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Preface

The theory of quasigroups (“nonassociative groups”) is one of the oldest
branches of algebra and combinatorics. In the guise of Latin squares, it dates
back at least to Euler [54]. Nevertheless, throughout the twentieth century it
was overshadowed by its subset, the theory of groups, to such an extent that
Mathematical Reviews classified loops and quasigroups merely as “other gen-
eralizations of groups.” Apart from the fashions of the day, the main reason
for the predominance of group theory was the fact that abstract groups admit
representations, either linearly by matrices and modules, or as symmetries
in the form of permutation representations. The aim of the present book is
to show how these representations for groups are fully capable of extension
to general quasigroups, and to illustrate the added depth and richness that
result from such an extension.

The linear theory for quasigroups separates two topics, character theory and
module theory, that are usually conflated in the group case. Permutation rep-
resentations take on two striking new aspects when extended to quasigroups.
The first is probabilistic: permutation matrices of groups are replaced by
Markov matrices for quasigroups. The second is the fact that quasigroup
actions are naturally described as coalgebras rather than as algebras.

The book divides into three parts:

• The first three chapters cover elements of the theory of quasigroups and
loops, including certain key examples and construction techniques, that
are needed for a full appreciation of the representation theory.

• The bulk of the book is devoted to the three main branches of the
representation theory itself: permutation representations, characters,
and modules.

• Finally, three brief appendices summarize some essential topics from
category theory, universal algebra, and coalgebras.

Chapter 1 provides a quick elementary introduction to quasigroups and
loops, as well as some of the most important special classes such as semisym-
metric quasigroups, Steiner triple systems, and Moufang loops. Chapter 2
discusses the group actions on the underlying set of a quasigroup that result
from the quasigroup structure. These actions are the key tools of quasigroup
theory. In particular, the action of the combinatorial multiplication group on a
quasigroup yields the combinatorial characters, while the universal stabilizers
discussed in Section 2.8 form the basis for much of quasigroup module theory.
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Chapter 3 looks at the quasigroup analogues of abelian groups, namely central
quasigroups and piques. It also touches briefly on a converse interpretation of
“quasigroup representation theory,” namely the representation of groups as
multiplication groups of quasigroups.

Chapters 4 and 5 are devoted to the theory of permutation representations
of quasigroups. With permutation representations of groups being regarded
as the embodiment of symmetry, one may view permutation representations
of quasigroups as the expression of a newer and more general kind of sym-
metry, probabilistic in nature, that may include certain forms of approximate
symmetry. Chapter 4 describes this symmetry, and the quasigroup homoge-
neous spaces that underlie it. Homogeneous space concepts are also used to
study issues related to the breakdown of Lagrange’s Theorem in quasigroups.
The slightly more advanced Chapter 5 provides the general definition of a
quasigroup permutation action, as a sum of images of homogeneous spaces or
as an element of a certain covariety of coalgebras. The isomorphism classes
of the permutation representations of a quasigroup form a Burnside algebra,
just as for groups, and a general form of Burnside’s Lemma, linearly algebraic
in nature, counts the number of orbits.

Chapters 6 through 9 treat the oldest branch of quasigroup representation
theory, the combinatorial character theory. This theory extends the ordinary
character theory of finite groups. In fact, selected material from the first two
of these chapters might even be used as a quick introduction to that theory in
a more general setting. In Chapter 6, the combinatorial characters of a finite
quasigroup are obtained from the action of the combinatorial multiplication
group on the quasigroup. The complex incidence matrices of the orbitals in
this transitive action span a commutative algebra, and the characters emerge
as normalized coefficients expressing the orthogonal idempotents of the alge-
bra as linear combinations of the incidence matrices.

Chapter 7 develops those parts of quasigroup character theory that form
natural generalizations of group character theory: induced characters, fusion,
lifting characters from quotients, and the determination of the structure of
a quasigroup from its character table. By contrast, the topics of Chapter 8
do not have direct counterparts in group character theory. The motivating
question is the extent to which a combinatorial multiplication group action
on a quasigroup may be recovered from character-theoretical data.

Chapter 9, on permutation characters, serves a twofold purpose. On the one
hand, it uses properties of the permutation action of the multiplication group
of a quasigroup to describe some of the algebra structure associated with a
homogeneous space for that quasigroup. On the other hand, it also introduces
the characters of a quasigroup that are associated with permutation actions
of the quasigroup. These give a direct generalization of the permutation
characters of a group.

The final chapters study quasigroup module theory. Since the composition
of matrices or module endomorphisms is associative, module representations
of quasigroups require a more sophisticated definition than for groups, using

 



vii

an algebraic analogue of the topological concept of a fiber bundle or the phys-
ical concept of a gauge theory (Sections 10.2 and 10.5). The fundamental
theorems of Chapter 10 then show that categories of modules over a quasi-
group are equivalent to categories of modules over certain rings, quotients of
group algebras of universal stabilizers. In particular, there is a differential
calculus for quasigroup words (Section 10.4).

Various applications of quasigroup module theory are given in Chapter 11.
The topics discussed include the indexing of nonassociative powers (by their
derivatives), the exponent of a quasigroup, Burnside’s problem for quasi-
groups, construction of free commutative Moufang loops, and a quick synopsis
of cohomology and extension theory for quasigroups.

Chapter 12 introduces analytical characters of a finite quasigroup, as certain
almost-periodic functions. Although the finite-dimensional complex represen-
tations of a finite group are determined up to equivalence by its ordinary
characters, the corresponding combinatorial characters of a finite quasigroup,
as treated in Chapters 6 through 9, are inadequate for the task of classifying all
the finite-dimensional modules over the complex numbers. This classification
is achieved by the analytical characters.

Appendix A covers the main constructions of category theory used at vari-
ous points throughout the text. Appendix B provides a quick introduction to
universal algebraic concepts such as congruences, free algebras, and identities.
Although these two appendices might conceivably serve as synopses for mini-
courses in their respective topics, readers are referred to [165] for more detail
on categories and general algebraic methods. Appendix C summarizes the
basic facts about coalgebras that are needed for the treatment of permutation
representations in Chapter 5.

The structure of the book is summarized in the following chart.

Funda-
mentals

Permutation
representations

Combinatorial
characters

Module
theory

1

?
5 ¾ 4 ¾ 2 - 3 - 10 - 11

? ? ? ?
9.6 ¾ 9 ¾ 7 ¾ 6 - 12

?
8

Arrows show the approximate dependencies between the chapters or sections.
In case of doubt, the index may be helpful in locating keywords or symbols.
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Chapter 1

QUASIGROUPS AND LOOPS

Quasigroups may be defined combinatorially or equationally. A (combina-
torial) quasigroup (Q, ·) is a set Q equipped with a binary multiplication
operation

Q×Q → Q; (x, y) 7→ xy (1.1)

denoted by · or simple juxtaposition of the two arguments, in which speci-
fication of any two of x, y, z in the equation x · y = z determines the third
uniquely. Note that group multiplications have this property, so that any
group is a quasigroup. In particular, a quasigroup is said to be abelian if its
multiplication is commutative and associative. However, quasigroup multipli-
cations are not required to be associative. It is in this sense that quasigroups
are considered to be “nonassociative groups.”

Finite quasigroups are characterized in Section 1.1 as having bordered Latin
squares for their multiplication tables. The more general and precise equa-
tional definition of Section 1.2 describes quasigroups as universal algebras
with operations of multiplication, left and right division. Along with ho-
momorphisms, quasigroups may also be related by homotopies. New quasi-
groups, known as conjugates, are obtained by regarding the divisions as basic
multiplications (Section 1.3). For example, the nonassociative operation of
subtraction yields a conjugate of an abelian group. The conjugates of a given
quasigroup fit together to form its semisymmetrization, so that homotopies
between quasigroups correspond to homomorphisms between their semisym-
metrizations (Section 1.4). The type of a quasigroup may often be augmented
by an idempotent element to give a so-called “pique” or pointed idempotent
quasigroup (Section 1.5). If this idempotent element acts as an identity for
the multiplication, then the pique becomes a loop.

Steiner triple systems are presented in Section 1.6 as an important equa-
tionally defined class of quasigroups. Section 1.7 provides a quick introduction
to Moufang loops, more especially those obtained from Zorn’s vector matrices
and octonions. (One of the classical motivations for studying quasigroups and
loops is the need for a deeper understanding of the octonions, as the last step
in the sequence of algebras that starts with the reals and leads through the
complex numbers and quaternions.) Section 1.8 examines the symmetry that
holds between the various conjugates of a quasigroup. This symmetry is then
applied to the proof of the normal form theorem for quasigroup words in the
final Section 1.9.

1 



2 An Introduction to Quasigroups and Their Representations

1.1 Latin squares

A Latin square, such as that displayed in Figure 1.1, is an n × n square
containing n copies of each of n symbols, arranged in such a way that no
symbol is repeated in any row or column.

1 3 2 5 6 4

3 2 1 6 4 5

2 1 3 4 5 6

4 5 6 1 2 3

5 6 4 2 3 1

6 4 5 3 1 2

FIGURE 1.1: A Latin square.

Each Latin square may be bordered to yield the multiplication table of a
quasigroup. For example, labeling the rows and columns of the Latin square
of Figure 1.1 by 1, . . . , 6 in order, one obtains the multiplication table of a
quasigroup Q with 3 · 2 = 1, etc., as displayed in Figure 1.2 below.

Q 1 2 3 4 5 6

1 1 3 2 5 6 4

2 3 2 1 6 4 5

3 2 1 3 4 5 6

4 4 5 6 1 2 3

5 5 6 4 2 3 1

6 6 4 5 3 1 2

FIGURE 1.2: A Latin square yields a multiplication table.
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Conversely, the body of the multiplication table of a (finite) quasigroup Q
yields a Latin square. Consider fixed elements x and z of Q. The existence of
the solution y to the equation x · y = z means that the element z appears at
least once in the row of the multiplication table labeled by x (namely in the
column labeled y). The uniqueness of the solution y to the equation x · y = z
means that the element z appears at most once in the row of the multiplication
table labeled by x. In similar fashion, for fixed y and z in Q, the existence
and uniqueness of the solution x to the equation x · y = z means that each
element z appears exactly once in the column labeled y.

1.2 Equational quasigroups

From the algebraic point of view, the combinatorial definition of a quasi-
group given in the introduction has some serious disadvantages. In particular,
a homomorphic image of a combinatorial quasigroup need not be a quasigroup
(Exercise 2). An (equational) quasigroup (Q, ·, /, \) is thus defined as a set Q
equipped with three binary operations of multiplication, right division / and
left division \, satisfying the identities:

(IL) y\(y · x) = x ;
(IR) x = (x · y)/y ;
(SL) y · (y\x) = x ;
(SR) x = (x/y) · y .

Read x/y as “x divided by y” or “x over y.” Read x\y as “x dividing y”
or “x into y.” To reduce the number of brackets required in quasigroup
words, multiplications expressed implicitly by juxtaposition will be taken to
bind more strongly than the divisions or explicitly expressed multiplications.
With this convention, the left-hand side of (IL) reduces to y\yx, while the
associative law becomes xy · z = x · yz.

PROPOSITION 1.1
If (Q, ·, /, \) is an equational quasigroup, then (Q, ·) is a combinatorial quasi-
group.

PROOF It must be shown that knowledge of any two of x, y, z in

x · y = z (1.2)

specifies the third uniquely. Now the existence and uniqueness of z given x
and y corresponds to the functionality of the multiplication (1.1). Suppose
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that x and z are given. By (SL), y = x\z is one solution of Equation (1.2).
On the other hand, if y′ is a solution, then

y = x\z = x\(x · y′) = y′

by (IL), so the solution x\z is unique. The existence and uniqueness of x as
a solution of (1.2) given y and z follows similarly.

Conversely, suppose that (Q, ·) is a combinatorial quasigroup. For given
elements x and y of Q, define x/y as the unique solution of (SR), and y\x as
the unique solution of (SL). This defines a right division / : Q2 → Q and left
division \ : Q2 → Q that make (Q, ·, /, \) an equational quasigroup. Thus it
is usually not necessary to distinguish between the concepts of combinatorial
and equational quasigroup: one refers simply to quasigroups.

The equational definition of quasigroups means that they form a variety
(in the sense of “equationally defined class”), and are thus susceptible to
study by the methods and concepts of universal algebra. (See Appendix B
for a quick summary, or [165] for more detail). In particular, a subset P of a
quasigroup Q is a subquasigroup of Q if it is closed under the three binary op-
erations. Products of quasigroups become quasigroups under componentwise
operations. An equivalence relation V on a quasigroup Q is a congruence if
it is a subquasigroup of Q2. A function f : Q → Q′ from one quasigroup to
another is a (quasigroup) homomorphism if it preserves all three quasigroup
operations. For example, the natural projection

nat V : Q → QV ;x 7→ xV := {y | (x, y) ∈ V }
of a quasigroup Q onto the quotient by a congruence relation V is a quasigroup
homomorphism. A quasigroup Q is simple if its only congruence relations are
the equality relation and the universal relation Q2. Note that the class of
all quasigroups forms the object class of a category Q whose morphisms are
quasigroup homomorphisms.

More generally, a triple (f1, f2, f3) : Q → Q′ of maps from the underlying
set Q of one quasigroup to the underlying set Q′ of another is said to be a
homotopy if

xf1 · yf2 = (xy)f3 (1.3)

for all x, y in Q. In (1.3), one may regard juxtaposition as the multiplica-
tion in Q and · as the multiplication in Q′. The class of all quasigroups then
forms the object class of a new category Qtp whose morphisms are quasi-
group homotopies. The composite of homotopies (f1, f2, f3) : Q → Q′ and
(g1, g2, g3) : Q′ → Q′′ is the homotopy (f1g1, f2g2, f3g3) : Q → Q′′. There is
a forgetful functor

Σ : Q → Qtp (1.4)

preserving objects, and sending a quasigroup homomorphism f : Q → Q′

to the homotopy (f, f, f) : Q → Q′. A function f : Q → Q′ connecting
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the underlying sets of equational quasigroups (Q, ·, /, \) and (Q′·, /, \) is a
quasigroup homomorphism if it is a homomorphism f : (Q, ·) → (Q′, ·) for the
multiplications. Thus a homotopy (f1, f2, f3) which has equal components
f1 = f2 = f3 is an element of the image of the morphism part of the forgetful
functor (1.4).

If the fi in (1.3) are bijections, then the triple (f1, f2, f3) is said to be an
isotopy , while the domain and codomain quasigroups are said to be isotopic.
Thus isotopies are the isomorphisms (invertible morphisms) of the category
Qtp. Note that isotopy provides an equivalence relation on any set of quasi-
groups. An isotopy (g1, g2, g3) : Q → Q with equal domain and codomain
Q is said to be principal if its third component g3 is the identity map 1
or 1Q on Q. Each isotopy (f1, f2, f3) : Q → Q′ factorizes as the product
(f1, f2, f3) = (f1f

−1
3 , f2f

−1
3 , 1Q)(f3, f3, f3) of a principal isotopy and an iso-

morphism.
Given three permutations fi of the underlying set Q of a quasigroup with

multiplication denoted by juxtaposition, one may use (1.3) to define a new
quasigroup multiplication · on Q, isotopic to the original multiplication. If the
original multiplication is defined by a Latin square as discussed in Section 1.1,
then f1 corresponds to a permutation of row labels, f2 a permutation of
column labels, and f3 a permutation of the symbols (elements of Q) entered
in the Latin square.

1.3 Conjugates

A combinatorial quasigroup (Q, ·) yields an equational quasigroup (Q, ·, /, \),
which in turn yields combinatorial quasigroups (Q, /) and (Q, \). For exam-
ple, abelian groups form nonassociative quasigroups under their right division
operation, namely subtraction. But Q or (Q, ·) also yields the opposite quasi-
group Q◦ or (Q, ◦) with opposite multiplication

x ◦ y = y · x (1.5)

for x, y in Q. There are corresponding opposite divisions

x//y = y/x and x\\y = y\x (1.6)

and combinatorial quasigroups (Q, //), (Q, \\). Each quasigroup Q thus deter-
mines a full set of six potentially distinct combinatorial quasigroups, known
as the conjugates of Q.

In specifying the equational quasigroups conjugate to a given quasigroup, it
pays to be systematic. Recall that the (disjoint cycle representations of the)
elements of the symmetric group S3 on the set {1, 2, 3} may be displayed as
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the nodes of the Cayley diagram

(1) ⇐⇒ (23) ←→ (123)
l m

(12) ⇐⇒ (132) ←→ (13)
(1.7)

where the single arrows denote the action of right multiplication by the invo-
lution (12), and the double arrows denote the action of right multiplication by
the involution (23). Trading typography for geometry, one might also imagine
(1.7) displayed so that its nodes form a regular hexagon.

Now consider the equation x1 ·x2 = x3 in a quasigroup (Q, ·). Applying the
various elements of S3 from (1.7) to the suffices of the terms of this equation,
one obtains the following display of the conjugate operations

x1 · x2 = x3 ⇐⇒ x1\x3 = x2 ←→ x2//x3 = x1

l m

x2 ◦ x1 = x3 ⇐⇒ x3\\x1 = x2 ←→ x3/x2 = x1

, (1.8)

which then feature in turn as the multiplications of the conjugate equational
quasigroups

(Q, ·, /, \) ⇐⇒ (Q, \, //, ·) ←→ (Q, //, \, ◦)

l m

(Q, ◦, \\, //) ⇐⇒ (Q, \\, ◦, /) ←→ (Q, /, ·, \\)

. (1.9)

In (1.9), the multiplications cycle round in one sense

(·, \, //, /, \\, ◦),

while the right divisions and left divisions cycle round in the opposite sense:

(/, //, \, ·, ◦, \\).

Finally, note that the identities (IR) in (Q, \) and (IL) in (Q,/) yield the
respective identities

(DL) y/(x\y) = x ,
(DR) x = (y/x)\y

in the basic quasigroup divisions.
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1.4 Semisymmetry and homotopy

A quasigroup is said to be semisymmetric if it satisfies the identity

(yx)y = x .

The category of semisymmetric quasigroups and homomorphisms between
them is denoted by P. Equivalent characterizations of semisymmetry are
given by the following.

PROPOSITION 1.2

The following quasigroup identities are equivalent:

(a) (yx)y = x;

(b) y(xy) = x;

(c) y\x = xy;

(d) x/y = yx.

In particular, each holds in P.

PROOF First note that (a) holds in P, by definition. Moreover, a quasi-
group Q satisfies (a) if and only if its opposite Q◦ satisfies (b). Now if Q
satisfies (a), one has y(xy) = ((xy)x)(xy) = x there, so that (b) holds in Q.
Thus if (b) holds in Q, then (a) holds in Q◦, whence (b) holds in Q◦ and (a)
holds in Q. Finally, the implications (a)⇔(d) and (b)⇔(c) are immediate.

COROLLARY 1.1

Let (Q, ·) be a set with a binary multiplication satisfying (a) or (b). Defining
a right division by (d) and a left division by (c) then yields a semisymmetric
quasigroup (Q, ·, /, \).

Regarding (1.8) as an action of the symmetric group S3, one may restrict to
the action of the cyclic subgroup C3 generated by (123). There are two orbits
of this action: {//, \\ ·} and {/, \, ◦}. Proposition 1.2 says that a quasigroup
Q is semisymmetric if and only if all three operations of each of these orbits
agree on Q. It may thus seem that semisymmetric quasigroups are rather
special. Nevertheless, each quasigroup Q or (Q, ·, /, \) defines a semisymmetric
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quasigroup structure Q∆ on the direct cube Q3 with multiplication as follows:

( x1 , x2 , x3 ) ·

( y1 , y2 , y3 ) =

(x2//y3, x3\\y1, x1 · y2) .

(1.10)

Note that the operations used in the bottom line of (1.10) are the successive
elements of the C3-orbit {//, \\ , ·}. To verify that Q∆ is indeed a semisym-
metric quasigroup according to Corollary 1.1, note that

(y1, y2, y3) · (x2//y3, x3\\y1, x1 · y2) =(
y2//(x1 · y2),y3\\(x2//y3), y1 · (x3\\y1)

)
= (x1, x2, x3),

the components of the latter equality holding respectively by (IR), (DR), and
(SL).

Now consider a quasigroup homotopy (f1, f2, f3) : (Q, ·) → (Q′, ·). Define

(f1, f2, f3)∆ : Q∆ → Q′∆; (x1, x2, x3) → (x1f1, x2f2, x3f3). (1.11)

This map is a quasigroup homomorphism. Indeed, for (x1, x2, x3) and (y1, y2, y3)
in Q∆, one has

(x1f1, x2f2, x3f3) · (y1f1, y2f2, y3f3)
= (x2f2//y3f3, x3f3\\y1f1, x1f1 · y2f2)

=
(
(x2//y3)f1, (x3\\y1)f2, (x1 · y2)f3

)

=
(
(x1, x2, x3) · (y1, y2, y3)

)
(f1, f2, f3)∆,

the central equality holding by (1.3) and (1.8). Thus there is a functor

∆ : Qtp → P, (1.12)

known as the semisymmetrization functor , with object part (1.10) and mor-
phism part (1.11). This functor has a left adjoint, namely the restriction
Σ : P → Qtp of the forgetful functor (1.4) [156, Th. 5.2]. The semisym-
metrization functor reduces many questions about homotopies between gen-
eral quasigroups to homomorphisms between semisymmetric quasigroups. In
particular, two quasigroups are isotopic if and only if their semisymmetriza-
tions are isomorphic semisymmetric quasigroups.
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1.5 Loops and piques

A loop is a (nonempty) quasigroup Q with an identity element, an element
e such that the equations ex = x = xe hold for all x in Q. Loops form the
nonempty members of the variety of quasigroups satisfying the identity

x\x = y/y . (1.13)

In a nonempty quasigroup, both sides of this identity evaluate to the identity
element e of the loop, and then the equations ex = x, xe = x follow from
the respective quasigroup identities (x/x)x = x and x(x\x) = x. More strik-
ingly, loops may be characterized as nonempty quasigroups endowed with a
modicum of associativity:

PROPOSITION 1.3
A nonempty quasigroup Q is a loop if and only if it satisfies the “slightly

associative identity”
x(y/y) · z = x · (y/y)z. (1.14)

PROOF If Q is a loop with identity e, then y/y = e, and (1.14) follows.
Conversely, suppose that (1.14) is satisfied. Setting z = y, one obtains xy =
x(y/y) · y from (SR), so x(y/y) = x. Dividing from the left by x yields
y/y = x\x.

Augmenting the type by adding a constant, loops may also be construed as
algebras (Q, ·, /, \, e) such that (Q, ·, /, \) is a quasigroup and e is a nullary
operation satisfying the identities e · x = x = x · e. Thus loops form a variety
Lp.

It is sometimes useful to consider a more general variety Q 0 of algebras
(Q, ·, /, \, e) of the same type, in which (Q, ·, /, \) is a quasigroup, while e
is only required to satisfy the identity ee = e. Such an algebra is called a
pique, from an acronym for “pointed idempotent quasigroup.” The semisym-
metrization Q∆ of any pique (Q, ·, e) may again be construed as a pique,
with pointed idempotent (e, e, e). If (A,+, 0) is an abelian group, then the
subtraction operation yields a pique (A,−, 0) with the zero element as the
pointed idempotent. Note that (1,−1, 1) : (A, +) → (A,−) is a principal
isotopy. While groups may have nonassociative pique isotopes, they cannot
have nonassociative loop isotopes.

PROPOSITION 1.4
If a loop is isotopic to a group, then it is isomorphic to the group. In partic-
ular, isotopic groups are isomorphic.
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PROOF It suffices to consider a principal isotopy

(f, g, 1Q) : (Q, ◦, 1) → (Q, ·, /, \)

between a loop structure (Q, ◦, 1) and a group structure (Q, ·, /, \) on a set
Q, so that xf · yg = x ◦ y for x, y in Q. Since 1f · yg = 1 ◦ y = y, one has
yg = 1f\y. Similarly, xf = x/1g. Then

(1f · x · 1g) ◦ (1f · y · 1g) = 1f · x · y · 1g,

making (Q, ·) → (Q, ◦); q 7→ 1f · q · 1g the required isomorphism.

A quasigroup Q is said to be idempotent if it satisfies the identity

x · x = x. (1.15)

Write Ip for the category of idempotent quasigroups and homomorphisms.
An idempotent quasigroup Q yields a loop Q′ or (Q′, +, 0) on the disjoint
union Q′ of the set Q with a singleton {0}. The loop multiplication + is
specified by setting

x + y =

{
0 if x = y;
x · y otherwise

(1.16)

for elements x, y of Q.

PROPOSITION 1.5

Given an idempotent quasigroup Q, the specification (1.16), together with the
loop identities 0 + x = x = x + 0, defines a loop structure (Q′, +, 0) on the
disjoint union Q′ of Q and {0}.

PROOF By hypothesis, each element of Q occurs exactly once in each row
of the multiplication table of Q. Consider the augmentation of this table to
the multiplication table of Q′ by the addition of a new row and a new column,
each labeled 0. According to (1.16), the unique occurrence of x in the diagonal
position of the row labeled x in the multiplication table of Q is occupied by
0 in the multiplication table of Q′, while the element x is moved there to the
beginning of the row, the new column labeled by 0. The remaining elements
are left unchanged. Thus each element of Q′ appears exactly once in each row
of the multiplication table of Q′. The behavior of columns is similar.

The construction of Proposition 1.5 is illustrated by the example given in
Figure 1.3.
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Q 1 2 3 4

1 1 3 4 2

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4

Q′ 0 1 2 3 4

0 0 1 2 3 4

1 1 0 3 4 2

2 2 4 0 1 3

3 3 2 4 0 1

4 4 3 1 2 0

FIGURE 1.3: A unipotent loop from an idempotent quasigroup.

A quasigroup Q is said to be covered by a set {Qk | k ∈ K} of subquasi-
groups Qk of Q if each element x of Q is contained in at least one element Qk

of the set. For example, an idempotent quasigroup Q is covered by its set

{〈x〉
∣∣ x ∈ Q

}
=

{{x}
∣∣ x ∈ Q

}
(1.17)

of singleton subquasigroups. Now suppose that a loop (L,+, 0) is covered by
a set of 2-element subloops. Each such subloop is isomorphic to the cyclic
group Z/2Z. Indeed, a loop (L, +, 0) has such a cover if and only if it satisfies
the unipotent identity

x + x = 0. (1.18)

Define L2 to be the variety of unipotent loops. One may then invert the
construction of Proposition 1.5. Let L∗ denote the set of nonidentity elements
of a unipotent loop L. Define a product · on L∗ by

x · y =

{
x if x = y;
x + y otherwise

(1.19)

for elements x, y of L∗. An argument similar to that of Proposition 1.5 shows
that (L∗, ·) is an idempotent quasigroup. Then L∗′ is isomorphic to L. Con-
versely, for an idempotent quasigroup Q with corresponding loop Q′, the
quasigroup Q′∗ is isomorphic to Q.
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1.6 Steiner triple systems I

A Steiner triple system (S,B) is a finite set S together with a set B of
3-element subsets of S, with the property that each pair of distinct elements
of S is contained in exactly one element of B.

Example 1.1 Projective spaces over GF(2)
If S is the projective space PG(d, 2) of dimension d over the 2-element field,

then taking B to be the set of lines yields a Steiner triple system (S,B) which
will also be described as PG(d, 2). The points of S may be represented by
homogeneous coordinates, which in turn may be interpreted as length d + 1
binary expansions of numbers from 1 to 2d+1 − 1. In the 2-dimensional case,
one obtains

B = {246, 145, 347, 123, 257, 167, 356}
on writing each 3-element line {a, b, c} in the abbreviated form abc.

Example 1.2 Affine spaces over GF(3)
If S is the affine space AG(d, 3) of dimension d over the 3-element field, then
taking B to be the set of lines again yields a Steiner triple system (S,B)
which will also be described as AG(d, 3). The points of S may be represented
by Cartesian coordinates, which in turn may be interpreted as length d ternary
expansions of numbers from 0 to 3d−1. In the 2-dimensional case, one obtains

B = {012, 036, 048, 057, 138, 147, 156, 237, 246, 258, 345, 678}

on writing each 3-element line {a, b, c} in the abbreviated form abc.

A Steiner triple system (S,B) yields a quasigroup (S, ·) on defining x ·y = z
whenever x = y = z or {x, y, z} ∈ B. Such a quasigroup is idempotent, and
possesses the property of total symmetry expressed by the identities

x · y = x/y = x\y. (1.20)

A quasigroup is totally symmetric if and only if all its conjugates coincide.
Note that total symmetry is stronger than semisymmetry as studied in Sec-
tion 1.4.

In the other direction, each idempotent, totally symmetric quasigroup (S, ·)
yields a Steiner triple system on defining

B =
{{x, y, x · y} ∣∣ x 6= y ∈ S

}
.

It is convenient to identify each Steiner triple system (S,B) with the corre-
sponding idempotent, totally symmetric quasigroup (S, ·).
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Algebraic constructions of quasigroups furnish useful models of Steiner
triple systems. One may immediately realize AG(d, 3) as the d-th direct power
of the 3-element system AG(1, 3) or PG(1, 2). A slightly more sophisticated
construction invokes the equivalence of Section 1.5 between idempotent quasi-
groups and unipotent loops. For example, a Steiner triple system of size 39
may be constructed as follows. Consider the system Q1 = PG(1, 2) of size 3
and its direct square Q2 = PG(1, 2)2 = AG(2, 3) of size 9. These are both
idempotent quasigroups. The corresponding loops Q′1 and Q′2 in the variety
L2 have respective sizes 4 and 10, so their product Q′1×Q′

2 there has size 40.
The equivalent idempotent quasigroup (Q′1 ×Q′

2)
∗ is totally symmetric, and

identifies with the desired Steiner triple system of size 39.

1.7 Moufang loops and octonions

Let F be a field. A Zorn vector-matrix over F is a 2× 2 matrix

z =
[
α a
b β

]
(1.21)

in which α and β are scalars from F, while a and b are 3-dimensional row
vectors over F. A Zorn scalar is a vector-matrix of the form

[
α 0
0 α

]

for an element α of the field F. In particular, the Zorn identity matrix is the
vector-matrix

I =
[
1 0
0 1

]
.

The trace of the Zorn vector-matrix (1.21) is the field element

Tr(z) = α + β. (1.22)

The Zorn conjugate of the Zorn vector-matrix (1.21) is the Zorn vector-matrix

z′ =
[

β −a
−b α

]
. (1.23)

The norm or Zorn determinant of the Zorn vector-matrix (1.21) is the field
element

N(z) =
∣∣∣∣
α a
b β

∣∣∣∣ = αβ − a · b (1.24)

defined using the usual scalar product

a · b = [a1 a2 a3] · [b1 b2 b3] = a1b1 + a2b2 + a3b3
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of row vectors.

DEFINITION 1.1 The Zorn vector-matrix algebra Zorn(F) over the field
F is the 8-dimensional F-vector space of all Zorn vector-matrices over F. The
vector space operations are defined componentwise, while the product of two
Zorn vector-matrices is given as

[
α a
b β

]
·
[
γ c
d δ

]
=

[
αγ + a · d αc + δa− b× d

γb + βd + a× c b · c + βδ

]
(1.25)

using the usual vector or cross product

[a1 a2 a3]× [b1 b2 b3] =
[ ∣∣∣∣

a2 a3

b2 b3

∣∣∣∣
∣∣∣∣
a1 a3

b1 b3

∣∣∣∣
∣∣∣∣
a1 a2

b1 b2

∣∣∣∣
]

of row vectors. The field F is identified with the subalgebra of Zorn scalars;
indeed [

λ 0
0 λ

]
·
[
α a
b β

]
=

[
λα λa
λb λβ

]
=

[
α a
b β

]
·
[
λ 0
0 λ

]
(1.26)

for λ in F.

PROPOSITION 1.6
Each Zorn vector matrix z satisfies the quadratic equation

x2 − Tr(z)x + N(z) = 0 (1.27)

together with its Zorn conjugate.

PROOF The satisfaction of (1.27) follows from

z + z′ = Tr(z) (1.28)

and
z · z′ = N(z). (1.29)

(Note the identification of scalars with the corresponding Zorn scalar matri-
ces.)

The Zorn vector-matrix algebra Zorn(F) may be directly verified to satisfy
the (third) Moufang identity

zx · yz = (z · xy)z (1.30)

(Exercise 18). A loop satisfying (1.30) is said to be a Moufang loop. A
loop is said to be diassociative if each subloop generated by two elements
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is associative. The most important classical result about Moufang loops is
Moufang’s Theorem, stating that Moufang loops are diassociative [21, VII.4].

The norm in the Zorn vector-matrix algebra Zorn(F) is multiplicative, in
the sense that

N(x)N(y) = N(xy) (1.31)

for x, y in Zorn(F). (Compare Exercise 16.) For each element t of F, let Mt(F)
be the set of Zorn vector-matrices over F whose norm is t.

PROPOSITION 1.7
Under the multiplication (1.25), the set M1(F) of Zorn vector-matrices of

norm 1 forms a Moufang loop (M1(F), ·, I).

PROOF The multiplicativity (1.31) of the norm shows that M1(F) is
closed under multiplication. Consider the bilinear form

〈z | t〉 = N(z + t)−N(z)−N(t) (1.32)

given by the norm on the vector-matrix algebra, namely
〈[

α a
b β

] ∣∣∣∣
[
γ c
d δ

]〉
= αδ + βγ − a · d− b · c . (1.33)

From (1.33) it is apparent that the bilinear form is nondegenerate. Now
multiplication on the left or right by an element x of norm one preserves the
nondegenerate form. For example,

〈zx | tx〉 = N
(
(z + t)x

)−N(zx)−N(tx)
= N(z + t)N(x)−N(z)N(x)−N(t)N(x)
= N(z + t)−N(z)−N(t) = 〈z | t〉 .

Thus the right and left multiplications by x are representable by orthogonal
matrices. This implies that the multiplications are invertible, making M1(F)
a loop.

For a prime power q, let M1(q) denote the loop M1(F) over the finite field F
of order q. The group {±1} of scalars acts by multiplication on M1(q), so that
the orbits are the classes of a loop congruence on M1(q). Let M(q) denote
the corresponding quotient. Paige showed that the Moufang loops M(q) are
simple [123]. Using work of Doro [46], and the classification of finite simple
groups, Liebeck [104] showed that up to isomorphism, the M(q) are the only
nonassociative finite simple Moufang loops.

Over a field F, define the 3-dimensional unit vectors

u1 = [1 0 0], u2 = [0 1 0], u3 = [0 0 1].
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In the complex Zorn vector-matrix algebra Zorn(C), consider the elements
e0 = 1,

e4 =
[
i 0
0 −i

]
, ej =

[
0 −uj

uj 0

]
, and e4+j =

[
0 iuj

iuj 0

]

for 1 ≤ j ≤ 3. Note that e2
j = −1 for 1 ≤ j ≤ 7. Then the algebra R of real

numbers forms the real span of the subset {e0} of Zorn(C). The algebra C of
complex numbers forms the real span of the subset {e0, e1} of Zorn(C). The
algebra H of quaternions forms the real span of the subset {e0, e1, e2, e3} of
Zorn(C): indeed e1e2 = e3 = −e2e1, etc. (Compare [165, Ch. II, Ex.2.4S].)
Now

ejek ∈ {±ej∗k} (1.34)

for 1 ≤ j, k ≤ 7, the product ∗ being taken in the projective geometry PG(2, 2)
of Section 1.6. [In fact, (1.34) holds for 0 ≤ j, k ≤ 7 if the product ∗ is taken
in the unipotent loop PG(2, 2)′ of the projective geometry PG(2, 2).] Then the
real span of the subset

{e0, . . . , e7} (1.35)

of Zorn(C) forms an 8-dimensional real algebra K, the Cayley numbers or
octonions. The norms of octonions are real. The argument of the proof of
Proposition 1.7 shows that the set S7 of nonzero octonions of norm 1 forms a
Moufang loop under multiplication. (Geometrically, this set is a 7-sphere.) It
follows that the set K∗ of nonzero octonions also forms a Moufang loop, while
the full set of octonions forms a real normed division algebra.

1.8 Triality

The quasigroup conjugates introduced in Section 1.3 display a high degree
of symmetry. This symmetry is known as triality . It is very helpful for
dealing with the equational structure of quasigroups, as in the Normal Form
Theorem 1.2 in Section 1.9 below. In order to exploit the symmetry, postfix
notation is most appropriate. The quasigroup product x · y is written in
the form xyµ. A repeated product such as xy · (xz · y) is then written as
xyµ xzµ yµµ. These repeated products are parsed using the rule that each
multiplication µ multiplies the two arguments or completed products to its
immediate left. Thus xyµ xzµ yµ µ unravels as

xyµxzµ yµ µ = (xyµ) · (xzµ yµ)
= xy · (xzµ · y)
= xy · (xz · y) .
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Writing σ and τ for the respective generators (12) and (23) of S3, the Cayley
diagram (1.7) of S3 becomes

1 ⇐⇒ τ ←→ τσ
l m
σ ⇐⇒ στ ←→ στσ

.

Note that the third transposition (13) or στσ may also be written as τστ .
The six conjugate operations are correspondingly displayed in Figure 1.4 as
the successive images µg of the multiplication µ under a regular right action
by the elements g of S3.

x · y = xy µ ⇐⇒ x\y = xy µτ ←→ x//y = xy µτσ

l m

x ◦ y = xy µσ ⇐⇒ x\\y = xy µστ ←→ x/y = xy µστσ

FIGURE 1.4: Triality symmetry of the quasigroup operations.

It is interesting to note that the opposite of each operation µg is given by
µσg. In other words, passage to the opposite operation corresponds to left
multiplication by the transposition σ. The pairs of opposite operations lie in
the three respective columns of Figure 1.4.

Left multiplication by τ also has a simple interpretation. Let M be the set
of binary operations on a quasigroup. Formally, this set may be considered
as the free algebra on two generators x, y in the variety Q of quasigroups
(compare Appendix B). Define a multiplication ∗ on M by

xy(α ∗ β) = x xyα β . (1.36)

Define the binary operation ε as the right projection xyε = y.

PROPOSITION 1.8
The set M of binary quasigroup operations forms a monoid (M, ∗, ε) under

the multiplication (1.36), with identity element ε.
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PROOF First note that

xy(α ∗ ε) = xxyα ε = xyα

and
xy(ε ∗ α) = xxyεα = xyα

for α in M , so that ε is an identity element. Now consider α, β, γ in M . Then

xy
(
(α ∗ β) ∗ γ

)
= xxy(α ∗ β) γ

= x(xxyαβ)γ
= xxxyαβγ

= xx(xyα)βγ

= xxyα(β ∗ γ) = xy
(
α ∗ (β ∗ γ)

)
,

verifying the associativity of the multiplication (1.36).

The significance of the left multiplication by τ then follows.

THEOREM 1.1
For each element g of S3, the binary operation µg is an invertible element of
the monoid M , with inverse µτg. Thus the quasigroup operations generate a
subgroup of M .

PROOF The identity (IL), namely x\(x · y) = y, becomes xxyµ µτ = y
or µ ∗ µτ = ε. Similarly (SL), namely x · (x\y) = y, becomes xxyµτ µ = x or
µτ ∗ µ = ε. Thus µ and µτ are mutual inverses.

The identity (IR), namely (y · x)/x = y, may be written as x//(x ◦ y) =
y. This becomes xxyµσ µτσ = y or µτ ∗ µτσ = ε. Similarly (SR), namely
(y/x) ·x = y, may be written as x ◦ (x//y) = y. This becomes xxyµτσ µσ = y
or µτσ ∗ µτ = ε. Thus µσ and µτσ are mutual inverses.

The identity (DR), namely (x/y)\x = y, may be written as x\\(x/y) = y.
This becomes x xyµτστ µστ = y or µτστ ∗ µστ = ε. Finally (DL), namely
x/(y\x) = y, may be written as x/(x\\y) = y. This becomes xxyµστ µτστ = y
or µστ ∗ µτστ = ε. Thus µστ and µτστ are mutual inverses.

COROLLARY 1.2
A quasigroup may be defined as an algebra Q equipped with a binary operation
µg for each element g of the group S3, such that the hypercommutative law

xy µg = yxµσg

and the hypercancellation law

xxyµg µτg = y
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are satisfied for each element g of S3.

Now let H be a subgroup of S3. A quasigroup is said to be H-symmetric if
it satisfies the identity

xy µg = xy µgh (1.37)

for each g in S3 and h in H. Semisymmetry is 〈στ〉-symmetry. and total
symmetry becomes S3-symmetry in the current sense. Commutativity is just
〈σ〉-symmetry. The remaining nontrivial cases are covered by the following
proposition, whose proof is relegated to Exercise 27.

PROPOSITION 1.9
Let Q be a quasigroup.

(a) The following are equivalent:

(i) Q is 〈τ〉-symmetric;

(ii) (Q, /) is commutative;

(iii) (Q, ·) satisfies the left symmetric identity

x · (x · y) = y . (1.38)

(b) The following are equivalent:

(i) Q is 〈στσ〉-symmetric;

(ii) (Q, \) is commutative;

(iii) (Q, ·) satisfies the right symmetric identity

(y · x) · x = y . (1.39)

Together, (1.38) and (1.39) are known as symmetric identities.

1.9 Normal forms

A quasigroup Q determines a ternary relation T or

T (Q) = {(x1, x2, x3) ∈ Q3 | x1 · x2 = x3} .

known as the (ternary) multiplication table of Q. The multiplication table
has the property that for any two elements (xi, x2, x3), (x′1, x

′
2, x

′
3) of T ,

∣∣{1 ≤ i ≤ 3 | xi = x′i}
∣∣ 6= 2 .
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This property is called the Latin square property of the table T . It is equivalent
to the combinatorial property (1.1) defining quasigroup multiplications. Now
let X be a set. A partial Latin square on X is a ternary relation U on X that
has the Latin square property. Formally, one may consider a partial Latin
square as such a pair (X, U). A quasigroup Q is said to extend a partial
Latin square (X, U) if X is a subset of Q and U is a subset of T (Q). Such
an extension Q is said to be free if the embedding of X in any extension Q′

extends to a unique quasigroup homomorphism from Q to Q′. The goal of
this section is to show that each partial Latin square (X,U) possesses a free
extension Q(X,U), and to give an explicit description of the extension.

Let (X, U) be a partial Latin square. In order to describe the extension
Q(X,U), it is most convenient to construe quasigroups in the form given by
Corollary 1.2, as algebras with the set

µS3 = {µg | g ∈ S3} (1.40)

of binary operations, satisfying the hypercommutative and hypercancellation
laws. Consider the free monoid (X +µS3)∗, the set of words with letters taken
from the disjoint union X + µS3 of X with the set (1.40). The set (1.40) —
or more precisely its image in the disjoint union — acts as a set of binary
operations on (X + µS3)∗, with

µg : (w, w′) 7→ ww′µg

for w, w′ in (X + µS3)∗ and g in S3. Let WX or W be the subalgebra of
(
(X + µS3)∗, µS3

)

generated by X. An equivalence relation V will be defined on the set W of
words, such that the set WV of equivalence classes will carry the structure
of the free extension Q(X,U). Each equivalence class will be represented by
a unique word, of minimal length amongst all the words in the class. This
representative is the normal form of the words in the class.

Given a word w in W , its normal form is obtained by an iterative process
known as rewriting . The steps in the process are known as rewritng rules.
First, each instance of uvµg in w with u, v in W may be replaced by vuµσg,
to obtain a new word w′, of the same length as w. Two words are said to
be σ-equivalent if they are related by a (possibly empty) sequence of such
replacements. Note that if a word w contains r letters from µS3 , then it
has 2r σ-equivalent forms (Exercise 31). A word w from W is said to be
primary if it does not include the letters µσ, µστ , µτσ (the opposites of the
respective basic quasigroup operations ·, \, /). Each σ-equivalence class has
a unique primary representative. The normal form is chosen as the primary
representative of its σ-equivalence class.

The remaining rewriting rules are of two kinds, each reducing the length
of words. They are known as reduction rules. The first of these reduction
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rules implements hypercancellation. Thus if some σ-equivalent of w contains
an instance of uuvµg µτg with u, v in W , the subword uuvµg µτg may be
replaced by v to yield an equivalent but shorter word w′. A rewriting step of
this kind is denoted by w → w′, or more explicitly by

w
g−→ w′ . (1.41)

The second reduction rule depends on an element x = (x1, x2, x3) of the
partial Latin square U . Note that such a triple represents an equation

x1gx2gµ
g = x3g

for each element g of S3. Now if a σ-equivalent of the word w involves x1gx2gµ
g

as a subword, this subword may be replaced by x3g to yield an equivalent but
shorter word w′. A rewriting step of this kind is denoted by w → w′, or more
explicitly by

w
xg−→ w′ . (1.42)

The equivalence relation V is defined as the smallest equivalence relation
on W that contains the set of pairs (w,w′) for which either w and w′ are
σ-equivalent, or for which one of (1.41) or (1.42) holds. Note that V is a
congruence of the algebra (W,µS3).

A given word w of W initiates a maximal chain

w → w1 → w2 → · · · → w (1.43)

of reductions of types (1.41) or (1.42), with implicit σ-equivalences at the tail
of each arrow. The final node w, representing the normal form of w, is taken
to be in primary form. Note that w and w are related by V . The following
theorem shows that there is a unique normal form w terminating a reduction
chain that starts with the given word w.

THEOREM 1.2 (Normal Form Theorem)
Let w be a word in W . If w has two maximal reduction chains of type (1.43),
namely

w → w1 → w2 → · · · → wk (1.44)

and
w → w′1 → w′2 → · · · → w′l , (1.45)

then wk = w′l, so that w reduces to a unique normal form w.

PROOF The proof proceeds by induction on the length of the word w in
the alphabet X +µS3 . If the length is 1, then w is just an element x of the set
X. Now assume that the normal forms are unique for all words shorter than
w. If w cannot be reduced further, then the normal form w is just the primary
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representative of the σ-equivalence class of w. If w1 and w′1 are σ-equivalent,
then w = w1 = w′1 by the induction hypothesis, since w1 is shorter than w.
For example, if w = uuutµg µτg µg for words t, u in W , then w → w1 may
take the form

w = uu (utµg)µτg µg τg−→ utµg ,

with w → w′1 as
w = u (uutµg µτg) µg g−→ utµg .

Otherwise, w1 and w′1 are σ-inequivalent, and the reduction chains (1.44),
(1.45) begin as

w1

↗
w
↘

w′1

(1.46)

with diverging paths. It will be shown that one of the following occurs:

Triangle: There is a chain of reductions from one of w1, w′1 to the other,
without loss of generality from w′1 to w1:

w′1 → · · · → w1 .

In this case w = w1.

Diamond: There is a word w0 in W that lies on reduction chains

w1 → · · · → w0

from w1 and
w′1 → · · · → w0

from w′1. In this case w = w0.

Suppose that w = uvµg for words u, v in W . A reduction w → w1 is said to
be internal if it is of the form uvµg → u1vµg for a reduction u → u1 of u, or
else of the form uvµg → uv1µ

g for a reduction v → v1 of v. There are two
possible cases for (1.46): internal and external.

Internal case: Here the initial reductions w → w1 and w → w′1 are both
internal. If (1.46) takes the form

u1vµg

↗
w = uvµg

↘
u′1vµg
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with reduction chains u → u1 → . . . and u → u′1 → . . . for u, then the
diamond pattern occurs with w0 = uv µg. Similarly, if (1.46) takes the form

uv1µ
g

↗
w = uvµg

↘
uv′1µ

g

with reduction chains v → v1 → . . . and v → v′1 → . . . for v, the diamond
pattern occurs with w0 = uv µg. Finally, if (1.46) takes the form

u1vµg

↗
w = uvµg ,

↘
uv1µ

g

then the diamond pattern again occurs, this time as

u1vµg

↗ ↘
w = uvµg u1v1µ

g .
↘ ↗

uv1µ
g

External case: Here, at least one of the initial reductions w → w1 and
w → w′1 is not internal. If (1.46) takes the form

t
g ↗

w = uutµg µτg

↘
u1 utµg µτg

for some word t in W , then the triangle pattern occurs, as

t

g ↗ ↑ g

w = u utµg µτg u1 u1tµ
g µτg

↘ ↑
u1 utµg µτg
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Similarly, if (1.46) takes the form

t
g ↗

w = uutµg µτg

↘
uu1tµ

g µτg

then the triangle pattern occurs again, as

t

g ↗ ↑ g

w = u utµg µτg u1 u1tµ
g µτg

↘ ↑
uu1tµ

g µτg

If (1.46) takes the form

t
g ↗

w = u utµg µτg

↘
u ut1µ

g µτg

with a reduction t → t1 for t, then the diamond pattern occurs as

t
g ↗ ↘

w = uutµg µτg t1 .

↘ ↗ g
u ut1µ

g µτg

If (1.46) takes the form

s
g ↗

stµτσg stµτσg sµg µτg

‖
stµτσg s stµτσg µσg µτg

τσg ↘
stµτσg tµτg
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for words s, t in W , then the triangle pattern occurs, as

s
g ↗

stµτσg stµτσg sµg µτg ↑ στσg

‖
stµτσg s stµτσg µσg µτg t tsµστσg µστg

τσg ↘ ‖
stµτσg tµτg

— note the use of the σ-equivalences denoted by ‖. Finally, suppose that
x = (x1, x2, x3) is an element of the partial Latin square U . If (1.46) takes
the form

x2g

g ↗
w = x1g x1gx2gµ

g µτg

xg ↘
x1gx3gµ

τg

then the triangle pattern occurs, as

x2g

g ↗ ↑ xτg

w = x1g x1gx2gµ
g µτg x1τgx2τgµ

τg

xg ↘ ‖
x1gx3gµ

τg

(with ‖ as true equality this time).

COROLLARY 1.3
Two words u and v of W are related by V if and only if the normal forms u
and v coincide.

PROOF The “if” statement is immediate, since (u, u) and (v, v) both lie
in the transitive relation V . Conversely, suppose that u and v are related by
V . Then there is a chain

u = w0 ∼ w1 ∼ · · · ∼ wn−1 ∼ wn = v (1.47)

of some finite length n such that successive elements wi, wi+1 of W (for
0 ≤ i < n) are either σ-equivalent, or else related by a reduction wi → wi+1
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or wi+1 → wi. The desired equality of the normal forms will be proved by
induction on n. If n = 1, then the equality is immediate if u and v are
σ-equivalent. Otherwise, suppose without loss of generality that there is a
reduction u → v. Suppose that u and v reduce to their normal forms by
respective chains

u → u1 → · · · → u (1.48)

and
v → v1 → · · · → v

Applying the Normal Form Theorem 1.2 to the reduction chains (1.48) and

u → v → v1 → · · · → v

for u then shows that u = v.
Now suppose that the desired equality holds for all pairs u′, v′ of words

connected by chains of length less than n. Consider the chain (1.47). Then
u = w1 and w1 = v by induction, so u = v as required.

The free extension Q(X,U) of (X, U) is now obtained abstractly as the quo-
tient (WV

X , µS3). More concretely, it is realized as the quasigroup

W = {w | w ∈ W}

of normal forms, with
u v µg = u v µg

for u, v in W and g in S3. In particular, the free quasigroup generated by a
set X is the free extension Q(X,∅) of the empty partial Latin square (X,∅)
on X.

1.10 Exercises

1. Show that the integers are generated up to isomorphism by any non-
zero element of the quasigroup Z under subtraction, whereas no integer
generates (an isomorphic copy of) Z under the associative operation of
addition. (In other words, the quasigroup structure of subtraction on
the integers is more fundamental, while the addition operation is merely
a proper reduct of this structure.)

2. Let P be the set of polynomials p(X) with real coefficients. Given two
such polynomials p(X), q(X), define

p(X) ∗ q(X) = p(X) + q′(X) ,
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the sum of p(X) and the derivative of q(X). Let Q be the set of poly-
nomial sequences

(
p0(X), p1(X), . . .

)
such that pn(X) = p′n+1(X) for

n = 0, 1, . . . . Define the componentwise product
(
p0(X), p1(X), . . .

) ∗ (
q0(X), q1(X), . . .

)

=
(
p0(X) ∗ q0(X), p1(X) ∗ q1(X), . . .

)

on Q. Finally, define f : Q → P ;
(
p0(X), p1(X), . . .

) 7→ p0(X) .

(a) Show that (Q, ∗) is a combinatorial quasigroup.

(b) Show that f : (Q, ∗) → (P, ∗) is a surjective homomorphism.

(c) Conclude that a homomorphic image of a combinatorial quasigroup
need not be a combinatorial quasigroup.

3. Show that a nonempty quasigroup (Q, ·, /, \) is a group if and only if it
satisfies the identity x\yz = (x\y)z.

4. A quasigroup Q is said to be entropic if the operation (1.1) is a homo-
morphism from Q × Q to Q. Show that Q is entropic if and only if it
satisfies the identity

xy · zt = xz · yt . (1.49)

(The name “entropic” means “inner turning,” and refers to the switching
of the variables y and z between the two sides of (1.49) [53, p.444]. Many
other names have been used in the literature, such as “abelian” [119],
“surcommutative” [166], “transposition property” [133] and “medial”
[168]. Of these, only the latter has retained some currency, although
Soublin [166] used it to mean something different.)

5. (a) Show that up to isomorphism, there are just two quasigroups of
order 3 that are not commutative.

(b) Show that the two nonisomorphic quasigroups of (a) are obtained
as respective conjugates of a group of order 3.

6. The semisymmetrization (1.10) uses the operations from the C3-orbit
{//, \\ , ·} in (1.8). Is it possible to build a semisymmetrization using
the operations from the second C3-orbit {/, \, ◦}?

7. If the quasigroup (Q, ·, /, \) is a group, show that

x · y = x/((z/z)/y) .

8. Show that a nonempty quasigroup is a group if and only if it satisfies
the identity

(x/y)/(y/z) = x/z .
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9. (a) Prove that a finite, idempotent and commutative quasigroup has
odd order.

(b) Conclude that a finite, unipotent and commutative loop has even
order.

10. Show that the quasigroup identities (1.15) of idempotence and (1.20)
of total symmetry are equivalent to idempotence (1.15), commutativity,
and the right symmetric identity (1.39).

11. For which positive integers n do the constructions of Section 1.6 furnish
a Steiner triple system of size n?

12. Exhibit a totally symmetric quasigroup that is neither a loop nor a
Steiner triple system.

13. Let e be an element of a totally symmetric quasigroup (Q, ·). Show that
x + y = e · xy defines a loop Fe(Q, ·) = (Q, +, e).

14. [99] Show that a quasigroup Q is a union of three proper nonempty
subquasigroups whose common intersection is empty if and only if the
idempotent 3-element quasigroup is a quotient of Q.

15. Let (Q, ·, 1) be a group in which each nonidentity element has order 3.
Define a new multiplication on Q by

x ◦ y = y2xy2 .

Show that (Q, ◦, 1) is a commutative Moufang loop.

16. Give a direct verification of the multiplicativity (1.31) of the norm in a
Zorn vector-matrix algebra.

17. Show that the Moufang loop M1(2) has 120 elements.

18. Show that the Zorn vector-matrix algebra Zorn(F) satisfies the third
Moufang identity (1.30) as well as the first or left Moufang identity

(zy · z)x = z(y · zx) (1.50)

and the second or right Moufang identity

x(z · yz) = (xz · y)z . (1.51)

19. (a) Show that the 8-element set

{±e0,±e1,±e2,±e3}

of signed elements from (1.35) forms a group, the quaternion group.
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(b) Show that the 16-element set

{±e0,±e1, . . . ,±e7}

of signed elements from (1.35) forms a Moufang loop, the octonion
loop.

20. Show that a 4-vector (t, r) in Minkowski spacetime (with the speed of
light normalized to c = 1) may be identified with the element

[
t −r
r −t

]

of the real Zorn vector-matrix algebra Zorn(R), so that the norm be-
comes the Lorentz metric.

21. Pick units with the dielectric constant and permeability normalized to
1. Defining the differential operator matrix

D =
[− ∂

∂t ∇
∇ − ∂

∂t

]
, (1.52)

the field matrix

F =
[

0 −E + B
E + B 0

]
,

and the 4-current

j =
[
ρ −j
j −ρ

]
,

show that Maxwell’s equations may be written as the single equation

DF = J

in the real Zorn vector-matrix algebra Zorn(R).

22. For D as in (1.52) and for

D =
[− ∂

∂t −∇
−∇ − ∂

∂t

]
,

show that DD = ∆ · I with the Laplacian

∆ =
∂2

∂t2
−∇2

in the real Zorn vector-matrix algebra Zorn(R).
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23. Defining the electromagnetic potential matrix

P =
[
ϕ −A
A −ϕ

]
,

with F = DP , obtain the wave equation

∆P = J

in the real Zorn vector-matrix algebra Zorn(R). (Hint: apply the dias-
sociativity of Moufang loops.)

24. (a) Manin [111] defines a quasigroup (Q, ·) to be Abelian if it is totally
symmetric, and if for each element e of Q, the loop Fe(Q, ·) =
(Q, +, e) in Exercise 13 is an abelian group. Let V be an irreducible
cubic curve in the complex projective plane PG(2,C). Let Q be the
set of simple points of V . Specify the ternary multiplication table
of a quasigroup structure (Q, ·) on Q to consist of collinear triples
(x, y, z). If two of x, y, z coincide, then the line on which they lie
is tangent to V . All three coincide if and only if x is a flex of V .
Show that (Q, ·) is an Abelian quasigroup [62, Lemma 17.3].

x

y z

x

z x

x·y = z x·x = z x·x = x

(b) [111] A quasigroup (Q, ·) is said to be a CH-quasigroup or cubic
hypersurface quasigroup if each set of at most three elements of Q
generates an Abelian subquasigroup. Show that a CH-quasigroup
is totally symmetric.

(c) [111] Suppose that e is an element of a CH-quasigroup (Q, ·). Show
that the loop Fe(Q, ·) in Exercise 13 is a commutative Moufang loop
with identity element e.

(d) [111] If e and f are elements of a CH-quasigroup (Q, ·), show that
the Moufang loops Fe(Q, ·) and Ff (Q, ·) are isomorphic.

25. Consider the monoid M in Proposition 1.8. Let Q be a quasigroup.
Show that M acts on Q2 by (x, y)α = (x, xy α) for α in M .

26. Let Ω be a set equipped with bijections

σ : Ω → Ω; ω 7→ σω (1.53)
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and
τ : Ω → Ω; ω 7→ τω . (1.54)

For example, if Ω is a group with elements σ and τ , then σω in (1.53)
and τω in (1.54) may just be products in the group Ω. Then a pair
(Q, Ω) consisting of a set Q and the set Ω is a hyperquasigroup if there
is a map

Q2 × Ω → Q : (x, y, ω) 7→ xy ω

such that the hypercommutative law

xy ω = yx σω

and the hypercancellation law

x(xy ω) τω = y

are satisfied for x, y in Q and ω in Ω. For each ω in Ω, consider the
binary operation

ω : Q2 → Q; (x, y) → xy ω .

(a) Show that each quasigroup Q forms a hyperquasigroup (Q, S3) with
σ = (12) and τ = (23).

(b) Let Q be a vector space over a field F . Let Ω = F r {0, 1}, with

σ : Ω → Ω; ω 7→ 1− ω

and
τ : Ω → Ω; ω 7→ ω−1 .

For each x, y in Q and ω in Ω, define xy ω = x(1− ω) + yω. Show
that (Q, Ω) is a hyperquasigroup.

(c) If (Q, Ω) is a hyperquasigroup, show that (Q, ω ) is a combinatorial
quasigroup for each ω in Ω.

(d) If (Q, Ω) is a hyperquasigroup, show that (Q, σω , στω , τσω ) is
an equational quasigroup for each ω in Ω.

27. (a) Suppose that (1.37) is satisfied for all h in H and for one element
g of S3. Show that (1.37) is then satisfied for all g in S3 and all h
in H.

(b) Prove the equivalences claimed in Proposition 1.9.

28. Let Q be a quasigroup. Show that the ternary multiplication table T (Q)
is the set of idempotent elements of the semisymmetrization Q∆.

29. Let X be a set of finite size n. If U is a partial Latin square on X, show
that |U | ≤ n2.
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30. Let Q and Q′ be free extensions of a partial Latin square (X, U). Show
that there is an isomorphism θ : Q → Q′ restricting to the identity on
the subset X of Q and Q′.

31. Let X be a set, and let w be a word in the subalgebra WX of
(
(X + µS3)∗, µS3

)

generated by X. Suppose that w includes r letters from µS3 .

(a) If r = 0, show that the σ-equivalence class of w is a singleton.
(b) If w = uvµg for u, v in WX and g in S3, suppose that the respective

sizes of the σ-equivalence classes of u and v are m and n. Show
that the σ-equivalence class of w has 2mn elements.

(c) Use induction to show that the σ-equivalence class of w has 2r

elements.

32. For each subgroup H of S3, define a partial Latin square (X, U) to be
H-symmetric if

(x1, x2, x3) ∈ U ⇒ (x1h, x2h, x3h) ∈ U

for all h in H.

(a) Show that a quasigroup Q is H-symmetric (as a quasigroup) if and
only if its ternary multiplication table T (Q) is H-symmetric (as a
partial Latin square).

(b) Derive a Normal Form Theorem for H-symmetric quasigroups by
suitable identification of the operations µg used in the proof of
Theorem 1.2.

33. Define a partial Latin square (X, U) on a set X to be idempotent if

(x, x, x) ∈ U

for all x in X. For each subgroup H of S3, derive a Normal Form
Theorem for the class of idempotent H-symmetric quasigroups. If a
word w from W contains an instance of uuµg for a word u from W ,
the subword uuµg may be replaced by u. Obtain a new reduction rule
w → w′, or more explicitly

w
Ig−→ w′ .

Then for the instances

u
Ig ↗

w = uuµg

↘
u1uµg

and

u
Ig ↗

w = uuµg

↘
uu1µ

g
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of (1.46) in the external cases of the proof of the Normal Form Theorem,
show that the respective diamond patterns

u
Ig ↗ ↘

w = uuµg u1

↘ ↑ Ig

u1uµg → u1u1µ
g

and
u

Ig ↗ ↘
w = uuµg u1

↘ ↑ Ig

uu1µ
g → u1u1µ

g

are obtained.

1.11 Notes

Section 1.2

The equational definition of quasigroups is due to T. Evans [55].

Section 1.3

The conjugates of a quasigroup are also known as “derived quasigroups”
[86] or “parastrophes” [125, p. 43] [137].

Section 1.4

Semisymmetric quasigroups have also been described as “3-cyclic.” They
were studied by Osborn [122], Sade [138, 139, 140, 141], Mendelsohn [114, 115],
Grätzer and Padmanabhan [66], Mitschke and Werner [117], and DiPaola
and Nemeth [42]. Their use for reducing homotopies to homomorphisms first
appeared in [156], inspired by work of Gvaramiya and Plotkin that interpreted
homotopies as homomorphisms of heterogeneous algebras [72]. The classical
approach to studying properties of a quasigroup invariant under isotopy was
geometrical, through the concept of a 3-net, as presented by Exercise 10 in
Chapter 2 and Exercise 6 in Chapter 3 below [3, p. 74], [13, Ch. XI], [125,
Ch. II], [165, Th. I.4.5].
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Section 1.5

The construction of a unipotent loop from an idempotent quasigroup goes
back to Bruck [19]. For related constructions and further discussion, see [28,
Ex. II.7.5].

Section 1.6

Readers unfamiliar with elementary geometric concepts are referred to [62].
The discussion of the “nine point configuration” (the AG(2, 3) of Example 1.2)
in [62, §13.2] helps elucidate why Steiner’s name is attached to the triple
systems. Note that Fig. 17.3 in [62] only shows 10 of the 12 blocks.

Section 1.7

Zorn’s vector-matrix algebra was presented in [179]. For more details on
the octonions, see [33] and [50]. For a discussion of some physical applications
beyond those given in Exercises 20 through 23, see [45].

Section 1.8

It is convenient to call the right action of S3 on the quasigroup operations
(and their opposites) the semantic action, describing the left action as the
syntactic action. The syntactic action is less well known than the semantic
action. A general result of Movsisyan [118] implies that the quasigroup oper-
ations form a subgroup of the monoid M , but does not address the specific
description of the inverses given by Theorem 1.1 in terms of the syntactic
action.

The symmetric identities (with a parity depending on the conventions used
for mappings) appear in Loos’ axiomatization of symmetric spaces [107]. Com-
pare the description of reflections in [134, §4.1].

A more restricted version of the triality symmetry is observed in Moufang
loops — see Exercise 21 in Chapter 2, and [33, Ch. 7, 8].

Section 1.9

In its original version, the Normal Form Theorem 1.2 is due to T. Evans
[56]. Evans used the language of equational quasigroups (which he had just
introduced in [55]). The only symmetry of this theory is the duality between
left and right (compare Exercise 8 in Chapter 2). As a result, Evans’ proof
involved consideration of 15 external cases, as opposed to the 5 that are needed
when the full triality symmetry is used.

Evans’ Normal Form Theorem was remarkable for being the first example
of a so-called convergent rewriting system. Later, Knuth and Bendix gave a
convergent rewriting system for groups [101]. For more details, see [38].

 



Chapter 2

MULTIPLICATION GROUPS

This chapter introduces some of the permutation groups on the underlying set
of a quasigroup that result from the quasigroup structure. These groups are
key tools of quasigroup theory. The most accessible are the combinatorial mul-
tiplication groups of Section 2.1, the faithful permutation groups generated
by the right and left multiplications. As discussed in Section 2.2, the combi-
natorial multiplication group construction yields a functorial assignment only
to surjective quasigroup homomorphisms. The diagonal action of the combi-
natorial multiplication group on the direct square of a quasigroup yields the
quasigroup congruences as the invariant equivalence relations (Section 2.3).
(This diagonal action is the cornerstone of the combinatorial character theory
in Chapters 6 and 7.) Section 2.4 considers point stabilizers in the combina-
torial multiplication group, and the extent to which they generalize the inner
automorphism groups of groups. Section 2.5 examines transversals to the
point stabilizers. The concept of a loop transversal, essentially going back to
Baer, shows how loops arise as a generalization of quotient groups when one
relaxes the requirement of normality on a subgroup of a group. Section 2.6
discusses an application of the loop transversal concept to algebraic coding
theory. It provides a nice illustration of the way that quasigroup-theoretical
concepts may yield new insights even within the context of abelian groups. In
Section 2.7, the universal multiplication group U(Q;V) of a quasigroup Q in a
given variety V of quasigroups, possibly in the variety Q of all quasigroups, is
introduced as a completely functorial multiplication group construction. The
universal multiplication group of Q acts on Q via its quotient, the usual or
combinatorial multiplication group of Q that is defined in Section 2.1. The
corresponding stabilizers are examined in Section 2.8, ready for their applica-
tion to the module theory of Chapter 10.

2.1 Combinatorial multiplication groups

Let q be an element of a set (Q, ∗) equipped with a binary multiplication.
The right multiplication RQ(q) or R∗(q) is defined as the map

R(q) : Q → Q; x 7→ x ∗ q . (2.1)

35 
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The left multiplication LQ(q) or L∗(q) is defined as the map

L(q) : Q → Q; x 7→ q ∗ x . (2.2)

If (Q, ∗) is a quasigroup, then the right and left multiplications are elements
of the group Q! of bijections from the set Q to itself. For example, the identity
(IR) says that each R(q) injects, while (SL) gives the surjectivity of L(q). The
(combinatorial) right multiplication group of Q is the subgroup RMlt Q of Q!
generated by

{R(q) | q ∈ Q}. (2.3)

The (combinatorial) left multiplication group of Q is the subgroup LMlt Q of
Q! generated by

{L(q) | q ∈ Q}. (2.4)

The (combinatorial) multiplication group of Q is the subgroup G or Mlt Q of
Q! generated by

{R(q), L(q) | q ∈ Q}. (2.5)

By (SL) and (SR) respectively, the right and left multiplication groups act
transitively on Q; in particular MltQ acts transitively on Q. This action has
a useful graphical representation: the Cayley graph CayQ of a quasigroup Q
is defined to be a labeled directed graph with vertex set Q. For each ordered
pair (x, y) of vertices, there are two directed edges, namely

R(x ↘ y) := 〈x,R(x\y), y〉 or x
R(x\y)−−−−−−−−→ y or x

R−→ y (2.6)

and

L(y ↙ x) := 〈x, L(y/x), y〉 or y
L(y/x)←−−−−−−−− x or y

L←− x . (2.7)

For a fixed quasigroup Q, the edge R(x ↘ y) of (2.6) is called the right-labeled
edge from x to y, while the edge L(y ↙ x) of (2.7) is called the left-labeled
edge from x to y. The label of R(x ↘ y) is defined to be R(x\y), while the
label of L(y ↙ x) is defined to be L(y/x).

Example 2.1
Let Q be a group. Cayley’s Theorem may be formulated as saying that there
are group isomorphisms

R : Q → RMltQ; q 7→ R(q)

and
L : Q → LMltQ; q 7→ L(q−1).

Moreover, there is an exact sequence

1 −→ Z(Q) ∆−→ Q×Q
T−→ Mlt Q −→ 1
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of groups with ∆ : z 7→ (z, z) and T : (x, y) 7→ L(x)−1R(y). The associative
law makes T a group homomorphism. The sequence is exact at Mlt Q since
T (1, x) = R(x) and T (x−1, 1) = L(x) for x in Q. If T (x, y) = L(x)−1R(y) =
1G, then 1Q = 1QT (x, y) = 1QL(x)−1R(y) = x−1y, so that y = x, and then
for any q in Q one has q = qT (x, x) = x−1qx. Thus x lies in the center Z(Q)
of Q, and the sequence is exact at Q×Q.

Example 2.2
For a positive integer n, let Q be the cyclic group Z/nZ of integers modulo n,
considered as a quasigroup under subtraction. Then the set (2.5) is already
a subgroup of Q!, isomorphic to the dihedral group Dn. In fact this is the
simplest specification of the dihedral group Dn, as the multiplication group
of the quasigroup of integers modulo n under subtraction. It requires no
geometry, split extensions, or presentation by generators and relations.

For a subquasigroup P of a quasigroup Q, the relative left multiplication
group of P in Q is the subgroup LMltQ(P ) of Mlt Q generated by

LQ(P ) = {L(p) : Q → Q | p ∈ P}. (2.8)

The relative right multiplication group RMltQ(P ) is defined similarly. The
relative multiplication group MltQ(P ) of P in Q is the smallest subgroup of
Q! containing the relative left and right multiplication groups of P in Q.
Restriction yields a group epimorphism

MltQ(P ) → Mlt P (2.9)

from the relative multiplication group of P in Q to the combinatorial multi-
plication group of P . Note that the combinatorial multiplication groups of P
are the respective relative multiplication groups of P in itself.

If Q is a group and P is nonempty, then the set of orbits of LMltQP on Q
is the set

P\Q = {Px | x ∈ Q } (2.10)

of cosets of P . The set of orbits of MltQP on Q is the set of double cosets of
P in Q.

2.2 Surjections

For a quasigroup (Q, ·, /, \), the typical element of the combinatorial multi-
plication group Mlt Q will be denoted by E1(q1)ε1 . . . En(qn)εn , where n ∈ N,
εi = ±1, Ei = RQ or LQ, and qi ∈ Q. By convention an element of Mlt Q
in this form with n = 0 is taken to be the identity element. The generic
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element E1(q1)ε1 . . . En(qn)εn will also be denoted by EQ or EQ(q1, . . . , qn).
For q in Q and EQ in Mlt Q, there is then a quasigroup word wE such that
qEQ(q1, . . . , qn) = wE(q, q1, . . . , qn) or qq1 . . . qnwE . The words wE are de-
fined inductively by w1(q) = q,

wER(qn+1)(q, q1, . . . , qn, qn+1) = wE(q, q1, . . . , qn) · qn+1,

wER(qn+1)−1(q, q1, . . . , qn, qn+1) = wE(q, q1, . . . , qn)/qn+1,

wEL(qn+1)(q, q1, . . . , qn, qn+1) = qn+1 · wE(q, q1, . . . , qn),

wEL(qn+1)−1(q, q1, . . . , qn, qn+1) = qn+1\wE(q, q1, . . . , qn).

If V is a congruence on Q, the natural projection nat V induces an epimor-
phism

Mlt nat V : Mlt Q → Mlt QV ; (2.11)

EQ(q1, . . . , qn) 7→ EQV (qV
1 , . . . , qV

n ).

This epimorphism is well-defined. Indeed, suppose that EQ(p1, . . . , pm) and
FQ(q1, . . . , qn) are elements of MltQ. Then for each q in Q, one has

EQ(p1, . . . , pm) = FQ(q1, . . . , qn)
⇒ qEQ(p1, . . . , pm) = qFQ(q1, . . . , qn)
⇒ wE(q, p1, . . . , pm) = wF (q, q1, . . . , qn)

⇒ wE(qV , pV
1 , . . . , pV

m) = wF (qV , qV
1 , . . . , qV

n )

⇒ EQV (pV
1 , . . . , pV

m) = FQV (qV
1 , . . . , qV

n ).

Generalizing (2.11) slightly, one obtains a combinatorial multiplication group
functor Mlt from the category of surjective quasigroup homomorphisms to
the category of group epimorphisms, taking a morphism f : P → Q to

Mlt f : Mlt P → Mlt Q; EP (p1, . . . , pm) 7→ EQ(p1f, . . . , pmf). (2.12)

Unfortunately, for quasigroup homomorphisms f : P → Q that are not sur-
jective, the attempt to make Mlt a functor by extending (2.12) fails. Tak-
ing P = {1} and f the injection f : 1 7→ 1 of P in the projective space
Q = PG(1, 2) = {1, 2, 3}, note that RP (1) is the identity element (indeed the
only element) of Mlt P , whereas RQ(1f) = RQ(1) = (23) in the symmetric
group S3.

2.3 The diagonal action

Let Q be a quasigroup with combinatorial multiplication group G. Then G
has a diagonal action

G → (Q×Q)!; g 7→ (
(x1, x2) 7→ (x1g, x2g)

)
(2.13)
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on Q×Q. The following proposition shows that the congruences on a quasi-
group Q are precisely the congruences of the G-set Q.

PROPOSITION 2.1
An equivalence relation V on the quasigroup Q is a congruence on Q if and

only if the subset V of Q×Q is invariant under the diagonal action of G on
Q×Q.

PROOF If V is invariant, it must be shown to be a subquasigroup of
Q×Q. Suppose xV y and z V t. Then

(xz, yz) ∈ V R(z) ⊆ V and (yz, yt) ∈ V L(y) ⊆ V,

whence (xz, yt) ∈ V by the transitivity of V . Thus V is closed under multi-
plication. It follows that V contains

((y, x)((z, t)L(y)−1))L(x)−1 = (zL(x)−1, tL(y)−1) = (x\z, y\t),

i.e. V is closed under left division. Closure under right division follows by
symmetry. Thus V is a subquasigroup of Q×Q.

Conversely, suppose V is a congruence on Q. For q in Q and (x, y) in V ,
one has

(x, y)R(q) = (xR(q), yR(q)) = (xq, yq) = (x, y)(q, q) ∈ V .

and similarly (x, y)R(q)−1 = (x, y)/(q, q) ∈ V , (x, y)L(q) = (q, q)(x, y) ∈ V ,
(x, y)L(q)−1 = (q, q)\(x, y) ∈ V . Thus V is an invariant subset of the G-set
Q×Q.

Recall that the action of a group H on a set X is said to be primitive if it
is transitive, and the only H-congruences on X are the trivial congruence X̂
and the improper congruence X2.

COROLLARY 2.1
A quasigroup Q is simple if and only if the combinatorial multiplication group
G acts primitively on Q.

More generally, each congruence V on a quasigroup Q determines a normal
subgroup of Mlt Q, namely

V ] = {g ∈ Mlt Q | ∀q ∈ Q, (q, qg) ∈ V }. (2.14)

Indeed, for each h in Mlt Q, and for each g in V ], one has

∀q ∈ Q, (qh−1, qh−1g) ∈ V = V h−1
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by Proposition 2.1. Thus ∀q ∈ Q, (q, qh−1gh) ∈ V , so that h−1gh ∈ V ].
The normal subgroup V ] is the set of elements of Mlt Q whose orbits on Q
lie entirely within V -classes. It may also be interpreted as the group kernel
of the homomorphism (2.11).

Working in the other direction, consider a normal subgroup N of Mlt Q. For
elements x and y of Q, note that xN = yN implies xgN = xNg = yNg = ygN
for each g of Mlt Q. Thus the kernel N [ of the projection x 7→ xN from Q to
the set Q/N of orbits of N on Q is a congruence on Q by Proposition 2.1. In
other words, the orbit set Q/N carries a quasigroup structure with xN ·yN =
(xy)N for x, y in Q. Finally, it is worth remarking that N 7→ N [] is a closure
operator on the set of normal subgroups of the combinatorial multiplication
group Mlt Q of the quasigroup Q.

2.4 Inner multiplication groups of piques

For an element e of a (nonempty) quasigroup Q with combinatorial mul-
tiplication group G, let Ge denote the stabilizer {g ∈ G | eg = e} of e in
G. Note that for each element g of G, the stabilizer Geg is the conjugate
Gg

e = g−1Geg of Ge by g. Since the permutation group G is transitive, the
stabilizers of elements of Q are all conjugate to each other. If Q is a group
with identity element e, then

Ge = {T (x, x) | x ∈ Q} (2.15)

in the notation of Example 2.1. Thus Ge in this case is the inner automorphism
group Inn Q of Q. If Q is a pique with pointed idempotent e, the stabilizer Ge

of the pointed idempotent is called the inner multiplication group (or inner
mapping group) Inn Q of Q. As the following example shows, Inn Q need not
consist entirely of automorphisms of Q, even if e is the identity element of a
loop Q.

Example 2.3
Consider the loop (Q′, +, 0) of Figure 1.3. It has R(1) = (01)(243), R(2) =

(02)(134), and R(3) = (03)(142), whence R(1)R(2)R(3) = (24) ∈ InnQ.
Then 1(24) + 2(24) = 1 + 4 = 2 6= 3 = 3(24) = (1 + 2)(24), so that (24) is not
an automorphism of Q.

If the inner multiplication group Inn Q of a loop Q does consist entirely of
automorphisms, then Q is described as an A-loop. Despite the phenomenon
of Example 2.3, it is often convenient to think of the stabilizer Ge of an
element e of a quasigroup Q as a generalization of the concept of the inner
automorphism group of a group.
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For a pique (Q, ·, /, \, e) with pointed idempotent e, it is conventional to
set R = R(e) and L = L(e). Note that R and L lie in Inn Q. The cloop or
corresponding loop of the pique Q is the loop B(Q) or (Q, +,−,r, e) with





x + y = xR−1 · yL−1
;

x− y = (x/yL−1
)R;

xr y = (xR−1\y)L.

(2.16)

Inverting (2.16), the pique Q is recovered from its cloop B(Q) by




x · y = xR + yL;
x/y = (x− yL)R−1

;
x\y = (xR r y)L−1

.

(2.17)

The first equations of (2.16) and (2.17) exhibit principal isotopies between
the pique and its cloop. For an element x of Q, (2.17) yields

{
L(x) = LL+(xR);
R(y) = RR+(yL),

(2.18)

while (2.16) yields {
L+(x) = L−1L(xR−1);
R+(y) = R−1R(yL−1).

(2.19)

Thus the multiplication group of the cloop is a subgroup of the multiplication
group of the pique. Indeed

Mlt Q =
〈
Mlt B(Q), R, L

〉
. (2.20)

by (2.18).

2.5 Loop transversals and right quasigroups

Let e be an element of a (nonempty) quasigroup Q with combinatorial
multiplication group G. The main aim of this section is to introduce certain
transversals to the stabilizer Ge of e in G. Recall that a (right) transversal
T to a subgroup H of a group G is a full set of unique representatives for the
set {Hx | x ∈ G} of right cosets of H. In other words, there are surjections
δ : G → H and ε : G → T such that

G → H × T ; g 7→ (gδ, gε) (2.21)
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is a two-sided inverse to the product map

H × T → G; (h, t) 7→ ht. (2.22)

In particular,
g = gδgε (2.23)

for each element g of G. The transversal T is said to be normalized if 1ε = 1.
On each transversal T , a binary multiplication ∗ and right division ‖ are

defined by
t ∗ u = (tu)ε and t‖u = (tu−1)ε. (2.24)

Now a right quasigroup Q is defined to be an algebra (Q, ·, /) with a binary
multiplication · and right division / such that the identities (IR) and (SR)
are satisfied. A right quasigroup Q is said to be a right loop (Q, ·, /, e) if
it contains a two-sided identity element e. The structures of left quasigroup
(Q, ·, \) and left loop (Q, ·, \, e) are defined dually.

PROPOSITION 2.2
Let T be a transversal to a subgroup H of a group G. Then (T, ∗, ‖) is a right
quasigroup. Moreover, if T is normalized, then (T, ∗, ‖, 1) is a right loop.

PROOF For elements t and u of T , the equation (IR) written in the form
(t ∗ u)‖u = t follows from

H((t ∗ u)‖u) = H(t ∗ u)u−1 3 (tu)u−1 = t ∈ Ht

and the disjointness of distinct cosets of a subgroup of a group. In similar
fashion, (SR) in the form (t‖u) ∗ u = t follows from

H((t‖u) ∗ u) = H(t‖u)u 3 (tu−1)u = t ∈ Ht .

Finally, if T is normalized, one has the containments H(1 ∗ t) 3 1t = t ∈ Ht
and H(t ∗ 1) 3 t1 = t ∈ Ht showing that T forms a right loop.

To within isomorphism, each right loop is obtained by the construction
of Proposition 2.2. To obtain a suitable group G, note that for any right
quasigroup Q, one may define right multiplications as in Section 2.1. The
identities (IR) and (SR) again confirm that these right multiplications biject.
Define the right multiplication group as in Section 2.1. This is a group G
of permutations on Q. For left quasigroups, an analogous left multiplication
group is defined.

PROPOSITION 2.3
Let (Q, ·, /, e) be a right loop. Then there is a transversal T to a subgroup H
of a group G such that (Q, ·, /, e) is isomorphic to (T, ∗, ‖, 1).
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PROOF The right multiplication group G of Q acts transitively, since the
orbit of e covers Q. Let H be the stabilizer of e in G. Then T = {R(x) | x ∈ Q}
is a normalized transversal to H in G. Finally, R : Q → T is the desired
isomorphism. Note that R(x) = R(y) ⇒ x = eR(x) = eR(y) = y.

DEFINITION 2.1 A normalized transversal T to a subgroup H of a group
G is said to be a loop transversal if the right loop (T, ∗, ‖, 1) of Proposition 2.2
is a (two-sided) loop, or in other words, if for each ordered pair (t, u) of
elements of T , the equation

t ∗ x = u (2.25)

has a unique solution x in T .

PROPOSITION 2.4
Let T be a normalized transversal to a normal subgroup N of a group G.

Then:

(a) the transversal T is a loop transversal, and

(b) the loop (T, ∗, 1) is isomorphic to the quotient group G/N .

PROOF The set bijection T → G/N ; t 7→ Nt becomes a right loop
isomorphism, since for t, u in T , one has N(t ∗ u) = Ntu = NtNu.

PROPOSITION 2.5
Let T be a normalized transversal to a subgroup H of a group G. Then T is

a loop transversal if and only if it is a transversal to each conjugate Hg of H
in G.

PROOF Suppose first that T is a loop transversal. Note that

Hg = g−1Hg = (gδgε)−1Hgδgε = Hgε.

Then for x in T and a in G,

a ∈ Hgx ⇔ a ∈ Hgεx ⇔ gε · a ∈ Hgε · x
⇔ (gε · a)ε = (gε · x)ε ⇔ gε ∗ x = (gε · a)ε.

Since (T, ∗, 1) is a loop, there is a unique solution x to the latter equation.
Thus x exists as a unique solution to the first containment, making T a
transversal to the conjugate subgroup Hg.

Conversely, suppose that T is a transversal to each conjugate of H in G.
For each ordered pair (t, u) of elements of T , it must be shown that (2.25) has
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a unique solution x. But

t ∗ x = u ⇔ (tx)ε = u ⇔ Hu = H(tx)ε = Htx

⇔ u ∈ Htx ⇔ t−1u ∈ Htx.

Since T is a transversal to Ht, there is a unique x in T for which t−1u ∈ Htx,
and thus for which t ∗ x = u.

Given a quasigroup Q with multiplication group G, define a mapping

ρ : Q×Q → G; (x, y) 7→ R(x\x)−1R(x\y). (2.26)

PROPOSITION 2.6
The mapping ρ : Q×Q → G has the following properties:

(P1) For each x in Q, ρ(x, x) = 1;

(P2) For x, y in Q, xρ(x, y) = y;

(P3) For x, y in Q, x = y ⇔ ρ(x, y) = 1;

(P4) The derived quasigroup operation

P : Q3 → Q; (x, y, z) 7→ xρ(y, z) (2.27)

satisfies the identities

(x, x, z)P = z and (x, y, y)P = x ; (2.28)

(P5) For each e in Q, the set

T = {ρ(e, x) | x ∈ Q} (2.29)

is a normalized loop transversal to the stabilizer Ge of e in G;

(P6) For each e in Q, NG(Ge) =
⋃{Geρ(e, x) | xGe = {x}};

(P7) For e, x in Q, one has xGe = {x} ⇔ ρ(e, x) ∈ Z(G).

PROOF Most of these properties follow directly. For (P5), first note that

ε : G → T ; g 7→ ρ(e, eg)

establishes T as a normalized transversal to Ge in G. Then for x, y in Q, one
has

ρ(e, x) ∗ ρ(e, y) = (ρ(e, x)ρ(e, y))ε

= ρ(e, eρ(e, x)ρ(e, y))
= ρ(e, xρ(e, y)) = ρ(e, (x, e, y)P ).
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Thus ρ(e, x) 7→ x gives a right loop isomorphism from (T, ∗) to Q equipped
with the multiplication

x +e y = (x, e, y)P = xR(e\e)−1 · yL(e)−1. (2.30)

By (2.30), it is apparent that (R(e\e)−1, L(e)−1, 1Q) is a principal isotopy
from (Q, +e) to (Q, ·). Thus the isomorphic right loops (Q, +e) and (T, ∗) are
actually loops, and T becomes a loop transversal.

For (P6), let {ρ(e, x) | x ∈ S} be the subtransversal of T to Ge in NG(Ge).
Then

x ∈ S ⇔ eρ(e, x)Ge = {eρ(e, x)} ⇔ xGe = {x}.
For (P7), suppose that ρ(e, x) lies in Z(G). Let g stabilize e. Then

xg = eρ(e, x)g = egρ(e, x) = x.

Conversely, suppose xGe = {x}. Let y ∈ Q and g ∈ G. Now

eL(e)−1L(y/(e\e))g = yg = eL(e)−1L((yg)/(e\e)),
implying that xL(e)−1L(y/(e\e))g = xL(e)−1L((yg)/(e\e)). In other terms,
yR(e\e)−1R(e\x)g = ygR(e\e)−1R(e\x). Thus yρ(e, x)g = ygρ(e, x), whence
ρ(e, x) ∈ Z(G).

COROLLARY 2.2
Let (Q, ·) be a quasigroup with an element e. Then (Q, ·) is isotopic to a loop
(Q, +e, e) with identity element e, and with multiplication given by (2.30).

COROLLARY 2.3
Let (Q, ·, e) be a pique with pointed idempotent element e. Then the loop

(Q, +e, e) is the cloop of (Q, ·, e).

PROOF If e is idempotent, then (2.30) reduces to

x +e y = (x, e, y)P = xR(e)−1 · yL(e)−1,

coinciding with the first equation of (2.16).

COROLLARY 2.4
In the multiplication group G of a quasigroup Q with element e, one has

NG(Ge) = Ge · Z(G).

PROOF The properties P(6) and P(7) yield

Ge · Z(G) ≤ NG(Ge) =
⋃
{Geρ(e, x) | xGe = {x}} ≤ Ge · Z(G).
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2.6 Loop transversal codes

The concept of a loop transversal offers a quick and elementary introduction
to the subject of algebraic coding theory. Algebraic coding theory addresses
certain aspects of the problem of transmitting information through channels
that are subject to interference. The effect of the interference is to corrupt
the signals being transmitted. Nevertheless, algebraic coding theory offers
methods of encoding the original information into a signal for transmission,
in such a way that the original information may be recovered from a corrupt
received signal, or at least so that a signal may be recognized as being corrupt.
The information transmission may be taking place through space, sending a
message from one physical location to another. On the other hand, it may
also be taking place through time, recording a message (data) in a memory,
and then reading it back later.

The usual scheme of algebraic coding theory may be summarized as follows.
A finite set A is given, known as the alphabet . The elements of the alphabet
A are often described as the letters of the alphabet A. Typically, one uses
the binary alphabet {0, 1} consisting of the two binary digits 0, 1 or integers
modulo 2. The information to be transmitted is assembled from words of
fixed length k, i.e. concatenations of k (not necessarily distinct) letters of the
alphabet. This set of words to be encoded is described as the uniform code Ak.
The information channel carries words from the uniform code An, for some
n ≥ k. The integer n is known as the length of the channel. A subset C of An is
chosen. This subset C is known as the code (or a block code to avoid confusion
with the concept of a uniform code). The encoding is an embedding Ak → An

with image C, restricting to a bijection η : Ak → C. Thus |C| = |A|k. The
integer k is known as the dimension of the code. If a word c from the code C is
transmitted through the channel without corruption, then it is received as the
same word c. The original encoded word from Ak may then be recovered as
cη−1. However, the emitted codeword c may have been subject to interference
in the channel, being received as a corrupted word x in An. A decoding map

δ : An → C (2.31)

assigns a codeword xδ to the received word x. Provided that the received
word x was not corrupted excessively from the emitted codeword c, one should
expect that xδ = c. In particular, one should have cδ = c for c in C.

Example 2.4 Repetition codes
Let A = {0, 1} and k = 1. Consider a channel length of 3. Define 0η =

000 and 1η = 111. Thus C = {000, 111}. Define the decoding (2.31) by
δ−1{000} = {000, 001, 010, 100} and δ−1{111} = {111, 110, 101, 011} (“ma-
jority vote”). Provided that at most one letter of the emitted codeword gets
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corrupted in the channel, the decoder is able to recover the codeword. One
may extend this scheme to channels of greater odd length.

For further analysis, it is convenient to put an abelian group structure
(A, +, 0) on the alphabet A. Usually, for |A| = l, one takes A to be the
cyclic group (Z/lZ,+, 0) of residues modulo l. The channel An is the n-th
direct power of A, with componentwise operations. Thus the channel An

becomes the abelian group (An, +, 0), or more pedantically (An, +, 00 . . . 0).
This abelian group structure may be used to describe the interference taking
place in the channel. If an emitted codeword c is received as the corrupted
word x, one says that the error x− c was added to c during passage through
the channel. The decoder δ : x 7→ c is then said to correct the error x − c.
To measure the seriousness of the error, one may define the Hamming weight
|x| of a channel word x in An to be the number of nonzero letters in x. The
Hamming distance between two words x, y is then |x − y|. Note that the
triangle inequality

|x + y| ≤ |x|+ |y| (2.32)

is satisfied. Indeed, |x + y| > |x|+ |y| is impossible, since x + y can only have
a nonzero letter in a certain slot if at least one of x and y has a nonzero letter
in that slot. Moreover, |x| = 0 ⇔ x = 0.

The decoding may be analyzed using the abelian group structure. An error
map

ε : An → An (2.33)

determines that a received word x was the result of an error xε. Thus

x = xδ + xε (2.34)

for each x in An. The key idea behind loop transversal codes is the observation
that (2.34) may just be an instance of (2.23). Thus the code C is defined to
be linear if it is a subgroup of the channel An. Since An is abelian, such a
subgroup C is normal. As in Proposition 2.4, any normalized right transversal
T to C in An is then a loop transversal. Taking the error map ε as in (2.21),
one obtains the loop transversal T as the set of errors corrected by the code.
Note that the loop (T, ∗, 0) defined by (2.24) is an abelian group, since the
map

T → An/C; t 7→ C + t

of Proposition 2.4 is a right loop isomorphism of T with the abelian group
An/C. Nevertheless, it is often convenient to continue to refer to the operation
∗ as a loop multiplication, in order to distinguish it from the abelian group
operation + on An.

Example 2.5
Consider the length 3 binary repetition code C of Example 2.4. Interpret

A as Z/2Z. Then C becomes linear, and the normalized right transversal
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T = {000, 001, 010, 100} is the set of errors corrected by C. The abelian
group multiplication ∗ on T given by (2.24) has the table

∗ 000 001 010 100
000 000 001 010 100
001 001 000 100 010
010 010 100 000 001
100 100 010 001 000

Note that the table may be summarized by the specification that the map

s : (T, ∗) → (A2, +); 001 7→ 01, 010 7→ 10, 100 7→ 11

is an abelian group homomorphism.

If one knows a linear code C in a channel An, one may determine a loop
transversal T to C by selecting representatives of the various cosets of C.
Typically, one picks coset leaders — representatives having minimal Hamming
weight within their cosets. On the other hand, one of the major problems of
algebraic coding theory is to determine a suitable code C to begin with, for
a given channel An. If the loop (T, ∗, 0) is known, then the code C may be
obtained from T by the so-called Principle of Local Duality . To formulate this
principle, it is convenient to establish some notation. For elements t1, t2, . . .
of T , define

∑m
i=1 ti inductively by

∑0
i=1 ti = 0 and

∑m
i=1 ti = tm +

∑m−1
i=1 ti.

Define
∏m

i=1 ti inductively by
∏0

i=1 ti = 0 and
∏m

i=1 ti = tm ∗ ∏m−1
i=1 ti. In

compound expressions involving loop operations ∗, ‖ and abelian group op-
erations +,−, the loop operations will bind more strongly than the group
operations. For example, t + u− t ∗ u = t + u− (t ∗ u).

PROPOSITION 2.7 (Principle of Local Duality)
Let T be a loop transversal to a linear code C in a channel An, over a finite
abelian group alphabet A. Suppose that T is a set of generators for An. Then
C = {∑m

i=1 ti −
∏m

i=1 ti
∣∣ t1, . . . , tm ∈ T}.

PROOF Recall that tε = t for t in T . Induction on m using (2.24) then
shows that (

∑m
i=1 ti)ε =

∏m
i=1 ti for t1, . . . , tm in T . Since T generates An

and A is finite, each channel word x may be written in the form x =
∑m

i=1 ti
for some multisubset 〈t1, . . . , tm〉 of T . Then

C = {xδ
∣∣ x ∈ An}

= {x− xε
∣∣ x ∈ An}

=
{ m∑

i=1

ti −
m∏

i=1

ti

∣∣∣∣ t1, . . . , tm ∈ T

}
.
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The full force of the Principle of Local Duality comes into play when it is not
even known in advance that there is some code C to which a loop (T, ∗, 0) in
An is transversal. For simplicity, the case A = Z/2Z = {0, 1} will be discussed
here. Given a channel An, one normally has a list of the errors one would like
to correct (e.g., the most common errors), and this list usually includes the
n-element set B of errors of Hamming weight 1. Let T be a 2n−k-element set
of errors to be corrected, with T ⊇ {0} ∪ B. Suppose that T carries a loop
structure (T, ∗, 0) given by an isomorphism

s : (T, ∗, 0) → (An−k, +, 0) (2.35)

(e.g., as in Example 2.5). Let t1, . . . , tm be elements of T . By the closure
of (T, ∗), the loop product

∏m
i=1 ti always lies in T . On the other hand, the

sum
∑m

i=1 ti may only lie in T for certain choices of t1, . . . , tm. The isomor-
phism (2.35) is said to be a partial homomorphism s : (T,+) → (An−k,+)
if (

∑m
i=1 ti)s =

∑m
i=1 tsi whenever

∑m
i=1 ti ∈ T . Of course, this means that∑m

i=1 ti =
∏m

i=1 ti in such cases, since the two sides of the equation have the
same image under the isomorphism (2.35).

THEOREM 2.1
Let T be a 2n−k-element subset of the length n binary channel An, such that

T contains 0 and the n-element set B of errors of Hamming weight 1. Suppose
that T carries a loop structure (T, ∗, 0) given by an isomorphism (2.35) such
that s : (T, +) → (An−k,+) is a partial homomorphism. Then there is a
linear code C of dimension k in An to which (T, ∗, 0) is a loop transversal.
Moreover, T is precisely the set of errors corrected by C.

PROOF Note that each element x of An has a unique expression x =∑{bi | i ∈ X} for a subset X of B. Define the syndrome

s : An → An−k;
∑

i∈X

bi 7→
∑

i∈X

bs
i . (2.36)

Since (2.35) is a partial homomorphism, it is the restriction of the syndrome
to T . Now for x, y in An, with x =

∑
i∈X bi and y =

∑
i∈Y bi, one has

xs + ys =
∑

i∈X

bs
i +

∑

i∈Y

bs
i =

∑
{bs

i | i ∈ (X ∪ Y )− (X ∩ Y )} = (x + y)s.

Thus the syndrome is an abelian group homomorphism. Let C = Ker s be
its group kernel s−1{0}. Note that |C| = |A|k. For x =

∑
i∈X bi in A, define

xδ =
∑

i∈X bi −
∏

i∈X bi and xε =
∏

i∈X bi. Then xδ ∈ C and xε ∈ T , with
x = xδ +xε. Thus An = C +T . But |An| = |C|.|T |, so T is a loop transversal
to C in An. Moreover, δ : An → C;x 7→ xδ and ε : An → T ;x 7→ xε surject,
indeed ε|T = 1T , so T is precisely the set of errors corrected by C.
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Example 2.6 (A code for hexadecimal digits.)
For the alphabet Z/2Z = {0, 1}, consider the set (Z/2Z)4 = {0 = 0000, 1 =

0001, 2 = 0010, . . . , 9 = 1001, A = 1010, B = 1011, . . . , F = 1111} of hex-
adecimal digits. This set is to be encoded for transmission through a bi-
nary channel of length 7 in such a way that errors of single Hamming weight
may be corrected. Let bi, for 1 ≤ i ≤ 7, denote the binary word of length
7 and Hamming weight 1 with its unique nonzero letter in the i-th slot.
Thus b1 = 1000000, . . . , b3 = 0010000, etc. Set B = {bi | 1 ≤ i ≤ 7} and
T = {0000000} ∪B. Define s : T → (Z/2Z)3 = (Z/2Z)7−4 as a partial homo-
morphism by sending bi to the binary representation of i, e.g. bs

3 = 011. This
sets up an isomorphism (2.35), e.g. b1 ∗ b3 = (bs

1 + bs
3)s

−1 = (001 + 011)s−1 =
010s−1 = b2. By Theorem 2.1, the loop transversal (T, ∗, 1) then determines
a code C of dimension 4. The 24 hexadecimal digits may be encoded by bijec-
tion with C. The elements of C may be determined by the Principle of Local
Duality. For example, b1 + b3 − b1 ∗ b3 = 1000000 + 0010000 − 0100000 =
1110000 ∈ C.

2.7 Universal multiplication groups

In Section 2.2, the construction of the combinatorial multiplication group
of a quasigroup Q led to the combinatorial multiplication group functor Mlt
from the category of surjective quasigroup homomorphisms to the category of
groups. The functor Mlt did not extend, however, to a functor defined on gen-
eral quasigroup homomorphisms. Now let V denote a variety of quasigroups,
i.e. the class of all quasigroups satisfying a given set of identities. Examples
are given by the variety Q of all quasigroups, and the variety STS of Steiner
triple systems, quasigroups satisfying the identities (1.15) and (1.20). Such
a variety may also be considered as a category, with the class of quasigroups
from the variety as the class of objects, and with all quasigroup homomor-
phisms between members of the variety admitted as morphisms. The aim
of this section is to exhibit a multiplication group construction which does
provide a functor from the full category V to the category Gp of groups.

Let Q be a quasigroup in the given variety V of quasigroups. The category
V is bicomplete, and thus possesses all limits and colimits [165, Ch. IV, Th.
2.2.3]. In particular, coproducts exist there. Let Q[X] be the coproduct of Q
with the free quasigroup in V on the singleton set {X}. This V-quasigroup
contains X, and comes equipped with a homomorphism ι : Q → Q[X]. It
is specified to within isomorphism by the universality property that for each
homomorphism f : Q → P to a quasigroup P in V, and for each element p
of P , there is a unique homomorphism fp : Q[X] → P such that fp : X 7→ p
and ιfp = f .
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LEMMA 2.1

The homomorphism ι : Q → Q[X] injects.

PROOF If Q is empty, the result is immediate. If Q is nonempty, take
f = 1Q : Q → Q, and pick some element q of Q to be the image of X under
fq. Then ιfq = 1Q, so that fq retracts ι.

On the strength of Lemma 2.1, one identifies Q with its image in the co-
product under the insertion. The element X may be considered as an inde-
terminate, and the properties of the quasigroup Q[X] in the variety V are
analogous to those of the polynomial ring S[X] over a commutative ring S in
the variety of commutative rings.

DEFINITION 2.2 Let Q be a member of a variety V of quasigroups.
Then the universal multiplication group G̃ or U(Q;V) of Q in V is the relative
multiplication group of Q in Q[X].

It is convenient to set RQ[X](q) = R̃(q) and LQ[X](q) = L̃(q) for each ele-
ment q of Q (although often the tildes are omitted). Note that (2.9) provides
a group epimorphism

G̃ → G or U(Q;V) → Mlt Q (2.37)

between the universal and the combinatorial multiplication groups of Q. In
this way G̃ acts as a group of permutations on Q. The universal multiplication
group construction is functorial.

PROPOSITION 2.8

For a V-morphism f : Q → Q′, there is a group homomorphism

U(f ;V) : U(Q;V) → U(Q′;V) (2.38)

extending the assignments R̃(q) 7→ R̃(qf) and L̃(q) 7→ L̃(qf) for q in Q. Then
(2.38) becomes the morphism part of a functor U( ;V) from V to the category
Gp of groups.

PROOF In the notation of Section 2.2, the map (2.38) is a group homo-
morphism well-defined by

U(f ;V) : E eQ(p1, . . . , pm) 7→ EfQ′(p1f, . . . , pmf).
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Indeed,

E eQ(p1, . . . , pm) = F eQ(q1, . . . , qn)

⇒ wE(X, p1, . . . , pm) = wF (X, q1, . . . , qn)

⇒ ∀y ∈ Q̃′, wE(X, p1, . . . , pm)fy = wF (X, q1, . . . , qn)fy

⇒ ∀y ∈ Q̃′, wE(y, p1f, . . . , pmf) = wF (y, q1f, . . . , qnf)

⇒ ∀y ∈ Q̃′, yE eQ(p1f, . . . , pmf) = yF eQ(q1f, . . . , qnf)

⇒ EfQ′(p1f, . . . , pmf) = FfQ′(q1f, . . . , qnf).

For a further V-morphism g : Q′ → Q′′, one has

U(fg;V) = U(f ;V)U(g;V).

Thus U( ;V) is a functor from V to the category Gp of groups.

COROLLARY 2.5
Let Q be a subquasigroup of a quasigroup Q′ in a variety V. Let G̃ be the

universal multiplication group of Q in V. Then there is a group epimorphism

G̃ → MltQ′Q; R̃(q) 7→ RQ′(q), L̃(q) 7→ LQ′(q) (2.39)

from the universal multiplication group G̃ to the relative multiplication group
of Q in Q′.

PROOF By Proposition 2.8, the insertion Q ↪→ Q′ induces a group homo-
morphism j : U(Q;V) → U(Q′;V). The epimorphism (2.39) is then obtained
by corestricting the composite of j with the projection (2.37) for Q′.

Example 2.7
Let A be the variety of abelian quasigroups. The free A-quasigroup on the
singleton {X} is the infinite cyclic group ZX. For a nonempty member A

of A, i.e. for an abelian group A, the quasigroup Ã is just A ⊕ ZX. Then
A → U(A;A); a 7→ R̃(a) is an isomorphism of groups. Also U(∅;A) = {1}.

Let G be the variety of associative quasigroups. Thus G includes the empty
quasigroup that is not an object of Gp. The following result identifies the
universal multiplication groups in G as “diagonal groups” in the sense of [24,
p. 8]. It is instructive to contrast Proposition 2.9 with Example 2.1.

PROPOSITION 2.9
For nonempty Q in G, i.e. for a group Q, the universal multiplication group

U(Q;G) of Q in the variety of associative quasigroups is the direct product
L̃(Q)× R̃(Q) of two copies of Q.
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PROOF The free G-quasigroup on the singleton {X} is the infinite cyclic
group ZX. Then Q̃ is the free product of Q with ZX. As in Example 2.1,
define

T̃ : Q×Q → U(Q;G); (g, h) 7→ L̃(g)−1R̃(h). (2.40)

This is clearly a surjective homomorphism. Suppose T̃ (g, h) = 1. Then for all
y in Q̃, one has g−1yh = y. Taking y = g yields h = g. Taking y = X then
yields g−1Xg = X ∈ ZX ∩ g−1ZXg. By the known structure of free products
of groups [98, Cor. 4.1.5 and Lemma 4.1], it follows that g ∈ Q ∩ ZX = {1}.
Thus T̃ is also injective, and hence an isomorphism.

The main result of this section is the demonstration that the universal
multiplication group G̃ of a quasigroup Q in the variety of all quasigroups
is free. Let T (Q) be the ternary multiplication table of Q. It may be re-
garded as a partial Latin square on the disjoint union Q + {X} of Q with the
singleton {X}. The coproduct Q[X] is then obtained as the free extension
Q(Q+{X},T (Q)) of this partial Latin square

(
Q + {X}, T (Q)

)
. The actions of

the right and left multiplications by elements of Q on the generic element X
may be written as

XL̃(q) = qXµ , XR̃(q) = qXµσ ,

XL̃(q)−1 = qXµτ , XR̃(q)−1 = qXµτσ

in the notation of Section 1.8. In the notation of Section 2.2, the universal
multiplication group elements R̃(qi)±1 or L̃(qi)±1, for an element qi of Q, are
written generically as Ẽi(qi)εi . The action of this universal multiplication
group element on X now becomes XẼi(qi)εi = qiXµgi for an element gi of
the complex product 〈τ〉〈σ〉 in the symmetric group S3.

THEOREM 2.2
For the variety Q of all quasigroups, and for a quasigroup Q, the universal

multiplication group G̃ = U(Q;Q) is the free group on the disjoint union
L̃(Q) + R̃(Q) of two copies of Q.

PROOF Suppose that the identity element of G̃ is represented by a non-
trivial reduced group word Ẽ(q1)ε1 . . . , Ẽ(qr)εr over the set L̃(Q) + R̃(Q) of
generating letters. Then the element XẼ(q1)ε1 . . . , Ẽ(qr)εr of Q(

Q+{X},T (Q)
)

has the form
qr . . . q1Xµg1 . . . µgr (2.41)

with qi in Q and gi in 〈τ〉〈σ〉. This form is already reduced, since the group
word Ẽ(q1)ε1 . . . , Ẽ(qr)εr is reduced. On the other hand, for this group word
to represent the identity element of G̃, the form (2.41) should reduce to X.
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2.8 Universal stabilizers

Let Q be a quasigroup in a variety V of quasigroups. For elements e, q, r
of Q, define elements

T̃e(q) = R̃(e\q)L̃(q/e)−1, (2.42)

R̃e(q, r) = R̃(e\q)R̃(r)R̃(e\qr)−1, (2.43)

L̃e(q, r) = L̃(q/e)L̃(r)L̃(rq/e)−1 (2.44)

of the universal multiplication group G̃ of Q in V. It is helpful to associate
these elements with circuits based at the vertex e in the Cayley graph Cay Q̃.
For example, T̃e(q) corresponds to the circuit starting out from e forwards
along the edge R(e ↘ q) to q, and then backwards along the edge L(q ↙ e).
The element R̃e(q, r) corresponds to the circuit which again starts out from e
forwards along the edge R(e ↘ q) to q, then continues forwards along the edge
R(q ↘ qr) to qr, finally returning to e backwards along the edge R(e ↘ qr).
It is thus clear that for a fixed element e of Q, the elements (2.42) through
(2.44) all lie in the universal stabilizer of e in Q in V, the stabilizer G̃e of e

in the permutation group G̃ on Q. In fact, the full set

{T̃e(q), R̃e(q, r), L̃e(q, r) | q, r ∈ Q} (2.45)

of elements (2.42) through (2.44) serves to generate G̃e, as seen immediately
from the following theorem.

THEOREM 2.3
Let e be an element of a quasigroup Q. Let G̃ be the universal multiplication
group of Q in the variety Q of all quasigroups. Then the universal stabilizer
G̃e is the free group on (2.45). In particular, if Q has finite order n, then the
rank of G̃e is 2n2 − n + 1.

PROOF Apply the explicit form of Schreier’s Theorem, e.g., as in [143,
Prop. I.16]. The notation of that reference will be used. By Theorem 2.2, the
disjoint union L̃(Q) + R̃(Q) is a free basis S for G̃. A transversal to G̃e in G̃,
closed under initial subwords, is given by

T = {1} ∪ {R̃(e\ q) | e 6= q ∈ Q}.
Then W = {(t, s) ∈ T × S | ts /∈ T}

= {(1, R̃(e\ e)), (1, L̃(q)) | q ∈ Q}
∪ {(R̃(e\ q), R̃(r)), (R̃(e\ q), L̃(r)) | e 6= q ∈ Q, r ∈ Q}.
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The free basis R = {ht,s | (t, s) ∈ W} of G̃e consists of h1, eR(e\ e) = R̃(e\ e),

h1,eL(q/e) = T̃e(q)−1 for q in Q, h eR(e\ q), eR(r) = R̃e(q, r) for q 6= e, and

h eR(e\ q),eL(r) = T̃e(q)L̃e(q, r)T̃e(qr)−1 for q 6= e. Since (2.45) is obtained
from R by a Nielsen transformation [98, §3.2], that set is also a free basis for
G̃e. Now G̃e is of index |Q| in G̃. If Q has finite order n, the Schreier Index
Formula [143, Cor. I.5] gives the rank of G̃e, i.e., the cardinality of (2.45), as
2n2 − n + 1.

COROLLARY 2.6
Let e be an element of a quasigroup Q. Then the stabiliser Ge of e in the

combinatorial multiplication group G of Q is generated by

{Te(q), Re(q, r), Le(q, r) | q, r ∈ Q} .

PROOF Apply the homomorphism (2.37) to the generation of G̃e by
(2.45).

2.9 Exercises

1. Let Q be a nonempty quasigroup. Show that Q is a group if and only
if the map

R : Q → Mlt Q; q 7→ R(q)

is a quasigroup homomorphism.

2. A quasigroup Q is said to be right distributive if for each element q of
Q, the right multiplication (2.1) is an endomorphism of Q. Similarly,
Q is said to be left distributive if the left multiplications (2.2) are all
endomorphisms. Finally, Q is said to be distributive if it is both right
and left distributive.

(a) Show that Q is right distributive if and only if it satisfies the iden-
tity

xy · z = xz · yz .

(b) Determine the corresponding identity characterizing left distribu-
tivity.

(c) Is there a single quasigroup identity characterizing distributivity?

3. Show that an idempotent, entropic quasigroup is distributive.

4. Show that each conjugate of a distributive quasigroup is distributive.
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5. [12] Let e be a fixed element of a distributive quasigroup (Q, ·). Show
that x+y = (x/e) · (e\y) defines a commutative Moufang loop (Q, +, e).

6. (a) If (Q, ·) is a right quasigroup, show that the opposite multiplication
(1.5) yields a left quasigroup (Q, ◦).

(b) If (Q, ·, /) is a right quasigroup, show that (Q, /, ·) is also a right
quasigroup.

7. Show that a set Q, equipped with a binary multiplication, forms a left
quasigroup if and only if for all x, y in Q, there is a unique element z of
Q such that y = xz.

8. Show that the quasigroup identities (IL)–(SR) may be displayed in the
mirror-symmetric form

v\(v · w) = w w = (w · v)/v
v · (v\w) = w w = (w/v) · v

so that the two identities on the left of the mirror characterize left quasi-
groups (Q, ·, \), while their images on the right of the mirror characterize
right quasigroups (Q, ·, /).

9. Two binary operations m1, m2 on a set Q are said to be orthogonal if
the map

Q×Q → Q×Q; (x, y) 7→ (xym1, xym2)

bijects.

(a) Show that (Q, ·) is a left quasigroup if and only if the left projection

π1 : Q×Q → Q; (x, y) 7→ x (2.46)

and the multiplication

µ : Q×Q → Q; (x, y) 7→ x · y (2.47)

are orthogonal.

(b) If Q is a left quasigroup, determine the inverse of the bijection
(π1, µ) : Q×Q → Q×Q.

(c) Formulate and prove a comparable characterization of right quasi-
groups using the right projection

π2 : Q×Q → Q; (x, y) 7→ y . (2.48)

(d) [86] Combine (a) and (c) to obtain a characterization of quasi-
groups.
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10. Let Q be a quasigroup. Continue the notation of Exercise 9. For an
element q of Q, define the 1-line labeled q to be the inverse image

π−1
1 ({q}) = {(q, y) ∈ Q×Q | y ∈ Q}

of the singleton {q} under the left projection (2.46). Similarly, define
the 2-line labeled q to be the inverse image

π−1
2 ({q}) = {(x, q) ∈ Q×Q | x ∈ Q}

of the singleton {q} under the right projection (2.48), and define the
3-line labeled q to be the inverse image

µ−1({q}) = {(x, y) ∈ Q×Q | x · y = q}
of the singleton {q} under the multiplication (2.47). Define

{
π−1

1 ({x})
∣∣ x ∈ Q

}
,

{
π−1

2 ({x})
∣∣ x ∈ Q

}
,

{
µ−1({x}) ∣∣ x ∈ Q

}

as the respective (unlabeled) bundles of 1-, 2-, and 3-lines. Similarly,
define

{
π−1

1 ({x}) ∣∣ x ∈ Q
} → Q; π−1

1 ({q}) 7→ q ,

{
π−1

2 ({x}) ∣∣ x ∈ Q
} → Q; π−1

2 ({q}) 7→ q ,

{
µ−1({x}) ∣∣ x ∈ Q

} → Q; µ−1({q}) 7→ q

as the respective labeled bundles of 1-, 2-, and 3-lines. Finally, define
the set Q × Q equipped with the bundles of 1-, 2-, and 3-lines as the
(unlabeled) 3-net of Q, and the set Q × Q equipped with the labeled
bundles of 1-, 2-, and 3-lines as the labeled 3-net of Q.

(a) Show that the quasigroup Q is determined by its labeled 3-net.

(b) Show that Q is determined up to isotopy by its unlabeled 3-net.

11. Let (Q, ·, /) be a right loop. Show that the derived operation

(x, y, z)P = (x/y) · z
satisfies the identities (2.28).
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12. Let Q be a set. For elements x, y of Q, define x · y = x.

(a) Show that (Q, ·, ·) is a right quasigroup.

(b) Show that Proposition 2.3 does not extend from right loops to right
quasigroups.

13. [47] Let e and f be elements of a quasigroup Q with multiplication group
G. Show that for all x in Q, the multiplication group element

R(e\x)L(f)−1L(e)R(f\x)−1

lies in both the stabilizers Ge and Gf .

14. Give an alternative proof of Theorem 2.3 as follows: taking H to be
the (free) subgroup of G̃ generated by (2.45), prove by induction on the
length of a typical nontrivial word w in G̃ that there is an expression
w = hR̃(e\ q) with h in H and q in Q. It then follows that H = G̃e.

15. Let Q be a quasigroup with an element e. Show that the universal
multiplication group G̃ is free on

{
ρ(e, q), R(e\e), Te(e), Te(q)

∣∣ q ∈ Qr {e}} . (2.49)

(The free generating set (2.49) for G̃ breaks up nicely into the set
{
ρ(e, q)

∣∣ q ∈ Qr {e}}

of nontrivial elements of a loop transversal to G̃e in G̃ and the set

{Te(q) | q ∈ Q}

of elements of the universal stabilizer G̃e. For an application of this
generating set, see Theorem 12.2.)

16. Let G be a group generated by a conjugacy class Q of involutions. For
each x, y in Q, suppose that the product xy has odd order.

(a) Show that x ·y = yxy defines a right distributive quasigroup (Q, ·).
(b) Show that RMlt(Q, ·) is isomorphic to G/Z(G).

17. (a) For each positive dimension n, use polar decomposition to show
that the set Pn of n × n positive definite symmetric real matrices
forms a loop transversal to the orthogonal group On in the general
linear group GLn(R) of invertible real matrices.

(b) Demonstrate that for n > 1, the loop Pn is not associative.
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(c) Obtain similar results for the set of n×n positive definite Hermitian
complex matrices as a loop transversal to the unitary group Un in
the general linear group GLn(C) of invertible complex matrices.

18. In special relativity, show that the set of boosts forms a loop transversal
to the group of spatial rotations in the Lorentz group.

19. Determine a basis for the 4-dimensional vector space C of Example 2.6.

20. Consider the binary alphabet A as the two-element field Z/2Z. Thus a
binary channel An of length n carries the product ring structure, with
componentwise addition and multiplication. A linear code C in the
channel An is said to be doubly even if 4 divides the Hamming weight
|c| of each codeword c in C. A mapping φ : C2 → A is then said to be
a factor set if:

(i) φ(c, c) = |c|/4 + 2Z,

(ii) φ(c, d) + φ(d, c) = |c · d|/2 + 2Z, and

(iii) φ(b, c) + φ(b, c + d) + φ(c, d) + φ(b + c, d) = |b · c · d|+ 2Z

for all codewords b, c, d in C. If φ : C2 → A is indeed a factor set, show
that

(α, c)(β, d) = (α + β + φ(c, d), c + d) (2.50)

defines a Moufang loop operation on A × C. (Griess [67] showed that
each doubly even code admits a factor set, yielding a code loop (2.50).)

21. In the multiplication group of a Moufang loop, set P (x) = L(x)−1R(x)−1.
Derive the triality relations

P (xyx) = P (x)P (y)P (x) ,

R(xyx) = R(x)R(y)R(x) ,

L(xyx) = L(x)L(y)L(x)

and

P (x)R(y) = P (xy)P (y)−1 , P (x)L(y) = P (yx)P (y)−1 ,

R(x)L(y) = R(xy)R(y)−1 , R(x)P (y) = R(yx)R(y)−1 ,

L(x)P (y) = L(xy)L(y)−1 , L(x)R(y) = L(yx)L(y)−1 .

22. Let u be an element of an entropic quasigroup (Q, ·, /, \). Define ele-
ments u1, u2, . . . of Q inductively by u1 = u and un+1 = un · un for
n > 0. Show that the right quasigroup reduct (Q, //, \) of Q, together
with the set {un | n ∈ Z+} of elements of Q, forms a Conway algebra in
the sense of knot theory [133].
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23. In the context of Theorem 1.1, let N be the subgroup of the monoid M
generated by the subset {µ, µσ}. Show that the group N is isomorphic
to the relative multiplication group of the subquasigroup generated by
x in the free quasigroup M on {x, y}.

24. In the context of Theorem 1.1, let F be the subgroup of the monoid M
generated by the subset {µg | g ∈ S3}. Show that F is a free group of
rank 3.

25. [55] Show that the combinatorial multiplication group of a free quasi-
group is free.

2.10 Notes

Section 2.3

The closure operator N 7→ N [] was originally studied by A.A. Albert [2]
for the case of loops.

Section 2.5

In [56], right and left quasigroups were described respectively as “right”
and “left groupoids.”

The characterization of loop transversals given in Proposition 2.5 is due to
R. Baer [5]. Use of a derived operation with the properties (2.28) goes back
to Mal’tsev [110].

Section 2.6

Loop transversal codes were first introduced in the R.C. Bose memorial vol-
ume [154]. Using a simple greedy algorithm to construct the loop transversal,
one obtains uniform series of good linear codes, many of them optimal, that
have previously required a range of ad hoc techniques from Galois theory,
combinatorics and elsewhere for their construction [81] [82]. Loop transversal
codes are readily designed for the correction of errors having specific statistics,
such as burst errors [30].

Section 2.8

For the identity element e of a loop Q, Corollary 2.6 was proved by Bruck
[21, Lemma IV.1.2], using a method like that of Exercise 14.

 



Chapter 3

CENTRAL QUASIGROUPS

Central quasigroups are the quasigroup analogues of abelian groups. For a
quasigroup Q, the diagonal quasigroup is defined as

Q̂ = {(x, x) | x ∈ Q}. (3.1)

Now a group Q is abelian if and only if the diagonal is a normal subgroup of
Q2. Certainly, if Q is abelian, then so is Q2, whence each subgroup of Q2 is
normal. Conversely, suppose that Q̂ C Q2. Then for all x, y ∈ Q, one has

(x, y)−1(x, x)(x, y) = (x, y−1xy) ∈ Q̂,

so that x = y−1xy. Thus Q is abelian. A subquasigroup N of a quasigroup
P is said to be a normal subquasigroup, written as N C P , if there is a
congruence W on P having N as a congruence class.1 Note that the congru-
ence W is specified uniquely by the fact that for any e ∈ N,x ∈ P , the map
ρ(e, x) : N → xW of (2.26) provides a bijection between N and the congruence
class xW of the element x of P . One may then use the usual division notation
P/N to denote the unambiguously specified quotient quasigroup PW .2 By
analogy with the group case, a quasigroup Q is defined to be central , or in the
class Z, if the diagonal is a normal subquasigroup of Q2. One also says that
the universal congruence Q2 on Q is central. More generally, a congruence V
on a quasigroup Q is defined to be central if Q̂ C V .

Following a brief discussion of general quasigroup congruences in Section 3.1,
Section 3.2 examines the central congruences of a quasigroup, in the slightly
broader context of centrality that will be useful for the treatment of quasi-
group modules in Chapter 10. Now abelian groups are the nilpotent groups of
class 1. Section 3.3 uses central congruences to give a definition of nilpotence
for quasigroups that specializes appropriately to groups. Central quasigroups
then become the nilpotent quasigroups of class 1. Section 3.4 discusses the
relation of central isotopy, which is weaker than isomorphism, but stronger
than general isotopy. In many ways, the relation of central isotopy between
quasigroups is more important than the relation of isomorphism. Theorem 3.4

1The empty quasigroup is a normal subquasigroup of itself, but not of any bigger quasigroup.
2Note that ∅/∅ is empty, as required for the integrity of the First Isomorphism Theorem
[165, IV Th.1.2.7].
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gives a typical example, showing the role of central isotopy in noncancellation
phenomena under the direct product. Theorem 3.8 is another example. Here,
central isotopy classes of central quasigroups are shown to correspond exactly
to isomorphism classes of central piques. The key Section 3.6, describing the
structure of central quasigroups, is thus preceded by Section 3.5 dealing with
central piques. Section 3.7 uses centrality to classify quasigroups of prime
order. The main Theorem 3.10 may be summarized as saying that for prime
order, either a quasigroup is central, or else its multiplication group is almost
simple — sandwiched between a simple group and its automorphism group,
the simple group being alternating, linear, or one of the Mathieu groups M11

or M23. Section 3.8 examines the stability congruence of a quasigroup. For
loops, the stability and center congruences coincide, but they may separate for
general quasigroups. There is a corresponding concept of stable nilpotence.
Nilpotence of the multiplication group implies stable nilpotence of a finite
quasigroup. Conversely, stably nilpotent quasigroups have solvable multipli-
cation groups. Chapter 3 concludes with a brief discussion of some so-called
“no-go theorems,” showing that certain groups or group actions cannot be
represented as multiplication groups of quasigroups.

3.1 Quasigroup congruences

In general, a congruence relation V on an algebra A is a subalgebra of
A2 that is an equivalence relation (Appendix B). For a quasigroup Q, the
properties (2.28) of the derived operation (2.27) imply that reflexivity of a
subquasigroup V of Q2 already yields V as a congruence on Q.

PROPOSITION 3.1

Let V be a subquasigroup of the direct square Q2 of a quasigroup Q. Then if
V contains the diagonal Q̂, it is a congruence on Q.

PROOF The symmetry and transitivity of V must be established. Sup-
pose (x, y), (y, z) ∈ V . Then

(x, x) ∈ V by reflexivity,
(x, y) ∈ V is given, and
(y, y) ∈ V by reflexivity

⇒ ((x, x, y)P, (x, y, y)P ) ∈ V ,

since the subalgebra V of Q2 is closed under the derived operation P . By
(2.28), it follows that (y, x) ∈ V , so that V is symmetric. Similarly,
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(x, y) ∈ V is given,
(y, y) ∈ V by reflexivity, and
(y, z) ∈ V given

⇒ ((x, y, y)P, (y, y, z)P ) ∈ V .

Thus (x, z) ∈ V , so that V is transitive.

The join of two congruences V, V ′ on an algebra A is the smallest congruence
containing both of them. The relation product V ◦ V ′ of two binary relations
V , V ′ on a set N is the relation

V ◦ V ′ = {(x, z) ∈ N2 | ∃ y ∈ N . x V y V ′z}. (3.2)

on the set N .

COROLLARY 3.1
Let V and V ′ be congruences on a quasigroup Q. Then their join is their
relation product V ◦ V ′.

PROOF The relation product V ◦ V ′ is a reflexive subquasigroup of Q2,
itself containing V and V ′, and contained in each congruence containing V
and V ′.

PROPOSITION 3.2
A quasigroup Q is isomorphic to the direct product P ×P ′ of two quasigroups
P, P ′ if and only if there are congruences V, V ′ on Q such that

V ◦ V ′ = Q2, V ∩ V ′ = Q̂, QV ∼= P, QV ′ ∼= P ′.

PROOF On Q = P × P ′, define

(a, a′)V (b, b′) ⇔ a = b and (a, a′)V ′(b, b′) ⇔ a′ = b′. (3.3)

Then V ◦ V ′ = Q2, since (a, a′)V (a, b′)V ′(b, b′). Also V ∩ V ′ = Q̂. Moreover,
the First Isomorphism Theorem applied to the projections Q → P ; (a, a′) 7→ a
and Q → P ′; (a, a′) 7→ a′ yields well-defined isomorphisms QV ∼= P and
QV ′ ∼= P ′.

Conversely, suppose that a quasigroup Q carrying two congruences V, V ′

satisfying V ◦ V ′ = Q2, V ∩ V ′ = Q̂ is equipped with a pair of isomorphisms
f : QV → P , f ′ : QV ′ → P ′. Define

F : Q → P × P ′;x 7→ (xV f, xV ′f ′),

clearly a quasigroup homomorphism. Then xF = yF ⇒ x(V ∩ V ′)y, so F
injects. Now consider (a, c) ∈ P × P ′. Suppose af−1 = xV and cf ′−1 = zV ′ .
Now

(x, z) ∈ Q2 = V ◦ V ′ ⇒ ∃y ∈ Q. x V y V ′ z.
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Then
yF = (yV f, yV ′f ′) = (xV f, zV ′f ′) = (a, c),

so that F surjects.

3.2 Centrality

DEFINITION 3.1 Let U and V be congruences on a quasigroup Q.
Then U is said to centralize V by a centering congruence W if and only if
W is a congruence on the quasigroup V such that the following conditions are
satisfied:

(C0) (x, y)W (x′, y′) ⇒ (x, x′) ∈ U ;

(C1) For all (x, y) in V , the map

π : (x, y)W → xU ; (x′, y′) 7→ x′ (3.4)

bijects;

(C2) W respects the equivalence of V in the following sense:

(RR) (x, y) ∈ U ⇒ (x, x)W (y, y);

(RS) (x1, x2)W (y1, y2) ⇒ (x2, x1)W (y2, y1);

(RT) (x1, x2)W (y1, y2), (x2, x3)W (y2, y3) ⇒ (x1, x3)W (y1, y3).

The three conditions comprising (C2) are known as respect for the reflexivity,
symmetry, and transitivity of V , respectively.

Example 3.1
Consider the congruences V, V ′ defined by (3.3) on the direct product P ×P ′

of two quasigroups. Define

W = {(((x1, x
′
1), (x1, x

′
2)), ((x2, x

′
1), (x2, x

′
2))) | xi ∈ P, x′i ∈ P ′}.

Then V ′ centralizes V with W as a centering congruence.

PROPOSITION 3.3
Let V be a congruence on a quasigroup Q. Then V is central if and only if

it is centralized by U = Q2 via a centering congruence W .
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PROOF Let V be centered by W . If Q is empty, then so are V and Q̂,
with Q̂ C V , so that V is central. Otherwise, consider an element e of Q.
Now Q̂ ≤ (e, e)W by (RR), while (e, e)W ⊆ Q̂ by (C1). Thus Q̂ = (e, e)W , so
that V is central.

Conversely, suppose that V is central, Q̂ being an equivalence class of a
congruence W on V . It will be shown that W is a centering congruence by
which Q2 centralizes V . The result is immediate if Q is empty, so assume
Q 6= ∅. The proof uses the properties (2.28) of the derived operation P of
(2.27), and the fact that the congruence W on V is a subalgebra of V 2 under
the operation P . Certainly (RR) holds, since Q̂ is a W -class.

(RS): Suppose (x1, x2)W (y1, y2). Then

(x1, x1)W (y1, y1) by (RR),
(x1, x2)W (y1, y2) is given,
(x2, x2)W (y2, y2) by (RR)

⇒ ((x1, x1, x2)P, (x1, x2, x2)P )W ((y1, y1, y2)P, (y1, y2, y2)P ).

By (2.28), it follows that (x2, x1)W (y2, y1), as required for (RS).

(RT): Suppose further that (x2, x3)W (y2, y3). Then

(x1, x2)W (y1, y2) is given,
(x2, x2)W (y2, y2) by (RR),
(x2, x3)W (y2, y3) is given

⇒ ((x1, x2, x2)P, (x2, x2, x3)P )W ((y1, y2, y2)P, (y2, y2, y3)P ).

By (2.28), it follows that (x1, x3)W (y1, y3), as required for (RT). This com-
pletes the verification of (C2). Note that (C0) is trivial.

(C1): Suppose (x, y) ∈ W , and x′ ∈ Q. Then

(x, y)W (x, y) (W reflexive),
(x, x)W (x, x) (W reflexive),
(x, x)W (x′, x′) by (RR)

⇒ ((x, x, x)P, (y, x, x)P )W ((x, x, x′)P, (y, x, x′)P ).

By (2.28), it follows that (x, y)W (x′, (y, x, x′)P ), so that (3.4) surjects. Now
suppose (x′, y′)W (x′, y′′). Then

(x′, y′)W (x′, y′′) is given,
(x′, x′)W (x′, x′) (W reflexive),
(y′, x′)W (y′, x′) (W reflexive)

⇒ ((x′, x′, y′)P, (y′, x′, x′)P )W ((x′, x′, y′)P, (y′′, x′, x′)P ).
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By (2.28), it follows that (y′, y′)W (y′, y′′). Thus (y′, y′′) lies in the class Q̂ of
W , so that y′ = y′′ and (3.4) injects. This completes the proof of (C1).

PROPOSITION 3.4
Let U and V be congruences on a quasigroup Q. Suppose that U centralizes

V by a centering congruence W . Then W is uniquely specified by

∀ yV xUx′ , ∀ y′ ∈ Q , (x, y)W (x′, y′) ⇔ y′ = (x′, x, y)P (3.5)

in terms of the derived operation P of (2.27). Further,

∀ xV yUy′ , ∀ x′ ∈ Q , (x, y)W (x′, y′) ⇔ x′ = (x, y, y′)P. (3.6)

PROOF The statements (3.5) and (3.6) are vacuously true if Q is empty.
Otherwise, consider yV xUx′. Then

(x, x)W (x′, x′) by (RR),
(x, x)W (x, x) (W reflexive),
(x, y)W (x, y) (W reflexive)

⇒ ((x, x, x)P, (x′, x, x)P )W ((x′, x, x)P, (x′, x, y)P ).

By (2.28), it follows that (x, x′)W (x′, (x′, x, y)P ), proving the backward impli-
cation of (3.5). For the forward implication of (3.5), suppose (x, y)W (x′, y′).
Then (x′, y′)W (x′, (x′, x, y)P ), so that y′ = (x′, x, y)P by property (C1) of
W . The last statement (3.6) is proved similarly.

In view of Proposition 3.4, it is sometimes convenient to write

(U |V ) or (U ′|V ) (3.7)

for the unique centering congruence by which a congruence U centralizes a
congruence V , U ′ being a congruence containing U that still centralizes V .

COROLLARY 3.2
For an element (x, y) of a central congruence V on a quasigroup Q, and for

each z in Q,
z = ((z, x, y)P, y, x)P. (3.8)

PROOF Let V be centered by W . By (3.5) one has that

(x, y)W (z, (z, x, y)P ) and (y, x)W ((z, x, y)P, ((z, x, y)P, y, x)P ).

Now (RT) implies (x, x)W (z, ((z, x, y)P, y, x)P ), so (3.8) holds by (C1).
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REMARK 3.1 Note that (3.8) in the context of Corollary 3.2 amounts
to

ρ(x, y)ρ(y, x) = 1. (3.9)

In a group Q, the equation (3.9) always holds, even when x and y are not
related by a central congruence. But in the quasigroup of Figure 1.2, one has
ρ(3, 4)ρ(4, 3) = (23)(56).

An important application of Proposition 3.3 is to show that the join of two
central congruences is central.

THEOREM 3.1
If V1, V2 are central congruences on a quasigroup Q, then so is V = V1 ◦ V2.

PROOF Suppose that Vi is centered by Wi for i = 1, 2. Define a relation
W on V by

(x, z)W (x′, z′) ⇔ ∃y, y′ ∈ Q. (x, y)W1(x′, y′) and (y, z)W2(y′, z′).

The relation W is certainly reflexive, and is readily seen to be a subquasigroup
of V 2. By Proposition 3.1, W is a congruence on V . Now given x, y ∈ Q,
respect for reflexivity yields (x, x)Wi(y, y), i = 1, 2, so that (x, x)W (y, y) and
Q̂ ⊆ (x, x)W .

Conversely, suppose (x, x)W (x′, z′), say

(x, y)W1(x′, y′) (3.10)

and
(y, x)W2(y′, z′). (3.11)

By (3.5), the latter equation implies z′ = (y′, y, x)P . Since W1 respects sym-
metry, (3.10) implies (y, x)W1(y′, x′), from which the equation x′ = (y′, y, x)P
follows by (3.5). Thus x′ = z′, whence Q̂ = (x, x)W , and V is central.

COROLLARY 3.3
A quasigroup Q has a unique maximal central congruence.

PROOF The set of central congruences on Q is partially ordered by
inclusion. Zorn’s Lemma yields the existence of maximal central congruences.
By Theorem 3.1, there is then a unique maximal central congruence.

DEFINITION 3.2 Let Q be a quasigroup. Then the unique maximal
central congruence on Q, whose existence is guaranteed by Corollary 3.3, is
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called the center congruence ζ or ζ(Q) of Q. The center of a pique Q with
pointed idempotent e is defined to be the subpique Z(Q) = eζ .

Corollary 3.8 below shows that the center (3.31) of a loop Q with identity
element e (as defined by Albert and Bruck [20]) coincides with its pique center
as specified by Definition 3.2. In particular, if e is the identity element of a
group Q, then eζ is the usual center Z(Q) of Q in the group sense.

3.3 Nilpotence

Given a function f : X → Y , define

f II : X2 → Y 2; (x1, x2) 7→ (x1f, x2f) (3.12)

and

f IV : X4 → Y 4; ((x1, x2), (x3, x4)) 7→ ((x1f, x2f), (x3f, x4f)). (3.13)

The proofs of the following results are routine, using Proposition 3.4.

PROPOSITION 3.5
Let V be a central congruence on a quasigroup Q, with centering congruence

W .

1. If f : Q → P is a surjective quasigroup homomorphism, then V f II is a
central congruence on P , centered by Wf IV.

2. If P is a subquasigroup of Q, then V ∩P 2 is a central congruence on P ,
centered by W ∩ (V ∩ P 2)2.

COROLLARY 3.4
Homomorphic images and subquasigroups of central quasigroups are central.

PROPOSITION 3.6
For each element i of an index set I, suppose that Vi is a central congruence
on a quasigroup Qi, with centering congruence Wi. Then on the product
quasigroup Q =

∏
i∈I Qi, the congruence V defined by

(q, q′) ∈ V ⇔ ∀ i ∈ I, (qπi, q
′πi) ∈ Vi

is central, with centering congruence W given by

(p, p′)W (q, q′) ⇔ ∀ i ∈ I, (pπi, p
′πi)Wi(qπi, q

′πi).
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COROLLARY 3.5
Products of central quasigroups are central.

As an instance of Birkhoff’s Theorem (Theorem B.1), Corollaries 3.4 and
3.5 yield:

THEOREM 3.2
The class Z of central quasigroups forms a variety.

Birkhoff’s Theorem implies that central quasigroups may be characterized
by the satisfaction of certain identities (which of course just specify the nor-
mality of the diagonal — Exercises 14 and 16). Corollary 3.7 below gives
identities characterizing central piques.

A central series in a quasigroup Q is a series

Q̂ = V0 ≤ V1 ≤ · · · ≤ Vn = Q2

of congruences on Q such that Vi nat Vi−1 is a central congruence of Q natVi−1

for 1 ≤ i ≤ n. Set ζ0(Q) = Q̂, and inductively define

ζi+1(Q) = ker(nat ζi(Q) nat ζ(Qζi)). (3.14)

Note that ζ0 ≤ ζ1 ≤ ζ2 ≤ . . . . If there is a minimal natural number c such
that ζc(Q) = Q2, then Q is said to be nilpotent , of nilpotence class c. If c is
positive, then

Q̂ = ζ0 < ζ = ζ1 < ζ2 · · · < ζc = Q2

is a central series in Q called the upper central series or ascending central se-
ries of Q. For a variety V of quasigroups, the class of nilpotent V-quasigroups
of class at most c is denoted by Nc(V). Note that N1(Q) is just the variety
Z of central quasigroups. By analogy with Theorem 3.2, one may show that
each class Nc(V) is again a variety.

3.4 Central isotopy

DEFINITION 3.3 Let P be a quasigroup, with center congruence ζ(P )
centered by a congruence W . Then a quasigroup Q is said to be a central
isotope of P , in symbols Q ' P , if and only if there is a bijection t : Q → P ,
called a central shift, such that

∃ (p, p′) ∈ ζ(P ) . ∀ q1, q2 ∈ Q , (p, p′)W ((q1 · q2)t, qt
1 · qt

2). (3.15)
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Centrally isotopic quasigroups are isotopic:

PROPOSITION 3.7
If (3.15) holds, then there is an isotopy

(t, t, tρ(p, p′)) : Q → P.

PROOF According to (3.5), the relation (3.15) gives

qt
1 · qt

2 = (q1q2)tρ(p, p′), (3.16)

as required to show that (1.3) holds.

On the other hand, since there are nonassociative isotopes of groups, the
following proposition shows that central isotopy is a strictly tighter relation
than isotopy.

PROPOSITION 3.8
Central isotopes of groups are groups.

PROOF Suppose that the identity map on a set Q is a central shift from
a quasigroup structure (Q, ◦) to a group structure (Q, ·) on the set Q. By
(3.16), there is an element z = p−1p′ of the center of the group (Q, ·) such
that q1 ◦ q2 = q1q2z for q1, q2 in Q. Then q1 ◦ z−1 = q1 and z−1 ◦ q2 = q2, so
that (Q, ◦, z−1) is a loop isotopic to the group (Q, ·). By Proposition 1.4 (p.
9), it follows that (Q, ◦) is isomorphic to the group (Q, ·).

Isomorphic quasigroups are centrally isotopic. Indeed, since P̂ is a W -class,
the central shift t of Definition 3.3 is an isomorphism if and only if p = p′.
Later, examples of nonisomorphic but centrally isotopic quasigroups will be
given. However, note the following.

PROPOSITION 3.9
A central shift t : Q → P is an isomorphism if it maps an idempotent of Q

to an idempotent of P .

PROOF Let e be an idempotent of Q mapping to an idempotent of P .
Then (3.15) gives

(p, p′)W ((e · e)t, etet) = (et, et),

whence p = p′ and t is an isomorphism.

Definition 3.3 was given in terms of quasigroup multiplication. The follow-
ing lemma relates central isotopy to the divisions.
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LEMMA 3.1
Suppose that (3.15) holds. Then so do

∀ q1, q2 ∈ Q, (p′/p, p/p)W ((q1/q2)t, qt
1/qt

2) (3.17)

and
∀ q1, q2 ∈ Q, (p\p′, p\p)W ((q1\q2)t, qt

1\qt
2). (3.18)

PROOF By (3.15), one has

(p, p′)W ([(q1/q2) · q2]t, (q1/q2)t · qt
2) = (qt

1, (q1/q2)t · qt
2). (3.19)

Also, respect for reflexivity yields

(p, p)W (qt
2, q

t
2). (3.20)

Equation (3.17) follows on dividing (3.19) by (3.20) and using respect for
symmetry. Equation (3.18) is proved similarly.

THEOREM 3.3
Central isotopy is an equivalence relation. Further, if t : Q → P is a central

shift, and the center congruence ζ(Q) of Q is centered by X, then ζ(Q)tII =
ζ(P ) and XtIV centers ζ(P ).

PROOF Use the notation of Definition 3.3. Let u : P → Q be the inverse
of the bijection t : Q → P . If (qt

1, q
t
2), (q

t
3, q

t
4) ∈ ζ(P ), then by (3.15) and the

closure of ζ(P ) under multiplication,

(q1 · q3)t ζ(P ) qt
1q

t
3 ζ(P ) qt

2q
t
4 ζ(P ) (q2 · q4)t ,

so that ζ(P )uII is also closed under multiplication. Similar use of (3.17) and
(3.18) yields the closure of ζ(P )uII under the divisions, so that it becomes a
subquasigroup of Q2. Since Q̂ = P̂ uII ≤ ζ(P )uII, Proposition 3.1 shows that
ζ(P )uII is a congruence on Q. Now if

(qt
1, q

t
2)W (rt

1, r
t
2) and (qt

3, q
t
4)W (rt

3, r
t
4),

(3.15) gives
(
(q1 · q3)t, qt

1 · qt
3

)
W (p, p′)W

(
(r1 · r3)t, rt

1 · rt
3

)
. (3.21)

Since W is a congruence on ζ(P ),

(qt
1 · qt

3, q
t
2 · qt

4)W (rt
1 · rt

3, r
t
2 · rt

4). (3.22)

Again, (3.15) gives
(
qt
2 · qt

4, (q2 · q4)t
)
W (p′, p)W

(
rt
2 · rt

4, (r2 · r4)t
)
. (3.23)
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Since W respects the transitivity of ζ(P ), the relations (3.21) through (3.23)
yield (

(q1 · q3)t, (q2 · q4)t
)
W

(
(r1 · r3)t, (r2 · r4)t

)
,

so WuIV is closed under multiplication. Similar use of (3.17) and (3.18) in
place of (3.15) yields the closure of WuIV under the divisions, so that it
becomes a subquasigroup of ζ(P )uII × ζ(P )uII. Since ̂ζ(P )uII = ζ̂(P )uIV ≤
WuIV, Proposition 3.1 shows that WuIV is a congruence on Q. Since Q̂tII = P̂
is a W -class, Q̂ is a WuIV-class. Thus ζ(P )uII is a central congruence on
Q, whence ζ(P )uII ≤ ζ(Q) by Corollary 3.3. By Proposition 3.4, WuIV =
X ∩ (ζ(P )uII × ζ(P )uII).

For p1, p2 in P , setting qi = piu in (3.15) gives

(p, p′)W
(
(pu

1 · pu
2 )t, p1 · p2

)
.

Applying uII and using the respect of W for the symmetry of ζ(P ),

(p′u, pu)W uIV
(
(p1 · p2)u, pu

1 · pu
2

)
.

From above, this can be written as

(p′u, pu)X
(
(p1 · p2)u, pu

1 · pu
2

)
.

Thus u : P → Q is also a central shift. In particular, the relation of central
isotopy is symmetric. Repeating the above procedure for the new central shift
u, one obtains ζ(Q)tII ≤ ζ(P ). Thus ζ(Q)tII = ζ(P ) and XtIV = W .

Now let R be a quasigroup centrally isotopic to Q, say by a central shift
s : R → Q with

∃ (q, q′) ∈ ζ(Q). ∀ r1, r2 ∈ R, (q, q′) X
(
(r1 · r2)s, rs

1 · rs
2

)
. (3.24)

Applying t to (3.24) and using the above,

∀ r1, r2 ∈ R, (qt, q′t)W
(
(r1 · r2)st, (rs

1 · rs
2)t

)
.

By property (C1) for W , there is a unique element p′′ of P such that the
relation (p′′, p)W (qt, q′t) holds, whence

(p′′, p)W
(
(r1 · r2)st, (rs

1 · rs
2)t

)
.

On the other hand, (3.15) gives

(p, p′) W
(
(rs

1 · rs
2)t, r

st
1 · rst

2

)
.

Respect of W for the transitivity of ζ(P ) yields

(p′′, p′)W
(
(r1 · r2)st, rst

1 · rst
2

)
,
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so that the composite st is a central shift. Thus central isotopy is a transitive
relation. Finally, recall that the isomorphism 1P : P → P is a central shift,
so that central isotopy is reflexive.

COROLLARY 3.6

Central isotopes of central quasigroups are central.

PROPOSITION 3.10

Centrally isotopic quasigroups have similar multiplication group actions. In
particular, their multiplication groups are isomorphic.

PROOF By the symmetry of central isotopy, it suffices to prove the
containment Mlt(Q, ∗) ≤ Mlt(Q, ◦) for two quasigroup structures (Q, ∗) and
(Q, ◦, /, \) on the same set Q, centrally isotopic via the identity map on Q as
central shift. But by (3.16),

∃ (p, p′) ∈ ζ(Q, ◦) . ∀ q1, q2 ∈ Q , q1 ◦ q2 = (q1 ∗ q2)R◦(p\p)−1R◦(p\p′) .

Thus

L∗(q1) = L◦(q1)R◦(p\p′)−1R◦(p\p)

and

R∗(q2) = R◦(q2)R◦(p\p′)−1R◦(p\p),

as required.

This section concludes with a brief discussion relating central quasigroups
and central isotopy to noncancellation phenomena for the isomorphism rela-
tion ∼= under the direct product. The main result requires an important pre-
liminary lemma that connects central congruences with central quasigroups.

LEMMA 3.2

Let V be a central congruence on a quasigroup Q. Then the quotient V/Q̂ is
a central quasigroup.

PROOF Let W center V . Define a relation Ω on V/Q̂× V/Q̂ by

(
(q1, q2)W , (r′1, r

′
2)

W
)
Ω

(
(q′1, q

′
2)

W , (r1, r2)W
) ⇔ (q1, q3)W (q′1, q

′
3) ,

where (q2, q3) W (r1, r2) and (q′2, q
′
3)W (r′1, r

′
2). It is then routine to check that

Ω is a congruence centering V/Q̂× V/Q̂.
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THEOREM 3.4
If the quasigroups P and Q are centrally isotopic, then there is a nonempty

central quasigroup Z such that P ×Z ∼= Q×Z. If P and Q are finite, then Z
may be taken to be finite.

PROOF Use the notation of Definition 3.3. Set

N = {(p, q) ∈ P ×Q | (p, qt) ∈ ζ(P )}.
Let (p1, q1), (p2, q2) be elements of N . Then

(
p1p2, q

t
1q

t
2

) ∈ ζ(P ), while (3.15)
shows

(
qt
1q

t
2, (q1q2)t

) ∈ ζ(P ). Thus
(
p1p2, (q1q2)t

) ∈ ζ(P ) or (p1p2, q1q2) ∈ N ,
showing that N is closed under multiplication. Similar use of (3.17) and (3.18)
shows the closure of N under the divisions. Thus N is a subquasigroup of
P ×Q. Define congruences U,U ′ on N by

(p1, q1)U (p2, q2) ⇔ q1 = q2

and
(p1, q1) U ′ (p2, q2) ⇔ p1 = p2 ,

so that NU ∼= P and NU ′ ∼= Q.
Define a relation V on N by

(p1, q1)V (p2, q2) ⇔ (p1, q
t
1)W (p2, q

t
2) .

Since W centers ζ(P ) and t bijects, V is an equivalence relation on N with

V ∩ U = V ∩ U ′ = N̂ , V ◦ U = V ◦ U ′ = N2.

Let (p1, q1)V (p′1, q
′
1), (p2, q2) V (p′2, q

′
2). Then

(p1 · p2, q1t · q2t)W (p′1 · p′2, q′1t · q′2t) ,

since W is a congruence on ζ(P ). Also,
(
q1t · q2t, (q1 · q2)t

)
W (p′, p)W

(
q′1t · q′2t, (q′1 · q′2)t

)

by (3.15). Since W respects the transitivity of ζ(P ),
(
p1 · p2, (q1 · q2)t

)
W

(
p′1 · p′2, (q′1 · q′2)t

)

or
(p1 · p2, q1 · q2)V (p′1 · p′2, q′1 · q′2) ,

so that V is closed under multiplication. Similar use of (3.17) and (3.18)
shows the closure of V under the divisions. The equivalence relation V on
N becomes a congruence. Proposition 3.2 yields the interior isomorphisms of
the chain

P ×NV ∼= NU ×NV ∼= N ∼= NU ′ ×NV ∼= Q×NV
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of isomorphisms. Finally, NV ∼= ζ(P )W via (p, q)V 7→ (p, qt)W , so that NV is
a central quasigroup Z by Lemma 3.2.

Under appropriate finiteness conditions on the nonempty quasigroups P ,
Q, R involved, in particular if all are finite, one may in fact show that

P ×R ∼= Q×R ⇒ P ' Q (3.25)

[147, 424]. For another application of central isotopy, see Exercise 5.

3.5 Central piques

Suppose that V is a central congruence on a nonempty quasigroup Q, with
centering congruence W . By Lemma 3.2, the quotient V/Q̂ is a central quasi-
group. It may be considered as a pique with Q̂ as the pointed idempotent.
By Corollary 2.3 (p. 45), the cloop of this pique has a muliplication given by

(q1, q2)W + (r1, r2)W =
(
(q1, q2)W , Q̂, (r1, r2)W

)
P .

Now by Corollary 3.4, and using the centering congruence Ω introduced in
the proof of Lemma 3.2,

(
Q̂, (r1, r2)W

)
Ω

(
(q1, q2)W , (q1, q2)W + (r1, r2)W

)
. (3.26)

By the definition of Ω,

(q1, q2)W + (r1, r2)W = (q1, q3)W ,

where (q2, q3)V (r1, r2). In particular, this means that the operation + is
associative: given (q1, q2)W , (r1, r2)W , (s1, s2)W in the quotient V/Q̂, take
(q2, q3)V (r1, r2) and (q3, q4)V (s1, s2). Then

(
(q1, q2)W + (r1, r2)W

)
+ (s1, s2)W = (q1, q3)W + (q3, q4)W

= (q1, q4)W

= (q1, q2)W + (q2, q4)W

= (q1, q2)W +
(
(q2, q3)W + (q3, q4)W

)

= (q1, q2)W +
(
(r1, r2)W + (s1, s2)W

)
.

Thus the cloop of V/Q̂ is a group. It is an abelian group, since by Corollary 3.4

(q2, q3)W + (q1, q2)W =
(
q1, (q1, q2, q3)P

)W +
(
(q1, q2, q3)P, q3

)W

= (q1, q3)W

= (q1, q2)W + (q2, q3)W .
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Further, the multiplications R and L are automorphisms of this abelian group,
as is seen on multiplying (3.26) by the relation (Q̂, Q̂)Ω (Q̂, Q̂) and applying
the fact that Ω is a congruence. Summarizing:

PROPOSITION 3.11
If V is a central congruence on a nonempty quasigroup Q, then the cloop

(V/Q̂, +, Q̂) of the pique (V/Q̂, ·, Q̂) is an abelian group, with R and L as
automorphisms.

The case of a central pique (P, ·, e) is particularly interesting. Suppose that
the congruence P 2 is centered by W . Then there is a pique isomorphism

P 2/P̂ → P ; (e, p)W 7→ p. (3.27)

By Proposition 3.11 it follows that the cloop B(P ) is an abelian group, for
which the right and left multiplications R, L by the pointed idempotent are
automorphisms. Since the inner multiplication group of the abelian group
B(P ) is trivial, Inn P = 〈R, L〉. The structure of the multiplication group of
P is then specified as follows.

THEOREM 3.5
The multiplication group Mlt P of a central pique P is the split extension of

its abelian cloop B(P ) by the inner multiplication group InnP.

PROOF The split extension Q n M of an abelian group (M, +) by a
group Q of automorphisms is the set {(q,m) | q ∈ Q, m ∈ M} of ordered
pairs equipped with the product

(q1,m1)(q2,m2) = (q1q2,m1q2 + m2)

for q1, q2 ∈ Q and m1,m2 ∈ M [compare (10.5)]. The map

Inn P nB(P ) → Mlt P ; (w, p) 7→ wR+(p)

is a homomorphism, since

xw1R+(p1)w2R+(p2) = (xw1 + p1)w2 + p2

= xw1w2 + (p1w2 + p2)
= x(w1w2)R+(p1w2 + p2)

for x, p1, p2 in P and w1, w2 in Inn P . The map bijects, since it has

Mlt P → Inn P nB(P ); α 7→ (αR+(eα)−1, eα)

as a two-sided inverse.
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Conversely, given a module (B, +, 0) for a group generated by two elements
R, L, one may use (2.17) to define a pique (B, ·, 0). It is easily checked that
the subtraction mapping

− : B2 → B; (b, b′) 7→ b− b′

is a pique homomorphism whose kernel congruence has the diagonal B̂ as a
congruence class. Thus (B, ·, 0) is a central pique. In summary:

THEOREM 3.6
A pique (P, ·, e) is central if and only if:

1. The cloop B(P ) is an abelian group, and

2. InnP is a group of automorphisms of B(P ).

COROLLARY 3.7
The class of central piques forms a variety Z0, defined relatively to the class

of all piques by the following equations:

(a)
((

(x/0)(0\y)
)
/0

)
(0\z) = (x/0)

(
0\((y/0)(0\z)

))
;

(b) (x/0)(0\y) = (y/0)(0\x);

(c)
(
(x/0)(0\y)

)
0 = (x0/0)(0\y0);

(d) 0
(
(x/0)(0\y)

)
= (0x/0)(0\0y).

PROOF The identity (a) specifies the associativity of the cloop, while (b)
gives its commutativity. The identities (c) and (d) state that the respective
right and left multiplications by the pointed idempotent 0 are automorphisms
of the cloop.

3.6 Central quasigroups

If (Q, ·) is a nonempty central quasigroup, the congruence Q2 on Q is cen-
tral. By Proposition 3.11, (Q2/Q̂, ·, Q̂) is then a central pique.

PROPOSITION 3.12
Each nonempty central quasigroup Q is centrally isotopic to the corresponding
central pique (Q2/Q̂, ·, Q̂).
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PROOF Suppose that W centers Q2. Fix an element e of Q. (Of course,
the element e need not be idempotent.) By analogy with (3.27), consider the
map

t : Q2/Q̂ → Q; (e, q)W 7→ q.

Since W centers Q2, the map t bijects. It will be shown that t is a central
shift. Consider general elements q1, q2 of Q. Define q3 = (e, e · e, q1 · q2)P . On
the one hand, Proposition 3.4 gives

(e, e · e)W (q3, q1 · q2). (3.28)

On the other hand, it gives

(e, q3)W (e · e, q1 · q2),

so that q3 = (e, q3)W t = ((e, q1)W · (e, q2)W )t. The relation (3.28) then reads
as

(e, e · e)W (((e, q1)W · (e, q2)W )t, (e, q1)W t · (e, q2)W t),

showing that t is indeed a central shift.

THEOREM 3.7

A nonempty quasigroup is central if and only if it is centrally isotopic to a
central pique.

PROOF By Corollary 3.6, central isotopes of central piques are central
quasigroups. The converse follows by Proposition 3.12.

A further consequence stresses the way in which central isotopy of quasi-
groups is more significant than isomorphism.

THEOREM 3.8

Under the assignment Q 7→ Q2/Q̂, central isotopy classes of nonempty central
quasigroups correspond exactly to isomorphism classes of central piques.

PROOF It remains to be shown that if two central piques are centrally
isotopic, then they are isomorphic. Let (Q, ·, e) and (P, ·, f) be central piques
with a central shift t : Q → P . Let (B(P ), +, f) be the cloop of P . Then
there is an element a of P such that (3.15) takes the form

(q1 · q2)t = qt
1 · qt

2 + a
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for q1, q2 in Q. Now

(qt
1 − et) · (qt

2 − et) = (qt
1 − et)R + (qt

2 − et)L

= qt
1R + qt

2L− (etR + etL)

= qt
1 · qt

2 − (et · et)

= ((q1 · q2)t − et)− a + et − (et · et),

so that s : Q → P ; q 7→ qt − et is also a central shift. But es = et − et = f ,
whence (Q, ·) and (P, ·) are isomorphic by Proposition 3.9, as required.

The final result of this section concerns multiplication groups of central
quasigroups.

THEOREM 3.9
Let G be the multiplication group of a central quasigroup Q. Then neither G
nor its derived subgroup G′ can be simple nonabelian.

PROOF By Propositions 3.10 and 3.12, it is sufficient to assume that Q
is a pique with pointed idempotent e and inner multiplication group I. Then
G certainly cannot be simple nonabelian, since Mlt B(Q)/G by Theorem 3.5.
By Theorem 3.6, the cloop B(Q) is an I-module, and for the augmentation
ideal J =

∑
h∈I(h − 1)ZI of the integral group algebra of I, the submodule

QJ is a subpique of Q. Now for x, q in Q and g in I,

xR+

(
q(1− g)

)
= x + q − qg =

(
(x + q)g−1 − q

)
g = x[R+(−q), g].

Thus Mlt B(QJ) is a subgroup of G′. Indeed, since the cloop QJ is G-subset
of Q, the abelian group Mlt B(QJ) is a normal subgroup of G′. If G′ were to
be simple nonabelian, QJ = {e}, so that I would act trivially on Q. By (2.17)
this would yield the contradiction that Q is abelian and G′ is trivial.

3.7 Quasigroups of prime order

Throughout this section, let Q be a quasigroup of prime order p with mul-
tiplication group G. In this case the mutually exclusive possibilities Q central
or G′ simple nonabelian offered by Theorem 3.9 are the only ones.

PROPOSITION 3.13
Let Q be a quasigroup of prime order p with multiplication group G. Then

either Q is central, or else G′ is a simple nonabelian transitive permutation
group on Q.
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PROOF First assume that Q has an idempotent e, so that (Q, ·, e) may be
regarded as a pique. If Q is a cyclic group, it is certainly central. Otherwise
|G| > p. Then G acts primitively on Q, whence G′ acts transitively [83,
Satz II.1.5]. If G′ is not abelian, it is simple [83, V.21.1e]. Otherwise, G
is solvable. If the cloop B(Q) is abelian, than Z/pZ ∼= Mlt B(Q) ≤ G. By
Galois’ theorem classifying solvable transitive permutation groups of prime
degree [83, Satz II.3.6], G is similar to a group of affine transformations on
the p-element field GF(p). Thus G′ = Mlt B(Q) and Inn Q = 〈R,L〉, with
R and L as automorphisms of B(Q). In this case Q is central. The other
possibility, in which the loop B(Q) is not abelian, leads to a contradiction.
For then by Galois’ theorem Mlt B(Q) on B(Q) is itself similar to a group
of affine transformations on GF(p). If x is an element of Q distinct from e
with R+(x) lying in (Mlt B(Q))′, then R+(x) is of order p, a p-cycle, and
then B(Q) = 〈x〉 ∼= Z/pZ, a contradiction. Otherwise, R+(x) does not lie in
(MltB(Q))′, and thus has a fixed point y, i.e., y + x = y. But y + e = y and
x 6= e, a contradiction. The proposition is thus proved for quasigroups with
idempotents.

Now suppose Q is a general quasigroup. If G′ is not simple non-abelian, i.e.
[83, Satz V.21.1e] if G is solvable, it must be shown that (Q, ·) is central. Fix
an element e of Q. If e is idempotent, the result follows as above. Otherwise,
by Galois’ theorem, G contains a cycle t of length p. Without loss of generality
(e · e)t = e: if this does not hold immediately, replace t by an appropriate
power of itself. Define (Q, ◦) by

x ◦ y = (x · y)t .

Then (Q, ◦, e) is a pique. Now t ∈ G, so Mlt(Q, ◦) ≤ G. Thus Mlt(Q, ◦)
is solvable, and so the pique (Q, ◦, e) is central. Its cloop (Q, +, e) is an
abelian group, and so cyclic. In particular, there is an element b of Q with
L+(b) = t−1. Then

x · y = (x ◦ y)t−1

= b + x ◦ y

= (b, e.x ◦ y)P,

i.e. (x · y, x ◦ y) W (b, e) for the congruence W centering Q2 on (Q, ◦). This
shows that (Q, ·) is a central isotope of the central quasigroup (Q, ◦), and so
by Corollary 3.6 is itself central.

Using Burnside’s Theorem [22][83, Satz V.21.3] that a transitive permuta-
tion group of prime degree is either solvable or doubly transitive, together with
the classification of insolvable doubly transitive permutation groups of prime
degree that is a corollary of the classification of finite simple groups [58, Cor.
4.2], one may apply Proposition 3.13 to obtain the following classification of
quasigroups of prime order.
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THEOREM 3.10
Let Q be a quasigroup of prime order p, with multiplication group G. Then

one of the following holds:

(a) Q is central;

(b) G is the alternating or symmetric group on Q;

(c) p = 11 and G is PSL2(11) or M11;

(d) p = 23 and G is M23;

(e) p = (qk − 1)/(q − 1) for a prime power q and positive integer k, while
PSLk(q) ≤ G ≤ PΓLk(q).

REMARK 3.2 Vesanen [172] has shown that PSL2(q) cannot be the
multiplication group of a loop. On the other hand, for a 2-power q with
p = q + 1 prime, the group PSL2(q) has a subgroup (Q,⊕, 0) of order p
generated by the so-called Singer cycle that projects from the automorphism
of the vector space GF(q)2 corresponding to multiplication by a primitive
element of the field GF(q2) [83, Satz II.8.4a]. This subgroup acts regularly on
the projective line PG(1, q), with which it may be identified. Letting S and T
be the elements of PSL2(q) corresponding to the respective fractional linear
transformations x 7→ 1

x and x 7→ x + 1, one may then define a quasigroup
multiplication on Q by

x ◦ y = xS ⊕ yT ,

so that R◦(−1) = S and L◦(∞) = T . Since PSL2(q) is generated by S and T
[83, Aufg. II.14], one has Mlt(Q, ◦) = PSL2(q).

3.8 Stability congruences

Related to the concept of centrality, based on the center congruence ζ(Q)
of a quasigroup Q, there is also a concept of stability , based on a smaller
congruence σ or σ(Q) called the stability congruence and defined by

σ(Q) = {(x, y) ∈ Q2 | Gx = Gy}. (3.29)

In other words, two elements x, y of the quasigroup Q are related by the
stability congruence if and only if their stabilizers Gx, Gy in the multiplication
group G coincide. Now (3.29) is clearly an equivalence relation. Moreover,
for x, y ∈ Q and g ∈ G, one has

Gx = Gy ⇒ Gxg = Gg
x = Gg

y = Gyg,
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so (x, y) ∈ σ(Q) ⇒ (xg, yg) ∈ σ(Q). Proposition 2.1 (p. 39) then shows that
σ(Q) is a congruence on Q.

PROPOSITION 3.14
Let Q be a quasigroup with multiplication group G.

(a) The restriction of the map ρ : Q2 → G to the stability congruence σ(Q) is
a quasigroup homomorphism ρ : σ(Q) → Z(G) into the center Z = Z(G)
of G.

(b) The stability congruence is contained in the center congruence.

(c) For each element e of Q, the normal subgroup σ(Q)] of G determined
by (2.14) may be expressed as CoreG(Ge · Z).

(d) The normal subgroup σ(Q)] of G is abelian.

PROOF (a): Let q ∈ Q and (xi, yi) ∈ ρ for i = 1, 2. Recall 1 =
ρ(x1x2, x1x2) = ρ(x1, x2). Then q = qρ(x1x2, x1x2) = qρ(x1, x2)

⇒ x2L(x1)L(x1x2)−1L(q/(x1x2\x1x2)) = x2L(x2)−1L(q/(x2\x2))

⇒ y2L(x1)L(x1x2)−1L(q/(x1x2\x1x2)) = y2L(x2)−1L(q/(x2\x2))
⇒ (q/(x1x2\x1x2))(x1x2\x1y2) = (qρ(x1, x1)/(x2\x2))(x2\y2)

⇒ x1R(y2)L(x1x2)−1L(q/(x1x2\x1x2))

= x1L(x1)−1L(q/(x1\x1))R(x2\x2)−1R(x2\y2)

⇒ y1R(y2)L(x1x2)−1L(q/(x1x2\x1x2))

= y1L(x1)−1L(q/(x1\x1))R(x2\x2)−1R(x2\y2)
⇒ qρ(x1x2, y1y2) = qρ(x1, y1)ρ(x2, y2).

Thus ρ : σ(Q) → G is a quasigroup homomorphism. By (P7) of Proposi-
tion 2.6 (p. 44), ρ maps σ(Q) into Z(G).

(b): By (P3) of Proposition 2.6, the kernel of the quasigroup homomor-
phism ρ : σ(Q) → Z(G) is a congruence on σ(Q) having the diagonal Q̂ as an
equivalence class. Thus σ(Q) is central, and by Corollary 3.3, σ(Q) ≤ ζ(Q).

(c): For an element g of G, one has

g ∈ σ(Q)]

⇔ ∀ q ∈ Q, Gq = Gqg = Gg
q

⇔ ∀ h ∈ G, Geh = Gg
eh

⇔ ∀ h ∈ G, g ∈ NG(Geh) = NG(Ge)h

⇔ g ∈ Core(NG(Ge)) = Core(Ge · Z),

the last equality holding by Corollary 2.4 (p. 45).
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(d): For k, k′ ∈ σ(Q)] and (x, y) ∈ σ(Q), one has

xk = xρ(x, xk) ⇒ kρ(x, xk)−1 ∈ Gx = Gy ⇒ yk = yρ(x, xk),

i.e. the restriction of k to xσ(Q) is ρ(x, xk) = ρ(y, yk). Also

xρ(x, xkk′) = xkk′ = xkρ(xk, xkk′) = xkρ(x, xk′) = xρ(x, xk)ρ(x, xk′),

i.e. ρ(x, xkk′) = ρ(x, xk)ρ(x, xk′) on xσ(Q). Consider a set {xi | i ∈ Qσ} of
representatives for the σ-classes. Then

f : σ(Q)] → Z(G)Qσ

; k 7→ (
ρ(xi, xik) | i ∈ Qσ

)

embeds σ(Q)] into an abelian group, a Cartesian power of Z(G).

For an element e of a quasigroup Q, Corollary 2.6 gives

eσ(Q) = {z | ∀ q, r ∈ Q, zTe(q) = zRe(q, r) = zLe(q, r) = z}. (3.30)

In particular, if e is the identity element of a loop Q, (3.30) reduces to

eσ(Q) = {z | ∀ q, r ∈ Q, zq = qz, zq · r = z · qr, r · qz = rq · z}, (3.31)

the set of elements z commuting and associating with the rest of the loop.
This is just the center of the loop as defined by Albert and Bruck [20].

PROPOSITION 3.15
In a loop Q, the stability congruence and center congruence coincide.

PROOF By Proposition 3.14(b), it remains to show that ζ(Q) ≤ σ(Q).
Suppose that z is in the ζ(Q)-class of the identity element e of Q. Let W
center ζ(Q). Then for q, r ∈ Q, one has

(e, z) W (e, z), (e, e)W (q, q), (e, e)W (r, r), (e, e)W (qr, qr),

the latter three relations from the respect of W for the reflexivity of ζ(Q).
Now since W is a congruence,

(e, z) = [(e, z)(e, e) · (e, e)]/(e, e)
W [(e, z)(q, q) · (r, r)]/(qr, qr) = (e, zRe(q, r)).

By (C1) for W , it follows that z = zRe(q, r). Similar arguments show z =
zTe(q) = zLe(q, r). Thus eζ(Q) ≤ eσ(Q). Since quasigroup congruences are
determined by each of their classes, the desired containment ζ(Q) ≤ σ(Q)
follows.
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COROLLARY 3.8

For a loop Q with identity element e, the pique center Z(Q) = eζ(Q) is the
loop center (3.31).

PROPOSITION 3.16

Let Q be a nonempty quasigroup with multiplication group G. Then the
following conditions are equivalent:

(a) σ(Q) = Q2;

(b) ∀ e ∈ Q, Ge / G;

(c) ∃ e ∈ Q, Ge / G;

(d) G is abelian;

(e) Q is an abelian group.

PROOF (a) ⇒ (b): For e in Q and g in G, (e, eg) ∈ σ(Q). Thus Gg
e =

Gge = Ge.
(b) ⇒ (c): Immediate.
(c) ⇒ (d): Ge =

⋂
g∈G Geg = {1}, since G is faithful on Q. Then by

Corollary 2.4,

G = NG(Ge) = Ge · Z(G) = {1} · Z(G) = Z(G)

is abelian.
(d) ⇒ (e): Consider q1, q2, q3 ∈ Q. Then q1q2 · q3 = q2L(q1)R(q3) =

q2R(q3)L(q1) = q1 · q2q3, so that Q is associative, say with identity element 1.
Then q1q2 = 1R(q1)R(q2) = 1R(q2)R(q1) = q2q1, so that Q is commutative.

(e) ⇒ (a): G1 = {1} = Gx for all x in Q.

COROLLARY 3.9

A quasigroup Q is abelian if and only if its multiplication group G is abelian.

By analogy with (3.14), set σ0(Q) = Q̂, and inductively define

σi+1(Q) = ker(natσi(Q) natσ(Qσi)). (3.32)

Note that σ0 ≤ σ1 ≤ σ2 ≤ . . . . If there is a minimal natural number d such
that σd(Q) = Q2, then Q is said to be stably nilpotent , of stable nilpotence
class d. If d is positive, then

Q̂ = σ0 < σ = σ1 < σ2 · · · < σd = Q2
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is a central series in Q called the upper stability series or ascending stability
series of Q. For loops, Proposition 3.15 shows that stable nilpotence and (cen-
tral) nilpotence coincide. Proposition 3.16 shows that nonempty quasigroups
of stable nilpotence class at most 1 are just abelian groups.

PROPOSITION 3.17
A nonempty stably nilpotent quasigroup contains a unique idempotent.

PROOF Work by induction on the stable nilpotence class d of a nonempty
stably nilpotent quasigroup Q, the induction basis being the trivial case d = 0.
Suppose the result is true for stably nilpotent quasigroups of class less than
d, for positive d. Then Qσ(Q) is of stable nilpotence class d− 1, and so σ(Q)
has a unique congruence class E that is a subquasigroup of Q. Now

E2 = σ(Q) ∩ E2 = ζ(Q) ∩ E2 ≤ ζ(E),

the containment holding by Proposition 3.5(2). Thus Ê /E2, and by (C1) for
σ(Q), there is an isomorphism E2/Ê ∼= σ(Q)/Q̂. By the First Isomorphism
Theorem applied to the homomorphism ρ of Proposition 3.14(1), the latter
quotient is an abelian group. By Proposition 3.12, E is centrally isotopic to
the abelian group E2/Ê, and thus is itself an abelian group. As such, it has
a unique idempotent. If e is an idempotent of Q, then the σ-class of e is a
subquasigroup of Q, and so coincides with E. Thus the unique idempotent of
E is the unique idempotent of Q.

Proposition 3.16 shows how the normality of stabilizers in the multiplica-
tion group corresponds to abelianness of the quasigroup. The next theorem
extends this result by showing that subnormality of stabilizers corresponds
to stable nilpotence. Recall that a subgroup H of a group G is said to be
subnormal in G if there is a finite chain

H = H0 / H1 / · · · / Hd = G (3.33)

of subgroups Hi of G, each normal in the next. The least natural number d
for which (3.33) holds is called the subnormal depth of H in G.

THEOREM 3.11
Let G be the multiplication group of a nonempty quasigroup Q. Then Q is

stably nilpotent if and only if, for each element e of Q, the stabilizer Ge is
subnormal in G. If these equivalent conditions hold, then the subnormal depth
of each stabilizer is equal to the stable nilpotence class of Q.

PROOF For e in Q and Z = Z(G), one has

GeZ ≤ Ge · CoreG(Ge · Z) ≤ Ge · Z,
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so that Ge · Z = Ge · CoreG(Ge · Z). Then by Proposition 3.14,

(
Mlt(Qσ)

)
eσ =

Geσ
]

σ]
=

Ge · CoreG(Ge · Z)
CoreG(Ge · Z)

=
Ge · Z

CoreG(Ge · Z)
. (3.34)

Suppose Q is stably nilpotent of class d > 1. Then Qσ is stably nilpotent
of class d − 1, so by induction on the stable nilpotence class

(
Mlt(Qσ)

)
eσ

is subnormal in Mlt(Qσ), of depth d − 1. By (3.34) and Corollary 2.4 (p.
45), this means that Ge · Z = NG(Ge) is subnormal in Mlt(Qσ) of depth
d− 1, whence Ge is subnormal in G of depth d. Conversely, suppose Ge is of
subnormal depth d in G. Then NG(Ge) = Ge ·Z is of subnormal depth d− 1
in G, whence by (3.34) the group

(
Mlt(Qσ)

)
eσ is of subnormal depth d− 1 in

Mlt(Qσ). By induction on the subnormal depth of stabilizers it follows that
Qσ is stably nilpotent of class d− 1, so Q is stably nilpotent of depth d.

There is no direct analogue of Corollary 3.9 to accompany Theorem 3.11,
but the following two results here go some way in this direction.

COROLLARY 3.10
If the multiplication group of a finite quasigroup is nilpotent, then the quasi-
group is stably nilpotent.

PROOF Subgroups of finite nilpotent groups are subnormal.

PROPOSITION 3.18
The multiplication group of a stably nilpotent quasigroup Q is solvable.

PROOF By induction on the stable nilpotence class of Q, the group

Mlt(Qσ) ∼= Mlt Q
/
σ]

is solvable. Then by Proposition 3.14(4), σ] is abelian, so Mlt Q itself is
solvable.

3.9 No-go theorems

The possibility of representing abstract groups as multiplication groups, or
of representing permutation group actions as multiplication group actions,
raises the question as to which abstract groups or group actions possess such
a representation. Example 2.2 (p. 37) gave a taste of the benefits that may
ensue from a multiplication group representation. Since it appears that many

 



CENTRAL QUASIGROUPS 87

groups or actions do admit such representations, interest attaches to so-called
“no-go” theorems showing that certain classes of groups or actions cannot arise
as multiplication groups. This section presents a small sample of such no-go
theorems. As illustrated in Remark 3.2 above, requiring the quasigroup to lie
in a special class (such as the class of loops) may impose further restrictions.

A group is said to be Hamiltonian if it is not abelian, but nevertheless has
each of its subgroups normal. Dedekind identified the finite groups of this
type as direct products of the quaternion group of order 8 with an abelian
group of odd order and an abelian group of exponent 2 [83, Satz III.7.12].

PROPOSITION 3.19

No Hamiltonian group can be the multiplication group of a quasigroup.

PROOF Suppose that a Hamiltonian group G is the multiplication group
of a quasigroup Q. Since the stabilizers of elements of Q are normal subgroups
of G, Proposition 3.16 shows that Q is abelian. But then Corollary 3.9 implies
the contradiction that G is abelian.

There is a further class of infinite groups which may be shown not to be
multiplication groups. These are the so-called Heineken-Mohamed groups
satisfying the normalizer condition that proper subgroups are properly con-
tained in their normalizers, but nevertheless having trivial center [75] [76] [77]
[112]. (By [83, Hauptsatz III.2.3], there are no finite groups with trivial center
satisfying the normalizer condition.)

PROPOSITION 3.20

No Heineken-Mohamed group can be the multiplication group of a quasigroup.

PROOF Suppose that a Heineken-Mohamed group G is the multiplication
group of a quasigroup Q. Since G is infinite, so is Q. Let e be an element
of Q. Since Z(G) is trivial, Corollary 2.4 (p. 45) shows that Ge = NG(Ge).
By the normalizer condition, it follows that Ge = G, giving the contradiction
Q = {e} to the infiniteness of Q.

A group H of permutations of a set X is said to be quasiprimitive if each
nontrivial normal subgroup of H acts transitively on X [131] [132]. The
following result is analogous to Corollary 2.1 (p. 39).

PROPOSITION 3.21

A quasigroup Q is simple if and only if its combinatorial multiplication group
G acts quasiprimitively on Q.
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PROOF Recall that for a nontrivial congruence V on a quasigroup Q, the
normal subgroup V ] of G, as the kernel of (2.11), is nontrivial. If Q is not
simple, having a proper, nontrivial congruence V , then V ] is not transitive, so
that G is not quasiprimitive. Conversely, suppose that G is not quasiprimitive,
having a nontrivial normal subgroup N that is not transitive. Then N [ is a
proper, nontrivial congruence on Q, so that Q is not simple.

COROLLARY 3.11
An imprimitive, quasiprimitive group action cannot be a multiplication group
action.

PROOF If the quasiprimitive action were a multiplication group action,
then the quasigroup would be simple by Proposition 3.21. But then the action
would be primitive, by Corollary 2.1.

Examples of imprimitive, quasiprimitive actions were given in [131].

3.10 Exercises

1. Let P be a nonempty subquasigroup of an entropic quasigroup Q.

(a) For each element q of Q, define

qP = {qp | p ∈ P} .

Then define Q/P to be the set

{qP | q ∈ Q} .

Show that Q/P is a quasigroup under a well-defined multiplication

q1P · q2P = (q1q2)P .

(b) Show that the map

Q → Q/P ; q 7→ qP

is a quasigroup homomorphism.

(c) Show that P is a normal subquasigroup of Q.

2. Show that entropic quasigroups are central.
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3. Show that a central pique is entropic if and only if its inner multiplication
group is abelian.

4. (a) Show that a central isotope of an entropic quasigroup is entropic.

(b) Exhibit an isotope P of an entropic quasigroup Q such that the
quasigroup P is not central.

5. (a) [111] Let c be an element of the center of a commutative Moufang
loop (L, +, 1). Show that Gc(L,+, 1) = (L, ·) with x · y = c−x− y
is a CH-quasigroup. (Compare Exercise 24 of Chapter 1.)

(b) [147] Let c and d be central elements of a commutative Moufang
loop (L,+, 1). Show that the CH-quasigroups Gc(Q, +, 1) and
Gd(Q, +, 1) are centrally isotopic.

(c) [147] Let (Q, ·) be a nonempty CH-quasigroup. Show that each
central isotope of (Q, ·) is of the form GdFe(Q, ·) for each element
e of Q and for a suitable central element d of Fe(Q, ·).

6. Let N be a set equipped with three equivalence relations V1, V2, V3 such
that

∀ 1 ≤ i 6= j ≤ 3 , Vi ∩ Vj = N̂ and Vi ◦ Vj = N2

[using the relation product (3.2)].

(a) Show that the cardinality of N is a perfect square.

(b) Show that (N, V1, V2, V3) is the 3-net of a quasigroup Q.

7. Let V be a congruence on a quasigroup Q.

(a) For y, z in Q, show that the map ρ(y, z) of (2.26) is a bijection
from yV to zV .

(b) Show that V is uniquely determined by any one of its classes.

(c) If Q is finite, with element x, show that |xV | divides |Q|.

8. [99] Show that a quasigroup Q is a union of three proper normal sub-
quasigroups whose common intersection is nonempty if and only if the
noncyclic group of order 4 is a quotient of Q.

9. [165, Prop. I.2.4.6] Let P be a nonempty subquasigroup of a quasigroup
Q with combinatorial multiplication group G. Show that the following
conditions on P are equivalent:

(a) P C Q ;

(b) ∀ e ∈ P , PGe = P ;

(c) ∃ e ∈ P . PGe ⊆ P .
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10. [87] Let e be an element of a subset P of a quasigroup Q. Show that P
is the class of a congruence on Q if and only if:

(a) PGe ⊆ P , and

(b) For elements a, b, c of Q, whenever (a/e)b = c and two of a, b, c lie
in P , then so does the third.

11. [10] Show that a nonempty subset P of a quasigroup Q is the class of a
congruence on Q if and only if the following elements of Q lie in P for
all p1, p2, p3 in P and q1, q2 in Q:





p1 · (p2\p3) ;
p1

/
(p1\p3) ;(

q1 · q2

)/(
p3

∖(
p3(p1\q1) · p3(p2\q2)

))
;

(
q1/q2

)/(
p3

∖(
p3(p1\q1)

/
p3(p2\q2)

))
;

(
q1\q2

)/(
p3

∖(
p3(p1\q1)

∖
p3(p2\q2)

))
.

12. Show that a quasigroup of prime order is simple.

13. Is it possible for a nontrivial, nonsimple quasigroup to be devoid of
proper, nontrivial normal subquasigroups?

14. (a) Show that a quasigroup Q is central if and only if, for all elements
x, y, z, t, u, v of Q, one has:





(x, x)T(y,y)

(
(z, u)

) ∈ Q̂; ;
(x, x)R(y,y)

(
(z, u), (t, v)

) ∈ Q̂; ;
(x, x)L(y,y)

(
(z, u), (t, v)

) ∈ Q̂; .

(b) Show that a quasigroup Q is central if and only if it satisfies the
identities: 




xTy(z) = xTy(u) ;
xRy(z, t) = xRy(u, v) ;
xLy(z, t) = xLy(u, v) .

(c) Show that a quasigroup Q is central if and only if it satisfies the
identities: 




xTy(z) = xTy(y) ;
xRy(z, t) = xRy(y, y) ;
xLy(z, t) = xLy(y, y) .
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15. [47] Show that a nonempty quasigroup is an isotope of an abelian group
if and only if it satisfies the identity

(ux/v)y = (uy/v)x . (3.35)

[Hint: If e is an element of a quasigroup satisfying (3.35), show that
(x, y) 7→ (x/e) · (e\y) defines an abelian group operation with identity
ee.]

16. [47] Show that a quasigroup Q is central if and only if it satisfies the
identities: 




(ux/v)y = (uy/v)x ;
(y.xz)/(xy) = (y.yz)/(yy) ;
(yx)\(zx.y) = (yy)\(zy.y) .

17. [147, p. 29] Let U and V be congruences on a quasigroup Q.

(a) Show that if U centralizes V , then V centralizes U .

(b) Conclude that V on Q is central if and only if it centralizes Q2.

18. [147, Cor. 227] Let V be a congruence on a quasigroup Q.

(a) Show that if U1 and U2 centralize V , then so does their relation
product U = U1 ◦ U2.

(b) Conclude that there is a unique maximal congruence η(V ) on Q
centralizing V . The congruence η(V ) is called the centralizer of V .

(c) Show that ζ(Q) = η(Q2).

19. [147, p. 39] Let U and V be congruences on a quasigroup Q.

(a) If U centralizes V , show that U ◦ V centralizes U ∩ V .

(b) Conclude that V ◦ η(V ) centralizes V ∩ η(V ).

20. Define a multiplication x ◦ y = x(12) + y + 1 on Z/nZ for n > 2. (Here
(12) denotes the transposition of the classes 1 and 2 in cycle notation.)
Show that (Z/nZ, ◦) is a quasigroup whose multiplication group is the
symmetric group Sn of degree n.

21. Define a multiplication x ◦ y = x(123) + y(34...n) on Z/nZ for odd n > 3.
Show that (Z/nZ, ◦) is a quasigroup whose multiplication group is the
alternating group An of degree n.

22. [113, Th. 12] Let G be a finite group. Show that there is a finite Steiner
triple system Q such that G is the group of automorphisms of Q.
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3.11 Notes

Section 3.3

The concept of nilpotence for quasigroups presented here goes back to
[147]. It generalizes Bruck’s concept of “central nilpotence” for loops [20],
[21]. These concepts specialize to the usual notions of nilpotence for groups.

Section 3.4

A slightly different definition of central isotopy was used in [28, §III.4].
Lemma 3.1 gives the equivalence of that definition with the simpler one used
here.

Section 3.7

Albert [2, §14] classified quasigroups of order 5. Theorem 3.10 was pub-
lished as [28, Th. III.5.10] after circulating for about ten years. For further
discussion of examples such as that of Remark 3.2, see [84].

Section 3.8

Bruck [20, Corollaries 1.8B II,III] proved Corollary 3.10 and Proposition 3.18
for the case of loops. (Recall the remark preceding Proposition 3.17.)

Section 3.9

Corollary 3.11 appeared in [127].
In contrast to the no-go theorems for multiplication groups, E. Mendelsohn

[113, Th. 12] showed that each finite group is the automorphism group of a
finite quasigroup — compare Exercise 22. Pigozzi and Sichler showed that
each infinite group is the automorphism group of each member of a proper
class of (mutually nonisomorphic) infinite quasigroups [129].

 



Chapter 4

HOMOGENEOUS SPACES

A subquasigroup P of a quasigroup Q determines a homogeneous space P\Q.
This space is defined as the set of orbits on Q of the relative left multiplication
group of the subquasigroup P . If P is a subgroup of a group Q, then P\Q
is just the set (2.10) of cosets of P in Q, and the group Q acts on P\Q by
permutations specified by permutation matrices (Corollary 4.3). For a general
quasigroup Q with subquasigroup P , there is an analogous action of elements
of Q on P\Q by Markov matrices (4.14), the action being probabilistic rather
than combinatorial.

In mathematics, exact symmetry is understood conceptually as the action of
a group. For example, the symmetry of a square corresponds to the permuta-
tion action of the dihedral group Mlt(Z/4Z,−, 0) on the cosets of the subgroup
Inn(Z/4Z,−, 0) — compare Example 2.2 and Section 2.4. Section 4.2 shows
how the action of a quasigroup on one of its homogeneous spaces may be
understood as an example of approximate symmetry, so-called macroscopic
symmetry. The general version of this symmetry (for a finite quasigroup) is
studied in Section 4.3.

Section 4.4 considers regular homogeneous spaces, in which a quasigroup
acts on its own underlying set. The concluding Section 4.5 applies quasigroup
homogeneous spaces in a new approach to issues concerning the breakdown
of Lagrange’s Theorem for quasigroups.

4.1 Quasigroup homogeneous spaces

Let P be a subgroup of a group Q. The permutation representation of Q
on the homogeneous coset space P\Q is given by the actions

RP\Q(q) : P\Q → P\Q ; Px 7→ Pxq (4.1)

for elements q of Q. For a quasigroup Q, the construction of homogeneous
space actions depends on a concept from linear algebra. For a matrix A
over the complex numbers, let A+ be the pseudoinverse or “(Moore-)Penrose

93 
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inverse.” This is the unique (Exercise 1) matrix A+ satisfying the equations

AA+A = A , (4.2)

A+AA+ = A+, (4.3)

(A+A)∗ = A+A, (4.4)

(AA+)∗ = AA+, (4.5)

in which the ∗ denotes the conjugate transpose.

PROPOSITION 4.1
Let ϕ : X → Y be a surjective function defined on a finite set X. Let F be

the incidence matrix of ϕ, the X × Y -matrix with

Fxy =

{
1 for xϕ = y ;
0 otherwise .

Then the pseudoinverse F+ of F is given by

F+
yx =

{
|ϕ−1{y}|−1 for xϕ = y ;
0 otherwise .

PROOF Throughout the proof, matrix suffices x and x′ will correspond
to elements of X, while suffices y and y′ will correspond to elements of Y .
The equations (4.2) through (4.5) have to be verified. For (4.2) and (4.3),
consideration of the relationship

x ∈ ϕ−1{y′} 3 x′ ∈ ϕ−1{y} (4.6)

will be critical. For fixed x in ϕ−1{y′} and x′ in ϕ−1{y}, note that (4.6) can
hold only if y = y′, and that it will then hold for each of the |ϕ−1{y}| elements
x′ of ϕ−1{y}.

(4.2) For x ∈ X and y ∈ Y , consider the equation

(FF+F )xy =
∑

y′∈Y

∑

x′∈X

Fxy′F
+
y′x′Fx′y . (4.7)

A summand on the right-hand side is nonzero precisely when (4.6) holds. For
x /∈ ϕ−1{y}, there are no such summands, so (FF+F )xy takes the value zero
of Fxy for this case. On the other hand, if x ∈ ϕ−1{y}, then each of the
|ϕ−1{y}| nonzero summands in (4.7) is |ϕ−1{y}|−1, so that the sum yielding
(FF+F )xy agrees with the value of Fxy (namely 1) for this case as well.

(4.3) For x ∈ X and y ∈ Y , consider the equation

(F+FF+)yx =
∑

x′∈X

∑

y′∈Y

F+
yx′Fx′y′F

+
y′x . (4.8)
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A summand on the right-hand side of (4.8) is nonzero precisely when (4.6)
holds. For x /∈ ϕ−1{y}, there are no such summands, so (F+FF+)yx takes
the value zero of F+

yx for this case. On the other hand, if x ∈ ϕ−1{y}, then
each of the |ϕ−1{y}| nonzero summands in (4.8) is |ϕ−1{y}|−2, so that the
sum yielding (F+FF+)yx agrees with the value of F+

yx (namely |ϕ−1{y}|−1)
for this case as well.

(4.4) For y and y′ in Y , consider the equation

(F+F )yy′ =
∑

x′∈X

F+
yx′Fx′y′ .

Here, the relation
ϕ−1{y} 3 x′ ∈ ϕ−1{y′} , (4.9)

holding only if y = y′, and then precisely for each of the |ϕ−1{y}| elements x′

of ϕ−1{y}, is critical. If (4.9) holds, then F+
yx′Fx′y′ takes the value |ϕ−1{y}|−1.

Thus
(F+F )yy′ = δyy′ , (4.10)

from which (4.4) follows.
(4.5) For x and x′ in X, consider the equation

(FF+)xx′ =
∑

y∈Y

FxyF+
yx′ . (4.11)

Note that a summand FxyF+
yx′ of (4.11) is nonzero if and only if both x and x′

lie in ϕ−1{y}, in which case the nonzero value is the real number |ϕ−1{y}|−1.
Since the kernel of ϕ is a symmetrical relation on X, Equation (4.5) holds.

COROLLARY 4.1
By (4.10), it follows that

F+F = IY , (4.12)

the identity matrix of size |Y |.

Now let P be a subquasigroup of a finite quasigroup Q. Let P\Q denote
the set of orbits of the permutation group LMltQP on the set Q. Let AP or A
be the incidence matrix of the membership relation between the set Q and the
set P\Q of subsets of Q. Thus A is a |Q| × |P\Q| matrix, with rows indexed
by the elements x of Q and columns indexed by the elements X of P\Q, such
that the (x,X)-entry of the matrix is 1 if x ∈ X, and zero otherwise. The
matrix A is the incidence matrix of the surjective projection function

Q → P\Q; x 7→ xLMltQP .

By Proposition 4.1, the pseudoinverse A+
P or A+ of the incidence matrix AP

or A is the |P\Q| × |Q| matrix whose entry A+
Xx in the row indexed by the
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LMltQP -orbit X and in the column indexed by the Q-element x is given by

A+
Xx =

{
|X|−1 if x ∈ X ;
0 otherwise .

(4.13)

For each element q of Q, the right multiplication RQ(q) in Q by q yields a per-
mutation of Q. Let RQ(q) also denote the corresponding |Q|×|Q| permutation
matrix.

DEFINITION 4.1 Let P be a subquasigroup of a finite quasigroup Q.

(a) The action matrix or transition matrix or Markov matrix of an element
q of Q on the set P\Q is defined to be the |P\Q| × |P\Q| matrix

RP\Q(q) = A+
P RQ(q)AP . (4.14)

(b) The homogeneous space P\Q or (P\Q,Q) is understood as the set P\Q
together with the map

q 7→ RP\Q(q)

assigning an action matrix to each element of the quasigroup Q.

(c) The total matrix of the homogeneous space P\Q is defined to be the
|P\Q| × |P\Q| matrix ∑

q∈Q

RP\Q(q) . (4.15)

(d) The Markov matrix of the homogeneous space P\Q is a |P\Q| × |P\Q|
matrix. For nonempty Q, it is given by

1
|Q|

∑

q∈Q

RP\Q(q) . (4.16)

LEMMA 4.1
The total matrix (4.15) of the homogeneous space P\Q may be written as

A+
P JAP , (4.17)

where J denotes the |P\Q| × |P\Q| all-ones matrix.

PROOF For given x, y in Q, there is a unique element q = x\y of Q such
that y = xq (compare Exercise 7 of Chapter 2). Thus

∑

q∈Q

RQ(q) = J .
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The result then follows from (4.14).

Recall that a matrix is stochastic if its entries are all nonnegative real
numbers, and each of its row sums is 1.

COROLLARY 4.2

Let P1, . . . , Pr be the orbits of the relative left multiplication group of P in Q.

(a) Each row of the total matrix of P\Q takes the form

[ |P1|, . . . , |Pr| ] . (4.18)

(b) Each row of the Markov matrix of P\Q takes the form

[ |P1|
|Q| , . . . ,

|Pr|
|Q|

]
. (4.19)

In particular, the matrix is stochastic.

PROOF Let X and Y be orbits of the relative left multiplication group
of P in Q. By (4.17), the XY -entry of the total matrix is

[A+JA]XY =
∑

x,y∈Q

A+
XxJxyAyY =

∑

x,y∈Q

A+
XxAyY .

By (4.13), this reduces to

∑

x∈X

∑

y∈Y

|X|−1 · 1 = |Y | ,

as required for (4.18). Equation (4.19) follows.

THEOREM 4.1

For each element q of Q, Definition 4.1(a) yields a Markov chain with tran-
sition matrix RP\Q(q) on the state space P\Q of orbits of the permutation
group LMltQP on the set Q. The probability of transition from an orbit X to
an orbit Y is given as

|X ∩R(q)−1(Y )|
|X| . (4.20)
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PROOF By (4.14), one has

[RP\Q(q)]XY =
∑

x∈Q

∑

y∈Q

A+
XxR(q)xyAyY

=
∑

x∈Q

A+
XxA(xq)Y

=
∑

x∈X

A+
XxA(xq)Y

= |X|−1|{x | x ∈ X, xq ∈ Y }|

=
|X ∩R(q)−1(Y )|

|X|

giving (4.20). Moreover, summing (4.20) over all elements Y of P\Q yields
the value 1.

COROLLARY 4.3

In the group case, the matrix (4.14) is just the permutation matrix given by
the permutation (4.1).

PROOF In this case, the numerator of (4.20) is |X| if XR(q) = Y , and
zero otherwise.

4.2 Approximate symmetry

This section examines a specific example of the action of a quasigroup on
one of its homogeneous spaces, and shows how the action may be interpreted
as an instance of approximate symmetry. Consider the quasigroup Q whose
multiplication table is displayed in Figure 1.2. Let P be the singleton sub-
quasigroup {1}. Note that LMltQP is the cyclic subgroup of Q! generated by
(23)(456). Thus

P\Q =
{{1}, {2, 3}, {4, 5, 6}}, (4.21)

yielding

AP =




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1




and A+
P =




1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1
3

1
3

1
3


 .
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Now (4.14) gives

RP\Q(5) =




0 0 1
0 0 1
1
3

2
3 0


 . (4.22)

One may view this Markov chain action graphically according to Figure 4.1.
Denote the elements of the state space P\Q, the orbits of LMltQP on Q,
respectively as

a = {1},
a′ = {2, 3},
b = {4, 5, 6} .

The incidence matrix AP , giving the assignment of quasigroup elements to
state space elements, is represented by the right-hand side of the figure. The
permutation RQ(5) of Q is represented in the center of the figure. The left-
hand side represents the pseudoinverse A+

P . In the Markov chain, each element
of the state space on the left of the figure has a uniform chance of transitioning
along each of the arrows leading from it. After that, its path through Q and
back to the state space P\Q is uniquely specified, according to the matrix
RP\Q(5). For example, the element b has a two-thirds chance of transitioning
to a′, and a one-third chance of transitioning to a.

A+
P RQ(5) AP

»»»:
a′ XXXz

½
½

½½>

-b
Z

Z
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Z
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ZZ~- b

½
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FIGURE 4.1: The Markov chain RP\Q(5).
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In order to study the action of the full quasigroup Q on P\Q, define Markov
matrices

ι =




1 0 0
0 1 0
0 0 1


 , ε =




0 1 0
1
2

1
2 0

0 0 1


 and τ =




0 0 1
0 0 1
1
3

2
3 0


 . (4.23)

Note that
RP\Q(1) = ι, RP\Q(2) = RP\Q(3) = ε ,

and
RP\Q(4) = RP\Q(5) = RP\Q(6) = τ .

Moreover, the matrices (4.23) commute with each other. (For the origin of
this commutativity, see Section 9.4 below.)

Consider the commutative monoid generated by the matrices ε and τ . Each
element of the monoid may be expressed uniquely in the form εlτm for non-
negative integers l and m. The action of these elements on the state space
{a, a′, b} is then given by Figure 4.2, which displays the image of a under εlτm.
The symbol k stands for any positive integer. The information in the table is
complete, since b = aτ and a′ = aε. In other words, a′εlτm = aεl+1τm and
bεlτm = aεlτm+1. Convex combinations of states are used to specify finite
probability distributions. For example, 1

3a+ 2
3a′ denotes the mixed state con-

sisting of a one-third chance of state a and a two-thirds chance of state a′.
With this notation, the action on the full set of mixed states, the set

{pa + p′a′ + (1− p− p′)b | 0 ≤ p, 0 ≤ p′, 0 ≤ (1− p− p′)} (4.24)

of all convex combinations of the states from P\Q, is given by

εlτm : pa + p′a′ + (1− p− p′)b 7→ paεlτm + p′aεl+1τm + (1− p− p′)aεlτm+1.

m \ l 0 1 2 3 4 . . .

0 a a′ 1
2a + 1

2a′ 1
4a + 3

4a′ 3
8a + 5

8a′ . . .

1 b b b b b . . .

2k 1
3a + 2

3a′ 1
3a + 2

3a′ 1
3a + 2

3a′ 1
3a + 2

3a′ 1
3a + 2

3a′ . . .

2k + 1 b b b b b . . .

FIGURE 4.2: Permutation action of Q on {a, a′, b}
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The quasigroup action may be interpreted as an approximate two-fold sym-
metry between the state b on the one hand, and the states a, a′ on the other.

a
a′

τ←→ b

If the distinction between a and a′ is suppressed, then one obtains an exact
two-fold symmetry between a and b, with ε acting as an identity element (just
like ι), while τ acts as a transposition between a and b.

a
τ←→ b (4.25)

Acknowledging the distinction between a and a′, however, this symmetry is
seen to be only approximate. For example, applying τ once to a gives b, but
a repeated application of τ leads back to a only with probability one-third,
and otherwise gives a′. In [164], approximate symmetry has been defined as
exact symmetry holding at one level of a hierarchical system. In the present
case, there is a hierarchy with just two levels: macroscopic and microscopic.

Macrostates: {a, a′} {b}
Microstates: a a′ b

The macrostates are {a, a′} and {b}, the distinction between a and a′ lying
at the microscopic level. The approximate symmetry consists of exact two-fold
symmetry at the macroscopic level.

4.3 Macroscopic symmetry

This section establishes a general framework for approximate symmetry of
the kind observed in the model of the previous section. It depends on the
quasigroup analogue of a group-theoretic concept, the core of a subgroup.
Recall that the core KQ(H) of a subgroup H of a group Q is the intersection

⋂

q∈Q

Hq

of all the conjugates of H in Q.
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Let Q be a quasigroup with a congruence V . A subquasigroup Q0 of Q
is said to be compatible with V if it is the preimage of its image under the
natural projection by V , i.e., if

Q0 = (nat V )−1(QV
0 ) .

Compatibility means that Q0 is a union
⋃

QV
0 of V -classes. The core or core

congruence of a subquasigroup Q0 in a quasigroup Q is defined to be the
largest congruence κ or κ(Q0) or κQ(Q0) on Q that is compatible with Q0.
This concept matches its group-theoretical analogue.

PROPOSITION 4.2
Let H be a subgroup of a group Q. Then the group-theoretical core KQ(H)
of H in Q is the class of the identity element 1 of Q under the quasigroup-
theoretical core κQ(H) of H in Q.

PROOF Consider KQ(H) as the largest normal subgroup N of Q that is
contained in the subgroup H. The map V 7→ 1V provides an order-preserving
isomorphism from the set of congruences on Q that are compatible with H
to the set of normal subgroups contained in H. Under this isomorphism, one
has κQ(H) 7→ KQ(H).

The following definition specifies the general features of the sort of approx-
imate symmetry observed in Section 4.2. (Note that this is but one form of
approximate symmetry.) In the definition, an exact symmetry is described by
a certain transitive permutation action, a faithful (or, in analysts’ terminology,
“effective”) group homogeneous space. The exact symmetry underlying the
approximate symmetry observed in Section 4.2 is the symmetry ({a, b}, 〈τ〉)
of (4.25).

DEFINITION 4.2 Let G be a group, and let (X, G) be a faithful homo-
geneous space for G. A system is said to exhibit macroscopic approximate
symmetry of type (X, G) if it consists of two hierarchical levels, macroscopic
and microscopic, with an exact symmetry of type (X, G) holding at the macro-
scopic level.

THEOREM 4.2
Suppose that a nonempty finite quasigroup Q contains a subquasigroup Q0

compatible with the group replica congruence of Q. Let κ be the core of Q0 in
Q. Then for a subquasigroup P of Q0, the homogeneous space P\Q exhibits
macroscopic approximate symmetry of type (Qκ

0\Qκ, Qκ).

PROOF Since Q0 is compatible with the group replica congruence of Q,
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the quotient Qκ is a group. As a consequence of the isomorphism theorems,
KQκ(Qκ

0 ) is trivial, so the group homogeneous space (Qκ
0\Qκ, Qκ) is faithful.

The microstates of the homogeneous space P\Q are its elements, namely
the LMltQ(P )-orbits on Q. The macrostates are the LMltQ(Q0)-orbits on Q.
Since P is a subquasigroup of Q0, it is immediate that each macrostate is a
union of microstates, so that P\Q forms a two-level hierarchical system.

Suppose that (x, y) ∈ κ. Let e be an element of Q for which eκ is the
identity element of the group Qκ. Then

y/x ∈ (y/x)κ = yκ/xκ = eκ.

Now eκ is a subquasigroup of Q0. Since xL(y/x) = y by (SR), it follows that
each LMltQ(Q0)-orbit is a union of κ-classes.

For x in Q, the map

β : Q0\Q → Qκ
0\Qκ; xLMltQ(Q0) 7→ xκLMltQκ(Qκ

0 )

bijects. Certainly it is well defined, since

xL(q1)±1 . . . L(qr)±1 = y

(with x, y ∈ Q and q1, . . . , qr ∈ Q0) implies

xκL(qκ
1 )±1 . . . L(qκ

r )±1 = yκ .

The map β is clearly surjective. For the injectivity, suppose

xκL(pκ
1 )±1 . . . L(pκ

r )±1 = yκL(qκ
1 )±1 . . . L(qκ

s )±1

for x, y ∈ Q and p1, . . . pr, q1, . . . , qs ∈ Q0. Then

(xL(p1)±1 . . . L(pr)±1, yL(q1)±1 . . . L(qs)±1) ∈ κ ,

so x and y share the same LMltQ(Q0)-orbit.
Finally, for x, y, q ∈ Q and q1, . . . , qr ∈ Q0, the equation

xL(q1)±1 . . . L(qr)±1R(q) = y

implies

xκL(qκ
1 )±1 . . . L(qκ

r )±1R(qκ) = yκ .

Thus the transition matrix of RQ0\Q(q) on Q0\Q is the permutation matrix
of RQκ

0 \Qκ(qκ) on Qκ
0\Qκ. It follows that the macroscopic homogeneous space

(Q0\Q,Q) has the required symmetry type (Qκ
0\Qκ, Qκ).

 



104 An Introduction to Quasigroups and Their Representations

4.4 Regularity

For a quasigroup Q, the regular homogeneous space is the homogeneous
space ∅\Q. Recall that the relative left multiplication group of the empty
subquasigroup is trivial. Thus the state space of ∅\Q is the set

{{q}
∣∣ q ∈ Q

}

of singleton subsets of Q, often simply identified with Q itself. If Q is a loop
with identity element e, then the relative left multiplication group of the sin-
gleton subquasigroup {e} of Q is again trivial. Thus the regular homogeneous
space of a loop may be described as {e}\Q (or just e\Q) rather than ∅\Q.

A finite quasigroup Q may be recovered from its regular space.

PROPOSITION 4.3
The multiplication table of the conjugate (Q, \) is the formal sum

∑

q∈Q

qR∅\Q(q) (4.26)

of multiples of the action matrices of ∅\Q.

PROOF For the regular space, the incidence matrix A∅ is just the identity
matrix, so that R∅\Q(q) = RQ(q) for each element q of Q. For elements x, y
of Q, consider the entry of the matrix (4.26) in the row labeled by x and the
column labeled by y. Since there is a unique quasigroup element q such that
xRQ(q) = y, namely q = x\y, this matrix entry is x\y. Thus (4.26) is the
multiplication table of the conjugate (Q, \), as required.

COROLLARY 4.4
The multiplication table of a finite quasigroup (Q, ·) is the formal sum

∑

q∈Q

qRS(q) (4.27)

of action matrices of the regular homogeneous space S of its conjugate (Q, \).

PROOF By (1.9), the original multiplication · on Q is the left division
corresponding to \ as a multiplication operation.

By Cayley’s Theorem, a finite group Q is immediately recovered from its
regular space as the group formed by the action (permutation) matrices under
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multiplication. More general quasigroups with the action matrices of the
regular space forming a group under multiplication have occasionally appeared
in the literature (compare [21], [28, Ex. II.5.27], [85, Prop. 1], [169]). Define
a right quasiloop to be a quasigroup Q having a right identity , an element e
such that xe = x for all x in Q.

THEOREM 4.3
Let (Q, ·) be a finite, nonempty quasigroup with right multiplication group G.
Then the following conditions are equivalent:

(a) The group G acts regularly on Q;

(b) There is a group structure (Q, +) on Q, and a permutation λ of Q, such
that

x · y = x + yλ (4.28)

for all x, y in Q;

(c) There is a group structure (Q, +) on Q, and a permutation λ of Q fixing
the identity element of (Q, +), such that (4.28) holds for all x, y in Q;

(d) (Q, ·) is a right quasiloop isotopic to a group.

PROOF (a)⇒(b): If (a) holds, then there is a G-isomorphism s from
the action of G on Q to the right regular action of the group G or (G,+) on
itself. In this latter action, there is a permutation λ of Q such that, for each
y in Q, the element R(y) : Q → Q;x 7→ x · y of G acts as the group right
multiplication R+(yλs) by the element yλs of G. Thus for x and y in Q, one
has xR(y)s = xsR(y) or

(x · y)s = xs + yλs. (4.29)

Now the bijection s : Q → G may be used to induce a group operation + on
Q by (x + y)s = xs ◦ ys. The equation (4.29) then takes the form

(x · y)s = (x + yλ)s.

Since s injects, the desired result (4.28) follows.

(b)⇒(c): See [169] or Exercise 5.

(c)⇒(d): If (c) holds, then the identity element of the group (Q, +) is a right
identity for the quasigroup (Q, ·), so that (Q, ·) is a right quasiloop. By (4.28),
the right quasiloop (Q, ·) is isotopic to the group (Q, +).

(d)⇒(c): See [85, Prop. 1] or Exercise 5.

(c)⇒(b): Immediate.
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(b)⇒(a): Suppose that (b) holds. Then each quasigroup right multiplication
R(y) for y in Q may be written as the group right multiplication R+(yλ). It
follows that G is equal to the right multiplication group of the group (Q, +).
As such, G acts regularly on Q.

4.5 Lagrangean properties

For a group Q, Lagrange’s Theorem states that the order of a subgroup
always divides the order of Q. For a general quasigroup Q, even the order
of a nonempty subquasigroup need not divide the order of Q. Pflugfelder
[125] describes a subloop P of a loop Q as Lagrange-like in Q if |P | does
divide |Q|. The loop Q is said to satisfy the weak Lagrange property if each
subloop is Lagrange-like. It is said to satisfy the strong Lagrange property
if each of its subloops satisfies the weak Lagrange property. Nonassociative
loops satisfying the strong Lagrange property were discussed in [27], [63], [64].
Recalling that Lagrange’s Theorem for a group Q relies on the uniformity of
the sizes of the elements of a homogeneous space P\Q, this section formulates
Lagrangean properties in homogeneous space terms. Let P be a subquasigroup
of a finite, nonempty quasigroup Q. The type of the homogeneous space
P\Q is the partition of |P\Q| given by the sizes of the orbits of the relative
left multiplication group of P in Q. Note that the type of a homogeneous
space is determined by its Markov matrix, according to (4.19). The type of a
homogeneous space P\Q, or the space itself, is said to be uniform if all the
parts of the partition are equal. For example, the regular space of any finite,
nonempty quasigroup Q is uniform.

A subquasigroup P of a quasigroup Q is said to be (right) Lagrangean in Q
if the type of P\Q is uniform, i.e., if the relative left multiplication group of
P in Q acts semitransitively (in the sense of [83, Defn. II.1.14b]). Similarly,
P is left Lagrangean if the relative right multiplication group of P in Q acts
semitransitively. Note that a Lagrangean subloop P of a loop Q is Lagrange-
like in Pflugfelder’s sense, since P is one of the states of P\Q. On the other
hand, the subloop P of the loop Q of Example 4.2 below is Lagrange-like in
Q, but not right Lagrangean in Q.

PROPOSITION 4.4

Each normal subloop P of a finite loop Q is right Lagrangean in Q.

PROOF Let P be an equivalence class of a congruence V on Q. It will
be shown that the LMltQP -orbits on Q coincide with the V -classes. The
uniformity of P\Q then follows by Exercise 7 of Chapter 3.
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First, suppose that (q1, q2) ∈ V . Note that (q2, q2) ∈ V by reflexivity. Then
V contains the right quotient (q2, q2)/(q1, q2) = (q2/q1, e), whence q2/q1 ∈ P .
Thus q2 = q1L(q2/q1) lies in the orbit of q1 under LMltQP , i.e. the V -class
of q1 is contained in an LMltQP -orbit.

Conversely, it must be shown that the LMltQP -orbit of an element q of Q is
contained in the V -class of q. It will be proved by induction on the length of
a word w of LMltQP that (q, qw) ∈ V . The induction basis (length 0) is the
observation that (q, q) lies in V by reflexivity. Suppose (q, qw) ∈ Q and p ∈ P .
Then V contains (e, p) · (qw, qw) = (qw, qwL(p)), so that (q, qwL(p)) ∈ V by
transitivity. Similarly, V contains (e, p)\(qw, qw) = (qw, qwL(p)−1), so that
(q, qwL(p)−1) ∈ V by transitivity.

REMARK 4.1 The example of Section 4.2 shows that normality of a
nonempty subquasigroup P of a finite quasigroup Q does not imply that P is
right Lagrangean in Q. In the example, the subquasigroup P = {1} is normal,
being a class of the trivial congruence on Q. Nevertheless, the type of P\Q
is not uniform.

The Lagrangean property is more robust than Lagrange-likeness. It may
happen that a subloop P of a loop Q is Lagrange-like in Q, but not in a
subloop of Q that contains P . For example, suppose that a loop Q has a
subloop P that is not Lagrange-like in Q. Then P × {e} is Lagrange-like in
the loop Q × P , but not in the subloop Q × {e}. The following proposition
shows that the Lagrangean property does not exhibit such pathology.

PROPOSITION 4.5

Let P be a Lagrangean subquasigroup in a finite quasigroup Q. Then P is
Lagrangean in each subquasigroup S of Q that contains P .

PROOF Since P is a subquasigroup of the quasigroup S, the action of the
relative left multiplication group LMltSP of P in S is just a restriction to S
of the action of the relative left multiplication group LMltQP of P in Q. Thus
the uniformity of the sizes of the orbits of LMltQP implies the uniformity of
the sizes of the orbits of LMltSP .

DEFINITION 4.3 A finite quasigroup Q is said to satisfy the (right)
Lagrange property if each subquasigroup of Q is (right) Lagrangean in Q. It
is said to satisfy the left Lagrange property if each subquasigroup of Q is left
Lagrangean in Q. Finally, Q is said to satisfy the total Lagrange property if
it satisfies both the right and left Lagrange properties.
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Example 4.1

The only proper, nontrivial subloop of the loop T with multiplication table

1 2 3 4 5 6

2 1 6 5 4 3

3 6 5 1 2 4

4 5 1 6 3 2

5 3 4 2 6 1

6 4 2 3 1 5

is the subloop {1, 2}, which is Lagrangean in T . Thus T is a nonassociative
loop satisfying the right Lagrange property.

In contrast with the global properties based on Lagrange-likeness, Proposi-
tion 4.5 shows that one does not need to make a distinction between “weak”
and “strong” versions of the Lagrangean property of Definition 4.3.

COROLLARY 4.5

Suppose that a finite quasigroup Q satisfies the right Lagrange property. Then
each subquasigroup of Q also satisfies the right Lagrange property.

PROOF Let P be a subquasigroup of a subquasigroup Q′ of Q. Then by
Proposition 4.5, P is Lagrangean in Q′.

COROLLARY 4.6

If a finite loop Q satisfies the right Lagrange property, then it also satisfies
the strong Lagrange property.

PROOF Let P be a subloop of a subloop Q′ of Q. By Corollary 4.5, Q′

satisfies the right Lagrange property, so that P is Lagrangean in Q′. It then
follows that P is Lagrange-like in Q′. Thus each subloop Q′ of Q satisfies
the weak Lagrange property, so that Q itself satisfies the strong Lagrange
property.

Example 4.2

The converse of Corollary 4.6 is false: the strong Lagrange property is too
weak to imply the right Lagrange property. For a “natural” example, compare
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Exercise 10. More directly, consider the loop Q whose multiplication table is
the following Latin square.

1 2 3 4 5 6

2 1 4 5 6 3

3 4 5 6 1 2

4 3 6 1 2 5

5 6 1 2 3 4

6 5 2 3 4 1

The proper, nontrivial subloops of Q are P = {1, 2}, P ′ = {1, 4}, and
P ′′ = {1, 6}, each Lagrange-like in Q, and without mutual containments. Thus
Q does satisfy the strong Lagrange property. On P\Q, the action matrices
(4.14) of the elements of P are the identity I2, while the action matrices of
the remaining elements of Q are

A =
[
0 1
1
2

1
2

]

(Exercise 3). The type of P\Q is 2 + 4, so that P is not Lagrangean in Q,
and Q does not satisfy the right Lagrange property.

Corollary 4.5 shows that the right Lagrange property is inherited by sub-
quasigroups. The property is also inherited by homomorphic images.

PROPOSITION 4.6
Suppose that a finite quasigroup Q satisfies the right Lagrange property. Then
each homomorphic image of Q also satisfies the right Lagrange property.

PROOF Suppose that Q is a quotient of Q by a projection

Q → Q; q 7→ q. (4.30)

Let P be a subquasigroup of Q whose preimage under (4.30) is a nonempty
subqausigroup P of Q. The projection (4.30) induces a group epimorphism

LMltQP → LMltQP ; l 7→ l (4.31)

acting on the set (2.8) of generators of its domain by L(p) 7→ L(p). Set
L = LMltQP and L = LMltQP . Now for q in Q, one has

qL = qL. (4.32)
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To see this, consider an element ql of the left hand side of (4.32), where the
element l of LMltQP is given by

l = L(p1) . . . L(pr)

with elements p1, . . . , pr of P . Then

ql = qL(p1) . . . L(pr) = qL(p1) . . . L(pr) ∈ qL,

the second equality holding since (4.30) is a quasigroup homomorphism. Con-
versely, the typical element of the right-hand side of (4.32) is of the form

qL(p1) . . . L(pr)

with q in Q and elements p1, . . . , pr of P . Such an element may be rewritten
in the form

qL(p1) . . . L(pr),
exhibiting it as an element of the left-hand side of (4.32).

Let p0 be a fixed element of P . Since the homogeneous space P \ Q has
uniform type, it follows that for each element q of Q the injection

R(p0\q) : P → qL; p 7→ p(p0\q)
bijects. In other words, qL = {p(p0\q) | p ∈ P}. Then by (4.32), one has

qL = qL =
{

p · (p0\q)
∣∣∣ p ∈ P

}
= {p · (p0\q) | p ∈ P},

so that each state of P \Q has cardinality |P |. Thus P is Lagrangean in Q,
as required.

4.6 Exercises

1. [18, Th. 1.5], [124] Suppose that A+
1 and A+

2 are matrices satisfying the
equations (4.2) through (4.5) for A+. Show that A+

1 = A+
2 .

2. Let P be a subquasigroup of a finite quasigroup Q. Show that for
each element q of Q, each column sum of the action matrix RP\Q(q) is
nonzero.

3. Let P be a subquasigroup of positive order m in a quasigroup Q of finite
order n. Suppose |P\Q| = 2. Show that for an element q of Q,

RP\Q(q) =





[
1 0
0 1

]
if q ∈ P ;

[
0 1
m

n−m
n−2m
n−m

]
otherwise.
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4. Formulate the “left-handed” version of Theorem 4.3.

5. In Theorem 4.3, show that condition (c) follows from each of the condi-
tions (b) and (d).

6. For an (m×p)-matrix A and an (n×p)-matrix B, the cracovian product
is defined by

A c©B = ABT .

(a) Let
b = xA (4.33)

be an overdetermined system of linear equations, with a real coef-
ficient row vector b of dimension n, a real m×n coefficient matrix
A, and an m-dimensional row vector x of unknowns, for n ≥ m.
Show that x is a least squares solution to (4.33) if and only if

b c©A = x(A c©A) .

(b) Let Q be a finite set of orthogonal real n×n matrices that is closed
under the cracovian product. Show that (Q, c©) forms a quasigroup
satisfying the equivalent conditions of Theorem 4.3.

7. Consider the two conjugates of a group of order 3 under right and left
division respectively. (Compare Exercise 5 of Chapter 1.)

(a) Show that in each, the singleton subquasigroup is left and right
Lagrangean respectively.

(b) Show that the conjugates have the left and right Lagrange proper-
ties respectively, but that neither has the total Lagrange property.

8. Exhibit a quasigroup of order 4 which does not have the right Lagrange
property.

9. Suppose that a finite quasigroup Q has a subquasigroup P which is not
right Lagrangean. Show that

|P | < |Q|
|P\Q| .

10. Show that the Moufang loop M1(2) does satisfy the strong Lagrange
property, but not the right Lagrange property.

11. Consider a finite central pique Q with pointed idempotent 0. Show that
the following are equivalent:

(a) {0} is left Lagrangean in Q;
(b) Q satisfies the equivalent conditions of Theorem 4.3;
(c) Q satisfies the left Lagrange property.
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4.7 Notes

Section 4.1

The concept of a quasigroup homogeneous space goes back to [157], [160].
Many of the results of Chapters 4 and 5 carry over verbatim to left quasi-
groups.

If Q is associative, the notation P\Q is consistent with (2.10). However, the
subquasigroup P = {1} of the Steiner triple system Q = PG(1, 2) is normal,
being a class of the trivial congruence on Q. Nevertheless, the quotient set
of singleton classes, written as Q/P according to the notation of Section 3, is
not the set of orbits of RMltQP on Q.

Section 4.3

A different kind of approximate symmetry is presented in [164]. There,
exact symmetry holds at the mesoscopic level of a three-level linearly-ordered
complex system, but not at the microscopic or macroscopic levels. The prob-
lem of constructing mathematical models for general kinds of approximate
symmetry is completely open, as is the question of a taxonomy for approxi-
mate symmetries.

Section 4.4

Some sources, such as [85], use the term “right loop” for right quasiloops.
However, the term “right loop” is best reserved for right quasigroups having
a two-sided identity, as in Section 2.5. In [11], left quasigroups having a right
identity were described as semiloops.

 



Chapter 5

PERMUTATION
REPRESENTATIONS

This chapter is devoted to the theory of permutation representations or Q-sets
of a finite quasigroup Q. In Section 5.1, general finite sets acted upon by a
Q-indexed set of Markov matrices are described as Q-IFS or iterated func-
tion systems in the sense of fractal geometry. However, the most satisfactory
general description is in terms of coalgebras, which are summarized briefly in
Appendix C. The Q-IFS are interpreted as certain coalgebras in Section 5.2.
Following the technical Section 5.3 describing irreducible coalgebras, the per-
mutation representations or Q-sets of a finite quasigroup Q are then defined
in Section 5.4 as the members of the covariety of coalgebras generated by
the homogeneous spaces of Q. Section 5.5 introduces the Burnside algebra of
a quasigroup, as a direct generalization of the Burnside algebra of a group.
Section 5.6 computes the Burnside algebra for the quasigroup of Figure 1.2.
Section 5.7 examines the idempotents of the Burnside algebra. Finally, Sec-
tion 5.8 presents Burnside’s Lemma for quasigroup permutation actions: its
proof specializes to a new proof of Burnside’s Lemma for group permutation
representations.

5.1 The category IFSQ

Let P be a subquasigroup of a nonempty finite quasigroup Q. The set of
convex combinations of the states from the homogeneous space P\Q forms
a complete metric space, and the actions (4.14) of the quasigroup elements
form an iterated function system or IFS in the sense of fractal geometry [7].
More generally, for any finite quasigroup Q, define a Q-IFS (X, Q) as a finite
set X together with an action map

R : Q → EndC(CX); q 7→ RX(q) (5.1)

from Q to the set of endomorphisms of the complex vector space with basis
X (identified with their matrices with respect to the basis X), such that each
action matrix RX(q) is stochastic. For a nonempty finite quasigroup Q, the
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Markov matrix of (X,Q) is the arithmetic mean

M(X,Q) =
1
|Q|

∑

q∈Q

RX(q) (5.2)

of the action matrices of the elements of Q. For a finite set X, define M(X,∅)

as the |X| × |X| identity matrix. Note that the Markov matrix of a Q-IFS
is stochastic. If P is a subquasigroup of a finite nonempty quasigroup Q,
then the homogeneous space P\Q is a Q-IFS with the action map specified
by (4.14), and the definitions above are consistent with Definition 4.1.

A morphism
φ : (X, Q) → (Y,Q) (5.3)

from a Q-IFS (X,Q) to a Q-IFS (Y,Q) is a function φ : X → Y whose graph
has an incidence matrix F satisfying the intertwining equation

RX(q)F = FRY (q) (5.4)

for each element q of Q. It is readily checked that the class of morphisms
(5.3), for a fixed quasigroup Q, forms a concrete category IFSQ.

PROPOSITION 5.1
Let Q be a finite group.

(a) The category of finite Q-sets forms the full subcategory of IFSQ consist-
ing of those objects for which the action map (5.1) is a monoid homo-
morphism.

(b) A Q-IFS (X, Q) is a Q-set if and only if it is isomorphic to a Q-set
(Y, Q) in IFSQ.

PROOF For (a), suppose that the action map (5.1) of a Q-IFS (X, Q)
is a monoid homomorphism. Let A be in the image of (5.1). Then A is a
stochastic matrix with Ar = I for some positive integer r. It follows that
A is a permutation matrix (cf. §XV.7 of [59]). Part (b) follows from part
(a): if the morphism φ : (X, Q) → (Y, Q) is an isomorphism whose graph has
incidence matrix F , then the action map of (X, Q) is the composite of the
action map of (Y, Q) with the monoid isomorphism RY (q) 7→ FRY (q)F−1

given by Equation (5.4).

For a fixed finite quasigroup Q, the category IFSQ has finite coproducts.
Consider objects (X, Q) and (Y, Q) of IFSQ. Their sum or disjoint union
(X + Y, Q) consists of the disjoint union X + Y of the sets X and Y together
with the action map

q 7→ RX(q)⊕RY (q) (5.5)
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sending each element q of Q to the direct sum of the matrices RX(q) and
RY (q). One obtains an object of IFSQ, since the direct sum of stochastic
matrices is stochastic.

THEOREM 5.1
Let (X, Q) and (Y, Q) be objects of IFSQ. The sum (X + Y, Q) forms the
coproduct of (X, Q) and (Y, Q) in the category IFSQ.

PROOF Consider the diagram

CX
JX−−−−→ CX ⊕ CY

JY←−−−− CY∥∥∥
yF⊕G

∥∥∥
CX

F−−−−→ CZ
G←−−−− CY∥∥∥

yRZ(q)

∥∥∥

CX
FRX(q)−−−−−→ CZ

GRY (q)←−−−−− CY

(5.6)

in the category of complex vector spaces. Here q is an element of Q, the linear
transformation F is (described by) the incidence matrix of an IFSQ-morphism
f : (X, Q) → (Z, Q), and the linear transformation G is the incidence matrix
of an IFSQ-morphism g : (Y, Q) → (Z, Q). The linear transformations on the
top row are linear extensions of the insertions of the summands X, Y in the
disjoint union X + Y . Then

RX+Y (q)(F ⊕G) =
(
RX(q)⊕RY (q)

)
(F ⊕G)

= RX(q)F ⊕RY (q)G = FRZ(q)⊕GRZ(q)
= (F ⊕G)RZ(q),

the latter equality following by the commuting of (5.6). It follows that the
direct sum matrix F ⊕G is the incidence matrix of a uniquely specified sum
IFSQ-morphism f + g : (X + Y,Q) → (Z,Q), as required.

The tensor product (X ⊗ Y,Q) of (X, Q) and (Y, Q) is the direct product
X × Y of the sets X and Y together with the action map

q 7→ RX(q)⊗RY (q) (5.7)

sending each element q of Q to the tensor (or Kronecker) product of the
matrices RX(q) and RY (q). Thus for elements (x, y) and (x′, y′) of X × Y ,
the (x, y)(x′, y′)-entry of the matrix RX(q) ⊗ RY (q) is given as the product
of the xx′-entry of RX(q) with the yy′-entry of RY (q). Again, one obtains an
object of IFSQ, since the tensor product of stochastic matrices is stochastic.
The abstract significance of the tensor product is given by Corollary 5.3 below
in the context of coalgebras.
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5.2 Actions as coalgebras

For a finite set Q, the Q-IFS are realized as coalgebras for the Q-th power of
the endofunctor B sending a set to (the underlying set of) the free barycen-
tric algebra that it generates. It is worth recalling some basic facts about
barycentric algebras. For more details, readers may consult [134] or [135].
Let I◦ denote the open unit interval ]0, 1[, the interior of the closed unit
interval I = [0, 1]. For p, q in I, define p′ = 1− p and p ◦ q = (p′q′)′.

DEFINITION 5.1 A barycentric algebra A or (A, I◦) is an algebra of
type I◦ × {2}, equipped with a binary operation

p : A×A → A; (x, y) 7→ xy p (5.8)

for each p in I◦, satisfying the identities

xx p = x (5.9)

of idempotence for each p in I◦, the identities

xy p = yx p′ (5.10)

of skew-commutativity for each p in I◦, and the identities

xy p z q = x yz q/(p ◦ q) p ◦ q (5.11)

of skew-associativity for each p, q in I◦. Let B denote the variety of all
barycentric algebras, construed as a category having all the barycentric algebra
homomorphisms as its morphisms. The corresponding free algebra functor is
B : Set → B.

A convex set C forms a barycentric algebra (C, I◦), with xy p = (1−p)x+py
for x, y in C and p in I◦. A semilattice (S, ·) becomes a barycentric algebra
on setting xy p = x · y for x, y in S and p in I◦. For the following result, see
[120], [134, §2.1], [135, §5.8].

THEOREM 5.2
Let X be a set. Then the free barycentric algebra XB on X is realized as the
set of all finitely-supported probability distributions on X. If X is finite, the
free algebra XB on X is also realized as the simplex spanned by X.

In the latter case, the theorem relies on the identification of the barycentric
coordinates in a simplex with the weights in finite probability distributions.
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DEFINITION 5.2 Let Q be a finite set. The functor BQ : Set → Set
sends a set X to the set XBQ of functions from Q to the free barycentric
algebra XB over X. For a function f : X → Y , its image under the functor
BQ is the function fBQ : XBQ → Y BQ defined by

fBQ : (Q → XB; q 7→ w) 7→ (Q → Y B; q 7→ wfB).

Some standard “coalgebraic” properties of the functor BQ are listed for
reference in the following proposition. The meaning of these properties is
discussed in Appendix C.2.

PROPOSITION 5.2
Let Q be a finite set.

(a) The functor BQ preserves weak pullbacks.

(b) The functor BQ is bounded.

(c) Each covariety of BQ-coalgebras is bicomplete.

PROOF (a) By Appendix A of [173], the functor B preserves weak pull-
backs. Thus the finite power BQ of B also preserves weak pullbacks (compare
[68, Lemma 8.11]).
(b) See the proof of [173, Th. 4.6].
(c) Since BQ is bounded, the result follows according to [68, §7.4].

THEOREM 5.3
Let Q be a finite set. Then the category IFSQ is isomorphic with the category
of finite BQ-coalgebras.

PROOF
Given a Q-IFS (X, Q) with action map R as in (5.1), define a BQ-coalgebra

LX : X → XBQ with structure map

LX : X → XBQ; x 7→ (Q → XB; q 7→ xRX(q)). (5.12)

(Note the use of Theorem 5.2 interpreting the vector xRX(q), lying in the
simplex spanned by X, as an element of XB.) Given a Q-IFS morphism
φ : (X, Q) → (Y, Q) as in (5.3), with incidence matrix F , one has

xLX .φBQ : Q → Y B; q 7→ xRX(q)F (5.13)

for each x in X, by Definition 5.2. On the other hand, one also has

xφLY : Q → Y B; q 7→ xFRY (q). (5.14)
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By (5.4), it follows that the maps (5.13) and (5.14) agree. Thus φ : X → Y is
a coalgebra homomorphism. These constructions yield a functor from IFSQ

to the category of finite BQ-coalgebras.
Conversely, consider a given finite BQ-coalgebra X with structure map

LX : X → XBQ. Define a Q-IFS (X, Q) with action map

RX : Q → EndC(CX); q 7→ (x 7→ qLX(x)), (5.15)

well-defined by Theorem 5.2. Let φ : X → Y be a coalgebra homomorphism
with incidence matrix F . Then the maps (5.13) and (5.14) agree for all x in
the basis X of CX, whence (5.4) holds and φ : (X,Q) → (Y,Q) becomes a
Q-IFS morphism. In this way one obtains mutually inverse functors between
the two categories.

COROLLARY 5.1
Each homogeneous space over a finite quasigroup Q yields a BQ-coalgebra.

Example 5.1
Consider the structure map of the coalgebra corresponding to the homoge-
neous space presented in Section 4.2. In accordance with (4.22), the image
of the state {4, 5, 6} sends the element 5 of Q to the convex combination
weighting the state {1} with 1/3 and the state {2, 3} with 2/3.

COROLLARY 5.2
Let Q be a finite group. Then the category of finite Q-sets embeds faithfully

as a full subcategory of the category of all BQ-coalgebras.

PROOF Apply Theorem 5.3 and Proposition 5.1.

COROLLARY 5.3
Let Q be a finite quasigroup. Let (X,Q) and (Y, Q) be objects of IFSQ, with
corresponding BQ-coalgebras X → XBQ and Y → Y BQ under the isomor-
phism of Theorem 5.3. Then the tensor product (X ⊗ Y,Q) corresponds to a
bisimulation between X → XBQ and Y → Y BQ.

PROOF Consider the diagram

CX
PX←−−−− CX ⊗ CY

PY−−−−→ CY

in the category of complex vector spaces, the linear extension of the product
diagram

X
πX←−−−− X × Y

πY−−−−→ Y (5.16)
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in the category of sets. Now for x ∈ X, y ∈ Y, q ∈ Q, one has

(x⊗ y)pXRX(q) = xRX(q)

=
(
xRX(q)⊗ yRY (q)

)
pX

= (x⊗ y)RX⊗Y (q)pX .

Thus πX , and similarly πY , are IFSQ-morphisms as required.

COROLLARY 5.4

Let Q be a finite quasigroup. Let (X,Q) and (Y, Q) be objects of IFSQ, with
corresponding BQ-coalgebras X → XBQ and Y → Y BQ under the isomor-
phism of Theorem 5.3. Then the tensor product X ⊗ Y forms a subcoalgebra
of the product X × Y of X and Y in the category of all BQ-coalgebras.

PROOF Consider the diagram

X
$X←−−−− X ⊗ Y

$Y−−−−→ Y
∥∥∥

xπX×πY

∥∥∥
X

πX←−−−− X × Y
πY−−−−→ Y

∥∥∥
x$X×$Y

∥∥∥
X

$X←−−−− X ⊗ Y
$Y−−−−→ Y

(5.17)

in the category of sets. The middle row of the diagram is the image, under the
underlying set functor, of the product object and projections in the category
of BQ-coalgebras. This configuration exists by Proposition 5.2. The top and
bottom rows, instances of (5.16) rewritten with a notation more appropriate to
the context of BQ-coalgebras, just denote the product object and projections
in the category of sets. By Corollary 5.3, these rows are the images of a
diagram in the category of BQ-coalgebras. The whole lower rectangle of (5.17)
is the image of a product diagram in the category of BQ-coalgebras, while the
top rectangle is a product diagram in the category of sets. However, the
outer rectangle of (5.17) is also a product diagram in the category of sets,
with product map realized by 1X⊗Y . Thus the coalgebra homomorphism
$X ×$Y injects as required, since it is retracted by πX × πY in the category
of sets.
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5.3 Irreducibility

Let Q be a finite set. Let Y be a BQ-coalgebra equipped with the structure
map L : Y → Y BQ. For elements y, y′ of Y , the element y′ is said to be
reachable from y in Y if there is an element q of Q such that y′ appears in
the support of the distribution qL(y) on Y . The reachability graph of Y is
the directed graph of the reachability relation on Y . The coalgebra Y is said
to be irreducible if its reachability graph is strongly connected.

PROPOSITION 5.3

If P\Q is a homogeneous space over a finite quasigroup Q, realised as a
BQ-coalgebra according to Corollary 5.1, then P\Q is irreducible.

PROOF Let H be the relative left multiplication group of P in Q. For
an arbitrary pair x, x′ of elements of Q, consider the corresponding elements
xH and x′H of P\Q. For q = x\x′ in Q, the element x′H then appears in
the support of qL(xH).

COROLLARY 5.5

Let Q be a finite quasigroup. Suppose that Y is a BQ-coalgebra that is a
homomorphic image of a homogeneous space S over Q. Then Y is irreducible.

PROOF Since S and Y are finite, one may use the correspondence of
Theorem 5.3. Let φ : S → Y be the homomorphism, with incidence matrix
F . Consider elements y and y′ of Y . Suppose x and x′ are elements of S with
xφ = y and x′φ = y′. By Proposition 5.3, there is an element q of Q with
x′ in the support of the distribution xRS(q). Then yRY (q) = xFRY (q) =
xRS(q)F , so the support of yRY (q), as the image of the support of xRS(q)
under φ, contains x′φ = y′.

For a group Q, each homogeneous space (P\Q,Q) is obtained as a homo-
morphic image of the regular homogeneous space ({1}\Q,Q). The following
considerations show that the corresponding property does not hold for general
quasigroups.

DEFINITION 5.3 Let Q be a finite set. A Q-IFS (X, Q) is said to be
crisp if, for each q in Q, the action matrix RX(q) is a 0-1-matrix. Then a
BQ-coalgebra L : X → XBQ is said to be crisp if its structure map corestricts
to L : X → XQ.
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Note that crisp Q-IFS and finite crisp BQ-coalgebras correspond under the
isomorphism of Theorem 5.3. (Compare Exercise 6.)

PROPOSITION 5.4
A homomorphic image of a finite crisp BQ-coalgebra is crisp.

PROOF Using Theorem 5.3, it is simpler to work in the category IFSQ.
Let φ : X → Y be a surjective IFSQ-morphism with incidence matrix F and
crisp domain. For an element y of Y , suppose that x is an element of X
with xφ = y. Then for each element q of Q, one has yRY (q) = xφRY (q) =
xFRY (q) = xRX(q)F , using (5.4) for the last step. Since X is crisp, there
is an element x′ of X with xRX(q) = x′. Then yRY (q) = x′F = y′ for the
element y′ = x′φ of Y . Thus Y is also crisp.

For each finite quasigroup Q, the regular homogeneous space ∅\Q deter-
mines the regular (permutation) representation (∅\Q,Q) or (Q,Q). This
permutation representation is crisp. On the other hand, the homogeneous
space exhibited in Section 4.2 is not crisp. Proposition 5.4 shows that such
spaces are not homomorphic images of the regular representation.

5.4 The covariety of Q-sets

DEFINITION 5.4 Let Q be a finite quasigroup. Then the category Q of

Q-sets is defined to be the covariety of BQ-coalgebras generated by the (finite)
set of homogeneous spaces over Q. Coalgebra homomorphisms between Q-sets
are described as Q-homomorphisms. A permutation representation of Q is a
finite Q-set.

For a finite quasigroup Q, the terms (finite) “Q-set” or “permutation rep-
resentation of Q” are used for finite objects of the category of Q-sets, and also
for those Q-IFS which correspond to finite Q-sets via Theorem 5.3.

THEOREM 5.4
For a finite quasigroup Q, the Q-sets are precisely the sums of homomorphic
images of homogeneous spaces.

PROOF Let H be the set of homogeneous spaces over Q. By [70, Prop.
2.4], the covariety generated byH is HSΣ(H). By [70, Prop. 2.5], the operators
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S and Σ commute. By Proposition 5.3, the homogeneous spaces do not contain
any proper, nonempty subcoalgebras. Thus the covariety generated by H
becomes HΣ(H). By [70, Prop. 2.4(iii)], one has ΣH(H) ⊆ HΣ(H). It thus
remains to be shown that each homomorphic image of a sum of homogeneous
spaces is a sum of homomorphic images of homogeneous spaces.

Let Y be a Q-set, with structure map LY , that is a homomorphic image
of a sum X of homogeneous spaces under a homomorphism φ. It will first
be shown that each element y of Y lies in a subcoalgebra Yy of Y that is a
homomorphic image of a homogeneous space. Since y lies in the image Y of
X under φ, there is an element x of X such that xφ = y. Since X is a sum
of homogeneous spaces, the element x lies in such a space S. Consider the
restriction of φ to S. Let Yy be the image of this restriction. Then Yy is a
subcoalgebra of Y that is a homomorphic image of a homogeneous space (cf.
[68, Lemma 4.5]).

Now suppose that for elements y and z of Y , the corresponding images
Yy and Yz of homogeneous spaces intersect nontrivially, say with a common
element t. By Corollary 5.5, there is an element q of Q such that z lies in the
support of qLY (t). On the other hand, since t lies in the subcoalgebra Yy, the
support of the distribution qLY (t) lies entirely in Yy. Thus z is an element of
Yy, and for each q in Q, the support of the distribution qLY (z) lies entirely
in Yy. It follows that Yz is entirely contained in Yy. Similarly, one finds that
Yy is contained in Yz, and so the two images agree. Thus Y is a sum of such
images.

COROLLARY 5.6

A finite quasigroup Q has only finitely many isomorphism classes of irre-
ducible Q-sets.

PROOF By Theorem 5.4, the irreducible Q-sets are precisely the homo-
morphic images of homogeneous spaces. Since Q is finite, it has only finitely
many homogeneous spaces. The (First) Isomorphism Theorem for coalgebras
(cf. [68, Th. 4.15]) then shows that each of these homogeneous spaces has
only finitely many isomorphism classes of homomorphic images.

COROLLARY 5.7

For a finite group Q, the quasigroup Q-sets coincide with the group Q-sets.

PROOF For a group Q, each homomorphic image of a homogeneous space
is isomorphic to a homogeneous space, and each group Q-set is isomorphic to
a sum of homogeneous spaces.

In considering the final corollary of Theorem 5.4, it is helpful to recall that
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the intersection of a family of subcoalgebras of a coalgebra is not necessarily
itself a subcoalgebra (cf. [68, Cor. 4.9]).

COROLLARY 5.8
Let y be an element of a Q-set Y over a finite quasigroup Q. Then the

intersection of all the subcoalgebras of Y containing the element y is itself a
subcoalgebra of Y .

PROOF In the notation of the proof of Theorem 5.4, this intersection is
the subcoalgebra Yy.

DEFINITION 5.5 Consider a Q-set Y over a finite quasigroup Q.

(a) The irreducible summands of Y given by Theorem 5.4 are called the
orbits of Y .

(b) For an element y of Y , the smallest subcoalgebra of Y containing y
is called the orbit of the element y. (Note that such a coalgebra is
guaranteed to exist by Corollary 5.8.)

(c) A permutation representation Y is said to be transitive if it consists of
a single orbit.

5.5 The Burnside algebra

By definition, the category Q of Q-sets is closed under coalgebra sums, as
described in Appendix C.1. Thus the sum of two sums of images of homoge-
neous spaces is immediately obtained as a new sum of images of homogeneous
spaces. In particular, the underlying set of a sum of Q-sets is the disjoint
union of their underlying sets. However, as shown by examples such as those
in Section 5.6 below, the tensor product of two homogeneous spaces over Q
in IFSQ need not decompose as a sum of images of homogeneous spaces.
By Corollary 5.4, it also follows that the direct product will not decompose
as such a sum either. Nevertheless, the category Q is actually bicomplete
(Proposition 5.2). Limits in the covariety Q are constructed by a procedure
dual to that used for the construction of colimits in a (pre)variety of τ -algebras
of a given type τ (compare [165, §IV.2.2]). That procedure first builds the
corresponding colimit L in the category τ of all τ -algebras, and then takes
the replica of L in the (pre)variety, its largest homomorphic image lying in
the (pre)variety. Given a BQ-coalgebra L, its replica in Q is obtained dually
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as the largest subcoalgebra of L that lies in the covariety Q. In particular,
given two finite Q-sets X and Y , their product X × Y in Q is formed as the
largest Q-subcoalgebra contained in the product of X and Y in the category

of all BQ-coalgebras. Note that the underlying set of a product of Q-sets is
not necessarily the product of their underlying sets. (A specific example is
exhibited at the end of Section 5.6 below.) In similar fashion the restricted
tensor product X⊗̂Y of X and Y is defined to be the largest Q-subcoalgebra
contained in the bisimulation X ⊗ Y .

For a finite Q-set X, let [X] denote its isomorphism type in the category
Q. Let A+(Q) denote the set of all such isomorphism types. Let B be the
set of so-called basic types, the isomorphism types of homomorphic images of
homogeneous spaces over Q. It is often convenient to consider each element b
of B as represented by a specified Q-set Hb. Now

∀ [X] ∈ A+(Q), ∀ b ∈ B, ∃ nb ∈ N. [X] =
∑

b∈B

nbb. (5.18)

An inner product is defined on A+(Q) by
〈 ∑

b∈B

mbb,
∑

b∈B

nbb
〉

=
∑

b∈B

mbnb. (5.19)

With respect to this inner product, the set of basic types is orthonormal. The
equation of (5.18) may then be rewritten as

[X] =
∑

b∈B

〈b, [X]〉b. (5.20)

THEOREM 5.5
Let Q be a finite quasigroup.

1. The set A+(Q) forms a commutative unital semiring, with zero [∅] and
unit [{1}], under the sum [X] + [Y ] = [X +Y ] and each of the following
multiplications:

(a) the (direct) product [X] · [Y ] = [X × Y ], and

(b) the restricted tensor product [X]⊗̂[Y ] = [X⊗̂Y ].

2. The N-semimodule A+(Q) is free over the basis B.

3. ∀ x, y, z ∈ A+(Q), 〈x, y⊗̂z〉 ≤ 〈x, y · z〉.

PROOF Statement (2) follows by Theorem 5.4, and statement (3) by
Corollary 5.4. Most of the statement (1) is routine, following by standard
properties of sums and products in bicomplete categories. For the distributive
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law with the reduced tensor product, consider Q-sets X,Y, Z. Then for each
q in Q, the matrix (RX(q) ⊕ RY (q)) ⊗ RZ(q) is permutationally similar to
(RX(q) ⊗ RZ(q)) ⊕ (RY (q) ⊗ RZ(q)), so that the Q-IFS (X + Y ) ⊗ Z and
(X ⊗ Z) + (Y ⊗ Z) are isomorphic. Since these Q-IFS contain the same
irreducible summands from Q, with the same multiplicities, the distributive

law in (A+(Q), +, ⊗̂) follows.

The mark concept introduced for quasigroups in the following definition is
a natural extension of Burnside’s original [23, §180].

DEFINITION 5.6 Let Q be a finite quasigroup, and let X be a Q-set.
For each basic Q-set type b = [Hb], the mark of b in X or x = [X] is defined
to be the cardinality

Zxb =
∣∣Q(Hb, X)

∣∣ (5.21)

of the set of Q-homomorphisms from Hb to X. The mark matrix or Z-matrix
Z or ZQ of Q is the |B| × |B| matrix [Zbc] for b and c in B.

PROPOSITION 5.5
For x, y in A+(Q) and b in B:

1. Z(x·y)b = ZxbZyb ;

2. Z(x+y)b = Zxb + Zyb ;

3. Zxb =
∑

a∈B〈a, x〉Zab .

PROOF Suppose x = [X] and y = [Y ].
(1) is an immediate consequence of the definition (5.21) and the universality
property of products:

∣∣Q(Hb, X × Y )
∣∣ =

∣∣Q(Hb, X)
∣∣ ·

∣∣Q(Hb, Y )
∣∣ .

(2): The image of a Q-homomorphism from Hb to X +Y is either a summand
of X, or else a summand of Y . Thus

∣∣Q(Hb, X + Y )
∣∣ =

∣∣Q(Hb, X)
∣∣ +

∣∣Q(Hb, Y )
∣∣.

(3) follows directly from (2) and (5.20).

COROLLARY 5.9
The product of two finite Q-sets is finite.

PROOF Using notation as in the proof of Proposition 5.5, suppose that
X and Y are finite. Then for each basic type b, the marks Zxb and Zyb are
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finite. By (1) of Proposition 5.5, the mark Z(x·y)b is finite, so that X ×Y can
only contain finitely many summands of type b.

REMARK 5.1 Corollary 5.9 contrasts with examples constructed as in
[71, Prop. 9.4], where for a bounded endofunctor F preserving weak pullbacks,
it may still happen that a product of finite F -coalgebras is infinite. On the
other hand, Section 5.6 exhibits two nonempty Q-sets X,Y whose product
is empty. Indeed, this will happen whenever there is no Q-set H that is the
domain of homomorphisms to both X and Y .

PROPOSITION 5.6

With notation as in Definition 5.6:

1. The set B may be ordered so that Z is triangular.

2. The Z-matrix is invertible over Q.

PROOF (1): Linearly order B by increasing order of the cardinality of
the representing Q-set, so that b = [H] ≤ [K] = c in B iff |H| ≤ |K|. Then
for b > c ∈ B, one has |K| ≤ |H|. Suppose that

0 < Zbc =
∣∣Q(K,H)

∣∣. (5.22)

Now H is irreducible [161, Cor. 7.3], so there can be a Q-homomorphism
f : K → H in (5.22) only if |H| = |K| and f bijects. Let F be the invertible
incidence matrix of f . Then

∀ q ∈ Q, FRK(q) = RH(q)F

⇒ ∀ q ∈ Q, RK(q)F−1 = F−1RH(q),

so that f is a Q-isomorphism. This yields the contradiction b = [H] = [K] = c
to the hypothesis b > c of (5.22). Thus with the ordering of B as given, the
Z-matrix is upper triangular.
(2): For b = [H] ∈ B, the identity map 1H lies in Q(H, H), so the diagonal

entries of the triangular matrix Z are all nonzero.

THEOREM 5.6

Let Q be a finite quasigroup, with set B of basic types of Q-set. Then the
mark map

(A+(Q),+, ·) → QB ; x 7→ (b 7→ Zxb) (5.23)

is an embedding of semirings.
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PROOF By Proposition 5.5(1)(2), the mark map is a semiring homo-
morphism. To see that it injects, use Proposition 5.5(3) to consider it in the
equivalent form

(A+(Q), +, ·) → QB ; x 7→
(
b 7→

∑

a∈B

〈a, x〉Zab

)
. (5.24)

Apply Proposition 5.6 and note that

∑

c∈B

∑

b∈B

( ∑

a∈B

〈a, x〉Zab

)
Z−1

bc c =
∑

c∈B

〈c, x〉c = x

by (5.20).

COROLLARY 5.10

Define A(Q) as the Q-vector space with basis B. Note that A(Q) contains
the free N-semimodule A+(Q) of Theorem 5.5(2) as a subreduct. Then A(Q)
carries a Q-algebra structure (A(Q),+, ·) such that:

(a) The semiring (A+(Q), +, ·) is identified as a subreduct of the Q-algebra
(A(Q), +, ·);

(b) The mark map (5.23) extends to a Q-algebra isomorphism

(A(Q), +, ·) → QB ;
∑

a∈B

raa 7→
(
b 7→

∑

a∈B

raZab

)
. (5.25)

Furthermore, the reduced tensor product operation ⊗̂ extends by linearity from
A+(Q) to A(Q), yielding a Q-algebra (A(Q),+, ⊗̂).

DEFINITION 5.7 For a finite quasigroup Q, the (rational) Burnside
algebra is defined to be the double Q-algebra (A(Q),+, ·, ⊗̂) of Corollary 5.10.

PROPOSITION 5.7

Let Q be a finite group. Then the two products on the Burnside algebra of
Q in the quasigroup sense of Definition 5.7 coincide, yielding the Burnside
algebra of Q in the classical group sense.

PROOF By Corollary 5.7, the quasigroup actions of Q coincide with the
group actions of Q.
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5.6 An example

For a finite quasigroup Q, the isomorphism (5.25) shows that the reduct
(A(Q), +, ·) of the Burnside algebra is semisimple. The example of this section
shows that the reduct (A(Q), +, ⊗̂) need not be semisimple. Consider the
quasigroup Q whose multiplication table is displayed in Figure 1.2 (p. 2).
Denote the singleton subquasigroups {1}, {2}, {3} by their elements. The
poset of subquasigroups is

∅
¡

¡
¡¡µ

-
@

@
@@R

1

2

3

@
@

@@R-

¡
¡

¡¡µ
N - Q

with N = {1, 2, 3}. The 3-element homogeneous spaces 1 \ Q, 2 \ Q, and
3 \ Q all have the same isomorphism type x3. This is the space studied in
Section 4.2. Let the homogeneous spaces Q\Q, N\Q, and∅\Q have respective
isomorphism types x1, x2, and x6. Thus the index on each isomorphism
type denotes the cardinality of the corresponding Q-set. Note that x6 is
the isomorphism type of the regular homogeneous space ∅ \ Q. There are
no other quotients of homogeneous spaces, so the Burnside algebra A(Q)
has {x1, x2, x3, x6} as a basis. The restricted tensor products of these basic
elements, computed as described in Section 5.5, are listed in Figure 5.1.

(A(Q), ⊗̂) x1 x2 x3 x6

x1 x1

x2 x2 2x2

x3 x3 2x3 0

x6 x6 2x6 0 x6

FIGURE 5.1: Restricted tensor products.
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For example, the tensor square of 1 \ Q = {a, b, c} in IFS
Q

has a Markov

matrix given by (5.2) and (5.7) as 1
6

∑
q∈Q R1\Q(q)⊗ R1\Q(q). This Markov

matrix, displayed as

1
6




1 0 0 0 2 0 0 0 3
0 1 0 1 1 0 0 0 3
0 0 1 0 0 2 1 2 0
0 1 0 1 1 0 0 0 3
1
2

1
2 0 1

2
3
2 0 0 0 3

0 0 1 0 0 2 1 2 0
0 0 1 0 0 2 1 2 0
0 0 1 0 0 2 1 2 0
1
3

2
3 0 2

3
4
3 0 0 0 3




(5.26)

with respect to the ordered basis

{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} ,

is permutationally similar to the direct sum of two Markov matrices, one on
the set

{(a, a), (a, b), (b, a), (b, b), (c, c)}
and one on the set

{(a, c), (b, c), (c, a), (c, b)}.
Since there are no (quotients of) homogeneous spaces with cardinality 4 or
5, the restricted tensor square of 1 \ Q is the empty Q-set. Thus x2

3 = 0 in
(A(Q), ⊗̂).

From Figure 5.1, it is apparent that the Jacobson radical of (A(Q), +, ⊗̂)
is spanned by x3. The semisimple part of (A(Q), +, ⊗̂) is spanned by the
complete set

{1− x2

2
,
x2

2
− x6, x6} (5.27)

of primitive idempotents. Corollary 5.12 below implies that x6 · x6 = x6, so
the underlying set of the product Q-set ∅\Q×∅\Q is not the direct square
of the set ∅\Q. Indeed, the Z-matrix for this example is

Z =




1 1 1 1
0 2 2 2
0 0 1 0
0 0 0 1


 (5.28)

with respect to the ordering

B = {x1 < x2 < x3 < x6}
of Proposition 5.6, while the full set of direct products of basic elements is
given by Figure 5.2.
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(A(Q), ·) x1 x2 x3 x6

x1 x1

x2 x2 2x2

x3 x3 2x3 x3

x6 x6 2x6 0 x6

FIGURE 5.2: Direct products.

5.7 Idempotents

The isomorphism (5.25) gives an immediate description of the complete set
of primitive idempotents for the semisimple reduct (A(Q),+, ·) of the rational
Burnside algebra of a finite quasigroup Q.

THEOREM 5.7
Let Q be a finite quasigroup, with mark matrix Z and set B of basic isomor-
phism types of Q-sets. For each element a of B, define the element

Ea =
∑

b∈B

Z−1
ab b (5.29)

of A(Q). Then {Ea | a ∈ B} is a complete set of primitive idempotents for
(A(Q), +, ·).

PROOF Under (5.25), the element Ea of (5.29) maps to

c 7→
∑

b∈B

Z−1
ab Zbc = δac. (5.30)

Thus as a ranges through B, the elements (5.30) range through a complete
set of primitive idempotents of QB .

COROLLARY 5.11
Let r be the (basic) type of the regular homogeneous space [∅\Q]. Then

Er = Z−1
rr r (5.31)

is a primitive idempotent of (A(Q),+, ·).

PROOF Apply Proposition 5.6(1): Zrb = 0 for r 6= b ∈ B.
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In contrast with Theorem 5.7, the structure of the other Q-algebra reduct
(A(Q), +, ⊗̂) of the rational Burnside algebra of a finite quasigroup Q is not
yet known (Problem 3). If Q is a group, then the reduct (A(Q), +, ⊗̂) contains
a primitive idempotent that may be written in quasigroup terms as

|Q|−1[∅ \Q]. (5.32)

Consider the example presented in Section 5.6. There, as described by (5.27),
it is r = x6 or [∅ \Q] itself which is a restricted tensor idempotent. Certainly
some multiple of the isomorphism type of the regular permutation representa-
tion is always a primitive restricted tensor idempotent. (Indeed, for r 6= b ∈ B,
one has 0 ≤ 〈b, r⊗̂r〉 ≤ 〈b, r · r〉 = 0 by Theorem 5.5(3) and Corollary 5.11.)
In the remainder of this section, the exact multiple will be specified. By
Corollary 5.12 below, it turns out to agree with (5.31).

For a transitive action of a group G on a set Q, the orbitals of G on Q are
defined as the orbits of G in its diagonal action on Q2. Each orbital, as a
subset of Q2, represents a binary relation on Q. Such a relation ρ is said to
be functional if it is the graph of a function. In other words, for each element
x of Q, there is a unique element y of Q such that (x, y) ∈ ρ. In this case, the
unique element y with (x, y) ∈ ρ is written as xρ.

THEOREM 5.8
Let Q be a finite, nonempty quasigroup. Let f be the number of functional

orbitals in the action of the right multiplication group of Q. Then

1
f

[∅ \Q] (5.33)

is a primitive restricted tensor idempotent of the rational Burnside algebra of
the quasigroup Q.

PROOF Let G be the right multiplication group of Q. First note that
the equality relation on Q is always a functional orbital of G on Q, so that
f ≥ 1 and (5.33) is well-defined. (Incidentally, the minimal case f = 1 is
represented by the example of Section 5.6.)

For an element q of Q, the regular action matrix of q is expressed as the
sum

R∅\Q(q) =
∑

x∈Q

Ex,xq

of elementary matrices. Then

R∅\Q(q)⊗R∅\Q(q) =
[ ∑

x∈Q

Ex,xq
]
⊗

[ ∑

y∈Q

Ey,yq
]

=
∑

(x,y)∈Q2

Ex,xq ⊗ Ey,yq =
∑

(x,y)∈Q2

E(x,y),(xq,yq).
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Thus the Q-IFS (∅\Q)⊗(∅\Q) decomposes as a direct sum of subcoalgebras,
one for each orbital of G on Q. These subcoalgebras are certainly irreducible.
Each nonfunctional orbital is too large to be a homomorphic image of a homo-
geneous space of Q. Thus the restricted tensor square of ∅ \Q in Q contains
at most f summands, corresponding to the functional orbitals of G on Q. It
will now be shown that each of these summands is isomorphic to the regular
homogeneous space.

Let ρ be a functional orbital of G on Q. Define a function

φ : ∅ \Q → ρ ; {x} 7→ (x, xρ). (5.34)

Certainly φ bijects. Consider elements x and q of Q. Since ρ is an orbital of
G on Q, the image (xq, xρq) of the element (x, xρ) of ρ under the diagonal
action of right multiplication by q is again an element of ρ. Thus

xqρ = xρq. (5.35)

Then

{x}R∅\Q(q)φ = {xq}φ = (xq, xqρ) = (xq, xρq) = {x}φRρ(q) .

Comparing with (5.4), it is apparent that (5.34) yields an isomorphism of
Q-IFS. Since this happens for each of the f functional orbitals of G on Q, one
has

[∅ \Q]⊗̂[∅ \Q] = f [∅ \Q]

in the Burnside algebra of Q. The idempotence of (5.33) follows.
Finally, consider the restricted tensor product of ∅\Q with any other homo-

morphic image of a homogeneous space. Each irreducible summand of such a
product has at least as many elements as Q, since it projects onto the regular
representation in IFSQ. Thus the only such summands in Q are isomorphic
to the regular representation. In the rational Burnside algebra, this means
that the principal reduced tensor ideal generated by (5.33) is minimal, namely
the set of rational multiples of (5.33). Thus (5.33) is a primitive restricted
tensor idempotent.

COROLLARY 5.12

The idempotent elements (5.31) of (A(Q),+, ·) and (5.33) of (A(Q), +, ⊗̂)
agree.

PROOF By (5.35), the functional orbits are exactly the graphs of the
various Q-automorphisms of the regular space ∅\Q. On the other hand, each

Q-endomorphism of ∅\Q bijects, so Zrr = f .
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Using Theorem 5.8, one may give a characterization of those quasigroups Q
for which the group formula (5.32) yields a primitive restricted tensor idempo-
tent of the rational Burnside algebra. They are the right quasiloops isotopic
to groups, as described by Theorem 4.3.

PROPOSITION 5.8
Let (Q, ·) be a finite, nonempty quasigroup with right multiplication group G.
Then the following conditions are equivalent:

(a) The element
|Q|−1[∅ \Q].

is a direct product idempotent of the rational Burnside algebra of (Q, ·);
(b) The element

|Q|−1[∅ \Q].

is a restricted tensor idempotent of the rational Burnside algebra of
(Q, ·);

(c) The group G acts regularly on Q;

PROOF (a)⇔(b) follows by Corollary 5.12.

(b)⇔(c): By Theorem 5.8, (5.32) is a restricted tensor idempotent if and only
if all the orbitals of G are functional. This happens if and only (c) holds.

Example 5.2
The equivalent conditions of Proposition 5.8 on a quasigroup Q are not

enough to guarantee that the entire rational Burnside algebra of Q will be
semisimple. For example, consider the set Q of integers modulo 4, under the
operation of subtraction. It forms a right quasiloop isotopic to the group
(Z/4Z, +), since (4.28) holds with + as the usual addition and λ as negation.
On the other hand, the isomorphism type of the homogeneous space {0} \Q
is a nonzero element of the Jacobson radical of the reduct (A(Q),+, ⊗̂).

5.8 Burnside’s Lemma

The classical Burnside Lemma for a finite group Q (compare Theorem 3.1.2
in [165, Ch. I], for example) states that the number of orbits in a permutation
representation X is equal to the average number of points of X fixed by
elements q of Q. This section presents the generalization of Burnside’s Lemma
to quasigroup permutation representations. For a permutation representation

 



134 An Introduction to Quasigroups and Their Representations

X of a finite quasigroup Q, the formulation and proof of Burnside’s Lemma
rely on the identification given by Theorem 5.3. The number of points fixed
by a group element q is equal to the trace of the permutation matrix of q on X.
In the IFS terminology of Section 5.1, this permutation matrix is the action
matrix RX(q) of q on the corresponding Q-IFS (X,Q). Thus the following
theorem specializes to the classical Burnside Lemma in the associative case.

THEOREM 5.9 (Quasigroup Burnside Lemma)
Let X be a finite Q-set over a finite, nonempty quasigroup Q. Then the trace
of the Markov matrix of X is equal to the number of orbits of X.

PROOF Consider the Q-IFS (X, Q). By Theorem 5.3, Theorem 5.4, and
(5.5), its Markov matrix decomposes as a direct sum of the Markov matrices
of its orbits. Thus it suffices to show that the trace of the Markov matrix of
a homomorphic image of a homogeneous space is equal to 1.

Consider a Q-set Y = {y1, . . . , ym} which is the image of a homogeneous
space P\Q under a surjective homomorphism ϕ : P\Q → Y with incidence
matrix F . Let F+ be the pseudoinverse of F . By Proposition 4.1, each row
sum of F+ is 1. Suppose that the Markov matrix Π of P\Q is given by (4.19).
By (5.4), one has

RY (q) = F+RP\Q(q)F

for each q in Q. Thus the trace of the Markov matrix of Y is given by

Tr(F+ΠF ) =
m∑

i=1

r∑

j=1

r∑

k=1

F+
ij ΠjkFki

= |Q|−1
m∑

i=1

( r∑

j=1

F+
ij

)( r∑

k=1

|Pk|Fki

)

= |Q|−1
r∑

k=1

|Pk| = 1,

the penultimate equality following since for each 1 ≤ k ≤ r, there is exactly
one index i (corresponding to Pkϕ = yi) such that Fki = 1, the other terms
of this type vanishing.

REMARK 5.2 Burnside’s Lemma may fail for a Q-IFS which does not
correspond to a Q-set. For example, consider the tensor square 1\Q⊗ 1\Q of
the homogeneous space 1\Q of Section 5.6. The trace of the Markov matrix
(5.26) of 1\Q⊗ 1\Q is not even integral.
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5.9 Exercises

1. Let Q and X be finite sets. Show that the following are equivalent:

(a) X is a Q-IFS;

(b) There is a function

X ×Q×X → I; (x, q, y) 7→ Prob
(
xq = y

)
(5.36)

such that ∑

y∈X

Prob
(
xq = y

)
= 1

for each x in X and q in Q;

(c) There is a function X ×Q → XB.

2. Show that if X is an infinite set, then condition (c) of Exercise 1 is
equivalent to condition (b) with the restriction that for each x in X and
q in Q, the probability distribution

{
Prob

(
xq = y

) ∣∣ y ∈ Q
}

has finite support.

3. For elements x, y of the closed unit interval I = [0, 1], define

x → y =

{
1 if x ≤ y ;
y/x otherwise.

(5.37)

(a) Show that (5.37) is well defined.

(b) Show that the skew-associativity identity (5.11) may be rewritten
in the equivalent form

xy p z q = x( yz p ◦ q → q ) p ◦ q . (5.38)

4. Suppose that (A, I◦) is a barycentric algebra. Extend the definition of
(5.8) to the case of general p in I by setting xy 0 = x and xy 1 = y.
Consider the resulting algebra (A, I).

(a) Show that (A, I) satisfies the idempotence identity (5.9) and the
skew commutativity identity (5.10) for all p in I.

(b) Show that (A, I) satisfies the new skew associativity identity (5.38)
for all p, q in I.

5. Show that the Q-IFS X of Exercise 1 is crisp if and only if (5.36) core-
stricts to the boundary {0, 1} of I.

 



136 An Introduction to Quasigroups and Their Representations

6. Show that the Q-IFS X of Exercise 1 is crisp if and only if the function
of (c) maps to the extreme points of the simplex XB.

7. Show that the category of ∅-IFS is equivalent to the category of finite
sets.

8. Show that the structure map of a B∅-coalgebra X is the unique mor-
phism from X to the (singleton) terminal object of the category of sets.

9. Show that each B∅-coalgebra X is crisp.

10. Let Q be a singleton quasigroup.

(a) Identify the category of Q-IFS as the category of finite probabilistic
dynamical systems.

(b) Show that the category of Q-sets is equivalent to the category of
sets.

11. Let P be a subset of a finite set Q. Given a BQ-coalgebra X with struc-
ture map α : X → XBQ, show that concatenation with the projection
↓Q

P : XBQ → XBP yields a BP -coalgebra X ↓Q
P with structure map

α ↓Q
P : X → XBP .

12. If P is a subquasigroup of a quasigroup Q, show that the restriction ↓Q
P

of Exercise 11 does not yield a functor from Q to P .

13. Show that a finite, nonempty quasigroup Q may be recovered from the
covariety Q of Q-sets. (Hint: By Theorem 5.4, the largest irreducible
Q-set is the regular space ∅\Q. Apply Proposition 4.3.)

14. Verify the claims of Example 5.2.

15. Verify the form of the Z-matrix (5.28), and the table of direct products
in Figure 5.2.

16. Confirm the validity of the Quasigroup Burnside Lemma for a 2-element
quasigroup homogeneous space. (Compare Exercise 3 in Chapter 4.)

17. Determine which of the results of Chapters 4 and 5 remain valid for left
quasigroups. (Recall that for an element q of a left quasigroup Q, the
matrix RQ(q) will be a 0-1-matrix, but not necessarily a permutation
matrix. In particular, the property of Exercise 2 in Chapter 4 will not
hold in general.)
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5.10 Problems

1. Despite the negative result of Exercise 12, is it still possible to develop
a theory of restriction and induction for permutation representations of
quasigroups?

2. Does the wreath product construction (compare [165, p. 40]) extend to
quasigroup permutation representations?

3. For a finite quasigroup Q, specify a basis for the Jacobson radical and
a complete set of primitive idempotents for the semisimple part of the
reduct (A(Q), +, ⊗̂) of the rational Burnside algebra.

5.11 Notes

Section 5.2

Since the action matrices of quasigroup homogeneous spaces have rational
entries, it actually suffices to consider EndQ(QX) in the definition (5.1) of
Q-IFS, and rational barycentric algebras, in which the operators p are taken
from the rational unit interval Q∩ I◦, for the specification of the free algebra
functor B. The equivalent structures in Theorem 5.2 will then be the free
rational barycentric algebra XB on a set X, the set of all finitely-supported
rational probability distributions on X, and the rational simplex spanned by
X. These restrictions of the general framework would have no effect on the
specification of Q-sets in Section 5.4.

Section 5.4

For a finite loop Q, the term “Q-set” was used in a different, essentially
broader sense — at least for the finite case — in [162, Defn. 5.2]. If necessary,
one may refer to “loop Q-sets” in that context, and to “proper Q-sets” or
“quasigroup Q-sets” in the present context.

Section 5.7

Theorem 5.7 generalizes the specifications of the primitive idempotents of
group Burnside algebras that have appeared in the literature [65], [178].
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Section 5.8

It has become customary to remark that “Burnside’s Lemma” was already
known to Cauchy and Frobenius. However, the popular names of mathe-
matical results have never been guaranteed to reflect the original author —
compare “Gaussian elimination” and “Euclidean geometry,” for example.

 



Chapter 6

CHARACTER TABLES

The oldest branch of quasigroup representation theory is the combinatorial
character theory. The source of the theory is the diagonal action of the mul-
tiplication group on the direct square Q2 of a quasigroup Q, as introduced
in Section 2.3. The conjugacy classes of a quasigroup Q are defined in Sec-
tion 6.1 as the orbits of this action. Section 6.2 introduces the quasigroup
class functions, complex-valued functions on Q2 constant on these orbits. If
Q is finite, the incidence matrices of the conjugacy classes form a basis for
a complex vector space of matrices that is actually a commutative algebra,
the centralizer ring of Section 6.3. In Section 6.4, this algebra is identified as
the algebra of class functions under convolution, while Section 6.5 gives some
other interpretations. As outlined in Section 6.6, the matrices of transition to
and from a basis of primitive idempotents for the algebra normalize to yield
a character table, which is the usual group character table if Q is a group.
Section 6.7 shows how the familiar orthogonality relations of group charac-
ter theory extend to quasigroups. Section 6.8 treats the common case of rank
two quasigroups, in which the only diagonal orbits of the multiplication group
are the equality and diversity relations. Section 6.9 introduces numerical in-
variants of entropy and asymptotic entropy for quasigroups. The entropy is
determined by the character table of a quasigroup Q, while the asymptotic
entropy is determined by the sequence of character tables of powers of Q.

6.1 Conjugacy classes

Let G be the multiplication group of a quasigroup Q, not necessarily finite.
Recall the diagonal action (2.13) of G on Q × Q. The orbits of this action
(the orbitals of G on Q) are known as the (quasigroup) conjugacy classes of
Q. Since G acts transitively on Q, one of the quasigroup conjugacy classes is
the equality relation or diagonal

Q̂ = {(x, x) | x ∈ Q}
of (3.1). Together, the quasigroup conjugacy classes furnish a disjoint union
partition of Q2 known as the conjugacy class partition Γ or Γ(Q). The number
s of conjugacy classes is called the rank of the quasigroup Q.

139 
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Interchange of factors in the direct square Q×Q is an automorphism of the
diagonal action of G. Thus each quasigroup conjugacy class C determines a
converse conjugacy class C−1 = {(y, x) | x, y ∈ C}. Note that the diagonal
class Q̂ is its own converse. If each conjugacy class of Q is its own converse
(i.e., if each class is a symmetric relation on Q), then the quasigroup Q is said
to be of real type.

For a conjugacy class C and an element x of Q, write

C(x) = {y ∈ Q | (x, y) ∈ C} .

Now for an element e of Q, there is a bijection

Γ → Q/Ge; C 7→ C(e) (6.1)

from the set of conjugacy classes of Q to the set of Ge-orbits on Q. Since

ρ(e,Q) = {ρ(e, q) | q ∈ Q}
is a right transversal to Ge in G, the bijection (6.1) has

D 7→ ({e} ×D
)
ρ(e,Q)

as its two-sided inverse. If e is the pointed idempotent of a pique (Q, e), then
the orbits D of Ge on Q are called the pique conjugacy classes of Q. If Q is a
group with identity element e, then the pique conjugacy classes coincide with
the usual group conjugacy classes. In this case

x ∈ C(e) ⇔ x−1 ∈ C−1(e)

since (e, x)R(x−1) = (x−1, e).

6.2 Class functions

From now on, consider a quasigroup Q = {q1, . . . , qn} of positive finite order
n. Let C(Q2) denote the set of all complex-valued functions on Q2. This
set carries a lot of algebraic structure. To begin with, it has the pointwise
or Hadamard involutive C-algebra structure induced from C with complex
conjugation. The unit element of C(Q2) under the Hadamard product is the
zeta function ζQ or ζ : C(Q2) → {1}. Secondly, C(Q2) has a right CG-module
structure given by

g : C(Q2) → C(Q2); θ 7→ (
θg : (x, y) 7→ θ(xg−1, yg−1)

)
(6.2)

for g in G. Further, it has a bilinear convolution ∗ given by

θ ∗ ϕ(x, y) =
∑

z∈Q

θ(x, z)ϕ(z, y) (6.3)
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for x, y in Q. The unit element of the convolution is the delta function δQ or

δ(x, y) =

{
1 if x = y ;
0 if x 6= y ,

(6.4)

the characteristic function of the subset Q̂ of Q2.
The combinatorial multiplication group G of Q acts on C(Q2) via

g : θ 7→ (
θg : (x, y) 7→ θ(xg−1, yg−1)

)
(6.5)

for g in G. The group G with this action is clearly a group of automorphisms of
the C-module and Hadamard structures. It is also a group of automorphisms
of the convolution structure, since

θg ∗ ϕg(x, y) =
∑

z∈Q

θ(xg−1, zg−1)ϕ(zg−1, yg−1)

=
∑

z∈Q

θ(xg−1, z)ϕ(z, yg−1)

= θ ∗ ϕ(xg−1, yg−1)
= (θ ∗ ϕ)g(x, y) .

It follows that the set CCl(Q) of G-invariant functions in C(Q2) forms a Had-
amard and convolution subalgebra. The G-invariant functions are called the
(quasigroup) class functions on Q. Their restrictions to quasigroup conjugacy
classes are constant. Indeed, a quasigroup class function is just a complex lin-
ear combination of characteristic functions of quasigroup conjugacy classes.

One may extend the definition of a class function θ on Q by defining

θ(X) =
∑

(x,y)∈X

θ(x, y) (6.6)

for any subset X of Q2. Note that (θ · ϕ)(X) 6= θ(X) · ϕ(X) in general. The
complex space CCl(Q) has a bilinear form given by 〈θ, ϕ〉 or

〈θ, ϕ〉Q = |Q|−2θ ∗ ϕ(Q̂) (6.7)

The normalization of (6.7) assigns unit length to the zeta function ζQ.
If Q is a pique with pointed idempotent e (for example a loop with identity

element e), a pique class function f : Q → C on Q is defined as a complex
linear combination of characteristic functions of pique conjugacy classes. Note
that this definition reduces to the usual definition of class function for a finite
group. Now a quasigroup class function θ : Q2 → C determines a derived
pique class function θ′ : Q → C with

θ′(x) = θ(e, x) (6.8)
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for x in Q. If Q is a group and ϕ is also a quasigroup class function, then

(θ ∗ ϕ)′(x) = θ ∗ ϕ(e, x)

=
∑

z∈Q

θ(e, z)ϕ(z, x)

=
∑

z∈Q

θ(e, z)ϕ(zL(z)−1, xL(z)−1)

=
∑

z∈Q

θ(e, z)ϕ(e, xL(z)−1)

=
∑

z∈Q

θ′(z)ϕ′(z−1x)

=
∑
zt=x

θ′(z)ϕ′(t) = θ′ ∗ ϕ′(x) ,

so that convolution of quasigroup class functions corresponds to the usual
convolution of group class functions. Further,

〈θ, ϕ〉 = |Q|−2
∑

x∈Q

∑

z∈Q

θ(x, z)ϕ(z, x)

= |Q|−2
∑

x∈Q

∑

z∈Q

θ′(x−1z)ϕ(z−1x)

= |Q|−1
∑

y∈Q

θ′(y)θ′(y−1) ,

so the inner product (6.7) of θ with ϕ is the usual inner product of θ′ and ϕ′

as group class functions.

6.3 The centralizer ring

Let K be a field. Let KG be the group algebra of G over K, and let KQ
be the K-vector space with basis Q. Then KQ is a right KG-module via

( ∑

q∈Q

kqq
)( ∑

g∈G

kgg
)

=
∑

q∈Q

∑

g∈G

kqkgqg .

Since the multiplication group G acts faithfully on Q, the monoid homomor-
phism

λ : G → EndKKQ (6.9)

of G into the underlying monoid of the endomorphism ring of the vector space
KQ is injective. Identify G with its image in EndKKQ. Let VK(G,Q) or just
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V (G,Q) denote the subring EndKGKQ of EndKKQ that consists of all the
KG-endomorphisms of KQ, i.e. of all those vector space endomorphisms that
commute with each element g of G. The ring VK(G, Q) is called the centralizer
ring of G on Q over K. The main task of this section is to show that the
centralizer ring is commutative.

Let {C1, C2, . . . , Cs} be the full set of orbits of G in its diagonal action on
Q2, with C1 = Q̂ as the diagonal. Thus the conjugacy class partition Γ is

Q2 = C1 + C2 + · · ·+ Cs . (6.10)

Take a fixed element e of Q. Define elements v1, . . . , vs of KG by

vi =
∑

q∈Ci(e)

ρ(e, q) .

Define αi to be the image vλ
i of vi in EndKKQ. Define elements c1, . . . , cs of

KQ by
ci = eαi =

∑

q∈Ci(e)

q.

Note that ciσ = ci for each element σ of the stabilizer Ge.

LEMMA 6.1
Let α and β be elements of KG. Then

eα = eβ

in KQ implies
ciα = ciβ

for 1 < i ≤ s.

PROOF Let
α =

∑

g∈G

kgg =
∑

g∈G

kgσgρ(e, eg) , (6.11)

where σg ∈ Ge. Collecting terms of (6.11) with common eg = q in Q, one has

α =
n∑

i=1

( mi∑

j=1

kijσij

)
ρ(e, qi)

with kij ∈ K and σij ∈ Ge. Similarly,

β =
n∑

i=1

( mi∑

j=1

lijτij

)
ρ(e, qi)
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with lij ∈ K and τij ∈ Ge. Now eα = eβ implies

n∑

i=1

mi∑

j=1

kijqi =
n∑

i=1

mi∑

j=1

lijqi ,

an equation in KQ. Equating coefficients of qi yields

mi∑

j=1

kij =
mi∑

j=1

lij

for 1 ≤ i ≤ n. Thus

chα = ch

n∑

i=1

( mi∑

j=1

kijσij

)
ρ(e, qi)

=
n∑

i=1

mi∑

j=1

kijchρ(e, qi)

=
n∑

i=1

mi∑

j=1

lijchρ(e, qi)

= ch

n∑

i=1

( mi∑

j=1

lijτij

)
ρ(e, qi) = chβ

as required.

THEOREM 6.1
The centralizer ring VK(G,Q) is commutative, with the set {α1, . . . , αs} as

a K-linear basis.

PROOF First, it will be shown that each αi commutes with each element
γ of KG. Let q be an element of Q. Now

qρ(e, e)γ = qγ = qγρ(e, e) . (6.12)

Let L : KQ → KG denote the linear extension of the map L : Q → G. Then
(6.12) may be rewritten in the form

eR(e)−1L(qR(e\e)−1)γ = eR(e)−1L(qγR(e\e)−1) .

Lemma 6.1 implies that

ciR(e)−1L(qR(e\e)−1)γ = ciR(e)−1L(qγR(e\e)−1)
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for 1 ≤ i ≤ s. In other words,

∑

q∈Ci(e)

qρ(e, q)γ =
∑

q∈Ci(e)

qγρ(e, q) .

Thus qαiγ = qγαi. It follows that αiγ = γαi, so the αi lie in V (G,Q). As
shown by consideration of their action on e, they are clearly linearly indepen-
dent.

It thus remains to show that {α1, . . . , αs} spans V (G,Q). Let α be an
element of V (G,Q), with eα =

∑
q∈Q kqq. If β is in Ge, then

∑

q∈Q

kqq = eα = eβα = eαβ =
∑

q∈Q

kqqβ ,

whence kq = kqβ . It follows that the coefficients kq are identical as q ranges
over Ge-orbits in Q. In other words,

eα =
s∑

i=1

kici = e
s∑

i=1

kiαi

for certain ki in K. Then for each q in Q, one has

qα = eρ(e, q)α = eαρ(e, q)

= e
( s∑

i=1

kiαi

)
ρ(e, q) = eρ(e, q

( s∑

i=1

kiαi

)
= q

( s∑

i=1

kiαi

)
,

whence α =
∑s

i=1 kiαi. This shows that {α1, . . . , αs} spans V (G, Q).

6.4 Convolution of class functions

One of the main uses of the centralizer ring VC(G,Q) is to give a natural
proof that the convolution of class functions is commutative and associative.
Using x to stand for elements of the basis Q of CQ, define a map

C(Q2) → EndCCQ; θ 7→ (
θ̃ : x 7→

∑

y∈Q

θ(x, y)y
)
. (6.13)
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This is clearly linear. Also, the image of the delta function under (6.13) is the
identity automorphism of CQ. Then for x in Q,

xθ̃ϕ̃ =
∑

y∈Q

θ(x, y)yϕ̃

=
∑

y∈Q

∑

z∈Q

θ(x, y)ϕ(y, z)z

=
∑

z∈Q

( ∑

y∈Q

θ(x, y)ϕ(y, z)
)
z

=
∑

z∈Q

θ ∗ ϕ(x, z)z = xθ̃ ∗ ϕ ,

so (6.13) is an algebra isomorphism from C(Q2) under convolution to the
endomorphism ring. In particular, convolution is associative. Now θ(Q̂) =
Tr(θ̃). Thus the bilinear form of (6.7) extended to all of C(Q2) may be
interpreted as

〈θ, ϕ〉 = |Q|−2Tr(θ̃ϕ̃) . (6.14)

This demonstrates the nondegeneracy and associativity of the form that makes
C(Q2) a Frobenius algebra [36, 9.5].

The group G acts on C(Q2) via (6.5). The group G is also embedded in the
group of units of EndCCQ via (6.9), and thus acts on EndCCQ by conjugation.
For θ in C(Q2), x in Q, and g in G, the image of x under θ̃g is

∑

y∈Q

θg(x, y)y =
∑

y∈Q

θ(xg−1, yg−1)y =
∑

z∈Q

θ(xg−1, z)zg = xg−1θ̃g .

Thus (6.13) is also an isomorphism of G-modules. An element of EndCCQ is
fixed by G if and only if it commutes with all elements of G, i.e. is an element
of V (G,Q). This proves almost all of the following.

THEOREM 6.2
The mapping (6.13) restricts to an isomorphism of CCl(Q) with V (G,Q), un-
der which the characteristic function κi of the conjugacy class Ci corresponds
to the basic element αi of V (G,Q). In particular, convolution on CCl(Q) is
commutative.

PROOF For each x in Q,

xκ̃i =
∑

y∈Q

κi(x, y)y =
∑

y∈Ci(x)

y =
∑

q∈Ci(e)

qρ(e, x)

= eαiρ(e, x) = eρ(e, x)αi = xαi ,

whence κ̃i = αi, as required.
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COROLLARY 6.1
For any two elements x, y of Q,

αi =
∑

x′∈Ci(x)

ρ(x, x′) =
∑

y′∈Ci(y)

ρ(y, y′) (6.15)

and

τ :=
∑

q∈Q

ρ(x, q) =
∑

q∈Q

ρ(y, q) =
s∑

i=1

αi (6.16)

in EndCCQ.

DEFINITION 6.1 The CQ-endomorphism τ of (6.16) is called the total
endomorphism.

6.5 Bose-Mesner and Hecke algebras

Theorem 6.2 gives two interpretations of the centralizer ring V (G,Q) or
algebra CCl(Q) of class functions. Two other interpretations are available,
and prove useful in certain circumstances. The first involves a concept from
algebraic combinatorics [6, II.2.2] [37, §2.1].

DEFINITION 6.2 Let Q be a finite, nonempty set. A (commutative)
association scheme (Q, Γ) on Q is a disjoint union partition

Q2 = C1 + · · ·+ Cs

or Γ = {C1, . . . , Cs} of Q2 such that the following axioms are satisfied:

(A1) C1 = {(x, x) | x ∈ Q} ;

(A2) The converse of each relation in Γ belongs to Γ ;

(A3) ∀Ci ∈ Γ , ∀Cj ∈ Γ , ∀Ck ∈ Γ , ∃ ck
ij ∈ N .∀ (x, y) ∈ Ck ,

∣∣{z ∈ Q | (x, z) ∈ Ci, (z, y) ∈ Cj}
∣∣ = ck

ij .

(A4) ∀ 1 ≤ i, j, k ≤ s , ck
ij = ck

ji.

Axiom (A4) is the commutativity of the scheme.

THEOREM 6.3
The conjugacy class partition (6.10) of a finite, nonempty quasigroup Q forms
a commutative association scheme (Q, Γ).
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PROOF Satisfaction of the axioms (A1) and (A2) is clear from Section 6.1.
For 1 ≤ k ≤ s, let Ak be the incidence matrix of the quasigroup conjugacy
class Ck. Thus the matrix Ak is the (n × n)-matrix whose i, j-entry is 1
if (qi, qj) ∈ Ck, and 0 otherwise. By (6.15), each such matrix Ak may be
construed as the matrix of the endomorphism αk of CQ with respect to the
basis Q. The scalars ck

ij of (A3) then appear as the structure constants

AiAj =
s∑

k=1

ck
ijAk . (6.17)

of the algebra V (G,Q) with respect to its basis {α1, . . . , αs}, while (A4) is
satisfied since V (G,Q) is commutative.

In the context of association schemes, the algebra V (G,Q) is known as the
Bose-Mesner algebra of (Q, Γ). It is often very convenient to construe the
centralizer ring V (G,Q) as the complex linear span of the set

In = A1, A2, . . . , As (6.18)

of (n× n)-matrices. By Corollary 6.1, the matrix of the total endomorphism
τ with respect to the basis Q becomes the n× n all-ones matrix J or

Jn =




1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1


 . (6.19)

Equation (6.16) then takes the matrix form Jn = A1 + · · ·+ As.
The fourth interpretation of the algebra considers CClQ as the space of

complex-valued functions constant on C1, . . . , Cs. Fixing e in Q, the algebra
CClQ is isomorphic (by restriction) to the space of complex-valued functions
defined on Q that are constant on each of the orbits C1(e), . . . , Cs(e) of the
stabilizer Ge on Q. The permutation representation of G on Q is similar to
the homogeneous space Ge\G of G on the right cosets Geρ(e, q) of Ge, and the
orbits of Ge on Q correspond under the similarity to the sets of right cosets
contained in a single double Ge-coset Geρ(e, q)Ge. (These double cosets are
the orbits of the relative multiplication group of the subquasigroup Ge of
G.) Complex-valued functions on Q may be identified as complex-valued
functions on G that are constant on right Ge-cosets. Then functions on Q
that are constant on C1(e), . . . , Cs(e) correspond to functions on G that are
constant on double Ge-cosets. Under this interpretation, CClQ becomes the
Hecke algebra H(G,Ge, 1Ge) [36, 11.22]. The feature of this interpretation is
that an element e of Q has been chosen. There are occasions when this is
appropriate and advantageous.
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In summary, there are four sets naturally isomorphic to one another, all
carrying isomorphic algebra structures, induced from one set to the other by
natural isomorphisms:





(a) the algebra CClQ of class functions;
(b) the centralizer ring V (G,Q);
(c) the Bose-Mesner algebra of matrices of V (G,Q);
(d) the Hecke algebra H(G,Ge, 1Ge

), subject to choice of e.

(6.20)

The action of a group of permutations G on a set Q is said to be multiplicity-
free if the G-module CQ decomposes as a direct sum

CQ =
s⊕

i=1

Xi (6.21)

of mutually inequivalent irreducible G-modules.

PROPOSITION 6.1
The action of the combinatorial multiplication group G on a finite quasigroup
Q is multiplicity-free.

PROOF Suppose that the decomposition (6.21) of the G-module CQ into
a direct sum of irreducible modules were to include summands Xi and Xj

equivalent by a G-isomorphism θ : Xi → Xj , so that xθg = xgθ for all x in
Xi and g in G. For each 2× 2 complex matrix

A =
[
a11 a12

a21 a22

]
,

define a linear endomorphism

αA : Xi ⊕Xj → Xi ⊕Xj ; [x, y] 7→ [a11x + a21yθ−1, a12xθ + a22y] .

Note that αAg = gαA for all g in G. Then

A 7→ αA ⊕
⊕

k 6=i,j

1Xk

would be an injective CG-homomorphism from the noncommutative ring of
2× 2 complex matrices to the centralizer ring EndCGCQ, violating the com-
mutativity of this latter ring.

The fundamental theorem of the combinatorial character theory of quasi-
groups then has a number of essentially equivalent formulations in various
terms as follows.
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THEOREM 6.4
Let G be the combinatorial multiplication group of a finite quasigroup Q of

positive order n.

(a) The action of G on Q is multiplicity-free.

(b) The set Q with the conjugacy class partition Γ forms a (commutative)
association scheme (Q, Γ).

(c) For any q in Q, the multiplication group G and the stabilizer Gq of q in
G form a Gel’fand pair (G,Gq).

(d) EndCGCQ = V (G,Q) is commutative, with vector space basis (6.18).

For current purposes, Theorem 6.4(d) is the most convenient formulation.
For Theorem 6.4(c) and the terminology of Gel’fand pairs, see [40, Ch. 3],
[79, Defn. 4.1].

6.6 Quasigroup character tables

By Theorem 6.1, VC(G,Q) is a commutative algebra with basis {α1, . . . , αs}.
Since the endomorphisms αi of CQ commute mutually, an eigenspace of one
is stable under the action of the others. One may thus decompose CQ as a
direct sum of eigenspaces CQj such that





(a) ∀ 1 ≤ i ≤ s, ∃ ξij ∈ C .CQj(αi − ξij) = {0} ;
(b) ∀ j 6= k, ∃ i . ξij 6= ξik ;
(c) CQ1 = C(q1 + · · ·+ qn) .

(6.22)

For (a) and (b), decompose CQ into α1-eigenspaces, then decompose each of
these into α2-eigenspaces, then each of these into α3-eigenspaces, and so on.
Note that each CQj must be an eigenspace for each linear combination of
α1, . . . , αs. In particular, one of them, say CQ1, must be an eigenspace of the
total endomorphism τ corresponding to its eigenvalue n. But since the trace
of τ is n, this eigenspace has dimension 1, and is thus as claimed in (6.22)(c).
For 1 ≤ i ≤ s, set

|Ci| = nni . (6.23)

The numbers ni are known as the valencies. Corollary 6.1 shows that ξi1 = ni

for 1 ≤ i ≤ s.
The complex space CQ may be equipped with an Hermitian form ( | )

defined by declaring Q to be an orthonormal basis. If Ci∗ is the converse C−1
i

of Ci, then the incidence matrix of Ci∗ is the (conjugate) transpose A∗i of the
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incidence matrix Ai of Ci, the matrix of the endomorphism αi with respect
to the orthonormal basis Q. Thus αi∗ is α∗i , the adjoint endomorphism to αi

given by
(xαi|y) = (x|yα∗i )

for x, y in CQ.

THEOREM 6.5
The vector space CQ decomposes as a direct sum

CQ = CQ1 ⊕ CQ2 ⊕ · · · ⊕ CQs (6.24)

of mutually orthogonal subspaces CQj subject to (6.22). If εj : CQ → CQj is
the projection onto CQj, then

{
ε1 =

τ

n
, ε2, . . . , εs

}
(6.25)

is a basis for V (G,Q) with ε∗i = εi for 1 ≤ i ≤ s.

PROOF Suppose j 6= k, with xj ∈ CQj , xk ∈ CQk. Then for i given by
(6.22)(b), one has

(xj |xk)ξij = (ξijxj |xk) = (xjαi|xk) = (xj |xkα∗i ) = (xj |ξikxk) = (xj |xk)ξik ,

whence (xj |xk)(ξij − ξjk) = 0. But ξij 6= ξjk, so (xj |xk) = 0. This shows that
CQi and CQj are orthogonal.

Consider a fixed CQk. For each j 6= k, (6.22)(b) gives i = i(j) such that
ξi(j)j 6= ξi(j)k. Then (αi(j) − ξi(j)j)/(ξi(j)k − ξi(j)j) is defined. By (6.22)(a) it
restricts to 1 on CQk and to 0 on CQj . Thus

εk =
∏

j 6=k

αi(j) − ξi(j)j

ξi(j)k − ξi(j)j
,

whence εk lies in V (G,Q). By definition the set {ε1, ε2, . . . } is linearly inde-
pendent. Now (6.22)(a) yields αi =

∑
j ξijεj , so {ε1, ε2, . . . } spans V (G,Q).

It follows that there are s of the CQj , and that {ε1, . . . , εs} is a basis of
V (G,Q). With respect to a union of bases of CQj , the matrix of εi is a
diagonal 0-1-matrix, so ε∗i = εi.

COROLLARY 6.2
The set {ε1, . . . , εs} is uniquely determined as the set of atoms of the finite

Boolean algebra of idempotents of V (G,Q).

COROLLARY 6.3
The decomposition (6.24) coincides with the decomposition (6.21).
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PROOF Since the projection operators εi of the decomposition (6.24)
lie in the centralizer ring EndCGCQ, (6.24) is a G-module decomposition.
The summands are irreducible by the minimality of the idempotents εi in
EndCGCQ,

With respect to the basis Q, the matrix version of (6.25) is the set

{
E1 =

Jn

n
,E2, . . . , Es

}
(6.26)

of idempotent matrices, with Jn as the n× n all-ones matrix. Set

fi = TrEi = Tr εi = dimCQi (6.27)

for 1 ≤ i ≤ s. Note f1 = 1. The fi are known as the multiplicities. Suppose

Ai =
s∑

j=1

ξijEj (6.28)

and

Ei =
s∑

j=1

ηijAj (6.29)

for 1 ≤ i ≤ s. In Delsarte’s terminology [37], the s× s matrices Ξ = [ξij ] and
nH = [nηij ] are known respectively as the first and second eigenmatrices of
G on Q. The ξij are the values of the V (G, Q)-characters of G according to
Tamaschke [170].

LEMMA 6.2
For 1 ≤ i, j ≤ s :

(a) ηi1 = fi/n, ξ1j = 1, and η1j = 1/n ;

(b) Tr(αiαj) = |Ci|δi∗j and c1
ij = niδi∗j ;

(c) ηij = ηij∗ ;

(d)
∑s

k=1 ηikηjknk = δijfi/n .

PROOF (a) By Theorem 6.2, Trα1 = n and Trαi = 0 for i > 1. The first
result follows on taking the trace of (6.29). The second result holds since

α1 = 1 = ε1 + · · ·+ εs .

Finally, τ = α1 + · · ·+ αs implies

ε1 = n−1τ = n−1α1 + · · ·+ n−1εs .
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(b) For each x in Q, (xαiαj |x) = (xαi|xα∗j ) = δij∗ni = δi∗jni. Thus
Tr(αiαj) = nniδi∗j and c1

ij = n−1Tr(αiαj) = niδi∗j .
(c) The result follows by equating coefficients of αj in

s∑

j=1

ηijαj = εi = ε∗i =
s∑

j=1

ηijα
∗
j =

s∑

j=1

ηijαj∗ =
s∑

j=1

ηij∗αj .

(d) Consider

δij

( s∑
m=1

ηimαm

)
= δijεi = εiεj

=
( s∑

k=1

ηikαk

)( s∑

l=1

ηilαl

)

=
s∑

m=1

s∑

k=1

s∑

l=1

ηikηjlcklmαm .

Equating coefficients of αl (i.e. applying n−1Tr),

δijηi1 =
s∑

k=1

s∑

l=1

ηikηjlckl1 .

Then by (a) through (c), one obtains

δijfi/n =
s∑

k=1

ηikηjknk ,

which is (d).

By (6.28) and (6.29), the matrices Ξ and H are mutually inverse: ΞH = I.
Thus H∗Ξ∗ = I, i.e.

s∑

j=1

ηjkξlj = δkl .

From Lemma 6.2(d) it follows that

fiξli/n =
s∑

j=1

δijfiξli/n

=
s∑

j=1

s∑

k=1

ηiknkηjkξlj

=
s∑

k=1

ηiknkδkl = ηilnl ,
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whence (fi)1/2ξlin
−1
l = n(fi)−1/2ηil. This equation underlies the fundamental

definition of the combinatorial character theory of quasigroups.

DEFINITION 6.3 Let Q be a finite quasigroup.

(a) The character table of Q is defined to be the s × s matrix Ψ(Q) or Ψ
with entries

ψij =
√

fi

nj
ξji =

n√
fi

ηij (6.30)

for 1 ≤ i, j ≤ s.

(b) Each row ψi of the character table Ψ gives a class function ψi whose
restriction to elements of Cj is ψij. These functions ψ1, . . . , ψs are
known as the basic (combinatorial) characters of Q.

(c) The degree or dimension of a basic character ψi is the positive real
number ψi1.

The character table is often displayed with its columns labeled by the cor-
responding conjugacy classes, or by typical elements of these classes. By mild
abuse of notation, the set {ψ1, ψ2, . . . , ψs} is also labeled Ψ. The zeta function
ζ = ψ1 is sometimes called the principal character .

For a pique P , the i-th irreducible character is the complex-valued function
χi on P with χi(p) = ψij for (e, p) ∈ Cj . If P is a group, then this definition
agrees with the usual group-theoretic concept. Indeed ψi(x, y) = χi(x\y) in
that case (Exercise 6). In the group case, each ψi1 = χi(1) is the degree
or dimension of the character χi, an integer. For general quasigroups, the
dimensions ψi1 need not be rational — compare Figure 6.1 on page 158. On
the other hand, Section 9.8 shows how a nonassociative quasigroup (in that
case Z/4Z under subtraction) may have an irrational dimension that coincides
with an irrational quantum-mechanical statistical dimension, and a centralizer
ring that implements the corresponding quantum-mechanical fusion algebra.
In some ways, the most natural normalization of the characters is obtained
by considering the (s× s)-matrix Υ whose i, j-entry is

Υij =

√
fi

nnj
ξji =

√
nnj

fi
ηij (6.31)

[41, (A.8)] [158, (4.7)].
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6.7 Orthogonality relations

The inverse relationship between the matrices Ξ and H of Section 6.6 yields
the following orthogonality relations.

THEOREM 6.6
The character table of a finite, nonempty quasigroup Q satisfies

s∑

k=1

ϕkiϕkj = nδij/ni (6.32)

and
s∑

k=1

ϕikϕjknk = nδij . (6.33)

The set Ψ forms an orthonormal basis for the space CCl(Q) of class functions
under the inner product (6.7). In particular, this inner product is nondegen-
erate.

PROOF Since I = ΞH, one has that

δij =
s∑

k=1

ξikηkj =
s∑

k=1

niψki(fk)−1/2(fk)1/2ψkjn
−1 ,

proving (6.32). By Lemma 6.2(d),

δijfi/n =
s∑

k=1

ηikηjknk =
s∑

k=1

n−1ψik(fi)1/2n−1ψjk(fj)1/2nk ,

from which (6.33) follows on taking the complex conjugate. Finally, for x ∈ Q,

n〈ψi, ψj〉 =
∑

y∈Q

ψi(x, y)ψj(y, x)

=
s∑

k=1

∑

(x,y)∈Ck

ψi(x, y)ψj(y, x)

=
s∑

k=1

nkψikψjk∗

=
s∑

k=1

nkψikψjk

= nδij
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by (6.33), so that {ψ1, . . . , ψs} is a linearly independent orthonormal set of
class functions. Since the space of class functions has dimension s, it is also a
basis.

The relations (6.33) and (6.32) amount to the unitarity of the matrix (6.31),
which is thus called the unitary character table Υ or Υ(Q) of the quasigroup
Q.

As for groups, the character table Ψ(Q) of a finite quasigroup Q encodes a
large amount of information about the quasigroup.

COROLLARY 6.4

The character table of Q yields the following for 1 ≤ i, j ≤ s:

(a)

n =
s∑

k=1

ψk1ψk1 ;

(b)

ni =
∑s

k=1 ψk1ψk1∑s
k=1 ψkiψki

;

(c)
fi = ψ2

i1 ;

(d)

ηij =
ψi1ψij∑s

k=1 ψk1ψk1

;

(e)

ξij =
ψji

∑s
k=1 ψk1ψk1

ψj1

∑s
k=1 ψkiψki

.

THEOREM 6.7

The character table of Q determines the centralizer ring V (G,Q).

PROOF By Corollary 6.4 and (6.28),

αi = ni

s∑

k=1

ψkif
−1
k εk .
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Then

s∑

l=1

ninjψliψljf
−1
l εl =

(
ni

s∑

k=1

ψkif
−1/2
k εk

)(
nj

s∑

l=1

ψljf
−1/2
l εl

)

= αiαj =
s∑

m=1

cm
ij αm =

s∑

l=1

s∑
m=1

cm
ij nmψlmf

−1/2
l εl .

Equating coefficients of εl,

ninjψliψljf
−1
l =

s∑
m=1

cm
ij nmψlmf

−1/2
l .

Multiplying by f
−1/2
l ψlk and summing over l,

s∑

l=1

ninjψliψljψlkf−1
l =

s∑

l=1

s∑
m=1

cm
ij nmψlmψlk

=
s∑

m=1

cm
ij nmnδmkn−1

m = nck
ij

by (6.32). Thus

ck
ij =

ninj

n

s∑

l=1

ψliψljψlkf
−1/2
l . (6.34)

By Corollary 6.4, the character table specifies all the terms on the right-hand
side of (6.34). It thus specifies the structure constants of the centralizer ring,
as required.

PROPOSITION 6.2

The character table of Q determines the stability congruence of Q as

σ(Q) =
⋃
{Ci | ni = 1} . (6.35)

PROOF For fixed e in Q, the sets Ci(e) are the orbits of the stabilizer
Ge on Q. Thus

eσ =
⋃
{{x} | xGe = x} =

⋃
{Ci(e) | ni = 1} ,

from which (6.35) follows. Note that Ψ(Q) determines the valencies ni ac-
cording to Corollary 6.4(b).

 



158 An Introduction to Quasigroups and Their Representations

6.8 Rank two quasigroups

A quasigroup Q has rank 2 if there are just two quasigroup conjugacy
classes, the equality relation

C1 = {(x, y) ∈ Q2 | x = y}

and the diversity relation

C2 = {(x, y) ∈ Q2 | x 6= y} .

In other words, the multiplication group G acts 2-transitively on Q. (Compare
Exercise 13 in Chapter 9.) For example, any nonabelian quasigroup of order 3
has rank 2, and indeed all the projective geometries of Section 1.6 yield rank
2 quasigroups. The only finite rank 2 group is the cyclic group of order 2.
On the other hand, any countable torsion-free group has an HNN-extension
group that is a rank 2 quasigroup [80], [103, §53].

The orthogonality relations immediately specify the character table of any
finite rank 2 quasigroup Q of order n as shown in Figure 6.1. The top row is
filled by the trivial character ψ1. The entry ψ21 = (n − 1)1/2 is specified by
(6.32) with i = j = 1. The remaining entry ψ22 = −(n− 1)−1/2 may then be
specified by (6.33) with i = 1 and j = 2.

Q C1 C2

ψ1 1 1

ψ2 (n− 1)1/2 −(n− 1)−1/2

FIGURE 6.1: The character table of a rank 2 quasigroup of order n.

Theorem 3.10 shows that the rank 2 quasigroups of a given prime order
p > 3 include some quasigroups which are central, and some which are not
(compare Exercise 10). Thus the character table of a finite quasigroup does
not determine whether or not the quasigroup is central.

In a well-defined sense, almost all finite quasigroups have rank 2. For a
positive integer n, let l(n) denote the number of Latin squares of order n
using the symbols 1, 2, . . . , n. Let P be a certain property which a finite
quasigroup may or may not possess. Let p(n) denote the number of Latin
squares of order n that yield multiplication tables of quasigroups possessing
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the property P when bordered on the left and on top with 1, 2, . . . , n in order.
Then almost all finite quasigroups are said to have property P if

lim
n→∞

p(n)
l(n)

= 1, (6.36)

while hardly any finite quasigroups are said to have property P if the limit in
(6.36) is 0. (Thus in the latter case, almost all finite quasigroups have the
complementary property ¬P.)

THEOREM 6.8

Almost all finite quasigroups Q have the symmetric group Q! as their multi-
plication group.

PROOF The smallest transitive permutation group containing a random
permutation is almost always the symmetric or alternating group [108]. On
the other hand, hardly any finite quasigroups have their multiplication group
consisting entirely of even permutations [74].

COROLLARY 6.5

Almost all finite quasigroups are rank 2 quasigroups.

6.9 Entropy

The information-theoretic concept of entropy is a useful source of numerical
invariants for the classification of finite quasigroups.

DEFINITION 6.4 The (conjugate) entropy of a finite, nonempty quasi-
group Q is defined to be

H(Q) =
s∑

i=1

ni

n
log

n

ni
, (6.37)

the logarithms being taken to a fixed base. If the base is taken to be 2, the
units of entropy are bits.

Since the character table of Q determines n and each ni, it determines the
entropy of Q (compare Exercise 18). In turn, the entropy of Q suffices for the
recognition of abelian and rank 2 quasigroups.

 



160 An Introduction to Quasigroups and Their Representations

THEOREM 6.9
The entropy H(Q) of a finite quasigroup Q of positive order n satisfies

log n− (1− n−1) log(n− 1) ≤ H(Q) ≤ log n .

Equality obtains on the left if and only if Q has rank 2. It obtains on the right
if and only if Q is abelian.

PROOF Suppose that for some i, there are positive integers n′i and n′′i
such that ni = n′i + n′′i . Now

0 <
n′i
ni

log
ni

n′i
+

n′′i
ni

log
ni

n′′i
,

since the right-hand side is a positive linear combination of the positive quan-
tities log(ni/n′i) and log(ni/n′′i ). In other words,

−ni log ni < n′i log
1
n′i

+ n′′i log
1
n′′i

,

so that

1
n

(
ni log n− ni log ni

)
<

1
n

(
n′i log n + n′i log

1
n′i

+ n′′i log n + n′′i log
1
n′′i

)

or
ni

n
log

n

ni
<

n′i
n

log
n

n′i
+

n′′i
n

log
n

n′′i
.

Thus the entropy (6.37) is strictly increased when conjugacy classes are split,
or strictly decreased when they are fused. It obtains its minimum if and only
if Q has rank 2. It obtains its maximum of log n if and only if each multiplicity
ni is 1, or each conjugacy class has order |Q|. This means that for each element
x of Q, the stabilizer Gx is trivial. According to Proposition 3.16, this latter
condition is equivalent to Q being abelian.

The entropy offers a more refined measure than the simple counts of conju-
gacy classes that have often been used in group theory (see [144], for example).

PROPOSITION 6.3
Suppose that a finite, nonempty quasigroup Q has s conjugacy classes. Then
the entropy H(Q) of Q is bounded above by log s.

PROOF The natural logarithm function is concave, and thus its graph
lies below its tangent line at the point (1, 0). In other words, for any positive
real number x,

log x ≤ x− 1 .
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Setting x = (n/ni)(1/s), one obtains

log
n

ni
− log s ≤ n

nis
− 1 . (6.38)

Multiplying (6.38) by ni/n and summing for 1 ≤ i ≤ s yields
s∑

i=1

ni

n
log

n

ni
− log s ≤ 0 ,

from which the upper bound follows.

Since the entropy of a finite, nonempty quasigroup Q is determined by the
character table of Q, it is apparent that the entropy cannot determine whether
Q is central or not. One is thus led to the second numerical invariant.

DEFINITION 6.5 The asymptotic (conjugate) entropy h(Q) of a finite,
nonempty quasigroup Q is defined to be

h(Q) = lim sup
m→∞

1
m

H(Qm) .

By Theorem 6.9, 0 < H(Qm) ≤ log |Qm|, so the asymptotic entropy h(Q)
satisfies

0 ≤ h(Q) ≤ log |Q| . (6.39)

Note that h(Q) is determined by the sequence Ψ(Qm) of character tables of
powers of Q.

PROPOSITION 6.4
If two finite, nonempty quasigroups P and Q are centrally isotopic, then they
have the same entropy and the same asymptotic entropy.

PROOF By Theorem 3.4 and (3.25), two finite quasigroups A and B
are centrally isotopic if and only if there is a nonempty finite quasigroup Z
such that Z × A and Z × B are isomorphic. Since P and Q are centrally
isotopic, there is a finite nonempty quasigroup Z1 with Z1 × P and Z1 × Q
isomorphic. Suppose, as an induction hypothesis, that there is a finite non-
empty quasigroup Zr with Zr × P r ∼= Zr ×Qr. Then

(Zr × Z1)× P r+1 ∼= (Zr × P r)× (Z1 × P )
∼= (Zr ×Qr)× (Z1 ×Q) ∼= (Zr × Z1)×Qr+1 .

It follows that Pm is centrally isotopic to Qm for each positive integer m.
By Proposition 3.10, centrally isotopic quasigroups have similar multiplica-
tion group actions, and accordingly have the same entropy. Thus H(Pm) =
H(Qm) for each m (including m = 1, of course), whence h(P ) = h(Q).
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Just as abelian quasigroups maximize the entropy according to Theorem 6.9,
central quasigroups maximize the asymptotic entropy.

PROPOSITION 6.5
Let Q be a finite, nonempty central quasigroup. Then h(Q) = log |Q|.

PROOF By Proposition 6.4 and Theorem 3.7, it suffices to consider the
case of a central pique (P, 0) centrally isotopic to Q. Let q be the order of P ,
and let r be the order of the inner multiplication group F of P . The stabilizer
of (0, . . . , 0) in Mlt Pm is then Fm = {(f, . . . , f) | f ∈ F} , again of order r.
For each positive integer j, let nj be the number of orbits of size j in the
action of Fm on Pm. Then the entropy of Pm is

r∑

j=1

nj
j

qm
log

qm

j
. (6.40)

The nj satisfy
n1 + 2n2 + . . . rnr = qm .

For nonnegative real numbers x1, . . . , xr, consider the problem of minimizing

r∑

j=1

xj

qm
log

qm

j
=

1
qm

(
log qm

( r∑

j=1

xj

)
−

r∑

j=1

xj log j

)
(6.41)

subject to
x1 + x2 + · · ·+ xr = qm . (6.42)

In view of (6.42), the problem reduces to maximizing

r∑

j=1

xj log j

subject to (6.42). The desired extremum is attained at

xr = qm, xr−1 = · · · = x1 = 0 ,

which gives log qm − log r as the minimum value of (6.41). Setting xj = jnj

makes the value of (6.41) equal to (6.40). Thus

log qm ≥ H(Qm) ≥ log qm − log r ,

whence
h(Q) = lim

m→∞
1
m

H(Qm) = log q

as required.
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The asymptotic entropy of Q determines whether or not Q is central, ac-
cording to the “asymptotic” analogue of Theorem 6.9.

THEOREM 6.10
The asymptotic entropy h(Q) of a finite quasigroup Q of positive order n

satisfies
0 ≤ h(Q) ≤ log n .

Equality obtains on the right if and only if Q is central.

The inequalities just recall (6.39), while the “if” statement holds by Propo-
sition 6.5. The remainder of this section is devoted to the proof of the “only
if” statement. Let Q be a finite, nonempty, noncentral quasigroup. It must
be shown that h(Q) < log |Q|. In fact, it will be shown that there are positive
constants w and c such that

1
m

H(Qm) ≤ log |Q| − w log 2 +
log 2c

m
(6.43)

for all sufficiently large m.
Fix an element e of Q. For any positive integer m, set

x = (e, . . . , e) ∈ Qm .

Since Q is not central, the diagonal Q̂ is not a normal subquasigroup of Q2.
Then Q̂ is a proper subset of Q̂F (compare Exercise 9 of Chapter 3). In
particular,

∃ q ∈ Q . ∃ (α, β) ∈ Mlt Q2 . eα = eβ = e , qα = s 6= t = qβ . (6.44)

Consider a random element

y = (y1, . . . , ym)

of Qm. The probability that its i-th component yi coincides with q is |Q|−1.
Let p = 1−|Q|−1, the probability that yi differs from q. The following lemma
bounds the probability that y does not have even a certain small proportion
u of its components coinciding with the element q.

LEMMA 6.3
For each p in the open unit interval ]0, 1[, there are positive constants u, v,

and c (with c ≥ 1 and u irrational) such that

bumc∑

k=0

(
m

k

)
(1− p)kpm−k ≤ c2−vm

for all nonnegative integers m.
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PROOF For given 0 < r < 1, let rT denote the circle of radius r centered
on the origin in the complex plane. Then

bumc∑

k=0

(
m

k

)
(1− p)kpm−k

=
1

2πi

∫

rT

(
z(1− p) + p

)m(
1 + z−1 + · · ·+ z−bumc)z−1dz

=
1

2πi

∫

rT

(
z(1− p) + p

)m

zbumc · z1+bumc − 1
z(z − 1)

dz .

For z ∈ rT , one has the estimates
∣∣∣∣
z1+bumc − 1

z(z − 1)

∣∣∣∣ ≤
r1+bumc − 1

r(r − 1)
<

2
r(1− r)

and ∣∣∣∣∣

(
z(1− p) + p

)m

zbumc

∣∣∣∣∣ ≤
(
r(1− p) + p

)m

rbumc ≤
(

r(1− p) + p

ru

)m

,

whence
bumc∑

k=0

(
m

k

)
(1− p)kpm−k <

2
1− r

(
r(1− p) + p

ru

)m

.

Now r(1 − p) + p < 1, while limu→0 ru = 1. The positive irrational constant
u is thus chosen so small that

b =
ru

r(1− p) + p
> 1 .

The lemma follows, with

c =
2

1− r
≥ 1

and v = log2 b.

The irrationality of u in Lemma 6.3 is merely a technical convenience to
separate the floor of um from its ceiling, regardless of the choice of the integer
m.

An element
y = (y1, . . . .ym)

of Qm is called good if the number of its components coinciding with q exceeds
um, the irrational constant u being associated by Lemma 6.3 with

p =
|Q| − 1
|Q| .
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A quasigroup conjugacy class of Qm is called good if it contains a pair (x, y)
with good y. If elements and classes are not good, they are called bad. By
Lemma 6.3, there are at most 2−vmc|Q|m bad elements y. Each bad class
contains at least one pair (x, y) with bad y. Thus the number of bad classes
is at most

2−vmc|Q|m . (6.45)

On the other hand, good classes are fairly large.

LEMMA 6.4
Each good quasigroup conjugacy class of Qm contains at least 2um|Q|m ele-
ments, for all sufficiently large m.

PROOF Without loss of generality, one may consider the good class
containing the pair (x, y) with

y = (q, . . . , q, yr+1, . . . , ym) ,

where r = dume. For each subset I of {1, . . . , r}, there is a certain element
γI of the stabilizer of x in Mlt Qm. This element γI is chosen to have the
property that

yγI = (z1, . . . , zr, y
′
r+1, . . . , y

′
m)

for some y′i in Q, where zi = s for i in I, but zj = t for j not in I. Thus the i-th
components of γI may be taken as the α of (6.44), while the j-th components
may be taken as β. As I ranges over the 2r different subsets of {1, . . . , r}, one
obtains 2r different elements (x, y)γI = (x, yγI) in the conjugacy class, each
having x in its first half. The result follows.

Since Qm ×Qm has |Q|2m elements, and each good conjugacy class has at
least 2um|Q|m elements, there are at most

2−um|Q|m (6.46)

good classes. Let w be the minimum of the two positive constants u and v.
Recall c ≥ 1. Since each class is either good or bad, (6.45) and (6.46) show
that the total number of classes is at most

|Q|m(2−vmc + 2−um) ≤ 2c|Q|m · 2−wm .

Proposition 6.3 then implies

H(Qm) ≤ log |Q|m − log 2wm + log 2c ,

from which the required inequality (6.43) follows.
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6.10 Exercises

1. Show that a group is of real type if and only if each element is conjugate
to its inverse.

2. For a group (Q, ·, /, \), show that the quasigroup (Q, /) is of real type.

3. Verify directly that the convolution (6.3) is associative.

4. Let θ and ϕ be quasigroup class functions on a pique. Verify the equation
θ′ϕ′ = (θϕ)′.

5. Draw up a table of the various structures carried by (6.20)(a) through
(d) in their various manifestations, e.g., zeta function on Q2, identity
endomorphism of CQ, the n×n identity matrix, the function G → {1}.

6. For a finite group P , verify the relation ψi(x, y) = χi(x\y) between the
basic quasigroup characters and the irreducible pique characters.

7. For a finite, nonempty quasigroup Q, show that each of the following
determines the others:

(a) The character table Ψ;

(b) The unitary character table Υ;

(c) The V (G,Q)-character table Ξ.

8. Show that centrally isotopic quasigroups have the same character table.

9. Give an example of isotopic quasigroups with different character tables.

10. Let p be a prime number larger than 3. and let Q = Z/pZ.

(a) Let r be a nonzero element of Z/pZ. Show that x · y = xr + y
defines a central rank 2 quasigroup structure (Q, ·).

(b) Let ρ be the transposition (12), and let λ be the cycle (12 . . . p).
Show that x◦y = xρ+yλ defines a rank 2 quasigroup structure on
Q. Invoke Theorem 3.10 (p. 81), or argue directly, to show that
(Q, ◦) is not central.

11. Show that almost all finite quasigroups are simple.

12. Let Q be a finite, nonempty quasigroup with character table Ψ. Show
that

H(Q) =
s∑

j=1

( s∑

i=1

∣∣ψij

∣∣2
)−1

log
( s∑

i=1

∣∣ψij

∣∣2
)

.
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13. Using the strict concavity of the logarithm function, show that the upper
bound log s for the entropy of a finite, nonempty quasigroup Q with s
conjugacy classes is actually attained if and only if s = |Q| and Q is
abelian.

14. Exhibit finite piques P and Q for which H(P ×Q) 6= H(P ) + H(Q).

15. Let P and Q be finite loops. Show that H(P ×Q) = H(P ) + H(Q).

16. Show that for finite loops, the entropy and asymptotic entropy coincide.

6.11 Problems

1. For general finite nonempty quasigroups P and Q, what is the relation-
ship between h(P ), h(Q), and h(P ×Q)?

2. Let n be the order of a finite simple group. Is there a simple group S
of order n such that H(S) ≤ H(Q) for all groups Q of order n?

3. For which quasigroup varieties V does there exist a function b(s) such
that a finite V-quasigroup Q with s conjugacy classes has order at most
b(s)? Note that the variety G of associative quasigroups has such a
function [23, p. 461], while results such as Corollary 6.5 or Exercise 10
show that the variety Q of all quasigroups does not.

6.12 Notes

Section 6.1

If Q is a loop with identity element e, then the pique conjugacy classes of
(Q, e) are the loop conjugacy classes considered by Bruck [21, p. 63].

Section 6.3

The concept of the centralizer ring of a permutation action is due to Wielandt
[175]. The “V ” in the notation V (G,Q) stands for “Vertauschungsring.” The-
orem 6.1 was first proved in [146].
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Section 6.5

Some sources use the term “association scheme” without the commutativity
requirement (A4), and then describe schemes satisfying (A1) through (A4) as
“commutative association schemes.”

For the structure constants of V (G,Q), compare [36, §9D]. In [6, Th. 2.1.4],
the derivation of Theorem 6.4(a) from the commutativity axiom (A4) for
association schemes is depicted as a consequence of “Schur’s Lemma” [6, §1.3].

Section 6.7

Theorem 6.6 originally appeared in [91, (3.3)] and [148, 541(a)(b)]. Theo-
rem 6.7 is a generalization of the group-theoretical result [36, 9.33]. Compare
also [6, Th. II.3.6(ii)].

Section 6.8

Corollary 6.5 was initially conjectured in [152]. C.E. Praeger [132] attributes
Theorem 6.8 to P.J. Cameron.

Section 6.9

See [159] for a quick introduction to some of the key information-theoretic
aspects of entropy.

The full term “conjugate entropy” is used to make a distinction with the
characteristic entropy concept introduced in Exercise 17 of Chapter 7.

Lemma 6.3 gives an appropriate and immediate version of the “Chernoff
bound” of large deviation theory [29], [52, §3], [167, Lectures 4, 7].

 



Chapter 7

COMBINATORIAL CHARACTER
THEORY

This chapter shows how more advanced aspects of the ordinary character
theory of finite groups extend to finite quasigroups. At the same time, it
becomes apparent that the theory is considerably enriched by the extension.
The notation and conventions of the preceding chapter are used throughout.
Section 7.1 shows that the congruence lattice of a finite quasigroup Q is de-
termined by its character table. On the other hand, while the centrality of
Q is decided by the character table of Q2, it is not decided by the charac-
ter table of Q itself. In particular, and in contrast to the situation in group
theory, character tables of factors do not specify the character table of their
product. Section 7.2 shows how character tables of homomorphic quasigroups
are connected, while Section 7.3 deals with the dual situation where the mul-
tiplication groups are nested. Section 7.4 covers Frobenius reciprocity and
induction, including the quasigroup analogue of Artin’s Theorem. Section 7.5
studies the linear characters of a quasigroup.

7.1 Congruence lattices

The congruences on a quasigroup Q form a lattice under inclusion. The
quasigroup Q is said to be subdirectly irreducible if this lattice has a unique
minimal element, known as the socle. If Q is a group, then the congruence
lattice is isomorphic to the lattice of normal subgroups under the map V 7→ 1V

taking a congruence V to the congruence class of the identity element. Since
the normal subgroups of a finite group are just the kernels of the ordinary
group characters, the character table of a finite group determines its lattice of
congruences directly. This character table property extends to general finite
quasigroups, but the proof is not as immediate.

THEOREM 7.1

The character table of a finite quasigroup Q determines its congruence lattice.

169 
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PROOF It will be shown that the matrix H = [ηij ] of (6.29) determines
the congruence lattice. The theorem then follows by Corollary 6.4(d) (p. 156).

Let V be a congruence relation on Q. Since V is a subquasigroup of Q2

containing Q̂, it is invariant under the diagonal action (2.13) of G, and so
is a union of conjugacy classes, including C1 = Q̂. This means that the
endomorphism α of CQ defined by

xα =
∑

(x,y)∈V

y

for x in Q can be written as

α =
∑

j∈V1

αj

for a subset V1 of {1, . . . , s} containing 1. In particular, α lies in V (G,Q).
Let V0 denote the complement of V1 in {1, . . . , s}. Let |V | = nv, so v = |xV |
for each x in Q. (Compare Exercise 7 in Chapter 3.) Then α2 = vα, and the
idempotent v−1α of V (G, Q) may be expressed as

v−1α =
∑

i∈V ′
εi

for some subset V ′ of {1, . . . , s}. Now

1
v

∑

j∈V1

αj = v−1α

=
∑

i∈V ′
εi

=
∑

i∈V ′

s∑

j=1

ηijαj

=
∑

i∈V ′

∑

j∈V1

ηijαj +
∑

i∈V ′

∑

j∈V0

ηijαj .

Equating coefficients of αj , one has

v
∑

i∈V ′
ηij =

{
1 for j ∈ V1 ⊇ {1} ;
0 for j ∈ V0 .

(7.1)

For the congruence V on Q, let HV be the submatrix of H consisting of the
rows with indices in V ′. Then the matrix vHV has either 1 or 0 as its column
sums. The congruence V is the union of those conjugacy classes Cj for which
the j-th column sum of vHV or HV is nonzero.

Conversely, consider a subset V ′ of {1, . . . , s}. Let H ′ denote the subma-
trix of H consisting of the rows with indices in V ′. Suppose that there are
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complementary subsets V0, V1 of {1, . . . , s}, the element 1 lying in V1, and a
positive integer v such that (7.1) is satisfied. Let

α =
∑

j∈V1

αj and V =
⋃

j∈V1

Cj .

Then
1
v
α =

1
v

∑

j∈V1

αj

=
s∑

j=1

∑

i∈V ′
ηijαj

=
∑

i∈V ′
εi

is idempotent, whence α2 = vα, and V is transitive. Now V is reflexive since
1 ∈ V1. Also, V is invariant under the diagonal action of G. It follows by
Proposition 2.1 (p. 39) that V is a congruence on Q.

Thus the congruence relations on Q are precisely the conjugacy class unions

V =
⋃

j∈V1

Cj

for which there is a submatrix HV of H consisting of rows with indices in a
subset V ′ of {1, . . . , s} and a positive integer v such that (7.1) is satisfied. In
particular, H specifies the congruence lattice of Q.

COROLLARY 7.1
The character table of a finite quasigroup Q determines whether or not Q is
subdirectly irreducible.

COROLLARY 7.2
The character table Ψ(Q2) of the direct square Q2 of a finite quasigroup Q

determines whether or not Q is central.

PROOF A quasigroup Q is central if and only if the congruence lattice
of Q2 contains a common complement to the kernels of the two projections

πi : Q2 → Q; (q1, q2) 7→ qi

for i = 1, 2 [73] [78]. By Theorem 7.1, the congruence lattice of Q2 is deter-
mined by Ψ(Q2).

Since the character table of a finite quasigroup Q does not determine
whether Q is central, Corollary 7.2 shows that the character table of Q does
not determine the character table of the direct square Q2 of Q.
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7.2 Quotients

Suppose that θ : P ³ Q is a quasigroup epimorphism. If P is a group, and
D : Q → AutCV represents Q as a group of automorphisms of a complex vec-
tor space V , then the composite θD : P → AutCV represents P . Composing
with the trace map Tr : AutCV → C, it is a trivial matter to lift characters
from the quotient Q up to P . For general finite quasigroups P , a comparable
lifting result holds. The proof is much less direct, and will occupy the entire
section.

THEOREM 7.2 (Quotient Theorem)
Let θ : P ³ Q be a quasigroup epimorphism, with corresponding diagonal

θII : P 2 → Q2; (x, y) 7→ (xθ, yθ). (7.2)

Then for each basic character

ψk : Q2 → C

of Q, the lift
θIIψk : P 2 → C

is a basic character of P .

Let V (G,Q) be the centralizer ring of the multiplication group G of Q.
Let V (F, P ) be the centralizer ring of the multiplication group F of P . Let
A1, . . . , As denote the respective incidence matrices of the conjugacy classes
C1, . . . , Cs of Q. The epimorphism θ : P → Q induces the epimorphism
Mlt θ : F → G according to (2.12). For each conjugacy class D of P , the
subset

DθII = {(x1θ, x2θ) | (x1, x2) ∈ D}
of Q2 is contained within a conjugacy class of Q, since for f in F one has

(x1, x2)f = (y1, y2) ⇒ (x1θ, x2θ)f Mlt θ = (y1θ, y2θ) .

For each 1 ≤ i ≤ s, let
Di1, . . . , Diri

be a complete list of all those conjugacy classes D with DθII ⊆ Ci. Take
D11 = P̂ . Note Dijθ

II = Ci for 1 ≤ i ≤ s and 1 ≤ j ≤ ri. Then ri > 0 for
1 ≤ i ≤ s, since given a typical element (xθ, yθ) of Ci, one has (x, y) in Dij for
some j. Let Bij be the incidence matrix of Dij for 1 ≤ i ≤ s and 1 ≤ j ≤ ri.
Let

βij : CP → CP ; x 7→
∑

(x,y)∈Bij

y
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be the corresponding endomorphism of CP . Then there are bases {α1, . . . , αs}
or {A1, . . . , As} for V (G,Q) and {β11, . . . , βsrs

} or {B11, . . . , Bsrs
} for V (F, P ).

Define a linear map

φ : V (G,Q) → V (F, P ); αi 7→
ri∑

j=1

βij (7.3)

and its matrix version

σ : V (G,Q) → V (F, P ); Ai 7→
ri∑

j=1

Bij . (7.4)

In general, these maps are not algebra homomorphisms.
Consider a particular element (a, b) of a given conjugacy class Dij of P .

Let nij be the number of elements a′ of P with aθ = a′θ and (a′, b) in Dij .
By homogeneity, this number only depends on the indices i, j, and not on the
particular choice of (a, b). Indeed

a′ ∈ aker θ ∩Dij(b) ⇔ a′f ∈ afker θ ∩Dij(bf)

for f in F . One also has that

nij =
|Q| · |Dij |
|P | · |Ci|

, (7.5)

since |Dij |/|P | and nij |Ci|/|Q| both count the set of all a′ in P with (a′, b) in
Dij .

LEMMA 7.1
For given conjugacy classes Dij of P and Ck of Q, the equation

BijA
σ
k = nij(AjAk)σ (7.6)

holds in the centralizer ring V (F, P ).

PROOF Let

BijA
σ
k =

s∑

l=1

rl∑
m=1

clm
ij,kBlm .

Fix an element (a, b) of the conjugacy class Dlm of P . Then the coefficient
clm
ij,k represents the number of elements p of P with (aθ, bθ) in Ck and (p.b)

in Dij . Now by (6.17),

AkAi =
s∑

k=1

cl
kiAl
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in V (G,Q). Since (aθ, bθ) lies in Ck, the structure constant cl
ki represents the

number of elements q of Q with (aθ, q) in Ck and (q, bθ) in Ci. Given (q, bθ)
in Ci, there are precisely nij elements p of P with pθ = q and (p, b) in Dij .
For each such p, one has (aθ, pθ) = (aθ, q) lying in Ck. Thus clm

ij,k = nijc
l
ki.

Since

(AjAk)σ =
s∑

l=1

cl
kiAl

=
s∑

l=1

rl∑
m=1

cl
kiBlm ,

the relation (7.6) in V (F, P ) follows.

The centralizer ring V (G,Q) has the basis (6.26) of idempotents. Then for
1 ≤ i, k ≤ s, (6.28) yields

EkAi = ξikEk . (7.7)

LEMMA 7.2

For a given conjugacy class Dij of P and basic idempotent Ek of V (G, Q),
the equation

BijE
σ
k = nijξikEσ

k (7.8)

holds in the centralizer ring V (F, P ).

PROOF Since

Ek =
s∑

l=1

ηklAl

by (6.29), one has

BijE
σ
k =

s∑

l=1

ηklBijA
σ
l

=
s∑

l=1

ηklnij(AiAl)σ

= nij

( s∑

l=1

ηklAlAi

)σ

= nij(EkAi)σ

= nijξikEσ
k ,

the second equality holding by (7.6) and the last by (7.7).
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Lemma 7.2 shows that for each 1 ≤ k ≤ s, the subspace CPεφ
k of CP is an

eigenspace for each βij , with corresponding eigenvalue nijξik. It follows that
the column vector 



n11ξ1k

...

nsrs
ξsk




is a column of the first eigenmatrix of F on P . Let the dimension of the
subspace CPεφ

k be dk. Then the row vector
√

dk

∣∣P ∣∣
[ n11ξ1k

|B11| . . .
nsrs

ξsk

|Bsrs
|

]
(7.9)

is a row of the character table Ψ(P ) of P . It remains to calculate dk.

LEMMA 7.3
For 1 ≤ k ≤ s, the element

|Q|
|P |E

σ
k

is an idempotent of V (F, P ). Then dk is the trace fk of Ek.

PROOF Since each element of Q has |P |/|Q| pre-images under θ, one has
that

ri∑

j=1

nij =
|P |
|Q|

for 1 ≤ i ≤ s. Then

Eσ
k Eσ

k = Eσ
k

( s∑

i=1

ηkiAi

)σ

=
s∑

i=1

ηkiE
σ
k

rs∑

j=1

Bij

=
s∑

i=1

ηkiξik

rs∑

j=1

nijE
σ
k

=
|P |
|Q|E

σ
k

s∑

i=1

ηkiξik ,

the penultimate equality following by Lemma 7.2. Now the matrices [ηki] and
[ξik] are mutually orthogonal, so that

s∑

i=1

ηkiξik = 1 and Eσ
k Eσ

k =
|P |
|Q|E

σ
k .
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The first statement of Lemma 7.3 follows. In particular, the idempotent

|Q|
|P | ε

φ
k

is the projection operator of CP onto the subspace CPεφ
k . But

Tr εφ
k = Tr

( s∑

i=1

ηkiA
σ
i

)

=
s∑

i=1

ηki

ri∑

j=1

TrBij

= ηk1|P |

= fk
|P |
|Q| ,

the last equality holding by Lemma 6.2(a). Thus dk = fk as required.

Using this value for dk and (7.5) for each nij , the row vector (7.9) becomes

√
fk

∣∣Q∣∣
[ ξ1k

|C1| . . .
ξsk

|Cs|
]
. (7.10)

This vector is just the k-th row of the character table Ψ(Q) of Q, expanded
by having its i-th entry written ri times for each 1 ≤ i ≤ s. As a row of
the character table of P , (7.10) represents the complex class function on P
sending each element of Bij to the value of ψk on Ci. This is precisely the
function (7.2), which is thus a basic character of P . The proof of the Quotient
Theorem 7.2 is completed.

7.3 Fusion

The Quotient Theorem 7.2 related the character tables Ψ(Q) and Ψ(P ) for
a quasigroup epimorphism Q ³ P inducing an epimorphism Mlt Q ³ Mlt P
of the corresponding combinatorial multiplication groups. A dual situation
arises when there are two quasigroup structures (Q, +) and (Q, ·) on the same
underlying set Q, such that Mlt(Q, +) embeds as a subgroup of Mlt(Q, ·)
with the group monomorphism Mlt(Q, +) ↪→ Mlt(Q, ·). Corollary 2.2 and
Theorem 3.5 provide examples of this. A more general case is described as
follows.
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PROPOSITION 7.1
Suppose that a quasigroup (Q, ·) is principally isotopic to a loop (Q, +, e).

Then Mlt(Q, +) is a subgroup of Mlt(Q, ·).

PROOF Let the principal isotopy be (α, β, 1Q) : (Q, +) → (Q, ·), so that

xα · yβ = x + y (7.11)

for x, y in Q. By (7.11), it follows that

L+(x) = βL·(xα) and R+(y) = αR·(yβ) .

Since R+(e) = L+(e) = 1Q, one has α = R·(eβ)−1 and β = L·(eα)−1. Then

Mlt(Q, +) = 〈L+(q), R+(q) | q ∈ Q〉
= 〈L·(eα)−1L·(qα), R·(eβ)−1R·(qβ) | q ∈ Q〉
≤ 〈L·(x), R·(x) | x ∈ Q〉 = Mlt(Q, ·) ,

as required.

REMARK 7.1 In Proposition 7.1, the requirement that (Q, +, e) be a
loop is essential (Exercise 1).

The topic of fusion investigates how the character theory of (Q, ·) depends
on the character theory of (Q, +) when H = Mlt(Q, +) is a subgroup of
G = Mlt(Q, ·). Because H is a subgroup of G, an endomorphism of the
CG-module CQ is automatically an endomorphism of the CH-module CQ.
Thus the centralizer ring V (G,Q) is a subring of the centralizer ring V (H, Q).
Suppose that (6.10) is the conjugacy class partition of (Q, ·), and that the
corresponding conjugacy class partition of (Q, +) is

Q2 =
s∑

i=1

ri∑

j=1

Dij (7.12)

with Ci = Di1 + · · ·+ Diri for 1 ≤ i ≤ s. Note that r1 = 1 and D11 = Q̂. Let
Bij be the incidence matrix of Dij for 1 ≤ i ≤ s and 1 ≤ j ≤ ri. Thus

Ai =
ri∑

j=1

Bij (7.13)

for 1 ≤ i ≤ s.
The partition (7.12) and the corresponding partition of the columns of the

character table Ψ(Q, +) of (Q, +) are called the (Q, ·)-fusion of (Q, +)-classes

 



178 An Introduction to Quasigroups and Their Representations

or the G-fusion of H-classes. Since V (G,Q) is a subring of V (H,Q), each
idempotent εi from (6.25) is a sum

εi =
ti∑

j=1

εij (7.14)

of ti distinct minimal idempotents of V (H, Q). The matrix version of (7.14)
is

Ei =
ti∑

j=1

Eij .

Since

CQ =
s⊕

i=1

CQεi =
s⊕

i=1

ti⊕

j=1

Cεij ,

the set {{εij | 1 ≤ j ≤ ti} | 1 ≤ i ≤ s} forms a basis of V (H, Q) with

s∑

i=1

ti =
s∑

i=1

ri (7.15)

elements. Taking
C

( ∑

q∈Q

q
)

= CQε1 = CQε11 ,

one has
t1 = r1 = 1 . (7.16)

The matrix bases {A1, . . . , As} and {E1, . . . , Es} of V (G,Q) are connected by
the relation

Ei =
s∑

j=1

ηG
ijAj (7.17)

for 1 ≤ i ≤ s — compare (6.29). Similarly, the matrix bases

{B11, . . . , Bsrs} and {E11, . . . , Ests}

of V (G,Q) are connected by the relation

Ekl =
s∑

i=1

ri∑

j=1

ηH
kl,ijBij (7.18)

for 1 ≤ k ≤ s and 1 ≤ l ≤ tk. The character table Ψ(Q, ·) of (Q, ·) is the
matrix [ψG

ik] with

ψG
ik =

|Q|√
TrEi

ηG
ik , (7.19)
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and the character table Ψ(Q, +) of (Q, +) is the matrix [ψH
ij,kl] with

ψH
ij,kl =

|Q|√
TrEij

ηH
ij,kl . (7.20)

The quasigroup (Q, ·), or more precisely its multiplication group G, determines
the partition

{{εij | 1 ≤ j ≤ ti} | 1 ≤ i ≤ s} (7.21)

of the basis
{εij | 1 ≤ i ≤ s, 1 ≤ j ≤ ti}

of V (H, Q), and a corresponding partition

{{ψH
ij | 1 ≤ j ≤ ti} | 1 ≤ i ≤ s}. (7.22)

of the set of basic characters of (Q, +), i.e., of the set of rows of Ψ(Q, +).
The partitions (7.21) and (7.22) are called the G-fusion of H-characters or
the (Q, ·)-fusion of (Q, +)-characters. The dual of the Quotient Theorem 7.2
may then be formulated as follows.

THEOREM 7.3 (Fusion Theorem)
Let (Q, +) and (Q, ·) be two quasigroup structures on the set Q. Suppose

that Mlt(Q, +) is a subgroup of Mlt(Q, ·). Then the character table Ψ(Q, ·)
of (Q, ·) is determined by the character table Ψ(Q, +) of (Q, +) together with
the (Q, ·)-fusion of the (Q, +)-classes and (Q, +)-characters.

PROOF By (7.14) and (7.18) for each 1 ≤ i ≤ s, one has

Ei =
ti∑

j=1

Eij =
ti∑

j=1

s∑

k=1

rk∑

l=1

ηH
ij,klBkl =

s∑

k=1

rk∑

l=1

( ti∑

j=1

ηH
ij,kl

)
Bkl .

But by (7.17) and (7.13), one also has

Ei =
s∑

k=1

ηG
ikAk =

s∑

k=1

ηG
ik

rk∑

l=1

Bkl =
s∑

k=1

rk∑

l=1

ηG
ikBkl .

Equating coefficients of Bkl gives

ηG
ik =

ti∑

j=1

ηH
ij,kl (7.23)

for each 1 ≤ i ≤ s and 1 ≤ l ≤ rk. (Note the equality of the various right-
hand sides of (7.23) obtained for 1 ≤ l ≤ rk.) The theorem now follows from
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(7.19), (7.20), and (7.23), provided that TrEi is determined by the data. But
by (7.14) and Corollary 6.4(c),

TrEi =
ti∑

j=1

TrEij =
ti∑

j=1

(
ψH

ij,11

)2
, (7.24)

so the proof of the theorem is complete.

The explicit determination of the character table of (Q, ·) from the character
table of (Q, +) and the (Q, ·)-fusions, promised by the Fusion Theorem 7.3,
is best described geometrically. Consider the specification of the i-th basic
character ψQ

i of (Q, ·). In the fusion data, this character corresponds to the
fusion of the ti basic characters

ψH
i1 , . . . , ψH

iti

of (Q, +). For each conjugacy class Dkl of (Q, +), there is a ti-dimensional
complex vector

wkl =
[
ψH

i1,kl, . . . , ψ
H
iti,kl

]
. (7.25)

In particular, for (k, l) = (1, 1) one obtains the leading vector

w11 =
[
(Tr Ei1)1/2, . . . , (Tr Eiti)

1/2
]

(7.26)

with positive real components. These vectors wkl may be taken to lie in the
ti-dimensional complex vector space W = Cti . The subspace W0 = Cw11

is called the principal subspace; its elements are called principal vectors. An
inner product (x|y) = xy∗ is given on W , where ∗ denotes the conjugate
transpose. The corresponding norm is ‖x‖ with ‖x‖2 = (x|x). The character
ψQ

i is then specified by least squares approximations as follows.

THEOREM 7.4
The value ψG

ik of a basic character ψi of (Q, ·) on the k-th conjugacy class Ck

of (Q, ·) is given as
ψG

ik = (wkl|w11)
/‖w11‖ (7.27)

for each 1 ≤ l ≤ ri.

PROOF By (7.24) and (7.26),
(
TrEi

)1/2 = ‖w11‖. Then by (7.19), (7.23)
and (7.20), one has

‖w11‖ψG
ik = |Q|ηG

ik = |Q|
ti∑

j=1

ηH
ij,kl =

ti∑

j=1

ψH
ij,kl(Tr Eij)1/2 = (wkl|w11) .

The result follows.
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The geometrical significance of Theorem 7.4 is that the vectors wk1, . . . ,wkrk

all lie in a hyperplane orthogonal to the principal subspace. The intersection
of this hyperplane with the principal subspace is a single point, the principal
vector that is closest to each of the vectors wk1, . . . ,wkrk

. As a principal
vector, this point is a scalar multiple of the unit vector w11/‖w11‖ pointing
in the direction of the leading vector. The scalar is the character value ψG

ik.
In other words, the character value is the unique scalar λ that minimizes the
expression

‖wkl − λ(w11/‖w11‖)‖
for each 1 ≤ i ≤ rk, picking a unique value to assign to each class Ck in place
of the vectors wk1, . . . ,wkrk

of possible values. One thus picks the unique best
approximation to these vectors in the one-dimensional subspace of principal
vectors, and then takes the character value to be the component of this best
approximation with respect to an orthonormal basis of the principal subspace.

Another condition, very useful for the completion of partial fusion data, is
the Magic Rectangle Condition, (7.28) below.

THEOREM 7.5
Fix i, k ∈ {1, . . . , s}. Then for each l ∈ {1, . . . , li} and l′ ∈ {1, . . . , rk}, the
relation ∑rk

j=1 |Dkj |ψH
il,kj∑rk

j=1 |Dkj |ψH
il,11

=

∑tl

j′=1 ψH
ij′,11ψ

H
ij′,kl′∑tl

j′=1 ψH
ij′,11ψ

H
ij′,11

(7.28)

holds.

PROOF The matrix bases

{E1, . . . , Es} and {A1, . . . , As}
of V (G,Q) are connected by the relation

Ak =
s∑

i=1

ξG
kiEi (7.29)

for 1 ≤ k ≤ s — compare (6.28). Similarly, the matrix bases

{E11, . . . , Ests} and {B11, . . . , Bsrs}
of V (G,Q) are connected by the relation

Bkl =
s∑

i=1

ri∑

j=1

ξH
kl,ijEij (7.30)

for 1 ≤ k ≤ s and 1 ≤ l ≤ tk. Now by (7.13) and (7.30), one has

Ak =
rk∑

l=1

Bkl =
rk∑

l=1

s∑

i=1

ri∑

j=1

ξH
kl,ijEij =

s∑

i=1

ri∑

j=1

( rk∑

l=1

ξH
kl,ij

)
Eij .
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But by (7.29) and (7.14), one also has

Ak =
s∑

i=1

ξG
kiEi =

s∑

i=1

ξG
ki

ti∑

j=1

Eij =
s∑

i=1

ti∑

j=1

ξG
kiEij .

Equating coefficients of Eij gives

ξG
ki =

rk∑

l=1

ξH
kl,ij (7.31)

for each 1 ≤ i ≤ s and 1 ≤ j ≤ ti. Recalling

ψG
ik =

√
TrEi

|Ck| |Q| · ξG
ki

and

ψH
ij,kl =

√
TrEij

|Dkl| |Q| · ξH
kl,ij ,

(7.31) yields

ψG
ik =

√
Tr Ei√
Tr Eij

rk∑

l=1

|Dkl|
|Ck| ψ

H
ij,kl .

But by Theorem 7.4,

ψG
ik =

1√
TrEi

ti∑

j′=1

ψH
ij′,kl′

√
TrEij .

The Magic Rectangle Condition follows on equating these two expressions for
ψG

ik and cross-multiplying.

In cases such as the bottom right-hand part of Exercise 3(f) at the end of
this chapter, the condition (7.28) explicitly yields magic rectangles, in which
all the (unweighted) row sums and column sums are equal.

7.4 Induction

Let P be a nonempty subquasigroup of the finite quasigroup Q. Now the
relative multiplication group of P in Q is a subgroup of the multiplication
group of Q. It follows that the quasigroup conjugacy class partition of P may
be written in such a form

P 2 =
s∑

i=1

ri∑

j=1

Dij (7.32)
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that each part Dij is a subset of a corresponding quasigroup conjugacy class
Ci of Q. (If P 2 does not intersect Ci, then ri = 0.) For 1 ≤ i ≤ s, define

Di =
ri∑

j=1

Dij .

Then the induction map

↑Q
P : CCl(P ) → CCl(Q); f 7→ fQ

is given by

|Q|−2
∑

(x,y)∈Ci

fQ(x, y) = |P |−2
∑

(x,y)∈Di

f(x, y) . (7.33)

Using the convention of (6.6), this may be written in the form

fQ(Ci) =
|Q2|
|P 2|f(Di) =

|Q|2
|P |2

ri∑

j=1

f(Dij) . (7.34)

These simple formulas subsume the more complicated induction formulas used
for group class functions (Exercise 4).

Along with the induction map ↑Q
P : CCl(P ) → CCl(Q) given by (7.33), there

is also a restriction map

↓Q
P : CCl(Q) → CCl(P ); f 7→ f

∣∣
P 2 .

Under the inner products (6.7), namely 〈 , 〉P on CCl(P ) and 〈 , 〉Q on
CCl(Q), these linear mappings are mutually adjoint.

THEOREM 7.6 (Frobenius Reciprocity)

For class functions f in CCl(Q) and g in CCl(P ),

〈f, g ↑Q
P 〉Q = 〈f ↓Q

P , g〉P . (7.35)
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PROOF

〈f, g ↑Q
P 〉Q =

1
|Q|2

s∑

i=1

∑

(z,t)∈Ci

f(t, z)g ↑Q
P (z, t)

=
1
|Q|2

s∑

i=1

∑

(z,t)∈Ci

f(t, z)
|Q|2

|Ci| · |P |2 g(Di)

=
1
|P |2

s∑

i=1

|Ci|−1f(C−1
i )g(Di)

=
1
|P |2

s∑

i=1

|Ci|−1f(C−1
i )

ri∑

j=1

g(Dij)

=
1
|P |2

s∑

i=1

ri∑

j=1

∑

(x,y)∈Bij

f ↓Q
P (y, x)g(x, y) = 〈f ↓Q

P , g〉P .

The set of integral combinations of irreducible characters of a group forms
a ring under Hadamard multiplication. For a general nonempty finite quasi-
group Q, the coefficient ring Z[Q] is defined to be the ring

Z[〈ψiψj , ψk〉Q | 1 ≤ i, j, k ≤ s ] .

The character ring R[Q] is then defined to be the ring of Z[Q]-linear combina-
tions of basic characters under Hadamard multiplication. If Q is associative,
this agrees with the usual group-theoretic definition [142, 9.1]. If Q is a rank 2
quasigroup, with character table as presented in Figure 6.1, then the relation

ψ2ψ2 = ψ1 + (n− 2)(n− 1)−1/2ψ2.

implies that the coefficient ring Z[Q] is

Z[(n− 1)−1/2] = Z[X]/〈(n− 1)X2 − 1〉.
Now let P be a nonempty subquasigroup of a finite quasigroup Q. If Q is
associative, the induction map ↑Q

P : CCl(P ) → CCl(Q) restricts to an abelian
group homomorphism ↑Q

P : (R[P ], +) → (R[Q], +). If Q is not associative, this
need no longer be true. Let P be the Steiner triple system PG(1, 2) embedded
in Q, the Steiner triple system PG(2, 2). Then the nontrivial basic character
of P induces up to 7

√
3/9 times the nontrivial basic character of Q, although

7
√

3/9 does not lie in the coefficient ring Z[Q] = Z[6−1/2]. To study rings of
quasigroup characters under induction, it appears to be necessary to admit
at least the full ring A of algebraic numbers as the ring of coefficients. Let
ACl(Q) denote the ring of quasigroup class functions on the quasigroup Q
taking values in the ring A.
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PROPOSITION 7.2
Let Q be a finite, nonempty quasigroup.

(a) The set Ψ of basic characters of Q forms an A-basis for ACl(Q).

(b) The induction map
↑Q

P : CCl(P ) → CCl(Q)

restricts to
↑Q

P : ACl(P ) → ACl(Q) .

(c) For class functions f in ACl(P ) and g in ACl(Q), one has

f ↑Q
P ·g = (f · g ↓Q

P ) ↑Q
P .

(d) ACl(P ) ↑Q
P is an ideal of ACl(Q), and CCl(P ) ↑Q

P is an ideal of CCl(Q).

PROOF (a): For g in ACl(Q), Theorem 6.6 shows that

g =
s∑

i=1

〈g, ψi〉ψi . (7.36)

Each coefficient

〈g, ψi〉 =
1
|Q|

∑

(x,y)∈Q2

g(y, x)ψi(x, y) = n−1
s∑

j=1

ψij

∑

(x,y)∈Cj

g(x, y)

in (7.36) is an algebraic number.
(b): If f lies in ACl(P ), then f ↑Q

P lies in ACl(Q) by (7.33).
(c): For (z, t) in Ci, one has that

(fQ · g)(z, t) =
|Q|2

|Ci| · |P |2 f(Bi)g(z, t)

=
|Q|2

|Ci| · |P |2
∑

(x,y)∈Bi

f(x, y)gP (x, y) = (f · gP )Q(z, t) .

(d): This follows directly from (c).

A set {Pj | 1 ≤ j ≤ N} of nonempty subquasigroups of a quasigroup Q
is said to be protrusive if

⋃{P 2
j | 1 ≤ j ≤ N} contains a member of each

quasigroup conjugacy class Ci of Q (so that some P 2
j “protrudes” into each

Ci). For example, the set of cyclic subgroups of a group is protrusive, since
an element (1, x) of Ci is contained in 〈x〉2. If Q is associative, Artin’s Theo-
rem [142, 9.2] shows that each character of Q is a rational linear combination
of characters induced from characters of members of any protrusive set of
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subquasigroups of Q. These results do not apply verbatim to nonassociative
quasigroups. Taking Q to be the Steiner triple system PG(2, 2), the cover-
ing set {〈x〉 | x ∈ Q} = {{x} | x ∈ Q} of (1.17), the set of “cyclic” or
singly-generated subquasigroups, is not protrusive, since the equality relation⋃{{x}2 | x ∈ Q} does not intersect the conjugacy class C2. As for Artin’s
Theorem, the singleton containing one copy of PG(1, 2) is protrusive. How-
ever, denoting the basic characters of this subquasigroup by ϕ1 and ϕ2, the
trivial character of Q is ϕQ

1 − (2
√

2/7)ϕQ
2 , while the nontrivial character is

(3
√

3/7)ϕQ
2 , so the characters of Q are not obtained as rational linear combi-

nations of characters induced from characters of the protrusive subquasigroup.
The closest analogue of Artin’s Theorem holding for general quasigroups ap-
pears to be the following.

THEOREM 7.7

Let {Pj | 1 ≤ j ≤ N} be a protrusive set of nonempty subquasigroups of a
finite quasigroup Q. Then the direct sum maps

N⊕

j=1

↑Q
Pj

:
N⊕

j=1

ACl(Pj) → ACl(Q)

and
N⊕

j=1

↑Q
Pj

:
N⊕

j=1

CCl(Pj) → CCl(Q)

are surjective.

PROOF The algebraic case will be treated: the complex case follows sim-
ilarly. Since the inner product of algebraic-valued class functions is algebraic,
the Frobenius Reciprocity Theorem 7.6 shows that

N⊕

j=1

↓Q
Pj

: ACl(Q) →
N⊕

j=1

ACl(Pj)

is adjoint to
N⊕

j=1

↑Q
Pj

:
N⊕

j=1

ACl(Pj) → ACl(Q) .

Now
⊕N

j=1 ↓Q
Pj

injects, since a class function restricting to zero on each Pj is
zero on each Ci, and hence is zero altogether. It follows that the adjoint map
surjects, as required.
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7.5 Linear characters

A basic character ψi of Q is said to be linear if its degree ψi1 is 1. The
significance of linear characters is indicated by the following.

PROPOSITION 7.3
A finite, nonempty quasigroup Q is abelian if and only if all its basic char-

acters are linear.

PROOF If Q is nonempty and abelian, it is an abelian group. Then CG ∼=
CQ ∼= V (G,Q), and all the character degrees

√
TrEi equal 1. Conversely,

suppose that ψi1 = 1 for 1 ≤ i ≤ s. Then by the orthogonality relation (6.32),

|Q| =
s∑

i=1

ψi1ψi1 = s .

Since there are s = |Q| conjugacy classes, each has order |Q|. Thus for each
element x of Q, the stabilizer Gx is trivial. By Proposition 3.16, it follows
that Q is abelian.

A general quasigroup Q has a smallest congruence γ or γ(Q), its abelian
replica congruence, for which the quotient Qγ is abelian (see Appendix B.2).
If Q is nonempty, then the abelian group Qγ has a unique idempotent element,
the normal derived subquasigroup Q′ of Q. The replica Qγ may be written as
the quotient Q/Q′, From now on, assume that Q has positive finite order n.
Then the order m of Q′ divides n. Since Q/Q′ is an abelian group, its n/m
basic characters χ1, . . . , χn/m are all linear. By the Quotient Theorem 7.2, it
follows that for 1 ≤ i ≤ n/m, the lifts

ψi = (nat γ)IIχi : Q2 → C; (x, y) 7→ χi(xγ , yγ) (7.37)

of the basic characters χi of Q/Q′ are linear basic characters of Q. The
following result shows that the set Λ(Q) or

Λ = {ψ1, . . . , ψn/m} (7.38)

of basic characters (7.37) forms the complete set of linear basic characters of
Q.

THEOREM 7.8
For a finite, nonempty quasigroup Q, a basic character is linear if and only

if it is the lift of a basic character of the abelian replica Q/Q′.
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PROOF Let ψi be a linear basic character of Q. It must be shown that ψi

factors through (nat γ)II : Q×Q → Qγ ×Qγ . In other words, let Cj and Ck

be quasigroup conjugacy classes for which Cj(nat γ)II = Ck(nat γII. It must
then be shown that ψij = ψik.

Since ψi is linear, the multiplicity fi is 1, so (6.27) implies that EndCCQi

is commutative. Consider elements p, q, r of Q. Now since the projection
εi : CQ → CQi onto the G-submodule CQi of CQ is an element of the
centralizer ring V (G,Q), one has

(pεi)R(qr)εi = (p · qr)εi = qR(r)L(p)εi

= qεiR(r)L(p) = qεiL(p)R(r)
= qL(p)R(r)εi = (pq · r)εi = (pεi)R(q)εiR(r)εi .

Thus the map
Q → AutCCQi; q 7→ R(q)εi (7.39)

is a quasigroup homomorphism. Since AutCCQi is an abelian group, the
homomorphism (7.39) factors through the natural projection nat γ. Thus

qγ = rγ ⇒ R(q)εi = R(r)εi . (7.40)

Fix an element e of Q. Then fix elements q0 of Cj(e) and r0 of Ck(e). For
all q in Cj(e) and r in Ck(e), one has qγ = qγ

0 = rγ
0 = rγ , so that (e\q)γ =

(e\q0)γ = (e\r0)γ = (e\r)γ . By (6.15),

αj =
∑

q∈Cj(e)

R(e\e)−1R(e\q) .

Also, αjεi = ξjiεi = njψijεi. Thus

ψijεi = n−1
j αjεi

= n−1
j

∑

q∈Cj(e)

R(e\e)−1R(e\q)εi

= R(e\e)−1R(e\q0)εi

= R(e\e)−1R(e\r0)εi

= n−1
k

∑

r∈Ck(e)

R(e\e)−1R(e\r)εi

= n−1
k αkεi = ψikεi ,

so that ψij = ψik as required.

COROLLARY 7.3
The number of linear basic characters of Q divides the order of Q.
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It will now be shown that the set Λ of linear basic characters of Q carries
the structure of an abelian group which acts by Hadamard multiplication on
the full set Ψ of characters.

LEMMA 7.4
For ϕ, χ in CCl(Q) and ψ in Ψ,

〈ϕψ, χ〉 = 〈ϕ,ψχ〉 .

PROOF For (x, y) in Cj and ψ = ψi,

ψ(x, y) = ψij

= nf
−1/2
i ηij

= nf
−1/2
i ηij∗

= ψij∗ = ψ(y, x)

by Lemma 6.2(c). Then

|Q|2〈ϕψ, χ〉 = (ϕψ) ∗ χ(Q̂)

=
∑

x∈Q

∑

y∈Q

ϕ(x, y)ψ(x, y)χ(y, x)

=
∑

x∈Q

∑

y∈Q

ϕ(x, y)ψ(y, x)χ(y, x)

= ϕ ∗ (ψχ)(Q̂)

= |Q|2〈ϕ,ψχ〉 .

PROPOSITION 7.4
For a linear basic character λ of Q, Hadamard multiplication by λ gives an

isometry of CCl(Q).

PROOF For ϕ, χ in CCl(Q), use of Lemma 7.4 shows that

〈ϕλ, χλ〉 = 〈ϕ, λχλ〉 = 〈ϕ, χλλ〉 = 〈ϕ, χ〉 .

Let k be a natural number. Then a basic character ψ of Q is said to appear
with multiplicity k in a class function χ if 〈ψ, χ〉 = k, so that k is the coefficient
of ψ in the unique expression of χ as a linear combination from Ψ.
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THEOREM 7.9

Let Λ or Λ(Q) be the set (7.38) of linear basic characters of Q.

(a) Λ acts as an abelian group on the full set Ψ of basic characters under
Hadamard multiplication.

(b) In the product of two basic characters, each linear character appears with
multiplicity 0 or 1.

(c) Fix a linear basic character λ and a general basic character ψ. Then
there is a unique basic character χ such that λ appears in χψ with a
positive multiplicity. This multiplicity is 1.

PROOF (a): For 1 ≤ i, j, k ≤ s, the Krein parameter qk
ij [6, Th. 2.3.6(i)]

is given as

qk
ij = n−1fifj

s∑

l=1

n−2
l ξliξljξlk

= n−1(fifjf
−1
k )1/2

s∑

l=1

nψilψjlψkl

= (fifjf
−1
k )1/2n−2

∑

x∈Q

∑

y∈Q

ψi(x, y)ψj(x, y)ψk(y, x)

= (fifjf
−1
k )1/2〈ψiψj , ψk〉 .

By the Krein condition [6, Th. 2.3.8], qk
ij is real and nonnegative. Then

〈ψiψj , ψk〉 ≥ 0 . (7.41)

Now suppose that ψi is a linear basic character of Q. By Proposition 7.4, the
matrix of Hadamard multiplication by ψi with respect to the orthonormal ba-
sis Ψ is orthogonal. By (7.41), the coefficients of this matrix are nonnegative.
But an orthogonal matrix with nonnegative entries is a permutation matrix,
so Hadamard multiplication by ψi permutes the elements of Ψ.

(b): Let the two basic characters be ψj and ψk. Let ψi again be linear.
Then by Lemma 7.4, 〈ψi, ψjψk〉 = 〈ψiψj , ψk〉 = 〈ψiψj∗ , ψk〉. By (a) and the
orthonormality of Ψ, these products take the value 0, unless ψj∗ is permuted
under Hadamard multiplication by ψi to ψk, in which case the products take
the value 1.

(c): By Lemma 7.4, 〈λ, χψ〉 = 〈λχ, ψ〉 = 〈χ, λψ〉. This product takes a
nonzero value, namely 1, if and only if χ = λψ, i.e., if and only if χ = λψ.

As shown by the following results, linear characters often play a key role in
relating the structure and character tables of certain quasigroups.
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THEOREM 7.10
Let Q be a quasigroup of finite order n > 2. Then the following conditions

on Q are equivalent:

(a) Q has a unique nonlinear basic character, the square of which is the sum
of all the linear characters of Q;

(b) The character table Ψ(Q) of Q has the form

Q C1 C2 C3 . . . Cs

ψ1 1 1 1 . . . 1

...
...

... Ψ(Q/Q′)
...

ψn/2 1 1 . . .

ψs

√
n/2 −

√
n/2 0 . . . 0

(c) On Q, the abelian replica congruence γ(Q) and stability congruence σ(Q)
coincide, each having order 2n.

PROOF (a) ⇒ (b): Let ψs be the unique nonlinear character of Q, so
that ψ1, . . . , ψs−1 form the complete set Λ(Q) of linear characters of Q. By
assumption, ψ2

s = ψ1 + · · ·+ ψs−1. Then

n = ψ2
11 + · · ·+ ψ2

(s−1)1 + ψ2
s1

= (s− 1) + ψ11 + · · ·+ ψ(s−1)1 = 2(s− 1) ,

whence ψ2
s1 = s−1 = n/2. Since there are n/2 linear characters, Theorem 7.8

shows that |Q/Q′| = n/2. Let C3, . . . , Cs respectively contain representatives
for each of the s− 2 γ-classes distinct from Q′. By the orthogonality of later
columns to the first in the character table Ψ(Q/Q′) of Q/Q′, the sums

ψ2
si = ψ1i + · · ·+ ψ(s−1),i

are zero for 3 ≤ i ≤ s, whence ψsi = 0. This completes all but the second
column of the character table Ψ(Q) of Q. The second column may then be
completed using the orthogonality of the final row to the first row in this
table.

(b) ⇒ (c): If Ψ(Q) is as shown in (b), then by Theorem 7.8 |Q/Q′| = n/2,
whence |Q′| = 2 and |γ| = 2n. Use of Corollary 6.4(b) (p. 156) on Ψ(Q)
yields n1 = n2 = 1 and n3 = · · · = ns = 2. Proposition 6.2 (p. 157) now
shows that σ(Q) = C1 ∪ C2 = γ(Q).
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(c)⇒ (a): Suppose |γ(Q)| = |σ(Q)| = 2n. Since |Q′| = 2, there are precisely
n/2 linear basic characters by Theorem 7.8. By Proposition 6.2, without loss
of generality one has n1 = n2 = 1 and ni > 1 for i > 2. (Since n > 2, there
are conjugacy classes other than C1 and C2.) For i > 2, Corollary 6.4(b) gives

2 ≤ ni ≤ n

/ s∑

k=1

|ψki|2 ≤ n

/
n/2∑

k=1

|ψki|2 = 2 ,

whence equality holds throughout, and ψki = 0 for k > n/2. The orthogonal-
ity relation (6.33) yields

|ψs1|2 + |ψs2|2 = n

on setting i = j = s, and
ψs1 + ψs2 = 0

on setting i = s, j = 1. Thus ψs1 =
√

n/2, and ψs is the unique nonlinear
basic character, the square of which is the sum of all the linear basic characters.

The quaternion group and octonion loop (compare Exercise 19 in Chapter 1)
both satisfy the conditions of Theorem 7.10. Another example is furnished by
Parker’s Moufang loop used in Conway’s construction of the Fischer-Griess
monster group [32]. For an immediate example, see Section 9.8 below.

There is a more general (and correspondingly weaker) version of Theo-
rem 7.10.

THEOREM 7.11
Let Q be a quasigroup of positive finite order n, with derived subquasigroup

Q′ of order m. Suppose that Q has a unique nonlinear basic character.

(a) The character table Ψ(Q) of Q has the form

Q C1 C2 C3 . . . C1+n/m

ψ1 1 1 1 . . . 1

...
...

... Ψ(Q/Q′)
...

ψn/m 1 1 . . .

ψ1+n/m

√
n(m−1)

m −
√

n
m(m−1) 0 . . . 0

(b) Q is subdirectly irreducible.
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(c) Q has an integral coefficient ring if and only if one of the following
(mutually exclusive) conditions holds:

(i) Q satisfies the conditions of Theorem 7.10;
(ii) The Diophantine equation

p2m(m− 1) = n(m− 2)2 (7.42)

has a positive integral solution p.

PROOF By Theorem 7.9(c),

ψ2
s = ψ1 + · · ·+ ψn/m + αψs (7.43)

for a certain coefficient α, making Z[α] the coefficient ring of Q. Applying
(7.43) to C1 gives

α = (m− 2)(n/m)1/2(m− 1)−1/2 .

If Z[α] = Z, then either α = 0 and the conditions of Theorem 7.10 apply, or
else α is a positive integer, in which case (7.42) has a solution. Conversely,
if (7.42) has a solution, then α is integral and m > 2. On the other hand,
condition (a) of Theorem 7.10 makes α = 0 and Z[α] = Z. This completes the
proof of (c). The form (a) of the character table follows on filling in Ψ(Q/Q′)
as shown, making γ = C1 ∪C2, and completing ψs with the orthogonality for
columns of Ψ(Q). By Theorem 7.1, the congruence lattice of Q is the ordinal
sum of the singleton {Q̂} and a copy of the congruence lattice of Q/Q′. The
copy of the trivial congruence on Q/Q′ becomes γ. Thus Q, having γ as a
socle, is subdirectly irreducible.

7.6 Exercises

1. Give an example of two principally isotopic quasigroup structures (Q, ·)
and (Q, +) on a set Q such that the multiplication groups Mlt(Q, ·) and
Mlt(Q, +) are incomparable.

2. (a) Show that the (Z/5Z,−, 0)-fusion of (Z/5Z, +, 0) pique classes is
{{0}, {±1}, {±2}}.

(b) Use condition (7.28) to fix the (Z/5Z,−)-fusion of (Z/5Z, +) pique
characters.

(c) Show that the character table of (Z/5Z,−) is



1 1 1√
2
√

2 cos(2π/5) −√2 cos(π/5)√
2 −√2 cos(π/5)

√
2 cos(2π/5)


 (7.44)
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(d) Use Theorem 3.10 (p. 81) to show that loops of prime order are
either abelian or have rank 2.

(e) Conclude that (7.44) is a quasigroup character table which is not
a loop character table.

(f) Show that (7.44) is the character table of any nonabelian quasi-
group of order 5 that is not a rank 2 quasigroup.

3. Consider the loop (Q, ·, 0) with multiplication table:

0 3 4 1 2 5
0 0 3 4 1 2 5
3 3 0 1 4 5 2
4 4 1 2 5 0 3
1 1 4 5 2 3 0
2 2 5 0 3 1 4
5 5 2 3 0 4 1

[The table is obtained from the table for the integers (Q, +) = (Z/6Z,+)
modulo 6 under addition by interchanging the columns of the 2×2 square
whose rows and columns are indexed by 2 and 5.]

(a) Show that the center of (Q, ·, 0) is {0, 3}.
(b) Show that the loop conjugacy classes of (Q, ·, 0) are {0}, {3}, {1, 4},

and {2, 5}.
(c) Show that the quotient of (Q, ·, 0) by its center is the cyclic group

of order 3.

(d) Use the Quotient Theorem 7.2 to compute the first three basic
characters ψ1, ψ2, ψ3 of the loop (Q, ·, 0).

(e) Use the orthogonality relations to compute the fourth basic char-
acter ψ4 of (Q, ·, 0).

(f) Using 0 ≤ j ≤ 5 to label the row corresponding to the group char-
acter k 7→ exp(2πijk/6), show that the character table of (Q, +),
partitioned according to the (Q, ·)-fusion, is

0 3 4 1 2 5

0 1 1 1 1 1 1

2 1 1 ω ω ω2 ω2

4 1 1 ω2 ω2 ω ω

1 1 −1 ω2 −ω2 ω −ω

3 1 −1 1 −1 1 −1
5 1 −1 ω −ω ω2 −ω2

(g) Use (7.27) to compute the fourth basic character ψ4 of (Q, ·, 0).
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4. [92] Let P be a subgroup of a finite group Q. If g is a group class
function on P , the induced group class function gQ on Q is defined by
the formula

gQ(s) =
1
|P |

∑

u∈Q,u−1su∈P

g(u−1su) (7.45)

for s in Q (compare [142, 7.2]). Defining a quasigroup class function f
on P by f(x, y) = g(x\y), show that fQ(z, t) = gQ(z\t) for z, t in Q.

5. [92] Let N be a nonempty subquasigroup of a subquasigroup P of a finite
quasigroup Q. Let f be a class function on N . Prove the transitivity of
induction, namely f ↑P

N↑Q
P = f ↑Q

N .

6. [150] Let Q be a finite quasigroup with congruence class partition Γ.

(a) Set Ω = Q×Q, and let

µ : 2Ω → [0, 1];A 7→ |A|
|Q×Q|

be the normalized counting measure on Ω. Let F be the small-
est Boolean subalgebra or σ-field of 2Ω containing Γ. Show that
the complex F -measurable random variables on the measure space
(Ω, 2Ω, µ) are precisely the quasigroup class functions on Q.

(b) For a function f : P × P → C on the square of a nonempty sub-
quasigroup P of Q, define a random variable Xf : Ω → C by

Xf (x, y) =

{
f(x, y) · |Q2|/|P 2|, (x, y) ∈ P × P ;
0, (x, y) /∈ P × P .

If f is a quasigroup class function on P , show that the induced
class function f ↑Q

P is the conditional expectation E(Xf |F ).
(c) Derive Proposition 7.2(d) from the relation E(XY |F ) = XE(Y |F )

for an F -measurable random variable X [14, Th.34.2].
(d) Derive the transitivity of induction (Exercise 5) from the relation

E(E(X|F2)|F1) = E(X|F1) for nested σ-subfields F1 ⊆ F2 [14, Th.
34.4].

7. Let Q be an abelian group. Let T be the quotient of the abelian group
(R,+, 0) of reals by the subgroup Z of integers. Recall that a character
κ of Q is a group homomorphism κ : Q → T . Let Q∗ be the set of
characters of Q.

(a) Define the sum κ + κ′ of two characters κ and κ′ by

q(κ + κ′) = qκ + qκ′ (7.46)

for q in Q. Show that the sum of two characters is a character.
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(b) Show that the set Q∗ of characters forms an abelian group under
the operation (7.46).

(c) Show that the identity element of the group Q∗ is formed by the
trivial character with constant value Z.

(d) If Q is finite, consider the abelian group Q∗ as given by (b) above,
and the abelian group Λ(Q) of linear basic characters of Q given
by Theorem 7.9(a). Show that Q∗ and Λ(Q) are isomorphic.

8. For a finite nonempty quasigroup Q, show that the abelian group Λ(Q)
of linear basic characters of Q is isomorphic to the abelian group replica
Q/Q′ of Q.

9. Let Q be a central pique with inner multiplication group I. Let J be
the augmentation ideal of the integral group algebra ZI of I, namely
the ideal of ZI generated by the set {h − 1 | h ∈ I}. Show that the
derived subquasigroup Q′ of Q is the submodule QJ of the ZI-module
Q. [Compare the proof of Theorem 3.9 (p. 79).]

10. [163] Let Q be a finite central pique with pointed idempotent e and
inner multiplication group I. Let Q∗ be the group of characters of the
abelian cloop (Q, +, e) of Q (compare Exercise 7 above).

(a) Show that the specification

q(ακ) = (qα)κ

(for q ∈ Q, α ∈ I, κ ∈ Q∗) yields a left action of I on Q∗.

(b) Show that Q∗ forms a central pique under the operation

κ · λ = Rκ + Lλ

with the trivial character ε as the pointed idempotent.

(c) Show that I is the inner multiplication group of the pique Q∗.

(d) Show that Q and Q∗ have the same number s of pique conjugacy
classes.

(e) Let D1, . . . , Ds be the pique conjugacy classes of Q, and let ∆1, . . . ,
∆s be the pique conjugacy classes of Q∗. Show that the character
table Ψ(Q) of Q is given by

ψij =
1

nj

√
fi

∑

q∈Dj

∑

κ∈∆i

qκ

for 1 ≤ i, j ≤ s.

11. Show that Lemma 7.4 does not extend to the more general case of ψ in
CCl(Q).
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12. Exhibit the full character tables of the quaternion group and octonion
loop.

13. Show that the hypotheses of Theorem 7.10 are satisfied by the dihedral
group D4.

14. Show that a group satisfies the hypotheses of Theorem 7.10 if and only
if it is an extraspecial 2-group (compare [4, §23] or [83, III §13]).

15. Show that each code loop (compare Exercise 20 in Chapter 2) satisfies
the hypotheses of Theorem 7.10.

16. (a) Show that the hypotheses of Theorem 7.11 are satisfied by the
symmetric group S3.

(b) Show that the hypotheses of Theorem 7.10 are not satisfied by the
symmetric group S3.

(c) Recalling that groups always have an integral coefficient ring, de-
termine which of the two alternatives of Theorem 7.11(c) holds for
the symmetric group S3.

17. Define the characteristic entropy of a finite, nonempty quasigroup Q to
be the quantity

s∑

j=1

fj

n
log

n

fj
.

(a) Use Proposition 7.3 to show that the analogue of Theorem 6.9
(p.160) holds for the characteristic entropy.

(b) Conclude that for finite, nonempty abelian and rank 2 quasigroups,
the conjugate entropy and characteristic entropy agree.

18. Let Q be a finite, nonempty quasigroup with character table Ψ. Show
that the characteristic entropy of Q is given by

log
( s∑

i=1

∣∣ψi1

∣∣2
)
−

s∑

i=1

∣∣ψi1

∣∣2 log
∣∣ψi1

∣∣2 .

19. Let Q be a finite, nonempty central quasigroup. Show that the conjugate
entropy and characteristic entropy of Q agree.

20. Use Theorem 7.10 to construct a series of finite quasigroups Q for which
the ratio of the conjugate entropy to the characteristic entropy may be
made arbitrarily close to 2.

21. Can you use Theorem 7.11 to construct a series of finite quasigroups Q
for which the ratio of the conjugate entropy to the characteristic entropy
may be made arbitrarily large?

 



198 An Introduction to Quasigroups and Their Representations

7.7 Problems

1. Determine those varieties J of quasigroups with the property that each
finite nonempty member Q of J has an integral coefficient ring Z[Q].

2. To what extent could the characteristic entropy of a finite, nonempty
quasigroup exceed its conjugate entropy? (Compare Exercise 21.)

3. (Compare Problem 2 in Chapter 6.) Let n be the order of a finite simple
group. Is there a simple group S of order n such that the characteristic
entropy of S is no greater than the characteristic entropy of Q for all
groups Q of order n?

7.8 Notes

Section 7.1

Theorem 7.1 first appeared in [91, Th. 3.6], [148, 545]. Its proof relies on
the idea of [25, Prop. 3.1].

Section 7.2

The material of this section, including the Quotient Theorem 7.2 first ap-
peared in [93].

Section 7.3

The material of this section, including the Fusion Theorem 7.3 and the
Magic Rectangle Condition, first appeared in [93].

Section 7.4

The material of this section first appeared in [92] and [148].

Section 7.5

The material of this section first appeared in [95].

 



Chapter 8

SCHEMES AND SUPERSCHEMES

The previous chapter covered those more advanced parts of combinatorial
character theory that extend the character theory of groups. The background
for the current chapter is the theory of association schemes, examining some
topics in quasigroup character theory that do not have close counterparts in
group character theory. Section 8.2 considers more “no-go theorems” in the
spirit of Section 3.9, this time asking for examples of association schemes
and scheme character tables that cannot arise from a finite quasigroup. The
theorems rely on the concept of sharp transitivity discussed in Section 8.1.
Sharp transitivity gives an intrinsic, local characterization of (unnormalized)
loop transversals.

The remainder of the chapter is motivated by the facts that the character
table Ψ of a general finite quasigroup Q does not determine the character table
of Q×Q, and in particular that the tensor square Ψ⊗Ψ is not the character
table of Q×Q. Section 8.3 introduces superschemes, which extend association
schemes from binary relations on Q to relations of arbitrary finite length.
Section 8.4 introduces the corresponding Bose-Mesner superalgebras, which
are graded analogues of the Bose-Mesner algebra of an association scheme.
Section 8.5 then interprets the tensor square Ψ⊗Ψ of a quasigroup character
table Ψ within the context of superalgebras. The final two sections show how
the superscheme of a finite quasigroup Q, and more especially its superalgebra,
encode enough information to enable one to reconstruct the multiplication
group G of Q along with its permutation action on Q.

8.1 Sharp transitivity

DEFINITION 8.1 Let S be a set of permutations on a set Q. Then S
is said to be sharply transitive if Q and S are empty, or otherwise if there is
a function

σ : Q×Q → S; (q, r) 7→ σ(q, r)

such that, for each element (q, r) of Q × Q, the permutation σ(q, r) is the
unique element of S with qσ(q, r) = r.

199 
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PROPOSITION 8.1
Let G be the multiplication group of a quasigroup Q. Then the set

R(Q) = {R(x) | x ∈ Q}
of right multiplications is a sharply transitive subset of G.

PROOF The sharp transitivity of the subset R(Q), with

σ : Q×Q → S; (q, r) 7→ R(q\r) ,

follows directly from the combinatorial definition of a quasigroup.

COROLLARY 8.1
Let e be an element of a quasigroup Q with multiplication group G. Then the
loop transversal

{ρ(e, q) | q ∈ Q}
of (2.29) is a sharply transitive subset of G.

PROOF The subset (2.29) of G is the set of right multiplications in the
loop structure (2.30) on Q.

REMARK 8.1 The converse of Proposition 8.1 is false: The existence of
a sharply transitive subset of a permutation group does not imply that the
action is the multiplication group action of a quasigroup. For a simple ex-
ample, consider the right regular permutation representation of a nonabelian
group. (Compare Exercise 2.) Some more subtle examples are considered in
Section 8.2 below.

Sharply transitive sets have a graph-theoretical characterization. If G is a
group of permutations on a finite set Q, two permutations g and h are said
to be compatible precisely when qg 6= qh for all q in Q. In other words, the
quotient g/h has no fixed points. Thus two permutations are compatible if
they could potentially appear together in a sharply transitive set. One then
defines the compatibility graph of G on Q as the undirected graph on the
vertex set G in which an edge joins two permutations if and only if they
are compatible. Sharply transitive subsets of G correspond to the |Q|-cliques
in the compatibility graph, sets of vertices of size |Q| inducing a complete
subgraph.

Figure 8.1 displays the compatibility graph of the symmetric group S3 in
its natural action on the set {1, 2, 3}. As illustrations of Proposition 8.1,
the clique on the right represents the right multiplications in the 3-element
idempotent quasigroup, while the clique on the left represents all the right
multiplications in the 3-element abelian group under subtraction.
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FIGURE 8.1: The compatibility graph of S3.

PROPOSITION 8.2

Let G be a group of permutations of a finite set Q. Then the multiplication
group Mlt G of the group G is a group of automorphisms of the compatibility
graph of G on Q.

PROOF Let g1, g2 be a pair of elements of G. For an element g of G, one
has

∀ q ∈ Q , qgg1 6= qgg2

⇔ ∀ q ∈ Q , qg1 6= qg2

⇔ ∀ q ∈ Q , qg1g 6= qg2g .

Thus the following three statements are equivalent:

(a) {g1, g2}L(g) is an edge of the compatibility graph;

(b) {g1, g2} is an edge of the compatibility graph;

(c) {g1, g2}R(g) is an edge of the compatibility graph.

The claim of the proposition follows.

As an illustration of Proposition 8.2, note that the conjugations in the
group S3 permute the elements within the 3-cliques of the compatibility graph
displayed in Figure 8.1, while multiplication (on the left or the right) by a
transposition interchanges the cliques.

COROLLARY 8.2

Let γ be an element of Mlt G, and let S be a subset of G. Then S is sharply
transitive if and only if Sγ is sharply transitive.
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8.2 More no-go theorems

The no-go theorems of Section 3.9 exhibited abstract groups that could not
be multiplication groups of quasigroups, or permutation actions that could not
be multiplication group actions on a quasigroup. The goal of this section is to
exhibit association schemes which cannot be the association scheme of a quasi-
group, and association scheme character tables, like table (8.2) below, which
cannot be quasigroup character tables. The main tool to be used is sharp
transitivity. Its crudest application produces schemes or tables which can-
not come from a multiplicity-free permutation group containing any sharply
transitive subset.

PROPOSITION 8.3
For integral r > 2, let X [2] denote the set of 2-element subsets of an r-element
set X. Let Sr be the symmetric group on X. Let S

[2]
r denote the image of Sr

under the monomorphic permutation representation

Sr → X [2]!; g 7→ (
g[2] : {x, y} 7→ {xg, yg})

of Sr on X [2]. Then if r is even, the permutation group S
[2]
r contains no

sharply transitive subset.

PROOF Let T be a set of permutations of X such that T [2] = {t[2] | t ∈ T}
is a compatible subset of the permutation group S

[2]
r . For even r, it will be

shown that |T | < |X [2]|, so that T [2] cannot be a sharply transitive subset of
the permutation group S

[2]
r .

For elements x, y of X, set

T y
x = {t ∈ T | xt = y} .

Let a, c, d be distinct elements of X. Consider the functions

δ : T c
a → X r {a}; t 7→ dt−1

and
γ : T d

a → X r {a}; t 7→ ct−1 .

Note that the union T c
a ∪ T d

a is disjoint. Let

β : T c
a ∪ T d

a → X r {a}

be the disjoint union of the functions δ and γ. Then

{a, tβ}t[2] = {c, d}
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for all t in T c
a∪T d

a . Now the function β is injective. Indeed, suppose t1β = t2β.
Then

{a, t1β}t[2]1 = {c, d} = {a, t2β}t[2]2 = {a, t1β}t[2]2 ,

whence t
[2]
1 = t

[2]
2 or t1 = t2 follows by the compatibility of T [2]. Thus

|T c
a |+ |T d

a | ≤ r − 1 . (8.1)

Set m = max
{|T x

a |
∣∣ x ∈ X

}
.

Case (a): m ≥ r/2.
In this case (8.1) shows that there is a unique element y of X such that
|T y

a | = m. For y 6= x ∈ X, one has |T x
a | ≤ r − 1−m. Thus

|T | =
∑

z∈X

T z
a ≤ m + (r − 1)(r − 1−m) = (r − 1)2 − (r − 2)m.

Now m ≥ r/2, so

|T | ≤ (r − 1)2 − (r − 2)
r

2
< |X [2]| ,

completing the proof for this case.

Case (b): m < r/2.
Here m ≤ (r − 2)/2, so

|T | ≤ (r − 1)m ≤ (r − 1)(r − 2)
2

< |X [2]| ,

completing the proof in this case as well.

The permutation representation of S
[2]
r on X [2] is multiplicity-free, so the

orbits of the diagonal action of S
[2]
r on X [2]×X [2] give an association scheme,

the Johnson scheme J(r, 2) [6, III.2] [37, §4.2] or “triangular” association
scheme [17], [145]. The character tables of these schemes may be computed
from the Eberlein polynomials [6, Th. III.2.10], [37, Th. 4.6]. For example,




1 1 1
√

7 1
3

√
7 − 1

3

√
7

2
√

5 − 1
3

√
5 2

15

√
5


 (8.2)

is the character table for the scheme J(8, 2).

THEOREM 8.1
Let r be an even integer greater than 4. Then the character table of the

Johnson scheme J(r, 2) is not a quasigroup character table.
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PROOF Suppose that Q is a quasigroup whose character table is the
character table of the scheme J(r, 2), for even r greater than 4. Let G be
the multiplication group of Q, and let (Q, Γ) be the association scheme given
by the orbits of G on Q × Q. For the values of r under consideration, the
Johnson scheme J(r, 2) is uniquely determined by its character table unless
r = 8 [31] [145] [171]. If r = 8, there are three exceptional association schemes
with the same character table. They are described in [174, pp. 184–185].
Their relations are distance relations in strongly regular graphs. However, the
automorphism groups of these graphs are not transitive on the 28 vertices:
one has an orbit of length 8, while the other two have orbits of length 4. Since
the transitive group G is a subgroup of the group of automorphisms of the
relational structure (Q, Γ), it follows that (Q, Γ) cannot coincide with any of
these exceptional schemes. Thus (Q, Γ) coincides with the Johnson scheme
J(r, 2) in each case.

Now by the hypothesis on r, the permutation representation S
[2]
r is 2-closed

[100, p. 134], so the permutation representation of G on Q is similar to the
permutation representation of a subgroup H of S

[2]
r . By Proposition 8.1,

G contains a sharply transitive subset. By the similarity, the subgroup H

of S
[2]
2 would also contain a sharply transitive subset. But this contradicts

Proposition 8.3.

A more refined use of sharp transitivity in proving no-go theorems considers
multiplicity-free permutation group actions which may well contain sharply
transitive subsets, but where none of them can be a loop transversal of the
form given by Corollary 8.1. Let F be a field of odd prime power order r. Let
F∗ denote the cyclic group of nonzero elements of F. Let Lr denote the group

{F → F; x 7→ mx + c | m ∈ F∗, c ∈ F}

of linear permutation polynomial actions on F. Let L
[2]
r denote the corre-

sponding subgroup of the permutation group S
[2]
r of Proposition 8.3, taking

X = F. The following theorem classifies the sharply transitive subsets of L
[2]
r .

THEOREM 8.2

(a) Let T be a transversal to {±1} in F∗. Then

S = S(T ) = {x 7→ tx + c | t ∈ T, c ∈ F} (8.3)

is a sharply transitive subset of the permutation group L
[2]
r on the set F[2] of

2-element subsets of F.
(b) Conversely, each sharply transitive subset S of L

[2]
r is of the form S = S(T )

for some transversal T to {±1} in F∗. In particular, there are 2(r−1)/2 distinct
sharply transitive subsets of L

[2]
r .
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PROOF Define the moment map

F[2] → F× F∗2; {a, b} 7→
(1

2
(a + b),

1
4
(a− b)2

)
.

The moment map bijects, having

F× F∗2 → F[2]; (µ, σ2) 7→ {µ− σ, µ + σ}

as its two-sided inverse. Intuitively one may regard {a, b} as a probability
distribution on F, assigning weight 1

2 to each of a and b. The element µ
is then considered as the mean of the distribution, while σ2 is its variance.
Rather than studying the action of L

[2]
r on F[2], it is computationally more

convenient to study the action of L
[2]
r on F × F∗2. These actions are similar

via the moment map and its inverse. In particular, a familiar calculation from
elementary probability theory shows that an element

x 7→ mx + c

of L
[2]
r acts on F× F∗2 as

(µ, σ2) 7→ (mµ + c,m2σ2) . (8.4)

Now suppose that T and S(T ) are given as in (8.3). For an ordered pair(
(µ, σ2), (ν, τ2)

)
of elements of F× F∗2, there is a unique element x 7→ tx + c

of S(T ) taking (µ, σ2) to (ν, τ2). By the second component of (8.4), one must
have t2σ2 = τ2, whence t is determined as the unique element of T which
squares to τ2/σ2. The first component of (8.4) then yields the equation
tµ+c = ν, having the unique solution c = ν− tµ. This shows that the subsets
S(T ) are sharply transitive, as claimed.

Conversely, suppose given a sharply transitive subset S of L
[2]
r . Now (8.4)

specializes to
(0, 1) 7→ (c,m2) .

As x 7→ mx + c ranges through the r(r − 1)/2 elements of S, the pair (c,m2)
must range over the r(r − 1)/2 elements of F× F∗2, It thus remains to check
that f : x 7→ mx + c and g : x 7→ −mx + d cannot both lie in S. Write
f : x 7→ m(x−a) and g : x 7→ m(b−x). Then f and g both map

(
1
2 (a+ b), 1

)

in F× F∗2 to
(

1
2m(b− a),m2

)
, a contradiction to the sharp transitivity.

PROPOSITION 8.4

Let r > 3 be an odd prime power. Let (Q, ·) be a quasigroup structure on the
set F[2] with the character table of the Johnson scheme J(r, 2). Then for no
element e of Q can the sharply transitive set {ρ(e, y) | y ∈ Q} be of the form
S(T ) as in (8.3).
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PROOF For the values of r being considered, the Johnson scheme J(r, 2)
is uniquely determined by its character table [31], [145], [171]. Thus the
nondiagonal orbits of the multiplication group G of (Q, ·) on Q2 are

C2 = {(A,B) | 1 = |A ∩B|}

and
C3 = {(A,B) | ∅ = A ∩B} .

Suppose that for some e in Q, the set S = {ρ(e, y) | y ∈ Q} is of the form S(T ).
Corollary 8.2 shows that without loss of generality one may take e = {±1}.
In F∗ one has T ∩ {±1} = 1, since ρ(e, e) = 1.

Let (Q, +e, e) be the loop with x +e y = xρ(e, y) for x, y in Q. Recall the
isomorphism

(Q, +e, e) → (S, ∗, 1); y 7→ ρ(e, y) (8.5)

from (Q, +e, e) to the loop defined by the loop transversal S. By Section 7.3,
the scheme of the quasigroup (Q, ·) is obtained by fusion from the scheme of
the loop (Q, +e, e). Thus the (Q, ·)-classes C2 and C3 are obtained as unions
of (Q, +e)-classes.

For a nonzero element a of F, define a in T by a ∈ {±1}a. Consider an
element ax + b of Lr. Its representative in S = S(T ) is

ax + b = ax + b .

For elements vx + c, wx + d of S, it follows that

(vx + c) ∗ (wx + d) = (vw)x + (wc + d)

in the loop (S, ∗, 1). Then

(vx + c)R∗(wx + d)L∗(wx + d)−1 = vx +
(
wc + (1− v)d

)
. (8.6)

Now R∗(wx+d)L∗(wx+d)−1 is an element of the inner multiplication group of
the loop (S, ∗, 1). For elements s, t of S, the pairs (1, t) and (1, tR∗(s)L∗(s)−1)
share the same (S, ∗)-class. Take t = vx + (u − 1) for some element u of T
distinct from 1. Take s = ux + u. Using (8.6), one obtains the pairs

(1, ux + (u− 1)) and (1, ux)

lying in the same (S, ∗)-class. Mapping via the inverse of the isomorphism
(8.5), one obtains the pairs

({±1}, {−1, 2u− 1}) and ({±1}, {±u})

lying in the same (Q, +e)-class. However, the first pair lies in the (Q, ·)-class
C2, while the second pair lies in the (Q, ·)-class C3, This is a contradiction,
since C2 is a union of (Q, +e)-classes.
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COROLLARY 8.3
The character table of the Johnson scheme J(5, 2) is not a quasigroup char-
acter table.

PROOF A computer search shows that the only sharply transitive subsets
of S

[2]
5 that contain 1 are those lying entirely within L

[2]
5 , and thus of the form

S(T ). Proposition 8.4 then shows that there can be no quasigroup with the
character table of J(5, 2).

8.3 Superschemes

Definition 6.2 (p. 147) for a (commutative) association scheme may be
restated with a slight change of notation as follows.

DEFINITION 8.2 Let Q be a finite, nonempty set. Then an association
scheme (Q, Γ0) on Q is a disjoint union partition

Q0+2 = C0
1 + · · ·+ C0

s0

or Γ0 = {C0
1 , . . . , C0

s0
} of the direct square of Q such that:

(A1) C0
1 = {(x, x) | x ∈ Q} ;

(A2) ∀C0
j ∈ Γ0 ,

{(x1, x2) | ∃ (y1, y2) ∈ C0
j . x1 = y2, x2 = y1} ∈ Γ0 ;

(A3) ∀C0
i ∈ Γ0 , ∀C0

j ∈ Γ0 , ∀C0
k ∈ Γ0 ,

∃ c(i, j, k; 0, 0) ∈ N .

∀ (x0, y0) ∈ C0
k ,∣∣{z ∈ Q | (x0, z) ∈ C0

i , (z, y0) ∈ C0
j }

∣∣ = c(i, j, k; 0, 0) ;

(A4) ∀ 1 ≤ i, j, k ≤ s0 , c(i, j, k; 0, 0) = c(j, i, k; 0, 0).

The Bose-Mesner algebra of the association scheme (Q, Γ0) is the complex
vector space CΓ0 with basis Γ0, equipped with the associative and commuta-
tive multiplication induced from

C0
i · C0

j =
s0∑

k=1

c(i, j, k; 0, 0)C0
k (8.7)
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by linearity. The algebra has a semilinear involution ∗ extending the conver-
sion (C0

i )∗ = (C0
i )−1.

According to Definition 8.2, an association scheme structure (Q, Γ0) on a set
Q is a collection Γ0 of binary relations on Q satisfying the axioms (A1)–(A4).
The concept of a superscheme describes a comparable collection of relations
on Q, but with an arbitrary (finite) number of arguments. Now relations on
Q are subsets of powers of Q. For a function f : I → J between index sets,
there is a contravariantly induced function

f∗ : QJ → QI ; (j : J → Q) 7→ (fj : I → Q)

between the corresponding powers of Q. For the transposition

τ : {1, 2} → {1, 2}; 1 7→ 2, 2 7→ 1 ,

the conversion axiom (A2) of Definition 8.2 may be rewritten in the form
τ∗(C0

j ) ∈ Γ0. Thus the following definition gives a natural extension of the
definition of an association scheme.

DEFINITION 8.3 Let Q be a finite, nonempty set. Then a superscheme
(Q, Γ∗) on Q is a disjoint union partition

Q2+n = Cn
1 + · · ·+ Cn

sn

or Γn = {Cn
1 , . . . , Cn

sn
} of the (2 + n)-th power of Q, for each natural number

n, such that:

(S1) ∀n ∈ N , Cn
1 = {(x, . . . , x) | x ∈ Q} ;

(S2) ∀m, n ∈ N , ∀ f : {1, . . . , 2 + m} → {1, . . . , 2 + n} , ∀Cn
j ∈ Γn ,

f∗(Cn
j ) ∈ Γm ;

(S3) ∀m, n ∈ N , ∀Cm
i ∈ Γm , ∀Cn

j ∈ Γn , ∀Cm+n
k ∈ Γm+n ,

∃ c(i, j, k; m,n) ∈ N .

∀ (x0, . . . , xm, y0, . . . , yn) ∈ Cm+n
k ,∣∣{z ∈ Q | (x0, . . . , xm, z) ∈ Cm
i , (z, y0, . . . , yn) ∈ Cn

j }
∣∣ = c(i, j, k; m,n) ;

(S4) ∀ 1 ≤ i, j, k ≤ s0 , c(i, j, k; 0, 0) = c(j, i, k; 0, 0).

Note that the set f∗(Cn
j ) appearing in the axiom (S2) may be written in

the form

{(x1, . . . , x2+m) ∈ Q2+m | ∃ (y1, . . . , y2+n) ∈ Cn
j . ∀ 1 ≤ i ≤ 2 + m, xi = yif} .
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The following observation is a direct consequence of Definitions 8.2 and 8.3.

LEMMA 8.1
Let (Q, Γ∗) be a superscheme on a finite, nonempty set Q. Then the binary

reduct (Q, Γ0) of (Q, Γ∗) is an association scheme on Q.

Examples of superschemes are furnished by multiplicity-free group actions.

PROPOSITION 8.5
Let G be a group of permutations having a multiplicity-free action on a finite,
nonempty set Q. For each natural number n, let Γn be the set of orbits of G
on Q2+n. Then (Q, Γ∗) is a superscheme.

PROOF Since (Q, Γ0) is an association scheme, the existence of the num-
bers c(i, j, k; 0, 0) is immediate, as is the satisfaction of the axiom (S4). For
natural numbers m,n and a function

f : {1, . . . , 2 + m} → {1, . . . , 2 + n} ,

the set f∗(Cn
j ) is an orbit of G on Q2+m if Cn

j is an orbit of G on Q2+n. Thus
(S2) is satisfied. For each natural number n, the subset {(x, . . . , x) | x ∈ Q}
of Q2+n is an orbit, so (S1) is satisfied.

Finally, consider orbits Cm
i ∈ Γm, Cn

j ∈ Γn and Cm+n
k ∈ Γm+n for natural

numbers m and n. Consider two elements

(x0, . . . , xm, y0, . . . , yn) and (x′0, . . . , x
′
m, y′0, . . . , y

′
n)

of Cm+n
k . Define

A = {z ∈ Q | (x0, . . . , xm, z) ∈ Cm
i , (z, y0, . . . , yn) ∈ Cn

j }

and
A′ = {z′ ∈ Q | (x′0, . . . , x′m, z′) ∈ Cm

i , (z′, y′0, . . . , y
′
n) ∈ Cn

j } .

Since Cm+n
k is an orbit of G, there is an element g of G such that

(x0, . . . , xm, y0, . . . , yn)g = (x′0, . . . , x
′
m, y′0, . . . , y

′
n) .

Since Cm
i and Cn

j are orbits of G, the containment z ∈ A implies zg ∈
A′. Thus |A| ≤ |A′|, whence |A′| ≤ |A| by symmetry. The natural number
c(i, j, k;m,n) is obtained as the common value of the cardinalities |A|, |A′|,
and the axiom (S3) is satisfied.

An immediate consequence of Proposition 8.5 is the following analogue of
Theorem 6.3.

 



210 An Introduction to Quasigroups and Their Representations

COROLLARY 8.4
Each finite, nonempty quasigroup Q determines a superscheme (Q, Γ∗) given
according to Proposition 8.5 by the action of the combinatorial multiplication
group.

There are some ancillary concepts connected with each superscheme.

DEFINITION 8.4 Let (Q, Γ∗) be a superscheme on a finite, nonempty
set Q.

(a) The association scheme (Q, Γ0) of Lemma 8.1 is called the associated
scheme of the superscheme (Q, Γ∗) ;

(b) The sequence s : N → Z+;n 7→ sn is called the dimension sequence of
the superscheme (Q, Γ∗) ;

(c) The complex function p(z) obtained by analytic continuation of

∞∑
n=0

snzn

is called the Poincaré series of the superscheme (Q, Γ∗).

The set of superschemes on a given finite, nonempty set Q is partially
ordered, with (Q, Γ∗) ≤ (Q, ∆∗) if and only if each ∆n-class is a union of
Γn-classes, for each natural number n. Formally,

(Q, Γ∗) ≤ (Q, ∆∗) ⇔
∀n ∈ N , ∀Dn

j ∈ ∆n , ∃Cn
j1 , . . . , C

n
jr
∈ Γn . Dn

j = Cn
j1 ∪ · · · ∪ Cn

jr
.

8.4 Superalgebras

Let (Q, Γ∗) be a superscheme on a given finite, nonempty set Q. For each
natural number n, form the complex vector space CΓn with basis Γn. Then
the Bose-Mesner superalgebra of the superscheme (Q, Γ) is the direct sum

CΓ∗ =
∞⊕

n=0

CΓn

of the spaces CΓn. A product is defined on CΓ as the bilinear extension of

Cm
i · Cn

j =
sm+n∑

k=1

c(i, j, k; m,n)Cm+n
k . (8.8)
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Comparison with (8.7) shows that the Bose-Mesner superalgebra of a super-
scheme is analogous to the Bose-Mesner algebra of an association scheme. The
Bose-Mesner superalgebra is graded over the monoid N of natural numbers
by assigning degree n to CΓn, since (8.8) yields

CΓm · CΓn ⊆ CΓm+n (8.9)

for natural numbers m and n. For each natural number n, the subspace CΓn

of CΓ∗ is called the homogeneous component of degree n. In particular, the
homogeneous component of degree 0 is the Bose-Mesner algebra of the asso-
ciated scheme. There is a linear trace function defined on the homogeneous
component of degree n by

Tr
( sn∑

j=1

cjC
n
j

)
= |Q|n+1c1 (8.10)

for each natural number n. For n = 0, the trace function (8.10) agrees with
the the usual trace function on the Bose-Mesner algebra of the associated
scheme.

PROPOSITION 8.6
The Bose-Mesner superalgebra of a superscheme (Q, Γ∗) is associative.

PROOF It suffices to prove that

(Cm
i Cn

j )Cp
k = Cm

i (Cn
j Cp

k) (8.11)

for natural numbers m,n, p and 1 ≤ i ≤ sm, 1 ≤ j ≤ sn, 1 ≤ k ≤ sp. The
coefficient of an element Cm+n+p

l of Γm+n+p in the left-hand side of (8.11) is

sm+n∑
q=1

c(i, j, q; m,n)c(q, k, l; m + n, p) . (8.12)

The coefficient of Cm+n+p
l in the right hand side of (8.11) is

sn+p∑
r=1

c(i, r, l;m,n + p)c(j, k, r; n, p) . (8.13)

Fix an element
(x0, . . . , xm, y1, . . . , yn, z0, . . . , zp)

of Cm+n+p
l . Then by (S3), both (8.12) and (8.13) count the number of ele-

ments (t, u) of Q2 such that (x0, . . . , xm, t) lies in Cm
i , (t, y1, . . . , yn, u) lies in

Cn
j , and (u, z0, . . . , zp) lies in Cp

k .
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COROLLARY 8.5

Each homogeneous component of the Bose-Mesner superalgebra of a super-
scheme is a two-sided module over the commutative Bose-Mesner algebra of
the associated scheme.

PROOF The left and right actions of CΓ0 on the homogeneous component
CΓn of degree n are given by

Ln : CΓ0 → EndCCΓn; x 7→ (y 7→ xy) (8.14)

and

Rn : CΓ0 → EndCCΓn;x 7→ (y 7→ yx) (8.15)

respectively. Note that (8.14) and (8.15) are well-defined by (8.9).

COROLLARY 8.6

The Bose-Mesner superalgebra of a superscheme is a two-sided module over
the commutative Bose-Mesner algebra of the associated scheme.

PROOF The left and right actions of CΓ0 on CΓ∗ are given by the re-
spective sums

L =
∞⊕

n=0

Ln and R =
∞⊕

n=0

Rn

of the maps (8.14) and (8.15).

By Definition 8.3(S2), for each pair m, n of natural numbers, each function

f : {1, . . . , 2 + m} → {1, . . . , 2 + n}

determines a function f∗ : Γn → Γm. This latter function has a linear exten-
sion

f∗ : CΓn → CΓm

mapping from degree n to degree m. Finally, for each natural number n,
consider the converse

(Cn
j )∗ = {(xm+1, . . . , x0) | (x0, . . . , xm+1) ∈ Cn

j }

of a relation Cn
j in Γn. This conversion extends to a semilinear, anti-isomorphic

involution ∗ on the Bose-Mesner superalgebra (Exercise 7).
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8.5 Tensor squares

In this section, it will be shown how the tensor square Ψ ⊗ Ψ of the char-
acter table Ψ of a finite quasigroup Q may be interpreted in the context of
superalgebras. The first part of the section considers a general superscheme
(Q, Γ∗).

The Bose-Mesner algebra CΓ0 of the associated scheme is commutative.
The tensor square CΓ0 ⊗ CΓ0 of the complex vector space CΓ0 with itself
is (the underlying space of) the coproduct of CΓ0 with itself in the category
of commutative C-algebras (compare [165, Ch. IV, Exercise 2.2H]). Now
the images of the C-algebra homomorphisms (8.14) and (8.15) are respective
commutative subalgebras Ln(CΓ0) and Rn(CΓ0) of EndCCΓn. Since CΓ∗

is associative, these commutative subalgebras commute mutually, and thus
generate a commutative subalgebra Kn of EndCCΓn. Let

Ln ⊗Rn : CΓ0 ⊗ CΓ0 → Kn (8.16)

be the coproduct of the commutative C-algebra homomorphisms

Ln : CΓ0 → Kn and Rn : CΓ0 → Kn .

The codomain of the C-algebra homomorphism (8.16) may also be taken as
the full (noncommutative) C-algebra EndCCΓn. Similarly, one may define a
C-algebra homomorphism

L⊗R : CΓ0 ⊗ CΓ0 → EndCCΓ∗; x1 ⊗ x2 7→
(
L⊗R(x1 ⊗ x2) : y 7→ x1yx2

)
.

For each natural number n, define

λ : {1, 2, 3} → {1, 2}; 1 7→ 1, 2 7→ 2, 3 7→ 2

and
ρ : {1, 2, 3} → {1, 2}; 1 7→ 1, 2 7→ 1, 3 7→ 2 .

LEMMA 8.2
Let a, b be elements of CΓ0.

(a) The equation
λ∗(a) · b = a · ρ∗(b) (8.17)

holds in CΓ1.

(b) The equation

Tr
(
λ∗(a) · b) = Tr (a) · Tr (b) = Tr

(
a · ρ∗(b)) (8.18)

holds in C.
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PROOF For (8.17), it suffices to prove that

λ∗(C0
i ) · C0

j = C0
i · ρ∗(C0

j ) (8.19)

for given C0
i , C0

j in Γ0. Fix C1
k in Γ1. Suppose (x, y, z) ∈ C1

k . Then in the
expansion of each side of (8.19) as a complex linear combination of elements
of Γ1, the coefficient of C1

k is
∣∣{y ∈ Q | (x, y) ∈ C0

i , (y, z) ∈ C0
j }

∣∣ ,

which is zero unless both (x, y) ∈ C0
i and (y, z) ∈ C0

j , in which case it is 1.
Setting k = 1 shows Tr

(
λ∗(a) · b) = δ1iδ1j . Then (8.18) follows by linearity.

THEOREM 8.3
The algebra homomorphisms

L1 ⊗R1 : CΓ0 ⊗ CΓ0 → EndCCΓ1

and
L⊗R : CΓ0 ⊗ CΓ0 → EndCCΓ∗

embed the tensor square CΓ0 ⊗ CΓ0 as a commutative subalgebra of the two
respective endomorphism rings.

PROOF For each element α of CΓ0 ⊗ CΓ0, the endomorphism L⊗R(α)
of CΓ∗ restricts to the endomorphism L1 ⊗ R1(α) of CΓ1. It thus suffices to
show that L1 ⊗R1 embeds.

Now (to within isomorphism) the commutative algebra CΓ0 has one basis
(6.18) consisting of the incidence matrices A1, . . . , As of the respective rela-
tions C0

1 , . . . , C0
s (taking s = s0), and another (6.26) consisting of idempotent

matrices E1, . . . , Es, with

Ei =
∑

ηijAj and TrEi =
fi

|Q| 6= 0

for 1 ≤ i ≤ s. Suppose that

α =
∑

1≤i,j≤s

cijEi ⊗ Ej

lies in the kernel of L1 ⊗R1. Then for each element a of CΓ1,

0 = aL1 ⊗R1(α) =
∑

1≤i,j≤s

cijEi · a · Ej .

Given 1 ≤ i, j ≤ s, use (8.17) to take

aij = λ∗(Ei) · Ej = Ei · ρ∗(Ej) ∈ CΓ1 .
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For k 6= i or l 6= j, one has Ek · aij · El = 0. Thus

0 = aijL1 ⊗R1(α)
= cijEi · aij · Ej

= cijEi · Ei · ρ∗(Ej) · Ej

= cijEi · ρ∗(Ej) · Ej

= cijaij · Ej

= cijλ
∗(Ei) · Ej · Ej

= cijλ
∗(Ei) · Ej = cijaij .

But aij 6= 0, since (8.18) gives

Tr(aij) = Tr(Ei) · Tr(Ej) 6= 0 .

Thus cij = 0 for all 1 ≤ i, j ≤ s. In other words, α = 0 and L1⊗R1 injects.

Now let Q be a finite, nonempty quasigroup with character table Ψ. Let
(Q, Γ∗) be the superscheme on Q furnished by Corollary 8.4. Recall that the
Bose-Mesner algebra CΓ0 of the associated scheme of the superscheme (Q, Γ)
is the centralizer ring V (G,Q) of the combinatorial multiplication group G on
Q. The tensor square V (G,Q)⊗ V (G,Q) has bases

{αi ⊗ αj | 1 ≤ i, j ≤ s} and {εl ⊗ εm | 1 ≤ l,m ≤ s} ,

related by

αi ⊗ αj =
s∑

l=1

s∑
m=1

ξilξjmεl ⊗ εm .

The entries ψilψjm of the tensor square Ψ⊗Ψ are then given as the normalized
coefficients

ψilψjm =

√
fifj

nlnm
ξilξjm .

The combinatorial interpretation of the tensor square Ψ⊗Ψ may be summa-
rized as follows.

COROLLARY 8.7

Let Q be a finite, nonempty quasigroup with combinatorial multiplication group
G and character table Ψ. Then the tensor square Ψ⊗Ψ is determined by the
two-sided action of the centralizer ring V (G,Q) on the set of orbits of G on
Q3.
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8.6 Relation algebras

Proposition 8.5 showed that if G is a multiplicity-free permutation group
acting on a finite, nonempty set Q, then the orbits of G on powers of Q give a
superscheme (Q, Γ∗). The aim of the current section is to prove the converse
of Proposition 8.5: If (Q, Γ∗) is a superscheme on a finite, nonempty set Q,
then there is a permutation group G acting on Q such that the relations
Cm

i of the superscheme are precisely the orbits of G on the powers of Q.
For this purpose, multiplicity-freeness is irrelevant. It is then convenient to
define a noncommutative superscheme (Q, Γ∗) exactly as in Definition 8.3,
but without the commutativity axiom (S4). Thus the main theorem of this
section, Theorem 8.5 below, gives the converse to the following reformulated
version of Proposition 8.5.

PROPOSITION 8.7

Let G be a transitive group of permutations acting on a finite, nonempty set
Q. For each natural number n, let Γn be the set of orbits of G on Q2+n. Then
(Q, Γ∗) is a noncommutative superscheme on Q.

The converse depends on a relational-algebraic characterization of full sets
of group orbits due to Krasner [102]. Consider an m-ary relation R on a set
Q, i.e. a subset of the m-th direct power Qm. For m > 1, new relations are
defined as follows:

Rζ = {(x1, x2, . . . , xm) | (x2, . . . , xm, x1) ∈ R} (8.20)
Rτ = {(x1, x2, . . . , xm) | (x2, x1, x3 . . . , xm) ∈ R} (8.21)

R∆ = {(x1, x2, . . . , xm−1) | (x1, x1, x2 . . . , xm−1) ∈ R} . (8.22)

Note that Rζ and Rτ are m-ary, while R∆ is (m− 1)-ary, and may be empty
even when R itself is nonempty. For m ≥ 1, a new relation

R∇ = Q×R = {(x0, x1, . . . , xm) | x0 ∈ Q, (x1, . . . , xm) ∈ R} (8.23)

is defined. Given an (2 + m)-ary relation R and an (2 + n)-ary relation S, a
(2 + m + n)-ary relation R ◦ S is defined as the relation product

{(x0, . . . , xm, y0, . . . , yn) | ∃ z ∈ Q . (x0, . . . , xm, z) ∈ R, (z, y0, . . . , yn) ∈ S}

generalizing the binary relation product (3.2). Finally, considering m-ary re-
lations as subsets of the direct power Qm, it is apparent that the set of m-ary
relations carries the Boolean algebra structure (intersection, complementa-
tion, etc.) of the power set of Qm.
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DEFINITION 8.5 Let Q be a set. Then a Krasner algebra on Q is a
set of relations on Q, containing the equality relation {(x, x) | x ∈ Q}, that
is closed under the operations of (8.20) through (8.23), intersection, comple-
mentation, and relation product.

Krasner’s characterization of permutation group actions may now be stated.

THEOREM 8.4 (Krasner’s Theorem)
Let Q be a finite, nonempty set. If K is a Krasner algebra on Q, then K is

the set of relations on Q that are invariant under the action of a permutation
group G on Q.

The proofs of Krasner’s Theorem 8.4 in the literature [16, Th. 4] [102] [130,
§1.3.5] are not very constructive, the group G appearing only as the group of
permutations of Q preserving K.

Now suppose that (Q, Γ∗) is a noncommutative superscheme on a finite,
nonempty set Q. A Krasner algebra K on Q will be constructed from (Q, Γ∗).
For each natural number n, let

B2+n = {Cn
i1 ∪ · · · ∪ Cn

ir
| 0 ≤ r ≤ sn, 1 ≤ ij ≤ sn} (8.24)

be the σ-field or Boolean subalgebra of the power set of Q2+n that is generated
by the partition Γn of Q2+n. Define

B1 = {∅, Q} (8.25)

and

K =
∞⋃

m=1

Bm . (8.26)

LEMMA 8.3
The set K of relations on Q is closed under the operation ∆ of (8.22).

PROOF For m > 1, consider

R = Cm−2
i1

∪ · · · ∪ Cm−2
ir

∈ Bm .

If (x1, x1, x2, . . . , xm−1) is an element of R, then there is an index 1 ≤ j ≤ r
such that (x1, x1, x2, . . . , xm−1) ∈ Cm−2

ij
. Now Γm−3 is a partition of Qm−1,

so there is an index 1 ≤ k ≤ sm−3 such that (x1, x2, . . . , xm−1) ∈ Cm−3
k .

Define the predecessor function

p : {1, . . . , m} → {1, . . . , m− 1}; i 7→ max{1, i− 1} .

Then
(x1, x1, x2, . . . , xm−1) ∈ p∗

(
Cm−3

k

) ∈ Γm−2
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by Axiom (S2) of Definition 8.3. Since Γm−2 is a partition of Qm, it follows
that Cm−2

ij
= p∗

(
Cm−3

k

)
. Thus

R∆ =
⋃ {

Cm−3
k ∈ Γm−3

∣∣∣ ∃ 1 ≤ j ≤ r . Cm−2
ij

= p∗
(
Cm−3

k

)} ∈ Bm−1 ,

as required.

LEMMA 8.4
The set K of relations on Q is closed under the operation ∇ of (8.23).

PROOF First note that B∇
1 = {∅, Q2} ⊂ B2. Now for m > 1, consider

R = Cm−2
i1

∪ · · · ∪ Cm−2
ir

∈ Bm .

If (x0, x1, . . . , xm) is an element of R∇, then there is an index 1 ≤ j ≤ r such
that (x1, . . . , xm) ∈ Cm−2

ij
. Now Γm−1 is a partition of Qm+1, so there is an

index 1 ≤ k ≤ sm−1 such that (x0, x1, . . . , xm) ∈ Cm−1
k . Define the successor

function
s : {1, . . . , m} → {1, . . . , m + 1}; i 7→ i + 1 .

Then
(x1, . . . , xm) ∈ s∗

(
Cm−1

k

) ∈ Γm−2

by Axiom (S2) of Definition 8.3. Since Γm−2 is a partition of Qm, it follows
that Cm−2

ij
= s∗

(
Cm−1

k

)
. Thus

R∇ =
⋃ {

Cm−1
k ∈ Γm−1

∣∣∣ ∃ 1 ≤ j ≤ r . Cm−2
ij

= s∗
(
Cm−1

k

)} ∈ Bm+1 ,

as required.

It is interesting to observe the duality between the statements and proofs
of Lemmas 8.3 and 8.4.

LEMMA 8.5
The set K of relations on Q is a Krasner algebra on Q.

PROOF By Axiom (S1) of Definition 8.3, K contains the binary equality
relation Q̂ on Q. Since each uniand Bm in (8.26) is a Boolean subalgebra of
the power set of the corresponding direct power Qm, the set K is closed under
intersection and complementation. For fixed m > 1, define the permutations

z = (1 2 . . . m) and t = (1 2)
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on {1, 2, . . . , m}. Then for 0 ≤ r ≤ sm−2 and 1 ≤ ij ≤ sm−2, one has

(
Cm−2

i1
∪ · · · ∪ Cm−2

ir

)ζ = z∗
(
Cm−2

i1

) ∪ · · · ∪ z∗
(
Cm−2

ir

) ∈ Bm

and
(
Cm−2

i1
∪ · · · ∪ Cm−2

ir

)τ = t∗
(
Cm−2

i1

) ∪ · · · ∪ t∗
(
Cm−2

ir

) ∈ Bm

by Axiom (S2) of Definition 8.3, Along with Lemmas 8.3 and 8.4, these mem-
berships show that K is closed under the operations (8.20) through (8.23).
Finally, for

R = Cm
i1 ∪ · · · ∪ Cm

iq
and S = Cn

j1 ∪ · · · ∪ Cn
jr

,

the relation product R ◦ S may be expressed as the element

⋃ {
Ck ∈ Γm+n

∣∣ ∃ 1 ≤ t ≤ q . ∃ 1 ≤ u ≤ r . c(it, ju, k; m,n) > 0
}

of B2+m+n, so that K is also closed under the relation product.

THEOREM 8.5

Let Q be a finite, nonempty set. Suppose that (Q, Γ∗) is a noncommutative
superscheme on Q. Then there is a transitive permutation group G acting on
Q such that for each natural number n, the partition Γn of the superscheme
is the set of orbits of G on Q2+n.

PROOF Let K be the Krasner algebra on Q given from (Q, Γ∗) by
Lemma 8.5. By Krasner’s Theorem 8.4, there is a group G acting on Q
such that K is the set of relations on Q that are invariant under the action.
In particular each Γn, as the set of atoms in the Boolean algebra B2+n, is the
set of orbits under the componentwise action of G on Q2+n. By (8.25), the
action of G on Q is transitive.

COROLLARY 8.8

An association scheme is the associated scheme of a superscheme if and only
if it consists of the orbitals of a multiplicity-free permutation group action.

WojdyÃlo [177] investigated association schemes which cannot be extended
to superschemes beyond a certain level. The association schemes are based
on graphs, and the extent to which the association scheme can be extended
is related to the satisfaction of so-called vertex conditions in the graph.
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8.7 The Reconstruction Theorem

Let (Q, Γ∗) be a noncommutative superscheme on a finite, nonempty set Q.
By Theorem 8.5, the classes of Γ∗ are the orbits of a transitive permutation
group G of Q acting on the powers of Q. In this section, it will be shown how
the Bose-Mesner superalgebra CΓ∗ of (Q, Γ∗) may be used to recover the set
Q and the group G to within similarity. Note that the order n of Q is the
trace of the identity element C0

1 of CΓ∗.

DEFINITION 8.6 In a Bose-Mesner superalgebra CΓ∗, a principal basis
element is an element P = Cn−2

p of the homogeneous (n − 2)-th degree basis
Γn−2 which is not an element of f∗(Γm−2) for any function

f : {1, . . . , n} → {1, . . . ,m}

with m < n.

Definition 8.6 means that for each element (x1, . . . , xn) of P , no two coor-
dinates xi and xj coincide if i 6= j. From now on, fix one particular principal
basis element P of CΓ∗.

For the successor function

s : {1, . . . , n} → {1, . . . , n + 1}; i 7→ i + 1 ,

define
Q′ = (s∗)−1{P} ⊂ Γn−1 . (8.27)

Note that Cn−1
i ∈ Q′ if and only if Cn−1

i ≤ P∇ in the Boolean algebra Bn+1.
The set Q′ will serve as a proxy for Q.

For positive integers m and h, define the left insertion

lmh : {1, . . . , m + 1} → {1, . . . , 2m + h + 1}; i 7→ i

and the right insertion

rmh : {1, . . . ,m + h} → {1, . . . , 2m + h + 1}; i 7→ m + 1 + i .

Then define the split

σ : Γ2m → Γm−1 × Γm−1; C2m
i 7→ (

l∗m1(C
2m
i ), r∗m1(C

2m
i )

)
.

In analogy with (8.27), define

G′ = σ−1{(P ∗, P )} ⊂ Γ2n−2 . (8.28)

The set G′ will serve as a proxy for G.
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Identifying each (Cm−1
j , Cm−1

k ) with Cm−1
j ⊗Cm−1

k , the split σ extends to
a linear map

σ : CΓ2m → CΓm−1 ⊗ CΓm−1

for each positive integer m. This map is also called the split . On the other
hand, the bilinear multiplication in CΓ∗ gives a linear map

µ : CΓ∗ ⊗ CΓ∗ → CΓ∗

that restricts to maps

µ : CΓm−1 ⊗ CΓm−1 → CΓ2m−2 and µ : CΓm−1 ⊗ CΓm+n−2 → CΓ2m+n−3

for each positive integer m. Finally, define

α : Γ2m+n−1 → Γm−1×Γm+n−2; C2m+n−1
i 7→ (

l∗mn(C2m+n−1
i ), r∗mn(C2m+n−1

i )
)

Identifying each (Cm−1
j , Cm+n−2

k ) with Cm−1
j ⊗Cm+n−2

k , the map α extends
to a linear transformation

α : CΓ2m+n−1 → CΓm−1 ⊗ CΓm+n−2 .

THEOREM 8.6 (Reconstruction Theorem)
Let CΓ∗ be the Bose-Mesner superalgebra of the (noncommutative) super-

scheme given by a transitive permutation group G on a finite, nonempty set
Q of order n. Let P be a fixed principal basis element of CΓ∗. Let Q′ be given
by (8.27) and G′ by (8.28). Then there is a group multiplication

(µσ)n−1µ : G′ ×G′ → G′

and an action
(µα)n−1µ : Q′ ×G′ → Q′

that is similar to the action of G on Q.

PROOF Fix an element

−→p = (x1, . . . , xn)

in P . Set
←−p = (xn, . . . , x1)

in P ∗. Then P = −→p G and P ∗ = ←−p G. The map

G → G′; g 7→ (←−p g,−→p )
G (8.29)
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gives a bijection from G to G′. This bijection is an isomorphism, since for g,
h in G one has

(←−p g,−→p )
G⊗ (←−p h,−→p )

G(µσ)n−1µ

=
(←−p gh,−→p h

)
G⊗ (←−p h,−→p )

G(µσ)n−1µ

=
(←−p gh,−→p )

G .

The map
Q → Q′; q 7→ (

q,−→p )
G (8.30)

gives a bijection from Q to Q′. The maps (8.29) and (8.30) give a similarity
from G on Q to G′ on Q′, since for g in G and q in Q, one has

(
q,−→p )

G⊗ (←−p g,−→p )
G(µα)n−1µ

=
(
qg,−→p g

)
G⊗ (←−p g,−→p )

G(µα)n−1µ

=
(
qg,−→p )

G .

COROLLARY 8.9
Let Q be a finite, nonempty quasigroup. Then the permutation group action
of the combinatorial multiplication group G on Q may be recovered from the
Bose-Mesner superalgebra of the superscheme associated with Q according to
Corollary 8.4.

8.8 Exercises

1. Let S be a set of permutations on a nonempty set Q.

(a) Show that S is transitive if and only if the map

Q× S → Q×Q; (q, g) 7→ (q, qg)

is surjective.

(b) Show that S is sharply transitive if and only if the map

Q× S → Q×Q; (q, g) 7→ (q, qg)

is bijective.

2. Consider the right regular permutation action of a finite group G on
itself.
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(a) Show that the compatibility graph of this action is complete on the
vertex set G.

(b) Using Proposition 7.3 (p. 187) or otherwise, show that the action
is similar to the action of a multiplication group on a quasigroup
if and only if G is abelian.

3. Compute the compatibility graph of the dihedral group D4 in its natural
action. (Compare Example 2.2.)

4. Let G be a permutation group on a nonempty set Q. Let e be an element
of Q, and let S be a sharply transitive subset of G. Show that Sσ(e, e)−1

is a loop transversal to the stabilizer Ge in G.

5. Verify that (8.2) is the character table of the Johnson scheme J(8, 2).

6. Let Q be a set of finite positive order n. Determine the dimension
sequence and the Poincaré series of the minimal and maximal super-
schemes on Q.

7. For elements x, y of a Bose-Mesner superalgebra, show that (xy)∗ =
x∗y∗.

8. Let Q be a finite, nonempty set. Let (Q, Γ∗) be the superscheme given
by the permutation action of a group G on Q with group permutation
character π (compare Chapter 9).

(a) Show that the Poincaré series of (Q, Γ∗) is given by

p(z) =
1
|G|

∑

g∈G

1
1− zπ(g)

.

(b) By considering the smallest real pole of p(z), and the corresponding
residue, show how to obtain |Q| and |G| from p(z).

9. Let Q be a quasigroup, with corresponding superscheme (Q, Γ∗) given
by Corollary 8.4. For which Krasner algebra operations does the set of
congruences of Q form a subreduct of K?

8.9 Problems

1. To what extent is it possible to characterize those association schemes
that are the association schemes of finite quasigroups?

2. To what extent is it possible to characterize those scheme character
tables that are the character tables of finite quasigroups?
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8.10 Notes

Section 8.1

Baer [5] used the term simply transitive instead of “sharply transitive.” The
latter term was used by O’Nan [121].

Section 8.2

The main results of this section appeared in [97]. The proof of Proposi-
tion 8.3 is due to K.W. Johnson [88]. For a character-theoretic proof, see
[121, p. 66] (compare Exercises 17 and 18 in Chapter 9). Theorem 8.2 was
presented in [88] with a different proof.

Section 8.3

Superschemes were introduced in [94].

Section 8.6

The results of Sections 8.6 and 8.7 appeared in [155]. Krasner algebras were
described as “Post coalgebras” in [16], and as “Krasner algebras of the second
kind” in [130]. (The first kind characterizes monoid actions.)

 



Chapter 9

PERMUTATION CHARACTERS

In the first four sections of this chapter, properties of the permutation action of
the multiplication group of a finite quasigroup are used to describe some of the
algebra structure associated with a homogeneous space for that quasigroup.
The remaining sections introduce the characters of a finite quasigroup that are
associated with permutation actions of the quasigroup. These give a direct
generalization of the permutation characters of a group. The fundamental
tool for the chapter is the linear map (9.1).

Associated with each quasigroup homogeneous space is an algebra known
as the enveloping algebra. This algebra is defined in Section 9.1 as a subspace
of the domain of (9.1), equipped with an algebra structure that makes the
restriction of (9.1) an algebra homomorphism, the so-called canonical repre-
sentation of the enveloping algebra (Definition 9.1). Section 9.2 describes the
structure of the enveloping algebra (Theorem 9.1), while Section 9.3 analyses
the canonical representation. As an application of the enveloping algebra, Sec-
tion 9.4 presents sufficient conditions for the commuting of the action matrices
of a homogeneous space, as observed in the example of Section 4.2.

A different restriction of (9.1), namely (9.21), furnishes a representation
of the centralizer ring of the quasigroup (Theorem 9.3). Definition 9.3 then
defines a homogeneous space to be faithful when this restriction injects. The
definition is consistent with the classical terminology in the group case. In
Section 9.6, the restriction (9.21) is used to define quasigroup permutation
characters for quasigroup homogeneous spaces, and the definition is extended
to general permutation representations in Section 9.7. As an illustration,
Section 9.8 computes the permutation characters of the quasigroup of integers
modulo 4 under subtraction.

9.1 Enveloping algebras

For a subquasigroup P of a finite quasigroup Q, let L denote the relative left
multiplication group LMltQP of P in Q. Consider the complex vector spaces
CQ with basis Q and CP\Q with basis P\Q. Identify linear maps between
these spaces (and themselves) by their matrices with respect to these bases.
Let AP be the incidence matrix of elements of Q in the L-orbits forming P\Q.

225 
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Now the definition (4.14) of the homogeneous space action matrices yields a
function ρ or

ρP\Q : EndCCQ → EndCCP\Q;C 7→ A+
P CAP (9.1)

from the set of endomorphisms of the vector space CQ to the set of endomor-
phisms of the vector space CP\Q. The function (9.1) is linear, but is generally
not a homomorphism for the monoid structures of the two endomorphism sets
under composition. Define

EP = AP A+
P .

By the property (4.2) of the pseudoinverse, EP is an idempotent of EndCCQ
under composition. Consider

(C, D) 7→ CEP D (9.2)

as a binary operation on EndCCQ. It is convenient to denote this binary
operation by EP , regarding the right-hand side of (9.2) as infix notation for the
binary operation. Under the original C-space structure and the multiplication
EP , the set EndCCQ forms a nonunital ring. (Verification of the associative
and distributive laws is immediate.) Since

CρDρ = A+
P CAP A+

P DAP

= (CEP D)ρ ,

the map (9.1) then becomes a ring homomorphism

ρP\Q : (EndCCQ, +, EP ) → (EndCCP\Q, +, ·) (9.3)

from the nonunital ring structure on EndCCQ to the ring EndCCP\Q with
the original multiplication given by composition.

Let G be the combinatorial multiplication group of Q, and let

λ : CG → EndCCQ (9.4)

be the linear permutation representation of G on Q. Proposition 9.1 below
implies that (λ(CG),+, EP ) is a subring of (EndCCQ, +, EP ), and that (9.3)
restricts to a representation

ρP\Q : (λ(CG), +, EP ) → EndCCP\Q (9.5)

of the subring.

DEFINITION 9.1 The ring (λ(CG),+, EP ) is defined as the enveloping
algebra of the homogeneous space P\Q, and the representation (9.5) is called
the canonical representation of the enveloping algebra.
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PROPOSITION 9.1

For a subquasigroup P of Q with relative left multiplication group L in Q,
one has

EP =
1
|L|

∑

l∈L

lλ . (9.6)

In particular, EP is an element of λ(CG).

PROOF To simplify notation, drop the suffix P from AP and A+
P . For an

element x of the basis Q of CQ, it must be shown that the endomorphisms
on each side of (9.6) have the same effect on x. Now

xEP =
∑

y∈Q

x(AA+)xy

= x
∑

X∈P\Q

∑

y∈Q

AxXA+
Xy

= x
∑

y∈xL

Ax,xLA+
xL,y

=
∑

y∈xL

(xL)A+
xL,y .

On the other hand,

1
|L|

∑

l∈L

xl =
1
|L| ·

|L|
|xL|

∑

y∈xL

y

=
1
|xL|

∑

y∈xL

y

=
∑

y∈xL

(xL)A+
xL,y

as well.

9.2 Structure of enveloping algebras

Theorem 6.4(a) (p. 150) shows that the permutation representation λ of G
on Q is multiplicity-free, so that the G-module CQ decomposes as a direct sum
(6.21) of mutually inequivalent irreducible G-modules. Let the corresponding
linear representations be λi : CG → EndCXi with characters χi = Tr(λi), so
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that λ =
∑s

i=1 λi and λi(CG) = EndCXi, i.e.,

λ(CG) =
s⊕

i=1

EndCXi . (9.7)

For 1 ≤ i ≤ s, define idempotents Ei = Eλi

P and subspaces Yi = XiEi,
Zi = Xi(1− Ei), yielding an orthogonal decomposition

Xi = Yi ⊕ Zi (9.8)

of C-spaces. By (9.6), one has

Ei =
1
|L|

∑

l∈L

lλi ,

whence
Tr (Ei) =

1
|L|

∑

l∈LMltQP

χi(l) . (9.9)

Note that EndCXi has the C-space decomposition

EndCXi = EndCYi ⊕HomC(Yi, Zi)⊕HomC(Zi, Yi)⊕ EndCZi . (9.10)

Consider EndCXi as a nonunital ring with multiplication

Ei : (a, b) 7→ aEib .

PROPOSITION 9.2
For 1 ≤ i ≤ s, the Jacobson radical of the ring (EndCXi, Ei) is

{a ∈ EndCXi | EiaEi = 0} . (9.11)

PROOF Denote the ring (EndCXi, Ei) by A, and its Jacobson radical
by J . Now the Jacobson radical is characterized as the set of all elements a
of the ring A for which ar is right quasiregular for each element r of A [43,
Lemma 54]. In other words, J is the set of elements a of A satisfying

∀ r ∈ A , ∃ s ∈ A . ar + s + ars = 0 . (9.12)

For a C-endomorphism a of Xi, denote the respective components in the direct
sum (9.11) by

a11 = EiaEi ,

a12 = Eia(1− Ei) ,

a21 = (1− Ei)aEi ,

a22 = (1− Ei)a(1− Ei) .

 



PERMUTATION CHARACTERS 229

It is convenient to assemble these components into a 2×2-matrix, and to record
composition in EndCXi by matrix multiplication [128, §3.4], [165, II§1.2]. A
product aEib in A then takes the form

[
a11 a12

a21 a22

] [
1 0
0 0

] [
b11 b12

b21 b22

]
=

[
a11b11 a11b12

a21b11 a21b12

]
, (9.13)

so the equation in (9.12) becomes
[
a11r11 + s11 + a11r11s11 a11r12 + s12 + a11r12s12

a21r11 + s21 + a21r11s11 a21r12 + s22 + a21r11s12

]
=

[
0 0
0 0

]
. (9.14)

Note that the bottom rows of the matrices in (9.14) are made to coincide on
setting

s21 = −a21r11 − a21r11s11 ,

s22 = −a21r12 − a21r11s12 .

Now if a11 = 0, setting s11 = s12 = 0 makes the top rows of the matrices
in (9.14) coincide. Thus the set (9.11) is certainly contained in the Jacobson
radical of A. Conversely, suppose a11 is nonzero. Let y be an element of Yi for
which ya11 is nonzero. Suppose ya11r11 = −y. Then whatever the element s
of A, one cannot satisfy

a11r11 + s11 + a11r11s11 = 0 , (9.15)

since applying each side of (9.15) to y would yield the contradiction

−y + ys11 − ys11 = 0 .

In other words, J coincides with (9.11).

COROLLARY 9.1
For 1 ≤ i ≤ s, the Jacobson radical Ji of the ring (EndCXi, Ei) satisfies

J3
i = 0.

PROOF In the matrix notation of (9.13), one has
[

0 a12

a21 a22

] [
1 0
0 0

] [
0 b12

b21 b22

] [
1 0
0 0

]
=

[
0 0
0 a21b12

] [
1 0
0 0

]
=

[
0 0
0 0

]
.

COROLLARY 9.2
For 1 ≤ i ≤ s, the natural projection of the ring (EndCXi, Ei) onto its

quotient by its Jacobson radical Ji retracts onto the subring EndCYi under
composition.
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PROOF Since (Ei)11 is the identity automorphism of the subspace Yi of
Xi, the ring EndCYi under composition is a subring of (EndCXi, Ei).

As final preparation for the Structure Theorem, it is helpful to characterize
the dimensions (9.9) of the spaces Yi.

LEMMA 9.1

For 1 ≤ i ≤ s, the dimension (9.9) of the space Yi is the multiplicity mi of
the representation λi in the representation of G induced by the trivial repre-
sentation of the relative left multiplication group L of P in Q.

PROOF By Frobenius reciprocity (7.35), one has

Tr(Ei) = 〈χi ↓G
L , 1L〉L = 〈χi, 1L ↑G

L 〉G = mi (9.16)

for 1 ≤ i ≤ s.

The natural numbers (9.16) are called the multiplicities. They play a key
role in the Structure Theorem:

THEOREM 9.1 (Structure Theorem for Enveloping Algebras)
Let P be a subquasigroup of a finite, nonempty quasigroup Q with multiplica-
tion group G. Suppose that the permutation representation λ : G → EndCCQ
of G on Q decomposes as a direct sum (6.21) of irreducible G-modules with
characters χi, for 1 ≤ i ≤ s.

(a) The Jacobson radical J of the enveloping algebra (λ(CG), +, EP ) satis-
fies J3 = 0.

(b) The semisimple quotient (λ(CG),+, EP )/J is the direct sum

s⊕

i=1

EndCYi (9.17)

of matrix rings whose respective sizes are given by the multiplicities
(9.16).

PROOF (a) Apply Corollary 9.1 and J =
⊕s

i=1 Ji [128, §4.3].
(b) Apply (9.7) and Corollary 9.2.
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9.3 The canonical representation

The first step in the analysis of the canonical representation (9.5) is to
identify the space CP\Q as a subspace of CQ. The identification is achieved
via the isomorphism given as follows.

PROPOSITION 9.3
There is an isomorphism of the space CP\Q with the subspace

CQ · EP =
s⊕

i=1

Yi

of CQ, under which the L-orbit qL of an element q of Q is mapped to the
element qEP of CQ · EP .

PROOF For elements q, q′ of Q, one has

qEP = q′EP iff
1
|L|

∑

l∈L

ql =
1
|L|

∑

l∈L

q′l

by (9.6). Thus a linear injection CP\Q → CQ · EP is well-defined by setting
qL 7→ qEP for q in Q. Since Q spans CQ, this injection surjects.

From now on, the space CP\Q will be identified with CQ · EP .

PROPOSITION 9.4
The incidence matrix AP corresponds to the linear map

A : CQ → CP\Q; q 7→ qEP , (9.18)

while the pseudoinverse A+
P corresponds to

A+ : CP\Q → CQ; qEP 7→ 1
|qL|

∑

x∈qL

x . (9.19)

PROOF The matrix of (9.18) taken with respect to the bases Q of CQ
and QEP of CP\Q is AP . The matrix of (9.19) with respect to these bases
is A+

P .

PROPOSITION 9.5
The map A of (9.18) is a retraction of CQ onto its subspace CP\Q. The

map A+ of (9.19) is the embedding of CP\Q into CQ.
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PROOF By Corollary 4.1 (p. 95), A+A = 1CP\Q. On the other hand,
A+ is the embedding, since

1
|qL|

∑

x∈qL

x =
1
|L|

∑

l∈L

ql

for q in Q.

Using the identifications, one may analyze the canonical representation
(9.5).

THEOREM 9.2
Let P be a subquasigroup of a quasigroup Q with multiplication group G.

Suppose that the permutation representation

λ : G → EndCCQ

of G on Q decomposes as a direct sum (6.21) of irreducible G-modules. Now
consider the canonical representation

ρP\Q : (λ(CG),+, EP ) → EndCCP\Q; C 7→ A+CA (9.20)

of the enveloping algebra.

(a) The kernel of ρP\Q is just the Jacobson radical J(λ(CG), +, EP ) of the
enveloping algebra.

(b) The image of ρP\Q is the semisimple quotient (9.17).

PROOF (b) For 1 ≤ i ≤ s in the decomposition (6.21), let pi : CQ → Xi

be the projection onto the i-th direct summand. By (9.18) and the definition
(9.8) of Yi, this projection restricts to pi : CP\Q → Yi. Let ji : Xi → CQ be
the insertion of the i-th summand in (6.21). For an endomorphism C of the
C-space CQ, define Ci = jiCpi. Consider the following commutative diagram:

CP\Q A+

−−−−→ CQ
C−−−−→ CQ

A−−−−→ CP\Q
pi

y pi

y pi

y pi

y
Yi

j−−−−→ Xi
Ci−−−−→ Xi

Ei−−−−→ Yi

(in which j denotes the embedding of Yi in Xi). The composite across the
top row is the image of C under ρP\Q. Now for an element of (9.17) having
c11 in the i-th summand and zero elsewhere, there is an endomorphism c of
the C-space Xi whose first component in the direct sum (9.10) is c11. There
is an element C of λ(CG) having c in the i-th summand of (9.7) and zero
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elsewhere. Since Ci = c, the image of C under ρP\Q is c11. It follows that
the image of ρP\Q contains (9.16). Conversely, for C in the domain (9.7) of
ρP\Q, one has

YiA
+CA ⊆ XiCA ⊆ XiA = Yi

for 1 ≤ i ≤ s, so the image of ρP\Q is contained in (9.17).
(a) Suppose C lies in the kernel of ρP\Q, so that A+CA = 0. Then

EP CEP = AA+CAA+ = 0,

whence Eiπi(C)Ei = 0 for 1 ≤ i ≤ s. By Proposition 9.2, it follows that
λi(C) ∈ Ji for each i. Since

J =
s⊕

i=1

Ji ,

one then has C ∈ J . So the kernel of ρP\Q is contained in the Jacobson radical
J . Now (b) above, (9.7), the First Isomorphism Theorem, and Lemma 9.1
imply

dimCKer ρP\Q =
s∑

i=1

χi(1)2 −
s∑

i=1

Tr(Ei)2

= dimC J ,

so (a) follows.

Theorem 9.2 may be summarized by saying that the canonical representation
(9.5) corestricts to the natural projection of (λ(CG), +, EP ) onto the quotient
by its Jacobson radical.

9.4 Commutative actions

This section presents one simple application of Theorems 9.1 and 9.2 —
examining sufficient conditions for commutativity of the image of the canonical
representation (9.5). As before, it is convenient to set L = LMltQP .

DEFINITION 9.2 Let P be a subquasigroup of a quasigroup Q. The
action of Q on the homogeneous space P \Q is said to be commutative if the
image (9.17) of the representation (9.20) is a commutative algebra.

If the action of Q on P\Q is commutative, then the various transition
matrices (4.14) of the homogeneous space P\Q commute mutually.
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PROPOSITION 9.6
Suppose that the permutation representation of the multiplication group G of

Q on the group homogeneous space L\G given by the relative left multiplication
group L of P in Q is multiplicity-free. Then the action of Q on the quasigroup
homogeneous space P\Q is commutative.

PROOF The multiplicity-freeness of the action of G on L\G means that
each irreducible linear representation of G appears at most once in the per-
mutation representation of G on L\G. Then by Lemma 9.1, each multiplicity
mi is 1 or 0. By Theorem 9.1(b), the semisimple quotient (λ(CG),+, EP )/J
is commutative. Theorem 9.2(b) then shows that the action of Q on P\Q is
commutative.

COROLLARY 9.3
Suppose that P is a singleton subquasigroup {e} whose relative left multipli-

cation group L in Q is the stabilizer Ge of e in G. Then the action of Q on
P\Q is commutative.

PROOF The action of G on Ge \ G, namely the action of G on Q, is
multiplicity free.

One instance of the corollary occurs for the singleton subquasigroup {0} of
the quasigroup (Z/nZ,−) of integers modulo n under subtraction (compare
Example 2.2 on p.37). For a fairly general class of quasigroup actions to which
Corollary 9.3 applies, let (Q, +, ·) be a finite unital ring. Suppose that r is an
invertible element of Q for which 1 − r is a power of r. Define a quasigroup
multiplication on Q by

x ∗ y = x(1− r) + yr.

Many examples of such quasigroups Q or (Q, ∗) are described in [28, §II.5].
They are idempotent, entropic, and thus distributive (compare Exercise 3 in
Chapter 2).

PROPOSITION 9.7
The singleton P = {0} is a subquasigroup of the quasigroup Q or (Q, ∗).

Then the action of Q on P\Q is commutative.

PROOF By Theorem 3.5 (p.76), the multiplication group G of Q is the
split extension of the abelian translation group (Q, +) by the subgroup 〈r〉
of the group of units of (Q, +, ·) generated by r. Then the stabilizer G0 of 0
in G is 〈r〉. However, the generating set {LQ(p) | p ∈ P} of the relative left
multiplication group L of P in Q is just {r}. Thus L coincides with G0, and
Corollary 9.3 shows that the action of Q on P\Q is commutative.
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9.5 Faithful homogeneous spaces

THEOREM 9.3
Let P be a subquasigroup of a finite quasigroup Q. Then the map

ρP\Q : EndCGCQ → EndCP\Q ; B 7→ A+
P BAP (9.21)

is a homomorphism of C-algebras.

PROOF Consider two elements B1, B2 of EndCGCQ. The definition
(9.21) gives

ρP\Q(B1)ρP\Q(B2) = A+
P B1AP A+

P B2AP . (9.22)

By Proposition 9.1, the central product AP A+
P of the right-hand side of (9.22)

lies in λ(CG), and so commutes with elements of EndCGCQ such as B2. More-
over, one has AP A+

P AP = AP as part (4.2) of the specification of the pseudoin-
verse A+

P of AP . The right-hand side of (9.22) thus reduces to ρP\Q(B1B2),
as required to show that (9.21) gives a monoid homomorphism.

DEFINITION 9.3 Let P be a subquasigroup of a finite quasigroup Q.
The homogeneous space P\Q is said to be faithful if the corresponding map
ρP\Q of (9.21) injects.

PROPOSITION 9.8
Let P be a subgroup of a finite group Q. Then the homogeneous space P\Q

yields a faithful transitive permutation representation of Q if and only if the
homogeneous space is faithful in the quasigroup sense of Definition 9.3.

PROOF Suppose that P\Q yields a transitive permutation representation
which is not faithful. Let K be a nonidentity group conjugacy class of Q
contained in the kernel of the group permutation representation. Define the
element

C =
∑

q∈K

RQ(q)

of EndCGCQ — compare (6.15). Then ρP\Q(C) is a multiple of the identity
in EndCP\Q, so that ρP\Q cannot inject.

On the other hand, if P\Q does yield a faithful transitive permutation
representation, then the permutation matrices A+

P RQ(q)AP of the elements
q of Q afford a faithful linear representation of the complex group algebra of
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Q. In this case the map ρP\Q, as the restriction of the linear representation
to the center of the group algebra, certainly injects.

REMARK 9.1 As noted in the proof of Proposition 9.8, a homogeneous
space P\Q over a finite group Q is faithful (if and) only if the corresponding
Markov matrices (4.14) of different group elements differ. In the nonassocia-
tive quasigroup case, a homogeneous space P\Q may be faithful in the sense
of Definition 9.3, and yet have RP\Q(q1) = RP\Q(q2) for distinct elements q1,
q2 of Q. For instance, in the example Q of Section 9.8 below, the homogeneous
space 0\Q is faithful, but R0\Q(1) = R0\Q(3) according to (9.25).

9.6 Characters of homogeneous spaces

DEFINITION 9.4 Let P be a subquasigroup of a finite quasigroup Q.
Then the permutation character (or just character) of the homogeneous space
P\Q is the class function πP\Q : Q×Q → C taking the value

n−1
i Tr(A+

P AiAP ) (9.23)

on each member of the i-th quasigroup conjugacy class Ci (for 1 ≤ i ≤ s), the
matrix Ai being the incidence matrix of the subset Ci of Q×Q.

Example 9.1
The permutation character of the regular space ∅\Q of a quasigroup Q is

the regular character πQ, taking the value |Q| on the diagonal conjugacy class
C1 = Q̂, and zero elsewhere.

In order to verify the consistency of Definition 9.4 with the usual definition
of a permutation character in the group case, recall that each quasigroup class
function θ : Q × Q → C over a group Q determines a corresponding group
class function θ′ : Q → C; q 7→ θ(1, q).

PROPOSITION 9.9
Let P be a subgroup of a finite group Q. Then π′P\Q is the permutation

character of the transitive permutation representation of Q on P\Q.

PROOF For each element q of Q, the value of the permutation character
on q is the trace of the permutation matrix A+

P RQ(q)AP . For each of the ni
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elements of the i-th group conjugacy class of Q, these traces remain constant.
Thus the value of the permutation character at an element q of the i-th group
conjugacy class Ki may be written as

n−1
i

∑

q∈Ki

Tr
(
A+

P RQ(q)AP

)
. (9.24)

Since the incidence matrix of the i-th quasigroup conjugacy class Ci is just∑
q∈Ki

RQ(q), the quantity (9.24) agrees with (9.23). Finally, note that if q
lies in the i-th group conjugacy class, then (1, q) lies in the i-th quasigroup
conjugacy class, as required to complete the proof of the proposition.

REMARK 9.2 In the context of Proposition 9.9, the permutation charac-
ter of P\Q is obtained by inducing the principal character on the subgroup P
up to the full group Q. For a subquasigroup P of a nonassociative quasigroup
Q, however, it need no longer be true that the permutation character of P\Q
is obtained in this way (using the general quasigroup induction procedure dis-
cussed in Section 7.4). In the example Q of Section 9.8 below, for instance,
the principal character on the subquasigroup {0} induces up to the regular
character π4 on Q, and this of course differs from the permutation charac-
ter π3 of the homogeneous space 0\Q. On the other hand, the character π2

of the homogeneous space {0, 2}\Q is obtained by inducing up the principal
character on the subquasigroup {0, 2}.

9.7 General permutation characters

For the image of a homogeneous space P\Q given by a surjective function
with incidence matrix F , one may extend Definition 9.4 by assigning value

n−1
i Tr(F+A+

P AiAP F )

to each element of the i-th quasigroup conjugacy class Ci. The permutation
character πX of a general permutation representation X of Q is then defined
to be the sum of the characters of its orbits. By Corollary 5.7 (p. 122)
and Proposition 9.9, the definition is consistent with the usual definition for
groups. The following results illustrate the use of these general quasigroup
permutation characters.

PROPOSITION 9.10
Let X be a permutation representation of a finite quasigroup Q. Then the

cardinality |X| of the set X is the dimension of the permutation character πX

of X.
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PROOF It suffices to assume that X is the image of a homogeneous space
P\Q under a surjective intertwining ϕ : P\Q → X with incidence matrix F .
In this case, two applications of Corollary 4.1 (p. 95) give the dimension of
πX as

Tr(F+A+
P AP F ) = Tr(F+IP\QF )

= Tr(F+F )
= Tr(IX)
= |X| ,

proving the proposition.

THEOREM 9.4
Let X be a permutation representation of a finite quasigroup Q. Then the

number of orbits of X is given by the multiplicity of the principal character
ψ1 of Q in the permutation character πX of X.

PROOF It suffices to show that ψ1 occurs with multiplicity 1 in the
character π of the image of a homogeneous space P\Q under a surjective
intertwining with incidence matrix F . Indeed, one has

n2〈π, ψ1〉 = π ∗ ψ1(Q̂)

=
∑

x∈Q

∑

y∈Q

π(x, y)ψ1(y, x)

=
∑

x∈Q

∑

y∈Q

π(x, y)

= n
s∑

i=1

Tr(F+A+
P AiAP F )

= nTr(F+A+
P JAP F )

= n2 ,

the last equation following by the quasigroup version of Burnside’s Lemma
(Theorem 5.9, p. 134). Thus 〈π, φ1〉 = 1, as required.

9.8 The Ising model

Consider the quasigroup Q = (Z/4Z,−) of integers modulo 4 under sub-
traction. Its subquasigroups Q, {0, 2}, {0}, and ∅ yield homogeneous spaces
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with 1, 2, 3, and 4 elements, respectively. The 1-, 2-, and 4-element spaces are
quite analogous to the homogeneous spaces of the group Z/4Z: in particular,
the corresponding action matrices (4.14) are all permutation matrices. On
the other hand, the 3-element homogeneous space 0\Q exhibits stochasticity.
The orbits of the relative left multiplication group of {0} in Q are {0}, {1, 3}
and {2}, yielding

A0 =




1 0 0
0 1 0
0 0 1
0 1 0




as the corresponding incidence matrix. The pseudoinverse of A0 is the matrix

A+
0 =




1 0 0 0
0 1

2 0 1
2

0 0 1 0


 .

From (4.14), one then obtains

R0\Q(1) = R0\Q(3) =




0 1 0
1
2 0 1

2
0 1 0


 (9.25)

and

R0\Q(2) =




0 0 1
0 1 0
1 0 0


 ,

while R0\Q(0) is the 3× 3 identity matrix.

(Z/4Z,−) C1 C2 C3

ψ1 1 1 1
ψ2 1 1 −1
ψ3

√
2 −√2 0

ψ1 = π1 1 1 1
ψ1 + ψ2 = π2 2 2 0

ψ1 + ψ2 + ψ3/
√

2 = π3 3 1 0
ψ1 + ψ2 + ψ3 ·

√
2 = π4 4 0 0

FIGURE 9.1: Basic and permutation characters of (Z/4Z,−).
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Figure 9.1 shows the character table of (Z/4Z,−) and the permutation
characters of its homogeneous spaces. The character table is determined by
Theorem 7.10 (p. 191). The respective permutation characters are indexed
by the cardinalities of the corresponding spaces. They are exhibited as linear
combinations of the basic characters ψ1, ψ2, ψ3. Note that for 1 ≤ r ≤ 4,
the dimension of the permutation character πr is the cardinality r of the
corresponding homogeneous space, in accordance with Proposition 9.10. Also,
the principal character ψ1 occurs exactly once in each permutation character,
as described by Theorem 9.4. For the decomposition of the regular character
π4, compare Exercise 4. From Figure 9.1, it may be seen that the inequivalent
permutation representations

{0, 2}\Q +∅\Q
and

0\Q + 0\Q
have the same permutation character π2 + π4 = 2π3.

REMARK 9.3 Consider the conformal field theory describing the scaling
limit of the Ising model at the critical point (compare Ex. 5.2.12 of [26] or
[109]). This theory has three physical representations

ρ0, ρ1, ρ1/2

with respective statistical dimensions

1, 1,
√

2

(Ex. 11.3.22 of [26] or (1.57) of [109]). These statistical dimensions are the
dimensions of the basic characters ψ1, ψ2, and ψ3 of (Z/4Z,−). Now the
centralizer ring of (Z/4Z,−) yields the fusion rules of the conformal field
theory under the assignments

ρ0 7→ A1, ρ1 7→ A2, ρ1/2 7→ A3/
√

2

of physical representations to incidence matrices of quasigroup conjugacy
classes. It is then of interest to note that the Markov matrices R0\Q(1) and
R0\Q(3) in the faithful permutation representation 0\Q of Q = (Z/4Z,−) have
exactly the stochasticity of the sites of the Ising model: a uniform two-way
split between “spin up” and “spin down.”

9.9 Exercises

1. Show that a quasigroup is abelian if and only if its actions are all com-
mutative.
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2. (a) Show that each 2-element homogeneous space affords a commuta-
tive action.

(b) Give an example of a 3-element homogeneous space which does not
afford a commutative action.

3. Verify the claim of Example 9.1.

4. For a finite, nonempty quasigroup Q, show that the regular character
decomposes as the sum

πQ =
s∑

i=1

ψi1ψi

of multiples of basic characters.

5. For a finite quasigroup Q, consider finite Q-sets X and Y .

(a) If Q is a group, show that πX×Y = πXπY .

(b) Give an example of Q, X, Y for which πX×Y 6= πXπY .

6. Let Q be a finite group.

(a) For finite Q-sets X and Y , show that 〈πX , πY 〉 is the number of
orbits of Q on X × Y .

(b) For a transitive Q-set X, show that 〈πX , πX〉 is the number of
orbitals of Q on X.

7. Let Q be a finite quasigroup. Show that if two finite Q-sets X and Y
are isomorphic, then πX = πY . Conclude that the map

A+(Q) → CCl(Q); [X] 7→ πX , (9.26)

taking an isomorphism class of permutation representations to the per-
mutation character of a representative, is well defined.

8. Let Q be a finite group, with Burnside algebra A(Q) and algebra CCl(Q)
of class functions. Consider the rational linear extension

p : A(Q) → CCl(Q)

of the map (9.26). Show that p is an algebra homomorphism.

9. Consider the Burnside algebra A(Z/4Z,−) and the class function alge-
bra CCl(Z/4Z,−) for the quasigroup of integers modulo 4 under sub-
traction. Let

p : A(Z/4Z,−) → CCl(Z/4Z,−)

be the rational linear extension of the map (9.26).
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(a) Determine the kernel of the rational linear map p.

(b) For what algebra structures on A(Z/4Z,−) and CCl(Z/4Z,−) does
p provide a homomorphism?

10. Show that each class function on (Z/4Z,−) may be expressed as a com-
plex linear combination of permutation characters.

11. Let Q be a 3-element quasigroup without idempotent elements.

(a) Show that the only homogeneous spaces are trivial or regular.

(b) Show that the nontrivial basic characters cannot be expressed as a
complex linear combination of permutation characters.

12. Let Q be a finite rank 2 quasigroup. Show that each class function
on Q can be expressed as a complex linear combination of permutation
characters.

13. Let X be a permutation representation of a finite quasigroup Q. The
action is said to be 2-transitive if

πX = ψ1 + ψi

for a nonprincipal basic character ψi of Q.

(a) Show that a 2-transitive action is transitive.

(b) If Q is a group, show that a permutation representation X of Q
is 2-transitive if and only if Q acts transitively on the diversity
relation X2r X̂ of X. (Thus the quasigroup-theoretic definition of
2-transitivity generalizes the standard group-theoretic definition.)

14. Let Q be a finite quasigroup. Show that a transitive permutation rep-
resentation X is 2-transitive if and only if 〈πX , πX〉Q = 2.

15. Let Q be a rank 2 quasigroup of finite order n. Let X be a transitive
permutation representation of Q, with |X| = r.

(a) Show that the permutation character of X is

πX = ψ1 +
r − 1√
n− 1

· ψ2 .

(b) Conclude that X is 2-transitive if and only if

n = 1 + (r − 1)2 .

16. Let P be a right Lagrangean subquasigroup of a rank 2 quasigroup Q.
If the homogeneous space P\Q is 2-transitive, show that Q is a cyclic
group of order 2.
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17. [121] Let Q be a group of permutations on a homogeneous space P\Q
of finite order n. Let S be a subset of Q of order n.

(a) Show that S is sharply transitive if and only if

∑

q∈S

RP\Q(q) = Jn .

(b) Show that S is sharply transitive if and only if

ψ′
( ∑

q∈S

q
)

= 0

for each nonprincipal basic summand ψ of the permutation char-
acter πP\Q.

(c) Let N be a subgroup of Q such that

πP\Q = πN\Q + θ

for a sum θ of nonnegative integer multiples of basic characters of
Q. If S is sharply transitive, consider the equation

∑

q∈S

RN\Q(q) =
nJ

|N\Q|

to show that |N\Q| divides n.

18. Let Q = Sr for an even integer r > 4. In the natural representation of
Sr, let N be the stabilizer of a point, and let P be the stabilizer of a
2-element set of points. Note that |N\Q| does not divide

n =
r(r − 1)

2
.

Show that there are basic characters ψ2, ψ3 of Q such that

πN\Q = ψ1 + ψ2

and
πP\Q = ψ1 + ψ2 + ψ3 .

Conclude that there are no sharply transitive subsets in the permutation
group S

[2]
r of Proposition 8.3 (p. 202).
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9.10 Problems

1. For which finite quasigroups Q can each class function be expressed as
a complex linear combination of permutation characters?

2. For a finite quasigroup Q, consider the rational linear extension

p : A(Q) → CCl(Q)

of the map [X] 7→ πX , taking an isomorphism class of permutation
representations to the permutation character of a representative (com-
pare Exercises 7 through 9). Characterize those finite quasigroups Q for
which p is an algebra homomorphism.

3. Consider a subquasigroup P of a finite quasigroup Q. Under what condi-
tions is the permutation character πP\Q of the quasigroup homogeneous
space P\Q obtained by induction from the principal character on the
subquasigroup P? (Compare Remark 9.2.)

9.11 Notes

Section 9.1

The results of the first four sections appeared originally in [160].

Section 9.5

Most of the results in this and the subsequent sections are taken from [96],
with the exception of Example 9.1 and Proposition 9.10.

 



Chapter 10

MODULES

This chapter provides an introduction to quasigroup module theory. Since
matrix multiplication is associative, naive attempts to extend group module
theory are doomed to failure. However, as described in Section 10.1, a mod-
ule over a group Q yields a split extension, which may be characterized as
an abelian group in the slice category of groups over Q. The most general
definition of a module over a quasigroup Q is thus given in Section 10.2 as an
abelian group in the slice category Q/Q of quasigroups over Q. An alternative
characterization in terms of self-centralizing congruences is also presented. In
particular, the central piques of Chapter 3 emerge as modules over the single-
ton quasigroup (Exercise 8). In Section 10.3, the Fundamental Theorem 10.1
of Quasigroup Representations identifies quasigroup modules as being equiv-
alent to modules over stabilizers in the universal multiplication group. While
these modules are too general to yield specific information about a quasigroup
Q, they do provide a framework for the representations in varieties that are
the topic of Section 10.5. For a unital commutative ring S, and for a quasi-
group Q in a variety V, these representations are defined as S-modules in the
slice category V/Q of V-quasigroups over Q. They are equivalent to modules
over a certain quotient of the group S-algebra of stabilizers in the universal
multiplication group of Q in V. The quotient is determined by a process of
combinatorial partial differentiation of the quasigroup words appearing in the
identities defining the variety V. This process is described in Section 10.4.
Section 10.6 shows that modules over groups may be recovered as quasigroup
modules in the variety of associative quasigroups.

10.1 Abelian groups and slice categories

An abelian group may be described as an object A in the category Set of
sets and functions, equipped with a zero function

0 : A0 → A; ∗ 7→ 0 ,

negation function
− : A → A; a 7→ −a ,

245 



246 An Introduction to Quasigroups and Their Representations

and addition function

+ : A2 → A; (a, b) 7→ a + b ,

satisfying the usual identities that may be expressed by commutative dia-
grams. For example, the identity −a + a = 0 corresponds to the commuting
of the diagram

A
(−,1)−−−−→ A2

y
y+

A0 −−−−→
0

A

(10.1)

in the category of sets. More generally, let C be a category with finite products.
Then an abelian group in the category C is an object A of C, equipped with
C-morphisms

0 : A0 → A (zero),
− : A → A (negation), and

+ : A2 → A (addition),

such that all the diagrams representing abelian group identities, like (10.1),
commute when interpreted in C.

Now let Q be an object of a category C. The slice category “C over Q” or
C/Q has the C-morphisms p : E → Q with codomain Q as its objects. There
is a C/Q-morphism

f : (p1 : E1 → Q) −→ (p2 : E2 → Q) (10.2)

precisely when there is a C-morphism

f : E1 → E2 (10.3)

such that the diagram

E1
f−−−−→ E2

p1

y
yp2

Q −−−−→
1Q

Q

commutes in C. It is often convenient to describe a slice morphism (10.2) sim-
ply by the corresponding morphism (10.3) in the base category. If the original
category C has pullbacks, then the slice category C/Q has finite products. The
empty product or terminal object is the identity 1Q : Q → Q on Q in C, while
the product of two objects pi : Ei → Q is the pullback object E1 ×Q E2 in C,
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equipped with the C-morphism to Q given by either path through the pullback
diagram

E1 ×Q E2
π2−−−−→ E2

π1

y
yp2

E1 −−−−→
p1

Q

(10.4)

in C. The projections of the product are given by the πi from (10.4).
Now let Q be a group, and let M be a right Q-module. Recall that the split

extension E = QnM is the set Q×M equipped with the product

(q1, m1)(q2, m2) = (q1q2,m1q2 + m2) . (10.5)

The split extension comes equipped with the projection

p : E → Q; (q, m) 7→ q (10.6)

and the insertion ηQ or

η : Q → E; q 7→ (q, 0), (10.7)

both of which are group homomorphisms. For a fixed element q of Q, it is
convenient to think of the preimage

p−1{q} = {(q, m) | m ∈ M}
as a neighborhood of qη in E, consisting of a local copy Mq of the set M . The
conjugation action of an element qη on the normal subgroup M1 of E is given
by

(q, 0)\(1,m)(q, 0) = (mq, 0), (10.8)

thereby reflecting the action of Q on the module M .
Let Gp be the category of group homomorphisms. Then the projection

(10.6) becomes an object of the slice category Gp/Q. The pullback

E ×Q E =
{(

(q, m1), (q, m2)
) ∣∣∣ q ∈ Q, m1,m2 ∈ M

}
(10.9)

in Gp is the domain of a local addition

+Q : E ×Q E → E;
(
(q,m1), (q, m2)

) 7→ (q, m1 + m2)

that makes (10.6) an abelian group in the category Gp/Q, with (10.7) as
zero morphism. Conversely, let p : E → Q be an abelian group in the slice
category Gp/Q. Let M be the group kernel p−1{1Q} of p. Then in analogy
with (10.8), each element q of Q acts on M by

q : m 7→ qη\mqη,

making M a right Q-module. This construction, along with the split ex-
tension, shows that Q-modules are equivalent to abelian groups in the slice
category Gp/Q of groups over Q.
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10.2 Quasigroup modules

Section 10.1 related modules over a group Q to abelian groups in the cat-
egory of groups over Q. For a general quasigroup Q, one thus defines a
Q-module or module over Q to be an abelian group object in the category
Q/Q of quasigroups over Q. Since the category Q has pullbacks, products
in the slice category are given by (10.4). Then a Q-morphism or Q-module
homomorphism f : E1 → E2 between Q-modules is a Q/Q-morphism such
that 0f = 0, −f = f−, and +f = (f ×Q f)+. The category Z ⊗Q/Q has
Q-modules as its objects and Q-morphisms between them as its morphisms.

In this section, Q-modules will be identified with self-centralizing quasi-
group congruences V whose quotient is Q. First, let p : E → Q be an abelian
group in the slice category Q/Q. Note that for each object D → Q of the
slice category, the set Q/Q(D, E) of slice category morphisms to E inherits
an abelian group structure from E → Q. The zero element is the composite

D → Q
0−→ E .

Negation of f : D → E is the composite

−f : D
f−→ E

−−→ E .

The sum of two morphisms f : D → E and f ′ : D → E is the composite

f + f ′ : D
(f,f ′)−−−→ E ×Q E

+−→ E .

Verification of the various identities is straightforward (Exercise 4). In par-
ticular, Q/Q(1Q : Q → Q, p : E → Q) is an abelian group. Since the zero
element 0Q : Q → E of this abelian group gives a commuting diagram

Q
0Q−−−−→ E

1Q

y
yp

Q −−−−→
1Q

Q

(10.10)

it follows that p : E → Q is an epimorphism in Q (Exercise 3). Its kernel
is the congruence V = E ×Q E on E, and the quotient EV , being naturally
isomorphic to the quasigroup Q, may be identified with it. Now there is a
Q/Q-morphism − : V → E called subtraction defined, as usual for abelian
groups, by the composite

E ×Q E
(1,−)−−−→ E ×Q E

+−→ E .

The kernel of − : V → E is a congruence W on V .
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PROPOSITION 10.1
The congruence W on V is the centering congruence (V |V ) by which V

centralizes itself.

PROOF The conditions of Definition 3.1 must be checked.
(C0):

(x, y)W (x′, y′)
⇒ x− y = x′ − y′

⇒ xV = (x− y)V = (x′ − y′)V = x′V

⇒ (x, x′) ∈ V .

(C1): For (x, y) in V , the map

π : (x, y)W → xV ; (x′, y′) 7→ x′

has the two-sided inverse

x′ 7→ (
x′, x′ − (x− y)

)
.

(RR):

(x, y) ∈ V

⇒ x− x = xV 0Q = yV 0Q = y − y

⇒ (x, x)W (y, y) .

(RS):

(x1, x2)W (y1, y2)
⇒ x1 − x2 = y1 − y2

⇒ x2 − x1 = y2 − y1

⇒ (x2, x1)W (y2, y1) .

(RT):

(x1,x2)W (y1, y2) and
(x2, x3)W (y2, y3)

⇒x1 − x2 = y1 − y2 and
x2 − x3 = y2 − y3

⇒x1 − x3 = y1 − y3

⇒(x1, x3)W (y1, y3) .

Proposition 10.1 has a number of immediate comsequences.
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COROLLARY 10.1

(a) For (x, y) in V , one has (xV 0Q, x)W (y, x + y).

(b) The category of Q-modules is a full subcategory of the slice category
Q/Q. In other words, every slice category morphism between Q-modules
is a Q-morphism.

PROOF (a): By reflexivity,

(xV 0Q, x)W (xV 0Q, x) .

By (RR),
(xV 0Q, xV 0Q)W (y, y) .

Adding,
(xV 0Q, x)W (y, x + y) .

(b): Suppose f : E → E′ is a Q/Q-morphism between abelian groups in Q/Q.
Using the operation P of (2.27), (a) and Proposition 3.4 imply

x + y = (x, xV 0Q, y)P . (10.11)

Then since f is a quasigroup homomorphism,

(x + y)f = (x, xV 0Q, y)Pf

= (xf, xV 0Qf, yf)P
= xf + yf ,

the latter equation holding by (10.11) in E′.

One may now show the equivalence of Q-modules with self-centralizing
quasigroup congruences whose quotient is Q. The first result summarizes
the foregoing, and serves to recover a Q-module from the self-centralizing
congruence it contains.

PROPOSITION 10.2
Let p : E → Q be an abelian group in the slice category Q/Q. Then p : E → Q
is an epimorphism in Q whose kernel congruence V is self-centralizing with
centering congruence (V |V ). Identifying EV with Q via the natural isomor-
phism, the object

V (V |V ) → EV ; (x, y)(V |V ) 7→ xV

of Q/Q is isomorphic in Q/Q to p : E → Q.
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PROOF There are mutually inverse Q/Q-morphisms

E → V (V |V ); x 7→ (x, xV 0Q)(V |V )

and

V (V |V ) → E; (x, y)(V |V ) 7→ x− y.

The converse of Proposition 10.2 constructs Q-modules from self-centralizing
congruences whose quotient is (isomorphic to) Q.

PROPOSITION 10.3

Suppose that a quasigroup E has a self-centralizing congruence V with cen-
tering congruence (V |V ). Suppose that the quotient EV is identified with a
quasigroup Q. Then

V (V |V ) → EV ; (x, y)(V |V ) 7→ xV

is an abelian group in Q/Q.

PROOF There are well-defined Q/Q-morphisms

0 : EV → V (V |V ); xV 7→ (x, x)(V |V ) , (10.12)

− : V (V |V ) → V (V |V ); (x, y)(V |V ) 7→ (y, x)(V |V ) (10.13)

and

+ : V (V |V ) ×EV V (V |V ) → V (V |V ) (10.14)

making V (V |V ) → EV an abelian group in Q/Q. The morphism + is defined
by

(x, y)(V |V ) + (x′, y′)(V |V ) = (x, z)(V |V )

for elements x, y, x′, y′ of E in a single congruence class of E, the element z
being defined uniquely by the bijection

(x′, y′)(V |V ) → x′V ; (y, z) 7→ y

in the centrality condition (C1) for (V |V ) on V . The morphism + is well-
defined by (RT). It is straightforward to verify that the morphisms (10.12)
through (10.14) furnish an abelian group in the slice category Q/Q (compare
Exercise 5).
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10.3 The Fundamental Theorem

For a quasigroup Q, the previous section identified Q-modules with self-
centralizing congruences having Q as quotient. For an element e of Q, the main
theorem of this section identifies Q-modules with modules for the universal
stabilizer of e in Q.

THEOREM 10.1
(Fundamental Theorem of Quasigroup Representations)
Let Q be a quasigroup with an element e. Let G̃ be the universal multiplication
group U(Q;Q) of Q in the variety Q of all quasigroups. Then Q-modules, as
abelian groups in the slice category Q/Q, are equivalent to modules over the
universal stabilizer G̃e.

Suppose that p : E → Q is an abelian group in Q/Q. The inverse image
M = p−1{e} forms an abelian group under the restriction of the addition
morphism

+ : E ×Q E → E .

The zero morphism 0 : Q → E embeds Q in E. By Corollary 2.5 (p. 52),
the relative multiplication group MltE(Q) is a quotient of G̃. Then G̃ acts
on E via this quotient. The action restricts to an action of the universal
stabilizer G̃e on M . As the following lemma shows, the action consists of
automorphisms of the abelian group M . Thus the Q-module p : E → Q
yields a G̃e-module M = p−1{e}.

LEMMA 10.1
The universal stabilizer G̃e acts on M = p−1{e} as a group of automorphisms.

PROOF Use the notation of Section 2.2 for elements of the universal sta-
bilizer. Let E(q1, . . . , qn) be such an element, with corresponding quasigroup
word

qE(q1, . . . , qn) = qq1 . . . qnwE .

Let m and m′ be elements of the abelian group M . Let V be the kernel of p,
centered by W as in Proposition 10.2. Now

(e,m) W (m′,m + m′)

by Corollary 10.1(a), while

(qi, qi)W (qi, qi)
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for 1 ≤ i ≤ n. Applying the quasigroup word wE to these relations, and
recalling that W is a congruence on V , gives

(
e,mE(q1, . . . , qn)

)
W

(
m′E(q1, . . . , qn), (m + m′)E(q1, . . . , qn)

)
.

But again by Corollary 10.1(a),
(
e,mE(q1, . . . , qn)

)
W

(
m′E(q1, . . . , qn),mE(q1, . . . , qn) + m′E(q1, . . . , qn)

)
.

Property (C1) of W (see Proposition 10.1) yields

(m + m′)E(q1, . . . , qn) = mE(q1, . . . , qn) + m′E(q1, . . . , qn) ,

so the universal stabilizer element acts as an abelian group automorphism.

Conversely, for a G̃e-module M , a corresponding abelian group π : E → Q
in Q/Q has to be constructed. For each element q of Q, consider the element

ρ(e, q) = R(e\e)−1R(e\q)

of a transversal to the subgroup G̃e of G̃. For each element g of G̃ and q of
Q, there is a unique element s(q, g) of G̃e such that

s(q, g)ρ(e, qg) = ρ(e, q)g . (10.15)

In the Cayley diagram, s(q, g) may be represented by the composite path

e
R←− e

R−→ q
g−→ qg

R←− e
R−→ e . (10.16)

Note that
s(e, ge) = ge (10.17)

for ge in G̃e and
s(q, g)s(qg, h) = s(q, gh) (10.18)

for q ∈ Q and g, h ∈ G. Now consider the G̃-set E = M ×Q with action

(m, q)g =
(
ms(q, g), qg

)
. (10.19)

(The crossed product condition (10.18) guarantees that (10.19) does give a
group action — Exercise 6.) Define local abelian group structures on E by

(m1, q)− (m2, q) = (m1 −m2, q) (10.20)

for mi ∈ M and q ∈ Q. Let π : E → Q be projection onto the second factor.
Then a quasigroup structure is defined on E by





a · b = aR(bπ) + bL(aπ) ;
a/b = (a− bL(aπ/bπ))R(bπ)−1 ;
a\b = (b− aR(aπ\bπ))L(aπ)−1 .

(10.21)
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With this structure, π : E → Q becomes an abelian group object in the
category Q/Q. Note that by (10.17), the G̃e-modules M and π−1{e} are
isomorphic.

The proof of the Fundamental Theorem is completed by the following ob-
servation.

LEMMA 10.2
A Q-module

p : E → Q

is isomorphic to the corresponding

π : p−1{e} ×Q → Q

constructed according to (10.19) through (10.21).

PROOF Let V be the kernel congruence of p : E → Q, centered by W .
For elements a, b of E, the relations (ap, a)W (ap, a) and (bp, bp)W (b, b) yield

(ap · bp, a · bp)W (ap · b, a · b) .

But by Corollary 10.1(a),

(ap · bp, a · bp) W (ap · b, a · bp + ap · b) .

Thus
a · b = a · bp + ap · b ,

so that
p−1{e} ×Q → E; (m, q) 7→ mρ(e, q)

and
E → p−1{e} ×Q; a 7→ (aρ(e, ap)−1, ap)

are mutually inverse isomorphisms.

10.4 Differential calculus

The Fundamental Theorem provides a differentiation process that may be
applied to quasigroup words and identities. Fix a quasigroup Q with element
e and universal multiplication group G̃ = U(Q;Q) in the variety of all quasi-
groups. The category of G̃e-modules is generated by the integral group algebra
ZG̃e, considered as a G̃e-module. Under the equivalence given by the Funda-
mental Theorem, the corresponding object is the Q-module π : ZG̃e×Q → Q.
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Using (10.21), the action of a quasigroup word x1 . . . xnw on this object is
given by

(m1, q1) . . . (mn, qn)w =
( n∑

h=1

mhρ(e, qh)
∂w

∂xh
ρ(e, w)−1, q1 . . . qnw

)
(10.22)

for certain elements
∂w

∂xh
=

∂w

∂xh
(q1, . . . , qn) (10.23)

of ZG̃. Notational conventions similar to those of calculus are employed. The
functions

∂w

∂xh
: Qn → ZG̃; (q1, . . . , qn) 7→ ∂w

∂xh
(q1, . . . , qn) (10.24)

for 1 ≤ h ≤ n are known as the partial derivatives of the quasigroup word
x1 . . . xnw. They are computed inductively using the parsing of the word
x1 . . . xnw. For xw = x, (10.22) simply gives

∂x

∂x
= 1 . (10.25)

More generally, the derivatives of the projection

x1 . . . xi . . . xnπi = xi

are given by
∂πi

∂xj
= δij .

For x1 . . . xkxk+1 . . . xk+lw = x1 . . . xku · xk+1 . . . xk+lv, (10.21) and (10.22)
give

(m1,q1) . . . (mk+l, qk+l)w =
( k+l∑

h=1

mhρ(e, qh)
∂w

∂xh
ρ(qh, w)−1, w

)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1, u

)
·
( k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1, v

)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1, u

)
R(qk+1 . . . qk+lv)

+
( k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1, qk+1 . . . qk+lv

)
L(q1 . . . qku)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1s

(
u,R(v)

)
+

k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1s

(
v, L(u)

)
, w

)
,
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leading to the Product Rules

∂w

∂xi
=

∂u

∂xi
R(xk+1 . . . xk+lv)

for 1 ≤ i ≤ k and
∂w

∂xj
=

∂v

∂xj
L(x1 . . . xku)

for k < j ≤ k + l. These may be summarized as

∂(u · v)
∂xi

=
∂u

∂xi
R(v) ; (10.26)

∂(u · v)
∂xj

=
∂v

∂xj
L(u) . (10.27)

Note that if there are repeated arguments in the word w, say qi = qj with
i ≤ k < j, then ∂w/∂xi will include the sum of ∂(u · v)/∂xi as given by
(10.26) and ∂(u · v)/∂xj as given by (10.27).

Example 10.1
The Product Rules give

∂xy

∂x
= R(y)

and
∂xy

∂y
= L(x) .

Thus
∂x2

∂x
= R(x) + L(x) .

Arguments similar to those used for the Product Rules also yield the Right
Quotient Rules

∂(u/v)
∂xi

=
∂u

∂xi
R(v)−1 ; (10.28)

∂(u/v)
∂xj

= − ∂v

∂xj
L(u/v)R(v)−1 ; (10.29)

and the Left Quotient Rules

∂(u\v)
∂xi

= − ∂u

∂xi
R(u\v)L(u)−1 ; (10.30)

∂(u\v)
∂xj

=
∂v

∂xj
L(u)−1 . (10.31)
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10.5 Representations in varieties

The Fundamental Theorem 10.1 of Quasigroup Representations shows that
general Q-modules are equivalent to G̃e-modules. The only influence that Q
itself has on these modules is through its cardinality, which determines the
ranks of the free groups G̃ and G̃e.

For representations that involve more of the structure of Q, one has to
restrict the possibilities. There are two methods for doing this. The first
method is to take a subvariety V of Q that still contains Q. The smaller the
variety V, the more it will reflect Q. By Birkhoff’s Theorem B.1, the minimal
such variety is the variety HSP{Q} generated by Q. For some quasigroups
Q, the universal multiplication group U(Q; HSP{Q}) actually collapses to the
combinatorial multiplication group, although for other quasigroups this does
not happen [126].

The second method for refining the representation theory is to take a unital
commutative ring S other than the ring Z that gives abelian groups in V/Q,
and then consider unital S-modules in V/Q. (Unital S-modules in a cate-
gory with finite products are abelian groups in the category, equipped with
additional morphisms corresponding to scalar multiplications by elements of
S. Diagrams corresponding to distributive laws are required to commute,
and scalar multiplication by the identity element 1S is required to act as
the identity morphism.) The category of S-modules in V/Q is written as
S ⊗V/Q. This section shows how to describe S-modules in V/Q as modules
over quotients of the group algebra SG̃e of an element stabilizer in the uni-
versal multiplication group G̃ = U(Q;V) of Q in V. The real value of the
unrestricted representation theory is then seen to lie in the way it provides a
uniform framework within which to study all the various special theories.

Varieties V of quasigroups are axiomatized, within the variety Q of all
quasigroups, by additional identities u = v between quasigroup words. For
example, Steiner triple systems are given by (1.15) and (1.20). Suppose that e

is an element of a quasigroup Q lying in the variety V, and that G̃ = U(Q;V)
is the universal multiplication group of Q in V. The partial derivatives (10.24)
of a quasigroup word w may then be construed as mapping into the integral
group algebra of U(Q;V), rather than U(Q;Q). Suppose that B is a relative
equational basis for V in Q, a set of quasigroup identities specifying V within
the variety of all quasigroups. For a general commutative ring S with identity
1S , let JSG̃e be the two-sided ideal of SG̃e generated by the set of all elements

1S ⊗ ρ(e, qh)
( ∂u

∂xh
(q1, . . . , qn)− ∂v

∂xh
(q1, . . . , qn)

)
ρ(e, q1 . . . qnu)−1 (10.32)

for all qh ∈ Q and (u, v) ∈ B. Note that since Q lies in V, its elements
q1 . . . qnu and q1 . . . qnv coincide. Let SVQ be the quotient ring SG̃e/JSG̃e.
There is then a relativized version of the Fundamental Theorem 10.1.
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THEOREM 10.2
(Fundamental Theorem of Representations in Varieties)
Let Q be a nonempty quasigroup in a variety V. Then the category S⊗V/Q
of S-modules in V/Q is equivalent to the category of modules over the ring
SVQ.

PROOF Let M be a unital right SVQ-module. Then M is a right
U(Q;Q)e-module via the monoid morphism

U(Q;Q)e → G̃e → ZG̃e
1S⊗−−−→ SG̃e → SVQ . (10.33)

Since M is a right U(Q;Q)e-module, the Fundamental Theorem 10.1 furnishes
a corresponding Q-module π : M ×Q → Q. For each element s of the ring S,
define

s : M ×Q → M ×Q; (m, q) 7→ (ms, q) . (10.34)

Since the S-action on M commutes with the Q̃e-action, the maps (10.34) are
Q/Q-morphisms. Furthermore, π : M × Q → Q becomes an S-module in
Q/Q. For each element u = v of the relative equational basis B,

(m1, q1) . . . (mn, qn)u

=
( n∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, q1 . . . qnu)−1, q1 . . . qnu

)

=
( n∑

i=1

miρ(e, qi)
∂v

∂xi
ρ(e, q1 . . . qnv)−1, q1 . . . qnv

)

= (m1, q1) . . . (mn, qn)v ,

the central equality holding since M is an SVQ-module, annihilated by the
elements (10.32) of JSG̃e. Thus π : M ×Q → Q is an S-module in V/Q.

If E(q1, . . . , qn) is a generic element of the domain of (10.33), use the same
notation for its image in the codomain. Let qq1 . . . qnwE = qE(q1 . . . , qn)
be the corresponding quasigroup word. Now suppose that p : A → Q is
an S-module in V/Q. In particular, it is an abelian group in Q/Q. The
Fundamental Theorem 10.1 furnishes a corresponding U(Q;Q)e-module M =
p−1{e}. For each element s of S, there is a Q/Q-morphism s : A → A. Then
for m in M and E(q1, . . . qn) in U(Q;Q)e,

mE(q1, . . . , qn)s
= mq1 . . . qnwEs

= msq1s . . . qnswE

= msq1 . . . qnwE

= msE(q1, . . . , qn) .
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Thus the S-action on M commutes with the U(Q;Q)e-action, whence M is
a right S ⊗ ZU(Q;Q)e-module or SU(Q;Q)e-module. Suppose E(q1, . . . , qn)
and F (q1, . . . , qn) are elements of U(Q;Q)e lying in the kernel congruence of
the canonical map rc : U(Q;Q)e → U(Q;V)e. Since A is a V-quasigroup
containing Q (embedded via 0Q as always), Corollary 2.5 (p. 52) supplies a
group homomorphism rA : U(Q;V) → MltAQ. Then

mE(q1, . . . , qn) = mE(q1, . . . , qn)rcrA

= mF (q1, . . . , qn)rcrA

= mF (q1, . . . , qn)

for each m in M . The SU(Q;Q)e-module M becomes an SG̃e-module or
SU(Q;V)e-module. Using the categorical equivalence given by the Funda-
mental Theorem 10.1, the construction of M × Q recovers the quasigroup A
from M up to natural isomorphism. Since A is a V-quasigroup, the elements
(10.32) annihilate M , so M is an SG̃e/JSG̃e-module or SVQ-module.

DEFINITION 10.1 In the context of Theorem 10.2, the principal bun-
dle over Q in V is defined to be the S-module in V/Q corresponding to the
generating SVQ-module SVQ.

Given a relative equational basis B for a variety V of quasigroups, and an
element e of a quasigroup Q in V, the computation of the ring SVQ involves
determination of the generators (10.32) of the ideal JSG̃e. The process is
simplified by the observation that in certain cases, these generators will vanish.
Consider a quasigroup word x1 . . . xnw written out using infix notation as a
well-formed string of symbols

( , ) , x1 , . . . , xn , · , / , \ .

The argument xh (for 1 ≤ h ≤ n) is said to occur uniquely in w if the symbol
xh appears only once in the string. The following result is readily proved by
induction using the Product and Quotient Rules.

LEMMA 10.3
Suppose that an argument xh of a quasigroup word w occurs uniquely. Then
the elemnt ∂w/∂xh of ZG̃ actually lies in G̃.

If the argument xh of w occurs uniquely, then it is further said to occur
above the line in w if it appears to the left of all the symbols / and to the
right of all the symbols \ in the string. For example, x occurs above the line
in (x/y) · z, in z\(x/y), and in (t · x) · (y · z). The following result is again
proved by induction using the Product Rules (10.26), (10.27) and Quotient
Rules (10.28), (10.31).
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LEMMA 10.4
Suppose that an argument xh of a quasigroup word w occurs uniquely above

the line. Then the function (10.24) does not depend on qh.

PROPOSITION 10.4
Let u = v be an element of a relative equational basis B for a variety V of

quasigroups. Let e be an element of a quasigroup Q in V. If the argument xh

occurs uniquely above the line in both u and v, then the generator (10.32) of
the ideal JSG̃e vanishes.

PROOF By Lemmas 10.3 and 10.4, the derivatives ∂u/∂xh(q1, . . . , qn)
and ∂v/∂xh(q1, . . . , qn) are elements of G̃ that do not involve qh. Further, the
equations

q1 . . . X . . . qnu = Xρ(e, qh)
∂u

∂xh
(q1, . . . , qn)ρ(e, q1, . . . , qnu)−1 (10.35)

and

q1 . . . X . . . qnv = Xρ(e, qh)
∂v

∂xh
(q1, . . . , qn)ρ(e, q1, . . . , qnv)−1 (10.36)

hold in the coproduct Q[X] of Q in V with the free V-quasigroup on the
singleton {X}. Since the coproduct Q[X] lies in V, the elements (10.35) and
(10.36) coincide. Thus

∂u

∂xh
(q1, . . . , qn) =

∂v

∂xh
(q1, . . . , qn) ,

whence the corresponding generator (10.32) vanishes.

10.6 Group representations

As a first application of the ideas of the preceding section, group represen-
tations are recovered within the present scheme. Consider the variety G of
associative quasigroups. A nonempty member Q of G is just a group. For such
a quasigroup Q, take e to be the identity element, selected as e = x/x for any
element x of Q. By (2.40), the universal multiplication group G̃ = U(Q;G)
of Q in G is

{T (x, y) = L(x)−1R(y) | x, y ∈ Q}
(omitting the tildes from the universal right and left multiplications). The
stabilizer of the identity element e is generated by (2.45). However, since the
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coproduct Q[X] in G is associative, R(x, y) = L(x, y) = 1 for all x, y in Q.
Thus there is an isomorphism

Te : Q → G̃e;x 7→ Te(x) = T (x, x) (10.37)

from the group Q to the universal stabilizer G̃e. Define quasigroup words

x1x2x3u = x1x2 · x3

and
x1x2x3v = x1 · x2x3 .

Then B = {(u, v)} forms a relative equational basis for G in Q. Since each
argument xh occurs uniquely above the line in both u and v, Proposition 10.4
shows that JZG̃e = 0. The Fundamental Theorem 10.2 of Representations
in Varieties then states that a Q-module in G is equivalent to a unital right
ZG̃e-module. By the isomorphism (10.37), such an object in turn is the same
as a unital right ZQ-module. Thus for a group Q, a Q-module in the variety
G is equivalent to a right Q-module in the traditional sense.

10.7 Exercises

1. Express the associative law for an abelian group as a commuting diagram
in the category of sets.

2. Verify the associativity of the multiplication (10.5), and the subsequent
assertions of Section 10.1. In particular, show that a general abelian
group p : E → Q in Gp/Q is isomorphic to the corresponding split
extension Qn p−1{1Q} → Q.

3. Show that the commuting of (10.10) implies that the projection mor-
phism p : E → Q is an epimorphism in Q.

4. Let E → Q be an abelian group in the slice category Q/Q. For an
object D → Q of Q/Q, complete the verification that Q/Q(D, E) is an
abelian group.

5. Verify that the morphisms (10.12) through (10.14) furnish an abelian
group in the slice category Q/Q.

6. Use the crossed product condition (10.18) to verify that (10.19) does
give a group action of G̃ on M ×Q.

7. Let e be an element of a quasigroup Q with universal stabilizer G̃e.
Let M be a trivial G̃e-module. Show that the corresponding Q-module
constructed by the Fundamental Theorem 10.1 is just the direct product
M ×Q of the abelian group M with the quasigroup Q.
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8. Use the results of Section 10.2 to identify central piques with modules
over the singleton quasigroup.

9. Use the results of Section 10.5 to identify abelian groups with modules
over the singleton group in the variety of associative quasigroups.

10. Use the results of Section 10.5 to identify entropic piques with modules
over the singleton quasigroup in the variety of entropic quasigroups.

11. Let f : P → Q be a quasigroup homomorphism, and let q : E → Q be
a Q-module. If

F −−−−→ E

p

y
yq

P −−−−→
f

Q

is a pullback, show that p : F → P is a P -module. (This P -module is
known as the pullback of the Q-module E to P along f).

12. Let f : P → Q be a group homomorphism, and let M be a Q-module
determined by a group homomorphism a : Q → Aut M from Q to the
group of automorphisms of the abelian group reduct of M . Show that
the pullback of M to P is determined by the composite homomorphism

P
f−→ Q

a−→ AutM .

13. Derive the Right and Left Quotient Rules.

14. How does Section 10.6 account for left modules over a group Q?

15. Let L be the variety of quasigroups satisfying the identity (1.13). Let Q
be a loop, and let Q∗ denote the set of elements of Q that are distinct
from its identity element e. Finally, set G̃ = U(Q;L).

(a) By arguments similar to those used in the proof of Theorem 2.2 (p.
53), show that G̃ is free on L̃(Q∗) + R̃(Q∗).

(b) Show that the universal stabilizer G̃e is free on

L̃e(Q∗ ×Q∗) + R̃e(Q∗ ×Q∗) + T̃e(Q∗) .

(c) Show that the rank of the free group G̃e is 2|Q|2 − 3|Q|+ 1.

(d) Show that for a unital commutative ring S, the category of unital
right SG̃e-modules is equivalent to the category of Q-modules in L
over S.
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(In [90], K.W. Johnson and C.R. Leedham-Green showed that the cat-
egory of Q-modules in L is equivalent to the category of modules for a
free group on 2|Q|2 − 3|Q|+ 1 generators.)

16. Let C be the variety of commutative quasigroups. For an element e of
Q in C, show that G̃ = U(Q;C) is free on R̃(Q). Determine G̃e.

17. Let K be the variety of commutative L-quasigroups (compare Exer-
cise 15), the variety of commutative loops and the empty set. For a
commutative loop Q with identity element e, let G̃ = U(Q;K). Let
Q∗ = Qr {e}.

(a) Show that G̃ is free on R̃(Q∗).

(b) Show that G̃e is free on R̃e(Q∗ ×Q∗).

10.8 Problems

1. A variety V of quasigroups is said to be universally free if the universal
multiplication group U(Q;V) is free for each Q in V. In particular, the
varieties Q, L, C and K are universally free — compare Theorem 2.2
(p. 53) and Exercises 15 through 17.

(a) Classify the universally free varieties.

(b) In particular, are Q, L, C and K the only nontrivial universally
free varieties of quasigroups?

2. For a commutative, unital ring S and a quasigroup Q in a variety V,
determine:

(a) The universal multiplication group U(Q;V); and

(b) The ring SVQ.

10.9 Notes

Section 10.1

The idea of treating modules as abelian groups in a slice category goes back
to Beck [9, p. 33].
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Section 10.3

The two versions of the Fundamental Theorem were initially proved in [148].
The main idea of Theorem 10.1 is reminiscent of the equivalence between
equivariant bundles and modules [176], although a bundle structure on an
induced module as discussed there does not include a copy of the base set, in
the way that a Q-module includes a copy of Q as the image of the zero map.

Section 10.4

For combinatorial differentiation in groups, see [61].

 



Chapter 11

APPLICATIONS OF MODULE
THEORY

This chapter applies the module theory introduced in Chapter 10 to address
various issues in quasigroup theory. Section 11.1 interprets central piques as
modules over a singleton quasigroup, and shows how the free central pique
on one generator is the nonassociative analogue of the group of integers, pro-
viding indices for nonassociative powers. Section 11.2 uses the concepts of
Section 10.5 to define the exponent of a quasigroup. Based on this definition,
Section 11.4 formulates Burnside’s problem for quasigroups. As discussed in
Section 11.3, Steiner triple systems play a critical role here: although they
have exponent 3, they have infinite universal multiplication groups in the
variety of all Steiner triple systems. Section 11.5 applies module theory to
explain the apparently ad hoc details of the Zassenhaus-Bruck construction
of the free commutative Moufang loop on three generators. It also transpires
that the module concept due to Eilenberg [51], as interpreted by Loginov for
Moufang loops [105], is not strong enough to implement the Zassenhaus-Bruck
construction. The final section, Section 11.6, gives a brief survey of extension
and cohomology theory for each variety of quasigroups, using the equivalence
between modules and self-centralizing congruences described in Section 10.2.

11.1 Nonassociative powers

In group theory, it is often convenient to interpret abelian groups as group
modules over the trivial group. What are the corresponding analogues in
quasigroup theory? In Chapter 3, the normality of the diagonal in the direct
square was taken as the characteristic property of abelian groups. Arbitrary
central quasigroups then emerged as the analogues in quasigroup theory. Now,
regarding abelian groups as trivial modules leads to a more restricted quasi-
group analogue, namely central piques.

DEFINITION 11.1 A banal module E is a quasigroup module over the
trivial quasigroup {e}.

265 
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Following the convention introduced in Section 2.4, the right and left multi-
plications R(e) and L(e) in the universal multiplication group U(Q; {e}) and
its quotients will be abbreviated as R and L respectively. The free group on
the 2-element set {R,L} is denoted by 〈R, L〉. Its integral group algebra is
Z〈R,L〉.

PROPOSITION 11.1
The following structures are equivalent:

(a) A Z〈R, L〉-module E;

(b) A banal module p : E → {e};

(c) A central pique E.

PROOF By Theorem 2.2 (p. 53), both the universal multiplication group
U(Q; {e}) and the universal stabilizer U(Q; {e})e are the free group 〈R, L〉.
The equivalence between (a) and (b) thus becomes a direct consequence of
the Fundamental Theorem 10.1 (p. 252). For the equivalence between (b)
and (c), compare (10.21) with (2.17). Note that the pointed idempotent of a
banal module E → {e} is given by the zero homomorphism 0 : {e} → E.

The group Z of integers is the free abelian group on one generator 1. Inside
the group of integers, the semigroup generated by 1 under addition is the
semigroup Z+ of positive integers. This semigroup is the free semigroup on
the single generator 1. As such, it indexes the powers x1, x2, x3, . . . of an
element x of an arbitrary semigroup.

By Proposition 11.1, the free central pique on one generator 1 is the quasi-
group Z〈R, L〉 under the multiplication

x · y = xR + yL , (11.1)

the principal bundle in the sense of Definition 10.1 (p. 259). The nonassocia-
tive analogue of a semigroup is a magma, a set with a single binary operation
(usually described as “multiplication”). It will now be shown that the magma
Z〈R,L〉+ generated by 1 in the principal bundle Z〈R, L〉 under the multiplica-
tion (11.1) is the free magma on a single generator x, indexing all the possible
nonassociative powers x , x2, x · x2, x2 · x , x2x2, x2x · x , x · xx2, x · x2x , · · · .
Such a power is said to be an n-th power if it is a product of n copies of x. For
each positive integer n, each n-th power is a quasigroup word x . . . xw that
only involves the multiplication. With Q as the singleton quasigroup {e}, the
partial derivative (10.24) reduces to a function

∂w

∂x
: {e} → Z〈R, L〉; e 7→ w′ (11.2)
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selecting an element w′ of Z〈R,L〉+. This element is known as the derivative
of the nonassociative power x . . . xw. The inductive definitions of Section 10.4
give x′ = 1 and

(u · v)′ = u′R + v′L (11.3)

for powers u and v of x.

THEOREM 11.1

Derivation gives an isomorphism from the free magma on a singleton {x} to
the submagma Z〈R,L〉+ generated by 1 in the multiplicative reduct of the free
central pique Z〈R,L〉 generated by 1.

PROOF Since x′ = 1, comparison of (11.1) and (11.3) shows that deriva-
tion gives a surjective magma homomorphism to Z〈R, L〉+ from the free
magma on x. In other words, for each element p(R, L) of Z〈R,L〉+ (a polyno-
mial in the noncommuting variables R and L), the linear differential equation

w′ = p(R, L) (11.4)

with forcing term p(R,L) has a solution w.
It remains to show that derivation injects, i.e., to prove the uniqueness of the

solution to each linear differential equation (11.4) with forcing term p(R,L) in
Z〈R,L〉+. The proof is by induction on the degree of the polynomial p(R, L).
As an induction basis, note that x is the unique solution of the unique instance
w′ = 1 of (11.4) for which p(R,L) has degree zero (is constant). Now if p(R,L)
has positive degree, it decomposes uniquely as a sum

p(R,L) = p1(R,L)R + p2(R, L)L (11.5)

with pi(R, L) in Z〈R, L〉+ for i = 1, 2. Since the degrees of the polynomials
pi(R, L) are less than the degree of p(R,L), there are unique solutions u and
v to u′ = p1(R, L) and v′ = p2(R,L). A solution w to (11.4) with p(R,L)
of positive degree cannot be x, so it must be of the form w = u1 · v1 with
u′1 = pi(R, L) and v′1 = p2(R, L). Thus u1 = u and v1 = v, proving that the
solution w = u · v to (11.4) is unique.

REMARK 11.1 The group of integers is the free group on one generator.
As such, it might well be expected to furnish indices for arbitrary associative
powers. On the other hand, the free quasigroup on one generator is not central
(Exercises 2, 3). Thus it is rather surprising that the free central pique on one
generator provides adequate indexing for arbitrary nonassociative powers.
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11.2 Exponents

The exponent of a group Q is defined as 0 if Q has an element x of infinite
order. Otherwise, the exponent is the smallest positive integer n for which Q
satisfies the equivalent identities xn = 1 or x1+n = x. Only the trivial group
has exponent 1.

A naive attempt at defining the exponent of a quasigroup Q might seek
a minimal nonassociative power x . . . xw such that Q satisfies the identity
x . . . xw = x, or ask for the maximal size of a singly generated subquasigroup
of Q. Unfortunately, these attempts would assign exponent 1 to any idempo-
tent quasigroup, trivial or not. Module theory suggests a more informative
definition of the exponent. Recall that by Birkhoff’s Theorem B.1, the variety
HSP{Q} generated by a quasigroup Q is the class of quasigroups satisfying all
the identities satisfied by Q.

DEFINITION 11.2

(a) The exponent of a quasigroup Q in a variety V of quasigroups is the
characteristic of the ring ZVQ.

(b) The exponent of a quasigroup Q is the exponent of Q in the variety
HSP{Q} generated by Q.

(c) The exponent of a variety V is the exponent of the countably generated
free quasigroup in the variety.

The following proposition presents one connection between Definition 11.2
and the more naive concepts of exponent.

PROPOSITION 11.2

Let A be a singly generated abelian subquasigroup of a quasigroup Q.

(a) If A is infinite, then the exponent of Q is 0.

(b) If A has finite order n, then the exponent of Q is a multiple of n.

PROOF The projection A×Q → Q forms a trivial Q-module in HSP{Q}
(compare Exercise 7 in Chapter 10). By the relative Fundamental Theo-
rem 10.2 (p. 258), there is an equivalent Z(HSP{Q})Q-module structure on
the abelian group A. Thus the characteristic of Z(HSP{Q})Q, the quasigroup
exponent of Q, is a multiple of n if |A| = n, and is 0 if A is infinite.
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It will now be shown that for a group Q, the quasigroup exponent specified
in Definition 11.2 agrees with the group-theoretical exponent. A preparatory
lemma about nonassociative powers is needed.

LEMMA 11.1

Suppose that a quasigroup word x . . . xw is an n-th nonassociative power for
some positive integer n. If the derivative w′ of w in the free magma Z〈R,L〉+
is the polynomial p(R, L), then p(1, 1) = n.

PROOF Use induction on n. If n = 1, then x . . . xw = x, so the derivative
x′ is the constant 1. For n > 1, the word w decomposes as a product w = u ·v
of an r-th power u and an s-th power v, with r+s = n. Suppose u′ = p1(R,L)
and v′ = p2(R, L). As in (11.5), p(R, L) = p1(R, L)R + p2(R, L)L. By the
induction hypothesis, p1(1, 1) = r and p2(1, 1) = s. Then

p(1, 1) = p1(1, 1) + p2(1, 1) = r + s = n ,

as required.

THEOREM 11.2

Suppose that a group Q has group-theoretical exponent n, for some natural
number n. Then the exponent of Q according to Definition 11.2 is n.

PROOF If Q has group-theoretical exponent 0, it contains an infinite
cyclic subgroup A. Proposition 11.2(a) then shows that the quasigroup expo-
nent of Q is 0.

If Q has a positive group-theoretical exponent n, it satisfies the identity

x . . . xw = x (11.6)

for some (1 + n)-th nonassociative power w. Corresponding to the identity
(11.6) and the identity element e of Q, (10.32) gives a generator

ρ(e, e)
(∂w

∂x
(e, . . . , e)− ∂x

∂x
(e, . . . , e)

)
ρ(e, e . . . ew)−1 (11.7)

of the ideal JZG̃e. Since R̃(e) = L̃(e) = 1 in the associative quasigroup
variety HSP{Q}, Lemma 11.1 shows that the generator (11.7) of JZG̃e reduces
to (1 + n) − 1 = n. Thus the quasigroup exponent of Q is a divisor of n.
Conversely, a cyclic subgroup A of Q with |A| = n exists by the definition
of the group-theoretic exponent. Proposition 11.2(b) then shows that the
quasigroup exponent of Q is a multiple of n.
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11.3 Steiner triple systems II

This section studies modules and exponents in the variety STS of Steiner
triple systems introduced in Section 1.6, quasigroups satisfying the identities
(1.15) of idempotence and (1.20) of total symmetry. Since Steiner triple sys-
tems are idempotent, each singly-generated subquasigroup is a singleton. It
will transpire that the exponent of a nontrivial Steiner triple system is 3.

The first task is the determination of the universal multiplication groups
in the variety of Steiner triple systems. Given a set Q, let Q× be the set of
all words in the alphabet Q in which all adjacent letters are distinct. Define
a multiplication on Q× using juxtaposition followed by cancellation of any
resulting pairs of equal adjacent letters. Then Q× becomes a monoid with
the empty word as identity element. Defining an inversion by reversal of
words, i.e., (q1q2 . . . qn)−1 = qn . . . q2q1, the monoid Q× becomes a group. It
is presented as the group generated by Q, subject only to relations specifying
that the elements of Q are involutions. It may also be described as the free
product (coproduct in Gp) of |Q| copies of the cyclic group of order 2.

THEOREM 11.3
Let Q be a Steiner triple system. Then the universal multiplication group

G̃ = U(Q;STS) of Q in the variety of Steiner triple systems is the group Q×.

PROOF For q in Q, the equalities R(q)−1 = R(q) = L(q) hold in G̃ by
the identities (1.20). Each element of G̃ may thus be written as a product
R(q1)R(q2) . . . R(qr) with q1q2 . . . qr in Q×, so that

R : Q× → G̃; q1 . . . qr 7→ R(q1) . . . R(qr) (11.8)

gives an epimorphism of groups. Let q1q2 . . . qr be an element of the group
kernel of R. If q1q2 . . . qr 6= 1, so that r > 0, then

X = XR(q1)R(q2) . . . R(qr) (11.9)

in the Steiner triple system Q[X]. But in this system, the free extension
of the idempotent, S3-symmetric partial Latin square

(
Q + {X}, T (Q)

)
in

the variety of Steiner triple systems, the elements on each side of (11.9) are
distinct, representing distinct normal forms in the Normal Form Theorem for
idempotent, S3-symmetric quasigroups (compare Exercise 33 in Chapter 1).
Thus r = 0, and R is the required isomorphism.

In a nonempty Steiner triple system Q, fix an element e. Set e = e. If q is
an element of Q distinct from e, define q = qe in Q. Under the isomorphism
(11.8), Re(a, e) is the image of aea and Re(a, b) is the image of abc for a block
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{a, b, c} not containing e. Let each block {a, b, c} not containing e be ordered
a < b < c, and let each block {e, a, a} containing e be ordered e < a < a.

THEOREM 11.4
The stabilizer G̃e of e in G̃ is the free product of the 2-element groups
〈Re(q, q)〉 for q in Q with the free group on the union of the sets

{Re(a, b), Re(b, c, ), Re(c, a)}
for each block a < b < c not containing e and the sets {Re(a, e)} for each
block e < a < a containing e. In particular, if Q has n elements, then G̃e is
the free product of n copies of Z/2Z with a free group of rank

(
n−1

2

)
.

PROOF This follows by an application of the Reidemeister-Schreier Theo-
rem to the action of G̃ on Q. The version [34, Th. 6.2] lends itself particularly
well to this application, G̃ having the presentation of Q×. Take the set T of
[34, §6(9)] to be {e ∧ q | e 6= q ∈ Q}. Then G̃e is presented as generated by
{q ∧ r | q, r ∈ Q} subject to the relations

{
e ∧ r = 1 for r 6= e ;
q ∧ r = q ∧ r−1 = (qr ∧ r)−1 .

The generators q ∧ r correspond to Re(q, r) = Re(qr, r)−1 for r 6= q and
Re(q, q)R(e) for r = q. If Q has a finite number n of elements, then there are
(n − 1)/2 blocks containing e and n(n − 1)/6 blocks altogether, so that the
free part of G̃e is free on

1
2
(
(n− 3)(n− 1) + (n− 1)

)
=

(
n− 1

2

)

generators.

Modules in the variety STS are described by the following theorem.

THEOREM 11.5
Let Q be a Steiner triple system with element e. Let F be the field of order 3.
Let J be the ideal in the group algebra FG̃e generated by the elements





1 + Re(x, y)
if {x, y} is a subset of a block containing e ;

Re(a, b) + Re(a, c)Re(b, a)
if {a, b, c} is a block not containing e .

(11.10)

Then the category of Q-modules in STS is equivalent to the category of unital
right (FG̃e)/J-modules.
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PROOF As an equational basis for the variety STS of Steiner triple
systems relative to the variety Q of all quasigroups, it is most convenient to
take idempotence (1.15), commutativity, and right symmetry (1.39) (compare
Exercise 10 in Chapter 1). Commutativity gives R(x) = L(x) in G̃ for x in
Q, while right symmetry gives R(x) = R(x)−1. Also,

ρ(e, x) = R(e\e)−1R(e\x) = R(e)−1R(e\x) = R(e)R(x)

using the notation introduced before Theorem 11.4.
Each argument in the commutative law occurs uniquely above the line.

By Proposition 10.4 (p. 260), commutativity then makes no contribution to
the generation of JSTSQ. Next, consider right symmetry as the identity
x1x2u = x1x2v equating the words x1x2u = x1x2 · x2 and x1x2v = x1. Here
x1 occurs uniquely above the line on each side, and so makes no contribution
to JSTSQ. Now

∂u

∂x2
=

∂x1x2

∂x2
R(x2) + L(x1x2)

= L(x1)R(x2) + L(x1x2)
= R(x1)R(x2) + R(x1x2)

by the Product Rule, while
∂v

∂x2
= 0 .

Thus the generators (10.32) of JSTSQ obtained from the right symmetry
take the form

ρ(e, x2)
(
R(x1)R(x2) + R(x1x2)

)
ρ(e, x1)−1

= R(e)R(x2)
(
R(x1)R(x2) + R(x1x2)

)
R(x1)R(e) ,

equivalent as ideal generators in ZG̃e to

R(x2)
(
R(x1)R(x2) + R(x1x2)

)
R(x1)

= Re(x2, x1)Re(x1x2, x2) + Re(x2, x1x2) .

If {a, b, c} is a block, setting x2 = a and x1 = c gives the second line of (11.10).
Setting x1 = x2 = a gives

(
Re(a, a) + 1

)
Re(a, a). Now

R(e) = Re(e, e) = Re(e, a) = Re(a, a) (11.11)

for any a in Q (Exercise 14). Setting x2 = a and x1 = a then gives 1+Re(a, e).
Thus the ideal of ZG̃e generated by (11.10) is the ideal generated by all the
contributions from the right symmetry.
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Now consider the idempotent law as x2 = x. Since

∂x2

∂x
= R(x) + L(x) = 2R(x) ,

(10.32) for idempotence becomes

ρ(e, x)
(
2R(x)− 1

)
ρ(e, x)−1 = 2Re(x, x)− 1 . (11.12)

Setting x = e and recalling (11.11), one then has the following congruences
modulo the ideal JSTSQ:

1 ≡ 2R(e) ≡ −2 ,

the second coming from the first line of (11.10). Now modulo 3, (11.12)
reduces to −(

Re(x, x)+1
)
, which lies in the ideal of FG̃e generated by (11.10).

This completes the proof of the theorem.

COROLLARY 11.1
The exponent of a nontrivial Steiner triple system is 3.

11.4 The Burnside Problem

One of the most fascinating problems of the theory of groups is the Burnside
Problem [22] asking whether a given variety of groups of finite (nonzero)
exponent is necessarily locally finite. Recall that a variety is locally finite if
its finitely generated free algebras are finite. S.I. Adyan and P.S. Novikov
showed that for odd exponents larger than 664, the Burnside Problem may
have a negative answer [1]. The proofs are long and extremely delicate.

For a variety V of quasigroups, there are several concepts of finiteness: local
finiteness, finite (nonzero) exponent, and universal finiteness. The variety V
is said to be universally finite if, for a finite quasigroup Q in V, the universal
multiplication group U(Q;V) is finite. For example, any variety of groups is
universally finite, while the variety of all quasigroups is not. The relationship
between local finiteness and universal finiteness is given as follows.

PROPOSITION 11.3
Let V be a variety of quasigroups.

(a) If V is locally finite, then it is universally finite.

(b) If V is universally finite, then so is each variety W contained in V.
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PROOF (a): Suppose that Q is a finite quasigroup in V. Then the
coproduct Q[X], being a quotient of the finite free quasigroup in V on the
finite set Q+{X}, is finite. It follows that the subgroup U(Q;V) = MltQ[X]Q
of the finite group Mlt Q[X] is finite.

(b): Let Q be a member of W, and let Q′ be the coproduct Q[X] in W.
Since W is contained in V, the quasigroup Q lies in V. By Corollary 2.5 (p.
52), U(Q;W) = MltQ′Q is a quotient of the finite group U(Q;V), and so is
itself finite.

REMARK 11.2 The converse to Proposition 11.3(a) is false. By Propo-
sition 2.9 (p. 52), the variety of associative quasigroups is universally finite.
However, it is not locally finite.

The problem of determining the universally finite varieties of quasigroups
that are not locally finite appears interesting. Such varieties are likely to have
a strong structure.

The Burnside Problem for quasigroups might initially be posed as asking
whether a given variety of quasigroups of finite (nonzero) exponent is locally
finite, the Adyan-Novikov result saying that the variety of groups of odd
exponent e is not locally finite for e > 664. It is then important to note that,
while the variety of Steiner triple systems has exponent 3 (Corollary 11.1),
it is not locally finite. Indeed it is not universally finite, since the group Q×

of Theorem 11.3 is infinite for all nontrivial Steiner triple systems Q. By
contrast, the variety of groups of exponent 3 is locally finite, with its finitely
generated free groups being the universal multiplication groups of finitely
generated free loops in the locally finite variety of nilpotent commutative
Moufang loops of exponent 3 and class at most 2 (see Section 11.5 below).

The extra significance of the Adyan-Novikov examples is that they are uni-
versally finite varieties of finite (nonzero) exponent which are not locally fi-
nite. Are there any varieties of nonassociative quasigroups with these proper-
ties that are genuinely different (e.g., not obtained from the Adyan-Novikov
groups by isotopy)? At any rate, the sharpness of the Burnside Problem for
groups appears to be best preserved on extension to quasigroups by the for-
mulation of Problem 1 below: Determine conditions under which universally
finite quasigroup varieties of finite (nonzero) exponent are locally finite.

11.5 A free commutative Moufang loop

This section shows how quasigroup module theory may be used to give a
complete account of the otherwise apparently ad hoc details of the Zassenhaus-
Bruck construction [20, Th. II.9A] of the free commutative Moufang loop on
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three generators. Commutative Moufang loops may be described as nonempty
quasigroups that are commutative (xy = yx) loops (x/x = y\y) satisfying the
identity

x1x1 · x2x3 = x1x2 · x1x3 (11.13)

(Exercise 15). Abelian groups are commutative Moufang loops, and indeed
any commutative Moufang loop generated by two elements is an abelian group,
according to Moufang’s Theorem. Thus the free commutative loop on two
generators is Z2. Following Zassenhaus, Bruck constructed the free com-
mutative Moufang loop on three generators by equipping the abelian group
Z3 ⊕ (Z/3Z) =

{x = (x1, x2, x3, x4) | x1, x2, x3 ∈ Z, x4 ∈ Z/3Z}

with a product x · y defined as

x + y +
(
0, 0, 0, (x3 − y3)(x1y2 − x2y1) + 3Z

)
. (11.14)

Module theory describes this construction as follows.

THEOREM 11.6

The free commutative Moufang loop on three generators is the domain of the
principal bundle

π : Z3 ⊕ (Z/3Z) → Z2;x 7→ (x1, x2) (11.15)

over the free algebra Z2 on two generators in the variety CML of commutative
Moufang loops.

Proving Theorem 11.6 amounts to answering Problem 2 of Chapter 10 for Z2

in the variety CML. The universal multiplication group G̃ = U(Z2;CML)
is the relative multiplication group of the free commutative Moufang loop
Z2 = 〈b〉 ⊕ 〈c〉 on the 2-element set {b, c} in the free commutative Moufang
loop on the 3-element set {a, b, c}. The group G̃ is nilpotent of class 2, with
center of order 3 generated by [R(c), R(b)] = R(b, c) [21, VIII.2]. The latter
term in the equation is the element (2.43) for e the identity element (0, 0) of
the loop Z2. Then G̃e is the center

〈
R(b, c)

〉
of G̃. The solution of the problem

is completed by determining the two-sided ideal JZG̃e of the integral group
algebra ZG̃e generated by (10.32).

The commutative and loop identities make no contribution to (10.32). Con-
sider the quasigroup words x1x2x3u = x1x1 · x2x3 and x1x2x3v = x1x2 · x1x3

appearing in (11.13). Now x2 and x3 appear uniquely above the line, so the
only contributions to (10.32) come from

∂v

∂x1
− ∂u

∂x1
= R(x2)R(x3x1) + R(x3)R(x1x2)− 2R(x1)R(x2x3) .
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After some calculation (Exercise 16) it turns out that the ideal JZG̃e is de-
termined by the requirement that, modulo JZG̃e, the following congruences
hold:

3 ≡ 3R(b, c) ≡ 3R(c, b) ≡ 1 + R(b, c) + R(c, b). (11.16)

Thus the typical element

x + yR(b, c) + zR(c, b)

of ZG̃e (with integers x, y, z) is congruent to

(x + y + z) + (y − z)
[
R(c, b)−R(b, c)

]

modulo JZG̃e. Each element of the fiber π−1{e} of (11.15) may be written
uniquely as

x3 + x4

[
R(c, b)−R(b, c)

]
(11.17)

with x3 ∈ Z and x4 ∈ Z/3Z. The action of an element R(b, c)x on (11.17)
sends it to

x3 + (x4 + x3x + 3Z)
[
R(c, b)−R(b, c)

]
.

This is the point at which the multiplicative structure of the ring Z/3Z enters.
The equation (10.21) may then be used to show that there is an isomorphism
θ from Z3 ⊕ (Z/3Z) to the domain of the principal bundle. Under this iso-
morphism, a vector x = (x1, x2, x3, x4) is sent to

xθ =
(
x3 + x4

[
R(c, b)−R(b, c)

]
, R(bx1cx2)

)
(11.18)

(Exercise 17).
Following Eilenberg [51], Loginov [105] introduced a concept of linear rep-

resentation for Moufang loops. Given two maps σ, τ from a Moufang loop
Q with identity e to the automorphism group of an abelian group M , the
group M is said to be an Eilenberg-Loginov module [39] for Q if the set M×Q
equipped with the multiplication

(m1, q1)(m2, q2) =
(
m1σ(q2) + m2τ(q1), q1q2

)
(11.19)

is a Moufang loop M o Q with identity (0, e) (compare [105, §2]). Despite
the superficial similarities between (10.21) and (11.19), the Zassenhaus-Bruck
construction cannot be realized as an Eilenberg-Loginov module.

PROPOSITION 11.4
There are no maps σ, τ : Z2 → Aut (Z⊕ (Z/3Z)) such that Z3 ⊕ (Z/3Z) with
the product (11.14) can be written in the form (11.19).

PROOF Assume the existence of suitable maps σ, τ so that

(m1 + m2,m
′
1 + m′

2 + (m1 −m2)(q1q
′
2 − q′1q2) + 3Z) =

(m1, m
′
1 + 3Z)σ(q2, q

′
2) + (m2,m

′
2 + 3Z)τ(q1, q

′
1).
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Set q1 = q′1 = m2 = 1, m1 = m′
1 = m′

2 = 0. Then for all q, q′ in Z, one obtains

(1, q − q′ + 3Z) = (1, 3Z)τ(1, 1).

Thus τ(1, 1) cannot be well defined.

11.6 Extensions and cohomology

The final application of quasigroup modules is to the theory of extensions
and cohomology for quasigroups in a given variety V of quasigroups. Here,
heavy use is made of the equivalence between modules and self-centralizing
congruences described in Section 10.2. Now a quasigroup T is said to be an
extension of a quasigroup R if there is a surjective quasigroup homomorphism
T → R, i.e., if T has R as a quotient. Extension theory aims to reconstruct
an extension T from its quotient R and additional data. The reconstruction,
as ultimately presented in the “only if” part of the proof of Theorem 11.7
below, requires cohomological machinery.

The data used for specifying extensions are most succinctly expressed in
terms of simplicial maps. These are defined with the direct algebraic approach
of [147], to which the reader is referred for fuller detail. Let εi

n be the operation
which deletes the (i+1)-th letter from a nonempty word of length n. Let δi

n be
the operation which repeats the (i+1)-th letter in a nonempty word of length
n. These operations, for all positive integers n and natural numbers i < n,
generate (the morphisms of) a category ∆ called the simplicial category .

A simplicial object B∗ in V is (the image of) a functor from ∆ to V. A
simplicial map is (the set of components of) a natural transformation be-
tween such functors. Generically, the morphisms of a simplicial object B∗

are denoted by their preimages in ∆, namely as εi
n : Bn → Bn−1 and

δi
n : Bn → Bn+1. Note the use of the convention denoting the domain of

the morphisms εi
n and δi

n as Bn. This does not mean that the domain is
an n-th power in the category V. The notation is a relic of the subject’s
topological origins, labeling homological objects with suffices (e.g., Bn) and
cohomological objects with superscripts (such as Bn). The index n on Bn is
called its dimension.

Given (θ0, . . . , θn−1) ∈ V(X, Y )n, the simplicial kernel ker(θ0, . . . , θn−1)
is the largest subquasigroup K of the power Xn+1 for which the θi and the
restrictions of the projections from the power model the identities satisfied by
the simplicial εi

n and εi
n+1. For example, the simplicial kernel of a single V-

morphism θ0 : X → Y is K = {(x0, x1) ∈ X2 | x0θ
0 = x1θ

0}, the usual kernel
of θ0, modeling the single simplicial identity ε0

2ε
0
1 = ε1

2ε
0
1 by π0θ0 = π1θ0 for

πi : K → X; (x0, x1) 7→ xi.
For each positive integer n, removing all operations from ∆ that involve

words of length greater than n leaves the simplicial category ∆n truncated
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at n. Functors from ∆n are called simplicial objects truncated at dimension
n. Truncated simplicial objects may be extended to full simplicial objects by
successively tacking on simplicial kernels. In such cases one may omit the
epithet “truncated,” speaking merely of simplicial objects, even when one has
only specified the lower-dimensional part.

DEFINITION 11.3 A simplicial object B∗ is said to be seeded if:

(a) It is truncated at dimension 2;

(b) (ε0
2, ε

1
2) : B2 → ker(ε0

1) surjects;

(c) ε0
1 : B1 → B0 surjects;

(d) ker(ε0
2 : B2 → B1) = η

(
ker(ε1

2 : B2 → B1)
)
.

LEMMA 11.2
In a seeded simplicial object B, define

C = {c ∈ B2 | cε0
2 = cε1

2} .

Define a congruence D on C by

c D c′ ⇔ (
(cε0

2δ
0
1 , c), (c′ε0

2δ
0
1 , c′)

) ∈ (
ker ε0

2 ◦ ker ε1
2

∣∣ ker ε0
2 ∩ ker ε1

2

)
.

Then
CD → B0; cD 7→ cε0

2ε
0
1 (11.20)

is a module over B0, isomorphic to (ker ε0
2 ∩ ker ε1

2)
(ker ε0

2◦ ker ε1
2 | ker ε0

2∩ker ε1
2).

The module (11.20) of Lemma 11.2 is called the module grown by the seeded
simplicial object B∗. If V is a congruence on a V-quasigroup T , then

V (η(V )|V ) ⇒ T η(V ) → TV ◦η(V ) (11.21)

is a seeded simplicial object with εi
2 : (t0, t1)(η(V )|V ) 7→ t

η(V )
i , growing the

module

(V ∩ η(V ))(V ◦η(V )|V ∩η(V )) → TV ◦η(V ); (t0, t1)(V ◦η(V )|V ∩η(V )) 7→ t
V ◦η(V )
0 .

The seeded simplicial object (11.21) is said to be planted by the congruence
V on the algebra T .

DEFINITION 11.4 A simplicial map p∗ : A∗ → B∗ is said to be seeded
if the codomain object B∗ is seeded in the sense of Definition 11.3, and if
p0 : A0 → B0 surjects.
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The second tool used for studying extensions in quasigroup varieties is
monadic cohomology. Once again, full details may be found in [147].

For each V-quasigroup A, let AG denote the free V-quasigroup over the
generating set {{a} | a ∈ A}. Given a V-quasigroup R, consider the uniquely
defined V-morphism εj

n : RGn → RGn−1 deleting the j-th layer of braces,
where j = 0 corresponds to the inside layer and j = n− 1 to the outside. Let
δj
n : RGn → RGn+1 insert the j-th layer of braces. One obtains a simplicial

object RG∗, known as the free resolution of A. Each RGn projects to R by a
composition

ε0
n . . . ε0

1 : RGn → R. (11.22)

An R-module E → R becomes an RGn-module by pullback along (11.22).
Write Der(RGn, E) for the abelian group V/R(RGn → R, E → R) of deriva-
tions. Define coboundary homomorphisms

dn : Der(RGn, E) → Der(RGn+1, E); f 7→
n∑

i=0

(−)iεi
n+1f

for each natural number n. For each positive integer n, define

Hn(R, E) = Ker(dn)/Im(dn−1), (11.23)

the so-called n-th monadic cohomology group of R with coefficients in E.
[Note that [147] uses Hn−1(R, E) for (11.23).] The cosets forming (11.23) are
known as cohomology classes. Elements of Ker(dn) are known as cocycles,
and elements of Im(dn−1) are coboundaries.

LEMMA 11.3
Let p∗ : RG∗ → B∗ be a seeded simplicial map whose codomain grows module
M . Pull M from B0 back to R along p0. Then

p3(ε0
3, ε

1
3, ε

2
3)P

D : RG3 → M (11.24)

is a cocycle in Der(B3,M).

DEFINITION 11.5 The cohomology class of (11.24) is called the ob-
struction of the seeded simplicial map p∗. The simplicial map is said to be
unobstructed if this class is zero.

LEMMA 11.4
The obstruction of a seeded simplicial map p∗ : RG∗ → B∗ is uniquely

determined by its bottom component p0 : R → B0.

The diagram-chasing proofs of Lemmas 11.3 and 11.4 are given in [147, pp.
124–127].
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DEFINITION 11.6 A seeded simplicial map p∗ : RG∗ → B∗ is said to
be realized by a V-quasigroup T if there is a congruence V on T planting B∗

such that p0 is the natural projection TV → TV ◦η(V ).

THEOREM 11.7
A seeded simplicial map p∗ : RG∗ → B∗ is unobstructed if and only if it is

realized by a quasigroup T .

PROOF (Sketch.) “If:” Consider the diagram

V RG2 ⇒ RG → R

↓ σ2 ↓ σ1 ↓ σ0

V V ⇒ T → R

↓ ↓ ↓ p0

V V (η(V )|V ) ⇒ T η(V ) → TV ◦η(V )

(11.25)

in which σ0 is the identity on R = TV , σ1 is given by the freeness of RG, and
σ2 exists since V = ker(T → R). Take p2, p1, p0 to be the composites down
the respective columns of (11.25), the second factors of these composites all
being natural projections. Writing πi : V → T ; (t0, t1) 7→ ti, one has

(ε0
3σ

2, ε1
3σ

2, ε2
3σ

2)Pπ0 = (ε0
3ε

0
2, ε

1
3ε

0
2, ε

2
3ε

0
2)Pσ1 = ε2

3ε
0
2σ

1

= ε0
3ε

1
2σ

1 = (ε0
3ε

1
2, ε

1
3ε

1
2, ε

2
3ε

1
2)Pσ1 = (ε0

2σ
2, ε1

2σ
2, ε2

2σ
2)Pπ1,

so the obstruction of p∗ is the zero element (ε0
3p

2, ε1
3p

2, ε2
3p

2)PD of the group
Der

(
RG3,

(
V ∩ η(V )

)(V ◦η(V )|V ∩η(V ))
)
, as required.

“Only if:” If p∗ is unobstructed, then as shown in [147, p.129], one may
assume without loss of generality that (11.24) itself is zero, and not just in
the zero cohomology class. Let Q be a pullback in

Q −−−−→ RG
y

yp1

B2 −−−−→
ε1
2

B1

realized, say, by Q = {(b, w) ∈ B2 × RG | wp1 = bε1
2}. Define a congruence

W on Q by (b, w) W (b′, w′) iff wε0
1 = w′ε0

1 and

(b, b′) (ker ε1
2 | ker ε0

2) ({w}p2, {w′}p2).
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Set T = QW , and take V on T to be the kernel of

T → R; (b, w)W 7→ wε0
1 .

For the details of the verification that T realises p∗, with V planting B∗, see
[147, pp. 129–132]. In particular, note that the kernel of

T → B1; (b, w)W 7→ bε0
2

is η(V ).

Let p∗ : RG∗ → B∗ be a seeded simplicial map whose codomain grows a
module M → B0. Pull M back along p0 : R → B0 to an R-module. An
extension V ⇒ T → R is said to be singular for p∗ if its kernel V is self-
centralizing, with an R-module isomorphism V (V |V ) → M . Let p∗S be the
set of V/R-isomorphism classes of extensions that are singular for p∗. This
set becomes an abelian group, with the class of the split extension M → R as
zero. The addition operation on p∗S is known as the Baer sum. To obtain a
representative of the Baer sum of the isomorphism classes of two extensions
Vi ⇒ Ti → R, with module isomorphism θ : V

(V1|V1)
1 → V

(V2|V2)
2 , take the

quotient of the pullback T1 ×R T2 by the congruence
{(

(t1, t2), (t′1, t
′
2)

) ∣∣∣ (ti, t′i) ∈ Vi, (t1, t′1)
(V1|V1)θ = (t2, t′2)

(V2|V2)
}

.

Singular extensions are then classified as follows [147, Th. 632].

THEOREM 11.8
The groups p∗S and H2(R, M) are isomorphic.

Now assume additionally that the seeded simplicial map p∗ : RG∗ → B∗ is
unobstructed. An extension V ⇒ T → R is said to be nonsingular for p∗ if T
realizes p∗. Let p∗N denote the set of V/R-isomorphism classes of extensions
that are nonsingular for p∗. By Theorem 11.7, p∗N is nonempty. Nonsingular
extensions are then classified as follows [147, Th. 634].

THEOREM 11.9
The abelian group p∗S acts regularly on p∗N , so the sets p∗N and H2(R,M)
are isomorphic.

Let U ⇒ S → R be singular for p∗, and let V ⇒ T → R be nonsingular
for p∗. To obtain a representative for the image of the class of V under the
action of the class of U , assuming an R-module isomorphism

θ : (V ∩ η(V ))(V ◦ η(V )|V ∩ η(V )) → U (U |U) ,

take the quotient of the pullback T ×R S by the congruence

{((t, s), (t′, s′)) | (t, t′) ∈ V ∩η(V ), (s′, s) ∈ U, (t, t′)(V |V ∩η(V ))θ = (s′, s)(U |U)}.
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11.7 Exercises

1. Basing on the proof of Theorem 11.1, solve the differential equations
w′ = R2 + LR + L and w′ = (R + L)3.

2. (a) Show that the quasigroup Q with the multiplication table given in
Figure 1.2 is generated by the single element 4.

(b) Show that Q is not central. (Compare Remark 3.1.)

(c) Conclude that the free quasigroup on one generator is not central.

3. Use Section 1.9 and Exercises 14(b), (c), or 16 in Chapter 3 to show
that the free quasigroup on one generator is not central.

4. For each positive integer n, show that the number of n-th nonassociative
powers is the n-th Catalan number

cn =
1
n

(
2n− 2
n− 1

)
.

5. Define a multiplication on the free group algebra Z〈R, L〉 by

x ◦ y = xR + yL + 1 .

(a) Show that (Z〈R, L〉, ◦) is a quasigroup.

(b) Show that (Z〈R, L〉, ◦) is centrally isotopic to (Z〈R,L〉, ·).
(c) Show that the submagma of (Z〈R,L〉, ◦) generated by 0 is free.

(d) Show that the submagma of (Z〈R,L〉, ◦) generated by 1 is free.

6. Let Z[R,R−1, L, L−1] be the ring of integral Laurent polynomials over
two (commuting) variables R and L. Show that the following structures
are equivalent:

(a) A Z[R, R−1, L, L−1]-module E;

(b) An entropic banal module p : E → {e};
(c) An entropic pique E.

7. [153] In the notation of the previous exercise, consider the element 1 of
the principal bundle Z[R,R−1, L, L−1] for entropic banal modules.

(a) Show that the corresponding Conway algebra given by Exercise 22
in Chapter 3 yields skein polynomials of links.

(b) In particular, show that for a positive integer c, the element uc

corresponding to an unlink with c components is given by uc =
(R + L)c−1.
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8. If there is a containment relation V ⊆ W between quasigroup varieties
V and W, show that the exponent of W is a multiple of the exponent
of V.

9. If Q′ is a subquasigroup of a quasigroup Q, show that the exponent of
Q is a multiple of the exponent of Q′.

10. If Q′ is a quotient of a quasigroup Q, show that the exponent of Q is a
multiple of the exponent of Q′.

11. Let Q be a Moufang loop with identity element e. Show that the expo-
nent of Q is 0 if Q contains a subloop isomorphic to (Z,+, 0). Otherwise,
show that the exponent of Q is the least positive integer n such that Q
satisfies the identity xn = e.

12. A variety V of quasigroups is said to be anti-associative if it contains
no non-trivial groups (compare [57] for the loop case). Show that a
quasigroup variety of exponent 1 is anti-associative.

13. Give an example of an anti-associative quasigroup variety of exponent
larger than 1.

14. Verify the equations (11.11).

15. Show that a commutative loop is a Moufang loop if and only if it satisfies
the identity (11.13).

16. Verify that the congruences (11.16) specify JZG̃e for Z2 in the variety
CML of commutative Moufang loops.

17. Show that (11.18) gives an isomorphism from Z3⊕(Z/3Z) to the domain
of the principal bundle.

18. Let n be an integer greater than 2. Show that the free group of exponent
3 on n generators is the multiplication group of the free commutative
Moufang loop of exponent 3 and nilpotence class 2 on n generators.

19. Write out the identities connecting the first few morphisms εi
n and δi

n

in the simplicial category ∆.

20. Verify that the free resolution is a simplicial object.

11.8 Problems

1. Which universally finite quasigroup varieties of positive exponent are
locally finite?
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2. Does the set of universally finite varieties have maximal elements? Does
its complement have minimal elements?

3. Can methods similar to those of Section 11.5 be used to construct free
commutative Moufang loops of higher rank?

4. For which varieties V does the Eilenberg-Loginov construction (11.19)
suffice for the construction of modules?

5. In general, the free resolution used in Section 11.6 is very large. For
which quasigroup varieties V is a smaller free resolution available?

11.9 Notes

Section 11.1

The term “groupoid” is occasionally used as a synonym for “magma.” How-
ever, a groupoid is generally defined as a category in which each arrow is
invertible.

The description of the free magma on one generator is originally due to
Minc [116]. Minc’ “bifurcating root-trees” are finite (rooted) binary trees in
modern jargon. His abstractly defined “index ψ-polynomials” become the
derivatives (11.2) within the context of banal modules. The elements of the
free magma in Exercise 5(c) are Minc’ “index θ-polynomials.” The elements
of the free magma in Exercise 5(d) are his “index χ-polynomials.”

Section 11.3

As an alternative to the use of Exercise 33 from Chapter 1 for the proof of
Theorem 11.3, one may note that in the construction of [129], X has rank 0,
while XR(q1)R(q2) . . . R(qr) has rank r. In the language of that paper, Q[X]
is the free extension of the partial system Q · {X}.

Section 11.6

Full details of the results summarized in this section may be found in [147,
Ch. 6]. A more general and abstract description of monadic cohomology was
given by Duskin [49]. Note that the term monadic cohomology has replaced
the older “triple cohomology.” A cohomology theory for varieties of loops was
given in [90]. The loop case is more straightforward, because of the pointing
by identity elements.

 



Chapter 12

ANALYTICAL CHARACTER
THEORY

This chapter introduces the analytical characters of a finite quasigroup Q with
element e, as almost-periodic functions on the stabilizer of e in the universal
multiplication group U(Q;Q) of Q. Although the finite-dimensional complex
representations of a finite group are determined up to equivalence by its ordi-
nary characters, the corresponding combinatorial characters of Q, as treated
in Chapters 6 and 7, are inadequate for the task of classifying all the so-called
ordinary Q-modules, the finite-dimensional complex vector spaces in the slice
category Q/Q. As shown by Theorem 12.4, this classification is achieved by
the analytical characters.

The chapter is organized around various spaces of complex-valued functions.
Section 12.1 looks at the space L!(Q) of functions f : Q → C. The combina-
torial character theory of Q defines so-called “generalized Laplace operators”
on this space. If Q has s conjugacy classes and basic characters, then it has s
generalized Laplace operators ∆1, . . . , ∆s. The ordinary representation the-
ory of Q furnishes coefficient functions fm in L1(Q) for each element m of
M = p−1{e} in a Q-module p : E → Q. One thus studies the behavior of the
coefficient functions under the generalized Laplace operators. The intimate
connection between modules and characters in the group case is interpreted in
this theory as Theorem 12.1. The limitations of the approach are readily seen
in the ordinary representation theory of the singleton quasigroup. There the
unique generalized Laplace operator ∆1 on the 1-dimensional space L1({e})
cannot hope to classify the rich supply of modules.

As an intermediate step towards the analytical character theory which does
classify modules, Section 12.2 looks at periodic functions on groups. These
are complex-valued functions that remain invariant under translation by a
subgroup of finite index. The space L1(Q) is embedded into the space P (G̃)
of periodic functions on the universal multiplication group G̃ = U(Q;Q) of
Q, and the generalized Laplace operators are extended from L1(Q) to P (G̃).
The Laplace operator ∆1 is related to the Laplace operator used in harmonic
analysis on free groups (Theorem 12.2).

The actual analytical character theory for classifying modules is given in
Section 12.3, in terms of almost-periodic functions on the stabilizer G̃e of e in
the universal multiplication group G̃. Almost-periodic functions on the uni-
versal stabilizer G̃e correspond to continuous complex-valued functions on a

285 
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compact topological group constructed from G̃e, its “Bohr compactification.”
In essence the ordinary representation theory of Q reduces to the ordinary
representation theory of this compact group. Working with compact groups
in the category of topological spaces is just like working with finite groups in
the category of sets. One can thus classify Q-modules by their corresponding
characters, which are almost-periodic functions on the universal stabilizer G̃e.

Section 12.4 broadens consideration to the space AP (G̃) of almost-periodic
functions on the full universal multiplication group G̃. The spaces L1(Q)
and P (G̃) embed into AP (G̃), and the generalized Laplace operators extend
to AP (G̃). The space AP (G̃) is thus viewed as the location in which to
study the relationships between the combinatorial and analytical character
theories, together with the ordinary representation theory of the quasigroup
Q. A typical task for such a study is the investigation in the final sections of
solutions of the Laplace equations ∆iu = 0 in AP (G̃), as a generalization of
the observation (Theorem 12.7) that the unique solution of Laplace’s equation
∆1u = 0 on the closed convex hull of the set of left translates of an almost-
periodic function f on G̃ is the Neumann mean of f ,

12.1 Functions on finite quasigroups

Given a finite, nonempty quasigroup Q, let L1(Q) denote the set of all
functions f : Q → C, with algebra structure induced pointwise from C. The
quasigroup structure on Q furnishes certain operators on L1(Q), defined from
the combinatorial character theory. For 1 ≤ i ≤ s, define Hi(x, y) = ηij for
(x, y) in the quasigroup conjugacy class Ci. Then for f in L1(Q), define ∆if
in L1(Q) by

∆if(q) = fi(q)−
∑

r∈Q

Hi(q, r)f(r) . (12.1)

In particular,

∆1f(q) = f(q)− 1
|Q|

∑

r∈Q

f(r) .

In view of Theorem 12.2 below, ∆1 is called the Laplace operator on L1(Q),
while the ∆i are called generalized Laplace operators on L1(Q).

Certain Q-modules give rise to complex-valued finctions on Q. Suppose that
p : E → Q is a Q-module over C. For a fixed element e of Q, the G̃e-module
M = p−1{e} induces a G̃-module M

eG. As in Section 10.3, identify Q with its
isomorphic image in E under 0Q. Then E rQ is a subset of M

eG. If M
eG has

a G̃-invariant inner product 〈 , 〉, then E is said to be a unitary Q-module.
For such a module E, and for q in Q, let 〈 , 〉q denote the restriction of the
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invariant inner product on M
eG to p−1{q}. By analogy with the definition

(10.21) of the quasigroup product on E as a · b = aR(bp) + bL(ap), define a
form { , } on E by

{a, b} = 〈aR(bp), bL(ap)〉ap·bp . (12.2)

This form may be calculated from knowledge of the G̃e-module M with its
G̃e-invariant inner product 〈 , 〉e as follows.

LEMMA 12.1

For m,n in M and x, y in Q,

{(m,x), (n, y)} =
〈
ms

(
x,R(y)

)
, ns

(
y, L(x)

)〉
e
.

PROOF By (12.2),

{(m,x), (n, y)} = 〈(m,x)R(y), (n, y)L(x)〉xy

=
〈(

ms
(
x,R(y)

)
, xy

)
,
(
ns

(
y, L(x)

)
, xy

)〉
xy

=
〈(

ms
(
x,R(y)

)
, e

)
,
(
ns

(
y, L(x)

)
, e

)〉
e

=
〈
ms

(
x, R(y)

)
, ns

(
y, L(x)

)〉
e
.

For an element m of M , a so-called coefficient function fm in L1(Q) is
defined by

fm(q) = {(m, q), (m, e)} . (12.3)

If Q is a group, the traditional link between the ordinary representation theory
of Q and the combinatorial character theory of Q is that the group class
functions ψ′i determined by the basic combinatorial characters ψi are the traces
of the matrices of the irreducible representations. This link is interpreted in
the current theory as follows.

THEOREM 12.1

Let Q be a finite group with identity element e, and M an ordinary irreducible
Q-module with character ψ′i. Take M as a G̃e-module via (10.37). Let m be
an element of M that has unit length 〈m,m〉e under the G̃e-invariant inner
product 〈 , 〉 on M . Then the coefficient function fm is an eigenfunction for
all the generalized Laplace operators. It lies in the kernel of ∆i, and is fixed
by each ∆j for j 6= i.
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PROOF Extend {m} to an orthonormal basis of M , and take matrices of
the automorphisms of M representing Q with respect to this basis. Let q in
Q be represented by the matrix [a(i)

kl (q) | 1 ≤ k, l ≤ dim M = ψ′i(e)]. Then by
Lemma 12.1,

fm(q) = {(m, q), (m, e)}
= 〈ms(q, R(e)),ms(e, L(q))〉e
= 〈mR(q)R(q)−1,mL(q)R(q)−1〉e
= 〈m,mTe(q)−1〉e = 〈mTe(q), m〉e = a

(i)
11 (q) .

For each positive integer j ≤ s distinct from i, let [a(j)
ln (q)] be the matrix of q

in an irreducible representation with character ψ′j . For q, r in Q, one has

Hj(q, r) = |Q|−1ψ′j(e)ψj(r, q) = |Q|−1ψ′j(e)ψ
′
j(qr

−1) .

Then
∑

r∈Q

Hj(q, r)fm(r) =
∑

r∈Q

|Q|−1ψ′j(e)ψ
′
j(qr

−1)fm(r

= |Q|−1ψ′j(e)
∑

r∈Q

ψ′j(e)∑

k=1

a
(j)
kk (qr−1)a(i)

11 (r)

= |Q|−1ψ′j(e)
ψ′j(e)∑

k=1

∑

r∈Q

a
(j)
kk (qr−1)a(i)

11 (r)

= |Q|−1ψ′j(e)
ψ′j(e)∑

k=1

aj
k1(q)δ1kδji|Q|ψ′j(e)−1

= aj
11(q)δji = δijfm(q) ,

the fourth equality using the general orthogonality condition [35, p. 219] for
matrix coefficients of irreducible representations. Thus

∆jfm(q) = fm(q)−
∑

r∈Q

Hj(q, r)fm(r) = fm(q)(1− δij) ,

as required.

For general quasigroups Q in a variety V, the generalized Laplace operators
do not possess sufficient resolving power to distinguish the coefficient functions
of the various inequivalent irreducible unitary Q-modules in V, to the extent
demonstrated by Theorem 12.1 for the case Q ∈ G = V. The extreme
example of this is where Q = {e} and V = Q. There are many irreducible
ordinary representations of the singleton quasigroup, but the kernel of the
unique (generalized) Laplace operator of Q is still all of L1(Q).
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12.2 Periodic functions on groups

As the preceding section showed, the combinatorial character theory of
a finite nonempty quasigroup Q is generally inadequate for classifying the
unitary representations of Q. A substitute must be found. That substitute
is the analytical character theory developed in the next section. The theory
uses almost-periodic functions on the universal stabilizer G̃e of an element e
of Q in the universal multiplication group G̃. As an intermediate step, the
present section examines periodic functions on groups. Functions on a finite
quasigroup Q will be interpreted as periodic functions on the full group G̃,
and a connection will be made between the Laplace operators on L1(Q) and
on G̃.

A complex-valued function f on a group G is said to be left invariant under
a subgroup H, or left H-invariant, if

∀h ∈ H , ∀x ∈ G , f(hx) = f(x) .

In other words, f is constant on each LMltGH-orbit in G. Right invariance
is defined similarly. Finally, a function f is said to be bi-invariant under H
or H-bi-invariant if it is both left and right invariant, or constant on each
MltGH-orbit in G.

LEMMA 12.2
For f : G → C, the following conditions are equivalent:

(a) There is a subgroup H of finite index in G under which f is left invari-
ant;

(b) There is a subgroup H ′ of finite index in G under which f is right
invariant;

(c) There is a subgroup H ′′ of finite index in G under which f is bi-invariant;

(d) There is a normal subgroup K of finite index in G under which f is
bi-invariant.

PROOF Clearly (a) ⇒ (b) ⇒ (c) ⇒ (d). It will be shown that (a) ⇒
(d); the proof of (b) ⇒ (d) is similar. Suppose that f is left H-invariant, so
that f is constant on each coset Hx. Let K be the kernel of the permutation
representation g 7→ (Hx 7→ Hxg) of G on the homogeneous space H\G. Then
K is a normal subgroup of G, and |K\G| ≤ |H\G|!, so that K has finite index
in G. Since K fixes H, it is a subgroup of H, making f left K-invariant. Then
for x in G and k in K, one has f(xk) = f(xkx−1 ·x) = f(x) since xkx−1 ∈ K,
so that f is also right K-invariant.
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DEFINITION 12.1 On a group G, a complex-valued function f satisfying
the equivalent conditions of Lemma 12.2 is called a periodic function on G.
The subgroups H, H ′ and H ′′ are called periods of f . More specifically, H
is a left period, H ′ is a right period, H ′′ is a bilateral period, and K is a
normal period,

Let P (G) denote the set of all periodic functions on G. If f and g are in
P (G), with respective left periods H and K, then f − g and fg are in P (G),
each with left period H ∩K. Note that

|(H ∩K)\G| = |(H ∩K)\H| · |H\G|
= |K\HK| · |H\G| ≤ |K\G| · |H\G| < ∞ .

Thus P (G) becomes a C-algebra. If T is a right transversal to H ∩K in G,
define

〈f, g〉 =
1
|T |

∑

t∈T

f(t)g(t) . (12.4)

To see that this is well-defined, let U be a right transversal to a subgroup L
of finite index m in H ∩K, with

U ∩ (H ∩K)t = {k1tt, . . . , kmtt} (12.5)

for each t in T . Then

1
|U |

∑

u∈U

f(u)g(u) =
1
|U |

∑

t∈T

m∑

i=1

f(kit)g(kitt) =
1
|T |

∑

t∈T

f(t)g(t) ,

since each kit lies in H ∩K. Thus P (G) becomes an inner product space. A
convolution is defined as follows.

PROPOSITION 12.1
If f has bilateral period H, and g has left period K, then

f ∗ g(x) =
1
|T |

∑

t∈T

f(x/t)g(t) (12.6)

(for a right transversal T to H ∩K in G) defines a convolution f ∗ g in P (G)
with left period H.

PROOF To see that f ∗ g is well-defined, let U be a right transversal to
a subgroup L of finite index m in H ∩K, Take notation as in (12.5). Then

1
|U |

∑

u∈U

f(x/u)g(u) =
1
|U |

∑

t∈T

m∑

i=1

f(xt−1k−1
it )g(kitt) =

1
|T |

∑

t∈T

f(x/t)g(t) ,
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as required. For h in H, one has

f ∗ g(hx) =
1
|T |

∑

t∈T

f(hxt−1)g(t) =
1
|T |

∑

t∈T

f(xt−1)g(t) = f ∗ g(x) ,

so that f ∗ g has left period H.

If G is finite, then P (G) under convolution becomes the usual complex
group algebra (Exercise 1). If G is infinite, however, the formal convolution
unit δ (with δ(1) = 1 and δ(x) = 0 for x 6= 1) is not periodic (Exercise 2).

A complex-valued function f on a finite quasigroup Q with element e cor-
responds to a left G̃e-invariant function

f ] : G̃ → C; x 7→ f(ex) (12.7)

on the universal multiplication group G̃ = U(Q;Q) of Q. This correspondence
] : L1(Q) → P (G̃) is a C-algebra monomorphism of L1(Q) into the algebra
P (G̃) of periodic functions on G̃. Conversely, a left G̃e-invariant function f

on G̃ determines a function

f [ : Q → C; q 7→ f(ρ(e, q))

in L1(Q). Note that functions f : Mlt Q → C correspond naturally to periodic
functions f̃ : G̃ → C having the kernel of the epimorphism G̃ → Mlt Q as their
normal period. According to [6, II(11.16)], an unnormalized convolution

(f × g)(x) =
∑

y∈Mlt Q

f(x/y)g(y) (12.8)

is defined on the space of all functions f : Mlt Q → C. Under the correspon-
dence with periodic functions on G̃, one then has f̃ × g = |Mlt Q|f̃ ∗ g̃.

The generalized Laplace operators on L1(Q) extend to corresponding oper-
ators on P (G̃). For 1 ≤ i ≤ s, define the signed measure

µi : G̃ → C;x 7→ |Q| ·Hi(e, ex) .

In terms of basic combinatorial characters, µi(x) = ψi1ψi(e, ex). Clearly µi is
left G̃e-invariant. It is also right G̃e-invariant, since for h in G̃e one has

|Q|−1µi(xh) = Hi(e, exh) = Hi(eh−1, ex) = Hi(e, ex) = |Q|−1µi(x) ,

the second equality holding since Hi is a quasigroup class function.

PROPOSITION 12.2
For 1 ≤ i ≤ s, the signed measure µi is an idempotent element of the algebra

P (G̃) under the convolution (12.6).
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PROOF Define a function ωi : Mlt Q → C by setting ωi(x) = ξji/nj

when the pair (e, ex) lies in the quasigroup conjugacy class Cj . By [6, II, Cor.
11.7(i)], the function fiωi/|Mlt Q| is idempotent under the convolution (12.8).
Thus fiω̃i is idempotent under the convolution (12.6). But for x in G̃ with
(e, ex) in Cj , one has

fiω̃i(x) = fiξji/nj = |Q|ηij = µi(x) ,

the middle equality just being
√

fi times (6.30).

PROPOSITION 12.3
For f in L1(Q), the equation

(∆if)] = f ] − µi ∗ f ] (12.9)

holds in P (G̃).

PROOF Since µi has bilateral period G̃e, and f ] has left period G̃e, the
right hand side of (12.9) is a well-defined function on G̃ with left period G̃e,
according to Proposition 12.1. Then for x in G̃, one has

(∆if)](x) = ∆if(ex)

= f(ex)−
∑

r∈Q

Hi(ex, r)f(r)

= f(ex)−
∑

r∈Q

Hi(r, ex)f(r)

= f ](x)−
∑

r∈Q

Hi(eρ(e, r), ex)f ](ρ(e, r))

= f ](x)− 1
|Q|

∑

r∈Q

|Q| ·Hi(e, exρ(e, r)−1)f ](ρ(e, r))

= f ](x)− 1
|T |

∑

t∈T

µi(x/t)f ](t)

= f ](x)− µi(x) ∗ f ](t) ,

where T is the right transversal {ρ(e, r) | r ∈ Q} to G̃e in G̃.

DEFINITION 12.2 Let G̃ = U(Q,Q) be the universal multiplication
group on the finite nonempty quasigroup Q. Then for 1 ≤ i ≤ s, the gener-
alized Laplace operator ∆i on the space P (G̃) of periodic functions on G̃ is
defined by

∆if = f − µi ∗ f ,
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where µi(x) = ψi(e, e)ψi(e, x) with ψi the i-th basic combinatorial character
of Q. The operator ∆1 is just called the Laplace operator on P (G̃).

Given Definition 12.2, Proposition 12.3 may be reformulated as

(∆if)] = ∆if
]

for f in L1(Q).
The reason for the terminology in (12.1) and Definition 12.2 will now be

explained, and a connection made with some harmonic analysis on free groups
[60]. Let F be the free group on a set A. For g : F → C, define g∗ : F → C
by g∗(x) = g(x−1) [60, p. 3]. For each element a of A, difference operators
Da and D∗

a are defined by:

{
Dag(x) = g(xa)− g(x) ;
D∗

ag(x) = g(xa−1)− g(x) .

Then the operator

∆ =
1

2|A|
∑

a∈A

D∗
aDa

is called the Laplace operator [60, p. 51], by analogy with the classical Laplace
operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

in Euclidean space R3, or with the operator ∆ of Exercise 22 in Chapter 1.

THEOREM 12.2

Let Q be a finite quasigroup with element e. Consider the universal mul-
tiplication group G̃ of Q with the set (2.49) of free generators. Then for a
function f in L1(Q), one has 2∆f ]∗ = (∆1f)]∗.

PROOF Denote the set

{
ρ(e, q), R(e\e), Te(e), Te(q)

∣∣ q ∈ Qr {e}}

of (2.49) by A, and write B for the subset

{
ρ(e, q), R(e\e) ∣∣ q ∈ Qr {e}} .
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Then for x in G̃,

2∆f ]∗(x) =
1

2|Q|
∑

a∈A

(
2f ]∗(x)− f ]∗(xa)− f ]∗(xa−1)

)

=
1

2|Q|
∑

a∈A

(
2f ](x−1)− f ](a−1x−1)− f ](ax−1)

)

=
1

2|Q|
∑

a∈A

(
2f(ex−1)− f(ea−1x−1)− f(eax−1)

)
.

For q ∈ Q and a = Te(q), the summand 2f(ex−1) − f(ea−1x−1) − f(eax−1)
vanishes, since ea = e = ea−1. Thus

2∆f ]∗(x) =
1

2|Q|
∑

a∈B

(
2f ](x−1)− f ](a−1x−1)− f ](ax−1)

)
.

Now eB = Q = Qx−1 = eBx−1, so Bx−1 is a right transversal to G̃e in G̃.
Further Q = e/Q = e\Q = e/(e\Q) = eR(e\Q)−1. Since eR(e\e)−1 = e, it
follows that

eR
(
e
∖(

Qr {e})
)−1

= Qr {e} ,

and again

eρ
(
e,Qr {e})−1 =

(
Qr {e})R(e\e) = Qr {e} .

Thus
eB−1 = Q = Qx−1 = eB−1x−1 ,

so B−1x−1 is also a right transversal to G̃e in G̃. Let T = Bx−1 and U =
B−1x−1. Then 2∆f ]∗(x)

=
1
2

(
f ](x−1)− 1

|T |
∑

t∈T

f ](t)
)

+
1
2

(
f ](x−1)− 1

|U |
∑

u∈U

f ](u)
)

=
1
2

(
f ](x−1)− 1

|T |
∑

t∈T

µ1(x−1t−1)f ](t)
)

+
1
2

(
f ](x−1)− 1

|U |
∑

u∈U

µ1(x−1t−1)f ](u)
)

= ∆1f ](x−1) = (∆1f
])∗(x), as required.

12.3 Analytical character theory

This section sketches the outlines of an analytical character theory that
serves to classify the finite-dimensional unitary representations of the finite
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nonempty quasigroup Q, a task to which the combinatorial character theory
proved unequal.

Let G̃ be the universal multiplication group U(Q;Q) of Q, and let e be a
fixed element of Q. The universal stabilizer G̃e may be regarded as a discrete
topological group. As such, it is locally compact ([106, p. 7]: each element x of
G̃e has the closed compact neighborhood {x}). Since it is discrete but infinite,
it is not compact. However, the forgetful functor from the category CTG
of compact topological groups to the category TG of all topological groups
has a left adjoint, called Bohr compactification [48, p. 37]. Thus there is a
compact topological group K = K(Q) and a continuous group homomorphism
α : G̃e → K, the component at G̃e of the unit of the adjunction, that is
universal over all continuous group homomorphisms from G̃e to a compact
group [44, 16.1.1]. The Bohr compactification K is constructed by taking a
set {αi : G̃e → U(Vi) | i ∈ I} of representatives for the equivalence classes
of continuous representations αi : G̃e :→ U(Vi) of G̃e in the unitary groups
U(Vi) of finite-dimensional complex inner product spaces Vi. The group K is
the closure of the image of G̃e under

∏
i∈I αi : G̃e →

∏
i∈I U(Vi). Since the

matrices [ajk] representing elements of U(Vi) with respect to an orthonormal
basis of Vi are those satisfying

∑
j ajkajl = δkl, the groups U(Vi) are compact.

By the Tychonov Theorem [106, 5D],
∏

i∈I U(Vi) is compact. Then K, as a
closed subset of a compact space, is compact.

By the adjointness

TG(G̃e, U(Vi)) ∼= CTG(K,U(Vi)), (12.10)

there is a bijection between finite-dimensional continuous unitary represen-
tations of the Bohr compactification K and finite-dimensional unitary rep-
resentations of G̃e [44, 16.1.3]. An ordinary Q-module E or p : E → Q

furnishes a finite-dimensional unitary G̃e-module V = p−1{e}, which corre-
sponds under (12.10) to a finite-dimensional continuous unitary representation
σE : K → U(V ) of K.

THEOREM 12.3
Each ordinary Q-module p : E → Q with V = p−1{e} is determined (up to

equivalence) by the corresponding finite-dimensional continuous unitary rep-
resentation σE : K → U(V ) of the Bohr compactification K = K(Q) of G̃e.

For a finite-dimensional continuous unitary representation σ : K → U(V )
of the compact group K, a character χσ is defined by

χσ : K → C;x 7→ Trσ(x). (12.11)

As for the case of ordinary representations of finite groups, the representation
σ is determined up to equivalence by its character χσ [44, 15.3.6] [48, Ch. 7].
Thus:
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PROPOSITION 12.4

Each ordinary Q-module E is determined up to equivalence by the continuous
function χσE

: K(Q) → C.

As a free group, G̃e is residually finite — the intersection of its subgroups
of finite index is trivial. ([98, p. 414]: The free group on 2 generators embeds
into GL2(Z) as the free group on

[
1 2
0 1

]
and

[
1 0
2 1

]
.

Each nontrivial element of the image remains nontrivial on passage to some
finite quotient GL2(Z/nZ).) It follows that the unit morphism α : G̃e → K

embeds G̃e into K [44, 16.4.1]. An interesting corollary of this is the following
[44, 16.4.4].

PROPOSITION 12.5

The universal stabilizer G̃e of e in G̃ is a limit of Lie groups.

By construction, K contains G̃e as a dense subgroup. The continuous
character χσ of a given finite-dimensional continuous unitary representation
σ : K → U(V ) of K is thus determined by its restriction to G̃e.

DEFINITION 12.3 Let p : E → Q be an ordinary Q-module, and
σE : K → U(p−1{e}) the corresponding finite-dimensional unitary contin-
uous representation of the Bohr compactification K = K(Q) of G̃e, as in
Theorem 12.3. Then the analytical character χE of E is the restriction to G̃e

of the character χσE
: K → C; x 7→ TrσE(x) of σE.

Restrictions to G̃e of continuous complex-valued functions on its Bohr
compactification K are known as almost-periodic functions on G̃e. Propo-
sition 12.4 then leads to the following result showing how almost-periodic
functions on G̃e classify Q-modules.

THEOREM 12.4

Let E be an ordinary Q-module. Then E is classified up to equivalence by its
analytical character χE, which is an almost-periodic function on the universal
stabilizer G̃e of e in Q.
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12.4 Almost periodic functions

The final sections lay some foundations for a future study of the connec-
tions between the combinatorial and analytical character theories of a finite
nonempty quasigroup Q in terms of almost-periodic functions on G̃, the full
universal multiplication group of Q. Since G̃ is a free group, it embeds as
a dense subgroup of its Bohr compactification G̃b in the same way that G̃e

does. Almost-periodic functions on G̃ are thus defined as the restrictions to
G̃ of continuous complex-valued functions on G̃b. However, they do admit an
equivalent intrinsic description [44, 16.2.1] [106, §41].

Consider the (infinite-dimensional) complex vector space C eG of all functions
f : G̃ → C. For an element t of G̃, the right translate of an element f of C eG
by t is

f t : G̃ → C;x 7→ f(x/t)

and the left translate is

tf : G̃ → C;x 7→ f(t\x) .

If f is a periodic function on G̃ with normal period K, then f t and tf are
also periodic with normal period K. Since f(G̃) = f t(G̃) = tf(G̃), such f

has at most |K\G̃|! translates.
The complex vector space B(G̃) of bounded functions f : G̃ → C has a

norm called the uniform norm, with ‖f‖ = sup{|f(x)| | x ∈ G̃} [106, p. 14].
For the following result, see [44, 16.2.1].

THEOREM 12.5
The following conditions on a function f in B(G̃) are equivalent:

(a) The set of right translates of f has a compact closure in the uniform
norm on B(G̃);

(b) The set of left translates of f has a compact closure in the uniform norm
on B(G̃);

(c) The set of all translates of f has a compact closure in the uniform norm
on B(G̃);

(d) The function f is almost-periodic.

A periodic function f on G̃ is certainly bounded. Its set of left translates is
finite, and so compact in the uniform norm on B(G̃). Thus periodic functions
on G̃ are almost-periodic functions on G̃. In particular, each periodic function
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f on G̃ is the restriction (to the dense subgroup G̃) of a unique continuous
function f b : G̃b → C. The mapping

P (G̃) → CG̃b; f 7→ f b

into the space CG̃b of continuous complex-valued functions on G̃b is linear.
The group G̃b, being compact, is unimodular [106, 30A], and so has a left,
right, and inverse invariant measure called the Haar integral

∫
g(x)dx, In

other words,
∫

g(x)dx =
∫

g(tx)dx =
∫

g(xt)dx =
∫

g(x−1)dx

for all t in G̃b, while
∫

1dx = 1 [106, §§29–30].

THEOREM 12.6
Let f be a periodic function on G̃ with left period H, and let T be a right

transversal to H in G̃. Then
∫

f b(x)dx =
1
|T |

∑

t∈T

f(t) .

PROOF For a subset X of G̃, let χX : G̃ → C denote the characteristic
function with χX(x) = 1 for x in X, and χX(x) = 0 otherwise. Then

1 =
∑

t∈T

χHt(x)

on G̃, so
1 =

∑

t∈T

χb
Ht(x)

on G̃b. Now

1 =
∫

1dx =
∫ ∑

t∈T

χb
Ht(x)dx =

∑

t∈T

∫
χb

Ht(x)dx

=
∑

t∈T

∫
χb

Ht(xt−1)dx =
∑

t∈T

∫
χb

H(x)dx ,

whence ∫
χb

H(x)dx =
∫

χb
H(xt−1)dx =

∫
χb

Ht(x)dx =
1
|T |

for each t in T . Then
f(x) =

∑

t∈T

f(t)χHt(x) ,

 



ANALYTICAL CHARACTER THEORY 299

so that∫
f b(x)dx =

∫ ∑

t∈T

f(t)χb
Ht(x)dx =

∑

t∈T

f(t)
∫

χb
Ht(x)dx =

1
|T |

∑

t∈T

f(t)

as required.

Let L1(G̃b) denote the space of functions g : G̃b → C with
∫ |g(x)|dx defined

[106, §17]. The space L1(G̃b) carries a convolution given by

f ∗ g(x) =
∫

f(xt)g(t−1)dt =
∫

f(x/t)g(t)dt

[106, 31A].

COROLLARY 12.1
For periodic functions f , g on G̃, one has (f ∗ g)b = f b ∗ gb.

The generalized Laplace operators ∆i of Definition 12.2 on P (G̃) may thus
be extended to L1(G̃b), and hence to the space AP (G̃) of almost-periodic
functions on G̃.

DEFINITION 12.4 For 1 ≤ i ≤ s, the generalized Laplace operator ∆i

on L1(G̃b) is defined by
∆if = f − µb

i ∗ f .

The generalized Laplace operator ∆i on AP (G̃) is defined by the restriction

∆if = (∆if
b)

∣∣ eG .

As before, the ∆1 are just called Laplace operators.

In terms of the Laplace operator on AP (G̃), the theorem of J. Neumann
on the existence of mean values of almost-periodic functions [44, 16.3.1], [106,
41D] may be reformulated as follows.

THEOREM 12.7
The uniformly closed convex hull of the set of left translates of an almost-

periodic function f on G̃ contains a unique solution u of Laplace’s equation
∆1u = 0, namely the constant function u that is the Neumann mean of f .

PROOF Laplace’s equation

∆1u
b = ub − µb

1 ∗ ub = ub −
∫

ubdx = 0

is satisfied if and only ub, and hence u, is constant.
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12.5 Twisted translation operators

For 1 ≤ i ≤ s, and for an element t of G̃, define the i-th twisted translation
operator T t

i on B(G̃) by

T t
i f(x) =

µi(t)
µi(1)

f(t\x) . (12.12)

Taking the trace of (6.29) gives 0 6= Tr Ei = ηi1|Q| = µi(1), so that (12.12)
is always defined. Note that T t

1f is the left translate tf . The subset Zi =
{µi(t)/µi(1) | t ∈ G̃} of C is finite, and contains 1 = µi(1)/µi(1). Set Mi =
max{|z| | z ∈ Zi}. The number Mi is known as the i-th modulus. As a partial
extension of Theorem 12.5, one has the following.

PROPOSITION 12.6
For each 1 ≤ i ≤ s, the set

Tif = {T t
i f | t ∈ G̃} (12.13)

of i-th twisted translates of an almost-periodic function f on G̃ has a compact
closure in the uniform norm on B(G̃).

PROOF Since f is almost periodic, Theorem 12.5 shows that for given
ε > 0, there is a finite subset {f1, . . . , fr} of B(G̃) such that T1f is contained in
the union Bε/Mi(f1)∪· · ·∪Bε/Mi(fr) of balls of radius ε/Mi centered on the fj .
Consider a given i-th twisted translate T t

i f of f . Suppose ‖T t
i f−fj‖ < ε/Mi.

Then ‖T t
i f − µi(t)fj

µi(1)
‖ = | µi(t)

µi(1)
| · ‖T t

i f − fj‖ < ε . Thus Tif is contained in the
union of the finite set {Bε(zfj) | z ∈ Zi, 1 ≤ j ≤ r} of balls of radius ε. In
other words, the set Tif is totally bounded, and hence has a compact closure
(compare [106, 41A]).

The generalization of the existence statement of Theorem 12.7 may now be
stated.

THEOREM 12.8 (Existence Theorem)
For 1 ≤ i ≤ s, the equation ∆iu = 0 has a solution on the closed convex hull
of the set Tif of twisted translates of any given almost periodic function f on
G̃.

Theorem 12.8 will be proved in the following section. The current section
concludes with an example showing that a solution u of ∆iu = 0 on the closed
convex hull of Tif need not be unique if i > 1.
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Example 12.1
Let Q be the quasigroup (Z/4Z,−) of integers modulo 4 under subtraction
(compare Section 9.8). Taking the fixed element e of Q to be 0, note that
L1(Q) embeds into AP (G̃) via f 7→ f ] with f ] as in (12.7). For this example,
it is sufficient to work in L1(Q). Given q in Q, define δq : Q → C by δq(q) = 1
and δq(Q r {q}) = {0}. Let f = δ0. Then T2f = {δ0,−δ1, δ2,−δ3}. The
closed convex hull of this set of translates is a geometric 3-simplex. For g in
L1(Q), the effect ∆2g of the Laplace operator ∆2 is defined by

∆2g(y) =
3
4
g(y)− 1

4
g(y + 2) +

1
4
g(y + 1) +

1
4
g(y + 3)

for y in Q. Thus 3 solutions u of ∆2u = 0 on the closed convex hull of T2f are
1
4δ0− 3

4δ1, 1
4δ0− 3

4δ3, and 1
4δ0 + 3

4δ2. The full set of solutions is the geometric
2-simplex spanned by these three solutions.

12.6 Proof of the Existence Theorem

This section is devoted to the proof of Theorem 12.8. Fix i in the range
1 ≤ i ≤ s. Let f be an almost-periodic function on G̃. If f = 0, then
u = o ∈ {0} = Tif solves ∆iu = 0. If f 6= 0, say f(x−1) 6= 0 for some
element x of G̃, then TiT

x
1 f = Tif and T x

1 f(1) = f(x−1) 6= 0, so without loss
of generality one may assume f(1) 6= 0.

For a subset S of G̃, let χS : G̃ → C denote the characteristic function with
χS(S) = {1} and χS(G̃ r S) = {0}. Set |Q| = n, and let {H = H1, . . . , Hn}
be the set of cosets Ht of H = G̃e. Then 1 =

∑n
j=1 χHj

in B(G̃). The
χHj

are periodic (having the subgroup H of index n as left period), and so
are almost-periodic on G̃. Under the ring operations induced componentwise
from C, the set AP (G̃) of almost-periodic functions forms a ring [106, 41A].
Set fj = χHj

f , so that
f = f1 + · · ·+ fn (12.14)

for almost-periodic fj vanishing off Hj . Suppose that fj is nonzero, say
fj(hj) 6= 0 for some hj ∈ Hj . In particular, take h1 = 1. Define a function
φj : G̃ → C; x 7→ f(xhj). By Theorem 12.5, φj is almost-periodic, and
φj(1) = fj(hj) 6= 0. Consider the finite, nonempty subset

Z = {fj(hj) | fj 6= 0}
of Cr {0}. Take m = min{|z| | z ∈ Z}.

Given 0 < ε < mnMi, it will be shown that there is a finite convex
combination of translates of f differing by less that ε from a fixed solu-
tion u of ∆iu = 0 in the uniform norm on B(G̃). The function u is taken
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to be µi ∗ f/µi(1). Recall the idempotence of µi under convolution (12.6)
given by Proposition 12.2. Moreover, as a consequence of the associativity
of ∗ on L1(G̃b) [106, 31B], the convolution on AP (G̃) is associative. Then
µi ∗ u = µi ∗ µi ∗ f/µi(1) = µi ∗ f/µi(1) = u, so that ∆iu = 0.

The almost-periodic function φj on G̃ is the restriction of a unique contin-
uous function φb

j on G̃b. Thus there is a neighborhood Vj of the identity in
G̃b such that Vj = V −1

j and

x/y ∈ Vj ⇒ ∣∣φb
j(x)− φb

j(y)
∣∣ <

ε

nMi
. (12.15)

If fj = 0, take Vj to be V1. Then set V =
⋂n

j=1 Vj . Note V = V −1.

LEMMA 12.3
The neighborhood V is contained in the closure H of G̃e. Indeed, V ∩G̃ ⊆ G̃e.

PROOF For v in V ⊆ V1, condition (12.15) gives

|f b
1(v)− f1(1)| = |φb

1(v)− φb
1(1)| < ε

nMi
< m < |f1(1)| ,

so f b
1(v) 6= 0. Since f1 vanishes off G̃e, the point v must lie in the closure of

G̃e. If v also lies in G̃, then f1(v) 6= 0 gives v ∈ G̃e.

LEMMA 12.4
For x/y in V , one has

|f b(x)− f b(y)| < ε

Mi
.

PROOF Suppose x/y ∈ V . If fj = 0, the inequality

|f b
j (x)− f b

j (y)| < ε

nMi
(12.16)

is automatic. Otherwise, write x = ξhj and y = ηhj . Then

|f b
j (x)− f b

j (y)| = |f b
j (ξhj)− f b

j (ηhj)| = |φb
j(ξ)− φb

j(η)| < ε

nMi
(12.17)

by (12.15), since ξ/η = x/y ∈ V ⊆ Vj . Now (12.14) yields f b =
∑n

j=1 f b
j .

Then

|f b(x)− f b(y)| =
∣∣∣

n∑

j=1

f b
j (x)−

n∑

j=1

f b
j (y)

∣∣∣

≤
n∑

j=1

∣∣∣f b
j (x)− f b

j (y)
∣∣∣ <

ε

Mi
,
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on summing the inequalities (12.16) and (12.17) over j = 1, . . . , n.

LEMMA 12.5

The function µb
i is constant on all translates aV of V with a in G̃.

PROOF Consider a given translate aV . Lemma 12.3 shows that aV ∩ G̃
is contained in aG̃e. Since the function µi has G̃e as a right period, it is
constant on the dense subset aV ∩ G̃ of aV . Thus the continuous function µb

i

is constant on aV .

In the free group G̃, the intersection of all the subgroups K of finite index is
the singleton consisting of the identity element. Thus in G̃b, the intersection
of all the closures K of the subgroups K of finite index is again the singleton
consisting of the identity element. This means that the topological group G̃b

forms a Fréchet or T1-space. It follows [106, 28D] that G̃b forms a Hausdorff or
T2-space. Since G̃b is also compact, it is normal [106, 3B], and thus Urysohn’s
Lemma applies [106, 3C]. Taking the complement of V and the singleton {v}
of a point v of V as the closed sets F0, F1, one may use Urysohn’s Lemma
to construct a continuous function h : G̃ → [0, 1] to the closed unit interval,
vanishing outside V and with h(v) = 1. Consider the nonempty open subset
U = h−1(]0, 1]) of V . The set {aU | a ∈ G̃} of all translates of U covers
the compact space G̃b, and thus contains a finite subcover {a1U, . . . , arU}.
Now

∑r
k=1 T ak

1 h(x) > 0 for all x in G̃b, so that gk =
(
T ak

1 h
)
/

∑r
l=1 T al

1 h is
a well-defined continuous nonnegative function on G̃b for 1 ≤ k ≤ r. Define
ck =

∫
gk(x)dx. The nonnegative coefficients c1, . . . , cr satisfy

∑r
k=1 ck = 1.

It will be shown that for each element y of G̃b, the value ub(y) of the solution
of the generalized Laplace equation differs by less than ε from the convex
combination

∑r
k=1 ck

(
T ak

i f
)b of twisted translates of f .

Now

∣∣∣ub(y)−
r∑

k=1

ck

(
T ak

i f
)b(y)

∣∣∣

= µi(1)−1
∣∣∣µb

i ∗ f b(y)−
r∑

k=1

∫
gk(x)µb

i (ak)f b(ak\y)dx
∣∣∣

= µi(1)−1
∣∣∣

r∑

k=1

∫
gk(x)

(
µb

i (x)f b(x\y)− µb
i (ak)f b(ak\y)

)
dx

∣∣∣ .

The k-th integrand is only nonzero where gk(x) is nonzero, namely for x
within the translate akV . Since such x and ak both lie in akV , Lemma 12.5
shows that µb

i (x) = µb
i (ak). Further, since (x\y)/(ak\y) = x\ak ∈ V −1 = V ,

Lemma 12.4 shows that |f b(x\y)−f b(ak\y)| < ε/Mi. But |µb
i (x)/µi(1)| < Mi,
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so that
∣∣∣ub(y)−

r∑

k=1

ck

(
T ak

i f
)b(y)

∣∣∣

=
∣∣∣

r∑

k=1

∫
gk(x)

µb
i (x)

µi(1)
(
f b(x\y)− f b(ak\y)

)
dx

∣∣∣

≤
r∑

k=1

∫
gk(x)

∣∣∣µ
b
i (x)

µi(1)

∣∣∣ ·
∣∣f b(x\y)− f b(ak\y)

∣∣dx

<
r∑

k=1

∫
gk(x)Mi(ε/Mi)dx = ε

∫ ( r∑

k=1

gk(x)
)
dx = ε ,

as required to complete the proof of the theorem.

12.7 Exercises

1. For a finite group G, show that the C-algebra P (G) under the convolu-
tion (12.6) is isomorphic to the complex group algebra CG.

2. For an infinite group G, show that the formal convolution unit δ is not
periodic.

3. Show that for almost all finite quasigroups Q, there is a periodic function
on G̃, with normal period K, that has exactly |K\G̃|! translates.

4. Show that t 7→ T t
1 yields a representation of G̃.

5. Under what circumstances does t 7→ T t
i (for 1 < i ≤ s) yield a represen-

tation of G̃?

12.8 Problems

1. Given a quasigroup Q in a variety V, determine to what extent the
generalized Laplace operators of Q discriminate between the various
irreducible unitary Q-modules in V. Two particular cases of interest
are:

(a) V the variety of Moufang loops;

(b) V a universally finite variety.
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2. A finite-dimensional unitary Q-module p : E → Q with M = p−1{e}
furnishes a finite-dimensional unitary representation M

eG of G̃. This
representation has a character (according to [44, 15.3.6]) which restricts
to an almost-periodic function on G̃. How does this function behave
under the generalized Laplace operators ∆i on AP (G̃)?

3. Is the converse of Proposition 12.6 false for those i for which the signed
measure µi may take the value zero?

4. In the context of Theorem 12.8, find a general method to determine the
shape of the full set of solutions u of ∆iu = 0 on the closed convex hull
of Tif . Note that for f in L1(Q) or P (G̃), this is a purely combinatorial
problem.

5. Give a treatment of the material of this chapter using Hopf algebra
techniques.

12.9 Notes

Section 12.4

Loomis [106, §41] takes property (b) of Theorem 12.5 as a definition of a
(“left”) almost-periodic function, and then constructs a realization of the Bohr
compactification as the maximal ideal space of the commutative C∗-algebra
formed by these functions.

Section 12.5

The Existence Theorem first appeared in [149].

Section 12.6

The proof of the Existence Theorem given here is modeled on the proof of
the existence part of Theorem 12.7 given in [106, 41D].

 



 



Appendix A

CATEGORICAL CONCEPTS

A.1 Graphs and categories

A directed graph or quiver C = (C0, C1, ∂0, ∂1) consists of two classes C0, C1

and two maps ∂0 : C1 → C0, ∂1 : C1 → C0. Elements of C0 are called vertices,
points, or objects. Elements of C1 are called edges, arrows, or morphisms. The
map ∂0 is variously called the tail or domain map. The map ∂1 is variously
called the head or codomain map. An edge f is often depicted in the form
f : x → y or x

f−→ y to indicate that f∂0 = x and f∂1 = y. For a given pair
(x, y) of vertices, set

C(x, y) = {f ∈ C1 | f∂0 = x , f∂1 = y}. (A.1)

A vertex or object t of C is said to be terminal if C(x, t) is a singleton for
each object x of C. The graph C is said to be small if the classes C0 and
C1 are sets. The graph is locally small if the class (A.1) is a set for each pair
(x, y) of vertices. Usually, graphs are implicitly assumed to be locally small.
A pair (f, g) of edges is said to be composable if f∂1 = g∂0, i.e., if the head
of f is the tail of g:

f∂0
f−−−→ f∂1 = g∂0

g−−−→ g∂1 .

The class of composable pairs of edges, denoted by C1 ×C0 C1, is the domain
of projections πi : (f0, f1) 7→ fi for i = 0, 1. The opposite or dual of the
directed graph C = (C0, C1, ∂0, ∂1) is the graph Cop = (C0, C1, ∂1, ∂0). Thus
duality of graphs reverses arrows. If (f, g) is a composable pair in C, then
(g, f) is a composable pair in Cop.

A category C = (C0, C1, ∂0, ∂1, 1, µ) is a graph (C0, C1, ∂0, ∂1) equipped
with a composition

µ : C1 ×C0 C1 → C1; (f, g) 7→ fg

satisfying µ∂0 = π0∂0 , µ∂1 = π1∂1, and an identity map

1 : C0 → C1;x 7→ 1x

retracting ∂0 and ∂1, such that

1xf = f = f1y (A.2)

307 
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for all x, y ∈ C0 , f ∈ C(x, y). The associative law (fg)h = f(gh) is required
to hold for composable pairs (f, g) and (g, h). The opposite or dual of the
category C is the dual graph Cop equipped with the identity (A.2) and the
multiplication (g, f) 7→ g ◦ f := fg. (Recall that composable pairs (g, f) in
Cop correspond to composable pairs (f, g) in C.) Thus duality of categories
reverses the order of composition.

A morphism m : y → z in a category C is a monomorphism if for all
morphisms f : x → y and g : x → y in C, the equation fm = gm implies
f = g. Dually, a morphism e : z → y is an epimorphism if for all morphisms
f : y → x and g : y → x in C, the equation ef = eg implies f = g. (Note the
reversal of the order of composition.) A morphism f : x → y is said to be an
isomorphism if there is a morphism g : y → x such that fg = 1x and gf = 1y.
In this case, the objects x and y are said to be isomorphic in C. Isomorphism
in C is an equivalence relation.

Given objects x and y of a category C, their product is an object x × y of
C, equipped with projection arrows p : x × y → x and q : x × y → y, such
that for each object z and arrows f : z → x, g : z → y, there is a unique
arrow f × g or (f, g) : z → x× y such that (f, g)p = f and (f, g)q = g. This
so-called universality property of the product may be expressed in the form
of a diagram

x
p←−−−− x× y

q−−−−→ y
∥∥∥

x(f,g)

∥∥∥
x

f←−−−− z
g−−−−→ y

(A.3)

known as the product diagram. The coproduct or sum of x and y in C is
an object x + y of C, equipped with insertion arrows i : x → x + y and
j : y → x + y, such that for each object z and arrows f : x → z, g : y → z,
there is a unique arrow f + g : x + y → z such that i(f + g) = f and
j(f + g) = g. Products and coproducts are dual: the coproduct of x and y in
C is the product of x and y in Cup. Note that products and coproducts are
only determined to within isomorphism. For example, in the category Set of
sets and functions, the product of two sets X and Y may be realized by the
“set-theoretical” construction

X × Y = {{x, {x, y}} | x ∈ X , y ∈ Y }

or by the Cartesian construction

X × Y = {(x, y) | x ∈ X , y ∈ Y }

of ordered pairs. The sum or coproduct X+Y is the disjoint union, which may
be realized as (X×{0})∪ (Y ×{1}) with insertions i : X → X +Y ;x 7→ (x, 0)
and j : Y → X + Y ; y 7→ (y, 1).

For a map I → C0; i 7→ xi from a set I to the object class of a category
C, the product

∏
i∈I xi is an object of C, coming equipped with projections
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πi :
∏

i∈I xi → xi for each i in I, such that for each object z of C and arrow
fi : z → xi for each i in I, there is a unique arrow f =

∏
i∈I fi : z → ∏

i∈I xi

such that fπi = fi for each i in I. If I = {0, 1}, then
∏

i∈I xi is just x0 × x1.
If I is empty, then the product object

∏
i∈I xi is terminal in C. If the map

I → C0 takes the constant value x, then
∏

i∈I xi is called the power xI . The
zeroth power X0 of any object of the category of sets is the empty product,
a terminal object or arbitrary singleton {∗}.

Given arrows f : x → z and g : y → z in a category C, their pullback is
an object x ×z y of C, equipped with projection arrows p : x ×z y → x and
q : x×z y → y, such that for each object t of C and arrows h : t → x, k : t → y
satisfying tf = tg, there is a unique arrow h ×z k or (h, k) : t → x ×z y such
that (h, k)p = h and (h, k)q = k. The pullback is usually displayed as in the
following diagram:

x×z y
q−−−−→ y

p

y
yg

x −−−−→
f

z

(A.4)

In a small category C, the set C1 ×C0 C1 of composable pairs is the pullback
of the head and tail maps of C in the category Set.

A.2 Natural transformations and functors

A graph map F : D → C from a directed graph D to a directed graph C
consists of two functions, a vertex map or object part F0 : D0 → C0 and an
edge map or morphism part F1 : D1 → C1, such that for each pair x, y of
vertices of D, the map F1 restricts to

F1 : D(x, y) → C(xF0, yF0).

The respective suffices 0 and 1 on the object and morphism parts are usually
suppressed. Here are two examples:

• The identity map 1D : D → D on a graph D comprises the respective
identity maps 1D0 and 1D1 on the vertex and edge classes.

• If C is a category, and c is an object of C, then the constant map
[c] : D → C takes each vertex of the graph D to c and each arrow of the
graph D to 1c.

A path in a directed graph D is a sequence e1, . . . , el of edges such that
each pair (e1, e2), . . . , (el−1, el) is composable. A diagram in a category C is
a graph map F : D → C with codomain C. The diagram is said to commute
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if for each pair of paths (e1, . . . , el), (f1, . . . , fm) in D with common starting
point e1∂0 = f1∂0 and end point el∂1 = fm∂1, the composite morphisms
eF
1 . . . eF

l and fF
1 . . . fF

m in C agree. For example, the universality property of
the product is expressed by the commuting of the diagram (A.3).

Given two diagrams F : D → C and G : D → C with common domain
graph D and codomain category C, a natural transformation τ : F → G is a
vector having a component τx : xF → xG in C(xF, xG) for each vertex x of
D, such that the naturality property fF τy = τxfG is satisfied for each edge
f : x → y of D. The naturality corresponds to the commuting of the diagram
in C on the right-hand side of the picture

In D

x

f

y
y

xF
τx−−−−→ xG

fF

y
yfG

yF
τy−−−−→ yG

In C

for every arrow f : x → y in D displayed on the left-hand side of the picture.
A (covariant) functor F : D → C from a category D to a category C is a

graph map satisfying the functoriality properties 1xF = 1xF for all objects x
of D and

(fg)F = fF gF (A.5)

for all composable pairs (f, g) of D. A contravariant functor F : D → C from
a category D to a category C is a covariant functor from D to Cop.

An adjunction (F,G, η, ε) consists of a left adjoint functor F : D → C, a
right adjoint functor G : C → D, a unit natural transformation η : 1D → FG,
and a counit natural transformation ε : GF → 1C , such that ηF

x εxF = 1xF for
all objects x of D and ηyGεG

y = 1yG for all objects y of C. Such an adjunction
is often summarized by the isomorphism

C(xF, y) ∼= D(x, yG) (A.6)

for objects x of D and y of C. under which a morphism g : xF → y maps
to ηxgG, while a morphism f : x → yG maps to fF εy. In particular, ηx

corresponds to 1xF and εy corresponds to 1yG. The adjunction provides an
equivalence between the categories C and D if the components ηx and εy of
the unit and counit are always (natural) isomorphisms.

Example A.1
For a characteristic example of an adjunction, take C to be the category

Mon of monoids and monoid homomorphisms, with D as the category Set of
sets. The right adjoint is the underlying set functor G : Mon → Set, while
the left adjoint F : Set → Mon takes a set X, considered as an alphabet, to
the free monoid X∗ of words in the alphabet X (with the empty word as the
identity element). Words are multiplied by concatenation. The component
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ηX : X → X∗ at a set X embeds letters (elements) from X into X∗ as
one-letter words. For a monoid Y , the counit εY : Y ∗ → Y takes a word
in the alphabet Y to the product of its letters computed in the monoid Y .
Under the isomorphism (A.6), a function f : X → Y from a set X to (the
underlying set of) a monoid Y is mapped to its canonical extension to a
monoid homomorphism from X∗ to Y . Conversely, a monoid homomorphism
g : X∗ → Y is mapped to its restriction to the set X of one-letter words.

A.3 Limits and colimits

Let F : D → C be a functor with small domain D. Then the limit lim←−F of
F is an object of C, equipped with a natural transformation π : [lim←−F ] → F
from its constant map to F , such that the following limit property holds:

For all objects t of C and natural transformations κ : [t] → F ,
there is a unique morphism lim←−κ : t → lim←−F such that (lim←−κ)πv =
κv for all vertices v of D.

The natural transformation π, together with its components, are known as
projections from the limit lim←−F . Limits have also been known as projective
limits or inverse limits.

The pullback (A.4) is a typical example of a limit. The domain category
consists of

u → w ← v (A.7)

together with the identity arrows at each of its vertices. The image of (A.7)
under F is

x
f−→ z

g←− y .

Then lim←−F = x×z y, while πu = p and πv = q. By naturality, it follows that
πw = pf = qg. If κu = h and κv = k, then lim←−κ = h×z k.

Dually, the colimit lim−→F of F is an object of C, equipped with a natural
transformation ι : F → [lim−→F ] from F to its constant map, such that the
following colimit property holds:

For all objects t of C and natural transformations κ : F → [t],
there is a unique morphism lim−→κ : lim−→F → t such that ιv(lim−→κ) =
κv for all vertices v of D.

The natural transformation ι, together with its components, are known as
insertions into the colimit lim−→F . Colimits have also been known as inductive
limits or direct limits (sometimes under restrictions on the domain D of the
functor F ).

A category C is said to be complete if it has all limits, and cocomplete if it
has all colimits. It is bicomplete if it is both complete and cocomplete.

 



 



Appendix B

UNIVERSAL ALGEBRA

B.1 Combinatorial universal algebra

A type τ : Ω → N is a function whose codomain is the set of natural
numbers. (Note that N, as the set of cardinalities of finite sets, includes the
cardinality 0 of the empty set. The set of positive integers is denoted by
Z+.) Elements of the domain of τ are called the basic operators of the type.
An algebra of type τ or τ -algebra A or (A, Ω) is a set A equipped with basic
operations

ω : Aωτ → A; (a1, . . . , aωτ ) 7→ a1 . . . aωτω (B.1)

for each basic operator. The class of all such algebras is denoted by τ . A
subset B of A is a subalgebra of (A, Ω) if

∀ω ∈ Ω, (∀1 ≤ i ≤ ωτ, xi ∈ B) ⇒ x1 . . . xωτω ∈ B. (B.2)

Since intersections of subalgebras are subalgebras, each subset X of A deter-
mines a smallest subalgebra 〈X〉 of A containing X, known as the subalgebra
generated by X. Given a family of algebras (Ai, Ω), their product

∏
Ai forms

an algebra
∏

(Ai, Ω) or (
∏

Ai,Ω), the product algebra, under componentwise
operations. A function f : (A,Ω) → (B, Ω) between algebras is said to be a
homomorphism if its graph

{(a, b) ∈ A×B | af = b} (B.3)

is a subalgebra of (A × B, Ω). (Note that it is often convenient to identify a
function with its graph.) Bijective homomorphisms are called isomorphisms.
An equivalence relation V on an algebra A is a congruence if it is a subalgebra
of (A×A, Ω). This implies that the natural projection

nat V : A → AV ; a 7→ aV , (B.4)

mapping an element a of A to its equivalence class aV = {b ∈ A | a V b} in
the quotient AV = {aV | a ∈ A}, is a homomorphism. Conversely, the kernel

ker f = {(a, a′) ∈ A2 | af = a′f} (B.5)

of a homomorphism f : A → B is a congruence on the domain of the homo-
morphism. An algebra (A,Ω) is simple if it is not the domain of a nontrivial,
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noninjective homomorphism. In other words, its only congruences are the
diagonal Â = {(a, a) | a ∈ A} and the universal or improper congruence
A×A.

Given a set L, the free monoid L∗ over L is the set of all words l1l2 . . . ln
with li in L and n in N (compare Example A.1). Words are multiplied by
concatenation; the unit element is the empty word (n = 0). Given a set X,
let X + Ω be the disjoint union of X with Ω. The free monoid (X + Ω)∗ over
X + Ω becomes a τ -algebra under

ω : (w1, . . . , wωτ ) 7→ w1 . . . wωτω (B.6)

for each basic operator ω. Define XΩ, the word algebra or algebra of τ -words
in X, to be the subalgebra of ((X + Ω)∗,Ω) generated by X.

PROPOSITION B.1
Each function f : X → A from a set X to the underlying set of a τ -algebra

(A, Ω) extends to a unique homomorphism f : (XΩ, Ω) → (A, Ω).

PROOF The graph of f is the subalgebra of (XΩ × A,Ω) generated by
the graph of f .

Now fix a set D of variables or arguments by a bijection

β : Z+ → D; n 7→ xn. (B.7)

Make the power set 2D into a τ -algebra by

ω : (A1, . . . , Aωτ ) 7→ A1 ∪ · · · ∪Aωτ (B.8)

for ω in Ω. By Proposition B.1, there is a homomorphism

arg : DΩ → 2D;xn 7→ {xn}, (B.9)

called the argument map. Note arg(x1 . . . xωτω) = {x1, . . . , xωτ}. Since the
argument map sends each element of DΩ to a finite subset of D, there is a
well-defined function

τ ′ : DΩ → N;w 7→ max(β−1(argw)) (B.10)

called the derived type of τ . Elements of DΩ are called derived operators of
τ . Given a τ -algebra (A,Ω), one obtains a τ ′-algebra (A,DΩ) with derived
operations

u : Auτ ′ → A; (a1, . . . , auτ ′) 7→ u(xi 7→ ai). (B.11)

In other words, u acts on A by sending (a1, . . . , auτ ′) to the image of u under
the homomorphic extension f : DΩ → A of the function f : D → A;xi 7→ ai.
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It is convenient to write a derived operator u in the form x1 . . . xuτ ′u, so that
(B.11) becomes

u : Auτ ′ → A; (a1, . . . , auτ ′) 7→ a1 . . . auτ ′u. (B.12)

One may identify a basic operator ω with the corresponding derived operator
x1 . . . xωτω.

Finally, fix a τ -algebra (A,Ω). For a subset ∆ of DΩ, and restriction
σ : ∆ → N of τ ′ : DΩ → N, the σ-algebra (A,∆) is called a reduct of the
τ -algebra (A,Ω). Subalgebras of such reducts are called subreducts of the
original algebra (A,Ω).

B.2 Categorical universal algebra

Given a class V of algebras of type τ , the category V (same symbol) will
denote the category whose object class is the class V, and such that, for given
V-algebras A and B, the set V(A,B) of morphisms from A to B is the set
of all homomorphisms from A to B. The category V is the domain of two
forgetful functors, the inclusion

G : V ↪→ τ (B.13)

and the underlying set functor

U : V −→ Set;
(
f : (A, Ω) → (B, Ω)

) 7→ (f : A → B) (B.14)

to the category Set of sets and functions. Proposition B.1 shows that the
functor U : τ → Set has a left adjoint Ω : Set → τ . For a set X, the unit
ηX : X → XΩU just construes an element x of X as a one-letter word. For a
τ -algebra (A, Ω), the counit

εA : AUΩ → A (B.15)

is the homomorphic extension of the identity function AU → A; a 7→ a given
by Proposition B.1. In particular, for each basic operator ω, the counit εA

maps a word a1 . . . aωτω in AUΩ to the corresponding element a1 . . . aωτω of
A given by the image of (B.1).

A class V of algebras of type τ is a prevariety if isomorphic copies, subalge-
bras, and products of V-algebras are again V-algebras. If V is a prevariety,
then the forgetful functors (B.13) and (B.14) each have left adjoints. The left
adjoint of the inclusion G : V ↪→ τ is the replication functor RV or R : τ → V.
The unit of the adjunction, for a τ -algebra A, is the surjective corestriction
ηA : A → ARG of the product of the set of natural projections nat α : A → Aα
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of congruences α on A whose quotient lies in V. In other words, ηA is the
natural projection of the smallest congruence ρV or ρ on A whose quotient
Aρ lies in V. The congruence ρ is called the V-replica congruence of A, and
the corresponding quotient Aρ in V is called the V-replica of A.

The left adjoint of U : V → Set is the free V-algebra functor V : Set → V.
The unit ηX : X → XV U of the adjunction, for a set X, is the composite of
the unit ηX : X → XΩU of the adjunction

(Ω : Set → τ , U : τ → Set, η, ε)

and (the image under U : V → Set of) the unit ηXΩ : XΩ → XΩRG of the
adjunction

(R : τ → V, G : V → τ , η, ε).

In other words, the adjunction

(V : Set → V, U : V → Set, η, ε)

is the composite of these two given adjunctions. Two τ -words in X are said
to be V-synonymous if they are related by the replica congruence ρV on XΩ.
Thus the free V-algebra on a set X is the algebra of V-synonymy classes.

Fix a type τ : Ω → N. An identity in the type τ is a pair (u, v) of derived
operators of τ . It is often convenient to write the identity (u, v) in the form
x1 . . . xuτ ′u = x1 . . . xvτ ′v. For example, in the type {(µ, 2)} of a binary “mul-
tiplication” µ, the associative law is x1x2µx3µ = x1x2x3µµ, or equivalently
(x1 · x2) · x3 = x1 · (x2 · x3) using infix notation for the multiplication. A
τ -algebra (A, Ω) is said to satisfy the identity (u, v) if the derived operations
u and v coincide on A.

For a class V of τ -algebras, let HV denote the class of homomorphic images
of algebras in V. Similarly, let SV and PV denote the respective classes of
subalgebras and products of algebras in V. The most famous theorem in
universal algebra is the following [15].

THEOREM B.1 (Birkhoff’s Theorem)
A class V of τ -algebras is the class of all τ -algebras satisfying a given set of
identities if and only if V = HSPV.

A variety is a class V of τ -algebras satisfying the two equivalent conditions
of Birkhoff’s Theorem. Note that a variety is a prevariety. The full set of iden-
tities satisfied by each algebra from a variety V is the V-replica congruence
ρV on the algebra DΩ of derived operators.

 



Appendix C

COALGEBRAS

C.1 Coalgebras and covarieties

This appendix summarises the basic facts about coalgebras. For details,
readers may consult [68], [69], or [136]. Crudely speaking, coalgebras are just
the duals of algebras: coalgebras in a category C are algebras in the dual
category Cop. To understand algebras in the right context for this duality,
consider the case of monoids as discussed in Example A.1. There, the com-
posite FG or ∗G : Set → Set is an endofunctor on the category of sets, a
functor from the category to itself. The monoid structure on the underlying
set M of a monoid M (informal notation!) is then specified by the image

ηG
M : M∗G → M (C.1)

of the counit at M under the functor G. The function (C.1) is considered
as the structure map of the monoid M .1 Note that a function f : M → N
between two monoids is then a monoid homomorphism if and only if the
equation

ηG
Mf = f

∗GηG
N (C.2)

is satisfied.
Let F : Set → Set be an endofunctor on the category of sets and functions.

Then an F -coalgebra, or simply a coalgebra if the endofunctor is implicit in
the context, is a set X equipped with a function αX or

α : X → XF

— note the duality with (C.1). This function is known as the structure map of
the coalgebra X. (Of course, for complete precision, one may always denote
a coalgebra by its structure map.) A function f : X → Y between coalgebras
is a homomorphism if and only if the equation

fαY = αXfF (C.3)

1For a more general example of an algebraic structure map, one might consider the image
of the counit (B.15) under the functor U : τ → Set.
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is satisfied. Again, note how (C.3) is dual to (C.2). A subset S of a coalgebra
X is a subcoalgebra if it is itself a coalgebra such that the embedding of S in
X is a homomorphism. A coalgebra Y is a homomorphic image of a coalgebra
X if there is a surjective homomorphism f : X → Y . A bisimulation between
coalgebras X and Y is a binary relation R ⊆ X × Y affording a coalgebra
structure such that the two set product projections πX : X × Y → X and
πY : X×Y → Y restrict to respective coalgebra homomorphisms R → X and
R → Y .

Let (Xi | i ∈ I) be a family of coalgebras. The sum of the family is the
disjoint union of the sets of the family, equipped with a coalgebra structure
map α given as follows. Let ιi : Xi → X insert Xi as a summand in the
disjoint union X of the family. For each i in I, let αi be the structure map
of Xi. Then the restriction of α to the subset Xi of X is given by αiι

F
i .

(More generally, the forgetful functor from coalgebras to sets creates colimits
— compare [8, Prop. 1.1].)

A covariety of coalgebras is a class of coalgebras closed under the operations
H of taking homomorphic images, S of taking subcoalgebras, and Σ of taking
sums. If Λ is a class of F -coalgebras, then the smallest covariety containing
Λ is given by SHΣΛ — compare [68, Th. 7.5] or [69, Th. 3.3]. Since homo-
morphic images are dual to sub(co)algebras, while sums are dual to products,
this result is dual to Birkhoff’s Theorem B.1.

C.2 Set functors

Suppose that F : Set → Set is an endofunctor on the category of sets
and functions. Many of the standard theorems about F -coalgebras depend
on certain properties of the endofunctor F . This section summarizes the two
properties needed for the results quoted in Chapter 5.

Given arrows f : x → z and g : y → z in a category D, their weak pullback
is an object x×z y of D, equipped with projection arrows p : x×z y → x and
q : x×z y → y, such that for each object t of D and arrows h : t → x, k : t → y
satisfying tf = tg, there is an arrow h ×z k or (h, k) : t → x ×z y such that
(h, k)p = h and (h, k)q = k. (For x ×z y to be a pullback, the arrow h ×z k
would be required to be unique.) Let F : D → C be a functor from a category
D to a category C. Then F is said to preserve weak pullbacks if xF ×zF yF
with projection arrows pF : xF ×zF yF → xF and qF : xF ×zF yF → yF is
a weak pullback in C whenever x×z y with projection arrows p : x×z y → x
and q : x×z y → y is a weak pullback in D.

An endofunctor F : Set → Set on the category of sets is said to be bounded
if there is a cardinal number κ such that for each F -coalgebra X and for each
element x of X, the element x lies in a subalgebra S of X with |S| < κ.
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[130] Pöschel, R. and Kalužnin, L.A., Funktionen- und Relationenalgebren,
Deutscher Verlag der Wissenschaften, Berlin, 1979.

[131] Praeger, C., An O’Nan-Scott theorem for finite quasiprimitive permu-
tation groups and an application to 2-arc transitive graphs, J. London
Math. Soc., 47, 227–239, 1993.

[132] Praeger, C., Quasiprimitivity: structure and combinatorial applica-
tions, Discrete Math., 264, 211-224, 2003.

[133] Przytycki, J.H. and Traczyk, P., Conway algebras and skein equiva-
lences of links, Proc. Amer. Math. Soc., 100, 744–748, 1987.

 



References 327

[134] Romanowska, A.B. and Smith, J.D.H., Modal Theory, Heldermann,
Berlin, 1985.

[135] Romanowska, A.B. and Smith, J.D.H., Modes, World Scientific, Singa-
pore, 2002.

[136] Rutten, J.J.M.M., Universal coalgebra: a theory of systems, Theoret.
Comput. Sci., 249, 3–80, 2000.
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