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Preface

Our aim is to introduce, explain, and discuss the fundamental problems,
ideas, concepts, results, and methods of the theory of dynamical systems and
to show how they can be used in specific examples. We do not intend to give
a comprehensive overview of the present state of research in the theory of
dynamical systems, nor a detailed historical account of its development. We
try to explain the important results, often neglecting technical refinements
and, usually, we do not provide proofs.1

One of the basic questions in studying dynamical systems, i.e. systems that
evolve in time, is the construction of invariants that allow us to classify
qualitative types of dynamical evolution, to distinguish between qualitatively
different dynamics, and to study transitions between different types. It is also
important to find out when a certain dynamic behavior is stable under small
perturbations, as well as to understand the various scenarios of instability.
Finally, an essential aspect of a dynamic evolution is the transformation of
some given initial state into some final or asymptotic state as time proceeds.
The temporal evolution of a dynamical system may be continuous or discrete,
but it turns out that many of the concepts to be introduced are useful in either
case.

We first introduce some general notions and exemplify them for systems of
ordinary differential equations. We classify some simple types of dynamical
behavior, like fixed points, and discuss the stability issue. We introduce the
notion of typical or generic behavior and study bifurcations, i.e. transitions
between different types of behavior. Attractors represent important asymp-
totic dynamical invariants. Another aspect is the distinction between dynam-
ically contracting and expanding directions and those that are neither. The
latter constitute the so-called center manifold and encode the dynamically
nontrivial part of the evolution.
1 All proofs can be readily found in the references provided in the bibliography.

My conscience as a mathematician does not allow me to suggest that you study
dynamical systems without seeing the proofs of the difficult results. Therefore, I
hope that you will consult at least some of these references.



VI Preface

The theory of Conley allows a detailed investigation of qualitative features
of dynamical systems in terms of discrete algebraic invariants. The theory is
presented in detail.
Kolmogorov introduced the fundamental asymptotic invariant for a dynam-
ical system, the entropy. The topological entropy is an important tool for
analyzing so-called chaotic behavior, and the method of symbolic dynamics
transforms a continuous scenario into a discrete one.
The metric aspects of entropy allow us to discuss the issue of complexity and
the absence or presence of intrinsic scales of a dynamical process. The mea-
sure theoretic entropy establishes a fundamental connection with Shannon’s
concept of information. Lyapunov exponents of a dynamical system are easier
to compute than the entropy, but can sometimes provide an alternative to
the latter for analyzing the relation between expansion and contraction of a
dynamical process. For that aspect, a rather complete theory exists under a
certain assumption of structural stability, called hyperbolicity.
We also discuss cellular automata and the more general Boolean networks as
examples of discrete dynamical systems.
Of course, this short survey cannot treat the field of dynamical systems ex-
haustively. The most important omission is perhaps the theory of Hamil-
tonian and integrable dynamical systems and its profound connections with
symplectic geometry for which a standard presentation is available in several
recent textbooks.

While any individual mathematician who develops a new concept or demon-
strates an important result is rightly proud of her or his achievement, in
general we mathematicians are inclined to consider important mathematical
theories and results to be the common property of all mathematicians, if not
of all of mankind. Perhaps for that reason, we are not always very diligent in
tracing the history of individual contributions, and this may serve as a faint
excuse for not always carefully searching and listing all individual references
in the present survey.
The present book emerged from series of lectures given at Leipzig Univer-
sity and the Santa Fe Institute for the Sciences of Complexity to rather
diverse audiences. I thank them all for their interest, their inspiring ques-
tions, and their constructive criticism. I am grateful to Antje Vandenberg
and Pengcheng Zhao for technical help.

Leipzig, July 2004 Jürgen Jost
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1 Introduction

A dynamical system is a system that evolves in time through the iterated
application of an underlying dynamical rule. That transition rule describes
the change of the actual state in terms of itself and possibly also previous
states. The dependence of the state transitions on the states of the system
itself means that the dynamics is recursive. In particular, a dynamical system
is not a simple input-output transformation, but the actual states depend on
the system’s own history. In fact, an input need not even be given to the sys-
tem continuously, but rather it may be entirely sufficient if the input is only
given as an initial state and the system is then allowed to evolve according
only to its internal dynamical rule. This will represent the typical paradigm
of a dynamical system for us.
The transition rules for dynamical system will typically depend on certain
parameters. Investigating the qualitative nature of this dependence consti-
tutes an important aspect of the theory of dynamical systems.
The application of the transition rule can happen either at discrete time
steps, with the time parameter denoted by t taking values in the (positive)
integers Z(N), or infinitesimally with continuous underlying time taking val-
ues in R or R+ as in differential equations. If time is continuous, we assume
that the transition rules lead to an evolution that is continuous w.r.t. some
appropriate topology. The qualitative dynamical behavior of the system may,
however, change due to phase transitions or bifurcations. Or, from a different
perspective, there may be a transient and an asymptotic dynamical regime.
If time is discrete, we need to select a class of permissible state transitions
that preserve the identity of the system.
The underlying rule may be rather simple, but its iterated application may
still create an asymptotic behavior as time goes to infinity that is not so
easy to predict and analyze from the dynamical rule itself. In fact, in many,
and perhaps typical, cases, there is no simpler way to obtain or predict the
final result than to let the dynamical system run itself. Thus, in hindsight,
the attitude of Laplace seems rather naive that, given the complete initial
conditions, future states of the world could be computed. The point is that
the dynamical evolution may be so complicated that, for that prediction, a
computer that is essentially as powerful as the world itself would be needed,
and this computation would then take about as long as the corresponding
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evolution of the world itself. While this already touches on some issues from
theoretical computer science, the theory of dynamical systems can offer pow-
erful insights that help to clarify this point.
A dynamical system transforms an initial state in its state space through the
dynamical iteration into an asymptotic final state, and this transformation
is what one wishes to understand. Thus, the fundamental question is what
one can say about the asymptotic final state from the knowledge of the ini-
tial condition and the dynamical rule. In particular, one is interested in its
qualitative aspects, in a sense to be made precise. In spite of the complexity
of the computation just argued, it is typically still possible to derive qual-
itative results that are stable under large classes of variations of the initial
conditions or the dynamical rule. Often, in fact, that asymptotic state is qual-
itatively simpler than the initial state the dynamics started with. Thus, the
underlying space of possible initial states might get transformed into a simple
collection of attractors. That collection then captures the essential aspects of
the corresponding initial conditions. In this sense, the attractors constitute
a classification of the possible initial conditions. Knowing those attractors,
and in addition the unstable invariant states the dynamical system possesses,
allows us to reconstruct the qualitative features of the underlying space of
initial conditions. Thus, no essential information gets lost during the dynami-
cal process. Conversely, knowing the topology of that underlying space allows
to derive constraints on the system of invariant sets of the dynamics. This
interplay between information contained in the space of initial conditions and
relationships between dynamically invariant states is one of the main themes
of the theory of dynamical systems.
This transformation of the initial into the asymptotic final states is some-
times considered as a computation performed by the dynamical system, and
our above discussion may suggest such a point of view. In this interpretation,
the initial state is the input of the system, and the asymptotic final state
that is achieved by letting the system run on the basis of this input then is
the output. Since one might prefer to consider computation as the purposeful
extraction from external input of information that is relevant for the system,
and since I do not wish to enter into a discussion of purpose or meaning here,
it is perhaps preferable to employ the more neutral term of translation for
describing this dynamic transformation process.
There seems to be some contradiction in the preceding. On one hand, I have
argued that prediction is impossible because the complexity of the dynamics
cannot be reduced. On the other hand, I have claimed that the dynamical
system can achieve a simple classification of a large and diverse set of inputs
by assigning to each input one attractor out of some small collection, and
that the essential qualitative aspects of that input space are reflected and
preserved in the collection of asymptotic invariant states of the dynamical
system. In fact, one should see these aspects as complementary rather than
contradictory. A dynamical system may simultaneously possess complexifying
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features that amplify small differences, in the sense of a so-called chaotic
evolution, as well as simplifying tendencies because some degrees of freedom
constrain and dominate the other ones. It may not be easy to predict to
which attractor some given initial state is asymptotically drawn, and two
very similar initial states may subsequently evolve in completely different
directions. When we pass to a different scale of resolution, however, some
of these fluctuations, unpredictabilities, and perturbations may average out
and we may see a rather regular global picture. Thus, we may not be able
to know everything by any method short of running the dynamical process
itself, but we might still be able to capture certain qualitative and global
aspects reliably. The latter is the basis of all scientific modelling. When we
wish to describe some part of reality in a formal model, we need to identify
the essential degrees of freedom of the system or process whose knowledge
allows an understanding and perhaps even prediction of the important and
relevant aspects, at least at a global scale or in the long term. The mathemat-
ical theory of dynamical systems offers important conceptual and technical
tools for that as we shall also explore in this monograph. After all, the task
of science is not the prediction of every tiny detail of a complicated system,
but rather an understanding of its essential and dominant features.

Another clarification should be made: When I speak about evolution, this
term is employed in the sense used by physicists, i.e., simply as a temporal
process, but not with the meaning and connotations it carries in biology.

There are two important questions that may be posed at this rather general
level:

– The isomorphism problem: What are the relevant criteria for compar-
ing two dynamical systems and calling them isomorphic if they exhibit the
same values of these criteria? The isomorphism problem can of course be
approached more successfully for small and constrained systems than for
large ones with many independent degrees of freedom. Also, the problem is
better posed in situations where the system is not continuously exposed to
unpredictable external inputs, but rather where it starts from some initial
condition as its sole input and then is left alone to run according to its
dynamical rule. We shall be interested in qualitative properties of dynam-
ical systems, and not in quantitative ones, and we wish to describe these
qualitative aspects through certain continuous or discrete invariants. Thus,
isomorphic systems need to have the same values of all such invariants. One
of the most important invariants for dynamical systems is the entropy.

– The identity problem: This refers to the evolution of a given system
rather than the comparison of two different systems. In contrast to the
isomorphism problem, the identity problem tends to be rather trivial for
small systems and becomes really meaningful only for larger systems with
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many elements or degrees of freedom. In particular, we are concerned here
with a situation where the possible states are taken from a large state space
and can be quite intricate and complicated. We can then ask which part
of the state space can be explored from given initial conditions and what
types of constraints restrict the possibilities for the system evolution. Also,
here we may well assume that the system is perpetually exposed to some
input from its environment that it is unable to predict, but to which it
needs to react. We then want to understand how external input influences
the internal dynamics. Conceptually, this input can be formalized as ran-
dom, unpredictable, stochastic, that is, as noise, or it could be encoded
in certain parameters that govern the dynamical evolution. In some cases,
these parameters are considered as fixed while, in other cases, they may
themselves evolve, perhaps on a much larger time scale. – Naturally, then,
for this problem a less complete and penetrating answer can be achieved
than for the first one.
How can we identify a system in state S(t1) observed at time t1 with the
same system in state S(t2) observed at time t2? The problem is that S(t2)
may be qualitatively different from S(t1) as it may have undergone struc-
tural changes during its evolution from t1 to t2. The question then is to
find out what types of structural changes are possible during the evolution
of a given system and what types can be excluded, for example on the
basis of certain invariants that have to remain constant during the evolu-
tion process. While in some cases the parameters governing the dynamical
system are externally given, and perhaps constant, in other situations they
themselves obey an intrinsic dynamical rule, but typically on a slower time
scale. In that case, the combination of the evolution on two different time
scales may lead to intrinsically caused bifurcations, that is, qualitative
dynamical changes. Often, the point of view can also be reversed in the
sense that the dynamical evolution itself dynamically separates into differ-
ent time scales, with the slower one containing the essential aspects of the
evolution of the system.

Intimately connected with these two problems is a third one, namely

– The stability problem: When is the qualitative behavior of a dynamical
system insensitive to small perturbations? In terms of the question of the
transformation of the initial condition into an asymptotic final state, this
is the issue of dynamical stability and means that slight variations of the
initial conditions should typically yield similar, if not identical, final states.
This aspect will be made precise through the concept of an attractor and
its basin of attraction. However, even the presence of such an attractor
does not guarantee such a stabilization. Namely, many dynamical systems
exhibit so-called chaotic behavior, that is, differences in the initial con-
ditions are ever more amplified as time proceeds. There may even exist
so-called strange or chaotic attractors that, while attracting nearby initial
values, carry an internal dynamics that amplifies differences. In terms of
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the isomorphism problem, this is the issue of structural stability and
means that a system obtained from a given one through a slight perturba-
tion of a parameter remains isomorphic to the original one. In terms of the
identity problem, this means that the system does not undergo structural
changes during a certain time period, but remains qualitatively invariant.
However, as this is often not the case, one also needs to investigate the
possible structural changes occurring either through the variation of a pa-
rameter or in the course of the evolution of a given system. Again, one may
ask what types of structural changes are stable under slight perturbations
or generic in the sense that they occur in typical situations. Of course, the
preceding discussion involves several notions that still need to be assigned
a precise mathematical meaning.

Finally, a fourth important problem concerns

– The statistical behavior of dynamical systems: What are the dynamic
properties of some system for average initial conditions or parameter val-
ues? How much information can be extracted from the observation of a
single evolution of the system for a fixed choice of initial conditions or
parameters?
Also, the dynamic rules may contain deterministic as well as stochastic
components, and the effect of the latter should also be investigated. Er-
godic theory is concerned with the most important aspect of the statistical
behavior of dynamical systems, namely the following question:
Let (X,µ) be a measure space, and let T : X → X be measure preserving
and bijective (possibly up to sets of measure 0). The ergodic problem
is to isolate conditions under which the temporal average of a measurable
function f : X → R,

lim
n→∞

1
n

n−1∑
ν=0

f(T νx),

exists (T ν = T ◦ ... ◦ T ; ν times) and coincides with the spatial average or
mean ∫

X

f(y)µ(dy),

at least for µ-almost all x. Thus, if the system satisfies this ergodic property
then, for obtaining the average of a function over the state space , it suffices
to look at the dynamic iterates of a single (typical) point in that state space
X. Such dynamic iterates are often given as time series.

In fact, we now have two objects here, namely the transformation T and the
measure µ. Thus, given T , we can first try to find such a measure µ that is
left invariant by T , and we can then ask whether we can also find an ergodic
invariant measure, perhaps with certain further properties imposed.
Conversely, if the measure is given, for example as the volume measure for
some underlying Riemannian metric on X, then perhaps T will not leave it
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invariant, but it still offers the perspective of considering all initial conditions
simultaneously instead of a single one. This is particularly useful when we
study differential equations. The traditional local approach was to take an
initial condition and ask whether the differential equation possesses a unique
solution for that initial condition for all times, and then whether this solution
depends continuously or even smoothly on that initial condition for all finite
times. The modern global approach rather considers the differential equation
as a dynamical system that, for each time t (> 0), transforms the space of
initial conditions (corresponding to time 0 by an arbitrary convention) into
the space of the corresponding values at time t. Under appropriate conditions
(essentially the ones that ensure unique existence for all times and smooth
dependence on initial conditions), this yields a diffeomorphism of the space of
initial conditions, that is, the space on which the dynamical system operates.
It is important to realize, however, that as t → ∞ these diffeomorphisms
need not converge to a limit diffeomorphism. For example, if the system has
a global point attractor, then the solution of the differential equation will
converge to that point for any initial condition, and so, our diffeomorphisms
will also converge to a point map and not to a diffeomorphism.
In other situations, for example those typically arising in statistical mechan-
ics, we do not know the initial value precisely as a point in our state space,
but rather only as a certain probability measure. Thus, again, we do not
consider iterates of a single point and perhaps seek a fixed point, but rather
iterates of a probability measure and look for an invariant measure to which
those iterates converge.



2 Stability of dynamical systems, bifurcations,
and generic properties

2.1 Some general notions

A flow (semiflow) is a family

Ft : X → X

of maps of a set X (state or phase space) into itself, for t ∈ R (t ≥ 0),
satisfying

(i) F0 = Id
(ii) Ft+s = Ft ◦ Fs for all t, s ∈ R (t, s ≥ 0) ((semi) group property ).

Here, t is considered as a time parameter. For a given initial state x0, we
study the process

x(t) := Ftx0

transforming the initial state into the state at time t.
The map

t �→ x(t)

is called a trajectory, and {x(t) : t ∈ R(t ≥ 0)} is the orbit of x0.
x0 is called a fixed point or a stationary point if

x(t) = x0 for all t.

More generally, a trajectory or an orbit is called periodic if

x(t + ω) = x(t) for some ω ≥ 0 and all t.

(ii) implies that
x(t + s) = Ftx(s),

i.e., y(t) := x(t + s) is the state at time t of the process with initial state
y(0) = x(s).

In the discrete case, we consider instead the iterates of a given map

F : X → X,

xn+1 = F (xn) for n ∈ Z (n ∈ N).(2.1)
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An important example of a discrete dynamical system is obtained by letting

F = F1

be the time 1-map of a (semi) flow as above. In that case

x(n) = Fn(x0)

are the values of the flow at integer times.
More generally, we could let F in (2.1) also depend on n, F = Fn. That
would be a so-called non-autonomous situation.
The dynamical system given by (2.1) is invertible when each state x(n) has
a unique predecessor x(n− 1), that is, if two trajectories can never merge.

Let X be a topological space, and F : X × R → X a flow with F (x, 0) = x,
and put x(t) := F (x, t). For y ∈ X, we put

α(y) : =
⋂
t∈R

y((−∞, t)),(2.2)

ω(y) : =
⋂
t∈R

y((t,∞)).(2.3)

α(y) tells us where y came from in the infinite past and, likewise, ω(y) encodes
where it goes in the infinite future. An important point is that, in particular
in the examples that are of interest for us, many points y may have the same
α or ω limit sets. Thus, looking at the collection of all such limit sets, we see
to what extent the asymptotic dynamics reduces or simplifies the underlying
space X on which it operates.
When X is a metric space with metric d(., .), we have

α(y) = {z : for all ε > 0, there exist arbitrarily large t with d(y(−t), z) < ε}
ω(y) = {z : for all ε > 0, there exist arbitrarily large t with d(y(t), z) < ε}.
Similar concepts apply also in the time discrete case. If we consider the system
given by xn = F (x, n), for instance, the iterates Fn (that is, xn = Fn(x))
for n ∈ N of a continuous map F : X → X, we have the forward limit set

ω(y) = {z ∈ X : for any neighborhood U of z,(2.4)
there exist arbitrarily large n with y(n) ∈ U}.

Again, in a metric space X, this condition can be formulated in metric terms.
The forward limit set ω(y) is the set of points to which the orbit of y comes
arbitrarily close infinitely often in forward time. The limit set ω(y) may or
may not contain points from the orbit of y. A fixed point and a periodic orbit
are their own limit sets, but they can also be the limit sets for other points as
well, namely for those attracted by it (see 2.4). y and its iterates y(n) have
the same limit set. Therefore, when z ∈ ω(y), then also the entire forward
orbit of z, i.e. all iterates z(n), n ∈ N, lie in ω(y) as well.
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2.2 Autonomous systems of ODEs

Let f = (f1, ..., fd) : Rd → Rd be a mapping of class C1. We consider the
system of ODEs

(2.5) ẋi(t) = f i(x1(t), ..., xd(t)) for i = 1, ..., d,

with ẋi = d
dtx

i. Such a system is called autonomous because f does not
depend explicitly on t (but implicitly through the dependence of x on t). One
may also consider non-autonomous systems,

(2.6) ẋi(t) = φi(t, x1(t), ..., xd(t)) for i = 1, ..., d,

with an explicit dependence on t, but such systems can be converted into
an autonomous form by introducing a new dependent variable xd+1 and the
equation

(2.7) ẋd+1(t) = fd+1(x1(t), ..., xd(t), xd+1(t)) ≡ 1.

One should note, however, that this may turn linear (non-autonomous) equa-
tions into non-linear (autonomous) ones; for example

ẋ = sinωt

becomes

ẋ1 = sinωx2

ẋ2 = 1

which couples the dependent variables x1, x2 in a non-linear manner.
The important point about autonomous systems is that they are invariant
under time shifts. This means that, if we consider the solution of (2.5)1 x1(t)
with initial values x1(t1) = ξ and the solution x2(t) with the same initial
values, but starting at time t2, that is, x2(t2) = ξ, then for all t ≥ t2,
x2(t) = x1(t+t1−t2). In other words, the behavior of the solution (obviously)
depends on the initial values, that is, where or how it starts, but not on the
starting time, that is, when it starts.

By the theorem of Picard-Lindelöf, (2.5) defines a local flow in the sense that
for every initial state x0, the solution x(t) of this system exists on some time
interval

−T < t < T, for some T > 0.

If f i(x0) = 0 for i = 1, ..., d then x0 is a stationary point of our local dynam-
ical system. In order to investigate the local behavior near such a stationary
1 assuming that there exists a unique solution, see below
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point, we linearize the problem near x0 and first investigate the local be-
havior of the linearized problem. We then try to find out whether the latter
behavior persists in the original problem.

We may assume w.l.o.g. that
x0 = 0.

We thus study the linearized system

ẋ(t) = Ax,(2.8)

with A =
(
∂f i

∂xj
(x0)
)

i,j=1,...,d

, x = (x1, ..., xd).

We consider the case d = 2 .

We first look at the case where A has two real eigenvalues α1 and α2 and
can be diagonalized. After a linear change of coordinates, our system then
becomes

ẋ1(t) = α1x
1(t)

ẋ2(t) = α2x
2(t),(2.9)

and hence

x1(t) = eα1tx1(0)

x2(t) = eα2tx2(0).(2.10)

If α1 and α2 are both negative, then x(t) converges to 0 with exponential
speed while, in the case where α1 and α2 are both positive, x(t) exponentially
expands. In fact, in both cases x(t) moves along the curves

(x1)α2 = const. (x2)α1 ,

because
(x1(t))α2

(x2(t))α1

remains constant.

In the first case, x = 0 is called a sink or node, and it is a stable fixed point
for t → ∞, while in the second case, a source, it is unstable for t → ∞. The
two cases are interchanged under a time reversal t → −t.
If α2 < 0 < α1, then the fixed point 0 is neither stable nor unstable because
any initial point on the x2-axis converges to 0, while all other initial points
diverge under the flow. This is called a saddle.

Finally, we consider the case where A has two complex conjugate eigenvalues
α± iϑ. After a linear change of coordinates, we then obtain the system
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α1 = α2 < 0 α2 < α1 < 0 α2 < 0 < α1

node node saddle

ẋ(t) =
(

α ϑ
−ϑ α

)
x(t),

and hence

x(t) = eαt

(
cosϑt sinϑt
− sinϑt cosϑt

)
x(0).

If α < 0, x(t) moves on a spiral towards 0, if α > 0, it expands on such a
spiral, while in case α = 0, it moves on a circle around 0.

α < 0, ϑ �= 0 α = 0, ϑ �= 0

The last case α = 0 is principally different from all the other cases, because
it is not structurally stable in the sense that an arbitrarily small variation
of α = 0 changes the qualitative behavior of the system. Even worse, while
in the other cases the qualitative behavior of the original system near the
fixed point 0 is the same as that of the linearized system, this is in general
no longer so in case α = 0. This example will be taken up again in 2.8.

We now revert to general dimension d and formulate
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Definition 1. The fixed point 0 is called hyperbolic if all eigenvalues of the
linearized system have nonvanishing real part.

Thus, the dynamic behavior near a hyperbolic fixed point is structurally
stable. This assertion will be made more precise in the sequel.

In the time-discrete case, we may consider the time-1-maps of the above
examples. We then obtain linear maps of the form

x1 �→ eα1x1

x2 �→ eα2x2

or (
x1

x2

)
�→ eα

(
cosϑ sinϑ
− sinϑ cosϑ

)(
x1

x2

)
,

where x = 0 again is a fixed point.

Analogous to the definition in the time continuous case, we formulate the

Definition 2. A linear map A : Rd → Rd is called hyperbolic if it has maxi-
mal rank and none of its eigenvalues has absolute value 1.

Let f : M → M be a map. p ∈ M is called a periodic point of f of period n
if fn(p) = p. A periodic point of f of period n is thus a fixed point of fn.

As another class of examples, we consider gradient flows. Here, F : Rd → R
is a C2-function, that is, twice continuously differentiable, and we consider

(2.11) ẋ(t) = −DF (x(t))

where D stands for the gradient; in coordinates, (2.11) is

(2.12) ẋi(t) = −∂F (x(t))
∂xi

for i = 1, ..., d.

The minus sign is purely conventional – one could as well consider the positive
instead of the negative gradient flow.
We compute

(2.13)
d

dt
F (x(t)) = DF (x(t))ẋ(t) = −|ẋ(t)|2.

Thus, F is a decreasing function along any flow line, and strictly so except
at those points where DF (x) = 0. These latter points are called the critical
points of F . These then are precisely the stationary points for our dynamics.
We now consider a flow line x(t). Such a flow line could, for example, be
specified, by imposing the condition
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x(0) = x0

for some x0 ∈ Rd. We write

(2.14) x(±∞) := lim
t→±∞x(t),

assuming that these limits exist. We now assume that the first and second
derivatives of F are bounded on Rd. Then

(2.15) ẍ(t) = −D2F (x(t))DF (x(t))

is also bounded and, consequently, ẋ(t) is uniformly Lipschitz continuous.
From (2.13), we obtain for t1, t2 ∈ R

F (x(t1)) − F (x(t2)) = −
∫ t2

t1

d

dt
F (x(t))dt =

∫ t2

t1

|ẋ(t)|2dt

=
∫ t2

t1

|DF (x(t))|2dt.(2.16)

Therefore, if F (x(t)) is bounded along our flow line for t → ∞, (2.16) and
the Lipschitz continuity of ẋ(t) imply that

(2.17) lim
t→∞DF (x(t)) = lim

t→∞ ẋ(t) = 0.

We are thus inclined to believe that, as t → ∞, x(t) converges to a critical
point x(∞) of F , and analogously for t → −∞. From the preceding consid-
erations, we can conclude at least that, if F is bounded, we can find some
sequence tn tending to ∞ for which x(tn) converges to a critical point x(∞).
We now linearize our system about x(∞). To make contact with the consid-
erations in the beginning of this section, we assume w.l.o.g. that x(∞) = 0.
The linearized problem is then

(2.18) ẋ(t) = Ax

with

A =
(

∂2F

∂xi∂xj
(x(∞))

)
i,j=1,...,d

.

Since A is symmetric because F is twice continuously differentiable, it has
only real eigenvalues α1, ..., αd and, after a linear change of coordinates, the
linearized dynamics is given by

(2.19) xi(t) = eαitxi(0).

We call the critical point x(∞) non-degenerate if all eigenvalues of the
Hessian D2F (x(∞)) =

(
∂2F

∂xi∂xj (x(∞))
)

i,j=1,...,d
are non-zero. This means
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that x(∞) is hyperbolic in the sense of the above definition as a stationary
point for our dynamics. In that case, (2.19) implies that, for the linearized
dynamics, the convergence to x(∞) which takes place along a flow line is
exponential. (Of course, we obtain convergence to x(∞) only when the initial
values x(0) fall into linear combinations of coordinate directions xi that cor-
respond to negative eigenvalues αi. Other initial values asymptotically move
away from x(∞) under the dynamics.) By the Theorem of Hartman-Grobman
to be stated in 2.7 below, in the hyperbolic case, the situation is structurally
stable in the sense that the linearized system already captures the qualitative
dynamics of the original system in the vicinity of the stationary point. Thus,
when x(∞) is a non-degenerate critical point, any flow line for which x(∞)
occurs as an accumulation point in fact converges to it exponentially. Thus,
when all critical points of F are non-degenerate, and if F is bounded, then
any flow line x(t) converges for t → ±∞ to critical points x(±∞) with expo-
nential speed. Another consequence of the fact that the linearized dynamics
approximates the original dynamics locally in the vicinity of a critical point
is that those critical points, assuming that they are non-degenerate, are in
fact isolated.
The example of gradient flows will be taken up in 3.2 below.
For a gradient flow with non-degenerate critical points, the asymptotic situa-
tion is thus quite simple; namely, the whole space is dynamically transformed
into the discrete set of critical points of the underlying function F . When F
has more than one critical point, this transformation of x ∈ Rd into x(∞) for
the flow line with x(0) = x is then not continuous anymore as the asymptotic
image, that is, the set of critical points, is not connected while Rd of course
is.

We conclude this section with a simple observation. Given a solution x(t) of a
system of ODEs (2.5), we obtain a time discrete dynamical system by putting
xn = x(n), that is, by evaluating the flow at integer times. In the linear case,
the transition is explicit, as in going from (2.9) to (2.10). In particular, we see
that by exponentiating from a flow to a time discrete dynamical system, an
eigenvalue 0 for the linearized flow corresponds to an eigenvalue (of absolute
value) 1 for the linear discrete iteration. In the sequel, we shall see that an
eigenvalue 0 for a flow and an eigenvalue of absolute value 1 for a discrete
iteration both correspond to a special type of behavior that is not covered by
the general theory of hyperbolic dynamical systems to be presented below.
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2.3 Examples: Bifurcation depending on a parameter
λ ∈ R

A. Time continuous systems

The notation in the sequel will always be x = x(t), y = y(t), ẋ = d
dtx(t) etc.,

for t ∈ R; we shall write (x, y) in place of (x1, x2).

1.

(2.20) ẋ = −x2 + λ.

λ > 0

λ = 0

λ < 0
no fixed point

x = 0 is a fixed point, neither
attracting nor repelling

x = ±√
λ fixed points,

x =
√
λ attracting,

x = −√
λ repelling

A fixed point emerges at λ = 0 and bifurcates for λ > 0 into an attracting
and a repelling one.

2.

(2.21) ẋ = −x3 + λx (= x(−x2 + λ)).

λ > 0

λ = 0

λ < 0
x = 0 is an attracting fixed point

x = 0 is an attracting fixed point

x = ±√
λ are attracting fixed points,

x = 0 is a repelling fixed point

The attracting fixed point bifurcates into two attracting points and one
repelling point.
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3.

ẋ = y − x(x2 + y2 − λ)
ẏ = −x− y(x2 + y2 − λ).(2.22)

(0, 0) is a fixed point for all λ.

λ < 0 : (0, 0) is a globally exponentially attracting fixed point, since

in that case

d

dt
log(x2 + y2) = 2(−x2 − y2 + λ) ≤ 2λ < 0,(2.23)

and hence
log(x2 + y2) ≤ 2λt+log(x(0)2 + y(0)2) ⇒ x2 + y2 ≤ e2λt(x(0)2 + y(0)2).

λ = 0 : (0, 0) is still a globally attracting fixed point since, for
(x, y) �= (0, 0), we have d

dt log(x2 + y2) < 0, but no longer exponentially
attracting.

λ > 0 : (0, 0) is a repelling fixed point, and a periodic orbit emerges
for x2 + y2 = λ. This periodic orbit is attracting since for x2 + y2 < λ,
d
dt log(x2 + y2) > 0by(2.23), but for x2 + y2 > λ, d

dt log(x2 + y2) < 0.

The system linearized at (x, y) = (0, 0),

ẋ = y + λx

ẏ = −x + λy
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has eigenvalues λ ± i, and thus their real part vanishes at λ = 0. For
λ < 0, the qualitative behavior of the original system is the same as for
the linearized one. For λ > 0 this holds at least in some neighborhood of
(0, 0), which however depends on λ. For λ = 0 the two systems behave
differently. This is an example of a Hopf bifurcation where a periodic or-
bit emerges at the transition from an attracting focus to a repelling one.
While the situation at λ = 0 is not itself structurally stable, the Hopf
bifurcation as such is structurally stable, in a sense to be made precise
below (see 2.8).

4.

ẋ = y

ẏ = x− x2 + λy.(2.24)

(0, 0) and (1, 0) are always fixed points.

(0, 0) is a saddle since for λ = 0 flow lines in the first and third quadrants
in the vicinity of (0, 0) are repelled while those in the second and fourth
quadrants are attracted. For λ = 0, ẏ remains invariant under reflec-
tion across the x-axis while ẋ changes its sign. This yields the following
diagram for λ = 0.

λ=0
In particular, for the sad-
dle (0, 0), there exists a
homoclinic orbit, i.e., one
that starts at this point
and returns to it.

For λ < 0, the corresponding vector field points more strongly towards
the x-axis while for λ > 0 it points more strongly away from it than for
for λ = 0. Thus, for λ < 0 the orbits are attracted more strongly towards
the x-axis and hence intersect this axis earlier than for λ = 0, while we
have the opposite effect for λ > 0. We thus obtain the following diagrams:
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λ<0
attracting fixed point
at (1, 0)

λ>0
repelling fixed point at
(1, 0)

(The situation for λ > 0 is obtained through the inversion

x �→ x, y �→ −y, t �→ −t

from the one for λ < 0.) In particular, for λ �= 0 the homoclinic orbit no
longer exists. (While an orbit that starts at one fixed point and returns
to this same point is called homoclinic, an orbit between two different
fixed points is called heteroclinic.)

B. Time discrete systems

We consider the dynamical iteration xn+1 = f(xn). We have the following
dynamical picture.
We project alternately vertically onto the graph of f and horizontally onto
the diagonal. The first step here associates the value f(xn) to the argument
xn at time n, and the second step turns this value into the argument xn+1

for the next step.

Fixed points correspond to the intersections of the graph of f with the di-
agonal. They are attracting or repelling depending on whether the absolute
value of the derivative of the graph at the intersection point is smaller or
larger than 1.

We now investigate the iteration of a map
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fλ : R → R,

that depends on a parameter λ ∈ R.

1. fλ(x) = x + x2 + λ

λ < 0 : fixed points at

x = ±√−λ

x =
√−λ repelling

x = −√−λ attracting for λ > −1
and repelling for λ < −1.
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−√
λ

√
λ x

λ

fλ(x)

λ = 0 : fixed point at x = 0, neither attracting nor repelling

fλ(x)

xλ

λ > 0 : no fixed point

fλ(x)

x

λ
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2. fλ(x) = x + x3 + λx.

λ < 0: attracting fixed point at x = 0, repelling ones at ±√
λ

λ = 0: fixed point at x = 0

λ > 0: repelling fixed point at x = 0
3. fλ(x) = x2 − λx

exhibits a bifurcation at λ = 1. 0 is a fixed point for all fλ, attracting for
λ ≤ 1, repelling for λ > 1. There is another fixed point at x = 1 + λ, and
thus at x = 2 for λ = 1. In particular, locally 0 is the only fixed point of
fλ. We consider now f2

λ:

f2
λ(x) = x

(
1 + (λ− 1)(λ + 1 + λx− 2x2) + x2(x− 2)

)
In addition to 0, f2

λ has other fixed points, namely the solutions of

(2.25) (λ− 1)(λ + 1 + λx− 2x2) + x2(x− 2) = 0.

The term that is independent of λ, x2(x − 2), possesses a double zero
at x = 0, besides a simple zero at x = 2. For x in the vicinity of 0, the
λ - dependent term (considered as a perturbation term for λ near 1 ) is
dominated by λ2 − 1. Thus, for λ < 1, (2.25) has no further solutions in
the vicinity of 0 while, for λ > 1, it has two of them. For λ ≤ 1, f2

λ has an
attracting fixed point at x = 0, while for λ > 1, there is a repelling one,
compensated by two attracting ones nearby. These latter ones, however,
are not fixed underfλ. Thus, we have a bifurcation with period doubling.

Thus, bifurcation theory analyzes the qualitative dependence of the solution
of a dynamical system on parameters. In concrete situations, one may then
ask where these parameters come from and what controls their variation. In
some cases, they are simply externally given or controlled. In other cases,
they are also intrinsically evolving, but more slowly than the dynamical sys-
tem itself. For example, they can be control parameters in some feed-back
system. This means that the dynamical evolution can tune its own parame-
ters so that the system remains in some desired region of its state space. An
important class of dynamical systems where the fast dynamical evolution is
coupled with a slow parameter evolution is constituted by neural networks.
In a neural network, this slow parameter evolution is supposed to represent
learning on the basis of accumulated dynamical experience. Here, and in
many other cases, the two different time scales, a fast dynamical one and
a slower one for the parameter evolution, are part of the system design. In
many dynamical systems, however, there is an intrinsically controlled sepa-
ration into different time scales. We shall return to a systematic discussion of
this aspect in 2.10. R.Thom[54] proposed to conceptualize biological growth
and metamorphosis as an unfolding through parameter-induced bifurcations.
Again, these parameters evolve on a slow time scale and shape the qualitative
aspects of the fast dynamics, that is, of metabolism in the biological setting.
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And so, again, the slow time scale of the parameters controls the fast time
scale of the dynamics, but in turn depends also on the accumulated effects
of the latter.

2.4 Chaos in differential and difference equations. The
concept of an attractor

Chaos means sensitive dependence on initial conditions. One of the properties
of chaos is that, if the dynamics is given by

(2.26) ẋ(t) = F (x(t)) for t ≥ 0,

(x = (x1, ..., xd) being vector valued),
then the difference ratio

(2.27)
|x1(t) − x2(t)|
|x1(0) − x2(0)| ,

or, more generally, when x lies in a metric space (X, d(., .)), the ratio

(2.28)
d(x1(t), x2(t))
d(x1(0), x2(0))

,

x1(t), x2(t) both being solutions of (2.26), can become arbitrarily large as we
vary x1(0), x2(0) and let t tend to infinity. This implies that, although the
rule governing (2.26) is deterministic, if we can measure the initial conditions
x(0) only with a fixed precision, we cannot predict the long time evolution of
x(t). Chaotic behavior usually is characterized by at least one positive Lya-
punov exponent, or by positive entropy: concepts to be defined in subsequent
chapters.
Of course, one source of diverging paths for different initial conditions might
be that the solutions themselves become unbounded; already for a linear
equation for a scalar x,

ẋ(t) = αx(t)

with α > 0, we have
|x1(t) − x2(t)|
|x1(0) − x2(0)| = eαt

which goes to ∞ as t → ∞. But this type of behavior is not very interesting
by itself; rather, we are asking whether (2.27) can diverge even if all solutions
of (2.26) remain bounded. Still, this is not enough, as any non-attracting fixed
point will generate such a behavior. Rather, one also requires the presence of
a more complicated attractor structure. E.g. one of the definitions proposed
for chaotic behavior requires that there exists a so-called strange attractor,
one that is neither a fixed point nor a limit cycle, and perhaps not even a
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higher-dimensional torus, but rather a nowhere rectifiable set. Examples are
Cantor-type sets. Strange attractors are typically (but not necessarily) of
non-integral Hausdorff dimension.
For understanding this aspect better, it might seem desirable to have some
formal definitions here. However, it turns out that even one of the most
fundamental concepts of the theory of dynamical systems, namely that of an
attractor, does not possess a universally accepted definition. Nevertheless, it
is insightful to discuss this concept here. The subsequent discussion applies
to dynamical systems with continuous and discrete time alike. Thus, while
some definitions are formulated in the time discrete case, it is obvious how
to transfer them to the continuous case. In particular, some examples in the
sequel will be taken from the time continuous case; they can in turn be easily
transferred to the time discrete case by considering the iteration of the time
1 map as explained in 2.1.
We start with the definition of an attractor as presented in [24] and employed
by most mathematicians.

Definition 3. A compact set Λ in a topological space X is called an attractor
for the continuous map F : X → X if there exists a neighborhood U of Λ
with

(2.29) F (U) ⊂ U

and

(2.30) Λ =
⋂
n∈N

Fn(U).

Of course, an analogous definition is possible for a semi-flow F : X×R+ → X.
Under the conditions of Definition 3, every point in the vicinity of Λ is ul-
timately attracted by Λ under the iteration of the map F . Moreover, when
a point is close to Λ, that is, in one of the sets Fn(U) for possibly large n,
then its iterates have to stay in that set as well since that set also is mapped
into itself by (2.29). This property is also encoded in the concept of stability
as formulated by Lyapunov: Λ is stable in the sense of Lyapunov if for every
neighborhood U of Λ, there exists a neighborhood V of Λ with the property
that, for any x ∈ V , the orbit Fn(x), n ∈ N, stays in U .
Example:
We consider the differential equation

(2.31) θ̇ = sin2(πθ)

as defined on the unit circle S1 = {z = e2πiθ}. (As always, we identify θ + 1
with θ.) θ = 0 then is a fixed point with a homoclinic orbit. When we start
with a small positive value of θ(0), θ(t) increases under the flow until it even-
tually approaches θ = 1 which is identified with θ = 0. Thus, every point on
the circle, and, in particular, every point in the vicinity of θ = 0 is eventually

23
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ν = 0

attracted by θ = 0. However, θ = 0 is not an attractor in the sense of Defini-
tion 3 because it does not possess a neighborhood that contracts to it under
the dynamical system. In other words, Definition 3 requires the attraction
to be local, and this is not the case in the present example. θ = 0 is not
Lyapunov stable. In fact, the only attractor for this dynamical system is the
whole circle itself.

Definition 3 does not imply that Λ consists only of the forward limit sets in
the sense of (2.4) for the points in its vicinity. It could be larger as we shall
see in Example 2 below.
Moreover, (2.29) and (2.30) imply that Λ is also invariant under the iterations
of F :

(2.32) F (Λ) ⊂ Λ.

Definition 4. The largest open set U satisfying the conditions of Definition
3 is called the basin of attraction of Λ.

Thus, both the attractor Λ and its basin of attraction B(Λ) are dynamically
invariant. When the map F is invertible, we can also extend the flow to
negative times, that is, consider the iterates Fn for all n ∈ Z and not only for
those in N. Then both Λ and B(Λ) remain invariant, but, of course, Λ will
not be attracting in backward time, as the iterates F−n for n ∈ N will rather
move the points in the vicinity away from Λ. Thus, the attracting property
of Λ here depends on the choice of a direction of time whereas the invariance
is not affected by that. Thus, when we shall discuss Conley theory below,
starting in 3.3, we shall encode the essential properties of a dynamical process
defined for forward and backward time in collections of invariant sets. There,
however, we need to impose some additional restrictions on the invariant sets
considered. For example, we wish to distinguish between Λ and B(Λ) which,
after all, are both invariant. One difference, of course, is that Λ is required
to be compact whereas B(Λ) is open. However, when F is continuous (which
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we usually assume) and if X itself is compact, then also B(Λ) is invariant
and compact. Thus, in 3.3 and subsequent sections, we shall require that the
invariant sets considered be isolated, that is, possess an open neighborhood
whose closure does not contain any other invariant set.
In a related, but different direction, one might wish to refine the definition of
an attractor by requiring that it be irreducible; see for example [13] or [41].
This means that the attractor contains a dense orbit, that is, there exists some
point x ∈ Λ such that, for every other point y ∈ Λ and any neighborhood
V of y, we can find an n ∈ N with Fn(x) ∈ V . In particular, Λ then is
the forward limit set ω(x) of that orbit. This eliminates superfluous parts.
In the time continuous case, such a requirement excludes that an attractor
consists of disjoint pieces. A variant of that definition states that we can find
a neighborhood U of Λ such that, for all z ∈ U , the forward orbit is contained
in U and the limit set ω(z) is all of Λ.
Let us consider some
Examples:

1. (2.31) does not possess any irreducible attractor, because the circle does
not contain a dense orbit, In fact, for every θ, the limit set ω(θ) is the
point θ = 0. That point, however, was seen above not to be an attractor.

2. A saddle x1 and a sink x0 with two heteroclinic orbits from x1 to x0 for a
system of ODEs in the plane. That system of orbits is an attractor in the
sense of Definition 3. It is also isolated. It does not contain a dense orbit,
however, because all the points x in its vicinity with the exception of the
saddle fixed point x1 will ultimately be attracted by the sink x0, that is,
ω(x) = x0 except for x = x1. Thus, it is not an irreducible attractor.

25
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3. This is one of the most fundamental examples in the theory of dynamical
systems, see e.g. [24]. We consider the 2-dimensional torus T := S1 ×S1,
that is, the product of two circles and represent it as R2/Z2, that is, as
the unit square Q := {(x1, x2) ∈ R2 : 0 ≤ x1, x2 ≤ 1} with opposite sides
identified: (x1, 0) ∼ (x1, 1), (0, x2) ∼ (1, x2). For ω1, ω2 ∈ R, we consider
the flow

(2.33) F t(x1, x2) := (x1 + ω1t, x2 + ω2t) (mod 1).

In the square Q, the flow lines are straight lines with slope σ = ω2
ω1

(reap-
pearing at the opposite side with the same coordinate value when they
hit one of the sides of Q). If σ is rational, σ = m2

m1
, then every orbit closes

after traversing Q m2 times in the vertical (x2) and m1 times in the hor-
izontal (x1) direction. Equivalently, the orbit winds m1 times around the
first S1 factor and m2 times around the second one before closing, assum-
ing that m1,m2 are chosen minimal. In this situation, the torus T itself
is an attractor in the sense of Definition 3, but it is not irreducible. The
closed orbits, however, are not attractors in either sense, because they
do not attract any open neighborhood. They are invariant, of course, but
not isolated.
In order to analyze the case where σ is irrational, we consider the in-
tersections of the flow lines with the vertical boundary I := {x1 = 0}
(this can be identified with the second S1 factor). This is an example of a
Poincaré return map to be discussed in 2.6. The x2 coordinate changes by
the amount σ (mod 1) between two subsequent crossings of this circle (we
identify x2 = 0 and x2 = 1, of course). We therefore obtain an induced
discrete time dynamical system Rσ on the circle S1 given by the sequence
of these crossing points. We claim that every orbit of this dynamical sys-
tem is dense in the circle. If the orbit is not dense, the complement of
its closure is a non-empty open invariant set in S1. It is then given by a
collection of disjoint intervals. Let J be an interval of greatest length in
this collection. Its iterates Rn

σJ cannot overlap as otherwise their union
would be a longer such interval. Furthermore, since σ is irrational, all
these iterates must also be distinct because, otherwise, an endpoint p of
J would return to itself, p = p+mσ mod 1, and mσ would be an integer,
in contradiction to σ being irrational. Therefore, all the intervals Rn

σJ
are disjoint and of equal length. This makes it impossible to fit all of
them into the circle S1 of finite length (=1 in the convention adopted
here). This contradiction shows that the complement of the closure of an
orbit is empty, and therefore that orbit is dense in the circle. Returning
to the torus T , since the images of this circle I under our flow F t cover
the whole torus, every orbit of F t is then dense in T . We conclude that,
for irrational σ, the torus T is the only attractor, in any sense, for the
flow F t (in fact, not only in forward time as is the issue here, but also in
backward time).
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Obviously, the example can be generalized to a flow on an n−dimensional
torus Tn. Such a flow with irrational frequencies is called quasiperiodic
because all orbits come back arbitrarily close to their initial positions,
and in that sense are almost periodic, but never exactly.

In 7.2, we shall even find it useful to require that the periodic orbits be dense
in Λ. This turns out to be a technical requirement for structural stability. So
far, we have considered an attractor as an object that is dynamically stable,
that is, any point on a small perturbation of it will asymptotically be moved
back to the attractor under the dynamical iteration. In 7.2, however, we shall
rather be concerned with structural stability, that is, whether an attractor
persists without changing its qualitative features when the dynamical system
itself is slightly perturbed. In that section, we shall study the important class
of Axiom A diffeomorphism which include many chaotic systems. While chaos
is characterized by an extreme form of dynamical instability, namely small
perturbations of the initial values can be amplified to an arbitrarily large de-
gree, those Axiom A diffeomorphisms are structurally stable in a sense to be
made precise. Essentially, this means that small smooth perturbations of the
parameters defining the system can be compensated by a continuous trans-
formation of the dynamical behavior. Thus, this type of chaotic dynamics is
so rich, in a sense because of its dynamical instability, that it contains all
possible variations already in itself and is therefore structurally stable.

One might also wish to relax the requirement for an attractor that it at-
tracts an open neighborhood of itself. For example, a homoclinic orbit from
a saddle point enclosing a repelling fixed point in a flow in the plane is at-
tracting from the inside, but not from the outside.

Another example arises when we put two fixed points of the type described
by (2.31) on the unit circle, each of them attracting from one side, say in the
clockwise direction, and repelling at the other side. If we subject the dynam-
ics to small random perturbations, then an orbit will always approach one
of the fixed points in the clockwise direction, but when close to that fixed
point, the effect of a perturbation may carry it to the other side whence it
may start to approach the other fixed point where then a perturbation may
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cause the same effect. Thus, the perturbed dynamics will cause orbits to ran-
domly oscillate between the two fixed points. More important examples of
such a phenomenon arise for certain chaotic systems. In that sense, Milnor
[30] defines an attractor Λ for a measurable map F : X → X of a space X
equipped with a measure by requiring that the set B(Λ) of points attracted,
the basin of attraction of Λ, have positive measure and that there be no
smaller Λ′ ⊂ Λ with B(Λ′) coinciding with B(Λ) up to a set of measure 0.
Thus, some points in the vicinity of Λ are allowed to escape from Λ. The pos-
itive measure requirement for the basin of attraction excludes saddle points
and the like.
There are then also various concepts of strange and chaotic attractors in the
literature. These qualifications might refer to the geometric properties of Λ
or the dynamical properties of F . In the original reference [45], a strange at-
tractor for a semi-flow was meant to be one that is not a fixed point or a limit
cycle. Subsequently, it was often required that it should not be the union of
finitely many smooth submanifolds of X (usually a differentiable manifold in
applications). See also the discussion in 7.2 below. Other authors, however,
then rather defined it through sensitive dependence on initial conditions, that
is, a dynamical property. Before elaborating on that aspect, it is helpful to
look at some examples of chaotic dynamics.

The first example of a system of ODEs with this type of behavior as expressed
by a complicated attractor structure was discovered by E. Lorenz. In his
system, x = (x1, x2, x3) takes its values in R3, and the equations are

ẋ1 = 10(x2 − x1)

ẋ2 = x1(28 − x3) − x2

ẋ3 = x1x2 − 8
3
x3.

(2.34)

The chaotic behavior of this system was discovered through numerical simu-
lations by Lorenz [28] in 1963. A rigorous mathematical demonstration that
chaos occurs here has been achieved only quite recently by Tucker [55]. Be-
low, however, we shall see an example of a one-dimensional difference equation
where the chaotic behavior can be studied in a more explicit manner.

The system (2.34) is quite simple as the nonlinearities are only quadratic.
Another, even simpler system that exhibits chaotic behavior was subsequently
discovered by Rössler:

ẋ1 = −x2 − x3

ẋ2 = x1 + 0.2x2

ẋ3 = 0.2 + x3(x1 − 5.7)

(2.35)
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Of course, by now many other chaotic systems of ODEs are known. They all
have at least three components and, in fact, one can show that chaos cannot
occur for one- or two-dimensional systems of ODEs.

For difference equations, i.e.,

(2.36) x(t + 1) = F (x(t)),

however, chaos can already occur for one component, as in the famous logistic
equation

(2.37) x(t + 1) = ρx(t)(1 − x(t)).

The behavior here depends crucially on the parameter ρ. We require 0 ≤ ρ ≤ 4
so that the unit interval be mapped to itself. This equation always has 0 as
a fixed point, but this fixed point becomes unstable for ρ > 1. Another
fixed point is at x1 = 1 − 1

ρ . Its stability depends on F ′(x1), here with
F (x) = ρx(1 − x). As

F ′(x1) = −ρ + 2,

|F ′(x1)| becomes larger than 1 for ρ > 3.

1< ρ
x(t+ )1

point at x
< 3 stable fixed

1

x(t)1

x(t+ )1

x(t)1

3< ρ< 3+ε  stable orbit of
period 2 (green)

As F ′(x1) = −1 for ρ = 3, and F ′(x1) < −1 for ρ > 3, small perturbations
of x1 lead to fluctuations about this fixed point that first increase in size; for
larger perturbations, however, the global shape of the function F leads to a
decrease of the fluctuations. For a certain size of the perturbation, it then
stays constant, and we obtain a period of order 2, i.e. two additional fixed
points of the system

x(t + 2) = F (F (x(t)))

= ρ2x(t) − (ρ2 + ρ3)x(t)2 + 2�3x(t)3 − ρ3x(t)4.
(2.38)

Remark: From the perspective of physics, it might seem strange that here
different powers of ρ are added. In particular, ρ must be a dimensionless
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quantity. Thus, the dynamics considered here do not involve dimensional
quantities as in traditional physics.

x(t+ )1

x(t)1 1

x(t+2)

For increasing values of ρ, these new fixed points in turn become unstable,
and we obtain a period of order 4. Increasing ρ further, the period keeps
doubling, and the intervals of ρ for which a certain period is stable become
smaller and smaller until at ρc ≈ 3.5700, chaotic behavior sets in, in the
sense that all periodic solutions of period 2n become unstable. For ρ > ρc,
there exist some locally attracting cycles with periods 2nk, for some odd k.
ρ∗ ≈ 3.8284 turns out to be the parameter value when a solution of period 3
appears.

x(t+  )3

1 x(t)

We then also get prime periods of the form 3 ·2n. In fact, due to the following
fundamental theorem of Sharkovsky, period 3 is the ultimate event.

Theorem 1. We order the positive integers as follows

1�2�22�23�. . .�2m�. . .�2k(2n−1)�. . .�2k ·3�. . .�2·3�. . . �2n−1�. . .�9�7�5�3.
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Let F : I → I be a continuous map of the compact interval I into itself. If F
has a periodic point of prime period2 p, then it also has periodic points for
any prime period q � p.

A proof of Sharkovsky‘s theorem can be found for example in the book of
Katok-Hasselblatt [24].
In order to analyze the behavior of the logistic map, we utilize

Definition 5. Let F : R → R be smooth. The Lyapunov exponent of the
orbit x(n) = F (x(n− 1)) (n ∈ N), x(0) = x, is

(2.39) λ(x) := lim
n→∞

1
n

n∑
ν=1

log |F ′(x(ν))|,

provided that the limit exists.

The quantityλ(x) is undefined when the orbit contains a point with |F ′(x(ν))| =
0, and one needs some regularization procedure. To a fixed point, one assigns
the Lyapunov exponent −∞. A negative Lyapunov exponent indicates that
the directions along an orbit are asymptotically contracted, while a positive
one means that they are asymptotically expanded. (The numerical computa-
tion of Lyapunov exponents has to be conducted with care. In cases where
the orbit is expanding one might worry about instabilities because then small
errors might accumulate. We shall see in 7.1, however, that generically, the
Lyapunov exponent is stable under small perturbations of an orbit.)

Therefore (cf. [2]) we introduce the following

Definition 6. The orbit x(n) = F (x(n− 1)) is called chaotic if it possesses
a positive Lyapunov exponent and if it is not asymptotically periodic, that is,
it does not converge to a periodic orbit (y(n) with y(n+N) = y(n) for some
N and all n) in the sense that limn→∞ |x(n) − y(n)| = 0.

We shall see in a moment that the Lyapunov exponent of the logistic map
with ρ = 4 is log 2 for almost all x.

Definition 7. The limit set ω(x) of a chaotic orbit Fn(x) is called a chaotic
set if it contains x. A Milnor attractor is a chaotic attractor if it is a chaotic
set.

Thus, while a strange attractor has been defined in [45] through its irregular
geometric properties, a chaotic attractor is characterized solely by dynam-
ical properties. Thus, it may well be geometrically regular as the following
example shows:
2 Prime period means that the orbit is not a multiple of another one with a smaller

period (which then has to be a divisor of the original one).
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F : C → C

(r, θ) �→ (r1/2, 2θ) in polar coordinates z = re2πiθ.

Here, the unit circle has dense orbits that are not asymptotically periodic
with Lyapunov exponent log 2. Thus, it is a chaotic set. Except for the origin
z = 0 which is a fixed point, all other orbits are attracted to the unit circle
and also possess the same Lyapunov exponent. Thus, the unit circle is a
chaotic attractor. It is geometrically completely regular, and therefore not
strange.
While the Lyapunov exponents for the general logistic map F (x) = ρx(1−x)
are not readily computed explicitly, we can obtain the exponent for the case
ρ = 4 by conjugating that logistic map to the tent map

Z : [0, 1] → [0, 1],

Z(x) =

{
2x for 0 ≤ x ≤ 1

2

2(1 − x) for 1
2 ≤ x ≤ 1.

1

1/2 1 x

Z(x)

For the tent map, we have |Z ′(x)| = 2 for all x �= 1/2, and therefore almost
every orbit has the Lyapunov exponent log 2. The logistic map for ρ = 4 is
conjugated to the tent map via sin2(πx

2 ) (F (sin2(πx
2 )) = sin2(πZ(x)

2 )). Letting
φ be the inverse of that map, we have φ(F (x(ν))) = Z(φ(x(ν))), and thus
F ′(x(ν)) = Z ′(φ(x(ν))) φ′(x(ν))

φ′(F (x(ν))) . Hence, using F (x(ν)) = x(ν + 1), the
Lyapunov exponent is for almost every orbit
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lim
n→∞

1
n

n−1∑
ν=0

log |F ′(x(ν))|

= lim
n→∞

1
n

n−1∑
0

(log |Z ′(φ(x(ν)))| + log |φ′(F (x(ν)))| − log |φ′(F (x(ν + 1)))|)

= lim
n→∞

1
n

n−1∑
0

(log |Z ′(φ(x(ν)))| + log |φ′(F (x(0)))| − log |φ′(F (x(n)))|)

= lim
n→∞

1
n

n∑
1

log |Z ′(φ(x(ν)))|

= log 2,

as promised.
We shall discuss general results about Lyapunov exponents in 7.1.

The preceding example of a difference equation (namely, the logistic equation)
with chaotic behavior of solutions is much simpler than those of systems of
ODEs leading to such a behavior. In fact, the solutions of a single ODE cannot
exhibit such complex behavior. The reason is simply that for a solution of

(2.40) ẋ(t) = F (x(t)),

x being real valued, a solution can asymptotically grow or decay to a fixed
point or ±∞, but it cannot turn back. Along any non-constant trajectory,
ẋ(t) is either always positive or always negative. As soon as ẋ(t) is 0, we are
at a fixed point, and the solution stays there for ever. In fact, such a fixed
point cannot even be reached in finite time from any other point provided F is
smooth (at least Lipschitz continuous). In particular, (2.40) cannot even have
periodic solutions. For example, when compared with the logistic difference
equation, the logistic differential equation3

ẋ = ρx(1 − x)

is trivial to analyze: it has two fixed points, namely 0 and 1. For ρ > 0, the
first one is unstable as the linearization at 0 is

ξ̇ = ρξ,

whereas 1 is stable, since there the linearization is

ξ̇ = −ρξ.

3 Of course, the reader will realize that the analogy between the logistic differential
and difference equations is not really valid as the latter is not the discretization
of the former.
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The situation becomes more interesting if we introduce delays and consider

(2.41) ẋ(t) = ρx(t)(1 − x(t− τ)).

(As all logistic equations, this can serve as a model for growth with inherent
self-limitation, for example because of limited resources. For a positive τ ,
the limiting factor only acts with some delay.) More generally, one can also
consider convolution type models like

(2.42) ẋ(t) = ρx(t)(1 −
∫ t

∞
η(t− s)x(s)ds)

with a weighting factor η, thus taking into account all past values of x, and
not only the one at the previous time τ .
We return to the simple equation (2.41); its steady states are x = 0 and
x = 1. We assume that ρ > 0 and, by rescaling the time t, we may then
assume w.l.o.g. that ρ = 1. x = 0 is unstable. The linearization about x = 1
is

(2.43) ξ̇(t) = −ξ(t− τ).

We wish to find solutions of the form

(2.44) ξ(t) = ceλt.

Inserting this into (2.43) gives the transcendental equation

(2.45) λ = −e−λτ

Are there solutions of (2.45) with Reλ > 0? Such solutions would imply the
instability of x = 1 as a fixed point of (2.41). In general, the answer to this
question will depend on τ .
Clearly, if λ is a real solution of (2.45), it has to be negative. If however λ
also has an imaginary part,

λ = µ + iω,

from (2.45) we obtain

(2.46) µ = −e−µτ cosωτ

and

(2.47) ω = e−µτ sinωτ.

We may assume here that ω > 0 because, if µ+ iω is a solution, so is µ− iω.
(2.46) admits a solution with µ > 0 precisely if cosωτ < 0. In other words, if
ωτ < π/2, then we have µ < 0, i.e. stability. In that case, (2.47) gives

e−µτ sin(ωτ) τ < π/2.
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The bifurcation, i.e. µ = 0, occurs at ωτ = π/2, and e−µτ sin(ωτ) τ = π/2.
But e−µτ sin(ωτ) = 1 in this case, and hence τ = π/2 (and so also ω = 1).
We want to study the behavior for τ = π/2 + ε, 0 < ε � 1, more closely. We
expand ω = 1+σ with |µ|, |σ| � 1, and obtain from the expansions of (2.46)
and (2.47)

σ ≈ −π

2
µ

µ ≈ ε +
π

2
σ,

and hence

µ ≈ ε

1 + π2/4
,

σ ≈ − επ

2(1 + π2/4)
.

Inserting

λ = µ + i(1 + σ)

≈ ε

1 + π2/4
+ i(1 − επ

2(1 + π2/4)
)

into (2.44), and recalling the expansion

x(t) ≈ 1 + ξ(t),

we obtain

x(t) ≈ 1 + Re(c exp(
εt

1 + π2/4
) exp(it(1 − επ

2(1 + π2/4)
))).

The instability thus approximately grows with oscillations with period

2π
1 − επ

2(1+π2/4)

≈ 2π,

which is four times the critical delay τ = π/2. The exponentially growing
factor depends on the slow time scale εt. The preceding example is taken
from Murray [35].

In contrast to single ODEs, single delay-differential equations can also give
rise to chaotic dynamics. For example, this is the case for

ẋ(t) = −αx(t) + P (x(t− τ)),

where P is a so-called single hump function, i.e. P (0) = 0, P (x) > 0 for
x > 0, P (x) → 0 for x → ∞, P ′(x) > 0 for x < x0, P ′(x) < 0 for x > x0,
and so P has a single maximum at x0.
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There are many textbooks available that present a detailed study of several
chaotic dynamical systems, including the relevant numerical and visualiza-
tion techniques, for example [2], [51]. Techniques and concepts from chaotic
dynamics are also quite useful for the analysis of time series; see in particular
[23]. Namely, while a stochastic system produces an erratic, entirely random
outcome, a dynamical system as considered here, even if it is chaotic, obeys
a deterministic evolution rule. Non-linear time series analysis then develops
tools to distinguish between stochastic and chaotic processes on the basis of
observations and then offers methods for reconstructing chaotic attractors or
at least for evaluating some of their properties, such as certain dimensions. In
particular, when those dimensions are low, that is, when only few degrees of
freedom are involved, then even for a chaotic dynamical system, the under-
lying determinism allows short-term predictions to be made that can be far
more accurate than simple expectation values available for stochastic dynam-
ics. This is one instance where mathematical insights can lead to methods of
great commercial value.

An interpretation of the chaos occurring in some of the preceding equations
and systems that is useful for our purposes is that differences or fluctuations
in the initial conditions are converted into differences in the temporal behav-
ior of the solutions.

2.5 Interaction, or the interplay between concentration
or reaction and diffusion

In the preceding section, we discussed single equations, or systems of finitely
many equations. We found that the qualitative behavior can depend crucially
on whether the time is continuous or discrete, and whether all reactions
come into effect simultaneously, or whether there exist time delays. We now
wish to study the case of interacting units, the state of each being modeled
by one or several equations. Under certain circumstances, it may still be
possible to describe the whole system by e.g. a single equation, namely if
that equation describes some aggregated or averaged quantity, like a total
population in an ecological model. Typically, however, the situation is not
spatially homogeneous, and so the spatial distribution of such a quantity
cannot be neglected. Thus, our quantities will not only depend on time t, but
also on a spatial position x. In other words, we shall need to study equations
for quantities u(x, t). As before, we shall consider continuous state values, i.e.
u takes its values in R, or more generally in some Rn. Of course, it is also
possible to consider discrete state values, contained in Z, or even in {0, 1},
but we shall return to that issue only later.
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Like time, space can also be either discrete or continuous, and we shall explore
the various resulting possibilities a little.
While at each individual site, the state will typically be described by some
reaction equation, the relation between different sites is often one of diffusion
of quantities. In other words, a state quantity aggregated at one site will have
the tendency to diffuse to other sites, for examples if it is present at those
other sites in smaller amounts. To which other sites it can diffuse from a given
site is determined by the spatial connectivity pattern of the system, and that
pattern often plays a crucial role in determining the qualitative behavior of
the resulting dynamic process.
In the continuous case, the simplest diffusion process is described by the heat
equation:

(2.48) ut(x, t)(:=
∂u

∂t
(x, t)) = D∆u(x, t)(:= D

d∑
i=1

∂2u

(∂xi)2
),

with u : Ω × [0,∞) → R, Ω some domain in Rd, and D being a positive
constant, the so-called diffusion coefficient.
If we discretize space and time, with step sizes h and k, resp., we obtain the
difference equation

1
k

(uh,k(x, t + k) − uh,k(x, t))

=
D

h2

∑
i

{uh,k(x1, ..., xi−1, xi + h, ..., xd, t)

+ uh,k(x1, ..., xi−1, xi − h, ..., xd, t) − 2uh,k(x1, ..., xi, ..., xd, t)}.

(2.49)

The underlying intuition is that the quantity u(x, t) diffuses from x uniformly
to all directions at a rate D. Of course, the value of u at x at the next time
step then results from the balance between the amount diffusing out of x to
its neighbors and the amount coming to x from its neighbors. In particular,
if the value of u at x at time t exceeds the values at the neighboring sites,
then it will be decreased. More generally, the maximum principle is valid,
saying that the maximum of u w.r.t. the spatial position x is non-increasing
in time t, and similarly the minimum is nondecreasing. This, together with
the linear structure of the equation, entails a smoothing of the solution u as
t increases.
If h2 = 2dDk, (2.49) becomes even simpler:
(2.50)

u(x, t + k) =
1
2d

d∑
i=1

(u(x1, ..., xi + h, ..., xd, t) + u(x1, ..., xi − h, ..., xd, t)).

37



38 2 Stability of dynamical systems, bifurcations, and generic properties

Thus, u(x, t+ k) is the arithmetic mean of the values of u at time t at the 2d
spatial neighbors of x. (2.50) simply is an iterated local averaging process.
More generally, one many consider some kernel h(x, y) with

(2.51)
∑

y

h(x, y) = 1 for all x

and put

(2.52) u(x, t + k) =
∑

y

h(x, y)u(y, t).

Of course, in the situation of a continuous space, the sums should be replaced
by integrals. In any case, this formulation also naturally applies to nonuni-
form spatial structures, e.g. where the number of neighbors varies with x, or
where the neighbors may carry different weights. Also, h need not be nonneg-
ative here. For example, it might be positive for close neighbors y of x, and
negative for more distant ones, thereby modeling short-range excitation and
long-range inhibition (this point will be taken up only at some later stage).
If h is always nonnegative, then (2.52) describes some iterated weighted local
averaging. This clearly cannot lead by itself to any complex patterns, as it
smoothes out local deviations and thereby destroys information. Thus, in a
certain sense, it has the opposite effect to that of the chaotic dynamics de-
scribed in the preceding section that destroy structures by bringing ever more
information to the fore. One might then speculate that some interplay of diffu-
sion and reaction-concentration processes might generate complex structures.
Of course, there exist various possibilities for combining these two types of
processes. Let us discuss three of them:

1)Reaction-diffusion equations:
Here, the two processes are coupled linearly:
(2.53)
ut(x, t) = D∆u(x, t) + f(u(x, t)), with the diffusion coefficient D > 0,

for some function f . Thus, in the absence of diffusion, we have the ODE
(ordinary differential equation)

(2.54) u̇ = f(u).

This also holds in the case where u is spatially constant, i.e. independent
of x. If that happens initially, i.e. at time t = 0, then this persists, at least
in the absence of fluctuations. Of course, it remains to study the stability
of such a spatially homogeneous state. An important aspect of reaction-
diffusion equations, however, is that for a sufficiently large diffusion rate
D (depending on the size of the domain, the boundary conditions that
might be supposed, and on f), the solution asymptotically (i.e. as t → ∞)
tends to become spatially homogeneous. Of course, if, conversely, D is very
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small, then the evolutions of the states of the individual sites become more
independent of each other. The preceding model directly extends to the case
where u is vector instead of scalar valued. Since, as we have explained, a
single ODE like (2.54) cannot exhibit a qualitatively rich behavior, this is
an important aspect. For example, for the reaction part, one might take
the Lorenz system, or the Hodgkin-Huxley equations for the activity in
space-clamped neurons, or any chemical reaction model.

2)Coupled map lattices
Here, the diffusion is superimposed onto the reaction. The original model
is discrete in space and time: if the space variable runs through the integers
Z, we have

u(n, t + 1) =
α

2
(f(u(n− 1, t)) + f(u(n + 1, t))) + (−α + 1)f(u(n, t)).

Here α > 0 is the diffusion constant, and in many applications it is as-
sumed to be small. For a more general spatial structure, the appropriate
generalization is
(2.55)

u(xi, t + 1) =
α

# neighbors of xi

∑
xj neighbor of xi

(f(u(xj , t)) − f(u(xi, t)) + f(u(xi, t)).

Of course, as before, one may also employ a general neighborhood inter-
action function h(xi, xj).
An analogous model for a continuous space-time is

ut(x, t) = α∆f(u(x, t)) + f(u(x, t)).

Since

∆f ◦ u = f ′(u)∆u + f ′′(u)
d∑

i=1

(
∂u

∂xi
)2,

we first of all obtain a nonlinearity that is quadratic in the first derivatives
of the solution u, and secondly, the equation changes its type from a forward
to a backward heat equation when f ′(u) becomes negative. In that case,
the smoothing properties of the Laplace operator (see [22]) do not apply
anymore to the solution u. While the quadratic nonlinearity can be handled
in the scalar case, it can lead to the formation of singularities if u is vector
valued.

3)In our last model, we change the order of reaction and diffusion in the
coupled map lattice and superimpose a reaction dynamics onto a diffusion
process. In the discrete case, the resulting model is equivalent to the cou-
pled map lattice in 2) and simply follows from putting z = f(u) in the
latter to obtain

z(n, t + 1) = f(
α

2
(z(n− 1, t) + z(n + 1, t)) + (−α + 1)z(n, t)))

or, for a more general spatial structure again,

39
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z(xi, t + 1) = f(
α

# neighbors of xi

∑
xj neighbor of xi

(z(xj , t) − z(xi, t)) + z(xi, t))).

For a continuous space-time, however, the models are no longer equivalent.
Here, we get the equation

zt(x, t) = f(α∆z(x, t) + z(x, t)).

Even in the discrete case, however, we should note that as f in general is
not invertible, the relation z = f(u) does not imply a bijection between
the solutions of the two models.
The space and time discrete version of this model is also well suited for the
situation where the state values are discrete as well. One simply needs to
take a function f that only assumes discrete (e.g. integer) values.

We return to (2.55), that is,
(2.56)

u(xi, t+1) =
α

# neighbors of xi

∑
xj neighbor of xi

(f(u(xj , t))−f(u(xi, t))+f(u(xi, t)).

We may consider this as a system of difference equations where the individual
equations can be labeled by the index i, that is, we could write it in the form

(2.57) ui(t + 1) = F i(u1(t), ..., un(t)).

We may also consider a continuous time analogue,

(2.58) u̇i(t) = Φi(u1(t), ..., un(t)).

This is a standard system of coupled ordinary differential equations, and
its solution is given by a flow in n-dimensional space. This means that we
consider u = (u1, ..., un) as a map from our time interval, typically R+, into n-
dimensional (Euclidean) space. This is the standard setting for the theory of
differential equations. For certain purposes, or in certain situations, however,
it is useful to develop a different interpretation. Namely, the mappings F =
(F 1, ..., Fn) or Φ = (Φ1, ..., Φn) may have only sparse entries, that is, n might
be quite large while for example F i0 , for any particular index i0, might only
depend on a small number of other components uj1 , ..., ujm where the indices
j1, ..., jm, including perhaps their number m, depend on i0. In other words,
for the dynamic evolution of ui0 , only certain specific other components of u
directly occur in the dynamical rule. The other indices only play an indirect
role for ui0 because they influence – either directly or again indirectly – the
evolution of those components of u on which ui0 directly depends. In order
to be able to treat that situation, it is convenient to change the conceptual
setting somewhat and not consider (2.57) or (2.58) as a single vector valued
dynamical system, but rather as a dynamical network with scalar valued
individual dynamics. This means the following. We consider a graph Γ whose
nodes correspond to the indices i and where we insert an edge from j to i
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and call j a neighbor of i when uj occurs (non-trivially) as an argument of
F i (or Φi in the time-continuous case). At each node i, we then have a scalar
dynamics given by F i or Φi, with a direct input from those other nodes j that
have edges to i. In that situation, the evolution at node i is coupled to those
at its neighbors j. We may then analyze how the coupling structure, that is,
the topology of the underlying graph Γ , influences the dynamics. While this
can be treated in quite some generality we discuss only some simple aspects
here:

– Typically, the evolution of ui depends in particular on the state of ui itself;
thus, the graph should carry an edge from i to itself, but that is usually
omitted.

– In the extreme case when all other components uj enter into the evolution
equation for every ui, the underlying graph is fully connected, that is, every
node is connected with every other one.

– We may consider limits of small coupling, that is, for example systems of
the form

(2.59) ui(t + 1) = f i(ui(t)) + ε
∑

j neighbor of i

f ji(uj(t))

and let the coupling parameter ε be small and perhaps tend to 0.

2.6 Discrete and continuous systems. The Poincaré
return map

We have already observed that, from a time continuous dynamical system, a
time discrete one can be obtained trivially by taking the time-1-map. There
exists, however, a different and often more useful such construction, namely
the Poincaré return map. We consider a hypersurface S in the state space
M of the flow (x, t) �→ f t(x). Each time a trajectory crosses S, we record
the position of that intersection, and we thus obtain a sequence of points
..., y(n−1), y(n), y(n+1), ... in S. We thus obtain a discrete dynamical system
on a state space S whose dimension is one less than the dimension of the state
space M for the original flow. This map preserves many properties of that
flow but, in general, there may also arise artefacts coming from the choice
of S. The situation becomes quite transparent, however, for a periodic orbit
Γ of a differentiable flow (x, t) �→ f t(x) on a differentiable manifold M . For
an orbit Γ , we consider a transversal hypersurface S in M through a point
y0 ∈ Γ . Let y0 have period T , i.e.,

y0 = fT (y0).

It can then be shown that for each x ∈ S, sufficiently close to y0, there exists
T (x) near T with
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fT (x)(x) ∈ S.

The map
P : x �→ fT (x)(x)

yields then a map of a neighborhood U of y0 in S to S, the Poincaré return
map. P has a fixed point at y0 and the same regularity properties as the
flow itself. P forgets or ignores the behavior of the flow in the direction
of the periodic orbit which is trivial anyway and on top of that typically
makes the formulation of the hypotheses more complicated. Namely, at least
in the autonomous case, the linearization DfT (y0) has the eigenvalue 1 in
the direction of the periodic orbit and thus does not satisfy a hyperbolicity
assumption. P rather encodes the behavior in the transversal directions.

Definition 8. Let f : M → M be a continuously differentiable map of a
differentiable manifold with a fixed point y0 ∈ M . y0 is called hyperbolic if
the derivative of f at y0, that is, the linear self-map

Df(y0) : Ty0M → Ty0M

of the tangent space to M at y0, is a hyperbolic linear map.
Similarly, if y0 ∈ M a periodic point of period n, i.e.

fn(y0) = y0,

then y0 is called a hyperbolic periodic point for f if Dfn(y0) : Ty0M →
Ty0M is a hyperbolic linear map. A (periodic) orbit then is called a hyperbolic
(periodic) orbit if all its points are hyperbolic.

Thus, y0 is a hyperbolic periodic point precisely if it is a hyperbolic fixed
point of fn.

Definition 9. Let f t : M → M be a differentiable flow with a periodic
orbit Γ , and let y0 ∈ Γ . If y0 is a fixed point, it is called hyperbolic if
Df t(y0) : Ty0M → Ty0M is hyperbolic for all t �= 0. If y0 is not a fixed
point, but periodic with period T > 0, it is called a hyperbolic periodic point
if DfT (y0) : Ty0M → Ty0M has 1 as a simple eigenvalue and no further
eigenvalue of absolute value 1. The orbit Γ is called hyperbolic if all points
on Γ are hyperbolic.

The eigenvalue 1 in this definition of course corresponds to the tangent di-
rection of the orbit. Thus, y0 is a hyperbolic point for the flow f t precisely if
it is a hyperbolic fixed point of the corresponding Poincaré return map.

2.7 Stability and bifurcations; generic properties

This section develops some general concepts that will help us to understand
some examples in subsequent sections. The insights emerging from these con-
cepts are also fundamental for the abstract theory of dynamical systems.
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Theorem 2. (Hartman-Grobman)
Let p ∈ M be a hyperbolic fixed point of the map f : M → M as in Definition
8. Then there exist neighborhoods U1, U2 of p in M as well as neighborhoods
V1, V2 of 0 in TpM , and a homeomorphism

h : U1 ∪ U2 → V1 ∪ V2

with the property that the diagram

U1
f−−−−→ U2

h

⏐⏐� ⏐⏐�h

V1
Df(p)−−−−→ V2

commutes.

Thus, f is locally topologically conjugate to its linearization Df(p) at a
hyperbolic fixed point, in the sense of the following

Definition 10. Two maps f : M → M and g : N → N are called topolog-
ically conjugate if there exists a homeomorphism h : M → N for which the
diagram

M
f−−−−→ M

h

⏐⏐� ⏐⏐�h

N
g−−−−→ N

commutes, that is, if f = h−1 ◦ g ◦ h.

Definition 11. Let 1 ≤ � ≤ k ≤ ∞. Then a Ck-map4 f : M → M is called
C
 structurally stable if f possesses a neighborhood U in the C
-topology with
the property that each g ∈ U is topologically conjugate to f .

One should note that two different categories are occurring here, namely
smooth and continuous maps, and we are neither requesting that each map
in some C0-neighborhood of f is topologically conjugate to f , nor that the
conjugation can be accomplished by a diffeomorphism. Either of these re-
quirements would be too strong for the results to follow. With the first of
these requirements, one would have to admit that isolated fixed points get
conjugated into larger pointwise invariant sets. While with the second re-
quirement, the flows corresponding to the systems of differential equations

ẋ1 = αx1

ẋ2 = αx2

4 Ck means k times continuously differentiable; C∞-maps are infinitely often dif-
ferentiable. Similarly, C0 means continuous.



44 2 Stability of dynamical systems, bifurcations, and generic properties

and

ẋ1 = αx1

ẋ2 = (α + ε)x2

would no longer be conjugate for ε �= 0 even in the case α �= 0.

Theorem 3. Let p be a fixed point of the C1-map f : M → M , and assume
that Df(p) : TpM → TpM has maximal rank. Then f is structurally stable
in some neighborhood of p if and only if p is hyperbolic.

The positive direction of this theorem follows from the Hartman-Grobman
theorem which says that, in the hyperbolic case, f is conjugate to its lin-
earization, and two hyperbolic linear maps are conjugate if and only if they
have the same number of eigenvalues with absolute value < 1 (and hence
also the same number with absolute value > 1) and the determinants have
the same sign on the corresponding spaces. These are obviously structurally
stable conditions.

The negative direction is not difficult either; one considers non-hyperbolic
linear maps that can be perturbed into hyperbolic ones while exhibiting a
qualitatively different behavior.

Analogous constructions and results are possible for the time continuous case.
Two flows are topologically conjugate if their orbits are transformed into each
other by a homeomorphism, allowing a time reparametrization on each orbit.
In particular, the period lengths of periodic orbits need not be invariant under
topological conjugation. The corresponding Hartman-Grobman theorem for
flows states that a flow with a hyperbolic fixed point is conjugate to its
linearization at this fixed point.

The essence of the concept of structural stability is that small variations
of the parameters defining the dynamical system can be compensated by a
continuous transformation of the variables of the system. Thus, a variation
of those parameters does not produce a different qualitative behavior, or,
to express it somewhat differently, the system is able to reproduce in itself
already all the behavior that can be achieved by small perturbations. In
particular, the dynamics should not be qualitatively affected by small round-
off errors or noise, as in computer simulations or measurements, although
this is of course a subtle issue in practice. We shall see in 7.2 that structural
stability needs a somewhat particular type of dynamical behavior, namely
some form of global hyperbolicity. This has implications for the significance of
the concept of structural stability, which, however, are not yet fully explored.
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We now introduce concepts for situations that are not structurally stable.
There, a small change of the dynamical systems, for example caused by the
variation of some parameter, leads to a qualitative change of the behavior, a
so-called bifurcation. In turn, however, these qualitative changes themselves
might be structurally stable in the sense that, if we consider the dynamical
system and the parameter variation together, the situation is stable under
small perturbations.

Definition 12. Let (fΛ)λ∈Λ(Λ open in Rn) be a family of maps fλ : M →
M of class C∞, depending on some parameter λ, and twice continuously
differentiable with respect to λ. λ0 ∈ Λ is called a bifurcation point if fλ0 is not
C2-structurally stable. We say that we have a structurally stable n-parameter
bifurcation at the bifurcation point λ0 if, for each family (gλ)λ∈Λ contained
in some sufficiently small C2-neighborhood of (fλ)λ∈Λ, there exist ε > 0, a
reparametrization λ �→ ϕ(λ) , and a family (hλ)λ∈Λ of local homeomorphisms
such that

gϕ(λ) = h−1
λ ◦ fλ ◦ hλ

for |λ− λ0| < ε.

We have discussed several examples of bifurcations already in 2.3 above.
The structural stability depends typically on the number n of parameters.
R.Thom has classified all structurally stable bifurcations for small values of
n, and he has applied this theory to questions of developmental biology, see
[54]. People have also discussed the qualitative explanation of phenomena in
the social sciences by such a bifurcation analysis. Often, the exact determi-
nation of the bifurcation parameters is difficult here. The advantage of this
theory, also called catastrophe theory in this context, however rests on the
fact that it is not necessary to know the precise functional dependency of
the observed quantities on the causal ones for obtaining a qualitative de-
scription of possible types of transitions, pattern changes, etc. At least, the
theory offers model situations that can be analyzed exactly and are stable
under perturbations. These can then serve as analogies for gaining some un-
derstanding of phenomena in the realm of the social sciences that cannot be
captured themselves with complete detail and precision. Sometimes, however,
the theory is applied too naively, and qualitative analogies get confounded
with causal explanations.

One would like to have a notion of a property P being typical for a certain
parameter-dependent class of dynamical systems. The starting point would
be the requirement that i) for every λ0 in the parameter space Λ, there exists
an arbitrary small perturbation λ of λ0 in Λ such that for the parameter value
λ, P holds, and that ii) if P holds for λ0 ∈ Λ, it so does for every sufficiently
small perturbation λ of λ0.
In other words, we require that the subset Λ(P ) of Λ of those parameters for
which P holds be dense and open in Λ.
Actually, it turns out to be practical to weaken this requirement a little:
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Definition 13. A subset Λ0 of a complete metric space Λ is called generic if
it contains a countable intersection of open and dense subsets of Λ, and ele-
ments of Λ0 in this case are called generic parameter values if Λ is considered
as a space of parameters.

Thus, instead of asking for an open and dense set, we only ask for a countable
intersection of such sets. The reason behind this is Baire’s theorem stating
that, in a complete metric space, any countable intersection of open and dense
sets is dense.

2.8 The Hopf bifurcation

Recalling an example already discussed in 2.3, we wish to investigate an
important bifurcation, the (Andronov-)Hopf bifurcation.

Here, when varying some real parameter a periodic orbit emerges at the tran-
sition from an attracting to a repelling fixed point. As an example, consider
the following system of ODEs in R2,

ẋ = y − x (x2 + y2 − α)

ẏ = −x− y (x2 + y2 − α)

depending on a real parameter α ∈ R.

For all α, (0, 0) is a fixed point. For α < 0, this fixed point is globally
exponentially attracting. This is seen by considering the Lyapunov function
log(x2 + y2) (a Lyapunov function by definition is a function that is strictly
decreasing along every flow line):

d

dt
log(x2 + y2) = 2(−x2 − y2 + α) ≤ 2α < 0.

Thus, log(x2 + y2) decreases along every flow line, and then so does x2 + y2,
and therefore each flow line has to lead to (0, 0). This is a structurally stable
situation that is invariant under small perturbations of α.

For α = 0, (0, 0) is still globally attracting, but no longer exponentially so.
We still have

d

dt
log(x2 + y2) < 0 for (x, y) �= (0, 0),

but this expression is no longer bounded away from 0. The situation at α = 0
is no longer structurally stable.

For α > 0, (0, 0) is repelling, and there exists a periodic orbit x2 + y2 = α
that is attracting. Namely, we have
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d

dt
log(x2 + y2)

⎧⎪⎨
⎪⎩
> 0 for x2 + y2 < α

= 0 for x2 + y2 = α

< 0 for x2 + y2 > α.

Thus, when we are on the circle x2 + y2 = α, we stay there and since, ẋ and
ẏ do not vanish there, it is a nontrivial periodic orbit. When we are outside
or inside that circle, we move towards it.
The situation near (0, 0) is structurally stable.

We thus obtain a family, depending on α, of periodic orbits that emerge
from the fixed point at the transition from α = 0 to α > 0. This family
of periodic orbits represents a structurally stable bifurcation, that is, such a
family remains under perturbations of the above system.

In order to understand this better, let us consider once more the linearized
system

ẋ = y + αx

ẏ = −x + αy.

The eigenvalues are α± i, with

imaginary part �= 0,
but real part = 0 for α = 0.

Thus, at the bifurcation value α = 0, a pair of complex conjugate nonzero
eigenvalues crosses the imaginary axis. This is the characteristic criterion for
the Hopf bifurcation.
Here, in the linear system, at α = 0 all orbits are periodic, namely circles,
about (0, 0), while for α �= 0 there is no periodic orbit at all. Thus, here the
whole family of periodic orbits is concentrated at a single parameter value,
while when the linear system is perturbed by a higher order term, that family
gets distributed among different parameter values. The situation at α = 0
itself is not structurally stable while the behavior of the whole family is,
namely the emergence of a family of periodic orbits at the transition from an
attracting to a repelling fixed point.

In fact, the preceding bifurcation where a stable fixed point continuously
changed into a stable periodic orbit was a so-called supercritical Hopf bi-
furcation. In contrast to this, in a subcritical Hopf bifurcation, an unstable
periodic orbit coalesces into a stable fixed point so that the latter becomes
repelling and no stable orbit is present anymore in its vicinity when the rel-
evant parameter passes the bifurcation value. Thus, the dynamic behavior
undergoes a discontinuous transition. Let us study this again in a concrete
example. We consider
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ẋ = y − x ((x2 + y2)2 − 2(x2 + y2) − α)

ẏ = −x− y ((x2 + y2)2 − 2(x2 + y2) − α)

depending on a real parameter α ∈ R as before. We now have

(2.60)
d

dt
log(x2 + y2) = 2(−(x2 + y2)2 + 2(x2 + y2) + α).

This becomes 0 when
x2 + y2 = 1 ±√

1 + α.

Thus, whenever this value is real and nonnegative, we obtain that x2 + y2

remains constant along a solution, that is, the orbit is a circle. When α is
smaller than −1, no such solution exists. For α = −1, we find precisely one
solution whereas, for −1 < α < 0, we obtain two solutions, of radii 0 < ρ1 <
ρ2, say. The right-hand side of (2.60) is negative for 0 < ρ :=

√
x2 + y2 < ρ1,

but positive for ρ1 < ρ < ρ2 and negative again beyond ρ2. Thus, the orbit
at ρ1 is repelling whereas the one at ρ2 is attracting. When α increases to
0, the repelling periodic orbit at ρ1 moves into the attracting fixed point at
0. When α then becomes positive, both the repelling periodic orbit and the
attracting fixed point disappear, or, more precisely, the latter turns into a
repelling fixed point. Only the attracting periodic orbit at ρ2 remains. The
solution of our system of ODEs then has no option but to move away from
the no longer attracting fixed point at 0 to the periodic orbit at ρ2. This is a
subcritical Hopf bifurcation, as already mentioned.
We point out that the linearization at 0 is the same for both examples, the
supercritical and the subcritical Hopf bifurcation. The crucial fact is that the
linearization possesses a pair of complex conjugate eigenvalues whose real
parts vanish at the bifurcation point. In fact, according to the theorem of
E.Hopf, this is precisely the criterion for such a bifurcation where a stable
fixed point bifurcates into a family of periodic orbits which may be either
stable or unstable.

The reader may wonder why no other cancellations occur, or why a fixed point
cannot simply change from attracting to repelling without a periodic orbit
moving in, or why there is a repelling orbit between the attracting fixed point
and the attracting orbit in the situation described for the subcritical Hopf
bifurcation, and so on. This will be clarified in the next chapter through
so-called Conley theory which states that certain invariants must remain
constant even across bifurcations.

2.9 Lotka-Volterra equations

The purpose of this section is to investigate a certain class of systems of ODEs
which has found applications in biology and ecology and which exhibits some
interesting phenomena.
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The general Lotka-Volterra equation for n populations is

(2.61) ẋi = xi(ai +
n∑

j=i

bijxj) for i = 1, ..., n.

Here xi is the size of the ith population, and ai is its intrinsic growth or decay
rate in the absence of the other populations, while bij is the strength of the
effect that the jth population has on the ith one.
Of course, a1 is positive (negative) iff xi has an inherent tendency to grow
(decay), while bij is positive (negative) iff xj enhances (inhibits) the growth
of xi, e.g. if population i feeds on (is preyed upon by) population j; both bij

and bji are negative if the two corresponding populations compete.
Let us examine one of the simplest cases, the two-dimensional predator-prey
model without interspecific competition, given by

ẋ1 = x1(a1 + b12x2) (x1 is the prey)(2.62)
ẋ2 = x2(a2 + b21x1) (x2 is the predator),

with

a1 > 0 (the prey-population grows in the absence of predators)
a2 < 0 (the predator population decays in the absence of prey)
b12 < 0 (the prey is fed upon by the predators)
b21 > 0 (the presence of prey leads to growth of the predator population).

Of course, we are only interested in solutions satisfying

xi(t) ≥ 0 for i = 1, 2 and all t ≥ 0.

We start with some trivial observations:

(x1, x2) = (0, 0) is a fixed point.

This fixed point is a saddle as one sees by linearization. In fact, the x1-axis is
an orbit where the solution expands according to x1(t) = x1(0)ea1t, x2(t) = 0,
whereas the x2-axis is a contracting orbit with x1(t) = 0, x2(t) = x2(0)ea2t

as a2 < 0.
Thus, in particular, the positive quadrant x1(t) > 0, x2(t) > 0 is invariant.
A more interesting fixed point is given by

(2.63) x̄1 = − a2

b21
, x̄2 = − a1

b12

All the other orbits in the positive quadrant are periodic, circling this fixed
point counterclockwise. This easily follows from the observation that, for
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(2.64) V (x1, x2) := b21(x̄1 log x1 − x1) − b12(x̄2 log x2 − x2),

we have

d

dt
V (x1(t), x2(t)) = −a2

ẋ1

x1
− b21ẋ1 + a2

ẋ2

x2
+ b12ẋ2 from (2.63)

= 0 from (2.64)

so that V (x1, x2) is a constant of motion. V attains its unique maximum at
(x̄1, x̄2), and so the curves V (x1, x2) ≡ constant are circles, that is, closed
curves, around this point. The motion on such a circle is counterclockwise
because in the case x1(t) > x̄1, x2(t) > x̄2 for example, we have ẋ1(t) <
0, ẋ2(t) > 0.

x1

x2

x1

x2

On the line x1 = x̄1 (isocline), we have ẋ2(t) = 0 and, on x2 = x̄2, ẋ1(t) = 0.
Thus, the system yields a periodic oscillation of the prey and predator pop-
ulations.
If T is the period of an oscillation, we have

0 = log x1(T ) − log x1(0) =

T∫
0

d

dt
log x1(t)dt =

∫ T

0

(a1 + b12x2(t))dt,

and hence

(2.65)
1
T

T∫
0

x2(t)dt = − a1

b12
= x̄2,

and similarly

(2.66)
1
T

T∫
0

x1(t)dt = − a2

b21
= x̄1,
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so that the time averages of the oscillating populations are given by their
values at the equilibrium point. In particular, this observation allows us to
read off the effect of changing one of the coefficients in (2.61) through external
influence on the time averages of the two populations.

The behavior of the preceding system with its family of periodic orbits is
not stable under small perturbation. Namely if we also include interspecific
competition to formulate the system

ẋ1 = x1(a1 + b11x1 + b12x2)
ẋ2 = x2(a2 + b21x1 + b22x2)(2.67)

with

b11 < 0 (the members of population 1 compete for food)
b22 ≤ 0,

the behavior of the system changes.
Besides (0, 0), we now get a second fixed point on the positive x1-axis, namely
(− a1

b11
, 0). This fixed point is always attractive for x1, because in case x2(t) =

0, we are looking at the logistic equation

ẋ1(t) = x1(a1 + b11x1) with a1 > 0, b11 < 0.

Whether it is also attractive for x2 depends on the sign of ẋ2(t) for x2(t)
small and x1(t) = − a1

b11
, i.e. on whether

a2b11 − a1b21 > 0.

In that case, there is no other fixed point in the positive quadrant, and in
fact for any solution

lim
t→∞x2(t) = 0,

so that the predator becomes extinct. If, however,

a2b11 − a1b21 < 0,

then

x̄1 =
a2b12 − a1b22
b11b22 − b12b21

> 0

x̄2 =
a1b21 − a2b11
b11b22 − b12b21

> 0

is a fixed point in the positive quadrant.
With V (x1, x2) as in (2.64), we now compute

d

dt
V (x1(t), x2(t)) = −b11b21(x̄1 − x1(t))2 + b12b22(x̄2 − x2(t))2 ≥ 0,

and in fact this derivative is positive unless (x1, x2) = (x̄1, x̄2). This means
that V (x1(t), x2(t)) is increasing on every orbit, and equilibrium is possible
only at its maximum, namely at the fixed point (x̄1, x̄2). The orbits in the
positive quadrant then all spiral counterclockwise towards this fixed point.
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2.10 Stable, unstable, and center manifolds

In this section, we want to develop some more precise instruments for un-
covering and analyzing non-generic phenomena in dynamical systems. Un-
fortunately, the established terminology is such that the term stable will be
employed with a meaning which is different from the one in the preceding.
It does not refer to structural stability in the sense of stability under per-
turbations of the system itself, but rather identifies those directions that are
dynamically stable in the sense that they move initial states closer together.

We first consider a C1-map

f : U → Rd,

where U is a neighborhood5 of y0 ∈ Rd with a hyperbolic fixed point at y0;
thus

f(y0) = y0,

and the derivative
Df(y0)

does not have eigenvalues of absolute value 1. As usual, we consider the
iterates fn. The stable manifold Ms(y0) then consists of all points x ∈ U
that satisfy fnx ∈ U for all n and

fnx → y0

for n → ∞. Since we are assuming that we have a hyperbolic fixed point, we
may even omit the second condition, provided that U is chosen small enough.
Thus, we only have to require that the orbit fnx does not leave U . Those
points that are not attracted by the fixed point y0 are repelled. The unstable
manifold, however, does not consist of all the points that get repelled, but
only of those that are asymptotically coming from y0 in the following sense:
y ∈ Mu(y0) if there exists a sequence (xn)n∈N ⊂ U with fxn = xn−1 for
n ∈ N and

xn → y0 for n → ∞.

In the hyperbolic case, the second condition can again be omitted if U is
chosen small enough.
In the case when f is a diffeomorphism, the unstable manifold of f is nothing
other than the stable manifold of f−1 as can be seen from the definitions.
In order to be also able to handle the case of non-hyperbolic fixed points
later on, it turns out to be expedient to formulate the subsequent statements
under the more general condition that, for some ρ ≥ 0, the linearization of
5 Neighborhoods are, of course, always assumed to be open.
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the map at the fixed point y0 does not have an eigenvalue of absolute value
ρ. This property is called ρ-pseudo-hyperbolicity.

Theorem 4. (Theorem of Hadamard-Perron on the stable and un-
stable manifolds):
Let U be a neighborhood of 0 ∈ Rd,

f ∈ C1(U,Rd)

with
f(0) = 0.

Let ρ > 0.

Assume that the derivative Df(0) does not have an eigenvalue of absolute
value ρ. Let V s

ρ , V
u
ρ be the subspaces of T0Rd ∼= Rd corresponding to eigenval-

ues of absolute value < ρ and > ρ, respectively, and let As,u = Df(y)|V s,u
ρ

.
By elementary linear algebra, we find some norm ‖.‖ on Rdsatisfying

‖As‖ < ρ, ‖(Au)−1‖ < ρ−1.

And for R > 0, we define

U(R) := {x ∈ Rd : ‖x‖ < R},
Us,u(R) := {x ∈ V s,u

ρ : ‖x‖ < R}.

If ρ ≤ 1 then for sufficiently small R > 0, the stable manifold

Ms(0) :=
⋂
n≥0

f−nU(ρnR) = {x0 ∈ U(R) : fnx0 ∈ U(ρnR) for all n}

is the graph of a C1-map

ϕs : Us(R) → Uu(R)

with
ϕs(0) = 0, Dϕs(0) = 0.

If ρ ≥ 1, then for sufficiently small R > 0 the unstable manifold

Mu(0) :=
⋂
n≥0

fn
n⋂

ν=0

f−νU(ρν−nR)

={x0 ∈ Rd : there exists a sequence (xn)n∈N ∈ Rd

with fxn = xn−1

and xn ∈ U(ρ−nR) for all n ∈ N}
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is the graph of a C1-map

ϕu : Uu(R) → Us(R)
with ϕu(0) = 0, Dϕu(0) = 0.

If f is of class Ck, then so are the maps ϕs,u.

The preceding results easily generalize to (finite-dimensional) differentiable
manifolds, and even to those Banach spaces that carry differentiable functions
with compact support.

One method for proving the preceding result is the graph transformation
method of Hadamard. For the following sketch, we consider the case ρ = 1.
For sufficiently small R > 0, we consider

L1 := {ψ : Uu(R) → Us(R),
where ψ is Lipschitz continuous with Lipschitz constant ≤ 1 and ψ(0) = 0}.

For ψ ∈ L1, we consider the graph

Γ (ψ) := {(x, ψ(x)), x ∈ Uu(R)},
which is contained in U(R) because of the condition on the Lipschitz constant
of ψ. One shows then that f maps L1 into itself, in the sense that, for ψ ∈
L1, fΓ (ψ)∩U(R) is again the graph of some map from L1 which we denote
by f#ψ. As a contraction of L1 w.r.t. the C0-norm, f# then has a fixed point
in L1, and this is the desired map ϕu.

Since f is approximated by its linearization Df(0), f# compresses the graph
of ψ in the stable direction V s and stretches it in the unstable direction V u.
Therefore, derivatives of ψ are made smaller by f#, and ϕu turns out to be
differentiable with Dϕu(0) = 0. Furthermore, for (x1, x2) ∈ Uu(R) × Us(R),
the distance from (x1, ϕu(x1)) ∈ Uu(R) × Us(R) is decreased byf by some
factor < 1. As consequence, fn(x1, x2), when it remains in U(R), converges
to some point on the graph of ϕu, and the graph of ϕu can be identified with⋂
n≥0

fnU(R) (or, more precisely, with the expression given above for Mu(0)).

The stable and the unstable manifold, and the maps ϕs and ϕu of the pre-
ceding theorem as well, are uniquely determined. This is no longer the case
in the

Theorem 5. (Theorem on the center-stable and center-unstable
manifolds):
Let the assumptions of the preceding theorem continue to hold. In the case
ρ ≥ 1, for sufficiently small R > 0 there exists a differentiable map
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ϕ0s : Us(R) → Uu(R)

with ϕ0s(0) = 0, Dϕ0s(0) = 0, whose graph M0s(0), the center-stable mani-
fold, is locally invariant under f in the sense that

fM0s(0) ∩ U(R) ⊂ M0s(0)

f−1M0s(0) ∩ U(R) ⊂ M0s(0).

Moreover, M0s(0) is locally attracting for f−1 in the sense that, for xn ∈
n⋂

ν=0
f−νU(R), the distance between xn and M0s(0) converges to 0 as n → ∞.

In the case ρ ≤ 1, for sufficiently small R > 0, there exists a differentiable
map

ϕ0u : Uu(R) → Us(R)

with ϕ0u(0) = 0, Dϕ0u(0) = 0, whose graph M0u(0), the center-unstable
manifold, is locally invariant under f in the sense that

fM0u(0) ∩ U(R) ⊂ M0u(0).

Moreover, M0u(0) is locally attracting for f in the sense that for

xn ∈
n⋂

ν=0

f−νU(R)

the distance between fnxn and M0u(0) converges to 0 for n → ∞.

M0s(0) contains the stable manifold Ms(0), and M0u(0) the unstable mani-
fold Mu(0).

The stable manifold corresponds to those eigenvalues of the linearization
whose absolute value is < 1, the center-stable one to those of absolute value ≤
1. Analogously statements are valid for the unstable and the center-unstable
manifolds (eigenvalues > 1 or ≥ 1, respectively). The dynamics inside the
stable manifold is exponentially contracting, that in the unstable manifold
exponentially expanding. Both dynamics can be described thus in a clear and
simple manner. Both of them correspond to a hyperbolic behavior and, at
least locally, their analysis is entirely trivial. Thus, in the present perspective,
the preceding considerations about hyperbolic aspects only served to pave the
way for concentrating on the non-trivial ones as encoded in the intersection

M0(0) = M0s(0) ∩M0u(0),

called the center manifold. It is tangential to that subspace of T0Rd ∼= Rd

which belongs to eigenvalues of Df(0) of absolute value 1. In contrast to the
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stable and unstable directions, the dynamics on the center manifold cannot
be described by some simple general statements. It rather reflects the indi-
vidual aspects of the dynamical system under consideration.
If V 0, V ′ are subspaces of T0Rd which correspond to the eigenvalues of ab-
solute value 1 or �= 1, respectively, and if U0(R) := {x ∈ V 0 : ‖x‖ < R}, U ′ :=
{x ∈ V ′ : ‖x‖ < R}, then, in the situation of the preceding theorem, the cen-
ter manifold is given by a C1-map

ϕ0 : U0(R) → U ′(R)

with ϕ0(0) = 0, Dϕ0(0) = 0 whose graph is locally invariant for the dynamics.
A more detailed explanation of the preceding concepts and ideas can be found
in the booklet of Ruelle [16], for example.

As indicated, the preceding results also hold in (certain) Banach spaces,
i.e., in the infinite-dimensional case. It often happens, however, even in such
infinite-dimensional situations that the dimension of the center manifold is
finite. This means that the dynamics can be characterized by only finitely
many degrees of freedom. This corresponds to the enslaving principle of syn-
ergetics, a theory of H. Haken[14, 15]. In any case, it is of fundamental impor-
tance that typically there are only very few directions corresponding to the
special value 1 of the parameter ρ measuring the local expansion or contrac-
tion rates. On a sufficiently long time scale, these few directions then capture
all the important and non-trivial aspects of the dynamical process as the
contracting directions relax to equilibrium already on a shorter time scale,
while the expanding ones move out of sight on that time scale. Therefore, the
essential dynamics is dominated or governed by few degrees of freedom and,
consequently, a simplified model can still represent the main features of the
underlying process. This insight from the theory of dynamical systems thus
has implications far beyond the mathematical theory and goes to the heart
of scientific modeling.

Analogous results hold for time continuous systems

(x, t) �→ f t(x) (x ∈ U ⊂ Rd, t ∈ R).

This is obtained by first applying the preceding results to the time-1-map

f(x) := f1(x)

and then noting that the stated invariance properties hold not only for n ∈ N,
but also for t ≥ 0.

We now wish to explain these results for systems of ordinary differential
equations:

(2.68) ẇ = g(w, λ)
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with w ∈ Rd and a parameter λ taken from a neighborhood of 0 ∈ R. Let
g(0, λ) = 0 for all λ. We consider the linearization

(2.69) ẇ = Aw with A :=
∂

∂w
g(0, 0).

Let ds, du, dz be the sums of the multiplicities of the eigenvalues of A as
solutions of the characteristic equation det(A − µId) = 0, with real part
smaller than, larger than, equal to 0, resp., and we identify the corresponding
subspaces of T0Rd ∼= Rd with Rds ,Rdu ,Rdz . The dynamics is then conjugate
to that of

ẋ =γ(x, λ) for x ∈ Rdz

u̇ = − u for u ∈ Rds(2.70)

v̇ =v for v ∈ Rdu

with a function γ to be determined from g. In other words, we have chosen
local coordinates so that the stable, unstable, and center manifolds become
linear subspaces. The dynamics of u and v is totally simple,

u(t) = e−tu(0)

v(t) = etv(0).

The interesting aspects occur on the center manifold, which has become Rdz

here. Since, however, typically the problem consists in conjugating system
(2.68) to system (2.70), we return to (2.68) and, after a linear coordinate
transformation, write it as

ẋ = A0x + h(x, y, λ)(2.71)

ẏ = A1y + k(x, y, λ).

We assume first that the parameter λ does not occur (it will be simple to
reduce the general case to this one later on), i.e.

ẋ = A0x + h(x, y)(2.72)

ẏ = A1y + k(x, y).

Let the decomposition be such that x ∈ Rdz and all eigenvalues of A0 have
real part 0 , while y ∈ Rd′

(d′ = ds + du) and all eigenvalues of A1 have a real
part different from 0.

The center manifold is now described by an equation

y = ϕ(x).

Since this equation has to be flow-invariant, differentiating w.r.t. t, we obtain
the equation
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(2.73) 0 = ẋϕ′(x) − ẏ

= ϕ′(x)(A0x + h(x, ϕ(x)) − (A1ϕ(x) + k(x, ϕ(x)))

=: Λ(ϕ)(x) ( with ϕ′(x) =
d

dx
ϕ(x)).

From this equation, we may now derive a Taylor expansion for the center
manifold. The dynamics on the center manifold is then given by the equation

(2.74) ẋ = A0x + h(x, ϕ(x)).

The equation

(2.75) y = ϕ(x)

is called the slaving equation. Equation (2.74) describes the essential degrees
of freedom of the system and is called the reduced equation.

For treating examples, it will be useful to make the remark after (2.73) more
precise by the following lemma:

Lemma 1. Let the functions h and k in (2.72) be of class Cm(m ∈ N). Then
ϕ in (2.75) is also of that class. Further, if for ψ ∈ Cm

Λ(ψ)(x) = O(|x|m) as |x| → 0,

then
|ϕ(x) − ψ(x)| = O(|x|m) as |x| → 0

The lemma says that an approximate solution ψ(x), that is, one that satis-
fies (2.75) approximately, also is an approximation of a solution ϕ(x) of the
same order. And we only need an approximation of a solution because the
qualitative behavior is locally determined by the lowest nontrivial term in an
expansion of the reduced equation.

Examples:

1.

ẋ = −xy,

ẏ = −y + x2 for x, y ∈ R.

The linearization at (0, 0) is

ẋ = 0
ẏ = −y.

Thus, the y-direction is stable while the x-direction is central and thus
requires a more refined analysis. For the linearized equation y = ϕ(x),
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the x-axis is pointwise invariant, but we shall see that for the original
nonlinear problem this, of course, no longer holds. By (2.73), the enslaving
equation y = ϕ(x) leads to

−xϕ(x)ϕ′(x) + ϕ(x) − x2 = 0.

With ψ(x) = x2, we have

Λ(ψ)(x) = −2x4

and hence by the lemma,

y = ϕ(x) = x2 + O(|x|4)
and, inserting this, we obtain the dynamics on the center manifold

ẋ = −x3 + O(|x|5).
Thus, in contrast to the linearized problem, 0 is a global attractor for the
original problem.

2.

ẋ = −x3

ẏ = −y for x, y ∈ R.

Here, we see directly that 0 is a global attractor. This example demon-
strates that the center manifold need not be unique. Namely, for any
constants α, β the curve

y = ϕ(x;α, β) :=

⎧⎪⎨
⎪⎩
−αe−

1
2x2 for x < 0

0 for x = 0
βe−

1
2x2 for x > 0

is flow-invariant and therefore yields a center manifold. This example also
shows that, even for real analytic equations, the center manifolds need
not be real analytic. Refinements of this example show that they need
not even be of class C∞.

We now return to the situation with the parameter λ and simply add the
equation

λ̇ = 0.

This means that we consider λ on an equal footing with x. In particular, it
becomes a central direction. The slaving equation now becomes

y(t) = ϕ(x(t), λ),

and the reduced equation is

ẋ = A0x + h(x, ϕ(x, λ), λ).
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3.

ẋ = λx− x3 + xy

ẏ = −y + y2 − x2 (λ, x, y ∈ R)

in the vicinity of x = y = λ = 0.
The equation for the center manifold, y = ϕ(x, λ), now leads to

0 = ẋ
∂ϕ

∂x
+ λ̇

∂ϕ

∂λ
− ẏ

= (λx− x3 + xϕ)
∂ϕ

∂x
− (−ϕ + ϕ2 − x2) = Λ(ϕ)(x, λ).

Of course, the fact that λ̇ = 0 made the derivative ∂ϕ
∂λ drop out.

With ψ(x, λ) = −x2, we have

Λ(ψ)(x, λ) = O((|x| + |λ|)3)
and thus by the lemma

ϕ(x, λ) = −x2 + O((|x| + |λ|)3) as λ, x → 0.

Inserting this into the reduced equation yields

ẋ = λx− 2x3 + O((|x| + |λ|)4) as λ, x → 0.

Thus, near λ = 0, x = 0 the structure of the flow is determined by

ẋ = λx− 2x3.

The bifurcation at λ = 0, namely the transition from a stable fixed point for
λ < 0 to two stable and one unstable ones for λ > 0, now takes place on the
center manifold, as follows also from the general theory.
It is also useful to make the following observation: As we see from examples
1 and 3, the strategy for finding an approximate solution ψ of the slaving
equation is simply to choose ψ to cancel the lowest order term in the implicit
slaving equation Λ(φ) = 0 and ignore higher order terms.

Conceptually, in the present section, we have separated the general and uni-
versal aspects of a dynamical system, as encoded in the stable and unstable
directions, from the individual ones that are represented by the center mani-
fold. We have also emphasized the fundamental aspect that these individual,
central degrees of freedom capture the dominant features of the dynamics
to which the other ones get subordinated. Of course, this is a local picture.
On the global scale, hyperbolic dynamical systems, that is, essentially thoses
for which the center manifold is trivial, still present a rich behavior as will
be analyzed in more detail in 7.2. The theory of hyperbolic systems is thus
that part of the theory of dynamical systems which can capture the universal
aspects of the global behavior. By their very nature, the central dynamics do
not succumb to such a general theory. Therefore, they need to be modeled
and analyzed more individually in specific examples.



3 Discrete invariants of dynamical systems

The theories of Conley and Floer

The guiding principle of this chapter is to associate discrete topological in-
variants with a dynamical system, so that qualitative differences between
systems get expressed in different values of these invariants, as an approach
to classifying dynamical systems. Although the ideal that these invariants can
always distinguish non-isomorphic systems cannot be achieved here, never-
theless the invariants constructed in this chapter allow us to detect quite
subtle distinctions between dynamical systems.

Of course, the theory depends on certain assumptions, and it works best for
dynamical systems on compact state spaces. The basic idea was introduced
by Morse theory which is concerned with gradient flows on Riemannian man-
ifolds. The theories of Conley and Floer represent far-reaching extensions and
refinements of this theory.

3.1 The topology of graphs

In this section, we wish to explain some important ideas in an elementary
example. Let Γ be a graph consisting of a set V of vertices and an edge set E.
The edges are directed. Therefore, at each vertex, we can distinguish between
inward and outward pointing edges.

The Euler characteristic of Γ is defined as

χ(Γ ) := #V − #E,

i.e. as the number of vertices minus the number of edges. A vertex v is called
critical if the number of outward edges is different from 1.
The index of a critical v is defined as
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i(v) :=

{
0 if there is no outward edge
1 if there is more than 1 outward edge

Finally, we define the multiplicity of a critical v with i(v) = 1 as

m(v) := number of outward edges minus 1.

We then have

Theorem 6.
χ(Γ ) = m0 −m1,

with

m0 :=#{v critical, i(v) = 0}
m1 :=

∑
v crit.

i(v)=1

m(v)

( if the multiplicity happens to be m(v) = 1 for all critical v with i(v) = 1,
then m1 = #{v critical, i(v) = 1}).
The content of this easily demonstrated result is that the computation of
a global topological invariant of Γ , namely its Euler characteristic, can be
reduced to the evaluation of local quantities at certain particular vertices,
namely the critical ones. This is also the basic principle of the theories of
Morse and Floer.

3.2 Floer homology

We consider a situation that we have already introduced in 2.2, namely gra-
dient flows. Instead of working on Rd, however, here we work in a more gen-
eral setting, namely on a differentiable manifold. This differentiable manifold
could be viewed as a submanifold of some Euclidean space, and we would then
consider a dynamics that is constrained to that submanifold. Even though
every (compact) differentiable manifold can indeed be realized as a subman-
ifold of some Euclidean space by the embedding theorem of Whitney, it is
usually preferable to adopt an intrinsic point of view, that is, not to make
use of such an embedding. In any case, the analysis of 2.2 easily extends to
the case of a differentiable manifold as the underlying space.
Let X be a compact differentiable manifold, and let F : X → R be a smooth
function. x0 ∈ X is called a critical point of F if the first derivatives of F
vanish at x0:

DF (x0) = 0.

At a critical point x0, the matrix of the second derivatives, the Hessian
D2F (x0), can be defined independently of the choice of local coordinates,
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and x0 is called nondegenerate if none of the eigenvalues of D2F (x0) van-
ishes. In that situation, the index of x0 is defined as

i(x0) := number of negative eigenvalues of D2F (x0).

Now DF (x0) is a 1-form, and we introduce a Riemannian metric on X in
order to obtain a tangent vector that is dual to DF (x) at every x, and
which we likewise denote by DF (x). This will be needed in order to define
the gradient flow of F . ( In fact, somewhat less is actually needed, namely
a bounded smooth vector field VF (x) on X that vanishes precisely at the
critical points of F and for which DF (x)VF (x), the 1-form DF applied to
that vector field, is positive elsewhere. )

We observed already in 2.2 that the dynamical system defined by our gradient
flow transforms the space X as the space of initial conditions for the flow lines
(x(0) = x ∈ X) asymptotically into the finite (because they are discrete and
X is now assumed compact) set of critical points of F . We might thus expect
that this set of critical points somehow captures the qualitative aspects of
X, that is, its topological invariants. We are now going to see that this is
indeed so but, for a deeper understanding, we shall also need to take relations
between those critical points into account.
We now assume:

1. All critical points of F are nondegenerate.
2. The space of flow lines or orbits for the negative gradient flow, i.e. of the

solutions of
ẋ(t) = −DF (x(t)) for t ∈ R,

lim
t→−∞x(t) = p, lim

t→∞x(t) = q,

between the two critical points p and q, is either empty or of dimension

i(p) − i(q).

( These conditions are satisfied for generic smooth functions F . )

In 2.2, we have already explored the consequences of the first assumption,
and those, of course, continue to hold in our manifold setting. In particular,
we always find limits of a flow line x(t) as t → ±∞, and these limits are
critical points of F .
The second assumption then implies that there are no flow lines between
critical points of the same index while in case

i(p) = i(q) + 1

the number of flow lines is finite (as each such flow line is 1-dimensional, the
space of lines then is 1-dimensional as well ). In the latter case, we put
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ρ(p, q) := (number of flow lines from p to q ) mod 2

Thus, ρ(p, q) is 1 when the number of flow lines from p to q is odd, and it is
0 otherwise.

We now define the boundary operator ∂: For a critical point p of index i(p) =
i, let

∂ip :=
∑

q critical
i(q)=i(p)−1

ρ(p, q)q

( the sum here is taken in the vector space generated by the critical points
of F over Z2; for example

(a1q1 + a2q2) + (b1q1 + b2q2) (q1, q2 critical points,
a1, a2, b1, b2 ∈ Z2)

=(a1 + b1)q1 + (a2 + b2)q2,

where the sum in brackets takes place in the field Z2 ( i.e. we are adding mod
2) while the sum between brackets is a formal sum. )
Thus, we are counting flow lines from p to critical points q with i(q) = i(p)−1
( mod 2 ). We then have

Theorem 7. (Floer) ∂i−1 ◦ ∂i = 0 for all i.

Explanation:

(∂i−1 ◦ ∂i)p = ∂i−1(∂ip)

= ∂i−1

⎛
⎝ ∑

i(q)=i(p)−1

ρ(p, q)q

⎞
⎠

=
∑

i(q)=i(p)−1

ρ(p, q)

⎛
⎝ ∑

i(r)=i(q)−1

ρ(q, r)r

⎞
⎠ .

The content of this theorem is that the flow lines from p to r with i(r) =
i(p)−2 that are broken, i.e. go through another critical point q, always occur
in pairs, i.e. ∑

q

ρ(p, q)ρ(q, r) = 0 mod 2 for all p and r.

On the basis of this theorem, we can define homology groups: We have the
kernel of ∂i
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q

r

q

r

r

q1 q2

p p

∂ ◦ ∂ = 0

p

ker ∂i = {Σaν pν : i(pν) = i, aν ∈ Z2,

with ∂ (Σaν pν) = 0
(= Σaν ∂pν , ∂ has been linearly extended) },

and the image of ∂i

im ∂i = {q with i(q) = i− 1, that can be represented as
q = ∂(Σaνpν)}.

(Note that these spaces are vector spaces over Z2 and therefore in particular
additive groups.) Then ∂i ◦ ∂i+1 = 0 implies that

im ∂i+1 ⊂ ker ∂i

( if p is a boundary, then its own boundary is 0 ).

Definition 14. The ith homology group of X is

Hi(X,Z2) := ker ∂i�im ∂i+1

(all boundaries are set to 0).

Theorem 8. The groups Hi(X,Z2) do not depend on the choice of the func-
tion F : X → R (which, however, has to satisfy the assumptions 1. and 2.
above), and conversely, we can always find such a function F . These groups
therefore define topological invariants of the differentiable manifold X.
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The ith Betti number of X is defined as

bi(X) := dimHi(X,Z2),

and the Euler characteristic is

χ(X) :=
∑

i

(−1)ibi(X),

i.e. the alternating sum of the Betti numbers.

Of course, the Euler characteristic can also be defined topologically, for ex-
ample on the basis of a triangulation, and the result then coincides with the
above value. As for the Euler characteristic of a graph, we see that it can be
computed from local expressions, namely, in the present situation, relations
between critical points of index difference 1. Actually, these expressions are
not strictly local as they depend on connections between two different points,
but we also have

Theorem 9. Let mi be the number of critical points of F of index i. Then

mj ≥ bj for all j,

and ∑
j

(−1)imj = χ(X).

A proof of this result will be given in 3.5 below.
In particular, we can compute a topological invariant of X, its Euler charac-
teristic, from purely local information about the critical points of the function
F . In fact, the only such information needed are the indices of the critical
points. These indices encode the number of directions in which F decreases,
and so the gradient flow moves away, near the critical points. This obser-
vation will be the starting point for Conley theory as presented in the next
sections. There, instead of gradient flows with isolated (non-degenerate) crit-
ical points, one studies arbitrary flows and their local invariant sets and again
counts (in a suitable topological sense) the outflowing directions near each
such invariant set.

Let us now consider some examples for the computation of the Betti numbers
bi = dimHi(X,Z2). In these examples, we take X as a submanifold of R3

and F as the height function, that is, F (x) is simply the value of the third
coordinate x3 of the point x = (x1, x2, x3).
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In the first example, X is diffeomorphic to S2:

p2p1

q

r

∂p1 = q and ∂p2 = q,

∂(p1 + p2) = 2q = 0,
and so
ker∂2 is generated by p1+p2,

im ∂2 generated by q.

Next, ∂q = 2r = 0,
ker∂1 is generated by q,

im ∂1 = {0}, and
∂r = 0,
ker∂0 is generated by r.Thus,

H2(X,Z2) = ker ∂2 is 1-dimensional: b2 = 1

H1(X,Z2) = ker ∂1�im ∂2
is 0-dimensional: b1 = 0

H0(X,Z2) = ker ∂0�im ∂1
is 1-dimensional: b0 = 1.

In the next example, X is a torus:

p p

q2q2

q1 q1

rr

∂p = 2q1 + 2q2= 0 ⇒ ker ∂2 is generated by p, im ∂2 = {0}
∂q1 = ∂q2 = 2r = 0 ⇒ ker ∂1 is generated by q1 and q2, im ∂1 = {0}
∂r = 0 ⇒ ker ∂0 is generated by r.
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Thus, for the torus,

H2(X,Z2) =ker ∂2 is 1-dimensional: b2 = 1

H1(X,Z2) =ker ∂1�im ∂2
is 2-dimensional: b1 = 2

H0(X,Z2) =ker ∂0�im ∂1
is 1-dimensional: b0 = 1.

We have used the boundary operator ∂ that relates the critical points of a
generic smooth function F : X → R in order to define the homology groups
Hi(X,Z2). For the subsequent discussion of the theory of Conley, we shall
also need relative homology groups. For that purpose, let A be a compact
subset of the compact differentiable manifold X, and let F : X → R be a
smooth function with the property that flow lines may enter, but not leave,
A. This means that, if

ẋ(t) = −DF (x(t)) for all t ∈ R

and x(t0) ∈ A for some t0 ∈ R ∪ {−∞},
then also x(t) ∈ A for all t ≥ t0.

We then obtain a boundary operator ∂A if, in the preceding constructions,
we only take those critical points into account that lie in X\A. Thus, for a
critical point p ∈ X\A, we put

∂Ap :=
∑

q crit. pt. in X\A

i(q)=i(p)−1

ρ(p, q) q.

Because of the above condition, all flow lines between the critical points p and
q are contained in X\A themselves. With the help of this boundary operator,
we then obtain the relative homology groups

Hi(X,A; Z2) := ker ∂A
i �im ∂A

i+1
.

For example, when X = S2 and A is a point which we can then take as the
minimum point of our function f , we obtain

b2(S2,point) = 1
b1(S2,point) = 0
b0(S2,point) = 0.

When X is the torus T 2 and A is a circle which we then take to consist of
the critical points q2 and r and the two flow lines between them in the above
example, we obtain



3.2 Floer homology 69

b2(T 2, S1) = 1
b1(T 2, S1) = 1
b0(T 2, S1) = 0,

simply because the circle S1 that we take out of the torus accounts for one
of the two generators of H1 and the generator of H0.
The preceding construction can be generalized as follows. Let A ⊂ Y ⊂ X
be compact and let F : X → R satisfy:

(i) If for some flow line, i.e.

ẋ(t) = −DF (x(t)) for all t ∈ R,

x(t0) ∈ A for some t0 ∈ R ∪ {−∞},

then there is no t > t0 with x(t) ∈ Y \A.
(ii) If for some flow line

x(t1) ∈ Y, x(t2) ∈ X\ o

Y , with −∞ ≤ t1 < t2 ≤ ∞,

then there exists t1 ≤ t0 ≤ t2 with

x(t0) ∈ A.

Thus, by (i), flow lines cannot re-enter Y \A from within A, while, by (ii),
they can exit Y only through A.
In this situation, for a critical point p ∈ Y \A, we consider the boundary
operator

∂Y,Ap :=
∑

q∈Y \A critical
i(q)=i(p)−1

ρ(p, q) q

and define
Hi(Y,A; Z2) := ker ∂Y,A

i �
im ∂Y,A

i+1

.

Actually, for the discussion of Conley theory, we shall need cohomology in
place of homology groups. These are dual to homology groups in the following
sense. If (Ck, ∂k)k∈N is a chain complex, i.e. the maps

∂k : Ck → Ck−1

satisfy ∂k−1 ◦ ∂k = 0 for all k, we put

Ck := Hom(Ck,Z)

and define the boundary operators δk by

〈δk ck, γk+1〉 = 〈ck, ∂k+1γk+1〉
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for ck ∈ Ck, γk+1 ∈ Ck+1. Then again

δk+1 ◦ δk = 0,

and the groups
Hk := ker δk

�im δk+1

are called the cohomology groups of the complex (Ck, δk).

Remark 1. Floer homology can also be defined with Z in place of Z2 coef-
ficients. Then, one needs to introduce orientations in order to assign a sign
±1 to flow lines connecting critical points of index difference 1. The terms
ρ(p, q) in the definition of ∂ can then take positive or negative values if the
signed flow lines are counted. Again, one shows that ∂ ◦ ∂ = 0, the basis for
the introduction of homology groups. Treating the orientations is somewhat
subtle, however, and so at this point we refer the reader to Schwarz [47], Jost
[21].

For applications in the calculus of variations, the following observation is
useful: for the construction of the boundary operator ∂ and therefore for the
homology groups, one does not really need to know the indices of critical
points. If suffices to know the index difference between critical points, in
order to check which flow lines need to be counted. In other words, one only
needs a relative index, not an absolute one.

3.3 Conley theory: examples and results

Let X be a metric space, F : X × R → X a flow (and so, in particular,
F (x, 0) = x), and put x(t) := F (x, t).

For N ⊂ X, we let
I(N) := {y ∈ N : y(R) ⊂ N}

be the set of points of N that remain in N for all positive and negative times
under the flow. N ⊂ X is called invariant if

I(N) = N.

The basic and guiding idea of this chapter is that both the topology of the
underlying space X and the qualitative properties of the dynamical system
defined by F are encoded in its invariant sets. (Of course, such a statement
needs some qualifications; for example, it is best if X is compact; otherwise,
for example if X = Rn, then one needs some control near infinity, but this
will not be made precise here.) Clearly, X itself is invariant, but that does not
yield any simplification. However, except under very special circumstances,
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there also exist smaller invariant sets, and those contain the essential infor-
mation. More precisely, in order to have the complete information, we need
a collection of such invariant sets satisfying the following properties.
A Morse decomposition of a compact invariant set N is a finite collection
of disjoint compact invariant subsets Ni of N, i = 1, ..., n, the so-called Morse
sets, that permit a so-called admissible ordering (N1, N2, ..., Nn) such that,
whenever

y ∈ N\
n⋃

i=1

Ni,

there exist indices i < j with

α(y) ⊂ Ni, ω(y) ⊂ Nj .

Here, α(y) and ω(y) are the asymptotic limit sets defined at the end of 2.1.
For i ≤ j , Nij := {y ∈ N : α(y), ω(y) ⊂ Ni ∪Ni+1 ∪ ... ∪Nj}.

In an admissible ordering of a Morse decomposition, Nij may be exchanged

with
j⋃

ν=i

Nν , and vice versa, to obtain another Morse decomposition with

an admissible ordering. An important point in the sequel will be that this
procedure does not affect the basic topological information contained in a
Morse decomposition. For a gradient flow as considered in 3.2, with isolated
critical points, the finest Morse decomposition, that is, the one with the
smallest Morse sets, is simply given by the collection of its critical points, with
an ordering such that the initial point of any flow line has a smaller label
than the final point. We obtain coarser Morse decompositions by lumping
together some critical points with all the orbits between them. This possibility
of shifting scales, that is, comparing the topological information at a finer,
more localized scale with the one at a coarser, perhaps even global, scale, is
one of the key aspects of Conley theory.

We now treat an example in some detail. In R2 , we consider the system of
differential equations

ẋ = y

ẏ = λy + x(x− 1)(x− µ)

with parameters λ, µ ∈ R, µ > 1.
For each λ, the fixed points of this system are (0, 0), (1, 0) and (µ, 0). More
detailed properties depend on λ as we shall now analyze.
The linearization at (0, 0) is

ξ̇ = η

η̇ = λη + µξ.
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The corresponding matrix

A0 =
(

0 1
µ λ

)

has eigenvalues α1,2 = λ
2 ±
√

λ2

4 + µ, i.e. one positive and one negative real
eigenvalue. Therefore, for every λ, (0, 0) is a saddle point. The linearization
at (1, 0) is

ξ̇ = η

η̇ = λη − (µ− 1)ξ.

The corresponding matrix

A1 =
(

0 1
1 − µ λ

)

has eigenvalues α1,2 = λ
2 ±
√

λ2

4 + 1 − µ. For λ = 0, these are purely imag-
inary while for λ2 ≥ 4(µ − 1) they are real and of the same sign. Thus, for
λ2 ≥ 4(µ − 1) , we find a node (a source for λ ≥ 2

√
µ− 1, and a sink for

λ ≤ −2
√
µ− 1) while, for 0 < λ2 < 4(µ− 1), we have a spiral. The behavior

at λ = 0 requires a more detailed analysis because, as we have already seen,
in the case of two purely imaginary eigenvalues, the fixed point is not hyper-
bolic and it may be possible that the linearization exhibits a behavior that
is qualitatively different from that of the original system.
Finally, the linearization at (µ, 0) is

ξ̇ = η

η̇ = λη + µ(µ− 1)ξ

and the situation is qualitatively the same as at (0, 0). Again, we have a
saddle point for all λ. We now start with the case λ = 0, µ = 2. In this case,
we have two symmetries that leave our system invariant:

1.

t → −t

x → x

y → −y

2.

t → −t

x → 2 − x

y → y.
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This implies that, except at the fixed points, the orbits intersect the x-axis
as well as the line x = 1 orthogonally. Between x = 0, and x = 1 as well as
for x > 2, the x-axis is intersected by the orbits from below and, on each
such orbit, the intersection with the x-axis occurs at its smallest x-value. In
the other regions, the opposite behavior occurs. For y > 0, the line x = 1 is
intersected by the orbits from the left, and that intersection point corresponds
to a local maximum of the y-coordinate, again with the opposite behavior for
y < 0.

These facts and symmetry arguments imply that there exists an orbit above
the x-axis from the fixed point at (0, 0) to the one at (2, 0), and an orbit
below the x-axis from (2, 0) to (0, 0). ( Such orbits that connect two different
fixed points are called heteroclinic. ) Between these two orbits, we find closed
orbits about the fixed point at (1, 0). The orbits that lie outside this region
are unbounded.
We now consider the case λ = 0, µ > 2. ( For λ = 0, 1 < µ < 2, we find
the same qualitative behavior after exchanging the fixed points at (0, 0) and
(µ, 0). ) Symmetry 1 persists, but symmetry 2 disappears.
Instead of the two heteroclinic orbits found for µ = 2, we obtain for µ > 2
a homoclinic orbit that emanates from the fixed point at (0, 0), intersects
the x-axis between x = 1 and x = µ and then returns to (0, 0) as follows
from symmetry arguments. Inside that homoclinic orbit, we again find a
family of periodic orbits around the fixed point at (1, 0). All other orbits are
unbounded.
It is remarkable that, although for λ = 0 the fixed point at (1, 0) is non-
hyperbolic, the behavior of the orbits in the vicinity of this point is the same
as for the linearized system.
We next consider the case µ > 2, λ > 0; the case λ < 0 is symmetric to
that one. As λ grows, the point where the orbit that starts at (0, 0) and
enters the first quadrant intersects the x-axis moves to the right. Also, the
symmetry 1 disappears. The fixed point at (1, 0) becomes hyperbolic and, for



74 3 Discrete invariants of dynamical systems

0 < λ < 2
√
µ− 1, we obtain a spiral. One of the spiral curves starting at

(1, 0) goes into the fixed point at (0, 0). All other orbits are unbounded.

If λ reaches a critical value λµ, in addition to the heteroclinic orbit from (1, 0)
to (0, 0), another heteroclinic orbit from (0, 0) to (µ, 0) appears. Again, all
other orbits are unbounded.

If λ grows further, we finally obtain a heteroclinic orbit from (1, 0) to (0, 0)
and another from (1, 0) to (µ, 0). Again, all other orbits are unbounded. In
case µ = 2, this is so for all λ > 0.
Thus, for λ = 0 and µ = 2, the maximal compact invariant set N consists of
the two heteroclinic orbits and the region they enclose, which in turn consists
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of periodic orbits and the fixed point in the middle. There is no nontrivial
Morse decomposition of N .
For λ = 0 and µ > 2, such an N consists of two components N ′ and N ′′.
N ′ contains the homoclinic orbit corresponding to (0, 0) and as before the
enclosed set of periodic orbits including the fixed point (1, 0), while N ′′ con-
sists of the isolated fixed point (µ, 0) only. Nontrivial Morse decompositions
are given by N1 = N ′, N2 = N ′′ and N1 = N ′′, N2 = N ′.
For µ > 2 and 0 < λ < λµ, N consists of the heteroclinic orbit C from (1, 0)
to (0, 0) as well as the point (µ, 0). The nontrivial Morse decompositions are

N1 = {C}, N2 = {(µ, 0)}
N1 = {(µ, 0)}, N2 = {C}
N1 = {(µ, 0)}, N2 = {(1, 0)}, N3 = {(0, 0)}
N1 = {(1, 0)}, N2 = {(0, 0)}, N3 = {(µ, 0)}
N1 = {(1, 0)}, N2 = {(µ, 0)}, N3 = {(0, 0)}
N1 = {(µ, 0), (1, 0)}, N2 = {(0, 0)}
N1 = {(1, 0)}, N2 = {(µ, 0), (0, 0)}.

For µ > 2 and λ = λµ, N consists of the heteroclinic orbits C1 from (1, 0) to
(0, 0) and C2 from (0, 0) to (µ, 0). The nontrivial Morse decompositions are:

N1 = {C1}, N2 = {(µ, 0)}
N1 = {(1, 0)}, N2 = {C2}
N1 = {(1, 0)}, N2 = {(0, 0)}, N3 = {(µ, 0)}.

Finally, for µ > 2 and λ > λµ, N consists of the two heteroclinic orbits C1, C2,
from (1, 0) to (0, 0) and (µ, 0), and the nontrivial Morse decompositions are:

N1 = {(1, 0)}, N2 = {(0, 0)}, N3 = {(µ, 0)}
N1 = {(1, 0)}, N2 = {(µ, 0)}, N3 = {(0, 0)}
N1 = {(1, 0)}, N2 = {(µ, 0), (0, 0)}
N1 = {C1}, N2 = {(µ, 0)}
N1 = {(0, 0)}, N2 = {C2}.
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We now show an illustration of the Morse decompositions for µ = 3 :

a) λ = 0

{
, ·
}

,

{
·,
}

\ x=1 /

b) 0 < λ � 1
{

, ·
}

,
{
·,
}

,

{1, 0, 3} , {1, 3, 0} , {3, 1, 0}

c) λ = λc

{
, ·
}

, {1, 0, 3} ,
{
1,

}

d) 1 � λ {1, 0, 3} , {1, 3, 0}

In order to extract the desired qualitative information, namely our invariants,
from a Morse decomposition, we now need to introduce the fundamental con-
cept of an index pair. A compact N ⊂ X is called an isolating neighbor-
hood, and I ⊂ N is called an isolated invariant set if

I(N) ⊂ o

N (= the interior of N) .

In other words, S ⊂ X is an isolated invariant set if it is invariant and
possesses an open neighborhood whose closure contains no other invariant
sets besides S.
A pair (M0,M1) of compact sets M1 ⊂ M0 is called an index pair for the
isolated invariant set S if

(i) M0\M1 is an isolating neighborhood of S with M1 ∩ S = ∅.
(ii) If y ∈ M1, y([0, t]) ⊂ M0, then y([0, t]) ⊂ M1

(iii) If y ∈ M0 and y(t) �∈ M0 for some t > 0 , then there exists 0 ≤ t0 < t
with y([0, t0]) ⊂ M0, y(t0) ∈ M1.

M1 is the exit set from M0 for the flow. (ii) means that the flow cannot
return to M0 from M1, and (iii) means that a flow line exiting M0 has to
pass through M1.

Theorem 10. Let S be an isolated invariant set, (N1, ..., Nn) an admissible
ordering of a Morse decomposition of S. Then there exists a Morse filtra-
tion, i.e. compact sets
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M0 ⊃ M1 ⊃ ... ⊃ Mn

with the property that, whenever i ≤ j,

(Mi−1,Mj)

is an index pair for Nij.
In particular, (M0,Mn) is an index pair for S, and (Mi−1,Mi) is an index
pair for Ni.

3.4 Cohomological Conley index

Before introducing homotopy invariants which require additional concepts
from algebraic topology, we discuss cohomological invariants which only need
the concepts introduced in 3.2.
Let I be an isolated invariant set and let (M0,M1) be an index pair for I.
We put CH∗(I) := H∗(M0,M1) (coefficients in Z or Z2 ).

Theorem 11. The cohomological Conley index CH∗(I) does not depend on
the choice of the index pair for I, that is, any two index pairs yield the same
cohomology groups.

Examples:

1. I = ∅ ⇒ CH∗(∅) = 0.

2. I a hyperbolic fixed point with unstable manifold of dimension n

⇒ CHk(I) =

{
Z for k = n

0 otherwise.

Theorem 12. (McCord) If CH∗(I(N)) = Z, then I(N) contains a fixed
point.

2a) n = 1 :

M1
Morse index 1
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2b) n = 0

M1 = ∅ Morse index 0

However: 3.

Attracting periodic orbit and hyperbolic
fixed point of index 2

CHk(I) =

{
Z for k = 0
0 otherwise

In this case, a more refined analysis is possible:

I1 = periodic orbit : CH∗(I1) = H∗(S1) =

{
Z for k = 0, 1
0 otherwise.

I2 = fixed point : CH∗(I2) = H∗(S2,point)=

{
Z for k = 2
0 otherwise.

4. Unstable periodic orbit
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red: M1

CHk(I) =

{
Z for k = 1, 2
0 otherwise

5. Let I be an invariant set which is normal hyperbolic for a differentiable flow
f ; this means that the linearization does not have any eigenvector transversal
to I with an eigenvalue with vanishing real part. The local unstable manifold
is then homotopic to a vector bundle. Let this vector bundle be of rank n and
orientable. By the isomorphism theorem of Thom, a deep result in algebraic
topology that we shall not discuss here in detail, we then have

CHk(I) = Hk−n(I).

Corollary 1. Let I be a hyperbolic, periodic orbit with an orientable unstable
manifold of dimension n + 1. Then

CHk(I) =

{
Z for k = n, n + 1
0 otherwise.

This result includes the periodic orbits in the examples 3 and 4.

6. Conversely, however, a Conley index as in the corollary does not imply
the existence of a periodic orbit as the next, graphically displayed, example
shows.
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red: M1

2 fixed points (index 2
and 1) with 2 hetero-
clinic orbits

7. A hyperbolic periodic orbit with a two-dimensional local unstable manifold
that is homeomorphic to a Möbius strip, and hence non-orientable.
Contracting the boundary of the Möbius strip to a point, we obtain (RP2,
point); therefore

CHk(I,Z2) =

{
Z2 for k = 1, 2
0 otherwise.

This and more general examples can be investigated by the Thom isomor-
phism with Z2 coefficients.

8. Of course, it is also instructive to analyze the examples from 3.2 with
the help of the present concepts. We urge the reader to carry this out as an
exercise before we proceed to the more general homotopical invariants.

3.5 Homotopical invariants

We shall need to summarize some concepts from algebraic topology. The
reader who happens to be familiar with them already can proceed directly to
the statement of the next theorem.
We consider pairs (X,A), A ⊂ X closed, of topological spaces, and we ab-
breviate X = (X, ∅). All maps will be assumed to be continuous, that is,
we work in the category of topological spaces and continuous maps between
them.
Let
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f : (X,A) → (Y,B) be continuous with f(A) ⊂ B.

Two such maps are homotopic, that is, continuously deformable into each
other, f0 ∼ f1 : (X,A) → (Y,B), when, with I = [0, 1], there exists an

F : (X,A) × I → (Y,B) with F (x, t) = ft(x) for t = 0, 1.

The crucial point for the concept of homotopy is the continuity of F (as
contained in our general assumption).
A homotopy equivalence between two such pairs of spaces, (X,A) ∼ (Y,B),
is defined by requiring that there exist

f : (X,A) → (Y,B), g : (Y,B) → (X,A)
with f ◦ g ∼ idY , g ◦ f ∼ idX .

Let us consider some examples, first for pairs of the form (X, ∅), (Y, ∅). We
let D := {x = (x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1} be the closed unit disk and 0

the origin in R2. Then the identity map of D, f1 := idD, and the constant
map f0 that maps all of D to 0 are homotopic: the homotopy is provided
by F (x, t) = tx. This then also implies that the space D is homotopically
equivalent to the space consisting only of the origin, that is, of a single point.
If we want to have nontrivial pairs here, we take (D, {0}) and ({0}, {0}).
Another example of homotopically equivalent spaces is given by the cylin-
der Z := {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = 1,−1 ≤ x3 ≤ 1} and the circle

S := {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}, with the required map from the
cylinder to the circle simply collapsing the third coordinate x3 to 0, and the
map from the circle to the cylinder embedding the former into the latter as
the circle x3 = 0. Again, this also shows the homotopy equivalence of (Z,A)
and (S,A), where A is any subset of S. The disk D and the circle S, however,
are not homotopically equivalent. If one does not know how to prove that,
one might wish to consult any elementary introduction to algebraic topology,
for example [52]. Even without that, however, the reader should see that the
preceding statement is equivalent to the fact that the identity map of the
circle is not homotopic to a constant map.
Of course, the reader can also do the standard exercises here, like verifying
that homotopy equivalence is an equivalence relation on the set of pairs of
topological spaces.

(X,x0)(x0 ∈ X) is called a punctured space. (X,A) yields the punctured
space X/A by identifying all x ∈ A as a single point. More formally: x ≈ y if
x = y or x, y ∈ A is an equivalence relation, and we let [A] be the equivalence
class of x ∈ A. We then put

X/A := (X/ ≈, [A]).

Thus, we collapse the whole subset A to a single point. Moreover, we have
the important special case
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X/∅ = (X � p, p), p �∈ X.

(Here, � means the disjoint union, that is, here we are adding a point p to
X that is not contained in X.)
A continuous map f : (X,A) → (Y,B) induces [f ] : X/A → Y/B via [f ][x] :=
[f(x)].
If (X,A) ∼ (Y,B) then also X/A ∼ Y/B.
In the sequel, we simply write X/A for the homotopy class [X/A] of X/A.
An example occurring in our applications arises when we consider Z/A where
A consists of the two boundary circles x3 = ±1 of the cylinder Z. The reader
should convince her/himself that this space is homotopically equivalent to
S2/{p1, p2}, the sphere modulo two points, for example the north and the
south pole. This in turn is homotopically equivalent to T 2/S′ where the torus
T 2 is obtained by rotating the circle S′ := {(x1, 0, x3) : x1 = 2 + sin θ, x3 =
cos θ} about the x3-axis.

The join of two punctured spaces is defined as follows:

(X,x0) ∨ (Y, y0) := X � Y/{x0, y0}
(glueing at the distinguished points x0, y0).

0̄ := x/x, x point.
A ⊂ X is called a strong deformation retract of X if there exists a continuous
map r : X × [0, 1] → X satisfying

r(x, t) = x ∀x ∈ A

r(x, 0) = x ∀x ∈ X

r(x, 1) ∈ A ∀x ∈ X.

Thus, we shrink the whole space X into its subset A while leaving all points
in A itself unaffected.
From the above examples, we see that the origin (or, likewise any other point
in D) is a strong deformation retract of the unit disk D, and so is the circle S
for the cylinder Z. This circle S, however, is not a strong deformation retract
of the unit disk D.

With these topological concepts, we can now state the fundamental results
of Conley theory.

Theorem 13. If (M0,M1), (M ′
0,M

′
1) are index pairs for the same isolated

invariant set S, then M0�M1
and M ′

0�M ′
1

are homotopically equivalent.

This result justifies the following fundamental
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Definition 15. The Conley index h(S) of the isolated invariant set S is
defined as the homotopy type [M0�M1

] where (M0,M1) is any index pair for
S.

Theorem 14. Let M0 ⊃ M1 ⊃ ... ⊃ Mn be a Morse filtration of the isolated
invariant set S. Then the relative Betti numbers bν(Mj−1,Mj) satisfy

n∑
j=1

∑
ν

bν(Mj−1,Mj)tν =
∑

ν

bν(M0,Mn)tν + (1 + t)Q(t)

as a power series for the indeterminate t where Q(t) is a polynomial with
nonnegative integer coefficients.

We note that the relative Betti numbers occurring in the preceding theorem
in turn have been defined through a dynamical system, namely a gradient flow
for an appropriate Morse function, in 3.2. Here, in contrast, they appear as
invariants of the underlying spaces that are used to detect information about
a dynamical system. Thus, there really is an intimate connection between the
topology of the space and the qualitative properties of a dynamical system
operating on it, and one can be used to elucidate the other. The topological
and the dynamical information appear as two sides of the same coin.

Theorem 15. Let I1, I2 be disjoint isolated invariant sets. Then the disjoint
union of I1 and I2, written asI1 � II2, is an isolated invariant set, and

h(I1 � I2) = h(I1) ∨ h(I2)

when ∨ is the join of topological spaces as explained above.

Theorem 16. Let N be an isolating neighborhood of the isolated invariant
set I. If h(I) �= 0̄, then I �= ∅ , i.e. N contains an entire orbit of the flow.

Proof. h(∅) = 0̄.

q.e.d.

We now discuss some algebraic tools for deriving such relationships as in
Theorem 14. Let Z ⊂ Y ⊂ X be topological spaces. We then have the long
exact cohomology sequence

0 → H0(X,Y ) → H0(X,Z) → H0(Y,Z)
δ0

→ H1(X,Y ) → H1(X,Z) → H1(Y,Z)
δ1

→ H2(X,Y ) → ...

Exactness here means that the composition of any two subsequent maps in
this sequence is 0. For details about the definition of these maps, we need to
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refer to any introduction to algebraic topology, such as [52].
Assume that all cohomology groups are finitely generated. We put

bj(X,Y ) : = dim Hj(X,Y )

νj(X,Y,Z) := dim (im δj).

Lemma 2. Let 0 → A1
a1→ A2

a2→ A3 → ... be an exact sequence of linear
maps between vector space. Then for all k ∈ N dim A1 −dim A2 +dim A3 −
...− (−1)k dim Ak + (−1)kdim (im δk) = 0.

Proof. If � : V → W is linear, then dim V = dim (ker �) + dim (im �).
The exactness implies that

dim (ker aj) = dim (im aj−1).

Hence
dimAj = dim (im aj−1) + dim (im aj)

and with
dimA1 = dim (im a1)

the claim follows.

q.e.d.

The Lemma implies that
m∑

j=0

(−1)j(bj(X,Y ) − bj(X,Z) + bj(Y,Z)) − (−1)mνm(X,Y,Z) = 0.

Hence

(−1)m−1νm−1(X,Y,Z) =(3.1)
(−1)mνm(X,Y,Z) − (−1)mbm(X,Y ) + (−1)mbm(X,Z) − (−1)mbm(Y,Z).

We put

P (t,X, Y ) : =
∑
m≥0

bm(X,Y )tm

Q(t,X, Y, Z) : =
∑
m≥0

νm(X,Y,Z)tm

Multiplying (3.1) by (−1)mtm and summing yields

(3.2) Q(t,X, Y, Z) = −tQ(t,X, Y, Z) + P (t,X, Y ) − P (t, Y, Z) + P (t, Y, Z).

We can now prove Theorem 14.
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Theorem 17. Let Mn ⊂ Mn−1 ⊂ ... ⊂ M1 ⊂ M0 be a filtration of M0,
for example a Morse filtration of the Morse decomposition (N1, ..., Nn) of the
isolated invariant set I. Then

n∑
j=1

P (t,Mj−1,Mj) = P (t,M0,Mn) + (1 + t)Q(t)

with Q(t) =
n−1∑
j−1

Q(t,Mj−1,Mj ,Mn)

( a polynomial in t with nonnegative integer coefficients).

Proof. (3.2) for Mj−1 ⊃ Mj ⊃ Mn, j = 1, ..., n− 1 implies that
P (t,Mj−1,Mj)+P (t,Mj ,Mn) = P (t,Mj−1,Mn)+(1+t)Q(t,Mj−1,Mj ,Mn).
Summation w.r.t. j yields the claim.

q.e.d.

We now put
P (t, h(I)) := P (t,M0,M1)

for an index pair (M0,M1) for the isolated invariant set I.

Corollary 2. Let I be an isolated invariant set, (N1, ..., Nn) an admissible
ordering of a Morse decomposition of I. Then
n∑

j=1

P (t, h(Nj)) = P (t, h(I)) + (1 + t)Q(t), where Q(t) is a polynomial with

nonnegative integer coefficients.

Let us return once more to the example of 3.2, in order to discuss also global
aspects of the Conley index. The example X in question is diffeomorphic
to S2, the two-dimensional sphere, with a function f with 4 critical points,
namely two local maxima p1, p2, one minimum r, and one saddle point q. For
each critical point, an index pair (M0,M1) is indicated in the figure. For each
such pair, M1 is marked in red, ∂M0\M1 in green. Thus, each fixed point
is considered as an isolated invariant set. For each of the two maxima, the
Conley index is the homotopy type of D�∂D, (D = disk), i.e., of (S2,point)
, and thus

CHk(pi) =

{
Z for k = 2
0 otherwise.

For the saddle point q, we obtain the homotopy type of square/(top and
bottom boundary lines), i.e., of interval/end points, i.e. of (S1, point), as in
the figure for example 2a). Thus
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p2p1

q

r

CHk(q) =

{
Z for k = 1
0 otherwise.

Finally, the Conley index of the minimum r is given by D�∅, as in example
2b), i.e., by a point. Thus

CHk(r) =

{
Z for k = 0
0 otherwise.

In order to connect this example with the theorems formulated in the pre-
ceding §§, we have to construct a Morse filtration. For that purpose, we shall
deform our index pairs while preserving the topological information obtained.
Thus, for the index pairs for the maxima p1, p2, we enlarge the corresponding
sets M0 to M0(p1) and M0(p2) until they touch the set M0(q). All the rest
will be assigned as M0(r) to the minimum r. Obviously, this will not affect
the cohomological indices.
We consider also the entire space X as an isolated invariant set, and we em-
ploy now the letters M0, M1, ..., for a Morse filtration, namely the Morse
decomposition (p1, p2, q, r). We put

M0 = X, M1 = X\M0(p1), M2 = M1\M0(p2),

M3 = M2\M0(q), M4 = M3\M0(r) = ∅.

Then (M0,M1), (M1,M2), (M2,M3), (M3,M4) are index pairs for p1, p2, q, r,
homotopically equivalent to the index pairs constructed above.
We now wish to evaluate the general formula
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p2p1

r

q

M0(p1) M0(p2)

M0(r)

4∑
j=1

∑
ν

bν(Mj−1,Mj)tν =
∑

ν

bν(M0,M4)tν + (1 + t) Q(t)

for our example (thus, n = 4). According to the above computations, we
obtain on the left-hand side

2 t2 + t + 1.

The term on the right-hand side is∑
ν

bν(S2, ∅) tν = t2 + 1,

because b2(S2) = 1, b1(S2) = 0, b0(S2) = 1, as we have deduced above in 3.2
with the help of Floer homology.
Thus, the remaining term is

(1 + t) Q (t) = t2 + t = (1 + t) t.

This term contains the excess of the local information gathered on the left-
hand side over the global quantity

∑
ν

bν(M0,Mn)tν on the right-hand side.

This term results from the fact that on the left-hand side, in contrast to the
right-hand side, we do not include the cancellations implied by the boundary
operator, as should become clear when comparing with the computation of
Floer homology.

We can localize this in an even more precise manner (and the flexibility
to interpolate between local and global information constitutes one of the
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decisive strengths of Conley theory, as we shall see in more detail in 3.6). For
this purpose, we consider two invariant sets I1 and I2.
I1 consists of the critical points p1, p2, and q, and the connecting orbits, i.e.
the two flow-lines from p1 and p2, resp., to q. I2 contains only the critical
point r.

r(= I2)

p1 p2

q

I1

M0(I1)

An index pair for I1 consists now of the red curve as M1(I1) and the set
above it as M0(I1). This is extended to a Morse filtration by adding to each
of them the entire lower part, i.e.,

M0 = X, M1 = M0\M0(I1),M2 = ∅.
The homotopy type of M0/M1 then is (S2, point) as before, while that of
M1/M2 is (point). Thus, the general formula

2∑
j=1

∑
ν

bν(Mj−1,Mj)tj =
∑

ν

bν(M0,M2)tν + (1 + t) Q(t)

becomes
t2 + 1 = t2 + 1,

i.e. , Q(t) = 0. The additional topological information is now entirely con-
tained within M0(I1), and the decomposition is too coarse for representing
the local information.
This example exhibits another interesting aspect that will lead to the next §.
Namely, inside M0(I1), we can deform the flow such that the saddle point q
moves into one of the two maxima, and the saddle point and the maximum
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then cancel each other. While the invariant set I1 changes, the index pair
(M0(I1),M1(I1)) remains the same. Our coarse Morse decomposition thus
remains invariant under deformations that take place within an index pair.
The preceding, finer, Morse decomposition needs however to be adapted, and
readers should try for themselves to discuss Morse decompositions for the
middle diagram in the next figure.

p1

q
p2

q = p2

p1

r

p1

r r
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We now consider a general gradient flow as in 3.2:

ẋ = −∇f(x),

with f having only isolated critical points p1, ..., pn on the compact manifold
M . Ni = {pi} then constitutes a Morse decomposition (not yet necessarily
admissibly ordered), as follows.

For x ∈ M either x(t) ≡ x or f(x(t)) < f(x) for t > 0. In the first case, f is
constant on α(x), ω(x), and α(x), ω(x) then satisfy ∇f(y) = 0.

Thus, either ∇f(x) = 0 or f(ω(x)) < f(α(x)).

If the ordering is such that f(pi) ≤ f(pj) for i > j, it is admissible. As
discussed in 2.2, in a neighborhood of a nondegenerate critical point, the
flow is given in local coordinates x ∈ Rd by

ẋ− = A−x− + g−(x)
ẋ+ = A+x+ + g+(x)

with

g±(0) = g′±(0) = 0
|g±|, |g′±| ≤ δ

for |x| ≤ 2, where δ is arbitrarily small for a suitable choice of coordinates
and, for

x =(x−, x+) ∈ Rd− × Rd+
= Rd,

we have

〈x−, A−x−〉 ≤ −λ|x−|2
〈x+, A+x+〉 ≥ λ|x+|2 for some λ > 0.

This is the so-called Morse lemma.
Let Q := {x ∈ Rd : |x±| ≤ 1}. For x ∈ ∂Q, |x−| = 1 or |x+| = 1.
If for x ∈ Q, |x−| ≤ |x+|, then d

dt |x−|2 = 2〈x−, A−x− + g−(x)〉 ≤ −λ|x−|2
for 4δ ≤ λ.
If for x ∈ Q, |x+| ≤ |x−|, then d

dt |x+|2 ≥ λ|x+|2.
M0 := Q, M1 := {x ∈ Q, |x+| = 1} then constitute an index pair, and
P (t, h(pi)) = td

−
i as well as (M0,M1) ∼ (Dd−

i , ∂Dd−
i ).

(M, ∅) is an index pair for M and, with

P (t, h(M)) =
d∑

j=0

bj(M)tj , the general theory implies that
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n∑
i=1

td
−
i =

d∑
j=0

bj(M)tj + (1 + t)Q(t),

and so

(3.3) mj := #{critical points pi with d−i = j} ≥ bj(M).

The last result is the content of Theorem 9 above.

Remark 2. Let X be compact, ϕ : X → R continuous. We put
Xµ := {x ∈ X : ϕ(x) ≤ µ} for µ ∈ R,
µ0 := max

x∈X
ϕ(x) > µ1 > ... > µn for real numbers µ0, ..., µn,

Mi := Xµi (Mi = ∅ for µi < min
x∈X

ϕ(x)).

Then X = M0 ⊃ M1 ⊃ ... ⊃ Mn is a filtration of X by sublevel sets of ϕ.
Therefore

n∑
j=1

∑
m≥0

bm(Mj−1,Mj)tm =
∑
m≥0

bm(M0,Mn)tm + (1 + t)Q(t).

This is a localization in the image. In order to also obtain a localization
in the domain, as in Morse theory, one uses a flow. One may define even
without using a flow, however, what a critical point of a continuous function
ϕ : X → R is, and even some kind of an index of such a critical point. Namely,
x0 ∈ X is noncritical for ϕ precisely if there exists a neighborhood U of x0

in X with a continuous map

Φ : U × [0, 1] → X

such that

ϕ(Φ(x, t))is monotonically decreasing in t ∈ [0, 1] for all x ∈ U,

ϕ(Φ(x, 1)) < ϕ(x0) for all x ∈ U.

For defining the index of a critical point x0 of ϕ, we put

X−(x0) := {x ∈ X : ϕ(x) < ϕ(x0)}.

The index then is the homotopy type of

(X−(x0) ∪ {x0})�
X−(x0)

.
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3.6 Continuation properties of the Conley index

Let fΛ : X × R → X be a family of flows, continuous with respect to λ ∈ Λ,
a compact, locally contractible, connected metric space with metric d(., .).

Lemma 3. Let N be an isolating neighborhood for fλ0 , λ0 ∈ Λ. Then there
exists ε > 0 such that, for all λ ∈ Λ with d(λ, λ0) < ε, N is an isolating
neighborhood for fλ.

This is no longer true for index pairs.

Theorem 18. Under the assumptions of the lemma,

h(Invλ(N)) = h(Invλ0(N))

(Invλ(N) is the invariant set of N with respect to the flow fλ).

To proceed, we consider

F : X × Λ× R → X × Λ

(x, λ, t) �→ (fλ(x, t), λ).

F is a flow on X × Λ and is called a parameterized flow. We also put

N ⊂ X × Λ, Nλ := N ∩ (X × {λ}).

Definition 16. For λi ∈ Λ, i = 0, 1, let Ii be an isolated invariant set for
fλi . I0 and I1 are related by continuation if there exists an isolating neighbor-
hood N of the parameterized flow with N ⊂ X×Λ, Invλi(Nλi) = Ii (i = 0, 1)
(invariant set of Nλi with respect to fλi).

Theorem 19. If I0 and I1 are related by continuation, then h(I0) ∼ h(I1).

General formulation: Let X be a compact metric space. Let the compact-
open topology be given on the space Φ of flows ϕ : X ×R → X, i.e., ϕn → ϕ
if ϕn converges to ϕ uniformly on compact sets in X×R. Φ is complete w.r.t.
this topology.
Let N ⊂ X be closed with

o

N �= ∅.
Let U(N) := {f ∈ Φ : N is an isolating neighborhood for f}.
U(N) is open in Φ by the above lemma.
Let A(X) := {V ⊂ X,V closed}.
Put S := {(f, I) : I is an isolated invariant set for f ∈ Φ} ⊂ Φ×A(X).

For N ⊂ X closed,
o

N �= ∅, we consider both

σN : U(N) → S

f �→ (f, If )
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where If is a maximal invariant subset of N with respect to f , and the
projection

π1 : S → Φ

with
π1 ◦ σN = id : U(N) → U(N).

Let now S carry the topology generated by the sets σN (U), U ⊂ U(N) open.

Theorem 20. π1 : S → Φ is a local homeomorphism. In other words,
(S, Φ, π) is a sheaf.1

Theorem 21. Let (f0, I0) and (f1, I1) be contained in the same component
of S. Then the corresponding Conley indices coincide.

It is, of course, instructive to analyze our examples of bifurcations discussed
in Chapter 2, for example the Hopf bifurcation, in the light of the preceding
results.

So far, starting with 3.3, we have been essentially following the original ref-
erence [7] and also using the exposition in [50]. Another good presentation of
the theory can be found in [46].

3.7 The discrete Conley index

We consider a continuous map f : X → X of a topological space X. Let J ⊂ Z
be an interval, i.e., a set of the form J = {m,m+1, ...,M − 1,M},m,M ∈ Z
then

γ : J → X

is called a solution of f if

γ(n) = f(γ(n− 1)),

whenever n − 1, n ∈ J . If 0 ∈ J and γ(0) = x, then γ is called a solution
through the point x.
For N ⊂ X, we put

I+(N) := {x ∈ X : fn(x) ∈ N for all n ≥ 0} (forward invariant set)

I−(N) := {x ∈ X : ∃ solution γ : {n ≤ 0} → N with γ(0) = x}
(backward invariant set)

I(N) := I+(N) ∩ I−(N) (invariant set) .

1 This is a terminology that was first introduced in complex analysis for studying
continuation properties of holomorphic and meromorphic functions.
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If f : X → X is a homeomorphism, then

I(N) = {y ∈ X : fn(y) ∈ N ∀n ∈ Z}.

A compact N ⊂ X is called an isolating neighborhood, and
I(N) is called an isolated invariant set, if

I(N) ⊂ o

N .

M ⊂ N is called positively invariant with respect to N if

f(M) ∩N ⊂ M.

Examples:

f : R2 → R2

(x, y) �→ (2x,
1
2
y).

M0 = box
M1 shaded

0 is an isolated invariant point

Hk(M0,M1) =

{
Z for k = 1
0 otherwise

M ′
0 = both boxes

M ′
1 shaded

Hk(M ′
0,M

′
1) =

{
Z for k = 0, 1
0 otherwise
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We conclude that in the discrete case the cohomology of an index pair for an
isolated invariant set depends on the choice of this index pair. Therefore, we
need to refine the construction.
A pair (M0,M1) of compact subsets M1 ⊂ M0 ⊂ N of the isolating neigh-
borhood of the isolated invariant set I(= I(N)) is called an index pair for I
in N (with respect to f) if

(i) I is contained in the interior of M0\M1,
(ii) M0 and M1 are positively invariant with respect to N ,

(iii) M0\M1, f(M0\M1) ⊂
o

N .

Thus, if x ∈ M0, either x ∈ M0\M1 or x ∈ M1\(M0\M1).

In the first case, f(x) ∈ o

N by (iii) and hence f(x) ∈ M0 by (ii). Thus, f(x)
can lie outside of M0 only in the second case. In particular, we have that, if
x ∈ M0, f(x) �∈ M0 , then x ∈ M1 (in other words, f(M0\M1) ⊂ M0). If now
x ∈ M1, then by (ii) either f(x) ∈ M1 or f(x) lies outside of N and hence
also outside of M0. In this sense, M1 can be considered as the exit set.

For these constructions, the isolating neighborhood of the isolated invariant
set I is considered as given. One may then show the existence of index pairs
for I in N with respect to f .
We have the inclusion

f(M0)\(M0 ∩ f(M0)) ⊂ f(M1),

because, for an index pair, f(M0\M1) ⊂ M0. Therefore, M0 ∪ f(M0) =
M0 ∪ f(M1). Thus, by excision of f(M1), we obtain an isomorphism

r : H∗(M0 ∪ f(M0), M1 ∪ f(M1)) → H∗(M0,M1).

for the (Alexander-Spanier) cohomology.2

Furthermore,

f : (M0,M1) → (M0 ∪ f(M0),M1 ∪ f(M1))

induces a map

f∗ : H∗(M0 ∪ f(M0),M1 ∪ f(M1)) → H∗(M0,M1).

We define then the index map for the index pair (M0,M1) as

f∗
M0,M1

:= f∗ ◦ r−1 : H∗(M0,M1) → H∗(M0,M1).

Let V be a graded vector space with an endomorphism f : V → V which
preserves the grading (deg f = 0).
We put
2 We again need to refer to an introduction to algebraic topology here.
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g- ker(f) :=
⋃

{f−n(0) : n ∈ N}
g-im(f) :=

⋂
{fn(V ) : n ∈ N}.

Then f induces a monomorphism

f ′ : V�g- ker(f) → V�g- ker(f).

A monomorphism f : V → V induces an isomorphism

f ′′ : g-im(f) → g-im(f).

Putting LV := g-im(f ′), the Leray reduction of an endomorphism f : V → V
is then

Lf := (f ′)′′ : LV → LV.

Let I be an isolated invariant set with index pair (M0,M1). The correspond-
ing cohomological Conley index of I then is defined as

CH∗(I) := CH∗(M0,M1) := (LH∗(M0,M1), Lf∗
M0,M1

).

That the index of an isolated invariant set I is well-defined is a consequence
of the next result.

Theorem 22. Let I be an isolated invariant set for the continuous map f :
X → X. Then

(i) There exists an index pair (M0,M1) for I.
(ii) The cohomological Conley index does not depend on the choice of this

index pair.

If f happens to be the time-1-map of a flow then, for each isolated invariant
set of the flow, an index pair (M0,M1) can be constructed that is also an
index pair for f and for which the above maps

r, f∗ : H∗(M0 ∪ f(M0),M1 ∪ f(M1)) → H0(M0,M1)

are homotopic to each other, and hence f∗
M0,M1

is the identity. Therefore, the
cohomological Conley index for the flow can be identified with the Conley
index with respect to the time-1-map.

Examples:
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1) The horse-shoe map of S. Smale:

f(A) f(D)f(B)f(C)

CD

BA

β f(β)

α f(α)

M0 = square ABCD
M1 = shaded region of M0

f(M0) = horse-shoe
f(M1) = shaded in red

M0/M1 = : H0 = 0
: H1 = Z2

f∗
M0,M1

: H∗(M0,M1) → H∗(M0,M1)
α �→ α + β
β �→ −α− β
⇒ (f∗

M0,M1
)2 = 0

⇒ CH∗(M0,M1) = (0, 0).

2) The G-horse-shoe map

M0,M1, f(M0), f(M1) as in
1),
but this time

f1
M0,M1

: H1(M0,M1) → H1(M0,M1)

α �→ α + β

β �→ α + β,

and therefore (f1
M0,M1

)2 = 2f1
M0,M1

and CH∗(M0,M1; Q) = (Q, 2id)
(with Z-coefficients, the Conley index would be 0 again, because
2id : Z → Z is not an isomorphism).
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3)

γ

β

α

M0,M1, f(M0), f(M1) as in 1)

f1
M0,M1

: H1(M0,M1) → H1(M0,M1)

α �→ α + β + γ

β �→ −α− β − γ

γ �→ α + β + γ

CH∗(M0,M1,Q) = (Q, id).



4 Entropy and topological aspects of
dynamical systems

4.1 The entropy of a process as an asymptotic quantity

We consider the continuous map

T : X → X

of a compact state space, and we wish to measure how much information
this map generates. The basic idea is here to determine how much additional
information we obtain when, in addition to the position of a point x ∈ X, we
also know the position of Tx. This basic idea will be made precise in several
steps. First of all, we need to quantify the amount of information contained
in the position of x. In order to distinguish between different positions, we
need to partition X into subsets A1, ..., Am, with the aim that the information
about x comprises in which of these subsets it lies. This does not seem to look
very canonical, since the choice of m, the number of our subsets, is arbitrary,
as are the possible criteria for selecting these subsets. Later on, however,
this arbitrariness will be eliminated by a limit process. In any case, the sets
A1, ..., Am should not be chosen in a completely arbitrary manner, but they
should respect whatever structure X carries. Since so far X is only assumed
to be a topological space, the only meaningful requirement at this point is
that the sets A1, ..., Am be open. Moreover, each conceivable position of x in
X should carry some information. Therefore, the sets A1, ..., Am should cover
X, i.e.,

X =
m⋃

i=1

Ai,

even though this may have the consequence that some x are contained in
more than one of the Ai, i.e., that the Ai do not partition X. This deficit
will again be eliminated by our subsequent limit process.

We denote the covering {A1, ..., Am} by A. In order to avoid redundancies
as much as possible, we first select a subcovering of A of smallest possible
cardinality, i.e., we seek to cover X by as few as possible of the sets A1, ..., Am

from A. In the sequel, we shall occasionally assume without loss of generality
that A has been chosen minimal in the sense that it does not contain any
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nontrivial subcovering, i.e. that none of the sets in A can be omitted without
violating the covering property.

In order to quantify the information, we assign the same measure, namely
1
m , to each Ai. The entropy of the covering A, again assumed to be minimal,
is then simply

H(A) := −
m∑

i=1

1
m

log2

1
m

= log2 m

or, more generally, if A need not be minimal, the logarithm of the number of
sets of its smallest subcovering. Since we did not assume any further structure
on X, we have no possibility to measure the size of the sets A1, ..., Am. This
would be different if we had a probability measure on X. In that situation,
we could require that all the subsets A1, ..., Am be measurable and not only
cover, but also partition, X, i.e.,

Ai ∩Aj = ∅ for i �= j.

Of course, then we ignore the topological structure of X and abandon the
requirement that the Ai be open, and for the sequel, in place of the continuity
of T , we should require that T be measure preserving, i.e.,

µ(T−1(A)) = µ(A) for all measurable subsets A of X.

The entropy of the partition A = {A1, ..., Am} of X w.r.t. the measure µ
would then be

Hµ(A) := −
m∑

i=1

µ(Ai) log2 µ(Ai)

Of course, this raises the question of how the concepts and quantities to be
defined depend on the choice of the measure µ. In order to obtain canonical
quantities, one constructs the entropy of the transformation T with respect
to every measure µ that is preserved by T and then forms the supremum with
respect to all such µ. It will turn out that the resulting quantity coincides
with the one obtained from the above topological approach. This, however,
is not so surprising because, for a partition of X by a fixed number m of
subsets, the entropy is largest if all sets in the partition are of equal measure
1
m . We shall return to these measure theoretic aspects in Chapter 6.

Finally, we can also introduce a notion of entropy when there exists a distance
measure, i.e., a metric d on X. This will again lead to the same result as
the other approaches, as will be explained in Chapter 5. We return to the
topological situation. We need one more technical definition, namely the join

A ∨ B
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of two coverings A = {A1, ..., Am},B = {B1, ..., Bn}. This join consists of all
sets of the form Ai ∩Bj , Ai ∈ A, Bj ∈ B, and so is a covering itself.

We now let the transformation T enter. Together with A, we also consider
the covering T−1A that consists of all the sets T−1Ai, Ai ∈ A. Since T is
assumed continuous, all these sets are open. We consider the covering

A ∨ T−1A.

The number of sets in this refined covering, when compared with the number
of sets in the original covering A, then yields information about how much
additional knowledge we gain from the position of Tx when compared to the
position of x. To be precise, the knowledge of both x and Tx selects one of the
sets in the covering A∨T−1A, namely a set Ai∩T−1Aj with x ∈ Ai, Tx ∈ Aj ,
because Tx is contained in Aj precisely when x is in T−1Aj . (If, instead of
coverings, we worked with partitions, this set Ai ∩ T−1Aj would even be
uniquely determined. The non-uniqueness in the present context will play
no role later on and will be eliminated by a limit process.) Thus, we should
consider now H(A ∨ T−1A). This, however, is not yet all the information
that we can gain from T . For example, we could also evaluate the position of
T 2x(= T (Tx)), i.e., consider the covering

A ∨ T−1A ∨ T−2A.

Of course, this can be iterated. In order to normalize our quantities, we divide
by the number of iterations and define the entropy of T with respect to the
covering A as

h(T,A) := lim
N→∞

1
N

H(A ∨ T−1A ∨ ... ∨ T−(N−1)A).

When each iteration of T and the determination of the corresponding im-
age of x is considered as a measurement, then at each step we divide by the
number of measurements taken in order to obtain the average amount of in-
formation per measurement from T .

As already indicated, the construction becomes independent of the choice of
the covering A when we define the entropy of T as

htop(T ) := h(T ) := sup{h(T,A) : A covering X}.
Of course, we must verify that the above limit and the supremum both exist.
This is not difficult; essentially, it rests on the monotonicity property

H(A) ≤ H(B)

which holds whenever the covering B refines A in the sense that every ele-
ment of B is contained in some element of A. For instance, A∨B refines both
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coverings A and B as follows directly from the definitions.

The detailed proof of the existence of the limit introduced for the definition of
h(T,A) goes as follows. Let mC be the cardinality of a minimal subcovering
of a covering C of X, i.e., the number of subsets of X contained in C that are
at least required for covering X. In particular, mA∨B ≤ mAmB.

Then

H(A ∨ B) = log2 mA∨B
≤ log2(mAmB)
= H(A) + H(B).

Hence also

H(A ∨ T−1A ∨ ... ∨ T−(N+N ′)+1A)

≤ H(A ∨ ... ∨ T−N+1A) + H(T−NA ∨ ... ∨ T−(N+N ′)+1A)

≤ H(A ∨ ... ∨ T−N+1A) + H(A ∨ ... ∨ T−N ′+1A),

because H(T−1A) ≤ H(A) by definition of T−1A, with equality if T is sur-
jective.

For ηN := H(A ∨ ... ∨ T−N+1A), we then have

ηN+N ′ ≤ ηN + ηN ′ for N,N ′ ∈ N.

Thus, for fixed i ∈ N and N = νi + j with 0 ≤ j < i,

ηN

N
≤ ηνi + ηj

N
≤ ηνi

νi
+

ηj

νi
≤ νηi

νi
+

ηj

νi

=
ηi

i
+

ηj

νi

and hence
lim

N→∞
ηN

N
≤ ηi

i
for all i.

Since also
inf

i

ηi

i
≤ lim

N→∞
ηN

N
,

the existence of the limit follows. q.e.d.

It is not hard to convince oneself that the topological entropy remains invari-
ant under topological conjugation, as follows.

Theorem 23. Let Ti : Xi → Xi be continuous maps of the compact Haus-
dorff spaces Xi, i = 1, 2, ϕ : X1 → X2 a homeomorphism with ϕT1 = T2ϕ.
Then

htop(T1) = htop(T2).
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Under the assumptions of the theorem, the two maps T1 and T2 are called
topologically conjugate.
References for this section are [38, 57].

4.2 Positive entropy and chaos

Since the definition of the entropy depends on limit processes, one may ex-
pect that the entropy of a map T cannot be computed directly, but that for
computing it or, if that should not be feasible, for estimating it, one will
need general theorems. First of all, however, there exist maps whose entropy
obviously vanishes, like constant maps or the identity map of X.

Next, one can prove that every homeomorphism of the unit circle S1 has
vanishing entropy, and therefore so does every homeomorphism of a compact
interval in R. The proof (for which we refer to [24]) depends on the clas-
sification of homeomorphisms of S1; this classification is subtle, but many
homeomorphisms of S1 are conjugate to a rotation which obviously has van-
ishing entropy.

The perhaps simplest map of non-zero entropy is the tent map already intro-
duced in 2.4,

Z : [0, 1] → [0, 1],

Z(x) =

{
2x for 0 ≤ x ≤ 1

2

2(1 − x) for 1
2 ≤ x ≤ 1

1

1/2 1 x

Z(x)

This map has the entropy log2 2 = 1 because, at every step, the precision of
the knowledge about the position is doubled. (It is not difficult to carry out
the computation for this example explicitly.) This phenomenon also occurs
explicitly if each real number in the unit interval is represented as a binary
sequence, i.e.,

x = 0, b1 b2 ...bm...,
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with bi ∈ {0, 1}, and one puts

Tx = 0, b2 b3 ...

i.e., multiplies x by 2 and then omits or forgets the first digit. (It does not
matter here that the representation of x as a binary sequence is not unique.)
If any number x can only be measured with a finite precision, for example up
to the kth digit, then the application of T generates one additional digit and
thus doubles the precision. This map is called the one-sided 2-shift. In this
interpretation, T operates on the space of all binary sequences {(b1, b2, b3, ...)}
by

T (b1, b2, b3, ...) = (b2, b3, b4, ...).

Similarly, on the space Y2 of two-sided binary sequences,

(..., b−2, b−1, b0, b1, b2, ...),

we define the Bernoulli shift

(4.1) T (..., b−1, b0, b1, ...) = (..., b′−1, b
′
0, b

′
1, ...)

by b′m := bm+1. The Bernoulli shift again has the entropy log2 2 = 1, because
at each step at any position one additional bit of information is generated.

If we consider sequences whose elements can assume p different states, i.e.,

Yp := {(..., a−1, a0, a1, ...) with ai ∈ {0, 1, ..., p− 1} for all i ∈ Z}

or

Y 0
p := {(a1, a2, ...) with ai ∈ {0, 1, ..., p− 1} for all i ∈ N},

then the corresponding shifts have the entropy log2 p.

Of course, we use the product topology on these sequence spaces, as they are
infinite products of the spaces Zp = {0, 1, ..., p− 1}.

The entropy of the Bernoulli shift on the space Y2 of two-sided binary se-
quences can also be simply computed as follows. We cover the space Y2 by
the two open sets

A0 := {(..., b−1, b0, b1, ...) : b0 = 0}

and

A1 := {(..., b−1, b0, b1, ...) : b0 = 1}.
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Thus

A = {A0, A1},

and so

T−1A = {{b1 = 0}, {b1 = 1}},

and

A ∨ T−1A

is the covering consisting of the sets

A00 = {b0 = 0, b1 = 0}, A01 = {b0 = 0, b1 = 1},
A10 = {b0 = 1, b1 = 0}, A11 = {b0 = 1, b1 = 1}.

The process can be iterated in this manner, and we obtain

H(A ∨ T−1A ∨ ... ∨ T−(N−1)A) = −
2N∑

N>1

1
2N

log2 2−N = N,

and thus
h(T ) ≥ h(T,A) = lim

N→∞
1
N

N = 1.

Since on the other hand it is easily checked that, for an arbitrary covering A
of Y2 at each step, the number of sets in the covering asymptotically gets at
most doubled, we have

H(A ∨ T−1A ∨ ...T−(N−1)A) ≤ log2(2
N |A|) + o(N) = N + o(N)

( |A| := number of elements of A), and hence

h(T,A) ≤ 1 for all coverings A.

Thus also
h(T ) ≤ 1,

and altogether the equality h(T ) = 1 results.

In an analogous and elementary manner, one also verifies that the Bernoulli
shift on the space of Zp-valued sequences has the entropy log2 p.

For later purposes, we also observe that the periodic sequences, that is, those
with TN (..., b−1, b0, b1, ...) = (..., b−1, b0, b1, ...) for some N ∈ N, or equiva-
lently, those with bi+N = bi for all i, are dense in Yp. Namely, the topology of



106 4 Entropy and topological aspects of dynamical systems

Yp is generated by the cylinder sets (that is, these sets are open and form a
basis for the topology) Aβ0,...,βN−1 consisting of those sequences with bi = βi

for i = 0, ..., N − 1. These, however, contain the periodic sequences with
bi+kN = βi for i = 0, ...N − 1 and k ∈ Z.

We return to the interval maps and say that a continuous map T : I → R of
a closed interval I in R possesses a fold map1 [a, b] if a < c < b ∈ I and

(4.2) [a, b] ⊂ T [a, c] ∩ T [c, b].

Thus, the entire interval [a, b] is covered by the image of either one of two
subintervals. For the above tent map, this holds for a = 0, c = 1

2 , b = 1. We
then have the theorem that every map T : I → I with a fold map has entropy

h(T ) ≥ log2 2 = 1.

Conversely, for every continuous T : I → I(I ⊂ R compact interval) with

h(T ) > 0,

there exists k ∈ N for which T k has a fold map. Among other things, this
implies that such a T must have a periodic point whose period is not a power
of 2. For more details, see [24].

In summary, the situation for interval maps is quite clear-cut: homeomor-
phisms have vanishing entropy while positive entropy is generated by foldings.

There also exist more general and abstract results. For instance, as explained
above, two continuous maps T : X → X,S : Y → Y are called topologically
conjugate if there exists a homeomorphism ϕ : X → Y with

ϕ ◦ T = S ◦ ϕ
and, more generally, S is called a factor of T if there exists a surjective
continuous map ψ : X → Y with

ψ ◦ T = S ◦ ψ
If S is a factor of T , then
1 Often, this is also called a horse-shoe, but as its properties are somewhat different

from the horse-shoe introduced in 3.7 and further studied in 7.2, we have to give
it a different name here. The essential differences to that horse-shoe are that the
fold map in one dimension is not injective and that the horse-shoe of 3.7 does
not fit into the original square so that, during the dynamic iteration, more and
more of it gets mapped to the outside of the original square and so disappears
from the picture.
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h(T ) ≥ h(S),

and so, in particular, topologically conjugate maps share the same entropy.
For example, the tent map is topologically conjugated to the quadratic map

x �→ 4x(1 − x)

of the unit interval. Therefore, the latter also has entropy log2 2 = 1.

In higher dimensions, of course, the situation is no longer as simple. In a
certain sense, nevertheless, horse-shoes2 (see also the discussion at the end
of 3.7) as indicated in the figure

,

i.e.

,

are typical building blocks for constructing maps of positive entropy. See
also the discussion in 7.2. Horse-shoes are also called baker’s maps3 since the
kneading of dough visualizes the iteration of such maps.

The entropy of a continuous map of a compact state space can only be posi-
tive if at each step new information is generated. One possibility to visualize
this generation of information is to consider, for a given covering or partition
(depending on whether we study the topological or the measure theoretic

2 This is somewhat different from the horse-shoe introduced in 3.7, but the purpose
of this section is to stress the similarities. The horse-shoe can easily be made into
a bijective self-map of the square whereas Smale’s horse-shoe as considered in
3.7 and 7.2 maps part of the square to its outside so that it leaves the picture,
and the chaotic phenomena can become transient.

3 Again, the terminology is somewhat ambiguous in the literature; often a some-
what different map, but with similar properties, is called baker’s map.
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entropy), points x �= y that are not contained in different sets and so cannot
be distinguished by any observation based on the given covering or parti-
tion. In order that T generates information, there must exist some n ∈ N for
which Tnx and Tny lie in different such sets so that the dynamical iterates
of x and y eventually can be distinguished by an observation. This can also
be interpreted as sensitive dependence on the initial conditions in the sense
of chaotic dynamics. An essential point here, however, is that the distance
between Tnx and Tny cannot be arbitrarily increased for larger and larger n,
because the state space is compact. Thus, in addition to the diverging orbits,
there must also exist converging ones. This interplay makes chaotic dynamics
interesting and subtle.

If one only considers the orbit of a single point x ∈ X under the iterates of T ,
the generation of information can be interpreted in the sense that the orbit
Tnx never traverses a regular periodic sequence of the sets A1, ..., Am. Thus,
knowing the sets containing x, Tx, ...Tnx never suffices for predicting the one
containing Tn+1x. Otherwise, asymptotically, no new information would be
generated, and the entropy of T would vanish.

4.3 Symbolic dynamics

We have already noted an analogy between the tent map

Z : [0, 1] → [0, 1]

Z(x) =

{
2x for 0 ≤ x ≤ 1

2

2(1 − x) for 1
2 ≤ x ≤ 1

and the one-sided 2-shift. We want to examine this in more detail and for
that purpose we establish a direct relationship between these two maps. As
before, every x ∈ [0, 1] is represented as a binary sequence b = (b0, b1, b2, ...),
but this time in a somewhat unusual manner:

bk := bk(x) :=

{
0 if Zk(x) < 1

2

1 if Zk(x) > 1
2 .

We neglect the case where the orbit of x under the iterates of Z contains the
point 1

2 .

In this coding, Z operates as the one-sided 2-shift

T (b0, b1, b2, ...) = (b1, b2, ...),

because the binary representation of Zx is given by
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bk(Zx) =

{
0 for Zk(Zx) < 1

2

1 for Zk(Zx) > 1
2 ,

i.e.,
bk(Zx) = bk+1(x).

One may show that, when neglecting the preimages of 1
2 which constitute a

countable and hence null set, the relation between x and the binary sequence
b yields a continuous bijection between [0, 1] and the space of all binary
sequences. Therefore, the tent map Z is conjugate to the one-sided 2-shift T .
Thus, for instance, the logistic map F : [0, 1] → [0, 1],

F (x) = 4x(1 − x),

which is conjugated to Z via sin2(πx
2 ) (F (sin2(πx

2 )) = sin2(πZ(x)
2 )), is conju-

gate to this shift as well.

With the help of this conjugation, i.e., by analyzing the shift, we can also
study the chaos aspects of the iterates of F or Z. We employ the theorem
of Hardy saying that almost every x ∈ [0, 1] has the property that its binary
representation contains every finite sequence of 0s and 1s. For such an x and
any y ∈ [0, 1] (whose orbit should not contain 1

2 ) and N ∈ N, we choose the
block (b0, b1, ..., bN−1) of the first N digits of our binary representation of
y and are then assured that this block occurs also somewhere in the binary
representation (β0, β1, β2, ...) of x, e.g. (b0, ..., bN−1) = (βk, βk+1, ..., βk+N−1).
This means that y and Zkx have distance at most 2−N since the first N dig-
its of their binary representations coincide. Since y and N are arbitrary, this
means that the orbit of x approaches any point in [0, 1] arbitrarily closely
and, in fact, this even happens infinitely often. Thus, the orbit of any such x
is dense in [0, 1], and this holds for all x in a subset of [0, 1] of full measure.
On the other hand, we have already seen that orbits with initial points which
are arbitrarily close together eventually separate and diverge. This example
demonstrates how symbolic dynamics, i.e. the dynamics on a discrete space
which is conjugate to the original dynamics defined on a continuum permits a
simple analysis of the qualitative properties of that original dynamic process.

We can also use the two-sided Bernoulli shift T : Y2 → Y2 to analyze the
higher dimensional horse-shoe introduced in the previous section.



110 4 Entropy and topological aspects of dynamical systems

BA

CD

β

α

f(D)F (A) F (B)

F (β)

F (α)

F (C)

S = square ABCD
S0 = lower horizontal white rectangle
S1 = upper horizontal white rectangle
S0 = left vertical rectangle = image of S0

S1 = right vertical rectangle= image of S1

We put

(4.3) Λ :=
⋂
n∈Z

Fn(S).

S ∩ F (S) consists of S0 and S1. S ∩ F (S) ∩ F 2(S) consists of 4 vertical
rectangles Sij = Si ∩ F (Sj) = F (Si) ∩ F 2(Sj), i, j ∈ {0, 1}, and iteratively⋂n

ν=0 F
ν(S) consists of 2n exponentially thin vertical rectangles Si1,...,in

=⋂n
ν=1 F

ν(Siν ) (iν ∈ {0, 1}). In the limit, the intersection
⋂∞

n=1 F
n(S) is a

family of vertical segments
⋂∞

n=1 F
n(Sin), more precisely, the product of a

vertical segment with a Cantor set in the horizontal direction. By the same
pattern,

⋂∞
n=0 F

−n(S) is the product of a horizontal segment with a Cantor
set in the vertical direction. Consequently, Λ =

⋂
n∈Z

Fn(S) is the product
of two Cantor sets, and thus a Cantor set itself. We then consider

ϕ : Y2 → Λ

ϕ (..., b−1, b0, b1, ...) :=
∞⋂

n=−∞
Fn(Sbn).(4.4)

ϕ is a homeomorphism that conjugates the two-sided Bernoulli shift and the
restriction of the diffeomorphism F to Λ. This will be utilized below in 7.2.
In particular, since conjugacy maps periodic points to periodic points, and
since we have observed in 4.2 that the periodic points for the Bernoulli shift
are dense in Y2, we conclude that the periodic points for the horse-shoe F
are dense in Λ.

Further details about the issues raised here can be found in [24].



5 Entropy and metric aspects of dynamical
systems

5.1 The metric approach to topological entropy

We recall the definition of topological entropy from 4.1 with the help of
coverings. For a covering A of X, H(A) was defined as the logarithm of
the minimal number of open sets in A that are needed to cover X. If B is
a refinement of A, i.e., if B is a covering of X for which every set in B is
contained in some set from A, then

H(B) ≥ H(A),

and thus also
h(B, T ) ≥ h(A, T ).

Thus, if (Un)n∈N is a family of coverings with the property that Un+1 is always
a refinement of Un and any covering A is refined by some Un, then

htop(T ) = lim
n→∞h(Un, T ).

If X now carries a metric d and if (Un)n∈N is a family of such refining coverings
(i.e., Un+1 refines Un for all n as above), with

diam (Un) → 0

(where the diameter Un is the supremum of the diameters of the elements of
Un, computed via the metric d), then every covering A gets refined by some
Un, and we therefore have

htop(T ) = lim
n→∞h(Un, T ).

This indicates that, following Bowen (see [38, 57]), it is useful to define the
entropy with the help of a metric d on X. For that purpose, for x, y ∈ X and
a homeomorphism T : X → X, one defines a dynamical sequence of metrics

(5.1) dn(x, y) := sup
0≤k≤n−1

d(T kx, T ky)

and concludes from the preceding remark that



112 5 Entropy and metric aspects of dynamical systems

htop(T ) = lim
ε→0

lim
n→∞

1
n

log2 (minimal number of

distance balls of radius ε

with respect to dn that cover X).

In particular, the quantity on the right-hand side does not depend on the
metric d (assuming, as always, that X is compact). This can also be seen
by observing that this quantity is the same for uniformly equivalent metrics
and, on a compact space, any two metrics are uniformly equivalent.

A distance ball is a set of the form

Bn(x, ε) := {y ∈ X : d(T kx, T ky) ≤ ε for 0 ≤ k ≤ n− 1}.

We might as well use open balls but, for the sequel, closed balls will be a
little more convenient.

We say that a subset F of X is (n, ε)-spanning if, for every y ∈ X, there
exists some x ∈ F with

dn(x, y) ≤ ε,

i.e.,
d(T kx, T ky) ≤ ε for 0 ≤ k ≤ n− 1.

For understanding this definition, it is useful to consider orbits {x, Tx, ..., Tn−1x}
of length n of points of X under the map T . If distances can be measured at
most with precision ε, then the orbits of two points x, y with

dn(x, y) ≤ ε

cannot be distinguished. Thus, an (n, ε)-spanning set F for every point y ∈ X
contains a point x ∈ F , whose orbit of length n cannot be distinguished from
the one of y through measurements with precision at most ε.

The centers of a covering of X by balls of radius ε with respect to dn thus
constitute such an (n, ε)-spanning set, and the above minimal number of such
balls that cover X is then

r(n, ε) := minimal cardinality of
(n, ε)-spanning sets.

According to our above interpretation, r(n, ε) is thus a measure for the num-
ber of orbits {x, Tx, ..., Tn−1x} of length n with precision ε.
Therefore

(5.2) htop(T ) = lim
ε→0

lim
n→∞

1
n

log2 r(n, ε).
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We now call a set E ⊂ X (n, ε)-separated if, for any two different x, y ∈ E,
there exists some k ∈ {0, ..., n− 1} with

d(T kx, T ky) > ε.

We then write

s(n, ε) := maximal cardinality of
(n, ε)-separated sets.

We have
s(n, ε) ≥ r(n, ε),

because an (n, ε)-separated set of maximal cardinality must be (n, ε)-spanning
since otherwise we could find another element of X that is (n, ε)-separated
from those of the given set.
On the other hand,

s(n, ε) ≤ r(n,
ε

2
),

because we can choose any (n, ε
2 )-spanning set F and then, for every (n, ε)-

separated set E and x ∈ E, find precisely one y ∈ F with

dn(x, y) ≤ ε

2
,

since F is (n, ε
2 )-spanning, and in such a manner that different elements in

E correspond to different elements in F , as E is (n, ε)-separated.

Of course, s(n, ε) can also be considered as a measure for the number of or-
bits {x, ...Tn−1x} of length n with precision ε.

Altogether, these inequalities between r and s imply that

(5.3) htop(T ) = lim
ε→0

lim
n→∞

1
n

log2 s(n, ε).

The various different characterizations of htop(T ) turn out to be useful for
its computation.

The preceding constructions can also be carried through for maps that are
somewhat more general than homeomorphisms. For example, we can consider
the m-fold covering

φm : S1 → S1

(we may represent S1 as the unit circle in C and restrict the complex map
z �→ zm to S1). For this map, s(n, ε) and r(n, ε) behave like εmn, and thus
we have

htop(φm) = log2 m > 0 for m > 1.



114 5 Entropy and metric aspects of dynamical systems

It is not too difficult to show that, for every Lipschitz map

T : X → X

of a compact metric space X with Lipschitz constant

L(T ) := sup
x	=y∈X

d(Tx, Ty)
d(x, y)

,

the entropy is bounded by

dimX max(0, log2 L(T ))

where the dimension dimX has to be defined appropriately, in such a manner
of course that it coincides with the usual dimension if X happens to be a
differentiable manifold. For that purpose, one defines b(ε) as the minimal
cardinality of a covering of X by balls of radius ε and then

dimX := lim sup
ε→0

log b(ε)
| log ε| .

More information on the metric approach to topological entropy and technical
details can be found in [24, 38, 57].

5.2 Complexity and intrinsic scales

For maps of positive entropy on a compact space, there cannot be any in-
trinsic length scale because the entropy can only be positive if infinitesimal
information gets enlarged further and further. Therefore, for instance all gra-
dient flows on compact state spaces have vanishing entropy. 1

For this reason, we wish to introduce a notion from [20] that can evaluate the
dynamic behavior of maps of vanishing entropy and determine an intrinsic
length scale for them. Let (X, d) be a metric space, typically compact, and
let

T : X → X

be a continuous map. Let ε be positive; ε will assume the role of a scale. As
before, E ⊂ X is called ε-separated if

d(x, y) > ε

1 There is also no intrinsic length scale for self-similar structures, i.e. structures
that remain invariant under rescalings. Some fractals have this property, and this
is the reason for certain similarities between the theories of chaotic systems and
fractals.
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for all x, y ∈ E with x �= y, and we let

s(ε) := max{ cardinality(E) : E ⊂ X ε-separated }

be the maximal number of ε-separated elements in X. E ⊂ X is called ε-
divergent if, for any two x �= y ∈ E with d(x, y) ≤ ε and every n0 ∈ N, there
exists some n ≥ n0 with

d(Tnx, Tnx) > ε.

In other words, two different elements of E have to be either initially sepa-
rated by an amount ε or there have to exist arbitrarily large iterates of our
transformation T that ε-separates them. In particular, this definition is thus
set up in such a manner that any ε-separated set is automatically ε-divergent.
The decisive point, however, is that elements that are initially closer than ε
have to be separated by a dynamic iteration, in order to contribute. (A vari-
ant of our definition would require that for all x �= y ∈ E with d(x, y), we
have

d(Tnx, Tnx) > ε

for all sufficiently large n ∈ N, i.e., elements stay separated after sufficiently
many iterations. This appears somewhat restrictive, however.)

Let then

σ(ε) := max{ cardinality(E) : E ⊂ X ε− divergent }.

As noted above, any ε-separated set is also ε-divergent, and hence

σ(ε) ≥ s(ε).

We then define the complexity of T : X → X as

c(T ) := sup
ε>0

log
σ(ε)
s(ε)

.

In particular, c(T ) is always non-negative.

In contrast to the entropy, the supremum here need not be realized for ε → 0,
but can be attained at some positive value of ε. That value then yields the
scale of largest complexity for our transformation T . The complexity c(T )
vanishes if T is contracting in the sense that

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

For gradient flows, complexity is generated at critical points of positive in-
dex. Such a critical p remains invariant itself under the flow, but some of its
neighboring points are moved into different directions, and in general there
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are the more such directions the higher the index (this is only a rough intu-
itive correspondence as one may construct particular situations where it does
not hold.) An ε of largest complexity will then be of the order of magnitude
of the average distance between such critical points. ε should not be too large
because otherwise points would not get dynamically separated, but not too
small either because otherwise there would exist too many ε-separated points
already so that the denominator s(ε) would be too large. In any case, critical
points of higher index constitute those places where complexity in the sense
of the definition is produced, or, expressed in different words, in whose neigh-
borhood one obtains the most information about the qualitative behavior of
the dynamical system.

c(T ) is invariant under isometries, but not necessarily under homeomorphisms
of X, for the reason that the choice of the metric entails a uniform scale ε
on all of X. This might not always be desirable, and so we now formulate
a notion of complexity for maps of topological spaces that permits varying
scales.
Thus, let X now be a compact topological space, and let

T : X → X

be continuous again.
For a covering of X, let

ν(U) := minimal cardinality of all subcoverings of U ;

this should be considered as an analogue of s(ε) above. For a covering U , we
define a dynamic covering

UT :=
⋃

Un∈U,n0∈N

(n=0,n0,n0+1,...)

(U0 ∩ T−n0Un0 ∩ T−(n0+1)U(n0+1) ∩ ...).

If x, y ∈ X happen to be contained in the same intersection, i.e.

Tnx, Tny ∈ Un for n = 0 and n = n0, n0 + 1, ...,

and if this is so at every step, i.e., for every choice of Un, then x and y cannot
be separated by the dynamical iteration. The different elements of UT thus
correspond to the possibilities of dynamical separation of the points in X.
We now define the (topological) complexity of T as

γ(T ) := sup
U open

covering of X

log
ν(UT )
ν(U)

.

A covering for which this supremum is achieved is then a covering of maxi-
mal complexity. The size2 of the individual elements of such a covering then
2 provided that we can measure this quantity, for example if we happen to have a

metric or a measure
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yields the local scale of highest complexity of T and, in contrast to the pre-
ceding metric concept, it can now vary across X. In contrast to c(T ), γ(T )
is invariant under homeomorphisms of X.

In contrast to the entropy, the complexity as defined here is a relative quan-
tity, because we form the quotient of two quantities one of which measures
the static separation property of the space and the other the dynamic separa-
tion property of the process. Of course, dividing by s(ε) or ν(U) can also be
considered as a normalization, in analogy to the fact that, for the definition
of the entropy, one divides by a factor that measures the number of dynamic
iterations. Finally, the complexity as defined here is an intrinsic quantity in
the sense that the disjoint union of several identical systems has the same
complexity as each individual one.



6 Entropy and measure theoretic aspects of
dynamical systems

6.1 Probability spaces and measure preserving maps

This section contains some technical foundations for the sequel.
Let X be a set. A σ-algebra of subsets of X is a set B of subsets of X
satisfying:

(i) X ∈ B.
(ii) If B ∈ B, then so is X\B.
(iii) If Bn ∈ B for all n ∈ N, then so is

⋃
n∈N

Bn.

These properties imply:

(iv) ∅ ∈ B.

(v) If B1, ..., Bm ∈ B, then so is
m⋂

j=1

Bj .

(X,B) is then called a measurable space.
If X is a topological space, we shall always consider the σ-algebra of Borel
sets, i.e. the smallest σ-algebra containing all open subsets of X.
A probability measure on (X,B) is a function

µ : B → [0, 1]

satisfying:

(i) µ(
⋃

n∈N

Bn) =
∑

n∈N

µ(Bn), if Bi ∩ Bj = ∅ for all i �= j, i.e., if the sets Bn

are pairwise disjoint.
(ii) µ(X) = 1 .

(i) implies

(iii) µ(∅) = 0 .

A triple (X,B, µ) with the preceding properties is called a probability space.
We let M(X) be the set of all probability measures on (X,B). M(X) contains
the Dirac measures supported at the points of X. M(X) is convex because
the convex combination of two probability measures is again a probability
measure.
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A transformation T : X → X of a probability space (X,B, µ) is called mea-
surable if for all A ∈ B also T−1(A) ∈ B (i.e. T−1B ⊂ B). A continuous
transformation of a topological space is always measurable for any (Borel)
measure because the preimages of open sets are open, and so the preimages
of Borel sets are Borel.
T is called measure preserving if

(6.1) µ(T−1(A)) = µ(A)

for all A ∈ B. The reason that we take T−1 here instead of T itself is that T
need not be injective. For example, we can consider multiple coverings of the
unit circle S1 = {z ∈ C : |z| = 1},

T : S1 → S1

z �→ zn for n ∈ Z.

All these transformations are measure preserving for the Lebesgue (=Haus-
dorff=Haar) measure on S1 in the sense of (6.1), even though they are not
injective for n �= ±1.

We can now define isomorphy and conjugation in the measure theoretic sense.
To do this, let (Xi,Bi, µi) be probability spaces, Ti : Xi → Xi, i = 1, 2, mea-
sure preserving.

Definition 17. (i) T1 and T2 are called isomorphic if there exist Mi ⊂ Bi

with
µi(Mi) = 1 and Ti(Mi) ⊂ Mi for i = 1, 2

and an invertible, measure preserving

ϕ : M1 → M2

with
ϕT1x = T2ϕx for all x ∈ M1

(ii) If the above ϕ is not necessarily invertible, then T2 is called a factor of
T1.

(Example: If S and T are measure preserving, then S is a factor of S × T ).

A,B ∈ B are said to be measure equivalent if µ(A�B) = 0.1 The space
B̃ of equivalence classes constitutes a Borel σ-algebra with induced measure
µ̃ (µ̃(B̃) = µ(B)). (B̃, µ̃) is called a measure algebra.

1 Here, A�B denotes the symmetric difference (A\B) ∪ (B\A).
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A measure preserving map ψ : X1 → X2 induces a homomorphism of measure
algebras

ψ̃−1 : (B̃2, µ̃2) → (B̃1, µ̃1)

B̃ �→ ψ̃−1B.

Definition 18. T1 and T2 are called conjugate if there exists an isomorphism

Φ : (B̃2, µ̃2) → (B̃1, µ̃1)

of measure algebras with
ΦT̃−1

2 = T̃−1
1 Φ.

If Φ is only assumed to be a homomorphism, then T2 is called the semi-
conjugate image of T1.

6.2 Ergodicity

General assumption:
Let T : X → X be a measure preserving transformation of the probability
space (X,B, µ), i.e., for all E ∈ B, we have T−1E ∈ B and µ(T−1E) = µ(E).

We have the

Theorem 24. (Poincaré Recurrence Theorem)
Let E ∈ B with µ(E) > 0. The iterates (Tn)n∈N then map almost every x ∈ E
infinitely often back into E.

Proof. F := E ∩
∞⋂

N=0

∞⋃
n=N

T−nE ⊂ E.

For each x ∈ F , there exist arbitrarily large m ∈ N with Tmx ∈ E, and the
iterates of T therefore map any such x arbitrarily often to E.

Since T−1(
∞⋃

n=N

T−nE) =
∞⋃

n=N+1

T−nE ⊂
∞⋃

n=N

T−nE and T is measure pre-

serving, it follows that

µ

( ∞⋃
n=0

T−nE

)
= µ

( ∞⋃
n=N

T−nE

)
for all N

= µ

( ∞⋂
N=0

∞⋃
n=N

T−nE

)

and, because of E ⊂
∞⋃

n=0
T−nE, therefore

µ(F ) = µ(E).

q.e.d.
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If T−1E = E for some E ∈ B, then also T−1(X\E) = X\E, and the dynamic
behavior of T on X can therefore be reduced to the one on the two subsets
E and X\E. If 0 < µ(E) < µ(X)(= 1), this simplifies the situation, while
in the cases µ(E) = 0 or µ(E) = 1, one may omit the null sets E or X\E,
respectively, without changing the measure theoretic behavior of T .

Definition 19. T is called ergodic if for every E ∈ B with T−1E = E either
µ(E) = 0 or µ(E) = 1.

Theorem 25. T is ergodic if and only if any f ∈ L2(µ) satisfying f(Tx) =
f(x) for almost all x ∈ X is constant (almost everywhere).

Proof. ⇒: We consider the sets
E(k, n) := {x ∈ X = 2−nk ≤ f(x) < 2−n(k + 1)} (k ∈ Z, n ∈ N).
These sets remain invariant under T up to null sets if f(Tx) = f(x) for almost
all x, and therefore their measure is either 0 or 1. Since for fixed n ∈ N, X
is the disjoint union of the sets E(k, n), k ∈ Z, precisely one of them has
measure 1, with index k = k(n). Then E :=

⋂
n∈N

E(k(n), n) is likewise of

measure 1, and f is constant on E, and hence almost everywhere on X.
⇐: Let T−1E = E for some E ∈ B. The characteristic function χE is then of
class L2(µ), and χE(Tx) = χE(x) for all x ∈ X. Therefore χE = const, and
so χE = 0 or 1. Thus µ(E) =

∫
χEdµ = 0 or 1.

q.e.d.

Examples:

1. S1 = {|z| = 1} ⊂ C with the Lebesgue (=Hausdorff=Haar) measure,

T : S1 → S1

z �→ a · z for a ∈ S1

is ergodic precisely if a is not a root of unity, that is, if T is not periodic.
2. Bernoulli shift

Let Y := {0, 1, ..., �− 1} be our state space,

(p0, ..., p
−1) with pi > 0 for all i and

−1∑
i=0

pi = 1 yields a probability mea-

sure p on Y .

Let X := Y Z (the space of two-sided sequences with values in Y ), and
let B be generated by sets of the form

A = {(xn)n∈Z : xm ∈ Y for m < n1 or m > n2,

xn1 ∈ An1 , xn1+1 ∈ An1+1, ..., xn2 ∈ An2},
n1 ≤ n2, Ai ⊂ Y,
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the so-called cylinder sets, with the product measure µ determined by p,
i.e.,

(6.2) µ{x : xi1 = j1, ...xik
= jk} = pj1pj2 ... · pjk

(ji ∈ Y for all i).

The shift σ : X → X

(xn)n∈Z �→ (yn)n∈Z with yn = xn+1

is then measure preserving on X.

Claim: σ is ergodic.

Proof. Let E ∈ B with σ−1E = E. Intuitively, the argument is that, if at
the position i, the value of all the sequences contained in E is restricted,
for example xi = j, then the shift invariance of E implies that this is then
also so at any other position. Any such set that restricts the values of all
the sequence elements, however, has vanishing measure by (6.2). On the
other hand, if there are no such restrictions, then E has to be the whole
space. It is also instructive to look at the formal argument: For ε > 0 we
find an A of the form described above with µ(E�A) < ε, because E ∈ B.
Therefore

|µ(E) − µ(A)| > ε.

Let A be as above, n0 > n2 − n1, B = σ−n0A. Then µ(B) = µ(A) and

µ(B ∩A) = µ(B)µ(A) = µ(A)2.

Since σ−1E = E, we have

µ(E�B) = µ(σ−n0E�σ−n0A) = µ(E�A).

Therefore, we also have µ(E�(A ∩B)) < 2ε and

|µ(E) − µ(A ∩B)| < 2ε

and

|µ(E) − µ(E)2| ≤ |µ(E) − µ(A ∩B)| + |µ(A ∩B) − µ(E)2|
≤ 2ε + |µ(A)2 − µ(E)2|
≤ 2ε + µ(A)|µ(A) − µ(E)|
+ µ(E)|µ(A) − µ(E)|
< 4ε

⇒ µ(E) = µ(E)2 ⇒ µ(E) = 0 or 1.

q.e.d.
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3. Markov shift:
X = Y Z and σ as in Example 2, but this time we use a different measure:

Let A = (aij)i,j=0,...,n−1 with aij ≥ 0 for all i, j,
n−1∑
j=0

aij = 1 for all i.

Then there exists

p = (p0, ..., pn−1) with pi > 0 for all i,
n−1∑
i=0

pi = 1 ,

pA = p ( i.e.
n−1∑
i=0

piaij = pj for all j).

µA{x : xi = j0, xi+1 = j1, ..., xi+k = jk} := pj0aj0j1 ...ajk−1jk
(pj0 tells us

the probability of the occurrence of the symbol j0, and aj�j�+1 is the tran-
sition probability from symbol j
 to symbol j
+1.) µA can be extended
as a probability measure to (X,B). σ leaves µA invariant and is called
(p,A)− Markov shift. (Example 2 is a special case of Example 3 with
aij = pj for all i, j) σ is ergodic on (X,B, µA) if and only if A is irre-
ducible, i.e., for all i,j, there exists m ∈ N with a

(m)
ij > 0 (Am = (a(m)

ij )
for m ∈ N).

Theorem 26. (Birkhoff ergodic theorem) Let f ∈ L1(µ). Then 1
n

n−1∑
i=0

f(T ix)

converges for almost all x to some f∗ ∈ L1(µ), with f∗◦T = f∗ almost every-
where, and

∫
f∗dµ =

∫
fdµ.

If T is ergodic, then f∗ is constant almost everywhere, and thus

f∗ =
∫

fdµ almost everywhere .

In other words: If T is ergodic, then for all f ∈ L1(µ)

lim
n→∞

1
n

n−1∑
i=0

f(T ix) =
∫

fdµ for almost all x.

Analogously, for an ergodic continuous (semi) flow (Tt)t≥0

lim
T→∞

1
T

T∫
0

f(Ttx)dt =
∫
X

fdµ for almost all x.

Thus, the temporal mean coincides with the spatial mean. The Birkhoff er-
godic theorem implies that, when we consider a time series, that is, the values
which some observable f takes on the orbit of some point x that happens to
be the starting point for a dynamical iteration, then in the ergodic case the
average of this time series converges to the expectation value of that ob-
servable. Thus, following a single dynamical orbit already samples the whole
space.
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Conceptually similar, but only obtaining a weaker type of convergence that
does not allow the above strong implications for time series is

Theorem 27. (Von Neumann ergodic theorem)
If f ∈ Lp(µ), 1 ≤ p < ∞, then there exists f∗ ∈ Lp(µ), with f∗ ◦ T = f∗,

such that 1
n

n−1∑
i=0

f(T ix) → f∗ in Lp(µ).

Corollary 3. T is ergodic if and only if for all A,B ∈ B:

lim
n→∞

1
n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Proof. ⇒: Putting f = χA in Birkhoff’s ergodic theorem implies that

1
n

n−1∑
i=0

χA(T ix) → µ(A) almost everywhere, and hence

1
n

n−1∑
i=0

χA(T ix)χB → µ(A)χB almost everywhere, and hence again

1
n

n−1∑
i=0

µ(T−iA ∩B) → µ(A)µ(B) (theorem on dominated convergence).

⇐: Let T−1E = E for some E ∈ B. Choosing A = B = E gives 1
n

n−1∑
i=0

µ(E) →
µ(E)2, and thus µ(E) = µ(E)2 and then µ(E) = 0 or 1. q.e.d.

Definition 20. (i) T is called weakly mixing if

for all A,B ∈ B : lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B) − µ(A)µ(B)| = 0

(ii) T is called strongly mixing if

for all A,B ∈ B : lim
n→∞µ(T−nA ∩B) = µ(A)µ(B).

This condition captures a decay of correlations under the iteration of T .
Strong mixing is equivalently expressed by requiring that, for all L2-functions
f, g on (X,µ), the correlation

(6.3) Cn(f, g) :=
∫

f(Tnx)g(x)dµ(x) −
∫

f(x)dµ(x)
∫

g(x)dµ(x)
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converges to 0 as n → ∞. One may take f = g here to understand the
meaning of this condition, which is that the values of the function f evaluated
after n iterations of the process become independent of those of g. Note that∫
f(x)dµ(x) =

∫
f(Tnx)dµ(x) because T preserves the measure µ.

One also speaks about exponentially mixing when that correlation decays
exponentially, that is,

(6.4) |Cn(f, g)| ≤ c(f, g)ρn

for some ρ < 1 and some constant c(f, g).

Strong mixing implies weak mixing implies ergodicity, as follows directly from
Corollary 3. The converses are not true in general. Strong mixing means that,
for any set A, T−nA becomes asymptotically independent of any other set
B, weak mixing that this is so up to certain exceptional n, and ergodicity
means that this property holds on average. See [57] for more details.

Example: Rotating S1 by a factor a is ergodic if a is not a root of unity, as
explained above, but not weakly mixing since, for sufficiently small intervals
A, B, for most i, we have T−iA ∩ B = ∅, and hence µ(T−iA ∩ B) = 0,
µ(A)µ(B) > 0.
Examples that are weakly, but not strongly mixing, while generic, are harder
to present explicitly. The Bernoulli shift is strongly mixing.

Good references about ergodic theory are [24, 38, 48, 57].

6.3 Entropy and information

General assumptions: (X,B, µ) is a probability space, T : X → X is measure
preserving, α = {A1, ..., An} is a partition of X, i.e. µ(Ai) > 0 for all i ,

Ai ∩Aj = ∅ for i �= j, and µ(X\
n⋃

i=1

Ai) = 0.

The entropy of α is then defined as

H(α) := −
n∑

i=1

µ(Ai) log2 µ(Ai).

Now let α = {A1, ..., An} and β = {B1, ..., Bm} be partitions of X. We then
also have the partition α ∨ β := {Ai ∩Bj : i = 1, ..., n, j = 1, ...,m}.

The entropy of T with respect to α is

(6.5) h(α, T ) := hµ(α, T ) := lim
N→∞

1
N

H(α ∨ T−1α ∨ ...T−N+1α).

The existence of this limit is a consequence of the following observations.
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1. Subadditivity:

H(α ∨ β) = −∑
i,j

µ(Ai ∩Bj) log2 µ(Ai ∩Bj)

= −∑
i

µ(Ai)
∑
j

µ(Ai∩Bj)
µ(Ai)

log2
µ(Ai∩Bj)

µ(Ai)

−∑
i,j

µ(Ai ∩Bj) log2 µ(Ai)

= −∑
j

∑
i

µ(Ai)
µ(Ai∩Bj)

µ(Ai)
log2

µ(Ai∩Bj)
µ(Ai)

(6.6)

−∑
i

µ(Ai) log2 µ(Ai), since
∑
j

µ(Ai ∩Bj) = µ(Ai)

≤ −∑
j

(
∑
i

µ(Ai ∩Bj)) log2(
∑
i

µ(Ai ∩Bj))

+H(α),(6.7)

since the function2 −x log x is concave (its second derivative being −1/x),
and hence

−
∑

i

pixi log xi ≤ −(
∑

i

pixi) log(
∑

i

pixi)

for non-negative pi with
∑

pi = 1. Thus, since
∑
i

µ(Ai ∩ Bj) = µ(Bj),

the first term in (6.7) equals H(β), and we obtain

(6.8) H(α ∨ β) ≤ H(β) + H(α).

2. Time invariance (stationarity):

(6.9) H(T−1α) = H(α)

for a measure preserving T .
3. From 1. and 2.,

(6.10)
H(α∨T−1α∨...T−(N+N ′)+1α) ≤ H(α∨...∨T−N+1α)+H(α∨...∨T−N ′+1α).

For ηN := H(α ∨ ...T−N+1α), we thus have

(6.11) ηN ≤ ηN+1

because finer partitions have higher entropy. Also, by 3.,

(6.12) ηN+N ′ ≤ ηN + ηN ′ for N,N ′ ∈ N,

and so we obtain the existence of the limit as in 4.1.
In order to arrive at another useful interpretation of h(α, T ), we need to intro-
duce conditional entropies. For two measurable sets A and B, with µ(B) > 0,
we put
2 We use the convention 0 log 0 = 0.
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µ(A|B) :=
µ(A ∩B)
µ(B)

.

The so-called conditional measure µ(.|B) is also a probability measure on X.
Now let α = (A1, ..., An) and β = (B1, ..., Bm) be measurable partitions of
X. We then define the conditional entropy of α w.r.t. β as
(6.13)

H(α|β) :=−
m∑

j=1

µ(Bj)
n∑

i=1

µ(Ai|Bj) log µ(Ai|Bj)=
∑
i,j

µ(Ai∩Bj) log µ(Ai|Bj).

We then have the following

Lemma 4. For measurable partitions α = (A1, ..., An) and β = (B1, ..., Bm)
of X, we have

(6.14) H(α ∨ β) = H(β) + H(α|β).

Moreover, if the measurable partition γ = (C1, ..., Cl) refines β, then

(6.15) H(α|γ) ≤ H(α|β).

Proof. By (6.13), we have, repeating the steps leading to (6.6),

H(α ∨ β) = −
∑
i,j

µ(Ai ∩Bj) log µ(Ai ∩Bj)

= −
∑
i,j

µ(Ai ∩Bj) log µ(Bj) −
∑
i,j

µ(Ai ∩Bj) log
µ(Ai ∩Bj)

µ(Bj)

= −
∑

j

µ(Bj) log µ(Bj) −
∑
i,j

µ(Ai ∩Bj) log µ(Ai|Bj)

which proves the first result. For the second one, we use once more
−∑k pkyk log yk ≤ −∑k pkyk log(

∑
j pjyj) for non-negative coefficients pα

with
∑

pα = 1 (concavity of −x log x). Thus,

H(α|γ) = −
∑

µ(Ck)µ(Ai|Ck) log µ(Ai|Ck)

≤ −
∑

i

∑
k

µ(Ai|Ck)µ(Ck) log(
∑

j

µ(Ai|Cj)µ(Cj))

= −
∑

k

∑
i

µ(Ai ∩ Ck) log µ(Ai)

= −
∑

i

µ(Ai) log µ(Ai)

= H(α).

When we replace the measure µ in the preceding computation by the condi-
tional measure µj defined by µj(A) := µ(A∩Bj)

µ(Bj)
for Bj ∈ β, we deduce the

inequality (6.15). q.e.d.
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From the Lemma, we deduce that

H(α ∨ ... ∨ T−N+1α) −H(α ∨ ... ∨ T−N+2α)
= H(T−N+1α|α ∨ ... ∨ T−N+2α)
≤ H(T−N+1α|T−1α ∨ ... ∨ T−N+2α)
= H(T−N+2α|α ∨ ... ∨ T−N+3α)
= H(α ∨ ... ∨ T−N+2α) −H(α ∨ ... ∨ T−N+3α)

where in the second-to-last step we have used the shift invariance (6.9) above.
This implies that the ηN defined in 3. above satisfy

(6.16) ηN − ηN−1 ≤ ηN−1 − ηN−2

for all N ∈ N. Therefore, we have

lim
N→∞

(ηN − ηN−1) = lim
N→∞

1
N

N∑
ν=1

(ην+1 − ην)

= lim
N→∞

1
N

(ηN − η1)

= lim
N→∞

ηN

N
.

This implies the following

Theorem 28.

(6.17) h(α, T ) = lim
N→∞

(H(α ∨ ... ∨ T−N+1α) −H(α ∨ ... ∨ T−N+2α)).

The connection between the concept of entropy and information theory is the
following: Let p(dx) be a probability density for finding a particle at x ∈ X.
Let B be the σ-algebra of those sets that are measurable with respect to
p(dx). For A ∈ B we then put

µ(A) :=
∫
A

p(dx).

The entropy is

(6.18) H(X, p) = −
∫

p(dx) log2 p(x).

In the discrete case, integrals are of course replaced by sums.
For example, if X = {0, ..., 7} and p(i) = 1

8 for all i ∈ X, then we have

H(X, p) = −
8∑

i=1

p(i) log2 p(i) = log2 8 = 3,
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and this expresses the fact that, for representing the elements of X as binary
numbers, we need 3 digits, i.e., 3 bits.
If, however,

p(0) =
1
2
, p(1) =

1
4
, p(2) =

1
8
, p(3) =

1
16

, p(4) = ... p(7) =
1
64

,

then

H(X, p) = −1
2

log2

1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

16
log2

1
16

− 4
1
64

log2

1
64

= 2.

We may, for example, represent the elements of X as the binary sequences
0, 10, 110, 1110, 111100, 111101, 111110, 111111 and the average (with respect
to p) length of such a sequence is 2. When compared with the uniform dis-
tribution, the present one has a smaller entropy.
Thus, H(X, p) represents the average information that we gain from measur-
ing x.

In the same manner, H(α) represents the average information gained by mea-
suring in which of the sets Ai the particle x lies. Thus, we ignore the precise
information about the position of x and retain only the information about
that set Ai that contains x. Obviously, the information, i.e. the entropy, is
then the smaller the coarser the partition is.

If we now have a measure preserving transformation T : X → X and measure
not only in which of the sets Ai ∈ α x lies, but also in which Ai ∈ α Tx lies,
i.e., in which T−1Aj ∈ T−1α the point x is contained, altogether we then
obtain more precise information about x. However, we wish to count only
that information which is obtained additionally if we already know in which
Ai ∈ α Tx lies, and this is

(6.19) H(T−1α|α) = H(α ∨ T−1α) −H(α).

Asymptotically, the additional information gained when we already know in
which of the sets from α x, Tx, ..., TN−1x lie, and then learn in which Ai ∈ α
TNx lies, is then precisely the entropy of T with respect to α. This is the
content of (6.17). Similarly,

1
2
H(α ∨ T−1α)

is the average amount of information per measurement when we perform the
two measurements of x and Tx in the context of the partition α, and (6.5)
then describes the entropy as the asymptotic average amount of information
per measurement on the orbit of x.
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Remarks:

1. The measure theoretic entropy of T defined below then comes out by
choosing the partition α such that, asymptotically, these measurements
yield the maximal possible amount of information.

2. Choosing the logarithm with base 2 in the definition of the entropy yields
the normalization that the entropy becomes 1 when asymptotically at
each step the precision of the observation is doubled.

The entropy measures the new information obtained by observations, in other
words, that part of the information content of the dynamical iteration, that
is, the observation of orbits, that cannot be predicted from the preceding ob-
servations. Thus, the entropy encodes the random aspects of the dynamical
system. For many purposes, however, it is more important to know the pre-
dictive part, that is, how much information about future events is contained
in past observations. We shall now present the analysis of Grassberger[11]
of this issue. We put bν = i when T−νx ∈ Ai. We observe a time series
b0, b1, b2, ..., and we ask how much the uncertainty about future values can
be reduced through the knowledge of past values. We let Λ(N) be the set
of all such strings b0, b1, b2, ..., bN−1 of length N . Since the cardinality of the
partition α is n, there are nN possible such strings. We let p(λ) be the prob-
ability with which each λ ∈ Λ(N) occurs. Since T is assumed stationary,
the probabilities do not change when we shift the time index by ν, that is,
when we consider the string bν , ..., bν+N−1. For N = 1, we simply have the
possible values i of bν which occur with the probabilities µ(Ai). This is an
unconditional probability, that is, it may change when we already know the
previous value bν−1, or even more preceding values. This point will now be
generalized and made quantitative by considering how entropies depend on
the string length N .
We have the entropy

(6.20) H(T,N) := −
nN∑
α=1

p(λ) log p(λ) = H(α ∨ T−1α ∨ ...T−N+1α).

This is the information contained in strings bν , bν+1, ..., bν+N−1 of length N .
Given such a string of length N , the additional information needed to predict
the value bν+N is then

(6.21) h(T,N) := H(T,N + 1) −H(T,N).

These differences cannot increase with N , because the prediction of the next
value becomes easier the more previous values we already know (see the
argument establishing (6.16)). In fact, by (6.17),

(6.22) h(T ) := lim
N→∞

h(T,N)
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is the entropy h(α, T ) of T w.r.t. the covering α. (Since we wish to consider
α as fixed and given, encoding the precision of our observations, we drop it
from the notation for the moment.)
Then the difference of these differences,

(6.23) δh(T,N) := h(T,N − 1) − h(T,N),

measures the average amount by which the uncertainty of bν+N decreases due
to the knowledge of bν , that is, one more observation value back in the past.
We thus need to store at least an amount of δh(T,N) for at least N time
steps for optimal prediction. Grassberger[11] therefore defines the effective
measure complexity of T as

hEMC(T ) :=
∑
N

N δh(T,N) =
∑
N

(h(T,N − 1) − h(T,N))

=
∞∑

N=0

(h(T,N) − h(T )).(6.24)

This expression may be infinite, that is, the series need not converge. The
rate of divergence then captures an important aspect of the dynamical system.
Such a divergence must be sublinear. Namely, when we write

(6.25) H(T,N) = Nh(T ) + σ(N)

we see that

(6.26) lim
N→∞

σ(N)
N

= 0

since h = limN→∞
H(T,N)

N , see (6.5). If σ(N) converges to some value σ for
N → ∞, then by (6.24), since h(T,N) = h + σ(N + 1) − σ(N),

(6.27) hEMC =
∑
N

(σ(N + 1) − σ(N)) = σ − σ(1).

By (6.10), the mutual information is

(6.28) I(T,N + N ′) := H(T,N) + H(T,N ′) −H(T,N + N ′) ≥ 0.

This quantity expresses the extent to which the entropy of a string of length
N + N ′ is smaller than the sum of the entropies of strings of lengths N and
N ′. By the stationarity of T , we can consider consider subsequent strings
bν , ..., bν+N−1 and bν+N , ..., bν+N+N ′−1 and ask by what amount the uncer-
tainty about the second one is reduced by knowing the first one; again, this
quantity is I(T,N + N ′), cf. (6.14). By the definition of σ(N),
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(6.29) I(T,N + N ′) = σ(N) + σ(N ′) − σ(N + N ′),

and therefore,

(6.30) lim
N,N ′→∞

I(T,N + N ′) = σ

when that limit exists. Thus, σ captures the mutual information between
strings of infinite length. When one of them is considered as the recordings
from an infinite past (that is, we push the starting point ν of the dynami-
cal iteration back to −∞; when 0 is considered as the present, we can take
ν = −N + 1), and the other one the observations in an infinite future, then
we can say that σ measures the mutual information between the past and the
future of the dynamical system. Thus, σ encodes the non-random part of the
dynamical iteration, that is, the predictive power of past about future obser-
vations. In general, however, σ(N) need not remain bounded and converge
to some finite value σ. Thus, more generally, the rate of divergence of σ(N)
captures that predictive power.3 A systematic presentation of these ideas can
be found in [10].

We have defined the entropy H(α) of a partition α as the average information
obtained by determining in which of the sets in this partition a point lies. We
can also express this as follows: For a point x ∈ X, we have the information
w.r.t. α given by

(6.31) Iα(x) = − log µ(Ai(x))

where Ai(x) is the set from the partition α that contains x. We then have

(6.32) H(α) =
∫

Iα(x)dµ(x).

Likewise, given a transformation T as above, we have

(6.33) H(α ∨ T−1α ∨ ...T−N+1α) =
∫

Iα∨...T−N+1α(x)dµ(x).

The entropy was the limit for N going to infinity:

(6.34) h(α, T ) := hµ(α, T ) := lim
N→∞

1
N

H(α ∨ T−1α ∨ ...T−N+1α).

It is a remarkable and useful fact that for ergodic T , this entropy can already
be obtained as the limit of the integrands for µ-almost all x ∈ X:
3 There is one subtle point here; namely, instead of asking for the predictive value

of past observations, one can also study how much the information contained in
past observations can be compressed without reducing its predictive power. That
is, we ask for the minimal amount of information that needs to be stored from
the past for the best possible prediction of the future. Grassberger[11] calls this
the true measure complexity and points out that, in general, this can be larger
than the effective measure complexity.
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Theorem 29. (Shannon-McMillan-Breiman) Let the measure preserv-
ing transformation T : X → X of the probability space (X,B, µ) be ergodic,
and let α be a finite (or countable) partition with finite entropy H(α). Then

(6.35) lim
N→∞

1
N

Iα∨...T−N+1α(x) = h(α, T )

for µ-almost all x.

A proof of this result can be found in [38]. This theorem is similar in spirit to
the Birkhoff ergodic theorem because it also tells us that we can obtain some
global information about the whole space, as encoded here in the entropy, by
making measurements along a single orbit.

We now return to the general discussion of the transformation T on the prob-
ability space (X,B, µ) and define the measure theoretic (Kolmogorov-Sinai)
entropy of T :

(6.36) h(T ) := hµ(T ) := sup
α

h(α, T ).

This eliminates the auxiliary object employed in the preceding discussion,
namely the partition α of X.
The entropy of T is invariant under isomorphisms and conjugations of T . If
T2 is a factor of T1, then h(T2) ≤ h(T1), since from any partition of X2 one
may then construct a partition of equal entropy in X1.

After the preceding, the following remark should be obvious and perhaps
even superfluous. A crucial point for the definition of h(T ) is that we first
take the limit N → ∞ and the supremum with respect to all partitions α
only after that. If, however, we first took the supremum of H(α) for all α,
then, in the continuous case, we would always get the answer ∞ because
the information gained can be increased at will by refining the partition. A
fundamental point of the notion of entropy and the content of the theorem
of Kolmogorov-Sinai below is that, by applying the dynamical system, i.e.
by iterating the transformation T , a given partition gets refined such that
asymptotically all the available information is obtained. The result remains
finite in the limit (at least in the interesting cases) since we divide by the
number N of observations or iterations.

The actual computation of the entropy becomes possible by the Theorem of
Kolmogorov-Sinai:

Theorem 30. Let T be an invertible measure preserving transformation of
(X,B, µ). Let A be a finite subalgebra of B, generated by some partition α,
with
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∞∨
n=−∞

TnA = B up to null sets .

Then

h(T ) = h(α, T ).

If even

∞∨
n=0

T−nA = B up to null sets

then

h(T ) = 0.

An α as in the preceding theorem is called a generator of B with respect to
T .
Building upon the work of Rohlin, Krieger showed that an ergodic measure
preserving transformation T on a Lebesgue space always possesses some finite
generator. The theorem of Kolmogorov-Sinai then allows the computation of
the entropy of T .

Examples:

1. For id : (X,B, µ) → (X,B, µ) we have
h(id) = 0,
since h(id, α) = lim

n→∞
1
nH(α) = 0 for all α.

2. If T : (X,B, µ) → (X,B, µ) is periodic, i.e.
T k = id for some k ∈ N,
then likewise
h(T ) = 0, since by Example 1, 0 = h(T k) = kh(T ).
In particular, every measure preserving transformation of a finite state
space has vanishing entropy.

3.

T : S1 → S1

z �→ az for a ∈ S1.

If a is a root of unity, then h(T ) = 0 by 2.

If a is not a root of unity, then (a−n)n∈N is dense in S1. Let A consist of
∅, S1, and the upper and the lower semicircle. Since (a−n)n∈N is dense
in S1, every semicircle, and therefore also every interval in S1, belongs

to
∞∨

n=0
T−nA. Thus,

∞∨
n=0

T−nA = B, and hence h(T ) = 0 by the second

part of the theorem of Kolmogorov-Sinai.
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4. The Bernoulli shift T belonging to Y = {0, 1, ..., � − 1}, (p0, ..., p
−1) has
entropy

−

−1∑
j=0

pj log2 pj

Proof. Let
Aj := {(xn)n∈Z : x0 = j}.

A0, ..., A
−1 then constitute a partition of X = Y Z, and we denote by A
the subalgebra generated by this partition. We have

∞∨
n=−∞

TnA = B (= product-σ-algebra) .

By the theorem of Kolmogorov-Sinai,

h(T ) = h(T,A).

For computing h(T,A), we consider sets of the form

Ai0 ∩ T−1Ai1 ∩ ... ∩ T−(N−1)AiN−1

= {(xn)n∈Z : x0 = i0, ..., xN−1 = iN−1}.

The measure of such a set is pi0 · pi1 · ...piN−1 .
Therefore

1
N

H(A ∨ T−1A ∨ ... ∨ T−N+1A)

= − 1
N


−1∑
i0,...,iN−1

=0

pi0 · ...piN−1 log(pi0 ...piN−1)

= − 1
N

∑
i0,...,
iN−1

pi0 · ...piN−1(log pi0 + ... + log piN−1)

= −

−1∑
i=0

pi log pi

and, because of h(T,A) = lim
N→∞

1
N

H(A∨ ...∨ T−N+1A), the claim follows.

q.e.d.

5. For a Markov shift, the entropy is computed to be

−
∑
i,j

piaij log2 aij .
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This is the average information about the next symbol when reading a
two-sided infinite sequence of symbols with the given transition proba-
bilities from left to right. The summation with respect to i expresses the
averaging over the symbols that can possibly occur at for instance time
t = 0, and the summation with respect to j then contains the induced
probability for the next symbol (at time t = 1, when time is expressed
in steps of unit length). Thus, knowing the symbol i at time t = 0, the
uncertainty about the next symbol is

−
∑

j

aij log2 aij .

This does not depend on the symbols which occurred at preceding times,
in particular, but only on the symbol i at time t = 0. This is the so-
called Markov property, namely, that the future states depend only on
the present, but not directly on the past anymore. If aij = pj for all i and
j, then we have a Bernoulli shift because, in that case, the occurrence
probability of the next symbol is independent of the present one, and the
above formula for the entropy reduces to the one for the Bernoulli shift,
i.e.

−
∑

j

pj log2 pj , since
∑

i

pi = 1.

Conjugate transformations share the same entropy. Thus, entropy can be used
to distinguish between transformations that are not conjugate. It is a quite
remarkable fact that, for Bernoulli shifts, the entropy is already a complete
such invariant:

Theorem 31. (Ornstein) If two Bernoulli shifts have the same entropy,
they are conjugate to each other (and hence isomorphic).

Here, the state space can be a Lebesgue space, i.e., isomorphic to a prob-
ability space which is the disjoint union of at most countably many points
y1, y2, ... with positive measure pn of yn, and an interval [0, s], s = 1 −∑

n
pn

with the standard Lebesgue measure.

The connection between the (topological) entropy introduced in Chapter 4
and the (measure theoretic) entropy introduced in the present chapter is
established by

Theorem 32. Let T : X → X be a homeomorphism of the compact metric
space X. Then

htop(T ) = sup{hµ(T ) : µ T - invariant Borel
probability measure on X}.
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This implies, for instance, by our computation of the measure theoretic en-
tropy above, directly that the Bernoulli shift on the set Y = {0, 1, .., � − 1}
has topological entropy log2 �, since −


−1∑
j=0

pj log pj under our conditions

0 ≤ pj ≤ 1 and

−1∑
j=0

pj = 1 is maximal precisely if pj = 1

 for all j. (Cf.

4.2)

Finally, the following result yields a connection between the measure theoretic
entropy and the constructions of the previous chapter.

Theorem 33. (Katok) Let T : X → X be a homeomorphism of the compact
metric space X, and let µ be a T - invariant ergodic Borel probability measure
on X. For n ∈ N, ε > 0, δ > 0 let rµ(n, ε, δ) be the minimal number of balls
of radius ε with respect to the metric dn, whose union is of µ-measure at least
1 − δ, i.e., that cover up to a set of measure at most δ. Then

(6.37) hµ(T ) = lim
δ→0

lim
ε→0

lim
n→∞

1
n

log2 rµ(n, ε, δ).

Proofs of those results about the measure theoretic entropy stated here with-
out proof can be found in the standard references [24, 38, 48, 57].

6.4 Invariant measures

In the preceding sections, we have looked at transformations T of a proba-
bility space that preserve the underlying measure µ and, in Theorem 32, we
have taken a supremum over all the probability measures on the underlying
metric space X preserved by the transformation T in order to compute the
topological entropy. This naturally leads to the following questions:

– Given a transformation T , say a homeomorphism of a compact metric space
X, does there exist a probability measure on X that is preserved by T?

– While the way Theorem 32 has been formulated seems to imply that the
answer to the preceding question is “yes”, one will then wish to know how
many T -invariant probability measures exist, and whether, for example,
the supremum in that Theorem is achieved, and whether, if the answer is
positive, the resulting invariant measures can be distinguished by special
properties, and thus recognized as the ones from which the topological
entropy can be computed.

– How do properties like ergodicity depend on the choice of an invariant
measure?

– Do such invariant measures reveal interesting structural properties of the
transformation T?
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The first question is answered by

Theorem 34. (Krylov-Bogolubov) Let T : X → X be a continuous
transformation of the compact metric space X. Then there exists a proba-
bility measure on X that is invariant under T .

It is not very hard to see that (under the assumptions of this theorem), a
measure µ is invariant precisely if for all continuous functions f on X

(6.38)
∫

f ◦ Tdµ =
∫

fdµ.

This provides a useful criterion for verifying that a probability measure is
invariant under T . In fact, the construction of such a measure, i.e. a proof of
Theorem 34, is not very difficult:
The space M(X) of probability measures on the compact metric space X
is compact w.r.t. the weak�-topology.4 T operates on M(X) via T�µ(B) :=
µ(T−1B). This means that for all continuous functions f

(6.39)
∫

fd(T�µ) =
∫

f ◦ Tdµ.

One can then find an invariant measure by taking any probability measure ν
and putting

(6.40) µ := lim
n→∞

1
n

n−1∑
i=0

T i
�ν

(the limit, or at least the limit of some subsequence, exists by the compactness
of M(X)) and apply the above criterion to verify that µ is indeed invariant.
Of course, such an averaging under the iterates of T is a natural method for
producing invariant quantities, as we have already seen at other places.
The space M(X) of probability measures is convex because a convex combi-
nation of probability measures is again one. The space M(X,T ) of T -invariant
probability measures is again convex. An important result is

Theorem 35. A T -invariant measure µ is an extreme point of the convex
set M(X,T ) of invariant measures precisely if it is ergodic (that is, if T is
ergodic w.r.t µ).

In particular, if there is more than one invariant probability measure for T ,
then T is not ergodic w.r.t. all of them, but only w.r.t. the extreme ones.
This motivates

Definition 21. The continuous transformation T of the compact metric
space X is called uniquely ergodic if there exists precisely one T -invariant
probability measure.
4 By definition, a sequence µn of measures weak�-converges to µ if for any contin-

uous function f ,
∫

fdµn converges to
∫

fdµ.
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Let us now consider some examples in order to understand the meaning and
significance of invariant measures. It will be useful to make the following
general observation.

Theorem 36. Let T : X → X be a continuous transformation of the
compact metric space X. Then x is a periodic point of order N , i.e.,
TN (x) = x, precisely if the Dirac measure averaged over the orbit of x,
namely 1

N

∑N−1
j=0 δT j(x), is an invariant probability measure for T .

In particular, if the transformation T has a globally attracting fixed point x0,
i.e., if limn→∞ Tn(x) = x0 for all x ∈ X, then the Dirac measure δx0 is the
unique invariant measure. Thus, such a transformation which asymptotically
moves everything into the global attractor is uniquely ergodic, and ergodic
w.r.t. the rather trivial Dirac measure supported at that attractor. If T has
several fixed points, then all convex combinations of the corresponding Dirac
measures are invariant. T is not ergodic, however, w.r.t. non-trivial such con-
vex combinations.
More generally, suppose that, for some probability measure ν, the iterates
Tn

� ν converge to some limit measure µ as n → ∞. This limit measure µ is then
invariant. Whether this µ is distinguished depends on whether it is indepen-
dent of the choice of ν, or, if that it is not possible, at least for those ν selected
from some natural class. Such a class exists if T is a smooth transformation
of a differentiable manifold M . In that case, we can look at the absolutely
continuous measures, i.e., those that in any local coordinates (x1, ..., xm) can
be written as ρ(x1, ..., xm)dx1...dxm for some function ρ, called a density. We
may then expect that, for any such ν, the limit µ of the iterates exists and is
concentrated on the attractors of the dynamics. These attractors may have
vanishing measure w.r.t. ν, but may still have an intricate internal structure,
as in the examples of the so-called strange attractors. In any case, iterating a
density then in a certain sense means that we are considering the dynamical
evolution of all the points of M simultaneously, and this clearly is a very
valuable conceptual alternative to following individual trajectories.
A somewhat different, but very useful, perspective emerges when we look
at time averages of functions. We recall that the Birkhoff Ergodic Theorem
26 says that when µ is an invariant measure for T , then for f ∈ L1(µ),
1
n

n−1∑
i=0

f(T ix) converges for almost all x and, if T is ergodic, then the limit,

called Ex(f), does not depend on x, for µ-almost all x. In different words: If
T is ergodic, then for all f ∈ L1(µ)

(6.41) lim
n→∞

1
n

n−1∑
i=0

f(T ix) =
∫

fdµ for almost all x.

These results hold for µ-almost all x, but we may wish to ask whether they
also hold for almost all x w.r.t. to some natural starting measure like the
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Lebesgue or a Riemannian volume measure. If this limit Ex(f) exists and is
independent of x in some set B of positive (say) Lebesgue measure, then

E(f) := Ex(f)

defines a non-negative linear operator on the space C0(M) of continuous
functions on M and, by the Riesz representation theorem, it defines a Borel
measure µ on M that satisfies (6.41) for all x ∈ B. In other words, by
computing time averages of continuous functions on the orbits of the points
in B, we obtain an invariant measure.

Definition 22. A T -invariant probability measure on M is called an SRB
(Sinai-Ruelle-Bowen) measure if (6.41) holds for all f ∈ C0(M) and all x
in some subset B of M of positive Lebesgue (Riemannian volume) measure.
The maximal such set B is called the ergodic basin B(µ) of µ.

The question then is under which conditions such an SRB measure exists and,
if it does, whether it is unique and ergodic. We shall return to that question
in 7.2.

In all these cases, the invariant measures constructed through dynamical it-
erations capture the asymptotic behavior of the dynamical system. It is still
not completely clear, however, in what generality this principle holds. In any
case, we conclude that invariant measures can represent important invariants
for the dynamical system.

Examples:

1. As in 6.2, we consider the rotations of S1,

T : S1 → S1

z �→ a · z for a ∈ S1.

Clearly, the Lebesgue measure is invariant under T . In order to check
whether there are more, we simply apply Theorem 36. Thus, if a is an
Nth root of unity, we find periodic points and, consequently, T is not
uniquely ergodic, and in fact not even ergodic as we observed already in
6.2. If a is not a root of unity, however, then T does not have any periodic
points. In fact, in this case, for any x, the orbit {Tn(x)} is dense in S1.
A homeomorphism of a compact metric space with this property is called
minimal. By a result of Furstenberg, any homeomorphism of S1 without
periodic points is uniquely ergodic.

2. For the same space as in the previous example, we consider

T : S1 → S1

z �→ zn for n ∈ Z.
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If n �= ±1, this is no longer a homeomorphism. However, the Lebesgue
measure µ is still invariant since we have µ(T−1A) = µ(A) for any mea-
surable set A (but note that since T is not invertible, we do not have
µ(T (A)) = µ(A) in general).

3. For the Bernoulli shifts on the state space Y = {0, 1, ..., l − 1} with a
measure given by p = (p0, ..., pl−1), we have already seen in 6.2 that the
product measure on X = Y Z determined by p, and more generally the
irreducible Markov measures, are invariant.

4. For the tent map introduced in 4.2,

Z : [0, 1] → [0, 1],

Z(x) =

{
2x for 0 ≤ x ≤ 1

2

2(1 − x) for 1
2 ≤ x ≤ 1,

the Lebesgue measure is again invariant. Since, as observed in 4.3, the
logistic map

F (x) = 4x(1 − x)

is conjugate to the tent map via sin2(πx
2 ), one computes that the logistic

map leaves the measure dx

π
√

x(1−x)
invariant.

Proofs of the results stated in this section can be found in [24]. We also refer
to the survey in [48].

6.5 Stochastic processes

We have already examined the Bernoulli shift T on elements 0, ..., l − 1 oc-
curring with probabilities p0, ..., pl−1. The iterated application of this shift,
which is our dynamical system, can be interpreted naturally as the stochastic
process where at each step we randomly chooses one of those elements ac-
cording to its probability and then records the results as a sequence, i.e., an
element of {0, ..., l−1}Z. This can obviously be generalized to other (station-
ary) stochastic processes as we are now going to explain, and this, in fact,
was the original source of inspiration for measurable dynamics. We start
with an abstract object which we have not yet encountered in this role, but
which is conceptually useful, namely a probability space (Ω,B, p). We let
..., ξ−1, ξ0, ξ1, ξ2, ... be measurable maps from Ω with values in some measur-
able space (Y, E), perhaps Y = {0, ..., l− 1} as above, or, perhaps even more
importantly, Y = R. (The ξi are called random variables in this context,
because they depend on ω ∈ Ω which is considered to be randomly selected
according to the probability measure p. Y is sometimes called the state space
of the process, and its elements are called the states.)
The relevant space for us now is the sequence space Y Z, with its σ-algebra
generated by the cylinder sets, i.e. those of the form
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An1,...,nk = {(..., y−1, y0, y1, y2, ...) : ynj
∈ Aj , j = 1, ..., k}

for some k ∈ N, some distinct n1, ..., nk ∈ Z, and some measurable subsets
Aj of Y . We consider the map

Ω → Y Z

ω �→ ξ(ω) = (..., ξ−1(ω), ξ0(ω), ξ1(ω), ...)(6.42)

and use this to define a measure on Y Z via

(6.43) µ(An1,...,nk) := p(ω|ξnj
(ω) ∈ Anj

for j = 1, ..., k)

and extension to the above σ-algebra. As before, we have the shift

T : Y Z → Y Z

T (ξn(ω)) = ξn+1(ω).(6.44)

This shift leaves our measure invariant if and only if the stochastic process
is stationary in the sense that
(6.45)
p(ω|ξnj

(ω) ∈ Anj
for j = 1, ..., k) = p(ω|ξnj+m(ω) ∈ Anj

for j = 1, ..., k)

for every m ∈ Z.
Obviously, an analogous construction is possible for continuous time stochas-
tic processes, i.e., families ξt : Ω → Y, t ∈ R or R+. In fact, whenever we
have a measure preserving dynamical system Tt : Ω → Ω, with t ∈ R (or
R+,Z,N), and a measurable map g : Ω → Y , we put

(6.46) ξt(ω) := g(Tt(ω)).

We then obtain a new space M , analogous to the space Y Z above, namely
the space consisting of the functions

(6.47) t �→ ξ(t, ω) := ξt(ω),

for all the ω ∈ Ω. Our dynamical system Tt operating on Ω then naturally
induces one on M :

(6.48) Tt(x)(s) := x(t + s)

for a function x ∈ M , i.e., the time shift. This provides a natural realization
of the random process Tt : Ω → Ω, and it is often natural to identify Ω with
M , as well as the corresponding measures. We have constructed the measure
on Y Z, and we can analogously construct the measure on M by looking at the
measures on cylinder sets, the so-called finite-dimensional distributions. It is
a fundamental result of Kolmogorov that conversely, given such a family of
probability measures satisfying some obvious compatibility conditions, there
exists an underlying stochastic process whose finite-dimensional distributions
are these measures:
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Theorem 37. (Kolmogorov extension theorem) For all t1 < t2 < ... <
tk, k ∈ N, let pt1,...,tk

be probability measures on a complete separable metric
space Y (for example Rd) (equipped with its σ-algebra) that satisfy

pt1,...,tj−1,tj+1,...,tk
(B1 × ...×Bj−1 ×Bj+1 × ...×Bk)

= pt1,...,tj−1,tj ,tj+1,...,tk
(B1 × ...×Bj−1 × Y ×Bj+1 × ...×Bk)(6.49)

for all times ti, k ∈ N, and all Borel subsets B1, ..., Bk of Y . Then there exist
a probability space (Ω,B, p) and a stochastic process ξt : Ω → Y with

(6.50) pt1,...,tk
(B1 × ...×Bk) = p(ξt1 ∈ B1, ..., ξtk

∈ Bk)

for all ti, Bi, k.

We now wish to explain briefly the connections with stochastic differential
equations, without giving detailed proofs however. We shall develop the gen-
eral framework first, and only later come to the applications to stochastic
differential equations. While this carries the risk of the unmotivated appear-
ance of general constructions long before their purpose becomes clear, it offers
the advantage of a quick and logical development. So, we consider the space
Ω of all continuous functions x : [0, 1] → R (thus we have already performed
the identification of our abstract space Ω introduced above with its natural
realization, as explained) with the normalization x(0) = 0 (which, however,
is only notationally convenient, but in no way logically essential as all our
constructions will be naturally invariant under translations of R; nor is it
essential that our paths are defined on the unit interval – we could as well
define them for example on the positive reals). We wish to define the so-called
Wiener measure on Ω. For that purpose, according to the general scheme
described above, we first consider the cylinder sets of the paths x passing
through the set Bi ⊂ R at time ti:

(6.51) C(t1, ..., tk;B1, ..., Bk) := {x ∈ Ω : x(ti) ∈ Bi for i = 1, ..., k}
where 0 < t1 < ... < tk and B1, ..., Bk are Borel subsets of R (k ∈ N). Next,
we define the measure of a cylinder set as the probability that a path of
normalized Brownian motion passes through it: We put

(6.52) g(t, y, z) :=
1√
2πt

exp(− (y − z)2

2t
),

the probability density for a Brownian motion starting at time 0 at y to pass
through z at time t.
Remark: The normalization implicit in this definition is that the stochastic
process (w(t))t≥0 with values in R for which the random variable w(t)−w(s)
has the density g(t−s, 0, z) has variance E((w(t)−w(s))2) = t−s. If, in place
of g, we use the density 1√

2πσ2t
exp(− (y−z)2

2σ2t ), the variance will be σ2(t − s)
instead.
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Putting t0 = 0 and x0 = 0 for notational convenience, the measure of a
cylinder set then becomes

µ(C(t1, ..., tk; B1, ..., Bk))(6.53)

=

∫
B1

...

∫
Bk

g(t1 − t0, x1, x0)...g(tk − tk−1, xk, xk−1)dx1...dxk

=
1√

(2π)k(t1 − t0)...(tk − tk−1)

∫
B1

...

∫
Bk

exp(−1

2

k∑
i=1

(xi − xi−1)
2

ti − ti−1
)dx1...dxk.

Wiener then showed that this measure can be extended to the smallest σ-
algebra of our path space Ω that contains all the above cylinder sets for all
k ∈ N, and the result is called the Wiener measure.
To repeat, Brownian motion or, equivalently, the one-dimensional (normal-
ized) Wiener process is defined as the stochastic process (w(t))t≥0 on Ω with
the above σ-algebra and equipped with the Wiener measure, with values in
R with w(0) = 0 and for which the random variable w(t) − w(s) has the
density g(t− s, 0, z). A sample path, i.e., an element of Ω, then is continuous
by definition, but with probability 1 is almost everywhere not differentiable.
It may then seem strange that one defines white noise η(t) as the derivative
dw(t)

dt of Brownian motion. Of course, this requires some explanation, but the
result is that η(t) is distributed according to 1√

2π
exp(−x2

2 ) and that there-
fore its mean or expectation value is 0 for every t, and the covariance, i.e. the
expectation of the product η(t1)η(t2) vanishes for t1 �= t2. In this sense, the
random variables η(t) for t ∈ [0, 1] are independent and identically distrib-
uted. Of course, one can also, and more simply, define white noise directly as
a family of random variables that is independent and identically distributed,
with a Gaussian distribution with mean 0. The preceding will, however, help
us in analyzing stochastic differential equations later, i.e., in equations where
the derivative of the unknown function is given in terms of white noise. Since
white noise itself is defined as a derivative, we can then set up a scheme for
integrating such equations.
The preceding can easily be generalized to produce d-dimensional Brown-
ian motion or, equivalently, the d-dimensional (normalized) Wiener process,
as the vector-valued process w(t) = (w1(t), ..., wd(t)) whose components are
one-dimensional independent Wiener processes as just defined. Correspond-
ingly, we then also obtain d-dimensional white noise, again denoted by η(t).

With these preparations, we can now discuss the system of stochastic differ-
ential equations

dx

dt
= f(x) + s(x)η(6.54)

x(0) = x0(6.55)

where x and f take their values in Rd, η is d-dimensional white noise, and s
stands for a d × d-matrix (sij). Since we have defined white noise as the
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derivative of the Wiener process, it is natural to attempt to represent a
solution of (6.54) as

(6.56) x(t) =
∫ t

0

f(x(τ))dτ +
∫ t

0

s(x(τ))dw(τ) + x0.

A solution of our stochastic differential equation has to satisfy this relation
with probability 1 for every t ≥ 0. (One also requires the technical condition
that the stochastic process x(t), besides being continuous, is measurable w.r.t.
the smallest σ-algebra Bt for which x0 and w(τ), 0 ≤ τ ≤ t, are measurable.)
In order to make (6.56) meaningful, one has to define the so-called stochastic
integral

(6.57)
∫ b

a

ξ(τ)dw(τ)

for a stochastic process ξ(t). The idea is to define this integral as a limit as
n → ∞ of

(6.58)
n∑

i=1

ξ(t̄i)(w(ti) − w(ti−1))

for a = t0 < t1 < ... < tn = b and intermediate points t̄i ∈ [ti−1, ti], under the
natural condition that maxi(ti − ti−1) → 0 as n → ∞. Since w(t) is almost
surely not differentiable, however, in contrast to the situation for the Riemann
integral, the result will depend strongly on the choices of the intermediate
points t̄i. In fact, two possibilities for systematic choices turn out to be useful:
Itô chooses t̄i = ti−1 while Stratonovich takes t̄i = 1

2 (ti + ti−1). We shall use
here the Itô integral.
Returning to our system of stochastic differential equations (6.54), it can be
shown that the Itô integral in (6.56) exists under the assumption that f and
s satisfy uniform Lipschitz conditions, as in the Picard-Lindelöf theorem for
(non-stochastic) ordinary differential equations.
If f = 0 and s(x) is a constant matrix, then the solution becomes

(6.59) x(t) = s

∫ t

0

dw(τ) + x0 = sw(t) + x0,

that is, a shifted version of Brownian motion, because the Itô integral satisfies∫ t

0
dw(τ) = w(t) (however, we have

∫ t

0
w(τ)dw(τ) = 1

2w(t)2 − 1
2 t

2 so that the
Itô integral does not always behave as the standard Riemann integral).
More generally, for a constant vector b and a constant matrix s, the Langevin
equation

(6.60)
dx

dt
= −bx + sη, x(0) = x0



6.5 Stochastic processes 147

has the solution

(6.61) x(t) = x0e
−bt + s

∫ t

0

e−b(t−τ)dw(τ)

and, since for each τ the expectation value of the white noise η(τ) vanishes,
we obtain for the expectation value of our solution

(6.62) E(x(t)) = e−btE(x0).

It is also illuminating to consider the probability density h(t, x) for x(t).
This means that for a measurable subset B of Rd, the probability that x(t)
is contained in B is given by

(6.63)
∫

B

h(t, y)dy.

It turns out that under certain regularity assumptions on f and s (one might
require – although this can be considerably weakened – that the compo-
nents sij of s be twice and the components fi of f be once continuously
differentiable), this density h satisfies the so-called Fokker-Planck (or Kol-
mogorov) equation

(6.64)
∂h

∂t
=

1
2

d∑
i,j=1

∂2

∂xi∂xj
(aijh) −

d∑
i=1

∂

∂xi
(fih),

with

aij(x) =
d∑

l=1

sil(x)sjl(x),

for t > 0 and x ∈ Rd. A proof of this result can be found in [22], for example,
where also the relation between Brownian motion and harmonic functions,
i.e., the situation for f = 0 and s being the identity matrix, is explained from
the point of view of partial differential equations. (6.64) is a partial differ-
ential equation, and so, by considering the density of the stochastic process
defined by our stochastic differential equation, we can in fact avoid stochastic
integrals.
The preceding is presented in more detail in [26]. The probabilistic aspects
are developed in [12]. A textbook reference for stochastic differential equa-
tions is [36]. As the purpose of this section was only a heuristic overview,
and not a precise formulation of technical assumptions or detailed proofs,
the reader is advised to consult these or other references for such details.

While in previous sections we have emphasized the analogies between topo-
logical and measure preserving dynamical systems, we here see a combination
of them where each class has its own distinct role. Namely, we have a topo-
logical or, in the present case, an even smooth, dynamical system, namely the
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flow induced by a system of ordinary differential equations on which some
stochastic process is superimposed as a perturbation, for example caused by
external noise. In this spirit, L.Arnold [4] develops a more general framework
of random dynamical systems. There, one has a family of transformations of
some space X depending on some variable ω in a probability space (Ω,B, P )
as before, and each time n ∈ Z or N (or t ∈ R or R+, but for the sake of
variety, we here discuss the time discrete case), one of those transformations
is chosen in such a manner that the natural composition property is satis-
fied. This means that we have transformations Tn : Ω → Ω (for example
time shifts for our stochastic processes in case Ω is a path space as in the
preceding discussion) with T0 = idΩ and the group property

(6.65) Tm+n = Tm ◦ Tn

and transformations

φn : Ω ×X → X

(ω, x) �→ φn(ω, x).(6.66)

The φn are measurable in the natural sense (as in the constructions above)
if X is a measurable space, and, if X also carries a topological structure,
continuous w.r.t. x ∈ X. They satisfy the cocycle property

φ0(ω, .) = idX for all ω ∈ Ω

φm+n(ω, .) = φm(Tnω, .) ◦ φn(ω, .).(6.67)

Thus, at time n, ω is shifted to Tn(ω), and x in the fiber {ω} × X in the
product Ω ×X is moved to φn(ω, x) in the fiber {Tn(ω)} ×X.
Within this framework, one can then study random difference equations of
the form

(6.68) xn+1 = f(Tn(ω), xn),

i.e., difference equations driven by noise as input that itself evolves according
to some dynamical rule.
Obviously, an analogous theory can be developed for continuous time t ∈ R
or R+ in place of n ∈ Z. For t ∈ R, say, one considers measure preserving
maps

θ(t) : Ω → Ω

(t, ω) �→ θ(t)ω measurable in t

with θ(t + s) = θ(t) ◦ θ(s) for all t, s(6.69)

and transformations
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φ : R ×Ω ×X → X

(t, ω, x) �→ φ(t, ω)x
with (t, ω) �→ φ(t, ω)x measurable for all x

x �→ φ(t, ω)x continuous for all t, ω
φ(0, ω) = idX

φ(t + s, ω) = φ(t, θ(s)ω) ◦ φ(s, ω) P -almost surely for all s, t.(6.70)

One can then treat random differential equations

(6.71) ẋ = f(θ(t)ω, x),

where θ(t) is absolutely continuous w.r.t. t, or, more generally, stochastic
differential equations, where this property does not hold (recall that, in the
discussion above, the stochastic term was white noise, and so θ(t) would cor-
respond to the time shift for white noise, or the derivative of the Wiener
process). The flows generated by such equations then are random dynamical
systems.

Moreover, as systematically explored in [4], to a random dynamical system,
one can associate various random objects. For example, a random point would
be a random variable x0 : Ω → X which (in the case of two-sided time t ∈ R)
is invariant if

(6.72) φ(t, ω)x0(ω) = x0(θ(t)ω) P -almost surely for all t.

Likewise, a random measure is a map

µ : Ω → {Borel probability measures on X}
ω �→ µω(6.73)

which is invariant for the random dynamical system φ if

(6.74) φ(t, ω)µω = µθ(t)ω P -almost surely for all t.

6.6 Stochastic bifurcations

In order to understand the introduced abstract concepts and their scope
better, we now study an example of a stochastic bifurcation – or its absence.
We consider

(6.75) ẋ = λx− x3 + ε1/2η

where η is Gaussian white noise of mean 0 and variance 1, that is, E(η(t),
η′(t)) = δ(t−t′), as introduced in 6.5. Thus, we are perturbing (2.21) by white
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noise, and we want to understand how this affects the bifurcation pattern
described in 2.3. For abbreviation, we shall put

f(x) := λx− x3.

We can ask two different questions about the influence of the noise:

1. What happens to the time course of a starting point x0 = x(0) under
different realizations of the noise? A subquestion is: How does this depend
on the noise level, i.e., what are the asymptotics for ε → 0?

2. What happens to different starting points under the same realization of
the noise?

For 1: We obtain the stationary probability density

(6.76) p(x) = cN exp(
2
ε
(λ

x2

2
− x4

4
)) = cN exp(

∫ x

0

2f(ξ)
ε

dξ)

(where cN is a generic normalization constant depending on λ and ε whose
precise value is not important here) as solution of the Fokker-Planck (Kol-
mogorov) equation (6.64)

(6.77) − d

dx
((λx− x3)p) +

ε

2
d2

dx2
p = 0.

We note that the shape of p(x) from (6.76) changes at λ = 0 from a one-hump
to a two-hump function as evidence of a bifurcation. We have

(6.78) lim
ε→0

p(x) = δ(0)

for λ ≤ 0. For λ < 0, we rescale y = ε−1/2x and obtain with p̃(y) := p(x)

(6.79) lim
ε→0

p̃(y) = cN (−λ)1/2 exp(λy2).

For λ = 0, we rescale instead y = ε−1/4x and obtain

(6.80) lim
ε→0

p̃(y) = cN exp(−y4

2
).

Comparing the different scaling factors for λ < 0 and λ = 0, we observe that
the marginal stability at λ = 0 leads to an amplification of fluctuations.

For 2: Here, we can use the treatment of [8, 4]. We shall need the concept
of Lyapunov exponents as briefly introduced in 2.4 and more fully discussed
in 7.1 below. In fact, we need to average the Lyapunov exponents of the
individual trajectories w.r.t. the stationary density p. For determining the
Lyapunov exponent, we need to linearize our equation (6.75):
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(6.81) v̇ = f ′(x)v

to obtain

(6.82) v(t) = v(0) exp(
∫ t

0

f ′(x(x))ds).

This yields the Lyapunov exponent

(6.83) α =
∫

R

f ′(x)p(x)dx = −2
∫

R

f(x)2

ε
p(x)dx

from (6.76). Since this expression is always negative, we obtain stability in
the sense that trajectories move closer together as time t proceeds. Thus,
here, we no longer see a bifurcation, the result of [8]. The reason is that all
trajectories are exposed to the same noise. The noise correlates the different
trajectories.

Following [8, 4], we can also understand this at a more technical level through
the relationship between invariant densities as solutions of the Fokker-Planck
equation (6.77) and the invariant random measure in the sense of (6.73) as-
sociated to our process.5 (Here, of course, for our random dynamical system
X = R.) Namely, given an invariant density ρ(x) = p(x)dx (arising as a
solution of (6.77)),

(6.84) µω = lim
t→∞φ(t, θ(−t)ω)ρ

is an invariant random measure in the sense of (6.73) for φ, and conversely,
given such an invariant measure,

(6.85) ρ = E(µ), that is, ρ(B) =
∫

Ω

µω(B)dP (ω) for measurable sets B,

is an invariant density.
In the present example, by ellipticity of the Fokker-Planck equation (6.77),
ρ(x) = p(x)dx is unique6 and therefore ergodic for our dynamical system (see
the discussion in 6.4). This implies that µω is also ergodic and unique. From
this, one infers that µω is a random Dirac measure, that is,

(6.86) µω = δa(ω)

5 Note that two different concepts of invariance are employed here. To avoid con-
fusion, Arnold[4] then speaks of stationary instead of invariant densities.

6 This is a general result in the theory of elliptic partial differential equations, see
e.g. [22].
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for some random point a(ω). This means that almost all trajectories subjected
to the noise ω asymptotically end up at the point a(ω), and again, this means
that no bifurcation occurs. For the details, we need to refer to §§1.8, 9.2 in
[4].7

7 The idea of the proof that µω has to be a Dirac measure is the following: If
not, one would have an invariant interval [a1(ω), a2(ω)]; this follows because
the differential equation (6.75) preserves monotonicity, that is, x1(0) < x2(0)
implies x1(t) < x2(t) for all t ≥ 0 for solutions x1, x2. But then with x0(ω)
defined as the smallest x with µω((−∞, x]) ≤ 1/2 and µω([x,∞)) ≤ 1/2, the
sets A±(ω) := {±x0(ω) ≤ ±x} would be invariant, and by ergodicity, each of
them would have full measure, and so, µω({x0(ω)}) = µ(A+(ω)∩A−(ω)) = 1 so
that we get a Dirac measure after all.



7 Smooth dynamical systems

7.1 Lyapunov exponents

The entropy of a transformation F : X → X measures the asymptotic gen-
eration of information by F . The quantity h(F ), however, is difficult to de-
termine in general, and not only so because it is an asymptotic quantity, but
in particular because a supremum over coverings or partitions of X needs
to be evaluated. Therefore it makes sense to look for other quantities that
measure local expansion or contraction properties of F , but that are easier to
compute than the entropy. Such quantities, among others, are the Lyapunov
exponents of F that which, although also defined by a limit process, can be
approximated well numerically in concrete examples. Their definition, how-
ever, requires an additional structure, namely a differentiable one which is to
be preserved by the dynamical system. We thus enter the realm of smooth
dynamical systems.

The idea is the following. Let X carry a differentiable structure, and let F
be differentiable. For each tangent vector V at some x ∈ X, we consider the
iterated application of the derivative dF of F on V :

dFn(x)(V ),

determine the norm of this expression with the help of a (Riemannian) metric
on X and let then n tend to ∞. It turns out that up to sets of measure 0
(where it remains to discuss what conditions have to be required for the mea-
sure here) under the assumption that F is ergodic, i.e. that any F - invariant
set is either of full or of vanishing measure, there are at most d = dimX
different possibilities for the corresponding limits

(7.1) lim
n→∞

1
n

log ||dFn(x)(V )||

(where ||·|| is the norm coming from the Riemannian metric employed). These
limits are called the Lyapunov exponents of F , and they do not depend on the
measure nor on the metric employed. A Lyapunov exponent −∞ corresponds
essentially to a zero direction, a negative one to an exponentially contracting
direction and a positive one to an exponentially expanding direction, while
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a vanishing one would indicate the direction of an asymptotically conserved
quantity.

We now wish to discuss some precise results, namely various variants of the
multiplicative ergodic theorem of Oseledec.

Theorem 38. Let F : M → M be a differentiable self-map of the compact
differentiable manifold M . On M , we choose some Riemannian metric, i.e.
a Euclidean norm || · ||x on each tangent space TxM that depends smoothly
on x. Then there exists a Borel set B in M with FB = B, and

µ(B) = 1

for all probability measures µ on M that are preserved by F . Moreover, there
exists a measurable function

k : B → N

with k ◦ F = k and k(x) ≤ dimM for all x ∈ B, as well as measurable
functions λi : B ∩ {x : i ≤ k(x)} → R ∪ {−∞}(1 ≤ i ≤ k(x)),−∞ ≤ λ1 <
λ2 < ... < λk(x) < ∞, with λi ◦F = λi. For x ∈ B there exist linear subspaces
{0} = W 0(x) ⊂ W 1(x) ⊂ ... ⊂ W k(x)(x) = TxM of the tangent space at x
with dF (x)W i(x) ⊂ W iF (x).
For x ∈ B, 1 ≤ i ≤ k(x), and V ∈ W i(x)\W i−1(x), we have

(7.2) lim
n→∞

1
n

log ||dFn(x)(V )|| = λi(x).

The quantities λi are called the Lyapunov exponents of F . These, as well as
B, k and the spaces W i, do not depend on the choice of the Riemannian met-
ric || · ||. Finally, mi(x) := dimW i(x)−dimW i−1(x) is called the multiplicity
of the Lyapunov exponent λi(x).

If F is a diffeomorphism, then λi(x) > −∞ and dF (x)W i(x) = W i(Fx) for
all i and all x ∈ B.

The preceding result covers the topological case, with an additional differen-
tiability assumption. In the measure theoretic case, we have:

Theorem 39. Let F be a measure preserving transformation of the proba-
bility space (X,B, µ). Let A : X → Hom (Rm,Rm) (the space of linear maps
Rm → Rm) be measurable with

max(0, log ||A(x)||) ∈ L1(X,µ),

i.e. the positive part of log ||A(x)|| is integrable. Here || · || is an arbitrary
norm on Rm, for example the Euclidean one. Then, as before, there exist a
Borel set B ⊂ X with µ(B) = 1, FB ⊂ B, a measurable function

k : B → N
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with k ◦ F = k, measurable real-valued functions

λi : B ∩ {x : i ≤ k(x)} → R ∪ {−∞}

(1 ≤ i ≤ k(x)) with λi(Fx) = λi(x) and

−∞ ≤ λ1(x) < λ2(x) < ... < λk(x)(x) < ∞,

and for x ∈ B we have linear subspaces

{0} = W 0(x) ⊂ W 1(x) ⊂ ... ⊂ W k(x)(x) = Rm of Rm

with A(x)W i(x) ⊂ W i(Fx) for 1 ≤ i ≤ k(x).

For all x ∈ B, 1 ≤ i ≤ k(x), V ∈ W i(x)\W i−1(x), they satisfy

(7.3) lim
n→∞

1
2

log ||A(Fn−1x) · ... ·A(Fx) ·A(x)V || = λi(x).

If F is ergodic, i.e., if for every Borel set U , FU = U implies that either
µ(U) = 1 or µ(U) = 0, then k(x) and the Lyapunov exponents λi(x) are
constant almost everywhere on X. Stated somewhat imprecisely, the theorem
says that, in this case, decompositions into the flags generated by eigenspaces
and averaged eigenvalues of A, eλ1

< eλ2
< ... < eλk

, remain invariant under
F , where ||AnV || 1

n → eλi

for V ∈ W i\W i−1. Here, these flags are generated
from the eigenspaces corresponding to the eigenvalues in increasing order.
When F is invertible, we also have the corresponding objects coming from
F−1, its Lyapunov exponents being the negatives of those of F . Intersecting
the corresponding flags, we then also get a decomposition into eigenspaces. In
fact, under appropriate smoothness assumptions, these eigenspaces form the
tangent spaces to invariant submanifolds of X. For example, the eigenspaces
corresponding to negative, positive, or vanishing Lyapunov exponenents span
the tangent spaces of the stable, unstable, and center manifolds discussed in
2.10.
While the above results show that Lyapunov exponents are generically stable
against perturbations of orbits, in general, they depend sensitively on the
choice of the underlying measure.
The multiplicative ergodic theorem is a fundamental tool for the theory of
random dynamical systems [4]. From that perspective, in fact, it belongs more
naturally in Chapter 6 than the present one.
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The following result of Ruelle establishes a connection between entropy1 and
Lyapunov exponents.

Theorem 40. Let F : M → M be a diffeomorphism of the compact Rie-
mannian manifold M , and let µ be a F -invariant Borel probability measure
on M . Then the measure theoretic entropy of F satisfies

(7.4) hµ(F ) ≤
∫ ∑

i:λi(x)>0

λi(x) dµ(x).

Thus, the entropy is controlled by the positive Lyapunov exponents.

Under stronger assumptions (more precisely, let F be of class C2 and ergodic,
and assume that the F -invariant measure is equivalent to the Riemannian one
of M), we even have Pesin’s identity

(7.5) hµ(F ) =
∑

i:λi>0

λi.

(By the preceding, in the ergodic case, the Lyapunov exponents λi(x) are
constant almost everywhere, and these constants are called λi.) Thus, the
entropy equals the sum of the positive Lyapunov exponents. In more general
cases, in place of Pesin’s identity, we have a formula of Ledrappier-Young
[27].

7.2 Hyperbolicity

Hyperbolicity is a condition of ergodicity that is stable under small pertur-
bations.
Examples:

– Rotations of the unit circle: irrational rotations are ergodic w.r.t. the
Lebesgue measure, but one can find arbitrary small perturbations, namely
rational ones, that are not. Therefore these transformations will not be
classified as hyperbolic.

1 In the preceding, we have used binary logarithms for defining the entropy, in order
to bring out the connections with information theory, but natural logarithms for
defining the Lyapunov exponents, in order to conform with the conventions in
the literature. Either choice is arbitrary, but they are not compatible with each
other. Therefore, for the results to follow, we need to change the logarithm in
the definition of the entropy from binary to natural. I hope that this will not be
too confusing.
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–

SL(2,Z) = {
(
a b
c d

)
: a, b, c, d ∈ Z; ad− bc = 1}

operates on the Euclidean plane. It preserves the Lebesgue measure because
of the determinant condition ad − bc = 1. Since its elements have integer
entries, it leaves the lattice of points in the plane with integer coordinates
invariant. We then also obtain an induced action on the two-dimensional
torus T 2, the quotient of the plane obtained by identifying points whose
coordinates differ by integers. Elements of SL(2,Z) are called elliptic if
their eigenvalues are complex conjugate (and then of absolute value 1),
parabolic if they are ±1, and hyperbolic otherwise. A hyperbolic element
A of SL(2,Z) thus has two real eigenvalues, with absolute values respec-
tively greater and less than 1. As a transformation of the two-dimensional
torus, it thus stretches one direction and shrinks the other. Such a trans-
formation then is ergodic w.r.t. the – invariant – Lebesgue measure on T 2.
This behavior also is stable under small perturbations within the class of
differentiable transformations of the torus (since SL(2,Z) itself is discrete,
it is not meaningful to speak of transformations inside this class, and we
have to consider the bigger class of differentiable transformations). In this
sense, it will be classified as hyperbolic. Thus, transformations of the torus
that are hyperbolic in the above sense, will also be hyperbolic in the sense
of the theory of dynamical systems.2

We have already seen and analyzed various examples of a behavior of hy-
perbolic type in sections 2.2, 2.7 and 2.10. The key point was always the
assumption that the linearization does not possess any eigenvalues of ab-
solute value 1. If that assumption holds we only need to deal with strictly
expanding and strictly contracting directions so that the local behavior is
easy to understand. In order to achieve a general definition, we first extend
Definition 1 to sequences of linear maps.

Definition 23. A family of linear maps An : Rd → Rd is called hyperbolic if
there exists a ρ < 1, and decompositions Rd = W+

n ⊕W−
n with AnW

±
n = W±

n+1

and
2 The above terminology comes from two-dimensional geometry where one distin-

guishes between Euclidean (flat), elliptic, and hyperbolic geometries. SL(2, Z)
operates as the group of isometries of the hyperbolic plane. The hyperbolic ele-
ments of SL(2, Z) are those that operate without – proper or asymptotic – fixed
points on the hyperbolic plane. One should note, however, that here we are not
considering the action on the hyperbolic plane, but on the two-dimensional torus
which is a quotient of the Euclidean plane. Nevertheless, the connection between
the concepts of hyperbolicity in the various domains of mathematics also ex-
hibits itself through the fact that the geodesic flow on the hyperbolic plane is
hyperbolic in the sense of the theory of dynamical systems. On the other hand,
there is no direct connection between hyperbolicity for dynamical systems and
hyperbolic partial differential equations.
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(7.6) ‖An|W−
n

‖ ≤ ρ and ‖An−1

|W+
n+1

‖ ≤ ρ.

Here, ‖.‖ is the Euclidean norm of Rd.
The idea now is to say that the behavior of a diffeomorphism F : M → M
of a smooth manifold is hyperbolic when its operation on the collection of
tangent spaces of M always satisfies this hyperbolicity condition. Of course,
in order to have norms at the tangent spaces of M , we need to equip M
with some Riemannian metric. In fact, a Riemannian metric on a smooth
manifold M is nothing but a family of Euclidean norms on the tangent spaces
TxM that depend smoothly on x ∈ M . This metric, however, only plays an
auxiliary role, as in the discussion of the Floer homology of gradient flows
in 3.2. In the present case, the Riemannian metric allows us to identify all
tangent spaces with Rd. Although this identification is only unique up to an
orthogonal transformation, this property is irrelevant for our purposes as it
will not affect the norms of linear maps.

Definition 24. Let Λ be a compact set that is invariant under the diffeo-
morphism F : M → M . Λ is called a hyperbolic set for F if, with respect
to some Riemannian metric on a neighborhood U of Λ, for every x ∈ Λ, the
family of differentials

DF (Fnx) : TF nxM → TF n+1xM (n ∈ Z)

is hyperbolic.

It is then natural to formulate

Definition 25. A diffeomorphism F : M → M of class Ck (k ≥ 1) of the
compact differentiable manifold M is called an Anosov diffeomorphism if M
is a hyperbolic set for F .

The essential point of this definition is that so-called homoclinic tangencies
are excluded, that is, points where the stable and the unstable manifold of
some other point become tangent to each other (the stable manifold of a
point p contains those orbits that asymptotically converge to p and therefore
represents those directions that are contracted, the unstable one contains
those orbits that originate from p and so represents the directions that are
expanded, see below for the formal definition). As should become clear below,
such homoclinic tangencies generate very complicated dynamical behavior.
These diffeomorphisms are named after Anosov because he proved

Theorem 41. Anosov diffeomorphisms are structurally stable in the class of
Ck-diffeomorphisms in the sense of Definition 11.

The stability proof uses the shadowing results to be described shortly. The
concept, however, is a little narrow because the existence of an Anosov diffeo-
morphism imposes severe topological restrictions on the underlying manifold
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M . For example, when dimM = 2, it has to be a torus to carry an Anosov
diffeomorphism. Therefore, Smale introduced the more general concept of
Axiom A diffeomorphisms. We need the preparatory

Definition 26. p ∈ M is a non-wandering point for F if for every neighbor-
hood U of p there exist arbitrary large integers n with Fn(U) ∩ U �= ∅.
We denote the set of non-wandering points of F by Ω(F ). Of course, the
periodic points of F are contained in Ω(F ).

Definition 27. The diffeomorphism F : M → M satisfies Axiom A if Ω(F )
is hyperbolic for F and the periodic points of F are dense in Ω(F ).

While in two dimensions the periodic points are automatically dense in Ω(F )
when that set is hyperbolic, this is no longer true in higher dimensions.
Axiom A diffeomorphisms obviously include Anosov diffeomorphisms. They
also include generic gradient flows. Generic here means that the underlying
function f has only isolated and non-degenerate critical points; see 3.2. More
precisely, we have a smooth function f on our manifold M which defines a
gradient flow

ẋ(t) = −Df(x(t))(7.7)
x(0) = x

and we define the diffeomorphism F : M → M by

(7.8) F (x) := x(1).

The fixed points of F then are precisely the critical points of f and, when
those are non-degenerate, that is, if the Hessian D2f does not have 0 as an
eigenvalue, then at such a fixed point, all eigendirections of D2f are either
expanding (when the corresponding eigenvalue is negative) or contracting
(when the eigenvalue is positive).
Moreover, Axiom A diffeomorphisms include also the horse-shoe map intro-
duced in 3.7 and further studied in 4.3:

BA

f(C)

CD

β f(β)

α f(α)

f(D)f(A) f(B)

S = square ABCD
S0 = lower horizontal white rectangle
S1 = upper horizontal white rectangle
S0 = left vertical white rectangle

= image of S0

S1 = right vertical white rectangle
= image of S1
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(7.9) Λ :=
⋂
n∈Z

Fn(S)

is then a hyperbolic set for F . In fact, Λ is contained in the white region in
S in our figure, and F stretches the vertical and shrinks the horizontal di-
rection there which then yields our hyperbolic splitting of the tangent space.
We have already verified in 4.3 that the periodic points are dense in Λ. Thus,
Axiom A is satisfied for the horse-shoe map.

A similar example is given by the solenoid: we consider the solid torus
T := S1×D2 where S1 is the unit circle parametrized by the angle θ ∈ [0, 2π]
and D2 = {z ∈ C : |z| ≤ 1} is the closed unit disk. For 0 < µ < ρ < 1

2π , we
define f : T → T by

(7.10) f(θ, z) := (2θ, µz + ρe2πiθ).

Thus, the S1-direction is stretched, the D2-direction contracted, and the
image wrapped twice around the torus T . The restrictions on ρ and µ ensure
that F is injective. As for the horse-shoe, the set

(7.11) Λ :=
⋂
n

Fn(T )

is hyperbolic for F .

While we have formulated the Hadamard-Perron theorem on the stable and
unstable manifolds in 2.10 only for hyperbolic fixed points, it holds for general
hyperbolic sets.3 For example, for a hyperbolic element A of SL(2,Z), the
eigenvalue smaller than 1 corresponds to the contracting, stable directions,
the eigenvalue larger than 1 to the expanding, unstable one. For a general
formulation, we let d(., .) be the distance function induced by the Riemannian
metric of M . For x ∈ M , we define

W s(x) : = {y ∈ M : d(Fnx, Fny) → 0 as n → ∞}
Wu(x) : = {y ∈ M : d(Fnx, Fny) → 0 as n → −∞}.(7.12)

When Ω(F ) is hyperbolic, then for all x ∈ Ω(F ), W s(x) and Wu(x) are
embedded submanifolds of M of complementary dimension, called the stable
and the unstable manifold of x.
3 This fact can also be viewed from the following perspective. A hyperbolic set

Λ for a diffeomorphism F : M → M corresponds to a hyperbolic fixed point
for an induced action on some Banach manifold, namely the space C0(Λ, M) of
continuous maps from Λ to M . The induced action ΦF : C0(Λ, M)toC0(Λ, M)
is simply given by ΦF (g) := FgF−1. The inclusion map iΛ : Λ → M is then a
fixed point of ΦF , and it is hyperbolic precisely if Λ is a hyperbolic set for F .
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Definition 28. An Axiom A diffeomorphism F satisfies Smale’s transver-
sality condition if, for all x, y ∈ Ω(F ), W s(x) and Wu(y) meet transversally,
that is, at a non-zero angle (equivalently, the tangent spaces TzW

s(x) and
TzW

u(y) span the tangent space TzM at every point z ∈ W s(x) ∩Wu(y)).

We mention in passing that condition 2) in the definition of Floer homology
in 3.2 is also a transversality condition in the sense of Smale’s definition.
In this context, we also have Smale’s homoclinic theorem and its variants
([32], [13], [40]).

Theorem 42. Let p be a hyperbolic fixed point for the diffeomorphism F ,
and suppose that the stable manifold W s(p) and the unstable one Wu(p)
intersect transversally at some other point q. (Such a q is called a transverse
homoclinic point.) Then for some n ∈ N, the iterate Fn has a hyperbolic

qp

invariant set Λ containing p and q on which it is conjugate to the two-sided
Bernoulli shift on two symbols.

Essentially, one finds a horse-shoe type structure for some iterate Fn; we have
already seen in 4.3 how the dynamics on the hyperbolic invariant set for such
a horse-shoe is conjugated to a Bernoulli shift. This result again demonstrates
the structural presence of horse-shoes. Also, this often suggests that we define
a strange attractor by the property that it contains a transverse homoclinic
orbit (see e.g. [13]). This should be compared with the discussion in 2.4.
Here, we can amplify that discussion. Since both the stable and the unstable
manifold of p are invariant under the dynamical iterates, all the iterates of a
transverse homoclinic point q are again such points. Being on W s(p) its iter-
ates will exponentially converge to p, but being also on Wu(p), the unstable
manifold must make a fold between successive such intersections. Since the
unstable manifold cannot cross itself, it has to become infinitely folded and
complicated when approaching p on the orbit of the transverse homoclinic
point q.
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A fundamental result of Mañé settles the issue of structural stability.

Theorem 43. A diffeomorphism F : M → M is C1-structurally stable iff it
satisfies Smale’s Axiom A and transversality condition.

In this context, we should also mention the important Kupka-Smale theorem
which essentially states that those diffeomorphisms whose periodic points
are all hyperbolic, and with the stable and unstable manifolds of the periodic
points always intersecting transversally, are dense and generic in the class of
all diffeomorphisms.

The fundamental tool of Anosov’s approach to structural stability is the
approximation of pseudo-orbits by actual orbits, called shadowing. Here, for
a map F : M → M and some ε > 0, a finite or infinite sequence of points xn

in M is called an ε-orbit or an ε-pseudo-orbit if

(7.13) d(xn+1, F (xn)) < ε

for all successive points xn, xn+1 in the sequence. Such a pseudo-orbit is δ-
shadowed by the orbit of a point x if

(7.14) d(xn, F
n(x)) < δ

for all n.

Theorem 44. Let Λ be a compact hyperbolic set for the diffeomorphism F :
M → M . Then there exists an open neighborhood U of Λ with the property
that for all δ > 0 we can find ε > 0 such that every ε-orbit in U is δ-shadowed
by an orbit of F .

In particular, every ε-pseudo-orbit that closes up with error at most ε (that
is, we have a sequence x0, x1, ..., xm = x0 with d(xn+1, F (xn)) < ε for n =
0, ...,m − 1) is δ-shadowed by a periodic orbit of F , that is, we find x ∈ U
with Fm(x) = x and d(xn, F

n(x)) < δ for n = 0, ...,m. Thus, we have a
tool for obtaining periodic orbits of F based on the local linear condition of
hyperbolicity together with some kind of global non-linear recurrence that
assures the existence of pseudo-orbits that almost return to their starting
points.
One may then ask under what conditions the shadowing orbit of a pseudo-
orbit in Λ is also contained in Λ. This is the case if Λ is locally maximal in
the sense that there exists a neighborhood U of Λ with

(7.15) Λ =
⋂
n∈Z

Fn(U).

This in turn is equivalent to Λ having a local product structure, in the sense
that for every x, y ∈ Λ the unique local intersection point of Wu(x) and
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W s(y) is contained in Λ.4 Also, the hyperbolic set Λ is an attractor for F
precisely if, for every x ∈ Λ, its unstable manifold Wu(x) is also entirely
contained in Λ. The dynamics inside such a hyperbolic attractor may then
still be chaotic because of the presence of those unstable directions.

Another useful tool for deriving important properties of hyperbolic sets is
the Perron-Frobenius or transfer operator on functions φ : M → R, defined
by

(7.16) Lφ(x) :=
∑

y: F (y)=x

φ(x)
detDF (x)

.

The formula for the change of variables in integrals yields

(7.17)
∫

Lφ(x)ψ(x)dm(x) =
∫

φ(y)ψ(f(y))dm(y)

for all appropriate functions φ, ψ, where dm is the volume measure on M
w.r.t. some Riemannian metric (or the Lebesgue measure in some local co-
ordinates). This measure is the background measure for the SRB-measures
that we hope to find. The Perron-Frobenius operator is particularly nice in
the case of an expanding map F ; in that case, the determinant in the denomi-
nator is always bigger than 1, and so the Perron-Frobenius operator achieves
a smoothing of functions. In the situation of an expanding map F , there
is a unique SRB measure, and that measure is absolutely continuous w.r.t.
the background measure m. The Perron-Frobenius operator is very useful for
finding it because such measures correspond to the fixed points of L. Namely,
if φ0 is a non-negative fixed point of L, then φ0m∫

φ0m
is an F -invariant probabil-

ity measure that is obviously absolutely continuous w.r.t. m, and conversely,
for such a measure m0, the function dm0

dm is a fixed point of L. Thus, the
strategy for finding an SRB measure is to show the existence of a fixed point
of L in L1(M).
For a general hyperbolic attractor Λ for a diffeomorphism as above, we can
still find a unique SRB measure m0 supported on Λ. m0 is ergodic, but in
general no longer absolutely continuous w.r.t. the background measure m.
This comes from the presence of the stable manifolds along which the mea-
sure m will be expanded by the operation of the diffeomorphism F . m0 can be
represented by disintegration along the leaves of the unstable foliation. That
is, let some local neighborhood U be covered by Mu :=

⋃
α∈A Mα where the

Mα are the intersections of the unstable manifolds with U . Then

(7.18) m0(.) =
∫

A

µα(.)dρ(α)

4 There may be further intersection points, but they may occur only at points z
for which either F n(z) does not stay close to x for all n ≤ 0 or F n(z) does not
stay close to y for all n ≥ 0. This is meant to be excluded by the qualification
“local”.



164 7 Smooth dynamical systems

where ρ is some measure on A and the conditional probability measures µα

are supported on Sα and absolutely continuous w.r.t. the Lebesgue measure
on Sα. While A can be considered as a piece of a stable manifold, the measure
ρ is singular w.r.t. to the Lebesgue measure there.
A result of Ledrappier-Young [27] says that an ergodic measure µ with com-
pact support for a C2 diffeomorphism is an SRB measure iff it satisfies Pesin’s
identity (7.5).

Similar constructions and results also hold for flows instead of iterates of dif-
feomorphisms. Of course, for flows, there is always one exceptional direction,
namely the one in the direction of the flow lines, and we then assume that
the directions transverse to the flow lines are stable or unstable.
An excellent reference for the theory of hyperbolic dynamical systems is [24].
The geometric aspects are well explained in [37].
For those readers who are familiar with Riemannian geometry (see e.g. [21]),
geodesic flows on negatively curved Riemannian manifolds are a prime exam-
ple.5 The following metric behavior is characteristic for such manifolds: when
we have two pairs (p1, q1) and (p2, q2) of points, and homotopic geodesics
γi(t) from pi(= γi(0)) to qi(= γi(1)) (t ∈ [0, 1], i = 1, 2), then the distance
d(γ1(t), γ2(t)) is a strictly convex function of t, and the more negative the
curvature is, the closer the interior points, say γ1( 1

2 ) and γ2( 1
2 ), come to-

gether. The explanation for this behavior is that, in the negative curvature
case, geodesics starting from the same point in different directions are mov-
ing apart exponentially (instead of linearly as in the Euclidean case), and so,
when we have two geodesics with initial and final points at some bounded dis-
tance, then in between, these geodesics have to come together more closely to
compensate for that exponential divergence. This phenomenon has also been
called the turnpike theorem, because the fastest route from city A1 to city B1

may utilize the same highway as the one from A2 to B2. Thus, the optimal
connections not only come together more closely than their endpoints, but
even partially coincide.

While we have seen that hyperbolicity is both a general and a structurally sta-
ble condition, it is nevertheless one of the key challenges for modern research
on dynamical systems to develop a general theory under weaker assumptions.
For some important progress, see [56].

5 In fact, manifolds of constant negative curvature are called hyperbolic, and so
this matches with the use of the term “hyperbolic” in the theory of dynamical
systems.
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7.3 Information loss

We have defined the (measure theoretic)entropy of a dynamical system given
by a transformation T : X → X as the asymptotic information generated
by observations of the orbit of a point. This was done with respect to some
measure µ left invariant by T . On the other hand, in 6.4 and 7.2, we have
also seen that, and studied how, T operates on the space of measures on X.
In general, measures will get asymptotically simplified under the operation
of T – in the extreme case of a global point attractor, the iterates of some
measure under T will converge to a Dirac measure, the most trivial measure
conceivable – and in this sense potential information contained in X, that is,
in the distribution of initial values, will get destroyed. We shall now quantify
that information loss, following the work of Ruelle [43, 44] (although provid-
ing a somewhat different interpretation6). Thus, we do not investigate here
a Kolmogorov-Sinai type entropy which evaluates the information content of
differences of states caused by the dynamics, but rather the difference of in-
formation content of the state distribution when subjected to the dynamical
iteration. There is no direct relationship between these two strategies.
We consider a diffeomorphism F : M → M of a compact manifold. Let
ρ(x)dx be some probability density on M , for example the normalized den-
sity coming from the volume form of some Riemannian metric on M . With
ρ, we associate the entropy

(7.19) H(ρ) = −
∫

log ρ(x)ρ(x)dx.

The image of ρ under F , the push-forward measure F�ρ, is characterized by
the property that

(7.20)
∫

φ(y)F�ρ(y)dy =
∫

φ(F (x))ρ(x)dx

for all integrable functions φ and has the density

(7.21) F�ρ(y) =
ρ(F−1y)
J(F−1y)

where J(x) = |det(Fx)| is the absolute value of the Jacobian of F . Now

6 In fact, we shall here call an entropy loss what Ruelle calls entropy production.
That difference results because we are interested in the intrinsic aspects of the
dynamical iteration whereas Ruelle is concerned about the exchange with the
environment in the context of the second law of thermodynamics. Thus, the
entropy reduced within the system must be exported to the environment and
increase the latter’s entropy.
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H(F�ρ) = −
∫

logF�ρ(y)F�ρ(y)dy

= −
∫

(log ρ(F−1y) − log J(F−1y))
ρ(F−1y)
J(F−1y)

dy

= −
∫

(log ρ(x) − log J(x))ρ(x)dx.(7.22)

Therefore, the entropy or information difference resulting from an application
of F to the distribution of initial values according to the density ρ is

(7.23) H(ρ) −H(F�ρ) = −
∫

log J(x))ρ(x)dx.

This expression need not be 0. This simply expresses the fact that the entropy
(7.19) is not invariant under coordinate transformations; namely, any diffeo-
morphism can be considered as a coordinate transformation. Of course, when
we consider the inverse diffeomorphism F−1 in place of F , (7.23) changes its
sign because the Jacobian of F−1 is the inverse of that of F .
Similarly, that difference at the mth iteration of F is

(7.24) −
∫

log J(x)Fm−1
� ρ(x)dx

and, if the iterates Fm
� ρ weak converge to some invariant probability measure

µ, then that information difference converges to

(7.25) hF (µ) := −
∫

log J(x)µ(dx).

We assume that µ is ergodic. Then the Lyapunov exponents λi of F w.r.t
µ are constant µ-almost everywhere on M , and the Oseledec Multiplicative
Ergodic Theorem 38 implies

Lemma 5. hF (µ) = −∑λi.

Moreover, we have the following result of Ruelle.

Theorem 45. If µ is an SRB measure, then hF (µ) ≥ 0. If F is of class C2

and µ is singular w.r.t. the volume form dx and all the Lyapunov exponents
λi �= 0, then hF (µ) > 0.

Thus, asymptotically, an information loss, but no information gain, can occur.

Proof.

hF (µ) = −
∑

λi

= (hµ(F ) −
∑
λj>0

λj) − (hµ(F ) +
∑

λk<0

λk)

= (hµ(F ) −
∑
λj>0

λj) − (hµ(F ) −
∑
σj>0

σj)
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where σi are the Lyapunov exponents of the inverse map F−1. Now by Pesin’s
identity (7.5), the first term in the last line vanishes whereas, by Theorem
40, the second one is non-negative. This implies that hF (µ) ≥ 0. Now if
hF (µ) = 0, the preceding implies that

(7.26) hµ(F ) =
∑
λj>0

λj = −
∑

λk<0

λk

Thus, by the results mentioned at the end of 7.1, µ is an SRB measure for both
F and F−1, and in fact, under the conditions of the theorem, it is absolutely
continuous, that is, non-singular w.r.t. dx. This completes the proof.

q.e.d.

Corollary 4. If µ is an SRB measure for F , then the Lyapunov exponents
satisfy

∑
λi ≤ 0.

The entropy loss describes the asymptotic amount of information destroyed
by the operation of the dynamical system at each step; of course when that
amount is positive, the entropy of the asymptotic SRB measure µ must be

(7.27) H(µ) = −
∫

logµ(x)µ(x)dx = −∞.

This expresses that µ is singular w.r.t. the background measure dx when
the dynamical system asymptotically at each step loses a positive amount
of information about the distribution of initial values as described by dx.
As explained in 7.2, the singularity of µ comes from the stable manifolds of
the dynamical iteration, that is, those that are asymptotically contracted to
single points. This represents an evident source of information loss. Ruelle’s
result says that this will not be compensated by the expansion of the unstable
directions.
There is another source of information loss. To see this, we first consider
an iteration T on some finite state space X containing elements x with
probabilities p(x), with x(n) = Tx(n − 1) ∈ X. Then, with pn(y) :=∑

x∈T n−1X: Tx=y pn−1(x), p0(x) := p(x), the entropy

H(n) := −
∑
x(n)

pn(x(n)) log pn(x(n)) ≤ H(n− 1),

with strict inequality when T is not injective on the collection of states x(n−
1) ∈ X. Thus, T destroys entropy or information contained in the initial
distribution p(x) by merging different initial states into single subsequent
states.
More generally, we can also quantify the asymptotic information loss when
the compact manifold M is covered up to a set of measure 0 by finitely many
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disjoint open sets Uα and F : M → M maps each such Uα diffeomorphically
onto its image, such that two such images FUα and FUβ either coincide or
are disjoint. We obtain an additional term in (7.25) coming from the loss
of information caused by the non-injectivity of F . Namely, in the present
situation, a measure ν can be expressed in terms of its push-forward F�ν by

(7.28) ν =
∫

σyF�ν(dy)

where σy is a weighted sum of Dirac measures on the (finitely many) preim-
ages of y, of total mass 1. If those weights are pα, we obtain the folding
entropy

(7.29) fF (µ) := −
∫ ∑

α

pα log pαF�ν(dy).

(7.23) now generalizes as

(7.30) H(ρ) −H(F�ρ) = −
∫

log J(x))ρ(x)dx + fF (ρ),

and by showing the upper semicontinuity of such expressions under weak 
convergence, Ruelle [43] concludes that the limiting entropy loss for a measure
µ obtained as the weak limit of the averages 1

m

∑m−1
j=0 F j

�ρ of the iterates
under F of a density ρ,

(7.31) −
∫

log J(x))µ(x)dx + fF (µ) ≥ 0.

More generally, one can also show that the entropy loss is non-negative in
the context of Axiom A diffeomorphisms.
For a systematic treatment of the topic of entropy production in dynamical
systems, we refer to [19].



8 Cellular automata and Boolean networks as
examples of discrete dynamical systems

8.1 Cellular automata

We have seen above how to investigate the qualitative properties of a dy-
namical system defined on a continuum by passing to discrete dynamics. In
the case studied, this was a simple shift. We now want to introduce a more
general class of discrete dynamical systems that exhibit a richer dynamical
behavior, some aspects of which can in turn be studied by passing to dynam-
ics on a continuum. The class in question is that of one-dimensional cellular
automata and suitable generalizations thereof. In a certain sense, however,
this chapter constitutes an anticlimax as the mathematical results that have
been discovered so far about cellular automata and their generalizations are
less profound than those described in the previous chapters. Thus, cellular
automata represent an embarassment to the presently known theory of dy-
namical systems and an important challenge for its future development.

We first consider dynamics on the space of two-sided binary sequences. We
thus assign to an index m ∈ Z a value σm ∈ Z2 = {0, 1}. The dynam-
ics is determined again by a map T that associates each such two-sided
binary sequence σ = (..., σ−1, σ0, σ1, ...) with a new sequence Tσ. For a
cellular automaton, we impose the restriction upon T that (Tσ)m is de-
termined only by the value of σm itself and its r neighbors to the left,
namely σm−r, σm−r+1, ..., σm−1, and to the right, σm+1, σm+2, ..., σm+r, for
some given r ∈ N. Mostly, we consider the simplest case r = 1 only. This
includes the Bernoulli shift, for which

(Tσ)m = σm+1

or, to write it as a cellular automaton rule,

(Tσ)m = 1 if and only if σm+1 = 1.

More generally, a cellular automaton with r = 1 is determined by which com-
binations of values of (σm−1, σm, σm+1) result in (Tσ)m = 1. For the Bernoulli
shift, these combinations are (001), (011), (101), (111), while the other possi-
ble combinations, namely (000), (010), (100), (110), lead to (Tσ)m = 0. It is
easily seen that it is no serious restriction to always require that (000) leads
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to (Tσ)m = 0. This reduces the number of possible automaton rules for r = 1
from 223

= 256 to 128.

Following Wolfram, the following coding scheme for the rules is employed.
One writes the combinations for (σm−1, σm, σm+1) in decreasing order, i.e.,
(111), (110), (101),(100), (011), (010), (001), (000) and, for each of them, one
writes down whether it leads to 0 or to 1. This yields an eight-digit binary
number. Since we require that (000) always leads to 0, the last digit is always
0, and so only 7 digits remain. The above Bernoulli shift then corresponds to
the rule

10101010 = 170 in the decimal system.

This rule generates a very simple behavior. Other rules lead to richer dy-
namics, sometimes even on the space of periodic sequences with (sufficiently
large) period N ∈ N (i.e. σm+N = σm for all m ∈ Z). In the periodic case one
can, of course, identify the index m with m+N and restrict the consideration
to the indices 1, 2, ..., N .

Wolfram divided the dynamical behavior of one-dimensional cellular au-
tomata with finite N or for initial states with infinitely many 1s into four
qualitative classes:

1. After finitely many steps, the evolution leads to a homogeneous state.
Thus, the initial pattern disappears.

2. The evolution leads to a simple stable or periodic state. The initial pattern
develops in a finite region only.

3. The evolution leads to chaotic behavior. The initial pattern grows into
ever increasing regions. Many initial states develop into self-similar struc-
tures.

4. The evolution leads to complex, spatially localized patterns that grow and
shrink in a regular manner and can propagate in a soliton-like manner.

Some cellular automata of the 4th class are even universal computers in the
following sense. A cellular automaton can be considered as a computer that,
by its temporal evolution, applies an algorithm to the input data given as
its initial configuration. A computer is called universal if by suitable initial
data every possible algorithm can be produced. Since a universal computer
can simulate a Turing machine, it is capable of arbitrarily complex behavior,
and conversely, its calculations can only be found by explicit simulation, but
cannot be predicted by a simpler scheme. In particular, as for the halting
problem for Turing machines, there does not exist any finite algorithm that
can decide for any initial configuration whether it will lead to the homoge-
neous zero state or produce structures that for arbitrarily large times possess
states different from 0. It is thus impossible in principle to predict the be-
havior of such a cellular automaton. Even if the initial state is completely
known, the long time behavior of the system can only be found by explicit
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application of the dynamics.
Systematic computer studies, including in particular the determination of the
basins of attraction of the various dynamical attractors through tracking the
cellular automaton dynamics back in time, can be found in [59].

In order to assess the complexity of cellular automata, one may try various
entropy concepts:

1. As explained, a cellular automaton can be seen as a self-map T of the
space Y2 of two-sided binary sequences. Therefore, we can compute the
topological entropy of T : Y2 → Y2. In practice, however, this may not be
feasible.

2. If T is considered as a self-map of (Z2)N , the space of binary sequences
of period N , then we have a finite state space Y . Obviously, the topo-
logical entropy of every self-map of a finite state space vanishes since the
cardinality of any covering is bounded by 2|Y |, the number of subsets of
Y , and so it cannot grow asymptotically.

One may however utilize the following entropy. For every element i of Y ,
at the nth iteration step, we consider the relative frequency pn(i) with
which i can be reached from initial configurations. For example, if there
are k elements i1, ..., ik in Y with Tn(iκ) = i, then pn(i) = k

|Y | . Thus, an
ansatz for the asymptotic entropy of T could be

H0(T ) := lim
n→∞ (−

∑
i∈Y

pn(i) log2 pn(i)).

(We shall say more about this below when discussing Boolean networks.)
If T is invertible (reversible), then the expression

−
∑
i∈Y

pn(i) log2 pn(i)

is independent of n, and is simply log2 |Y |. If T is irreversible, i.e. if
several distinct initial patterns lead to the same subsequent pattern, then
the entropy

−
∑
i∈Y

pn(i) log2 pn(i)

decreases as a function of the time n. Thus, decreasing entropy becomes
a sign of irreversibility.

The preceding quantity H0(T ) (which also depends on N), while easy to
compute, does not yield too many insights into the dynamical behavior
of T . It becomes minimal, i.e. 0, if all initial states lead to the same final
state after some iterations. When we obtain a periodic cycle of length k
instead of the constant final state, again attracting all initial conditions,
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then the entropy is log2 k. Thus, a simple repetitive behavior does not
lead to vanishing entropy here, and this fact already casts serious doubts
about its utility. The entropy is maximal, i.e. log2 N , if the dynamics is
reversible, that is, if every state can occur at every iteration step. This
however fails to distinguish between the simple dynamics of the identity
map, where (Tb)m = bm for all m, and another dynamics that permutes
the states in some complicated manner.
In any case, we are here considering a situation that is analogous to the
one in 7.3. Namely, we are again not evaluating the information content
of differences of state distributions, but rather comparing the informa-
tion content of different state distributions. In the first case, the iden-
tity transformation yields zero entropy, because it does not lead to any
state differences and thus does not bring to the fore any new informa-
tion that had been hitherto hidden by a limited resolution. In the second
case, for the identity or any other injective transformation, the entropy
of the dynamical iterates of the initial state distribution remains maxi-
mal because the information content encoded in that distribution does
not decrease. Here, we decreasse the entropy of the state distribution
only when the dynamics is non-injective, that is, when different states
merge. This can be interpreted as forgetting some initial differences in
the course of the dynamical iteration. This is of course an obvious point,
namely that forgetting causes an information loss, but it is quite rele-
vant for understanding the relationship between information theory and
thermodynamics in the context of the famous second law of thermody-
namics. – In any case, the main deficiency of the present approach is that
no comparison between individual states and their dynamic successors is
made. We rather only compare aggregate quantities, namely entropies of
distributions. This disregards basically all information about the specific
dynamics.

3. We now return to a Kolmogorov-Sinai type approach. We obtain a more
useful quantity than in the preceding approach when we let the length N
of the patterns that we evaluate go to infinity (cf. [18]). More precisely,
we now consider the cellular automaton operating on infinite binary se-
quences, and we consider the distribution of patterns of length at most
B, so-called blocks. Actually, these could be either spatial patterns as
before, that is, the values at a given time of a consecutive string of sites,
or alternatively sequences of length ≤ B of consecutive values at a fixed
site, that is, temporal patterns. In the spatial case, one considers the rel-
ative frequencies pn(α) with which the blocks α of values at consecutive
sites appear at time n. Of course, in practice, for automata operating on
infinite sequences, one usually does not have an explicit formula for these
expressions, but rather needs to estimate them on the basis of observed
CA computer simulations. In any case, the relevant (normalized) entropy
is then
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(8.1) Hnor
spatial(T ) := lim

B→∞
lim

n→∞− 1
B

2B∑
α=1

pn(α) log pn(α).

For temporal patterns, one can work with strings of finite length, but
then needs to estimate the relative frequency q(α) with which a block
α appears as the consecutive values at some given site for an infinite
running time of the CA. We then obtain an expression that is analogous
to (8.1) for the (normalized) temporal entropy of the CA T ,

(8.2) Hnor
temporal(T ) := lim

B→∞
− 1
B

2B∑
α=1

q(α) log q(α).

One should note that the factor 1/B normalizes these entropies to take
values between 0 and 1. The value is 0 when asymptotically only finitely
many different patterns occur. It is 1 when all patterns occur with equal
probability. The interesting CAs yield intermediate values for these nor-
malized entropies.
We can obtain deeper insights by recalling the discussion of 6.3 of Grass-
berger’s concept of effective measure complexity [11]. We consider the
entropy for temporal strings of length B now without a normalization
factor,

(8.3) H(T,B) := −
2B∑

α=1

q(α) log q(α).

This is the information contained in strings bi, bi+2, ..., bi+B−1 of length
B of values at one site at times i, ..., i+B.1 Given such a string of length
B, the additional information needed to predict the value bi+B is then

(8.4) h(T,B) := H(T,B + 1) −H(T,B).

These differences cannot increase with B, because the prediction of the
next value becomes easier the more previous values we already know. In
fact, by (6.17)

(8.5) h(T ) := lim
B→∞

h(T,B)

is the entropy of T .
Then the difference of these differences,

(8.6) δh(T,B) := h(T,B − 1) − h(T,B),

measures the average amount by which the uncertainty of bi+B decreases
due to the knowledge of bi, that is, one more site value back in the past.

1 By definition, this does not depend on i.
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We thus need to store at least an amount of δh(T,B) for at least B
time steps for optimal prediction. We thus have the effective measure
complexity of T

hEMC(T ) =
∑
B

B δh(T,B) =
∑
B

(h(T,B − 1) − h(T,B))

=
∞∑

B=0

(h(T,B) − h(T )).(8.7)

4. We now present an alternative to the preceding approaches which avoids
their deficiencies. We embed the discrete dynamics of a cellular automa-
ton into a dynamics on some continuous state space. Once more, we
consider a cellular automaton with N indices and two possible states for
every index. Let

W = [0, 1]N

be the unit cube in RN . Each vertex of W codes a binary sequence
(b1, ..., bN ) of N elements, by letting bk stand for the kth coordinate of
the corresponding corner. Thus, the cellular automaton defines a dynam-
ics on the set of vertices of W . We consider the mth-coordinate xm of
x = (x1, ..., xN ) ∈ W . Let b := (bm−r, ..., bm, ..., bm+r) be a configuration
that leads to

(Tb)m = 1.

We consider

pm
b (x) :=

r∏
j=−r

pm
j (x)

with

pm
j (x) :=

{
xj for bm+j = 1
(1 − xj) for bm+j = 0

and put
pm(x) :=

∑
pm

b (x),

where the sum is extended over all configurations b = (bm−r, ..., bm+r)
that lead to (Tb)m = 1. If, for example, (bm−1, bm, bm+1) = (101) and
(010) are the only states leading to (Tb)m = 1, then

pm(x) = xm−1(1 − xm)xm+1 + (1 − xm−1)xm(1 − xm+1).

Thus, pm(x) is an (inhomogeneous) polynomial of order 2r + 1 of the
components of x = (x1, ..., xN ) ∈ RN . We have

0 ≤ pm(x) ≤ 1, if 0 ≤ xj ≤ 1 for all j.

Thus, p = (p1, ..., pN ) maps the unit cube W into itself. Moreover, by
construction, on the vertices of W , p induces the original dynamics of the
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cellular automaton T . For p, operating on W , however, we can determine
the topological entropy or the Lyapunov exponents. Perhaps this is a
tool to evaluate the complexity of the cellular automaton T . Numerical
simulations, however, have not so far yielded conclusive results in this
direction.

8.2 Boolean networks

Boolean networks are a more general class of discrete dynamical systems
than cellular automata. Their potential applications have been emphasized
by St.Kauffman[25].

For a Boolean network, each of N elements is updated according to a rule
which, in contrast to cellular automata, can vary from element to element.
Moreover, each element receives input from K other elements which no longer
need to be its neighbors, but can be any among the N elements of the net-
work. Again, each element can assume two states, 0 or 1 and, for this reason,
the networks are called Boolean.

Since every element receives input from K others, there are K input combi-
nations for it and, since every such combination can generate either 0 or 1 as
output of the element under consideration, there are

22K

Boolean functions, that is, update rules for every element. For K=2, we have
16 Boolean functions, namely

0 0 0
1 0 0
0 1 0
1 1 0

0

0 0 1
1 0 0
0 1 0
1 1 0

1

0 0 0
1 0 1
0 1 0
1 1 0

2

0 0 1
1 0 1
0 1 0
1 1 0

3

0 0 0
1 0 0
0 1 1
1 1 0

4

0 0 1
1 0 0
0 1 1
1 1 0

5

0 0 0
1 0 1
0 1 1
1 1 0

6

0 0 1
1 0 1
0 1 1
1 1 0

7

0 0 0
1 0 0
0 1 0
1 1 1

8

0 0 1
1 0 0
0 1 0
1 1 1

9

0 0 0
1 0 1
0 1 0
1 1 1
10

0 0 1
1 0 1
0 1 0
1 1 1
11
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0 0 0
1 0 0
0 1 1
1 1 1
12

0 0 1
1 0 0
0 1 1
1 1 1
13

0 0 0
1 0 1
0 1 1
1 1 1
14

0 0 1
1 0 1
0 1 1
1 1 1
15

The rules 0 and 15 generate a constant output regardless of the input, and
are hence of little interest. The output of the rules 3, 5, 10, 12 depends only
on one of the two inputs, and hence they are not so interesting either.

Here is an example for N = 3,K = 2. We first exhibit the Boolean function
for every element, that is, the input-output table
2 3 1
0 0 1
1 0 0
0 1 0
1 1 0

1 3 2
0 0 1
1 0 1
0 1 1
1 1 0

1 2 3
0 0 1
1 0 0
0 1 0
1 1 0

This yields the transition map (σ1, σ2, σ3) �→ T (σ1, σ2, σ3) according to the
following table:

1 2 3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

→ 1 2 3
1 1 1
0 1 1
0 1 0
0 1 0
1 1 0
0 0 0
0 1 0
0 0 0

We can now represent the dynamics in the state space:

101

��
000

��
111 001��

�� 011 �� 010
��

110�� 100��

Thus, there are two chains, the smaller of them containing a cycle of period
2, the other one a fixed point. All the other 5 states are transient, that is,
the dynamics never returns to them.

A small change, here of the Boolean function of the second element
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2 3 1
0 0 1
1 0 0
0 1 0
1 1 0

1 3 2
0 0 0
1 0 1
0 1 1
1 1 1

1 2 3
0 0 1
1 0 0
0 1 0
1 1 0

1 2 3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

→ 1 2 3
1 0 1
0 1 1
0 0 0
0 1 0
1 1 0
0 1 0
0 1 0
0 1 0

can induce a qualitatively different dynamics: Namely, there is only one chain
left which contains a cycle of length 3:

100

��
110

��
001 �� 011 �� 010 �� 000 �� 101

��

111

��

Next follows an example for N = 4,K = 2. First, we show again the input-
output table for the 4 elements:

2 3 1
0 0 0
1 0 0
0 1 0
1 1 1

1 3 2
0 0 0
1 1 1
0 1 1
1 1 1

2 4 3
0 0 1
1 0 0
0 1 0
1 1 1

1 2 4
0 0 1
1 0 1
0 1 1
1 1 0

Here is the table of the dynamic transition: (σ1, σ2, σ3, σ4) �→ T (σ1, σ2, σ3, σ4)
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1 2 3 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

→ 1 2 3 4
0 0 1 1
0 0 0 1
0 1 1 1
0 1 0 1
0 0 0 1
0 0 1 1
1 1 0 1
1 1 1 1
0 1 1 1
0 1 0 1
0 1 1 1
0 1 0 1
0 1 0 0
0 1 1 0
1 1 0 0
1 1 1 0

This transition generates three disjoint chains:

1011

��
0000 �� 0011

		
0101

 1001��

1000

��
0010 �� 0111 �� 1111 �� 1110 �� 1100 �� 0100

��
1010

��

0001��

0110
		
1101



In the first chain, each state is eventually transformed into one of the states
(0011) and (0101), and these two then alternate. In the second chain, every-
thing ends up in the invariant state (0001). The third chain contains only a
cycle of length 2.
Small changes of the update rules can affect these structures strongly. For
instance, when we replace the last row of the rule for element 2 by
1 3 2
1 1 0 ,
then (1111) will lead into (1010), that in turn to (0011), and thence as before
to (0101). Thus, the second chain is broken up, and its left part now enters
into the first chain. (1011), however, leads to (0001) which remains invariant.
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(1110) leads to (1000), thus again eventually entering into the previous first
chain. The rest remains as before.

These examples show that there are two types of states in each case. The
first type are the transient states that are never revisited by the dynamics.
Among them, we even find some that can only occur as initial states, but
cannot be reached from any other. Such states that are out of reach from
elsewhere are called Garden-of-Eden states. The second type are those states
that lie on attractors. These states are traversed again and again once having
been reached for the first time. Each such state is contained in a periodic
cycle. In the special case of a fixed state, the period length is 1.

In the same manner as cellular automata, Boolean networks can be embedded
into a dynamics on the unit cube [0, 1]N , so that again one can compute
Lyapunov exponents and entropies. Of course, one may also compute discrete
entropies

−
∑
i∈Y

pn(i) log2 pn(i)

as before, where pn(i) is the relative frequency of state i in the nth iteration
step. As before, this is a nonincreasing function of n.

The examples now permit a somewhat more detailed discussion of these quan-
tities. In particular, the expressions pn(i) are not necessarily monotonic. We
look at the first chain in the first example. For i = (101) we have pn(i) = 0
for n ≥ 1, because this state can occur at most as an initial state, i.e. , for
n = 0, but not as the successor state of any other. Now p1(000) = 1

4 , since
(000) has two different initial states as predecessors, namely (101) and (111).
However p1(111) = 1

8 , since (000) is the only state leading to (111). For n = 2,
however, the roles are reversed, since now p2(000) = 1

8 , because only from
the initial state (000) itself, can one return to (000) for n=2, while we obtain
p2(111) = 1

4 . More generally

p2m−1(000)=
1
4
, p2m−1(111)=

1
8
,

p2m(000) =
1
8
, p2m(111) =

1
4

for m = 1, 2, 3, ...

The entropy −∑
i

pn(i) log2 pn(i) stabilizes for n ≥ 2 and becomes − 1
8 log2

1
8−

1
4 log2

1
4 − 5

8 log2
5
8 .

It would make more sense, however, to assign each of the states (000) and
(111) the asymptotic probability 3

16 instead of letting it oscillate between 1
8

and 1
4 . For instance, we might put
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p∞(i) :=
1
n

n−1∑
k=0

pk(i),

and then define the entropy as

H∞(T ) := −
∑

p∞(i) log2 p∞(i).

This would make the definition independent of the transient aspects of the
dynamics and capture only the types of attractors, more precisely their peri-
ods, as well as the sizes of their basins of attraction, and it would thus reflect
only the asymptotic or permanent aspects of the dynamics.
Of course, Grassberger’s concept of effective measure complexity as discussed
for cellular automata in 8.1 can also be usefully applied here.

One is interested in statistical properties depending on K and N when the
Boolean functions for each element are randomly chosen. K = N of course is
the most general case. Here, the average cycle length grows like 2N/2 while
the number of different cycles is proportional to N only. The typical behavior
of such a network is chaotic in the sense that changing the states of some
element typically will lead into a different chain. Attractors thus typically
have small basins of attraction.

Similar things happen for K ≥ 3. For K = 2, however, we see a more stable
behavior. The average cycle length is of order N1/2 only, as is the number of
cycles. Small perturbations are often corrected. If the state of some element is
altered permanently, this perturbation will spread only to some limited part
of the network, and some elements with periodically oscillating states can
turn into ones with fixed states, and conversely. There are fewer attractors
now than for K > 2, and these attractors have much larger basins of attrac-
tion. This is the reason for the greater stability. For K = 1, finally, invariant
states dominate the dynamics.

The preceding results stem mainly from computer simulations (see [59] for
sophisticated tools), or have been obtained with the help of methods of sta-
tistical mechanics (mean field approximation). For a survey of what is known
about the properties of random Boolean networks, we refer to [1].
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