS
PORT(Op-code : IN STD-LOGIC-VECTOR(2 DOWNTO 0);

100 Rapid Prototyping of Digital Systems Chapter 6

A-input, B-input
ALU-output

END ALU;

: IN STD-LOGIC-VECTOR(7 DOWNTO 0);
: OUT STD-LOGIC-VECTOR(7 DOWNTO 0));

ARCHITECTURE behavior OF ALU IS

SIGNAL temp-output
BEGIN

-- Declare signal(s) internal to module here
STD-LOGIC-VECTOR(7 DOWNTO 0);

PROCESS (Op-code, A-input, B-input)
BEGIN

CASE Op-Code (2 DOWNTO 1) IS -- Select Arithmetic/Logical Operation
WHEN "00" =>

temp-output <= A-input + B-input; A-input 6-input

WHEN "01" =>
temp-output <= A-input - B-input;

WHEN "10" =>
temp-output <= A-input AND B-input; op-co,,

WHEN "1 1" => (2 downlo 1)
+, -,AND. OR

temp-output <= A-input OR B-input;
WHEN OTHERS =>

temp-output <= "00000000";
END CASE; OP-code (0)

-- Se,ect Shiff Operation: Shift bits left with zero (I11 using concatenation operator?
-- Can also use VHDL 1076-1993 shiff operator such as SLL ALU-OU~PU~

IF Op-Code(0) = 'I' THEN
Alu-output <= temp-output(6 DOWNTO 0) & '0';

ELSE
Alu-output <= temp-output;

END IF;
END PROCESS;

END behavior;

6.1 3 VHDL Synthesis of Multiply and Divide Hardware
In the Quartus I1 tool, integer multiply and divide is supported using VHDL's
"*" and "I" operators. Mod and Rem are not supported in Quartus 11. In current
generation tools, efficient design of multiply or divide hardware typically
requires the use of a vendor-specific library function or even the specification
of the arithmetic algorithm and hardware implementation in VHDL.
A wide variety of multiply and divide algorithms that trade off time versus
hardware size can be found in most computer arithmetic texts. Several such
references are listed at the end of this chapter. These algorithms require a
sequence of addlsubtract and shift operations that can be easily synthesized in
VHDL using the standard operators. The LPM-MULT function in Quartus I1
can be used to synthesize integer multipliers. LPM-DIVIDE, is also available.
When using LPM functions, Tools c3 Megawizard Plug-in Manager can be
used to help generate VHDL code. The LPM functions also support pipeline

Using VHDL for Synthesis of Digital Hardware 101

options. Array multiply and divide hardware for more than a few bits requires
extensive hardware and a large FPGA.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;
LIBRARY Ipm;
USE Ipm.lpm-components.ALL;

ENTITY mult IS
PORT(A, B : IN STD-LOGIC-VECTOR(7 DOWNTO 0);

Product : OUT STD-LOGIC-VECTOR(15 DOWNTO 0));
END mult;

-- LPM 8x8 multiply function P = A * B
ARCHITECTURE a OF mult IS
BEGIN

multiply: Ipm-mult
GENERIC MAP(LPM-WIDTHA

LPM-WIDTHB
LPM-W IDTHS
LPM-W IDTHP
LPM-REPRESENTATION

=> 8,
=> 8,
=> 16,
=> 16,
=> "UNSIGNED")

PORT MAP (data =>A,
datab => B,
result => Product);

END a;

Floating-point operations can be implemented on very large FPGAs; however,
performance is lower than current floating-point DSP and microprocessor
chips. The floating-point algorithms must be coded by the user in VHDL using
integer add, multiply, divide, and shift operations. The LPM-CLSHIFT
function is useful for the barrel shifter needed in a floating-point ALU. Some
floating point IP cores are starting to appear. Many FPGA vendors also have
optimized arithmetic packages for DSP applications such as FIR filters.

6.14 VHDL Synthesis Models for Memory
Typically, it is more efficient to call a vendor-specific function to synthesize
RAM. These functions typically use the FPGA's internal RAM blocks rather
than building a RAM using FPGA logic elements. The memory function in the
Altera toolset is the ALTSYNCRAM function. On the UP 2 board's older
FPGA, the LPM-RAM-DQ memory function can also be used. The memory
can be set to an initial value using a separate memory initialization file with the
extension *.mif. A similar call, LPM-ROM, can be used to synthesize ROM.
If small blocks of multi-ported or other special-purpose RAM are needed, they
can be synthesized using registers with address decoders for the write operation
and multiplexers for the read operation. Additional read or write ports can be
added to synthesized RAM. An example of this approach is a dual-ported

102 Rapid Prototyping of Digital Systems Chapter 6

register file for a computer processor core. Most RISC processors need to read
two registers on each clock cycle and write to a third register.

VHDL Memory Model - Example One

The first memory example synthesizes a memory that can perform a read and a
write operation every clock cycle. Memory is built using arrays of positive
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address
decoder output and used as an enable to load each memory location during a
write operation. A synchronous write operation is more reliable. Asynchronous
write operations respond to any logic hazards or momentary level changes on
the write signal. As in any synchronous memory, the write address must be
stable before the rising edge of the clock signal. A non-clocked mux is used for
the read operation. If desired, memory can be initialized by a reset signal.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-I 164.ALL;

ENTITY memory IS
PORT(read-data : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);

read-address : IN STD-LOGIC-VECTOR(2 DOWNTO 0);
write-data : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
write-address : IN STD-LOGIC-VECTOR(2 DOWNTO 0);
Memwrite : IN STD-LOGIC;
clock,reset : IN STD-LOGIC);

END memory;

ARCHITECTURE behavior OF memory IS
SIGNAL memo, meml : STD-LOGIC-VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (read-address, memo, meml) -- Process for memory read operation
BEGIN

CASE read-address IS
WHEN "000" =>

read-data <= memo;
WHEN "001" =>

read-data <= meml ;
WHEN OTHERS => -- Unimplemented memory locations

read-data <= X"FFV ;
END CASE;

END PROCESS;

PROCESS
BEGIN

WAIT UNTIL clock 'EVENT AND clock = '1';
IF (reset = '1') THEN

memo <= X"55" ; -- Initial values for memory (optional)
meml <=X"AA" ;

ELSE
IF memwrite = '1' THEN -- Write to memory?

Using VHDL for Synthesis of Digital Hardware 103

CASE write-address IS -- Use a flip-flop with
WHEN "000" => -- an enable for memory

memo <= write-data;
WHEN "001" =>

meml <= write-data;
WHEN OTHERS => -- unimplemented memory locations

NULL;
END CASE;
END IF;

END IF;
END PROCESS;

END behavior;

VHDL Memory Model - Example Two

The second example uses an array of standard logic vectors to implement
memory. This approach i s easier to wri te in VHDL since the array index
generates the address decoder and multiplexers automatically; however, i t i s a
l i t t le more di f f icul t to access the values o f individual array elements during
simulation. There are a few VHDL synthesis tools that do not support array
types. Synthesizing RAM requires a vast amount o f programmable logic
resources. On ly a few hundred b i ts o f RAM can be synthesized, even o n large
devices. Each bit o f RAM requires 10 to 20 logic gates and a large amount o f
FPGA interconnect resources. Some tools may automatically detect synthesized
RAM and use the FPGA's embedded memory blocks.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;

ENTITY memory IS
PORT(read-data : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);

read-address : IN STD-LOGIC-VECTOR(2 DOWNTO 0);
write-data : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
write-address : IN STD-LOGIC-VECTOR(2 DOWNTO 0);
Memwrite : IN STD-LOGIC;
Clock : IN STD-LOGIC);

END memory;
ARCHITECTURE behavior OF memory IS

-- define new data type for memory array
TYPE memory-type IS ARRAY (0 TO 7) OF STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL memory : memory-type;

BEGIN
-- Read Memory and convert array index to an integer with CONV-INTEGER
read-data c= memory(CONV-INTEGER(read-address(2 DOWNTO 0)));

PROCESS -- Write Memory?
BEGIN

WAIT UNTIL clock 'EVENT AND clock = '1';
IF (memwrite = '1') THEN

-- convert array index to an integer with CONV-INTEGER
memory(CONV-INTEGER(write-address(2 DOWNTO 0))) c= write-data;

104 Rapid Prototyping of Digital Systems Chapter 6

END IF;
END PROCESS;

END behavior;

VHDL Memory Model - Example Three

The third example shows the use of the ALTSYNCRAM megafunction to
implement a block of memory. An additional library is needed for the
megafunctions. For more information on the megafunctions see the online help
guide in the Quartus I1 tool. In single port mode, the ALTSYNCRAM memory
can do either a read or a write operation in a single clock cycle since there is
only one address bus. In dual port mode, it can do both a read and write. If this
is the only memory operation needed, the ALTSYNCRAM function produces a
more efficient hardware implementation than synthesis of the memory in
VHDL. In the ALTSYNCRAM megafunction, the memory address must be
clocked into a dedicated address register located inside the FPGA's
synchronous memory block. Asynchronous memory operations without a clock
can cause timing problems and are not supported on many FPGAs including the
Cyclone.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
LIBRARY Altera-mf;
USE altera-mf.altera-mf-components.all;

ENTITY amemory IS
PORT(read-data

memory-address .
write-data
Memwrite
clock,reset

END amemory;

OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
IN STD-LOGIC-VECTOR(2 DOWNTO 0);
IN STD-LOGIC-VECTOR(7 DOWNTO 0);
IN STD-LOGIC;
IN STD-LOGIC);

ARCHITECTURE behavior OF amemory IS
BEGIN

data-memory: altsyncram -- Altsyncram memory function
GENERIC MAP (operation-mode => "SINGLE-PORT",

width-a => 8,
widthad-a => 3,
Ipm-type => "altsyncram",
outdata-reg-a =r "UNREGISTERED",

-- Reads in mif file for initial data values (optional)
init-file => "memory.mif',
intended-device-family => "Cyclone")

PORT MAP (wren-a => Memwrite, clock0 => clock,
address-a => memory-address(2 DOWNTO 0),
data-a => write-data, q-a => read-data);

END behavior;

Using VHDL for Synthesis of Digital Hardware 105

On the Cyclone FPGA chip, the memory can be implemented using the M4K
memory blocks, which are separate from the FPGA's logic cells. In the Cyclone
EPIC6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160
bits. In the Cyclone EPIC12 there are 52 M4K blocks for a total of 239,616
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8,
256 by 16, 256 by 18, 128 by 32 or 128 by 36 bits wide. The Tools
+ Megawizard Plug-in Manager feature is useful to configure the
Altsyncram parameters.

6.15 Hierarchy in VHDL Synthesis Models
Large VHDL models should be split into a hierarchy using a top-level structural
model in VHDL or by using the symbol and graphic editor in the Quartus I1
tool. In the graphical editor, a VHDL file can be used to define the contents of a
symbol block. Synthesis tools run faster using a hierarchy on large models and
it is easier to write, understand, and maintain a large design when it is broken
up into smaller modules.
An example of a hierarchical design with three submodules is seen in the
schematic in Figure 6.2. Following the schematic, the same design using a top-
level VHDL structural model is shown. This VHDL structural model provides
the same connection information as the schematic seen in Figure 6.2.
Debounce, Onepulse, and Clk-div are the names of the VHDL submodules.
Each one of these submodules has a separate VHDL source file. In the Quartus
I1 tool, compiling the top-level module will automatically compile the lower-
level modules.
In the example, VHDL structural model, note the use of a component
declaration for each submodule. The component statement declares the module
name and the inputs and outputs of the module. Internal signal names used for
interconnections of components must also be declared at the beginning of the
component list.
In the final section, port mappings are used to specify the module or component
interconnections. Port names and their order must be the same in the VHDL
submodule file, the component instantiations, and the port mappings.
Component instantiations are given unique labels so that a single component
can be used several times.
Note that node names in the schematic or signals in VHDL used to interconnect
modules need not always have the same names as the signals in the components
they connect. Just like signal or wire names in a schematic are not always the
same as the pin names on chips that they connect. As an example,
pb-debounced on the debounce component connects to an internal signal with a
different name, pbl-debounced.

106 Rapid Prototyping of Digital Systems Chapter 6

Figure 6.2 Schematic of Hierarchical Design Example

LIBRARY IEEE;
-LOGIC-1 164.ALL;

USE IEEESTD-LOGIC-ARITH.ALL;
USE IEEESTD-LOGIC-UNSIGNEDALL;
ENTITY hierarch IS

PORT (clock_48MHz, pb l : LOGIC;
pbl-single-pulse : D-LOGIC);

E structural OF hierarch IS
-- Declare internal signals needed to connecf subn~odules
SIGNAL clock-IMHz, clock~100Hz, pbl-debounced : STD-LOGIC;
-- Use Components to Defile Subrnodules and Parameters

COMP~NENT debounce
PORT(pb, clock~100Hz :

pb-debounced

COMPONENT onepulse
ORT(pb-debounced, clock :

COMPONENT clk-div
PORT(clock-48MHz

clock-I MHz
clock-I OOkHz
clock-l0kHz
clock-I kHz
clock-I OOHz
clock-I OHz
clock-I Hz

D COMPONENT;

: I
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT

STD-LOGIC);

STD-LOGIC;
STD-LOGiC);

STD-LOGIC;
STD-LOGIC;
STD-LOGIC;

STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC);

Using VHDL for Synthesis of Digital Hardware 107

-- Use Port Map to connect signals between components in the hierarchy
debouncel : debounce PORT MAP (pb => pbl, clock~100Hz = ~clock~100Hz,

pb-debounced = >pbl-debounced);

prescalar : clk-div PORT MAP (clock-48MHz = >clock48MHz,
clock-I MHz =>clock-I MHz,

clock-1 00hz = ~clock~100hz);

single-pulse : onepulse PORT MAP (pb-debounced = >pbl-debounced,
clock => clock-1 MHz,
pb-singlegulse => pbl-singlejulse);

END structural;

6.16 Using a Testbench for Verification
Complex VHDL synthesis models are frequently verified by simulation of the
model's behavior in a specially written entity called a testbench. As seen in
Figure 6.3, the toplevel testbench module contains a component instantiation
of the hardware unit under test (UUT). The testbench also contains VHDL code
used to automatically generate input stimulus to the UUT and automatically
monitor the response of the UUT for correct operation.
The testbench contains test vectors and timing information used in testing the
UUT. The testbench's VHDL code is used only for testing, and it is not
synthesized. This keeps the test-only code portion of the VHDL model separate
from the UUT's hardware synthesis model. Third party simulation tools such as
ModelSIM or Active-HDL are typically required for this approach.
Unfortunately, full versions of these third party simulation tools are currently
very expensive for students or individuals.

Testbench

Generator

I Hardware UUT I
Response

Figure 6.3 Using a testbench for automatic verification during simulation.

108 Rapid Prototyping of Digital Systems Chapter 6

The testbench approach is critical in large ASIC designs where any errors are
costly. Automatic Test Equipment (ATE) can also use a properly written
testbench and its test vector and timing information to physically test each
ASIC chip for correct operation after production. In large designs, the testbench
can require as much time and effort as the UUT's synthesis model. By
performing both a functional simulation and a timing simulation of the UUT
with the same test vectors, it is also possible to check for any synthesis-related
errors.

6.17 For additional information
The chapter has introduced the basics of using VHDL for digital synthesis. It
has not explored all of the language options available. The Altera online help
contains VHDL syntax and templates. A large number of VHDL reference
textbooks are also available. Unfortunately, only a few of them currently
examine using VHDL models that can be used for digital logic synthesis. One
such text is HDL Chip Design by Douglas J . Smith, Doone Publications, 1996.
A number of alternative integer multiply, divide, and floating-point algorithms
with different speed versus area tradeoffs can be found in computer arithmetic
textbooks. Two such examples are Digital Computer Arithmetic Design and
Implementation by Cavanagh, McGraw Hill, 1984, and Computer Arithmetic
Algorithms by Israel Koren, Prentice Hall, 1993.

6.1 8 Laboratory Exercises
1. Rewrite and compile the VHDL model for the seven-segment decoder in Section 6.5

replacing the PROCESS and CASE statements with a WITH.. .SELECT statement.

2. Write a VHDL model for the state machine shown in the following state diagram and
verify correct operation with a simulation using the Altera CAD tools. A and B are the
two states, X is the output, and Y is the input. Use the timing analyzer to determine the
maximum clock frequency on the Cyclone EP1 C6Q240C8 device.

3. Write a VHDL model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and
Y is the output. A shift operation follows the arithmetic and logical operation. The
opcode controls ALU functions as follows:

Using VHDL for Synthesis of Digital Hardware 109

Use the Cyclone chip as the target device. Determine the worst case time delay of the
ALU using the timing analyzer. Examine the report file and find the device utilization.
Use the logic element (LE) device utilization percentage found in the compilation report
to compare the size of the designs.

Explore different synthesis options for the ALU from problem 3. Change the area and
speed synthesis settings in the compiler under Assignments *Settings +Analysis and
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report
file for hardware size estimates. Include data points for the default, optimized for speed,
balanced, and optimized for area settings. Build a plot showing the speed versus area
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization
percentage found in the compilation report to compare the size of the designs.

Develop a VHDL model of one of the TTL chips listed below. The model should be
functionally equivalent, but there will be timing differences. Compare the timing
differences between the VHDL FPGA implementation and the TTL chip. Use a data
book or find a data sheet using the World Wide Web.

A. 7400 Quad nand gate

B. 74LS241 Octal buffer with tri-state output

C. 74LS273 Octal D flip-flop with Clear

D. 74163 4-bit binary counter

E. 74LS181 Cbit ALU

Replace the 8count block used in the tutorial in Chapter 4, with a new counter module
written in VHDL. Simulate the design and download a test program to the UP 3 board.

Implement a 128 by 32 RAM using VHDL and the Altsyncram function. Do not use
registered output options. Target the design to the Cyclone EPlC6240C8 device. Use the
timing analyzer to determine the worst-case read and write access times for the memory.

Study the VHDL code in the LCD Display UP3core function and draw a state diagram of
the initialization and data transfer operations and explain its operation. You may find it
helpful to examine the data sheet for the LCD display's microcontroller.

Using Verilog for
Synthesis of Digital
Hardware

112 Rapid Prototyping of Digital Systems Chapter 7

7 Using Verilog for Synthesis of Digital Hardware
Verilog is another language that, like VHDL, is widely used to model and
design digital hardware. In the early years, Verilog was a proprietary language
developed by one CAD vendor, Gateway. Verilog was developed in the 1980's
and was initially used to model high-end ASIC devices. In 1990, Verilog was
released into the public domain, and Verilog now is the subject of IEEE
standard 1364. Today, Verilog is supported by numerous CAD tool and
programmable logic vendors. Verilog has a syntax style similar to the C
programming language. Schools are more likely to cover VHDL since it was in
the public domain several years earlier; however, in the FPGA industry, VHDL
and Verilog have an almost equal market share for new design development.
Conventional programming languages are based on a sequential operation
model. Digital hardware devices by their very nature operate in parallel. This
means that conventional programming languages cannot accurately describe or
model the operation of digital hardware since they are based on the sequential
execution of statements. Like VHDL, Verilog is designed to model parallel
operations.

In this section, a brief introduction to Verilog for logic synthesis will be
presented. It is assumed that the reader is already familiar with basic digital
logic devices and some basic C syntax.
Whenever you need help with Verilog syntax, Verilog templates of common
statements are available in the Quartus I1 online help. In the text editor, just
click the right mouse button and Insert *Templates select Verilog.

7.1 Verilog Data Types
For logic synthesis, Verilog has simple data types. The net data type, wire, and
the register data type, reg. A model with a net data type, wire, has a
corresponding electrical connection or wire in the modeled device. Type reg is
updated under the control of the surrounding procedural flow constructs
typically inside an always statement. Type reg does not necessarily imply that
the synthesized hardware for a signal contains a register, digital storage device,
or flip-flop. It can also be purely combinational logic.
Table 7.1 lists the Verilog operators and their common function in Verilog
synthesis tools.

7.2 Verilog Based Synthesis of Digital Hardware
Verilog can be used to construct models at a variety of abstraction levels such
as structural, behavioral, register transfer level (RTL), and timing. An RTL
model of a circuit described in Verilog describes the inputloutput relationship in
terms of dataflow operations on signal and register values. If registers are

Using Verilog for Synthesis of Digital Hardware 11 3

required, a synchronous clocking scheme is normally used. Sometimes an RTL
model is also referred to as a dataflow-style model.

Verilog simulation models often include physical device time delays. In Verilog
models written for logic synthesis, timing information should not be provided.

For timing simulations, the CAD tools automatically include the actual timing
delays for the synthesized logic circuit. An FPGA timing model supplied by the
CAD tool vendor is used to automatically generate the physical device time
delays inside the FPGA. Sometimes this timing model is also written in
Verilog. For a quick overview of Verilog, several constructs that can be used to
synthesize common digital hardware devices will be presented.

7.3 Verilog Operators
Table 7.1 lists the Verilog operators and their common function in Verilog
synthesis tools.

Table 7.1 Verilog Operators.

Verilog Operator I Operation
+

I
% Modulus*

I {) 11 Concatenation - used to combine bits I
I << 11 rotate left I
I >> 11 rotate right I
I - - 11 equality I
I != 11 Inequality I
I < 11 less than I
I <= 11 less than or equal I
I z 11 greater than I
I >= 11 greater than or equal I

! logical negation

11
&

I
A

-

logical OR
Bitwise AND
Bitwise OR

Bitwise XOR

Bitwise Negation

a

*Not supported in some Verilog synthesis tools. In the Quartus I1 tools,
multiply , divide, and mod of integer values is supported. Efficient design of
multiply or divide hardware may require the user to specify the arithmetic
algorithm and design in Verilog.

I logical AND

1 14 Rapid Prototyping of Digital Systems Chapter 7

7.4 Verilog Synthesis Models of Gate Networks
The first example consists of a simple gate network. In this model, both a
concurrent assignment statement and a sequential always block are shown that
generate the same gate network. X is the output on one network and Y is the
output on the other gate network. The two gate networks operate in parallel.
In Verilog synthesis, inputs and outputs from the module will become I10 pins
on the programmable logic device. For comments "I/" makes the rest of a line a
comment and "I*" and "*I" can be used to make a block of lines a comment.
The Quartus I1 editor performs syntax coloring and is useful to quickly find
major problems with Verilog syntax. Verilog is case sensitive just like C.
Verilog concurrent statements are executed in parallel. Inside an always
statementstatements are executed in sequential order, and all of the always
statements are executed in parallel. The always statement is Verilog's
equivalent of a process in VHDL. .

module gatenetwork(A, B, C, D, X, Y);
input A;
input B;
input C;
input [2:1] D;
output X, Y;
reg Y;

// concurrent assignment statenlent
wire X = A & -(BIG) & (D[l] D[2]);

/* Always concurrent statement- sequential execution inside */
always @(A or B or C or D)

Y = A & -(BIG) & (D[l] A D[2]);

endmodule

7.5 Verilog Synthesis Model of a Seven-segment LED Decoder
The following Verilog code implements a seven-segment decoder for seven-
segment LED displays. A 7-bit vector is used to assign the value of all seven
bits in a single case statement. In the 7-bit logic vector, the most-significant bit
is segment 'a' and the least-significant bit is segment 'g'. The logic synthesis
CAD tool automatically minimizes the logic required for implementation. The
signal Hex-digit contains the 4-bit binary value to be displayed in hexadecimal.

Using Verilog for Synthesis of Digital Hardware 11 5

module DEC]SEG(Hex-digit, segment-a, segment-b, segment-c,
segment-d, segment-e, segment-f, segmentg);

input [3:0] Hex-digit;
output segment-a, segment-b, segment-c, segment-d;
output segment-e, segment-f, segment-g;
reg [6:0] segment-data;

always @(Hex-digit)
/* Case statement implements a logic truth table using gates*/

case (Hex-digit)
4'b 0000: segment-data = 7'b 11 11 11 0;
4'b 0001: segment-data = 7'b 01 10000;
4'b 0010: segment-data = 7'b 1101 101;
4'bOOll: segment~data=7'b1111001;
4'b 0100: segment-data = 7'b 01 1001 1;
4'b 0101: segment-data = 7'b 101 101 1;
4'b 01 10: segment-data = 7'b 101 11 11;
4'b 01 11 : segment-data = 7'b 11 10000;
4'b 1000: segment-data = 7'b 1 11 1 1 1 1;
4'b 1001: segment-data = 7'b 11 1101 1;
4'b 1010: segment-data = 7'b 11101 11;
4'b 101 1 : segment-data = 7'b 001 11 11;
4'b 11 00: segment-data = 7'b 1001 110;
4'b 1101: segment-data = 7'b 01 11 101;
4'b 11 10: segment-data = 7'b 1001 1 1 1 ;
4'b 11 11: segment-data = 7'b 10001 11;
default: segment-data = 7'b 01 11 110;

endcase

The following Verilog concurrent assignment statements extract the seven 1-bit
values needed to connect the individual segments. The not operator (-) is used
since a logic zero actually turns on most LEDs. Automatic minimization in the
synthesis process will eliminate the extra inverter in the logic circuit.

/* extract segment data bits and invert */
/* LED driver circuit is inverted */

wire segment-a = -segment-data[6];
wire segment-b = -segment_data[5];
wire segment-c = -segment-data[4];
wire segment-d = -segrnent_data[3];
wire segment-e = -segment_data[2];
wire segment-f = -segment-data[l];
wire segment4 = -segment-data[O];

endmodule

7.6 Verilog Synthesis Model of a Multiplexer
The next example shows several alternative ways to synthesize a 2-to-1
multiplexer in Verilog. Three identical multiplexers that operate in parallel are
synthesized by this example. The wire conditional continuous assignment

116 Rapid Prototyping of Digital Systems Chapter 7

statement can be used for a 2-to-l mux. A concurrent assign statement can also
be used instead of wire, if the output signal is already declared. In Verilog, IF
and CASE statements must be inside an always statement. The inputs and
outputs from the multiplexers could be changed to bit vectors if an entire bus is
multiplexed. Multiplexers with more than two inputs can also be easily
constructed and a case statement is preferred. Nested IF statements generate
priority-encoded logic that requires more hardware and produce a slower circuit
than a CASE statement.

/* Multiplexer example shows three ways to model a 2to 1 mux V
module nnultiplexer(A, B, mux_control, mux_out1, mux_out2, mux_out3);

input A; /* Input Signals and Mux Control V
input B;
input mux_control;
output mux_out1,mux_out2, nnux_out3;
reg nnux_out2, mux_out3;

/* Conditional Continuous Assignment Statement V
/* works like an IF ~ ELSE V

wire mux_out1 = (mux_control)? B:A;
/* If statement inside always statement */ Mux_Controi

always @(A or B or nnux_control)
if (mux_control) A —

mux_out2 = B; , .
1 D L v ^ Mux Outjc

else B— '- ^
mux_out2 = A;

/* Case statement inside always statement V
always @(A or B or mux_control)

case {mux_Gontrol)
0: nnux_out3 = A;
1: mux_out3 = B;
default: mux_out3 = A;

endcase
endmodule

7.7 Verilog Synthesis iVIodel of Tri-State Output
Tri-state gates are supported in Verilog synthesis tools and are supported in
many programmable logic devices. Most programmable logic devices have tri-
state output pins. Some programmable logic devices do not support internal tri-
state logic. Here is a Verilog example of a tri-state output. In Verilog, the
assignment of the value "Z" to a signal produces a tri-state output.

module tristate (a, control, tri_out);
input a, control;
output tri_out;
reg trJ_out;
always ©(control or a) ^̂ ^̂ ^̂ ,

if (control)
/* Assignment ofZ value generates a tri-state output V
tri_out = 1*bZ; A .

else I ^ TrLOut
tri_out = a;

endmodule

Using Verilog for Synthesis of Digital Hardware 117

7.8 Verilog Synthesis Models of Flip-flops and Registers

Reset

In the next example, several flip-flops will be generated. Unlike earlier
combinational hardware devices, a flip-flop can only be synthesized inside an
always statement. The positive clock edge is selected by posedge clock and
positive edge triggered D flip-flops will be used for synthesis. The following
module contains a variety of Reset and Enable options on positive edge-
triggered D flip-flops. The negative clock edge is selected by negedge clock
and negative edge-triggered D flip-flops will be used for synthesis.

module DFFs(D, clock, reset, enable, Q1, Q2, Q3, Q4);
input D;
input clock;

input input enable; reset;
DoQ1 clock

output Q1, Q2, Q3, Q4;
reg Q1, Q2, Q3, Q4;

/" Positive edge triggered D flip-flop */
always @(posedge clock)

Q1= D;
/" Positive edge triggered D flip-flop */
/" with synchronous reset */

always @(posedge clock)
if (reset)

Q2 = 0;
else

Q2 = D;
/"Positive edge triggered D flip-flop */
/" with asynchronous reset */

always @(posedge clock or posedge reset)
if (reset)

Q3 = 0;
else

Q3 = D;
/" Positive edge triggered D flip-flop */
/" with asynchronous reset and enable */

always @(posedge clock or posedge reset)
if (reset)

Q4 = 0;
else if (enable)

Q4 = D;
endmodule

Reset
Enable

a ~ ~ ~ 4
I

Clock

In Verilog, as in any digital logic designs, it is not good design practice to AND
or gate other signals with the clock. Use a flip-flop with a clock enable instead
to avoid timing and clock skew problems. In some limited cases, such as power
management, a single level of clock gating can be used. This works only when
a small amount of clock skew can be tolerated and the signal gated with the
clock is known to be hazard or glitch free. A particular programmable logic

11 8 Rapid Prototyping of Digital Systems Chapter 7

device may not support every flip-flop or latch type and all of the SetIReset and
Enable options.
If D and Q are replaced by bit vectors in any of these examples, registers with
the correct number of bits will be generated instead of individual flip-flops.

7.9 Accidental Synthesis of Inferred Latches
Here is a very common problem to be aware of when coding Verilog for
synthesis. If a non-clocked process has any path that does not assign a value to
an output, Verilog assumes you want to use the previous value. A level
triggered latch is automatically generated or inferred by the synthesis tool to
save the previous value. In many cases, this can cause serious errors in the
design. Edge-triggered flip-flops should not be mixed with level-triggered
latches in a design or serious timing problems will result. Typically this can
happen in CASE statements or nested IF statements. In the following example,
the signal Output2 infers a latch when synthesized. Assigning a value to
Output2 in the last ELSE clause will eliminate the latch. Warning messages
may be generated during compilation when a latch is inferred on some tools.
Note the use of begin.. .end is somewhat different than the use of braces in C.

module ilatch(A, B, Outputl, Output2);
input A, B;
output Outputl , Output2;
reg Outputl , Output2;

always@(A or B)
if (!A)

begin
Outputl = 0;
Output2 = 0;

end
else

if (B)
begin

Outputl = I;
Output2 = 1 ;

end
else Platch inferred since no value */

Outputl = 0; /*is assigned to Output2 here Y
endmodule

7.10 Verilog Synthesis Model of a Counter
Here is an 8-bit counter design. Compare operations such as "<" are supported
and they generate a comparator logic circuit to test for the maximum count
value. The assignment count = count+l; synthesizes an 8-bit incrementer. An
incrementer circuit requires less hardware than an adder that adds one. The
operation, "+I", is treated as a special incrementer case by synthesis tools.

Using Verilog for Synthesis of Digital Hardware 11 9

module counter(clock, reset, max-count, count);
input clock;
input reset;
input [7:0] max-count;
output [7:0] count;
reg [7:0] count;

P use positive clock edge for counter */
always @(posedge clock or posedge reset)

begin
if (reset)

count = 0; P Reset Counter */
else if (count e max-count) P Check for maximum count Y

count = count + 1; P Increment Counter */
else

count = 0; P Counter set back to 0*/
end

endmodule

7.1 1 Verilog Synthesis Model of a State Machine
The next example shows a Moore state machine with three states, two inputs
and a single output. A state diagram of the example state machine is shown in
Figure 7.1. Unlike VHDL, A direct assignment of the state values is required in
Verilog's parameter statement. The first Always block assigns the next state
using a case statement that is updated on the positive clock edge, posedge.

Reset

Figure 7.1 State Diagram for state mach Verilog example

module state-mach (clk, reset, inputl, input2 ,outputl);
input clk, reset, inputl, input2;
output outputl;
reg outputl;
reg [1:0] state;

120 Rapid Prototyping of Digital Systems Chapter 7

P Make State Assigments */
parameter [1:0] state-A = 0, state-B = 1, state_(: = 2;

always@(posedge clk or posedge reset)
begin

if (reset)
state = state-A;

else
/* Define Next State Transitions using a Case */
P Statement based on the Current State */

case (state)
state-A:

if (input1 -0)
state = state-B;

else
state = state-C;

state-B:
state = state-C;

state-C:
if (input2) state = state-A;

default: state = state-k,
endcase

end
r Define State Machine Outputs */

always @(state)
begin

case (state)
state-A: outputl = 0;
state-B: outputl = I ;
state-C: outputl = 0;
default: outputl = 0;

endcase
end

endmodule

7.12 Verilog Synthesis Model of an ALU with an AdderISubtractor
and a Shifter
Here is an 8-bit arithmetic logic unit (ALU), that adds, subtracts, bitwise
ANDs, or bitwise ORs, two operands and then performs an optional shift on the
output. The most-significant two bits of the Op-code select the arithmetic
logical operation. If the least-significant bit of the op-code equals '1' a l-bit
left-shift operation is performed. An addition and subtraction circuit is
synthesized for the "+" and "-" operator.
Depending on the number of bits and the speed versus area settings in the
synthesis tool, ripple carry or carry-lookahead circuits will be used. Several "+"
and "-" operations in multiple assignment statements may generate multiple
ALUs and increase the hardware size, depending on the Verilog CAD tool and
compiler settings used. If a single ALU is desired, muxes can be placed at the
inputs and the "+" operator would be used only in a single assignment
statement.

Using Verilog for Synthesis of Digital Hardware 121

module ALU (ALU-control, Ainput, Binput, Clock, Shift-output);
input [2:0] ALU-control;
input [15:0] Ainput;
input [15:0] Binput;
input Clock;
output[l5:0] Shift-output;
reg [15:0] Shift-output;
reg [15:0] ALU-output;

ALU-mtrd (2 . 1)

P Select A LU Arith~netic/Logical Operation */
always @(ALU-control or Ainput or Binput)

ALU-ottw
case (ALU-control[P:l])

0: ALU-output = Ainput + Binput;
1: ALU-output = Ainput - Binput;
2: ALU-output = Ainput & Binput;
3: ALU-output = Ainput I Binput;
default: ALU-output = 0;

endcase

/* Shift bits left using shift left oper6
always @(posedge Clock)

if (ALU-control[O]==l)
Shift-output = ALU-output Cc 1;

else
Shift-output = ALU-output;

endmodule

,tor if required anc Y load register */

7.13 Verilog Synthesis of Multiply and Divide Hardware
In the Quartus I1 tool, integer multiply and divide is supported using Verilog's
11*" and "I" operators. In current generation tools, efficient design of multiply or
divide hardware typically requires the use of a vendor-specific library function
or even the specification of the arithmetic algorithm and hardware
implementation in Verilog.
A wide variety of multiply and divide algorithms that trade off time versus
hardware size can be found in most computer arithmetic texts. Several such
references are listed at the end of this chapter. These algorithms require a
sequence of addlsubtract and shift operations that can be easily synthesized in
Verilog using the standard operators. The LPM-MULT function in Quartus I1
can be used to synthesize integer multipliers. LPM-DIVIDE, is also available.
When using LPM functions, Tools e3 Megawizard Plug-in Manager can be
used to help generate Verilog code. The LPM functions also support pipeline
options. Array multiply and divide hardware for more than a few bits requires
extensive hardware and a large FPGA. A few large FPGAs now contain
multiplier blocks.

122 Rapid Prototyping of Digital Systems Chapter 7

module mult (dataa, datab, result);
input [7:0] dataa;
input [7:0] datab;
output [I 5:0] result;

wire [15:0] sub-wire0;
wire [15:0] result = sub-wire0[15:0];

P Altera LPM 8x8 multiply function result = dataa * datab '/
Ipm-mult Ipm-mult-component (

.dataa (dataa),

.datab (datab),

.result (sub-wireO));
defparam

Ipm~mult~component.lpm~widtha = 8,
1pm~mult~component.lpm~widthb = 8,
Ipm~mult~component.lpm~widthp = 16,
Ipm~mult~component.lpm~widths = 1,
Ipm~mult~component.lpm~type = "LPM-MULT",
Ipm~mult~component.lpm~representation = "UNSIGNED,

endmodule

Floating-point operations can be implemented on very large FPGAs; however,
performance is lower than current floating-point DSP and microprocessor
chips. The floating-point algorithms must be coded by the user in Verilog using
integer add, multiply, divide, and shift operations. The LPM-CLSHIFT
function is useful for the barrel shifter needed in a floating-point ALU. Some
floating point IP cores are starting to appear. Many FPGA vendors also have
optimized arithmetic packages for DSP applications such as FIR filters.

7.14 Verilog Synthesis Models for Memory
Typically, it is more efficient to call a vendor-specific function to synthesize
RAM. These functions typically use the FPGA's internal RAM blocks rather
than building a RAM using FPGA logic elements. The memory function in the
Altera toolset is the ALTSYNCRAM function. On the UP 2 board's older
FPGA, the LPM-RAM-DQ memory function should be used. The memory can
be set to an initial value using a separate memory initialization file with the
extension *.mif. A similar call, LPM-ROM, can be used to synthesize ROM.
If small blocks of multi-ported or other special-purpose RAM are needed, they
can be synthesized using registers with address decoders for the write operation
and multiplexers for the read operation. Additional read or write ports can be
added to synthesize RAM. An example of this approach is a dual-ported
register file for a computer processor core. Most RISC processors need to read
two registers on each clock cycle and write to a third register.

Verilog Memory Model - Example One

The first memory example synthesizes a memory that can perform a read and a
write operation every clock cycle. Memory is built using arrays of positive
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address

Using Verilog for Synthesis of Digital Hardware 123

decoder output and used as an enable to load each memory location during a
write operation. A synchronous write operation is more reliable. Asynchronous
write operations respond to any logic hazards or momentary level changes on
the write signal. As in any synchronous memory, the write address must be
stable before the rising edge of the clock signal. A non-clocked mux is used for
the read operation. If desired, memory can be initialized by a reset signal.

module memoryjread-data, read-address, write-data, write-address,
memwrite, clock, reset);

output [7:0] read-data;
input [2:0] read-address;
input [7:0] write-data;
input [2:0] write-address;
input memwrite;
input clock;
input reset;
reg [7:0] read-data, memo, meml;

/" Block for memory read */
always @(read-address or memO or meml)

begin
case(read-address)

3'b 000: read-data = memo;
3'b 001: read-data = meml;
/* Unimplemented memory */
default: read-data = 8'h FF;

endcase
end

P Block for memory write */
always @(posedge clock or posedge reset)

begin
if (reset)

begin
P Initial vali~es for memory (optional) */
memO = 8'h AA ;
meml = 8'h 55;

end
else if (memwrite)

/* write new value fo memory */
case (write-address)

3'b 000 : memO = write-data;
3'b 001 : meml = write-data;

endcase
end

endmodule

Verilog Memory Model - Example Two

The second example shows the use of Altera7s ALTSYNCRAM megafunction
to implement a block of memory. For more information on the megafunctions

124 Rapid Prototyping of Digital Systems Chapter 7

see the online help guide in the Quartus I1 tool. In single port mode, the
ALTSYNCRAM memory can do either a read or a write operation in a single
clock cycle since there is only one address bus. In dual port mode, it can do
both a read and write. If this is the only memory operation needed, the
ALTSYNCRAM function produces a more efficient hardware implementation
than synthesis of the memory in Verilog. In the ALTSYNCRAM megafunction,
the memory address must be clocked into a dedicated address register located
inside the FPGA's synchronous memory block. Asynchronous memory
operations without a clock can cause timing problems and are not supported on
many FPGAs including the Cyclone.

module amemory (write-data, write-enable, address, clock, read-data);

input [7:0] write-data;
input write-enable;
input [2:0] address;
input clock;
output [7:0] read-data;
wire [7:0] sub-wire0;
wire [7:0] read-data = sub_wire0[7:0];

P Use Altera Altsyncram function for memory */
altsyncram altsyncram-component (

.wren-a (write-enable),

.clock0 (clock),

.address-a (address),

.data-a (write-data),

.q-a (sub-wireO));
defparam

altsyncram~component.operation~mode = "SINGLE-PORT",
/" 8 data bits, 3 address bits, and no register on read data */

altsyncram~component.width~a = 8,
altsyncram~component.widthad~a = 3,
altsyncram~component.outdata~reg~a = "UNREGISTERED",

/* Reads in mif file for initial memory data values (optional) Y
altsyncram-component.init-file = "memory.mif';

endmodule

On the Cyclone FPGA chip, the memory can be implemented using the M4K
memory blocks, which are separate from the FPGA's logic cells. In the Cyclone
EPIC6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160
bits. In the Cyclone EPIC12 there are 52 M4K blocks for a total of 239,616
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8,
256 by 16,256 by 18, 128 by 32 or 128 by 36 bits wide. The Tools
+ Megawizard Plug-in Manager feature is useful to configure the
Altsyncram parameters.

Using Verilog for Synthesis of Digital Hardware 125

7.15 Hierarchy in Verilog Synthesis Models
Large Verilog models should be split into a hierarchy using a top-level
structural model in Verilog or by using the symbol and graphic editor in the
Quartus I1 tool. In the graphical editor, a Verilog file can be used to define the
contents of a symbol block. Synthesis tools run faster using a hierarchy on
large models and it is easier to write, understand, and maintain a large design
when it is broken up into smaller modules.
An example of a hierarchical design with three submodules is seen in the
schematic in Figure 7.2. Following the schematic, the same design using a top-
level Verilog structural model is shown. This Verilog structural model provides
the same connection information as the schematic seen in Figure 7.2.
Debounce, Onepulse, and Clk-div are the names of the Verilog submodules.
Each one of these submodules has a separate Verilog source file. In the Quartus
I1 tool, compiling the top-level module will automatically compile the lower-
level modules.
In the example Verilog structural model for Figure 7.2, note the use of a
component instantiation statement for each of the three submodules. The
component instantiation statement declares the module name and connects
inputs and outputs of the module. New internal signal names used for
interconnections of modules should also be declared at the beginning of the top
level module.
The order of each module's signal names must be the same as in the Verilog
submodule files. Each instantiation of a module is given a unique name so that
a single module can be used several times. As an example, the single
instantiation of the debounce module is called debouncel in the example code.

Figure 7.2 Schematic of Hierarchical Design Example

Note that node names in the schematic or signals in Verilog used to
interconnect modules need not always have the same names as the signals in

126 Rapid Prototyping of Digital Systems Chapter 7

the components they connect. As an example, PB-debounced on the debounce
component connects to an internal signal with a different name,
PB 1-debounced.

module hierarch(Clock_48MHz, PBI, ~~ l l s in~ le -pu l se) ;
input Clock_48MHz, PBI ;
output PBI-Single-Pulse;

/* Declare internal interconnect signals */
reg Clock-IOOHz, Clock-IMHz, PBI-Debounced;

/* declare and connect ail three modules in the hiearchy */
debounce debouncel(PBI, Clock-IOOHz, PBI-Debounced);

clk-div clk-divl (Clock_48MHz, Clock-I MHz, Clock-1 00Hz);

onepulse onepulsel(PBI-Debounced, Clock-IOOHz, PB1-Single-Pulse);

endmodule

7.1 6 For additional information
The chapter has introduced the basics of using Verilog for digital synthesis. It
has not explored all of the language options available. The Altera online help
contains Verilog syntax and templates. A number of Verilog reference textbooks
are also available. Unfortunately, not all of them currently contain Verilog
models that can be used for digital logic synthesis. Two recommendations are
HDL Chip Design by Douglas J . Smith, Doone Publications, 1996 and
Modeling, Synthesis, and Rapid Prototyping with the Verilog HDL by Michael
Ciletti, 1999. An interesting free VHDL to Verilog conversion program is also
available at www.ocean-lo~ic.com!downloads.htm.

7.1 7 Laboratory Exercises
1. Write a Verilog model for the state machine shown in the following state diagram and

verify correct operation with a simulation using the Altera CAD tools. A and B are the
two states, X is the output, and Y is the input. Use the timing analyzer to determine the
maximum clock frequency on the Cyclone EP1 C6Q240C8 device.

1

/
Reset

2. Write a Verilog model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and

Using Verilog for Synthesis of Digital Hardware 127

Y is the output. A shift operation follows the arithmetic and logical operation. The
opcode controls ALU functions as follows:

Use the Cyclone chip as the target device. Determine the worst case time delay of the
ALU using the timing analyzer. Examine the report file and find the device utilization.
Use the logic element (LE) device utilization percentage found in the compilation report
to compare the size of the designs.

Explore different synthesis options for the ALU from problem 3. Change the area and
speed synthesis settings in the compiler under Assignments +Settings +Analysis and
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report
file for hardware size estimates. Include data points for the default, optimized for speed,
balanced, and optimized for area settings. Build a plot showing the speed versus area
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization
percentage found in the compilation report to compare the size of the designs.

Develop a Verilog model of one of the TTL chips listed below. The model should be
functionally equivalent, but there will be timing differences. Compare the timing
differences between the Verilog FPGA implementation and the TTL chip. Use a data
book or find a data sheet using the World Wide Web.

F. 7400 Quad nand gate

G. 74LS241 Octal buffer with tri-state output

H. 74LS273 Octal D flip-flop with Clear

I. 741 63 4-bit binary counter

J. 74LS181 4-bit ALU

Replace the 8count block used in the tutorial in Chapter 4, with a new counter module
written in Verilog. Simulate the design and download a test program to the UP 3 board.

Implement a 128 by 32 RAM using Verilog and the Altsyncram function. Do not use
registered output options. Target the design to the Cyclone device. Use the timing
analysis tools to determine the worst-case read and write access times for the memory.

State Machine Design:
The Electric Train
Controller

130 Rapid Prototyping of Digital Systems Chapter 8

8 State Machine Design: The Electric Train Controller

8.1 The Train Control Problem
The track layout of a small electric train system is shown in Figure 8.1. Two
trains, we'll call A and B, run on the tracks, hopefully without colliding. To
avoid collisions, the trains require a safety controller that allows trains to move
in and out of intersections without mishap.
In Figure 8.1, assume for a moment that Train A is at Switch 3 and moving
counterclockwise. Let's also assume that Train B is moving counterclockwise
and is at Sensor 2. Since Train B is entering the common track (Track 2), Train
A must be stopped when it reaches Sensor 1, and must wait until Train B has
passed Sensor 3. At this point, Train A will be allowed to enter Track 2, and
Train B will move toward Sensor 2.
The controller is a state machine that uses the sensors as inputs. The
controller's outputs control the power to the tracks, the direction of the trains,
and the position of the switches. However, the state machine does not control
the speed of the train. This means that the system controller must function
correctly independent of the speed of the two trains.

Switch 3
I I Track I

Sensor I Sensor 2

Switch 1 Switch 2

Figure 8.1 Track Layout with Input Sensors and Output Switches and Output Tracks.

The following sections describe how the state machine should control each
signal to operate the trains properly. Figure 8.2 demonstrates how the actual
electric train system was built with relays. A relay is an electrically controlled
switch. A UP 3-based "virtual" train simulation will be used that emulates this
relay setup. Since there are no actual relays on the UP 3 board, it is only
intended to give you a visual diagram of how the output signals work in the real
system.

State Machine Design: The Electric Train Controller 131

Power for
Train A

Q

Power for
Train B

4

Controls
Power On
and Off

Controls
Direction

Indicates a joined relay that is
controlled by the signal name.

Track 1 #

Track 2 Lt

Ties Power A or Power
B to each Track

Four Tracks all
powered by

Power A
or

Power B

Figure 8.2 Electric train controller relay schematic.

132 Rapid Prototyping of Digital Systems Chapter 8

8.2 Track Power (TI, T2, T3, and T4)
The track power signals (TI, T2, T3, T4) determine which power supply is
attached to which track. Note that since these are binary signals, one of the
power supplies is always connected to a track.
The track power connections are based on the actual switching relay system.
There are two power supplies (Power A and Power B) that can be connected to
the tracks. What these two power supplies actually allow you to do on the real
system is assign different speeds to each train. This is part of the simulator and
is controlled by the DIP switches on the UP 3 board. Speed will NOT be
controlled by your state machine, only Stop, Forward, and Reverse.
As illustrated in Figure 8.2, if either direction switch is set, the power supply is
connected to the next level of switches. Another set of relays determines the
polarity (direction of trains), while a third connects either Power A or Power B
to each track. Each track is either assigned power from source A (Tn = 0) or
from source B (Tn = 1). In other words, if all four signals (TI, T2, T3, and T4)
are asserted high, all tracks will be powered from power source B and would all
be assigned the same Direction (see the next section under Track Direction for
controlling train direction). See Figure 8.3 for an example.

8.3 Track Direction (DAI-DAO, and DBI-DBO)
The direction for each track is controlled by four signals (two for each power
source), DA (DAl-DAO) for source A, and DB (DBl-DBO) for source B. When
these signals indicate forward "01" for a particular power source, any train on a
track assigned to that power source will move counterclockwise (on track 4, the
train moves toward the outer track). When the signals imply reverse "lo", the
train(s) will move clockwise. The "11" value is illegal and should not be used.
When these signals are set to "OO", any train assigned to the given source will
stop. (See Figures 8.2 and 8.3.)

DA = 01 : Supply A Forward /- T1 = 0 : Track 1 set to Supply A

Sensor 1 Sensor 2

Switch 1 Switch 2

Figure 8.3 Track Power is connected to one of Two Power Sources: A and B.

State Machine Design: The Electric Train Controller 133

8.4 Switch Direction (SWI, SW2, and SW3)
Switch directions are controlled by asserting SW1, SW2, and SW3 either high
(outside connected with inside track) or low (outside tracks connected). That is,
anytime all of the switches are set to 1, the tracks are setup such that the
outside tracks are connected to the inside tracks. (See Figure 8.4.)
If a train moves the wrong direction through an open switch it will derail. Be
careful. If a train is at the point labeled "Track 1" in Figure 8.4 and is moving
to the left, it will derail at Switch 3. To keep it from derailing, SW3 would need
to be set to 0.
Also, note that Tracks 3 and 4 cross at an intersection and care must be taken to
avoid a crash at this point.

Sensor

Swii ' - r [cn J
1 Track I

u u
Switch 1 Switch 2

Figure 8.4 Track Direction if all Switches are Asserted (SWl = SW2 = SW3 = 1)

8.5 Train Sensor Input Signals (SI, S2, S3, S4, and S5)
The five train sensor inputs (Sl, S2, S3, S4, and S5) go high when a train is
near the sensor location. It should be noted that sensors (Sl , S2, S3, S4, and
S5) do not go high for only one clock cycle. In fact, the sensors fire
continuously for many clock cycles per passage of a train. This means that if
your design is testing the same sensor from one state to another, you must wait
for the signal to change from high to low.
As an example, if you wanted to count how many times that a train passes
Sensor 1, you can not just have an "IF S1 GOT0 count-one state" followed by
"IF S1 GOT0 count-two state." You would need to have a state that sees
Sl='l ', then S1='0', then S1='lY again before you can be sure that it has
passed S1 twice. If your state machine has two concurrent states that look for
Sl='17, the state machine will pass through both states in two consecutive
clock cycles although the train will have passed S1 only once.
Another way would be to detect S 1=' 1 ', then S4=' 1 ', then S 1 =' 1 ' if, in fact, the
train was traversing the outside loop continuously. Either method will ensure
that the train passed S1 twice.

134 Rapid Prototyping of Digital Systems Chapter 8

The signal inputs and outputs have been summarized in the following figure:

Reset -*
Sensor-5 (S5) -*
Sensor-4 (S4) -L

Sensor-3 (S3)

Sensor-2 (S2)

Sensor-I (S I)

CLK -
FPGA

State
Machine

Switch-3 (Sw3) - Switch-2 (Sw2)

Switch-I (Swl)

Track-4 (T4)

Track-3 (T3) - Track-2 (T2) - Track-I (T I)

Direction A1 (DAI)

Direction A2 (DAO) - Direction B1 (DBI) - Direction BO (DBO)

Sensor (SI, S2, S3, S4, S5) = 1 Train Present

= 0 Train not Present

Switches (SWI, SW2, SW3) = 0 Connected to Outside Track

= 1 Connected to Inside Track

Track (TI, T2, T3, T4) = 0 A Virtual Power on Track n

= 1 B Virtual Power on Track n

Direction (DAI-DAO) and (DBI-DBO) = 00 Stop

= 01 Foward (Counterclockwise)

= 10 Backward (Clockwise)

Figure 8.5 Train Control State Machine 110 Configuration

8.6 An Example Controller Design
This is a working example of a train controller state machine. For this
controller, two trains run counterclockwise at various speeds and avoid
collisions. One Train (A) runs on the outer track and the other (B) runs on the
inner track. Only one train at a time is allowed to occupy the common track.
Both an ASM chart and a classic state bubble diagram are illustrated in Figures
8.6 and 8.7 respectively. In the ASM chart, state names, ABout, Ain, Bin,
Bstop, and Astop indicate the active and possible states. The rectangles contain
the active (High) outputs for the given state. Outputs not listed are inactive
(Low).
The diamond shapes in the ASM chart indicate where the state machine tests
the condition of the inputs (Sl, S2, etc.). When two signals are shown in a
diamond, they are both tested at the same time for the indicated values.

State Machine Design: The Electric Train Controller 135

A state machine classic bubble diagram is shown in Figure 8.7. Both Figures
8.6 and 8.7 contain the same information. They are simply different styles of
representing a state diagram. The track diagrams in Figure 8.8 show the states
visually. In the state names, "in" and "out" refer to the state of track 2, the track
that is common to both loops.

Description of States in Example State Machine

All States
T3 Asserted: The B power supply is assigned to track 3.
All signals that are not "Asserted" are zero and imply a logical result as described.

ABout: "Trains A and B Outside"
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward).
DBO Asserted: Train B is on the inner track (not the common track) and also moving forward.
Note that by NOT Asserting DAl, it is automatically zero -- same for DB 1. Hence, the outputs are
DA = "01" and DB = "01".

"Train A moves to Common Track"
Sensor 1 has fired either first or at the same time as Sensor 2.
Either Train A is trying to move towards the common track, or
Both trains are attempting to move towards the common track.
Both trains are allowed to enter here; however, state Bstop will stop B if both have entered.
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward).
DBO Asserted: Train B is on the inner track (not the common track) and also moving forward.

Bstop: "Train B stopped at S2 waiting for Train A to clear common track"
DAO Asserted: Train A is moving from the outside track to the common track.
Train B has arrived at Sensor 2 and is stopped and waits until Sensor 4 fires.
SWl and SW2 are NOT Asserted to allow the outside track to connect to common track.
Note that T2 is not asserted making Track 2 tied to the A Power Supply.

"Train B has reached Sensor 2 before Train A reaches Sensor 1 "
Train B is allowed to enter the common track. Train A is approaching Sensor 1.
DAO Asserted: Train A is on the outside track and moving counterclockwise (forward).
DBO Asserted: Train B is on the inner track moving towards the common track.
SWl Asserted: Switch 1 is set to let the inner track connect to the common track.
SW2 Asserted: Switch 2 is set to let the inner track connect to the common track.
T2 Asserted: The B Power Supply is also assigned to the common track.

Astop: "Train A stopped at S1 waiting for Train B to clear the common track"
DBO Asserted: Train B is on the inner track moving towards the common track.
SWl and SW2 Asserted: Switches 1 and 2 are set to connect the inner track to the common track.
T2 Asserted: The B Power Supply is also assigned to the common track.

136 Rapid Prototyping of Digital Systems Chapter 8

Figure 8.6 Example Train Controller ASM Chart.

Fieure 8.7 Examvle Train Controller State Diagram.

State Machine Design: The Electric Train Controller 137

SWI sw2

ABout: T3. DAO. DBO (13. DA = I. DB = 1)

Aln: 73, DAO. DBO(T3, DA= I , D B = I)

SWI TZ sw2

Estop: T3. DAO (T3. DA = 1)

Swl TZ Sw2

Bin: T2. T3. DAO. DBO. SwI. SwZ
(T2 .T3 .DA=I .DB=I .Swl .SwZ)

Figure 8.8 Working diagrams o f train vositions for each state.

SWl T2 S WZ

Astop: TZ, T3.080. Swl. SwZ
(TZ .T3 ,DB=I ,Swl .SwZ)

Table 8.1 Outputs corresponding to states.

138 Rapid Prototyping of Digital Systems Chapter 8

8.7 VHDL Based Example Controller Design
The corresponding VHDL code fo r the state machine in Figures 8.6 and 8.7 i s
shown below. A CASE statement based o n the current state examines the inputs
to select the next state. At each clock edge the next state becomes the current
state. WITH ... SELECT statements at the end o f the program specify the
outputs for each state. For additional VHDL help, see the help f i les in the
Altera C A D tools or look at the VHDL examples in Chapter 6.

-- Exampie State machine to control trains-- File: Tcontrol.vhd
--

-- These libraries are required in all V f D L source @/es

USE IEEESTD~LOGIC-ARITH.ALL;
USE IEEESTD-LOGIC-UNSIGNED.ALL;

-- This section defines state rnachine inputs and outputs
-- No modifications should be needed in this section

TlTY Tcontrol IS
PORT(reset, clock, sensor1 , sensor2,

sensor3, sensor4, sensor5 : IN STD-LOGIC;
switch1 , switch2, switch3 : OUT STD-LOGIC;
trackl, track2, track3, track4 : OUT STD-LOG1C;

-- dirA and dirB are 2-bit logic vectors(i.e. an array of 2 bits)
dirA, dirB : OUT STD-LOGIC-VECTOR(1 DQWNTO 0));

END Tcontrol;

-- This code describes how the state rnachine operates
-- This section will need changes for a different state machine

ARCHITECTURE a OF Tcontrol IS

-- Define local signak (Le. non inpuf or output signals) here
TYPE STATEJYPE IS (ABout, Ain, Bin, Astop, Bstop);
SIGNAL state: STATE-TYPE;
SIGNAL sensor12, sensorl3, sensor24 : STD-LOGIC-V

BEGIN
-- This section describes how the state machine behaves
-- this process runs once every time reset or the clock changes

PROCESS (reset, clock)

eset to this state (ie. asynchronous reset')
IF reset = '1' THE

state <= ABout;
ELSlF clock'EVENT AND clock = '1' THEN

-- clocklEVENT means value of clock just changed
--This section wi!l execute once on each positive clock edge
--Signal assignments i n this section will generate D flip-flops
-- Case statement to determine next state

CASE state IS

State Machine Design: The Electric Train Controller 139

WHEN ABout =>
-- This Case checks both sensor? and sensor2 bits

CASE Sensor1 2 IS
-- Note: VHDL's use of double quote for bit vector versus
-- a single quote for only one bit!

EN "00" => state <= About;
EN "01" => state <= Bin;
EN "1 0" => state <= Ain;
EN "1 1" =z state <= Ain;

-- Default case is always required
S => state <= ABout;

END CASE;

HEN Ain =>
CASE Sensor24 IS

"00" => state <= Ain;
"01" => state <= ABout;
"1 0" =r state <= Bstop;

EN " I I " => state <= ABout;
OTHERS => state <= ABout;

END CASE;

HEN Bin =>
CASE Sensor13 IS

"00" => state <= Bin;
"01" =r state <= ABout;
"1 0" => state <= Astop;
"1 1 " => state <= About;

HEN OTHERS => state <= ABout;
END CASE;

IF Sensor3 = '1' THEN
state <= Ain;

ELSE
state <= Astop;

END IF;

state <= Bin;
ELSE

END IF;
END PROCESS;

-- combine sensor bits for case statements above
-- "&" operator combines bits

sensor12 <= sensorl & sensor2;
sensor13 <= sensorl & sensor3;
sensor24 <= sensor2 & sensor4;

Rapid Prototyping of Digital Systems Chapter 8

-- These outputs do not depend on tl?e state

-- Outputs that depend on state; use state to select value
-- Be sure to specify every output for every sirate
-- values will not defa~lt to zero!

Track3 <= '1 '
'1 ' HEN Ain,
'1 '
'1 '
'1 '

Track2 <- '0'
'0'
'1 '
'1 '
'0' WHEN Bstop;

Switch1 <= '0'
'0'
'1 '
'1 '
'0'

'0'
'0'
'1 '
'1 '
'0'

DirA <= "01"
"01"
"01"
"00"
"01"

DirB <- "01"
"01"
"01"
"01"
"00"

WHEN Bin,
Astop,
Bstop;

WHEN ABout,
WHEN Ain,

WHEN Bstop;

8.8 Simulation Vector file for State Machine Simulation
The vector waveform file, tcontrol.vwf, controls the simulation and tests the
state machine. A vector waveform file specifies the simulation stimulus and
display. This file sets up a 40ns clock and specifies sensor patterns (inputs to
the state machine), which will be used to test the state machine. These patterns
were chosen by picking a path in the state diagram that moves to all of the

State Machine Design: The Electric Train Controller 141

different states. The sensor-input patterns will need to be changed to test a
different state machine. Sensor inputs should not change faster than the clock
cycle time of 4011s. As a minimum, try to test all of the states and arcs in your
state machine simulation.

Figure 8.9 Tcontrol.vwf vector waveform file for simulation.

Figure 8.10 Simulation of TcontroLvhd using the Tcontrol.vwf vector waveform file in Figure 8.9.

142 Rapid Prototyping of Digital Systems Chapter 8

8.9 Running the Train Control Simulation
Follow these steps to compile and simulate the state machine for the electric
train controller.

Select Current Project

Make Tcontrol.vhd the current project with File c3 Open Project 4 Name
Then find and select Tcontrol.vhd.

Compile and Simulate

Select Processing 4 Start Compilation and Simulation. The simulator will
run automatically if there are no compile errors. Select Processing c3
Simulation Report to see the timing diagram display of your simulation as
seen in Figure 8.10. Whenever you change your VHDL source you need to
repeat this step. If you get compile errors, clicking on the error will move the
text editor to the error location. The Altera software has extensive online help
including VHDL syntax examples.
Make any text changes to Tcontrol.vhd or Tcontrol.vwf (test vector waveform
file) with File c3 Open. This brings up a special editor window. Note that the
menus at the top of the screen change depending on which window is currently
open.

Updating new Simulation Test Vectors

To update the simulation with new test vectors from a modified TcontroLvwf,
select Processing * Start Simulation. The simulation will then run with the
new test vectors. If you modify Tcontrol.vhd, you will need to recompile first.

8.10 Running the Video Train System (After Successful Simulation)
A simulated or "virtual1' train system is provided to test the controller without
putting trains and people at risk. The simulation runs on the Cyclone chip. The
output of the simulation is displayed on a VGA monitor connected directly to
the UP 3 board. A typical video output display is seen in Figure 8.11. This
module is also written in VHDL and it provides the sensor inputs and uses the
outputs from the state machine to control the trains. The module tcontrol.vhd is
automatically connected to the train simulation.

Here are the steps to run the virtual train system simulation:

Select the top-level project

Make Train.vhd the current project with File 4 Open Project c3 Name
Then find and select Train.qpf. Train.qsf must be in the project directory since
it contains the Cyclone chip pin assignment information needed for video
outputs and switch inputs. Double check that your FPGA Device type is
correct.

State Machine Design: The Electric Train Controller 143

Compile the Project

Select Processing + Start Compilation. Train.vhd will link in your
tcontroLvhd file if it is in the same directory, when compiled. This is a large
program, so it will take a few seconds to compile.

Download the Video Train Simulation

Select Tools 4 Programmer. When the programmer window opens click on
the Program/Configure box if it is not already selected. In case of problems, see
the UP 3 board tutorial in Chapter 1 for more details. The UP3 board must be
turned on the power supply must be connected, and the Byteblaster* cable must
be plugged into the PC's printer port. When everything is setup, the start button
in the programming window should highlight. If the start button is not
highlighted, try closing and reopening the programmer window. Under
Hardware setup the Byteblaster should be selected. To download the board,
click on the highlighted start button. Attach a VGA monitor to the UP 3 board.

Figure 8.11 Video Image from Train System Simulation.

Viewing the Video Train Simulation

Train output should appear on the VGA monitor after downloading is complete.
UP3 SW7 is run/step/stop and UP3 SW8 is the reset. Train A is displayed in
black and Train B is displayed in red. Hit SW7 once to start the train simulation
running. Hitting SW7 again will stop the simulation. If you SW7 twice quickly

144 Rapid Prototyping of Digital Systems Chapter 8

while trains are stopped, it will single step to the next track sensor state -
change.

Sensor and switch values are indicated with a green or red square on the
display. Switch values are the squares next to each switch location. Green
indicates no train present on a sensor and it indicates switch connected to
outside track for a switch. The UP 3's LCD display top line shows the values of
the sensor (s), track (t) and switch (sw) signals in binary and the bottom line
indicates the values of DirA and DirB in binary. The most significant bit in
each field is the highest numbered bit.
If a possible train wreck is detected by two trains running on the same track
segment, the simulation halts and the monitor will flash. The UP3 DIP switches
control the speed of Train A (low 2 bits) and B (high 2 bits). Be sure to check
operation with different train speeds. Most problems occur with a fast and a
slow train.

8.1 1 Laboratory Exercises
1. Assuming that train A now runs clockwise and B remains counterclockwise, draw a new

state diagram and implement the new controller. If you use VHDL to design the new
controller, you can modify the code presented in section 8.7. Simulate the controller and
then run the video train simulation.

2. Design a state machine to operate the two trains avoiding collisions but minimizing their
idle time. Trains must not crash by moving the wrong direction into an open switch.
Develop a simulation to verify your state machine is operating correctly before running
the video train system.

The trains are assumed to be in the initial positions as shown in Figure 8.12. Train A is to
move counterclockwise around the outside track until it comes to Sensor 1, then move to
the inside track stopping at Sensor 5 and waiting for B to pass Sensor 3 twice. Trains can

State Machine Design: The Electric Train Controller 145

move at different speeds so no assumption should be made about the train speeds. A train
hitting a sensor can be stopped before entering the switch area.

Once B has passed Sensor 3 twice, Train A moves to the outside track and continues
around counterclockwise until it picks up where it left off at the starting position as
shown in Figure 8.13. Train B is to move as designated only stopping at a sensor to avoid
collisions with A.

Switch 1 Switch 2

Figure 8.12 Initial Positions of Trains at State Machine Reset with Initial Paths Designated.

Figure 8.13 Return Path of Train A.

Train B will then continue as soon as there is no potential collision and continue as
designated. Trains A and B should run continuously, stopping only to avoid a potential
collision.

3. Use the single pulse UP3core functions on each raw sensor input to produce state
machine sensor inputs that go High for only one clock cycle per passage of a train.
Rework the state machine design with this assumption and repeat problem 1 or 2.

4. Develop another pattern of train movement and design a state machine to implement it.

A Simple Computer
Design: The ,UP 3

A partial die photograph of individual transistors about 10 microns tall on the Intel i4004
microprocessor is seen above. The 1971 Intel 4004 was the world's first single chip
microprocessor. Prior to the 4004, Intel made memory chips. The 4004 was a 4-bit CPU
with a clock rate of 108 kHz that contains 2,300 transistors. Photograph 01995-2004
courtesy of Michael Davidson, http://micro.magnet.fsu.edu/chipshots.

148 Rapid Prototyping of Digital Systems Chapter 9

9 A Simple Computer Design: The pP 3

A traditional digital computer consists of three main units, the processor or
central processing unit (CPU), the memory that stores program instructions and
data, and the inputloutput hardware that communicates to other devices. As
seen in Figure 9.1, these units are connected by a collection of parallel digital
signals called a bus. Typically, signals on the bus include the memory address,
memory data, and bus status. Bus status signals indicate the current bus
operation, memory read, memory write, or inputloutput operation.

Processor

Figure 9.1 Architecture of a Simwle Comwuter System.

Memory

Internally, the CPU contains a small number of registers that are used to store
data inside the processor. Registers such as PC, IR, AC, MAR and MDR are
built using D flip-flops for data storage. One or more arithmetic logic units
(ALUs) are also contained inside the CPU. The ALU is used to perform
arithmetic and logical operations on data values. Common ALU operations
include add, subtract, and logical and/or operations. Register-to-bus
connections are hard wired for simple point-to-point connections. When one of
several registers can drive the bus, the connections are constructed using
multiplexers, open collector outputs, or tri-state outputs. The control unit is a
complex state machine that controls the internal operation of the processor.
The primary operation performed by the processor is the execution of
sequences of instructions stored in main memory. The CPU or processor reads
or fetches an instruction from memory, decodes the instruction to determine
what operations are required, and then executes the instruction. The control unit
controls this sequence of operations in the processor.

I nput1Ouput

A A

Address Bus . Data Bus

A Simple Computer Design: The pP3 149

9.1 Computer Programs and Instructions
A computer program is a sequence of instructions that perform a desired
operation. Instructions are stored in memory. For the following simple pP 3
computer design, an instruction consists of 16 bits. As seen in Figure 9.2 the
high eight bits of the instruction contain the opcode. The instruction operation
code or "opcode" specifies the operation, such as add or subtract, that will be
performed by the instruction. Typically, an instruction sends one set of data
values through the ALU to perfonn this operation. The low eight bits of each
instruction contain a memory address field. Depending on the opcode, this
address may point to a data location or the location of another instruction.
Some example instructions are shown in Figure 9.3.

I O p c o d e I A d d r e s s I

Figure 9.2 Simple pP 3 Computer Instruction Format.

Instruction Mnemonic Operation Preformed Opcode Value

ADD address AC <= AC + contents of memory address 00

STORE address contents of memory address <= AC 0 1

LOAD address AC <= contents of memory address 02

JUMP address PC <= address 03

JNEG address If AC < 0 Then PC <= address 04

Figure 9.3 Basic UP 3 Comvuter Instructions.

An example program to compute A = B + C is shown in Figure 9.4. This
program is a sequence of three instructions. Program variables such as A, B,
and C are typically stored in dedicated memory locations. The symbolic
representation of the instructions, called assembly language, is shown in the
first column. The second column contains the same program in machine
language (the binary pattern that is actually loaded into the computer's
memory).
The machine language can be derived using the instruction format in Figure
9.2. First, find the opcode for each instruction in the first column of Figure 9.3.
This provides the first two hexadecimal digits in machine language. Second,
assign the data values of A, B, and C to be stored in hexadecimal addresses
10,11, and 12 in memory. The address provides the last two hexadecimal digits
of each machine instruction.

150 Rapid Prototyping of Digital Systems Chapter 9

Assembly Language Machine Laneuage

LOAD B 0211
ADD C 0012
STORE A 0110

Figure 9.4 Example Computer Program for A = B + C.

The assignment of the data addresses must not conflict with instruction
addresses. Normally, the data is stored in memory after all of the instructions in
the program. In this case, if we assume the program starts at address 0, the
three instructions will use memory addresses 0,1, and 2.
The instructions in this example program all perform data operations and
execute in strictly sequential order. Instructions such as JUMP and JNEG are
used to transfer control to a different address. Jump and Branch instructions do
not execute in sequential order. Jump and Branch instructions must be used to
implement control structures such as an IF ... THEN statement or program
loops. Details are provided in an exercise at the end of this section.
Assemblers are computer programs that automatically convert the symbolic
assembly language program into the binary machine language. Compilers are
programs that automatically translate higher-level languages, such as C or
Pascal, into a sequence of machine instructions. Many compilers also have an
option to output assembly language to aid in debugging.
The programmer's view of the computer only includes the registers (such as the
program counter) and details that are required to understand the function of
assembly or machine language instructions. Other registers and control
hardware, such as the instruction register (IR), memory address register
(MAR), and memory data register (MDR), are internal to the CPU and are not
described in the assembly language level model of the computer. Computer
engineers designing the processor must understand the function and operation
of these internal registers and additional control hardware.

9.2 The Processor Fetch, Decode and Execute Cycle
The processor reads or fetches an instruction from memory, decodes the
instruction to determine what operations are required, and then executes the
instruction as seen in Figure 9.5. A simple state machine called the control unit
controls this sequence of operations in the processor. The fetch, decode, and
execute cycle is found in machines ranging from microprocessor-based PCs to
supercomputers. Implementation of the fetch, decode, and execute cycle
requires several register transfer operations and clock cycles in this example
design.
The program counter contains the address of the current instruction. Normally,
to fetch the next instruction from memory the processor must increment the
program counter (PC). The processor must then send the address value in the
PC to memory over the bus by loading the memory address register (MAR) and
start a memory read operation on the bus. After a small delay, the instruction

A Simple Computer Design: The pP3 151

data will appear on the memory data bus lines,
memory data register (MDR).

Instruction I Fetch I
Decode

Instruction ,
Execute

Instruction

Figure 9.5 Processor Fetch. Decode and Execute Cvcle.

and it will be latched into the

Execution of the instruction may require an additional memory cycle so the
instruction is normally saved in the CPU's instruction register (IR). Using the
value in the IR, the instruction can now be decoded. Execution of the
instruction will require additional operations in the CPU and perhaps additional
memory operations.
The Accumulator (AC) is the primary register used to perform data calculations
and to hold temporary program data in the processor. After completing
execution of the instruction the processor begins the cycle again by fetching the
next instruction.
The detailed operation of a computer is often modeled by describing the
register transfers occurring in the computer system. A variety of register
transfer level (RTL) languages such as VHDL or Verilog are designed for this
application. Unlike more traditional programming languages, RTL languages
can model parallel operations and map easily into hardware designs. Logic
synthesis tools can also be used to implement a hardware design automatically
using an RTL description.
To explain the function and operation of the CPU in detail, consider the
example computer design in Figure 9.1. The CPU contains a general-purpose
data register called the accumulator (AC) and the program counter (PC). The
arithmetic logic unit (ALU) is used for arithmetic and logical operations.
The fetch, decode, and execute cycle can be implemented in this computer
using the sequence of register transfer operations shown in Figure 9.6. The next
instruction is fetched from memory with the following register transfer
operations:

MAR = PC
Read Memory, MDR = Instruction value from memory
IR = MDR
P C = P C + l

152 Rapid Prototyping of Digital Systems Chapter 9

After this sequence of operations, the current instruction is in the instruction
register (IR). This instruction is one of several possible machine instructions
such as ADD, LOAD, or STORE. The opcode field is tested to decode the
specific machine instruction. The address field of the instruction register
contains the address of possible data operands. Using the address field, a
memory read is started in the decode state.
The decode state transfers control to one of several possible next states based
on the opcode value. Each instruction requires a short sequence of register
transfer operations to implement or execute that instruction. These register
transfer operations are then performed to execute the instruction. Only a few of
the instruction execute states are shown in Figure 9.6. When execution of the
current instruction is completed, the cycle repeats by starting a memory read
operation and returning to the fetch state. A small state machine called a control
unit is used to control these internal processor states and control signals.

*MAR=PC

FETCH Read Memory
IR=MDR

PC=PC+l

EXECYTE 1 owde=rD , Ac=~DRowdi;;;, M!z;=sm~i

AC=AC+MDR Write Memory

Fieure 9.6 Detailed View of Fetch. Decode. and Execute for the UP 3 Comvuter Desien.

Figure 9.7 is the datapath used for the implementation of the pP 3 Computer. A
computer's datapath consists of the registers, memory interface, ALUs, and the
bus structures used to connect them. The vertical lines are the three major
busses used to connect the registers. On the bus lines in the datapath, a "/" with
a number indicates the number of bits on the bus. Data values present on the
active busses are shown in hexadecimal. MW is the memory write control line.
A reset must be used to force the processor into a known state after power is
applied. The initial contents of registers and memory produced by a reset can
also be seen in Figure 9.7. Since the PC and MAR are reset to 00, program
execution will start at 00.
Note that memory contains the machine code for the example program
presented earlier. Recall that the program consists of a LOAD, ADD, and

A Simple Computer Design: The pP3 153

STORE instruction starting at address 00. Data values for this example program
are stored in memory locations, 10, 11, and 12.

Memory
00: 02 11
01: 0012 10: 0000
02: 01 10 11: 0004
03: 03 03 12: 00 03

Figure 9.7 Datapath used for the pP 3 Computer Design after applying reset.

Consider the execution of the ADD machine instruction (0012) stored at
program location 01 in detail. The instruction, ADD address, adds the contents
of the memory location at address 12 to the contents of AC and stores the result
in AC. The following sequence of register transfer operations will be required
to fetch and execute this instruction.

FETCH: REGISTER TRANSFER CYCLE I :

MAR = PCprior to fetch, read memory, IR = MDR, PC = PC + 1

First, the memory address register is loaded with the PC. In the example
program, the ADD instruction (0012) is at location 01 in memory, so the PC
and MAR will both contain 01. In this implementation of the computer, the
MAR=PC operation will be moved to the end of the fetch, decode, and execute
loop to the execute state in order to save a clock cycle. To fetch the instruction,
a memory read operation is started. After a small delay for the memory access
time, the ADD instruction is available at the input of the instruction register. To
set up for the next instruction fetch, one is added to the program counter. The
last two operations occur in parallel during one clock cycle using two different
data busses. At the rising edge of the clock signal, the decode state is entered. A

154 Rapid Prototyping of Digital Systems Chapter 9

block diagram of the register transfer operations for the fetch state is seen in
Figure 9.8. Inactive busses are not shown.

MAR 01

Memory
00: 02 11
01: 0012 10: 0000
02: 01 10 11: 0004
03: 03 03 12: 00 03

Figure 9.8 Register transfers in the ADD instruction's Fetch State.

DECODE: REGISTER TRANSFER CYCLE 2:

Decode Opcode to find Next State, MAR = IR, and start memory read

Using the new value in the IR, the CPU control hardware decodes the
instruction's opcode of 00 and determines that this is an ADD instruction.
Therefore, the next state in the following clock cycle will be the execute state
for the ADD instruction.
Instructions typically are decoded in hardware using combinational circuits
such as decoders, programmable logic arrays (PLAs), or perhaps even a small
ROM. A memory read cycle is always started in decode, since the instruction
may require a memory data operand in the execute state.
The ADD instruction requires a data operand from memory address 12. In
Figure 9.9, the low 8-bit address field portion of the instruction in the IR is
transferred to the MAR. At the next clock, after a small delay for the memory
access time, the ADD instruction's data operand value from memory (0003)
will be available in the MDR.

A Simple Computer Design: The pP3 155

\ ALU /

1 Memory I

MDR 00 12

Figure 9.9 Register transfers in the ADD instruction's Decode State.

EXECUTE ADD: REGISTER TRANSFER CYCLE 3:
AC = AC + MDR, MAR = PC*, and GOT0 FETCH

The two values can now be added. The ALU operation input is set for addition
by the control unit. As shown in Figure 9.10, the MDR's value of 0003 is fed
into one input of the ALU. The contents of register AC (0004) are fed into the
other ALU input. After a small delay for the addition circuitry, the sum of 0007
is produced by the ALU and will be loaded into the AC at the next clock. To
provide the address for the next instruction fetch, the MAR is loaded with the
current value of the PC (02). Note that by moving the operation, MAR=PC, to
every instruction's final execute state, the fetch state can execute in one clock
cycle. The ADD instruction is now complete and the processor starts to fetch
the next instruction at the next clock cycle. Since three states were required, an
ADD instruction will require three clock cycles to complete the operation.
After considering this example, it should be obvious that a thorough
understanding of each instruction, the hardware organization, busses, control
signals, and timing is required to design a processor. Some operations can be
performed in parallel, while others must be performed sequentially. A bus can
only transfer one value per clock cycle and an ALU can only compute one
value per clock cycle, so ALUs, bus structures, and data transfers will limit
those operations that can be done in parallel during a single clock cycle. In the
states examined, a maximum of three buses were used for register transfers.

156 Rapid Prototyping of Digital Systems Chapter 9

Timing in critical paths, such as ALU delays and memory access times, will
determine the clock speed at which these operations can be performed.

+ MDR 00 03

Figure 9.10 Register transfers in the ADD instruction's Execute State.

The pP 3's multiple clock cycles per instruction implementation approach was
used in early generation microprocessors. These computers had limited
hardware, since the VLSI technology at that time supported orders of
magnitude fewer gates on a chip than is now possible in current devices.
Current generation processors, such as those used in personal computers, have
a hundred or more instructions, and use additional means to speedup program
execution. Instruction formats are more complex with up to 32 data registers
and with additional instruction bits that are used for longer address fields and
more powerful addressing modes.
Pipelining converts fetch, decode, and execute into a parallel operation mode
instead of sequential. As an example, with three stage pipelining, the fetch unit
fetches instruction n + 2, while the decode unit decodes instruction n + 1, and
the execute unit executes instruction n. With this faster pipelined approach, an
instruction finishes execution every clock cycle rather than three as in the
simple computer design presented here.
Superscalar machines are pipelined computers that contain multiple fetch,
decode and execute units. Superscalar computers can execute several
instructions in one clock cycle. Most current generation processors including

A Simple Computer Design: The pP3 157

those in personal computers are both pipelined and superscalar. An example of
a pipelined, reduced instruction set computer (RISC) design can be found in
Chapter 14.

9.3 VHDL Model of the pP 3
To demonstrate the operation of a computer, a VHDL model of the pP 3
computer is shown in Figure 9.1 1. The simple pP 3 computer design fits easily
into a Cyclone device using less than 1% of its logic. The computer's RAM
memory is implemented using the Altsyncram function which uses the FPGA's
internal memory blocks.
The remainder of the computer model is basically a VHDL-based state machine
that implements the fetch, decode, and execute cycle. The first few lines
declare internal registers for the processor along with the states needed for the
fetch, decode and execute cycle. A long CASE statement is used to implement
the control unit state machine. A reset state is needed to initialize the processor.
In the reset state, several of the registers are reset to zero and a memory read of
the first instruction is started. This forces the processor to start executing
instructions at location 00 in a predictable state after a reset.
The fetch state adds one to the PC and loads the instruction into the instruction
register (IR). After the rising edge of the clock signal, the decode state starts. In
decode, the low eight bits of the instruction register are used to start a memory
read operation in case the instruction needs a data operand from memory. The
decode state contains another CASE statement to decode the instruction using
the opcode value in the high eight bits of the instruction. This means that the
computer can have up to 256 different instructions, although only four are
implemented in the basic model. Other instructions can be added as exercises.
After the rising edge of the clock signal, control transfers to an execute state
that is specific for each instruction.
Some instructions can execute in one clock cycle and some instructions may
take more than one clock cycle. Instructions that write to memory will require
more than one state for execute because of memory timing constraints. As seen
in the STORE instruction, the memory address and data needs to be stable
before and after the memory write signal is High, hence, additional states are
used to avoid violating memory setup and hold times. When each instruction
finishes the execute state, MAR is loaded with the PC to start the fetch of the
next instruction. After the final execute state for each instruction, control
returns to the fetch state.
Since the FPGA's synchronous memory block requires and contains an internal
memory address and memory write register, it is necessary to make all
assignments to the memory address register and memory write outside of the
process to avoid having two cascaded registers. Recall that any assignment
made in a clocked process synthesizes registers. Two cascaded MAR registers
would require a delay of two clocks to load a new address for a memory
operation.
The machine language program shown in Figure 9.12 is loaded into memory
using a memory initialization file (*.mif). This produces 256 words of 16-bit

158 Rapid Prototyping of Digital Systems Chapter 9

memory for instructions and data. The memory initialization file, program.mif
can be edited to change the loaded program. A write is performed only when
the memory-write signal is High. On a Cyclone FPGA device, the access time
for memory operations is in the range of 5-10ns.

-- Simple Computer Model Scomp. vhd
LIBRARY IEEE;
USE IEEE.STD-LOGIC-I 164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNEDALL;
LIBRARY altera-mf;
USE altera-mf.altera-mf-components.ALL;

ENTITY SCOMP IS
PORT(clock, reset

program-counter-out
register-AC-out
memory-data-register-out
memory-address-register-out
memory-write-out

END SCOMP;

: IN STD-LOGIC;
: OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
: OUT STD-LOGIC-VECTOR(15 DOWNTO 0);
: OUT STD-LOGIC-VECTOR(15 DOWNTO 0));
: OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
: OUT STD-LOGIC);

ARCHITECTURE a OF scomp IS
TYPE STATE-TYPE IS (reset-pc, fetch, decode, execute-add, execute-load, execute-store,

execute-store2, executejump);
SIGNAL state: STATE-TYPE;
SIGNAL instruction-register, memory-data-register : STD-LOGIC-VECTOR(15 DOWNTO 0);
SIGNAL register-AC : STD-LOGIC-VECTOR(15 DOWNTO 0);
SIGNAL program-counter : STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL memory-address-register : STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL memory-write : STD-LOGIC;
BEGIN

-- Use Altsyncram function for computer's memory (256 16-bit words)
memory: altsyncram

GENERIC MAP (
operation-mode => "SINGLE-PORT",
width-a => 16,
widthad-a => 8,
Ipm-type => "altsyncram",
outdata-reg-a => "UNREGISTERED",

-- Reads in mif file for initial program and data values
init-file => "program.mif',
intended-device-family => "Cyclone")

PORT MAP (wren-a => memory-write, clock0 => clock,
address-a =>memory-address-register, data-a => Register-AC,
q-a => memory-data-register);

-- Output major signals for simulation
program-counter-out <= program-counter;
register-AC-out <= register-AC;
memory-data-register-out <= memory-data-register;
memory~address~register~out <= memory-address-register;

A Simple Computer Design: The pP3 159

PROCESS (CLOCK, RESET)
BEGIN
IF reset = '1' THEN

state <= reset-pc;
ELSIF clocklEVENT AND clock = '1' THEN

CASE state IS
-- reset the computer, need to clear some registers

WHEN reset-pc =>
program-counter <= "00000000";
register-AC <= "0000000000000000";
state <= fetch;

-- Fetch instruction from memory and add 1 to PC
WHEN fetch =>

instruction-register <= memory-data-register;
program-counter <= program-counter + I;
state <= decode;

-- Decode instruction and send out address of any data operands
WHEN decode =>

CASE instruction-register(15 DOWNTO 8) IS
WHEN "00000000" =>

state <= execute-add;
WHEN "00000001" =>

state <= execute-store;
WHEN "00000010" =>

state <= execute-load;
WHEN "0000001 1" =>

state <= execute jump;
WHEN OTHERS =>

state <= fetch;
END CASE;

-- Execute the ADD instruction
WHEN execute-add =>

register-ac <= register-ac + memory-data-register;
state <= fetch;

-- Execute the STORE instruction
-- (needs two clock cycles for memory write and fetch mem setup)

WHEN execute-store =>
-- write register_A to memory, enable memory write

state
-- load memory address and data registers for memory write

<= execute-store2;
--finish memory write operation and load memory registers
--for next fetch memory read operation

WHEN execute-store2 =>
state <= fetch;

-- Execute the LOAD instruction
WHEN execute-load =>

register-ac <= memory-data-register;
state <= fetch;

-- Execute the JUMP instruction
WHEN executejump =>

program-counter <= instruction-register(7 DOWNTO 0);
state c= fetch;

WHEN OTHERS =>
state <= fetch:

160 Rapid Prototyping of Digital Systems Chapter 9

END CASE;
END IF;
END PROCESS;

-- memory address register is already inside synchronous memory unit
- need to load its value based on current state
- (no second register is used - not inside a process here)

WlTH state SELECT
memory-address-register <= "00000000" WHEN reset-pc,

program-counter WHEN fetch,
instruction-register(7 DOWNTO 0) WHEN decode,
program-counter WHEN execute-add,
instruction-register(7 DOWNTO 0) WHEN execute-store,
program-counter WHEN execute-store2,
program-counter WHEN execute-load,
instruction-register(7 DOWNTO 0) WHEN executejump;

WlTH state SELECT
memory-write <= '1 ' WHEN execute-store,

'0' WHEN Others;
END a;

Figure 9.11 VHDL Model of pP 3 Computer.

DEPTH = 256;
WIDTH = 16;

% Memory depth and width are required %
% Enter a decimal number %

ADDRESS-RADIX = HEX; % Address and value radixes are optional %
DATA-RADIX = HEX; % Enter BIN, DEC, HEX, or OCT; unless %

% otherwise specified, radixes = HEX %

CONTENT
BEGIN

[OO..FF] :
00 :
01 :
02 :
03 :
04 :
10 :
11 :
12 :

END ;

-- Specify values for addresses, which can be single address or range

% Range--Evefy address from 00 to FF = 0000 (Default) %
% LOAD AC with MEM(l0) %
% ADD MEM(l1) to AC %
96 STORE AC in MEM(1.2) %
O/u LOAD AC with MEM(12) check for new value of FFFF %
% JUMP to 04 (loop forever) %
% Data Value of €3 %
% Data Value of C%
% Data Value of A - should be FFFF after running program %

Figure 9.12 Progam.mif file containg pP 3 Computer Program and DATA.

A Simple Computer Design: The pP3 161

9.4 Simulation of the pP3 Computer

A simulation output from the VHDL model is seen in Figure 9.13. After a reset,
the test program seen in Figure 9.12, loads, adds, and stores a data value to
compute A = B + C. The final value is then loaded again to demonstrate that the
memory contains the correct value for A. The program then ends with a jump
instruction that jumps back to its own address producing an infinite loop. After
running the program, FF is stored in location 12. Memory can be examined in
the Simulator after running a program by clicking on the Logical Memories
section in the left column of the Simulation Report. An example is shown in
Figure 9.14. Note that the clock period is set to 20ns for simulation.

Figure 9.13 Simulation of the Simple pP 3 Computer Program.

Fieure 9.14 Simulation display of uP 3 Computer Memory showing result stored in memory

Rapid Prototyping of Digital Systems Chapter 9

9.5 Laboratory Exercises

1. Compile and simulate the pF' 3 computer VHDL or Verilog model. Rewrite the machine
language program in the program.mif file to compute A = (B + C) + D. Store D in
location 13 in memory. End the program with a Jump instruction that jumps to itself. Be

sure to select the Cyclone device as the target. Find the maximum clock rate of the yP 3
computer. Examine the project's compiler report and find the logic cell (LC) percentage
utilized.

2. Add the JNEG execute state to the CASE statement in the model. JNEG is Jump if AC <
0. If A >= 0 the next sequential instruction is executed. In most cases, a new instruction
will just require a new execute state in the decode CASE statement. Use the opcode value
of 04 for JNEG. Test the new instruction with the following test program that implements
the operation, IF A>= 0 THEN B = C

Assembly Language Machine Language Memorv Address
LOAD A 0210 00
JNEG End-of-If 0404 01
LOAD C 0212 02
STORE B 0111 03

End-of-If: JMP End-of-If 0304 04

End-of-If is an example of a label; it is a symbolic representation for a location in the
program. Labels are used in assembly language to mark locations in a program. The last
line that starts out with End-of-If: is the address used for the End-of-If symbol in the
Jump instruction address field. Assuming the program starts at address 00, the value of
the End-of-If label will be 04. Test the JNEG instruction for both cases A < 0 and
A >= 0. Place nonzero values in the *.mif file for B and C so that you can verify the
program executes correctly.

A Simple Computer Design: The pP3 163

3. Add the instructions in the table below to the VHDL model, construct a test program for
each instruction, compile and simulate to verify correct operation. In JPOS and JZERO
instructions, both cases must be tested.

In the logical XOR instruction each bit is exclusive OR'ed with the corresponding bit in

Instruction

SUBT address
XOR address
OR address
AND address
JPOS address
JZERO address
ADD1 address

each operation for a total of sixteen independent exclusive OR operations. This is called a
bitwise logical operation. OR and AND are also bitwise logical operations. The add-
immediate instruction, ADDI, sign extends the 8-bit address field value to 16 bits. To
sign extend, copy the sign bit to all eight high bits. This allows the use of both positive
and negative two's complement numbers for the 8-bit immediate value stored in the
instruction.

Function

AC=AC-MDR

AC = AC XOR MDR

AC=ACORMDR

AC = AC AND MDR

IF AC > 0 THEN PC = address
IF AC = 0 THEN PC = address
AC = AC + address

4. Add the following two shift instructions to the simple computer model and verify with a

Opcode

05

06

07

08

09

0 A
OB

test program and simulation.

The function LPM-CLSHIFT is useful to implement multiple bit shifts. SHL and SHR
can also be used if 1993 VHDL features are enabled in the compiler. Only the low four
bits of the address field contain the shift amount. The other four bits are always zero.

Instruction

SHL address

SHR address

Run the pP 3 computer model using the Cyclone chip on the UP 3 board. Use a
debounced pushbutton for the clock and the other pushbutton for reset. Output the PC in
hex to the UP 3's LCD display. Run a test program on the board and verify the correct
value of the PC appears in the LCD display by stepping through the program using the
pushbutton. On the UP 2, use the seven LED segment displays for the PC display.

Add these two inputloutput (YO) instructions to the pP 3 computer model running on the
UP 3 board.

Function

AC = AC shifted left address bits

AC = AC shifted right address bits

Opcode

OC

OD

Instruction

IN ilo address

OUT ilo address

Function

AC = UP3 DIPswitch bits (low 4 bits)

UP 3's LCD displays hex value of AC

Opcode

OE

0 F

164 Rapid Prototyping of Digital Systems Chapter 9

These instructions modify or use only the low eight bits of AC. Remove the PC display
feature from the previous problem, if it was added or for more of a challenge place the
AC value on the second line of the hex display by modifying the LCD display code. Test
the new I/0 instructions by writing a program that reads in the switches, adds one to the
switch value, and outputs this value to the LED display. Repeat the input, add, and output
operation in an infinite loop by jumping back to the start of the program. Add a new
register, register-output, to the input of the seven-segment decoder that drives the LED
display. The register is loaded with the value of AC only when an OUT instruction is
executed. Compile, download, and execute the program on the UP 3 board. When several
VO devices are present, they should respond only to their own unique i/o address, just
like memory.

7. Use the timing analyzer to determine the maximum clock rate for the pP 3 computer.
Using this value, compute the execution time for the example program in Figure 9.4.

8. Modify the Cyclone video output display described in Chapter 9 for the MIPS computer

example to display the pF' 3's internal registers. While running on the UP 3 board, use
the pushbuttons for clock and reset as suggested in problem 5.

9. Add video character output and keyboard input to the computer, after studying the
material presented in Chapters 9 and 10.

10. Add the WAIT instruction to the simple computer model and verify with a test program
and simulation. WAIT value, loads and starts an 8-bit ten-millisecond (lo-' second) timer
and then waits value*lO ms before returning to fetch for the next instruction. Use an
opcode of 10 for the WAIT instruction.

11. Expand the memory address space of the pP 3 computer from eight bits to nine bits.
Some registers will also need an additional bit. Use 512 locations of 16-bit memory.
Expand the address field by 1-bit by reducing the size of the opcode field by 1-bit. This
will limit the number of different instructions to 128 but the maximum program size can
now increase from 256 locations to 5 12 locations.

12. Modify the pP 3 computer so that it uses two different memories. Use one memory for

instructions and a new memory for data values. The new data memory should be 256 or
5 12 (see previous problem) locations of 16-bit data.

13. Add a subroutine CALL and RETURN instruction to the pP 3 computer design. Use a
dedicated register to store the return address or use a stack with a stack pointer register.
The stack should start at high addresses and as it grows move to lower addresses.

14. Implement a stack as suggested in the previous problem and add instructions to PUSH or
POP register AC from the stack. At reset, set the stack pointer to the highest address of
data memory.

A Simple Computer Design: The pP3 165

15. Add all of the instructions and features suggested in the exercises to the pP 3 computer

and use it as a microcontroller core for one of the robot projects suggested in Chapter 12.
Additional instructions of your own design along with an interval timer that can be read
using the IN instruction may also be useful.

16. Using the two low-bits from the opcode field, add a register address field that selects one
of four different data registers A, B, C, or D for each instruction.

17. Use the implementation approach in the pP 3 computer model as a starting point to
implement the basic instruction set of a different computer from your digital logic
textbook or other reference manual.

VGA Video Display
Generation

The video image above was produced by a UP 3 board design.

168 Rapid Prototyping of Digital Systems Chapter 10

10 VGA Video Display Generation
To understand how it is possible to generate a video image using an FPGA
board, it is first necessary to understand the various components of a video
signal. A VGA video signal contains 5 active signals. Two signals compatible
with TTL logic levels, horizontal sync and vertical sync, are used for
synchronization of the video. Three analog signals with 0.7 to 1 .O-Volt peak-to-
peak levels are used to control the color. The color signals are Red, Green, and
Blue. They are often collectively referred to as the RGB signals. By changing
the analog levels of the three RGB signals all other colors are produced.

10.1 Video Display Technology
The first technology used to display video images dictated the nature of the
video signals. Even though LCD monitors are now in common use, the major
component inside early VGA computer monitors was the color CRT or Cathode
Ray Tube shown in Figure 10.1. The electron beam must be scanned over the
viewing screen in a sequence of horizontal lines to generate an image. The
deflection yoke uses magnetic or electrostatic fields to deflect the electron
beam to the appropriate position on the face of the CRT. The RGB color
information in the video signal is used to control the strength of the electron
beam. Light is generated when the beam is turned on by a video signal and it
strikes a color phosphor dot or line on the face of the CRT. The face of a color
CRT contains three different phosphors. One type of phosphor is used for each
of the primary colors of red, green, and blue.
In standard VGA format, as seen in Figure 10.2, the screen contains 640 by 480
picture elements or pixels. The video signal must redraw the entire screen 60
times per second to provide for motion in the image and to reduce flicker. This
period is called the refresh rate. The human eye can detect flicker at refresh
rates less than 30 to 60Hz.
To reduce flicker from interference from fluorescent lighting sources, refresh
rates higher than 60 Hz at around 70Hz are sometimes used in PC monitors.
The color of each pixel is determined by the value of the RGB signals when the
signal scans across each pixel. In 640 by 480-pixel mode, with a 60Hz refresh
rate, this is approximately 40 ns per pixel. A 25MHz clock has a period of 40
ns. A slightly higher clock rate will produce a higher refresh rate.

10.2 Video Refresh
The screen refresh process seen in Figure 10.2 begins in the top left corner and
paints 1 pixel at a time from left to right. At the end of the first row, the row
increments and the column address is reset to the first column. Each row is
painted until all pixels have been displayed. Once the entire screen has been
painted, the refresh process begins again.
The video signal paints or refreshes the image using the following process. The
vertical sync signal, as shown in Figure 10.3 tells the monitor to start
displaying a new image or frame, and the monitor starts in the upper left corner

VGA Video Display Generation I 69

with pixel 0,O. The horizontal sync signal, as shown in Figure 10.4, tells the
monitor to refresh another row of 640 pixels.
After 480 rows of pixels are refreshed with 480 horizontal sync signals, a
vertical sync signal resets the monitor to the upper left comer and the process
continues. During the time when pixel data is not being displayed and the beam
is returning to the left column to start another horizontal scan, the RGB signals
should all be set to the color black (all zeros).

Scanning Electron Beam,

Deflection

Phosphor-
Screen

Blue

Red

Metal
Mask

Phosphor Dots
on Glass Face
Plate

Figure 10.1 Color CRT and Phosphor Dots on Face o f Display.

Rapid Prototyping of Digital Systems Chapter 10

f- 640 Pixels in a row -
-

480 Horizontal Scan Lines and Retrace

480
Pixels
in a
column

Figure 10.2 VGA Image - 640 by 480 Pixel Layout.

480 Holizontal Refresh Cycles

Blue
Pixel Data

Vertical
Sync

Figure 10.3 Vertical Sync Signal Timing for 640 by 480 at 60Hz.

Red, Green, 1
Blue
I

+I .89 ps-25.17 ps-0.94 ps+
Pixel Data

Horizontal
Sync

Figure 10.4 Horizontal Svnc Signal Timing for 640 bv 480 at 60Hz.

VGA Video Display Generation 171

Many VGA monitors will shut down if the two sync signals are not the correct
values. Most PC monitors have an LED that is green when it detects valid sync
signals and yellow when it does not lock in with the sync signals. Modern
monitors will sync up to an almost continuous range of refresh rates up to their
design maximum. In a PC graphics card, a dedicated video memory location is
used to store the color value of every pixel in the display. This memory is read
out as the beam scans across the screen to produce the RGB signals. There is
not enough memory inside current generation FPGA chips for this approach, so
other techniques will be developed which require less memory.

10.3 Using an FPGA for VGA Video Signal Generation
To provide interesting output options in complex designs, video output can be
developed using hardware inside the FPGA. Only five signals or pins are
required, two sync signals and three RGB color signals. A simple resistor and
diode circuit is used to convert TTL output pin signals from the FPGA to the
low voltage analog RGB signals for the video signal. This supports two levels
for each signal in the RGB data and thus produces a total of eight colors. This
circuit and a VGA connector for a monitor are already installed on the Altera
UP 3 board. The FPGA's Phase Locked Loop (PLL) can be used to generate
clocks for a wide variety of video resolutions and refresh rates.

Ver t ica l
R o w C o l

S y n c

25 M h z
C lock

Da ta , .f .f , I V G A Signals I

S y n c Genera t i on
Coun te rs

f rom
P ixe l R A M o r Des-
Cha rac te r
G e n e r a t o r R O M

Figure 10.5 FPGA based generation o f VGA Video Signals.

As seen in Figure 10.5, a 25.175 MHz clock, which is the 640 by 480 VGA
pixel data rate of approximately 40ns is used to drive counters that generate the
horizontal and vertical sync signals. Additional counters generate row and
column addresses. In some designs, pixel resolution will be reduced from 640
by 480 to a lower resolution by using a clock divide operation on the row and
column counters. The row and column addresses feed into a pixel RAM for
graphics data or a character generator ROM when used to display text. The
required RAM or ROM is also implemented inside the FPGA chip.

1 72 Rapid Prototyping of Digital Systems Chapter 10

10.4 A VHDL Sync Generation Example: UP3core VGA-SYNC

The UP3core function, VGA-SYNC is used to generate the timing signals
needed for a VGA video display. Although VGA-SYNC is written in VHDL,
like the other UP3core functions it can be used as a symbol in a design created
with any entry method.
The following VHDL code generates the horizontal and vertical sync signals,
by using 10-bit counters, H-count for the horizontal count and V-count for the
vertical count. H-count and V-count generate a pixel row and column address
that is output and available for use by other processes. User logic uses these
signals to determine the x and y coordinates of the present video location. The
pixel address is used in generating the image's RGB color data. The internal
logic uses a 25 MHz clock generated by a PLL in the design file
Video-PLL.vhd with counters to produce video sync timing signals like those
seen in figures 10.3 and 10.4. This process is used in all of the video examples
that follow.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
USE IEEESTD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;

ENTITY VGA-SYNC IS
PORT(clock-25MHz, red, green, blue : IN STD-LOGIC;

red-out, green-out, blue-out : OUT STD-LOGIC;
horiz-sync-out, vert-sync-out : OUT STD-LOGIC;
pixel-row, pixel-column : OUT STD-LOGIC-VECTOR(9 DOWNTO 0));

END VGA-SYNC;

ARCHITECTURE a OF VGA-SYNC IS
SIGNAL horiz-sync, vert-sync : STD-LOGIC;
SIGNAL video-on, video-on-v, video-on-h : STD-LOGIC;
SIGNAL h-count, v-count : STD-LOGIC-VECTOR(9 DOWNTO 0);

BEGIN

-- video-on is High only when RGB data is displayed
video-on <= video-on AND video-on-V;

VGA Video Display Generation 173

PROCESS
BEGIN
WAIT UNTIL(clock-25MHz'EVENT) AND (clock-25MHz = '1');

--Generate Horizontal and Vertical Timing Signals for Video Signal
-- H-count counts pixels (640 + extra time for sync signals)

IF (h-count = 799) THEN
h-count <= "0000000000";

ELSE
h-count <= h-count + 1;

END IF;

--Generate Horizontal Sync Signal using H-count
IF (h-count <= 755) AND (h-count => 659) THEN

horiz-sync <= '0';
ELSE

horiz-sync <= '1';
END IF;

--V-count counts rows of pixels (480 + extra time for sync signals)

--
IF (v-count >= 524) AND (h-count => 699) THEN

v-count <= "0000000000";
ELSlF (h-count = 699) THEN

v-count <= v-count + 1;
END IF;

-- Generate Vertical Sync Signal using V-count
IF (v-count <= 494) AND (v-count = >493) THEN

vert-sync <= '0';
ELSE

vert-sync <= '1';
END IF;

-- Generate Video on Screen Signals for Pixel Data
IF (h-count <= 639) THEN

video-on-h <= '1';
pixel-column <= h-count;

ELSE
video-on-h <= '0';

END IF;

IF (v-count <= 479) THEN
video-on-v <= '1';
pixel-row <= v-count;

ELSE
video-on-v <= '0';

174 Rapid Prototyping of Digital Systems Chapter 10

END IF;

-- Put all video signals through DFFs to eliminate
-- any delays that can cause a blurry image
-- Turn off RGB outputs when outside video display area

red-out c= red AND video-on;
green-out <= green AND video-on;
blue-out <= blue AND video-on;
horiz-sync-out <= horiz-sync;
vert-sync-out <= vert-sync;

END PROCESS;
END a;

To turn off RGB data when the pixels are not being displayed the video-on
signals are generated. Video-on is gated with the RGB inputs to produce the
RGB outputs. Video-on is low during the time that the beam is resetting to the
start of a new line or screen. They are used in the logic for the final RGB
outputs to force them to the zero state. VGA-SYNC also puts the all of video
outputs through a final register to eliminate any timing differences in the video
outputs. VGA-SYNC outputs the pixel row and column address. See the
comments at the end of VGA-SYNC-VHD for information on setting up other
screen resolutions and refresh rates.

10.5 Final Output Register for Video Signals
The final video output for the RGB and sync signals in any design should be
directly from a flip-flop output. Even a small time delay of a few nanoseconds
from the logic that generates the RGB color signals will cause a blurry video
image. Since the RGB signals must be delayed a pixel clock period to eliminate
any possible timing delays, the sync signals must also be delayed by clocking
them through a D flip-flop. If the outputs all come directly from a flip-flop
output, the video signals will all change at the same time and a sharper video
image is produced. The last few lines of VHDL code in the UP3core
VGA-SYNC design generate this final output register.

10.6 Required Pin Assignments for Video Output
The UP 3 board requires the following Cyclone chip pins be defined in the
project's *.qsf file, or elsewhere in your design in order to display the video
signals:

Red : OUTPUT-PIN = 228;
Blue : OUTPUT-PIN = 170;
Green : OUTPUT-PIN = 122;
Horiz-Sync : OUTPUT-PIN = 227;
Vert-Sync : OUTPUT-PIN = 226;

-- Red Data Signal Output Pin
-- Blue Data Signal Output Pin
-- Green Data Signal Output Pin
-- Horizontal Sync Signal Output Pin
-- Vertical Sync Signal Output Pin

These pins are hard wired on the UP 3 board to the VGA connector and cannot
be changed. A pixel clock is also needed at the appropriate rate for the screen

VGA Video Display Generation 175

resolution and refresh rate. One of the Cyclone's two PLLs is an easy way to
generate this clock on the UP 3. The UP 3's 48MHz reference clock is used as
input for the PLL. A table of the common screen resolutions and refresh rates
with the required pixel clocks and sync counter values can be found at the end
of the VGA-SYNC IP core code.

10.7 Video Examples
For a simple video example with the VGA-SYNC function, the following
schematic produces a video simulation of a red LED. When the PB1 pushbutton
is hit, the color of the entire video screen will change from black to red.

VGA-SYNC outputs the pixel row and column address. Pixel-row and
Pixel-column are normally inputs to user logic that in turn generates the RGB
color data. Here is a simple example that uses the pixel-column output to
generate the RGB inputs. Bits 7, 6, and 5 of the pixel-column count are
connected to the RGB data. Since bits 4 through 0 of pixel column are not
connected, RGB color data will only change once every 32 pixels across the
screen. This in turn generates a sequence of color bars in the video output. The
color bars display the eight different colors that can be generated by the three
digital RGB outputs.

176 Rapid Prototyping of Digital Systems Chapter 10

10.8 A Character Based Video Design
One option is a video display that contains mainly textual data. For this
approach, a pixel pattern or font is needed to display each different character.
The character font can be stored in a ROM implemented inside the Cyclone
FPGA. A memory initialization file, *.mif, can be used to initialize the ROM
contents during download. Given the memory limitations inside the Cyclone
FPGA, one option that fits is a display of 40 characters by 30 lines.
Each letter, number, or symbol is a pixel image from the 8 by 8 character font.
To make the characters larger, each dot in the font maps to a 2 by 2 pixel block
so that a single character requires 16 by 16 pixels. This was done by dividing
the row and column counters by 2. Recall that in binary, division by powers of
two can be accomplished by truncating the lower bits, so no hardware is needed
for this step. The row and column counters provide inputs to circuits that
address the character font ROM and determine the color of each pixel. The
clock used is the onboard 25.175MHz clock and other timing signals needed
are obtained by dividing this clock down in hardware.

10.9 Character Selection and Fonts
Because the screen is constantly being refreshed and the video image is being
generated on-the-fly as the beam moves across the video display, it is necessary
to use other registers, ROM, or RAM inside the FPGA to hold and select the
characters to be displayed on the screen. Each location in this character ROM
or RAM contains only the starting address of the character font in font ROM.
Using two levels of memory results in a design that is more compact and uses
far less memory bits. This technique was used on early generation computers
before the PC.
Here is an example implementation of a character font used in the UP3core
function, char-ROM. To display an "A" the character ROM would contain only
the starting address 000001 for the font table for "A". The 8 by 8 font in the
character generation ROM would generate the letter "A" using the following
eight memory words:

Address
00000 1 000 :
000001001 :
000001 01 0 :
00000101 1 :
000001 1 00 :
000001 101 :
000001 1 10 :
000001 11 1 :

Font Data
0001 1000 ;
00111100;
01100110;
01111110;
01100110 ;
01100110;
01100110 ;
00000000 ;

Figure 10.6 Font Memory Data for the Character "A".

VGA Video Display Generation 177

8 by 8 Font
Pixel Data

Character
Address
000001 for A 6/

/

3

Font Row
/

Address
000 ... 111

Character
Generation

ROM
64 characters

512 by 8 ROM

8 &bit wrds
per character

Figure 10.7 Accessing a Character Font Using a ROM.

The column counters are used to select each font bit from left to right in each
word of font memory as the video signal moves across a row. This value is used
to drive the logic for the RGB signals so that a "0" font bit has a different color
from a "1". Using the low three character font row address bits, the row counter
would select the next memory location from the character font ROM when the
display moves to the next row.
A 3-bit font column address can be used with a multiplexer to select the
appropriate bit from the ROM output word to drive the RGB pixel color data.
Both the character font ROM and the multiplexer are contained in the UP3core
char ROM as shown below. The VHDL code declares the memory size using
the GM-ROM function and the tcgrom.mif file contains the initial values or
font data for the ROM.

clock rwn_m=.mput

character_aXlress[5.. 01

f ort-rN2. .q
font-colt2 01

imt

LIBRARY IEEE;
USE IEEE.STD-LOGIC-I $WALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;
LIBRARY Ipm;
USE Ipm.lpm-components.ALL;

ENTITY Char-ROM IS
PORT(character-address : IN STD-LOGIC-VECTOR(5 DOWNTQ 0);

178 Rapid Prototyping of Digital Systems Chapter 10

font-row, font-col : IN STD-LOGIC-VECTOR(2 DOWNTO 0);
rom~mux~output : OUT STD-LOGIC);

END Char-ROM;

ARCHITECTURE a OF Char-ROM IS
SIGNAL rom-data : STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL rom-address : STD-LOGIC-VECTOR(8 DOWNTO 0);

BEGIN
-- Small 8 by 8 Character Generator ROM for Video Display
-- Each character is 8 8-bit words of pixel data

charsen-rom: lpm-rom
GENERIC MAP (

Ipm-widthad => 9,
Ipm-numwords => 51 2,
Ipm-outdata => "UNREGISTERED",
Ipm-address-control => "UNREGISTERED",

-- Reads in rnif file for character generator font data
Ipm-file => 'Ycgrom.mif',
Ipm-width => 8)

PORT MAP (address => rom-address, q = r rom-data);
rom-address <= character-address & font-row;

-- Mux to pick off correct rom data bit from 8-bit word
-- for on screen character generation

rom-mux-output <= rom-data (
(CONV-INTEGER(NOT font-col(2 DOWNTO 0))));

END a;

Table 10.1 Character Address Map for 8 by 8 Font ROM.

A 16 by 16 pixel area is used to display a single character with the character
font. As the display moves to another character outside of the 16 by 16 pixel

VGA Video Display Generation 179

area, a different location is selected in the character RAM using the high bits of
the row and column counters. This in turn selects another location in the
character font ROM to display another character.
Due to limited ROM space, only the capital letters, numbers and some symbols
are provided. Table 10.1 shows the alphanumeric characters followed by the
high six bits of its octal character address in the font ROM. For example, a
space is represented by octal code 40. The repeated letters A-F were used to
simplify the conversion and display of hexadecimal values.

10.10 VHDL Character Display Design Examples
The UP3cores VGA-SYNC and CHAR-ROM are designed to be used together
to generate a text display. CHAR-ROM contains an 8 by 8 pixel character font.
In the following schematic, a test pattern with 40 characters across with 30
lines down is displayed. Examining the RGB inputs on the VGA-SYNC core
you can see that characters will be white (111 = RGB) with a red (100 = RGB)
background. Each character uses a 16 by 16 pixel area in the 640 by 480
display area. Since the low bit in the pixel row and column address is skipped
in the font row and font column ROM inputs, each data bit from the font is a
displayed in a 2 by 2 pixel area. Since pixel row bits 9 to 4 are used for the
character address a new character will be displayed every 1 6 ~ ~ pixel row or
character line. Division by 16 occurs without any logic since the low four bits
are not connected.

Normally, more complex user designed logic is used to generate the character
address. The video example shown in Figure 10.8 is an implementation of the
MIPS RISC processor core. The values of major busses are displayed in
hexadecimal and it is possible to single step through instructions and watch the
values on the video display. This example includes both constant and variable

Rapid Prototyping of Digital Systems Chapter 10

character display areas. The video setup is the same as the schematic, but
additional logic is used to generate the character address.

Figure 10.8 MIPS Computer Video Output.

Pixel row address and column address counters are used to determine the
current character column and line position on the screen. They are generated as
the image scans across the screen with the VGA-SYNC core by using the high
six bits of the pixel row and pixel column outputs. Each character is a 16 by 16
block of pixels. The divide by 16 operation just requires truncation of the low
four bits of the pixel row and column. The display area is 40 characters by 30
lines.
Constant character data for titles in the left column is stored in a small ROM
called the character format ROM. This section of code sets up the format ROM
that contains the character addresses for the constant character data in the left
column of the video image for the display.

-- Character Format ROM for Video Display
-- Displays constant format character data
-- on left side of Display area

format-rom: Ipm-rom
GENERIC MAP (

Ipm-widthad => 6,
lpm-numwords =>60,
Ipm-outdata => "UNREGISTERED",
Ipm-address-control => "UNREGISTERED",

-- Reads in mif file for data display titles
Ipm-file =>"format.mif",
Ipm-width => 6)

VGA Video Display Generation 181

Each pixel clock cycle, a process containing a series of nested CASE
statements is used to select the character to display as the image scans across
the screen. The CASE statements check the row and column counter outputs
from the sync unit to determine the exact character column and character line
that is currently being displayed. The CASE statements then output the
character address for the desired character to the char-ROM UP3core.
Table 10.1 lists the address of each character in the font ROM. Alphabetic
characters start at octal location 01 and numbers start at octal location 60. Octal
location 40 contains a space that is used whenever no character is displayed.
When the display is in the left column, data from the format-ROM is used. Any
unused character display areas must select the space character that has blank or
all zero font data.
Hexadecimal variables in the right column in Figure 10.8 are generated by
using 4-bit data values from the design to index into the character font ROM.
As an example, the value "11" & PC(7 DOWNTO 4), when used as the
character address to the UP3core, char-ROM, will map into the character font
for 0..9 and A..F. The actual hex character selected is based on the current value
of the 4 bits in the VHDL signal, PC. As seen in the last column of Table 10.1,
the letters, A..F, appear again after decimal numbers in the font ROM to
simplify this hexadecimal mapping conversion.

10.1 1 A Graphics Memory Design Example
For another example, assume the display will be used to display only graphics
data. The Cyclone EPIC6 FPGA contains 92K bits of memory. If only two
colors are used in the RGB signals, one bit will be required for each pixel in the
video RAM. If a 300 by 300 pixel video RAM was implemented in the Cyclone
chip it would use all of the chip's 92K-bit memory. For full color RGB data of
three bits per pixel, a 175 by 175 pixel RAM would use all of the 92K on-chip
memory and no memory would be left for the remainder of the design.
Pixel memory must always be in read mode whenever RGB data is displayed.
To avoid flicker and memory access conflicts on single port memory, designs
should update pixel RAM and other signals that produce the RGB output,
during the time the RGB data is not being displayed.
When the scan of each horizontal line is complete there are typically over 100
clock cycles before the next RGB value is needed, as seen in Figure 10.9.
Additional clocks are available when a vertical sync signal resets the monitor to
the first display line. The exact number of clocks available depends on the
video resolution and refresh rate.
In most cases, calculations that change the video image should be performed
during this off-screen period of time to avoid memory conflicts with the
readout of video RAM or other registers which are used to produce the RGB
video pixel color signals. Since on-chip pixel memory is limited, complex
graphic designs with higher resolutions will require another approach.

182 Rapid Prototyping of Digital Systems Chapter 10

Horizontal Sync Counter
0 639 799

Figure 10.9 Display and Compute clock cycles available in a single Video Frame.

Display
RGB
Data
On Screen

479

10.12 Video Data Compression
Here are some ideas to save memory and produce more complex graphics.
Compress the video pixel data in memory and uncompress it on-the-fly as the
video signal is generated. One compression technique that works well is run
length encoding (RLE). The RLE compression technique only requires a simple
state machine and a counter for decoding.
In RLE, the pixels in the display are encoded into a sequence of length and
color fields. The length field specifies the number of sequentially scanned
pixels with the same color. In simple color images, substantial data
compression can be achieved with RLE and it is used in PCs to encode color
bitmaps. Matlab can be used to read bitmaps into a two-dimensional array and
then write the output as an RLE encoded version directly to a *.mif file. An
example program is available on the CD-ROM. Bitmap file formats and some C
utilities to help read bitmaps can be found on the web.

Compute
New RGB
Data
During
Retrace

- - - - - - - -

Many early video games, such as Pong, have a background color with a few
moving images. In such cases, the background image can be the default color
value and not stored in video RAM. Hardware comparators can check the row
and column counts as the video signal is generated and detect when another
image other than the background should be displayed. When the comparator
signals that the row and column count matches the image location, the image's
color data instead of the normal background data is switched into the RGB
output using gates or a multiplexer.
The image can be made to move if its current row and column location is stored
in registers and the output of these registers are used as the comparator input.
Additional logic can be used to increment or decrement the image's location
registers slowly over time and produce motion. Multiple hardware comparators

524

Vertical Sync Counter

VGA Video Display Generation 183

can be used to support several fixed and moving images. These moving images
are also called sprites. This approach was used in early-generation video
games.

10.1 3 Video Color Mixing using Dithering
PC graphics cards use an analog to digital converter to drive the analog RGB
color signals. Although the hardware directly supports only eight different pixel
colors using digital color signals, there are some techniques that can be used to
generate more colors. On analog CRTs, pixels can be overclocked at two to four
times the normal rate to turn on and off the 1-bit color signal several times
while scanning across a single pixel. The FPGA's PLL is handy to generate the
higher frequency clocks need. Along the same lines, anding the final color
signal output with the clock signal itself can further reduce the signal's on time
to % a clock or less. Unfortunately, this technique does not work quite as well
on LCD monitors due to the differences in the internal electronics.
The screen is refreshed at 60Hz, but flicker is almost undetected by the human
eye at 30Hz. So, in odd refresh scans one pixel color is used and in even refresh
scans another pixel color is used. This 30Hz color mixing or dithering
technique works best if large areas have both colors arranged in a checkerboard
pattern. Alternating scans use the inverse checkerboard colors. At 30Hz, the eye
can detect color intensity flicker in large regions unless the alternating
checkerboard pattern is used.

10.1 4 VHDL Graphics Display Design Example
This simple graphics example will generate a ball that bounces up and down on
the screen. As seen in Figure 10.10, the ball is red and the background is white.
This example requires the VGA-SYNC design from Section 10.4 to generate
the video sync and the pixel address signals. The pixel-row signal is used to
determine the current row and the pixel-column signal determines the current
column. Using the current row and column addresses, the process Display-Ball
generates the red ball on the white background and produces the ball-on signal
which displays the red ball using the logic in the red, green, and blue equations.

Figure 10.10 Bouncing Ball Video Output.

184 Rapid Prototyping of Digital Systems Chapter 10

Ba l l -Xqos and Ba l l - yqos are the current address o f the center o f the ball.
Size i s the size o f the square ball.

The process Move-Bal l moves the ba l l a few pixels every vertical sync and
checks for bounces o f f o f the walls. Ball-motion i s the number o f pixels to
move the ba l l at each vertical sync clock. The VGA-SYNC core i s also used to
generate sync signals and p ixe l addresses, but i s not shown in the code below.

ENTITY ball IS
PORT(

SIGNAL Red, Green, Blue : OUT STD-LOGIC;
SIGNAL vert-sync-out : IN STD-LOGIC;
SIGNAL pixel-row, pixel-column : IN STD-LOGIC-VECTOR(9 DOWNTO 0));

END ball;
ARCHITECTURE behavior OF ball IS

-- Video Display Signals
SIGNAL reset, Ball-on, Direction : STD-LOGIC;
SIGNAL Size : STD-LOGIC-VECTOR(9 DOWNTO 0);
SIGNAL Ball-Y-motion : STD-LOGIC-VECTOR(9 DOWNTO 0);
SIGNAL Ball-Y-pos, Ball-X-pos : STD-LOGIC-VECTOR(9 DOWNTO 0);

BEGIN -- Size of Ball
Size <= CONV-STD-LOGIC-VECTOR (8,lO);

-- BaN center X address
Ball-X-pos <= CONV-STD-LOGIC-VECTOR(320,lO);

-- Colors for pixel data on video signal
Red <= *qV. -- Turn off Green and Blue to make

-- color Red when displaying bail
Green <= NOT Ball-on;
Blue <= NOT Ball-on;

Display-Ball:
PROCESS (Ball-X-pos, Ball-Y-pos, pixel-column, pixel-row, Size)
BEGIN -- check row & column for ball area

-- Set Ball_on = 'I ' to display ball
IF ('0' & Ball-X-pos <= pixel-column + Size) AND

(Ball-X-pos + Size >= '0' & pixel-column)AND
('0' & Ball-Y-pos <= pixel-row + Size) AND
(Ball-Y-pos + Size r= '0' & pixel-row) THEN

Ball-on <= '1';
ELSE

Ball-on <= '0';
END IF;

END PROCESS Display-Ball;

Move-Ball:
PROCESS
BEGIN

-- Move ball once every vertical sync
WAIT UNTIL Vert-sync9EVENT AND Vetsync = '1';

-- Bounce off top or bottom of screen
IF ('0' & Ball-Y-pos) >= CONV-STD-LOGIC-VECTOR(480,lO) - Size THEN

Ball-Y-motion <= CONV-STD-LOGIC-VECTOR(-2,lO);

VGA Video Display Generation 185

ELSlF Ball-Y-pos <= Size THEN
Ball-Y-motion <= CONV-STD-LOGIC-VECTOR(2,lO);

END IF;
-- Compute next ball Y position

Ball-Y-pos <= Ball-Ygos + Ball-Y-motion;
END PROCESS Move-Ball;

END behavior;

10.15 Higher Video Resolution and Faster Refresh Rates

The UP 3's Video Sync core function is designed to support higher resolutions
and refresh rates. The UP 2 can only support its Video Sync core's existing 640
by 480 60Hz video mode since it does not have an internal PLL to produce
different pixel clocks. Table 10.2 shows several common screen resolutions and
refresh rates. To change resolutions or refresh rates two changes are needed.
First, change the UP 3 PLL's video output pixel clock to the new frequency
value by editing the Video-PLL.vhd file using the Megawizard edit feature.
Second, the six counter constant values used to generate the horizontal and
vertical sync signals in the Video-Sync.vhd core need to be changed to the new
six values for the desired resolution and refresh rate found in the large table at
the end of the Video-Sync.vhd file. Keep in mind that higher resolutions will
require more pixel memory and smaller hardware delays that can support the
faster clock rates needed.

Table 10.2 Pixel clock rates for some common video resolutions and refresh rates.

10.1 6 Laboratory Exercises
1. Design a video output display that displays a large version of your initials. Hint: use the

character generation ROM, the Video Sync UP3core, and some of the higher bits of the
row and column pixel counters to generate larger characters.

Rapid Prototyping of Digital Systems Chapter 10

Modify the bouncing ball example to bounce and move in both the X and Y directions.
You will need to add code for motion in two directions and check additional walls for a
bounce condition.

Modify the bouncing ball example to move up or down based on input from the two
pushbuttons.

Modify the example to support different speeds. Read the speed of the ball from the UP
3's DIP switches.

Draw a more detailed ball in the bouncing ball example. Use a small ROM to hold a
small detailed color image of a ball.

Make a Pong-type video game by using pushbutton input to move a paddle up and down
that the ball will bounce off of.

Design your own video game with graphics. Some ideas include breakout, space
invaders, Tetris, a slot machine, poker, craps, blackjack, pinball, and roulette. Keep the
graphics simple so that the design will fit on the Cyclone chip. If the video game needs a
random number generator, information on random number generation can be found in
Appendix A.

Use the character font ROM and the ideas from the MIPS character output example to
add video character output to another complex design.

Using Matlab or C, write a program to convert a color bitmap into a *.mif file with run-
length encoding. Design a state machine to read out the memory and generate the RGB
color signals to display the bitmap. Use a reduced resolution pixel size such as 160 by
120. Find a bitmap to display or create one with a paint program. It will work best if the
bitmap is already 160 by 120 pixels or smaller. A school mascot or your favorite cartoon
character might make an interesting choice. 92K bits of memory are available in the
Cyclone EPIC6 so a 12-bit RLE format with nine bits for length and three bits for color
can be used with up to 7,600 locations. This means that the bitmap can only have 7,600
color changes as the image is scanned across the display. Simple images such as cartoons
have fewer color changes. A Matlab example is on the CD-ROM.

10. Add color mixing or dithering with more than 8 colors to the previous problem. The 3-bit
color code in the RLE encoded memory can be used to map into a color palette. The
color palette contains the RGB patterns used for color mixing or interlacing. The color
palette memory selects 8 different colors. The program translating the bitmap should
select the 8 closest colors for the color palette.

11. Modify the VGA Sync core to support a higher screen resolution and demonstrate it
using one of the earlier example video designs.

Interfacing to the PS/2
Keyboard and Mouse

A PSI2 mouse is shown above with the cover removed. The ball (upper right) rolls two
plastic X and Y axles with a slotted wheel at one end. The slotted wheel passes through a
square slotted case containing an IR emitter and detector pair. When the wheel rotates it
generates pulses by interrupting the IR light beam. A microcontroller (lower left) counts
the pulses and sends data packets containing mouse movement and button data to the PC.

188 Rapid Prototyping of Digital Systems Chapter 11

11 Interfacing to the PSI2 Keyboard and Mouse
The PSI2 interface was originally developed for the IBM PC/ATYs mouse and
keyboard in 1984. The Altera UP 3 board supports the use of either a mouse or
keyboard using a PSI2 connector on the board. This provides only the basic
electrical connections from the PSI2 cable and the FPGA chip. It is necessary to
design a hardware interface using logic in the FPGA chip to communicate with
a keyboard or a mouse. Serial-to-parallel conversion using a shift register is
required in the interface hardware.

11 .I PSI2 Port Connections
The PSI2 port consists of 6 pins including ground, power (VDD), keyboard
data, and a keyboard clock line. The UP 3 board supplies the power to the
mouse or keyboard. Two lines are not used. The keyboard data line is pin 13 on
the UP 3's Cyclone chip, and the keyboard clock line is pin 12. Pins must be
specified in one of the design files.

Table 11 .I PSI2 Keyboard Commands and Messages.

Commands Sent to Keyboard
Reset Keyboard

Keyboard returns AA, 00 after self-test
Resend Message
Set key typematic (autorepeat)

1 Hex Value

FB, XX
XX-~S scan code for key .

Set key make and break
Set key make
Set all key typematic, make and break
Set all keys make
Set all keys make and break
Make all keys typematic (autorepeat)
Set to Default Values

Both the clock and data lines are open collector and bi-directional. The clock
line is normally controlled by the keyboard, but it can also be driven by the
computer system or in this case the Cyclone chip, when it wants to stop data
transmissions from the keyboard. Both the keyboard and the system can drive
the data line. The data line is the sole source for the data transfer between the

FC, XX
FD, XX
FA
F9
F8
F7
F6

Clear Buffers and start scanning keys
Set typematic (autorepeat) rate and delay

Set typematic (autorepeat) rate and delay
Bits 6 and 5 are delay (250ms to 1 sec)
Bits 4 to 0 are rate (all 0's-3OxIsec to all 1's 2xlsec)

Read keyboard ID
Keyboard sends FA, 83, AB

F4
F3, XX

F2

Set scan code set
XX is 01, 02, or 03

Echo
Set Keyboard LEDs

XX is 00000 Scroll, Num, and Caps Lock bits
1 is LED on and 0 is LED off

FO, XX

EE
ED, XX

Interfacing to the PSI2 Keyboard and Mouse 189

computer and keyboard. The keyboard and the system can exchange several
commands and messages as seen in Tables 11.1 and 11.2.

Table 11.2 PSI2 Commands and messages sent by keyboard.

11.2 Keyboard Scan Codes
Keyboards are normally encoded by placing the key switches in a matrix of
rows and columns. All rows and columns are periodically checked by the
keyboard encoder or "scanned" at a high rate to find any key state changes. Key
data is passed serially to the computer from the keyboard using what is known
as a scan code. Each keyboard key has a unique scan code based on the key
switch matrix row and column address to identify the key pressed.
There are different varieties of scan codes available to use depending on the
type of keyboard used. The PSI2 keyboard has two sets of scan codes. The
default scan code set is used upon power on unless the computer system sends a
command the keyboard to use an alternate set. The typical PC sends commands
to the keyboard on power up and it uses an alternate scan code set. To interface
the keyboard to the UP 3 board, it is simpler to use the default scan code set
since no initialization commands are required.

Messages Sent by Keyboard
Resend Message
Two bad messages in a row
Keyboard Acknowledge Command

Sent by Keyboard after each command byte
Response to Echo command
Keyboard passed self-test
Keyboard buffer overflow

11.3 Make and Break Codes
The keyboard scan codes consist of 'Make' and 'Break' codes. One make code
is sent every time a key is pressed. When a key is released, a break code is sent.
For most keys, the break code is a data stream of FO followed by the make code
for the key. Be aware that when typing, it is common to hit the next key(s)
before releasing the first key hit.
Using this configuration, the system can tell whether or not the key has been
pressed, and if more than one key is being held down, it can also distinguish
which key has been released. One example of this is when a shift key is held
down. While it is held down, the '3' key should return the value for the '#'
symbol instead of the value for the '3' symbol. Also note that if a key is held
down, the make code is continuously sent via the typematic rate until it is
released, at which time the break code is sent.

Hex Value
FE
FC

FA

E E
AA
00

190 Rapid Prototyping of Digital Systems Chapter 11

1 I .4 The PSI2 Serial Data Transmission Protocol
The scan codes are sent serially using 11 bits on the bi-directional data line.
When neither the keyboard nor the computer needs to send data, the data line
and the clock line are High (inactive).
As seen in Figure 11.1, the transmission of a single key or command consists of
the following components:

1. A start bit ('0')
2. 8 data bits containing the key scan code in low to high bit order
3. Odd parity bit such that the eight data bits plus the parity bit are an odd
number of ones
4. A stop bit ('1')

The following sequence of events occur during a transmission of a command by
the keyboard:

1. The keyboard checks to ensure that both the clock and keyboard lines are
inactive. Inactive is indicated by a High state. If both are inactive, the keyboard
prepares the 'start' bit by dropping the data line Low.
2. The keyboard then drops the clock line Low for approximately 35us.
3. The keyboard will then clock out the remaining 10 bits at an approximate
rate of 70us per clock period. The keyboard drives both the data and clock line.
4. The computer is responsible for recognizing the 'start' bit and for receiving
the serial data. The serial data, which is 8 bits, is followed by an odd parity bit
and finally a High stop bit. If the keyboard wishes to send more data, it follows
the 12th bit immediately with the next 'start' bit.
This pattern repeats until the keyboard is finished sending data at which point
the clock and data lines will return to their inactive High state.

-
Clock

Data
,

I

I

! r o 1 1 0 1

'

t 0 0 0
Start
Bit=O 8 Data Bits in Low to High Order

t
Odd Parity Stop

Scan Code shown is 16H for a "1" character
Bit=O Bit=l

which is keyboard key #2

Figure 11.1 Kevboard Transmission of a Scan Code.

Interfacing to the PSI2 Keyboard and Mouse 191

In Figure 11.1 the keyboard is sending a scan code of 16 for the " 1" key and it
has a zero parity bit. When implementing the interface code, it will be
necessary to filter the slow keyboard clock to ensure reliable operation with the
fast logic inside the FPGA chip. Whenever an electrical pulse is transmitted on
a wire, electromagnetic properties of the wire cause the pulse to be distorted
and some portions of the pulse may be reflected from the end of the wire. On
some PSI2 keyboards and mice there is a reflected pulse on the cable that is
strong enough to cause additional phantom clocks to appear on the clock line.
Here is one approach that solves the reflected pulse problem. Feed the PSI2
clock signal into an 8-bit shift register that uses a 24MHz clock. AND the bits
of the shift register together and use the output of the AND gate as the new
"filtered" clock. This prevents noise and ringing on the clock line from causing
occasional extra clocks during the serial-to-parallel conversion in the Cyclone
chip.
A few keyboards and mice will work without the clock filter and many will not.
They all will work with the clock filter, and it is relatively easy to implement.
This circuit is included in the UP3cores for the keyboard and the mouse.

As seen in Figure 11.2, the computer system or FPGA chip in this case sends
commands to the PSI2 keyboard as follows:

1. System drives the clock line Low for approximately 60us to inhibit any new
keyboard data transmissions. The clock line is bi-directional.
2. System drives the data line Low and then releases the clock line to signal
that it has data for the keyboard.
3. The keyboard will generate clock signals in order to clock out the remaining
serial bits in the command.
4. The system will send its 8-bit command followed by a parity bit and a stop
bit.
5. After the stop bit is driven High, the data line is released.

Upon completion of each command byte, the keyboard will send an
acknowledge (ACK) signal, FA, if it received the data successfully. If the
system does not release the data line, the keyboard will continue to generate the
clock, and upon completion, it will send a 're-send command' signal, FE or FC,
to the system. A parity error or missing stop bit will also generate a re-send
command signal.

Rapid Prototyping of Digital Systems Chapter 11

System Data
Ready 8 Data Bits in Low to High Order Odd Parity Stop

to Send=O Command Code shown is F4H Bit=O Bit=l

Figure 11.2 System Transmission of a Command to PSI2 Device.

11.5 Scan Code Set 2 for the PSI2 Keyboard
PSI2 keyboards are available in several languages with different characters
printed on the keys. A two-step process is required to find the scan code. A key
number is used to lookup the scan code. Key numbers needed for the scan code
table are shown in Figure 11.3 for the English language keyboard layout.

Figure 11.3 Kev Numbers for Scan Code.

Each key sends out a make code when hit and a break code when released.
When several keys are hit at the same time, several make codes will be sent
before a break code.

Interfacing to the PSI2 Keyboard and Mouse 193

The keyboard powers up using this scan code as the default. Commands must
be sent to the keyboard to use other scan code sets. The PC sends out an
initialization command that forces the keyboard to use the other scan code.
The interface is much simpler if the default scan code is used. If the default
scan code is used, no commands will need to be sent to the keyboard. The keys
in Table 11.3 for the default scan code are typematic (i.e. they automatically
repeat the make code if held down).

Table 11.3 Scan Codes for PSI2 Keyboard.

194 Rapid Prototyping of Digital Systems Chapter 11

Table 11.3 (Continued) - Scan Codes for PSI2 Keyboard.

1 When the right Shifl Key is held down, 59 - FO 59 is sent. I

I of codes are sent with the other scan codes. I

Key

95

When the lefl Shifl Key is held down, the 12 - FO 12 shifl make and break is sent with the other scan
codes. When the right Shift Key is held down, 59 - FO 59 is sent. When both Shifl Keys are down, both sets

Key

124

11.6 The Keyboard UP3core
The following VHDL code for the keyboard UP3core shown in Figure 11.4
reads the scan code bytes from the keyboard. In this example code, no
command is ever sent to the keyboard, so clock and data are always used as
inputs and the keyboard power-on defaults are used.

Shift Case *
Make Break

EOFO12EO4A I EO 12 FO 4A

Scan Code

Key #
126

To send commands, a more complex bi-directional tri-state clock and data
interface is required. The details of such an interface are explained in later
sections on the PSI2 mouse. The keyboard powers up and sends the self-test
code AA and 00 to the Cyclone chip before it is downloaded.

Make Break

Scan Code

This key does not repeat

Make Code

Make

Control Key Pressed

E0 4A

Break
Control Case, Shift Case

2 1 1 EO 7E EO FO 7E

EO FO 4A

EO12EO7C I EOFO7CEOFO12

Make
Alt Case

Break Make
84 EO 7C I EO FO 7C

Break
FO 84

Interfacing to the PSI2 Keyboard and Mouse 195

key board

imt

Figure 11.4 Kevboard UP3core

LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;
USE IEEESTD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;

ENTITY keyboard IS
PORT(keyboard-clk, keyboard-data, clock-48MHz ,

reset, read : IN STD-LOGIC;
scan-code : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
scan-ready : OUT STD-LOGIC);

END keyboard;

ARCHITECTURE a OF keyboard IS
SIGNAL INCNT
SIGNAL SHIFTIN
SIGNAL READ-CHAR, clock-enable
SIGNAL INFLAG, ready-set
SIGNAL keyboard-clk-filtered
SIGNAL filter

: STD-LOGIC-VECTOR(3 DOWNTO 0);
: STD-LOGIC-VECTOR(8 DOWNTO 0);
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC-VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (read, ready-set)
BEGIN

IF read = '1' THEN
scan-ready <= '0';

ELSlF ready-set'EVENT AND ready-set = '1' THEN
scan-ready <= '1';

END IF;
END PROCESS;

--This process filters the raw clock signal coming from the
-- keyboard using a shift register and two AND gates

Clock-filter:
PROCESS

BEGIN
WAIT UNTIL clock48MHz'EVENT AND clock-48MHz = '1';
clock-enable <= NOT clock-enable;
IF clock-enable = '1' THEN

196 Rapid Prototyping of Digital Systems Chapter 11

filter (6 DOWNTO 0) <= filter(7 DOWNTO 1) ;
filter(7) <= keyboard-clk;
IF filter = "1 11 11 11 1" THEN
keyboard-clk-filtered <= '1';
ELSIF filter = "00000000" THEN
keyboard-clk-filtered <= '0';
END IF;

END IF;
END PROCESS Clock-filter;

--This process reads in serial scan code data coming from the keyboard
PROCESS
BEGIN

WAIT UNTIL (KEYBOARD-CLK-filteredlEVENT AND KEYBOARD-CLK-filtered = '1');
IF RESET = '0' THEN

INCNT <= "0000";
READ-CHAR <= '0';

ELSE
IF KEYBOARD-DATA = '0' AND READ-CHAR = '0' THEN

READ-CHAR <= '1';
ready-set <= '0';

ELSE
-- Shifl in next 8 data bits to assemble a scan code

IF READ-CHAR = '1' THEN
IF INCNT < "1001" THEN

INCNT <= INCNT + 1;
SHIFTIN(7 DOWNTO 0) <= SHIFTIN(8 DOWNTO 1);
SHIFTIN(8) <= KEYBOARD-DATA;
ready-set <= '0';

-- End of scan code character, so set flags and exit loop
ELSE

scan-code <= SHIFTIN(7 DOWNTO 0);
READ-CHAR <=V;
ready-set <= '1';
INCNT <= "0000";

END IF;
END IF;

END IF;
END IF;

END PROCESS;
END a:

The keyboard clock is filtered in the Clock-filter process using an 8-bit shift
register and an AND gate to eliminate any reflected pulses, noise, or timing
hazards that can be found on some keyboards. The clock signal in this process
is the 48 MHz system clock divided by two to produce a 24 MHz clock rate
using the clock enable signal. The output signal, keyboard-clk-filtered, will
only change if the input signal, keyboard-clk, has been High or Low for eight
successive 24 MHz clocks or 32011s. This filters out noise and reflected pulses
on the keyboard cable that could cause an extra or false clock signal on the fast
Cyclone chip. This problem has been observed to occur on some PSI2
keyboards and mice and is fixed by the filter routine.

Interfacing to the PSI2 Keyboard and Mouse 197

The RECV-KBD process waits for a start bit, converts the next eight serial data
bits to parallel, stores the input character in the signal, charin, and sets a flag,
scan-ready, to indicate a new character was read. . The scan-ready or input
ready flag is a handshake signal needed to ensure that a new scan code is read
in and processed only once. Scan-ready is set whenever a new scan code is
received. The input signal, read, resets the scan ready handshake signal.
The process using this code to read the key scan code would need to wait until
the input ready flag, scan-ready, goes High. This process should then read in
the new scan code value, scan-code. Last, read should be forced High and Low
to clear the scan-ready handshake signal.
Since the set and reset conditions for scan-ready come from different processes
each with different clocks, it is necessary to write a third process to generate
the scan-ready handshake signal using the set and reset conditions from the
other two processes. Hitting a common key will send a 1-byte make code and a
2-byte break code. This will produce at least three different scan-code values
each time a key is hit and released.
A shift register is used with the filtered clock signals to perform the serial to
parallel conversion. No command is ever sent the keyboard and it powers up
using scan code set 2. Since commands are not sent to the keyboard, in this
example clock and data lines are not bi-directional. The parity bit is not
checked.

11.7 A Design Example Using the Keyboard UP3core
Here is a simple design using the Keyboard and LCD-Display UP3cores. The
last six bytes of scan codes will appear in the UP33 LCD display. The block
code-FIFO saves the last six scan codes for the LCD display.

Figure 11.5 Exam~le design using the Keyboard UP3core.

Rapid Prototyping of Digital Systems Chapter 11

11.8 Interfacing to the PSI2 Mouse

Just like the PSI2 keyboard, the PSI2 mouse uses the PSI2 synchronous bi-
directional serial communication protocol described in section 11.4 and shown
in Figures 11.1 and 11.2. Internally, the mouse contains a ball that rolls two
slotted wheels. The wheels are connected to two optical encoders. The two
encoders sense x and y motion by counting pulses when the wheels move. It
also contains two or three pushbuttons that can be read by the system and a
single-chip microcontroller. The microcontroller in the mouse sends data
packets to the computer reporting movement and button status.
It is necessary for the computer or in this case the FPGA chip to send the mouse
an initialization command to have it start sending mouse data packets. This
makes interfacing to the mouse more difficult than interfacing to the keyboard.
As seen in Table 11.4, the command value needed for initialization after power
up is F4, enable streaming mode.

Table 11.4 PSI2 Mouse Commands.

Mouse returns AA, 00 after self-test

XX is number of packets per second

I Set Remote Mode

I Set Wrap Mode
Mouse returns data sent by system

Read Remote Data
Mouse sends 1 data packet

Set Stream Mode
Status Request

Mouse returns 3-bytes with current settings
Set Resolution

XX is 0, 1, 2, 3
Set Scalina 2 to 1

I Reset Scalina

Hex Value a

Interfacing to the PSI2 Keyboard and Mouse 199

Table 11.5 PSI2 Mouse Messages.

After streaming mode is enabled, the mouse sends data to the system in three
byte data packets that contain motion and pushbutton status. The format of a
three-byte mouse data packet is seen in Table 11.6.

Messages Sent by Mouse
Resend Message
Two bad messages in a row
Mouse Acknowledge Command

Sent by Mouse after each command byte
Mouse ~assed self-test

Table 11.6 PSI2 Mouse Data Packet Format.

Hex Value

FA

AA

11 MSB LSB
-1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0

L = Left Key Status bit (For buttons 1 = Pressed and 0 = Released)
M = Middle Key Status bit (This bit is reserved in the standard PSI2 mouse protocol, but

some three button mice use the bit for middle button status.)
R = Right Key Status bit
X7- XO = Moving distance of X in two's complement

(Moving Left = Negative; Moving Right = Positive)
Y7- YO = Moving distance of Y in two's complement

(Moving Up = Positive; Moving Down = Negative)
Xo= X Data Overflow bit (1 = Overflow)
Yo= Y Data Overflow bit (I = Overflow)
Xs= X Data sign bit (1 = Negative)
Ys = Y Data sign bit (I = Negative)

- -.

Byte I
Byte 2
Byte 3

Yo
X7
Y7

Xo
X6
Y6

Ys
X5
Y5

Xs
X4
Y4

1
X3
Y3

-

M
X2
Y2

R
X I
Y1

L
XO
YO

200 Rapid Prototyping of Digital Systems Chapter 11

11.9 The Mouse UP3core
The UP3core function Mouse is designed to provide a simple interface to the
mouse. This function initializes the mouse and then monitors the mouse data
transmissions. It outputs a mouse cursor address and button status. The internal
operation of the Mouse UP3core is rather complex and the fundamentals are
described in the section that follows. Like the other UP3core functions, it is
written in VHDL and complete source code is provided.

irst

To interface to the mouse, a clock filter, serial-to-parallel conversion and
parallel-to-serial conversion with two shift registers is required along with a
state machine to control the various modes. See the earlier PSI2 keyboard
section for an example of a clock filter design.

11 .I 0 Mouse Initialization
Two lines are used to interface to the mouse, PSI2 clock and data. The lines
must be tri-state bi-directional, since at times they are driven by the mouse and
at other times by the Cyclone chip. All clock, data, and handshake signals share
two tri-state, bi-directional lines, clock and data. These two lines must be
declared bi-directional when pin assignments are made and they must have tri-
state outputs in the interface. The mouse actually has open collector outputs
that can be simulated by using a tri-state output. The mouse always drives the
clock signal for any serial data exchanges. The FPGA chip can inhibit mouse
transmissions by pulling the clock line Low at any time.
The FPGA chip drives the data line when sending commands to the mouse.
When the mouse sends data to the FPGA chip it drives the data line. The tri-
state bi-directional handshaking is described in more detail in the IBM PSI2
Technical Reference manual. A simpler version with just the basics for
operation with the UP 3 is presented here. Just like the keyboard, the mouse
interface is more reliable if a clock filter is used on the clock line.
At power-up, the mouse runs a self-test and sends out the codes AA and 00. The
clock and data Cyclone chip outputs are tri-stated before downloading the UP
3, so they float High. High turns out to be ready to send for mouse data, so AA

Interfacing to the PSI2 Keyboard and Mouse 20 1

and 00 are sent out prior to downloading and need not be considered in the
interface. This assumes that the mouse is plugged in before applying power to
the UP 3 board and downloading the design.
The default power-up mode is streaming mode disabled. To get the mouse to
start sending 3-byte data packets, the streaming mode must be turned on by
sending the enable streaming mode command, F4, to the mouse from the FPGA
chip. The clock tri-state line is driven Low by the FPGA for at least 60us to
inhibit any data transmissions from the mouse. This is the only case when the
FPGA chip should ever drive the clock line. The data line is then driven Low
by the FPGA chip to signal that the system has a command to send the mouse.

Svstem Data
8 Data Bits in Low to High Order
Command Code shown is F4H

1 1 1 t I
Odd Parity Stop
Bit=O Bit=l

Figure 11.6 Transmission of Mouse Initialization Command.

The clock line is driven High for four clocks at 24 MHz and then tri-stated to
simulate an open collector output. This reduces the rise time and reflections on
the mouse cable that might be seen by the fast FPGA chip logic as the clock
line returns to the High state. As an alternative, the mouse clock input to the
FPGA could be briefly disabled while the clock line returns to the High state.
Next the mouse, seeing data Low and clock High, starts clocking in the serial
data from the FPGA chip. The data is followed by an odd parity bit and a High
stop bit. The handshake signal of the data line starting out Low takes the place
of the start bit when sending commands to the mouse.
With the FPGA chip clock and data drivers both tri-stated, the mouse then
responds to this message by sending an acknowledge message code, FA, back
to the FPGA chip. Data from the mouse includes a Low start bit, eight data bits,
an odd parity bit, and a High stop bit. The mouse, as always, drives the clock
line for the serial data transmission. The mouse is now initialized.

11 .I 1 Mouse Data Packet Processing
As long as the FPGA chip clock and data drivers remain tri-stated, the mouse
then starts sending 3-byte data packets at the power-up default sampling rate of
100 per second. Bytes 2 and 3 of the data packet contain X and Y motion values
as was seen in Table 11.6. These values can be positive or negative, and they
are in two's complement format.

202 Rapid Prototyping of Digital Systems Chapter 11

For a video mouse cursor such as is seen in the PC, the motion value will need
to be added to the current value every time a new data packet is received.
Assuming 640 by 480 pixel resolution, two 10-bit registers containing the
current cursor row and column addresses are needed. These registers are
updated every packet by adding the sign extended 8-bit X and Y motion values
found in bytes 2 and 3 of the data packet. The cursor normally would be
initialized to the center of the video screen at power-up.

11 .I 2 An Example Design Using the Mouse UP3core
In this example design, the mouse drives the UP33 LCD display. The mouse
cursor powers up to the center position of the 640 by 480 video screen. Note
that the PSI2 mouse clock and data pins must be bi-directional. The block
Mouse-LCD-interface rearranges the mouse core output signals for use by the
LCD-Display core function.

Figure 11.7 Examole desien usine the Mouse UP3core.

......... s. LCD-RS
j ;

i0"l P-
. . . ~ , - . . ~ . . . -

LCD_€ / 1

i--,-",""---*
,OLITG!IT - LCD-RW

: : DATA-3Uq7 01) ' .. ".; .

11 .I 3 For Additional Information
The IBM PSI2 Hardware Interface Technical Reference Manual, IBM
Corporation, 1988 contains the original PSI2 information on the keyboard and

Interfacing to the PSI2 Keyboard and Mouse 203

mouse in the Keyboard and Auxiliary Device Controller Chapter. Scan codes
for the alternate scan code set normally used by the PC can b e found o n the
web and in many PC reference manuals.

11 . I4 Laboratory Exercises
1. Write a VHDL module to read a keyboard scan code and display the entire scan code

string in hexadecimal on the VGA display using the VGA-SYNC and CHAR-ROM
UP3cores. It will require the use of the read and scan ready handshake lines and a small
RAM to hold the scan code bytes.

2. After reading the section on the PSI2 mouse, design an interface that can also send
commands to the keyboard. Demonstrate that the design works correctly by changing the
status of the keyboard LEDs after reading the new settings from the Cyclone DIP switch.

3. Develop a keyboard module that uses the alternate scan code set used by the PC.

4. Write the keyboard module in another HDL such as Verilog.

5. Use the keyboard as a new input device for a video game, the pPl computer, or another
application.

6. Generate a video display that has a moving cursor controlled by the mouse using the
Mouse and VGA-Sync UP3cores. Use the mouse buttons to change the color of the
cursor.

7. Use the mouse as input to a video etch-a-sketch. Use a monochrome 128 by 128 1-bit
pixel RAM with the VGA-Sync core in your video design. Display a cursor. To draw a
line, the left mouse button should be held down.

8. Use the mouse as an input device in another design with video output or a simple video
game such as pong, breakout, or Tetris.

9. Write a mouse driver in Verilog. Use the mouse information provided in sections 11.2
and 11.3.

Legacy Digital I/O
Interfacing Standards

Mark (1)

Space (0)
Start 0 1 2 3 4 5 6 7 Stop
Bit Data Bit number Bit

LSB MSB

Time -

The EIA RS-232C standard is widely used in PCs on the COM ports for serial data
transmission.

206 Rapid Prototyping of Digital Systems Chapter 12

12 Legacy Digital I10 Interfacing Standards
Historically, several common digital interface standards have developed over
the years to interface computers to their peripheral devices. This chapter will
introduce several of the older standards and briefly describe how they function
in a hardware design. Each standard has a unique set of hardware and
performance tradeoffs. Many devices and ICs are available that use these
standards. These interfaces are present in most PCs and are used on many
FPGA systems such as the UP 3 board.

12.1 Parallel I10 Interface
The parallel printer interface standard was developed by Centronics in the
1970s and is a widely used standard for transferring 8-bit parallel data. Most
PCs have a parallel port. Data is transferred in parallel using eight data bits and
standard digital logic voltage levels. Additional status and control bits are
required for the sender and receiver to exchange handshake signals that
synchronize each 8-bit data transfer. Typically, the parallel printer port is
interfaced to two 8-bit I10 ports on a processor. One I10 port is used for 8-bit
data transfers and one I10 port for the status and control bits that are used for
handshake signals.
The transfer of an 8-bit data value is shown in Figure 12.1. First, the computer
waits for the printer's busy signal to go Low. Next, the computer outputs the
eight data bits and the computer then sets strobe Low for at least 0 . 5 ~ s . The
computer then waits for the printer to pulse Ack Low. The computer must wait
for Ack Low before changing the data or strobe lines. The printer may go Busy
after it raises Ack. The printer handshake lines are also used to force the
computer to wait for events like a slow carriage return or page feed on a
mechanical printer or errors like a paper out condition. Sometimes a timeout
loop is used to detect conditions like paper out. The UP 3 board has a standard
printer parallel port connector. With the appropriate hardware, it can be used to
communicate with a standard printer.
In addition to printers, some special purpose devices also use the individual
parallel port bits in a number of different ways to output digital logic bits to
control external hardware. The ByteBlaster adapter you use to program the
FPGA is one such example.
The original parallel interface supported only unidirectional data transfers from
a computer to a printer. Recent parallel port standards such as IEEE 1284 ECP
and EPP support bidirectional and faster data transfers between an external
device and the computer. In these newer modes, another control bit from the
computer specifies the data transfer direction and tri-state gate outputs are used
in both the computer and printer to drive the data lines bidrectionally.
Parallel cables will only work for relatively short distances. The RS-232C
standard in the next section supports longer cables with fewer wires, but it also
has lower bandwidth and data transfer rates.

Legacy Digital I10 Interface Standards 207

I I I I

Data Lines I ! Data Valid
I

I I I
Busy I I I I

I I I I

n Ack

Figure 12.1 Parallel Port transfer of an 8-bit data value

12.2 RS-232C Serial I10 Interface

The Electronics Industry Association (EIA) RS-232C Serial interface is one of
the oldest serial I10 standards. In Europe, is it also called V.24. 8-bit data is
transmitted one bit at a time serially. Most PCs have an RS-232C serial COM
port. Serial interfaces have an advantage in that they require fewer wires in the
cable than a parallel interface and can support longer cables. In RS-232C's
simplest implementation, only three wires are used in the cable. One wire for
transmit data (TD), one for receive data (RD) and one for signal ground (GND).
Individual bits are clocked in and out serially using a clock signal. The
frequency of this bit clock is called the serial interface's baud rate. (Baudot was
a French engineer that developed an early serial interface for the telegraph.)
Since two different signal wires are used for receive and transmit, serial devices
can be transferring data in both directions at the same time (full-duplex). The
ASCII character code is typically used on serial devices, but they can also be
used to transfer 8-bit binary values.
The baud rate clock is not synchronized by using a signal wire connected
between the sending and receiving devices, rather it is asynchronous and is
derived by a state machine watching the serial data bit transitions occurring at
the receiver. For this to function correctly, the transmitter and receiver must be
setup to operate at the same clock or baud rate. Even though they have the same
clock rate, the clock phase must still be synchronized between a serial
transmitter and receiver by examining the incoming serial data line. The
hardware logic circuit needed for this common serial interface is called a
Universal Asynchronous Receiver Transmitter (UART).

208 Rapid Prototyping of Digital Systems Chapter 12

ASCII "P" = 0x50

Mark (1)

Start 0 1 2 3 4 5 6 7 Stop
Bit - Data Bit number Bit

LSB MSB

Time

Figure 12.2 RS-232C Serial interface transmission o f an 8-bit data value

Figure 12.2 shows the transmission of a single ASCII character over an RS-
232C serial interface. The serial bit has two states. Mark is the high state (>3V)
and Space is the low state (<-3V). Older generation serial devices will have
around +12V and -12V levels for Mark and Space. Note that for the proper RS-
232 voltage levels, a standard digital logic output bit will have to have its
voltage levels converted for use in a serial interface. Special ICs are normally
used for this RS-232C voltage conversion. To reduce the need for additional
circuits, these ICs also generate the required DC supply voltages from the
standard digital logic DC power supplies. This special IC chip is already
present on the UP 3's serial interface. FPGA logic elements can be used to build
the UART hardware function.
The idle state is High (Mark). Whenever the interface starts sending a new 8-bit
data value, the line is dropped Low (Space) for one clock cycle (baud rate
clock). This is called the start bit. The eight data bits are then clocked out
during the next eight baud clocks in low to high bit order. The highest data bit
is sometimes used as a parity bit for error detection, when only seven data bits
are used instead of eight. After the data bits are clocked out, the bit goes high
for one clock. This is called the Stop bit. Sometimes at low baud rates, two
Stop bits are present. Note that at least 10 clocks are required to transfer an 8-
bit data value.
Typically, UARTs transfer 8-bit data values in and out to other internal logic
using an 8-bit parallel I10 port interfaced to a processor. Extra UART status
bits can be read by the processor that indicate another 8-bit data value can be
sent to the UART or another 8-bit data value is available to read in from the
UART. Since serial transmission is very slow compared to a processor's clock,
these status bits must be checked in software or hardware for their proper state
or the processor will sendlreceive data faster than the UART can produce or
consume it. Other status bits can also be used to detect various error conditions.

Legacy Digital I10 Interface Standards 209

A UARTs transmitter uses a shift register clocked by the baud rate clock to
convert the 8-bit parallel data to eight serial bits. Start and stop bits are
automatically added by the UART's hardware.
At the other end of the serial cable, another UART's receiver uses the Stop and
Start bits to reset its internal state machine that is attempting to synchronize its
receive clock phase to the incoming serial bit data. This state machine
synchronizes the receive clock phase whenever it sees an edge on the incoming
serial line. Note that several consecutive bits could be the same value inside the
eight data bits, so there is not an edge transition on every single clock.
A UART typically uses an internal clock that is eight or sixteen times the baud
rate to watch for edges on the incoming serial data line. UARTs also use this
faster clock and a counter to attempt to sample the data bits in the middle of
each bit's time frame to minimize the possibility of reading in an incorrect
value near an edge. Since long wires are allowed on an RS-232C serial
interface, there will likely be noise and ringing present whenever the serial bit
changes. Clocking in the bit in the middle of its time frame greatly increases
the reliability of the interface. A second shift register is used for serial to
parallel conversion in the UART's receiver circuit.
Some serial devices also require additional hardware handshake lines to stop
and start the flow of a new 8-bit data value over the serial interface. These
handshake lines require additional signal wires in the cable used to connect the
serial device. Some of the more commonly used handshake lines are RTS
(request to send), CTS (clear to send), DCD (data carrier detect), DSR (data set
ready), and DTR (data terminal ready).
There are two types of serial devices defined in the RS-232C standard, data
terminal equipment (DTE) and data carrier equipment (DCE). A standard RS-
232C serial cable is designed to connect a DTE device to a DCE device. When
connecting two serial devices of the same type, a special null modem cable or
adapter is needed. A null modem exchanges the TD and RD signal lines at one
end of the cable along with several connections on the handshake lines. If you
experience problems when connecting a new serial device, the various
handshake and null modem cable options can be quickly checked using a low-
cost in-line RS-232C analyzer breakout box.
The UP 3 board contains a RS-232 serial connector, and it has the required
voltage conversion IC needed for serial data transmission.

12.3 SPI Bus lnterface
The serial peripheral interface (SPI) bus created by Motorola in the 1980s is
used primarily for synchronous serial communication between a host processor
and peripheral ICs. Four signal lines are used: Chip Select (CS), Serial Data
Input (SDI), Serial Data Output (SDO), Serial Clock (SCKL). CS and SCKL
are outputs provided by the master device. The slave devices receive their clock
and chip select inputs from the master. If an SPI device is not selected, its SDO
output line goes into a high impedance state (tri-state). The number of serial
bits transferred to the slave device varies from device to device. Each slave
device contains an internal shift register used to transfer data.

210 Rapid Prototyping of Digital Systems Chapter 12

Two types on connections between master and slave devices are supported as
seen in Figure 12.3. In a cascaded connection, all slaves in the chain share a
single chip select line driven by the master. The master device outputs SDO and
it connects as an input to a slave device's SDI input. A slave's SDO output
connects to another slave's SDI input. The serial data cascades through all of
the slaves and the final slave in the chain connects its SDO line to the master's
SDI input to complete the chain. In this configuration, the slave devices appear
as one larger slave device, the data output of one device feeds into the input of
another device, thus forming one large shift register.

Figure 12.3 The two SPI slave device configuration options.

The second SPI configuration option supports independent slave devices, each
device has its own unique chip select input line coming from the master. The
master's SDO output connects to each slaves SDI input. The slave's SDO tri-
state outputs are connected together and to the master's SDI input. Only the
selected slave's SDO output is driven, the others are tri-stated.
Multiple masters are also supported in SPI. Several SPI modes are supported
with serial data being valid on either the rising edge or the falling edge of the
clock. Serial clock rates can range from 30 kHz to 3 MHz depending on the
devices used. Most commonly, devices place new data on the bus during the
falling clock edge and data is latched off the bus on the rising edge after it
stabilizes, but you will need to check data sheets for specific master and slave
devices to confirm this since some devices use the opposite clock edges.
Some Motorola literature may use different names for the SPI signals. CS may
appear as SS, SDI as MOSI, and SDO as MISO. In National Semiconductor
products, SPI is also known as Microwire. SPI devices are also available in
several different voltage supply levels ranging from 2.3 to 5 volts. Since SPI
uses a common clock, the hardware interface is simpler than RS-232C serial.

Legacy Digital 110 Interface Standards 211

12.4 I*C Bus Interface
The Inter IC (12C) bus is a widely used standard developed by Phillips in the
1980s for connecting ICs on the same circuit board. Many small ICs now
include 12C pins to transfer data serially to other ICs. For lower bandwidth
signals, a serial interface has an advantage in that it requires fewer interconnect
lines. The 12C bus uses two signal wires called SCL and SDA. SCL is the clock
line and SDA is the 1-bit serial data & address line. A common ground signal is
also needed. The SCL and SDA lines are open drain. This means that the output
is only driven Low, never High. An external pull-up resistor pulls the lines
High whenever there is not a device driving the lines Low.
In an FPGA with tri-state output pins, you can simulate open drain outputs by
tri-stating the output whenever the bit should go High and only driving the
output signal Low. Even though there are multiple devices on the I ~ C bus, only
one pull-up resistor is used for the entire 12C bus.
Devices on the 12C bus are masters or slaves. The slaves are the devices that
respond to bus requests from the master. Each slave is assigned its own unique
7-bit 12C bus address. Since both address and data information is transferred
over the bus, the protocol is a bit more involved than SPI. When the master
needs to talk to a slave, it issues a start sequence on the I ~ C bus. In a start
sequence, SDA goes from High to Low while SCL is High. To stop an 12C
sequence, the master sends a stop sequence command. In a stop sequence, SDA
goes from Low to High while SCL is High. Start and stop sequences are the
only times a change may occur in SDA while SCL is High.
The master drives the SCL clock line to transfer each new 12C serial bit. To
force a wait, a slave device can drive SCL Low. Therfore, before each new 12C
SCL clock, the master checks to see if SCL is being forced Low by a slave. If it
is, the master must wait. SCL clocks are typically up to 100 kHz with 400 kHz
available on some new devices.

SDA 1
I 1 MSB ACK Si nal

from ~ g v e from Receiver
Clock Line Held
Low while serviced

' I

I
Is 1 4 ~m ACK t A C K I P J
START Address Data STOP

Figure 12.4 I*C interface serial transmission of an 8-bit data value

All address and data transfers contain eight bits with a final acknowledge
(ACK) handshake bit for a total of nine bits. All address and data transfers
send the High bits first, one per SCL clock bit High. In an address transfer, the

212 Rapid Prototyping of Digital Systems Chapter 12

7-bit address is sent and the eighth bit is a WW bit (O=read, l=write). Some IC
datasheets just append this final WW bit to the address field and show an 8-bit
address field (with even 8-bit addresses for read and odd for write).
The last bit in all data and address transfers, bit nine, is an ACK from the slave.
The slave normally drives ACK Low on the last SCL cycle to indicate it is
ready for another byte. If ACK is not Low, the master should send a stop
sequence to terminate the transfer.
As seen in Figure 12.4, when a master wants to write data to a slave device, it
issues the following bus transactions:

1. Master sends a start sequence.
2. Master sends the 7-bit 12C address (high bits first) of the slave with the

WW bit set Low.
3. Master sends the 8-bit internal register number to write.
4. Master sends 8-bit data value(s). Highest bits first.
5. Master sends a stop sequence.

When a master wants to read data from a slave device, it issues the following
bus transactions:

1. Master sends a start sequence.
2. Master sends the 7-bit 12c address of the slave (high bits first) with the

WW bit set Low.
3. Master sends the 8-bit internal register number to read.
4. Master sends a start sequence.
5. Master sends the 7-bit 12C address of the slave (high bits first) with the

WW bit set High.
6 . Master reads the 8-bit data value(s). Highest bits first.
7. Master sends a stop sequence.

In the full 12C standard, multiple bus masters are also supported with collision
detection and bus arbitration. Collision occurs when two masters attempt to
drive the bus at the same time. Arbitration schemes must decide which device
can drive the bus when multiple masters are present. Some of the newest 12C
devices can support a high-speed 3.4 MHz clock rate, 10-bit addresses,
programmable slave addresses, and lower supply voltages. The System
Management Bus (SMB) bus developed by Intel in 1995 that is used for
temperature, fan speed, and voltage measurements on many PC motherboards is
based on the I ~ C bus. On the UP 3 board, the real-time clock chip and the serial
EEPROM chip use an 12C bus interface. Many new TVs, automobiles, and other
consumer electronics also contain 12C interfaces between chips for control
features.

Legacy Digital I10 Interface Standards 21 3

SPI and I ~ C both offer good support for communication with low-speed
devices. SPI is better suited to applications that need to transfer higher
bandwidth data streams without the need for explicit address information. Some
of the most common SPI examples are analog-to-digital (AID) and digital-to-
analog (DIA) converters used to continuously sample or output analog signals.
Since addressing is required for I'C, it requires more hardware, but with
advances in VLSI technology these additional hardware costs are minimal. In
2005, one FPGA vendor calculated that a single I10 pin on an FPGA package
costs as much as 50,000 transistors inside the chip.

12.5 For Additional Information
The books Parallel Port Complete and Serial Port Complete by Jan Axelson
published by Lakeview Research (www.lvr.corn) contain complete details on
using parallel and serial ports. The full I*C specification is available from
Philips Semiconductors (www.phillipssemiconductor.com) and SMB at
(www.smbus.org). The Motorola MC68HC 11 data manual
(www.freesca1e.com) and various National Semiconductor manuals
(www..national.cgn) have more information on SPI. Analog Devices
(www.analorrdevices.com) makes a wide variety of AID and DIA converters
with SPI and parallel interfaces.

12.6 Laboratory Exercises
1. Interface a printer with a parallel port to the UP 3 board's parallel port. Connect the two

devices using a printer cable. Design logic using a state machine or a processor core for
the FPGA to transfer data and handle the handshake lines. You may want to use an older
printer so that any problems with your design will not damage the printer. Be careful not
to generate tri-state bus conflicts on the parallel data lines by making sure you drive the
data direction bit to the proper state. Have the UP 3 print a short ASCII message on the
printer ending with an ASCII form or page feed to print the message on a page. A form
feed may be needed to cause the printer to print since most printers store characters in an
internal page buffer.

2. Interface the UP 3 board's serial port to a PC serial port using a serial cable. Run a serial
communications program on the PC. Send a short message to the PC from the UP 3 and
display the data from the PC on the UP 3 board's LCD panel.

3. Design an I'C interface for the UP 3 board's real-time clock chip. Display the time from
the chip on the UP 3 board's LCD display. Don't forget to check the UP 3 board's
jumper settings and battery for the real-time clock chip. The data sheet for the clock chip
contains address and data formats.

4. Obtain an IC chip with an SPI interface and design an interface for it on the UP 3 board.
Chips with SPI interfaces include analog-to-digital converters, digital-to-analog
converters and various sensor modules. Header connections are available on the UP 3
board with 5V or 3V logic levels.

UP 3 Robotics Projects

Photo: The UP3-bot is a small robot controlled by the UP 3 board

216 Rapid Prototyping of Digital Systems Chapter 13

13 UP 3 Robotics Proiects

13.1 The UP3-bot Design
The UP3-bot shown in Figure 13.1 is a low-cost moving robotics platform
designed for the UP 3 board. The UP3-bot is designed to be a small
autonomous vehicle that is programmed to move in response to sensory input.
A wide variety of sensors can be easily attached to the UP3-bot.
The round platform is cut from plastic and a readily available 7.2V RlC
rechargeable battery pack is used to supply power. Two diametrically opposed
drive motors move the robot. A third inactive castor wheel or skid is used to
provide stability. The robot can move forward, reverse, and rotate in place. Two
relatively inexpensive radio control servos are used as drive motors. The UP 3
is programmed to act as the controller. The servos are modified to act as drive
motors. The servos are controlled by timing pulses produced by the UP 3 board.

Figure 13.1 The UP3-bot uses an R/C car battery and RfC servos for drive motors.

13.2 UP3-bot Servo Drive Motors
A typical radio control servo is shown in Figure 13.2. Servos have a drive
wheel that is controlled by a coded signal. The servo shown is a Futaba S3003
which is identical, internally, to the Tower TS53J servo. Radio control
servomotors are mass-produced for the hobby market and are therefore
relatively inexpensive and consistently available. They are ideally suited for
robotics applications. Internally, the servo contains a DC drive motor (seen on
the left in Figure 13.2), built-in control circuitry, and a gear reduction system.

UP 3 Robotics Projects 217

They are small, produce a relatively large amount of torque for their size, and
run at the appropriate speed for a robotics drive motor.

Figure 13.2 Left: Radio Control Servo Motor and Right: Servo with Case and Gears Removed.

The control circuitry of the servo uses a potentiometer (variable resistor) that is
used to sense the angular position of the output shaft. The potentiometer is the
tall component on the right in Figure 13.2. The output shaft of a servo normally
travels 180-210 degrees. A single control bit is used to specify the angular
position of the shaft. The timing of this bit specifies the angular position for the
shaft. The potentiometer senses the angle, and if the shaft is not at the correct
angle, the internal control circuit turns the motor in the correct direction until
the desired angle is sensed.
The control signal bit specifies the desired angle. The desired angle is encoded
using pulse width modulation (PWM). The width of the active high pulse varies
from 1-2 ms. A lms pulse is 0 degrees, 1.5ms is 90 degrees and a 2 ms pulse is
approximately 180 degrees. New timing pulses are sent to the servo every 20
ms.

13.3 Modifying the Servos to make Drive Motors
Normally, a servo has a mechanical stop that prevents it from traveling move
than half a revolution. If this stop is removed along with other modifications to
the potentiometer, a servo can be converted to a continuously rotating drive
motor. Modifications to the servo are not reversible and they will void the
warranty. Some robot kit vendors sell servos that are already modified.
To modify the servo, open the housing by removing the screws and carefully
note the location of the gears, so that they can be reassembled later. The
potentiometer can be replaced with two 2.2K ohm % watt resistors or
disconnected by cutting the potentiometer shaft shorter and setting it to the
center position so that it reports the 90-degree position. A more accurate setting

218 Rapid Prototyping of Digital Systems Chapter 13

can be achieved by sending the servo a 1.5ms pulse and adjusting the
potentiometer until the motor stops moving. The potentiometer can then be
glued in place with CA glue. In the center position the potentiometer will have
the same resistance from each of the outside pins to the center pin. If the
potentiometer is replaced with two resistors, a resistor is connected between
each of the two outside pins and the center pin.
In some servos, there will be less mechanical play if the potentiometer is
disabled by cutting the center pin and modified by drilling out the stop on the
potentiometer so that it can rotate freely. The two resistors are then added to
replace the potentiometer in the circuit.
The largest gear in the gear train that drives the output shaft normally has a tab
molded on it that serves as the mechanical stop. After removing the screw on
the output shaft and removing the large gear, the mechanical stop can be
carefully trimmed off with a hobby saw, knife, or small rotary-grinding tool.
The servo is then carefully re-assembled.
After modifications, if a pulse shorter than 1.5 ms is sent, the motor will
continuously rotate in one direction. If a pulse longer than 1.5 ms is sent the
motor will continuously rotate in the other direction. The 1.5 ms or 90-degree
position is sometimes called the neutral position or dead zone. The drive signal
to the motor is proportional, so the farther it is from the neutral position the
faster it moves. This can be used to control the speed of the motor if the neutral
position is carefully adjusted. A pulse width of 0 ms or no pulse will stop the
servomotor.
A servo has three wires, +4 to +6 Volt DC power, ground, and the signal wire.
The assignment of the three signals on the connector varies among different
servo manufacturers. For Futaba servos, the red wire is +5, black is ground, and
the white or yellow wire is the pulse width signal line. For JR and Hitec servos,
the orange or yellow wire is the signal line and red is +5, and black or brown is
ground.
On the UP3-bot, the UP 3 board must be programmed to provide the two timing
signals to control the servo drive motors.

13.4VHDL Servo Driver Code for the UP3-bot
To drive the motors a servo signal must be sent every 20 ms with a 0, 1, or 2 ms
pulse. The UP 3 board is programmed to produce the timing signals that drive
the motors. If no pulse is sent, the motor stops. If a 1 ms pulse is sent, the
motor moves clockwise and if a 2 ms pulse is sent the motor moves in the
reverse direction, counterclockwise. To move the UP3-bot forward, one motor
moves clockwise while the other motor moves counterclockwise. This is
because of the way the motors are mounted to the UP3-bot base.
In the code that follows, lmotor-dir and motor-dir specify the direction for the
left and right motor. If both signals are '1' the UP 3 bot moves forward. The
VHDL code actually moves one motor in the opposite direction to move
forward. If both are '0' the robot moves in reverse. If one is '1' and the other is
'O', the UP 3 bot turns by rotating in place. The two speed controls are
lmotor-speed and rmotor-speed. In the speed control signals, '0' is stop and ' 1 '

UP 3 Robotics Projects

is run. A lkHz clock is used for the counters in the module. The UP3core
function, clk-div, can be used to provide this signal. Two more complex
techniques for implementing variable speed control are discussed in problems
at the end of the chapter. Acroname sells a low-cost optical encoder kit made by
Nubotics that can be attached to standard R/C servo wheels and used for
position feedback and more accurate motor speed control.

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE 1EEE.STD-LOGIC-UNSIGNED.ALL;
ENTITY motor-control IS

PORT (clock-I kHz : IN STD-LOGIC;
Imotor-dir, rmotor-dir : IN STD-LOGIC;
Imotor-speed, rmotor-speed : IN STD-LOGIC;
Imotor, rmotor : OUT STD-LOGIC);

END motor-control;

ARCHITECTURE a OF motor-control IS
SIGNAL count-motor: STD-LOGIC-VECTOR(4 DOWNTO 0);

BEGIN
PROCESS

BEGIN
-- Countmotor is a 20ms timer

WAIT UNTIL clock-I kHz'EVENT AND clock-1 kHz = '1';
IF count-motor /=I9 THEN

count-motor <= count-motor + 1 ;
ELSE

count-motor c= "00000";
END IF;
IF count-motor >= 17 AND count-motor < 18 THEN

-- Don't generate any pulse for speed = 0
IF Imotor-speed = '0' THEN

lmotor c= '0';
ELSE

lmotor <= 'I ';
END IF;
IF rmotor-speed = '0' THEN

rmotor <= '0';
ELSE

rmotor <= '1';
END IF;
-- Generate a I or 2ms pulse for each motor
-- depending on direction
-- reverse directions between the two motors because
-- of servo mounting on the UP3-bot base

ELSIF count-motor >=I8 AND count-motor <I9 THEN
IF Imotor-speed I= '0' THEN

CASE Imotor-dir IS
-- FORWARD
WHEN '0' =>

220 Rapid Prototyping of Digital Systems Chapter 13

lrnotor c= '1';
-- REVERSE
WHEN '1' =>

lrnotor c= '0';
WHEN OTHERS => NULL;
END CASE;

ELSE
lrnotor c= '0';

END IF;
IF motor-speed I= '0' THEN

CASE motor-dir IS
-- FORWARD
WHEN '1' =>

rrnotor c= 'I ';
-- REVERSE
WHEN '0' =>

rrnotor <= '0';
WHEN OTHERS => NULL;
END CASE;

ELSE
motor c= '0';

END IF;
ELSE

lrnotor c= '0';
rrnotor c= '0';

END IF;
END PROCESS;

END a;

13.5 Low-cost Sensors for a UP 3 Robot Project
A wide variety a sensors can be attached to the UP 3 board. A few of the more
interesting sensors are described here. These include infrared modules to avoid
objects, track lines, and support communication between UP3-bots. Other
modules include sonar and IR to measure the distance to the nearest object and
a digital compass to determine the orientation of the UP3-bot. Most robots will
need to combine or "fuse" data from several types of sensors to provide more
reliable operation.
Signal conditioning circuits are required in many cases to convert the signals to
digital logic levels for interfacing to the digital inputs and outputs on the UP 3
board. Analog sensors will require an analog-to-digital converter IC to interface
to the UP 3 board, so these devices pose a more challenging problem. Small
low-cost AID ICs are available with SPI interfaces that require a minimal
number of FPGA pins.
Sensor module kits are available and are the easiest to use since they come with
a small printed circuit board to connect the parts. Sensors can also be built
using component parts and assembled on a small protoboard attached to the
UP3-bot. Sensor modules are interfaced by connecting jumper wires to digital
inputs and outputs on the UP 3 board's 53 and 52 expansion header connector.

UP 3 Robotics Projects 22 1

Sensors with a single output bit can utilize a simple control scheme, and for
basic tasks the robot can be controlled using hardware as simple as a state
machine. More advanced sensors that report actual distance, location, or
heading measurements will likely require a processor core on the UP 3 running
a program that interprets sensor readings and implements the robot's control
algorithm.

Line Tracker Sensor

A line tracker module from Lynxmotion is shown in Figure 13.3. This device
uses three pairs of red LEDs and infrared (IR) phototransistor sensors that
indicate the presence or absence of a black line below each sensor. When the
correct voltages are applied in a circuit, an IR phototransistor operates as a
switch. When IR is present the switch turns on and when no IR is present the
switch turns off. The LED transmits red light that contains enough IR to trigger
the phototransistor.
Each LED and phototransistor in a pair are mounted so that the light from the
LED bounces off the floor and back to the IR phototransistor. The LED and IR
sensor must be mounted very close to the floor for reliable operation. Black
tape or a black marker is used to draw a line on the floor. The black line does
not reflect light so no IR signal is returned. Three pairs of LEDs and IR
phototransistor sensors produce the three digital signals, left, center, and right.
The UP3-bot can be programmed to follow a line on the floor by using these
three signals to steer the robot. The mail delivery robots used in large office
buildings use a similar technique to follow lines or signal cables in the floor.

Figure 13.3 -Three LEDs and phototransistors are mounted on bottom of the Line Tracker board.

Infrared Proximity Detector

An IR proximity sensor module from Lynxmotion is seen in Figure 13.4. The
UP3-bot can be outfitted with an infrared proximity detector that is activated by
two off-angle infrared transmitting LEDs. The circuit utilizes a center-placed

222 Rapid Prototyping of Digital Systems Chapter 13

infrared sensor (Sharp GPlU5) to detect the infrared LED return as seen in
Figure 13.5. The Sharp GPlU5 was originally designed to be used as the IR
receiver in TV and VCR remote control units. From the diagram, one can see
that the sensitivity of the sensor is based on the angle of the LEDs. The LEDs
can be outfitted with short heat-shrink tubes to better direct the infrared light
forward. This prevents a significant number of false reflections coming from
the floor. The IR sensor will still occasionally detect a few false returns and it
will function more reliably with some hardware or software filtering.

Figure 13.4 IR Proximity Sensor Module - Two IR LEDs on sides and one IR sensor in middle.

Figure 13.5 Proximitv detector active sensor area.

UP 3 Robotics Projects 223

As seen in Figure 13.6, the circuit on the IR proximity module utilizes a small
feedback oscillator to set up a transmit frequency that can be easily detected by
the detector module. This module utilizes a band-pass filter that essentially
filters out ambient light. Some older first generation electronic ballasts used in
commercial fluorescent lights can interfere with the IR sensors since they
operate at the same frequency as the filter. Newer ballasts now operate at a
higher frequency since they also caused problems with IR TV remote control
signals.

LED Enable. H
5v

Signal Detect.L IR Detector

Figure 13.6 Circuit layout o f one LED and the receiver module on the infrared detector.

In Figure 13.6, when the Left-LED Enable signal is High, the Low side of the
IR LED is pulled to ground. This forces a voltage drop across the LED at the
frequency of the 5v to ground oscillating signal. In other words, the LED
produces IR light pulses at 38 kHz. Using a 38 kHz signal helps reduce noise
from other ambient light sources.
Since the IR detector has an internal band-pass filter centered at 38 kHz, the
detector is most sensitive to the transmitted oscillating light. The 5v pull-up
resistor allows the IR Detector's open collector output to pull up the SOUT
signal to High when no IR output is sensed. To detect right and left differences,
the right and left LEDs are alternately switched so that the detected signals are
not ambiguous. If both the left and right LEDs detect an object at the same
time, the object is in front of the sensor.
If the IR sensor was built from component parts, a hardware timer implemented
on the UP 3 board could be used to supply the 38-40 kHz signal. Similar IR
LEDs and IR detector modules are available from Radio Shack, #276-137B,
and Digikey, #160-1060. Assuming two UP3-bots are equipped with IR sensor
modules, it is also possible to use this module as a serial communication link
between the robots. One UP3-bot transmits using its IR LED and the other
UP3-bot receives it using its IR sensor. To prevent interference, the IR LEDs
are turned off on the UP3-bot acting as a receiver. Just like an IR TV remote,

224 Rapid Prototyping of Digital Systems Chapter 13

the IR LED and sensor must be facing each other. Bandwidth is limited by the
38kHz modulation on the IR signal and the filters inside the IR detector. (An IR
sensor strip that converts IR to visible light is available from Radio Shack. This
sensor can be used to confirm the operation of IR LEDs.

Wheel Encoder
The Nubotics WWOl Wheelwatcher incremental quadrature encoder system
from Acroname is shown in Figure 13.7. This low-cost electronics board bolts
onto the top of a standard-size RlC servo. The adhesive-backed codewheel
attaches to a wheel mounted on the servo's output shaft. Two pairs of optical
emitters and receivers bounce light beams off of the codewheel.
Note that there are 32 black stripes on the reflective codewheel. When the
wheel is rotating, the encoder produces two series of digital pulses that are 90
degrees out of phase. When one of the pulses changes twice before the other
pulse changes, the direction has been reversed. 128 clock pulses per revolution
are produced and a separate direction signal indicates the current direction of
rotation. By counting pulses with a counter or by accurately measuring the time
between individual pulses using a fast hardware counter on the UP 3, it is
possible to more accurately control the position and velocity of the servo motor.
When used on robot drive motors, this optical encoder feedback provides more
accurate position and speed control for the robot.

Figure 13.7 Nubotics WW-0 1 Wheel Watcher Incremental Encoder System.

UP 3 Robotics Projects 225

Sonar Ranging Units

The Devantech SRFlO Sonar Module is shown in Figure 13.8. This device uses
ultrasonic sound waves to measure distances from a few inches to around 35
feet. They are widely used in robotics. The timing of the sound echo indicates
distance to the nearest object. The transducer first functions as a transmitter by
emitting several cycles of a ultrasonic signal, and then functions as a receiver to
detect sound waves returned by bouncing off nearby objects. Even though
ultrasound is inaudible, the transducer also generates a slight audible click each
time the device transmits. The beamwidth is rather wide, and several sonar
modules facing in different directions are commonly used.
The time it takes for the ultrasonic echo signal to return is measured using an
IC mounted on the back side of the board. This time is converted to distance
since sound travels out and back at 0.9 ms per foot. Only around 10-20 samples
per second are possible with the device since it takes time to wait for echoes to
return. Some sonar modules require external hardware to measure the pulse
timing to produce the distance to target. The SRFlO device operates off +5V
DC, and it sends distance measurements back to the host using an I ~ C bus.

Figure 13.8 Devantech SRF10 Ultrasonic Range Finder.

IR Distance Sensors

The Sharp GPD2D02 seen in Figure 13.9 is an IR device that can provide
distance measurements similar to the slightly more expensive sonar sensor. This
sensor has a shorter range of 10 to 80 cm (- 4 to 32 inches). The distance is
output by the sensor on a single pin as a digital 8-bit serial stream.

226 Rapid Prototyping of Digital Systems Chapter 13

Figure 13.9 Sharp IR Ranging Module.

. m m m m m m m m m m m m m m m = m m m m m m

\ \ Scatter.4 Far Object
\ \ Reflecbon

IR LED Sensitive
IR Detector

I I

Figure 13.10 Operation of Sharp IR Ranging Module.

As shown in Figure 13.10, internally the GPD2D02 contains an IR LED and a
position-sensitive IR detector. The IR LED transmits a modulated beam of
infrared light. When the light strikes an object, most of the light will be
reflected back to the LED. Since no surface is a perfect optical reflector,
scattering of the IR beam occurs at the surface of the object and some of the
light is reflected back to the position sensitive detector. By comparing the near
and far object beams shown in Figure 13.10, it is apparent that the position at
which the scattered reflected IR beam hits the detector is a function of the
reflection angle.

UP 3 Robotics Projects 227

The 8-bit integer value reported by the sensor in cm is approximately

1000 *tan-' (lo9)+offset.
DISTANCE

The constant 1.9 is the distance between the lenses in cm. The offset is the no-
object present value returned by the sensor. This offset constant can vary by as
much as 17 between different sensors and has a typical value of 25. Note that a
close object reports a larger value and a distant object reports a smaller value.
Objects closer than lOcm will report an incorrect value and should be avoided
by placing the sensor away from the edge of the robot. Large objects beyond 80
cm can sometimes report an incorrect value that makes them appear closer.
A special connector (Japan Solderless Terminal #S4B-ZR) is required to
connect to the GPD2D02. If desoldering equipment is available, the small
connector can also be desoldered from the sensor and wires attached directly to
the sensor.
In addition to +5V and ground pins, the sensor has an input, Vin, and a serial
output, Vout. Vin is an input to the sensor that clocks out the serial data on
Vout. When Vin is Low for around 70 ms, the sensor takes a reading. When a
reading is available, Vout goes High.
On each of the next eight falling clock edges of Vin, the sensor will output a
new data bit. The eight data bits should be clocked into the FPGA on the rising
edges of Vin (when they are stable). When clocking out the data, the clock
period on Vin should be 0.4 ms or less. The eight data bits are clocked out in
high to low order. If Vin is not dropped Low within 1.5 ms after clocking out
the final data bit, the sensor shuts down to save power. A shift register can be
used to assemble the data bits. The demo program ir-dist.bdf on the CD-ROM
contains a VHDL-based IP core for use with the GP2D02 sensor.
The sensor's Vin pin is an open-drain input. Open-drain or open-collector
inputs should never be driven High. An FPGA's tri-state output pin can be
connected directly to an open-drain input, if the tri-state output is never driven
High. When Vin should be High, tri-state the FPGA's output pin and when the
output should be Low, drive the output pin Low with the tri-state gate turned on
with a low output.
Open-drain or open-collector inputs contain an internal pull-up resistor to +5V.
Multiple open-drain (open-collector) outputs can be tied together to a single
open drain (open-collector) input to perform a wired-AND operation. Any one
of the outputs can pull the input Low. If no output pulls the signal Low, a single
pull-up resistor forces the input High. This wired-AND operation occurs just by
tying the open-drain (open-collector) outputs together and no physical AND
gate is needed. In negative logic, a wired-OR operation occurs.
Normal gate outputs cannot be connected. This wired-AND logic only works
because these gates have special output circuits that do not contain a transistor
that forces the input High. This transistor is present in normal gate outputs. If a
normal gate output is connected to other open-drain (open-collector) outputs,

228 Rapid Prototyping of Digital Systems Chapter 13

its transistor could turn on to force the input High at the same time another
gate's output transistor turns on to force it Low. This would short the power
supply to ground drawing excessive current that might damage the devices. An
analog and longer range version of this IR distance sensor are also available.

Magnetic Compass Sensors

Various electronic components are available that detect the magnetic field of
the earth to indicate direction. A low-cost digital compass sensor is shown in
Figure 13.11. The Dinsmore model 1490, often used in electronic automobile
compasses, is a combination of a miniature rotor jewel suspended with four
Hall-effect (magnetic) switches. Four active-low outputs are provided for the
four compass directions. When the module is facing North, the North output is
Low and the other three outputs will be High. Eight directions are detected by
the device, since two outputs can become active simultaneously. In this way,
the device can indicate the four intermediate directions, NE, SE, SW, and NW.
NE for example activates the active-low North and East outputs. The device
can operate off +5V.
Mount any compass device as far away from motors as possible to avoid
magnetic interference from the magnets inside the motor. Four 2.2K ohm pull-
up resistors to +5V are required to interface to the UP 3 board, since the four
digital output pins, N, S, E, and W, all have open-collector outputs. Just like a
real compass, a time delay is needed after a quick rotation to allow the outputs
to stabilize. If the compass module leads are carefully bent, the compass
module and the four required pull-up resistors can be mounted on a standard
20-pin DIP, machined-pin, wire-wrap socket and connected to the UP 3 header
socket.
An analog version of the device is available with 1-degree accuracy, but it
requires an analog-to-digital conversion chip or signal phase timing for
interfacing.

Figure 13.11 Dinsmore 1490 Digital Compass Sensor.

UP 3 Robotics Projects 229

Electronic Compass Sensors

Low-cost electronic compass modules are also available that detect the
magnetic field of the earth to indicate direction. The cost is two to three times
that of the mechanical compass described in the previous section. New
generation electronic compass modules offer more accuracy and faster settling
times than mechanical compass sensors. An electronic compass module from
PNI is shown in Fig. 13.12. This module contains a 2-axis magneto-inductive
sensor and an ASIC. Heading information and magnetic field measurement data
is available using a digital SPI serial interface.

Figure 13.12 PNI Electronic Comvass Module.

Low-cost Gyros and Accelerometers

Gyros and accelerometers are useful sensors for robots that need a balance
sense. This can include robots that balance on two wheels like the Segway
Human Transporter, robots that walk on two legs, and even robots that fly.
Gyros and accelerometers have traditionally been used in aircraft autopilots and
inertial measurement units (IMUs). Helicopters use a gyro to stabilize and
control the tail rotor. Recently, Microelectromechanical Systems (MEMS)
technology has produced small low-cost piezo-gyroscope and accelerometer
ICs. These devices were originally used in automobile airbags. The gyros
output a voltage level that is proportional to the speed or rate of the tilt angle
changes. An analog-to-digital converter will be needed to input the gyro signal.
The MEMS accelerometers output a voltage level or a pulse that changes its

230 Rapid Prototyping of Digital Systems Chapter 13

duty cycle proportionally (e.g., PWM) to the tilt angle by sensing the change in
acceleration due to gravity. Gyros will drift slowly over time and an
accelerometer is needed to correct the gyro's drift. Without an accelerometer to
correct for gyro drift, the tilt error slowly grows to the point where the robot
would lose its balance. Accelerometers will respond more slowly to tilt than the
gyro, so both a gyro and accelerometer is typically needed for each axis that
needs a balance sense.
A complementary filter is used to combine or fuse sensor data from both the
gyro and accelerometer to generate a more accurate tilt angle. Kalman filtering
techniques can be used to improve the accuracy of noisy measurements. Noise
levels are still somewhat high at very low G forces on these low-cost gyros and
accelerometer IC sensors, so currently they are not useful for navigation since
they cannot accurately determine the exact location of a slow moving robot by
integrating the sensor measurements over time.
Analog Devices makes a variety of these sensors and sells small evaluation
boards for them. It is likely that small low-cost sensor modules containing both
a MEMS gyro and an accelerometer with a microcontroller will be available
commercially in the near term.

Figure 13.13 Small sensor board for an aircraft autopilot system. Photograph 02004 courtesy of

Henrik Christophersen , Georgia Institute of Technology Unmanned Aerial Research Facility.

UP 3 Robotics Projects 231

Figure 13.13 shows a sensor board for an autopilot system that is used for
unmanned aircraft. In the top corner, three MEMS gyros and accelerometers are
mounted at right angles to provide data on all three axes. The white square flat
module between the two vertical assemblies is a GPS receiver. The black
square ICs at each end of the vertical assemblies are airspeed and altitude
sensors. An A/D chip with an SPI interface is used to read sensors that have
analog voltage outputs. The three square modules near the bottom edge of the
board are DC to DC voltage converters. The lower board contains an FPGA and
a DSP processor.

GPS and DGPS receivers

The Global Positioning System was built by the US Department of Defense to
provide highly precise worldwide positioning. Triangulation using radio signals
from several satellites provides a position accurate to 25 meters. With an
additional land-based correction signal, Differential GPS (DGPS) improves the
accuracy to 3 meters. DGPS receivers provide ideal position data for robot
navigation. Unfortunately, with current systems you are not likely to receive the
GPS radio signals indoors in most buildings, so their use is typically limited to
larger more rugged outdoor robots. Low-cost single chip GPS modules such as
the Motorola FS Oncore seen in Figure 13.14 or the Ublox in Figure 13.13 are
currently available. An SPI serial interface is supported. A new generation of
highly sensitive GPS systems is being developed that may function indoors in
some buildings.

Figure 13.14 Motorola Single Chin GPS module.

Thermal Image Sensors

Low-cost thermal image sensors can provide thermal imaging data for robots.
Most thermal sensors such as those used in motion detectors and burglar alarms
detect only movement. Thermopile sensors measure the temperature of a heat
source. One such sensor, the Devantech TPA81 Thermopile Array is shown in
Figure 13.15. It contains 8 Pyro-electric sensors arranged in a column that

232 Rapid Prototyping of Digital Systems Chapter 13

detect infra-red in the radiant heat range of 2um to 22um range. It contains an
on-board PIC microcontroller.
When the sensor is mounted on a servo, it can be used to horizontally scan an
area and generate a thermal image. Candle flames and human body heat can be
detected several feet away at room temperature. It uses an I*C bus for
interfacing to the host controller.

Figure 13.15 Devantech TPA81 Eight Pixel Thermal Array Sensor.

Solid State Cameras

Low-cost solid state cameras can provide visual sensors for robots. Keep in
mind that advanced image processing and visual pattern recognition requires
complex algorithms that need a lot of processing power. The CMUCAM2
developed at Carnegie Mellon University seen in Figure 13.16 contains a PIC
microcontroller and can transfer image data using a serial connection. It can
track color blobs and report their location and size in an image at 26 to 50
frames per second.
Low-cost USB cameras are another option, but they will require a USB core
interface and additional image processing. The low-cost CMOS color camera
assembly 0V6620 or OV7620 used in the CMUCAM2 module from
Omnivision (www.ovt.com) can also be directly interfaced to an FPGA. It uses
an I ~ C interface for camera control signals and a separate parallel bus is used to
transfer image data.

UP 3 Robotics Projects 233

Figure 13.16 The CMUCAM2 contains a color video camera on a chip and a microcontroller.

13.6 Assembly of the UP3-bot Body

Assembly of the UP3-bot can be accomplished in about an hour. A drill or drill
press, screwdriver, scissors, a soldering iron, and a wire stripper are the only
tools required. First, obtain the parts in the parts list. Next, drill out the holes in
the round Plexiglas base (part #15) as shown in Figure 13.17. To prevent
scratches, leave the paper covering on the Plexiglas until all of the holes are
marked and drilled out. The front of the base is on the right side in Figure
13.17. The wheel slots are symmetric with respect to the center of the circle.
Proper alignment of the four screw mounting holes for the UP 3 board is
critical. Unscrew the four standoffs from the bottom of the UP 3 board.
Carefully place it towards the rear of the plastic base as shown in Figure 13.17,
and mark the location of the screw holes using a pen or pencil. A UP 2 board
can also be used, but the mounting holes will be in different locations.
Locate the cable and switch holes as shown in Figure 13.17. Exact positioning
on these holes is not critical. If one is available, use an automatic center punch
to help align the drill holes. The Jl..J4 header pins and power switch should
face towards the front of the base. The extra space in front of the UP 3 board on
the plastic base is used for sensor modules. Re-attach the standoffs to the UP 3
board and set it aside. After all holes are drilled, remove the paper covering the
Plexiglas.

234 Rapid Prototyping of Digital Systems Chapter 13

~ w i t c i and
Power Cable
Two 7/32"
Holes

I ~ e r v i Cable
Wheel Slots TWO 318"
318" by 2 314" Holes

I . I
4 311 6" Plexiglass 10.5' Circle

Figure 13.17 UP3-bot Plexiglas Base with wheel slots and drill hole locations.

Mount the toggle switch (part #8) in the hole provided in the base. If available,
Loctite or CA glue can be used on the switch mounting threads to prevent the
switch nut from working lose. Solder the red wire (+7.2V) from the battery
connector to one of the switch contacts. This is the connector with wires that
plugs into the battery pack connector (part #4). Solder one of the twin lead
wires (part #9) to the other switch terminal. Solder the other twin lead wire to
the black (GND) battery connector wire and insulate the splice with heat shrink
tubing or electrical tape (part #lo).
Route the twin lead wire through the hole provided in the base. A small knot in
the twin lead on the bottom side of the base can be used for strain relief. Solder
the power connector (part #11) to the other end of the twin lead wire on the top
of the base. The center conductor is +7.2V and the outer conductor is ground on
the power connector.
Check the power connections with an ohmmeter for shorts and proper polarity
before connecting the battery. For strain relief and extra insulation, consider
sealing up the power connector with Silicone RTV or insulating one of the wire
connections with heat shrink tubing. Be careful, NiCAD and NiMH batteries
have been known to explode or catch on fire, if there is a short. A fuse on the
battery power wire might be a good idea, if you are prone to shorting out
circuits.

UP 3 Robotics Projects 235

Figure 13.18 Bottom view of UP3-bot base showing battery, servos, wheels, and cabling.

Attach the battery pack (part #2) to the bottom of the Plexiglas base with
sticky-back Velcro (part #16). Figure 13.18 is a close-up photo of the bottom
side of the UP3-bot. A NiMH battery pack is shown in Figure 13.18. If you use
a larger NiCAD battery pack, it can be mounted in the middle of the base about
one inch off center towards the rear wheel, with the battery pack connector
facing the rear.
The battery is moved towards the rear for balance to place the weight on the
rear skid. The Velcro on the base should be around 2 inches longer than the
battery pack towards the rear of the robot to allow for positioning of the battery
later on to balance the robot. The wire and connector on the battery pack should
also be attached to the base to prevent it from dragging on the floor. Attach a
small piece of Velcro on the rear of the connector so that the battery wires can
be attached to the base. Attach the battery pack to the base.

236 Rapid Prototyping of Digital Systems Chapter 13

Solder a 60-pin female header socket (part #7) to the Cyclone expansion B
location. Attach the UP 3 board to the top of the base with 4-40 screws (part
#18), using the hex spacers provided on the UP 3 board (part #14). Figure 13.19
is a close-up photo of the top of the UP3-bot. Double check power connections
and polarity with an ohmmeter. The inner contact on the power connector
should be +7.2V, the outer contact is ground, and the toggle switch should turn
it off. Then plug the power connector into the UP 3 board. Plug in the battery
connector and flip the power switch. A green LED should light up on the UP 3
board indicating power on. The Cyclone expansion B header socket faces the
front of the robot.
Mount the wheels (part #5) on two modified servos (part #3). If you are not
using servo wheels, you may need to enlarge the hole in the center of each
wheel by drilling it out partially with a drill bit that is the same size as the
servo output shaft. The depth of the hole should be slightly shorter than the
servo output shaft and not all the way through the wheel, so that the wheel does
not contact the servo body. The servo output shaft screw is inserted on the side
of the wheel with the smaller hole. A washer may be required on the servo
screw. The wheel should not contact the servo case and must be mounted so
that it is straight on the servo. CA glue or Blue Loctite can also be used to
attach the wheels and screws more securely to the servo output shaft.
Attach the servos to the bottom of the base using double sided foam tape (part
#17) or a more durable servo mounting bracket. The servo body faces toward
the center of the base. Be sure to carefully center the wheels in the plastic-base
wheel slot. If you are using foam tape, make sure all surfaces are clean and free
of grease, so that the foam tape adhesive will work properly. Lightly sanding
the servo case and adding a drop of CA glue helps with tape adhesion. Route
the servo connector and wire through the holes provided in the base.
Attach a tail wheel to the base or a skid (part #19) at the rear of the battery
pack using layers of foam tape as needed. Move the battery as needed so that
the robot has proper balance and rests on the two wheels and the rear skid.
Attach another skid to the front of the battery pack using several layers of foam
tape. The front skid should not contact the floor and at least ?4 inch of clearance
is recommended. The front skid only serves to prevent the robot from tipping
forward during abrupt stops.
Attach a 3-pin .1 inch header (part #9) to the small wire wrap protoboard in an
open area. One is required for each servo on the robot. Solder wires from the
appropriate pins 52 and 53 connections on the protoboard to the new header
pins. The three wires on the servo are Vcc (4.8 to 6 volts), ground, and the
PCM control signal wire. Some manufacturers' servos have different power
connections, but they all have three pins. Wrap extra servo wire around the hex
spacers underneath the UP 3 board.

Figure 13.19 Top View of UP3-bot Base with Compass, IR, and Sonar Sensor Modules.

Optional sensor modules such as the IR proximity detector or line tracker can
be attached to the base unit with foam tape. Run wires from the sensors to the
Santa Cruz expansion connectors, 52 and 53. A small .1 inch wire wrap
protoboard with 40-pin female header connectors soldered to the protoboard as
shown in Figure 13.19 is handy for making servo and sensor connections to the
UP 3 board. In Figure 13.19, a third servo is used to make a sensor turret for IR
and Sonar distance sensors.

Parts List for the UP3-bot

1 . An Altera UP 3 Board. The UP 3 board serves as the controller for the UP3-bot. It is
attached to the UP3-bot body with screws. No modifications are required to the board. A
UP 2 board can also be used, but mounting holes will be in different locations.

Parts Available from a Hobby Store

A 7.2V 1300-1700mAh Rechargeable NiCAD battery pack with the standard
Kyosho battery connector. This is a standard R/C car part, and it is used to power the
UP3-bot. For a small additional cost, new NiMH batteries are also available that store
almost twice the energy per weight. The battery will need to be charged prior to first
use.

238 Rapid Prototyping of Digital Systems Chapter 13

3. Two modified R/C Servomotors. Two identical model servos are required so that the
motors run at the same speed. Servo modifications are described in section 13.3. Any
servo should work. The following servos have been tested: Tower Hobbies TS53J,
Futaba S148 and S3003, and HS 300. Some manufacturers' servos appear to run in the
reverse direction. This is easily fixed in the hardware design since the motor controller
is implemented on the UP 3 board. Several robot parts vendor sell modified servos for a
slightly higher cost. Ball bearing servos are worth the extra cost, if you intend to run the
robot constantly for several months. A third unmodified servo will be needed if you
want a rotating sensor turret as shown on the example UP3-bot photo.

4. Kyosho Female Battery connector with wire leads, Duratrax or Tower Hobbies
#DTXC2280. This is used to connect to battery. A connector is needed so that the
battery can be disconnected from the UP3-bot and connected to a charger.

5. Two Acroname or Lynxmotion sew0 wheels. These wheels are 2 % plastic wheels
that are designed to attach to the servo's output shaft spline. Prather Products 2%-inch
aluminum racing wheels with rubber 0 ring tires, Tower Hobbies #PRAQ1810 or Hayes
Products #114,2 %-inch hard plastic racing wheels (also available from Tower Hobbies)
can be used as a substitute. These somewhat smaller two alternative wheels will work,
but they do not have the spline to match the servo output shaft and are a bit more
difficult to connect reliably than the Acroname or Lynxmotion servo wheels.

6. A Castering Wheel or Two small Teflon or Nylon Furniture Slides. There is a bit too
much mechanical play in common furniture casters for a small robot and they tend to
randomly deflect the robots direction after sharp turns. Lynxmotion's #TWA-01 is a
mini castering robot tail wheel built using an R/C airplane tail wheel that works well.
The mounting wire needs to be bent a little off center so that the wheel quickly rotates to
the direction of travel. Other robot parts vendors such as Acroname also have robot tail
wheels, but a spacer may be required to adjust the height. The battery will need to be
moved a bit and perhaps rotated ninety degrees to accommodate them and still maintain
proper balance on the robot base. Magic Sliders 718-inch diameter circular discs also
work well on flat surfaces. The slides are used as a skid instead of a third wheel on the
UP3-bot. Metal or hard plastic will also work. Attached to the bottom of the battery with
several layers of foam tape, an optional front skid can be used for stability during abrupt
stops. On flat surfaces, a Teflon skid actually works better than a common small
furniture caster from a hardware store.

7. A charger for the 7.2V battery pack. An adjustable DC power supply can be used to
charge the battery if it is properly adjusted and timed so that the battery is not
overcharged. Overcharged batteries will get hot and will have a shorter life. Automatic
peak-detection quick chargers are the easiest and most foolproof to use. These chargers
shut off automatically when the battery is charged. One quick charger can be used for
several robots as a full charge is achieved in less than 30 minutes with around 5 Amps

UP 3 Robotics Projects

maximum charge current. Inexpensive trickle battery chargers deliver only around 75
rnA of charge current, and they will require several hours charge the battery.

Parts Available from an Electronics Parts Store

8. Three 40-pin .l-inch double row PC board mount female header sockets, DigiKey
#S4310 or equivalent. These sockets are soldered into a small 0.1" center wire wrap
protoboard that fits into the Santa Cruz Expansion connector on the UP3. This is used to
connect servos and sensors to the UP 3 board.

9. A 2 to 3 inch strip of .l" single row breakaway headers. DigiKey #S1021-36 or
equivalent These headers are used to make custom servo and sensor connectors on the
protoboard. They can be soldered to the protoboard.

10. A small wire wrap protoboard with holes on .I" centers cut down to 2" by 2.8". A
This is used to make a protoboard for use with the UP3 board. The protoboard contains
connectors for servos and sensor. A protoboard with solder pads makes it easier to
mount the connectors.

11. A miniature toggle switch with solder lug connections. The switch should have a
contact rating of more than two amps (Radio Shack #275-635B or equivalent). Only two
contacts or single pole single throw (SPST) is needed on the switch to turn power on
and off. If all of your servos and sensors connect to the UP 3 and do not use the
Vunregulated supply, you could eliminate the switch by using the UP 3's power switch.

12. Approximately 9 inches of small-gauge twin-lead speaker wire. This part is used to
connect power to the UP 3 board. The wire must fit into the DC power plug (part# 11).
Typically, 20-22 gauge wire is required. Two individual wires can also be used, but twin
lead is preferred.

13. A 1-inch piece of small heat shrink tubing or electrical tape. This part is used to
insulate a splice in the twin-lead power wire.

14. A Coaxial DC Power Plug with 5mm O.D. and 2.lmm I.D., Radio Shack Number
274-1567 or equivalent. This power plug fits the power socket on the UP 3 board. A
different size plug is needed for the UP2 board, use #274-1568 that has a 2.5mm I.D.

15. An assortment of small wire jumpers and connectors to attach wires to the male
headers on the UP 3. These are the jumper wires commonly used for protoboards. Two
short jumpers are used to connect the two servo signal wires, and other jumpers are used
to any connect sensor boards.

16. Four, 1-inch hex spacers with 4-40 threads or use the shorter spacers that come
with the board. These are used to mount the UP 3 board to the Plexiglas base using the
holes in the UP 3 board.

240 Rapid Prototyping of Digital Systems Chapter 13

Parts Available from a Hardware Store

17. 3116-inch thick Plexiglas cut into a 10.5-inch diameter circle. This part is the base of
the robot. Colored Plexiglas such as opaque white, will not show scratches as easy as
clear. Holes to cutout and drill are shown in Figure 13.1 1 . If a band saw, jig saw, or
other machine tool is not available, a local plastics fabricator can cut this out. When
using a number of very large sensors, it may be necessary to increase the size slightly or
add another circular deck for sensor mounting. A larger robot requires more space for
maneuvering. To prevent scratches on the Plexiglas, keep the paper backing on the
plastic until all of the holes have been marked and drilled out. The size of the wheel
slots may need to change depending on the wheels you select.

18. One &inch long strip of 2-inch wide sticky-back Velcro. Two 8-inch long strips, 1
inch wide can also be used. The Velcro is used to attach the battery to the bottom of the
Plexiglas base. Since the battery is attached with Velcro and a connector, it can be
quickly replaced and removed for charging.

19. Approximately 8 inches of 1-inch wide double-sided 3M foam tape. This is used to
attach servos, skids, and optional sensor boards to the base. Be sure to clean surfaces to
remove any grease or oil prior to application of the tape for better adhesion. For a more
durable servo mount, Lynxmotion has aluminum servo mounting brackets that can be
used instead of the double sided tape.

20. Four 4-40 Screws 5116-inch or slightly longer. The screws are used to attach the UP 3
board to Plexiglas. The screws thread into the hex spacers attached to the UP 3 board.

21. Blue Loctite, Cyanoacrylate (CA) Glue, and Clear Silicone RTV. These adhesives
and glues are useful to secure screws, servos, and wheels. The mechanical vibration on
moving robots tends to shake parts loose over time. These items can also be found at
most hobby shops. Only a few drops are needed for a single robot. A single tube or
container will build several robots.

13.7 110 Connections to the UP 3's Expansion Headers
Most servos and sensor I 1 0 signals will need to be attached to the UP 3's 53
expansion header. The FPGA 110 Pins on 53 feed through voltage level
converters to support 5V operation. RIC Servos and most sensors use 5V, but be
sure to check the device's datasheet. Don't forget to connect a ground signal
between the device and the UP 3 board, even if the device has it's own power
supply or a direct connection to a battery. Several ground pins are available on
53. A 5V 1A power supply pin is available on the UP 3's 52 expansion
connector. 54 has a 3.3V supply connection pin and JP6 can be used as another
5V supply connection.

A small protoboard can be built to connect servos and sensors to the UP 3. All
of the connectors and pins on the UP 3 line up on tenth inch centers. A 0.1"

UP 3 Robotics Projects 24 1

perfboard or wire wrap protoboard can be cut down to 2" by 2 718" so that it
fits over Jl,J2,53, and 54. 0.1" 40 pin connectors to attached the protoboard to
connect to J1..4 can be mounted on the protoboard. A wire warp protoboard
with holes every .1" has solder pads that can be used to attach connectors using
solder. Point to point wiring and soldering can be used to make connections on
the protoboard from the Jl..J4 connectors to the .Iy' connectors used to attach
servos and sensors. Small single row strips of .l" header pins can be snapped
apart to make male connectors on the board for the servos and most sensors.
You may want to consider isolating your robot's servo or motor power supply
from the supply used for the UP3's logic to control the noise generated on the
supply lines by the DC motors. On larger robots, two batteries are sometimes
used. A Vunregulated connection that does not go through the 5V regulator and
is connected directly to the UP 3's power input jack is available on JP8 and 54.
The 9V supply is connected after the input power switch on the UP 3 and to
JP5. This also can be used to power servos and motors, assuming the battery
voltage level is not too high. If the battery voltage is too high, another regulator
can be used for the motors. At a minimum, decoupling capacitors connected
across the servo's power supply connections are a good idea. If you plan on
having several sensors on your robot, you may want to consider building a
small PCB with header pins for the sensor power and data connections as seen
in Figure 13.19. Suggestions for common UP3-bot servo motor and sensor
connections are shown in parenthesis. Most R/C servos can run on 4.8 to 6V.

Table 13.1 UP3-bot J3 Expansion Header Pins

Header Pin I Cyclone Pin 11 Header Pin I Cyclone Pin

1

3

5

7

9

11

13

15

17

19

21

23

Reset

217 (Left Servo Signal)

21 6 (Right Servo Signal)

25 I 201 (Elect. Compass SDA) 11 26

215 (Sensor Turret Servo)

206

207 (IR distance input)

208 (IR distance output)

21 3(Sonar input)

214(Sonar output)

Gnd

199(1C12:180)

200
-- --

Gnd

29

I Note: Pin numbers in parenthesis are used on the larger 1C12 UP 3 board I

2

4

6

33

35

37

39

Gnd

220(1C12:169)

219

8

10

12

14

16

18

20

22

24

27 1 202 (Elect. Compass SDL) 11 28

205(1 C12:NA)

21 8

221 (1C12:168)

222

223

224 --
225

NC
Gnd

Gnd

196

203

176 (IR proximity input)

174 (left IR proximity output)

173 (right IR proximity output)

30

31

Gnd

32 204(1C12:NA)

34

36

38

40

197

179

178

124

Gnd

242 Rapid Prototyping of Digital Systems Chapter 13

13.8 Robot Projects Based on RIC Toys, Models, and Robot Kits
A second option for building an FPGA driven robot involves modifying a low-
cost radio-controlled (WC) car or truck. Fundamentally, almost any large R/C
car or truck can be modified to work with the Altera board, although some are
clearly better choices than others. In our robot, we used a Radio Shack
(www.radioshack.com) R/C 4WD SUV shown in Figure 13.20. The R/C
platform affords a more robust drive train and control; however, turning radius
and noise levels are sacrificed over the smaller UP3bot. The R/C SUV has a
spring suspension and large soft tires that make it operable outdoors on rougher
surfaces. Following are some R/C car selection considerations that will affect
available modifications and control of the new platform.

Figure 13.20 FPGA Controlled Toy IUC Truck with IR Distance Sensors.

Seven-Function Controls

When choosing an R/C car, select one that has a remote control with at least
seven remote functions (forward, backward, forward-right, forward-left,
backward-right, backward-left, and stop). Note that these low-cost R/C cars do
not have variable speed or variable turning controls; however, once they are
interfaced to the FPGA board, variable speed and turning can be accomplished
by changing the duty cycle of the command signals. (More on this later.)
A control module built using the FPGAs logic allows a relatively inexpensive
R/C car to perform with the capabilities of the more expensive cars with
"digital proportional steering" and "digital proportional speed controls." Once
interfaced to the FPGA board, an IP core (Robot-CTL) is used to handle
control of all direction and speed control outputs. As illustrated in Figure 13.21,

UP 3 Robotics Projects 243

the IP core control module affords a higher degree of control than the original
radio control. The outputs connect to the R/C cars internal control circuits that
drive the DC Motors.

FwdRev
Direction

Speed

1 Bit
3 Bits

3 Bits

0 = Forward1 = Reverse
First bit LeftJRight, 2"d and 3rd bit is angle.
0-00 = Left - Straight*
0-01 = Left - Slight Turn
0-10 = Left - Medium Turn
0-1 1 = Left - Full Turn
1-00 = Right - Straight*
1-01 = Right - Slight Turn
1 - 10 = Right - Medium Turn
1 - 1 1 = Right - Full Turn
* Note: 000 and 100 are both Straight
000 = Stop
001 = Slowest Speed
... ...
11 1 = Fastest Speed

Figure 13.21 Robot Control IP Core with Pulsed Speed & Steering Control.

Speed

When considering the speed of the vehicle, a modest speed is more desirable
than the faster speeds. At 800 feet per minute, our prototype FPGA controlled
robot car moves fast enough to be difficult to catch. In almost all cases, the
robot is operated at half the maximum speed or less. The limiting factor is
generally the delay inherent in the sensor's input sampling rate and range. A
fast moving car typically will hit the wall before a collision sensor can take the
data samples needed to initiate avoidance.

To control the speed (or the degree of turn) a repeated pulse train is sent to the
forward or reverse signals (left or right signals for direction). Instead of a
steady high signal causing the car to move forward at full speed, the pulse train
varies the duty cycle to change speed (or degree of turn). By modulating the
duty cycle of the pulse train, "digital proportional control" can be implemented
on each control signal. In other words, changing the duty cycle can control the

244 Rapid Prototyping of Digital Systems Chapter 13

speed and the degree of turn. The more the duty cycle approaches loo%, the
harder the turn andlor the faster the speed.
The frequency of the pulsed control signal used must be higher than the natural
mechanical frequency response of the system. A very slow changing pulse will
cause the motor and gears to vibrate and make additional noise. Pulse
frequencies of a few kHz are typically used to avoid this problem.
When reversing direction on a moving DC motor, it is common practice to
include a small time delay with the motor turned off to reduce the inductive
voltage spikes produced by the motor windings. Recall that changing current
flow through an inductor produces voltage. Without the delay in some circuits,
these high voltage spikes can damage or reduce the life of the transistors
controlling the motor. This delay can be incorporated in the IP control core, if
needed.
Figure 13.22 illustrates the relationship between turn angle, speed, and duty
cycle on the control signals. The figure implies that the duty cycle is linear, i.e.,
a 50% duty cycle produces half speed. Actually, the duty cycle is very non-
linear and highly dependent on the type of car, size of the DC motors, and
power. (An FUC car with a dying battery performs as if the duty cycle is
considerably less.) By experimenting with patterns of the 16-bit speed and
direction vectors used in the IP core controller, a more linear relationship can
be established between the command bit patterns and the actual performance of
the vehicle.

Turn
Angle Speed

Figure 13.22 Affect of Duty Cycle on Turning Angle and Speed.

Battery Choice

The choice of car will also dictate the type of batteries and charger that will be
needed. Note that some cars come with 9.6V packs and others come with 7.2V
packs. Both should work well with the UP 3 board as a controller. The
prototype used the 7.2V pack that discharged quickly and required a second
pack placed in parallel with the first to support longer run times. The cars with

UP 3 Robotics Projects 24 5

a 9.6V pack should give the UP 3 board's 5V onboard regulator a better
regulator margin and a longer life between recharges.

Mounting the UP 3 Board

Before you select an R/C car, make sure that there is a good place to mount the
FPGA board. If the car is large enough, there is usually a large flat area under
the car body cover molding to secure the FPGA board.

Interfacing the UP 3 Board to the RIC Car

Remove appropriate body cover screws and expose the PC board receiver and
control module. Most current low-cost R/C toy cars have a single electronic PC
board that contains both control circuits. Generally, there is one 16 or 18-pin
DIP radio command demodulator chip in the center of the board that converts
the radio signals into simple digital control signals. These digital control
signals then activate the H-bridge circuit that controls the DC motors that drive
the wheels of the RIC car.
An H-bridge is a standard electronic circuit used to control DC motors. It
allows for both forward and reverse operation of the same DC motor. H-bridge
circuits contain four large power transistors that are needed to turn on and
reverse a DC motor. Discrete transistors may be used to build the H-bridge or it
may be in an IC or packaged module that connects directly to the motors.

If the car supports seven functions, it will have at least four pins coming off of
the DIP chip package that break down into Left, Right, Forward, and Reverse.
Using a voltmeter or an oscilloscope, test which pins change when the remote
control is set to each of the four directions. From each of the designated
command pins on the chip, the trace on the PC board will run to separate H-
bridge circuits for each motor.
By clipping or desoldering and pulling out the four control pins on the chip
going to the board and soldering wires from each chip pin hole pad trace to the
FPGA (Figures 13.23 and 13.24), the FPGA board can control the four
directions and speed of the R/C car using the car's existing H-bridge circuits. In
our modification, we desoldered the entire chip and put a socket on the board.
To have the original control signals coming from the radio control module also
sent to the FPGA board, run four more wires from the clipped chip pins to the
one of the FPGA's headers. If the four clipped chip pins (RCx) are connected to
the FPGA board, logic can be designed to include the original radio control
functions supplied by the handheld remote control unit. You can also make this
connection at the H-bridge circuit if necessary. On the UP 3, you will want to
use the UP 3s 5V I10 pins for this interface.

246 Rapid Prototyping of Digital Systems Chapter 13

Rev = 1 1 1 1

Figure 13.23 Interfacing to the R/C Car's Internal Control Signals at the Demodulator IC.

Figure 13.24 Photo Showing Control Modifications to R/C Car Control Board.

Hobbyist RIC Models, Robot Kits, and Commercial Robot Bases

For those with a larger budget, higher quality FUC hobbyist cars are available
with built-in proportional steering and pulsed electronic speed controls. The
control interface to these cars uses standard FUC PWM signals that are identical
to the PWM servo control bit described at the end of Section 13.2. An example
FUC Hummer can be seen in Figure 13.25. This robot is controlled using a C
program running on the FPGA's Nios processor core. Various robot kits without
control electronics or a computer are also available. Almost any of these robot
kits can be controlled by the UP 2 or UP 3 board provided they are large
enough to carry it and can power it from their battery or carry a second battery

UP 3 Robotics Projects 247

for the UP 3. An interesting walking robot kit containing 12 R/C servos is seen
in Figure 13.26.

Figure 13.25 Hobbyist WC model with a CMU camera and WC PWM servos controlled by an FPGA

Figure 13.26 Lvnxmotion Hexvod Walking Robot Kit with 12 WC servos

248 Rapid Prototyping of Digital Systems Chapter 13

Figure 13.27 ActiveMediaYs Amigobot robot base controlled bv an FPGA with a Nios Processor

Some commercial robot bases are also available such as the Amigobot as seen
in Figure 13.27, the ER1 from Evolution Robotics and the mobile robot
platform from Drrobot. The Amigobot uses an RS-232C serial interface and the
ER1 uses USB for motor control. A robot base contains a motor, drive
electronics, sensors, and a battery, but it has no high-level controller.
Once you develop a working robot and want to run existing demos, you may
want to program the UP 3 flash memory configuration device so that your
design automatically runs whenever the board is turned on. Instructions are
provided in Appendix E.

13.9 For Additional Information
Radio-controlled cars and parts such as batteries, battery chargers, and servos
can be obtained at a local hobby shop or via mail order at a lower cost from:

Tower Hobbies . h~://www.towerhobbies.com - - -
P.O. Box 9078
Champaign, IL 61 826-9078
800-637-6050

IR Proximity, Line Tracker, Sonar sensors, Servos, Wheels, and Robot kits can
be obtained via mail order from:

Lynxmotion, Inc. http://www.lynxmotion.com
104 Partridge Road
Pekin, IL 61554-1403
309-382-1254

UP 3 Robotics Projects 249

Mondotronics
4286 Redwood Highway #226
San Raphael, CA 94903
800-374-5764

Sensors & Robot kits, Servo wheels for robots, and Servo wheel encoder kits
can also be obtained via mail order from:

Acroname
P.O. Box 1894
Nederland, CO 80466
303-258-3 161

Low-cost digital and analog compass sensors are available via mail order from:
Dinsmore Instrument Co.
P.O. Box 345
Flint, Michigan 48501
8 10-744- 1790

Electronic Compass Modules are available from:
PNI Corp http://www.pnico~v.com
5464 Skylane Blvd. Suite A
Santa Rosa, CA 95403

GPS and DGPS ICs and modules are available from:
Motorola TCG
GPS Products
2900 South Diablo Way
Tempe, AZ 85282

u-blox AG
Ziircherstrasse 68
8800 Thalwil
Schweiz

A wide array of robot sensor modules is available from:
Devantech Ltd (Robot Electronics) http:Nwww.robot-electronics.co.uk
Unit 2B Gilray Road
Diss
Norfolk
IP22 4EU
England

A longer list of robot parts vendors and sites can be found at:

2 50 Rapid Prototyping of Digital Systems Chapter 13

13.1 0 Laboratory Exercises
Develop a counter design to find the dead zone of a converted RIC servo motor. The dead
or null zone is the time near 1.5ms that actually makes the servo motor stop moving. As
in the example motor driver code, send a width adjusted pulse every 20ms. You will need
a resolution of at least .Olms to find the dead zone, so a clock faster than the example
code is required. For example, the motor might actually stop at 1.54ms instead of 1.50ms.
Use the clk-div UP3core function to provide the clock. The design should increase the
width of the timing pulse if one pushbutton is hit and decrease the width if the other
pushbutton is hit. Display the width of the timing pulse in the seven-segment LEDs. Use
a Cyclone DIP-switch input to select the motor to examine. By hitting the pushbuttons,
you should be able to stop and reverse the motor. The dead zone will be between the
settings where the drive wheel reverses direction. At the dead zone, the drive wheel
should stop. Settings near the dead zone will make the motor run slower. Record the dead
zone for both the left and right motor.

Using the dead zone settings from problem 1, design a motor speed controller. Settings
within around .2ms of the dead zone will make the motor run slower. The closer to the
dead zone the slower the motor will run. Include at least four speed settings for each
motor. See if you can get the robot to move in a straight line at a slow speed.

Develop a speed controller for the robot drive motors by pulsing the drive motors on and
off. The motors are sent a pulse of lms for reverse and 2ms for forward at full speed. If
no pulse is sent for 20ms, the motor stops. If a motor is sent a 1 or 2ms pulse followed by
no pulse in a repeating pattern, it will move slower. To move even slower use pulse, no
pulse, no pulse in a repeating pattern. To move faster use pulse, no pulse, pulse in a
repeating pattern. Using this approach, develop a speed controller for the robot with at
least five speeds and direction. Send no pulse for the stop speed. Some additional
mechanical noise will result from pulsing the motors at slow speeds. See if the robot will
move in a straight line at a slow speed.

Use an IR LED and IR sensor to add position feedback to the motors. You can build it
yourself or a similar servo wheel encoder kit built by Nubotics is available from
Acroname. Some sensor modules are available that have both the IR LED and IR sensor
mounted in a single plastic case. For reflective sensors, mark the wheels with radial black
paint stripes or black drafting tape and count the pulses from the IR sensor to determine
movement of the wheel. Another option would be to draw the radial stripes using a PC
drawing program and print it on clear adhesive labels made for laser printers. The labels
could then be placed on the flat side of the wheel. If a transmissive sensor arrangement is
used, holes can be drilled in the main wheel or a second smaller slotted wheel could be
attached to the servo output shaft that periodically interrupts the IR light beam from the
LED to the sensor. In this case, the LED and sensor are mounted on opposite sides of the
wheel. This same optical sensing technique is used in many mice to detect movement of
the mouse ball. Use the position feedback to implement more accurate variable speed and
position control for the motors.

Design a state machine using a counterltimer that will move the robot in the following
fixed pattern:

Move forward for 6 seconds.

Turn right and go forward for 4 seconds (do not count the time it takes to turn).

Turn left and go forward for 2 seconds.

Stop, pause for 2 seconds, turn 180 degrees, and start over.

UP 3 Robotics Projects 251

Determine the amount of time required for 90- and 180-degree turns by trial and error. A
1 OHz or 1 OOHz clock should be used for the timer. Use the clk-div UP3core to divide the
UP 3 on-board clock. The state machine should check the timer to see if the correct
amount of time has elapsed before moving to the next state in the path. The timer is reset
when moving to a new portion of the path. Use an initial state that turns off the motors
until a pushbutton is hit, so that it is easier to control the robot during download. Since
there is no motor position feedback, all turns and the actual distance traveled by the UP3-
bot will vary slightly.

Start

6 sec.

Turn 180
Degrees

Figure 13.28 Simvle vath for state machine without sensor resvonse.

6. Using a ROM, develop a ROM-based state machine that reads a motor direction and
time from the ROM. Put a complex pattern such as a dance step in the ROM using a
MLF file. For looping, another field in the ROM can be used to specify a jump to a
different next address.

7. Using the keyboard UP3core, design an interface to the keyboard that allows the
keyboard to be used as a remote control device to move the robot. Pick at least five
different keys to command to robot to move, turn left, turn right, or stop.

8. Interface an IR proximity sensor module to the UP3-bot using jumpers connected to
the Cyclone male header socket. Attach the module in front of the header socket
using foam tape. Alternate driving the left and right IR LEDs at 100Hz. Check for an
IR sensor return and develop two signals, LEFT and RIGHT to indicate if the IR
sensor return is from the left or right IR LED. The IR LEDs may need to be adjusted
or shielded with some heat shrink tubing so that the floor does not reflect IR to the
sensor. Use the LEFT and RIGHT signals to drive the decimal points on two LEDs to
help adjust the sensor. It may be necessary to filter the IR returns using a counter
with a return1110 return threshold for reliable operation. Using a clock faster than
100Hz, for example lOkHz, only set LEFT or RIGHT if the return was present for
several clock cycles.

9. Using IR sensor input, develop a design for the UP3-bot that follows a person. The
person must be within a foot or so of the UP3-bot. When a left signal is present turn
left, when a right signal is present turn right, and when both signals are present, move

252 Rapid Prototyping of Digital Systems Chapter 13

forward a few inches and stop. When all signals are lost, the UP3-bot should rotate
until an IR return is acquired.

10. Use motor speed control and a state machine with a timer to perform a small figure
eight with the UP3-bot.

11. Once the IR proximity sensor module from problem 8 is interfaced, design a state
machine for the robot that moves forward and avoids obstacles. If it sees an obstacle
to the left, turn right, and if there is an obstacle to the right, turn left. If both left and
right obstacles are present, the robot should go backwards by reversing both motors.

12. With two UP3-bots facing each other, develop a serial communications protocol
using the IR LEDs and sensors. Assume the serial data is fixed in length and always
starts with a known pattern at a fixed clock rate. The IR LEDs are pulsed at around
40kHz and the sensor has a 40kHz filter, so this will limit the bandwidth to a few
kHz. Transmit the 8-bit value from the Cyclone DIP switches and display the value
in the receiving UP3-bot seven-segment LED displays. Display the raw IR sensor
input in the decimal point LED to aid in debugging and alignment.

13. Interface the line-following module to the UP3-bot, and design a state machine that
follows a line. The line-following module has three sensor signals, left, center, and
right. If the line drifts to the left, turn right, and if the line drifts to the right, turn left.
Adjust turn constants so that the UP3-bot moves along the line as fast as possible. If
speed control was developed for the UP3-bot as suggested in earlier problems, try
using speed control for smaller less abrupt turns.

14. Using a standard IR remote control unit from a television or VCR and an IR sensor
interfaced to the UP3-bot, implement a remote control for the UP3-bot. Different
buttons on the remote control unit generate a different sequence of timing pulses. A
digital oscilloscope or logic analyzer can be used to examine the timing pulses.

15. Interface the a magnetic or electronic compass module to the UP3-bot, and design a
state machine that performs the following operation:

Turn North.

Move forward 4 seconds.

Turn East.

Move forward 4 seconds.

Turn Southwest.

Move fonvard 6.6 seconds.

Stop and repeat when the pushbunon is hit.

The mechanical compass has a small time delay due to the inertia of the magnetized
rotor. Just like a real compass, it will swing back and forth for awhile before
stopping. With care, the leads on the compass module can be plugged into a DIP
socket with wire wrapped power supply and pull-up resistor connections on a small
protoboard or make a printed circuit board for the compass with jumper wires to plug
into the Cyclone female header socket. Make sure the compass module is mounted so
that it is level and as far away from the motors magnets as possible.

UP 3 Robotics Projects 253

16. Interface a Sonar-ranging module to the UP3-bot and perform the following
operation :

Scan the immediate area 360 degrees by rotating the robot
and locate the nearest object.

Move close to the object and stop.
17. Attach the Sonar transducer to an unmodified servo's output shaft. Use the new servo

to scan the area and locate the closest object. To sweep the unmodified servo back
and forth, a timing pulse that slowly increases from lms to 2ms and back to lms is
required. Move close to the nearest object and stop.

18. Attach several IR ranging sensors to the UP3-bot and use the sensor data to develop a
wall following robot.

19. Interface additional sensors, switches, etc., to the UP3-bot so that it can navigate a
maze. If several robots are being developed, consider a contest such as best time
through the maze or best time after learning the maze.

20. Use the yP 3 computer fiom Chapter 8 to implement a microcontroller to control the
robot instead of a custom state machine. Write a yP 3 assembly language program to
solve one of the previous problems. Interface a time-delay timer, the sensors, and the
motor speed control unit to the yP 3 computer using VO ports as suggested in
problem 8.6. The additional machine instructions suggested in the exercises in
Chapter 8 would also be useful.

21. Use a Nios processor to control the robot with C code using the UP 3 Nios I1
reference design in Chapters 16 & 17.

22. Develop and hold a UP3-bot design contest. Information on previous and current
robotics contests can be found online at various web sites. Here are some ideas that
have been used for other robot design contests:

Robot Maze Solving

Robot Dance Contest

Sumo Wrestling

Robot Soccer Teams

Robot Laser Tag

Fire Fighting Robots

Robots that collect objects

Robots that detect mines

A RISC Design:
Synthesis of the MIPS
Processor Core

A full die photograph of the MIPS R2000 RISC Microprocessor is shown above. The
1986 MIPS R2000 with five pipeline stages and 450,000 transistors was the world's first
commercial RISC microprocessor. Photograph 01995-2004 courtesy of Michael
Davidson, Florida State University, http:llr,iicro.magnet.fsu.edu~chipshots.

256 Rapid Prototyping of Digital Systems Chapter 14

14 A RISC Design: Synthesis of the MlPS Processor Core

14.1 The MlPS lnstruction Set and Processor
The MIPS is an example of a modem reduced instruction set computer (RISC)
developed in the 1980s. The MIPS instruction set is used by NEC, Nintendo,
Motorola, Sony, and licensed for use by numerous other semiconductor
manufacturers. It has fixed-length 32-bit instructions and thirty-two 32-bit
general-purpose registers. Register 0 always contains the value 0. A memory
word is 32 bits wide.
As seen in Table 14.1, the MIPS has only three instruction formats. Only I-
format LOAD and STORE instructions reference memory operands. R-format
instructions such as ADD, AND, and OR perform operations only on data in the
registers. They require two register operands, Rs and Rt. The result of the
operation is stored in a third register, Rd. R-format shift and function fields are
used as an extended opcode field. J-format instructions include the jump
instructions.

Table 14.1 MlPS 32-bit lnstruction Formats.

LW is the mnemonic for the Load Word instruction and SW is the mnemonic
for Store Word. The following MIPS assembly language program computes
A = B + C .

Field Size
R- Format
I - Format
J - Format

LW $2, B
LW $3, C
ADD $4, $2, $3
SW $4, A

;Register 2 = value of memory at address B
;Register 3 = value of memory at address C
;Register 4 = B + C
;Value of memory at address A = Register 4

6-bits
Opcode

Opcode

Opcode

The MIPS I-format instruction, BEQ, branches if two registers have the same
value. As an example, the instruction BEQ $1, $2, LABEL jumps to LABEL if
register 1 equals register 2. A branch instruction's address field contains the
offset from the current address. The PC must be added to the address field to
compute the branch address. This is called PC-relative addressing.
LW and SW instructions contain an offset and a base register that are used for
array addressing. As an example, LW $1, 100($2) adds an offset of 100 to the
contents of register 2 and uses the sum as the memory address to read data
from. The value from memory is then loaded into register 1. Using register 0,
which always contains a 0, as the base register disables this addressing feature.

5-bits
Rs

Rs

Branch target address

5-bits

Rt

Rt

5-bits

Rd

Addresslimmediate value

5-bits
Shift

6-bits
Function

A RlSC Design: Synthesis of the MIPS Processor Core 257

Table 14.2 MlPS Processor Core Instructions.

I I I I

I Add R 0 32 Add I
Addi I 8 Add Immediate

Set if Less Than I

Opcode
Field

Function
Field

Mnemonic Instruction Format

I L w I I 1 3 5 1 I Load Word I
Lui

I Sw I 43 Store Word
I B e q I I 1 4 1 I Branch on Equal I

I

A summary of the basic MIPS instructions is shown in Table 14.2. In depth
explanations of all MIPS instructions and assembly language programming
examples can be found in the references listed in section 14.11.
A hardware implementation of the MIPS processor core based on the example
in the widely used textbook, Computer Organization and Design The
Hardware/Software Interface by Patterson and Hennessy, is shown in Figure
14.1. This implementation of the MIPS performs fetch, decode, and execute in
one clock cycle. Starting at the left in Figure 14.1, the program counter (PC) is
used to fetch the next address in instruction memory. Since memory is byte
addressable, four is added to address the next 32-bit (or 4-byte) word in
memory. At the same time as the instruction fetch, the adder above instruction
memory is used to add four to the PC to generate the next address. The output
of instruction memory is the next 32-bit instruction.
The instruction's opcode is then sent to the control unit and the function code is
sent to the ALU control unit. The instruction's register address fields are used
to address the two-port register file. The two-port register file can perform two
independent reads and one write in one clock cycle. This implements the
decode operation.

15

Bne
J

Jal

Jr

Load Upper Immediate

I
J
J

R

5

2
3

0 8

Branch on Not Equal
Jump

Jump and Link (used for Call)
Jump Register (used for

Return)

2 58 Rapid Prototyping of Digital Systems Chapter 14

lnstruction

lnstruction
[XI-161

Instruction

Registers

Read
Register 1 Read

Read Data I

Register 2

W t e
Register

Read
Data 2

mite
Data

Control I:J
Figure 14.1 MIPS Single Clock Cvcle Imvlementation.

The two outputs of the register file then feed into the data ALU inputs. The
control units setup the ALU operation required to execute the instruction. Next,
Load and Store instructions read or write to data memory. R-format instructions
bypass data memory using a multiplexer. Last, R-format and Load instructions
write back a new value into the register file.
PC-relative branch instructions use the adder and multiplexer shown above the
data ALU in Figure 14.1 to compute the branch address. The multiplexer is
required for conditional branch operations. After all outputs have stabilized, the
next clock loads in the new value of the PC and the process repeats for the next
instruction.
RISC instruction sets are easier to pipeline. With pipelining, the fetch, decode,
execute, data memory, and register file write operations all work in parallel. In
a single clock cycle, five different instructions are present in the pipeline. The
basis for a pipelined hardware implementation of the MIPS is shown in Figure
14.2.
Additional complications arise because of data dependencies between
instructions in the pipeline and branch operations. These problems can be
resolved using hazard detection, data forwarding techniques, and branch

A RlSC Design: Synthesis of the MIPS Processor Core 259

flushing. With pipelining, most RISC instructions execute in one clock cycle.
Branch instructions will still require flushing of the pipeline. Exercises that add
pipelining to the processor core i r e includedat the end of the chapter.

Branch I
Address

Instruction JF?

Figure 14.2 MIPS Pipelined Implementation.

14.2 Using VHDL to Synthesize the MlPS Processor Core
A VHDL-synthesis model of the MIPS single clock cycle model from Figure
14.1 will be developed in this section. This model can be used for simulation
and implemented using the UP 3 board.
The full 32-bit model requires a couple minutes to synthesize. When testing
new changes you might want to use the faster functional (i.e. no timing delays)
simulation approach before using a full timing delay model. This approach is
commonly used on larger models with long synthesis and simulation times.
A two-level hierarchy is used in the model. MIPS.VHD is the top-level of the
hierarchy. It consists of a structural VHDL model that connects the five
behavioral modules. The five behavioral modules are already setup so that they
correspond to the different stages for the MIPS. This makes it much easier to
modify when the model is pipelined in later laboratory exercises. For many
synthesis tools, hierarchy is also required to synthesize large logic designs.
1FETCH.VHD is the VHDL submodule that contains instruction memory and
the program counter. CONTROL.VHD contains the logic for the control unit.

260 Rapid Prototyping of Digital Systems Chapter 14

1DECODE.VHD contains the multi-ported register file. EXECUTE.VHD
contains the data and branch address ALUs. DMEMORY.VHD contains the
data memory.

14.3 The Top-Level Module
The MIPS.VHD f i le contains the top-level design file. MIPS.VHD is a VHDL
structural model that connects the f ive component parts o f the MIPS. This
module could also be created using the schematic editor and connecting the
symbols fo r each VHDL submodule. The inputs are the clock and reset signals.
The values o f major busses and important control signals are copied and output
f rom the top level so that they are available for easy display in simulations.
Signals that are not outputs at the top level w i l l occasionally not exist due to
the compilers logic optimizations during synthesis.

-- Top Level Structural Model for MIPS Processor Core
LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-AR1TH.ALL;

ENTITY MIPS IS

PORT(reset, clock : IN STD-LOGIC;
-- Output important signals to pins for easy display in Simulator
PC : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
ALU-result-out, read-data-1-out, read_data2out,
write-data-out, Instruction-out : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);
Branch-out, Zero-out, Mernwrite-out,
Regwrite-out : OUT STD-LOGIC);

END TOP-SPIM;

ARCHITECTURE structure OF TOP-SPIM IS

COMPONENT lfetch
PORT(lnstruction

PCglus-4-out
Add-result
Branch
Zero
PC-out
clock,reset

END COMPONENT:

: OUT STD-LOGIC-VECTOR(31 DOWNTO 0);
: OUT STD-LOGIC-VECTOR(9 DOWNTO 0);
: IN STD-LOGIC-VECTOR(7 DOWNTO 0);
: IN STD-LOGIC;
: IN STD-LOGIC;
: OUT STD-LOGIC-VECTOR(9 DOWNTO 0);
: IN STD-LOGIC);

COMPONENT ldecode
PORT(read-data-I : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);

read-data-2 : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);
Instruction : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
read-data : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
ALU-result : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
Regwrite, MemtoReg : IN STD-LOGIC;

A RlSC Design: Synthesis of the MIPS Processor Core 26 1

RegDst
Sign-extend
clock, reset

END COMPONENT;

COMPONENT control
PORT(Opcode

Reg Dst
ALUSrc
MerntoReg
RegWrite
MernRead
MernWrite
Branch
ALUop
clock, reset

END COMPONENT;

COMPONENT Execute
PORT(Read-data-I

Read-data-2
Sign-Extend
Function-opcode
ALUOp
ALUSrc
Zero
ALU-Result
Add-Result
PC-plus-4
clock, reset

END COMPONENT;

: IN STD-LOGIC;
: OUT STD-LOGIC-VECTOR(31 DOWNTO 0);
: IN STD-LOGIC);

: IN
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT
: OUT
: IN

: IN
: IN
: IN
: IN
: IN
: IN
: OUT
: OUT
: OUT
: IN
: IN

STD-LOGIC-VECTOR(5 DOWNTO 0);
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC-VECTOR(1 DOWNTO 0);
STD-LOGIC);

STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(5 DOWNTO 0);
STD-LOGIC-VECTOR(1 DOWNTO 0);
STD-LOGIC;
STD-LOGIC;
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(7 DOWNTO 0);
STD-LOGIC-VECTOR(9 DOWNTO 0);
STD-LOGIC);

COMPONENT drnernory
PORT(read-data : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);

address : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
write-data : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
MemRead, Mernwrite : IN STD-LOGIC;
Clock,reset : IN STD-LOGIC);

END COMPONENT;

SIGNAL PCjlus-4
SIGNAL read-data-I
SIGNAL read-data-;!
SIGNAL Sign-Extend
SIGNAL Add-result
SIGNAL ALU-result
SIGNAL read-data
SIGNAL ALUSrc
SIGNAL Branch
SIGNAL RegDst

-- declare sigr~als used to connect VHDL components
: STD-LOGIC-VECTOR(9 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);
: STD-LOGIC-VECTOR(7 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC;

262 Rapid Prototyping of Digital Systems Chapter 14

SIGNAL Regwrite
SIGNAL Zero
SIGNAL MemWrite
SIGNAL MemtoReg
SIGNAL MemRead
SIGNAL ALUop
SIGNAL lnstruction

: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC;
: STD-LOGIC-VECTOR(1 DOWNTO 0);
: STD-LOGIC-VECTOR(31 DOWNTO 0);

BEGIN
-- copy important signals to output pins for easy
-- display in Simulator

Instruction-out <= Instruction;
ALU-result-out <= ALU-result;
read-data-1-out <= read-data-I ;
read-data-2-out <= read-data-2;
write-data-out <= read-data WHEN MemtoReg = '1' ELSE ALU-result;
Branch-out <= Branch;
Zero-out <= Zero;
Regwrite-out <= RegWrite;
MemWrite-out <= MemWrite;

-- connect the 5 MIPS components
IFE : lfetch

PORT MAP (Instruction => Instruction,
PC-plus-4-out => PCglus-4,

Add-result => Add-result,
Branch => Branch,
Zero =r Zero,
PC-out => PC,
clock => clock,
reset => reset);

ID : ldecode
PORT MAP (read-data-1

read-data2
Instruction
read-data
ALU-result
RegWrite
MemtoReg
Reg Dst
Sign-extend
clock
reset

CTL: control
PORT MAP (Opcode

Reg Dst
ALUSrc
MemtoReg
RegWrite
MemRead

=> read-data-I ,
=> read-data-2,
=> Instruction,
=> read-data,
=> ALU-result,
=> RegWrite,
=> MemtoReg,
=> RegDst,
=> Sign-extend,
=> clock,
=> reset);

=> Instruction(31 DOWNTO 26),
=> RegDst,
=> ALUSrc,
=> MemtoReg,
=> RegWrite,
=> MemRead,

A RlSC Design: Synthesis of the MIPS Processor Core 263

MemWrite
Branch
ALUop
clock
reset

=> MemWrite,
=> Branch,
=> ALUop,
=> clock,
=> reset);

B E : Execute
PORT MAP (Read-data-I => read-data-I ,

Read-data-2 => read-data-2,
Sign-extend => Sign-extend,
Function-opcode => Instruction(5 DOWNTO 0),
ALUOp => ALUop,
ALUSrc => ALUSrc,
Zero => Zero,
ALU-Result => ALU-Result,
Add-Result => Add-Result,
PC-plus-4 => PCglus-4,
Clock => clock,
Reset => reset);

MEM: dmemory
PORT MAP (read-data

address
write-data
MemRead
Memwrite
clock
reset

END structure;

=> read-data,
=> ALU-Result,
=> read-data-2,
=> MemRead,
=> MemWrite,
=> clock,
=> reset);

14.4 The Control Unit
The control unit of the MIPS shown in Figure 14.3 examines the instruction
opcode bits and generates eight control signals used by the other stages of the
processor. Recall that the high six bits of a MIPS instruction contain the
opcode. The opcode value is used to determine the instruction type.

Instruction

Figure 14.3 Block Diagram of MIPS Control Unit.

264 Rapid Prototyping of Digital Systems Chapter 14

-- control module (implements MlPS control unit)
LIBRARY IEEE;
USE IEEE.STD-LOGIC-11 WALL;
USE 1EEE.STD-LOGIC-ARITH.ALL;
USE 1EEE.STD-LOGIC-SIGNED.ALL;

ENTITY control IS
PORT(Opcode

Reg Dst
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
Branch
ALUop
clock, reset

END control;

: IN STD-LOGIC-VECTOR(5 DOWNTO 0);
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC;
: OUT STD-LOGIC-VECTOR(1 DOWNTO 0);
: IN STD-LOGIC);

ARCHITECTURE behavior OF control IS

SIGNAL R-format, Lw, Sw, Beq : STD-LOGIC;

BEGIN
-- Code to generate control signals using opcode bits

R-format <= '1' WHEN Opcode = "000000" ELSE '0';
Lw c= '1' WHEN Opcode = "1 0001 1" ELSE '0';
Sw <= '1' WHEN Opcode = "10101 1" ELSE '0';
Beq <= '1' WHEN Opcode = "000100" ELSE '0';

Reg Dst
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
Branch
ALUOp(I)
ALUOp(0)

<= R-format;
<= Lw OR Sw;
<= Lw;
<= R-format OR Lw;
<= Lw;
<= Sw;
c= Beq;
c= R-format;
<= Beq;

END behavior;

A RlSC Design: Synthesis of the MIPS Processor Core 265

14.5 The Instruction Fetch Stage
The instruction fetch stage of the MIPS shown in Figure 14.4 contains the
instruction memory, the program counter, and the hardware to increment the
program counter to compute the next instruction address.

Address

Instructior
131-0

Zero +
Branch + D' Clock -

Figure 14.4 Block Diagram of MIPS Fetch Unit.

Instruction memory is implemented using the Altsyncram megafunction. 256 by
32 bits of instruction memory is available. This requires two of the Cyclone
chip's M4K RAM memory blocks. Since the Altsyncram memory requires an
address register, the PC register is actually implemented inside the memory
block. A copy of the PC external to the memory block is also saved for use in
simulation displays.

-- lfetch module (provides the PC and instruction
--memory for the MlPS computer)

LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE 1EEE.STD-LOGIC-UNSIGNED.ALL;
LIBRARY altera-mf;
USE altera-mf.aItera-mf-components.ALL;

ENTITY lfetch IS
PORT(SIGNAL Instruction : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);

SIGNAL PCglus-4-out : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL Add-result : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
SIGNAL Branch : IN STD-LOGIC;
SIGNAL Zero : IN STD-LOGIC;
SIGNAL PC-out : OUT STD-LOGIC-VECTOR(9 DOWNTO 0);
SIGNAL clock, reset : IN STD-LOGIC);

END Ifetch;

266 Rapid Prototyping of Digital Systems Chapter 14

ARCHITECTURE behavior OF lfetch IS
SIGNAL PC, PC-plus-4 : STD-LOGIC-VECTOR(9 DOWNTO 0);
SIGNAL next-PC : STD-LOGIC-VECTOR(7 DOWNTO 0);

BEGIN
--ROM for Instruction Memory

data-memory: altsyncram

GENERIC MAP (
operation-mode => "ROM",
width-a => 32,
widthad-a => 8,
Ipm-type => "altsyncram",
outdata-reg-a => "UNREGISTERED",

-- Reads in mif file for initial data memory values
init-file => "program.mif",
intended-device-family => "Cyclone")

-- Fetch next instruction from memory using PC
PORT MAP (

clock0 => clock,
address-a => Mem-Addr,
q-a =r Instruction
);

-- Instructions always start on a word address - not byte
PC(l DOWNTO 0) <= "00";

-- copy output signals - allows read inside module
PC-out <= PC;
PC-plus-4-out <= PCglus-4;

-- send word address to inst. memory address register
Mem-Addr <= Next-PC;

-- Adder to increment PC by 4
PC-plus-4(9 DOWNTO 2) <= PC(9 DOWNTO 2) + 1;
PC-plus-4(1 DOWNTO 0) <= "00";

-- Mux to select Branch Address or PC + 4
Next-PC <= X"OO" WHEN Reset = '1' ELSE

Add-result WHEN ((Branch = '1') AND (Zero = '1'))
ELSE PC-plus-4(9 DOWNTO 2);

-- Store PC in register and load next PC on clock edge
PROCESS

BEGIN
WAIT UNTIL (clock'EVENT) AND (clock = '1');
IF reset = '1' THEN

PC <= "0000000000" ;
ELSE

PC(9 DOWNTO 2) <= Next-PC;
END IF;

END PROCESS;
END behavior;

A RlSC Design: Synthesis of the MIPS Processor Core 267

The MIPS program is contained in instruction memory. Instruction memory is
automatically initialized using the program.mif file shown in Figure 14.5. This
initialization only occurs once during download and not at a reset.
For different test programs, the appropriate machine code must be entered in
this file in hex. Note that the memory addresses displayed in the program.mif
file are word addresses while addresses in registers such as the PC are byte
addresses. The byte address is four times the word address since a 32-bit word
contains four bytes. Only word addresses can be used in the *.mif files.

-- MlPS Instruction Memory Initialization File

Depth = 256;
Width = 32;
Address-radix = HEX;
Data-radix = HEX;
Content
Begin

-- Use NOPS for default instruction memory values
[OO..FF]: 00000000; -- nop (sN rO,rO,O)

-- Place MlPS Instructions here
-- Note: memory addresses are in words and not bytes
-- i,e. next location is + I and not +4

00: 8C020000;
01 : 8C030001;
02: 00430820;
03: ACOlOOO3;
04: 1022FFFF;
05: 1021 FFFA;

End;

-- Iw $2,0 ;memory(00) =55
-- Iw $3, I ;memory(Ol)=AA
-- add $1,$2, $3
-- sw $1,3 ;memory(03)=FF
-- beq $1,$2,-4
-- beq $I,$?,-24

Figure 14.5 MIPS Promam Memorv Initialization File. urogram.mif.

268 Rapid Prototyping of Digital Systems Chapter 14

14.6 The Decode Stage
The decode stage of the MIPS contains the register file as shown in Figure
14.6. The MIPS contains thirty-two 32-bit registers. The register file requires a
major portion of the hardware required to implement the MIPS. Registers are
initialized to the register number during a reset. This is done to enable the use
of shorter test programs that do not have to load all of the registers. A VHDL
FOR ... LOOP structure is used to generate the initial register values at reset.

RegDst

Instruction
[25 - 211

Instruction

Instruction "6
[I 5 - 111 - lX

ALU Result

RegWrite

1
Registersl
Read I
Register I Read

Read Data
Register 2 t-
Write
Register

Read
Data 2

Write
Data I

Figure 14.6 Block Diagram of MIPS Decode Unit.

-- ldecode modide (implements the register file for
LIBRARY IEEE; -- the MIPS computer)
USE IEEE.STD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-UNSIGNED.ALL;

ENTITY ldecode IS
PORT(read-data-I

read-data-2
lnstruction
read-data
ALU-result
RegWrite
MemtoReg
RegDst
Sign-extend
clock,reset

: OUT
: OUT
: IN
: IN
: IN
: IN
: IN
: IN
: OUT
: IN

STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC;
STD-LOGIC;
STD-LOGIC;
STD-LOGIC-VECTOR(31 DOWNTO 0);
STD-LOGIC);

END Idewde;

A RlSC Design: Synthesis of the MIPS Processor Core 269

ARCHITECTURE behavior OF ldecode IS
TYPE register-file IS ARRAY (0 TO 31) OF STD-LOGIC-VECTOR(31 DOWNTO 0);

SIGNAL register-array: register-file;
SIGNAL write-register-address : STD-LOGIC-VECTOR(4 DOWNTO 0);
SIGNAL write-data : STD-LOGIC-VECTOR(31 DOWNTO 0);
SIGNAL read-register-1-address : STD-LOGIC-VECTOR(4 DOWNTO 0);
SIGNAL read-register-2-address : STD-LOGIC-VECTOR(4 DOWNTO 0);
SIGNAL write-register-address-I : STD-LOGIC-VECTOR(4 DOWNTO 0);
SIGNAL write-register-address-0 : STD-LOGIC-VECTOR(4 DOWNTO 0);
SIGNAL Instruction-immediate-value : STD-LOGIC-VECTOR(15 DOWNTO 0);

BEGIN
read-register-1-address <= Instruction(25 DOWNTO 21);
read-register-2-address <= Instruction(20 DOWNTO 16);
write-register-address-I <= Instruction(I 5 DOWNTO 11);
write-register-address-0 <= Instruction(20 DOWNTO 16);
Instruction-immediate-value <= Instruction(15 DOWNTO 0);

-- Read Register 1 Operation
read-data-I <= register-array(CONV-INTEGER(read-register-1-address));

-- Read Register 2 Operation
read-data-2 <= register-array(CONV-INTEGER(read-register-2-address));

-- Mux for Register Write Address
write-register-address <= write-register-address-I

WHEN RegDst = '1' ELSE write-register-address-0;
-- Mux to bypass data memory for Rformat instructions

write-data <= ALU-result(31 DOWNTO 0)
WHEN (MemtoReg = '0') ELSE read-data;

-- Sign Extend 16-bits to 32-bits
Sign-extend <= X"0000" & Instruction-immediate-value

WHEN Instruction~immediate~value(l5) = '0'
ELSE X"FFFF" & Instruction-immediate-value;

PROCESS
BEGIN

WAIT UNTIL clock'EVENT AND clock = '1';
IF reset = ' I ' THEN

-- Initial register values on reset are register = reg#
-- use loop to autornaticaNy generate reset logic
-- for all registers

FOR i IN 0 TO 31 LOOP
register-array(i) <= CONV-STD-LOGIC-VECTOR(i, 32);

END LOOP;
-- Write back to register - don't write to register 0

ELSlF RegWrite = '1' AND write-register-address I= 0 THEN
register-array(CONV-INTEGER(write-register-address)) <= write-data;

END IF;
END PROCESS;

END behavior;

270 Rapid Prototyping of Digital Systems Chapter 14

14.7 The Execute Stage
The execute stage of the MIPS shown in Figure 14.7 contains the data ALU and
a branch address adder used for PC-relative branch instructions. Multiplexers
that select different data for the ALU input are also in this stage.

PC+4 -
Result

Shifl

Read Data 1 - b

Zero -
Read ALUI.

Result

~ a t a ~ h

ALUSrc

Figure 14.7 Block Diagram of MIPS Execute Unit.

-- Execute module (implements the data ALU and Branch Address Adder
-- for the MIPS computer)
LIBRARY IEEE;
USE IEEESTD-LOGIC-1164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-SIGNED.ALL;

ENTITY Execute IS
PORT(Read-data-I : IN STD-LOGIC-VECTOR(31 DOWNTO 0);

Read-data2 : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
Sign-extend : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
Function-opcode : IN STD-LOGIC-VECTOR(5 DOWNTO 0);
ALUOp : IN STD-LOGIC-VECTOR(1 DOWNTO 0);
ALUSrc : IN STD-LOGIC;
Zero : OUT STD-LOGIC;
ALU-Result : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);
Add-Result : OUT STD-LOGIC-VECTOR(7 DOWNTO 0);
PC~ lus -4 : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
clock, reset : IN STD-LOGIC);

END Execute;

A RlSC Design: Synthesis of the MIPS Processor Core 271

ARCHITECTURE behavior OF Execute IS
SIGNAL Ainput, Binput : STD-LOGIC-VECTOR(31 DOWNTO 0);
SIGNAL ALU-output-mux : STD-LOGIC-VECTOR(31 DOWNTO 0);
SIGNAL Branch-Add : STD-LOGIC-VECTOR(8 DOWNTO 0);
SIGNAL ALU-ctl : STD-LOGIC-VECTOR(2 DOWNTO 0);
BEGIN

Ainput <= Read-data-I ;
-- ALU input mux

Bin put <= Read-data2
WHEN (ALUSrc = '0')
ELSE Sign-extend(31 DOWNTO 0);

-- Generate ALU control bits
ALU-ctl(0) <= (Function-opcode(0) OR Function-opcode(3)) AND ALUOp(1);
ALU-ctl(1) <= (NOT Function-opcode(2)) OR (NOT ALUOp(1));
ALU-ctl(2) <= (Function-opcode(1) AND ALUOp(1)) OR ALUOp(0);

-- Generate Zero Flag
Zero <= '1'

WHEN (ALU-output-mux(31 DOWNTO 0) = X"00000000")
ELSE '0';

-- Select ALU output for SL T
ALU-result <= X"0000000" & B"000" & ALU-output-mux(31)

WHEN ALU-ctl = " I I I "
ELSE ALU-output-mux(31 DOWNTO 0);

-- Adder to compute Branch Address
Branch-Add <= PCglus-4(9 DOWNTO 2) + Sign-extend(7 DOWNTO 0) ;
Add-result <= Branch-Add(7 DOWNTO 0);

PROCESS (ALU-ctl, Ainput, Binput)
BEGIN

CASE ALU-ctl IS

WHEN "000"

WHEN "001"

WHEN "010"

WHEN "01 1"

WHEN "100"

WHEN "101"

WHEN "1 10"

WHEN "111"

-- Select ALU operation

-- ALU performs ALUresult = A-input AND B-input
=> ALU-output-mux <= Ainput AND Binput;

-- ALU performs ALUresult = A-input OR 6-input
=> ALU-output-mux <= Ainput OR Binput;

-- ALU performs ALUresult = A-input + B-input
=> ALU-output-mux <= Ainput + Binput;

-- ALU performs ?
=> ALU-output-mux <= X"00000000" ;

-- ALU performs ?
=> ALU-output-mux <= X"00000000" ;

-- A L U performs ?
=> ALU-output-mux <= X"00000000" ;

-- A LU performs A LUresuit = A-input - B-input
=> ALU-output-mux <= Ainput - Binput;

-- ALU performs SLT
=> ALU-output-mux <= Ainput - Binput ;

WHEN OTHERS => ALU-output-mux <= X"00000000" ;
END CASE;

END PROCESS;
END behavior;

2 72 Rapid Prototyping of Digital Systems Chapter 14

14.8 The Data Memory Stage
The data memory stage of the MIPS core shown in Figure 14.8 contains the
data memory. To speed synthesis and simulation, data memory is limited to 256
locations of 32-bit memory. Data memory is implemented using the Altsyncram
megafunction. Memory write cycle timing is critical in any design. The
Altsyncram function requires an internal address register with a clock. In this
design, the falling clock edge is used to load the data memories internal address
register. The rising clock edge starts the next instruction. Two M4K RAM
blocks are used for data memory. Two M4K RAM blocks are also used for the
32-bit instruction memory.

Figure 14.8 Block Diagram o f MIPS Data Memory Unit.

-- Dmemory module (implements the data
-- memory for the MIPS computer)

LIBRARY IEEE;
USE IEEE.STD-LOGIC-I 164.ALL;
USE IEEE.STD-LOGIC-ARITH.ALL;
USE IEEE.STD-LOGIC-SIGNED.ALL;
LIBRARY altera-rnf;
USE altera-rnf.atlera-rnf-cornponents.ALL;

ENTITY drnernory IS
PORT(read-data : OUT STD-LOGIC-VECTOR(31 DOWNTO 0);

address : IN STD-LOGIC-VECTOR(7 DOWNTO 0);
write-data : IN STD-LOGIC-VECTOR(31 DOWNTO 0);
MernRead, Mernwrite : IN STD-LOGIC;
clock, reset : IN STD-LOGIC);

END drnernory;

ARCHITECTURE behavior OF drnernory IS
SIGNAL write-clock : STD-LOGIC;
BEGIN

A RlSC Design: Synthesis of the MIPS Processor Core 273

data-memory: altsyncram
GENERIC MAP (

operation-mode => "SINGLE-PORT",
width-a => 32,
widthad-a => 8,
Ipm-type => "altsyncram",
outdata-reg-a => "UNREGISTERED",

-- Reads in mif file for initial data memory values
init-file => "dmemory.mif',
intended-device-family => "Cyclone"lpm-widthad => 8

1
PORT MAP (

wren-a => memwrite,
clock0 =r write-clock,
address-a => address,
data-a => write-data,
q-a => read-data);

-- Load memory address & data register with write clock
write-clock <= NOT clock;

END behavior;

MIPS data memory is initialized to the value specified in the file dmemory.mif
shown in Figure 14.9. Note that the address displayed in the dmemory.mif file
is a word address and not a byte address. Two values, 0x55555555 and
OxAAAAAAA, at byte address 0 and 4 are used for memory data in the short
test program. The remaining locations are all initialized to zero.

-- MlPS Data Memory initialization File
Depth = 256;
Width = 32;
Content
Begin

-- default value for memory
[OO..FF] : 00000000;

-- initial values for test program
00 : 55555555;
01 : AAAAAAAA;

End:

Figure 14.9 MIPS Data Memory Initialization File, dmemory.mif.

14.9 Simulation of the MlPS Design
The top-level file MIPS.VHD is compiled and used for simulation of the MIPS.
It uses VHDL component instantiations to connect the five submodules. The
values of major busses and important control signals are output at the top level
for use in simulations. A reset is required to start the simulation with PC = 0. A
clock with a period of approximately 200ns is required for the simulation.

274 Rapid Prototyping of Digital Systems Chapter 14

Memory is initialized only at the start of the simulation. A reset does not re-
initialize memory.
The execution of a short test program can be seen in the MIPS simulation
output shown in Figure 14.10. The program loads two registers from memory
with the LW instructions, adds the registers with an ADD, and stores the sum
with SW. Next, the program does not take a BEQ conditional branch with a
false branch condition. Last, the program loops back to the start of the program
at PC = 000 with another BEQ conditional branch with a true branch condition.

Figure 14.10 Simulation of MIPS test Dromam.

14.10 MIPS Hardware Implementation on the UP 3 Board
A special version of the top level of the MIPS, VIDEO-MIPS.VHD, is identical
to MIPS.VHD except that it also contains a VGA video output display driver.
This driver displays the hexadecimal value of major busses in the MIPS
processor on a monitor. The video character generation technique used is
discussed in Chapter 9. It also displays the PC on the UP33 LCD displays and
uses the pushbuttons for the clock and reset inputs. This top-level module
should be used instead of MIPS.VHD after the design has been debugged in
simulations. The final design with video output is then downloaded to the
FPGA chip on the UP 3 board. The addition of the VGA video driver slows
down the compile and simulation step, so it is faster to not add the video output
while running initial simulations to debug a new design. The video driver uses
two M4K RAM memory blocks for format and character font data.

A RlSC Design: Synthesis of the MIPS Processor Core 275

After simulation with MIPS.VHD, recompile using VIDEO-MIPS.VHD and
download the design to the UP 3 board for hardware verification. Attach a VGA
monitor to the UP 3's VGA connector. Any changes or additions made to top
level signal names in MIPS.VHD and other modules will need to also be cut
and pasted to VIDEO-MIPS.VHD.

Figure 14.11 MIPS with Video Output generated by UP 3 Board.

14.1 1 For Additional Information
The MIPS processor design and pipelining are described in the widely-used
Patterson and Hennessy textbook, Computer Organization and Design The
Hardware/Software Interface, Third Edition, Morgan Kaufman Publishers,
2005. The MIPS instructions are described in Chapter 2 and Appendix A of this
text. The hardware design of the MIPS, used as the basis for this model, is
described in Chapters 5 and 6 of the Patterson and Hennessy text.
SPIM, a free MIPS R2000 assembly language assembler and PC-based
simulator developed by James Lams, is available free from
http://www.cs.wisc.edu/-lams/spim.I~t~~~l . The reference manual for the SPIM
simulator contains additional explanations of all of the MIPS instructions.
The MIPS instruction set and assembly language programming is also
described in J. Waldron, Introduction to RISC Assembly Language
Programming, Addison Wesley, 1999, and Kane and Heinrich, MIPS RISC
Architecture, Prentice Hall, 1992.

2 76 Rapid Prototyping of Digital Systems Chapter 14

14.1 2 Laboratory Exercises
Use VHDL to synthesize the MIPS single clock cycle design in the file
TOP-SPIM.VHD. After synthesis and simulation perform the following steps:

Display and print the timing diagram from the simulation. Verify that the information on
the timing diagram shows that the hardware is functioning correctly. Examine the test
program in 1FETCH.VHD. Look at the program counter, the instruction bus, the register
file and ALU outputs, and control signals on the timing diagram and carefully follow the
execution of each instruction in the test program. Label the important values for each
instruction on the timing diagram and attach a short write-up explaining in detail what the
timing diagram shows relative to each instruction's execution and correct operation.

Return to the simulator and run the simulation again. Examine the ALU output in the
timing diagram window. Zoom in on the ALU output during execution of the add
instruction and see what happens when it changes values. Explain exactly what is
happening at this point. Hint: Real hardware has timing delays.

Recompile the MIPS model using the VIDEO-MIPS.VHD file, which generates video
output. Download the design to the UP 3 board. Attach a VGA monitor to the UP 3
board. Single step through the program using the pushbuttons.

Write a MIPS test program for the AND, OR, and SUB instructions and run it on the
VHDL MIPS simulation. These are all R-format instructions just like the ADD
instruction. Modifications to the memory initialization files, program.mif and
dmemory.mif, (i.e. only if you use data from memory in the test program) will be
required. Registers have been preloaded with the register number to make it easy to run
short test programs.

Add and test the JMP instruction. The JMP or jump instruction is not PC-relative like the
branch instructions. The J-format JMP instruction loads the PC with the low 26 bits of
the instruction. Modifications to the existing VHDL MIPS model will be required. For a
suggested change, see the hardware modifications on page 317 of Computer
Organization and Design The Hardware/Softwclre Interface.

Add and test the BNE, branch if not equal, instruction. Modifications to the existing
VHDL MIPS model will be required. Hint: Follow the implementation details of the
existing BEQ, branch if equal, instruction and a change to add BNE should be obvious.
Both BEQ and BNE must function correctly in a simulation. Be sure to test both the
branch and no branch cases.

6. Add and test the I-format ADDIU, add immediate unsigned, instruction. Modifications to
the existing VHDL MIPS model will be required.

A RlSC Design: Synthesis of the MIPS Processor Core 277

7. Add and test the R-format SLT, set if less than, instruction. As an example SLT $1, $2,
$3 performs the operation, If $2<$3 Then $1 = 1 Else $1 = 0. SLT is used before BEQ or
BNE to implement the other branch conditions such as less than or greater.

8. Pipeline the MIPS VHDL simulation. Test your VHDL model by running a simulation of
the example program shown in Figure 6.2 1 using the pipeline hardware shown in Figure
6.27 in Computer Organization and Design The Hardware/Software Integace. To
minimize changes, pipeline registers must be placed in the VHDL module that generates
the input to the pipeline. As an example, all of the pipeline registers that store control
signals must be placed in the control module. Synthesize and check the control module
first, since it is simple to see if it works correctly when you add the pipeline flip-flops.
Use the following notation which minimizes changes to create the new pipeline register
signals, add a "D-" in front of the signal name to indicate it is the input to a D flip-flop
used in a pipeline register. Signals that go through two D flip-flops would be "DD-" and
three would be "DDD-". As an example, instruction would be the registered version of
the signal, D-instruction.

Add pipeline registers to the existing modules that generate the inputs to the pipeline
registers shown in the text. This will prevent adding more modules and will not require
extensive changes to the MIP.VHD module. Add signal and process statements to model
the pipeline modules - see the PC in the ifetch.vhd module for an example of how this
can work. A few muxes may have to be moved to different modules.

The control module should contain all of the control pipeline registers - 1, 2, or 3 stages
of pipeline registers for control signals. Some control signals must be reset to zero, so use
a D flip-flop with a synchronous reset for these pipeline registers. This generates a flip-
flop with a Clear input that will be tied to Reset. Critical pipeline registers with control
signals such as regwrite or memwrite should be cleared at reset so that the pipeline starts
up correctly. The MIPS instruction ADD $0, $0, $0 is all zeros and does not modify any
values in registers or memory. It is used to initialize the WID pipeline at reset. Pipeline
registers for instruction and data memory outputs can also be added by modifying options
in the Altsyncram megafunction.

The data memory clocking scheme might also change with pipelining. In Dmemory.vhd,
the data memory address and data inputs are already pipelined inside the altsyncram
function used for data memory (this is why it has a clock input). You will need to take
this into account when you pipeline your design. High speed memory writes almost
always require a clock and the design in the textbook skips over this point - since they do
not have their design running on real hardware. As an example, in the Quartus software
you can't even have altsyncram memory without a clock!

Currently in the original single cycle design, data memory uses NOT CLOCK as the
clock input so that there is time to get both the correct ALU result loaded into the

278 Rapid Prototyping of Digital Systems Chapter 14

memories internal address and data pipeline registers (first half of clock cycle) and write
to memory (second half of clock cycle).

Once you pipeline the model, you will probably want to have your data memory clock
input use CLOCK instead of NOT CLOCK for the fastest clock cycle time. With NOT
CLOCK you would be loading the ALU Result into the pipeline register in the middle of
the clock cycle (not the end) - so it would slow down the clock cycle time on real
hardware.

Since there is already a pipeline register in the data memory inputs, don't add another one
in the address or data input paths to data memory, if you switch NOT CLOCK to
CLOCK. You will still need to delay the ALU result two clocks (with two pipeline
registers) for the register file write back operation.

Sections 6.2 and 6.3 of Computer Organization and Design The Hardwarelsoftware
Interface contain additional background information on pipelining.

9. Once the MIPS is pipelined as in problem 8, data hazards can occur between the five
instructions present in the pipeline. As an example consider the following program:

Sub $2,$1,$3
Add $4,$2,$5

The subtract instruction stores a result in register 2 and the following add instruction uses
register 2 as a source operand. The new value of register 2 is written into the register file
by SUB $2,$1,$3 in the write-back stage after the old value of register 2 was read out by
ADD $4,$2,$5 in the decode stage. This problem is fixed by adding two forwarding
muxes to each ALU input in the execute stage. In addition to the existing values feeding
in the two ALU inputs, the forwarding multiplexers can also select the last ALU result or
the last value in the data memory stage. These muxes are controlled by comparing the rd,
rt, and rs register address fields of instructions in the decode, execute, or data memory
stages. Instruction rd fields will need to be added to the pipelines in the execute, data
memory, and write-back stages for the forwarding compare operations. Since register 0 is
always zero, do not forward register 0 values.

Add forwarding control to the pipelined model developed in problem 8. Test your VHDL
model by running a simulation of the example program shown in Figure 6.29 using the
hardware shown in Figures 6.32 of Computer Organization and Design The
Hardware/Software Inte$ace by Patterson and Hennessy.

Two forwarding multiplexers must also be added to the Idecode module so that a register
file write and read to the same register work correctly in one clock cycle. If the register
file write address equals one of the two read addresses, the register file write data value
should be forwarded out the appropriate read data port instead of the normal register file

A RlSC Design: Synthesis of the MIPS Processor Core 279

read data value. Section 6.4 of Computer Organization and Design The
Hardware/Software Interface contains additional background information on forwarding.

10. Add LWISW forwarding to the pipelined model. This will allow an LW to be followed
by an SW that uses the same register. It is possible since the MEMIWB register contains
the load instruction register write data in time for use in the MEM stage of the store.
Write a test program and verify correct operation in a simulation.

1 1. When a branch is taken, several of the instructions that follow a branch have already been
loaded into the pipeline. A process called flushing is used to prevent the execution of
these instructions. Several of the pipeline registers are cleared so that these instructions
do not store any values to registers or memory or cause a forwarding operation. Add
branch flushing to the pipelined MIPS VHDL model as shown in Figures 6.38 of the
Computer Organization and Design The Hardwarelsoftware Interface by Patterson and
Hennessy. Note that two new forwarding multiplexers at the register file outputs (not
shown in the Figure, currently at ALU inputs) are needed to eliminate the new Branch
data hazards that appear when the branch comparator is moved into to the decode stage.
Section 6.6 of Computer Organization and Design The Hardware/Software Integ5ace
contains additional background information on branch hazards.

12. Use the timing analyzer to determine the maximum clock rate for the pipelined MIPS
implementation, verify correct operation at this clock rate in a simulation, and compare
the clock rate to the original non-pipelined MIPS implementation.

13. Redesign the pipelined MIPS VHDL model so that branch instructions have 1 delay slot
as seen in Figure 6.40 (i.e. one instruction after the branch is executed even when the
branch is taken). Rewrite the VHDL model of the MIPS and test the program from the
problem 10 assuming 1 delay slot. Move instructions around and add nops if needed.

14. Add the overflow exception hardware suggested at the end of Chapter 6 in Figure 6.42 of
Computer Organization and Design The Hardware/Software Interface by Patterson and
Hennessy. Add an overflow circuit that produces the exception with a test program
containing an ADD instruction that overflows. Display the PC and the trap address in
your simulation. For test and simulation purposes make the exception address 40 instead
of 40000040. Section 6.8 of Computer Organization and Design The Hardware/Software
Interface contains additional background information on exceptions.

15. Investigate using two Altsyncram memory blocks to implement the register file in
IDECODE. A single Altsyncram block can be configured to do a read and write in one
clock cycle (dual port). To perform two reads, use two Altsyncrams that contain the same
data (i.e. always write to both blocks).

16. Add the required instructions to the model to run the MIPS bubble sort program from
Chapter 3 of Computer Organization and Design The Hardware/Softwre Inter$ace.

280 Rapid Prototyping of Digital Systems Chapter 14

After verifying correct operation with a simulation, download the design to the UP 3
board and trace execution of the program using the video output. Sort this four element
array 4, 3, 5, 1.

17. Add programmed keyboard input and video output to the sort program from the previous
problem using the keyboard, vga-sync, and char-rom UP3cores. Use a dedicated
memory location to interface to YO devices. Appendix A.36-38 of Computer
Organization and Design The Hardware/Software Inte$ace contains an explanation of
MIPS memory-mapped terminal YO.

18. The MIPS VHDL model was designed to be easy to understand. Investigate various
techniques to increase the clock rate such as using two dual-port memory blocks for the
register file, moving hardware to different pipeline stages to even out delays, or changing
the way memory is clocked. Additional fitter effort settings may also help. Use the timing
analysis tools to evaluate design changes.

19. Develop a VHDL synthesis model for another RISC processor's instruction set. Possible
choices include the Nios, Microblaze, Picoblaze, PowerPC, ARM, SUN SPARC, the
DEC ALPHA, and the HP PARISC. CD-ROM Appendix D of Computer Organization
and Design The HardwareISoftware Interface contains information on several RISC
processors. Earlier hardware implementations of the commercial RISC processors
designed before they became superscalar are more likely to fit on a UP 3.

Introducing System-on-a-
Programmable-Chip

A small SOPC-based aircraft autopilot system that contains an FPGA with a Nios
processor core, a DSP processor, and memory is seen above. The bottom sensor board
contains a GPS receiver, an A/D converter, MEMS gyros and accelerometers for all three
axes, an airspeed sensor, and an altitute sensor. Photograph 02004 courtesy of Henrik
Christophersen, Georgia Institute of Technology Unmanned Aerial Research Facility.

282 Rapid Prototyping of Digital Systems Chapter 15

15 Introducing system-on-a-programmable-chip'
A new technology has emerged that enables designers to utilize a large FPGA
that contains both memory and logic elements along with an intellectual
property (IP) processor core to implement a computer and custom hardware for
system-on-a-chip (SOC) applications. This new approach has been termed
system-on-a-programmable-chip (SOPC).

15.1 Processor Cores
Processor cores can be classified as either "hard" or "soft." This designation
refers to the flexibility/configurability of the core. Hard cores are less
configurable; however, they tend to have higher performance characteristics
than soft cores.
Hard processor cores use an embedded processor core (in dedicated silicon) in
addition to the FPGA's normal logic elements. Hard processor cores added to
an FPGA are a hybrid approach, offering performance trade-offs that fall
somewhere between a traditional ASIC and an FPGA; they are available from
several manufacturers with a number of different processor flavors. For
example, Altera offers an ARM processor core embedded in its APEX 20KE
family of FPGAs that is marketed as an ExcaliburTM device. Xilinx's Virtex-
I1 Pro family of FPGAs include up to four PowerPC processor cores on-chip.
Cypress Semiconductor also offers a variation of the SOPC system. Cypress's
Programmable-System-on-a-Chip (PSoCTM) is formed on an M8C processor
core with configurable logic blocks designed to implement the peripheral
interfaces, which include analog-to-digital converters, digital-to-analog
converters, timers, counters, and UARTS.~
Soft cores, such as Altera's Nios I1 and Xilinx's MicroBlaze processors, use
existing programmable logic elements from the FPGA to implement the
processor logic. As seen in Table 15.1, soft-core processors can be very feature-
rich and flexible, often allowing the designer to specify the memory width, the
ALU functionality, number and types of peripherals, and memory address space
parameters at compile time. However, such flexibility comes at a cost. Soft
cores have slower clock rates and use more power than an equivalent hard
processor core.
With current pricing on large FPGAs, the addition of a soft processor core costs
as little as thirty-five cents based on the logic elements it requires. The
remainder of the FPGA's logic elements can be used to build application-
specific system hardware. Traditional system-on-a-chip devices (ASICs and
custom VLSI ICs) still offer higher performance, but they also have large

' Portions reprinted, with permission, from T. S. Hall and J. 0. Hamblen, "System-on-a-Programmable-
Chip Development Platforms in the Classroom," IEEE Transactions on Education, vol. 47, no. 4, pp. 502-
507, Nov. 2004. O 2004 IEEE.

D. Seguine, "Just add sensor - integrating analog and digital signal conditioning in a programmable
system on chip," Proceedings of IEEE Sensors, vol. 1 , pp. 665468,2002.
M. Mar, B. Sullam, and E. Blom, "An architecture for a configurable mixed-signal device," IEEE J. Solid-
State Circuits, vol. 38, pp. 565-568, Mar. 2003.

Introducing System-on-a-Programmable-Chip 283

development costs and longer turnaround times.3 For projects requiring a
hardware implementation, the FPGA-based SOPC approach is easier, faster,
and more economical in low to medium quantity production.

Table 15.1 Features of Commercial Soft Processor Cores for FPGAs

I Frequency 11 Up to 200 M H Z ~ 11 Up to 200 M H Z ~ 1

Register File 6 s~ecial ~ u r ~ o s e 32 s~ecial ~ u r ~ o s e
lnstruction Word

Instruction Cache Optional Optional

Hardware Multiply & Divide Optional Optional

I Hardware Floating Point 11 Third Party Optional

Typically, additional software tools are provided along with each processor core
to support SOPC development. A special CAD tool specific to each soft
processor core is used to configure processor options, which can include
register file size, hardware multiply and divide, floating point hardware,
interrupts, and 110 hardware. This tool outputs an HDL synthesis model of the
processor core in VHDL or Verilog. In addition to the processor, other system
logic is added and the resulting design is synthesized using a standard FPGA
synthesis CAD tool. The embedded application program (software) for the
processor is typically written in C or C++ and compiled using a customized
compiler provided with the processor core tools.

15.2 SOPC Design Flow
The traditional flow of commercial CAD tools typically follows a path from
hardware description language (HDL) or schematic design entry through
synthesis and place and route tools to the programming of the FPGA. FPGA
manufacturers provide CAD tools such as Altera's Quartus I1 and Xilinx's ISE
software, which step the designer through this process. As shown in Fig. 15.1,
the addition of a processor core and the tools associated with it are a superset of
the traditional tools. The standard synthesis, place and route, and programming

H. Chang et al., Surviving the SOC Revolution a Guide to Platform-Based Design. Norwell, MA: Kluwer,
1999.
This speed is not achievable on all devices for either processor core. Some FPGAs may limit the

maximum frequency to as low as 50 MHz.

284 Rapid Prototyping of Digital Systems Chapter 15

functionality is still needed, and in the case of both Altera and Xilinx, the same
CAD tools (Quartus I1 or ISE) are used to implement these blocks.

Processor Core Configuration Tools

Today, a number of pre-defined processor cores are available from various
sources. GPL-licensed public processor cores can be found on the web (i.e.,
www.opencores.org and www.leox.org), while companies such as Altera (Nios
I1 processor), Xilinx (MicroBlaze processor), and Tensilica (Xtensa processor)
provide their processors and/or development tools for a fee.

Additional User
Hardware
(optional)

I

Hardware : Software
Design i Design

Operating
System Kernel
and Libraries

J (option a 1)

Figure 15.1 The CAD tool flow for SOPC design is comprised of the traditional design process for

FPGA-based systems with the addition of the Processor Core Configuration Tool and software design

tools. In this figure, the program and data memory is assumed to be on-chip for simplicity.

Processor cores provided by FPGA manufacturers are typically manually
optimized for the specific FPGA family being used, and as such, are more
efficiently implemented on the FPGA than a student-designed core (especially
given the time and resource constraints of most class projects). The simple
computer and MIPS processor cores developed earlier in this book were
designed to be easy for students to understand and were not optimized for any
particular FPGA. Additionally, FPGA companies provide extensive support

Introducing System-on-a-Programmable-Chip 285

tools to ease the customization and use of their cores, including high-level
compilers targeted at the custom cores.
In the case of Altera and Xilinx, the Processor Core Configuration Tool block
shown in Fig. 15.1 is realized in a user-friendly GUI interface that allows the
designer to customize the processor for a particular project. The configurable
parameters can include the datapath width, memory, address space, and
peripherals (including arbitrarily defined general-purpose 110, UARTs, Ethernet
controllers, memory controllers, etc.). Once the processor parameters are
specified in the GUI interface, the processor core is generated in the form of an
HDL file (in Altera) or a netlist file (in Xilinx). This file can then be included
within a traditional HDL or schematic design using the standard CAD tools.
Specific pin assignments and additional user logic can be included at this point
like any other FPGA design. Next, the full hardware design (processor core and
any additional user logic) is compiled (synthesis, place and route, etc.), and the
FPGA can be programmed with the resulting file using the standard tools. The
hardware design is complete, and the FPGA logic has been determined.

High-level Compiler for Processor Core

As shown on the right side of Fig. 15.1, the next step is to write and compile
the software that will be executed on the soft processor core. When the
Processor Core Configuration Tool generates the HDL or netlist files, it also
creates a number of library files and their associated C header files that are
customized for the specific processor core generated. A C/C++ compiler
targeted at this processor is also provided. The designer can then program stand
alone programs to run on the processor. Optionally, the designer can compile
code for an operating system targeted for the processor core. Several operating
systems for the Nios I1 are available from third-party vendors along with the
community supported open source eCos (www.niosforun~.com).

15.3 Initializing Memory
Once a programldata binary file has been generated, it must be loaded into the
processor's program and data memories. This loading can be done several ways
depending on the memory configuration of the processor at hand.

On-chip Memory

If the application program is small and can fit into the memory blocks available
on the FPGA, then the program can be initialized in the memory when the
hardware configuration is programmed. This initialization is done through the
standard FPGA tools, such as Altera's Quartus I1 software or Xilinx's ISE
software. However, on-chip memory is typically very limited, and this solution
is not usually an option.

Bootloader

In a prototyping environment, the application program will most likely be
modified a number of times before the final program is complete. In this case,
the ability to download the application code from a PC to the memory on an

286 Rapid Prototyping of Digital Systems Chapter 15

FPGA board must be provided. This functionality, typically called a
"bootloader" or "boot monitor," can be implemented in either software or
hardware.
A software bootloader is comprised of code that is loaded into an on-chip
memory and starts running on power up. This program is small enough (1-2
KB) to fit in most on-chip memories, and its primary function is to receive a
program binary file over the serial port (or other interface), load it into external
memory, and then start the new code executing. In this way, a new program can
be stored into external memory (SRAM, SDRAM, Flash memory, etc.) by
downloading it over the serial or JTAG port (or other interface) on the fly
without having to reload the FPGA's hardware configuration. Xilinx provides a
boot monitor for their MicroBlaze soft-core processor that includes the ability
to download a program binary over the serial port (or other interface), store it
in memory, and start the code executing. They also provide a more enhanced
version called XMDstub that adds debugging capabilities. Altera's legacy Nios
processors included a bootloader called GERMS. The Nios I1 processor still
includes limited support for the GERMS monitor; however, a hardware
bootloader is the preferred solution in Nios 11.
A hardware bootloader provides functionality very similar to a software
bootloader; however, it is implemented in dedicated logic within the processor
core. Typically, the processor will be paused or stalled upon power up and the
hardware bootloader will have direct access to memory or the memory registers
in the processor's datapath. The bootloader hardware can start and stop the
processor and can control the downloading of a program over the JTAG or
serial interface to the desired memory locations. Altera's hardware bootloader
is a part of the JTAG debug module, which resides within the Nios I1 processor.
This logic uses the JTAG interface with the PC to receive the execution code,
and it then writes the code to the appropriate memory. Finally, the bootloader
hardware overwrites the processor's program counter with the start address of
the code just downloaded and releases the pause bit to allow the processor to
begin executing the downloaded code.

External Non-volatile Storage

The application program code can be stored on an external EEPROM, Flash
memory, or other form of non-volatile memory. The application program can
either be pre-programmed in the external memory module (for a production
run) or a bootloader program can be used to store the application program in
non-volatile storage. For low-speed applications, the code can be executed
directly from the external memory. However, if high-speed functionality is
required, then a designer could use three memories as shown in Fig. 15.2. In
this scheme, the on-chip memory is initialized with a bootloader, which handles
the movement of the application program between the memories. (On-chip
memory is replaced with a hardware bootloader on some systems including the
Nios I1 processor.)
The fast, volatile memory (i.e., SDRAM) is used to store the application
program during execution. Finally, the slower, non-volatile memory (i.e., Flash

Introducing System-on-a-Programmable-Chip 287

or EEPROM) is used for the permanent storage of the application program. The
bootloader program can be modified to initialize the system, retrieve a program
from non-volatile memory, store it in the faster, volatile memory, and then start
it executing from the faster memory. This scheme provides the advantages of
permanent storage, fast execution, and the ability to modify the application
program when needed. Of course, it comes at the expense of having additional
memory.

T o P C
(via Ser ia l Interface)

v
Volatile M emory

Program Execution)

processor -
C o r e

Non-volatile M e m o r y
(for Application 4---+

Program Storage)

I

Figure 15.2 This arrangement o f on-chip and external memories provides flexibility and

performance to an SOPC system.

t I

15.4 SOPC Design versus Traditional Design Modalities
The traditional design modalities are ASIC and fixed-processor design. SOPC
design has advantages and disadvantages to both of these alternatives as
highlighted in Table 15.2. The strengths of SOPC design are a reconfigurable,
flexible nature and the short development cycle. However, the trade offs
include lower maximum performance, higher unit costs in production, and
relatively high power consumption.
The benefit of having a flexible hardware infrastructure can not be
overestimated. In many new designs, features and specifications are modified
throughout the design cycle. For example, marketing may detect a shift in
demand requiring additional features (e.g., demand drops for cell phones
without cameras), a protocol or specification is updated (e.g., USB 2.0 is
introduced), or the customer requests an additional feature. In traditional design
modalities (including ASIC and fixed-processor designs), these changes can
dramatically effect the ASIC design, processor selection, and/or printed circuit
board design. Since the hardware architecture is often settled upon early in the
design cycle, making changes to the hardware design later in the cycle will
typically result in delaying a product's release and increasing its cost.
Flexible infrastructure can also be beneficial in extending the life (and thus
reducing the cost) of a product's hardware. With flexible, reconfigurable logic,
often a single printed circuit board can be designed that can be used in multiple
product lines and in multiple generations/versions of a single product. Using

1 F P G A

288 Rapid Prototyping of Digital Systems Chapter 15

reconfigurable logic as the heart of a design, allows it to be reprogrammed to
implement a wide range of systems and designs. Extending the life of a board
design even one generation can result in significant savings and can largely
offset the increased per-unit expense of reconfigurable devices.

Table 15.2 Comparing SOPC, ASIC, and Fixed-Processor Design Modalities

HIW Flexibility 11 0 I1 0 II 0 I

Feature

-vrrl
Equipment Costs

performance 11 lwkl
Production Cost

Power Efficiency

SOPC

Legend: 0 - Good; 0 - Moderate; 0 - Poor

G i G q

The SOPC approach is ideal for student projects. SOPC boards can be used and
reused to support an extremely wide range of student projects at a very low
cost. ASIC development times are too long and mask setup fees are too high to
be considered for general student projects. A fixed-processor option will often
require additional hardware and perhaps even a new printed circuit board
(PCB) design for each application. Given the complexity of today's multilayer
surface mount PCB designs, it is highly unlikely that students would have
sufficient time and funds to develop a new printed circuit board for a design
project.

ASIC

15.5 An Example SOPC Design
The SOPC-based autopilot system seen in the photograph on the first page of
this chapter and the sensor board that mounts below it (described earlier in
Section 13.5) makes an interesting case study in SOPC design. The autopilot
system continuously reads in sensor data that indicates attitude, altitude, speed,
and location. It then uses this data to solve the control system motion equations
for the aircraft and outputs updated signals to control the aircraft.
The flexibility of SOPC design allows the use of FPGA's logic elements to
interface to a wide range of sensors without the need for additional I10 support
chips that would be needed if a more traditional fixed-processor option was

0

Fixed-Processor

In very large quantities.

0
pp

0

Introducing System-on-a-Programmable-Chip 289

used. This results in an extremely small and low weight PCB design. An ASIC
could be used instead of the FPGA, but the small production quantities needed
for this system do not justify the greatly increased development time and cost
needed for an ASIC.
Different types of aircraft also require markedly different I10 standards for the
control outputs. Some aircraft controls use serial interfaces, while others use
PWM or even parallel 110. Here again, the flexibility of using the FPGA's logic
elements to implement the I10 interface is of great benefit. By varying the logic
in the interface peripherals, the same programmable processor core and PCB
board can be used to support a wide range of aircraft without any hardware
changes to the PCB.
The autopilot system requires intensive floating-point calculations to solve the
complex control system equations for the aircraft. While it would be possible to
perform floating-point calculations using a larger FPGA, the decision was made
to use a fixed-processor DSP chip for the intensive floating-point calculations.
By offloading the algorithmic computations to a fixed processor, the Nios I1
processor is primarily acting as an intelligent I/O processor for the system. This
partitioning of the system between a fixed-processor DSP and soft-core
processor results in higher computational performance than using just an FPGA
(with floating-point hardware logic) and higher interface flexibility than using
just a fixed processor in the system. However, new generations of FPGAs with
DSP features such as hardware multipliers and floating-point IP cores are
currently changing this set of design tradeoffs.

15.6 Hardwarelsoftware Design Alternatives
The SOPC-based approach offers new design space alternatives. It is possible
to explore design options that use software, dedicated hardware, or a mixture of
both. Hardware solutions offer faster computations, but offer less flexibility
and may require a larger FPGA. Implementation of solutions using software is
easier to design for more complicated algorithms.
It is also possible to consider a combination of both approaches. Some
processor cores allow the user to add custom instructions. If an application
program requires the same calculation repeatedly in loops, adding a custom
instruction using extra hardware to accelerate the inner loop code can greatly
speed up the application.

15.7 For additional information
This chapter has provided a brief overview of SOPC systems and designs. More
information about SOPC systems can be found from manufacturers such as
Altera, Xilinx, Cypress Semiconductor, Stretch Incorporated, and Tensilica.
SOPC systems are an active area of research. Publications of interest include
the following:

290 Rapid Prototyping of Digital Systems Chapter 15

T. S. Hall and J. 0. Hamblen, "System-on-a-Programmable-Chip
Development Platforms in the Classroom," IEEE Transactions on
Education, vol. 47, no. 4, pp. 502-507, Nov. 2004.

C. Snyder, "FPGA processor cores get serious," in Cahners Microprocessor
Report, http://www.MPRonline.com/, Sept. 2000.

D. Seguine, "Just add sensor - integrating analog and digital signal
conditioning in a programmable system on chip," Proceedings of IEEE
Sensors, vol. 1, pp. 665-668,2002.

M. Mar, B. Sullam, and E. Blom, "An architecture for a configurable
mixed-signal device," IEEE J. Solid-state Circuits, vol. 38, pp. 565-568,
Mar. 2003.

H. Chang and et. al., Surviving the SOC Revolution A Guide to Platform-
Based Design. Kluwer Academic Publishers, 1999.

J. Fisher, P. Faraboschi, and C. Young, Embedded Computing : A VLIW
Approach to Architecture, Compilers and Tools, Morgan Kaufmann, 2004.

A. Jerraya, H. Tenhunen, and W. Wolf, "Multiprocessor Systems-on-Chips,"
IEEE Computer, vol. 38, no. 7, pp. 36-41, July 2005.

S. Liebson and J. Kim, "Configurable Processors: A New Era in Chip
Design," IEEE Computer, vol. 38, no. 7, pp.51-59, July 2005.

15.8 Laboratory Exercises

Compare the instruction formats and the instruction set of the Nios I1 processor to the
MIPS processor from Chapter 14. Information on the Nios I1 instruction set architecture
is available at Altera's website (www.altera.com) in the Nios I1 Processor Reference
Handbook.

A system needs a processor to run a control program, but the application also needs to
compute FFTs at a somewhat high data rate. FFTs require a large number of multiply
and add operations on an array in nested loops. What SOPC hardware/software design
tradeoffs would you need to consider? Justify your answer.

List several types of products that could likely take advantage of the SOPC design
approach. Explain your reasoning.

Compare the memory read access time of the UP 3's Flash and S U M memory chips.
Information can be found in each chip's datasheet. If the processor did not have an
instruction cache, how much faster could a program read instructions from S U M ?

You are asked to specify the memory types and sizes for an SOPC design that will
execute a program with a 60 KB length or footprint. During execution, the program
requires 16 KB of data memory for the stack and heap. If the SOPC hardware mandates a
single memory (for program and data memory), select the type and size of memory.
Perform an online search to find a manufacturer and model number for the memory you

Introducing System-on-a-Programmable-Chip 29 1

selected. You may have to modify your initial selection based on availability and cost of
various memories. Justify your selection considering cost, specification, performance,
and availability. Don't forget that you need non-volatile memory to boot the system.

Given the SOPC system outlined in Problem 5, select the type and size of memory
needed for this system when program and data memory are separate. Justify your
selection considering cost, specification, performance, and availability. Compare the
single memory option from Problem 5 with the dual-memory option from this problem.
Which memory configuration is preferable? Justify your answer.

There are a number of different non-volatile memory technologies available to SOPC
designers. For a system with a 256 KB code footprint, compare the cost,
reprogrammability, configuration time, access time (reading only), and longevity for
PROM, EEPROM, and Flash memories.

Tutorial 111: Nios 11
Processor Software
Development

The Nios I1 IDE tool compiles C/C++ code for the Nios I1 processor and provides an
integrated software development environment for Nios I1 systems.

294 Rapid Prototyping of Digital Systems Chapter 16

16 Tutorial Ill: Nios II Processor Software Development
Designing systems with embeddeded processors requires both hardware and sofhare
design elements. A collection of CAD tools developed by Altera enable you to design
both the hardware and sofhare for a fully functional, customizable, soft-core processor
called Nios II. This tutorial steps you through the software development for a Nios 11
processor executing on the UP 3 board A Nios 11 processor reference design targeted
for the UP 3 board is used here. To design a custom Nios IIprocessor refer to Tutorial
IV (in the following chapter), which introduces the hardware design tools for the Nios

Upon completion of this tutorial, you will be able to:

Navigate Altera's Nios I1 Integrated Development Environment (IDE),

Write a C-language software program that executes on the Nios I1
reference design,

Download and execute a software program on the Nios I1 processor, and

Test the peripherals and memory components of the Nios I1 reference
design on the UP 3 board.

This tutorial will step you through writing and running two programs for the
Nios I1 processor. First, a simple "Hello World" type of program will be
written, compiled, downloaded to the UP 3 board, and run. Next, a test program
that uses interrupts, pushbuttons, dipswitches, LEDs, the LCD display, SRAM,
Flash memory, and SDRAM will be written that can be used to test the major
peripherals on the UP 3 board.

16.1 Install the UP 3 board files
Locate the booksoft\chapl7 directory on the CD-ROM that came with the
book. In this directory, there are two subdirectories called up3-tristate-lcd and
up3-tristate-sram. Copy both of these subdirectories to the
quartu~~install_dir\sopc~builder\components\ directory on your local hard
drive.

16.2 Starting a Nios II Software Project
The Nios I1 Integrated Development Environment (IDE) is a standalone
program that works in conjunction with Quartus 11. To design software in the
IDE, Quartus I1 does not have to be installed on your system; however, you will
need a valid Quartus I1 project with a Nios I1 processor in it to use the IDE. A
Nios I1 reference design for the UP 3 board is included on the CD-ROM that
came with this book. This hardware design will be used for the remainder of
this tutorial. Copy the design files from booksoft\chapl6 on the CD-ROM to a
working directory on your hard drive. (If you are using a UP 3 board with the
1C12 FPGA on it, then copy the files from the booksoft\chapl6\1C12 folder
on the CD-ROM.) The software design files will be stored in a subdirectory of
this project directory.

Tutorial Ill: Nios I I Processor Software Development 295

Open the Nios I1 IDE software. For the default installation, the software icon
can be found under Start C3 All Programs C3 Altera C3 Nios I1 Development
Kit * Nios I1 IDE.
You should be prompted to Select a Workspace. If the dialog box in Figure
16.1 does not appear, then select File C3 Switch Workspace The workspace
is a cache for information about all projects associated with a given Nios I1
processor design. Enter the full pathname of the Quartus I1 project directory
you created above (the directory to which CD-ROM\booksoft\chap16 was
copied) followed by the subdirectory \software as shown in Figure 16.1. Click
OK to select the default location and continue.

Select a workspace I

Figure 16.1 Setting the Nios I1 IDE workspace to the Nios I1 reference design software directory.

To create a new project, select File * New C3 Project The New Project
wizard will begin. On the first dialog box, select C/C++ Application and click
Next to continue.
In the next dialog box, fill in the requested information as shown in Figure
16.2. The name of the project is rpds-software, the SOPC Builder System
should point to the nios32.ptf file in your hardware project directory, and the
Project Template should be set to Blank Project. If the workspace was
correctly set to your project directory as detailed above, then the default
location will be correct and Use Default Location should be checked.
However, if the workspace is set to some other directory, then unselect Use
Default Location and enter c:\yourqroject~directory\software\rpds~software
in the Location field. Click Next to continue.
In the final dialog box, select the option Create a new system library named:
rpds-software-syslib. Click Finish to create and open the project. When the
New Project dialog box disappears, click on the Workbench icon on the
Welcome page in the main IDE window if it does not come up automatically.

296 Rapid Prototyping of Digital Systems Chapter 16

Figure 16.2 Create a blank project for the Nios I1 reference design.

16.3The Nios II IDE Software
Take a few minutes to orient yourself to the Nios I1 IDE software. The middle
of the window will display the contents of the source files when you open
them. The Outline pane on the right-hand side will provide links to each of the
functions that are declared in the open C source file. Clicking on a link will
jump the cursor to the start of that function. On the left-hand side, a list of
projects for the current workspace is shown in the C/C++ Projects pane.
Three projects should appear in the C/C++ Projects pane by default (after
having created your new blank project): Nios I1 Device Drivers,
rpds-software, and rpds-software-syslib.

The Nios I1 Device Drivers library contains C and/or assembly-
language source files and C header files for each of the components that
can be added to a Nios I1 processor. This library contains all component
drivers and not just the drivers for peripherals added to the Nios I1
reference design. Just because a device appears in this list, does not
mean that the Nios I1 processor you are writing software for contains
that peripheral.

Tutorial I l l : Nios I I Processor Software Development 297

The rpds-software library is the location for your software. Since a
blank project has been created, no source or header files exist in this
library yet.

The rpds-software-syslib library is the container for the top-level
system header file (system.h) that contains the names and base addresses
of peripherals in the Nios I1 reference design system for which you are
writing software. It also contains a list of device drivers (from the Nios
I1 Device Drivers library) for just the peripherals that are in your Nios I1
processor. This library will be empty until the system library is
generated in the next section.

16.4 Generating the Nios II System Library
Each Nios I1 system is unique. It has different peripherals, different memory-
mapped addresses, different interrupt settings, etc. To accommodate this
flexibility, the Nios I1 IDE creates a system library from your Nios I1 hardware
settings file (e.g., nios32.ptf). The system library defines the names of the
peripherals in a given system and maps them to their memory addresses, and it
defines several system-critical definitions that are used to make several
standard C libraries compatible with your specific Nios I1 system.
Before the system library can be generated, several settings must be modified.
Right click on rpds-software-syslib in the C/C++ Projects pane and select
Properties from the drop-down menu. In the dialog box, select System
Library from the list on the left to view the configuration options for the
system library.
Under System Library Contents, select the UART device for stdout, stderr,
and stdin. The Nios I1 system allows the stdout, stderr, and stdin data streams
to be redirected to a UART interface using a serial cable connected to your PC.
This means that the output ofprintfand other standard output functions will be
displayed in a console window on your PC since there is no monitor attached to
the FPGA directly at the moment. Likewise, the use of scanf and other standard
input functions will wait for data to be transmitted from the PC to the UART.
Any text that you type in the Nios I1 IDE's console window will be sent via the
serial cable and UART to the Nios I1 processor.
Notice that the various segments of memory can be individually assigned to
different memory devices (SRAM, SDRAM, Flash, etc.). For this tutorial, leave
all of the memory segments set to SRAM. It is also useful to note that this
dialog box contains an option to use a Small C library for your project.
Selecting this option, removes many of the less common functions of the ANSI
C standard library such as printf's floating-point number support, scanf, file
seek (fseek), and more. Using a small standard library can result in a much
smaller amount of memory needed for storing your software. A complete list of
standard library functions affected by selecting the Small C Library option can
be found in the Nios 11 Software Developer b Handbook available on Altera's
website. For this tutorial, leave the Small C Library option unchecked as
shown in Figure 16.3 and click OK to continue.

298 Rapid Prototyping of Digital Systems Chapter 16

Figure 16.3 These are the system library settings that should be used for this tutorial.

To generate the system library for this Nios I1 system, right click on
rpds-software-syslib in the C/C++ Projects pane and select Build Project
from the drop-down menu. Once building has completed, view the files created
by the build by double clicking on the rpds-software-syslib item in the
C/C++ Projects pane. Under the rpds-software-syslib folder, several folders
appear. The Includes folder contains links to the device drivers for peripherals
in the Nios I1 reference design processor that you are using. The Debug +
System Description folder contains the system.h header file that includes
definitions for all of the peripherals in this Nios I1 processor.

16.5 Software Design with Nios II Peripherals
Accessing and communicating with Nios I1 peripherals can be accomplished in
three general methods: direct register access, hardware abstraction layer (HAL)
interface, and standard ANSI C library functions. Depending on the complexity
of the operation and the specific device being used, a programmer will often
use each of the three methods at one point or another. In this tutorial, direct
register access will be used to communicate with the LEDs, dipswitches, and
LCD display. The HAL interface will be used to communicate with Flash and
install an interrupt handler for the pushbuttons, and standard C library
conventions will be used to access the SRAM and Timer memory devices. The
SRAM device driver distributed by the UP 3 board manufacturer does not
currently support standard file 110 (fread, fwrite, etc.); however, support for
these functions may be added in the future.

Tutorial Ill: Nios II Processor Software Development 299

Below, each type of peripheral access is discussed. As an example, the C code
necessary to provide a one second delay using each method is shown in Figures

#include 'altera-avalon-timer-regs.hl'

int main(void) {

IOWR-ALTERA-AVALON-TIMER-PERIODL(TIMERO-BASE,
(48000000 & OxFFFF)) ;

IOWR-ALTERA-AVALON-TIMER-PERIODH(TIMERO-BASE,
((48OOOOOO>>l6) & OxFFFF)) ;

I IOWR-ALTERA-AVALON-TIMER-STATUS (TIMERO-BASE , 0) ;

I IOWR-ALTERA-AVALON-TIMER_CONTROL (TIMERO-BASE , 0x4) ;

while((IORD-ALTERA-AVALON-TIMERRSTATUS(TIMERO-BASE) &

ALTERA-AVALON-TIMER-STATUS-TO-MSK) == 0) {)

Figure 16.4 This is the C code necessary for providing a one second delay by directly accessing the

system timer's registers. The timer peripheral in this system is called timer0.

Direct Register Access

Each peripheral's registers can be directly accessed through read and write
macros that are defined in each component's device driver header file. This
type of communication is the lowest level and while it provides the most
flexibility in interfacing with peripherals, it can also be the most tedious. As
illustrated in Figure 16.4, interfacing with the timer device can be quite
cumbersome, even to provide a relatively straight-forward function such as a
one second delay. If you read the actual count to determine elapsed time, you
also need to keep in mind how your code will function when the timer count
wraps around and starts over.

300 Rapid Prototyping of Digital Systems Chapter 16

int main(void) {
int first-val, second-val;

second-val = 0;
first-val = alt-ntickso;

while((second-val - first-val) < 1000000) {
second-val = alt-nticks () ;

Figure 16.5 This is the C code necessary for providing a one second delay by using the HAL

interface functions.

HAL Interface

A layer of software called a hardware abstraction layer (HAL) has been created
that resides between the user code and the peripheral hardware registers. The
HAL interface contains a number of very useful functions that allow the user to
communicate with peripherals at a higher functional level. For example, the
HAL interface provides functions altflash-open-dev, alt-readflash,

alt-writeflash, and alt- flash-close-dev for communication with Flash
memory. By providing these functions, Flash memory can be accessed by
opening the device and reading from it and writing to it without having to
create user functions that provide the read and write functionality from low-
level peripheral register accesses.
For the timer device, a function called alt-nticks provides convenient access to
the timer. As illustrated in Figure 16.5, the HAL functions provide a more
straight-forward method of creating a one second delay.

int main(void) {
usleep (1000000) ;

1

Figure 16.6 This is the C code necessary for providing a one second delay by using the standard

ANSI C library functions.

Tutorial Ill: Nios I I Processor Software Development 30 1

Standard Library Functions

Access to most of Nios 11's peripherals has been incorporated into the standard
ANSI C library functions. Using standard ANSI C libraries such as stdlib, stdio,
string, time, malloc, etc. you can manipulate strings, access memory and
memory-like devices through standard file I10 functions, use the timer to add a
delay using usleep or wait functions, and much more. This is the highest level
of abstraction provided by the Nios I1 IDE. Many of these functions use the
peripheral-specific HAL functions to provide a single common interface to
various types of peripherals. For example, fopen, fread, fwrite, and fclose
functions from the stdio library can be used for memory accesses on some
SDRAM, Flash, or SRAM memory devices. The system library functions will
use the appropriate HAL function calls for each access depending on the
particular memory device being used. To create a one second delay using the
timer, a single call to the standard library function usleep can be made as
shown in ~ i i u r e 16.6

Figure 16.7 This is your first C program's main header file.

16.6 Starting Software Design - main()
Create a C header file by selecting the rpds-software item in the C/C++
Projects pane. Choose File c3 New c3 Header File. When the dialog box
appears, enter rpds-s0ftware.h for the Header File and click Finish to
continue.
Start your program's main header file by adding the #include and definition
statements shown in Figure 16.7.
The C program that you will now write will print "Hello World" in the Nios I1
IDE's console window (via the UART and serial cable), and it will blink the
LEDs on the UP 3 board.
Create your program's main C source file by selecting the rpds-software item
in the C/C++ Projects pane. Choose File + New + File. When the dialog box
appears, enter rpds-s0ftware.c for the File name and click Finish to continue.
Start your program by including the rpds-s0ftware.h header file and typing the
code shown in Figure 16.8.

302 Rapid Prototyping of Digital Systems Chapter 16

i n t main(void) {
unsigned char led-val = 1;

/* P r i n t message t o t h e N ios 11 I D E c o n s o l e v i a UART * /
printf("Hello World\nu) ;

while(1) {
/* Output a 4 - b i t v a l u e t o t h e LEDs */
IOWR-ALTERA-AVALON-PIO-DATA(LEDS-BASE, (led-val & OxF)) ;

if (led-val == 8)

led-val = 1;
else

led-val = led-val << 1;

/* Wait f o r 0 . 5 seconds */
usleep(500000) ;

1

return (0) ;

1

Figure 16.8 This is your first C program's main source file.

16.7 Downloading the Nios II Hardware and Software Projects
To execute your software on a Nios I1 processor, you must configure the FPGA
with the Nios I1 hardware reference design and then you can download the
compiled program code to the processor's program memory.
Connect the ByteBlaster cable and then connect the UP 3's serial cable from the
UP 3's serial port to the PC's COMl: (default) or other COM ports. (If
necessary, you can change the default COM port setting in the Nios I1 IDE.
Select Run and use the Target connection tab's Host COM port setting)

BEFORE DOWNLOADING THE HARDWARE DESIGN AND SOFTWARE, ENSURE THATYOU HAVE A
DY'Y~DLASWR OR USB BLASTER CABLE AND AN RS-232 SEWAL CABLE CONNECTING YOUR

Select Tools + Quartus I1 Programmer ... to configure the FPGA. When the
Quartus I1 Programmer appears, click on Add File... and select the
rpdsl6-time-1imited.sof file from your project directory. Click Open to add
the selected file to the download chain. Check the ProgramIConfigure box on
the row with your configuration file on it, and click Start to begin hardware
configuration.

Tutorial I l l : Nios I I Processor Software Development 303

When configuration is complete, a dialog box similar to the one in Figure 16.9
will appear. If you are using the fully licensed version of the software, this
dialog box will not appear. The weblstudent versions of Quartus I1 and Nios I1
create time-limited program files, but they will work fine as long as your PC is
attached and this dialog box remains open. Return to the Nios I1 IDE window.

Figure 16.9 Keep this dialog box open as long as the FPGA is being used.

From the Nios I1 IDE window, right click the rpds-software item in the
C/C++ Projects pane and select Build Project from the drop-down menu. This
will begin a full compilation of all libraries in your project.
To download the compiled code to the Nios I1 processor executing on the
FPGA, right click the rpds-software item in the C/C++ Projects pane and
select Run As * Nios I1 Hardware. The first time you select this option a run
settings dialog box appears. Click the Run button to close this box.

16.8 Executing the Software
Once the program code has been downloaded to the Nios I1 processor's
program memory (SRAM in this configuration), your code automatically
begins executing. If you are using one of the older ByteBlaster 11, ByteBlaster
MV, or ByteBlaster JTAG cables, then in rare cases you may experience
intermittent problems downloading your program to the Nios I1 processor. As a
part of the normal download process, the Nios I1 IDE downloads your program
to memory and then reads the program memory back to verify that the code in
program memory is correct. If there are any problems with downloading your
program, then the processor is stalled and a message that alerts you to this fact
appears in the Console pane in the bottom right-hand side of the Nios I1 IDE
window. If this happens, right click the rpds-software item in the C/C++
Projects pane and select Run As * Nios I1 Hardware again. If problems
persist, consider upgrading to Altera's USB Blaster JTAG cable.
Once your program begins executing, the Nios I1 IDE's Console pane becomes
a standard inputloutput terminal connected to your processor via the RS-232
UART device and cable. The text message "Hello World" should appear in the
Console pane as soon as your program begins. Also, the four LEDs on the UP 3
board should turn on and off one at a time.

16.9 Starting Software Design for a Peripheral Test Program
Now that you have written your first program and have it successfully running
on the UP 3 board, it is time to write a longer program that will test each of the
major peripheral components on the UP 3 board.

304 Rapid Prototyping of Digital Systems Chapter 16

A second project can be added to the current workspace, and since the same
Nios I1 processor is being used for all projects in this workspace, the same
system library can be used for them all. This option will be selected in the
dialog box shown in Figure 16.10.
To create a new project, select File c3 New c3 Project The New Project
wizard will begin. On the first dialog box, select C/C++ Application and click
Next to continue.
In the next dialog box, fill in the requested information. The name of the
project is rpds_up3_test, the SOPC Builder System should point to the
nios32.ptf file in your hardware project directory, and the Project Template
should be set to Blank Project. If the workspace was correctly set to your
project directory as detailed above, then the default location will be correct and
Use Default Location should be checked. However, if the workspace is set to
some other directory, then unselect Use Default Location and enter
c:\yourgroject_directory\software\rpds~up3test in the Location field. Click
Next to continue.
In the final dialog box, select the option Select or create a system library and
choose the rpds-software-syslib project from the list of Available System
Library Projects for: nios32 as shown in Figure 16.10. Click Finish to create
and open the project.

Figure 16.10 Since this project uses the same Nios I1 processor as your first program, the same

system library can be used. Select the rpds-software-syslib from the list of available libraries.

Tutorial Ill: Nios II Processor Software Development 305

Create a C header file by selecting the rpds-up3-test item in the C/C++
Projects pane. Choose File '3 New '3 Header File. When the dialog box
appears, enter rpds-up3-test.h for the Header File and click Finish to
continue.
Start your program's main header file by adding the #include and definition
statements shown in Figure 16.11.

Figure 16.11 This is the beginning o f your C program's main header file.

The C program that you will now write uses the four pushbuttons on the UP 3
board to select which device to test. When a pushbutton is pressed, it will be
decoded (in an interrupt handler) and a variable will be set. The program's main
thread will continuously read the function variable (at 50 ms intervals) and
initiate the appropriate peripheral test. The function variable will be cleared at
the end of each test routine so that buttons pressed while a peripheral is being
tested will be ignored. The mapping of pushbutton to device shown in Table
16.1 will be used.

Table 16.1 Pushbutton to Device Mapping for Sample C Program

Pushbuttons
(4-3-2-1)

0001

001 0

0100

1000

Peripheral
to Test

LCD Display

SRAM Memory

Flash Memory -
SDRAM Memory

306 Rapid Prototyping of Digital Systems Chapter 16

i n t main(void {
volatile int function = 0;
int ret-val;

while(1) {
switch(function) {

case 0x1: /* Test the LCD display */
ret-val = test-lcd0;
break;

case 0x2 : /* Test the SRAM */
ret-val = test-sram0;
break;

case 0x4: /* Test the Flash memory */
ret-val = test-flash0;
break;

case 0x8: /* Test the SDRAM */
ret-val = test-sdram0;
break;

default : /* Do nothing */
break;

1
function = 0;
usleep (50000) ; /* Wait 50 ms */

1
return (0) ;

1

Figure 16.12 This is the beginning of your C program's main source file.

Create your program's main C source file by selecting the rpds-up3-test item
in the C/C++ Projects pane. Choose File + New + File. When the dialog box
appears, enter rpds-up3-test.c for the File name and click Finish to continue.
Start your program by including the rpds-up3-test.h header file and typing the
code shown in Figure 16.12.

16.1 0 Handling Interrupts
Inputs can be evaluated using two methods-polling and interrupts. To poll an
input, your code can periodically check the value of the input device and
determine if the value has changed. If a change has occurred, then the
appropriate action should be taken to evaluate the input. An interrupt-driven
input, however, works differently. When the value of the input changes, an
interrupt signal is activated and the processor is alerted. The processor
immediately performs a jump into a section of code known as the interrupt
handler. This code determines which interrupt has occurred (most processors
support multiple interrupt signals) and calls the appropriate interrupt service

Tutorial Ill: Nios II Processor Software Development 307

routine (a function that has been written to handle the specific interrupt signal).
When the interrupt service routine has finished processing the input, the
processor returns to the code it was executing before the interrupt occurred.
The program you are writing will use a combination of polling and interrupt
driven inputs. The dipswitches and function variable will be polled every 50
ms. The value of the dipswitches will be displayed on the LEDs, and the value
of the function variable will determine which, if any, peripheral should be
tested.
The pushbuttons on the UP 3 board are represented by a 4-bit parallel I10 (PIO)
peripheral called buttons in the Nios I1 reference design that you are using for
this tutorial. The buttons P I 0 has been configured to generate an interrupt
whenever any pushbutton is pressed and released.
To support interrupts you first must create a function that will execute when an
interrupt occurs. This function is called an interrupt service routine (ISR). ISRs
should generally be very short and execute quickly. Add the function
buttons-isr as shown in Figure 16.13. The ISR function here reads the value of
the PIO'S edge capture register and stores it in the function variable. Next, it
resets the edge capture register and IRQ mask register to allow the next
interrupt to be captured and read properly.

static void buttons-isr(void* context, alt-u32 id) {
volatile int *function = (volatile int*) context;

*function = IORD-ALTERA-AVALON-PIO-EDGEECAP(BUTTONS-BASE) ;

IOWR-ALTERA-AVALON-PIO-EDGEECAP(BUTTONS-BASE, 0) ;

IOWR-ALTERA-AVALON-PIO-IRQQMASK(BUTTONS-BASE, OxF) ;

Figure 16.13 This is the interru~t service routine for the ~ushbuttons.

In your main function, you need to register your interrupt service routine and
set the pushbuttons' IRQ mask register to allow interrupts to be captured. Add
the two following lines before the while loop in your main function:

alt-irq-register (BUTTONS-IRQ, (void *) &function, buttons-isr) ;

IOWR-ALTERA-AVALON-PIO-IRQ-MASK(BUTTONS-BASE, OxF) ;

16.1 1 Accessing Parallel I10 Peripherals
Macros are included in the altera-avalon-pio-regs.h file that read and write
from the control and data registers in P I 0 components. You have already used
these macros in the pushbutton's interrupt service routine to read and write the
edge capture register and IRQ mask register. Now, you need to use these
macros to read the values from the dipswitches and write them to the LEDs.
Add the following two lines immediately above the usleep(50000) line in your
main function:

308 Rapid Prototyping of Digital Systems Chapter 16

switches = IORD-ALTERA-AVALON-PIO-DATA(SWITCHES-BASE) ;
IOWR-&TERA-AVALON-PIO-DATA(LEDS-BASE, switches) ;

You will also need to add a declaration for the integer variable switches to your
main function.

void lcd-init(void) {

/* S e t F u n c t i o n Code Four T imes - - 8-bi t , 2 l i ne , 5x7 mode */
IOWR (LCD-BASE , LCD-WR-COMMAND-REG , Ox3 8) ;

usleep (4100) ; /* W a i t 4 .1 ms */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, 0x38) ;

usleep(100); / * W a i t l O O u s * /
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, Ox3 8) ;

usleep (5000) ; /* W a i t 5 .0 ms */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x38) ;

usleep (100) ;

/* S e t D i s p l a y t o OFF */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, 0x08) ;

usleep (100) ;

/* S e t D i s p l a y t o ON */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, OxOC) ;

usleep (100) ;

/ * S e t E n t r y Mode - - C u r s o r i n c r e m e n t , d i s p l a y d o e s n ' t s h i f t */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x06) ;

usleep(100) ;

/* S e t the c u r s o r t o the home p o s i t i o n */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x02) ;

usleep(2000) ;

/* C l e a r the d i s p l a y */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x01) ;

usleep (2000) ;

1

Figure 16.14 This is the LCD initialization function.

16.12 Communicating with the LCD Display
The LCD display on the UP 3 board can be treated similarly to a memory
device. However, there are some additional initialization commands that must
be sent to the LCD display that are not typical memory transactions. LCD
initialization commands vary depending on the LCD controller chip that is on a
particular LCD display. The manufacturer's datasheet will detail the proper

Tutorial Ill: Nios II Processor Software Development 309

initialization procedure their LCD displays. The initialization routine for the
LCD display that ships with the UP 3 board is shown in Figure 16.14. Add this
routine to your C source file. Also, add a call to this function in your main
function preceding the line of code that calls the test-lcd function.
The code for test-lcd is shown in Figure 16.15. You will notice that this code
expects several constants to be defined. Add definitions for the following
constants in your rpds-up3-test.h header file:

LCD-WR-COMMAND-REG = 0

LCD-WR-DATA-REG = 2

The main function in your C source file should now be complete and look
similar to the code in Figure 16.16. Note that a few printfstatements have been
added to provide the user with the program's status while executing.

alt-u32 test-lcd(void) {
int i;
char message [l71 = "Counting.. .
char done [l21 = "Done! II .

/* Write a simple message on the f i r s t l ine . */
for(i = 0; i c 16; i++) {
IOWR(LCD-BASE, LCD-WR-DATA-REG, message
usleep(100) ;

1
/* Count along the bottom row */
/* Set Address */
IOWR(LCD - BASE, LCD-WR-COMMAND-REG, OxCO) ;

usleep (1000) ;
/* Display Count */
for(i = 0; i c 10; i++) {
IOWR (LCD-BASE, LCD-WR-DATA-REG, (char) (i+Ox30)) ;

usleep(500000) ; /* Wait 0 .5 sec. */
1

/* Write "Done! " message on f i r s t l ine . */
/* Set Address */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, Ox8 0) ;

usleep (1000) ;
/* Write data */
for(i = 0; i c 11; i++) {
IOWR (LCD-BASE , LCD-WR-DATA-REG , done [i]) ;

usleep (100) ;

1
return(0) ;

1

Figure 16.15 This is the code to test the LCD dis~lav.

Rapid Prototyping of Digital Systems Chapter 16

int main (void) {
volatile int function = 0;
alt-u32 switches, ret-val;

printf (llWelcome to the Nios I1 Test Program\nI1) ;

alt-irxregister(BUTT0NS-IRQ, (void *) &function, buttons-isr);
IOWR-ALTERA-AVALON-PIO-IRQ~MASK(BUTTONS-BASE, OxF) ;

while(1) {
switch(function) {
case 0x1: /* T e s t the LCD d i s p l a y */
printf ("Testing LCD Display\n1I) ;
lcd-init () ;
ret-val = test-lcd 0 ;
printf (" . . .Completed.\n') ;

break;
case 0x2: /* T e s t the SRAM */
printf ("Testing SRAM\nI1 ;

ret-val = test-sram0 ;
printf("...Completed with %d ~rrors.\n", ret-val) ;

break ;
case 0x4: /* T e s t the F l a s h memory */
printf("Testing Flash memory\nw) ;

ret-val = test-£lash();
print£("...Completed with %d ~rrors.\n", ret-val) ;

break;
case 0x8: /* T e s t t h e SDRAM */
printf ("Testing SDRAM\nrl) ;
ret-val = test-sdram0 ;
printf(tl...Completed with %d Errors.\nn, ret-val) ;

break;
default : /* Do n o t h i n g */
break;

1

function = 0;

switches = IORD-ALTERA-AVALON-PIO-DATA(SWITCHES-BASE) ;

IOWR-ALTERA-AVALON-PIO-DATA(LEDS-BASE, switches) ;

usleep (50000) ;

1

return (0) ;

Fieure 16.16 This is the comvleted main function.

Tutorial Ill: Nios II Processor Software Development 31 1

16.13 Testing SRAM
To test the S U M , you will write a large number of values to memory and then
read back from the same memory locations to verify that the contents of
memory are what you expect. Since SRAM is currently being used for program
and data memory, accessing SRAM is straight-forward. Any array that is
created in a function will be stored in data memory (e.g., in SRAM). The code
for test-sram is shown in Figure 16.17. You will notice that this code expects
the constant value SRAM-MAX-WORDS to be defined. Add a definition for
this constant to your rpds-up3-test.h header file and set it equal to 8000.
This test routine assumes that there is not a data cache memory present in the
Nios I1 system. If data cache is present, then declaring an array in a function
like test-sram would not ensure SRAM writes, because the data cache memory
could be used as a temporary buffer. Since this function is very short and the
array's scope is internal to the function, it is highly likely that the array data
would never be written to SRAM. To avoid these potential issues, the reference
hardware design used in this tutorial does not include data cache.

alt-1132 test-sram(void) {
alt-u32 i, val;
alt-u32 errors = 0;
alt u32 buffer [SRAM-MAX-WORDS] ; -

/* Write data to SRAM */
for(i = 0; i c SRAM-MAX-WORDS; i++) {
buffer[i] = i + 1000;

1
/* Check output from SRAM */
for (i = 0; i c SRAM-MAX-WORDS; i++) {

if (buffer[il ! = (i+1000))
errors++ ;

I
return (errors) ;

I

Figure 16.17 This is the code to test the SRAM memory device.

312 Rapid Prototyping of Digital Systems Chapter 16

16.14Testing Flash Memory
Flash memory is organized into blocks of data and is accessed in a different
manner than SRAM and SDRAM. The Nios I1 HAL interface includes memory
access functions for Flash devices that conform to the Common Flash Memory
Interface (CFI) standard. The functions alt-flash-open-dev, alt-read-flash,
alt-write-flash, and alt-flash-close-dev provide an interface that is very
similar to file 110. These subroutines and more lower-level functions are all
declared in the syslalt-flash.h header file.
Flash memory write operations happen at the block level meaning that to write
a block or any portion of a block (down to a single byte of data) requires the
entire block of data to be erased and overwritten. When writing to a partial
block of data, the user is responsible for reading the portion of the block that is
not to be overwritten, storing it, and passing it with the new data as a complete
block to be written. Also, keep in mind that Flash memory typically has a life
expectancy of 100,000 write cycles. Because of the overhead involved in
writing partial blocks of data and the finite number of write cycles for a given
Flash memory device, it is best to buffer data until a full block can be written to
Flash memory.
The code for test-flash is shown in Figure 16.18. The data to be written to
flash is buffered in the in-buff array located in data memory. Once is it full, the
entire buffer is sent to the alt-flash-write command which partitions it into
blocks of data and writes the full blocks to Flash memory. Depending on the
total length of the in-buff array the final block written may be a partial block,
but at least it will only get written once. You will also notice that this code
expects the constant value FLASH-MAX-WORDS to be defined. Add a
definition for this constant to your rpds-up3-test.h header file and set it equal

Tutorial Ill: Nios I1 Processor Software Development 31 3

alt-u32 test-flash(void) {
alt-u32 i, errors = 0;
alt-u32 in-buf f [FLASH-MAX-WORDS] , out-buf f [FLASH-MAX-WORDS] ;
alt-flash-fd* flash-handle;

flash-handle = alt-flash-open-dev(FLASH-NAME) ;

/* Create data buffer to write to Flash memory */
for(i = 0; i c FLASH-MAX-WORDS; i++) {
in-buff [i] = i + 1000000;

1

/* Write data to Flash memory */
alt-write-flash(flash-handle, 0, in-buff, FLASH_MAX_WORDS*4) ;

/* Read data from Flash memory */
alt-read-flash(flash-handle, 0, out-buff, FLASH-MAX-WORDS*4 1;

/* Check output from Flash memory */
for (i = 0 ; i c FLASH-MAX-WORDS; i++) {
if (out-buf f [i] ! = (i+1000000))
errors++ ;

I

alt-flash-close-dev(flash-handle) ;

return (errors) ;

1

Fieure 16.18 This is the code to test the Flash memorv device.

16.15 Testing SDRAM
To test the SDRAM, write a large number of values to memory and then read
the same memory locations and verify that the contents of memory are the
expected values. To access the SDRAM on the UP 3 board, a pointer to the
SDRAM memory space can be used. Once a pointer has been initialized to an
address in the SDRAM memory space, that pointer can be dereferenced like an
array to store values in successive SDRAM memory locations. This method of
accessing memory would use the data cache if it were present (which it is not in
the reference example). If you are using a Nios I1 processor with data cache and
you want to access SDRAM directly (bypassing the data cache), then use you
need to use the IORD and IOWR macros as shown in the previous sections.
The code for test-sdram is shown in Figure 16.19. You will notice that this
code expects the constant value SDRAM-MAX-WORDS to be defined. Add a
definition for this constant to your rpds-up3-test.h header file and set it equal
to 1000000.

314 Rapid Prototyping of Digital Systems Chapter 16

alt-u32 test-sdram(void) {
alt-u32 i;
alt-u32 errors = 0;
alt-u32 *buffer = (alt-u32 *)SDRAM_BASE;

/* Write data to SDRAM */
for(i = 0; i < SDRAM-MAX-WORDS; i++) {
buffer[i] = (i + 1000000) ;

/* Check output from SDRAM */
for (i = 0 ; i < SDRAM-MAX-WORDS ; i++) {
if (buffer[il != (i+1000000))
errors++;

Figure 16.19 This is the code to test the SDRAM memory device.

Your C source and header files should now be complete. Figure 16.20 shows
the final rpds-up3-test.h header file, and Figure 16.21 shows the final
rpds-up3-test.c file.

/* LCD constants */
#define LCD-WR-COMMAND-REG 0
#define LCD-WR-DATA-REG 2

/* Memory constants */
#define SRAM-MAX-WORDS
#define FLASH-MAX-WORDS
#define SDRAM-MAX-WORDS

Figure 16.20 This is the final copy of the rpds-up3-test.h header file.

Tutorial Ill: Nios II Processor Software Development 315

static void buttons-isr(void* context, alt-1132 id) {
volatile int *function = (volatile int*) context;

*function = IORD-ALTERA-AVALON-PIO-EDGEECAP(BUTTONS-BASE) ;

I ~ W R ~ A L T E R A ~ A V A L ~ N ~ P I O ~ E D G E ~ C A P (BUTTONS-BASE, 0) ;

IOWR-ALTERA-AVALON-PIO-IRQQMASK(BUTTONS-BASE, OxF) ;

1

void lcd-init(void) {
/* Set Function Code Four Times - - 8-bi t, 2 line, 5x7 mode */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x38) ;

usleep(4100) ; /* Wait 4.1 ms */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, Ox3 8) ;

usleep (100) ; /* Wait 100 us */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x38) ;

usleep(5000) ; /* Wait 5.0 ms */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x38) ;

usleep (100
/* Set Display to OFF */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, 0x08) ;

usleep(100) ;
/* Set Display to ON */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, OxOC) ;

usleep (100) ;
/* Set Entry Mode - - Cursor increment, display doesn ' t shift */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, 0x06) ;

usleep(100) ;
/* Set the cursor to the home position */
IOWR (LCD-BASE, LCD-WR-COMMAND-REG, 0x02) ;

usleep(2000) ;
/* Clear the display */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x01) ;

usleep(2000) ;

1

alt-u32 test-lcd(void) {
int i;
char message[17] = "Counting.. .
char done [l21 = "Done ! II .

/* Write a simple message on the first line. */
for(i = 0; i < 16; i++) {
IOWR (LCD-BASE, LCD-WR-DATA-REG, message [i]) ;
usleep(100) ;

Figure 16.21 This is the final copy of the rpds-up3-test.c source file.

316 Rapid Prototyping of Digital Systems Chapter 16

/* Count along the bottom row */
/* Set Address */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, OxCO) ;

usleep (1000) ;
/* Display Count */
for(i = 0; i c 10; i++) {
IOWR (LCD-BASE, LCD-WR-DATA-REG, (char) (i+Ox3 0)) .
usleep(500000); /* Wait 0.5 sec. */

I

/* Write "Done! " message on first line. */
/* Set Address */
IOWR(LCD-BASE, LCD-WR-COMMAND-REG, 0x80) ;

usleep(1000) ;
/* Write data */
for(i = 0; i c 11; i++) {
IOWR (LCD-BASE , LCD-WR-DATA-REG , done [i I) ;

usleep (100) ;

I
return (0) ;

1

alt-u32 test-sram(void) {
alt-u32 i, val;
alt-u32 errors = 0;
alt u32 buffer[SRAM-MAX-WORDS] ; -

/* Write data to SRAM */
for(i = 0; i < SRAM-MAX-WORDS; i++) {
buffer[il = i + 1000;

1
/* Check output from SRAM */
for(i = 0; i < SRAM-MAX-WORDS; i++) {
if (buffer[il ! = (i+1000))
errors++ ;

I
return (errors) ;

1

alt-u32 test-flash(void) {
alt-u32 i, errors = 0;
alt-u32 ~~-~u~~[FLASH-MAX-WORDSI, out-buff [FLASH-MAX-WORDS] ;
alt-flash-fd* flash-handle;

flash-handle = alt-flash-open-dev(FLASH-NAME) ;

Figure 16.21 continued

Tutorial Ill: Nios II Processor Software Development 317

/* Create data buffer to write to Flash memory */
for(i = 0; i c FLASH-MAX-WORDS; i++) {
in - buff [i] = i + 1000000;

I

/* Write data to Flash memory */
alt-write-flash(flash-handle, 0, in-buff, FLASH-MAX-WORDS*4) ;

/* Read data from Flash memory */
alt-read-flash(flash-handle, 0, out-buff, FLASH_MAX_WORDS*4) ;

/* Check output from Flash memory */
for(i = 0; i < FLASH-MAX-WORDS; i++) {
if (out-buff [i] != (i+1000000))
errors++ ;

I

alt-flash-close-dev(flash-handle)

return (errors) ;

I

alt-u32 test-sdram(void) {
alt-u32 i;
alt-u32 errors = 0;
alt-u32 *buffer = (alt-u32 *)SDRAM-BASE;

/* Write data to SDRAM */
for (i = 0; i < SDRAM-MAX-WORDS; i++) {
buffer[il = i + 1000000;

I
/* Check output from SDRAM */
for(i = 0; i < SDRAM-MAX-WORDS; i++) {
if (buffer[il != (i+1000000))
errors++;

I
return (errors) ;

I

int main(void) {
volatile int function = 0;
alt-u32 switches, ret-val;

printf (I1Welcome to the Nios I1 Test Program\nu) ;

alt-ir~register(BUTT0NS-IRQ, (void *) &function, buttons-isr);
IOWR-ALTERA-AVALON-PIO-IRQ-MASK(BUTTONS-BASE, OxF) ;

Figure 16.21 continued

318 Rapid Prototyping of Digital Systems Chapter 16

while(1) {
switch(function) {
case 0x1: /* Test the LCD display */
printf ("Testing LCD Display\nft) ;
lcd-init () ;

ret-val = test-lcd0;
printf (" . . .Completed. \nut) ;
break;

case 0x2: /* Test the SRAM */
printf ("Testing SRAM\nBt) ;
ret-val = test-sram () ;

print£("...Completed with %d Errors.\nn, ret-val) ;

break;
case 0x4: /* Test the Flash memory */
printf("Testing Flash Memory\nN) ;

ret-val = test-flash();
print£(" . . . Completed with %d Errors.\nW, ret-val) ;

break;
case 0x8: /* Test the SDRAM */
printf ("Testing SDW\~") ;

ret-val = test-sdram0;
print£(" ... Completed with %d Errors.\n", ret-val) ;

break;
default : /* Do nothing */
break;

1
function = 0;
switches = IORD-ALTERA-AVALON-PIO-DATA(SWITCHES-BASE) ;

IOWR-ALTERA-AVALON-PIO-DATA(LEDS-BASE, switches) ;

usleep (50000) ;

1
return (0) ;

Figure 16.21 continued

16.16 Downloading the Nios II Hardware and Software Projects
To execute your software on a Nios I1 processor, you must configure the FPGA
with the Nios I1 hardware reference design and then you can download the
compiled program code to the processor's program memory.

Select Tools + Quartus I1 Programmer ... to configure the FPGA. When the
Quartus I1 Programmer appears, click on Add File ..., and select the
rpdsl6-time-1imited.sof file from your project directory. Click Open to add
the selected file to the download chain. Check the ProgramIConfigure box on

Tutorial Ill: Nios II Processor Software Development 31 9

the row with your configuration file on it and click Start to begin hardware
configuration.

When configuration is complete, a dialog box similar to the one in Figure 16.22
will appear. The student version of Quartus I1 and Nios I1 creates time-limited
program files. These programs will work fine as long as your PC is attached
and this dialog box remains open. Therefore, leave the window open and return
to the Nios I1 IDE window.

LipenCole Plus Slatcis

Click Cancel to stop usng OpenGne Plus IP

Tune remaining

Figure 16.22 Keep this dialog box open as long as the FPGA is being used.

From the Nios I1 IDE window, right click the rpds-up3-test item in the
C/C++ Projects pane and select Build Project from the drop-down menu. This
will begin a full compilation of all libraries in your project.

To download the compiled code to the Nios I1 processor executing on the
FPGA, right click the rpds-up3-test item in the C/C++ Projects pane and
select Run As * Nios I1 Hardware.

16.1 7 Executing the Software
Once the program code has been downloaded to the Nios I1 processor's
program memory (SRAM in this configuration), your code should
automatically start executing. If you are using one of the older ByteBlaster 11,
ByteBlaster MV, or ByteBlaster JTAG cables, then in rare cases you may
experience intermittent problems downloading your program to the Nios I1
processor. As a part of the normal program download, the Nios I1 IDE verifies
that the code in program memory is the same as downloaded program before
program execution begins. If there are any problems with downloading your
program then the processor is stalled and a message that alerts you to this fact
appears in the Console pane in the bottom right-hand side of the Nios I1 IDE
window. If this happens, right click the rpds-up3-test item in the C/C++
Projects pane and select Run As * Nios I1 Hardware again. If problems
persist, consider upgrading to Altera's USB Blaster JTAG cable.

Once your program begins executing, the Nios I1 IDE's Console pane becomes
a standard inputloutput terminal connected to your processor via the RS-232
UART device and cable. Press each of the four pushbuttons in turn. A different
device will be tested when each button is pressed and released. Look at the text
in the Console pane to verify that the proper test is being executed.
Change the dipswitches' value and verify that the appropriate LEDs light.

320 Rapid Prototyping of Digital Systems Chapter 16

IMPORTANT NOTE: Peripheral ICs on the UP 3 board can come from
several manufacturers. While they are generically equivalent, they may exhibit
slightly different characteristics and timing. UP 3 boards currently contain one
of two brands of Flash memory chips, Toshiba and Excelsemi. UP 3 boards that
contain a Toshiba Flash memory chip currently do not program and will not
pass the example Flash memory test. The Flash memory chip, U8, is located
directly below the large square FPGA chip in the middle of the UP 3 board, and
the manufacturer's name is printed on the chip. The Toshiba chip requires a
new Flash driver that is being developed at the time of this printing. If your UP
3 project requires Flash memory and you verify that you have the Toshiba
chips, check for the Toshiba Flash driver, software updates, and specific
information about different chips on UP 3 boards at the book's website:

http://w~v.ecc.~atech.edu/users/hamblen/book/bookte.htm

16.1 8 For additional information
This chapter has provided a brief overview of Nios I1 Software development.
Additional information can be found at Altera's website (www.altera.com) in
the Nios 11 Software Developer b Handbook and at the Nios Community forum
(www.niosforum.com).

16.1 9 Laboratory Exercises
Write a C program to blink the four LEDs in a reversing shift pattern on the UP 3 board.
After the last LED in each direction turns on, reverse the direction of the shift. Run and
demonstrate the program on the UP 3 board. Recall that C supports shift operations ("<<"
and ">>") and you will need a time delay in your code to see the LEDs blink.

Write a C program that displays a count of the seconds that the program has been running
in the LCD display on the UP 3 board. Demonstrate the program on the UP 3 board.

Expand the C program in the previous problem to display the elapsed time in hours,
minutes, and seconds on the LCD. Have one pushbutton reset the time to zero and
another pushbutton start and stop the timer just like a stopwatch.

Memory test programs cannot test all possible patterns. Research the various algorithms
widely used in more thorough memory test programs and write your own more advanced

Tutorial Ill: Nios II Processor Software Development 32 1

memory test program for SRAM. Most memory test programs use several algorithms to
check for different types of faults. Execute the test code from SDRAM.

5. Write a retro version of the 1970's classic kill the bit computer game for the UP 3. The
goal in the kill the bit game is to turn off all of the four LEDs using the four pushbuttons.
The game starts with an initial non-zero pattern displayed in the LEDs. The pattern
constantly does a circular shift moving through the LEDs in a loop with a time delay to
slow down the shifts. If you hit one of the four pushbuttons exactly when the the same
number LED is turned on, it will turn off one LED in the pattern. If you hit a pushbutton
and it's LED is off another LED turns on.

Here is how the program works. Each time just before the pattern shifts, the pattern is bit-
wise exclusive or'ed with one input sample from the pushbuttons to generate a new
pattern. When both the pushbutton is pushed and its corresponding bit in the pattern are
High, one less bit will be High in the new pattern after the exclusive or (i.e., 1 xor 1 is 0).
After the shift, one less LED will be turned on since there is one less "1" in the new
pattern. If your timing is off and the LED is not turned on when you hit the pushbutton, a
new high bit will be generated in the pattern (i.e., 1 xor 0 is 1). When this happens, the
new "1" bit in the pattern lights another LED. Note that you need a "1" when a
pushbutton is pressed and a "1" to turn on an LED for the xor function to work.

Display the elapsed time in the LCD display and stop the time display when a player
wins the game (turns out all LEDs). Adjust the shift time delay for reasonable game play.
Blink all of the LEDs when a player wins. If you want a more challenging game, use a
pattern and shift register larger than four bits and just display four bits at a time in the
LEDs.

6 . Port an interesting C application program to the UP 3. Execute the application from
SDRAM.

Tutorial I E Nios 11
Processor Hardware
Design

SOPC Builder is a GUI-based hardware design tool used to configure the Nios I1
processor core options and to design bus and 110 interfaces for the processor.

324 Rapid Prototyping of Digital Systems Chapter 17

17 Tutorial IV: Nios II Processor Hardware Design
Designing systems with embeddeded processors requires both hardware and sojbvare
design elements. A collection of CAD tools developed by Altera enable you to design
both the hardware and sof iare for a fully functional, customizable, sop-core processor
called Nios II. This tutorial steps you through the hardware implementation of a Nios 11
processor for the UP 3 board, and Tutorial 111 (in the preceding chapter) introduces the
software design tools for the Nios Ilprocessor.

Upon completion of this tutorial, you will be able to:

Navigate Altera's SOPC Builder (Nios I1 processor design wizard),

Generate a custom Nios I1 processor core,

Create a PLL that supplies a clock signal for the on-board SDRAM, and

Specify the top-level pin assignments and project settings necessary for
implementing the Nios processor on the UP 3 board.

17.1 Install the UP 3 board files
Locate the booksoft\chapl7 directory on the CD-ROM that came with the
book. In this directory, there are two subdirectories called up3-tristate-lcd and
up3-tristate-sram. Copy both of these subdirectories to the
quartu~~install_dir\sopc~builder\components\ directory on your local hard
drive.

Figure 17.1 Import the default pin and project assignments for the UP 3 board.

17.2 Creating a New Project
Create a new Quartus I1 project as illustrated in Tutorial I (see Section 1 of
Chapter 1). Use the project name rpdsl7 and create a top-level Block
DiagramISchematic file named rpdsl7.bdf.
Import the pin assignments and project settings file from the CD-ROM by
choosing Assignments C3 Import Assignments Enter the full path for the
booksoft\chapl7\up3~lc6.qsf file located on the CD-ROM that came with this
book as shown in Figure 17.1. (If you are using a UP 3 board with the larger
1C12 FPGA on it, then you must use the booksoft\chapl7\up3~lcl2.qsf file

Tutorial IV: Nios II Processor Hardware Design 325

located on the CD-ROM.) Click on the Advanced button and verify that the
settings match the dialog box in Figure 17.2. If different settings are used, then
all of the pin and project assignments may not be made correctly, and
downloading your project to the UP 3 board could damage it. When the settings
are correct, click OK to exit the dialog box. Click OK in the Import
Assignments dialog box to import the settings.

Fieure 17.2 It is imvortant that the Advanced Imvort Ovtions be set as shown here.

17.3 Starting SOPC Builder
A Nios I1 processor is created using the SOPC Builder wizard. Within this
wizard, you can specify the settings for the Nios I1 processor, add peripherals,
and select the bus connections, 110 memory mapping, and IRQ assignments for
the processor. To start the SOPC Builder, choose Tools E3 SOPC Builder... .

Figure 17.3 Specifying the name of the Nios I1 processor for your system.

326 Rapid Prototyping of Digital Systems Chapter 17

In the Create New System dialog box, enter the name nios32, and set the
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC
Builder with a blank project titled nios32.
The system settings in the top part of SOPC Builder window must be set for the
board and device that you are using. For the UP 3 board, the on-board clock
circuit is 48.0 MHz; therefore, enter 48.0 in the clk field. Select Cyclone as
Device Family and Unspecified Board in the Board field. When these settings
have been entered, your SOPC Builder window should look similar to the
screen shot in Figure 17.4.

- .- _-
I b ,a 9DPc hi* : oPor32

Figure 17.4 Beginning a Nios I1 design in the SOPC Builder.

Take a minute to familiarize yourself with the layout of the SOPC Builder
window. Along the left-hand side, there is an expandable list of components
organized by category that can be added to a Nios I1 system. Click on the "+"
symbol next to the items in this list to expand the list of components for each
category. Under the Avalon Components category, there are a number of
development boards listed. Expanding these items will reveal components that

Tutorial IV: Nios II Processor Hardware Design 327

are specific to these boards. If you installed the design files as discussed in
Section 17.1, then the UP 3 development board category will appear under
Avalon Components.

17.4 Adding a Nios II Processor
The first component that you will add to your Nios I1 processor design is the
processor core itself. In the list of components on the left-hand side of the
SOPC Builder, expand the Avalon Components category and select the Nios I1
Processor - Altera Corporation component. Click the Add... button at the
bottom of the component list.
When a component is added to your system, a dialog box will appear that
allows you to select options and set specific parameters for this particular
implementation. For the Nios I1 processor, the dialog box shown in Figure 17.5
will appear. This first selection will determine the general parameters of the
Nios I1 processor. Notice that there are three general configurations allowed
that vary in size, performance, and functionality. Select the middle
configuration, Nios 111s as shown in Figure 17.5. In the Hardware Multiply
field, select Logic Elements, and click Next to continue.
The next dialog box allows you set the size of the instruction cache in the Nios
I1 processor. Keep the default value (4 KB), and click Next to continue.

Figure 17.5 Nios I1 s u ~ ~ o r t s three different general configurations. Select Nios 111s for this tutorial

Nios I1 processors can be compiled with support for one of four different
debugging systems. The differences between them are shown in Figure 17.6,
along with the FPGA resources required to implement each type of debugging.
There is an order of magnitude difference in the number of logic elements
required to implement Level 4 debugging versus Level 1 debugging. This
difference is significant when compared to the overall size of the Nios I1

328 Rapid Prototyping of Digital Systems Chapter 17

processor. The Level 4 debugging system is two to three times larger then the
Nios 111s processor itself. Since the cost of FPGAs are largely based on their
size, the debugging logic will typically be removed before a design enters
production to minimize the number of logic elements, and thus the size of the
FPGA, required for the production quantities.
The full features of Level 3 and Level 4 debugging are only available when a
license from First Silicon Solutions, a third-party company, is purchased. The
availability of this license within your company or school along with the
complexity of your end system and the size of the FPGA available will be the
primary factors in determining which debugging system should be selected- for
a given system. For this tutorial, select Level 1 (the default), and click Next to
continue.
The final option in the Nios I1 processor configuration is the adding of custom
instructions. Nios I1 processors allow the addition of up to 256 custom
instructions into the processor's data path. These can be used to further
customize your processor for a specific task. For this tutorial, no custom
instructions will be added. Click Finish to complete the Nios I1 configuration
for this system.

Figure 17.6 Nios I1 supports four levels of debugging capabilities. Select Level 1 for this tutorial.

When the SOPC Builder window reappears, the Nios I1 processor will appear as
an added component in the main part of the window with the default module
name cpu-0. Also, a number of error and warning messages will appear in the
console at the bottom of the SOPC Builder window. These messages result
from there not being any defined memory in the system yet. When memory is
added in the next few sections, the messages will disappear. Right-click on the
cpu-0 name and select Rename from the drop-down menu. Rename the
module to cpu.

Tutorial IV: Nios I I Processor Hardware Design 329

17.5 Adding UART Peripherals
Two UART peripherals are needed for this system: a JTAG UART and an RS-
232 serial UART. The ByteBlaster or USB Blaster JTAG cable that is used to
configure the FPGA can also be used as a UART device after the FPGA is
configured. (The JTAG cable is also used as the communication channel
between the PC and the debugging logic selected for the Nios I1 processor.) The
Nios I1 software integrated development environment (IDE) uses the JTAG
UART as the default device for downloading your software instructions to the
Nios I1 processor and was used for that purpose in the previous tutorial on
software design.
Add the JTAG UART device by expanding Avalon Components *
Communication. Select JTAG UART and click Add When the JTAG
UART Configuration dialog box appears, click Finish to accept the default
values for all fields and add the component. In the SOPC Builder, rename the
JTAG UART module to jtag.

Figure 17.7 These are the settings for the RS-232 UART device to be added to the Nios I1 svstem.

If you are using a USB Blaster JTAG cable, then you can use the JTAG UART
for all serial communication between the PC and the Nios I1 processor and can
skip to the next section. However, if you are using the older ByteBlaster 11,
ByteBlaster MV, or ByteBlaster cables, then you need to add a second RS-232
UART for run-time serial communication. These older JTAG cables do not
transmit the run-time serial data robustly. Some setups have been known to
work; however, it is more reliable to use a standard serial UART and 9-pin
serial cable for stdin, stdout, and stderr data.

330 Rapid Prototyping of Digital Systems Chapter 17

Add the RS-232 UART peripheral by expanding Avalon Components +
Communication. Select UART (RS-232 serial port) and click Add... . When
the UART configuration dialog box appears, set the options as shown in Figure
17.7. Click Finish to add the component. In the SOPC Builder, rename the
UART module to uart.

17.6 Adding an Interval Timer Peripheral
Most processor designs require at least one timer. This timer is used to delay
the processor, coordinate transactions, timestamp events, generate time slice
interrupts for an operating system scheduler, a watchdog timer, and more. The
Nios I1 timer peripheral is flexible; it has several options and three predefined
configurations. Add a full-featured interval timer to your Nios I1 processor by
expanding Avalon Components * Other. Select Interval Timer and click
Add. ... When the timer configuration dialog box appears, set the options as
shown in Figure 17.8. Click Finish to add the component. In the SOPC Builder,
rename the timer module to timer0. The "0" is appended to the timer name here
to provide a consistent naming convention for your timers if additional timers
are added at a later time. It is not unusual for a processor to have two or three
timers - often of different configurations for specific uses.

1 Avalon Timer - timer-0 [X I

Figure 17.8 These are the settings for the interval timer device to be added to the Nios I1 system.

Tutorial IV: Nios II Processor Hardware Design 331

(a) (b)

Figure 17.9 These are the settings for the vushbutton P I 0 device to be added to the Nios I1 svstem.

17.7 Adding Parallel I10 Components
Many processors require a certain amount of general-purpose I10 pins. These
pins can be attached directly to pushbuttons, switches, LEDs, and similar I10
devices. They can also be attached to relatively simple or low bandwidth
interfaces that don't have a large amount of overhead associated with data
transmission. Examples of these types of interfaces include PSl2, I ~ C , SPI, and
parallel data interfaces.
In addition, general-purpose I10 pins can be used to pass low-bandwidth data
between a custom VHDL or Verilog block and the Nios I1 processor. A faster
method of transferring data to a VHDL block is to create a custom peripheral
that can attach to the Avalon bus. Implementing a VHDL module that is
compliant with the Avalon bus specification is more involved and requires more
logic elements than using general-purpose I10 pins, but it does provide a faster
more efficient interface.
General-purpose I10 pins are added to the Nios I1 processor with the PI0
(Parallel 110) component. The P I 0 component has a number of options for
customizing general-purpose I10 interfaces. PI0 interfaces can be specified as
input only, output only, or bidirectional. If bidirectional is selected here, then
the direction of each pin must be set in the direction register at run-time via
software. Input PI0 interfaces can also have various interrupt and edge capture
capabilities including the capturing of either or both edges and edge or level-
sensitive interrupt triggers.
For this tutorial, you will add three PI0 components: one for the pushbuttons,
one for the dipswitches, and one for the LEDs. First, add a P I 0 component for

332 Rapid Prototyping of Digital Systems Chapter 17

the pushbuttons to your processor design by expanding Avalon Components +
Other. Select P I 0 (Parallel 110) and click Add.. .. When the PI0
configuration dialog box appears, set the Width of the interface to 4 bits (there
are four pushbuttons) and set the Direction to Input ports only as shown in
Figure 17.9(a). Click Next to continue. On the next configuration page, set the
options as shown in Figure 17.9(b). Click Finish to add the component. In the
SOPC Builder, rename the PI0 module to buttons.
Using the same procedure as above, add a second PI0 component for the
dipswitches. The settings for the PI0 devices are shown in Figure 17.10.
Rename this PI0 module to switches.

(4 (b)

Figure 17.10 These are the settings for the dipswitch P I 0 device to be added to the Nios I1 system.

Finally, add a third PI0 component for the LEDs. On the first configuration
page, set 4 bits for the Width, and set the Direction to Output ports only.
When the PI0 is an output-only device, the interrupt and edge-capture options
are not applicable. Rename this PI0 module to leds.

17.8 Adding a SDRAM Memory Controller
There are three types of memory on the UP 3 board: SDRAM, SRAM, and
Flash. Each type of memory requires is own unique memory controller and
must be added individually. Add the SDRAM memory controller by expanding
Avalon Components + Memory. Select SDRAM Controller and click
Add. ... The SDRAM controller must be configured for the timing requirements
of the specific SDRAM brand and model being used. The configuration and
timing values requested here are typically available in the datasheet for
SDRAM ICs. For the SDRAM modules on the UP 3 board, set the options in

Tutorial IV: Nios I I Processor Hardware Design 333

the configuration dialog boxes to the values shown in Figure 17.11. Click
Finish to add the component. In the SOPC Builder, rename the SDRAM
controller module to sdram.

Figure 17.11 These are the SDRAM controller settings for use with the SDRAM on the UP 3 board.

17.9 Adding an External Bus
The SRAM, Flash, and LCD display devices on the UP 3 board share a
common address and bidirectional data bus. Having multiple external devices
like these share the same address and data bus pins can dramatically reduce the
number of pins required on the FPGA, and the Nios I1 processor supports this
type of bus sharing with its tristate bus components. To accommodate the
bidirectional data bus and multiple devices on a single bus, an Avalon Tri-state
Bridge component must be added. The Avalon tri-state bridge creates a
peripheral (tri-state) bus to which multiple memory controllers and other
external components can be attached. It also provides a seamless interface
between the peripheral bus and the main system bus. A conceptual drawing of
this arrangement is shown in Figure 17.12.
Add the Avalon Tri-state Bridge component by expanding Avalon Components
+ Bridges. Select Avalon Tri-state Bridge and click Add... . There is only one
option for this component: registered or not registered. Select Registered and
click Finish to add the component. In the SOPC Builder, rename the bridge
module to ext-bus.

334 Rapid Prototyping of Digital Systems Chapter 17

(bus slave) r-l (bus slaw) Kl
f Perhheral Tri-state Bus

Figure 17.12 This is a conceptual drawing of the bus configuration with the Tristate Bridge

connecting the main system bus and the shared peripheral bus.

17.10Adding Components to the External Bus
Once the Avalon tri-state bridge has been added, the peripherals that are going
to connect to the external peripheral bus can be added. First, add the Flash
memory controller by expanding Avalon Components Memory. Select
Flash Memory (Common Flash Interface) and click Add... . When the Flash
memory configuration dialog box appears, set the options as shown in Figure
17.13.

IMPORTANT NOTE: Peripheral ICs on the UP 3 board can come from
several manufacturers. While they are generically equivalent, they may exhibit
slightly different characteristics and timing. UP 3 boards currently contain one
of two types of flash memory chips, Toshiba and Excelsemi. UP 3 boards that
contain a Toshiba flash memory chip currently will not program and do not
pass the example flash memory test. The flash memory chip, U8, is located
directly below the large square FPGA chip in the middle of the UP 3 board. The
manufacturer's name is printed on the flash chip. The Toshiba chips require
new flash driver software that is being developed at the time of this printing. If
your UP 3 project requires flash memory and you verify that you have the
Toshiba chips, check for Toshiba flash driver software updates and specific
information about different chips on UP 3 boards at the book's website:

Add the SRAM memory controller to your Nios I1 processor by expanding
Avalon Components C3 UP3 Development Board. Select up3-tristate-sram
and click Add... . When the SRAM configuration dialog box appears, leave the

Tutorial IV: Nios I I Processor Hardware Design 335

default values and click Finish to add the component. In the SOPC Builder,
rename the timer module to sram.
Add the LCD component to your Nios I1 processor by expanding Avalon
Components c3 UP3 Development Board. Select up3-tristate-lcd and click
Add... . This component does not have any configuration options; therefore, no
dialog box will appear. The LCD component will be added to the list of
peripherals in your Nios I1 processor. In the SOPC Builder, rename the LCD
module to lcd.

Figure 17.13 These are the Flash memory settings for use with the Flash on the UP 3 board.

17.1 1 Global Processor Settings
All of the necessary peripherals have been added now. The next step is to
configure some global settings for your processor.
The Nios I1 processor uses a memory-mapped 110 scheme for accessing
peripherals. Each component added to the system is assigned a unique set of
memory addresses. Any device or data registers needed for a particular
peripheral can be accessed by reading from or writing to its respective memory
address. In general, the specific memory address assignments do not matter as
long as the assigned memory address spaces do not overlap. If the Nios I1
system is going to be a part of a legacy system, there may be some constraints
placed on the memory address assignments; however, there is nothing intrinsic
within the Nios I1 system that restricts the settings. For this tutorial, let SOPC

336 Rapid Prototyping of Digital Systems Chapter 17

Builder make the memory assignments automatically by selecting System +
Auto-Assign Base Addresses. Next, select System + Auto-Assign IRQs to
have SOPC Builder automatically assign the IRQ values to the devices that
support interrupts.
To view and modify the bus connections in your processor, select View +
Show Connections. (If Show Connections is already selected, then un-select it
and select it again.) This will expand the cpu and ext-bus modules in the table
of peripherals and show the bus connections. The final SOPC Builder window
should look like the screen shot in Figure 17.14. The three buses are displayed
vertically. From left-to-right, the buses are the main system instruction, main
system data, and tri-state data bus. Notice that the UARTs, timer, and PI0
components are only attached to the system data bus since they don't normally
interact with instruction memory. SDRAM and the Avalon Tri-state Bridge are
connected to both the system instruction and system data buses, because the
memory devices can store both data and instruction memory. Finally, the Flash
memory, SRAM, and LCD devices are connected to the tri-state bus as
expected. No modifications need to be made to the bus connections for this
tutorial.

Figure 17.14 This is the completed Nios I1 design in SOPC Builder.

Tutorial IV: Nios II Processor Hardware Design 337

17.12 Finalizing the Nios II Processor
Click the Next button to modify more processor settings. The Nios I1 More
"cpu" settings dialog box allows you to modify the program memory device
and beginning address. For this tutorial, set the Reset and Exception addresses
to SRAM and keep the default addresses and offsets as shown in Figure 17.15.
Click Next to continue with the processor settings.
The More "sdram" Settings dialog box allows you to select the tri-state bus
bridge to which to bind the SDRAM controller. There are no possible
modifications for this setting in the current processor. Leave the default value
and click Next to continue with the processor settings.

Figure 17.15 These are the processor configuration settings for the Nios I1 processor.

The System Generation dialog box is the final group of settings. In this dialog
box, select the files that need to be generated. For this tutorial, you will not be
simulating the processor in ModelSim or other third-party simulation tool;
therefore, unselect the Simulation. Create simulator project files option.
Verify that the option HDL. Generate system module logic in VHDL is
selected. Click the Generate button to generate the design files for your Nios I1
processor. It will take 2-3 minutes to generate your Nios I1 processor. When it
completes, the console should contain a message that states that your processor
was generated successfully. If your system did not generate successfully, study
the error log display in the console, correct the problem, and re-generate the
Nios I1 processor. When you have successfully generated your Nios I1 system,
click the Exit button to close SOPC Builder.

17.1 3 Add the Processor Symbol to the Top-Level Schematic
When SOPC Builder closes, return to your blank top-level schematic file,
rpdsl7.bdf. Double click on a blank area of your empty top-level schematic
file to add a component. In the Libraries pane of the Symbol dialog box,

338 Rapid Prototyping of Digital Systems Chapter 17

expand the Project item and select the nios32 component. Click OK to add the
selected component. Click in the middle of schematic file to place your Nios
system.

17.14 Create a Phase-Locked Loop Component
SDRAM and the Nios I1 processor core operate on different clock edges. The
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM
would need a clock signal that is phase shifted by 180 degrees. An inverter
would do this, but the phase shift also needs to be adjusted a bit to correct for
the internal FPGA delays and the distance between the SDRAM and the FPGA
on the UP 3 board. To create this SDRAM clock signal, a phase-locked loop
(PLL) component can be implemented on the FPGA. To create a PLL, use
Quartus 11's MegaWizard Plug-in Manager by selecting Tools + MegaWizard
Plug-In Manager Click Next on page 1 of the wizard to create a new
component. On page 2, select the Installed Plug-Ins + 110 C3 ALTPLL
module from the list. Enter the full path of your project directory followed by
the filename up3-pll into the output filename field. Complete the remaining
fields with the information shown in Figure 17.16. Click Next to continue.

Figure 17.16 These are the initial settings for the ALTPLL module.

On page 3 of the MegaWizard manager, enter 48.00 MHz as the frequency of
the inclock0 input. Leave the other options set to their default values. Click

Tutorial IV: Nios II Processor Hardware Design 339

Next to continue. On page 4 of the MegaWizard manager, un-select all
checkmarks. Click Next to continue.
On page 5 of the MegaWizard manager, enter a Clock phase shift of -90 deg.
Leave the other options set to their default values. Click Finish to skip pages 6
and 7 and jump to page 8 of the MegaWizard manager. Click Finish again to
complete the MegaWizard manager and create the files for the PLL component.
Double click on a blank area of the top-level schematic file. Select the Project
+ up3911 module and add it to your top-level schematic as shown in the
completed schematic in Figure l7.l7(a).
IMPORTANT NOTE: Different or future versions of the Altera software may
generate slightly different hardware time delays for the SDRAM clock. If you
experience SDRAM errors after running memory tests on your final design or
the program downloads to SDRAM do not verify, and after double checking
that everything else is correct in your design, the PLL phase shift may need to
be adjusted a small amount. Most designs seem to fall within about 30 degress
of -90. This corresponds to a time delay adjustment of only 1 or 2 ns.

17.15Add the UP 3 External Bus Multiplexer Component
The Flash memory, SRAM, and LCD display devices use the same FPGA pins
and the same tri-state bus pins. The FPGA pins must be multiplexed to the
different tri-state bus signals available on the Nios I1 symbol. A custom
multiplexer component has been created and is located on the CD-ROM that
came with this book in the booksoft\chapl7 directory. Copy the
up3-bus-mux.vhd and up3-bus-mux.bsf files from the CD-ROM to your
project directory.
When the up3-bus-mux files have been copied to your project directory, add
the up3-bus-mux component to your top-level schematic by double clicking
on a blank area of the top-level schematic. Select the Project + up3-bus-mux
module and add it to your top-level schematic as shown in the completed
schematic in Figure 17.17.

17.1 6 Complete the Top-Level Schematic
To complete the top-level schematic, add the input, output, and bi-directional
pins (and pin names) shown in Figure 17.17(a). Also, complete the connections
between the three top-level components as shown in the figure. Finally, name
the FLASH-CS-N, SRAM-CS-N, and SDRAM-CS-N signals to make
virtual connections to the output pins of the same name. If you have trouble
reading the signal names in the figure, the file is available on the CD-ROM.

17.17 Design Compilation
Verify that the pin assignments discussed in Section 17.2 were made correctly
by going to Assignments + Pins. A long list of pin numbers and names
corresponding to the pin names you entered into the top-level schematic should
appear. If it does not, then repeat the steps in Section 17.2 to import the pin
assignments.

340 Rapid Prototyping of Digital Systems Cliapter 17

— in_port_tojhe_tiultons|3..0|

- i d W -
IHKT

: PUSHBJTTONSI3..0] -ITO9-

DIP5WITCHE5[5 0]

: UflRT'RSD'

(b)

e_5ram[1 ..0]
n j o j he j cd
:Jdress[20..0]
!enablen[1 ..0]
5_data[15.0]
t_bus_readn
nJoJheJcd
toJhe_3rain
to_the_flash
toJhe_srain
nJoJheJcd
_to_ihe_flash
to_the_sram
nponent[1.0]
t_coinponent
:_component
t_coinponent
t_coinponent
^.component

hp_lpiJ-["i ri]

-,.111.- I III

_.llt-.ll 1

(a)

FLASH_C3_N

(c)

• tri_adijr_in[50

• tri_bs_n[1..0]

- flash_tiyte_n

• sdram_ba[l. f

- ;dram_cks

. SDR^^_CLK

FLHiH_Ci_N

•^Rf*(1_C'^_tJ

. Ea_DATtt [1^ U]

FL_'^R_RD_N

FL •jR S T ^ W E I

Err_UDDR[19..D]

FL BYTE SD CKE

LEDi [: D]

UHFT_T;;D

(d)

Figure 17.17 The final top-level schematic for the Nios II system is shown in (a). The figures in (b),

(c), and (d) are pieces of the overall figure enlarged for better visibility of the signal names.

Tutorial IV: Nios I I Processor Hardware Design 34 1

Verify that the global assignments discussed in Section 17.2 were made
correctly by going to Assignments c3 Device... c3 Device & Pin Options c3
Unused Pins.
The Reserve all unused pins option should be set to As inputs, tri-stated. If it
is not, then select this option. Click OK until all dialog boxes are closed.

Select Processing C3 Start Compilation to begin compiling your project.

17.18 Testing the Nios II Project
To fully test your Nios I1 project, you will need to write a software program to
run on the Nios I1 processor that tests each component. To complete this task,
refer to the previous chapter, which contains Tutorial 111: Nios 11 Processor
Software Design.
You might want to try your test program from the previous chapter first to
verify that memory still works in your new design. After switching to a new
workspace for the new project in Nios I1 IDE, you can import an existing
software project into a new design project's software directory using File C3
Import. You will need to clean and rebuild the software project since the
system library changes for each new hardware design.

17.19 For additional information
This chapter has provided a brief overview of Nios I1 hardware development.
Additional information can be found at Altera7s website (www.altera.com) in
the Nios 11 Processor Reference Handbook, Embedded Peripherals Handbook
and Hardware Development Tutorial. Nios I1 components for the UP 3 board
and other reference designs can be found at the SLS website
(~yww.slscorp.con~). The Nios Community Forum ~www.niosforum.com) also
contains useful information and downloads for Nios I1 projects.

17.20 Laboratory Exercises
1. Add two 8-bit PI0 to the Nios I1 hardware design that connect to the 5 volt I/O pins on

the UP 3's J3 connector. Setup one port for input and one port for output. Connect the
PI0 port's I/O pins to eight input pins and eight output pins on J3. This is a handy way to
interface external devices and sensors like those used in the UP 3 robot projects in
Chapter 13 to the UP 3 board's Nios I1 processor.

342 Rapid Prototyping of Digital Systems Chapter 17

Add a PI0 port to the Nios I1 hardware design and use the PI0 port's 110 bits to design
an I ~ C hardware interface to the UP 3 board's real-time clock chip. Software will be
needed to send I ~ C commands, the PI0 port just provides a hardware interface to the I ~ C
SDA and SLC bits (see Section 12.4).

Add a parallel port to the Nios I1 hardware design. Use two 8-bit ports, one for data and
one for status and control bits. Connect the PI0 port's VO bits to the parallel port
connector on the UP 3 board. Software will be needed to monitor and control the
handshake lines (see Section 12.1) when connecting to a device like a parallel printer.

Add an SPI interface to the Nios I1 hardware design and use it to interface to an external
SPI device connected to one of the UP 3 board's expansion connectors.

Implement one of the UP 3 robotics projects from Chapter 13 using a Nios I1 processor
running C code. See problem 1 for robot interface suggestions.

Design an automatic setback HVAC thermostat using the UP 3. Interface a temperature
sensor to the UP 3. Some temperature sensors are available with digital outputs that
would not require a separate analog-to-digital IC. Display the current time, temperature,
heat, fan, and A/C status, and the temperature settings in the LCD. Use the pushbuttons
to change the temperature settings and setback times. Use the LEDs to indicate the heat,
A/C, and fan control outputs from the thermostat. You can heat the temperature sensor
with your finger to cycle the thermostat and cool it with ice or an aerosol spray can of
dust off cleaner.

Interface a PSI2 keyboard or mouse to the Nios I1 processor using PI0 ports. Write
software to demonstrate the new keyboard or mouse interface. Display the output on the
LCD or the UART. There are two major options to consider, use the keyboard and mouse
cores from Chapter 1 1 or do everything in software.

Use the video sync core and character generation ROM from Chapter 10 to add a video
text display to the Nios processor. Add a dual port memory to store a screen full of
characters. Write charcters to the dual port memory from the Nios I1 processor using PI0
ports added to the Nios I1 design. The video system constantly reads the characters out of
the dual port memory and then uses the character generation ROM to generate the video
display. Write a software driver for the video display and attach a monitor to the UP 3's
VGA connector to demonstrate your design.

After solving the previous two problems, develop software for a video game that uses the
mouse or keyboard for input and displays output on the monitor. If you need graphics for
your game, consider replacing the character memory and text display with a larger
memory containing only pixels used in a graphics display. Keep in mind that the internal
FPGA memory is limited.

Tutorial IV: Nios II Processor Hardware Design 343

10. Add a custom instruction to the Nios I1 processor designed to speed up a particular
application area. See the Nios II Custom Instruction User Guide. Demostrate the speedup
obtained with the new instruction by running the application with and without the new
instruction.

1 1. Interface the dual port video display memory used in one of the earlier problems directly
to the Avalon system bus instead of using PI0 ports. See the Avalon Inte$ace
Specification Manual.

12. Program the UP 3's serial flash device so that your Nios I1 hardware design loads
automatically at power up. See Appendix E for instructions on programming the FPGA's
serial flash configuration chip.

13. Program a complete Nios I1 design into both Flash memories so that the UP 3 board
loads both the FPGA hardware configuration data and the software from the two Flash
memories automatically at power up. See the Nios 11 Flash Programmer User Guide and
study the section on how to port the Flash programmer to a new board type. A full
version Altera software license is required for Flash programming of Nios I1 program
code.

14. For a more challenging problem, port the eCos operating system to the UP 3. It is
available free at www.niosforum.com. First, run a simple hello world application using
the UART. For the second test, write a multithreaded application with one thread talking
to the UART and a second thread blinking the LEDs.

Rapid Prototyping of Digital Systems Appendix A 345

Appendix A: Generation of Pseudo Random Binary
Seauences

In many applications, random sequences of binary numbers are needed. These
applications include random number generation for games, automatic test
pattern generation, data encryption and decryption, data compression, and data
error coding. Since a properly operating digital circuit never produces a random
result, these sequences are called pseudo random. A long pseudo-random binary
sequence appears to be random at first glance.
Table A.l shows how to make an "n" bit pseudo-random binary sequence
generator. Here is how it works for n = 8. Build an 8-bit shift register that shifts
left one bit per clock cycle. Find the entry in Table A.l for n = 8. This entry
shows that bits 8,6,5,4 should all XORed or XNORed together to generate the
next shift input used as the low bit in the shift register. Recall that the order of
XOR operations does not matter. Note that the low-bit number is "1" and not
"0" in this table.
A state machine that is actually a non-binary counter is produced. The counter
visits all 2"-1 non-zero states once in a pseudo-random order and then repeats.
Since the counter visits every state once, a uniform distribution of numbers
from 1 to 2"-1 is generated. In addition to a shift register, only a minimal
number of XOR or XNOR gates are needed for the circuit. The circuit is easy to
synthesize in a HDL such as VHDL since only a few lines are required to shift
and XOR the appropriate bits. Note that the next value in the random sequence
is actually 2x or 2x + 1 the previous value, x. For applications that may require
a more truly random appearing sequence order, use a larger random sequence
generator and select a disjoint subset of the bits and shuffle the output bits.
The initial value loaded in the counter is called the seed. The seed or the
random number is never zero in this circuit. If a seed of zero is ever loaded in
the shift register it will stay stuck at zero. If needed, the circuit can be modified
so that it generates 2" states. For the same initial seed value, the circuit will
always generate the same sequence of numbers. In applications that wait for
input, a random seed can be obtained by building a counter with a fast clock
and saving the value of the counter for the seed when an input device such as a
pushbutton is activated.
Additional information on pseudo-random binary sequence generators can be
found in HDL Chip Design by D.J. Smith, Doone Publications, 1996, and
Xilinx Application Note 52, 1996.

346 Rapid Prototyping of Digital Systems Appendix A

Table A.l Primitive Polynomials Modulo 2.

n XOR n
XOR n XOR n XOR

from bits from bits from bits from bits

Rapid Prototyping of Digital Systems Appendix B 347

A ~ ~ e n d i x B: Quartus II Design and Data File Extensions

Project Files

Quartus I1 Project File (*.qpf)
Quartus I1 Settings File (*.qsf)
Quartus I1 Workspace File (*.qws)
Quartus I1 Default Settings File (*.qdf)

Design Files

Altera Design File (*.ado
Block Design File (*.bdf)
EDIF Input File (*.edf)
Graphic Design File (*.gdf)
OrCAD Schematic File (*.sch)
State Machine File (*.smf)
Text Design File (*.tdf)
Verilog Design File (*.v)
VHDL Design File (*.vhd)
Waveform Design File (*.wdf)
Xilinx Netlist File (*.xnf)

Ancillary Data Files

Assignment and Configuration File (*.acf)
Assignment and Configuration Output (*.ace)

Block Symbol File (*.bsf)
Command File (*.cmd)
EDIF Command File (*.edc)
Fit File (*.fit)
Intel Hexadecimal Format File (*.hex)

History File (*.hst)
Include File (*.inc)
JTAG chain file (*.jcf)
Library Mapping File (*.lmf)
Log File (*.log)
Memory Initialization File (* .mi0
Memory Initialization Output File (*.mio)
Message Text File (*.mtf)

Programmer Log File (*.plf)
Report File (* .rpt)
Simulator Channel File (*.scf)
Standard Delay Format (*.sdf)
Standard Delay Format Output File (*.sdo)
Symbol File (*.sym)
Table File (*.tbl)
Tabular Text File (*.ttf)
Text Design Export File (*.tdx)
Text Design Output File (*.tdo)
Timing Analyzer Output File (*.tao)
Vector File (* .vec)
Verilog Quartus Mapping File (*.vqm)
VHDL Memory Model Output File (*.vmo)

Non-Editable Ancillary
File Types

Compiler Netlist File (*.cnf)
Hierarchy Interconnect File (*.hi0
JEDEC file (*.jed)
Node Database File (*.ndb)
Programmer Object File (* .pof)
Raw Binary File (*.rbf)
Serial Bitstream File (*.sbf)
Simulator Initialization File (*.sif)
Simulator Netlist File (*.snf)
SRAM Object File (*.so0

Rapid Prototyping of Digital Systems Appendix C 349

Appendix C: UP 3 Pin Assignments

Table C.l UP 3 board's Cyclone FPGA 110 pin assignments.

Bidirectional

Bidirectional

Pin Name
PARALLEL D[1]
PARALLEL S[3]
PARALLEL D[3]

tPUA -
Pin#

1
2
3

1 2 ~ SCL
12C SDA

Parallel Port Connector Pin 3
Parallel Port Connector Pin 17
Parallel Port Connector Pin 2
Parallel Port Connector Pin 14
Parallel Port Connector Pin 1
Not available for I10 in use

--

Not available for I10 pin use
SDRAM Clock

Pin I10 Tvpe
Bidirectional
Input
Bidirectional

20
2 1
22

RESET

PS2 Connector

Function of Pin
Parallel Port Connector Pin 3
Parallel Port Connector Pin 15
Parallel Port Connector Pin 5

Bidirectional
Bidirectional

23 I lnput

PS2 Connector
USB Phy Chip
USB Phy Chip
USB Phy Chip
USB Phy Chip
USB Phy Chip
USB Phy Chip
12C Bus EEPROM
12C Bus EEPROM
Not available for 110 pin use
Power on or SW8 pushbutton reset (Reset = 0)
CSO# EPCSI
DATA EPCSI
Not available for I10 pin use
Not available for I10 pin use

USB CLK

USER CLOCK

29
30
3 1
32
33
34
35
36
37
38 I lnput I External Clock from J2 Pin 2

I ." I I

SERIAL DSR

Input

SERIAL DCD

4 1 I lnput I MAX 3243 to Serial Port Connector Pin 6

USB 48MHz Clock
Not available for I10 pin use
Not available for 110 pin use
CE#
Not available for 110 pin use
Not available for 110 pin use
Not available for I10 pin use
DCLK EPCSI
ASDO EPCSI

39 (lnput I MAX 3243 to Serial Port Connector Pin 1

MEM AD[18] 1 81(125)* 1 Output I Memory Address Bus FLASH only
I Memory Address Bus, SRAM UB, SDRAM

350 Rapid Prototyping of Digital Systems Appendix C

Function of Pin
MAX 3243 to Serial Port Connector Pin 2
MAX 3243 to Serial Port Connector Pin 8
MAX 3243 to Serial Port Connector Pin 9
MAX 3243 to Serial Port Connector Pin 7
MAX 3243 to Serial Port Connector Pin 4
MAX 3243 to Serial Port Connector Pin 3
Pushbutton SW4 (non-debounced, 0 = button
hit)
Pushbutton SW5 (non-debounced, 0 = hit)
LCD Enable line
Not available for I10 pin use
Not available for I10 pin use
LED D3 (1 = LED ON, O= LED OFF)
LED D4 (1 = LED ON, O= LED OFF)
LED D5 (1 = LED ON, O= LED OFF)
LED D6 (1 = LED ON, O= LED OFF)
Pushbutton SW6 (non-debounced, 0 = hit)
DIP Switch SW3 # I (ON = 1, OFF = 0)
DIP Switch SW3 #2 (ON = 1, OFF = 0)
DIP Switch SW3 #3 (ON = 1, OFF = 0)
DIP Switch SW3 #4 (ON = 1, OFF = 0)
Pushbutton SW7 (non-debounced, 0 = hit)
Memory Address Bus
Memory Address Bus
Memory Address Bus
Memory Address Bus
Memory Address Bus
Memory Address Bus
Not available for 110 pin use
Not available for 110 pin use
Not available for I10 pin use
Not available for I10 pin use
LCD RNV control line
Memory Address Bus
Memory Address Bus
Memory Address Bus
Memory Address Bus, SRAM LB, SDRAM
LDQM
Memory Address Bus
Memory Write Enable
FLASH

Pin Name
SERIAL RX
SERIAL CTS
SERIAL RI
SERIAL RTS
SERIAL DTR
SERIAL TX

PBSWITCH 4
PBSWITCH 5
LCD E

LED D6
LED D5
LED D4
LED 03
PBSWITCH 6
DIPSWITCH 1
DIPSWITCH 2
DIPSWITCH 3
DIPSWITCH 4
PBSWITCH 7
MEM AD[7]
MEM AD[8]
MEM AD[9]
MEM AD[10]
MEM AD[11]
MEM AD[12]

LCD RW
MEM AD[13]
MEM AD[14]
MEM AD[15]

MEM AD[16]
MEM AD[19]
MEM WE
FLASH RYIBY

MEM AD[17] 82 (Output 1 UDQM

MEM AD[5]
MEM AD[4]
MEM AD[3]

FPG A -
Pin#
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76

77
78
79

80(126)*

MEM AD[6] 83 I Output I Memory Address Bus 1

Pin 110 Type
Input
Input
Output
Output
Output
Output

Input
Input
Output

Output
Output
Output
Output
Input
Input
Input
Input
Input
Input
Output
Output
Output
Output
Output
Output

Output
Output
Output
Output

Output

Output
Output

84
85
86

Output
Output
Output

Memory Address Bus
Memory Address Bus
Memory Address Bus

Rapid Prototyping of Digital Systems Appendix C 351

Pin Name
MEM AD[2]
MEM AD[l]

MEM-AD[O]
MEM DQ[O]
MEM DQ[8]
MEM DQ[l]
MEM DQ[9]
MEM DQ[2]
MEM DQ[10]
MEM DQ[3]
MEM DQ[11]
MEM DQ[4]
MEM DQ[12]
MEM DQ[5]

FPG A -
Pin#
87
88
89
90
9 1
92
93
94
95

96(133)*
97(132)*

98
99
100
101

102(128)*
1 03(1 27)*

104

Pin 110 Type
Output
Output

Output
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional

Function of Pin
Memory Address Bus
Memory Address Bus
Not available for 110 pin use
Not available for 110 pin use
Not available for 110 pin use
Not available for 110 pin use
Memory Address Bus
Memory & LCD Data Bus
Memory Data Bus
Memory & LCD Data Bus
Memory Data Bus
Memory & LCD Data Bus
Memory Data Bus
Memory & LCD Data Bus
Memory Data Bus
Memory & LCD Data Bus
Memory Data Bus
Memory & LCD Data Bus

352 Rapid Prototyping of Digital Systems Appendix C

Pin Name

I38

FPGA
Pin#
135
136
137

139
140

I JI pin 4
I J1 Pin 5

PROTO CLKlN

Pin 110 Tvpe

161 J1 Pin 12

Function of Pin
J1 Pin 31
J1 Pin 30
J1 Pin 29

141
142
143
144

162
163

VGA BLUE

IDE DASO#
IDE CSO#

IDE A[1]

I J1 Pin 6
Not available for 110 pin use
J1 Pin 7
J4 Pin 11

J1 Pin 15
J1 Pin 16

I78
179

180(NA)*
181(NA)*

167
168(NA)*
169(NA)*

170
171
172
173
174

175(NA)*
176

177(NA)*

J1 Pin 23
J1 Pin 24

Output

Output

J1 Pin 20
J1 Pin 21
J1 Pin 22
VGA Connector Blue Video Signal
Not available for I10 pin use
Not available for 110 pin use
IDE Disk Connector J3
IDE Disk Connector J3
J1 Pin 25
IDE Disk Connector J3
J1 Pin 26

Rapid Prototyping of Digital Systems Appendix C 353

IDE Disk Connector J3

IDE Disk Connector J3

IDE INTRQ
IDE A[O]
IDE D[4]
IDE D[3]
IDE D[2]

IDE D[5]
IDE D[6]
IDE D[7]
IDE D[10]
IDE D[9]
IDE D[8]
IDE D[11]
IDE D[12]
IDE D[13]
IDE D[14]
IDE D[15]
VGA VSYNC
VGA HSYNC
VGA RED

204(177)*
205(175)*

206
207
208
209
21 0
21 1
212
21 3
214
21 5
216
217
218
219

220(169)*
221 (1 68)*

222
223
224
225
226
227
228
229

Input
Output
Bidirectional
Bidirectional
Bidirectional

Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Output
Output
Output

IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
Not available for I10 pin use
Not available for 110 pin use
Not available for 110 pin use
Not available for I10 pin use

IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
IDE Disk Connector J3
VGA Connector Vertical Sync Signal
VGA Connector Horizontal Sync Signal
VGA Connector Red Video Signal
Not available for I10 pin use

354 Rapid Prototyping of Digital Systems Appendix C

* NOTE: In the Table, differences in Pin assignments on the larger UP3 1C12
board are noted in "(..)"s. NA indicates not available. The larger Cyclcone
1C12 has twice the logic, but 12 fewer I 1 0 pins than the 1C6 since it needs
more power and ground pins.
If you switch a design from a 1C6 board to a 1C12 board, you will need to
change the device type, fix the few pin assignments that are different, and
recompile. Typically, only designs using the LCD or external memory devices
will be affected by the pin changes.
When connecting external hardware to the UP 3's header pins, note that many
o f the pins on the 53 header provide 5V logic levels by going through a voltage
level conversion chip. Most other pins connected to the J1 & 52 headers have
3V logic levels coming directly from FPGA pins. Check the UP 3 schematic for
more details.

Pin Name

PARALLEL S[4]
PARALLEL S[5]
PARALLEL S[7]
PARALLEL S[6]
PARALLEL D[6]
PARALLEL D[5]
PARALLEL-D[7]
PARALLEL D[4]

FPGA -
Pin#
230
23 1
232
233
234
235
236
237
238
239
240

Pin 110 Tvpe

Input
Input
Input
Input
Bidirectional
Bidirectional
Bidirectional
Bidirectional

Function of Pin
Not available for 110 pin use
Not available for 110 pin use
Not available for I10 pin use
Parallel Port Connector Pin 13
Parallel Port Connector Pin 12
Parallel Port Connector Pin 11
Parallel Port Connector Pin 10
Parallel Port Connector Pin 8
Parallel Port Connector Pin 7
Parallel Port Connector Pin 9
Parallel Port Connector Pin 6

Rapid Prototyping of Digital Systems Appendix D 355

Appendix D: ASCll Character Code

Table D.l ASCll Charcter to Hexadecimal Conversion Table.

The American Standard Code for Information Interchange (ASCII) is a standard
seven-bit code for computer equipment adopted in 1968. In Table D.l, locate
"A". It is in row 4 in column 1 and the hexadecimal value for "A" is therefore
41. The UP 3's LCD and most RS-232C serial devices and printers use the
ASCII character code. The eighth bit may be used for parity. Codes below 0x20
are called control codes. Control codes perform operations other than printing a
character. Several of the most common control codes are described below:

NUL (null) - all zeros, sometimes used for end of strings.
BEL (bell) - Causes a beep in terminals and terminal emulation programs.
BS (backspace) - Moves the cursor move backwards (left) one space.
HT (horizontal tab) - Moves the cursor right to the next tab stop. The spacing
of tab stops is dependent on the output device, but is often 8 or 10.
LF (line feed) - Moves the cursor down to a new line, but not to the left.
VT (vertical tab)
FF (form feed) - Advances paper to the top of the next page on printers.
CR (carriage return) - Moves the cursor all the way to the left, but does
not advance to the next line. For a new line, both CR and LF are used.
ESC (escape) - Sometimes used to terminate program commands
SP (space) prints a blank space and cursor moves to the next character
position.

Note that the decimal digit characters "0" to "9" range in value from 0x30 to
0x39. The code is setup so that "A"<"B"<"C" ... so that numeric values can be
used for alphabetical ordering. A single bit in the code changes the case of a
character (i.e. see "A" and "a"). Extended ASCII codes use an eight bit code to
display another 128 special graphics characters. There are several different
standards for these new graphics characters, so check the device manual for
details. The first 128 characters are the same as the 7-bit original ASCII code
standard.

Rapid Prototyping of Digital Systems Appendix E 357

Appendix E: Programming the UP 3's Flash Memory

In deployed systems, FPGAs are normally automatically programmed at power
on using a small serial non-volatile memory chip. The serial configuration
device used on the UP 3 1C6 is the EPCSl 1-Mbit flash memory or on the UP 3
1C12 the larger EPCS4 4-Mbit flash memory. Once a design has been tested,
you may want to demonstrate it without having to download the design using
the ByteBlaster and a PC each time you power on the board. One common
example would be a UP 3 robot project. If you program the UP 3's flash
configuration memory, the FPGA will load the design each time the robot is
turned on.

Steps to program the UP 3's flash memory configuration device:

Power down the UP 3 board and unplug the ByteBlaster I1 cable connector
from the UP 3. Plug the ByteBlaster I1 cable into the second connector
immediately to the left and nearer the edge of the board than the JTAG
connector normally used for programming. This connector must be used for
programming the serial configuration memory. Turn the UP 3 board's power
back on.
Select Tools * Programmer and then change the Mode pull down box setting
to Active Serial Programming. Click yes on the dialog box that appears.
Select Add File and add yourdesign.pof (not *.sofas normally used) to the file
list. Select yourdesign.pof and click Open so that yourdesign.pof appears as the
programming file. Now click on the file's ProgramIConfigure check box. An
EPCSl is used on the UP 3 1C6 and an EPCS4 is used on the larger UP 3 1C12.
If you see the correct configuration device in the file's device entry column,
click start to program the flash memory device.
If the correct configuration device does not appear in the *.pof file's device
entry or you see a can't recognize silicon ID error when you try to program,
you will need to change the project's configuration device type. Use
Assignments * Device and click on the Device and Pin Options button.
Next, Click on the Configuration tab and select the correct device in the
configuration device pull down box. Also make sure that the Generate
compressed bitstreams box is checked. Click OK twice to exit and recompile
the project. When you reopen the Programmer window and the
yourdesign.pof file you should now see the correct device type. Click start and
the device should now program without errors.
After successfully downloading the FPGA's flash configuration memory, the
UP 3 board will now start running the design every time it is turned on. Turn
the UP 3 board off and then on to verify that the design is running.

Rapid Prototyping of Digital Systems Glossary

Glossary

Assignment & Configuration File (.acf): An ASCII file (with the extension .acf)
used by the older MAX+PLUS tool to store information about probe, pin, location,
chip, clique, logic option, timing, connected pin and device assignments, as well as
configuration settings for the Comp iler, Simulator, and Timing Analyzer for an entire
project. The ACF stores information entered with menu commands in all MAX+PLUS
I1 applications. You can also edit an ACF manually in a Text Editor window. This
same information is now found in the *.q* files in Quartus 11.
Active-high (Active-low) node: A node that is activated when it is assigned a value
one (zero) or Vcc (Gnd).
AHDL: Acronym for Altera Hardware Description Language. Design entry language
that supports Boolean equation, state machine, conditional, and decode logic. It also
provides access to all Altera and user-defined macrofunctions.
Ancillary file: A file that is associated with a Quartus I1 project, but is not a design
file in the project hierarchy tree.
Antifuse: Any of the programmable interconnect technologies forming electrical
connection between two circuit points rather than making open connections.
Architecture: Describes the behavior, RTL or dataflow, andl or structure of a VHDL
entity. An architecture is created with an architecture body. A single entity can have
more than one architecture. In some VHDL tools, configuration declarations are used
to specify which architectures to use for each entity.
Array: A collection of one or more elements of the same type that are accessed using
one or more indices depending on dimension of array. Array data types are declared
with an array range and array element type.
ASIC: Acronym for Application-Specific Integrated Circuit. A circuit whose final
photographic mask process is user design dependent.
ASM: Acronym for Algorithmic State Machine Chart. A flow-chart based method
used to represent a state diagram.
Assert: A statement that checks whether a specified condition is true. If the condition
is not true, a report is generated during simulation.
Assignment: In VHDL, assignment refers to the transfer of a value to a symbolic
name or group, usually through a Boolean equation. The value on the right side of an
assignment statement is assigned to the symbolic name or group on the left.
Asynchronous input: An input signal that is not synchronized to the device Clock.
Attribute: A special identifier used to return or specify information about a named
entity. Predefined attributes are prefixed with the ' character.
Back annotation: Process of incorporating time delay values into a design netlist
reflecting the interconnect capacitance obtained from a completed design. Also, in
Altera's case, the process of copying device and resource assignments made by the
Compiler into the Assignment and Configuration File for a project. This process
preserves the current fit in future compilations.
Block: A feature that allows partitioning of the design description within an
architecture.

Buried node: A combinatorial or registered signal that does not drive an output pin.

360 Rapid Prototyping of Digital Systems Glossary

Cell: A logic function. It may be a gate, a flip-flop, or some other structure. Usually, a
cell is small compared to other circuit building blocks.
Cell library: The collective name for a set of logic functions defined by the
manufacturer of an FPGA or ASIC. Simulation and synthesis tools use cell libraries
when simulating and synthesizing a model.
CLB: Acronym for Configurable Logic Block. This element is the basic building
block of the Xilinx FPGA product family.
Clock: A signal that triggers registers. In a flip-flop or state machine, the clock is an
edge-sensitive signal. In edge-triggered flip-flops, the output of the flip-flop can
change only on the clock edge.
Clock enable: The level-sensitive signal on a flip-flop with E suffix, e.g., DFFE.
When the Clock enable is low, clock transitions on the clock input of the flip-flop are
ignored.
Compiler Netlist File (.cnf): A binary file (with the extension .cnf) that contains the
data from a design file. The CNF is created by the Compiler Netlist Extractor module
of the MAX+PLUS I1 Compiler.
Component: Specifies the port of a primitive or macrofunction in VHDL. A
component consists of the name of the primitive or macrofunction, and a list of its
inputs and outputs. Components are specified in the Component declaration.
Component instantiation: A concurrent statement that references a declared
component and creates one unique instance of that component.
Configuration EPROM: A serial EPROM designed to configure (program) a FPGA.
Concurrent statements: HDL statements that are executed in parallel.
Configuration: It maps instances of VHDL components to design entities and
describes how design entities are combined to form a complete design. Configuration
declarations are used to specify which architectures to use for each entity.
Configuration scheme: The method used to load configuration (programming) data
into an FPGA.
Constant: An object that has a constant value and cannot be changed.
Control unit: The hardware of a machine that controls the data path.
Cyclone: The FPGA family used on the UP 3 boards.
CPLD: Acronym for complex programmable logic device. CPLDs include an array of
functionally complete or universal logic cells with an interconnection network.
Data Path: The hardware path that provides data processing and transfer of
information in a machine, as opposed to the controller.
Design entity: A file that contains description of the logic for a project and is
compiled by the Compiler.
Design library: Stores VHDL units that have already been compiled. These units can
be referenced in VHDL designs.
Design unit: A section of VHDL description that can be compiled separately. Each
design unit must have a unique name within the project.
Dual-purpose pins: Pins used to configure an FPGA device that can be used as VO
pins after initialization.
Dynamic reconfigurability: Capability of an FPGA to change its function "on -the-
fly"

Rapid Prototyping of Digital Systems Glossary 36 1

Embedded Array Block (EAB): A physically grouped set of 8 embedded cells that
implement memory (RAM or ROM) or combinatorial logic in a Cyclone 10K device.
A single EAB can implement a memory block of 256 x 8, 512 x 4, 1,024 x 2, or 2,048
x 1 bits.
EPLD: Acronym for EPROM programmable logic devices. This is a PLD that uses
EPROM cells to internally configure the logic function. Also, erasable programmable
logic device.
Event: The change of value of a signal. Usually refers to simulation.
Event scheduling: The process of scheduling of signal values to occur at some
simulated time.
Excitation function: A Boolean function that specifies logic that directs state
transitions in a state machine.
Exit condition: An expression that specifies a condition under which a loop should be
terminated.
FLEX 10K and FLEX 10KA: An Altera device family based on Flexible Logic
Element Matrix architecture. This SRAM-based family offers high-performance,
register-intensive, high-gate-count devices with embedded arrays. The Cyclone 10K
device family includes the EPF 1 OK1 00, EPF 1 OKi'O, EPF 1 OKSO, EPF 1 OK40,
EPFlOK30, EPFI OK20, and EPFI OK10 devices. The FPGA used on the UP 2 board.
Fan-out: The number of output signals that can be driven by the output of a logic cell.
Fast Track interconnect: Dedicated connection paths that span the entire width and
height of a Cyclone device. These connection paths allow the signals to travel between
all LABS in device.
Field name: An identifier that provides access to one element of a record data type.
File type: A data type used to represent an arbitrary-length sequence of values of a
given type.
For loop: A VHDL loop construct in which an iteration scheme is a for statement.
Finite state machine: The model of a sequential circuit that cycles through a
predefined sequence of states.
Fitting: Process of making a design fit into a specific FPGA architecture. Fitting
involves technology mapping, placement, optimization, and partitioning among other
operations.
Flash: A non-volatile memory technology that also can be programmed in-circuit.
Flip-flop: An edge-sensitive memory device (cell) that stores a single bit of data.
Floorplan: Physical arrangement of functions within a connection framework of
signal routing channels.
FPGA: Acronym for field programmable gate array. A regular array of logic cells that
is either functionally complete or universal with an interconnection network of signal
routing channels.
FPLD: Acronym for field programmable logic device. An integrated circuit used for
implementing digital hardware that allows the end user to configure the chip to realize
different designs. Configuring such a device is done using either a special
programming unit or by doing it " in system". FLPDs include both CPLDs and
FPGAs.
Functional simulation: A simulation mode that simulates the logical performance of
a project without timing information.

362 Rapid Prototyping of Digital Systems Glossary

Functional test vector: The input stimulus used during simulation to verity a VHDL
model operates functionally as intended.
Functionally complete: Property of some Boolean logic functions permitting them to
make any logic function by using only that function. The properties include making
the AND function with an invert or the OR function with an invert or the OR function
with an invert.
Fuse: A metallic interconnect point that can be electrically changed from short circuit
to an open circuit by applying electrical current.
Gate: An electronic structure, built from transistors that performs a basic logic
function.
Gate array: Array of transistors interconnected to form gates. The gates in turn are
configured to form larger functions.
Gated clock: A clock configuration in which the output of an AND or OR gate drives
a clock.
Generic: A parameter passed to a VHDL entity, component or block that describes
additional, instance-specific information about that entity, component or block.
Glitch or spike: A narrow output pulse that occurs when a logic level changes two or
more times over a short period.
Global signal: A signal from a dedicated input pin that does not pass through the
logic array before performing its specified function. Clock, Preset, Clear, and Output
Enable signals can be global signals.
GND: A Low-level input voltage. It is the default inactive node value.
Graphic Design File (.gdf): A schematic design file (with the extension .gdf) created
with the MAX+PLUS I1 Graphic Editor.
HDL: Acronym for Hardware Description Language. A special language used to
describe digital hardware.
Hexadecimal: The base 16 number system (radix). Hexadecimal digits are 0 through 9
and A through F.
Hierarchy: The structure of a design description, expressed as a tree of related
components.
Identifier: A sequence of characters that uniquely identify a named entity in a design
description.
Index: A scalar value that specifies an element or range of elements within an array.
Input vectors: Time-ordered binary numbers representing input values sequences to a
simulation program.
110 cell register: A register on the periphery of a Cyclone 8000 device or a fast input-
type logic cell that is associated with an 110 pin.
IP core: An intellectual property (IP) core is a previously developed synthesizable
hardware design that provides a widely used function. Commercially licensed IP cores
include functions such as microprocessors, microcontrollers, bus interfaces,
multimedia and DSP operations, and communications controllers.
LAB: Acronym for Logic Array Block. The LAB is the basic building block of the
Altera MAX family. Each LAB contains at least one macrocell, an VO block, and an
expander product term array.
Latch: A level-sensitive clocked memory device (cell) that stores a single bit of data.
A High to low transition on the Latch Enable signal fixes the contents of the latch at
the value of the data input until the next Low-to-High transition on Latch Enable.

Rapid Prototyping of Digital Systems Glossary 363

Latch enable: A level-sensitive signal that controls a latch. When it is High, the input
flows through the output; when it is Low, the output holds its last value.
Library: In VHDL a library statement is used to store analyzed design units.
Literal: A value that can be applied to an object to some type.
Logic Synthesizer: The Compiler module that uses several algorithms to minimize
gate count, remove redundant logic, and utilize the device architecture as efficiently as
possible. Processing can be customized with logic options and logic synthesis style
assignments. This module also applies logic synthesis techniques to help implement
timing requirements for a project.
Least Significant Bit (LSB): The bit of a binary number that contributes the smallest
quantity to the value of that number, i.e., the last member in a bus or group name. For
example, the LSB for a bus or group named a[3 1 ..0] is a[O] (or aO).
Logic Cell (LC): The generic term for a basic building block of an Altera device. In
MAX devices, a logic cell (also called a macrocell) consists of two parts:
combinatorial logic and a configurable register. The combinatorial logic allows a wide
variety of logic functions. In Cyclone and FLEX devices, a logic cell (also called a
logic element) consists of a look-up table (LUT) and a programmable register to
support sequential functions.
Logic element: A basic building block of an Altera Cyclone device. It consists of a
look-up table i.e., a function generator that quickly computes any function of four
variables, and a programmable flip-flop to support sequential functions.
LPM: Acronym for library of Parameterized Modules. Denotes Altera's library of
design units that contain one or more changeable parts, and parameters that are used to
customize a design unit as the application requires.
Macro: When used with FPGAs, a logic cell configuration that can be repeated as
needed. It can be a Hard or a Soft macro. Hard macros force predefined place and
route rules between logic cells.
Macrocell: In FPGAs, a portion of the FPGA that is smallest indivisible building
block. In MAX devices it consists of two parts: combinatorial logic and a configurable
register.
MAX: Acronym for Multiple Array Matrix, which is an Altera product family. It is
usually considered to be a CPLD.
MAX+PLUS 11: Acronym for multiple array matrix programmable logic user system
11. An older set of computer aided design (CAD) tools that allow design and
implementation of custom logic circuits with Altera's MAX and Flex FPGA devices.
Memory Initialization File (.mif): An ASCII file (with the extension .mi0 used by
Quartus I1 to specify the initial content of a memory block (RAM or ROM), i.e., the
initial data values for each memory address. This file is used during project
compilation andlor simulation.
Mealy state machine: A type of state machine in which the outputs are a function of
the inputs and the current state.
Microblaze: A soft core RISC processor supported on Xilinx FPGAs.
Moore state machine: A state machine in which the present state depends only on its
previous input and previous state, and the present output depends only on the present
state. In general Moore states machines have more states than a Mealy machine.
Most Significant Bit (MSB): The bit of a binary number that contributes the greatest
quantity to the value of that number, and the first member in a bus or group name. For
example, the MSB for a bus named a[31..0] is a[31].

Rapid Prototyping of Digital Systems Glossary

Mode: A direction of signal (either in, out, inout or buffer) used as subprogram
parameter or port.
Model: A representation that behaves similarly to the operation of some digital
circuit.
MPLD: Acronym for Mask Programmed Logic Device.
Netlist: A text file that describes a logic design. Minimal requirements are
identification of function elements, inputs, outputs, and connections.
Netist synthesis: Process of deriving a netlist from an abstract representation, usually
from a hardware description language.
Nios: A soft core RISC processor supported on Altera FPGAs.
NRE: Acronym for Non-Recurring Engineering expense. It reefers to one-time charge
covering the use of design facilities, masks and overhead for test development of
ASICs.
Object: A named entity of a specific type that can be assigned a value. Object in
VHDL include signals, constants, variables and files.
Octal: The base 8 number system (radix). Octal digits are 0 though 7.
One Hot Encoding: A design technique used more with FPGAs than CPLDs. Only
one flip-flop output is active at any time. One flip-flop per state is used. State outputs
do not need to be decoded and they are hazard free.
Package: A collection of commonly used VHDL constructs that can be shared by
more than one design unit.
PAL: Acronym for programmable array logic. A relatively small FPLD containing a
programmable AND plane followed by a fixed-OR plane.
Parameter: An object or literal passed into a subprogram via that subprogram's
parameter list.
Partitioning: Setting boundaries between subsections of a system or between multiple
FPGA devices.
Physical types: A data type used to represent measurements.
Pin Number: A number used to assign an input or output signal in a design file,
which corresponds to the pin number on an actual device.
PLA: (programmable logic array) a relatively small FPLD that contains two levels of
programmable logic-an AND plane and an OR plane.
PLL: (phase locked loop) a device that can be used to multiply and divide clock
signals and adjust the phase delay.
Placement: Physical assignment of a logical function to a specific location within an
FPGA. Once the logic function is placed, its interconnection is made by routing.
PLD: Acronym for programmable logic device. This class of devices is comprised of
PALS, PLAs, FPGAs, and CPLDs.
Port: A symbolic name that represents an input or output of a primitive or of a
macrofunction design file.
Primitive: One of the basic functional blocks used to design circuits with Quartus I1
software. Primitives include buffers, flip-flops, latch, logical operators, ports, etc.
Process: A basic VHDL concurrent statement represented by a collection of
sequential statements that are executed whenever there is an event on any signal that
appears in the process sensitivity list, or whenever an event occurs that satisfies
condition of a wait statement within the process.

Rapid Prototyping of Digital Systems Glossary 365

Product Term: Two or more factors in a Boolean expression combined with an AND
operator constitute a product term, where "product" means "logic product."
Programmable switch: A user programmable switch that can connect a logic element
or inputloutput element to an interconnect wire or one interconnect wire to another.
Project: A project consists of all files that are associated with a particular design,
including all subdesign files and ancillary files created by the user or by Quartus I1
software. The project name is the same as the name of the top-level design file without
an extension.
Propagation delay: The time required for any signal transition to travel between pins
and/or nodes in a device.
Radix: A number base. Group logic level and numerical values are entered and
displayed in binary, decimal, hexadecimal, or octal radix in Quartus 11.
Reset: An active-high input signal that asynchronously resets the output of a register
to a logic Low (0) or a state machine to its initial state, regardless of other inputs.
Range: A subset of the possible values of a scalar type.
Register: A memory device that contains several latches or flip-flops that are clocked
from the same clock signal.
Resource: A resource is a portion of a device that performs a specific, user-defined
task (e.g., pins, logic cells, interconnection network).
Retargetting: A process of translating a design from one FPGA or other technology
to another. Retargetting involves technology-mapping optimization.
Reset: An active-high input signal that asynchronously resets the output of a register
to a logic Low (0) or a state machine to its initial state, regardless of other inputs.
Ripple Clock: A clocking scheme in which the Q output of one flip-flop drives the
Clock input to another flip-flop. Ripple clocks can cause timing problems in complex
designs.
RTL: Acronym for Register Transfer Level. The model of circuit described in VHDL
that infers memory devices to store results of processing or data transfers. Sometimes
it is referred to as a dataflow-style model.
Scalar: A data type that has a distinct order of its values, allowing two objects or
literals of that type to be compared using relational operators.
Semicustom: General category of integrated circuits that can be configured directly
by the user of an IC. It includes gate arrays and FPGA devices.

Signal: In VHDL a data object that has a current value and scheduled future values at
simulation times. In RTL models signals denote direct hardware connections.
Simulation: Process of modeling a logical design and its stimuli in which the
simulator calculates output signal values.
Slew rate: Time rate of change of voltage. Some FPGAs permit a fast or slow slew
rate to be programmed for an output pin.
Slice: A one-dimensional, contiguous array created as a result of constraining a larger
one-dimensional array.

SOPC: Acronym for System On-a Programmable Chip. SOPC systems contain a hard
or soft core processor in the FPGA in addition to other user logic.
Speed performance: The maximum speed of a circuit implemented in an FPGA. It is
set by the longest delay through any for combinational circuits, and by maximum
clock frequency at which the circuit operates properly for sequential circuits.

366 Rapid Prototyping of Digital Systems Glossary

State transition diagram: A graphical representation of the operation of a finite state
machine using directed graphs.
State: A state is implemented in a device as a pattern of 1's and 0's (bits) that are the
outputs of multiple flip-flops (collectively called a state machine state register).
Structural-type architecture: The level at which VHDL describes a circuit as an
arrangement of interconnected components.
Subprogram: A function or procedure. It can be declared globally or locally.
Sum-of-products: A Boolean expression is said to be in sum-of-products form if it
consists of product terms combined with the OR operator.
Synthesis: The process of converting the model of a design described in VHDL from
one level of abstraction to another, lower and more detailed level that can be
implemented in hardware.
Test bench: A VHDL model used to verify the correct behavior of another VHDL
model, commonly known as the unit under test.
Tri-state Buffer: A buffer with an input, output, and controlling Output Enable
signal. If the Output Enable input is High, the output signal equals the input. If the
Output Enable input is Low, the output signal is in a state of high impedance. Tri-state
outputs can be tied together but only one should ever be enabled at any given time.
Timing Simulation: A simulation that includes the actual device delay times.
Two's Complement: A system of representing binary numbers in which the negative
of a number is equal to its logic inverse plus 1. In VHDL, you must declare a two's
complement binary number with a signed data type or use the signed library.

Type: A declared name and its corresponding set of declared values representing the
possible values the type.
Type declaration: A VHDL declaration statement that creates a new data type. A type
declaration must include a type name and a description of the entire set of possible
values for that type.
Universal logic cell: A logic cell capable of forming any combinational logic function
of the number of inputs to the cell. RAM, ROM and multiplexers have been used to
form universal logic cells. Sometimes they are also called look-up tables or function
generators.
Usable gates: Term used to denote the fact that not all gates on an FPGA may be
accessible and used for application purposes.
Variable: In VHDL, a data object that has only current value that can be changed in
variable assignment statement.
Verilog: An HDL with features similar to VHDL with a syntax reminiscent of C.
VCC: A high-level input voltage represented as a High (1) logic level in binary group
values.
VHDL: Acronym for VHSIC (Very High Speed Integrated Circuits) Hardware
Description Language. VHDL is used to describe function, interconnect and modeling.
VITAL: Acronym for VHDL Initiative Toward ASIC Libraries. An industry-standard
format for VHDL simulation libraries.

Rapid Prototyping of Digital Systems Index 367

lndex

Altera Cyclone Architecture, 50
Embedded memory blocks, 50
Input output elements (IOEs), 52
logic army block (LAB), 52
Logic elements, 50
PLLS, 50

Altera FLEX 10K70 CPLD, 48
Altera MAX 7000s Architecture, 48
ALTSYNCRAM, 104,123
antifuse, 58
application specific integrated circuits (ASICs), 44
arithmetic logic unit (ALU), 99, 120
ASCII, 355

case statement, 91, 114
cathode ray tube (CRT), 168
clock edge, 94,117
clocking in VHDL, 94, 117
color in video display, 168
complex programmable logic devices (CPLDs), 44
component, 106
computer aided design (CAD) tools, 55, 56
concurrent assignment statement, 91
conv-integer, 89
conv~std~logic~vector, 89

digital oscilloscope, 67
dithering, 183

electric train
direction, 132
example controller, 134
I10 summary, 134
sensors, 133
simulation, 140
switches, 133
track power, I32
video output, 142

electrically erasable programmable read only memory
(EEPROM), 48

EPCSI, 357
EPCS4,357

field programmable gate arrays (FPGAs), 44
field programmable logic devices (FPLDs)

applications, 57
floating point hardware, 101,122
for loop, 268

gate arrays, 44
global clock buffer lines, 47, 52

hardware emulator, 57
H-bridge, 245

I'C Bus Interface, 21 1
if statement, 93, 116

keyboard. See PSI2 keyboard

logic element (LE), 47
look-up table (LUT), 50
LPM-DIV, 100,121
LPM-MULT, 100,121
LPM-RAM-DQ, 104,123
LPM-ROM, 177

macrocell, 49
metastability, 47
MicroBlaze, 282
MIPS, 256

control, 263
decode, 268
dmemory, 272
execute, 270
execution on UP 1,274
hardware implementation, 257
ifetch, 265
instruction formats, 256

368 Rapid Prototyping of Digital Systems Index

instructions, 257
pipelined implementation, 258
simulation, 273
top-spim, 260
VHDL synthesis model, 259

mouse. See PSI2 mouse
multiply and divide hardware, 100, 12 1

Nios, 282
Nios Hardware, 324
Nios I1 IDE Sohare , 296
Nios I1 Processor, 327

Flash, 334
Interval Timer, 330
JTAG UART, 329
LCD, 335
Parallel I/O,33 1
pin assignments, 324
SDRAM, 332
SDRAM PLL, 338
SRAM, 334
UART, 329
UP 3 External Bus Multiplexer, 339

Nios I1 Software
Flash, 312
Handling Interrupts, 306
LCD Display, 308
Parallel 110,307
Peripherals, 298
SRAM, 31 1
timer, 299

Nios I1 System Library, 297
Nios Software, 294

open collector, 227
open drain, 227

Parallel I10 Interface, 206
pin grid array package (PGA), 48
pixels, 168
plastic J-lead chip carrier (PLCC), 48
plastic quad flat pack (PQFP), 48
port map, 107
process, 90
process sensitivity list, 91, 94, 117
processor fetch, decode and execute cycle, 150
programmable array logic (PALS), 45
programmable interconnect array (PIA), 49
programmable logic, 44
programmable logic arrays (PLAs), 45

programmable logic devices, (PLDs), 45
PSI2 keyboard, 188

communications protocol, 190
connections, 188
make and break codes, 189
scan codes, 189
VHDL example, 195

PSI2 mouse, I98
commands and messages, 198
data packet format, 199
data packet processing, 201
example design, 202
initialization, 200

Quartus I1
assigning a device, 8
assigning pins, 10
buses, 65
compilation, 13
connecting signal lines, 11
entering pin names, 1 1
errors and warnings, 13
file extensions, 347
floorplan editor, 28
graphic editor, 7
hierarchy, 63
Quartus settings file (*.qsf), 12,23,26
report file (*.rpt), 13
schematic capture. See graphic editor
simulation, 14
simulation test vectors or stimulus, 14
simulaton vector file (*.vet), 140
symbol editor, 30
symbol entry, 9
timing analysis, 27,66
tutorial, 2,62
waveform editor file (* s f) , 14

radio-controlled (RIC) car, 242
reconfigurable computing, 57
reduced instruction set computer (RISC), 256
refresh. See VGA video display refiesh
robot, 216

assembly, 233
battery, 237
battery charger, 238
communication, 223
electronic compass, 229
expansion header, 241
GPS and DGPS receivers, 231
gyros and accelerometers, 229
infrared poximity detector, 221
IR ranging, 225

Rapid Prototyping of Digital Systems Index

line tracker sensor, 22 I
magnetic compass, 228,232
modifying servos, 217
parts list, 237
sensors, 220
servo drive motors, 216
solid state cameras, 232
sonar, 225
thermal image sensors, 231
VHDL servo driver, 2 18
wheel encoder, 224

RS-232C Serial 110 Interface, 207
run length encoding (RLE), 182

W3-bot. See robot
W3core, 74
W3core library, 74

char-ROM, 82
clk-div, 69,79
debounce, 68,77
dec_7seg, 76
installation, 62
keyboard, 83,195
mouse, 84,200
onepulse, 78
tutorial, 63
vga-sync, 80,172

seven segment decoder, 91,114
shiA operation in VHDL, 100
SOPC, 282
SOPC Builder, 325
SPI Bus Interface, 209
SR latch, 68
standard cells, 44

testbench, I07
to-stdlogicvector, 89
train. See electric train
hi-state, 49, 94, 116,227,366

UART, 207
unit under test (UUT), 107
UP 2,3

attaching power, 18
downloading, 18

UP 3,5,36
attaching power, 15
Cyclone device, 38
downloading, 17
FPGA 110 pins, 37,38,40,240
jumper setup, 36
LEDs, 6
longer cable, 41
other devices, 38
Pin Assignments, 349
power supplies, 41
Programming Flash, 357
pushbutton contact bounce, 68
pushbuttons, 5

UP3 computer, I48
fetch, decode, and execute, 150
instructions, 149
VHDL model, 157

Verilog
always statement, 114
compilation, 26
continuous assignment statement, 25
data types, 1 12
errors and warnings, 27
hierarchy in models, 125
inferred latches, 1 18
operators, 1 13
regtype, 112
shift operations, 1 13
structural model, 125
synthesis of a counter, 11 8
synthesis of a multiplexer, 115
synthesis of a state machine, 119
synthesis of a tri-state output, 116
synthesis of an adder, 120
synthesis of an ALU, 120
synthesis of an inmmenter, 11 8
synthesis of an subtractor, 120
synthesis of digital hardware, 1 12
synthesis of flip-flops and registers, 1 17
synthesis of gate networks, 114
synthesis of memory, 122
synthesis of multiply and divide hardware, 121
synthesis of seven segment decoder, 1 14
tutorial, 24
wire statement, 114
wire types, 1 12

VGA video display, 168
bouncing ball example, 183
character based, 176
character font ROM, 178,185
color mixing using dithering, 183
data compression, 182
generation using an FPGA, 171
graphics display, 18 1
horizontal sync, 168
pin assignments, 174
refresh, 168
RGB signals, 168

Rapid Prototyping of Digital Systems Index

using a final output register, 174
vertical sync, 168
video examples, 175

VHDL
Architecture body, 22
compilation, 23
conversion of data types, 90
data types, 88
editor syntax coloring, 21,25
Entity, 2 1,24
errors and warnings, 24
hierarchy in models, 105
inferred latches, 96
libraries, 88,96
operators, 89
shift operations, 89
standard logic (STD-LOGIC), 88
structural model, 105
synthesis of a counter, 96
synthesis of a multiplexer, 93
synthesis of a state machine, 97
synthesis of a tri-state output, 94
synthesis of an adder, 99
synthesis of an ALU, 99
synthesis of an incrementer, 96

synthesis of an subtractor, 99
synthesis of digital hardware, 90
synthesis of flip-flops and registers, 94
synthesis of gate networks, 90
synthesis of memory, 101
synthesis of multiply and divide hardware, 100
synthesis of seven segment decoder, 91
train state machine, 138
tutorial, 20
using templates for entry, 21,24

video display. See VGA video display

wait statement, 95
wired-AND, 227
with statement, 93

Xilinx 4000 Architecture, 53
configurable logic block (CLB), 53
Input output blocks (IOBs), 55

Xilinx Virtex, 58

Rapid Prototyping of Digital Systems CD-ROM 37 1

About the Accompanying CD-ROM

Rapid Prototyping of Digital Systems, Quartus I1 Edition, includes a CD-ROM that contains Altera's
QUARTUS I1 5.0 SPl Web Edition, Nios I1 IDE, SOPC Builder, and source code for all of the text's
example VHDL, Verilog, Nios I1 SOPC reference designs, and Nios C/C++ example programs.

QUARTUS@ II Software
The free ~uar tus@II 5.0 SPI Web Edition software includes everything you need todesign
for Altera's low-cost FPGA and CPLD families. Features include:

0 Schematic- and text-based design entry
Integrated VHDL and Verilog HDL logic synthesis and simulation
SOPC Builder system generation software for the Nios I1 Processor
C/C++ Compiler and debugger for Nios I1 Processor systems
Place-and-route, verification, and FPGA programming functions
Timing Optimization Advisor
Resource Optimization Advisor

Installing the QUARTUS@ II Software

Insert the textbook's CD-ROM in your CD-ROM drive. Browse the file, index.html, on the CD-ROM
using a web browser for complete step by step instructions. Click on the link to the book's website at the
end of the index.htm1 file to check for new software updates and any errata.

Source Code for Design Examples from the Book
Browse the file, index.html, on the CD-ROM using a web browser for complete step by step instructions.
Design examples from the book are located in the booksoft.zip file, in subdirectories \chapx, where x is the
chapter number. To use the design files, unzip them to the hard disk drive to your project directory or a
subdirectory. In addition to *.bdf, *.vhd, *.v, and *.mif design files, be sure to copy any *.qpf, *.qsf, or
*.qws files for each Quartus project. If you want to download a demo file, be sure to copy the *.sof device
programming file. For Nios projects copy the entire project directory including subdirectories. The
UP3core library files are in \chap% In each \chapx directory, the subdirectory \UP2 contains files already
setup for UP 2 board users. For users with the larger 1C12 UP 3, use the subdirectory \1C12.

Users switching existing projects from the original UP 3 1C6 board to the larger UP 3 1C12 board will
need to change the device type to an EPlC12Q240C8 and change a few pin assignments on each CD-
ROM design and recompile when moving a project from a lC6 board to a larger 1C12 board - See
Sections 1.1,2.3 and Appendix C.

This CD-ROM is distributed by Springer Science+Business Media, Inc. with *ABSOLUTELY NO SUPPORT* and
NO WARRANTY from Springer Springer Science+Business Media, Inc. Springer Springer Science+Business
Media, Inc. and the authors shall not be liable for damages in connection with, or arising out of, the furnishing,
performance or use of the CD-ROM.

