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Preface

Mass movements are a serious geologic hazard common to almost every part of the
world. Globally, the damage to property caused by all forms of mass movements
has been running into billions of dollars annually and thousands of lives have also
been lost. Geoinformation technology has revolutionised our understanding of the
Earth as an integrated system, giving us a growing capability to forecast changes in
weather and climate and allowing observations of changes in land cover and land
use and also prediction of landslides.

Over the past twelve years the topics of terrigenous mass movements and the
use of space-borne remote sensing and GIS has been instrumental for their mon-
itoring, prediction and mitigation. This has been a subject of continuous cooper-
ation between the two editors of this book. Their geological background and their
intensive use of remote sensing data of various sensors over many years, combined
with an eager interest in modelling, made different types of ‘‘geo’’ mass move-
ments including glacier lake outbursts a major focus of their research. They
brought their backgrounds in geology and spatial modeling, along with experi-
ences in the use of remote sensing, to the task of editing a book on mass move-
ments for spatial modelers, environmental scientists, and land planners. Its
objective is to show how to make best use of the tools of remote sensing,
numerical modelling and GIS and then employ them wisely for landslide assess-
ment and predictions.

Thus it was just a logical step to compile the accumulated knowledge and
expertise into a book. However, in order to make this volume more balanced and
comprehensive, from the beginning on we decided to invite a series of interna-
tionally renowned experts to contribute their shares. As soon as the message of our
undertaking spread within the community, we got a lot of enthusiastic feed-backs.
In addition, we also placed a series of dedicated invitations to well-established
colleagues in particular fields. With the typescript submission deadline coming
closer, however, quite a number of potential authors apologised for not being able
to submit, or simply did not respond at all. Others did deliver, after several
reminders, with a significant delay, though.
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From the outset of our work for this book, our idea was to compile a volume on
different aspects of terrigenous mass movements. This starts from the GIS data
base construction (inventory mapping) to the development of highly sophisticated
modelling tools for landslide predictions. We have organizsed the book’s chapters
along the lines of overall landslide assessment. The initial chapters offer a foun-
dation in the areas of remote sensing most relevant to landslide inventory mapping,
along with assessments of the tools available and a better understanding of when
and when not to use remote sensing. Other chapters introduce the well-established
domains of statistical, heuristic and data mining techniques in landslide predic-
tions. Throughout the text, there is an emphasis on applications of remote sensing
and GIS tools aided with soft computing techniques for landslide mapping with
examples and case studies showing the way.

As editors, we jointly and mutually made—to a certain extent–critical remarks
with regard to both the articles’ contents and the authors’ phrasing, and in some
cases even directly corrected minor ‘‘slips of the pen’’. Finally, after quite some of
editorial work, the entire typescript was ready to be sent to Springer Verlag. There,
Dr. Christian Witschel and Agata Oelschläger were appreciative and understand-
ing partners. Their cooperative way of dealing with us and our special requests is
thankfully acknowledged.

Further, the support by Alexander von Humboldt Foundation (AvH), Deutscher
Akademischer Auslandsdienst (DAAD) as well as our colleagues at our home
institutions, the University Putra Malaysia (UPM) in Kuala Lumpur and at the
Technische Universtät Dresden (TUD), Germany, has to be thankfully mentioned.

The production of this book would not have been possible without the pro-
fessional and formidable efforts of Steffi Sharma, Omar Althwaynee, Sheila
Pradhan, and Anne Lange. We also extend our thanks and gratitude to them.

Kuala Lumpur and Dresden, August 2011 Biswajeet Pradhan
Manfred F. Buchroithner
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Chapter 1
An Automated Approach for Detection
of Shallow Landslides from LiDAR
Derived DEM Using Geomorphological
Indicators in a Tropical Forest

Ulrich Mann, Biswajeet Pradhan, Nikolas Prechtel
and Manfred F. Buchroithner

Abstract Landslide inventories in the tropical dense forested areas are routinely
compiled by means of a terrain model interpretation (e.g. using stereo-
radargrammetry; stereo-aerial photographs; stereo-optical imagery), aided with
field investigations. However, construction of the landslide inventories from aerial
photographs and field based studies are excessively time consuming which
involves relatively high cost. Moreover, these techniques are less effective when
applied to dense tropical forest where landslide scars are difficult to map from the
aerial photographs. This chapter attempts an automatic procedure for detection of
rotational shallow landslides from airborne based light detection and ranging
(LiDAR) derived high resolution digital elevation model (DEM) in a tropical
forest in Cameron Highlands, Malaysia. For the extraction of landslides from
DEM, we used various geomorphic indicators such as surface roughness index,
vegetation index and breaklines. The entire landslide extraction process was
implemented in ArcGIS platform and custom Python scripts was used for the
implementation and model construction. For modeling purpose, the Python
Imaging Library (PIL) was used. The terrain zone classification was tested for
various DEM resolutions of 1.5 m, 2 m, 3 m, 4 m, 5 m and 8 m. For testing
purposes, the resolutions with the best results were used for further processing.
To automate the classification of the terrain zones, a rule based region growing
threshold was defined depending on the resolution of the DEM. Finally, a statis-
tical description was applied to rank the extracted terrain zones according to their
compliance with the landslide signature. Subsequently, the landslide probability

U. Mann � B. Pradhan � N. Prechtel � M. F. Buchroithner
Institute for Cartography, Faculty of Forestry, Geo and Hydro Science,
Dresden University of Technology, 01062 Dresden, Germany

B. Pradhan (&)
Institute of Advanced Technology, Spatial and Numerical Modeling Laboratory, University
Putra Malaysia, 43400 UPM, Serdang, Malaysia
e-mail: biswajeet@lycos.com; biswajeet24@gmail.com

B. Pradhan and M. Buchroithner (eds.), Terrigenous Mass Movements,
DOI: 10.1007/978-3-642-25495-6_1, � Springer-Verlag Berlin Heidelberg 2012

1



index (LPI) was calculated by performing zonal operation using each of the
geomorphic parameters. Hence, the LIDAR-derived DEM provides adequate
landslide factor maps to identify the landslide occurred areas, which could be used
for further landslide assessment and site-planning purposes in the tropical regions.

Keywords LiDAR � Landslide � Inventory � DEM � GIS � Remote sensing �
Malaysia

1.1 Introduction

Every year, thousands of humans are threatened by natural disasters such as earth-
quakes, floods, tropical storms, forest fires or mass movements. Specifically the topic
mass movement is of major concern to many developing countries. Mass move-
ments, or landslides, which is used synonymously in this chapter, cause approxi-
mately a thousand deaths as well as S$2 billion of property damage each year
worldwide, as reported by the ESA’s CEOS Disaster Management Support Group
(Bishop and Shroder 2004; CCRS 2005; Rivard 2009). Especially, in the developing
countries, where little open space for housing exists and therefore building con-
struction is done on slopes which are sometimes unstable. Here, preparedness for the
occurrence of this geohazard is a key issue. Landslides carry high economic and
social loses to Malaysia. Occurrences of landslides are prevalent in hill complexes of
Malaysia both in the highlands and lowlands. These have caused loss of lives and
properties in recent years. While agriculture in landslide occurring areas has caused
severe soil erosion downstream, hill construction projects for infrastructure and
residential purposes were the main triggering factors of landslides. Planners have
taken cognizance that developable areas in the gentle terrain have become scarce and
encroachments into the more sensitive hilly areas particularly in the highlands are
inevitable. Development planning in the hilly areas are of paramount importance for
landslide management (Gokceoglu and Sezer 2009). In this context a national
landslide hazard zoning map is a prerequisite to assist in decision making for
approving developments in the prone areas. To further strengthen this initiative,
landslide detection and monitoring system should also be developed for timely
mitigation measures. However, currently there is not much work has been done for
landslide hazard analysis and mitigation in Malaysia. Pradhan (2010b) stated that in
Malaysia landslides occur frequently and damage could be mitigated, if an early
warning system is available. For an example, he mentioned a landslide, which
occurred in Kuala Lumpur in October 2002. It killed six members of a family and is
still in the public’s memory (Pradhan 2010a, c, d).

Over the years, geohazard susceptibility and and risk assessment have been
conducted in an increasing numbers worldwide (Akgun and Bulut 2007; Akgun
and Turk 2010; Akgun et al. 2008; Can et al. 2005; Duman et al. 2006; Ercanoglu
et al. 2008; Iovine et al. 2003; Youssef et al. 2009; McKean and Roering 2003;
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Nefeslioglu and Gokceoglu 2011; Guzzetti 2004; Lee and Jones 2004; Sassa et al.
2005). Furthermore, studies on the prediction of the occurrence of future landslides
are carried out, using analytical and soft computing and statistical approaches
(Ercanoglu 2005; Ercanoglu and Gokceoglu 2002, 2004; Lee 2005; Nefeslioglu
et al. 2008, 2010; Sezer et al. 2011; Guzzetti et al. 2006; Pradhan 2011; Pradhan
et al. 2010a, b, c; Oh and Pradhan 2010; Yilmaz 2009, 2010a, b). For these tasks,
information about past and recent landslides is fundamental and most of the
prediction approaches use landslide inventory maps of the study area (Pradhan
2010a, b; Pradhan and Lee 2010a, b, c). Compiling those maps is still conducted
manually by experts interpreting aerial imagery and generally needs a supporting
field study to verify the results (Pradhan et al. 2010a; Brardinoni et al. 2003).
Pradhan et al. (2010a) asserted that ‘‘Landslides were detected from aerial pho-
tographs by interpreting breaks in the forest canopy, bare soil, and other typical
geomorphological characteristics of landslide scars.’’ Furthermore, it is a time
consuming task, as McKean and Roering (2003) asserted: ‘‘Landslide inventory
maps are tedious to compile, difficult to make in vegetated terrain using con-
ventional techniques, and tend to be subjective.’’

In this chapter, an approach for the automated detection of rotational shallow
landslides from a high-resolution digital elevation model (DEM), using geomor-
phological indicators is presented. The aim is to substitute or find an alternative
way for outlining erosional features with more efficient techniques. This can
provide the possibility of enhancing future statistical estimations about landslide
occurrence, by using objective, automated generated inventory maps. Furthermore
in this way, the question, if landslides can be recognized in tropical forested terrain
could be answered to some extent.

Danneels et al. (2008) presented an approach on automated mapping of landslides
and compilation of inventories in Tian Shan, Kyrgyz Republic. They used satellite
imagery as well as various DEM derived supplementary for manual delineation of
medium sized slope failure features. Primarily, they obtained a sliding likelihood
value for each pixel and performed segmentation afterwards. Subsequently, they
filtered classified landslides according to their shape and geomorphologic properties
such as the slope angle (Clark et al. 2004; Razak et al. 2009, 2010; Schulz 2007).

In this chapter, a short characterisation of rotational landslides morphology is
conducted and the geomorphologic parameter i.e. slope curvature is discussed. The
limitation on rotational landslides is used as there exist too many types of land-
slides, each with different characteristics. Additionally, the classification approach
is presented and a closer look to the classification steps is provided. Finally the
results are presented and discussed.

1.2 Study Area

Many parts of middle and south-eastern Asian countries pose high risk due
to mass movements. For example, Malaysia suffers from several landslide
incidents each year, causing a severe numbers of fatalities and economic loss
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(Lazacode 2010). They are commonly triggered by heavy rainfall, and anthropo-
genic activities such as improper slope management. For this research, the
Cameron Highlands in Malaysia was chosen as the study area. This mountain
range is situated in the north-westernmost part of the state of Pahang bordering to
the state of Perak in the west and Kelantan in the north (Fig. 1.1). Here, landslides
occur frequently because geomorphological and meteorological circumstances
abet this kind of natural hazard.

The study area is located within 4� 300N and 101� 200E and covers an area of
approximately 710 km2. In the study area terrain heights range up to more than
1500 m above Mean Sea Level (msl), and slopes up to 60 degree are common, as
identified from the elevation dataset.

Highest peaks of rainfall occur from March to May and September to
December. Pradhan et al. (2010a) observed that most landslide incidents in this
region occurred above a level of 208 mm of daily rainfall. The geology of the
region basically consists of igneous and metamorphic bedrock (Pradhan et al.
2010a). Large parts consist of granite rocks that were formed in the late Triassic
period (Fortuin 2006). The landscape is densely vegetated due to the tropical
climate. Between the steep slopes there exist man-made plains, often established
as terraces, used for tea and vegetable growing.

The available DEM covers an area of about 53.6 km2. For the testing of geo-
processing techniques, a smaller region was used as application site, as the
computing times are very time-consuming. The application site is located at
381533,5 to 383360,5 m East and 498562,65 to 501924,15 m North in local

Fig. 1.1 Location map of the study area (Cameron Highlands in Malaysia)
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coordinates, which is approximately 4� 300 2100 to 4� 320 1100N and 101� 250 3300 to
101� 260 3300E in geographic coordinates. The used local coordinate system is
Kertau RSO Malaya Meters. Heights in the dataset range between 1,230 to 1,650
m above msl and the steepest slopes reach more than 65 degree of inclination.

1.3 Geomorphological Features and Landslides

A rotational landslide, as defined by Abbott (2004) is the ‘‘downward and outward
movement of a mass on top of a concave upward failure surface’’. Material is
displaced, due to a triggering event, slumping downslope along a failure surface.
At the top part of the slide, the crown, cracks occur in the original ground surface
due to the shearing stress, which form the main scarp, a steep slope along the
failure surface. While the material is moving downwards, due to internal rotation,
several faults are formed cross-directionally along the movement of slope. So the
material moves down in blocks, called the head and several units, separated by
longitudinal faults and cracks.

At the foot of the landslide, displaced material moves beyond the depletion
zone and accumulates above original undisturbed ground surface. At the end of the
accumulation zone, this material is building the toe, which is the typically curved
part of the accumulated material, most distant from the main scarp (Fig. 1.2).
It can be assumed that the materials along the slide moves downwards, until it
reaches a stable position (Lee and Jones 2004).

From the above description, the most important characteristic is the shape of the
depletion zone which is typically formed concave in direction of the movement of
the slide, which means in the direction of the steepest path on the slope. Typically,
rotational landslides also show a concave curvature in the horizontal direction,
formed by the declining slope at the flanks of the sliding zone, and lower heights in
the centre of the displaced zone. The horizontal curvature also occurs, if the
surface of the rupture is occurred on a planar sliding plane, but the flanks are
similar to those of a rotational slide.

Landslides occur in hilly and mountainous terrain where the maximum slope
angle exceeds the critical slope angle, which is dependent on the local soil char-
acteristics and other geologic factors (Schuster and Wieczorek 2002). Takahashi
(2009) defined a critical slope angle for debris-flow events for 15 degrees. Hylland
and Lowe (1997) derived critical slope angles for slumps and debris slides in Utah,
U.S., ranging between 9 and 27 degrees. Rivard (2009) specified that slow earth
flows occur on slopes of 10 to 35 degree, whereas debris slides and avalanches
occur on very steep slopes of more than 25 degrees.

Local topographic surface roughness is generally considered to be higher on the
erosional areas of a landslide, on the depletion as well as on the accumulation
zone, than in adjacent unfailed terrain. McKean and Roering (2003) used this
characteristic to differentiate a large landslide complex from surrounding terrain,
with reasonably good results.
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In areas with a dense vegetation canopy, covering will be less on failed slopes,
due to unearthing of bare soil and translation of covering vegetation. Thus, a
vegetation index is expected to be an indicator of probable landslide existence, in
the study area.

1.4 The Parameter: Slope Curvature

The parameter curvature is a descriptive mathematical characteristic of a slope and
is used to describe the shape of ground elements. Dikau (1988) defined relief
entities in the sense of geomorphometric objects, as the smallest elements. The
delineation of those entities is based on the homogeneity of the forms with respect
to certain geomorphologic parameters. Dikau (1988) further broke down curvature
into more precise relief parameters: profile and plan curvatures. Profile curvature is
the curvature in vertical direction and plan curvature in horizontal direction,
respectively. These characteristics are joined for each ground element and describe
the character of the entities of the georelief. This approach of Dikau (1988) is
utilized in this work, in order to derive relief-forms on slopes which are charac-
terised by their profile and plan curvature (Kugler 1974).

Fig. 1.2 Landslide morphology and features of an idealised rotational landslide (Source Lee and
Jones 2004; after Cruden and Varnes 1996; IAEG Commission on Landslide 1990)
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For the derivation of the curvature value, the surface point is examined in
relation to its vicinity. As a result, it becomes obvious, that curvature is a scale-
dependant property, which means that it differs for one and the same point with a
change in scale. This is crucial to notice, as it reveals the importance of the factor
scale for the geomorphologic analysis. It is possible that a point on a surface owns
a convex curvature in a large scale, but if we ‘zoom out’, the same point will be
placed in a concave shaped form and thus have a concave curvature.

1.5 Data Used

In this chapter, existing elevation data of the Cameron Highlands, was compiled
from a high-resolution airborne laser scanning (ALS) point cloud. The term
LiDAR (Light Detection and Ranging) is often used synonymously for this data
collection method and will be used throughout the chapter.

The advantages of a DEM from this source are obvious: data can be gathered in
short time, investigations in a wide region are possible, smaller features can be
detected and thus surface characteristics can be determined due to better resolu-
tion, and the extraction of a bare earth model is possible, making investigations
more or less independent of vegetation effects. For example, Jakob and Hungr
(2005) stated, that LiDAR has the ability to detect landslide scarps under a fairly
dense tree canopy. Carter et al. (2001), were able to detect landslide scarps beneath
a tree canopy and could identify features which otherwise would have been
remained undetected. This makes airborne LiDAR a competitive data collecting
technique (Sithole and Vosselman 2004).

For the calculation of a vegetation index, satellite images with red and infra-red
bands are necessary. The images need to fit with the collection of the laser
scanning point cloud in the temporal component, otherwise precise examination
and reliable results cannot be guaranteed for the classification, as surface and
vegetation characteristics are changing over time.

1.6 LiDAR Processing Steps

The entire process chain is based on three different stages, which are depicted in
Fig. 1.3. The first is a layer of region polygons, derived from the elevation model.
These polygons represent surface areas, which own a concave shape, in the
horizontal as well as in the vertical direction (Glenn et al. 2006). Those regions
are expected to represent potential landslide areas, based on the morphology of a
rotational slide.

The second stage is a surface roughness index and the third one a vegetation
index, each represented as a parameter layer. These indices will be used for
the previously classified areas, to more precisely investigate their properties.

1 An Automated Approach for Detection of Shallow Landslides 7



It is expected, that good measures for defining a landslide can be derived with
these indices, so they serve as indicators of eroded locations. Of course, each of
them should not be taken individually, as different areas might show the same
characteristics. But considering together in a decision making matrix, they can
serve as a landslide signature from geomorphological and spectral properties.
Considering these different aspects of a landslide, it is expected to define erosional
areas by developing a probability index for their occurrence. In this way, each
classified region polygon can be treated in respect to a certain probability of being
a landslide. The classification idea follows the rule: Terrain regions of concave
shape, which are situated on a slope, owning a high surface roughness and a low
vegetation index are classified with a high landslide probability index.

In Fig. 1.4, a part of the study area is shown. It includes a presumed landslide
area, which is outlined by the red contour. Clearly recognizable is a breakline at
the upper part (left side in the image) and accumulated material, building a small
pond surrounded by a levee, at the toe of the slide. This area was used to determine
the suitable classification methods and to adjust the parameters such as filtering
thresholds and DEM resolution (De Smith et al. 2007). In this way, an adjustment
to the characteristics of the terrain in the study area could be conducted.

Fig. 1.3 Three stages of the
landslide classification

Fig. 1.4 Showing landslide
feature location
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1.6.1 Potential Landslide Zone Classification

To classify zones from the DEM, which likely correspond to erosional areas.
Curvature has been derived in both horizontal and vertical directions, which are
referred to as plan curvature and profile curvature respectively (Wohl and Oguchi
2004). During the calculation for each ground element in the DEM, the curvature
value is derived from a polynomial fitting in its neighbourhood. Each ground cell can
then be grouped by its curvature values after following the classification approach of
Dikau (1988) into convex, straight or concave. By doing so, it allows a geomor-
phological description of a slope at a certain scale (Dikau and Schmidt 1999).

Subsequently, straight or concave curvature (in both directions), were identified
from the LiDAR derived DEM dataset. The classification of straight cells is also
necessary, as there is a smooth transition between straight and concave and just
classifying areas above a certain curvature would result in a too coarse distribution
of classified pixels. That means, a binary raster dataset is produced, consisting of
pixel values, where ‘‘1’’ indicates a concave shaped ground cell and ‘‘0’’ a convex
shape, respectively. Furthermore, inclination at the current position is evaluated, to
ensure, only pixels on a slope with a certain inclination upwards are taken into
account, as plains should be excluded from the classification, as these areas are not
expected to show eroded features. Thus, a slope inclination threshold was applied,
by following different proposals as given by experts, defining a critical slope angle
for the occurrence of landslides in their research. For the critical slope angle, 10
degree was chosen for this classification. This seems to be adequate, considering
the propositions of critical angles and the terrain in the study area, which is, except
of slopes also consisting of man-made plains, which should not be considered for
the classification.

To derive more dense clusters, where the majority of ground cells have the
same curvature, binary filtering algorithms were utilized. In this region growing
operation, a 3-by-3 pixels kernel was tested with a FOCALSUM filter. That means,
if in the kernel a certain number of pixels above a certain threshold are classified as
concave, the kernel is evaluated to true, which classifies the current DEM cell as a
concave pixel. This operation results in a densification of concave pixels in areas,
where agglomeration of concave DEM cells exist.

In the next step, those densified areas were fused, so that the classified regions
will have homogenous types of concave cells. Therefore, mathematical
morphology operations are employed in a 3-by-3 pixel kernel. This will generate
solid polygons from the clustered areas. In a successive application, an Opening
operation is applied before a Closing operation. The opening removes pixels from
the outer border of concave clusters. This means that solitary pixels and the outer
parts of larger areas of classified pixels are removed and their core remains. In the
Closing operation, existing clusters are enlarged in a way, that they get concave
pixels accumulated at their outer border. This will resize them to the original
width. So the areas, that showed the best initial clustering, are separated and
classified as concave shaped terrain features. A slope evaluation during the
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processing prevents the closing operation from classifying pixels which are not
situated on slopes. This was not possible in the original classification and hence,
the potential landslide zones should not extend into flat terrain after following the
processing steps.

At this stage of the analysis, a new raster-based dataset of concave curvature
exists. For further use in GIS, it is important to have the data available in vector
format. So, the last step is a raster-vector conversion, which gives a dataset of
simple polygons that can now be the basis of a zonal evaluation of different
landslide describing parameters.

1.6.2 Surface Roughness Index

The surface roughness index computation is based on the calculation of deviations
between the elevation model surface and a trend-surface, fitted in the local range of
a moving window. As the roughness of a surface in a distinct scale is characterised
by the frequency and amplitude of its height values, the calculation of normalised
heights can be used as a descriptor of the local surface roughness. To get those
normalised heights, the deviations of the actual terrain height from a planar trend-
surface were computed (Gray 1997; Penck 1894; Pollack 2002; Ritter 2010).

For each ground cell of the elevation model, a trend-surface of a first order
polynomial is fitted in the range of a 5-by-5 pixel kernel. This medium sized
kernel is expected to return the best interpretation of the surrounding terrain,
whereas a 3-by-3 pixel kernel would include a relatively smaller neighbourhood
and a 7-by-7 pixel kernel to generate a larger neighbourhood to give represen-
tative results. To compute a trend-surface, the current extent from the DEM has
to be transformed into a point cloud dataset first. Then the deviation of the actual
heights from the planar trend-surface over the entire kernel is computed and the
maximum deviation is returned. This value will represent the deviation at the
current kernel position in the roughness index dataset. In this way, a raster of
maximum deviations is generated. It was decided to use the maximum value
here, as it best outlines the maximum roughness at the current position. Mini-
mum deviations would smooth the data too much and no meaningful conclusion
could be derived.

1.6.3 Vegetation Index

The bare-earth of erosional areas in vegetated terrain shows a high difference in the
vegetation index, in comparison to surrounding terrain (NASA 2011). The derivation
of a vegetation index shall serve as a parameter for the differentiation between
vegetation and bare soil. This classification can be derived in a continuous scale,
which means that it can easily be integrated into a landslide probability indexation.
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A vegetation index, frequently used in remote sensing, is the normalized dif-
ference vegetation index (ndvi), which is expected to give reasonable results for
this work. It is computed from the returned intensities of the red and near infrared
wavelengths by following Eq. 1.1:

NDVI ¼ NIR � Rð Þ
NIR þ Rð Þ ð1:1Þ

In this work, the influence of a vegetation index could not be tested due to the
lack of satellite multi-spectral images for the test site. It is not facile to get the right
data, due to time constraints in data collection. For reliable classification results, it
is important that the data used for the processing of the vegetation index should be
collected at the same time as the DEM raw data or little time afterwards. Data
collected later influences the results of the processing, even more for a tropical
landscape, because vegetation recovers bare spots comparatively fast here and will
thus change the actual parameter index for a classified zone.

Nevertheless, the principle of operation of such an index would generally give
reasonable results during data processing. However, further tests have to be con-
ducted with respect to the question, how this index influences the results of a mass
movement classification in vegetated terrain.

1.6.4 Breaklines

An important fact, that gives conclusions about the state of the terrain and eroded
locations, is the occurrence of scarps and breaklines (Fara and Scheidegger 1963). From
their nature, they show discontinuities of the terrain surface, whether they are of natural
or man-made origin. In this way, they can correspond to the scarps of a landslide.

The suggestion here is, to use the breaklines for a more reliable determination
of landslide features. However, it is not intended to use the breakline detection for
the proposed landslide indexation. This is because the linear type of the breakline
features is not comparable with the polygons of the zone layer. That means, an
area-based value for an entire polygon cannot be derived directly. But, it is pos-
sible to use an auxiliary layer, containing this information, for the manual
judgement of an expert about classified landslide locations. If the expert has the
information about concave zones, classified with a certain landslide probability,
and there exist further information, like the location of such a zone below a curved
breakline on a slope, this may help to improve the classification of this area.

The breaklines can be automatically detected from the DEM without the need
of any further data. For the detection, the same approach as for the curvature
derivation of the areas is used. Deriving curvature in vertical direction, the profile
curvature, it is possible to detect points of highest change in steepness. This has to
be imagined as a vertical cross-section through the slope. Now, brims on slopes are
usually convex features in vertical direction. Considering the cross-section profile,
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the curvature of its corresponding curve on the surface is greater, i.e. the higher the
value of convexity at a certain point. If there exists a high convexity in the data,
this may correspond to the section of the lateral cut with the brim. Now, if we
make several cross-sections next to each other through the slope, the connection of
all the points of highest convexity will approximate the breakline.

1.6.5 Landslide Probability Index

For the potential landslide zones, a value for each parameter has to be calculated.
That means, with the zone layer and each parameter layer, a zonal operation is
performed in orderto retrieve the parameter index for the current zone. This is
accomplished with the Map Algebra function ZONALMEAN or ZONALMAX,
respectively (ESRI 2010). With this calculation, all raster values from a parameter
layer, that fall within a specific zone are used to determine the value for that zone.
The mean or the maximum value is returned and assigned to the entire zone.

Problems with the correct assignment of a value may occur, if the zoning brings
suboptimal results. That is, if the regions do not fit to the real extent of a landslide
feature, being either too large or too small. In the first case this leads to a decreased
probability index, as surrounding parts of the slide, owning different properties for
the parameters, are included into the calculation. In the second case, not all valid
cells, belonging to the landslide feature are taken into account. In general, it has to
be said, that it is better to classify smaller regions instead of too large regions. This
assures that a landslide does not get lost within a large region, which will be
classified with a lower probability.

Having determined all the characteristics of the potential landslide zones, it is
important to establish a ranking of all the classified zones in the dataset according
to their probability of being a landslide. This is necessary to get a statistical
evaluation of the zones for further use of the data.

The probability classification follows the rule:

high surface roughness AND low vegetation intensity ¼ high landslide probability:

Basically, additional parameters, apart from the topographic surface roughness
and the vegetation intensity can be applied to the calculation, depending on the
terrain characteristics, as defined by an expert.

Figure 1.5 depicts the classification scheme: zones that own a high local
topographic surface roughness and low vegetation intensity have a high probability
of being a landslide. On the other hand, zones with a low value in surface
roughness and a high vegetation index will get a low probability index for the
landslide indexation.

The influence of those contrary effects of different parameters must be con-
sidered. For clear designation, they are called positive-effect and negative-effect
parameters here. For a positive-effect parameter, landslide probability increases
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with a higher index. For negative-effect parameters, the probability decreases
with higher indices. Hence, surface roughness is a positive-effect parameter and
the vegetation index a negative-effect parameter, respectively. This probability
determination is quite a vague proposition, even more for all parameter values
between their minimum and maximum. So, a formula is given to calculate the
Landslide Probability Index (LPI):

LPI ¼
X

PIx wxð Þ ð1:2Þ

where PIx is the index for a parameter and Wx the weight, given to this parameter.
The total of weights in the calculation adds to one. The calculation of the
parameter index is differentiated for positive-effect parameters PIpe and negative-
effect parameters PIne:

PIpe ¼
px þ px minj jð Þ

px max � px minð Þ ð1:3Þ

PIne ¼
px max � px minð Þ � px þ px minj jð Þ

px max � px minð Þ ð1:4Þ

where px is the current parameter value for the zone. px maxand px minare the
maximum and minimum bounds of the possible range of values for the particular
parameter. The addition of the absolute value of the particular minimum value
makes the calculation independent of the different range of values’ that can occur
for different parameters. The calculation of the LPI gives probability values in a
common range from zero, for a very unlikely landslide area, up to one for the
highest likelihood.

1.6.6 Implementation

In this work, ArcGIS and custom Python scripts were used for the implementation.
For different tasks, the Python Imaging Library (PIL) was used. This allowed

Fig. 1.5 LPI Classification scheme
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image processing capabilities, which would not have been possible with the
ArcGIS standard tools alone. Thus it was possible to automate a moving window
calculation and define exactly what to do with each image pixel (Gajski 2004).

The terrain zone classification has been tested for various types of DEM res-
olutions such as: 1.5 m, 2 m, 3 m, 4 m, 5 m and 8 m on the landslide locations.
The clustering of concave shaped ground cells and the width of unclassified areas
differs with respect to the DEM resolution. For testing purposes, the resolutions
with the best results have been used for further processing.

To retrieve a valid threshold for the region growing operation, datasets with
2 m and 3 m resolution were tested with different thresholds varying between 2
and 6. That means, if 2 or more out of 9 (or 6 or more out of 9, respectively) pixels
in the kernel have the value ‘1’, then a value of ‘1’ is also assigned to the pixel at
the current kernel centre. A significant improvement in the zoning can be seen
after the region growing. A better clustering is present in all datasets, distances
between classified pixels are smaller and sparsely distributed pixels are removed,
dependant on the threshold.

To automate the classification of the terrain zones, a rule for automatically
calculating the region growing threshold has to be defined. It is dependant on the
resolution of the DEM. The following rule was defined, based on the processing of
the 2 m and 3 m resolution DEM:

if DEM�resolution [ 8 : region growing threshold ¼ 8

otherwise : region growing threshold ¼ floor DEM�resolutionð Þ þ 1;

where floor indicates a function which converts a floating point value to an integer
by truncation. This works well for the 2 m and 3 m resolution but needs further
enhancement for other resolutions.

For testing mathematical morphology operations, the dataset with the threshold
of 3 is used. They are implemented by a Python script in Map Algebra syntax
which again uses a moving window. For the Opening operation, the standard
threshold was defined with 8. In a closer look, that means that only classified
pixels, that are enclosed within a larger amount of concave pixels, also remain.
If in the kernel three or more unclassified cells occur, the classified pixel is
subtracted from the amount.

The threshold for the Closing operation was defined as two, which means, that a
pixel is classified if it has at least two classified neighbouring pixels. In the present
case, Opening and Closing operations have been applied twice each.

The computing time for the surface roughness index derivation was too time-
consuming for the entire test site. Hence it was evaluated for two separate small
areas only. The main part of the script running time is consumed by computing the
trend-surface and the computation of the standard deviations. It also takes a
lot of time, to convert a certain DEM extent to a point dataset. The run-time per
pixel could be reduced after some optimizations in the code from around 19 to
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approximately 10 s. Around 38% of that is consumed by the trend-surface com-
putation and 54% by the standard deviations computation.

1.7 Results and Discussion

In this chapter, a principal idea of compiling an automated procedure for landslide
inventory mapping is suggested. The inventory map outlines zones in the dataset
which may correspond to probable landsliding zones. Therefore, characteristics
and properties of landslides in the examined countryside have to be taken into
account. This work suggests using local topographic surface roughness and veg-
etation density as indicators.

Landslide inventory map examples have been produced on two small parts of
the test site, as computation time for the entire data was proven to be too long. One
of them is depicted in Fig. 1.6. Furthermore, it has to be stated that only one factor,
namely local topographic surface roughness, could be used for testing the landslide
probability categorization. That means that this work may not yet provide a reli-
able complete landslide inventory dataset of the entire study area. It is intended to
provide ideas and suggestions for a technical approach to the automatic extraction
of those features from a LiDAR derived DEM.

The used DEM had an original resolution of approximately 1 m. Even though it
would have been good to make use of this resolution, problems arose from
inconsistencies in the data. Presumably due to tiling effects, originating from the
production, regular outliers in height values occurred. This resulted in a grid-
shaped error over the entire dataset, where the pixels on the grid-lines had
anomalous heights, in relation to their neighbouring pixels. This was not accept-
able, as the necessary computation of curvature in the DEM did generate high
deviations from an expected value for those grid locations. Therefore, a resampling
of the DEM was necessary, which resulted in a lowered resolution. To keep lower
resolution as small as possible, resampling has been done in small irregular
intervals. Sample resolutions of 1.12 m, 1.18 m or 1.25 m were tested, but the
errors could not be removed entirely. The use of two irregular resampling steps
down to 1.35 m and 1.5 m finally and produced the best results.

In the process, concave shaped terrain forms could be extracted from the DEM.
Those areas are assumed to correspond to erosional landslide features. Best results
were achieved in the 2 m and 3 m resolution. These terrain zones build the basis of
the landslide classification with different parameters. The employment of mathe-
matical morphology in the process is the restricting criterion for the size of
movements, which can be detected with this approach. The opening operation
deletes outer pixels of clusters. Here, this operation was applied twice. This
implies, that clusters of concave pixels which are smaller than two times the DEM
resolution in width, are removed from the dataset. Accordingly, it is possible to
detect landslide features which are larger than two times the DEM resolution in
their smallest dimension.
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In the Figs. 1.7 and 1.8, the classification of the roughness parameter is shown.
In Fig. 1.7, it can be seen that the polygon containing this feature is classified with
a dark brown, using the ZONALMAX derivation. This means that it is considered to
have a high surface roughness. In the other Fig. 1.8, where a ZONALMEAN cal-
culation was deployed, the same feature shows a lower surface roughness. In fact,
even if the ZONALMAX shows the better classification here, it is expected to give
more unreliable results. This is due to the fact, that one outlier in the zone with an
abnormally large height will classify the entire region with a high surface
roughness, influencing not only the classification for this factor heavily but also the
entire probability value. The ZONALMEAN calculation instead gives averaged
results, taking the entire roughness distribution in the zone into account. For that
reason, it is generally preferred here. But issues do also appear with this type of
calculation. As can be seen from the resulting classification, it is also not providing
reliable results. The following problems are identified: firstly, a part of the land-
slide which shows the highest roughness values is near the main scarp. Unfortu-
nately, this part is not classified correctly by the zoning algorithm. That means,
important parts which would enhance the roughness index upwards are not con-
sidered by the calculation. Secondly, the polygon containing the landslide feature
is larger than the landslide in the eastward direction. This results in an averaged
roughness calculation for a zone, which likely consists of the landslide feature and

Fig. 1.7 Surface roughness
index, zonalmax

Fig. 1.6 LPI inventory
image
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uninvolved terrain. It is obvious, that the part which is not a landslide lowers the
averaged roughness value.

This was tested on the dataset. The polygon was divided into two features,
the polygon of the expected landslide extent and the leftover. On this dataset, the
same probability classification was conducted. The result (Fig. 1.9) shows, that
the value of the landslide part rises, whereas the second polygon is decreased in the
roughness determination, which results in a lower landslide probability classifi-
cation. Thus it is better to classify smaller areas to prevent this incorrect
classification.

A problem that occurs with an automated classification is that landslides may
not be detected correctly. But also false positives may appear, i.e., features, that
are not landslides, could erroneously be detected. This should be avoided by
employing additional properties of landslide features. To get more reliable results
which can be treated as an inventory map, a vegetation dataset would be necessary
to also produce the vegetation index layer.

1.8 Conclusions and Perspective

In this chapter, a methodology was developed to automate the process of classi-
fying rotational landslides from a high-resolution LiDAR based DEM. Addition-
ally, characteristics of landslides were investigated and described, in general as
well as in more detail, for rotational landslides, to understand their behavior.
However, it is clear that landslide is a complex system, which is difficult to restrict
to a few parameters. Nevertheless it is necessary to establish a descriptive context
for landslide features to differentiate them from unfailed surrounding terrain. This
is intended by the term of a landslide signature from geomorphological and
spectral properties.

Main factors of the classification, like using surface roughness for the evalu-
ation of slides or the determination of homogeneous terrain form elements for a
geomorphological description of terrain characteristics, are not new but have
proven their functionality in previous research. These basically useful techniques
have been aggregated and adapted to serve the classification needs. Standard

Fig. 1.8 Surface roughness
index, zonalmean
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geoprocessing techniques and custom Python scripts have been applied, to make
the automation of classification tasks possible.

Finally, a statistical description is applied to rank the extracted terrain zones
according to their compliance with the aforementioned landslide signature.
Therefore the Landslide Probability Index (LPI) is introduced. However, not
included in the classification, is the accumulation area of the landslide. To also
classify this part of a slide it would be necessary to test different algorithms that for
instance detect convex shaped form elements.

Unfortunately, the results of the classification cannot yet be proven, as no
reliable landslide inventory of the study area exists for the given scale that was
produced under similar conditions. To support the ideas and results, detailed
fieldwork would be necessary. Furthermore, thresholds used in the classification
have to be investigated more in detail and need further adjustment for correct
behavior in different scales.

It is expected that this approach can serve as a base of a semi-automatic derivation
of a landslide inventory, which allows the geoscientist to adapt parameters and
thresholds as is reasonable in the current study area. It would also make sense to
establish a processing application which would decrease the programming labour
and would be flexible enough to support the researchers during the classification.
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Chapter 2
Landslide Susceptibility Mapping Using
a Spatial Multi Criteria Evaluation Model
at Haraz Watershed, Iran

H. R. Pourghasemi, Biswajeet Pradhan, Candan Gokceoglu
and K. Deylami Moezzi

Abstract The purpose of this study is to prepare landslide susceptibility map using a
spatialmulti criteria evaluation approach (SMCE) in a landslide-prone area (Haraz) in
Iran. In the first stage, landslide locations were identified in the study area from
interpretation ofaerial photographs, and field surveys. In the second stage, twelve data
layers were used as landslide conditioning factors for susceptibility mapping. These
factors are slope, aspect, altitude, lithology, land use, distance from rivers, distance
from roads, distance from faults, topographic wetness index, stream power index,
stream transport index, and plan curvature. Next, landslide-susceptible areas were
analyzed using the SMCE approach and mapped using landslide conditioning factors.
For verification, the results of the analyses was compared with the field-verified
landslide locations. Additionally, the receiver operating characteristics (ROC) curves
for all landslide susceptibility models were drawn and the area under curve values was
calculated. Landslide locations were used to validate results of the landslide suscep-
tibility map generated using the SMCE approach and the verification results showed a
76.84% accuracy. According to the results of the AUC evaluation, the produced map
has exhibited good performance.
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2.1 Introduction

Undesired effects on human life and economic activity resulting from landslides
are observed throughout the world. During the 1990’s, nearly nine percent of
worldwide natural disasters constitutes of landslides (Gokceoglu et al. 2005).
According to Schuster and Fleming (1986), in many countries, the economic losses
and causalities due to landslides are greater than commonly recognized and gen-
erate a yearly loss of property larger than that from any other natural disaster,
including earthquakes, floods and windstorms.

Over the last decade, it is possible to find many studies on landslide suscep-
tibility assessment. The basic concept was first introduced by Radbruch (1970),
Dobrovolny (1971), and Brabb and Pampeyan (1972) as the spatial distribution of
factors related to the instability processes in order to determine zones of landslide-
prone areas without any temporal implication. Guzzetti et al. (1999) summarized
most of the landslide susceptibility mapping studies. More recently, probabilistic
models have been proposed (Dai and Lee 2001; Gokceoglu et al. 2005; Akgun and
Bulut 2007; Akgun et al. 2008; Lee and Pradhan 2007; Oh and Lee 2009). The
logistic regression model has also been employed for landslide susceptibility
mapping (Nefeslioglu et al. 2008; Pradhan 2010a; Chauhan et al. 2010; Bai et al.
2010; Akgun 2011). Shou and Wang (2003) and Zhou et al. (2003) have used the
geotechnical and factor of safety parameter models to investigate the slope failure
of the studied areas. Data mining using fuzzy logic, artificial neural network and
decision tree models have also been applied in Geographical Information Systems
(GIS) as a new landslide susceptibility assessment approach (e.g. Ercanoglu and
Gokceoglu 2002, 2004; Ermini et al. 2005; Lee et al. 2006; Melchiorre et al. 2006;
Castellanos and VanWesten 2007; Kanungo et al. 2006; Wang 2008; Tangestani
2009; Wan 2009; Saito et al. 2009; Pradhan 2010a, b, c, 2011; Pradhan et al. 2010;
Pradhan and Buchroithner 2010, Pradhan and Lee 2009, 2010a, b, c; Akgun and
Turk 2010; Nefeslioglu et al. 2010; Yeon et al. 2010; Sezer et al. 2011; Akgun
2011), multicriteria decision analysis (MCDA) approach (Ayalew et al. 2005;
Komac 2006; Akgun and Balut 2007; Yalcin 2008; Akgun and Turk 2010; Akgun
2011). In this study, a GIS based spatial multi criteria model was used for landslide
susceptibility mapping at Haraz watershed.

2.2 Study Area

The study area is located in the northern part of Iran, which is one of the most
landslide prone areas in Iran (Pourghasemi 2008). The watershed area centered
between the longitudes of 52� 060 020 E to 52� 180 1300 E, and latitudes of 35� 490

0500 N to 35� 570 3900 N, is mountainous and is located in the Alborz Folded
geological zone (Fig. 2.1). It covers two adjacent 1:50,000 topographic sheets of
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the Army Geographic Institute of Iran and has an extent of about 114.5 km2. In the
study area, the main river is the Haraz. Based on the data from the Iranian
Meteorological Department, the temperature in the study area varies between
-25�C in winter and 36.5�C in summer. The mean annual rainfall is around
500 mm, while the maximum precipitation falls between November and January
in general. Altitude values in the study area vary between 1200 to 3290 m.asl.

Fig. 2.1 Location of the study area showing Mazandaran province in Iran
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2.3 Methodology

In general, decision analysis uses a set of systematic procedures for analyzing
complex decision problems. The basic strategy is to divide the decision problem
into small, understandable parts, analyze each of them, and integrate these parts in
a logical manner to produce a meaningful solution (Malczewski 1999). To solve
spatial-based problems such as geo-hazards (landslide, erosion, earthquakes) and
site selection, GIS-based spatial multi criteria evaluation (SMCE) have been used.

SMCE is a way of producing policy-relevant information about spatial decision
problems for decision makers. An SMCE problem can be visualized as an eval-
uation table of maps or as a map of evaluation tables, as shown in Fig. 2.2 (Sharifi
and Herwijnen 2003). According to Sharifi and Retsios (2004) if the objective of
the evaluation is a ranking of the alternatives, then the evaluation table of maps has
to be transformed into one final ranking of alternatives. Actually, the function has
to aggregate not only the effects but also the spatial component (Sharifi and
Herwijnen 2003). At times, defining such a function can be highly complicated.
Therefore, it is required to simplify the function by dividing it into at least two
operations. Those operations are: (i) aggregation of the spatial component, and
(ii) aggregation of the criteria. These two operations can be carried out in different
orders as visualized in Fig. 2.3 as Path 1 and Path 2. These two path features
resembles the order of aggregation. If we consider a step wise analysis during the
first path, then the first step is the aggregation across spatial units (spatial analysis
is the principal tool); the second step is the aggregation across criteria (multi
criteria analysis playing the main role). Similarly, in the second path, these steps
are taken in reverse order. In the first case, the effect of one alternative for one
criterion is a map (Sharifi and Retsios 2004; Sharifi and Herwijnen 2003). This
case can be used when evaluating the spatial evaluation problem using the so-
called ‘Path 1’. In the second case, every location has its own zero-dimensional
problem and can best be used when evaluating the spatial problem using the so-
called ‘Path 2’ (Fig. 2.3). For implementing the whole semi-quantitative model the
SMCE module of ILWIS-GIS (integrated land and water information system) was
used (Castellanos, 2008). The SMCE application assists and guides users in doing
multi-criteria evaluation in a spatial manner (ITC 2001). The model is built by
making criteria tree, where the conditioning parameter maps are grouped, stan-
dardized and weighted. The landslide casual parameters are weighted by means of
direct, pair-wise, and rank ordering comparison and the output is a composite
index map (Castellanos and Van Westen 2007). Figure 2.4 presents an overview of
the various components of the landslide susceptibility method.

In this study a pair-wise comparison based weighting was used. This method
assumes that the users comparably evaluate the difference of magnitude among all
unique pairs of factors qualitatively. Pair-wise comparison method was established
by Saaty (1980) in the context of the analytical hierarchy process (AHP). In this
process, the weights are defined by standardizing the eigenvector correlated with
the highest eigenvalue of the ratio matrix. The AHP consists of three main steps;
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1) generating the pair wise comparison matrix, 2) computing the weights of the
criterion, and 3) estimating the consistency ratio (Malczewski 1999). In the
development of comparison matrix, the method employs an underlying scale with
values from 0 to 1 to rate the relative preferences for two criteria which can be
seen in the Table 2.1.

This study used the combination between bivariate statistical analysis and pair-
wise comparison. Firstly, to know the scored value for each class parameter, we
calculated the density of landslides by using some steps in the bivariate statistical
analysis (frequency ratio model). The second process is grouping the conditioning
factors into four induced factors such as geomorphological, geological, hydro-
logical and anthropogenic.

Next, the levels of weight values were used to standardize the input value by
means of pair wise comparison resulting values from 0 to 1. After this process the
steps in spatial multi criteria evaluation were followed again by means of pair-wise
comparison method. The difference of this improved method was located on

Fig. 2.2 Two interpretations of a two-dimensional decision problem (1: table of maps, 2: map of
tables); Source Sharifi and Retsios 2004)

Fig. 2.3 Two paths of spatial multi criteria evaluation (adapted from Herwijnen 1999). The
result of both path 1 and 2 is a ranking of alternatives a1, a2, and a3, with respect to their
performance in terms of the four spatial effects (criteria c1, c2, c3, and c4) for which they are
evaluated (functions f) and the spatial distribution of these effects, which is aggregated in
functions g. (Source Sharifi and Retsios 2004)

2 Landslide Susceptibility Mapping 27



giving the weighting value of each parameter. The weighting value of this method
was given by calculation process of analytical hierarchy process (AHP).
The values were extracted based on the level of influences. Expert opinion which
depends on observed physical characteristic of landslide sites determined the
levels of the influencing factors.

Table 2.1 Scale of relative importance suggested by Saaty (1997)

Inensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to objective
3 Weak importance of one over

another
Experience and judgment slightly favor one

activity over another
5 Essential or strong importance Experience and judgment strongly favor one

activity over another
7 Demonstrated importance An activity is strongly favored and its dominance

demonstrated in practice
9 Absolute importance The evidence favoring one activity over another

is the highest possible order of affirmation
2, 4, 6, 8 Intermediate values between

the two adjacent judgments
When compromise is needed

Main CriteriaLandslide Susceptibility Mapping

Anthropogenic Fac-
tors

Distance to Road Land use

Geomorphology Factors

Slope Aspect Elevation

Geological Factors

Distance to Fault Lithology

Hydrological Factors

CTI SPI STIDistance to River
Curvature

Sub C
riteria

M
ain indicators

Fig. 2.4 The methodological flow chart showing the step wise processes for landslide
susceptibility mapping in Haraz watershed
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2.4 Construction of Spatial Database

2.4.1 Landslide Inventory Map

The existing landslide inventory map is very essential for studying the relationship
between the landslide distribution and the conditioning factors. To produce a
detailed and reliable landslide inventory map, extensive field surveys and obser-
vations were performed in the study area. A total of 78 landslides were identified
and mapped in the study area by evaluating aerial photos at 1:25,000 scale and by
multiple field studies (Fig. 2.5). The modes of failure for the landslides identified
in the study area were determined according to the landslide classification system
proposed by Varnes (1978).

2.4.2 Slope

The most important parameter in the slope stability analysis is the slope angle
(Lee and Min 2001). Because the slope angle is directly related to the landslides
and it is frequently used in preparing landslide susceptibility maps (Clerici et al.
2002; Saha et al. 2005; Cevik and Topal 2003; Ercanoglu and Gokceoglu 2004;
Lee et al. 2004a; Lee 2005; Yalcin 2005). For this reason, the slope map of the

Fig. 2.5 Landslide distribution map of the study area
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study area is prepared from the DEM, and divided into six slope categories
(Fig. 2.6a). The spatial relationship between slope and landslide are presented in
Table 2.2.

2.4.3 Aspect

Aspect is also considered as a landslide conditioning factor, and this parameter has
been considered in several other studies (Van Westen and Bonilla 1990;
Gokceoglu and Aksoy 1996; Saha et al. 2005; Ercanoglu and Gokceoglu 2004;
Lee et al. 2004a, b; Yalcin 2005). Some of the meteorological events such as the
direction of the rainfall, amount of sunshine, the morphologic structure of the area
affect the slope stability (Mohammadi 2008). The hillsides receiving dense rainfall
reach saturation faster, however this is also related to infiltration capacity of the
slope controlled by various parameters such as topographic slope, type of soil,

Fig. 2.6 Topographical parameter maps of the study area; a slope (degree), b aspect, c altitude
(m.asl), d plan curvature
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permeability, porosity, humidity, the organic ingredients, land cover, and the
climatic season. As a result, pore water pressure of the slope-forming material
increases. Consequently, in this study, the aspect map of the study area is produced
to show the relationship between aspect and landslide (Fig. 2.6b).

2.4.4 Altitude

Altitude is also a significant landslide conditioning factor because it is controlled
by several geologic and geomorphological processes (Gritzner et al. 2001; Dai and
Lee 2002; Ayalew et al. 2005; Pourghasemi 2008). To assess altitude as an input
parameter for the landslide susceptibility map, an altitude map is prepared from the
10m� 10mdigital elevation model (Fig. 2.6c).

2.4.5 Plan Curvature

The term curvature is theoretically defined as the rate of change of slope gra-
dient or aspect, usually in a particular direction (Wilson and Gallant 2000). The
curvature value can be evaluated by calculating the reciprocal value of the radius
of curvature of that particular direction. Hence, while the curvature values of
broad curves are small, the tight ones have higher values. Plan curvature is
described as the curvature of a contour line formed by intersecting a horizontal
plane with the surface. The influence of plan curvature on the slope erosion
processes is the convergence or divergence of water during downhill flow. For
this reason, this parameter constitutes one of the conditioning factors controlling
landslide occurrence (Nefeslioglu et al. 2008). The plan curvature map was
produced using the script written by Hengl et al. (2003) and run in ILWIS 3.3
software (Fig. 2.6d).

2.4.6 Lithology

Landslides are greatly controlled by the lithology properties of the land surface. Since
different lithologic units have different landslide susceptibility values, they are very
important in providing data for susceptibility mapping. For this reason, it is essential to
group the lithologic properties properly (Carrara et al. 1991; Anbalagan 1992;
Mejia-Navarro and Wohl 1994; Mejia-Navarro and Garcia 1996; Pachauri et al. 1998;
Luzi and Pergalani 1999; Dai et al. 2001; Yalcin 2005; Duman et al. 2006).

Therefore, a lithology map of the study area is digitized from the existing
geology map (sheet number 6461) at the scale of 1:100,000 from the Geological
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Survey of Iran (GSI). The study area is covered with various types of lithologic
formations. The general geological setting of the area is shown in Fig. 2.7, and the
lithological properties are summarized in Tables 2.2 and 2.3.

2.4.7 Land Use

In this study, a land use map was prepared from the LANDSAT satellite image by
applying a supervised classification scheme and field surveys. There are four types
of landuse are identified in the study area: best range, moderate range, mixed
orchard and agriculture and residential areas (Fig. 2.8). Most of the study area
is covered by moderate range (64.32%). Several researchers (Maharaj 1993;
Fernandez et al. 1999; Jakob 2000; Ocakoglu et al. 2002) emphasized on the
importance of vegetation cover or land use characteristics on the stability of
slopes, and they considered vegetation cover to assess the conditioning factors of
landslides. For the study area, the spatial relationship between land use factor and
landslide occurrence are presented in Table 2.2.

Fig. 2.7 The lithology map of the study area
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2.4.8 Distance from Rivers

An important parameter that controls the stability of a slope is the saturation
degree of the material on the slope. The closeness of the slope to drainage
structures is another important factor in terms of stability. Streams may adversely
affect stability by eroding the slopes or by saturating the lower part of material
until resulting in water level increases (Gokceoglu and Aksoy 1996). Five different
buffer zones are created within the study area to determine the degree to which the
streams affected the slopes (Fig. 2.9).

2.4.9 Distance from Roads

Similar to the effect of the distance to streams, landslides may occur on the road
and on the side of the slopes affected by roads (Pachauri and Pant 1992; Pachauri
et al. 1998; Ayalew and Yamagishi 2005; Yalcin 2005). A road constructed beside
slopes causes a decrease in the load on both the topography and on the toe of slope.

Table 2.3 Geology formation of research area

Code Class Formation Lithology Geological age

Qsc A – Scree Quaternary
Q2

t – Young terraces Quaternary
Q1

t – Old terraces Quaternary
Qag B – Agglomerate Quaternary
Qta – Trachy andesitic lava flows Quaternary
Qtu – Ash tuff, lapilli tuff Quaternary

Qb – Olivine basalt Quaternary

Kk
tv C Karaj Green tuff, basaltic and limestone

with gypsum and conglomerate
Eocene

Ek
gy Karaj Gypsum Eocene

PEz D Ziarat Limestone bearing nummulites
and alveolina, conglomerate

Paleocene

PEf Fajan Conglomerate, agglomerate, some marl
and limestone

Paleocene

K2 E – Biogenic and cherty limestone Late Cretaceous
Kt Tizkuh Orbitoline bearing limestone Late Cretaceous
J1 Lar Massive to well bedded,

cherty limestone
Late Jurassic

Jd Dalichai Well bedded, partly oolitic-detritic
limestone, marly limestone

Late Jurassic

JS Shemshak Dark shale and sandstone with plant
remains, coal

Late Jurassic

TReL Elika Thin bedded limestone Early Triassic
Pd Dorud Cross bedded, quartzitic sandstone Early Permian
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As a result of an increase in stress on the back of the slope, because of changes in
topography and decrease of load on toe, some tension cracks may develop.
Although a slope is balanced before the road construction, some instability may be
observed because of negative effects of excavation. In fact, during the field works,
some landslides were recorded whose origin can be attributed to road construction.
For this reason, five different buffer areas are created on the path of the road to
determine the effect of the road on the stability of slope (Fig. 2.10). The landslide
percentage distribution and its frequency ratio are determined considering the
distance classes to the road achieved by comparing the map of the distance to
the road and the landslide inventory (Table 2.2).

2.4.10 Distance from Faults

The distance from fault is calculated at 100 m intervals using the lithology map
(Fig. 2.11). Faults form a line or zone of weakness characterized by heavily
fractured rocks. Selective erosion and movement of water along fault planes
promote such phenomena. Besides the major thrusts and faults on the geological
maps complementary information regarding possible faults and structural dislo-
cations were recognized as lineaments by means of image enhancement (filtering)
of satellite imagery. The recognition of lineaments as possible faults is performed

Fig. 2.8 The land use map of the study area
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step-by-step form large to smaller scales allowing the generalization of many
neighboring small order lineaments taking into account the spatial scale of the
study. The spatial relationship between distance from faults and landslide are
presented in Table 2.2.

2.4.11 Topographic Wetness Index (TWI)

The topographic wetness index (TWI) has been used extensively to describe the
effect of topography on the location and size of saturated source areas of runoff
generation. Moore et al. (1991) proposed Eq. (2.1) for the calculation of TWI
under the assumption of steady state conditions and uniform soil properties
(i.e. transmisivity is constant throughout the catchment and equal to unity).

TWI ¼ ln AS= tan bð Þ ð2:1Þ

where AS is the specific catchment’s area (m2/m), and b is slope gradient
(in degrees).

According to Wood et al. (1990), the variation in the topographical components
is often far greater than the local variability in soil transmisivity, and Eq. (2.1) can
be used to calculate TWI. The TWI map was produced using the script written by
Hengl et al. (2003) and run in ILWIS 3.3 software (Fig. 2.12a).

Fig. 2.9 The distance from rivers map of the study area
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2.4.12 Stream Power Index (SPI)

The stream power index (SPI) is a measure of the erosive power of water flow
based on the assumption that discharge (q) is proportional to specific catchment
area (As) (Eq. 2.2) (Moore et al. 1991).

SPI ¼ AS � tan b ð2:2Þ

where AS is the specific catchment’s area (m2/m), and b the slope gradient in
degrees. As the specific catchment’s area and gradient increase, the amount of
water contributed by upslope areas and the velocity of water flow increase;
hence, the SPI and slope-erosion risk increase (Moore et al. 1991). Moore et al.
(1993) stated that the SPI controls the potential erosive power of overland flow.
Therefore, these processes can be considered as one of the components of
landslide occurrence (Lee and Min 2001; Gokceoglu et al. 2005; Nefeslioglu
et al. 2008; Yilmaz 2009; Akgun and Turk 2010). The SPI map was produced
using the script written by Hengl et al. (2003) and run in ILWIS 3.3 software
(Fig. 2.12b).

Fig. 2.10 The distance from roads map of the study area
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2.4.13 Stream Transport Index (STI)

Another index often used to reflects the erosive power of the overland flow is the
sediment transport index (Moore et al. 1993). The STI is calculated from the
following formula:

STI ¼ AS

22:13

� �0:6
sin b

0:0896

� �1:3

ð2:3Þ

where AS is the specific catchment’s area (m2/m), and b the slope gradient.
This empirical formula resembles the Universal Soil Loss Equation and can

thus be used to depict locations of potential erosion risk (Moore and Burch 1986).
If a close inspection on Eq. (2.3) is performed, it is revealed that the physical
meaning of this factor is the capability of sediment transportation controlled a
specific catchment area and slope gradient. For that reason, the main causes for
this phenomenon may be the disturbed drainage system and the low slope gradient
trend on landslide bodies. Therefore, this distinct anomaly can be considered as a
good indicator of landslide occurrence (Nefeslioglu et al. 2008). The STI map was
produced using the script written by Hengl et al. (2003) and run in ILWIS 3.3
software (Fig. 2.12c).

Fig. 2.11 The distance from faults map of the study area
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The spatial relationship between TWI, SPI, STI, and landslide occurrence are
presented in Table 2.2.

2.5 Landslide Susceptibility Mapping

In this study, the employed SMCE method was built based on analyzing the weight
value in bivariate statistical analysis (Table 2.2). All comparisons are based on
pair-wise method published by Saaty (1980) in terms of analytical hierarchy
process. In this method, all factors were classified into a few groups. The first
group consists of slope, aspect, altitude and plan curvature parameters; the second
one includes lithology and distance from faults parameters which were extracted

Fig. 2.12 Hydrological based terrain maps of the study area; a TWI, b SPI, c STI
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from geological map. The next groups presenting the hydrological condition
contains of distance from rivers, topographical wetness index (TWI), stream power
index (SPI) and stream transport index (STI) parameters and the last group consists
of land use and distance from roads parameters, because both of these were
induced by human activities. The level of influence for groups and parameters
were determined by the range of weighting and were determined by the range of
weighting values between a spectrum from minimum to maximum. The range
value is between the minimum and maximum weight value. The standardization of
each class parameter is compared to each other in order to determine the level of
influence. Normalized priority value for each class parameter had been extracted
by following Eq. (2.4):

NV ¼ 0:8
Xi � XMin

XMax � XMin

� �
þ 0:1 ð2:4Þ

The final weight values were automatically calculated by means of spatial multi
criteria evaluation in ILWIS software. The final weight value for each class
parameter is produced by multiplying the group weight value, parameter weight
value and normalized priority value of class parameter (Table 2.2). Based on
weighting values in AHP, the levels of the influence of parameters were generated.
The anthropogenic factor has the most influence and the hydrological factor which
has the less influence and was categorized in the lowest level. Pair-wise com-
parison method (Table 2.1) was performed to extract the weight value as presented
in Table 2.4.

Based on total weight value, the susceptibility map for Haraz watershed was
constructed (Fig. 2.13).

2.6 Validation of the Landslide Susceptibility Map

Validation is a fundamental step in the development of a susceptibility and
determination of its prediction ability. The prediction capability of a landslide
susceptibility model is usually estimated by using independent information that is
not available for building the model. An alternative way to the above statistics is
the threshold (cut-off value) calculations, is the receiver operating characteristic
(ROC) value and the area under the ROC curve (AUC) (Zweig and Campbell
1993). This method has been widely used as a measure of performance of a
predictive rule (Yesilnacar and Topal 2005; Van Den Eeckhaut et al. 2006; Baeza
et al. 2010). ROC plots the different accuracy values obtained against the whole
range of possible threshold values of the functions, and the AUC serves as a global
accuracy statistic for the model, regardless of a specific discriminate threshold.
This curve is obtained by plotting all combinations of sensitivities and proportions
of false negatives (1-specificity) which may be obtained by varying the decision
threshold. The range of values of the ROC curve area is 0.5–1 for a good-fit, while
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Table 2.4 The weight value for each group and parameter using pair-wise comparison for
SMCE

Number Groups and parameters The weight value Inconsistency ratio

1 Geomorphologic factor 0.181
Slope 0.325
Aspect 0.067 0.09
Altitude 0.107
Plan curvature 0.501

2 Geological factor 0.267
Lithology 0.833 0.00
Distance to fault 0.167

3 Hydrological factor 0.062
Distance to river 0.132
Topographic wetness index 0.377 0.09
Stream power index 0.422
Stream Transport Index 0.070

4 Human induced 0.490
Land use 0.667 0.00
Distance to road 0.333

Fig. 2.13 Landslide susceptibility map produced by spatial multi criteria evaluation
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values below 0.5 represent a random fit (Hanley and McNeil 1983). Figure 2.14
shows the ROC curve of the spatial multi criteria evaluation model for the training
sample. The AUC value is 0.7684, indicate the good ability of function to correctly
discriminate between failed and unfailed groups in the sample used for building
the model.

2.7 Concluding Remarks

The landslide susceptibility map prepared in the present study is the result of a
combination of various factors responsible for landslide susceptibility, in which
each factor has relative importance to probable landslide activity. A reliable and
accurate susceptibility map depends on the inclusion and proper determination of
the role of these parameters. In this study, twelve landslide-controlling parameters,
namely slope, aspect, altitude, plan curvature, land use, lithology, distance from
rivers, distance from roads, distance from faults, topographic wetness index,
stream power index and stream transport index, were considered. Subsequently,
landslide-susceptible areas were analyzed by the SMCE approach and mapped
using landslide conditioning factors. For the purpose of verification, the learning
set of landslides was randomly sampling choose from a total of 78 landslides
population disregarding the temporal component. The ROC curve of block entry
SMCE was produced based on the test data set, which was randomly collected
from landslide bodies and safe zones. The results showed a 76.84% accuracy with
standard error of 0.0703. According to the results of the AUC evaluation, the
produced map has exhibited promising results.

Fig. 2.14 ROC curve for the
SMCE
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Chapter 3
Soft Computing Modeling in Landslide
Susceptibility Assessment

C. Gokceoglu and E. Sezer

Abstract In the landslide literature, the most frequently encountered term is
‘‘landslide susceptibility’’. The main reasons include: (i) developments in com-
puter techniques and Geographical Information Systems; (ii) increasing awareness
of the socio-economic significance of landslides and (iii) the complex nature of
landslides. Owing to the complex nature of landslides, various approaches have
been considered for the assessment of landslide susceptibility at regional scale.
The assessment approaches can be classified into three main groups such as
heuristic, statistical methods and soft computing approaches. In this chapter, the
soft computing methods used for landslide susceptibility are considered, and the
related international literature is assessed.

Keywords Landslide � Landslide susceptibility � Fuzzy approach � Artificial
neural networks

3.1 Introduction

The complexity of the Earth System’s behavior makes it extremely difficult to
accurately forecast the future of the Earth System, and presents a major challenge to
the global change research community (Pielke et al. 2003). Landslides are one of the
components of the earth surface processes. Earth surface processes are governed by
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various geological, hydrological and environmental conditions, and climatologic
events. Human activities have been the additional landslide causative factor for
hundred years. Geological complexity and heterogeneity is the major problem when
modeling the landslide occurrence and predicting the future landslide activity.

It is possible to group the uncertainties under four classes such as conceptual,
model, parameter and data. These uncertainties are encountered frequently when
assessing regional landslide susceptibility and hazard. The conceptual uncertainty
refers to the difficulties in problem formulation. Due to the complexity of the land-
slide phenomenon, to formulate the regional landslide assessment is too difficult, is
sometimes impossible. In fact, similar problem is faced when creating a regional
landslide assessment model. The other uncertainty is sourced from parameters used
in the assessments. Generally, the selection of representative inputs is highly difficult
for prediction of possible landslide areas because the regional assessments require a
generalization. The last problem is related to the data. The data should be repre-
sentative and reliable. Sometimes, to find the data having a sufficient quality and
quantity is difficult. All these uncertainties or some combinations of them arise in
modeling landslide susceptibility, hazard and risk assessments. If these uncertainties
are eliminated or minimized, the quality of a regional landslide assessment increases.
Up to now, various techniques have been proposed and applied for the regional
landslide susceptibility, hazard and risk assessments. It is possible to produce a
landslide susceptibility map employing various indirect mapping techniques such as
combination of index maps (i.e. Pachauri and Pant 1992; Gokceoglu and Aksoy
1996; Turrini and Visintainer 1998; Donati and Turrini 2002), bivariate and multi-
variate statistical analyses (i.e. Carrara et al. 1991; Atkinson and Massari 1998;
Guzzetti et al. 1999; Baeza and Corominas 2001; Lee and Min 2001; Clerici et al.
2002; Lee 2005; Can et al. 2005; Gokceoglu et al. 2005; Wang and Sassa 2006;
Duman et al. 2006; Guzzetti et al. 2006; Nefeslioglu et al. 2008a; Gorum et al. 2008),
neural networks (i.e. Lee 2007a; Gomez and Kavzoglu 2005; Kanungo et al. 2006;
Nefeslioglu et al. 2008b) and fuzzy approach (i.e. Juang et al. 1992; Binaghi et al.
1998; Ercanoglu and Gokceoglu 2002 and 2004).

In recent years, the assessment of landslide hazard and risk has become a topic of
major interest for both geoscientists and engineering professionals as well as for the
community and the local administrations in many parts of the world (Aleotti and
Chowdury 1999). The reasons for the international interest in landslides are
twofold: firstly an increasing awareness of the socio-economic significance of
landslides and secondly, the increased pressure of development and urbanization on
the environment (Aleotti and Chowdury 1999). Especially, the urbanization has a
crucial role on the landslide development and the increase in landslide losses.
According to Helmore (1996), a hundred years ago, the world population totaled 1.1
billion, and about 5% of people lived in cities. Today, the population has risen to 5.3
billion and approximately 45% of it is concentrated in urban areas. The most
explosive growth has been in the developing world, where urban populations have
tripled in the last 30 years (Guzzetti et al. 1999). Between 1950 and 1995, the
number of cities with population of more than one million increased sixfold
in the third world (Helmore 1996). This change will continue depending on
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industrialization throughout the world. As a result of this change, the landslide threat
on the cities and the population may increase. Therefore, the landslide hazard
mitigation efforts should be considered. The first stage of the landslide mitigation
efforts is accepted as mapping of landslide inventory, landslide susceptibility and
landslide hazard. After this stage, the possible landslide risk should be considered
and assessed. In this chapter, the general concepts on landslide susceptibility, hazard
and risk are given firstly. Then, the general principles of the soft computing tech-
niques and application of the soft computing techniques to landslide susceptibility
assessments are defined in detail. Finally, further recommendations are discussed.

3.2 General Concepts

Recently, some guidelines on the landslide susceptibility, hazard and risk zoning have
been published by the Joint Technical Committee on Landslides and Engineered
Slopes (Fell et al. 2008). In literature, it is possible to encounter some misconceptions
on landslide susceptibility, hazard and risk assessments. Landslide susceptibility can
be defined as a quantitative or qualitative assessment of the classification, volume
(or area), and spatial distribution of landslides which exist or potentially may occur in
an area (Fell et al. 2008). The term ‘‘hazard’’ is defined as a condition with the potential
for causing an undesirable consequence. The description of landslide hazard should
include the location, volume (or area), classification and velocity of the potential
landslides and any resultant detached material, and the probability of their occurrence
within a given period of time (Fell et al. 2008). According to International Strategy for
Disaster Reduction (ISDR), the term ‘‘risk’’ can be defined as a measure of ‘‘the
probability of harmful consequences, or expected losses (deaths, injuries, property,
livelihoods, economic activity disrupted or environmental damaged) resulting from
interactions between natural or human-induced hazards and vulnerable conditions’’
(Hufschmidt and Crozier 2008). When considering this description for landslides, the
landslide risk can be defined as the potential for adverse consequences, loss, harm, or
detriment to human population and things that human beings value due to landslide
occurrences (Kanungo et al. 2008). As can seen from these definitions, there are
important differences among the landslide susceptibility, hazard and risk concepts. In
the following subtopics, these concepts and their assessments are explained in detail.

3.2.1 Landslide Susceptibility

Susceptibility is the propensity of an area to generate landslides. In mathematical
form, landslide susceptibility is the probability of spatial occurrence of known slope
failures, given a set of geoenvironmental conditions (Guzzetti et al. 2005). The first
extensive papers on the use of spatial information in a digital context for landslide
mapping date back to the late seventies and early eighties of the last century. Among
the pioneers in this field were Brabb et al. (1978) in California and Carrara et al.
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(1977) in Italy (van Westen et al. 2008). However, in recent years, a huge literature on
the assessment of landslide susceptibility has been published in the major interna-
tional journals. According to Aleotti and Chowdhury (1999), an ideal susceptibility
assessment should answer the questions of ‘‘where will the landslide occur?’’, ‘‘what
type of failures will occur?’’ and ‘‘how will the landslides occur?’’. In the first stage,
to answer these questions, a well-documented landslide inventory map of the area to
be studied should exist, because a landslide inventory map of an area shows the
location, classification, volume, activity, date of occurrence and other characteristics
of landslide. Also, assuming landslides will occur in the future because of the same
conditions that produced them in the past (Guzzetti et al. 1999). In fact, a landslide
susceptibility assessment is to predict the future landslide locations considering the
existing landslides. For this reason, when producing landslide susceptibility maps,
various indirect methods such as statistical models and soft computing have been
employed. A recent review on the landslide susceptibility modeling approaches was
published by Brenning (2005). According to Brenning (2005), logistic regression and
discriminant analysis are the most frequently chosen models. However, in this
chapter, use of the soft computing techniques for the landslide susceptibility
assessments will be given. In the recent years, the artificial neural networks (ANN)
and fuzzy approach have been extensively used for the landslide susceptibility
assessment. The ANN has been applied by Lee et al. (2003a, b, 2004, 2006, 2007a, b),
Gomez and Kavzoglu (2005), Ermini et al. (2005), Melchiorre et al. (2008), Yao et al.
(2008), Yesilnacar and Topal (2005), Kanungo et al. (2006), Nefeslioglu et al.
(2008b), Lee and Evangelista (2006), Wang and Sassa (2006), Lu and Rosenbaum
(2003), Caniani et al. (2008), Lee (2007a). The other soft computing technique, the
fuzzy approach, has also been employed by various researchers (Juang et al. 1992;
Binaghi et al. 1998; Ercanoglu and Gokceoglu 2002 and 2002; Champati ray et al.
2007; Tangestani 2004 and 2006; Gorsevski and Jankowski 2008). However, when
compared with the ANN and the statistical approaches, the use of the fuzzy approach
for the assessment of the landslide susceptibility is limited in the world literature. The
application of the fuzzy approaches is more difficult and time consuming than the
application of the black-box methods such as the ANN and the statistical models.
When preparing a regional landslide susceptibility map, a huge dataset should be
processed. Especially, construction of rule-based fuzzy systems for this purpose
requires much time and effort although the fuzzy systems produce satisfactory
results. For this reason, the researchers prefer the black-box approaches. Among the
soft computing techniques, a hybrid approach, the neuro-fuzzy method, exists.
However, in the literature, an application of the neuro-fuzzy method for the
assessment of the landslide susceptibility has not been encountered yet.

3.2.2 Landslide Hazard

Landslide hazard is described as the probability of occurrence of a potentially
damaging phenomenon (landslide) within a given area and in a given period of
time by Varnes (1978). When considering this description, a regional landslide
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hazard assessment requires the probability of occurrence of future landslides.
Unfortunately, this is not the case of most published regional landslide ‘‘hazard’’
assessments, which generally only provide a ranking of terrain units in terms of
susceptibility, not considering the temporal component of the hazard (Zezere et al.
2004). In literature, many susceptibility assessments have been presented as hazard
assessment. However, some authors have attempted to produce landslide hazard
map including period of time (Zezere et al. 2004; Catani et al. 2005; Chau et al.
2004). In fact, landslides are localized processes, which normally do not happen
with different frequency and magnitude at the same location (van Westen et al.
2006). This is the main problem for the preparation of landslide hazard maps based
on the landslide inventory maps. However, the landslide inventories used in
literature traditionally reflect the actual terrain conditions like failed slopes.
However, the question of what the terrain parameters, especially slope degree were
at the failure time should be answered because one of the main targets of the
landslide susceptibility maps is to determine the susceptibility degree of the slopes
which has not failed yet (Gorum et al. 2008). Similarly, according to van Westen
et al. (2006), for most types of landslides, once the movement has occurred, the
slope conditions are changed and a repetition of a similar event in the same
location is not likely to happen. Due to this problem, although it is possible to
produce some significant landslide susceptibility maps, assessment of regional
landslide hazard is highly difficult. However, it is possible to elaborate frequency–
magnitude relationships for landslide occurrences over a larger area, such as an
entire watershed, by mapping the landslides taking place due to particular trig-
gering events and relate the spatial frequency to the return period (van Westen
et al. 2006). Finally, if a representative landslide susceptibility assessment of an
area exists and the return period of the triggering factor such as rainfall or
earthquake is known, a realistic landslide hazard assessment can be carried out.

3.2.3 Landslide Risk

The landslide risk is defined as a measure of the probability and severity of an
adverse effect to health, property or the environment. Risk is often estimated by
the product of probability of a phenomenon of a given magnitude times the
consequences (Fell et al. 2008). The risk can be formulated as follows Eq. 3.1
(Varnes 1984; Fell 1994; Leroi 1996)

Risk ¼
X

HVA ð3:1Þ

Where, ‘‘H’’ (hazard) is expressed as probability of occurrence within a reference
period: ‘‘V’’ (physical vulnerability) is expressed as a particular type of element at
risk for a specific type of hazard and for a specific element at risk; ‘‘A’’ is the
amount or cost of the particular elements at risk.

In literature, the regional landslide risk assessments are limited because a
landslide risk assessment requires landslide susceptibility and hazard assessments.
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The difficulties about landslide hazard assessments are described previously. These
difficulties prevent the production of high quality regional landslide risk assessments.
However, the available approaches such as statistical or soft computing methods are
able to produce satisfactory results. The main problem is sourced from high quality
data availability. Similar idea was pointed out by van Westen et al. (2006). The
absence or incompleteness of landslide records is one of the major drawbacks in the
assessment of landslide hazard risk. For this reason, it has been impossible in most
parts of the world to establish the quantitative relationship of the occurrence of
landslides with important triggering factors, such as earthquakes and rainfall, of
which magnitude-frequency functions are known (van Westen et al. 2006). Although
some regional landslide risk assessments have been published (Rautelal and Lahhera
2000; Lee and Pradhan 2006; Remondo et al. 2005; Catani et al. 2005; Corominas
et al. 2005; Romeo et al. 2006), none of these is based on soft computing methods.

3.3 Fuzzy Modeling and Relations

In recent years, Fuzzy Inference System (FIS) and Fuzzy Relations have been used
extensively for the production landslide susceptibility maps. Because, unlike classicial
set theory; fuzzy set theory is flexible, and focuses on the degree of being a member of a
set (Berkan and Trubatch 1997). Additionally, the advantages of the fuzzy logic
approach to solve engineering geological problems can be summarized as (Alvarez
Grima 2000); (a) it allows express explicit of the knowledge of the system via fuzzy
if-then rules, (b) it deals with subjective uncertainty (fuzziness, vagueness, imprecision)
inherent to the way experts approach their problems, (c) numerical and categorical data
can be combined, and (d) it provides a sound mathematical basis. For this reason, in this
section the FIS and fuzzy relations are introduced to help the earth scientists to produce
landslide susceptibility maps by fuzzy approach. Before the explanation of FIS and
fuzzy relations, some basic fuzzy concepts should be introduced.

3.3.1 Basic Fuzzy Concepts

All concepts in fuzzy domain are based on fuzzy set theory. The fuzzy set theory is
an extension of crisp set theory especially on the boundary of the set. In fuzzy sets,
the transition from belonging to a set to the not belonging is gradual, and the
degree of transition is denoted by the membership functions. If A is a fuzzy set in
universe of discourse U, A is presented as follows Eq.3.2:

A ¼ x; lAðxÞð Þ x 2j Uf g ð3:2Þ

where, lA(x) means membership function and its result gives the membership
degree of ‘‘x’’ to ‘‘A’’ and its values varies between 0 and 1 closed interval. If
integers is ‘‘U’’, ‘‘integers near to 0’’ is the set called ‘‘A’’, then elements of ‘‘A’’
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and their membership degrees presented like this: A = {(1.0/0), (0.8/1),(0.6/2),
(0.4/3), (0.2/4), (0.0/5)}. Membership degrees can be mapped by point to point or
they are resulted from a fuzzy function. In fact, the use of fuzzy functions is
supported because of their parametric structure to support context knowledge
modeling. For example, the determination of average height of mountainous
regions differs from region to region. So membership functions can be parame-
terized according to region context. In Fig. 3.1, this context modeling by using
parametric triangular membership function is illustrated.

There are many types of fuzzy membership functions and some of them are tri-
angular, trapezoid, sigmoid, Gauss, etc. Because of usage and calculation simplicity,
triangular and trapezoid functions are used more frequently than others and symmetric
functions usages are enforced according to Yen and Langari (1998). Symmetric
functions means fuzzy function is symmetric around ‘‘a’’ certain point ‘‘x = c’’.

Fuzzy sets are applicable for fuzzy operations: union, intersection and com-
plement. If ‘‘A’’ and ‘‘B’’ are fuzzy sets on universe of discourse of U, fuzzy set
operations are given in Eqs. 3.3–3.5

Union : l A[Bð Þ xð Þ ¼ max lA xð Þ; lB xð Þð Þ where x 2 U ð3:3Þ

Intersection : l A\Bð Þ xð Þ ¼ min lA xð Þ; lB xð Þð Þ where x 2 U ð3:4Þ

Complement : l :Að Þ xð Þ ¼ 1� lA xð Þ where x 2 U ð3:5Þ

Max and min are fuzzy mathematic operators. Max means selection of the ele-
ment which has the maximum membership degree from any series and min means
reverse selection. In this situation, the minimum membership degree is selected.

Linguistic variable means the variable takes its value in linguistic form. For
example, ‘‘slope degree of a region’’ can be linguistic variable and its values can
be ‘‘high’’, ‘‘low’’, etc. If all concepts are collected together, a linguistic variable
can be the input or output of the problem. Fuzzy sets are the values of the linguistic
variables and membership functions are tools which enable to give assigning crisp
values to the fuzzy sets with membership degrees.

Fuzzy sets and the other concepts based on it, take their power from two
sources: ability of membership functions and linguistic variables. They are very
useful to express human thinking behavior in the rule based form. Because
the rules used by any experts in any domain do not use crisp values too much.

Fig. 3.1 Advantage of using parametric membership function
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For example, one earth scientist expresses the volume of a debris flow with the
‘‘low’’ or ‘‘moderate’’, and qualifies it with ‘‘very’’, ‘‘almost’’, ‘‘nearly’’ terms.
This type of thinking can be simulated easily with usage of linguistic variables and
values of them. Collected crisp values from any region supports some rules with
some degrees. In addition, some inputs are placed on the boundaries of the sets,
fire multiple rules and results multiple conclusions. This scheme of rule evaluation
is very close to scheme of expert thinking.

3.3.2 Fuzzy Relations

Fuzzy relations play an important part in fuzzy modeling, and fuzzy relations are
based on philosophy that everything is related to some extend or unrelated (Dubois
and Prade 1980). Fuzzy relation is an extension of the crisp relation with the same
approach while extending fuzzy sets from crisp sets. Fuzzy relations can be built
between two or more fuzzy sets (binary and n-ary respectively). If ‘‘A’’ and ‘‘B’’ is
the universe of discourse, then the fuzzy relation between them denoted by R is
described in Eq. 3.6.

R ¼ a; bð Þ; lR a; bð Þð Þ a; bð Þ 2 AxBjf g ð3:6Þ

As a result of the Eq. 3.6, if ‘‘A’’ has ‘‘n’’ and ‘‘B’’ has ‘‘m’’ elements, the
resulted relation matrix must be ‘‘n x m’’ dimensions and cell(i, j) shows the
relation degree between ith element of A (in line) and jth element of B (in column).
In addition, this degree denoted by lR(a,b) should be in a close interval of [0.1]. To
calculate the membership degree by using membership function, new membership
functions can be designed illustrated in Eq. 3.7 or minimum operator of fuzzy
mathematics can be used and given in Eq. 3.8.

lR a; bð Þ ¼ b� að Þ= bþ að Þ ð3:7Þ

lR a; bð Þ ¼ min lA að Þ; lB bð Þð Þ ð3:8Þ

The relation matrix using Eq. 3.7 for A = {3, 4, 5} and B = {3, 6, 7, 8} is
illustrated in Fig. 3.2.

The relation matrix can be helpful to answer the question like that ‘‘what can be
b where a ?’’ and the answer is given by Eq. 3.9 (Yen and Langari 1998).

8wj ¼ Possible� A wj

� �
$ [

hi

Possible� B hið Þ \ R hi;wj

� �� �
ð3:9Þ

6 7 8 9

3 0.33 0.40 0.45 0.50

R= 4 0.20 0.27 0.33 0.38

5 0.09 0.17 0.23 0.29

Fig. 3.2 An example for the
relation matrix
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By using given binary relations, some other relations can be built with the max–
min composition. Let’s assume R1 and R2 are fuzzy relations. R1 is built on AxB
and R2 is built on BxC. By using max–min composition, the membership degree of
AxC tuples like (a, c) can be calculated as presented in Eq. 3.10.

R1 � R2 ¼ a; cð Þ; max
b

min lR1
a; bð Þ; lR2

b; cð Þ
� �� �

a 2 A; b 2 B; c 2 Cj
� �

ð3:10Þ

As can be seen in Eq. 3.6, the operations on relations are similar to matrix
multiplication with the minor difference that arithmetic operations are replaced with
max–min operations (‘‘x’’ and ‘‘+’’ are replaced with ‘‘min’’ and ‘‘max’’ respectively).

3.3.3 Fuzzy Inference Systems

Fuzzy Inference System (FIS) has many synonyms in literature and most widely
used forms are ‘‘fuzzy model’’, ‘‘fuzzy rule based system’’ or only ‘‘fuzzy system’’.
FIS and fuzzy relations have many successful applications in landslide literature
(Ercanoglu and Gokceoglu 2002 and 2004; Lee 2007b; Tangestani 2004 and 2009;
Kanungo et al., 2008; Muthu et al., 2008; Muthu and Petrou, 2007). As its name
reflects, FIS produces results (in crisp or fuzzy form) according to included fuzzy
rules by using inputs. A simple fuzzy rule can be simulated as ‘‘if x is high then y
is low’’. In this figurative rule ‘‘high’’ and ‘‘low’’ are the values of linguistic
variables ‘‘x’’ and ‘‘y’’. FIS uses the collection of fuzzy rules which can be
populated by using boolean operators: and, or, not. This collection is organized
and stored in a rule base with the purpose of expert thinking modeling. As can be
seen, fuzzy rules are the most important part of the FIS because of their purposes.

The FIS has an input space and it is divided into fuzzy sets so it can be said that
rules of the FIS are the subset models of the input space. In other words, each rule
or rule group is modeling a local behavior of the system. Some inputs may fire
more than one rule or rule group, because they belong more than one fuzzy set.
Normally, if the input takes place on the boundary of any fuzzy set, it may be the
member of another fuzzy set with another degree. At that time, two different rules
(groups) are fired and two different results representing two different local
behaviors of the system are produced. This situation requires aggregating local
behaviors and producing one result reflecting each local behavior according to
degrees. As a result, the other part of the FIS is called aggregator.

The remaining parts of the FIS are fuzzificator for convert crisp inputs to
linguistic values with some membership degrees by using membership functions.
In other words, fuzzification is the assignment of the crisp input values coming
from real world to the fuzzy sets with some degrees. Fuzzy matcher is used to
calculate matching degree of rules antecedent parts and produce rules evaluation
results. The final part is called defuzzifer and usage of it is optional. The mission of
defuzzifier is conversion of fuzzy result coming from aggregator to crisp value.
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If crisp value is required to go on operation, defuzzifier is used. In Fig. 3.3, the
conceptual model of FIS is illustrated.

All FIS models run accordingly to the block diagram in Fig. 3.3 at conceptual
level. When crisp input is applied, firstly it is fuzzified (fuzzifier). Secondly, rules
having corresponding antecedent parts are fired and consequences of the rules are
produced (fuzzy matcher). Thirdly, the consequences coming from different rules
are aggregated and single fuzzy result is produced (aggregator). Finally and
optionally, fuzzy result is converted to the crisp result (defuzzifier). It is evident
that fuzzy inputs of the FIS fire the rules without fuzzification.

There are three types of fuzzy inference system that have been widely employed:
the Mamdani Model, the Sugeno Model and the Tusokomoto Model. The divergent
parts of the models are consequent parts of the rules and normally production of
consequences, aggregation and defuzzification. The Mamdani fuzzy model is per-
haps the most appealing fuzzy method employed in engineering geological problems
(Alvarez Grima 2000). Because of this reason it is mentioned more detailed than the
others in continued parts. In addition ‘‘fuzzy model’’ is used instead of FIS in the
where types of FIS mentioned so fuzzy model is used in the later section.

Constructing a fuzzy inference system can be carried out as follows:

1. Define the problem.
2. Choose type of fuzzy approach (inference system or relations).
3. Determine input(s) and output(s) of the system.
4. Define linguistic variables (if a FIS is constructing).
5. Determine fuzzy sets representing linguistic values for each input and output.
6. Choose membership functions.
7. Adjust parameters of membership functions with the help of experts.
8. Design fuzzy rules by using domain knowledge with the help of experts.
9. Evaluate the selected fuzzy approach in step 2.

10. Tune system if it is needed.

These steps are common for all fuzzy models mentioned above, but the step
numbered 8 need to be done accordingly selected fuzzy model in step 2 because of
the different types of the rules are used in different models.

Fig. 3.3 FIS conceptual model
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3.3.3.1 Mamdani Fuzzy Model

Mamdani Fuzzy Model (Mamdani and Assilian 1975) was the first application of
controlling a steam engine and boiler by using linguistic rules designed by experts.
The Mamdani model uses the rules can be exampled as

If a is A1 and b is B1 then c is C1

If a is A2 and b is B2 then c is C2

In these exemplary rules, ‘‘A1’’,’’A2’’, ‘‘B1’’, ‘‘B2’’, ‘‘C1’’ and ‘‘C2’’ are fuzzy
sets (linguistic terms). As can be seen, these examples uses two inputs connected
with Boolean operators and single output. Normally, many variations may be
organized with different Boolean operators, different input and output numbers. In
fact, the attentions should be focused on the consequent part of the rule. It says that
what is the linguistic value of linguistic variable should be if the antecedent part of
the rule is supplied. The reason of the fact that fuzzy uses the membership degrees,
the antecedent part of the rule can be supplied with some degree in [0,1].
Accordingly consequent part of the rule can be achieved with some degree
reflecting the degrees of the antecedent part.

In the Mamdani Fuzzy Model, min operator is used for production of local
results. In other words fuzzy matcher uses min operator to conclude achievement
degree of consequent. To aggregate local consequents max operator is used and
inferred fuzzy result is produced as illustrated in Fig. 3.4.

There are mostly four different methods for defuzzification of Mamdani model:
Center of Area (COA), Mean of Maximum (MOM), Smallest of Maximum (SOM)
and Largest of Maximum (LOM) and obtaining a crisp output from fuzzy result via
COA and MOM is illustrated in Fig. 3.4. Continuity, disambiguity, plausibility,
computational complexity and weight counting are the main criteria for selecting a
defuzzification method (Hellendoorn and Thomas 1993). However, none of the
defuzzification methods commonly used satisfies all these criteria (Alvarez Grima
2000). It is evident that, especially the COA method requires more computational
effort than other types.

3.3.3.2 Sugeno Fuzzy Model

The Sugeno Fuzzy Model, also known as TSK Fuzzy Model, was proposed by
Takagi, Sugeno and Kang (Sugeno and Kang 1988; Takagi and Sugeno 1985).
The Sugeno model uses the fuzzy rule exampled as

If a is A and b is B then z ¼ f a; bð Þ

where, ‘‘A’’ and ‘‘B’’ are fuzzy sets. As like in Mamdani different variations can be
done in the antecedent part of the rule. In the exemplary rule, ‘‘z’’ is the crisp
output produced with the function of ‘‘f(a, b)’’. As can be seen, the Sugeno model
does not use defuzzificaion process; its consequent part is designed to produce
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crisp result directly. The function used in consequent part is often the polynomial
which uses input variables, but this is not an obligation. New function forms can be
designed to reflect the matching degree of antecedent parts of the rule, for example
‘‘z = f(a,b)’’ may be ‘‘z = a - b ? 1’’. In the Sugeno model, after production of
all local consequences; the aggregation process is implemented with either
weighted average or weighted sum of them.

3.3.3.3 Tsukamoto Fuzzy Model

Tsukomoto fuzzy model was proposed by Tsukomoto (1979) and it uses the rules
which can be exampled as

If a is A then b is B

where, ‘‘A’’ and ‘‘B’’ are fuzzy sets. It is similar with the rule structure of the
Mamdani model. Accordingly, the Mamdani and the Tsukomoto models are
similar in the processes from fuzzification to production of local consequents.
However, the Tsokomoto model uses weighted averages of local consequents
instead of the defuzzification process.

Fig. 3.4 Schematic illustration of the Mamdani model
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3.3.4 Landslide Susceptibility Applications of Fuzzy Approach

In literature, the first fuzzy approach application on landslide susceptibility assess-
ment has been performed by Juang et al. (1992). The Mamdani, Sugeno and
Tsukamoto models have not been applied on the landslide susceptibility assessment
directly. However, the fuzzy functions and expert systems including fuzzy ‘‘if-then’’
rules are used extensively in the last decade. Binaghi et al. (1998) used certainty
factor and fuzzy Dempster-Shafer approaches to produce landslide susceptibility
maps. According to Binaghi et al. (1998), the apparatus of fuzzy logic serves as a
natural frame for modeling the gradual transition from membership to nonmem-
bership in intrinsically vague classes. The Dempster-Shafer theory based on the
concept of belief function may be used to model and quantify the subjective credi-
bility induced by partial evidence (Swets 1988). Identification of data layers
governing landslides, definition of linguistic terms qualitatively describing each data
layer class, definition of membership functions associated to the corresponding fuzzy
set, definition of susceptibility classes, and elicitation and generation of the decision
rules by examples selected by the expert are the complete fuzzy Dempster-Shafer
modeling. Applying the fuzzy framework, the data layers involved in the classifi-
cation process have been qualified by linguistic labels according to the expert
description. The labeling process produced crisp and fuzzy labels, quantified with
crisp membership functions, for data layer classes having nominal values, and
standard quadratic membership functions, for data layer classes having numerical
values (Binaghi et al. 1998). Binaghi et al. (1998) applied fuzzy Dempster-Shafer
approaches to Fabriano (Marche, Italy) region and they obtained acceptable results.
According to these authors (Binaghi et al. 1998), this approach has great potential in
dealing with landslide susceptibility zonation. Similarly, a study on the landslide
susceptibility mapping by the Dempster-Shafer and fuzzy models was performed by
Tangestani (2009). Working in GIS with map layers, generally the attribute of
interest is measured over discrete intervals, and the membership function can be
expressed as a table expressing as a table relating map classes to membership values.
Fuzzy logic is attractive because it is straightforward to understand and implement
(Tangestani 2009). The fuzzy membership values are selected based on subjective
judgment about the relative importance of the map classes by Tangestani (2009).
For this purpose, Anbalagan’s (1992) classification scheme was used. According to
Tangestani (2009), the gamma fuzzy logic approach provides a flexible method with
which to include an expert’s opinion in developing an inference network, while the
Dempster-Shafer belief model uses the combination rules in which the expert only
can assign the belief functions for each factor map class. Tangestani (2009) pointed
out that comparison of fuzzy output susceptibility map and the plausibility image of
the Dempster-Shafer model with the field criteria collected in the known landslides
map revealed that the fuzzy gamma approach with a value of 0.94 for k gives more
reasonable results.

Ercanoglu and Gokceoglu (2002) used a rule-based fuzzy approach to produce
landslide susceptibility map of a landslide-prone area from Turkey. Ercanoglu and
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Gokceoglu (2002) constructed the ‘‘if-then’’ rules and fuzzy sets representing each
landslide conditioning factor from the data. Each landslide conditioning factor
was divided into five linguistic variables by Ercanoglu and Gokceoglu (2002).
In this fuzzy system, some fuzzy sets are continuous form while some others are in
the discrete form. These different types of fuzzy sets were combined in a FIS by
if-then rules. The prediction performance of the produced landslide susceptibility
maps is very high. In other words, 93% of the landslides are located in high and
very high zones. According to Ercanoglu and Gokceoglu (2002), the results of the
procedure followed by the authors produce acceptable maps for a medium-scaled
landslide susceptibility assessments.

Tangestani (2004) employed the fuzzy gamma approach to assess regional
landslide susceptibility assessment. According to Ercanoglu and Gokceoglu (2002)
and Tangestani (2004), all the available methods for regional landslide assessment
have some uncertainties arising from lack of knowledge and variability. This is
because regional landslide assessments require some generalizations and simpli-
fications, although these assessments are complex. For this reason, a perfect
assessment method for landslide susceptibility does not exist. The fuzzy logic
introduced by Zadeh (1965) is one of the tools used to solve these complex
problems. Performing the fuzzy gamma approach, Tangestani (2004) produced
landslide susceptibility map of Kakan catchment from Iran. After assigning each
fuzzy membership values for the conditioning factors, he used the fuzzy gamma
operators and performed a combination each factor to produce the landslide sus-
ceptibility map. In fact, the methodology followed by Tangestani (2004) is very
useful and applicable for such type problems. The approach employed by Tan-
gestani (2004) provides a flexiable and transparent method by which to include and
expert opinion in developing an inference network. Also, integration of fuzzy
combination operators and GIS facilitates enables the expert to examine different
scenarios and produce and intermediate map, or to add any new data layer to the
model and test its effect on the final possibility map (Tangestani 2004). In this
methodology, the most critical point is the gamma values to be assigned for each
gamma combination operation because this has a crucial importance on the output
fuzzy membership functions. The other important study on the fuzzy algebraic
operators for producing landslide susceptibility map was performed by Lee
(2007b). Lee (2007b) used similarly fuzzy gamma operators with Tangestani
(2004) to produce landslide susceptibility map of the Gangneung area from South
Korea. Lee (2007b) extracted the spatial relationships between each conditioning
factor and fuzzy membership values. In addition, the different k values were
assigned and the factors were combined by the gamma operators. Tangestani
(2004) used directly expert’s opinion when assigning fuzzy membership values
while Lee (2007b) extracted from the fuzzy membership values from the actual
data. This is the main difference between the studies performed by Tangestani
(2004) and Lee (2007b). This also show that the flexibility of the use of the fuzzy
approach when producing landslide susceptibility maps. According to the verifi-
cation process performed by Lee (2007b), the case of applying the gamma operator
(k = 0.975), showed the best accuracy (84.68%), whereas the fuzzy and (66.79%)
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and fuzzy or (66.50) operators showed the worst accuracy. However, an interesting
conclusion on the performance of the landslide susceptibility map methodology was
carried out by Lee (2007b). According to Lee (2007b), in his study, the data-derived
model (frequency ratio) and the knowledge-derived model (fuzzy logic) were
combined. As a result, the combined data and knowledge derived model is useful for
landslide susceptibility mapping considering the prediction accuracy (Lee 2007b).
Another study considering fuzzy relations were performed by Ercanoglu and
Gokceoglu (2004). Ercanoglu and Gokceoglu (2004) employed cosine amplitude
method. The cosine amplitude method is one of the commonly used similarity
methods, is used to evaluate the relationship between the landslide occurrence and
the parameters considered (Ercanoglu and Gokceoglu 2004). In this approach, the
membership degrees of elements for each fuzzy set are calculated by the strength of
relationship between the landslide inventory and the conditioning parameters.
During this calculation process, Ercanoglu and Gokceoglu (2004) considered
Cartesian product and fuzzy max operator. Finally, the data produced from the
Cartesian product are combined by the fuzzy max operator and the landslide
susceptibility map was produced for a landslide prone area from Turkey. The results
showed that 86% of the areal extent of the actual landslides exists in the high or very
high susceptibility zones of the final susceptibility map. Another study performed by
Kanungo et al. (2008) considers the cosine amplitude approach. According to
Kanungo et al. (2008) the fuzzy set based approach using cosine amplitude similarity
procedure could bring out the relative importance (ratings) of different categories of
causative factors in terms of landslide occurrences in an unbiased manner. Kanungo
et al. (2008) also performed the landslide risk assessment by fuzzy linguistic rules.
The linguistic rules proposed by Anbalagan and Singh (1996) were considered.
However, these rules are qualitative such as very low, low, moderate, high, very high.
The qualitative risk matrices produced by Kanungo et al. (2008) were quantified in
terms of fuzzy membership values. As mentioned by Ross (1995), in the fuzzy set
theory, membership values of elements are computed in [0, 1] closed interval
depending upon varying degrees of support or confidence of a phenomenon. There
are several ways of computing membership values including Cartesian product,
closed-form expression, linguistic rules of knowledge and similarity methods in data
manipulation. However, the membership values to various categories of landslide
susceptibility zones and resource elements were determined on the basis of a
linguistic scale derived from expert knowledge (Kanungo et al. 2008). Kanungo et al.
(2008) produced four different landslide susceptibility maps by conventional
weighting approach, ANN black-box approach, fuzzy set based approach and
combined neural and fuzzy approach. The most reliable methods were obtained from
the combined neural and fuzzy approach.

Muthu and Petrou (2007) constructed an expert system for landslide suscepti-
bility assessment of Caramanico Terme from Italy. The fuzzy ‘‘if-then’’ rules used
by Muthu and Petrou (2007) were extracted from the existing topographical and
remote sensing data. In fact, Muthu and Petrou (2007) developed an alert system
using a rule-based expert system. They used 16 landslides to the test system.
Muthu and Petrou (2007) considered the most relevant combination of maps in
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accordance with the historic landslide activity period to produce the outputs. When
comparing the other fuzzy-based studies, the study is different because the results
of this study are concrete for the everyday human life. In fact, the results of the
other landslide susceptibility maps will contribute to decrease the losses sourced
from the landslides. However, this contribution is indirect. After preparation of
reliable landslide susceptibility maps, it is possible to produce some alert maps
based on fuzzy expert systems. The results of the study performed by Muthu and
Petrou (2007) show that the fuzzy expert systems are the useful tool for these
purposes. In the same region (Caramanico Terme, Italy), Muthu et al. (2008)
performed a study to produce landslide susceptibility map by fuzzy approaches
such as the fuzzy expert system and the fuzzy neural networks. The rules were
extracted by the expert opinion. Muthu et al. (2008) fuzzified all conditioning
parameters in a form that takes into consideration the membership function with
which each factor belongs to the class governing the landslides. According to
Muthu et al. (2008), the proposed method is meant to operate at the regional, rather
than at the local level, where accurate ground measurements are not possible
because they are labor intensive. However, although some uncertainties sourced
from the physical conditions and high complexity, the fuzzy expert system con-
structed by Muthu et al. (2008) exhibits a very good performance (75%). This
means that the fuzzy expert system produces acceptable and useful map.

3.4 Artificial Neural Networks (ANN)

ANN is the most popular branch in the machine learning domain. Machine
learning aims to train computers, or in other words computers can learn from
examples and experiences if machine learning mechanisms are used. ANN can be
defined as structures comprised of densely interconnected adaptive simple pro-
cessing elements that are capable of performing massively parallel computations
for data processing and knowledge representation (Basheer and Hajmeer 2000;
Hetch-Nielsen 1990; Schalkof 1997) and it has been applied many real world
problems in many different areas (Basheer and Hajmeer 2000). The attractiveness
of the ANN comes from the remarkable information processing characteristics of
the biological system such as nonlinearity, high parallelism, robustness, fault and
failure tolerance, learning, ability to handle imprecise and fuzzy information and
their capability to generalize (Jain et al. 1996).

3.4.1 Understanding Biological Neural Networks and ANN
Relation

Biological nervous system consists of neurons with different types. Each neuron is
divided into three main parts: axon-synapse, cell body and dendrites. Dendrites
receive electrical signal from other neurons and pass it to the cell body, namely

66 C. Gokceoglu and E. Sezer



dendrites are the receivers of the neurons. The cell body has a nucleus that contain
information about heredity traits and a plasma that holds the molecular equipment
used for producing the material needed by the neuron (Jain et al. 1996). The axon
carries electrical signals to the dendrites of other neurons through synapses; in
other words they transmit the output of the neuron to the other neuron. Figure 3.5
(Basheer and Hajmeer 2000) illustrates the details of the biological neurons. The
biological neuron has large number of input receivers (dendrites) and output
transmitters (synapses), it can process many signals at the same time. These signals
can be suppressed or reproduced. It can be considered as weights are assigned to
the axons and dendrites.

This type of signal transition between neurons and collaboration of the parts of
the neuron constitute the basics of the ANN model. Both the biological nervous
network and ANN learn by incrementally, adjusting the magnitudes of the weights
or synapses’ strengths (Zupan and Gasteiger 1993).

3.4.2 Understanding ANN principles

An ANN consists of neurons which are similar to biological neurons in the brain.
In other words, a neuron is the simplest processing element of an ANN. It has one
or more receivers and takes the inputs via them in the weighted form and one or
more outgoing connection. In fact, ANN means many of interconnected neurons
which take inputs from external environment or other neurons’ outputs. In
Fig. 3.6, the typical architecture of an ANN consisting of three layers can be seen:
input layer, hidden layer and output layer. Input layer consists of the neurons

Fig. 3.5 Details of the biological neurons (Basheer and Hajmeer 2000)
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taking the input values from external environment and transmitting the output
values to the other neurons. Hidden layer consists of the neurons taking the inputs
from previous neurons and transmits the outputs to the succeeding neurons again.
Finally, output layer takes inputs from hidden layer neurons and gives the output
values to the external environment. Input and output layers of the ANN model can
be used as one hidden layer. However, an ANN model can include one or more
hidden layers. For example, an ANN can have one input, one output and two
hidden layers. As the hidden layers are not visible from the external environment,
in fact, they are hidden at the same time.

As can be seen in Fig. 3.6, the receiver and outgoing connections of the neurons
enables them to be interconnected and all connections can be called as link. The
link has tree component: source, destination and weight. In other words links are
directed and weighted. The weight of the link shows the importance of the input on
the link for the destination (neuron). In fact, the learning mechanism of the ANN is
based on the adjustments of the weights to produce required outputs and actually
this process is repetitive (iterative).

Up to now, the general concepts and components of the ANN are introduced and it
can be concluded from introduction that the construction of the ANN model starts
with the selection of the architecture, in other words, number of the neurons, layers,
connections and the learning mechanism of the neurons should be determined.

3.4.3 Perceptron

Perceptron was introduced by Rosenblatt (1958) and the perceptron learning rule
(Rosenblatt 1960) was proposed by the same researcher. The perceptron reflects
atomic characteristics of the ANN. It employs single neuron with weighted inputs,

Fig. 3.6 The typical architecture of an ANN consisting of three layers
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linear combiner mechanism and a threshold value. In fact, the mission of the
perceptron is classification of inputs by using the threshold value. Typical per-
ceptron divides the inputs into the two classes according to be above or below of
the threshold. In some resources (Negnevitsky 2002) threshold is used synonym of
the hard limiter. The linear combiner mechanism of the perceptron which has ‘‘n’’
weighted input is illustrated in Eq. 3.11 (Basheer and Hajmeer 2000). It can be
named as activation or transfer function (Negnevitsky 2002).

y ¼ 1
Pn

i¼1 xi � wi� treshold;
0
Pn

i¼1 xi � wi � treshold

�
ð3:11Þ

where 0 and 1 indicate ‘‘off’’ and ‘‘on‘‘or ‘‘to be in class A1’’ and ‘‘to be in class
A2’’.

The learning rule of the perceptron is based on weight adjustment policy
applied for reduction of the difference between produced output and desired
output. If ym is the output in the mth iteration, ‘‘p’’ indicates produced output and
‘‘d’’ indicates desired output, the error in mth iteration is calculated by Eq. 3.12
(Negnevitsky 2002).

em ¼ ymðdÞ � ymðpÞ ð3:12Þ

According to Negnevitsky (2002), initial weights of the perceptron are randomly
selected from the range of [-0.5, 0.5]. Inputs of the perceptron are externally
supplied and unchangeable. As a result, the perceptron can adjust the only weights to
reach desired output with acceptable error with iterative approach. If error in mth

iteration is negative then produced output should be decreased or if it is positive then
produced output should be increased by using wi parameters in Eq. 3.11. Thus, the
perceptron learning rule can be illustrated as like in Eq. 3.13 (Negnevitsky 2002).

wiðmþ 1Þ ¼ wiðmÞ þ ða � xiðmÞ � eðmÞÞ ð3:13Þ

where, ‘‘m’’ is the number of iteration, xi is the ith input of the perceptron, ‘‘e’’
denotes error and ‘‘a’’ is learning rate and positive constant less than 1.

It is evident from the Eqs. 3.11–3.13 that the perceptron is suitable for the input
spaces which can be divisible with a line because of its learning rule, namely linear
combiner. This situation causes the strictly restriction to solve all problems with
the perceptron, because most of the problems are not suitable for only linear
classification. To overcome the limitation of linear separation, multilayer per-
ceptron (MLP) is introduced. MLP is synonym of the multilayer neural network.
As its name reflects, MLP uses more than one layer, in fact, three layers at least:
one input layer, one hidden layer and one output layer. Figure 3.6 can be an
example for a typical MLP and as mentioned before, hidden layer may be more
than one. In fact, hidden is the term that can qualify node, neuron and layer and
means the invisible part of the ANN from external viewpoint. The aim of the MLP
is to give a solution to the nonlinear problems and it tries to characterize the
nonlinearity by using multiple layers at the same time.
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3.4.4 ANN Types and Terminology

Basheer and Hajmeer (2000) lists the criteria for classifications of ANNs as
follows:

• The function that the ANN is designed to serve (pattern classification, cluster-
ing, etc.)

• The degree (partial/full) of connectivity of the neurons in the network
• The direction of flow of information with in the network (recurrent/non

recurrent)
• The type of learning algorithm
• The learning rule
• Degree of learning supervision needed for ANN training (supervised/

unsupervised)

Full/partial connectivity: If each neuron in one layer is connected to the all
neurons in the next adjacent layer then connectivity is named as full. In counter
situation, the connectivity is named as partial.

Recurrent/non recurrent: In a recurrent network, the outputs of some neurons
fed back to the same neurons or neurons in preceding layers (Basheer and Hajmeer
2000). As the information can flow in both sides of forward and backward; system
intelligence and learning capability are increased.

Supervised/unsupervised learning: In supervised learning correct outputs or in
other word target outputs are used in training process. Weight adjustment is
applied according to error between produced and target outputs. In unsupervised
learning, synonym with self organization; instead of target outputs, structure of
data exploration is employed. Different cases in data and their internal relations are
used to organize clusters according to their similarity. Both of learning scheme can
be used in hybrid models.

Learning algorithm and learning rule: Learning algorithm represents a set of
systematic equations that utilize the outputs from the network along with an
arbitrary performance measure to update the internal structure of the ANN (Ba-
sheer and Hajmeer 2000). Learning rule is the heart of the learning algorithm.
Because it defines the weight adjustment policy while passing between iterations.
There are four basic types of learning rules (Haykin, 1994; Hassoun, 1995).

Error correction learning (ECL): It is used in supervised learning in which the
arithmetic difference, namely error, between the produce output from ANN at any
iteration during training and the corresponding target output is used to modify the
connection weights so as to gradually reduce the overall network error (Basheer
and Hajmeer 2000).

Boltzmann learning (BL): It is similar to ECL; however, each neuron produces
the output based on Boltzmann statistical distribution (Jain et al. 1996).

Hebian learning (HL): It suggests (Hebb 1949) that if neurons on both sides of
synapse are activated synchronously and repeatedly the synapse’s strength is
selectively increased (Basheer and Hajmeer 2000).
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Competitive learning (CL): It forces neurons to compete among themselves to
be one activated neuron in a given iteration with all weights attached to it adjusted
(Jain et al. 1996)

As can be seen, ECL and BL rules use all neurons with weights; however, HL
rules use locally neurons and CL rules select one neuron.

3.4.5 Back Propagation Neural Network (BPNN)

To give a detailed example from ANNs, BPNN is selected because of its popu-
larity, flexibility and adaptability in modeling a wide spectrum of problems in
many application areas (Basheer and Hajmeer 2000). BPNN is the type of ANN
with the characteristics of full connectivity, at least three layers (typical MLP) and
supervised learning with ECL rule. Back propagation means error calculated at the
output level of the BPNN in the any iteration is backed to the previous layer,
namely hidden layer, and it continues to the input layer. The general flows of the
BPNN’s running model can be illustrated as like in Fig. 3.7(a) and alternatively in

Fig. 3.7 The general flow of the BPNN’s running model
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Fig. 3.7(b). Paul Werbos proposed the Back Propagation algorithm in the first half
of 1970’s; however Rumelhart and McClelland (Rumelhart et al. 1986) redis-
covered it in 1986 and Back Propagation became widely used. Practically the
reasons for BPNN employment may be as follows:

The problem has the solution in the given data context. In other words, the
solution can change over time, location or another affect.

The problem has complexity; however there is no formula or linear solution to
model it.

There are huge amount of data organized as input/output, but there is no idea
about relation between inputs and outputs.

As can be seen from Fig. 3.7, the BPNN runs iteratively to produce acceptable
outputs with tolerable error and there are two main tasks in each iteration, alter-
natively in each epoch, feed forward process to produce the BPNN’s output and
back propagation of the error of BPNN. Before explanations about the weight
adjustment policy of the BPNN’s, the typical neuron view is given in Fig. 3.8. As
can be seen it has similar structure and process scheme with the perceptron.

The BPNN should be initialized before the first iteration by assigning the initial
values to the weights and thresholds of the each neuron. These values are randomly
selected from a small range with the consideration of uniformly distribution
(Haykin 1994). The complete one iteration of the BPNN is explained after this point
with the formulas of weight adjustment which are taken from Negnevitsky (2002).

3.4.5.1 Feed Forward Processes of the BPNN

After supplying the external inputs to the input layer, all subsequent layers with the
no matter of they are hidden or output layer behave in the same way. However, only
the outputs of the output layer are visible and the error calculation starts at this level.
For each neuron in the one layer; firstly collected weighted inputs is calculated by
using Eq. 3.14, secondly the activation function of the neuron produces the real
output which is input for the subsequent layer. The activation function constraints the
output to be in the closed interval of [0, 1] and sigmoid activation function (Eq. 3.15)
is suitable for BPNNs because of its derivation is easily computed.

X ¼
Xn

i¼1

xi � wi �H ð3:14Þ

Fig. 3.8 The typical neuron view of the BPNN

72 C. Gokceoglu and E. Sezer



Ysigmoid ¼ 1
1þ e�x

ð3:15Þ

where ‘‘X’’ is collected weighted-inputs of the neuron; ‘‘h’’ is the threshold, ‘‘n’’ is the
number of inputs coming to the neuron, ‘‘w’’ denotes the weight and ‘‘Y’’ is the output
of the neuron. After completing the each layer neuron by neuron, then in fact, last
layer, namely the output layer, gives the BPNNs output to the external environment.

3.4.5.2 Calculation of error

The error calculation (Eq. 3.16) is carried out for each neuron in output layer and
each neuron propagates its own error.

eo ¼ Yd;oðmÞ � YoðmÞ ð3:16Þ

where ‘‘e’’ is the error, ‘‘m’’ is the iteration number, ‘‘o’’ is the oth neuron of the
output layer, ‘‘Y’’ is the output and ‘‘Yd’’ denotes desired (target) output.

3.4.5.3 Back Propagation Processes of the BPNN

Back propagation has the skeleton consisting of three items: ‘‘calculate error
gradient’’, ‘‘calculate weight correction’’ and ‘‘produce new weight’’. As can be
seen, it is very focused on ‘‘weights’’, and so objects of this step are the links
sourced from one neuron to another. In Eq. 3.13, the weight adjustment of the
perceptron has been given. In fact, the same philosophy lies behind the weight
adjustment policy of the BPNN’s neurons, but same equation is not suitable for the
network. Because, there are non-predefined inputs for the layers except for the
input layer and the connection of the neuron to the all of the neurons in subsequent
layer makes the error concept to be more complex.

In BPNNs weight adjustment is done similarly with the perceptron but the
weight correction (Dw) is calculated differently in the way of using error gradient
(d) instead of error (e). In all formulas after that; ‘‘w’’ has two subscribing symbol:
first is the source and second is the target of the link which has the ‘‘w’’, ‘‘Y’’
(Eq. 3.15) is the output of the neuron which subscribes it and X (Eq. 3.14) is the
collected weighted inputs of the neuron which subscribes it. The Eq. 3.17 gives the
weight learning rule and the Eq. 3.18 gives the weight correction of the BPNN.

wijðmþ 1Þ ¼ wijðmÞ þ DwijðmÞ ð3:17Þ

DwijðmÞ ¼ a � YiðmÞ � djðmÞ ð3:18Þ

As can be seen from Eq. 3.18; learning rate (a), input of the jth neuron (Yi) and
the error gradient of jth neuron (dj) are used. Error gradient is calculated with the
derivation of the activation function multiplied by the error at the neuron output. In
Eq. 3.19, error gradient formula is given.
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djðmÞ ¼
@YjðmÞ
@XjðmÞ

� ejðmÞ ð3:19Þ

If the sigmoid activation function Eq. 3.15 is used, Eq. 3.19 can be as like in
Eq. 3.20

djðmÞ ¼
@ 1

1þexp �XjðmÞ½ �

� �

@XjðmÞ
� ejðmÞ ¼

exp �XjðmÞ
� 	

1þ exp �XjðmÞ
� 	
 �2 � ejðmÞ ð3:20Þ

While the Eq. 3.20 is evaluated, Eq. 3.21 is obtained with the consideration of
the Eq. 3.22.

djðmÞ ¼ YjðmÞ � 1� YjðmÞ
� 	

� ejðmÞ ð3:21Þ

YjðmÞ ¼
1

1þ exp �XjðmÞ
� 	 : ð3:22Þ

Up to now, the weight correction skeleton of the BPNNs based on the formulas
is given. In fact, all formulas are same for all neurons in the all layers in basic
form. However, there are minor differences between layers since input layer has
predefined inputs but others have not. In addition the output layer has simple
calculation for error but others have not because of their fully connection to the
other neurons in the subsequent layer. For this reason, additional formulas
reflecting these differences are given below. The error gradient of the jth neuron in
the output layer is calculated with Eq. 3.19 and the error gradient of the jth neuron
in the preceding layers is given in Eq. 3.23.

djðmÞ ¼ YjðmÞ � 1� YjðmÞ
� 	

�
Xl

k¼1

dkðmÞ � wjkðmÞ ð3:23Þ

The weight calculation formula of the jth neuron in the hidden layer which has
the input layer previously is given in Eq. 3.12 and it is replaced in Eq. 3.23 again.

DwijðmÞ ¼ a � xiðmÞ � djðmÞ ð3:24Þ

It is evident that the differences can be seen when making a comparison
between Eqs. 3.21 and 3.23, and Eqs. 3.18 and 3.24.

3.4.6 Constructing an ANN

In fact, it is too hard for the researchers creating and running an ANN firstly, but
this process is aided by some software tools (for ex. MATLAB) to encapsulate
researchers from too many details of the construction of the ANN. Accordingly,
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there are two way to explain this process: based on a tool or not. In this section, no
tool is placed to the object and the construction process is explained, generally;
however, in practically researchers use a tool. Even if the tool is used, accurate and
efficient usage requires general knowledge about the construction of the ANN. The
construction steps of an ANN are explained in subsequent parts.

Problem analysis: Input and output parameters of the problem should be
determined and dependency relation between them should be examined. Input and/
or output parameters of the problem can be distinct and/or continuous and they can
be used together in the ANN architecture.

Data preprocessing: The most important steps of the data preprocessing are the
data balancing and the normalization of the data. Data balancing means samples of
data, representing the different variations, should have nearly uniform distribution.
In other words, over-representation of any variation should be prevented. Data
normalization means values should be scaled within a uniform range, for example
[0–1]. It enables small values to be prevented from being suppressed by larger values.

Data set partitioning: There must be three distinct data sets for the ANN
construction: training, test and validation. There are two important properties
about sets: characteristics and size of them. Their characteristics can be notable
from their definitions. Training data is responsible from enabling to the ANN to
have correct weights. Hence, it should cover the all cases about the problem. Test
data does test the performance of the ANN using untrained data. So, the accor-
dance of the test and the training data sets in the perspective of cases is very
important. According the test results, namely ANN performance, architectural
decisions are reconsidered and if it is needed more training cycles are applied.
Validation data set is supplied to the ANN finally, before it is completed. Vali-
dation enables to ensure from that it is the suitable and adjusted ANN. Therefore, it
should cover different cases from train and test data sets.

In fact, the determination of the set size for each of them is not a mathematical
problem and there are many advises and experiences about the size concept.
Sonmez et al. (2006) have given a brief overview on this subject. Kavzoglu (2001)
pointed out that a sufficient number of training samples being available is
important to estimate ANN parameters accurately and same researcher suggested
that the optimal number of training samples must be between [30 9 numbers of
input nodes 9 (numbers of input nodes ? 1)] and [60 9 numbers of input nodes 9

(numbers of input nodes ? 1)]. Klimasauskas (1993) and Messer and Kittler
(1998) proposed that at least 5–10 times the number of training samples as free
parameters (weights) should be used. Swingler (1996) and Looney (1996) propose
20 and 25% of the data for testing, respectively Nelson and Illingworth (1990)
recommend between 20 and 30% of data for testing.

ANN Design and Training: This step starts with selection of the ANN type and
learning rule which have the best accordance with the problem and goes on with
assignment of the values to the parameters of the ANN architecture. Parameter
values have influence on the ANN performance and they can be listed as follows:

Initial weights: Initial weights are the first values assigned to the weights
randomly from a small range. Basheer and Hajmeer (2000) pointed out that too
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small a range can cause to small error gradients and this situation may slow down
the initial learning process. Also, Fahlman (1988) emphasized that weight ini-
tialization has an insignificant effect on the final ANN architecture. There are
proposed different ranges in the literature and some of them are listed here: [-0.5;
0.5] by Sietsma and Dow (1991), [-0.3; 0.3] by Rumelhart et al. (1986), [-0.25;
0.25] by Gallahger and Downs (1997) and [-0.1; 0.1] by Paola (1994).

Back propagation learning rate (a): Learning rate controls the weight update
step size. If the learning rate is selected as small, the training rate can be slow,
however; the training phase can cause oscillations when learning rate is selected
too large (Sonmez et al. 2006). A constant learning rate may be utilized throughout
the training process (Basheer and Hajmeer 2000). There are some recommenda-
tions in literature about learning rate such as a = 0.1–10 by Wyhthoff (1993),
a = 0.3–0.6 by Zupan and Gasteiger (1993) and a = 0.0–1.0 by Fu (1995). In
addition Sonmez et al. (2006) selected a as 0.01 and 0.1.

Back propagation momentum coefficient: A momentum term is commonly used
in weight updating to help the search escape local minima and reduce likelihood of
search instability (Haykin 1994). The momentum coefficient has a stabilizing
effect in the back-propagation algorithm (Negnevitsky 2002). Some momentum
coefficient values which are advised and experienced in literature are in the
between 0.4–0.9 by Wyhthoff (1993), 0.0–1.0 by Hassoun (1995) and Fu (1995),
and Sonmez et al. (2006) selected as 0.95.

Number of training cycles: System should be refrained from overlearning
caused by application of too many training cycles, because the system looses the
generalization ability. The error on the test data may not follow a smooth path, the
onset of a major increase in the error is considered to represent the optimal number
of cycles for the ANN architecture (Basheer and Hajmeer 2000). Alternatively, the
point which the prediction performance graphs of train and test data sets should be
closed to each other, is the optimal number of cycles for the ANN architecture.

Training modes: There are two training modes available for ANNs: example by
example training (EET) and batch training (BT). The usage of them together is
possible. EET means, as its name imply, network starts to learn in the first
example, namely it starts to weight adjustment in the first example and goes on
with succeeding examples. BT means, all examples are used in one batch and
learning starts with the first iteration on the whole batch. In the second iteration,
again the same batch is used and goes on in this way. The effectiveness of the EET
or BT can be problem specific (Haykin 1994)

Hidden layer size: Hidden layer size means the number of layers and the number
of neurons in each layer. Commercial ANNs incorporate three and sometimes four
layers, including one or two hidden layers and each layer can contain from 10 to 1000
neurons (Negnevitsky 2002). Of course more layers with more and more neurons can
be used in an ANN theoretically, but each layer consumes additional computational
effort practically. As a result, the imagination of the ANN’s is limited with the power
of computational environment and number of data available.

Hecht-Nielsen (1987) point out that one hidden layer may be sufficient to solve
most problems. Also, Rumelhart et al. (1986) stated that there is rarely an
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advantage in using more than one hidden layers, while Masters (1994) emphasized
that two hidden layers may be necessary for a learning rule with discontinuities.
Sonmez et al. (2006) states that the number of neurons is the most critical task in
the ANN structure and same researchers give the Table 3.1 listing heuristics
proposed for this purpose.

Basheer and Hajmeer (2000) said that parameters of the ANN listed in
Table 3.2 should not be set too high or too low and they are optimized. The
Table 3.2 lists the effect of selection parameter’s values from extreme points.

When the construction of the ANN is completed, different test and train data
sets should be supplied to the model, and the results are compared by various
performance indices.

Table 3.1 The heuristic proposed for the number of neuron to be used in hidden layer(s)
(Ni: Number of input neuron, No: number of output neuron) (Sonmez et al. 2006)

Heuristic Reference

	 2 � Ni þ 1 Hecht-Nielsen (1987)
3Ni Hush (1989)
Ni þ Noð Þ=2 Ripley (1993)

2þ No � Ni þ 0:5 � N2
o þ Ni

� �
� 3

Ni þ No

Paola (1994)

2Ni=3 Wang (1994)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � No
p

Masters (1994)
Kaastra and Boyd (1996)

2Ni Kannellopoulas and Wilkinson (1997)

Table 3.2 Effect of extreme values of design parameters on training convergence and network
generalization (Basheer and Hajmeer 2000)

Design
parameter

Too high or too large Too low or too small

Number of
hidden
nodes
(NHN)

Overfitting ANN (no generalization) Under fitting (ANN unable to obtain
the underlying rules embedded in
the data)

Learning rate Unstable ANN (weights) that oscillates
about the optimal solution

Slow training

Momentum
coefficient

Reduces risk of local minima. Speeds up
training. Increased risk of overshooting
the solution (instability)

Suppresses effect of momentum
leading to increased risk of
potential entrapment in local
minima. Slows training

Number of
training
cycles

Good recalling ANN (i.e., ANN
memorization of data) and bad
generalization to untrained data

Produces ANN that is incapable of
representing the data

Size of
training
subset

ANN with good recalling and
generalization

ANN unable to fully explain the
problem. ANN with limited or
bad generalization

Size of test
subset

Ability to confirm ANN generalization
capability

Inadequate confirmation of ANN
generalization capability
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3.4.7 Use of Artificial Neural Networks in Susceptibility
Assessments

In the last decade, the artificial neural networks (ANN) became a popular method
for producing landslide susceptibility maps. The ANN has many advantages
compared with statistical methods. Firstly, the ANN method is independent of the
statistical distribution of the data and there is no need of specific statistical vari-
ables. Compared with the statistical methods, ANN allows the target classes to be
defined with much consideration to their distribution in the corresponding domain
of each data source (Zhou 1999; Lee et al. 2004). In addition, integration of GIS
data is suitable. Moreover, the continuous and categorical data can be used
together. For this reason, several researchers have used the ANN to produce the
landslide susceptibility maps. In this section, a brief overview is carried out on the
landslide susceptibility maps produced by the ANN. One of the first ANN
applications encountered in the literature was performed by Lu and Rosenbaum
(2003). Lu and Rosenbaum (2003) employed the ANN to predict the stability of
slopes. According to the authors (Lu and Rosenbaum 2003), the ANN appears to
be appropriate where significant quantitites of data are available. In this study, the
limit equilibrium method (LEM) was adopted in practice for the analysis and
prediction of circular failures. The results obtained by Lu and Rosenbaum (2003)
showed that using ANN appeared to be in agreement with the observed condition
of the slopes employed, encouraging the adoption of the ANN as a basis for
predicting the state of slope instability. Additionally, the need to evaluate poten-
tially unstable slopes across an area would tend to favour the spatial framework
offered by a geographic information system (Lu and Rosenbaum 2003). This
increases the advantage of using ANN over limit equilibrium method and maxi-
mum likelihood estimation, not least because of the reasoning outputs that can be
generated as raster images (Lu and Rosenbaum 2003). These images provide the
landslide susceptibility zonation and contribute to landslide hazard mitigation
efforts. Lee et al. (2003a) used the ANN for analysis of landslide susceptibility of a
landslide-prone area in South Korea. Researchers (Lee et al. 2003a) combined the
GIS and the ANN to produce the landslide susceptibility map. Various ANNs exist
in the literature. Lee et al. (2003a) considered the back propogation neural network
(BPNN) because the BPNN is the most frequently used ANN algorithm as men-
tioned in the previous sections. One of the advantages of the ANN is that accurate
analysis is possible when there are few training datasets, because of the use of
pixel-based calculations (Lee et al. 2003a). In the study of Lee et al. (2003a), the
weights were calculated three times, using all 14 landslide conditioning factors in
the first instance, then recalculating after removal of those 6 factors that had the
smallest weights, and thirdly after removal of the remaining 4 least influential
factors. The ANN structure included 14 input variables, 30 hidden neurons and 2
outputs. The results obtained by Lee et al. (2003a) demonstrated that the GIS and
the ANN can be used to produce a landslide susceptibility index and, conse-
quently, to manage landslide hazards effectively. Moreover, the weighting given to

78 C. Gokceoglu and E. Sezer



the various factors that are significant in the landslide susceptibility analysis
provides a ranking of their relative significance (Lee et al., 2003a). Lee et al.
(2003b) mentioned that the ANN program written in MATLAB can allow analysis
of landslide susceptibility, but it is inconvenient for the management of spatial
data, and modification of its input data is difficult. Therefore, it is necessary to
integrate the GIS and the ANN to reduce the restrictions of using the two appli-
cations separately. Lee et al. (2003b) selected the learning rate of 0.01 and the
random initial weights between 0.1 and 0.3. To test whether the variation of
weights is dependent on initial weight or not, the weights which were calculated
from many cases, were compared, and the results revealed that the initial weight
does not have an influence on weight in the condition (Lee et al. 2003b). Lee et al.
(2003b) constructed an ANN having a structure of 7 9 15 9 2. The result of
verification performed by Lee et al. (2003b) was a satisfactory agreement between
the susceptibility map and the landslide location data. As a final conclusion carried
out by Lee et al. (2003b), in the ANN method, it is difficult to follow the internal
processes of the procedure, and the method entails a long execution time and a
heavy computing load. There is a need to convert the database to another format
such as ASCII; the method requires that data be converted to ASCII for use in the
ANN program and later reconverted to incorporate it into a GIS layer. Moreover,
the large amount of data in the numerous layers in the target area cannot be
processed in ANN programs quickly and easily. Lee et al. (2004) determined the
weights of the conditioning parameters for landslide susceptibility maps by the
ANN. Lee et al. (2004) used the backpropagation algorithm proposed by Zhou
(1999) when determining the weights. For comparison, the number of landslide
was classified into the landslide susceptibility index. The range of index value is
different in without weighting and weighting, so the index value needs to set the
same interval for comparison (Lee et al. 2004). According to Lee et al. (2004), the
objective and scientific weighting and rating are essential to landslide suscepti-
bility mapping and the weights can be applied to an area that needs weighting and
rating, such as groundwater pollution assessment and soil loss assessment.

Gomez and Kavzoglu (2005) assessed the shallow landslide susceptibility using
the ANN in a landslide-prone area in Venezuela. Gomez and Kavzoglu (2005)
emphasized that ANNs have the ability to handle imprecise and fuzzy data, so they
can work with continuous, categorical and binary data without violating any
assumptions. For this reason, the ANN can be applied to several problems such as
prediction problems. Owing to this ability of the ANN, as assessment of proba-
bility for landsliding is performed through the forecast of future events from
experience of past landslides, it may be considered as an ideal application for
ANNs (Gomez and Kavzoglu 2005). The ANN, specifically multilayer perceptron,
was applied to the area studied by Gomez and Kavzoglu (2005). Gomez and
Kavzoglu (2005) constructed an ANN model including 9 9 28 9 1 structure.
According to Gomez and Kavzoglu (2005), it was found that ANNs have several
distinct advantages for landslide susceptibility mapping. First, ANNs are non-
linear and therefore capable of handling complex data patterns. Second, they can
identify subtle patterns in the input training data, which is probably ignored when
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employing conventional statistical methods. Third, they are able to take a specific
set of input data and generalize a solution set, which allows solving problems with
unknown patterns present in the input data. Fourth, ANNs have great potential
when used with ground truth, as the ANN may extract the information content of
the data automatically. Finally, continuous, near-continuous and categorical data
can be used in ANNs without violating any model assumptions. On the other hand,
it should be pointed out that ANNs have some drawbacks reported in the literature,
some of which are the inconsistent results due to random initialization of the
weights, slow convergence and difficulties in the design of the network structure
and in the determination of optimum learning parameter, they require some degree
of expertise (Gomez and Kavzoglu 2005). Ermini et al. (2005) applied ANN to
produce landslide susceptibility map of Riomaggiore river basin in Italy. Some
ANN techniques were applied to the landslide susceptibility mappings. In the
application to landslide susceptibility of multilayer perceptron and probabilistic
neural network, both techniques can be classified as ‘‘black box models’’, and
furthermore, several ANNs have been developed on a statistical basis (Bishop
1995; Petterson 1996; Ermini et al., 2005). For this reason, it is quite difficult to
find a widely accepted definition that classifies the differences between ANNs and
statistical models (Ermini et al. 2005). As a general rule, the multilayer perceptron
training phase is aimed at representing the multidimensional nature of the inves-
tigated process. Each data set record can be considered as a vector whose number
of dimensions corresponds to the number N of variables taken into account in the
dataset itself. Network complexity usually increases with the increasing number of
variables and, consequently, the number of weights and hidden layers (Ermini
et al. 2005). Ermini et al. (2005) produced two landslide susceptibility maps of the
study area using multilayer perceptron and probabilistic neural networks.
According to the results obtained by Ermini et al. (2005), the networks predictions
are, in both cases, quite poor if considered in absolute terms, with a slightly better
performance by the multilayer perceptron, but fairly good when suitably reclas-
sified. It is interesting to note that the multilayer perceptron net performs better
than the probabilistic neural network does and that a number of locations having
high output values have been mapped as being unaffected by mass movements in
the inventory. This may be due either to model overestimation errors or to possible
cases of existent landslides, which have not been correctly recognized by the aerial
photographs. The advantage of the multilayer perceptron model over the proba-
bilistic neural network is even more understandable when rating the cumulative
frequency distribution (Ermini et al. 2005). Although the poor predictions of the
both models, Ermini et al. (2005) stated that geographic representations of the
model predictions show satisfactory results for both models. The other interesting
statement described by Ermini et al. (2005) is the ‘‘wait and see’’ for the validation
of the landslide susceptibility models. According to Ermini et al. (2005), the
estimation errors can be sourced from problems in the network construction,
wrong or insufficient variables and noisy data. The output value, in particular,
could be affected by two different kinds of noise: the first, which is relevant also to
input variables, is essentially connected to survey mistakes. For example, errors
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might have been made during the geomorphological survey of landslides, which
could lead to a misleading classification of landslide-free areas (Ermini et al.
2005). As a final conclusion of Ermini et al. (2005), improvements to the model
could be obtained by analyzing the state of activity of the landslides and setting the
different output values to the observed degree of activity, e.g., by using fuzzy set
variables.

Yesilnacar and Topal (2005) produced landslide susceptibility maps of a
landslide-prone area in Turkey by the logistic regression and the ANN. When
producing landslide susceptibility map, Yesilnacar and Topal (2005) used the feed-
forward back-propogation ANN. The feed-forward back-propogation learning
algorithm is a well recognized procedure for training neural networks (multilayer
perceptron - MLP) (Yesilnacar and Topal 2005). According to Yesilnacar and
Topal (2005), it has been shown that a MLP with one hidden layer has the
capability to approximate any function with an acceptable degree of accuracy if
there are enough hidden nodes. In cases where the optimum number of hidden
nodes on a single hidden layer is large, two hidden layers with a small number of
nodes on each layer could be more appropriate (Yesilnacar and Topal 2005). In the
case studied by Yesilnacar and Topal (2005), several iterations were tested to find
the best number of hidden nodes for the problem. According to the results of
Yesilnacar and Topal (2005), 13 hidden nodes showed the best increasing trend in
different learning-rate momentum term couples. Then 36 trials were carried out to
find the best learning rate-momentum term couple. Finally, 13 hidden nodes,
learning rate of 0.3 and momentum term of 0.8 with 40,000 iterations were found
to be best structure by Yesilnacar and Topal (2005). By using this ANN structure,
a landslide susceptibility map having an overall accuracy of 82.12% for the test
dataset was produced. As a result of the study performed by Yesilnacar and Topal
(2005), the feed-forward back-propagation learning algorithm performed better
than the logistic regression model. For this reason, the susceptibility map produced
using the ANN method is found to be more realistic (Yesilnacar and Topal 2005).
Lee et al. (2006) produced the landslide susceptibility map of a landslide prone
area in Korea by the ANN method. According to Lee et al. (2006), the back-
propagation training algorithm is the most frequently used network method and
hence, they used this ANN algorithm. The back-propagation training algorithm is
trained using a set of examples of associated input and output values (Lee et al.
2006). Lee et al. (2006) constructed an ANN model having 13 9 30 9 2 structure
and they set the learning rate of 0.01 and the momentum parameter of 0.01. Lee
et al. (2006) tried 5 different cases. Case 4, when likelihood ratio on prone training
sites and with likelihood ratio on nonprone sites, were better than the other cases
(Lee et al. 2006). As a conclusion of the study of Lee et al. (2006), in addition to
using multi-faceted approach to a solution, they enable the extraction of reliable
results for a complex problem, and for continuous and discrete data processing.
Wang and Sassa (2006) produced a rainfall-induced landslide susceptibility map of
a landslide-prone area in Japan by the ANN. Wang and Sassa (2006) also used
back-propagation neural network algorithm. ANNs are a powerful tool for the
prediction of non-linearities. They can learn some target values (desired output)
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from a set of chosen input data that have been introduced to a network under both
supervised and self-adjusted or unsupervised learning algorithm (Wang and Sassa
2006). Wang and Sassa (2006) constructed a five layer ANN model with 49 input
nodes and one output node. Hidden nodes and the number of hidden layers were
decided by reasonable errors from repeated trainings. Consequently, hidden nodes
were 36, 10 and 16 in three hidden layers respectively (Wang and Sassa 2006). In
the training model developed by Wang and Sassa (2006), the learning ratio was
0.9, the learning step was 0.7, the individual error was 0.01 and the collective error
was 0.0001. Compared to statistical analysis methods commonly used, the BPNN
model is more suitable for producing a map of landslide hazard. Since the BPNN
model can improve the accuracy of prediction and classification of landslides after
learning, much in the same way as human might (Wang and Sassa 2006). As a final
conclusion of Wang and Sassa (2006), whatever neural networks are applied to
predict the probability of landslide occurrence, it currently appears that ANNs
provide a very promising avenue for spatial analysis and landslide hazard mod-
eling, in spite of their limitations. Lee and Evangelista (2006) produced the
earthquake-induced landslide susceptibility map of a landslide-prone area in
Philippinnes by the ANN method. They constructed an ANN model having a
structure of 8 9 16 9 2. Lee and Evangelista (2006) determined the weight of
each factor by the ANN method (BPNN algorithm) for the detected landslide
locations. In the study of Lee and Evangelista (2006), the input data were nor-
malized in the range of 0.1–0.9. In addition, the learning rate was set to 0.01, and
the initial weights were randomly selected to values between 0.1 and 0.3 (Lee and
Evangelista 2006). Although Lee and Evangelista (2006) produced a satisfactory
landslide susceptibility map, they also emphasized some difficulties of the appli-
cation of the BPNN. According to Lee and Evangelista (2006), the BPNN involves
a long execution time, has a heavy computing load, and there is a requirement to
convert the database to another format. Kanungo et al. (2006) produced the
landslide susceptibility maps of a region in Darjeeling Himalayas by different
approaches. One of these approaches According to Kanungo et al. (2006), ANN,
which is a useful technique for regression and classification problems, has been
successfully applied in other fields, and promises to be suitable for the delineation
of areas prone to landslide activity. It has been found that the ANNs have several
advantages for landslide susceptibility zoning, as these are non-linear and thus
have the capability to analyze complex data patterns (Kanungo et al. 2006). The
most widely used BPNN algorithm are gradient descent and gradient descent with
momentum. These are often too slow for the solution of practical problems. The
faster algorithms use standard numerical optimizer such as conjugate gradient,
quasi Newton and Levenberg–Marquardt approach (Kanungo et al. 2006). For this
reason, Kanungo et al. (2006) used Levenberg–Marquardt approach. Unlike gra-
dient descent algorithms, it does not consider learning rate and momentum factor
as its parameters (Kanungo et al. 2006). Kanungo et al. (2006) constructed a
multilayer ANN model with one input layer, two hidden layers and one output
layer. A total of 39 ANN architectures were created by varying number of neurons
in the hidden layers (Kanungo et al. 2006). As a result of these trials, the network
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architecture 6 9 13 9 7 9 1 with training data accuracy (correlation coefficient
of 0.918, RMSE 0.112 and 74.4% correct) and testing data accuracy (correlation
coefficient of 0.896, RMSE 0.126 and 72.6 correct) was the most appropriate one
(Kanungo et al. 2006). As a final conclusion of the study of Kanungo et al. (2006),
it represents an objective approach where weights for factors are determined
through the ANN connection weight approach and ratings of the categories of
factors are determined through cosine amplitude similarity method based on fuzzy
relation concept. Lee et al. (2007) produced landslide susceptibility maps of a
landslide-prone area in Korea by likelihood ratio, logistic regression and the ANN.
In the study of Lee et al. (2007), the structure of 14 9 30 9 2, input, hidden and
output layers, respectively, was selected for the networks. In addition, the learning
rate and the momentum parameter were selected same as 0.01. According to
the results obtained by Lee et al. (2007), the success rates for the first two classes
(90–100%) are better than those for the ANN model. For remainder of the classes
(65–90%) and the middle classes (40–65%), the ANN model produced better
results than the likelihood ratio method. The logistic regression is better than the
other two models below the 35% classes (Lee et al. 2007). Lee (2007a) also
prepared a landslide susceptibility map by the ANN method. In the study, Lee
(2007a) used topography, geology, lineament, soil, forest and land cover data as
the landslide related factors. According to Paola and Schowengerdt (1995), there
are two stages involved in using ANN for multiscore classification: the training
stage, in which the internal weights are adjusted; and the classifying stage.
Typically, the BPNN algorithm trains the network until some targeted minimal
error is achiheved between the desired and actual output values of the network.
Once training is complete, the network is used as a feed-forward structure to
produce a classification for the entire data. By following this procedure, Lee
(2007a) constructed some ANN models for five different cases. The constructed
ANN models have 16 9 30 9 2 layer structure. As a result of comparison of the
landslide susceptibility maps prepared by Lee (2007a), using results from logistic
regression as training sites prone and not prone to landslides (Case 5, 86.10%)
showed the best prediction accuracy.

Melchiorre et al. (2008) produced landslide susceptibility map of a landslide
prone area in Italy. The procedure, which involves the use of the ANNs and cluster
analysis, demonstrates that an accurate sampling strategy improves the model
results and increases the landslide occurrence prediction (Melchiorre et al. 2008).
According to Melchiorre et al. (2008), the use of the ANNs can be a valid alter-
native in the indirect hazard mapping, when the conditioning factors are not
approximable by a normal distribution and are strongly correlated. Moreover, the
ANNs are able to give a good prediction even though trained with noisy and
uncertain data. In the literature, different approaches to classification have been
proposed ranging from the early decision tree presented by Quinlan (1986) to
recent developments in support vector machines (Burges 1998) and ANNs (Bishop
1995). However, all these methods require the use of a set of labeled data for each
class (Melchiorre et al. 2008). The main idea of the study performed by Melchiorre
et al. (2008) is to use an unsupervised technique to find out pattern distribution in

3 Soft Computing Modeling in Landslide Susceptibility Assessment 83



the dataset, in order to capture aspects (presence/absence of landslides) in the data
structure and devise a sampling procedure able to improve the performance of the
final classifier. One of the common problems encountered in the training stages of
the ANNs is overlearning. For this reason, Melchiorre et al. (2008) used the early
stopping technique proposed by Caruana et al. (2000) to prevent the overlearning
problem and losing the generalization capacity of the model. The ANN was trained
with six network inputs scaled in the range 0–1 and the network output was also
defined in the range 0–1 by setting the output value to 1 for landslide presence and
0 for landslide absence (Melchiorre et al. 2008). The analysis was performed using
the MLP network with the Levenberg–Marquardt training algorithm by Melchiorre
et al. (2008). Melchiorre et al. (2008) selected the ANN structure with 14 hidden
neurons as it ensures the best generalization without excessively increasing the
network complexity. Finally, the most robust susceptibility map was obtained after
the cluster sampling, since the cluster sampling-ANN model is able to distinguish
and separate the unstable areas and thus to identify more reliable susceptibility
classes. Although the results are encouraging, the model output and the discrim-
ination of unstable areas can be improved (Melchiorre et al. 2008). Caniani et al.
(2008) used the ANN to produce landslide susceptibility map of an urban area in
Italy. According to Caniani et al. (2008), statistical methods guarantee a lower
subjectivity, but they are more easily applied to areas characterized by a unique
type of mass movements. Caniani et al. (2008) used the BPNN algorithm in their
study. The structure of the ANN model developed by Caniani et al. (2008) includes
7 inputs, 5 hidden neurons and one output. According to the results obtained by
Caniani et al. (2008), the landslide pixels were the sites falling in the medium and
high susceptibility classes. Caniani et al. (2008) can observe that 80% of landslide
pixels were correctly classified. The susceptibility map produced by Caniani
et al. (2008) shows high performance with respect to the similarity approaches.
Nefeslioglu et al. (2008b) applied the logistic regression and the ANN methods to
produce the landslide susceptibility maps of a landslide-prone area in Turkey.
When developing an ANN, the data is commonly partitioned into as least two
subsets such as training and test data. It is expected that the training data include
all the data belonging to the problem domain. Certainly, this subset is used in the
training stage of the model development to update the weights of the network. On
the other hand, the test data should be different from those used in the training
stage. The main purpose of this subset is to check the network performance using
untrained data, and to confirm its accuracy (Nefeslioglu et al. 2008b). No exact
mathematical rule to determine the required minimum size of these subsets exists.
However, some suggestions for the potions of these samplings are encountered in
the literature (Basheer and Hajmeer 2000). Nefeslioglu et al. (2008b) selected 80%
of the shole data as the training dataset. In the study of Nefeslioglu et al. (2008b),
an ANN having a structure of 44 9 7 9 1 was constructed. As the results of the
study of Nefeslioglu et al. (2008b), when considering the accuracy and the pre-
cision evaluations, the BPNNs represent considerably high prediction capacities
when comparing with the logistic regression analyses. However, the generalization
capacities of the ANN algorithms were abruptly decreased for the random
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samplings in which the presence (3.1) data were taken from the landslide masses.
Highly disturbed geomorphometric attributes on the recent landslides might be the
possible reason for this pecularity. The susceptibility maps produced mapping the
outputs of the BPNNs could be interpreted as highly optimistic, while of those
generated using the resultant probabilities of the logistic regression equations
might be considered as pessimistic (Nefeslioglu et al. 2008b).

3.5 Further Recommendations

In this chapter, the basic concepts o soft computing techniques such as FIS, fuzzy
relations and ANN are given. Also, the constructing principles of the soft com-
puting methods are introduced. Additionally, a literature overview is carried out on
the landslide susceptibility maps produced by fuzzy approaches and ANNs. It is
evident that the quality of a landslide susceptibility map depends on the quality of
the data and the method employed. As can be seen from the literature review, the
soft computing methods have been applied successfully to the production of
landslide susceptibility maps.

In the near future, the other innovative researches about the landslides may be
expected. These research are the assessment of landslide hazard and risk, pre-
diction of runout and time of landslides and early warning systems by applying
sofy computing methods. To reach such type purposes, the anatomy and mecha-
nisms of the landslides should be clearly known and modelled. However, the
landslide is perhaps one of the most complex natural pheomena in the nature. Due
to this complexity, use of the soft computing methods including hybrid systems
has a curcial importance. Considering these facts, it is possible to say that there is
still a long way to understand this natural process. To reach the target and to
minimize the losses caused by the landslides, the researchers should make much
more investigation and publish their results.
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Chapter 4
Application and Verification of Fractal
Approach to Landslide Susceptibility
Mapping

Changjiang Li, Tuhua Ma, Leling Sun, Wei Li and Aiping Zheng

Abstract The existing methods for landslide susceptibility mapping, whether
statistic method or physics-based method, require many data such as lithology,
topography, soil properties, land use and so on. However, in many regions of the
world, the abundance of data is not available, but the need for landslide suscep-
tibility maps is great. For these regions, how should reliable susceptibility maps be
produced from the limited data? We addressed the issue of the problem and
developed a new landslide susceptibility analysis technique using historical
landslide inventories and fractal statistics on a GIS platform. The aim of this article
is to apply and verify the use of this new technique to landslide susceptibility
mapping in the Zhejiang Province (101,800 km2 in area), China.
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4.1 Introduction

Landslides constitute one of the major natural hazards that could cause significant
losses of life and property of various landslide disasters, the rainfall-induced
landslides have the widest spatial and temporal distribution and the highest
frequency of occurrence. Large and small landslides occur almost every year in
nearly all hilly and mountainous regions of the world. One of the ways to reduce
the damage impact of those hazards to life and economy is to increase
preparedness through landslide forecasting systems (e.g., Keefer et al. 1987;
Aleotti 2004; Li et al. 2010). A forecasting system can provide a timely warning
for those individuals at high landslide risk areas during a developing storm for a
region. Another way is to map or delineate areas prone to landsliding, which is
essential for land-use activities and management decision making in hilly or
mountainous regions.

Engineers, earth scientists, and planners are interested in assessment of
landslide susceptibility for two purposes (Tangestani 2003): (1) The landslide
susceptibility maps identify and delineate unstable hazard-prone areas, so that
environmental regeneration programs can be initiated adopting suitable mitigation
measures; (2) These maps help planners to choose favorable locations for siting
development schemes, such as building and road construction. Even if the
potential hazardous areas cannot be avoided entirely, their recognition in the initial
stages of planning may help to take suitable precautionary measures. This study
mainly deals with the landslide susceptibility zoning and mapping.

A number of researchers used various statistical techniques incorporating many
types of data such as lithology, topography, soil properties, and land cover
in Geographic Information Systems (GIS) to assess landslide susceptibility
(e.g. Gupta and Joshi 1990; Chung and Fabbri 1999; Gritzer et al. 2001; Lineback
et al. 2001; Santacana et al. 2003; Lee 2007; Lee et al. 2007). A few authors
attempted to derive landslide susceptibility by means of physically-based methods
(e.g. Montgomery and Dietrich 1994; Jibson et al. 2000; Savage et al. 2003). The
physically-based methods rely on physical properties of hillslope materials,
topographic information from a digital elevation model (DEM) and hydrologic and
hydrogeological parameters in slope-stability models. However, the abundance of
data such as that described above is not available in many hilly and mountainous
regions of the world. For these regions, it is very challenge to produce reliable
susceptibility maps from limited data. Coe et al. (2004) produced a landslide
susceptibility map for a 980 km2 area in eastern-central Guatemala by applying a
moving-count circle approach using two types of data, a landslide inventory map
and a DEM. Moreover, a semi-empirical method for analysing landslide suscep-
tibility was given by the studies carried out by Iovine et al. (2003a, b) in Campania
(Southern Italy), based on a cellular-automata modelling approach in which
topographic data (1:5000 scale) plus a map of the soil cover were used as input
matrices, and by further developments in which calibration was performed through
genetic algorithms (Iovine et al. 2005; D’Ambrosio et al. 2006; Iovine 2008).
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Zhejiang Province (101,800 km2 in area) is one of the rainiest in the southeast
coastal region of China. Due to its geologic, geomorphologic and climatic settings,
every year more than 100 landslides are triggered by rainfall events. These
landslides mainly belong to shallow earth slides and debris flows (Li 2004; Li et al.
2010).

In this study, we developed a fractal-based technique to map landslide
susceptibility using historical landslide inventories only. To our knowledge, our
approach differs from previous work in that we first measure the spatial, fractal
clustering distribution of the existing landslides in a region, and then apply the
derived fractal clustering relation to produce a landslide susceptibility map by
means of GIS-supported spatial analysis. The method is illustrated using two
examples. In the first example, based on the 3,285 landslides occurred from 1990 to
2003 in Zhejiang region, a landslide susceptibility map for the region is produced;
the effectiveness of the susceptibility map is examined by the 459 landslides
occurred from 2004 to 2007 in the region. In the second example, the method is
applied to a relatively small area. i.e., Yueqing County (1,174 km2 in area) located
in the southeast costal region of Zhejiang. A landslide susceptibility map for the
Yueqing County is produced by the procedure using the 156 landslides occurred
from 2000 to 2003 in the area and the effectiveness of the susceptibility map is
examined by the 149 landslides occurred from 2004 to 2007 in the same area.

4.2 Study Area

Zhejiang is located on the southeast coastal region of China (Fig. 4.1), with a
population of about 70 millions. The province lies between latitudes 27�020 N
and 31�110 N, and longitudes 118�010 E and 123�250 E, and has continental area
of 101,800 km2. This province is one of the most concentrated regions in terms of
population and one of the most economical-developed areas in China. This region
is complex in landform and greatly different in relief, and the hilly and moun-
tainous terrain with elevation above 300 m accounts for 70.6% of its total area.
The entire terrain is inclined from southwest towards northeast and drops in a step
form.

This region belongs to a subtropical monsoon zone and has mean annual pre-
cipitation ranging from 1,000 to 2,000 mm. Due to the impact of the monsoon
troughs and tropical cyclones, the distribution of rainfall over a year is not uniform
usually, the amount of rainfall from May to September accounts for ca. 69% of the
annual rainfall. Rainstorms occur frequently in summer because of the impact of
tropical cyclones (Typhoon).

The rocks in Zhejiang are usually cut by faults and vary greatly in composition,
degree of consolidation, amount of deformation, and depth of weathering. The
superficial deposits in hills and mountainous areas are mainly colluvium and
alluvium. Much of the colluvium with great-variable thickness and composition
was deposited from the late Tertiary through the Holocene.
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Owing to its geologic, geomorphologic and climatic settings, the region is
highly prone to the occurrence of landslides. In the rainy season, a large number of
shallow landslides are often triggered by heavy rainfall events and a heavy rain-
storm may induce tens to over hundreds of landslides, which expose the population
and economy to serious risks (Li 2004; Li et al. 2010).

Since 1990, after each serious landslide event, Zhejiang Provincial Department
of Geology and Mineral Resources immediately sent experienced professionals to
conduct surveys in the landslide site and recorded the occurrence date, location,
failure types, the volume of the landslides, and the resulted casualties and eco-
nomic losses. Especially from 2000 to 2003, a landslide-mapping project on a
scale of 1:10,000 was carried out in 45 hilly and mountainous counties that cover
all the landslide-prone areas in Zhejiang and account for ca. 70% of its total area.
After completion of the project, a landslide database was compiled. Totally 4,454
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Fig. 4.1 Topographic relief map of Zhejiang Province showing the spatial distribution of
rainfall-induced landslides. Red dots are the locations of 3,285 landslides occurred in the
1990–2003 period. Inset shows the location of Zhejiang in southeastern China
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landslides occurred from 1990 to 2007 were included in the compilation, about
75% are shallow soil slides, 8% are debris flows, and 17% are rock/soil falls.
Among the 4,454 landslides, 3,744 landslides were recorded with locations
(i.e., longitude and latitude). In this study, these 3,744 landslides data are used, of
which 3,285 landslides that occurred from 1990 to 2003 are selected as the
samples used to create a susceptibility map using the fractal-based approach for
the Zhejiang region and the remaining 459 landslides which occurred from 2004 to
2007 are taken as the test samples to examine the effectiveness of the susceptibility
map. The same method is also applied to a relatively small area (Yueqing County),
where about 156 landslides occurred during 2000–2003. These data are used to
create a landslide susceptibility map for Yueqing area using the fractal-based
approach. We then examine the validity of the susceptibility map by considering
149 landslides occurred from 2004 to 2007 in the same area.

4.3 Description of Methodology

The spatial distribution of landslides is generally not uniform, but instead clus-
tered at many different scales. The degree of clustering of landslides can be
quantified using Mandelbrot’s fractal concepts. A natural way to measure the
degree of spatial clustering of landslides is to determine the fractal dimension
(D). In a two-dimensional space, a fractal dimension of 2 describes a random
distribution, while a fractal dimension of 0 describes a single point (Mandelbrot
1983). If the spatial clustering of landslides is fractal, the value of the fractal
dimension generally lies in the range 0 \ D \ 2. The fractal clustering distribu-
tion is different from random distributions (e.g. Poisson distribution) and
also different from the uniform distribution. The differences between the fractal
clustering distribution and the random distribution or the uniform distribution
are illustrated in Fig. 4.2. The essential feature of the fractal distribution is its
self-similarity or scale invariance. In a fractal clustering point pattern, there are no
characteristic mean distances, and points are spaced in a hierarchy of clusters
across scales. However, for any physical application there are upper and lower
limits on applicability of the fractal distribution, i.e., the scale invariance exists
only within a finite range of scale.

The fractal analysis method here used is the box-counting method popularized
by Mandelbrot (1985). We consider the landslides in a region as a set of points in
the two-dimensional space. For a region with a planar area of L 9 L, we discretize
it into square grid cells of size r and count the number N(r) of cells that contain at
least one landslide, as illustrated in Fig. 4.3. The process is repeated by reducing
the cell size until a prescribed minimum size is reached. If N(r) has the following
relationship with the cell size r:

N rð Þ / r�D ð4:1Þ
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one says the spatial distribution of these landslides is fractal, characterized by a
fractal dimension D. The D value is the slope of the straight-line fitted to Eq. (4.1).

Here, as an extension to application of Eq. (4.1), let N(rmin) be the number
of cells occupied by landslides when a minimum cell size rmin is larger than
the typical distance between landslides, and let Pi = N (ri)/N(rmin), rmin B ri B L.
We then have

Log(r)

L
og
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)

Fig. 4.3 Schematic diagram illustrating the fractal box-counting method in which the study area
is divided into square grid cells of size r and the number of cells that contain one or more
landslides is counted. The grid-cell size r is change and the counting procedure repeated. The
number of occupied grid cells versus the grid-cell size r is plotted on log–log axes. The points
were best fit by a single straight line. The slope of the straight line is the fractal dimension D
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P ¼ Cr�D ð4:2Þ

which means that the ratio of the landslides occurring at a given location over
the total number of landslides can be defined as function of distance r from
a known landslide. If the spatial distribution of landslides is characterized by a
fractal clustering, then Eq. (4.2) can be utilized for landslide susceptibility zoning
and mapping.

4.4 Application and Validation of Fractal Statistics
to Landslide Susceptibility Mapping

4.4.1 Landslide Susceptibility Mapping

In this section, we apply the proposed method to produce landslide susceptibility
maps for the Zhejiang region and for the Yueqing County, a relatively small area
located in the southeast costal region of Zhejiang.

The 3,285 landslides occurred from 1990 to 2003 are used to produce a land-
slide susceptibility map of the Zhejiang region. Figure 4.4 is the result of the
application of the box-counting method to 3,285 landslides occurred from 1990 to
2003. In the calculation, a 1 9 1 km grid cell is used as the minimum cell;
landslides with distances smaller than 1 km are considered as a single landslide.

1 10 100
r (km)

0.10

1.00

10.00

100.00

P = 79 .48r 1.72

R-squared = 0.99

Fig. 4.4 Variation in P with r for 3,285 landslides during the period 1990–2003, Zhejiang
region, China
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It can be seen from Fig. 4.4, the ratio of the landslides occurring at a given location
over the total number of landslides (P) within a range of 1–15 km as function of
distance (r) from a known landslide follows quite closely a straight line. From Eq.
(4.2), the relationship given in Fig. 4.4 can be fitted by

P ¼ 79:48r�1:72; ð4:3Þ

where the slope D = 1.72 is obtained using a least square fitting method, with the
coefficient of determination R2 = 0.99. This result shows that these landslides are
fractal clustering within a range of 1–15 km.

A distribution map can be made using the 3,285 landslides from 1990 to 2003.
Using the buffer function of GIS and from Eq. (4.3), where r is radius, a buffer zone
(area) around any known landslide can be built within a range of 2–15 km (when
r = 1 km, the landslide itself is taken as a center). With each of 3,285 landslides
serving in turn as the center, we can produce a series of buffer areas corresponding to
different r, which are denoted as A1, A2,…,An, where n is the number of the buffer
areas and is related to the step length of r in the calculation. We take the maximum of
each area P(r) = max (A1, A2, A3,…,An), and then a P(r) distribution map is
obtained. After the P(r) map is smoothed (here in 7 9 7 grids), we use the W function
(Anderberg 1973; OAS 1991) to classify the landslide susceptibility zones for the
P(r) map. A k-order W function is defined as follows

W ¼
Xk

i¼1

Xni

j¼1

ðxij � xiÞ2 ¼ W1 þW2 þ � � � þWk; ð4:4Þ

where, x denotes a set of observations [in our case, x is (P(r)], xij is the jth observation
in the ith group, ni is the number of observations in the ith group, and xi is the mean
value for the ith group. The objective is to find an optimal division of k groups such
that the value of W is minimized. We use the principle of least squares, a common
statistical approach, to this one-dimensional problem through minimizing the sum of
squared deviations about the around means. Once the smallest W value is determined,
the best grouping of the proportional values can be achieved.

For thepreviously mentioned P(r) map (smoothed), theWi values (W1 = 38,540.97,
W2 = 16,985.69, W3 = 15,591.37, W4 = 10,706.27, and W5 = 2,530.12) can be
determined from Eq. (4.4) for k = 5. From this, the range of x values is divided
into five groups (x B 3.37, 3.37 \ x B 6.75, 6.75 \ x B 10.13, 10.13 \
x B 13.51, and, 13.51 \ x B 16.88), which classified the landslide susceptibility
into 5 levels: very low zone (I), low zone (II), moderate zone (III), high zone (IV)
and very high zone (V). The flow chart for producing a landslide susceptibility
zoning map is shown in Fig. 4.5, and the resulting landslide susceptibility zoning
map is illustrated in Fig. 4.6.

In the previous example, our method has been tested on the entire continental
region of Zhejiang Province. In the following we apply the method to a relatively
small area, i.e., the Yueqing County (see the shaded area in Fig. 4.6) in Wenzhou
City.
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In the Yueqing area, about 156 landslides occurred during period 2000–2003.
When the box-counting method is applied to the 156 landslides, a 25 9 25 m grid cell
is taken as the minimum cell covering the area. The ratio of the landslides occurring
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Display result

Fig. 4.5 Algorithm flow
chart for producing landslide
susceptibility zoning map
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at a given location over the total number of landslides (P) as a function of distance
(r) from a known landslide is plotted in Fig. 4.7 and two line segments in the figure
may be fitted using Eq. (4.2), i.e., the relationship between P and r is as follows

P ¼ 128:5r�0:07 25 m\r� 800 mð Þ
15789:0r�0:79 800 m\r� 7000 mð Þ

�
ð4:5Þ

The slopes of the two line segments in Fig. 4.7 are calculated using the least
square fitting method; slope D = 0.07 within a range of 25–800 m and slope
D = 0.79 within a range of 800–7,000 m. The fractal clustering distribution has
different scaling exponents at two different scaling lengths, a result which is dif-
ferent from that obtained for the entire region of Zhejiang (see Fig. 4.4). Because
the types of landslides in the Yueqing area are similar to those of landslides in
other region of Zhejiang, and mainly belong to shallow landslides and are

Very low

Low

Moderate

High

Very high

Susceptibility

Fig. 4.6 Landslide susceptibility map of Zhejiang Province. The map is produced using the
fractal clustering relations for the spatial distribution of 3,285 landslides during the period
1990–2003. Pink dots show the locations of 459 test landslides (2004-2007) on the susceptibility
map. The shaded area in the figure shows the range of Yueqing County
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triggered by rainfall, we attribute this to the fact that, in the box-counting method,
the minimum cell needed for covering the Yueqing County is much smaller than
that for the entire region of Zhejiang where landslides with distances smaller than
1 km are considered as a single landslide.

Following to the same methodology used for the entire region of Zhejiang, a
landslide distribution map for the Yueqing County is made using the 156 land-
slides occurred from 2000 to 2003. Then, using the buffer function of GIS and
from Eq. (4.5), with r as radius, a buffer zone (area) around a known landslide is
built in the range of 25 m \ r B 800 m and the range of 800 m \ r B 7,000 m,
respectively, and the landslide susceptibility zoning map for the Yueqing County
is obtained, as shown in Fig. 4.8. In the figure, the landslide susceptibility is
divided into 4 levels (k = 4): very low zone (I), low zone (II), moderate zone (III),
and high zone (IV).

4.4.2 Verification of the Landslide Susceptibility Maps

Before a landslide susceptibility map is applied to making predictions, its reliability
must be examined. However, up to date there is no a generally-accepted method to
verify the landslide susceptibility map. Casadei et al. (2003) defined an ‘‘optimal’’
model as the one that is able to identify the maximum number of landslides with the
minimal of area predicted to be unstable. In our opinions, the effectiveness of a
landslide susceptibility map can be examined in following two ways:

1. Compare a landslide susceptibility map with actual landslides (test samples) that
occurred after the completion of the map and calculate the percentage of the test
samples falling within areas of preferred susceptibility and the percentage of the
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Fig. 4.7 Variation in P with
r for 156 landslides occurred
during the period 2000–2003,
Yueqing County, Wenzhou
City, Zhejiang Province
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area that has no susceptibility (very low susceptibility zone). A primary goal of
susceptibility mapping is to maximize both values (Coe et al. 2004).

2. Inspect the ratio between the percentage of the test samples that fall in class
area and the percentage of the class area in total area. For a successful landslide
susceptibility zoning, this ratio should gradually increase from very low sus-
ceptibility zone (or non- susceptibility zone) to high susceptibility zone.

Let A(pi) denote the percentage of area of the ith susceptibility zone over the
total area of the study region, and L(pi) the percentage of landslides that fall in the
ith susceptibility zone over the total landslides as the test group, according to the
above procedure, the ratio

Ri ¼ L pið Þ =A pið Þ; i ¼ I; II; . . .;V; ð4:6Þ

can be used to evaluate the effectiveness of the landslide susceptibility mapping.
As long as these ratios for different susceptibility zones satisfy

RI\RII\RIII\RIV\RV; ð4:7Þ
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Fig. 4.8 Landslide
susceptibility map of
Yueqing County (see the
shaded area of Fig. 4.6),
Wenzhou City, Zhejiang
Province. The map is
produced using the fractal
clustering relations for the
spatial distribution of 156
landslides occurred during
the period 2000–2003. Black
dots show the locations of
149 test landslides
2004–2007) on the
susceptibility map.
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the landslide susceptibility zoning is reasonable.
In Fig. 4.6, the percentage of the area of each susceptibility level over the area

of the total study region is, respectively, as follows: very low zone (I) 52.01%, low
zone (II) 16.10%, moderate zone (III) 16.66%, high zone (IV) 10.79%, and very
high zone (V) 4.44%. All 459 landslides that occurred during the period
2004–2007 are taken as test samples and used to evaluate the effectiveness of the
susceptibility map. The test results (Table 4.1) show that the percentage of these
landslides that fall in each zone over the total test samples is as follows: very low
zone (I) 4.18%, low zone (II) 2.0%, moderate zone (III) 10.16%, high zone (IV)
47.54% and very high zone (V) 36.12%. The area of IV and V zones accounts for
15.23% of the total area, but the landslides that fall in these two zones account for
83.66% of the total test samples.

In Fig. 4.8 the susceptibility level is presented as four categories (very low, low,
moderate, and high). The area of each category accounting for percentage of the
total study area is, respectively, as follows: very low zone (I) 33.78%, low zone
(II) 29.11%, moderate zone (III) 30.29%, and high zone (IV) 6.82%. All 149
landslides occurred during the period from 2004 to 2007 are taken as test samples
and used to examine the effectiveness of the susceptibility map. As those shown in
Table 4.2, the percentage of these landslides that fall in each zone over the total

Table 4.1 Results of verification for the landslide susceptibility map of Zhejiang Province using
test samples

Susceptibility level Percentage of the class
area accounts for total
area (A(pi))

Landslides occurring in each
susceptibility level account
for percentage of total
samples (L(pi))

Ri= L(pi) / A(pi)

Very low zone (I) 52.01 4.18 0.08
Low zone (II) 16.10 2.0 0.12
Moderate zone (III) 16.66 10.16 0.61
High zone (IV) 10.79 47.54 4.41
Very high zone(V) 4.44 36.12 8.14

The test samples are 459 landslides occurred during the period 2004–2007

Table 4.2 Results of verification for the landslide susceptibility map of Zhejiang Province using
test samples

Susceptibility level Percentage of the class
area accounts for total
area (A(pi))

Landslides occurring in each
susceptibility level account
for percentage of total
samples (L(pi))

Ri= L(pi) / A(pi)

Very low zone (I) 33.78 6.04 0.18
Low zone (II) 29.11 8.72 0.30
Moderate zone (III) 30.29 28.19 0.93
High zone (IV) 6.82 57.05 8.37

The test samples are 149 landslides occurred during the period 2004–2007
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test samples is as follows: very low zone (I) 6.04%, low zone (II) 8.72%, moderate
zone (III) 28.19%, and high zone (IV) 57.05%.

As shown in Tables 4.1 and 4.2, even though the two examples given here involve
different regional scales, the distributions of Ri value can well satisfy Eq. (4.7), which
shows that the landslide susceptibility zoning obtained from the fractal method is
reasonable. However, it should be noted that our predictive model is a statistical
model, and therefore, it is inevitable that two types of error may occur. Type I error
(also known as a false positive) occurs if the model falsely predicts occurrence of
landslides in an area while there is no landslides in the area at the given time. Type II
error occurs if the model predicts that there is no landslide in an area at certain time
when landslides did occur in the area at the time. As seen in Fig. 4.8, some high
susceptibility areas are landslides free (the landslides used as test sets), on the con-
trary very low susceptibility areas contain few landslides. These errors may be
reduced and our model improved if more landslide data are collected in the future.

4.5 Discussion

The existing methods for landslide susceptibility mapping, either statistic methods
(e.g. Gupta and Joshi 1990; Binaghi et al. 1998; Chung and Fabbri 1999; Gritzer
et al. 2001; Lineback et al. 2001; Sakellariou and Ferentinou 2001; Santacana et al.
2003; Lee 2007; Lee et al. 2007) or physically-based methods (e.g. Montgomery
and Dietrich 1994; Jibson et al. 2000; Savage et al. 2003), require many types of
data such as geology, topography, soil deposits, land cover and so on. However,
since the data obtained from existing observations are always incomplete, any
assessment of landslide susceptibility based on the data contains a considerable
amount of uncertainties that would likely increase with the increase of the cate-
gories of the used data.

Though only the known landslide data are used in the fractal clustering dis-
tribution method described herein, if these landslides belong to a same type and are
triggered by a same factor (e.g. rainfall) under the same geologic, geomorphologic
and climatic settings, the involved uncertainties will be relatively low. On the
other hand, though the mechanism of landslides is extremely complicated, as many
complex phenomena in nature, rules underlain the landslide phenomena might be
simple. If the spatial distribution of landslides is a fractal clustering, then within
the statistically identified range of self-similarity, the property of fractal clustering
of landslides can be used to assess the probability of landslide occurrences at a
given distance from a known landslide and to delineate landslide susceptibility
areas. Therefore, for many regions that are prone to rainfall-triggered landslides,
where landslide inventory data are available and the landslides were recorded with
occurrence locations (coordinates), this fractal approach based on GIS can provide
an effective way to estimate landslide susceptibility.

In addition, landslide susceptibility zoning maps should be prepared at a scale
appropriate for displaying the information needed at a particular zoning level. In
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using this method, the scale of mapping depends on the level of the available land-
slide inventory in a region. This technique is appropriate to landslide susceptibility
mapping for any given region where the existing landslides spatially follow the
fractal clustering distribution.

4.6 Conclusions

In this study, we propose a fractal-based method to map landslide susceptibility
using historical landslide inventories only. The key points in this method are first
to measure the spatial fractal clustering distribution of the existing landslides in a
region, and then apply the derived fractal clustering relation to produce a landslide
susceptibility map by means of the buffer function of GIS. The method has been
demonstrated using two examples at different regional scales, based on the land-
slide inventory data from Zhejiang Province, where the landslides are mainly
triggered by rainfall. In the first example, 3,285 landslides occurred during the
period 1990–2003 in Zhejiang region are used to produce a landslide susceptibility
map for the region, and then 459 landslides that occurred in the same region during
the period 2004–2007 are used to examine the effectiveness of the susceptibility
map. In the second case, the landslide susceptibility map of the Yueqing County
located in the southeast costal region of Zhejiang is produced using 156 landslides
occurred in the area during the period 2000–2003 and examined by 149 land-
slidesoccurred in the area during the period 2004–2007. The verification results
show that the landslide susceptibility maps are reliable.

For many regions that are prone to rainfall-triggered landslides but with very
limited data availability (e.g. landslide inventories only), using the technique
described in this paper, a satisfactory landslide susceptibility mapping from the
landslide inventories can be obtained.
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Chapter 5
Preliminary Slope Mass Movement
Susceptibility Mapping Using DEM
and LiDAR DEM

M. Jaboyedoff, M. Choffet, M.-H. Derron, P. Horton,
A. Loye, C. Longchamp, B. Mazotti, C. Michoud
and A. Pedrazzini

Abstract Hazard mapping in mountainous areas at the regional scale has greatly
changed since the 1990s thanks to improved digital elevation models (DEM). It is
now possible to model slope mass movement and floods with a high level of detail
in order to improve geomorphologic mapping. We present examples of regional
multi-hazard susceptibility mapping through two Swiss case studies, including
landslides, rockfall, debris flows, snow avalanches and floods, in addition to
several original methods and software tools. The aim of these recent developments
is to take advantage of the availability of high resolution DEM (HRDEM) for
better mass movement modeling. Our results indicate a good correspondence
between inventories of hazardous zones based on historical events and model
predictions. This paper demonstrates that by adapting tools and methods issued
from modern technologies, it is possible to obtain reliable documents for land
planning purposes over large areas.

Keywords DEM � Lidar � Rockfall � Debris-flow � Floods � Snow avalanches �
Regional hazard mapping � Models � Flow-R � RAS � Conefall � HISTOFIT

5.1 Introduction

Slope mass movement hazard mapping has been a major concern since the 1970s.
In Varnes (1984), the authors made an overview of the principal mapping practices
that were mainly linked to field investigations and aerial photo interpretations
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(Cruden and Thomson 1987). Since the appraisal of geographical information
systems (GIS) (Carrara and Guzzetti 1995) and the production of digital elevation
models (DEM), hazard mapping of slope mass movements has increased signifi-
cantly. In addition over the past decade, new techniques such as airborne laser
scanning by Lidar (Light Detection and Ranging) provide to the earth sciences
community high resolution DEM (HRDEM) with resolutions higher than 0.5 pts/m2

(Shan and Toth 2008).
This computerization of hazard mapping has significantly supported suscepti-

bility mapping at regional scale. This type of mapping is designed to provide a fast
overview of area that is affected by potentially dangerous events. This is of pri-
mary importance for regional authorities and municipalities because of the
responsibilities linked to risk management. The first step of a rational risk
assessment is to have an overview of the area potentially endangered by slope
movements such as deep-seated landslides, shallow landslides, debris flows,
rockfall, flooding and erosion. This is most commonly done by producing pre-
liminary susceptibility maps over the entire territory considered. According to
Swiss guidelines, (Lateltin 1997; Loat and Petraschek 1997), this kind of maps is
the first step of the process leading to detailed so-called ‘‘danger’’ maps used for
local planning in communities.

However, such maps do not give any detailed information on the intensity or the
frequency of occurrence of the slope movements. They only indicate the hazardous
zones for instance at a 1:25,000 scale. The methods of mapping are various and
numerous and some excellent recent overviews and recommendations published
about landslides mapping can be found in Aleotti and Chowdhury 1999,
Van Westen et al. 2006, Fell et al. 2008a, b, Cascini 2008. For floods, there is also
a large variety of approaches (Merz et al. 2007). For snow avalanches, regional
mapping was proposed by Toppe (1987) and more detailed mapping is also well
established (Ancey et al. 2006; PPR 2011).

The present paper focuses on two examples in Western Switzerland of multi-
hazards regional mapping. These examples show the variety of situations
depending on the geological and geographical conditions but also on the number
and types of data currently available. It is thus not possible to follow a unique
method in all situations but it must be adapted to each circumstance (Jaboyedoff
and Derron 2005). The proposed approach is based on deterministic simple
modelling using DEM, interpretation of data produced from HRDEM like hill-
shades and fast field surveys. It demonstrates that up to a certain level, a simple
relative hazard scale can be included in susceptibility maps. The use of all
available modern documents HRDEM, vectorized topographic maps, orthophotos
permits to obtain quite rapidly reliable results at regional scale. The limitations of
such approach are usually: (1) the lack of data to calibrate the models, (2) the
HRDEM permits to improve the quality of the results but they also induce some
problems such as handling very large datasets or introducing some artefacts in the
overly detailed topography.
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5.2 Problem Identification/Conceptual Background

GIS has greatly improved the capacity of mass movement and flood hazard
mapping and currently most such studies use a GIS framework (Carrara and
Guzzetti 1995; Chacón et al. 2006). Hence, one of the principal improvements of
these last ten years is the use of DEM and HRDEM, because it permits first to
perform modeling and second to examine the details of the morphology. It must be
observed that HRDEM often possess a resolution too high for modeling at regional
scale, necessitating that its resolution be decreased. Therefore, regional scale
mapping is now possible by relying on modeling, based only on geomorphologic
approaches using HRDEM. Of course regional mapping benefits from old docu-
ments such as geological maps, which indicate some landslide locations, topo-
graphic maps, etc. However, the availability of new digital documents (vectorized
geological maps, high resolution satellite images, series of orthophotos, etc.) is
making it possible to improve all mapping methodologies, which have become
highly dynamic. As a consequence, methods are no longer set permanently. This is
an issue when working with regional/national authorities who would like to have a
definitive methodology/product. It is possible that if the process of mapping takes
a long time, the product is already outdated when it is issued, i.e., because a new
HRDEM has been released in the mean time. Moreover at present, the coverage of
regions by one type of document is frequently not homogeneous, which makes the
creations of hazard maps more difficult.

One of the solutions for regional mapping purpose is to make cross validations
of simple models using DEM with other documents and especially field investi-
gations. Such an approach is one of the most efficient ways to obtain results
making use of modeling and new documents. It is a heuristic type of approach
mixed with a deterministic approach (Soeters and Van Westen 1996; Van Westen
et al. 2006). The limits of such an approach are linked to the quality of data and the
availability of inventories of events that are very important for calibrating the
methods.

5.3 Review of Literature

Einstein (1988) presented one of the first reviews on landslide risk analysis
including also the description of the maps needed for such purposes. Such risk
approaches have underlined the necessity to use GIS to make further analysis for
both mass movements, floods and erosion (Carrara and Guzzetti 1995; Consuegra
et al. 1995). Nowadays publications on this topic abound and frequently papers
related to GIS hazard assessments present several different methods. These
methods have been classified by Soeters and Van Westen (1996), Van Westen
et al. (2006) (see also Chacón et al. 2006) as:
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1. Inventory based approach
2. Heuristic approach
3. Statistical and probabilistic approach
4. Deterministic approach.

The great difference between hazard assessment methods for landslides versus
floods, erosion or snow avalanches is that the last tree are mainly based on
inventories, because the events are relatively frequent and repeated in an area
(Marco 1994; Gilard and Gendreau 1998; PPR 2011). While landslide mapping is
often based on poor inventories in numbers and as a consequence the potentialities
of events are often difficult to locate precisely. Furthermore the prevention of
floods and snow avalanches is more based on alerts and risk management
(McClung and Schaerer 1993; Directive 2007/60/EC), versus landslides. Never-
theless the objectives of regional hazard maps are the same; they must point out
the areas of conflict between hazardous zone and human activities (Lateltin 1997;
Loat and Petraschek 1997).

Considering the amount of existing literature, we will focus this short summary
on regional hazard mapping using DEM. For landslides, one of the first attempts to
use GIS and DEM was proposed by Carrara et al. (1978, 1991) using the concept
of slope units (Guzzetti et al. 1999); this approach is based on inventory and
statistical methods. By multivariate analysis, using a map of known landslides, a
detailed hazard zoning is then produced. Other statistical methods have been
developed that are mainly based on several multivariate regressions (Chung et al.
1995). DEM are also used in a lot of new techniques for hazard mapping, referred
to as neural networks, i.e., (Zeng-wang 2001; Pradhan and Lee 2010), fuzzy logic
(Ercanoglu and Gokceoglu 2002, 2004; Chung and Fabbri 2008) and also logistic
regression (Bai et al. 2009; Dominguez-Cuesta et al. 2009). However, these
methods are mainly applied at a regional scale, but do not introduce expert
knowledge in a simple way, except during the training step, within the method,
which is based on inventories. More simple approaches use relative ratings of
several parameters including those that derivate from DEM (Gupta et al. 1999).
Similar methods have been also applied to detect rockfall sources areas (Baillifard
et al. 2003, 2004).

For flood hazard mapping and prediction, the main recent advance is TOP-
MODEL, which makes a simple and complete simulation of the hydrological
processes that determines the discharge of rivers using a DEM (Beven and Kirkby
1979; Beven et al. 1995). Hazard assessments using TOPMODEL are closely
linked to the return periods of high discharge, flood depth and velocity (Marco
1994; De Moel et al. 2009; Van Alphen et al. 2009; Loat and Petraschek 1997;
PPR 1999). Flood depth can be modelled by shallow water approximation (Gilard
and Gendrau 1998; De Moel et al. 2009), but the heuristic approach is recom-
mended by both French and Swiss authorities (Loat and Petraschek 1997; PPR
1999), at least at the regional scale. USGS proposes a simplified physical model
TrimR2D that uses Lidar-DEM (Jones 2004). Other models using HRDEM are
based on stochastic approaches (Metzger 2003).
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The philosophy of TOPMODEL (Beven and Kirkby 1979) led to the devel-
opment of several deterministic (introducing random variables if necessary)
models for shallow landslides using a ‘‘pixel’’ stability analysis: SHALSTAB
(Montgomery and Dietrich 1994), SINMAP (Pack et al. 1998) and TRIGRS
(Baum et al. 2002).

For modeling purposes rockfall, snow avalanches and debris flows have similar
procedures; first we need to detect the source areas and second to estimate the
propagations. At regional scale, the detection of source areas is often based on
threshold angles: (1) for snow avalanches above 30� and less than 60� (McClung
and Schaerer 1993; Salm 1983) and also on the slope orientation (McClung and
Schaerer 1993); (2) for rockfall 37� was used as an example for a 10 m grid size
DEM in Dolomites (Italy) (Frattini et al. 2008) and Guzzetti et al. (2003) used 60�
with a 10 m grid size DEM in the special case of extreme glacial valley type of
Yosemite (USA). For debris-flow, the zone of initiations is more complex to detect
because it needs to estimate sediments availability, water input and slope gradient
(Rickenmann and Zimmermann 1993; Takahashi 1981). The use of flow accu-
mulation (Burrough and McDonnel 1998) permits to link slope angle and trig-
gering conditions (Rickenmann and Zimmermann 1993; Heinimann et al. 1998).

The detection of rockfall sources can be refined using structural data that makes
it possible to define the potential source areas that are affected by defined mech-
anisms by performing kinematic tests using the DEM (Willye and Mah 2004). This
can be performed using a statistical approach (Jaboyedoff et al. 2004) that count
the number of discontinuities per unit of topographic surface, or using stability
analysis for each DEM pixel (Gokceoglu et al. 2000; Günther 2003; Günther et al.
2004). Fuzzy logic has also been tested manly based on DEM deduced parameters
(Aksoy and Ercanoglu 2006).

For snow avalanches and rockfall, Toppe (1987) used the simplest evaluation,
based on the concept of shadow angle (Heim 1932; Lied 1977; Perla et al. 1980;
Evans and Hungr 1993). This states that the propagations are most probably
restricted to an area that is defined by the intersection of the DEM and a cone centred
on the source possessing an angle /� equivalent to a friction angle (Jaboyedoff and
Labiouse 2003; Evans and Hungr 1993). For snow avalanches /� can be adapted to
the morphology of the valley flanks (Lied and Bakkehoi 1980).

More advanced techniques for rockfall are using 3D trajectory simulations that
lead to regional assessment, but they require good information on the ground
(Guzzetti et al. 2002, 2003; Agliardi and Crosta 2003; Dorren et al. 2003; Frattini
et al. 2008). In order to obtain a continuous zoning Lan et al. (2007) interpolate the
trajectories results using geostatitics.

Several applications for debris-flows propagation have been proposed but very
few have been used at the regional scale (Van Westen et al. 2006). They are mostly
based on multiple flow direction (Huggel et al. 2003; Heinimann et al. 1998) or on
random walk (Gamma 2000). The runout distance of the debris-flow is either
assessed using a friction model or using a limiting angle slope (Heinimann et al.
1998).
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In addition, the geomorphologic analysis has been greatly improved in the
past ten years by the introduction of airborne Lidar-DEM, because it permits to
recognize in detail landslide features, and deep gravitational deformations (Crosta
and Agliardi 2002). The limitations and the advantages of these mapping tech-
niques are now well known, but has clearly shown its efficacy in creating and
correcting inventories (Haugerud et al. 2003; Ardizzone et al. 2007; Schultz 2004,
2007). Some attempts have been made to automatically detect zones of landslides
using roughness or dispersion of the orientation of the topography (McKean and
Roering 2004; Roering et al. 2005; Glenn et al. 2006). Morphological character-
istics can be also easily extracted from HRDEM (Chigira et al. 2004).

The potential information that can be extracted from HRDEM is probably not
yet fully used, especially for flood geomorphic analysis. The above review shows
that a combination of methods is the best way to fully use all the potentiality
offered by new techniques and data.

5.4 Study Area/Experimental Site

All the examples of susceptibility mapping presented in this paper has been taken
from work conducted by the Institute of Geomatics and Risk Analysis of the
University of Lausanne on two Swiss study areas: (1) the County of Vaud and (2)
the Bagnes Valley. This chapter introduces the main relevant features for geo-
hazards of these two areas.

5.4.1 Vaud County

The susceptibility mapping of potential slope movements (1:25,000) was
performed on the entire territory of the county of Vaud (2800 km2), western
Switzerland, for the following processes: rockfalls, shallow and deep seated
landslides, mud and debris flows (Jaboyedoff et al. 2008). The geology of the
county can be divided into three main regions (Trümpy 1980) (Fig. 5.1): (1) The
northwestern region is located within the limestones of the Jura chain. Its elevation
ranges from 400 m to approx. 2000 m a.s.l.. This area is composed of folded and
thrusted Mesozoic and Tertiary carbonates platform series, in a thin skin tectonic
style. (2) The middle part of the Vaud county belongs to the Swiss Molasse
Plateau. It corresponds to a foreland basin of Oligo-Miocene age. The rocks
are mostly poorly consolidated sandstones with some layers of shales and con-
glomerates. The topography is gently hilly with few cliffs made of competent
sandstones and some steep slopes resulting from fluvial erosion. (3) The southeast
area belongs to the Prealpine units of the Alps. Here the steep and rugged
topography ranges from 400 to more than 3000 m. The main rocks are: massive
limestone, dolomites, marls, evaporites and shales of Mesozoic and Cenozoic ages.
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The morphology of the valleys has been strongly shaped by glacial erosion and
then reworked by fluvial erosion and slope mass movements. This third domain is
by the far the most susceptible to mass movements.

5.4.2 Bagnes Valley

The Bagnes Valley (Valais county, Switzerland) has an area of 300 km2 with an
elevation between 600 m and 4200 m a.s.l. The development of the valley is rapid
because of the fast growing ski resort of Verbier. Susceptibility maps at 1:25,000
have been provided to the local authorities for the following processes: landslides,
shallow landslides, rockfall, debris flows, snow avalanches, flooding and river
overflowing. Similar methods as for the County of Vaud were used. In addition, as
the area is smaller, some methods were improved, historical event were included,
field checks were conducted and feedback from local geologists and specialists
was considered.

The Bagnes Valley is one of the only alpine valleys where the three main
paleogeographical domains of the Alps are present, i.e. Helvetic, Penninic and
Austro-Alpine (Trümpy 1980). An extremely wide variety of rocks is then present,
from some Cambrian polycyclic basements to Mesozoic-Cenozoic sedimentary
covers (Sartori et al. 2006). In the lower part of the valley (Fig. 5.2), the Helvetic
domain is mainly composed of massive limestone that can form high fractured
cliffs. The Lower Penninic unit is dominated by various schists, as on the catch-
ment area of the Merdenson where the quantity of mobilizable fine material
mobilized by debris-flow is very important (Jaboyedoff et al. 2010).

The Middle Penninic unit is mainly constituted of a complex succession of
many different types of silicate rocks, from the old polymetamorphic basements to
Permo-Trias sediments. It includes quartzites, quartzitic micaschists, various
volcano-detritic sediments, granites and several felsic intrusions, meta-gabbro and

Fig. 5.1 The canton Vaud
could be divided in three
distinct geological areas,
characterized by a different
lithology and a different
tectonic history (hillshade,
swisstopo� 2005 SIT)
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various types of amphibolitic gneisses. These lithologies are mainly outcropping
between Le Châble and Mauvoisin and over all the width of the valley, it is the
most important unit of the study area. All these rocks have been quite intensively
deformed and metamorphised. Most of them are quite massive except some
smicaschists and remnants gypsum and dolomites. It is in this tectonic unit that the
most cases of rockfall occur along the road between Lourtier and Fionnay, or in
Plamproz too (Jaboyedoff et al. 2010).

The Upper Penninic Unit in the Val de Bagnes is represented by a thick suc-
cession of calc-micashists and metamorphised ophiolites. The Borne du Diable
cliff, on the left shore of the Mauvoisin Lake, is mostly composed of schists and it
concentrates in a small areas two debris flows channels, a major rockslide, several
shallow landslides and repeated rockfalls (Jaboyedoff et al. 2010). Finally, the
Dent Blanche Nappe from the Austro-Alpine domain is mainly composed by
massive orthogneisses forming the highest peak of the area and abrupt cliffs at the
Southern end of the valley.

Fig. 5.2 Tectonic Units of the Val de Bagnes, from the geological national map. The valley cuts
the three main belts of the Alps based on the Mesozoic paleogeography, the Helvetic, the
Penninic and the Austro-Alpine belts. (modified from Thélin et al. 1994; geological national map
and hillshade: �swisstopo)
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5.5 Data and Tools

First we briefly introduce datasets used for the Vaud County and Valley of Bagnes
projects. In addition, four original software programs were developed by the
authors to draw these susceptibility maps. For three of them we only provide a short
description of their principles and functionalities. The fourth one, the numerical
model FLOW-R, is described more in detail as it has been extensively used in these
projects, as well for debris flows, rockfall, snow avalanches and flooding.

5.5.1 Data

For the County of Vaud, a 1 m resolution digital elevation model (HRDEM)
derived from aerial laser scanning was available. With a mean point density of 2
point per m2, it has an altimetric accuracy of 30 cm, with ±5 cm corresponding to
one standard deviation. According to Van Den Eeckhaut et al. (2007), two dif-
ferent hillshade maps were created from this DEM, one with a sun elevation angle
of 30� and a sun azimuth angle of 315� and another with a sun elevation angle of
30� and a sun azimuth angle of 45�. High resolution orthophotos with a ground
resolution of 0.25 or 0.5 m were also used to complete and verify the DEM
observations. National topographic maps 1:25,000 (Swisstopo), in both vector and
raster format were been used to characterize the present-day land use.

For the Bagnes Valley, a 2 m resolution DEM performed by aerial laser scanning
was used for the altitudes lower than 2000 m. As for the County of Vaud dataset, the
elevation accuracy is 30 ± 5 cm (Swisstopo 2005). For the altitudes higher than
2000 m, a 25 m DEM (MNT25, swisstopo) derived from the national maps at
1:25,000 (CN25, swisstopo) was used. The altimetric accuracy is between 2 and 5 m
in the study area, with a horizontal accuracy from 2.5 to 7.5 m (Swisstopo 2004).
National topographic maps 1:25,000 (Swisstopo), in both vector and raster format
were also used to characterize the present-day land use, in addition to maps of the
geological atlas of Switzerland at 1:25,000 in the raster format (edited by Swisstopo),
as well as geological and tectonic vector maps at 1:500,000. Finally, the whole Val de
Bagnes is covered by orthophotos (0.5 m resolution) taken in 1999 from Swisstopo.

5.5.2 Tools

5.5.2.1 HISTOFIT

HISTOFIT is an Excel�-based application that computes the most-likely Gaussian
curves in an iterative way, so that the sum of those gaussian curves fits the slope
angle frequency distribution of a topography. The fitting process is done by
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minimizing the standard error using optimisation procedures of the Excel solver.
This tool enables to fit the sum of up to 5 gaussian curves to a target function
represented here by a slope angle histogram. HISTOFIT is a freeware available at
www.unil.ch/igar.

5.5.2.2 CONEFALL

CONEFALL is a freeware that enables to model the runout area of rock fall.
The method used to simulate rockfall runout surface generalizes the shadow angle
(Fahrböschung) theory (Heim 1932; Scheidegger 1973; Evans and Hungr 1993) in
a 3D GIS environment. Using this approach, rockfall is considered as a sliding and
rolling process going down a slope with a certain average friction angle. The
model considers thus that an individual block can reach any place in the area
situated inside a cone of given aperture 90� � up (Fig. 5.3). The shadow angle
method is empirical and does not require detailed input parameters, such as
coefficient of friction and restitution coefficients.

Fig. 5.3 a Longitudinal
cross-section of the idealized
shadow angle method
showing the relationship
between /p and the
maximum runout distance
(modified from Jaboyedoff
2003). b Scheme of the
shadow angle method in 3D
implemented in the GIS-
based freeware CONEFALL
(modified from Jaboyedoff
and Labiouse 2003)
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The program requires a DEM and sources areas in a grid format. Beside the
computation and display of the runout areas, the program can compute amongst other
elements the number of contributing source pixels, the velocities of the blocs and
their kinematic energy. CONEFALL can be downloaded from www.quanterra.org
(Jaboyedoff 2003; Jaboyedoff and Labiouse 2011).

5.5.2.3 RAS

RAS is a software in development (previously at the Geological Survey of Norway
and now at the University of Lausanne) to obtain a rapid assessment of snow
avalanches and rockfall propagations over very large areas (up to more than one
billion cells DEM). It uses the same shadow angle principle than Conefall, except
that the angle of propagation is not kept constant. The angle of propagation is
estimated for each source cell in function of the topography using the alpha/beta
method of Lied and Bakkehoi (1980); (see also McClung and Schaerer 1993;
Ancey et al. 2006). RAS has been used to map the snow avalanches potential
propagation in the Bagnes Valley.

5.5.2.4 FLOW-R

The numerical model FLOW-R (Flow assessment at a Regional scale) has been
developed for regional susceptibility mapping of gravitational processes (Horton
et al. 2008). One of its strengths is to propose a choice of algorithms and an easy
customization of the method in a graphical user interface (Fig. 5.4). The model,
originally developed for debris flows, has proved to be relevant for other processes
(rockfall, floodings and avalanches).

The procedure used has two steps. First, the sources are identified on the basis
of various layers of data (e.g. DEM, land use map), and then these sources are
propagated using a probabilistic and energetic approach (Horton et al. 2008). The
volumes of the phenomena (debris-flow, rockfall etc.) are not taken into account in
this model. Both the sources identification and the propagation area assessment are
based on a regularly gridded DEM.

Source Area Identification

The source area identification is processed by combining various layers of data.
In each layer, the cells are classified according to user-defined criteria into three
possible values: possible source—excluded—ignored. The possible source option
means that according to the selected criterion, the cell is a potential source area.
The ignored option means that there is no evidence if the cell is a source or not,
so sno decision is fixed. The excluded option means that the cell cannot be a source
area. In combining the grids established for the different criteria, a cell is selected
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as a source area if it was at least once identified as a possible source but never
classified as excluded (Horton et al. 2008). Data can be either of a continuous or a
discrete nature. In the first case, the selection is based on ranges, and in the second,
on values.

Spreading Area Assessment

The spreading can be mathematically estimated by two types of algorithms:
the first ones are called flow direction algorithms and determine the path that the
debris flow will follow; the second ones determine mainly the runout distance
(Horton et al. 2008). The propagation is calculated from each source cell.
To calculate the propagation, only a grid with the source cells and a DEM are
required.

1. Flow direction algorithms
First the flow direction algorithm apportions the flow from one cell to its eight

neighbours in a way that there is always at least one cell in which the flow can run.
The probability of spreading is a function of the slope angle and the persistence,
which is a weighting of the directions according to the previous direction, allowing
an integration of the notion of inertia (Gamma 2000). It is, however, not a prob-
ability in a strict mathematical sense, but it has to be interpreted in a qualitative
way (Huggel et al. 2003).

The slope has a leading effect on the debris flow path. Various flow direction
algorithms have been integrated and evaluated. All these algorithms are imple-
mented in FLOW-R (Horton et al. 2008):

• D8: assigns the flow to only one adjacent cell. It is limited to directions of 45�
and is very sensitive to small errors (Desmet and Govers 1996; Tarboton 1997;
Erskine et al. 2006; Huggel et al. 2003; Endreny and Wood 2003).

• D?: assigns the flow to one or two adjacent cells (Tarboton 1997).

Fig. 5.4 Graphical user interface of the Flow-R model
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• q8: stochastic method which gives a probability to every cell having an altitude
inferior to the central cell. The path is randomly determined afterwards,
producing a single flow direction (Fairfield and Leymarie 1991).

• Multiple flow direction: based on the previous method and considers the
spreading over every non-zero cell in a continuous, and not random, way (Quinn
et al. 1991).

• Multiple flow direction modified: an exponent of 1.1 was added by Freeman
(1991).

• Parametric flow direction: a variable exponent was added to control the
spreading (Holmgren 1994). The higher is the exponent, the more convergent
the flow becomes (Eq. 5.1).

fSi ¼
ðtan biÞx

P8

j¼1
ðtan biÞx

for all tan b[ 0 ð5:1Þ

where i, j = flow directions (1 to 8), fsi = flow proportion in direction i, tan
bi = slope gradient indirection as defined above and x = variable exponent.

A weighting of the directions is included to take into account the persistence of
the debris flow. Based on Gamma (2000), the weight is a function of the change in
angle from the last flow direction (Eq. 5.2).

fpi ¼W0 if ai ¼ 0�

fpi ¼W45 if ai ¼ 45�

fpi ¼W90 if ai ¼ 90�

fpi ¼W135 if ai ¼ 135�

fpi ¼ 0 if ai ¼ 180�

8
>>>><

>>>>:

ð5:2Þ

where i = flow directions (1 to 8), fpi = flow proportion in direction i, ai = angle
between the previous direction and the direction from the central cell to cell
i, w0,45,90,135 = weights for the corresponding change in direction.

Resulting probabilities are the combination of the slope-related algorithm and
the persistence (Eq. 5.3).

fi ¼
fsi � fpi

P8

j¼1
fsj � fpj

� f0 ð5:3Þ

where i, j = flow directions (1 to 8), fi = total flow proportion in direction i,
fsi = flow proportion from the slope-related algorithm, fpi = flow proportion from
the persistence, f0 = previously determined flow proportion of the central cell.

Each cell with a probability more than a minimal threshold is then included in the
path. For the spreading assessment of a source cell, the calculation thus integrates
different paths or divergences in one run (Fig. 5.5). There is no need for random
multiple runs as the field of all probabilities is covered (Horton et al. 2008).
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2. Runout distance calculation
The runout distance algorithms are energy-based calculations that define if a

part of the flow can potentially reach the next cell of the DEM. Thus, they control
the distance reached by the debris flow and in addition reduce the divergence.
Therefore, the energy-based algorithms also influence the flow direction, as each
cell that cannot be reached has a probability set to zero.

In a first regional assessment, the source mass is unknown. Thus, runout dis-
tance calculation is based on a unit energy balance (Eq. 5.4), a loss function and
eventually a maximum threshold. This approach does not aim to represent exact
physical processes, but to remain realistic (Horton et al. 2008).

Ei
kin ¼ Ei�1

kin þ DEi
pot � Ei

loss ð5:4Þ

where i = time step, Ekin = kinetic energy, DEpot = change in potential energy
and Eloss = loss.

The energy loss can be of two different kinds. The first case is a two parameters
friction model (Perla et al. 1980) and the second is a constant loss characterized by an
average slope angle along the path. The maximum threshold aims to limit the energy
to reasonable values, mostly for the constant loss approach (Horton et al. 2008).

Figure 5.6 illustrates the runout distance calculation principles.

(a) At the start, a source has a certain unit of potential energy (without considering
the volume) regarding its adjacent cells downhill

(b) During propagation, part of this energy is lost in friction
(c) The kinetic energy is increasing and may reach the maximum threshold,

leading to an energy line having the same shape as the terrain
(d) The debris flow stops when the energy becomes null.

Results

The spreading areas of all sources are combined by keeping the maximum or the
sum of the probability values. There are three outputs of the model: the sources,
the propagation probabilities and the propagation kinetic energy (Fig. 5.7).

Fig. 5.5 Illustration of the conservative spreading. After Horton et al. (2008)
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5.6 Methodology

5.6.1 Landslide Inventory and Susceptibility

A landslide inventory is frequently the first step in landslide hazard identification.
Several authors have outlined the importance of a uniform and well documented
database to better define the potential unstable areas (Guzzetti et al. 2000;
Malamud et al. 2004; Galli et al. 2008). Nowadays, the availability of high resolution
digital data such as Aerial Laser Scanning digital elevation model, orthophotos and
land use maps has made detailed mapping of geomorphological features possible
(Chigira et al. 2004; Van Den Eeckhaut et al. 2007; Kasai et al. 2009).

Fig. 5.6 Illustration of the
runout distance calculation
principles. After Horton et al.
(2008)
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5.6.1.1 Method

In both cases, Vaud County and Bagnes valley, the following method (Fig. 5.8)
has been used to develop landslide (shallow and deep) inventories:

(1) A visual analysis of high resolution DEM (hillshade and 3D viewing) and
orthophotos to provide the main relevant geomorphological features (trench,
scars, slope deposits, undulation, etc.)

(2) An analysis of the 1:25,000 geological maps (www.swisstopo.ch) to include
the sensitivity of lithologies to landslide and structural elements such as fault
systems and tectonic lines

(3) An analysis of the slope angle map to identify active erosion areas, morpho-
logical changes and asses the activity of some mass movements

(4) The integration of registered historical events and fieldwork observations.

All the information related to the landslide inventory was stored in a GIS
database. In order to improve the objectivity of the methodology, the database
includes geomorphological criteria that have allowed the identification of the
unstable area. The database contains five main attributes describing the charac-
teristic of each detected landslide area:

Fig. 5.7 Model outputs illustrations: sources, kinetic energy and probabilities (photos from
GoogleEarthTM)
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(1) The document(s) used for its detection
(2) Relevant geomorphological features
(3) Main processes leading to the instability (pure gravity-driven, fluvial erosion

of the toe, etc.)
(4) Relative age (‘‘old’’ when the geomorphological feature is smoothed and

‘‘recent’’ where the geomorphological feature of the landslide could be clearly
differentiated compared of the surrounding topography)

(5) Depth (shallow: 0–4 m, medium: 4–10 m, deep [10 m or unknown).

The uncertainty about the real extension and the present-day activity was also
qualitatively assessed using descriptive terms (verified, probable and undeter-
mined). When at least two geomorphological evidences are detected and reliable
(landslide scar and deposit or landslide scar and morphological depression, etc.)
the landslide polygon is considered as ‘‘verified or proved’’. When morphological
evidences are less distinct, with blur limits, the landslide polygon is considered as
‘‘probable or suspected’’. If the landslide area has been delimited in previous
inventory maps or in the geological map but the HRDEM and the orthophoto
observations do not point out any geomorphological evidence, the attribute
‘‘undetermined’’ was employed.

The limiting factor in interpreting HRDEM hillshade 2D and its 3D visualization
depends principally on the data artefacts and the application of intense human
reworked areas. Artefacts are mostly related to the occurrence of locally very dense
vegetation cover or occurrence of clouds during the data acquisition as well as some
steep rugged topography that truncates the laser signal during the data acquisition.
Human activities (urban areas, roads or agricultures) disturb the original surface and

Fig. 5.8 Flowchart of the landslide inventory map creation
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remove the typical features associated with landsliding, in particular in case of
ancient or dormant landslide. For these reasons, the landslide detection in strongly
human–modified area needs to be supported by direct field investigations.

5.6.2 Shallow Landslides

The inventory provides information only on landslides that already occurred.
To assess the potential extension of shallow instabilities and detect critical areas
without any entry in the inventory, the SINMAP model (Pack et al. 1998) was
used. This GIS-based approach allows a rapid and objective slope stability eval-
uation through a large territory based on relatively coarse information. SINMAP is
limited to the detection of ‘‘starting zones’’ of shallow landslides (Fig. 5.9). It does
not compute any runout. However, it is possible to couple with the propagation
part of the models FLOW-R (Horton et al. 2008).

5.6.2.1 Methodology

The SINMAP (Stability INdex MAPping) methodology is based on the infinite
slope stability model (Montgomery and Dietrich 1994) coupled with a steady state
hydrological model, where the computed depth of saturated soil must be sufficient
to sustain a lateral discharge proportional to the specific catchment area (Pack et al.
1998). The topographic wetness index used in SINMAP is a simplified version of
the classical hydrological model as TOPMODEL (Beven and Kirby 1979).
The main difference is that SINMAP does not account for a decreasing of the
hydraulic conductivity with depth but assumes a uniform conductivity of the soil
mantel (Pack et al. 1998). The factor of safety formulation became the following:

Fig. 5.9 Schematic representation of areas detected by the model SINMAP. Only the initiation
zones are identified, while zones of accumulations are not detected (modified after Jaboyedoff
et al. 2008)
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FS ¼ C0 þ cos2 h 1� wr½ � tan /
sin h cos h

ð5:5Þ

Where C0 = dimensionless cohesion coefficient (integrating both soil and root
cohesion and independent of soil thickness), h = slope angle, / ¼ friction angle,
r = water to soil density ratio and w = wetness index.

In Eq. 5.5 the wetness index defined for a given specific catchment area is
represented by the ratio between the steady state recharge R [m/hr] and the soil
transmissivity [m2/hr], and is always equal or less than 1:

w ¼ Min
Ra

T sin h
; 1

� �
ð5:6Þ

Where a = Specific catchment area and h = slope angle
SINMAP allows entering variables uncertainties through the specification of

lower and upper bounds for hydrological and geotechnical parameters adopting
uniform distribution. These introduce a probabilistic approach in the calculation of
the factor of safety that allows proposing different possible scenarios. The derived
dimensionless susceptibility index (SI) is given by Pack et al. (1998):

SI ¼
C0 þ cos h 1�min Ra

T sin h ; 1
� �

r
� �

tan /

sin h
ð5:7Þ

Where C0 = dimensionless cohesion coefficient, h = slope angle, / = friction
angle, r = water to soil density ratio, a = specific catchment area, R/T = ratio
corresponding to the steady state recharge relative to the effective rainfall quantity
and the soil transmissivity.

The worst scenario is defined when tan /;C parameters are close of the lower bound
and R/T ratio close the upper bound (complete saturation). Areas under this worst
case scenario, where FS is greater than 1, could be defined as unconditionally stable
(SI [ 1). Inversely, the best scenario is defined when the values for the parameters
tan /, C are close to the upper bounds and for the ratio R/T are minimal. Areas under
this best case scenario, where FS is lower than 1, could be defined as unconditionally
unstable (SI = 0). In between, different intermediate classes can be defined.
Following Pack et al. (1998), six susceptibility classes are defined (Fig. 5.10).

5.6.2.2 Application of the SINMAP Model

The input data set for SINMAP consists of the DEM, the cohesion and the friction
angle for the mechanical proprieties of the soil and the ratio R/T describing the
hydrological conditions. The geomechanical parameter introduced in the model
mainly emanate from the literature (Morrisey et al. 2001; Lan 2004; Salciarini
et al. 2006) and from punctual in situ analyses (CPT and VAN test). The R
(Recharge) parameter is more difficult to calculate. Hence, in our study, it was
assumed to be the effective precipitation for 24 h rainfall with a return period of
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100 years. The T (Transmissivity) parameter was derived from the hydraulic
conductivity (minimal and maximal) of the different lithologies. These values have
been chosen in order to give a maximal extension of the potential unstable area for
rare event situations (Fig. 5.11).

The final stability map was compiled following an iterative approach
(Fig. 5.11). In the first step of the calculation, the applied geomechanical and
hydrological parameters were deduced based on the available literature and
adapted to the geological and land use conditions. A first susceptibility map was
created and compared to the location of the well-know shallow instability. In a
second step, the geomechanical parameters were adjusted for each lithology until
the stability fit the know landslide areas. During this adjustment process, all the
parameters remained in the range of values suggested in the literature.

5.6.3 Debris Flows

5.6.3.1 Introduction

Physical modelling of debris flows in the framework of regional mapping is difficult
because of their complexity and the variability of controlling factors. GIS-based
approaches associating an automatic detection of the source areas to a simple
estimation of the debris flow propagation provide a substantial basis for a preliminary

Fig. 5.10 Representation of the stability index in an Area-Slope space defining the different
stability classes (modified after Pack et al. 1998)
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susceptibility assessment at regional scale. Figure 5.12 illustrates the principles of
the methods used in both case studies, the Vaud County and the Bagnes Valley.

5.6.3.2 Source Areas Identification

According to Rickenmann and Zimmermann (1993) and Takahashi (1981), three
criteria in a critical combination are relevant for a debris flow initiation: sediment
availability, water input and slope gradient. As not all the lithologies produce the
same amount of sediments, a detailed study of the area was conducted by means of
a geological or lithological map. The upslope contributing area can account for
water input. The slope gradient is a determining factor in triggering of debris flows
(Takahashi 1981). Most debris flows occur from terrain with a slope higher than
15� (Rickenmann and Zimmermann 1993; Takahashi 1981). Some initiation
thresholds of other factors can be expressed as a relation with the slope angle, as
for the contributive area. Such a relationship was first defined by Heinimann et al.
(1998), and a second one was assessed on the basis of the 1987 observations of
debris flows made by Rickenmann and Zimmermann (1993) after the extreme
rainstorms of 1987. The 1987 events in Switzerland could be considered as
extraordinary, so it may be advisable to distinguish the obtained limits as an
approximation for different probabilities of occurrence (Horton et al. 2008). Thus,
two new limiting curves were established: the first one for rare events, based on the
Heinimann et al. (1998) limit, and the second one for extreme events, based on
Rickenmann and Zimmermann (1993) observations (Fig. 5.13). Both curves are
bounded by the theoretical 15� limit gradient. Every point above a curve is con-
sidered as critical. The new limit for extreme events is given by Eq. 5.8:

Fig. 5.11 Flow chart
describing the input data and
the iterative procedure used
for construction of the final
susceptibility map
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tan blim ¼ 0:31 � S�0:15
UA if SUA\2:5km2

tan blim ¼ 0:26 if SUA� 2:5km2

�
ð5:8Þ

where tanb lim = slope gradient, SUA = surface of the upslope contributing area.
Another potential morphological characteristic is the curvature, as debris flows

are found where the slope is concave (Delmonaco et al. 2003; Wieczorek et al.
1997). To allow an identification of gullies, the plan curvature, which is perpen-
dicular to the steepest slope, was considered. The contributing area, the slope and
the curvature are morphological data processed on the DEM.

Other data can be added to improve the source area accuracy, like a geological
map or a landuse map. Those layers help identifying the sources previously
selected that are not accurate due to another criterion that is not morphological.

5.6.3.3 Spreading Area Assessment

In FLOW-R, several spreading algorithms and parameters can be selected for
debris flows to characterize the flow direction. Holmgren’s algorithm was used in
both applications because it is a good compromise between highly dispersive and
overly channelised flows.

Fig. 5.12 Flow chart describing the input data and the iterative procedure used for construction
of the final susceptibility map
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For the energetic part of the propagation both the two parameters friction model
and the constant loss function can be used for debris flow spreading.

5.6.4 Rockfall

A major issue in mapping rockfall hazard at regional scale is the identification of
potential rockfall sources. Nowadays, high resolution topographic data (aerial/
airborne LiDAR) can account for realistic landscape details even at a regional
scale. For the preliminary assessment of rockfall runout areas, the integration of
empirical or process-based methods in GIS environment have shown very prom-
ising results (Van Dijke and Van Westen 1990).

5.6.4.1 Identification of Potential Rockfall Source Areas

Potential rockfall initiation areas are identified by analysing the slope angle
distribution (SAD) of the topography. A main factor required for the detachment
of boulders is a slope greater than the frictional angle of the rock mass, hence,
a steep slope (Heim 1932). According to Strahler (1950), the slope angle frequency
distribution of a morphological unit (MU) of the relief varies randomly around its
mean slope angle. The SAD expresses a range of slope angle values that are
characteristic for a given morphology and rock type. The SAD can therefore
be decomposed into several Gaussian slope angle frequency distributions that
are characteristic of a specific morphological unit (GDMU) (Fig. 5.14a). In an
Alpine topography for example, at least four morphological units (MUs) can be
encountered:

Fig. 5.13 Built gradient
thresholds with regard to the
upslope area for rare and
extreme events. After
Heinimann et al. (1998),
Rickenmann and
Zimmermann (1993), Horton
et al. (2008)
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a. Low slope angles units corresponding to the plains formed by fluvio-glacial
deposits.

b. Mid/gentle slope angles units featuring the lower part of the hillslope, called
here ’footslopes’, and characterized by alluvial fans (debris flow) and landslides
deposits.

c. Steep slope angles units corresponding to the valley flanks covered with till
deposits or consisted of rock outcrops lightly covered with vegetation

d. Very steep slope angle units representing the cliff faces, outcropping areas and
bare rock surfaces.

The sum of those Gaussian distribution must reproduce the SAD. The standard
error can be minimized by using best-fitting methods, such as HISTOFIT
(cf. Chapter Tools). Initial parameters can be defined according to the shape of the
SAD, where the unsteadiness in the distribution tends to reveal a MU.

5.6.4.2 GDMU Interpretation

The slope angle distribution of each Gaussian curve in the SAD analysis can be
seen as typical of the topography under consideration. Their mode can be con-
sidered as an average apparent slope angle of stability of their corresponding MU.
Therefore, the SAD analysis and its decomposition in GDMU can be interpreted as
follows (Fig. 5.14b):

1. A threshold angle is set at the intersection (noted A) between the two steepest
MUs: the GDMUs ‘‘Steep slopes’’ and ‘‘Cliffs’’ (Rouiller et al. 1998). Above
this slope angle, the cliffs MU become dominant over the steep slopes MU and
can be potentially considered as rockfall sources. This is done independently of
the local lithology and the land cover and includes therefore rocky slope surface
lightly covered with vegetation.

2. There are some cases where the GDMU cliffs are missing within the SAD
analysis. The highest GDMU is thus referred to the rocky steep slopes MU.

3. In very rugged landscape, such as the Alpine topography, the SAD analysis can
reveal two GDMU cliffs. In this case, the lower value GDMU cliff is used to
assess the threshold slope angle (see point 1).

4. When geo-thematic information (e.g. cliffs map, rocky outcrop map) is avail-
able, the SAD analysis can provide a second threshold angle taken at the mode
of the GDMU steep slopes. Hence, cliffs zones and rocky outcropping areas
lying above this threshold slope angle can be assumed as being above the
average, often close to 35�, that is therefore more prone to be considered as
potential rockfall source areas because these slopes will tend to readjust toward
the average.

The SAD analysis provides finally two criteria to identify potential rockfall
sources according to the morphology of the area under study. More details about
this approach can be found in Loye et al. (2009).

132 M. Jaboyedoff et al.



5.6.4.3 Assessment of the Maximum Runout Length

The maximum rockfall runout zones are estimated by a simple approach inspired
from the shadow angle (Fahrböschung) method (Heim 1932) and generalized in
3D under the form of a cone. This model considers that an individual falling
rock slides and rolls down the slope with a certain average friction angle /p

(Scheidegger 1973; Evans and Hungr 1993). The angle of aperture ODF of the
cone 90� - /p then determines the runout and is estimated as follows:

Fig. 5.14 a Example of the slope angle distribution of an undisturbed scree slope (delineated in
white); The SAD shows that the slope angle values follow a normal distribution around an
average close to 35� (orthophoto, swisstopo� 2005 SIT). b Example of the SAD of an alpine
Valley featuring GDMU decomposition; a indicates the threshold angle above which the slope
belongs dominantly to the cliffs and are therefore considered as potential rockfall source area; b
indicates the mode of GDMU steep slopes. The two cliffs units represent two families of bare
rock cliff faces lithologically distinct (Modified after Loye et al. 2009)
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/p ¼ arctan
Hb

Xb

� �
ð5:9Þ

where Hb is the height difference between the source area and the furthest runout reach
and Xb the maximum runout length defined horizontally. The angle of aperture is
defined empirically based on different aspects, such as information contained in the
literature (Toppe 1987; Jaboyedoff and Labiouse 2003), comparison with known
rockfall events taken from aerial photos and historical records or fieldwork. The results
of several studies give an angle /p ranging between 28.5� and 35� (Crosta et al. 2001).
For the lateral dispersion of the rockfall runout area, experience has shown that rockfall
trajectories can be restricted to 15� from one side to the other of the greater slope
gradient (Crosta and Agliardi 2003). As this approach doesn’t require specific input
parameters, such as coefficient of friction and bounding velocity, but is based exclu-
sively on the topography (DEM), the cone angle method implemented in a 3D GIS
environment is very convenient to be applied for large scale runout assessment. The
runout area is then given as the maximum propagation zones that a boulder can reach.
This first estimation can be further corrected for specific topography. For instance,
source zones located high in steep mountain cliffs that overhang alluvial plains tend to
model a maximum runout length that goes too far compared to field observations.
Indeed, boulders reaching flat zones tend to greatly reduce their energy when the talus
slope gets flat. Correction for valley-bottom can be then added to the previous con-
sideration for particular topographical configuration (Fig. 5.15).

5.6.5 Snow Avalanches

To assess the susceptibility to snow avalanche, a two steps method was used:
(1) Detection of the sources areas, (2) assessment of propagation zones. These
avalanche susceptibility maps aim to provide a first overview of existing or

Fig. 5.15 Reduction of the length of the Fahrböschung line according to the rapid change of
slope when boulders reach the bottom of the valley
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potential danger without any information on the intensity or the probability of
occurrence of the phenomenon.

5.6.5.1 Source Areas Identification

For the detection of the sources areas, three criteria are used: (1) the slope, (2) the
elevation, (3) the landuse, (4) source surface area. The slope is the most important
factor to define avalanches source areas. In fact, 90% of the avalanches take place
in slopes between 30� and 50� (Salm 1983; McClung and Schaerer 1993; Lied and
Kristensen 2003). Depending of the region, there is a lower elevation that provide
a lower limit to the occurrence of source areas. This limit is located at 1’100
meters above sea-level for the Swiss Alps (Gruber and Bartelt 2007). A landuse
digital cover is available for the whole Swiss territory. For snow avalanches, we
are interested in forest areas which influence their triggering. Depending on the
goal of the study, source areas in the forested zones may or may not be ignored.
The DEM resolution is another important limiting factor that defines the minimum
area that can be detected for the avalanche sources. If the DEM has a high reso-
lution, than this minimum area may be too small to be significant; a filter must
then be applied to ignore these areas. In our case study in the Bagnes Valley, a
morphological filter (opening) was applied.

5.6.5.2 Propagation Zones Assessment

Two models were used to estimate the avalanches propagation areas. One is
based on a alpha–beta method (RAS, Sect. 5.5.2.3) and the other one on a Perla
multiple-flows model (FLOW-R, Sect. 5.5.2.4).

RAS (Alpha–Beta Methodology)

The propagation is defined by a cone angle of propagation, alpha, using the
software RAS. Alpha is automatically calculated for each source cell of the DEM
using the alpha–beta method of Lied and Bakkehoi (1980). To estimate the
propagation area, the alpha–beta relationship (Eq. 5.10) must be calibrated using
an inventory of events (using the maximum propagations of avalanches).

a ¼ m� bþ n ð5:10Þ

Several sets of empirical coefficients were tested and the differences in the
final results were negligible. Finally the coefficients of Adjel (1996) for snow
avalanches in the Haute-Tarrentaise (French Alps) were used because of the
geographical proximity with our area and the large number of observations utilized
(alpha = 0.82*beta ? 2.82; N = 168). A minimum angle for alpha of 18� was
used to avoid unrealistic long propagations.
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FLOW-R

The details of FLOW-R, a multiple flow model with an energetic component, are
described in Sect. 5.5.2.4. The main difference with the model RAS is that FLOW-R
is much more sensitive to the topography. This has advantages, i.e. avoiding some
overestimated lateral spreading, and some drawbacks, i.e. flat bottom valleys where
it does not spread enough. Both models were used in the Bagnes Valley; both are very
rough compared to the complexity of a snow avalanche and none of them allows the
estimation of dynamic pressures, but they can be applied to large regions.

5.6.5.3 Avalanche Susceptibility Mapping

The susceptibility map of the Bagnes Valley was drawn combining the results of
the two models: FLOW-R and RAS. The FLOW-R model tends to simulate the
common avalanches (with a short return period) and the RAS model the extreme
propagations. We chose to classify the susceptibility mapping in two categories,
probable and potential. The Table 5.1 shows how we classify those two categories.

5.6.6 Flooding and Erosion

The goal of this chapter is to clarify the methods used to develop an indicative
mapping of flood hazards on the territory of an Alpine valley. The study focuses on
the main waterway and tributary streams crossing the valley and its purpose is to
identify the areas subject to flooding. The proposed method is based on five
distinct stages summarized in Fig. 5.16.

The fives stages allow to identify the potential sources of overflow and the
model FLOW-R allows to simulate the propagation of those.

5.6.6.1 GIS Analysis

The analysis of geographical documents allows the characterization of the alluvial
geomorphology of the waterways present in the studied area. GIS is extremely
useful for support, which can improve the detection of possible source of

Table 5.1 Susceptibility area classification methodology for snow avalanches

Susceptibility type Propagation area Known event

1. Probable Flow-R and RAS Or Yes
2. Potential Flow-R or RAS And No
3. Not susceptible No one and No
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overflows. A high-resolution Digital Elevation Model allows the calculation of the
flow direction, which helps to identify all the waterways that must be investigated
next steps of the analysis. Using aerial photography observations, it is possible
to identify eroded areas that may provide material which can dam the river.
The geological maps are also an important indicator of potential erosion areas.
A field survey is necessary to complete and validate the preliminary observations.
Different factors could be extracted from the GIS analysis:

• alluvial plains and the different levels of alluvial terraces which correspond to
different levels that can be reached by potential outburst;

• an assessment of bridge capacity is conducted.
• identify areas of bank erosion representing potentially mobilized material and

areas of possible collapse;
• known elements, (i.e.: geological map, student works, and cadastre of events).

The inventory of past events can improve the mapping and must be considered
in the analysis. In fact, historical information is usually a good indicator for
mapping hazard areas. It provides additional information on possible events and
improves the evaluation of hazard.

5.6.6.2 Field Work

Field work is a necessary step to confirm or disprove the observations made during
the GIS analysis. Moreover, it helps identifying pathologies of the hydrographical
network, such as erosion banks, mobilizable material (trees with an eroded base,
bank erosion, landslides along the waterway, important sediments deposits, etc.) or
indices of past floods. These elements are used to calibrate the model FLOW-R
described below.

Fig. 5.16 Stages contributing to the development of the analysis
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5.6.6.3 FLOW-R Modelling

The model FLOW-R (Horton et al. 2008) is adapted to hydrological flows without
material. It allows evaluating the propagation of flood. The location of sources of
potential overflows areas is given according to two criteria:

• at the top of the channel for tributary streams and for the main river
• along the streams for simulation of dams.

Regarding the identification of the source areas of potential overflows, various
criteria are chosen:

• the presence of a low bridge;
• the narrowing of the waterway;
• an obstacle to the flow;
• banks with a low level;
• the visual presence of past overflows;
• mobilized materials in abundance obstructing the waterway or threatening to

obstruct it.

The algorithm used for spreading the water is the multiple flow direction
algorithm, which makes possible to limit the lateral spreading by the topography
only. Regarding the energy algorithm, the chosen approach is a linear decrease of
the spreading energy.

5.6.6.4 Calculation of Maximum Discharge

The model Hydriff (OFEG 2003) of the Swiss Confederation is used to estimate
the maximum discharge. It estimates the discharge based on the size of the
watershed, the length of the hydrographical network and a growth factor,
depending the considered return period and the catchment area deduced using
standard GIS functions. This method is derived from multi-scale methods and it is
applied for watersheds of medium size (1–500 km2).

5.6.6.5 Record of Alluvial Traces

A geomorphlogical analysis of the alluvial terraces is necessary in order to assess
the historic levels of the river is taken into account in hazard mapping as, infra-
structures present in the major and minor stream bed can be potentially threatened
by rising waters. A distinction is made between the three following levels: sedi-
mentary deposits from the river, lower terraces (representing the first terrace level
above the river) and the upper terraces (representing the second terrace level above
the river). The data used for this analysis are aerial photos and geological maps.
The result of the analysis is integrated in the susceptibility map.
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5.6.6.6 Classes and Scenarios

To provide a focused analysis, two classes for the assessing hazard are defined.
The first class is related to the propagation resulting from a simulation in the
channel. The second class is related to the propagation simulated using a chosen
source outside the channel, simulating a jam.

The methods described in this chapter are applied to four distinct geographical
sections (Table 5.2), namely:

• tributary streams
• the threat of jams in tributary streams;
• the main river
• the threat of jams in the main river.

5.7 Results

5.7.1 Landslide Inventory Map

5.7.1.1 County of Vaud

In the county of Vaud, a former instability database was created in the 1990s by
aerial photo analysis and field investigation (Noverraz 1995). This database con-
tains 6455 landslides differentiated according to their depth (shallow, medium and
deep landslides) and their activity (geomorphological evidences). The first step of
the inventory updating was to check and redraw landslide perimeters based on the
high-resolution DEM (HRDEM) and digital orthophotos. The second step was to
identify and redraws instabilities indicated by the geological maps (Geological
Atlas of Switzerland 1:25,000; www.swisstopo.ch) on the HRDEM. Finally,
the HRDEM of the entire county was re-examined in order to identify new
instabilities.

Finally the new database contains 8501 slope instabilities. The mapped insta-
bilities cover around the 8% of the study area which is close to the 6% obtained for
the whole Switzerland by Lateltin et al. (1997). 2718 landslides were identified as
not correctly delimited on the previous inventory and they were redrawn based on
the new HRDEM. For 608 landslides described in the former inventories, the
HRDEM analysis could not provide any valuable delimitation (Fig. 5.17). This
was usually the case for landslides in human-modified slopes or near urban centres.
For these landslides, a distinctive specification in the attribute table has been
introduced. The analysis of the available geological maps has made possible
to identify 909 new instabilities. Most of these instabilities, identified during
fieldwork, affect only small areas (\10,000 m2) along river banks. During the
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reanalysis of the entire Vaud County, 812 new instabilities were identified only
using the HRDEM and the orthophotos. Most of these new detected instabilities
were identified in the Plateau area (457 new instabilities) and in the Jura regions
(183 new instabilities).

Fig. 5.17 Summary of the main results of the updating the landslide inventory map. a Origin
of the different landslides listed in the database (hillshade, swisstopo� 2005 SIT). b Results of
the revision of the Noverraz (1995) inventory
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5.7.1.2 Valley of Bagnes

Contrary to the County of Vaud, no pre-existing landslide database was available
for this region. The landslide inventory map of the Val de Bagnes was thus created
based on the Geological Atlas of Switzerland 1:25,000 (www.swisstopo.ch), the
HRDEM, the DEM25 and orthophotos. As the area is relatively small (300 km2),
some fieldwork was conducted to check this inventory.

Based on the geological maps, 13 shallow landslides and 132 medium land-
slides were inventoried, representing almost 40% of the total number of landslides.
Among them, 42 cannot be confirmed by geomorphological evidences on DEM or
field investigations.

By comparing HRDEM, DEM25 and orthophotos, 21 new shallow landslides
and 98 new medium landslides were detected (34% of the total). 67% of the
landslides detected on the geological maps were updated based on these other
documents. The 15 deep-seated slope gravitational deformations (DSGSD) were
inventoried only based on DEM analysis.

Field investigations were consequently performed in order to verify the
document analysis and to complete the inventory. At the end, each landslide was
classed as ‘‘proved’’ or ‘‘suspected’’, according to the criteria explained in the
Sect. 5.6.1.1.

Finally, 15 DSGSD, 245 medium and 102 shallow landslides were identified in
the Val de Bagnes.

5.7.2 Susceptibility Map of Shallow Landslides

5.7.2.1 Vaud County

The input dataset of SINMAP consists of the DEM and a few parameters quan-
tifying the hydrological and geotechnical conditions. Due to the large area to be
mapped, the LiDAR DEM was re-sampled into a grid of 15 x 15 m cell size. The
study area was divided into three main zones corresponding to the 3 main tectonic
subdivisions (Jura, Plateau and Alps). The lithology variation was introduced by
the mean of the ‘‘Geotype maps’’ covering the entire Vaud area (Turberg et al.
2008). The Geotype map is a kind of lithological—genetic map in which the
formations with similar rock or soil proprieties are merged together.

For the hydrological parameters, the effective precipitation for 24 h rainfall
with a return period of 100 years was estimated for the different region based on
the Hydrological Atlas of Switzerland (2006). The model calibration was per-
formed based on pre-existing inventory maps (Noverraz 1995) and orthophoto
interpretations. SINMAP model was originally developed to model translational
landslides in a hilly topography. Its direct application to a more rugged topography
like the Alps is not perfect. In fact, for steep mountain slope the SI will be very
low even if the effective soil thickness is too thin to develop a landslide-type
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instability. To avoid this problem, all the bedrock outcrops were delimited with the
1:25,000 topographic vector map and the source area identified during the rock
susceptibility map. In these zones the geomechanical parameter, the transmissivity
and the recharge parameters were adapted to keep the SI high. The final raster map
was cleaned and smoothed of small scale artefacts using a majority filter (Arc-
GIS�) based on four contiguous neighbourhoods.

According to the goal of the susceptibility mapping project, the results of the
SINMAP analysis were reclassified in two different ways (Fig. 5.18):

A map containing a single susceptibility class for the pixels where the Stability
index is lower than 1.

A map containing three susceptibility classes corresponding to a SI between
1 and 0.5, (lower threshold) between 0.5 and 0 (upper threshold) and equal to 0
(defended).

5.7.2.2 Bagnes Valley

As for the application to the Canton of Vaud, the input dataset for SINMAP
consisted of a HRDEM degraded to a 10 m cell size grid below 2000 m a.s.l. and
the DEM25 above 2000 m. a.s.l. However for this area, there was no numerical
document which distinguishes the type of substratum such as the Geotypes of the
Vaud County. The first step of the processing was then to identify the superficial
formations. To perform this classification, the information of two documents was
used: the land use occupation indicated by the Vector25 and the 1:500,000 vec-
torized geological maps. As shown in the Fig. 5.19, twelve classes of soil with
distinct geotechnical parameters have been extracted: alluvium, breccia, bedrock,
dense forest, flysch, high altitude soils, moraine, reworked soils, schist, scree
deposits, sparse forest and sparse shrubs.

The geotechnical and hydrological parameters assigned to each class were
taken from Morrisey et al. (2001), Lan (2004), Salciarini et al. (2006), Hydro-
logical Atlas of Switzerland (2006). To calibrate the model, 67 shallow landslides
that occurred during summer 2009 were inventoried in various types of superficial
formations (Fig. 5.20).

The results of the SINMAP analysis were provided in one map containing six
susceptibility classes corresponding to:

• Class 1: 0 \ SI \ 0.001 Defended area
• Class 2: 0.001 \ SI \ 0.5 Upper threshold
• Class 3: 0.5 \ SI \ 1 Lower threshold
• Class 4: 1 \ SI \ 1.25 Quasi-Stable
• Class 5: 1.25 \ SI \ 1.5 Moderate Stable
• Class 6: 1.5 \ SI Stable

Finally, 46% (almost 140 km2) of the Bagnes Valley has a stability index lower
than 1. The major part (52%) of the susceptibility areas (SI \ 1) are in the class 3
‘‘Upper threshold’’.
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5.7.3 Debris Flows

5.7.3.1 Vaud County

The DEM available for the Canton de Vaud territory is a laser DEM with a
resolution of 1 meter. In order to reduce the processing time and to be more
consistent with the phenomenon scale, it was degraded to a 10 m cell grid.

Fig. 5.18 Close up of the shallow landslide susceptibility map, showing the good agreement
with the inventoried shallow landslide. a 3 classes map and b single class map (hillshade and
topographic map, swisstopo� 2005 SIT)
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Several types of processes were addressed in the study of this region: debris flows,
deposits remobilization, mud flows and hyperconcentrated flows. Only the debris
flows are presented hereafter.

Source Areas Identification

Although the curvature is often used to recognize the gullies, there is no admitted
threshold. A limit had to be established on the basis of aerial photographs and
the analysis of the 10 m DEM. For this study area, a curvature of -2/100 m-1 was
found as optimal on the basis of the analysis of orthophotographs (Horton et al.
2008).

The minimum flow accumulation threshold chosen was of 1 ha, after calibra-
tion on observed debris flows. The extreme threshold was selected in accordance
with the work objective which is to make an indicative map, supposed to cover the
worst case scenario (Horton et al. 2008).

The lithology was taken into account by means of a ‘‘geotypes’’ map (Perret
2007; Turberg et al. 2008), which contains uniform and complete information
about surface formations for the whole study area. The selected lithologies are
debris flow prone rocks (marl, slate, siltstone) and slope deposits.

Fig. 5.19 Representation of the classified superficial formations issued from the Vector25 and
the 1:500,000 geological atlas of Switzerland
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Landuse maps helped to detect certain inaccurate sources, located in developed
areas or due to man-made infrastructures. Outcropping or suboutcropping rocks
were also excluded from potential sources (Fig. 5.21).

Spreading Area Assessment

The Holmgren’s algorithm was chosen because it best fits the events that can be
observed on orthophotographs. Its exponent was set to 4, as proposed by Claessens
et al. (2005) on the basis of field and laboratory measurements.

The probable maximum runout is characterized by an average slope gradient of
11� (Huggel et al. 2002). The chosen energy threshold was set to a maximum
velocity of 15 m�s-1. The observed maximum velocity among various debris flows
events in Switzerland is 13 to 14 m�s-1 (Rickenmann and Zimmermann 1993).

5.7.3.2 Bagnes Valley

The main difference between this case study and the County of Vaud is that source
areas were divided in two classes: proved and potential. In addition field inves-
tigation was carried out in order to evaluate the real debris flows susceptibility.

Fig. 5.20 S-A plot within SINMAP allowing the calibration of geotechnical and hydrological
parameters for reworked soils according to shallow landslides inventoried
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The FLOW-R model was applied, and four test sites in the valley were chosen to
calibrate the model parameters for the source areas detection and the propagation.
The datasets used in this case are: a 10 m resolution DEM, the 25 m land-use map
(Vector25), the topographic maps, the orthophotos and the local inventory of
historical debris flows events.

Source Areas Detection

As describe in Chap. 6.3.2, at least the slope, the curvature (Delmonaco et al.
2003) and the water input (Rickenmann and Zimmermann 1993; Horton et al.
2008; Jaboyedoff et al. 2008) are needed to detect the debris flow sources.
The criteria used are described in Table 5.3:

In the case of Val de Bagnes, the landuse and the geological information were
also taken into account in order to suppress source areas detected on bedrock or

Fig. 5.21 Identified debris
flows sources and
corresponding spreading in
the Diablerets region
(hillshade, swisstopo�
2005 SIT)
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man-made structures. The source areas classification is a crucial step in the
creation of the debris flows susceptibility map. In this case, a distinction between
proved, potential and incorrect detected source area has been made. The Table 5.4
presents the different parameters for the different kind of sources.

Propagation Area Assessment

Field observations and numerical data analysis (orthophotos, DEM, topographic
maps) were used to calibrate the model parameters (Table 5.5). After several tests,
the 2-parameters friction model (Perla et al. 1980) was chosen because it provides
the best results comparing with the archived events.

The propagation area classification depends on the sources area classification.
For example, if a source area is classified as ‘‘probable’’, the spreading area will be
‘‘probable’’ too. For the probable propagations, a distinction was made between
the probabilities that are under 2% (probable danger) and higher than 2% (strong
probable danger) (FLOW-R, Sect. 5.5.2.4).

Table 5.3 Debris flows source detection criteria

Criteria Slope Curvature Water input

Parameters [15� -2/100 m-1 1 ha

Table 5.4 Sources classification methodology

Source types Past
event

Phenomena evidences Debris

Proved source area Recorded Recent evidences of debris
flow activities

Debris stock sufficient
for debris flow
triggering

Potential source area No record Fossil evidences of
debris flow activities
or suspected
activities

Debris stock sufficient for
debris flow triggering

Incorrect detection No record No activity evidences
Not enough debris stock for

debris flow triggering

Table 5.5 Spreading parameters

Criteria Inertia Flow direction algorithms Runout distance calculation
l M/D

Parameters Default mode Holmgren exp. 6 0.09 30
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In two watersheds, historical debris flow propagations are longer than expected
within a normal parameterization of the model. This is due to the high amount of
loose material that can be mobilized, their important size or hydrological char-
acteristics. For these special cases, the method was adapted to obtain the known
maximum runout distances. An average propagation slope angle of 5� with an
energy threshold of 15 m/s (the other parameters are the same) were chosen.

Detection and Propagation: Example of the Merdenson

The Fig. 5.22 shows the result of the source detection and debris flow propagation
simulation for one watershed of the Bagnes valley. This region contains active
debris flows gullies and a main road is often affected by events (numbers 1 and 2 in
Fig. 5.22). In this example, the sources detected by the model correspond well
with the field observations, confirming a good correlation between the model’s
simulated propagation and field investigations (Figs. 5.22, 5.23), picture taken
from the point 3, 4 and 5). Point 5 in Figs. 5.22 and 5.23 represents the debris flow
triggering area and the black arrows shows the most probable propagation path.

5.7.4 Rockfall Susceptibility Map

5.7.4.1 Vaud Territory

The decomposition of the slope angle distribution in Gaussian populations was
performed with the 1 m cell size DEM of the Vaud County (2800 km2). The
potential source zones were aggregated to a cell size of 25 m and the run-out
model was run with a DEM of same cell size. The runout areas were computed
with CONEFALL. The territory was divided into 5 five distinct zones: the Alpine
part is composed of the Helvetic, Ultrahelvetic and Prealpines Nappes; the Jura
Mountains and the molassic Plateau are the last two zones. The slope angle dis-
tribution decomposition in Gaussian distribution was performed with HISTOFIT.
Results of the threshold slopes angle are summarized in Table 5.6.

Therefore, potential rockfall sources were defined by all slopes belonging to
the units cliffs defined according to the slope angle histogram decomposition.
Moreover, all rocky outcrops and cliffs available from the 1:25,000 topographic
vector map where their slope angle is steeper than the mode of the unit steep slopes
were added to the map of potential rockfall sources. Finally, a minimum size of
10 m2 was set in order to consider a surface as rockfall source zones. This had
the advantage of filtering out possible artefacts contained in the DEM without
removing any essential information.

For the runout area assessment, CONEFALL was applied to each potential
source defined previously. The angle of aperture /p = 33� was the best com-
promise with all the information collected through the available documents
Fig. 5.24. Furthermore, an angle of 33� has the advantage of including a potential
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Fig. 5.22 Example of spreading assessment in the Mauvoisin region (orthophoto and isolines:
�swisstopo)

Fig. 5.23 Field investigation. Correspondences with the spreading assessment in Fig. 5.22
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remobilization of the screes located beneath the rockfall sources area, which
usually have a mean slope angle of 35� (Loye et al. 2009).

The correction for the flat bottom valleys was performed when a surface bigger
than 2.5 km2 has a mean slope gradient lower than 11�. Based on orthophotos
analyses of scree deposits along flat zones, maximum runout length of boulder
reaching those plains was limited to 60 m for tributaries valley-bottom. This limit
was expanded to 100 m in the alluvial plain of the Rhône Valley due to its higher
falling velocities resulting from the greater size of its valley flanks (Fig. 5.24).

Table 5.6 Threshold slope angles above which rockfall source areas are potentially considered

Location HMA Threshold angles for

A. Minimum threshold angle
for the unit cliffs

B. mode of the unit
steep slopes

Alps Helvetic 54� 36�
Préalpes Médianes 53� 34�
Ultrahelvetic 49� 33�

Plateau Molassic Plateau 46� 30�
Jura Jura Mountains 46� 32�

Fig. 5.24 (Left) Susceptibility rockfall hazard map for the canton of Vaud (Switzerland).
Rockfall sources zones are drawn in red and the runout perimeters in brown. (Right) Correction
for the Valley-bottom performed on the maximum runout area, limiting the very unlikely
propagation of boulders far into the flat lands (light beige) (hillshade and topographic map,
swisstopo� 2005 SIT)
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5.7.4.2 Bagnes Territory

To identify to potential rockfall source areas, the homogeneous morphometric areas
HMA were extracted from the 1:500,000 vectorised geological Atlas of Switzerland.
Then the Slope Angle Distribution for each HMA area was extracted on the HRDEM
for altitudes lower than 2000 m and on the DEM25 for the entire study area.

The SAD decomposition in Gaussian distributions was performed with the tool
HISTOFIT. As for the Canton of Vaud, the potential rockfall source areas resulted
from a combination of two sources defined by minimum threshold angles
(Table 5.7): Areas which have a slope angle higher than the threshold angle of
slopes belonging to the population cliffs;

Areas of the Vector25 mapped as crops which have a slope angle higher than
the mode of the population steep slopes.

The differences of threshold slope angles detected with the HRDEM and the
DEM25 were expected. As shown in Loye et al. (2009), the bigger the resolution,
the lower the threshold angle for the same cliff. Source areas less than 10 m2 were
filtered out to avoid artefacts due to potential local errors of the DEM.

Two propagation simulations were performed in order to estimate two
susceptibility classes, one with CONEFALL and one with FLOW-R (Fig. 5.25).
Both computations were performed on the DEM25 to ensure continuous and
homogeneous results. According to previous detailed works on the valley of
Bagnes and the experience of the county of Vaud, the propagation angle used was
33�. Even if FLOW-R is based on constant friction loss which relates this model to
the shallow angle method, the algorithms simulates far fewer propagations than
pure geometrical models as CONEFALL. Furthermore, the multiple flow direction
algorithm (Holmgren 1994) used in FLOW-R calculates more channelized runouts.

The final results were presented in two classes: (1) Probable propagation
areas, corresponding to runout assessed by FLOW-R with higher susceptibility,
(2) potential propagation areas, corresponding to runout assessed only by
CONEFALL with lower susceptibility.

Table 5.7 Threshold slope angles above which rockfall source areas are potentially considered
in the Val de Bagne

HMA HRDEM DEM25
A. Minimum
threshold angle for the
unit cliffs

B. mode of the
unit steep
slopes

A. Minimum
threshold angle for the
unit cliffs

B. mode of the
unit steep
slopes

Acid rocks 47� 36� 46� 35�
Basic rocks Not present 48� 32�
Conglomerate 52� 34� 45� 32�
Flysch 52� 36� 47� 35�
Limestone 52� 37� 46� 36�
Moraine 51� 30� 38� 30�
Marble and

breccia
50� 35� 46� 33�

Schists 49� 35� 48� 32�
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5.7.5 Snow Avalanches

5.7.5.1 Bagnes Valley

The data upon which this case is based consist of a 2 m resolution DEM under
2000 m elevation and the DEM25 above 2000 m, the 1:25,000 landuse map
(Vector25), the topographic maps and the inventory of historical avalanches
propagations. The used resolution extracted from the 2 m DEM was 10 m for the
entire study area in order with the phenomenon scale and to reduce the processing
time (24 h of processing with this resolution). Moreover, we conducted a
smoothing operation on the DEM to better simulate the inertia of this phenomenon
(smoothing of the topographic irregularities).

Source Ares Identification

The Table 5.8 shows the parameters used for this analysis case for the four
detection criteria:

Fig. 5.25 Rockfall susceptibility map. The runout was separated in two classes: probable
susceptibility, which belongs to FLOW-R processing, and potential susceptibility, which belongs
to CONEFALL processing (hillshade and isolines: �swisstopo)
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Spreading Area Assessment

To use the model RAS (Fig. 5.26, right), we first had to calibrate the relationship
between a and b. After some tests, we decided to use the coefficients determined
by Adjel (1996) in Haute-Tarentaise in the French Alps (Table 5.9). In the Bagnes
valley itself, only 5 to 10 sectors have good inventories; this is not enough
sufficient for making good calibrations.

For the model FLOW-R (Fig. 5.26, left), (as explained in Sect. 5.5.2.4), we
must calibrate the inertia, energy and direction algorithms on past, well archived,
propagation events. We selected four test areas homogeneously distributed in the
study area and we chose to use the following propagation parameters (Table 5.10):

Table 5.8 Avalanche source detection parameters

Detection criteria Parameters

Slope 30� to 50�
Altitude [1,000 meters high
Landuse Outside of forest area
Minimum surface of avalanches triggering Sources area [900 m2

Fig. 5.26 Example of propagations. At left: Flow-R propagations. At right: RAS propagations.
The dark lines are the maximum avalanche propagations recorded in the archives (hillshade and
topographic map: �swisstopo)
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Detection and Spreading, Example of the Folorsi

To illustrate our choices and the ability of our method to create an avalanche
susceptibility map, we now present the case of the Folorsi corridor (Fig. 5.27).
This corridor is marked by annual avalanches cutting the forest roads (3 and 5).
In this example we can see that there is a good correspondence with the detection
of the triggering areas (1, 2 and 4), the spreading area and the event shown in the
picture on the left. In addition we can observe that an avalanche with a large
volume has the potential to flow beyond the point 5, down to the valley bottom.

5.7.6 Flooding

5.7.6.1 Bagnes Territory

The methodology presented in the Chap. 6.6 was applied to create the indicative
map of flood hazard in Val de Bagnes (Valais, Switzerland). The Val de Bagnes
has a particular hydrological context because of the presence of glaciers in the
watershed and the strong human impact on rivers. For example, the Mauvoisin
dam, with a retention capacity of over 210 million m3, plays an important role in
flood control for the valley. Many conducts redirecting water of various water-
sheds have an impact on discharges.

For this study, it was decided to take into account the ‘natural’ watersheds,
which correspond to the boundaries of an extreme event in case of flooding.
In-depth field work was conducted to identify potential overflow areas feeding the
model FLOW-R. These include the various weakness of the hydrographical system
such as shrinkage, bridges, debris that could create a jam or other obstructions to
the watercourse (Fig. 5.28). The indicative map of danger does not take into
account the intensity of the phenomenon.

The final map shows that the main danger comes from tributary streams
(Fig. 5.29). Indeed, the watersheds composing the valley are large and present
relatively strait outlets, resulting in many opportunities for overflows. Moreover,

Table 5.9 Law alpha–beta used for the avalanche spreading assessments with the RAS model

Location Number of event Alpha–beta relationship r r

Haute-Tarentaise 168 a = 0.82 * b +2.82� 0.81 2.6

Table 5.10 Spreading parameters used with the FLOW-R model

Flow direction algorithm Runout distance calculation (Perla et al. 1980)

l M/D

Holmgren exp. 4 0.28 2,500
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the human impact on rivers has led to a change in their natural course, creating an
additional danger. Propagations performed with the software FLOW-R highlight
those areas to be considered in a subsequent study of risk.

Fig. 5.27 Correspondence between the sources detected, the spreading area assess and the
reality (Folorsi sector), the numbers indicate the same location on the picture and the map
(hillshade and topographic map: �swisstopo)
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5.8 Discussion

The above-described multi hazard susceptibility assessment is based on quite
simple models, but they are cross-checked with field observations and inspections
of other sources of information such as orthophotos, partial inventories, and
feedback from local people in charge of natural hazards. This point makes this
approach quite flexible. One of the major advantages is the fact the parameters
used in the model are few, except for SINMAP, and are tangible. Yet this approach
has its own limits and does not reflect the local controlling factors and specific
conditions. The specific conditions have to be integrated in more detailed studies
when the scale of study is more precise than 1:2,500; this scale corresponds for
instance to the ‘‘danger maps’’ in Switzerland, contrasting with the present
approach that correspond to the ‘‘indicative danger map’’ (Lateltin 1997; Loat and
Petraschek 1997). Nevertheless, the proposed method demonstrates the efficiency
of such a simplified approach, with results in good agreements with the obser-
vations. It must be noticed also that the original results of the models are usually
kept, but a relative rating of the ‘‘plausibility’’ of these results is assigned, creating
a susceptibility scale.

Because the models are mainly based on DEM, the DEM is the source of any
issues that may arise. For instance, DEM generated topography is sometimes too
detailed; source areas containing bridges or ditches do not permit to assess the
potential area of propagation of debris-flows or floods, because the flow is chan-
nelize and thus to simulate flooding or debtis-flow propagation the bridges or
ditches must be artificially broken, which must be prefomred manually.

Fig. 5.28 An example of a potential source of overflow ant its corresponding modeled spreading
(orthophoto: �swisstopo)
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5.8.1 Landslide Inventory Maps and Shallow Landslides

Both examples coming from Vaud and Bagnes show different situations. In the
first case, an existing inventory was available (DUTI 1985) and 1:25,000 geo-
logical maps were available in addition to orthophotos and vectorized topographic
maps. In the second case, no inventory was available, only a partial cover of
geological maps, but the local knowledge was used. This discrepancy shows the
problem of data collection and treatment. The large area did not permit to make a
detailed field check but the available inventory was the base of the investigations.
The main issue was to link the former inventory based on relief interpretation at
1:25,000 (DUTI inventory ? info from geological maps) to the Lidar-DEM hill-
shade with a resolution of 1 m. As shown by Ardizzone et al. (2007), this creates a
problem of merging information without losing information. As the time allocated
for this work was short it was not possible to create a completely new inventory;
instead rules were used to obtain a scale of ‘‘plausibility’’. This problem occurred
also in Bagnes to a lesser extent as little information existed from previous studies.
However it was possible to validate the inventory according to local geologists’
knowledge because of the relatively small size of the concerned area. According to
the local experts, the landslide inventory map created for the Val de Bagnes was
quite reliable. Nevertheless, this study has demonstrated the necessity to use a

Fig. 5.29 Lots of tributary streams could be a danger for infrastructure. The final map illustrates
the propagation of possible overflows (hillshade: �swisstopo)
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HRDEM in order to identify landslides. Another issue linked to the data is that
above 2000 m, mapping is based on the DEM25, because the Lidar-DEM does not
exist. The use of orthophotos and aerial photo observations were the only way to
check the results.

Shallow landslide modeling is one the most standard and used assessment
method. Nevertheless it faces the usual problems: lack of information on soil and
hydrological parameters and also limitations as the model only considers a con-
stant soil thickness. Nonetheless, on average the results are valuable and reliable if
they are connected with other information.

In the County of Vaud the comparison between the SINMAP results and the
inventory landslide map shows that 78% of the inventoried landslides are con-
tained in the predicted unstable zone. In general, 85% of inventoried landslides are
found in a buffer of 50 m around the predicted unstable areas. The main differ-
ences between SINMAP results and the inventory map are found in the Jura region
where the particular hydrological system (mainly karstic) makes the application of
SINMAP model more difficult. Compared to the total surface of the study area,
the SINMAP analysis shows that 18% (576 km2) of the County of Vaud can be
potentially affected by shallow landslides. The most susceptible region is the
alpine region were the susceptible area increases to 55% of the overall surface. For
the Val de Bagnes area 46% (almost 140 km2) of the territory shows a stability
index lower than 1. The main portion of the detected unstable areas have been
classified in the susceptibility classes 2 and 3 respectively ‘‘Lower’’ and ‘‘Upper
threshold’’ (Fig. 5.30). If only surface areas below 2000 m a.s.l. are considered for
statistics, the area showing a stability index lower than 1 increases to 71%
(Fig. 5.31). This is related to the presence of steep slopes glacier and rock-glacier
surfaces above 2000 m a.s.l., where no shallow landslide can be initiated.

Some interesting points can be deduced form the relationship between shallow
landslides, landslides and DSGD and other features:

• The DSGSD, which represent 13% of the Val de Bagnes territory (almost 40.5
of 300 km2), are destabilizing entire slopes and promoting the formation of

Fig. 5.30 Percentage of the total Val de Bagnes territory classed according to the different
stability classes
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shallow and medium landslides. Indeed, 42% of the surfaces of shallow and
medium landslides (almost 8.8 of 21.3 km2) are linked to DSGSD.

• Main structural features (faults and thrusts) increase the development of slope
instabilities. Indeed, considering a buffer of 200 m along ground features, it
represents 19% of the total surface of the Val de Bagnes (58 km2). Nevertheless,
almost 34% of sliding surfaces are located at less than 200 m of a fault or thrust.

• 32% of the landslides are concentrated in moraine formations, which include up
to 12% of the territory (30 km2).

SINMAP or other similar models are very powerful methods to obtain a first
overview of the most susceptible area for shallow landslides. However, the
modeling results need to be critically interpreted. In particular three main points
need to be considered for an objective interpretation:

The accuracy and the artifacts present in the DEM (HRDEM or DEM25) have a
lot of influence on the SINMAP results especially in urbanized or forested areas;

Reliability of results is strongly related to the quality of the geomechanical
parameters;

SINMAP results are useful and could be qualitatively or semi-quantitatively
analyzed for small to intermediate scale (1:50,000–1:25,000) but they cannot
be used at a greater scale than 1:25,000 without an important local parameter
calibration.

5.8.2 Debris Flows

Again the difference in total area of both territories reveals contrasting results. For
Vaud County the results cannot reflect local controlling factors and specific con-
ditions, nevertheless good correlations exist between simulations and field
observations performed on specific catchments where historical events occurred.
Because of the large area (2,800 km2) it is impossible to take into account the

Fig. 5.31 Percentage of the surfaces above 2000 m a.s.l. in the Val de Bagnes classed according
to SINMAP results

160 M. Jaboyedoff et al.



volume and the type of material of the various debris sources, requiring average
data for large areas.

More generally, the propagation area modelling is strongly dependent on the
quality of the DEM. In case of a wrong representation of the real topography, the
propagation area will contain nonsense results. For example, a stream flowing
under a high bridge will act as a dam; if the DEM is too detailed the channel can
not be overtopped which can occur if the debris-flow erodes or if it is dammed
promoting an outburst. These effects are not simulated by the model.

For the Bagnes Valley more than 50% of the sources detected by the model are
confirmed by field observations, while 35% of the sources are classified ‘‘poten-
tial’’ (i.e. without evidence of past event) and 14% are classified as incorrect. This
last ‘‘false’’ class is mainly due to the fact that the outcropping bedrock infor-
mation was not of high quality. In this case, some actual bedrock areas were
included in the source areas where no debris-flow triggering is possible as there is
not any loose material (soil, moraine, debris, etc.).

The chosen methods show realistic results and allow a first fast assessment of
debris-flow susceptibility over a large region, despite a limited knowledge of the
local controlling factors. Again the results are contrasted:

1. For the Vaud County, both observations and the model are in good agreement,
using a unique source of information, i.e., the DEM and regional geologic
information.

2. The possibility to perform a qualitative classification of the source areas per-
mits to obtain a good first overview of the debris-flow impacts in the communal
territory of Bagnes Valley, which is directly useful for local authorities to
prioritize remediation actions.

3. The propagation assessment based on probabilistic and basic energy calcula-
tions results in debris-flow susceptibility close to observed events.

This model has been applied with success also in Italy and France (Blahut et al.
2010; Lari et al. in review; Kappes et al. 2011), using a similar approach.

5.8.3 Rockfall

The detection of source areas using the slope angle histogram decomposition by
normal distributions is efficient, but it can be improved by additional data such as
geological maps, vectorized topographic maps and orthophotos. The morpholog-
ical units that are identified by decomposing the slope classes in cliff faces and
steep slopes are significant for identifying the morphology (Strahler 1950; Loye
et al. 2009). When using a Lidar-DEM the detection is very detailed even in the
zone covered with vegetation.

The angle /p of the cone aperture was set to 33� for both studies performed
here. The results show to be in good conformity with an orthophotos analysis
and field work. Yet when using CONEFALL at regional scale, a valley-bottom
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correction is required to consider local areas where such an angle of propagation
would be too large. In addition, the unlimited lateral aperture of the cone does not
seem to overestimate the lateral propagation of the rockfall runout. Using the
Flow-R model, the runout length is taken into account. The multiple flow direction
algorithm (Holmgren 1994) used for propagation in Flow-R takes into account
channelized topography. The use of both models permits to create a classification
of susceptibility with the result from Flow-R classified as probable and those from
CONEFALL as potential.

Such a combined approach provides a fast and cost-effective way of identifying
rockfall prone areas, without taking into account the structural setting and
mechanical parameters in detail. This approach can be based on a DEM of poorer
resolution as well, as demonstrated by Loye et al. (2009).

5.8.4 Snow Avalanches

Mapping snow avalanches is a tedious task especially at the regional scale,
because in mountainous areas more or less all slopes from 30� to 60� are sus-
ceptible to snow avalanches, albeit sometimes with a very low frequency. Hazard
assessments in the case of snow avalanches is mainly based on inventories and fine
tuning modelling in specific sites (PPR 2011). This means that implicitly the
frequency is taken into account in the choice of the sites, because snow avalanches
are possible everywhere but in most cases only exceptionally.

Although the methodology used in this study to create an avalanche susceptibility
map shows good correspondence between the archived events and the simulated
one, some limitations should be noted. First there is a problem with the quantity of
avalanche sources detected by the model. Indeed, the detection parameters are only
topographic (slope, altitude) and for a steep alpine region this means that a lot of
sources are detected. To solve this problem, first a reduction of the quantity of the
sources detected according to the source sizes was tried. Then the spreading area
was limited using the forest areas. Those tests were not conclusive because in both
cases, there are some avalanche sources or propagation areas observed in reality that
were ignored by the models. Further investigations still need to be conducted to
decrease the number of potential sources in such steep valleys.

5.8.5 Floods in Bagnes Territory

In general, the application of the methods presented here has allowed covering the
entire territory in a homogeneous and coherent way. Some remarks can be made
about some specific points. The computation of discharge for important return
periods must be applied to all locations where streams flow under bridges. An
estimation of bridge capacity would give major information for the development
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of a hazard map; this requires improving mapping procedures if implemented for
regional susceptibility mapping. The human impact on hydrological network
complicates the representation of reality. In the case of the susceptibility map of
Val de Bagnes, the most critical situations were always considered. The analysis
was particularly focused on the tributary streams of the Dranse Bagnes, where
hazard is higher rather than on the main stream. In fact, it has never been adapted
to raise the possibility of overflow.

In any case, the Laser-DEM geomorphic interpretation is an important input,
but it still needs to be used in a more rigorous approach.

5.9 Conclusion

The possibility to treat large amount of data is mainly due to availability of
powerful computers and GIS technology for hazard assessment at regional scale by
mainly using DEM. In addition, more readily available digital documents such as
topographic maps with attributes such as landuse, geological maps, orthophotos,
etc. greatly improves the simple model used for such purposes. Models must be
simple for two reasons: (1) it is still difficult to use complex models over a large
area if the DEM is a HRDEM having a resolution higher that 1 m; (2) complex
models often require several unknown parameters. In this sense, the usefulness of
SINMAP is borderline when it is applied to large inhomogeneous areas.

Depending on the time available the proposed simple modelling can be
improved, especially based on comparisons with field observations or inspecting
other data. Yet this interaction between the different types of information is of
primary importance to create reliable susceptibility maps. The susceptibility
classification depends on the ability to mixed models with different inputs that are
in accordance with different confidence levels of the input data.

The greatest problem is linked to updating former inventories. The information
produced by Lidar-DEM is often far more detailed than what we can expected
from field observations, especially in forested areas. As a result, ad hoc solutions
must be found in order to maintain past information and to improve the final
product.

Nowadays, the availability of Lidar-DEM is the major input that permits to
obtain a rapid overview of potential unstable areas or to perform more detailed
studies as well. It provides input for geomorphic studies as well as for modelling.

5.10 Summary/Futuristic Vision

As already indicated, the future is linked to the power of computers and to the
availability of new types of mapping documents. We expect that Lidar-DEM will
become available more or less everywhere around the world, and a standard
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procedure for hazard mapping in the near future. At present, the method of
regional hazard assessment is evolving very fast, because new techniques such as
Interferometric Synthetic Aperture Radar (InSAR) are completely revolutionising
the monitoring of mass movements, flood observations etc. Yet InSAR shows also
a lot of limitations due to vegetation cover, slope orientations or mass movement
directions. This example underlines the necessity for hazard assessment methods
to always be validated by another one, which can be simply field investigations.

Thus the greatest current progress in hazard mapping arises from the Lidar
technique, which gives high quality images of the ground even under dense
vegetation. Lidar resolution and information content (full wave forms and inten-
sities) are constantly improving, opening new fields of investigation. It seems that
the geomorphology and soil and rock mechanics have not yet taken full advantage
of the information that can be extracted from the high resolution Lidar-DEM, i.e.,
to characterize the mechanical properties of the ground or curvature of scars,
which contain important information on failure mechanisms.

In addition, the modelling of natural hazards such as landslides, debris-flows,
rockfall, snow avalanches, and floods has to take advantage of the fine resolution
offered by new HRDEM, but as the data are huge and efforts must be made to find
simpler models with few parameters that are suitable for modelling hazard on large
areas.
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Chapter 6
Application of GIS and RS for Mapping
Landslides at the Watershed Level

Jiann-Yeou Rau, Kang-Tsung Chang, Chi-Chung Lau,
Liang-Chien Chen, Yi-Chen Shao and Jin-King Liu

Abstract Assessment and inventory of natural hazards such as landslides are
essential for effective watershed management and sustainable development.
In Taiwan, a typhoon (tropical cyclone) or earthquake event can trigger hundreds
to thousands of shallow landslides in mountainous areas with steep slopes and
rapid streams. Therefore, how to improve the efficiency and accuracy of landslide
mapping by means of GIS (geographic information system) and remote sensing
techniques is an important research issue. This study proposes a novel, semiau-
tomatic method for mapping and editing landslides at a watershed level. Data
sources include airborne laser scanner (ALS) data and color/near infrared ortho-
imagery: the ALS data provide topographic features such as elevation, slope,
surface roughness, and object height, and the ortho-imagery furnishes the
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radiometric characteristic of land cover such as greenness index or NDVI
(normalized difference vegetation index) for identifying bare grounds. Based on
the derived topographic and radiometric parameters, the method first uses a global,
automatic algorithm to interpret and delineate landslides. Then it uses a local
region growing algorithm and a 3D eraser to edit and compile landslide maps. To
explore the causes of mass movement, these landslide maps can also be registered
with other geospatial data in a GIS for data visualization and analysis. Experi-
mental results indicate that the method is highly efficient and accurate compared
with results of human interpretation from the stereo pairs of aerial photographs.
Because Taiwan experiences an average of four or five typhoons every year, this
new, semiautomatic method is expected to provide a useful tool for watershed
management.

Keywords Landslides mapping � Watershed � Remote sensing

6.1 Introduction

Landslides can result in serious property damage and human casualties in the hills
and steep mountainous regions. It is also known that landslides, especially shallow
landslides, can be easily triggered by rainfall and earthquake (Caine 1980; Crozier
1999; Hong and Adler 2007; Chang et al. 2007; Chang et al. 2008; Chiang and
Chang 2009). In the meantime, landslides can deliver large amounts of sediment
into reservoirs and decrease their water reservation capacity (Dadson et al. 2004;
Mikos et al. 2006). Thus the assessment and inventory of landslides are essential
for effective watershed management and sustainable development.

In disaster mitigation, preparation, and risk assessment, a landslide suscepti-
bility map is a must in order to prevent human casualty and property damage.
Normally, the risk map is predicted or modeled by means of GIS overlay analysis
between existing landslide inventory map and related topographic and geologic
factors, such as geology, soil type, slope aspect, land cover, vegetation, land
surface temperature, under-ground water level, elevation, surface roughness, semi-
variance, and fractal dimension (Dhakal et al. 2000; Komac 2004; Glenn et al.
2006; Weirich and Blesius 2007). Different methods or algorithms for landslide
susceptibility map generation have been published including several GIS based
methods (van Westen 1994; Wang et al. 2005).

The island of Taiwan is located in a relatively new mountain-building belt.
The natural rock bodies are highly fractured with numerous joints and cleavages.
The majority of the area is covered with Oligocene, Miocene argillite, and shale,
which are soft and fragile, especially when saturated with moisture. In Taiwan a
typhoon (tropical cyclone) or earthquake event can trigger hundreds to thousands
of shallow landslides in mountainous areas with steep slopes and rapid streams
(Lin and Jeng 2000; Cheng et al. 2005; Lin et al. 2006).
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The Chi–Chi Earthquake (also known as the 921 Earthquake), measured 7.3
on the Richter scale, occurred on September 21st, 1999 in central Taiwan. The
Chi–Chi Earthquake triggered more than 20,000 landslides on the island of
Taiwan. The co-seismic weakening of the substrate material increased the danger
of landslides after a typhoon (Dadson et al. 2004; Cheng et al. 2005; Lin et al.
2006). Five years after the Chi–Chi Earthquake, on Aug. 23–25, 2004, typhoon
AERE brought an accumulated rainfall of 1,607 mm within the Shihmen Reservoir
watershed and triggered 222 landslides covering 393 hectares (Rau et al. 2007).
Due to the steep terrain in the watershed, most landslides were unreachable and
on-site surveying was not possible during a short period of time. This kind of
condition has called for the use of remote sensing technology for the monitoring of
landslides, a critical task for the purpose of emergency response and decision
making. And, how to improve the efficiency and accuracy of landslide monitoring
and mapping by means of GIS (Geographic Information Systems) and remote
sensing techniques has become an important research issue (Raju and Saibaba
1999; Hervas et al. 2003; Tarchi et al. 2003; Rau et al. 2007).

6.2 Problem Identification/Conceptual Background

To improve the efficiency and accuracy of landslide mapping by means of GIS and
remote sensing techniques, this study proposes a novel, semiautomatic method for
mapping and editing landslides at a watershed level. Data sources include airborne
laser scanning (ALS) data and color/near infrared ortho-imagery. The ALS data
provide topographic features such as elevation, slope, surface roughness and above
terrain object model whereas the ortho-imagery furnishes the radiometric char-
acteristics of the land cover such as greenness index or NDVI (normalized dif-
ference vegetation index) for the identification of bare grounds. Based on the
derived topographic and radiometric parameters, the proposed scheme uses a
global and automatic algorithm to detect landslides. Then, it employs a local
region growing algorithm and a 3D eraser for the editing and compilation of
landslides to complete the mapping process.

6.3 Review of Literature

Remote sensing data is normally used in three phases of landslide related studies:
(1) detection and identification, (2) monitoring, and (3) spatial analysis and hazard
prediction (Metternicht et al. 2005). For detection and identification of landslides,
many kinds of remote sensing data have been discussed in the literature including
terrestrial-based photography or laser scanning (TLS), air-based stereo- or ortho-
imagery and aerial laser scanning (ALS), and satellite-based optical or SAR
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imagery. Among them, digital stereoscopic aerial photograph is the most fre-
quently used data because not only landslide diagnostic features (e.g., disruptive
vegetation cover, and scarps) but also landslide qualitative characteristics (e.g.,
number, distribution, and type) can be derived from the data (Metternicht et al.
2005). The recognition procedure using stereoscopic aerial photograph is normally
performed by human visual interpretation and manual digitization (Donati and
Turrini 2002; He et al. 2003). Although such procedure can achieve a landslide
map with high accuracy and reliability, it is time consuming. Thus, to reduce man-
power in photo interpretation, researchers have turned to the ortho-rectified aerial
imagery or multi-spectral satellite imagery in conjunction with the use of image
filtering, differencing, band ratio techniques and NDVI calculation (Lin et al.
2002; van Westen and Getahun 2003; Herva’s et al. 2003).

The detail of geomorphologic features extracted depends on the image scale or
spatial resolution. For slope instability study the best image scale would be
1:15,000, because the disrupted vegetation cover, scarp, rotated blocks, etc. could
be identified clearly (Mantovani et al. 1996). An image scale of 1:25,000 is
considered as the smallest scale to interpret slope instability phenomena from
aerial photographs (Singhroy 2002).

Airborne Laser Scanning (ALS) or Light Detection And Ranging (LiDAR)
techniques is an optical remote sensing technique popular in digital terrain
modeling (Kruas and Pfeifer 1998; Vosselman 2000; Sithole and Vosselman
2004), city modeling (Haala and Brenner 1999; Schwalbe et al. 2005; Hofmann
2004), archaeology (Willis et al. 2009), geology (Webster et al. 2006),
geomorphology (McKean and Roering 2004), seismology (Cunningham et al.
2006; Chen et al. 2006), remote sensing (Bork and Su 2007; Chen et al. 2009),
and atmospheric physics (Pappalardo et al. 2004; Zhao et al. 2008). The principle
of distance measurement using LiDAR is based on time-of-flight from trans-
mission of a laser pulse to the detection of its returning signal. During the
traveling of laser pulse, it may encounter many kinds of objects and return with a
certain magnitude of laser signal. Normally, it can provide a maximum of four
returns (i.e., the coordinates of four ground objects). Thus, an enormous three-
dimensional point cloud can be obtained including terrain, vegetation canopy,
building roof-top, road, etc. A 5–20 cm of elevation accuracy has been reported
by using the integrated GPS/INS (inertia navigation system) approach (Ussyshkin
and Smith 2006). Normally, the LiDAR data are scanned with high frequency
(33–100 kHz), high density (1–2 points/m2), and small footprint (5–30 cm)
capable of describing local surface roughness and identifying individual mor-
phological domains within the landslide complex (McKean and Roering 2004;
Optech ALTM 2009).

The integration of airborne digital imagery with ALS data is useful in many
applications, such as building modeling (Chen and Teo et al. 2006), coastal
mapping (Elaksher 2008), vegetation detection (Bork and Su 2007) and disaster
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assessment (Li et al. 2008). So far as we know, this study is the first case that
fusions both data for landslide mapping.

6.4 Tools/Materials

This study developed indigenous software to demonstrate the feasibility of auto-
mated mapping of landslides. The Visual Studio.NET framework was used as the
programming platform and Managed C++ with OpenGL library were integrated to
realize the GUI interface. The product of the software is a shapefile that contains
3D landslide polygons and some topographic features, which can be exported to a
GIS for further spatial analysis.

6.5 Methodology

This study adopted the fusion of airborne LiDAR and color ortho-imagery for
landslide detection after considering such factors as the operational range, accu-
racy, resolution, efficiency, and cost. LiDAR data can be used to derive high
resolution geometric features of the ground surface (digital surface model or DSM)
and terrain (digital elevation model or DEM) from high density point clouds. On
the other hand, the color ortho-imagery can provide spectral information of ground
objects. These two types of data allowed this study to develop a global and local
supervised classification algorithm using the object height model (OHM), slope,
surface roughness and greenness/NDVI indices. An interactive manual 3D Eraser/
Painter was also developed for editing landslides and minimizing commission/
omission errors.

This study first classified the LiDAR data semi-automatically as surface and
terrain points by TerraScan� and interpolated the point data into 1 m DSM and
DEM, respectively. Then it followed the flowchart in Fig. 6.1 to map landslides.
At the start, the color ortho-imagery and LiDAR DSM and DEM were imported
into the designed system. Four topographical (slope, roughness and OHM) and
spectral (greenness) indices were generated from the input data. The detection
procedure contained the global and local approaches. Global landslide detection
uses a supervised classification method. Since the omission and commission
errors were unavoidable using the global approach, primarily due to diverse
geologic and topographic environments in which landslides occurred, local
landslide detection and the editing scheme was required to increase the accuracy
of the produced landslide map. For error analysis, the user accuracy, producer
accuracy, average accuracy, and overall accuracy were calculated from a
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confusion matrix (Kohavi and Provost 1998), provided that independent ground
truth data were available. Table 6.1 shows the matrix and related formulas for
error analysis. A more detailed description of the procedure is presented in the
following sections.

Table 6.1 Confusion matrix and formulas for error analysis

T = A+B ? C+D Producer (Detection Results)
Landslides Non-Landslides

User (Ground truth) Landslides A C
Non-Landslides B D
Detection of landslides Detection of non-landslides

Producer accuracy PA1 = 100 * A/(A ? C) PA2 = 100 * D/(B ? D)
Omission error OE1 = 100 - PA1 OE2 = 100 - PA2
User accuracy UA1 = 100 * A/(A ? B) UA2 = 100 * D/(C ? D)
Commission error CE1 = 100– UA1 CE2 = 100 - UA2
Overall accuracy OA = 100 * (A ? D)/Total
Average accuracy AA = (PA1 ? PA2)/2

Fig. 6.1 Flowchart for landslide detection and mapping

176 J.-Y. Rau et al.



6.5.1 Pre-Processing

This session describes the algorithms for calculating the object height model,
roughness, slope, and greenness.

6.5.1.1 Object Height Model

The OHM describes the heights of above ground objects in raster format. Objects
with height close to zero may represent new landslides with bare soil. This study
derived OHM by subtracting DEM from DSM, as shown in Eq. 6.1.

OHM = DSM� DEM ð6:1Þ

6.5.1.2 Roughness

Most new landslides are bare soil areas, where the surface is smoother than
forested areas. A surface roughness index can therefore be used to detect new
landslides. To account for the high terrain variation in mountainous areas, this
study used object heights (h) rather than surface heights for calculating surface
roughness. In Eq. 6.2, the surface roughness index c is the standard deviation of
h within a local window, h is the mean height of all pixels within the local window,
and n is the number of pixels h:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðh� �hÞ2

n� 1

2

s

ð6:2Þ

6.5.1.3 Slope

A variety of methods are available for terrain slope estimation. Many of them use a
fixed window size to estimate the terrain slope. Since a small mask may contain
man-made artificial objects in a high resolution DEM, a flexible window size
denoting multiple scale of terrain feature is deemed more suitable for the char-
acterization of landslides. This study adopted a method proposed by Parker (1997),
who used derivatives of the Gaussian function to convolute with the DEM in the
x and y direction and combines them together to estimate the slope. Equation 6.3
illustrates a one-dimensional Gaussian function in which the sigma (r) value
represents the scale of the terrain feature. Equation 6.4 is the result of the deriv-
ative of the Gaussian function in the x direction. The terrain slope can thus be
calculated using Eq. 6.5. In the case of raster DEM, an odd-number Gaussian
kernel is used with a suitable scale factor (r). For example, Fig. 6.2 illustrates a
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5 9 5 Gaussian kernel in the x-direction with a scale factor of 0.8. A larger scale
factor with a larger window size tends to produce smoother output.

f ðxÞ ¼ e�ð
x2

2r2Þ ð6:3Þ

fx ¼ f 0xðxÞ ¼ ð�
x

r2
Þe�ð

x2

2r2Þ ð6:4Þ

slope ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x þ f 2

y

q� �
ð6:5Þ

6.5.1.4 Greenness

A number of vegetation indices, such as NDVI (Normalized Difference Vegetation
Index) (Jackson et al. 1983), EVI (Enhanced Vegetation Index) (Liu and Huete
1995) and LAI (Leaf Area Index) (Chen and Black 1992) have been used in remote
sensing for analyzing vegetation cover on the ground. Among them NDVI is the
standard method for comparing relative biomass and vegetation greenness in remote
sensing images. Equation 6.6 shows the calculation of NDVI. A higher NDVI
indicates a higher level of healthy vegetation cover. Greenness, as shown in Eq. 6.7,
is similar to NDVI except that the green band substitutes for the near-infrared band.
Both NDVI and greenness values range from -1 to +1. Since the aerial images for
this study might not be radiometrically calibrated, the estimated NDVI/greenness
index should be considered as a relative, instead of absolute, index.

NDVI ¼NIR�Red

NIRþRed
ð6:6Þ

Greeness ¼ Green� Red

Greenþ Red
ð6:7Þ

6.5.2 Global Landslide Detection

Assuming that landslide sites are characterized by low surface height variation,
bare soil without vegetation or buildings, and steep terrain, this study used the four
topographic and spectral indices discussed above to first detect landslides within
the whole target area. Four threshold values (T1–T4) were defined a priori. Since a

0.137 0.715 0.000 -0.715 -0.137

0.137 0.715 0.000 -0.715 -0.137

0.137 0.715 0.000 -0.715 -0.137

0.137 0.715 0.000 -0.715 -0.137

0.137 0.715 0.000 -0.715 -0.137

Fig. 6.2 An example of x-
directional, Gaussian kernel
with a window size of 5 9 5
and a scale factor (r) of 0.8
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universal or empirical threshold definition for those four indices was impossible or
impractical, we adopted a supervised mechanism to estimate these indices from
training areas that were recognized and digitized manually. The mean and standard
deviation values of each index within the training areas were calculated and its
threshold values were set to be the mean ±3 standard deviations (Eqs. 6.8–6.11).

T1 ¼ OHM þ 3� rOHM ð6:8Þ

T2 ¼ Roughnessþ 3� rRoughness ð6:9Þ

T3 ¼ Slope� 3� rSlope ð6:10Þ

T4 ¼ Greennessþ 3� rGreenness ð6:11Þ

To classify a pixel as landslide or non-landslide, this study used the query
expression, (OHM\ T1) & (Roughness \ T2) & (Slope[ T3) & (Greenness\ T4).
A pixel was classified as landslide, if the expression was true. Since global landslide
detection was pixel-based, isolated and small groups of landslide pixels were
unavoidable. Thus, a morphological filtering (e.g., opening and closing) was applied
to remove the pepper and salt effect. In the meantime, small landslides were eliminated
by assigning the minimum mapping unit. Finally, the detected landslide pixels were
converted into vector-based polygons and stored in ERSI’s shapefile format.

6.5.3 Local Landslide Detection

For compiling landslide maps through interactive manipulation by an inexperi-
enced operator, this study designed three kinds of tools: (1) landslide polygon
editing, (2) magic wand, and (3) 3D painter or eraser.

6.5.3.1 Landslide Polygon Editing

The landslide polygon editing tools allow the operator to:

1. Delete a landslide polygon.
2. Select a landslide polygon vertex, move its position, erase it, or add one more

vertex close to it.
3. Add a new landslide polygon.

6.5.3.2 Magic Wand

The use of the magic wand tool involves three major steps. First, the operator selects a
seed point for region growing by visual inspection. This operation is relatively easy
given a 3D browsing environment and the draping of the ground surface texture with
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the color ortho-imagery. Second, the tool determines the similarity between the seed
point with its neighborhood based on the initial threshold values of OHM, slope,
roughness, and greenness from a 5 9 5 window. In case any pixels have similar
geometric and spectral features as the seed point, they are considered to be landslide
pixels, such as red pixels in Fig. 6.3. The last step is to search for additional landslide
pixels. During the growing process, the threshold values are updated adaptively.
With the updated threshold values, candidate pixels (grey in Fig. 6.3) are checked
again to evaluate their similarity to landslide pixels even though they have been
classified as non-landslide (blue in Fig. 6.3) in the previous iteration. Region
growing continues until all candidate pixels are non-landslide.

6.5.3.3 3D Painter or Eraser

This tool allows the operator to edit 3D objects on the 2D screen. Figure 6.4
illustrates how the tool works. On the viewer’s screen, 3D objects are projected
onto the screen in 2D. Conventionally this is known as back-projection or bottom-
up projection using the photogrammetric collinear equation. To edit 3D objects on
the 2D screen, the viewer’s exterior orientation parameters and DEM are indis-
pensable. When the operator clicks one point on the screen, its corresponding 3D
position (denoted as E, N, and H in Fig. 6.4) on the terrain can be calculated using
the ray-tracing or top-down algorithm. Accordingly, a landslide polygon and its
location can be projected onto a horizontal plane. The landslide polygon is then
converted into raster format and the editing on it is thus the same as 2D image
editing. The size of the pen can also be adjusted manually according to the
curvature of landslide boundary. Figure 6.5 demonstrates the effects of editing
(i.e., erasing and expanding landslide), using the tool with two different-sized painters.

6.6 Results

This section consists of two parts. The first part evaluates landslide detection and
editing in a case study. The second part performs an error analysis for a study area
with four scenes of 1:5,000 base maps.

Fig. 6.3 Example of region growing

180 J.-Y. Rau et al.



6.6.1 Landslide Detection and Editing

In this case study, the airborne ortho-imagery was taken by an RMK-TOP15
analogue camera on Sep., 2004 after typhoon AERE with an image scale of
1:14,000. The film was scanned as digital images and ortho-rectified with a ground
sampling distance (GSD) of 1 m. The airborne laser scanning data acquired by
Leica ALS50 on Dec. 16th, 2005 had a point density of 2.5 points per m2. The 15-
month time difference between two data sources was due to data availability.

6.6.1.1 Global Landslides Detection

Figure 6.6 illustrates the training areas selected from bare ground regions that are
suspected to be landslides for global landslides detection. The thresholds deter-
mined by Eqs. 6.8–6.10 were 5.0, 5.37, 20.0, and -0.25 for T1 to T4, respectively.
Figure 6.7 shows the global landslides detection results, and Figs. 6.8 and 6.9 plot
the detection results on OHM and the greenness index, respectively. The figures
show the omission error of one new landslide and the commission errors of three
old landslides covered with vegetation. The greenness value was -0.15 and -0.35
for the omitted and commissioned landslide, respectively. Since the greenness
threshold value was -0.25, the results were interpreted correctly.

Other than the above errors, the global approach performed well with high
reliability and accuracy. In Fig. 6.7, a new landslide located on the left-hand side
was accurately detected without being mixed with the road close to it. Also, most

Fig. 6.4 The working of 3D painter
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landslides along the river were correctly detected without being overlooked or
mixed with the riverbed.

For further reliability evaluation, Fig. 6.10 plots globally detected landslides on
a terrestrial photography, taken along the river on Nov. 5th 2006 (two years after
the aerial photo), and a 3D visual simulation. The largest landslide located on the
right hand of Fig. 6.10 shows a good correspondence between the detection result
and the on-site surveying. A large landslide on the left hand of Fig. 6.10 was
not included in the detection result because it occurred after the acquisition date
of aerial photograph.

Fig. 6.6 Training areas

Original Erased Expanded

Original Erased Expanded

Large Painter 

Small Painter

Fig. 6.5 Landslide editing using two different-sized painters
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6.6.1.2 Local Landslides Detection

Figure 6.11 illustrates a series of 3D painting operations. Figure 6.11a displays
globally detected results. Figures 6.11 b, c, d and e show the erasing and addition
operations and the change of the painter size by the operator. Figure 6.11f is the
final result after 3D painting. Notice that the road cross the region in Fig. 6.11 was
not classified as landslide during the global detection process.

Fig. 6.8 Detection results superimposed on OHM

Fig. 6.9 Detection results superimposed on the greenness index

Fig. 6.7 Global detection results
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Figures 6.12a and b display the use of the magic wand in a sequence. Notice
that the operator needs only to double-click where a landslide is located on the
screen. The detected landslide will be displayed in cyan for verification. If the
result is incorrect, the operator may choose to cancel the current result and select
another seed point until a reasonable detection is achieved. Figure 6.12c denotes
the region (landslide) growing results after two steps of the magic wand
operation.

6.6.2 Error Analysis

For error analysis, this study used four scenses of ortho-imagery and LiDAR data.
Each scene had an area of 6.75 km2 about the same size as a 1:5,000 base map.
Table 6.2 shows the basic information for the four scenes. Notice that the
acquisition dates for ALS data are the same for those four scenes but are different
for aerial imagery.

Fig. 6.10 Comparison between global detection results and on-site surveying
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Fig. 6.11 Demonstration of 3D painting. a original, b, c and e erasing, d adding, and f final result
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Table 6.3 tabulates the results of error analysis based on the confusion matrix.
In the table, the producer accuracy, user accuracy, omission error and commission
error belong to the landslide class only whereas the overall accuracy and average
accuracy include both landslide and non-landslide. The threshold values estimated
from the training areas are also listed for reference. The commision error is high in
some cases primarily because Eqs. 6.8–6.10 use three standard deviations.

Figure 6.13 and 6.14 demonstrate the global landslide detection results for
scene no. 1–2 and scene no. 3–4, respectively. The figures also show landslides

Fig. 6.12 Demonstration of the two region growing steps (a) and (b) and final result (c)

Table 6.2 Aerial imagery and ALS data for error analysis

Scene 1 & 2 Scene 3 & 4

Aerial camera type RMK-TOP 15 RMK-TOP 15
Acquisition date of aerial imagery Sep. 2004 Jan. 26, 2007
ALS type Leica ALS50 Leica ALS50
Acquisition date of ALS data Dec. 16th, 2005 Dec. 16th, 2005
Average point cloud density 2.5 pts/m2 2.5 pts/m2
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Table 6.3 Threshold values for global landslide detection and error analysis results

Scene 1 Scene 2 Scene 3 Scene 4

Scene No. 96221094 96221095 95202082 95202083
T1 (OHM) 5.0 5.0 4.71 7.0
T2 (Roughness) 5.37 7.94 4.21 10.92
T3 (Slope) 10.0 8.0 3.0 8.0
T4 (Greenness) -0.25 -0.3 -0.26 -0.46
Producer accuracy (PA1) 78.12% 95.25% 94.32% 76.53%
Omission error (OE1) 21.88% 4.75% 5.68% 23.47%
User accuracy (UA1) 61.33% 49.46% 86.9% 93.76%
Commissioned error (CE1) 38.67% 50.54% 13.1% 6.24%
Overall accuracy (OA) 99.41% 98.80% 99.2% 97.49%
Average accuracy (AA) 88.85% 97.04% 96.86% 88.02%

Fig. 6.13 Global landslides detection results (yellow polygons) for scene 1 (left) & 2 (right),
overlaid with ground truth (red polygons)

Fig. 6.14 Global landslides detection results (yellow polygons) for scene 3 (left) & 4 (right),
overlaid with ground truth (red polygons)
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from manual interpretation of aerial photograph using the proposed local tools. In
Table 6.3, average accuracy rates are all above 88% and overall accuracy rates
above 97%. Depending on the quality of the ortho-imagery, DSM and DEM,
producer accuracy can be as high as 95%.

6.7 Discussion

Table 6.4 summarizes reasons that might have affected global landslide detection.
Additionally, inconsistency of data acquisition dates between the ortho-imagery
and LiDAR data might have caused changes in the land cover information.
Shadow introduced by trees and mountainous relief could also cause problems in
missing landslides or delineating landslide boundaries.

Several LiDAR classification methods have been published for the categori-
zation of raw data into surface and terrain (Vosselman 2000; Axelsson 2000;
Vosselman and Maas 2001; Sithole 2001; Pfeifer et al. 2001). However, in dense
forested areas LiDAR data may not reflect from the terrain; thus, the derived OHM
may not be able to describe the above ground objects precisely. On the other hand,
if an improper LiDAR classification algorithm, which can cause large height
variations in bare ground areas, is chosen, it will introduce omission errors.

The surface geometric and spectral information will be occluded under dense
cloud, causing problems in obtaining accurate DEMs, DSMs, and ortho-imagery.
Sometimes, the ortho-imagery is mosaicked from multiple aerial images taken at
different locations and viewing directions. This will cause radiometric inconsis-
tencies and errors in calculating the greenness or NDVI index. In the meantime,
because the ortho-imagery is made by aerial film camera, its radiometric response
can easily deteriorate by the atmospheric effect.

Due to different soil types or soil moisture contents, some omitted landslides
look darker compared with other new landslides. This can affect the calculated
greenness index, thus making it difficult to distinguish between bare ground and
vegetation.

Table 6.4 Reasons for failures in landslide detection

Reasons

Greenness Radiometry inconsistence due to deterioration of aerial films, weather condition,
shadow, different types and densities of vegetation, and different soil type

Image distortion after ortho-rectification in high terrain relief areas
Roughness Commission errors in farming areas without vegetation or with low height plant

varieties
Omission errors for landslides with rough surface
Errors in OHM

OHM Classification errors of DSM and DEM, especially in densely forested areas
Slope DEM errors

Mud-flows on flat terrain
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Mountainous areas with high terrain relief can cause geometric distortion
during the process of ortho-rectification. This will affect the spectral information
and introduce errors in both global landslide detection and the visual inspection
part of local landslide detection.

6.8 Conclusions

This paper has presented the global and local approaches for landslides mapping
using the airborne laser scanning data and color ortho-imagery as the data sources.
In addition to the spectral information that is conventionally used in human
interpretation, this study has used topographic features derived from LiDAR DSM
and DEM for landslide detection. These topographic features of slope, surface
roughness, and object height play an important role during automatic, global
landslide detection. Experimental results have demonstrated that they are more
significant than the greenness index derived from color ortho-imagery.

This study has also developed tools for landslide mapping and editing at the
local level. Those tools operate in a 3D interactive environment, which provides
terrain relief and spectral information concurrently. They are therefore intuitive
and user friendly to an inexperience operator. We believe that the landslide
mapping procedure proposed in this study is cost effective and practical compared
with other fully- or semi-automatic approaches.

Many hybrid systems are currently available on the market that can integrate
airborne laser scanning with medium format digital camera (Skaloud et al. 2005;
Optech DSS 2009; Optech AIC 2009). The data acquisition time is consistent and
the digital imagery has better image quality than film camera. Some of these
systems also provide near infrared imagery that is useful for landslide detection.
We believe that these hybrid systems can play an important role in future landslide
mapping.
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Chapter 7
Ensemble-Based Landslide Susceptibility
Maps in Jinbu Area, Korea

Saro Lee and Hyun-Joo Oh

Abstract Ensemble techniques were developed, applied and validated for analysis
of landslide susceptibility in Jinbu area, Korea using the geographic information
system (GIS). Landslide occurrence areas were detected in the study by interpreting
aerial photographs and field survey data. Landslide locations were randomly selected
in a 70/30 ratio for training and validation of the models, respectively. Topography,
geology, soil and forest databases were also constructed. Maps relevant to landslide
occurrence were assembled in a spatial database. By using the constructed spatial
database, 17 landslide-related factors were extracted. The relationships between
the detected landslide locations and the factors were identified and quantified by
frequency ratio, weight of evidence, logistic regression and artificial neural network
models and their ensemble models. The relationships were used as factor ratings in
the overlay analysis to create landslide susceptibility indexes and maps. Then, the
four landslide susceptibility maps were used as new input factors and integrated
using the frequency ratio, weight of evidence, logistic regression and artificial neural
network models as ensemble methods to make better susceptibility maps. All of the
susceptibility maps were validated by comparison with known landslide locations
that were not used directly in the analysis. As the result, the ensemble-based landslide
susceptibility map that used the new landslide-related input factor maps showed
better accuracy (87.11% in frequency ratio, 83.14% in weight of evidence, 87.79% in
logistic regression and 84.54% in artificial neural network) than the individual
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landslide susceptibility maps (84.94% in frequency ratio, 82.82% in weight of
evidence, 87.72% in logistic regression and 81.44% in artificial neural network).
All accuracy assessments showed overall satisfactory agreement of more than 80%.
The ensemble model was found to be more effective in terms of prediction accuracy
than the individual model.

Keywords Landslide � Susceptibility � Ensemble � GIS � Korea

7.1 Introduction

Landslides are a major hazard, often causing property damage and economic
losses and creating high maintenance costs. Landslides are triggered by different
factors, either natural or related to human activities. Among natural factors,
rainfall is certainly one of the most frequent causes of shallow landslide occur-
rence of the flow type in granular soil. Thus, it is necessary to assess landslide
susceptibility to support forecasting of the phenomena. Landslide susceptibility is
defined as areas likely to have slope failures in the future. It is estimated by
correlating some of the principal factors that have contributed to past landslides
(Brabb 1984; Guzzetti et al. 2005). In mathematical form, it is defined by corre-
lating landslide density with different combinations of the factors (Clerici et al.
2002; Guzzetti et al. 2005).

Many methods have been proposed to assess landslide susceptibility, with
increasing use of geographic information systems (GIS) using different models.
These examples, many of these studies have applied probabilistic models such
as frequency ratio, weight of evidence, etc. (Audisio et al. 2009; Dahal et al.
2008; Lee and Min 2001; Lee and Pradhan 2006; Lee et al. 2004a; Mousavi
et al. 2009; Oh et al. 2009; Ozdemir 2009; Pirasteh et al. 2009; Regmi et al.
2010; Vahidnia et al. 2009; Yalcin 2008; Yilmaz 2009b, c, 2010). One of the
statistical models available, the logistic regression model, has also been applied
to landslide susceptibility mapping (Akgun and Bulut 2009; Bai et al. 2010,
2011; Chauhan et al. 2010; Das et al. 2010; Dominguez-Cuesta et al. 2010;
Dong et al. 2009; Falaschi et al. 2009; Lee 2005, 2007a; Legorreta Paulin and
Bursik 2009; Mathew et al. 2009; Nandi and Shakoor 2010; Oh and Lee 2010;
Pradhan and Lee 2010a, b). More sophisticated assessments involved fuzzy
logic, artificial neural network, AHP, Dempster-Shapfer theory of evidence,
Monte Carlo methods also have been applied (Akgun and Türk 2010; Chen
et al. 2009a, b; He and Fu 2009; Kanungo et al. 2008, 2009; Kawabata and
Bandibas 2009; Lee 2007b; Lee and Evangelista 2006; Lee et al. 2006, 2004b;
Liu et al. 2009; Melchiorre et al. 2008; Miles and Keefer 2009; Muthu et al.
2008; Park 2011; Poudyal et al. 2010; Pradhan and Lee 2010c, 2009, 2007;
Prabu and Ramakrishnan 2009; Pradhan et al. 2010; Shafri et al. 2010;
Tangestani 2009; Wang et al. 2009; Yilmaz 2009a). For the same study area,
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Fig. 7.1 Hillshade and landslide location map of the study area

7 Ensemble-Based Landslide 195



the frequency ratio, weight of evidence, logistic regression and, artificial neural
network models were applied and compared (Lee et al. 2011).

Any attempt to quantitatively evaluate landslide susceptibility needs validation
(Guzzetti et al. 2006). Validation uses the same geographic data, with independent
landslides not used to construct the model. Most previous research presents an
individual susceptibility model, discusses factors, and validates the susceptibility
maps as an assessment of the model’s performance. Although various models and
their application to landslide susceptibility have been published, the ensemble
study involving combination of susceptibility maps from frequency ratio, weight
of evidence, logistic regression and artificial neural network models has not
been used for landslide susceptibility mapping purposes previously to improve
prediction accuracy.

In this paper, we provide an ensemble-based methodology in order to obtain
more accurate and reliable estimates than can be obtained from using an individual
model. More specifically, the main difference of the study is to integrate individual
landslide susceptibility maps made using frequency ratio, weight of evidence,
logistic regression and artificial neural network models, and so to make a better
landslide susceptibility map in Jinbu area, Korea (Fig. 7.1).

The study flow is (Fig. 7.2):

1. The landslide locations were detected from web-based digital aerial photo-
graphs, and the locations were checked in the field.

Fig. 7.2 Flow chart of this study
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2. The landslide data were randomly divided into training data (70% of landslide
locations) and validation data (30% of landslide locations).

3. Topography, soil, forest, geology and land-use datasets were compiled in a
spatial database. Then the slope, aspect, curvature, topographic wetness index
(TWI), stream power index (SPI), soil topography, soil drainage, soil material,
soil thickness, soil texture, timber type, timber age, timber diameter, timber
density, distance from lineament, geology and land use were extracted from the
spatial database as potential contributing factors.

4. Using frequency ratio, weight of evidence, logistic regression and artificial
neural network models and the landslide locations selected for training, the
relationships between landslide and each factor were calculated quantita-
tively. Then, using the relationships, four landslide susceptibility maps were
made.

5. The four landslide susceptibility maps were considered as four new input
factors. Ensemble-based landslide susceptibility maps were again made using
the frequency ratio, weight of evidence, logistic regression and artificial neural
network models.

6. Each original landslide susceptibility map and ensemble-based landslide
susceptibility map were validated using the landslide locations that were not
used for training. The individual and ensemble-based methods were compared
in terms of their prediction accuracy.

7.2 Study Area

Recently, increased rainfall and more frequent hurricanes associated with global
warming have increased the incidence of landslides. In Korea, due to the impact of
typhoons YANNI in 1998, RUSA in 2002 and MAEMI in 2003, landslides and
forest damage have sharply increased. In 2006, Jinbu area was severely affected by
landslides following the typhoons EWINIAR, BILIS and KAEMI, all with strong
economic and social impact. The study area of around 60 km2 lies between the 37�
400 2600 N and 37� 350 0200 N, and 128� 290 4900 E and 128� 350 3600 E, and is
composed of two basins (Fig. 7.1). It is covered by a topographic map of 1:5,000
scale.

During the Korea rainy season from 14 June to 29 July 2006, very intense
precipitation episodes also occurred, causing many shallow landslides of the flow
type in granular soil on slopes. Jinbu, Pyeongchan district is the rainiest area in
Korea, its total precipitation is more 750 mm than the annual ones of 340 mm in
rainy season. Especially heavy rainfall over 29 h on 15–16 July 2006 totaled
429 mm in the study area. This caused a lot of landslides, collapse of embank-
ments and flooding of farmland because of water level increases at the confluence
of rivers. The property damage in the study area amounted to about 449 billion
USD (http:\\www.waterjournal.co.kr).
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The geology of the area includes the Imgye Granite, which is an extensive
intrusion of granitoids by the Daebo Orogeny and is distributed over most
of the study area. The Granite intruded into the Chongson Limestone and
Nok-Am Formation (Table 7.1). These are located on the Pre-Cambrian biotite
gneiss with discontinuity. The Daebo Orogeny continued from Early Jurassic to
Early Cretaceous as established by the dating of the Daebo Granite in South Korea
and the Tanch’on Granite in North Korea. The Daebo Orogeny was the most
severe in intensity, so that all the previous formations were intensely deformed and
some were mildly metamorphosed. In this text, for simplicity, the Daebo Granite is
used to represent the Jurassic Granite. The Daebo Granite occupies more than 16%
of the land area, and is dispersed all over the country. The granite batholiths are
diagonally aligned in a direction of southwest to northeast, originating in the
Yangtze Paraplatform of southern China, and then proceeding across the Korean
Peninsula (Geological Society of Korea 1962; Lee 1988).

To detect landslide locations, the digital aerial photographs serviced from
Internet portal site Daum (www.daum.net) were collected with a ground resolution
element of 0.5 m. The web-based aerial photos of all over Korea available on the
website. For the checking, the photographs were compares with analog aerial
photographs provided from NGII and field survey. The photographs from portal
website were taken on 27, May 2008 using UltraCam-X sensor by Samah Aerial
Survey Co., Ltd (www.samah.com) after landslide occurred during raining season,
2006. The analog photos were taken on 4, Arial 2005 before landslide occurrence.
The total number of landslide was 1,801 in the study area.

7.3 Ensemble Method for Integration

The main idea of ensemble modeling is to build an effective method for
improving prediction accuracy by integrating multiple outputs from a set of
models (Rokach 2005). More specifically, it means a better-integrated method,
with more accuracy and reliable estimates for decisions than can be obtained
from using a single model such as frequency ratio, weight of evidence, logistic
regression, artificial neural network, etc. The analysis part of the method could
include various models, which could be used to make and find new information
many times. In other words, a set of models in the 1st analysis part could be run
N times using Nth–1 output or Nth new input data in order to improve the quality
of information (Fig. 7.3).

In this study, the four models’ frequency ratio, weight of evidence, logistic
regression and artificial neural network were used in the 1st analysis part. The
landslide susceptibility map from each model in the 1st analysis part was con-
sidered as a new input factor for the 2nd analysis part and ensemble-based landslide
susceptibility maps were made from the models in the 2nd analysis part. In other
words, the relationships between landslide locations and the four new input factors
were identified and quantified again by frequency ratio, weight of evidence,
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logistic regression and artificial neural network models in the 2nd analysis part to
make better susceptibility maps.

7.4 Spatial Database

To make landslide susceptibility map, a spatial database was considered as related
factors that influence landslides such as topography, soil, forest, geology and land
use. Landslide occurrence areas were detected in the study area, by interpreting the
digital aerial photograph and field survey data. In the study area, rainfall-triggered
debris flows and shallow soil slide are the most abundant. Maps relevant to
landslide occurrence were constructed in a vector format spatial database using the
ArcGIS software package. These included topographic maps (1:5000 scale), soil
maps (1:25000 scale), forest maps (1:25000 scale), geological map (1:50000
scale), and land use map (1:5000 scale) (Table 7.2). A Digital Elevation
Model (DEM) was constructed using contour and survey base points that had an
elevation value read from a topographic map were extracted. The DEM has a 10 m

Fig. 7.3 Flow chart of ensemble methodology
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resolution and was used to calculate the slope, aspect, curvature, TWI and SPI.
Lineament structure was detected from hillshade map by a structural geologist.
Soil database includes soil topography, drainage, material, thickness and texture.
Soil texture is classified as code including name of area, texture, and slope of
topography (Table 7.3). Forest database include timber type, age, diameter and
density. The geology was extracted from the geological database.

The causes of landslide events are directly or indirectly related to slope,
aspect, curvature, topographic wetness index (TWI), stream power index (SPI),
lineament, soil, forest, geology and land use. As the entire area receives nearly
the same amount of precipitation, the rainfall intensity effect on the landslide
events was ignored. The topography has a vital role in the spatial variation of
hydrological conditions such as soil moisture, groundwater flow and slope
stability. Topographic indices have therefore been used to describe spatial soil
moisture patterns (Moore et al. 1991). The SPI measures the erosion power of
the stream, and is also considered as a factor contributing towards stability
within the study area. Another topographic factor within the run-off model is
the TWI (Beven and Kirkby 1979).

Both the calculated and extracted factors were converted to form a 10 9 10 m
grid (ArcGIS GRID type), and then were converted to ASCII data for use with
the logistic regression and artificial neural network program. The dimensions of
the study area grid were 923 rows by 1,053 columns, and so the total number of
cells was 579,884. Landslides occurred in 1,801 cells.

Table 7.2 Data layer related
to landslide of study area

Category Factors Data Type Scale

Hazard map Landslide Point –
Slope
Aspect

Topographic map Curvature GRID 1:5,000
TWI
SPI
Distance from

lineament
Topography
Soil drainage

Soil map Soil material Polygon 1:25,000
Soil thickness
Soil texture
Timber type
Timber age

Forest map Timber diameter Polygon 1:25,000
Timber density

Geological map Geology Polygon 1:50,000
Land use map Land use Polygon 1: 5,000

7 Ensemble-Based Landslide 201



Table 7.3 Description of
soil texture

Code Area name Texture % Slope

Water Water Water –
Gbd Gakha Pebblely silty clay loam 15–30
MuC Mui Stony loam 7–15
MuD Mui Stony loam 15–30
MuE Mui Gravelly loam 30–60
MtD Mitan Gravelly loam 15–30
MtE Mitan Sandy loam 30–60
Bo Bonryang Loamy soils 0–2
Sod Songjeong Sandy loam 15–30
SoE Subuk Sandy loam 2–7
SpC Subuk Stony loam 7–15
SiC Sinbul Loam with rock dome 7–15
SlC Sinbul Stony loam 7–15
SiD Sinbul Loam with rock dome 15–30
SlD Sinbul Loam with rock dome 15–30
SlE Sinbul Rocky loam 30–60
OdE Odae Rocky loam 30–60
OdF Odae Pebblely silty clay loam 60–100
UgC Ungyo Pebblely silty clay loam 7–15
UgE Ungyo Sandy loam 30–60
WjE Woljeong Sandy loam 30–60
WjF Woljeong Sandy loam 60–100
ImB Imok Sandy loam 2–7
ImC Imok Loamy soils 7–15
Jd Jungdong Rocky silty clay loam 0–2
JsE Jangseong Rocky silty clay loam 30–60
JsF Jangseong Loamy soils 60–100
ChD Chahang Loamy soils 15–30
ChE Chahang Stony silty clay loam 30–60
CsE Cheongshim Stony silty clay loam 30–60
CsF Cheongshim Pebblely clay loam soil 60–100
PaC Pyeongan Gravelly loam 7–15
HgB Hogye Gravelly loam 2–7
HgC Hogye Gravelly loam 7–15
Hr Hwangnyong Gravelly sandy loam 0–2
RL Rock outcrop Rock outcrop –
RC Flood passed

land
Flood passed land –

Gt Gangseo Fine sandy loam 0–2
Gz Gangseo Sandy loam 0–2
GpB Gopyeong Silty clay loam 2–7
Ng Namgye Sandy loam 0–2
NkB Noegok Sandy loam 2–7
Dq Doekcheon Fine sandy loam 2–7
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7.5 Landslide Susceptibility Mapping Using Various Models

Using the probability model, the spatial relationship between landslide occurrence
location and each related factor was derived. The rating of each factor type or
range was assigned as the relationship between landslide location and each factor,
this being the ratio of landslide-free to event-evident cells as shown in A. 1.
The landslide susceptibility index (LSIFR), Eq. 7.1, is calculated by a summation
of each factor ratio value (Lee and Min 2001):

LSIFR ¼ FR1 þ FR2 þ FR3 þ . . .þ FRn ð7:1Þ

Where FRn is frequency ratio of each factor type or range (Fig. 7.4a).
The relation analysis is the ratio of the area where landslides occurred to the

total area, so a value of 1 means an average value. If the value is greater than 1,
there is a high correlation, and lower than 1 means a lower correlation. If the
probability is high, there is a greater susceptibility to landslides; a lower value
indicates a lesser susceptibility.

The following formulation of the Bayesian probability model, known as the
weights-of-evidence model, was applied to landslide susceptibility analysis as
synthesized from Bonham-Carter et al. (1989), The weights of evidence analysis
result in a set of probabilistically derived values reflecting the spatial association
between a factor map and landslide location. To generate binary predictor pat-
terns for each factor, the spatial database was classified into a binary map by
calculating W+ and W- from Eqs. 7.2 and 7.3, which show favorable and
unfavorable areas.

Wþ ¼ loge
P B Djð Þ
P B �Djð Þ ð7:2Þ

W� ¼ loge
P �B Djð Þ
P �B �Djð Þ ð7:3Þ

where P is probability, B is presence of factor, �B is absence of factor, D is presence
of landslide occurrence and �D is absence of landslide occurrence. W+ and W-

are the weights of evidence when a factor is present and absent, respectively
(Bonham-Carter 1994). The binary predictor patterns were assigned weights (A. 1)

Table 7.3 (continued) Code Area name Texture % Slope

DEB Dogye Gravelly loam 2–7
DEC Dogye Gravelly loam 7–15
DED Dogye Gravelly loam 15–30
SlB Sangye Loamy soils 2–7
SlC Sangye Loamy soils 7–15
PuB Pungcheon Gravelly loam 2–7
HjN Hwadong Silty clay loam 2–7

7 Ensemble-Based Landslide 203



with maximum studentized value of contrast, C/S(C), and were calculated
according to Eq. 7.4.

LSIWOE ¼WOE1 þWOE2 þWOE3 þ . . .þWOEn ð7:4Þ

Fig. 7.4 Landslide susceptibility map based on individual models. a Frequency ratio. b Weight
of evidence. c Logistic regression. d Artificial neural network
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Where WOEn is W+ and W– of the binary pattern for a range of each factor
values or factor class at Max. C/S(C) (Fig. 7.4b).

Logistic multiple regression allows one to form a multivariate regression
relation between a dependent and several independent variables. In the present
situation, the dependent variable is binary, representing the presence or absence

Fig. 7.4 (continued)
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of landslides. Quantitatively, the relationship between the occurrence and its
dependency on several variables can be expressed as:

p ¼ 1= 1 þ e�zð Þ or p ¼ ez= 1þ ezð Þ ð7:5Þ

Where p is the probability of an event occurring. The probability varies from
0 to 1 on an S-shaped curve and z is the linear combination. It follows that logistic
regression involves fitting the data to an equation of the form:

z ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn ð7:6Þ

Where b0 is the intercept of the model, bi are the slope coefficients of the
logistic multiple regression model, and xi are independent variables (Dai and Lee
2002).

Using this approach, the spatial relationship between landslide-occurrence
location and related factors was calculated. Logistic multiple regression coeffi-
cients of the factors were calculated (A. 1). Equation 7.7 which predict the
landslide-occurrence possibility, were created.

z ¼ ð0:023� SLOPEÞ þ ð�0:030� TWIÞ þ ð�0:005� SPIÞ
þ ð�0:005� LINEAMENT) þ ASPECTa þ CURVATUREa

þ GEOLOGYa þ LANDUSEa þ T DIAMETERa þ T TYPEa

þ T DENSITYa þ T AGEa þ S DRAINAGEa þ S MATERIALa

þ S THICKNESSa þ S TEXTUREa � 57:710

ð7:7Þ

where SLOPE is slope value; TWI is topographic wetness index value; SPI is
stream power index value; LINEAMENT is distance from lineament; ASPECTa,
CURVATUREa, GEOLOGYa, LANDUSEa, T_DIAMETERa, T_TYPEa,
T_DENSITYa, T_AGEa, S_DRAINAGEa, S_MATERIALa, S_THICKNESSa,
S_TEXTUREa are logistic regression coefficient values listed in A. 1; S_TOPOG-
RAPHYa was eliminated as redundant factor; z is a parameter.

Using the logistic regression coefficient (A. 1) and Eqs. 7.5 and 7.7, the proba-
bility of landslide was computed (Fig. 7.4c). If the probability is high, there is a
greater susceptibility to landslides; a lower value indicates a lesser susceptibility.

An artificial neural network is a ‘‘computational mechanism able to acquire,
represent, and compute a mapping from one multivariate space of information to
another, given a set of data representing that mapping’’ (Garrett 1994). The back-
propagation training algorithm is the most frequently used neural network method
and was the method used in this study. Areas where landslides have not occurred
and where the slope is 0 were classified as ‘‘areas not prone to landslide’’ and areas
where landslides were known to have occurred were assigned to the ‘‘areas prone
to landslide’’ training set. The algorithm then was applied to calculate the weights
between the input and the hidden layers, and between the hidden (Zhou 1999) and
the output layers, by modifying the number of hidden nodes and the learning rate.
The Weights that represent the contribution or importance of each factor were
determined. A program developed by Hines (1997) was used for weight
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calculation, and for the interpretation of the weight we used a newly developed
program using MATLAB software.

In this study, a 17 9 34 9 1 structure was selected for the networks, with
input data normalized in the range 0.1–0.9. The nominal and interval class group
data were converted to continuous values ranging between 0.1 and 0.9. The
learning rate was set to 0.01, and the initial weights were randomly selected. The
weights calculated from 10 test cases were compared to determine whether the
variation in the final weights was dependent on the selection of the initial
weights. The number of epochs was set to 5,000, and the root mean square error
value used for the stopping criterion was set to 0.01. All the iterations met the
0.01 root mean square error goal in less than 5,000 epochs. After training,
the weights were determined, and are shown in A. 2. For easy interpretation, the
average values were calculated and divided by the weight of the minimum value.
For example, the soil texture had the minimum value of 1.000, and the aspect
had the maximum value of 1.503. Finally, the weights were applied to the entire
study area. That is, the calculated weights from each dataset were applied to all
datasets (Fig. 7.4d).

7.6 Ensemble-Based Landslide Susceptibility Mapping

The ensemble methodology is same to integrate the landslide-related factors and
make landslide susceptibility map. The input factors were changed from slope,
aspect, curvature, TWI, SPI, soil topography, soil drainage, soil material, soil
thickness, soil texture, timber type, timber age, timber diameter, timber density,
distance from lineament, geology and land use to the four landslide susceptibility
maps from frequency ratio, weight of evidence, logistic regression and artificial
neural network models. The ensemble-based susceptibility index values were
classified in the same manner as for the landslide susceptibility maps generated by
each model as described in Sect. 7.5.

In the case of the ensemble by frequency ratio, the landslide susceptibility maps
from each model were compared with landslide location data using the frequency
ratio model again. The frequency ratios for each landslide susceptibility index
(Table 7.4) were summed to calculate ELSIFR (Ensemble-based Landslide
Susceptibility Index), as shown in Eq. 7.8, and ELSIFR was mapped (Fig. 7.5a).

ELSIFR ¼ EFRLSM FR þ EFRLSM WOE þ EFRLSM LR þ EFRLSM ANN ð7:8Þ

Where EFR is frequency ratio for a class range of each landslide susceptibility
maps (Fig. 7.4a).

In the case of the ensemble by weight of evidence, the landslide susceptibility
maps from each model were compared with landslide using the weight of evidence
model again. The weight values for range of each landslide susceptibility index
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(Table 7.4) were summed to calculate ELSIWOE (Ensemble based Susceptibility
Index), as shown in Eq. 7.9, and ELSIWOE was mapped (Fig. 7.5b).

ELSIWOE ¼ EWOELSM FR þ EWOELSM WOE þ EWOELSM LR

þ EWOELSM ANN ð7:9Þ

Fig. 7.5 Ensemble based landslide susceptibility map. a Frequency ratio. b Weight of evidence.
c Logistic regression. d Artificial neural network
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Where EWOE = W+ and W– weights at Max. C/S(C) of each landslide
susceptibility maps (Fig. 7.4b).

In the case of the ensemble by logistic regression, the spatial relationship
between landslide-occurrence location and new input factors (landslide

Fig. 7.5 (continued)
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susceptibility maps) was calculated. Thereafter, logistic multiple regression
coefficients of the factors were calculated (Table 7.4). After interpretation,
Eq. 7.10 which
predict the landslide-occurrence possibility, were created and using the Eqs. 7.5
and 7.10, the ensemble landslide susceptibility map was made (Fig. 7.5c).

Z¼ ð2:881�LSM FRÞ þ ð0:236�LSM WOEÞ þ ð4:643�LSM LRÞ � 10316

ð7:10Þ

Where LSM_FR is landslide susceptibility map by frequency ratio
model; LSM_WOE is landslide susceptibility map using weight of evidence
model; LSM_LR is landslide susceptibility map using logistic regression model;
LSM_ANN was eliminated as redundant factor; Z is a parameter.

In the case of the ensemble by artificial neural network, the back-propagation
algorithm was applied and a 4 9 8 9 1 structure was selected. The other parameters
such as normalization of input data, learning initial weights, number of training,
number of epochs and RMS were set to same to Sect. 7.5. After training, the weights
were determined, and are shown in Table 7.5. The ensemble based landslide sus-
ceptibility map by weight of evidence had the minimum value of 1.000, and the one
by frequency ratio had the maximum value of 1.9192. Finally, the ensemble landslide
susceptibility map was made (Fig. 7.5d) using the weights applied to the entire
study area.

The landslide susceptibility maps were quantitatively made using the frequency
ratio, weight of evidence, logistic regression and artificial neural network models
(Figs. 7.4a–d) and their ensemble models (Figs. 7.5a–d). The susceptibility
index values were classified into four classes based on area for visual and easy
interpretation; very high 5%, high 10%, medium 15% and low reminding 70%.

7.7 Validation

For validation of the landslide susceptibility calculation methods, two basic
assumptions are needed. One is that landslide occurrences are related to spatial
information such as topography, geology, soil, forest and land use, and the second
is that future occurrences will be precipitated by a specific impact factor such as
rainfall. In this study, these assumptions are satisfied because landslides are related
to spatial information factors by analyzing the relationship between landslide and
each factor, and are initiated by a single event of heavy rainfall in the study area.

The results of success rate validation were derived by comparing the landslide
occurrence location which is not used for training the model and the susceptibility
maps which created using the frequency ratio, weight of evidence, logistic
regression, artificial neural network models and their ensemble models, and appear
as a line graph in Figs. 7.6 and 7.7. The success rate illustrates how well
the estimators perform. To obtain the relative ranks for each prediction pattern, the

7 Ensemble-Based Landslide 213



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Landslide susceptibility index rank(%)

C
ul

m
ul

at
iv

e 
pe

rc
en

ta
ge

 o
f 

la
nd

sl
id

e 
oc

cu
rr

en
ce

Likelihood ratio(84.94%)

Weight of evidence(82.82%)

Logistic regression(87.72%)

Artificial neural network(81.44%)

Fig. 7.6 Validation results of landslide susceptibility map using individual models

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Landslide susceptibility index rank(%)

C
ul

m
ul

at
iv

e 
pe

rc
en

ta
ge

 o
f 

la
nd

sl
id

e 
oc

cu
rr

en
ce

Ensemble likelihood ratio(87.11%)

Ensemble weight of evidence(83.14%)

Ensemble logistic regression(87.79%)

Ensemble artificial neural network(84.57%)

Fig. 7.7 Validation results of landslide susceptibility map using integrated models

214 S. Lee and H.-J. Oh



calculated index values of all cells in the study area were sorted in descending
order and divided into 100 classes with a 1% interval. To quantitatively compare
the results, the areas under the curve (AUC) were recalculated for when the total
area is represented by 1, which means perfect prediction accuracy.

As the result, in the case of ensemble by frequency ratio, weight of evidence,
logistic regression and artificial neural network models, the area ratio was 0.8711,
0.8314, 0.8779 and 0.8457 and that the prediction accuracy is 87.11, 83.14, 87.79
and 84.57%, respectively. As references, the results of landslide susceptibility map
using 17 factors and frequency ration, logistic regression and artificial neural
network models are 84.94, 82.82, 87.72 and 81.44% respectively, after application
the AUC method (Table 7.6).

7.8 Discussion and Conclusions

In this study, an ensemble-based predictive method was developed and applied to
landslide susceptibility mapping. Factors associated with the landslide were assembled
in a spatial database and the landslide susceptibility maps were made using the fre-
quency ratio, weight of evidence, logistic regression, and artificial neural network
models. The maps were validated using landslide location data that had not been used
for training the model for the prediction. This study derived the following conclusions:

The location of landslides using aerial photographs, which have 50 cm spatial
resolution, was checked in the field and found to be very accurate.

Using the frequency ratio, weight of evidence, logistic regression, and artificial
neural network models, landslide susceptibility maps and ensemble-based land-
slide susceptibility maps were made. For the validation of the maps, landslide
locations that were not used in the training were used. In the case of individual
models, the logistic regression model showed 87.72% accuracy, which is best, and
the artificial neural network model showed 81.44%, which is worst. In the case of
ensemble methods, the logistic regression model showed 87.79% accuracy, which
is best, and the weight of evidence model showed 83.14%, which is worst.

Comparing cases of individual models and ensemble models, the ensemble
models showed the better result. The difference of accuracies is 2.17% in fre-
quency ratio, 0.32% in weight of evidence, 0.07% in logistic regression, and

Table 7.6 The result of
validation of each landslide
susceptibility map

Model Accuracy Difference of accuracy
(ELSM – LSM)

LSM (%) ELSM (%)

FR 84.94 87.11 2.17%
WOE 82.82 83.14 0.32%
LR 87.72 87.79 0.07%
ANN 81.44 84.57 3.13%

ELSM: Ensemble based Landslide Susceptibility Map
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3.13% in artificial neural network models. Therefore, the ensemble model could be
concerned as better than the individual model.

Comparing ensemble models, the logistic regression model showed the best
result (87.79% accuracy) compared with frequency ratio (87.11%), weight of
evidence (83.14%), and artificial neural network (84.57%) models.

This study showed that integrating the output of multiple models improves the
predictive accuracy, as the difference of accuracy (ELSM minus LSM) showed
positive values. Therefore, the ensemble method can enhance the quality of
landslide susceptibility mapping from a set of models because of mutually com-
plementary relations between result maps and different predictive models. Indeed,
it can be compared and estimated that the predictive preference of each model.
The logistic regression model showed the best prediction accuracy of 87.72% and

87.79% of individual and ensemble-based landslide susceptibility maps, respec-
tively. The difference of accuracy is 0.07%, which is the lowest value among the
four models. The frequency ratio model showed the second highest prediction
accuracy of 84.94 and 87.11% for individual- and ensemble-landslide suscepti-
bility maps, respectively. Indeed, the difference in their accuracy is 2.17%, indi-
cating the second-highest gain of accuracy. As the result, the frequency ratio
model showed sensitivity to the input data, and the ensemble method was effective
in improving the prediction accuracy. Weight of evidence was found to be not
sensitive to the input data, with a low accuracy difference of 0.32%, while it also
generally showed lower prediction accuracy than frequency ratio and logistic
regression. Artificial neural network modeling also showed low prediction accu-
racy, similar to weight of evidence. However, the difference in accuracy of the
artificial neural network model showed the highest value of 3.13%. This suggests
the model is sensitive to input data.

Because the ensemble model was applied using the same procedure for land-
slide susceptibility index mapping as was used in the individual models, the
prediction accuracy can be improved using no more data. However, more case
studies are required for checking the ensemble model, because the ensemble model
is not widely used. For effective performance prediction, the ensemble model
can be tested in other application areas such as mineral potential mapping, land
subsidence hazard mapping, etc.

Using the landslide susceptibility map, we can predict future landslide locations
where the landslide has not previously occurred. Therefore, based on the map, it
can be prepared for the landslide hazard, and plan land development and make
land-use policies efficiently. In addition, if the same analysis is performed in other
areas having similar topographic and geological conditions, time and cost can be
saved in predicting the landslide efficiently.
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Chapter 8
Geoinformatics and Mass Movements:
A Study on Li-shan Landslide, Taiwan

Keh-Jian Shou

Abstract In this study, spatial risk of a large landslide area was analyzed by two
approaches, implemented by coupling geography information system (GIS), limit
equilibrium analysis, and Monte Carlo analysis. With the GIS, the three-
dimensional surface topography, underground geomaterial distribution and ground
water level can be processed for further analysis. Then the safety of slopes can be
evaluated by limit equilibrium analysis. The limit equilibrium analyses are dif-
ferent for those two GIS based approaches. One is for a sliding body with a well-
defined sliding plane and the other is for an infinite slope sliding on an assumed
sliding plane. Taking spatial uncertainties into consideration, mechanical proper-
ties of geomaterial were considered as random variables instead of single values.
And, ground water profiles for stability analysis are also randomly adopted.
Through stability analysis with Monte Carlo sampling, a distribution of safety
factor can be obtained to determine the probability of failure. Those two GIS based
approaches were applied to the Li-shan landslide in central Taiwan.

Keywords Li-shan landslide � Hazard estimation � Spatial uncertainty � GIS �
Probabilistic model � Monte Carlo analysis

8.1 Introduction

Geographic Information System (GIS) possesses strong capability in processing and
analysing spatial data; therefore, it is useful and popular for the assessment of natural
disasters (Hungr et al. 1989; Miller 1995; Haneberg 2000). It has been integrated
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with other analytical models (Hammond et al. 1992; Guzzetti et al. 1999; Reid et al.
2000; Van Westen 2004), such as GIS-probabilistic infinite slope model (Pack et al.
1998; Zhou et al. 2003; Haneberg 2004; Qiu et al. 2005) and GIS-infinite slope
probabilistic seismic landslide model (Jibson et al. 1999; Khazai and Sistar 2000;
Haneberg 2006), etc. And a GIS based probabilistic analysis approach was devel-
oped in a preliminary study (Shou and Chen 2005). In this probabilistic analysis
approach, mechanical properties of geomaterial are considered as random variables,
and Monte Carlo sampling is coupled with GIS and limit equilibrium analysis.

In this study, based on the prototype model, two advanced probabilistic analysis
approaches were implemented that can evaluate the hazard of landslides with
consideration of spatial uncertainties. One is for a sliding body with well defined
sliding plane and the other is for a sliding area with assumed sliding plane. Those
GIS based approaches were applied to spatially evaluate the hazard of Li-shan
landslide in which there are well-defined major sliding bodies and poorly defined
minor sliding bodies.

8.1.1 Li-Shan Landslide

In mid April 1990, after a heavy rain, the sites in Li-shan village near the highway
7A (mileage 73 km ? 150 m) and the highway 8 (mileage 82 km) began to
subside, as their foundations are located on one of the major sliding blocks in
Li-shan landslide area. Since Li-shan is an important village located at the mid-
way of the east–west cross-island highway (the highway 8) in central Taiwan (see
Fig. 8.1), it is essential to keep the highway open and the town secure for living.
The government had executed the first phase emergency treatment followed by the
second remediation treatment since July 1990. A drainage system including sur-
face ditches, drainage wells and two drainage galleries was constructed and
completed in early 2003.

Geology and Instability

Geologically, Li-shan area is located in colluvial formations originally from the
Miocene Lushan slate formation (see Fig. 8.1). Because of tectonic activities as
well as the high precipitation, the surfacial slate formations in this area are highly
weathered; it is strongly supported by the occurrence of slaty cleavages, foliation
shears, and interlayers of silty residual soil (Huang 2002; Shou 2002). Topo-
graphically, as situated at the western rim of Hsueh-shan ridge, Li-shan area dips
toward the northwest and down to Tachia river.

The landslide area is about 76 hectares in size, and can be divided into three
regions, i.e. the west, northeast, and southeast regions. And there are 14 major
sliding bodies in those three regions (see Fig. 8.2). Except the southeast region,
most of the unstable sliding bodies possess sliding planes about 9–26 m below
surface (Energy and Resources Laboratories, ITRI 1993; Shou 2002; Shou and Su
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2002). However, according to the core logs, there is an old sliding body within the
southeast region (sliding body B5), and its sliding plane is more than 40–60 m
below surface.

The results of back analysis show that those slopes are stable for dry condition
as the safety factor is 1.21–1.35; however, they become critical with high ground
water level as the safety factor drops to 0.99–1.15 (Shou and Chen 2005).
It strongly suggests that there is more than one activity in this area, because the
precipitation is quite high in this area.

Beside the major sliding bodies, minor shallow sliding bodies might be exist as
the geomaterial is highly weathered and the precipitation is very high in this area.
Therefore, shallow sliding bodies without clear boundaries could appear and cause
problems more frequently than the major ones.

Remediation Work

As heavy rain and poor drainage are the major factors triggering the Li-shan
landslide, ground water control is essential for slope stabilization in this area.

Lishan

Tachia River

Fushou Shan

Tweilung Shan

Chiayang Shan

L
is

ha
n

F
au

lt

W
ul

in
g 

 F
au

lt

1
6

5
0

1500

18
00 1950

2100

2250

24
0

0

2700

3
0

0
0

2
85

0

3150

3300

1800

2850

1500

1950

1
6

5
0

18
00

1500

2850

1500

2100

1800

2100

16
50

18
00

3300

1950

2700

18
0

0

1650

2
2

5
0

2100

2400

2850

2100

3000

1650

1800

1950

1650

1650

3000

1
5

0
0

2250

1
8

0
0

19
50

18
00

1500

2400
27

00

21
00

2400

1
9

5
0

1500

1800

3150

2400

15
00

2100

2100

1500

1650

1650

2100

1800

2100

2400

1800

2850

268097
.016963

268097
.016963

271587
.487045

271587
.487045

275077
.957127

275077
.957127

278568
.427209

278568
.427209

26
83

14
1

.0
41

92
6

26
83

14
1

.0
41

92
6

26
85

44
7

.6
20

86
6

26
85

44
7

.6
20

86
6

26
87

75
4

.1
99

80
6

26
87

75
4

.1
99

80
6

26
90

06
0

.7
78

74
6

26
90

06
0

.7
78

74
6

Legend

Cy  Chiayang formation

Mc  Meihsi formation

Ls  Lushan formation

Road

River

0 2,5001,250
Meters

N

Fig. 8.1 Geologic map showing regional geology near Li-shan area
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A drainage system, comprised of surface and subsurface subsystems, was
designed as a remediation treatment (Energy and Resources Laboratories, ITRI
1993).
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For the surface drainage subsystem, existing ditches were integrated as a
system to divert the surface water to non-problem area, and to prevent exces-
sive water infiltration near tension cracks. To more efficiently control the
ground water level, a subsurface drainage sub system is also applied. It com-
prises three major ingredients: (1) 15 horizontal drainage sites, 7–9 pipes
(30–60 m in length) in each site, (2) 13 drainage wells, located mainly in the
heads of slopes, and (3) 2 drainage galleries, excavated below the sliding planes
(see Fig. 8.3).

From the results of ground water level monitoring, the ground water level has
been successfully reduced about 10–20 m after the drainage galleries in operation.
By this improvement, the stability of slopes is reasonably increased as expected
(Shou and Chen 2005). Besides, this landslide area survived during the 1999
Chi–Chi earthquake (ML = 7.3) as well as the typhoons for the past few years.
During the Chi–Chi earthquake, with horizontal acceleration around 0.15–0.20 g,
the ground water level rose no more than 1 meter. It fairly reveals the effectiveness
of the remediation treatment.
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8.2 Methodology

8.2.1 Basis and Improvements

The new approaches in this study are based on a GIS-based probabilistic
analysis model developed in a preliminary study (Shou and Chen 2005). In this
probabilistic analysis approach, mechanical properties of geomaterial are con-
sidered as random variables instead of single values, and Monte Carlo sampling
on those mechanical properties is coupled with limit equilibrium analysis.
Within the GIS, a Kriging process (Cressie 1988) is applied to determine the
three-dimensional elevation model as well as the slope profiles for stability
analysis. Through stability analysis with Monte Carlo sampling, a distribution
of safety factor can be obtained to determine the probability of failure for a
sliding body. However, this model is for hazard analysis of sliding bodies in a
landslide area only.

To modify this prototype model, changes were made including more failure
mechanism options, various methods to obtain three-dimensional elevation model,
etc. Two new GIS-based probabilistic analysis approaches were implemented that
can evaluate the hazard of landslides. One is for a sliding body with well-defined
sliding plane and the other is for a sliding area with assumed sliding plane.
Besides, two boundary programs were also developed to more efficiently handle
the calculations. Those GIS based approaches were applied to evaluate the hazard
of Li-shan landslide with comparisons.

8.2.2 Three-Dimensional Elevation Model

For the stability analyses, it is necessary to have the three-dimensional eleva-
tion model, i.e., the surface topography, underground geomaterial distribution
and ground water level. And it is obtained by the Kriging estimation on the
drilling and monitoring data from 61 holes in the landslide area. The geoma-
terial is simply characterized to three types, i.e., colluvium, regolith and bed
rock.

The ground water level is measured in the bore holes as well as the drainage
wells. As it is strongly influenced by the remediation construction, four
benchmark points are adopted: before drainage well construction (1997/2), after
drainage well construction (1999/3), after typhoon Toraji (2000/9) and after
drainage gallery construction (2002/5). And the specific monthly average
ground water level was taken to represent the ground water level of the specific
benchmark point.

Based on the above mentioned data for geomaterial distribution and ground
water level, the GIS software ArcGIS (ESRI 2005) is applied to obtain the three-
dimensional elevation model (see Fig. 8.4). As one of the central applications in
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ArcGIS, ArcMap is good for all map-based tasks including cartography, map
analysis, and editing. And the spatial analysis function of ArcMap is applied to
build up the surfaces based on bore hole data.

In this study, nine Kriging options were tested to determine the best one. Three
different spatial analysis methods, i.e., simple Kriging, ordinary Kriging, and
general Kriging, are applied with spherical, Guassian, and exponential semi-
variogram evaluation. To obtain an unbiased estimation, the cross validation, in
which the minimum root mean square error (RMSE) of the estimated and actual
values can be obtained to determine the best searching method and searching
radius. RMSE can be defined as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Z xið Þ�yið Þ2

n

vuut ð8:1Þ

in which n is number of sample, Z(xi) is the estimated value, yi is the actual
value.

By this unbiased estimation method, the surfaces of lower boundary of
colluvium, lower boundary of regolith, and ground water level can be properly
estimated as shown in Tables 8.1, 8.2 and 8.3. As underground geology and
ground water conditions are different in three regions, i.e., west, southeast, and
northeast regions, Kriging estimation was performed separately for those
regions.

Fig. 8.4 Slope profiles are obtained from the databases in GIS
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8.2.3 Stability Analysis

According to the core log records, the failure mechanisms of sliding bodies can be
characterized to two types, i.e., deep sited and shallow sited (see Fig. 8.5). For the
deep sited sliding, the analysis is focused on the major sliding bodies of which
boundary is well-defined and sliding plane is located at the boundary of regolith
and bedrock. For shallow sited slidings, the sliding plane is considered to be at the

Table 8.2 The best estimation mode for lower boundary of regolith
Mode Aree

OKS (neighbors,
at least)

(4, 2)

Searching
Radius (m)

500 600 700 800 900 1000

RMSE (m) 30.38 30.34 30.25 30.24 30.19 30.2
1.OKS: Ordanary Kriging with

Spherical semi-variogram
evaluation

2. : searching in four areas

3. Neighbors: number of related
data considered

4. At least: minimum number
of data considered

5. The best searching radius is
highlighted

Table 8.1 The best estimation mode for lower boundary of colluvium
Mode Area

OKG (neighbors,
at least)

(5, 2)

Searching
Radius (m)

300 350 400 500 600 700

RMSE (m) 12.59 12.3 12.61 13.14 13.07 13.06
1.OKG: Ordanary Kriging with

Gaussian semi-variogram
evaluation

2. : searching in eight areas

3. Neighbors:number of related
data considered

4. At least: minimum number
of data considered

5. The best searching radius is
highlighted
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lower boundary of colluvium and. stability analysis is executed to get the safety
factors of the grids in whole landslide area.

To assess the risk of deep sited sliding bodies, the limit equilibrium analysis
program PC-STABL (Bandini and Salgado 1999) is applied. The profiles for
analysis are determined by GIS program ArcMap. For each sliding body, a
segment of upper boundary and a segment of lower boundary are adopted; then,
equally spaced 10 points can be found on those two segments. 100 testing profiles
can be determined by connecting those boundary points and data from the three-
dimensional elevation model got by GIS. And the 10 most dangerous profiles are
used for further risk analysis.

For shallow sited slidings, the infinite slope concept (Hammond et al. 1992) is
adopted, in which the safety factor can be formulated as the ratio of stabilizing and

surface

bottom of

bottom

  deep sited 

  bed rock 

shallow sited 

of

Fig. 8.5 The failure modes
of landslides in Li-shan

Table 8.3 The best estimation mode for ground water level in Feb., 1997

Mode Area

OKG (neighbors, at
least)

(5, 2)

Searching
Radius(m)

200 300 400 500 600 700

RMSE(m) 24.87 25.24 24.53 23.71 23.67 23.67
1. OKG: Ordanary Kriging

with Gaussian semi-
variogram evaluation

2. : searching in one
area

3. Neighbors: number of
related data considered

4. At least: minimum
number of data
considered

5. The best searching radius
is highlighted

8 Geoinformatics and Mass Movements 229



destabilizing forces. The stability analysis is performed for each of the predefined
grids comprising the landslide area. The size of 10 meter by 10 meter is chosen for
the grids, and safety factor is calculated for each grid. However, the three-
dimensional elevation model for each grid is also obtained by GIS.

8.2.4 Probabilistic Risk Evaluation

To consider the uncertainty of mechanical properties of geomaterial, input
parameters are considered as random variables to be determined by Monte Carlo
sampling process. In this study, according to data from literature review and
laboratory tests, the probability density functions of cohesion and friction angle are
considered as normal distributions. The mean value and standard deviation of
mechanical parameters of colluvium and regolith are shown in Table 8.4. Besides,
based on literature review and monitoring data (NCHU 2000; Su and Chen 2002),
the ground water level is considered as exponential distribution with variance set
to be 1.9 meters.

Considering the uncertainty of those mechanical parameters, Monte Carlo
process randomly samples those parameters from their probability distributions
and a safety factor can be calculated based on the chosen data set. By repeating the
above sampling and safety factor calculation, for 1000 times in this study, we can
obtain a series of safety factors. The probability of failure Pf can also be defined as

Pf ¼ PðFs� 1:0Þ ð8:2Þ

where P(Fs B 1.0) denotes the probability of safety factor less than one. And
P(Fs B 1.0) can be determined by the ratio of the area under the distribution
curve for safety factor less than one divided by the total area under the dis-
tribution curve.

The hazard evaluation problem is now deduced to determine the distribution
of factor of safety, which depends upon a number of random variables. Although
it is not always true in nature, input parameters are considered as independent
variables for simplicity and based on sensitivity analysis (Chen 2003). For slope
engineering, probability of failure is generally considered as a simple index for

Table 8.4 The mechanical properties of geomaterials

Cohesion (kN/m2) Friction angle (�)

Colluvium Range 0 * 22.0 20 * 30
Mean 8.0 32.68
Standard deviation 8.0 5.05

Regolith Range 3.0 * 38.0 15.67 * 38
Mean 16.9 26.81
Standard deviation 10.2 6.35
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risk evaluation. Although, the cost of failure should be implemented with the
probability of failure to obtain the risk, which is in theory defined as probability
of loss.

To make the calculations more efficient, two interface programs, DeepLand-
slide for deep sited landslide and ShallowLandslide for shallow sited landslide,
were written in Visual Basic 6.0. And the random sampling function of Monte
Carlo analysis is also embedded in those programs.

8.3 Results and Discussion

For the analysis of deep sited slidings, 14 major sliding bodies, i.e., sliding bodies
A1, A2, A10 and A11 for the west region, sliding bodies B1, B3, B4, B5, B9, B11,
B13, and B14 for the southeast region, and sliding bodies C1 and C2 for the
northeast region, are adopted (see Fig. 8.2). The hazards of those sliding bodies
are evaluated for different phases. Then the hazard of a region can be considered as
the mean hazard of the major sliding bodies inside.

Considering the groundwater surface before and after the construction of
drainage wells, it shows the hazard changes from 59.42% to 99.97% for the west
region, from 34.26% to 27.94% for the southeast region, and from 15.77% to
14.93% for the northeast region (see Fig. 8.6). The unreasonable results for the
west region show the inaccuracy caused by poor-quality and insufficient drilling
data in this region.

Another evidence for the performance of remediation could be the redistribu-
tion of hazard in landslide area. The hazards of sliding bodies for different phases
are ranked and illustrated in Table 8.5 and Figs. 8.7 and 8.8. In the pre-remedi-
ation phase, the critical sliding bodies with smaller ranking numbers concentrate in
the center area (Fig. 8.7). Because of the remediation components are mainly in
the center area of landslide area, hazard dissipates from center area in the post-
remediation phase showed by larger ranking numbers of sliding bodies (Fig. 8.8).
The hazard of sliding bodies can also be regionally ranked to suggest priority for
further treatment.

For the shallow sited slidings in the post-remediation phase, the distribution of
safety factor for cohesion and friction angle set to be 16.9 kN/m2 and 26.81� is
shown in Fig. 8.9. And the distribution of probability of failure is shown in
Fig. 8.10. It shows the similar trend as the analysis of deep sited slidings, i.e.,
hazard dissipates from center area in the post-remediation phase (Fig. 8.11).

The results of risk analysis of shallow sited slidings are summarized in
Table 8.6. It shows that there is about 25.56% of the landslide area with safety
factor less than 1.0 and about 41.42% of the landslide area with safety factor less
than 1.2. For the probability of failure, there is about 51.97% of the landslide area
with probability of failure greater than 10%.
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Table 8.5 Regional rank of hazard for sliding bodies before and after remediation

Regional
Rank

Pre-
remediation

Post-remediation

Sliding body Mean value of Safety
factor

Sliding
body

Mean value of Safety
factor

1 A11 0.979 A1 0.824
2 A10 1.022 A2 0.862
3 A1 1.203 A10 0.898
4 A2 1.227 A11 1.073
1 B3 0.797 B3 0.837
2 B4 0.912 B4 1.020
3 B5 1.054 B5 1.143
4 B9 1.070 B1 1.273
5 B1 1.163 B9 1.419
6 B13 1.260 B13 1.464
7 B11 1.941 B11 1.949
8 B14 2.018 B14 1.974
1 C2 1.093 C1 1.140
2 C1 1.113 C2 1.159
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Fig. 8.6 Regional probability distributions of safety factor in post-remediation phase
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Fig. 8.10 The distribution of probability of failure for shallow slidings (with 10 m*10 m grids)

Fig. 8.9 The distribution of safety factor for shallow slidings (with 10 m*10 m grids, c = 16.9
kN/m2; / = 26.81o)
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8.4 Conclusions

In this study, coupling GIS, limiting equilibrium analysis, Monte Carlo analysis,
and interface programs written in Visual Basic, probabilistic hazard analysis
methods were implemented to analyze the hazard of deep sited and shallow sited
landslides. And those methods were applied for the analysis of Li-shan landslide.

Table 8.6 Risk analysis results of shallow sited slidings (c = 16.9 kN/m2; / = 26.81o)

Distribution of Safety Factor (F.S.)
F.S. 1.5\ F.S 1.42F.S.\1.5 1.32F.S.\1.4 1.22F.S.\1.3 1.12F.S.\1.2
% in area 39.02 6.36 6.31 6.90 7.60
accumulative % 100.00 60.98 54.62 48.31 41.42
F.S. 1.02F.S.\1.1 0.92F.S.\1.0 0.82F.S.\0.9 0.72F.S.\0.8 F.S.20.7
% in area 8.25 9.00 8.83 4.23 3.50
accumulative % 33.82 25.56 16.57 7.74 3.50

Distribution of Probability of Failure (P.F.)
P.F. (%) P.F.\ 5 52P.F.\10 102P.F.\20 202P.F.\30 302P.F.\40
% in area 40.49 7.54 9.78 7.11 4.59
Accumulative (%) 100.00 59.51 51.97 42.19 35.08
P.F.(%) 402P.F.\50 502P.F.\60 602P.F.\70 702P.F.\80 802P.F.
% in area 5.57 4.99 4.99 5.19 9.75
Accumulative (%) 30.49 24.92 19.93 14.94 9.75

Fig. 8.11 The distribution of safety factor for shallow slidings (with 10 m*10 m grids, c = 10.0
kN/m2; = 33.0o)
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Through a series of analyses, the hazards of deep sited sliding bodies as well as
shallow sited slidings in Li-shan landslide are estimated. It shows the influence of
groundwater level is significant, which reveals the importance of ground water
control and monitoring. The results also show the stability of center area is sig-
nificantly improved as the ground water levels are lowered by drainage treatment.
Comparatively, it is more dangerous for the west area.

As drillings in the west and northeast areas are not sufficient, the three-dimen-
sional elevation model cannot be accurately obtained by the GIS. More drillings in
those areas are necessary in the future. Besides, more investigation and analysis are
necessary to make clear the history of sliding activities in this landslide area.
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Chapter 9
Landslide Inventory, Hazard and Risk
Assessment in India

Cees J. van Westen, Pankaj Jaiswal, Saibal Ghosh, Tapas R. Martha
and Sekhar L. Kuriakose

Abstract The recent census in India revealed that India is now housing 17% of
the world’s population, and India is on the way to become the most populated
country. Landslides are an increasing concern in India due to the rapid population
expansion in hilly and mountainous terrain. Landslides affect vast areas within
India, in particular in the Himalayan chain in the North and Eastern part of the
country and the Western Ghats in the Southwest. The Geological Survey of India
(GSI) has been designated as the nodal agency for landslides by the Indian gov-
ernment, and they are responsible for landslide inventory, susceptibility and hazard
assessment. Until recently their landslide susceptibility assessment was based on a
heuristic approach using fixed weights or ranking of geofactors, based on guide-
lines of the Bureau of Indian Standards (BIS). However, this method is disputed as
it doesn’t provide accurate results. This paper gives an overview of recent research
on how the existing methods for landslide inventory, susceptibility and hazard
assessment in India could be improved, and how these could be used in
(semi)quantitative risk assessment. Due to the unavailability of airphotos in large
parts of India, satellite remote sensing data has become the standard data input for
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landslide inventory mapping. The National Remote Sensing Center (NRSC) has
developed an approach using semi-automatic image analysis algorithms that
combine spectral, shape, texture, morphometric and contextual information
derived from high resolution satellite data and DTMs for the preparation of new as
well as historical landslide inventories. Also the use of existing information in the
form of maintenance records, and other information to generate event-based
landslide inventories is presented. Event-based landslide inventories are used to
estimate the relation between temporal probability, landslide density and landslide
size distribution. Landslide susceptibility methods can be subdivided in heuristic,
statistical and deterministic methods. Examples are given on the use of these
methods for different scales of analysis. For medium scales a method is presented
to analyze the spatial association between landslides and causal factors, including
those related to structural geology, to select the most appropriate spatial factors for
different landslide types, and combine them using the multivariate methods. For
transportation corridors a method is presented for quantitative hazard and risk
assessment based on a landslide database. Deterministic methods using several
dynamic slope-hydrology and slope stability models have been applied to evaluate
the relation between land use changes and slope stability in a steep watershed. The
paper ends with an overview how the susceptibility maps can be combined with
the landslide databases to convert them into hazard maps which are subsequently
used in (semi) quantitative risk assessment at different scales of analysis, and how
the results can be used in risk reduction planning.

Keywords Landslide inventory � India � Historical landslide data � Object
oriented image classification � Event-based landslide maps � Statistical analysis �
Physical modeling � Hazard assessment � Risk assessment

9.1 Introduction

Landslides are an increasing concern in India due to the ongoing expansion of the
population into hilly terrain (Kuriakose et al. 2009a). Vast areas within India, in
particular the entire Himalayan chain in the North and Eastern part of the country
and the Western Ghats in the Southwest are affected by landslides.

For instance, the densely populated state of Kerala in India is prone to debris
flows due to its geomorphic setting as 40% of it lies in the most prominent
orographic feature of peninsular India, The Western Ghats. The west facing scarps
that runs the entire extent of the Western Ghats mountain chain in Kerala expe-
rience several types of landslides, of which shallow landslides and consequent
debris flows are the most common (Kuriakose et al. 2009b). Many of the roads and
railroads that run through the Himalayas and the Western Ghats (Jaiswal and van
Westen 2009; Sreekumar 2009) are highly prone to landslides. Over the period of
1975–1995, it is estimated that landslides killed about 100 people and rendered
about 600 families homeless along the Western Ghats (Thakur 1996) whilst floods
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and landslides together have caused an estimated damage of 12 billion Euros in
Kerala in 2007 alone (Murali Kumar 2007).

The Geological Survey of India (GSI) has been designated as the nodal agency
for landslide studies by the Government of India. The GSI was established in 1851
though it was only in 1945 that the engineering geology and ground water division
of GSI was created which had landslide investigation as one of its main respon-
sibilities. Since its inception GSI has investigated many disastrous landslides, such
as the Nainital landslide in 1880, the blockade of Birahi Ganga by a massive
rockfall at Gohna in Garhwal in 1893, the Malpa landslide in 1998 and the
Uttarkashi landslide in the 1990s’, just to name a few.

Though there are several site specific studies, spatial landslide hazard and risk
assessment in India has always been hampered by the lack of data. Along the
international border regions of the country including the entire Himalayan range,
the use of topographical maps and aerial photos has been restricted for national
security reasons. Thus, for long the generation of landslide inventory maps faced
significant lacuna. In lieu of aerial photos for large parts of the country, satellite
remote sensing data has become the standard input for landslide mapping. The
National Remote Sensing Center (NRSC) under the Indian Space Research
Organisation (ISRO) has been very active in the use of satellite data for landslide
inventory mapping and susceptibility assessment. High resolution stereo imagery
from satellites such as Cartosat 1 has proven to be very useful for landslide studies
(Vinod Kumar et al. 2006).

In 1998, the Bureau of Indian Standards (BIS) formulated guidelines for
landslide susceptibility zonation on macro scale (1:50,000) for the whole country
(BIS 1998). These guidelines propose an indirect approach to landslide suscepti-
bility mapping based on a generalized heuristic system of fixed weighting or
ranking of geofactors without directly or indirectly considering the landslide
inventory data (Anbalagan 1992; Anbalagan and Singh 1996; Sarkar et al. 2008).
Its’ direct applicability in all the landslide prone regions of the country is a matter
of dispute amongst landslide researchers owing to the wide variability of the geo-
climatic conditions that prevails across the country.

Due to the difficulty in obtaining base maps and multi-temporal landslide
inventory maps, the development of new approaches for landslide hazard and risk
assessment, including the use of spatially distributed physically-based landslide
initiation models, run-out models and statistical models, have always been
impeded in India. In this paper we present the results of the application of some of
these new techniques for landslide inventory, susceptibility mapping and, hazard
and risk assessment as applied to four test sites in different regions of India.

9.2 Study Areas

Figure 9.1 shows the locations of the four test sites. Two of these are located in the
Western Ghats and two in the Himalayas. The test site in Kerala (A in Fig. 9.1) is
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the upper Meenachil River basin upstream of Erattupetta Town. The region is
administratively part of Kottayam and Idukki districts (Fig. 9.2). The area expe-
riences numerous shallow landslides leading to debris flows almost every year
during the monsoon season. Two separate study areas (Fig. 9.2 ) namely Aruvikkal
catchment and Peringalam landslide in the region were selected to test a physically
based dynamic shallow landslide model and a run-out model, respectively. As per
measurements at Pullikanam Tea Estate’s Upper Division, which is the closest long
term rainfall recording station, the region experienced an average annual rainfall of
5315 mm during the period from 1952 to 1999. Underlain by Precambrian
charnockites the region is predominantly covered with shallow sandy soils over a
thin layer of sparolite interleaved by lithomargic clay (Kuriakose et al. 2009c).
Anthropogenic land disturbances in the area started in the late 1880s (Victor 1962).
The predominant land use of the region is rubber plantations, covering an area
3.6 km2. Rubber has an average crop life of 20 years after which the trees have to
be felled, thus exposing the land to the high intensity rainfall until a new set of
saplings are planted and they achieve significant canopy cover. Both for cassava
and rubber planting, slopes are terraced often ignoring ephemeral streams thereby

Fig. 9.1 Location of the test sites in India. a Upper Meenachil River basin. b Nilgiri.
c Okhimath. d Kurseong
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obstructing natural drainage channels that act as conduits for the discharge of
excessive surface flow during high intensity rainfall (Thampi et al. 1998).

The second study area (B in Fig. 9.1) is located in Nilgiri (Tamil Nadu) and
includes a 19 km long historic railway track, which is declared as a world heritage
site by UNESCO and a 26 km long national highway connecting Mettupalayam
and Coonoor in the state of Tamil Nadu in southern India (Fig. 9.2). The railway
was constructed in the late nineteenth century and became operational in 1899.
Both transportation lines run parallel to each other on the southern slopes of the
Nilgiri plateau. The routes are cut through soil and laterite, underlain by char-
nockite and garnetiferrous quartzo-felspatic gneisses belonging to the Charnockite
Group of Archaean age (Seshagiri and Badrinarayanan 1982). The regional strike
of the foliation is ranging from ENE–WSW to E–W direction with moderate to
steep dips. The sub-tropical climate and intense physical and chemical weathering
have resulted in a thick yellowish to reddish brown soil. The regolith thickness
varies from less than one meter to 20 m, as observed in the cut slopes along the
road and railroad. The study area forms a part of the Nilgiri plateau with steep
slopes to the south and gentle slopes to the north and near ridge tops. The area has
an elevation difference of 1641 m with lowest areas near Kallar farm (400 m) and
highest at Kori Betta ridge (2041 m). Most part of the transportation corridor is
either under reserved forest or tea plantation and settlements are very few and
sporadic. Landslides are abundant in the area and occur mostly in cut slopes of the
transportation routes. These are mostly shallow translational debris slides and
flows and are invariably triggered by rainfall (Jaiswal and van Westen 2009).

The third study area (C in Fig. 9.1) is a part of Mandakini river valley in the
High Himalayas, located around the town of Okhimath in the Rudraprayag district
of Uttarakhand state, India (Fig. 9.3). Okhimath is situated at an average elevation
of 1300 m at the confluence of the Mandakini and Madhyamaheshwar rivers. The
Mandakini River is a tributary of the Ganges River. The region has a highly
variable land cover and terrain with elevation ranging from 718 to 4510 m.

Fig. 9.2 Study areas in the Western Ghats. Left: Aruvikkal catchment and Peringalam Landslide.
Right: Nilgiri area
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The northeastern part of the area is perennially snow covered. This area is dom-
inated by low altitude oak forest. The terrain is dominantly steep and rugged with
few flat fluvial terrace areas along the Mandakini River. Since the rugged
topography is controlled by the geological structure, there are many fault-related
south facing escarpments in this area. The northeastern and western parts of the
area are very difficult to access.

The fourth study area (D in Fig. 9.1) is located in Darjeeling district, West Bengal,
within the eastern part of the Himalayas (Fig. 9.3). The eastern Himalayas represent a
complicated geological and tectonic environment, in which rocks are juxtaposed
along certain E–W trending Tertiary regional thrusts. Along the foothills to the south,
coarse to very coarse-grained clastics (conglomerate-sandstone–siltstone) of the so
called Siwalik Group of Tertiary age are exposed and are bordered by a frontal thrust
(Himalayan Foothill Thrust—HFT or Himalayan Frontal Thrust HFT). To the north
these are thrusted over by sandstone-shale (±coal) sequence of the Gondwanas
(Mesozoic) along the Main Boundary Thrust (MBT). Further to the north, low grade
meta-psammo-pelitic lithoassemblagesof thePrecambrianDalingGroupare thrusted
over the Younger Gondwana/Siwalik sediments. And further north in the Middle to
Higher Himalaya, granite gneisses and high-grade meta-sediments belonging to the
Central Crystalline Gneissic Complex (CCGC) are thrusted over the low-grade
metamorphics of the Daling Group along the Main Central Thrust (MCT). The overall
relief difference in the studied area varies from 250 m to as high as 2650 m. The
general trend of the mountain ranges is E–W. A number of NE–SW and NW–SE
trending ridges and spurs are carved out of this trend and form high mountain ranges.
The average rainfall in Darjeeling Himalaya to the west of the Tista River fluctuates
between 2000 mm and 4000 mm. Landslides are perennial problems in Darjeeling
Himalayas during monsoon (June to October) resulting in frequent closures of
important communication corridors, destruction of limitedly-available agricultural
land, house and loss of human life. The earliest recorded landslide event in Darjeeling
Himalayas, India dates back on 24th September 1899, which was triggered by a
1065 mm precipitation (in 3 days) and resulted in devastation in Darjeeling town and

Fig. 9.3 Study areas in the Himalayas. Left Okhimath. Right Kurseong
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its surrounding areas with loss of 72 lives. Since then, this part of the Himalayas has
experienced such comparable devastating landslide events in at least 10 times till
2003, although the intensity and distribution may differ considerably for individual
extreme rainfall events.

9.3 Landslide Inventory Mapping

Landslides are generally isolated natural processes, which individually may not be
of very large in size but can occur with a high frequency in an area (van Westen
et al. 2006). Landslide inventories can be prepared through various methods
(Guzzetti et al. 2000; Hansen 1984; van Westen et al. 2008; Wieczorek 1984) such
as historical archive studies, interviews, detailed geomorphologic fieldwork, and
mapping from remote sensing data and topographic maps. Each of the methods
indicated above has its drawbacks. Due to the lack of sufficient historical infor-
mation on landslides, stereoscopic interpretation of aerial photographs or satellite
images from the past is often used as the main source for obtaining a multi-
temporal landslide inventory (Rib and Liang 1978). Event-based inventories are
prepared just after a prominent triggering event which depicts all slope failures
caused due to that particular triggering event (Carro et al. 2003; Guzzetti et al.
2004; Harp and Jibson 1996).

A landslide inventory contains the location, classification, volume, run-out
distance, date of occurrence and other characteristics of landslides in an area
(Fell et al. 2008). Techniques used to prepare landslide inventory maps depend on
the quality and accessibility of desired information, the scope and the extent of the
study area, the scales of base maps and the resources available to carry out the work.
In this case study an approach is presented to obtain a complete multi-temporal
landslide inventory by interpreting historical records coupled with participatory
mapping. There are different techniques for landslide inventory mapping, three of
which are illustrated in the following sections: using historical data, image inter-
pretation and automatic classification.

9.3.1 Collecting Historical Landslide Information

In the Nilgiri area (B in Fig. 9.1) it was possible to generate a very detailed
landslide inventory based on historical data. The data sources used to obtain
landslide information can be grouped into three main categories:

• Railroad maintenance records such as the railroad maintenance registers (locally
called ‘railway slip register’) and a summary table of landslides along the
railroad. The data were present in an analog (paper) form recorded in a register or
table and maintained by the Southern Railway office at Coonoor. The railway
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slips register is updated soon after the occurrence of a landslide triggering event
and is used for tendering contracts for railroad clearance. It contains data on the
spatial distribution of landslide debris on the railroad for the period since 1992.
The other form of historical records was a summary table of landslides along the
railroad, which provided the spatial distribution of debris on the railroad in
different months and sectors from 1987 to 1991. Landslides prior to 1987 were
also recorded in the form of a landslide table but for the study area older records
were not available in the railway office. The data format and an example of the
type of data available in the records are shown in Fig. 9.4. The records also
provide additional information on damages and the date of restoration of the
railroad for traffic.

• Technical reports such as published and unpublished technical documents of
landslide investigations. Publications on landslides in the Nilgiri area

Fig. 9.4 Different types of data sources and methodology used to prepare landslide inventory
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(e.g., Seshagiri et al. 1982; Ramasamy et al. 2003) provided detailed informa-
tion including the spatial distribution of the landslides during the major events
in 1978 and 1979. In the unpublished technical reports the oldest information
on landslides dates back to 1824. Most of the reports contain information
on detailed geotechnical investigation of the major landslides that have occurred
in the Nilgiri area. Besides, they also contain inventory of landslides that have
affected the road in the period since 1987. Before 1987, no systematic record of
landslides along the road is available with the technical offices. The data format
and type of information extracted from the technical reports along with an
example is shown in Fig. 9.4.

• Non-technical sources such as internet (NDM 2009), newspapers, and inter-
views with local people. They provided additional information on the date of
occurrence and damages caused by landslides. Interviews with local people have
helped in estimating the indirect economic loss resulting from road blockages.

The landslide characteristics was compiled in standardized forms, and rear-
ranged based on the location description. This data formed the basis for field
mapping where all the landslide dates related to one specific location was listed in a
tabular form. All landslide sites reported in the historic archives were visited and an
attempt was made to identify the landslide scars. Some of the landslide scars and
run-out areas were not clearly discernable due to the removal of debris and remedial
works. During the field work, local residents were interviewed and questions were
asked pertaining to their livelihood, and any information regarding landslides and
damages. For example, during the field mapping, an old worker from the railway
office has helped in locating older landslides based on the clearance work that he
had carried out. After identifying the exact location of a landslide it was then
mapped on a 1:10,000 scale topographic map and its initiation (source) and run-out
area were separately marked. The morphological parameters were plotted after
measuring them in the field. Additional data such as type of landslide, run-out
distance, present land use and land cover, probable cause, regolith thickness, and
damage details were also added to the inventory. The mapped landslides were
digitized as polygons or points and entered in a geo-database of ArcGIS. Separate
layers were prepared for the landslides associated with cut slopes and natural
slopes. The smaller landslides were digitized as points in a separate layer. A unique
identification number (ID) was assigned to each landslide (polygon or point), which
provided a link between the spatial and non-spatial attributes.

In total 1040 landslides were compiled from the historical records and field
work within a 22 km2 area. The inventory was nearly complete for the period
1987–2007. Landslides were triggered on 116 different dates. From the total of
1040 landslides, 643 landslides (62%) were obtained from the railway slips reg-
ister, 259 (24%) from the landslide summary table along the railroad, 132 from
technical reports and six from the other sources. Through field mapping it was
possible to identify 67% of the compiled landslides. Some of the smaller landslides
were not identifiable in the field due to possible reactivations which have oblit-
erated the earlier morphology. The volume of these small landslides was therefore
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taken directly from the original source data. Since they were small and located
along the road or the railroad, it was presumed that most of the released material
from these landslides was accumulated on the road and the railroad. Therefore, the
measured volume from the maintenance records was considered a good repre-
sentation of the size of these landslides. Landslides were classified as debris slide
and debris flowslide following the classification proposed by Cruden and Varnes
(1996). Landslides initiating as slide and then converting to flow under saturated
condition were grouped under ‘debris flowslide’. About 97% of the landslides
were debris slides. Most of these were shallow translational with a depth of the slip
plane less than 5 m. Only three landslides were found to have a depth of more than
5 m. The landslides are further regrouped into cut slope and natural slope failures
based on the location of their source area. Most of the landslides (96%) were
recorded in cut slopes. Smaller landslides in the cut slopes were found to have a
short run-out as the road and the railroad acts as a platform for the accumulation of
the debris. In terms of the volume of material displaced, most of these landslides
(91%) lie within the range of 2–500 m3.

The landslide distribution map is shown in Fig. 9.5. At some places
(e.g., Fig. 9.5b) the railroad has cut slopes on both sides. The cut slopes on the
valley side act as a barrier and prevent landslide debris moving downslope. All the
debris falling from the slopes accumulates on the railroad. The annual distribution
of recorded landslides in the past 21 years is shown in Fig. 9.5e. Landslides occur
annually in the area (except in 1995) with an average rate of 20 landslides per year.
At some locations the same slope is affected by landslides in different periods
(e.g., Fig. 9.5c, d). On November 14, 2006 about 205 landslides occurred mostly
in the eastern part of the area. This occurrence corresponds to high intensity
rainfall (150 mm rainfall in 3 h). In terms of the monthly distribution of recorded
landslides, November is the severest month (Fig. 9.5f) containing 58% of the
landslides. This month also receives the highest rainfall each year due to the
retreating monsoon.

Interpretation of historical data pertaining to the Nilgiri area was carried out for
generating a complete multi-temporal landslide inventory. An inventory remains
incomplete when location references of landslides are not available, and in most
cases features left by landslides cannot be recognized in the field or through the
interpretation of aerial photographs, as they are often obscured by erosion, veg-
etation and human interferences. In literature there is no unique measure of
completeness of an inventory, but if an inventory is prepared soon after the trig-
gering event then there is a greater possibility of recording all landslides in an area.
For the study area a similar inventory was available in the form of a railroad
maintenance archive. It is updated soon after the occurrence of a landslide trig-
gering event and is used for tendering contracts for railroad clearance. Com-
pleteness of an inventory can also be tested by studying the magnitude-frequency
relation of landslides. In most cases, the structure of the magnitude-frequency
relationships were found to have a power law distribution over two orders of
magnitude (landslide area) with a flattening of the curve at lower magnitudes,
termed as ‘rollover’. This rollover or less frequent occurrence of smaller landslides
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is debated as a real effect reflecting slope stability processes (Guthrie and Evans
2004) or due to the incompleteness of the inventory (Malamud et al. 2004). For the
study area magnitude-frequency analysis was also performed and the structure
showed a power law distribution with b equals -1.6259 for all landslides with
volume ranging from two to more than 104 m3. For the same dataset, the proba-
bility distribution for landslide area also showed power law structure with b equals
-1.6764. The power function obtained from this study did not show any rollover
effect, implying that the inventory did not suffer from the under-sampling of small
landslides and thus is practically complete (Catani et al. 2005; Malamud et al.
2004).

Fig. 9.5 a Landslide inventory map. b Sketch of the railway having cuts lopes on both sides.
c Sketch showing landslides in different years in one slope. d Field photograph of landslides in
cut slope at Katteri. e Distribution of landslides over the past 21 years. f Annual distribution of
landslides
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9.3.2 Mapping Landslides from Multi-Temporal Images

In order to be able to express the spatial and temporal probability of landslides in
regional hazard maps, it is important to know the location characteristics of the
landslides and their behavior through time. One of the techniques used to generate
such maps following a combined heuristic/statistical method is to generate multi-
temporal landslide maps, linking the landslides to triggering events and use the
temporal probability of the event in the hazard assessment combined with the
spatial probability resulting from the statistical analysis. The success of generating
event-based multi-temporal landslide inventories through stereoscopic interpreta-
tion of images/aerial photographs from different time periods depends on several
factors. First of all the terrain characteristics, combined with the types and volume
of landslides determine the period over which landslides that have occurred will
still be recognizable in imagery of a later date. For instance, landslide will quickly
become obliterated by vegetation in tropical environments, requiring many images
with short time intervals in order to be able to map them. Secondly, the relation
between triggering events, such as rainfall or earthquakes, and the landslides
caused by these, can only be mapped if imagery is taken shortly after the triggering
event. Thirdly the image interpretation skills of the geoscientists that make the
image interpretation are important. Although well-trained and experienced geo-
scientists can make a good interpretation of recent landslides, they will have more
difficulty in characterizing old and dormant ones (Carrara 1993). Errors in esti-
mating the dimensions of landslides do exist due to inaccurate base maps (Mal-
amud et al. 2004). Through time, multiple small slope failures may merge into
larger landslides causing problems in the analysis of the frequency–magnitude
statistics of landslides. Furthermore, for many of the mapped landslides, the exact
date of occurrence remains unknown, thus making it difficult to relate such
landslides with triggering events, especially as different landslide types have dif-
ferent relations with the meteorological triggers. In some situation, the post-event
maps were even not prepared or no detailed information on such event-based
landslides is available. The lack of such temporal information (exact date of
occurrence) in landslide inventories, and incompleteness of past landslide infor-
mation adds to serious bottlenecks in the determination of temporal probability
and therefore pose difficulties in quantitative hazard assessment (van Westen et al.
2006).

The landslides were mapped using various data sources of 1968–2007 in a
highly landslide-prone area around Kurseong in Darjeeling Himalaya, India
(D in Fig. 9.1). The first step of generation of a multi-temporal landslide inventory
was the collection of all available data on past landslide occurrences, such as,
spatial data from high resolution satellite images, topographic sheets, old landslide
maps and reports of field investigations and old aerial photographs. For this study,
the oldest available data was of 1968. In that year, a major rainfall event occurred
in Darjeeling Himalaya between 2 and 5 October with an amount of 1100 mm in
3 days, which caused a large number of landslides in different parts of Darjeeling
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Himalayas (Basu and De 2003). During 1969–70, just after the event of 1968, the
Survey of India (SOI) updated their topographic survey and prepared new 1:25,000
topographic maps. In these topographic maps, the locations of prominent and
active landslides from 1968 were included. The next available data source is a
field-based landslide inventory map of 1993 prepared by the Geological Survey of
India (GSI) just after a landslide event that happened between 1 and 3 July, 1993
(Sengupta 1995). Unfortunately the field map of 1993 only covered the south-
eastern part of the study area (56 km2). The third data source represents another
event-based landslide inventory map prepared by the Geological Survey through
field investigations just after a prominent landslide event occurring between 6 and
8 July, 1998. Also this landslide inventory map covers only a part (central portion
*20 km2) of the entire study area, along a major communication corridor
(NH-55) and around Kurseong town (Bhattacharya et al. 1998). Apart from these
maps, high resolution satellite images namely, IRS 1D-PAN merged LISS III
image (5.8 m resolution) of 2002, IRS P6-LISS IV MX image (5.8 m resolution)
of 2004 and Cartosat 1 stereo pair (2.5 m resolution) of 2006 were also available.
These were used together with a digital elevation model to produce stereoscopic
images that were interpreted visually to map the landslide incidences from each set
of imagery. The last data source used was a detailed fieldwork carried out in 2007,

Fig. 9.6 Multi-temporal landslide inventory map of Kurseong area, Darjeeling Himalaya, India
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which allowed distinguishing the landslides that happened as a result of a rainfall
event in 2007. Apart from the 1968, 1993, 1998, 2003 and 2007 event landslides,
none of the data sources contained information on the exact dates of the landslide
events, and thus, for some inventory maps; we could only attach a time period and
not an exact date or year of the event.

All the spatial data were projected to UTM; WGS 84; 45N and the landslides
were digitized as polygons. The landslides mapped were further updated and
verified through extensive field observations in 2007–2008. During the field
investigation in 2007 a more recent, post-event (July and September 2007) land-
slide map was prepared and added to the inventory database. The resulting map is
shown in Fig. 9.6.

Despite constraints in the source database and the resultant inventories, we
could compare in a GIS, the spatial locations of landslides of different time periods
to know the frequency and pattern of new and reactivated landslides. Apart from
the above, an analysis of landslide area percentage within different topographic
slope units using inventories of different periods can also be observed to study the
spatio-temporal changes in landslide distribution (Fig. 9.7). This inventory data-
base can also suitably be used for the quantitative hazard analysis through iden-
tification of the recurrence interval of triggering events through multivariate
modeling (Ghosh et al. 2009a) and by quantitative prediction of the probability of
occurrences of landslides of different dimensions.

Fig. 9.7 Spatio-temporal variation of landslide area percentage from 1968 to 2007
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9.3.3 Automatic Landslide Mapping from Satellite Images

Aerial photo interpretation and field investigation are the traditional techniques for
landslide mapping. Stereo-images are not only useful for the derivation of height
information but also for landslide inventory mapping as it provides a 3-dimen-
sional visualization opportunity. With the availability of high quality data products
from new generation high resolution satellites and advancement in image pro-
cessing techniques, satellite images are being increasingly used for landslide
mapping. The main advantages of landslide mapping from remote sensing images
are the synopticity, repetivity and sensor agility. The multi temporal images can be
used to prepare a landslide activity map.

Based on the landslide diagnostic criteria, an expert prepares landslide inventory
map from remote sensing images by visual interpretation. These diagnostic criteria
can be effectively incorporated in a pixel or object based classification technique to
automatically detect landslides. This helps in getting the result faster and the
methodology is repeatable. Other remote sensing approaches of landslide inventory
mapping include shaded relief images produced from Light Detection and Ranging
(LiDAR) DEM and Synthetic Aperture Radar (SAR) interferometry. Detection of
landslides include recognition and classification (Mantovani et al. 1996). One of the
common methods in automated landslide mapping is change detection. In this
method, time series data of an area are analysed to detect any change in the state of a
matter e.g., landslide. Seven different categories of change detection techniques,
their application and selection of the most suitable method have been summarized by
Lu et al. (2004). Although difficult, spectrally similar matters such as bare rock and
soil were successfully differentiated from landslides using the Maximum Likelihood
Classification (MLC) method by Nichol and Wong (2005) using medium resolution
SPOT data. Landslide crowns and trails as small as 7–10 m width were detected in
the SPOT change images, and 70% classification accuracy achieved compared with
an existing landslide inventory in the area. This method holds well if there is a clear
spectral heterogeneity between landslide and its’ surroundings e.g., landslides
occurring in woodland. Merging of multispectral data with better resolution pan-
chromatic data using image fusion techniques enhances the interpretability of the
image and enables mapping of small landslides. Nichol and Wong (2005) applied
different image fusion techniques to IKONOS data and found that PAN sharpening
technique provides the best result and the fused image is useful for mapping very
small landslides.

To overcome the limitations of pixel based methods, other researchers have
attempted to use a combination of both satellite imagery and digital elevation
models (DEMs) (e.g., Giles and Franklin 1998; McDermid and Franklin 1994).
McDermid and Franklin (1994) noted that, in many cases, per pixel reflectance
patterns are unrelated to geomorphic processes, and that classification schemes
based on these data would fail. They suggested that a combination of geomor-
phometric criteria as well as spectral data would yield better results in identifying
mass movement features. The automated landslide inventory mapping by image
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segmentation technique using high resolution satellite data and DEMs will not
only save time but also add a new dimension in further refinement of hazard
assessment techniques by rapidly mapping the inventories after any triggering
event on routine basis. Image segmentation is a preliminary step in object-oriented
image classification that divides the image pixels into homogeneous, contiguous
objects based on scale, colour, shape, compactness and smoothness. Object-ori-
ented classification was introduced in the 1970s (De Kok et al. 1999). The initial
application was limited by hardware, software, poor resolution of images and
interpretation theories (Flanders et al. 2003). Since the mid-1990s, with an
increase in hardware capability and availability of high spatial resolution images,
the demand for object-oriented analysis has also increased (De Kok et al. 1999).
Object based classification is superior to per-pixel classification (Blaschke and
Strobl 2001). Segmentation of pixels into objects provides opportunity to apply
geographical and morphological concepts to subsequent image processing such as
classification. Thus it provides an information rich environment to work within
any application domain. Object-oriented classification is potentially of great value
in the detection of landslide scars because it allows spatial characteristics, such as
the length to width ratio, to be included as class discriminators. So far the image
segmentation approach has been restricted to landslides larger than 1 ha due to
limitations in spatial resolution (Barlow et al. 2003). But with the availability high
resolution satellite data (Table 9.1) there is a scope to identify even smaller
landslides (100 m2). The recognition and classification of individual process types
(Cruden and Varnes 1996) using an automated approach has been less successful
(Barlow et al. 2003). However, this limitation can be overcome by the use of
curvature from DTM in the object based classification. Initially, spectral infor-
mation with a suitable scale parameter was used to segment an image which
produced image objects adequate to define the landslide boundary (Fig. 9.8).
NDVI was used to separate landslides and its false positives from others. Subse-
quently, using morphometric parameters such as slope and flow direction, shape
parameters such as compactness and asymmetry, and spectral parameters such as
layer mean and ratios, the false positives were sequentially eliminated (Fig. 9.8a)
and the remaining are the landslides. Based on the adjacency conditions such as
high relative border to rocky land or weathered zone, a landslide was classified as a
rock slide or debris slide, respectively. After landslides were classified based on
material, the landslide objects were resegmented using the curvature data
(Fig. 9.8c). A positive value for curvature indicates that landslide surface was
convex upwards and negative value indicates that it was concave upwards. These
criteria were used to classify landslides on the basis of the failure mechanism i.e.
rotational and translational. Thus, using the object based classification method
landslides were recognized and classified from remote sensing data and DEM.

The initial results indicate that a combination of high resolution satellite data
and DEM is useful to prepare a landslide inventory map automatically. Object
based detection is more promising in comparison to pixel based detection of
landslides. This method is very helpful for rapid damage assessment and decision
making process.
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9.4 Landslide Hazard Assessment Approaches

Once landslide inventories have been made using one of the techniques presented
above they can be used in different ways for landslide hazard assessment. In this
section several methods are presented: direct hazard calculation based on complete
landslide records, statistical analysis and dynamic modeling. An overview of
the approaches and their applicability at different scales is given by Guidelines of the
Technical Committee on landslides and Engineered Slopes, JTC-1 (Fell et al. 2008).

9.4.1 Direct Hazard Estimation Along Transportation Routes

In this section we present the options that can be used to quantify landslide hazard
if a complete inventory is available. Here we used the earlier described complete

Fig. 9.8 Results of image segmentation and object based classification for landslides using
IRS-P6 LISS-IV Mx images and Cartosat-1 derived DTM. a Multiresolution segmentation with
scale parameter as 10. Yellow outline shows landslides. b Landslide objec landslide objects
classified based on material type and merged to give a single outline (yellow colour) to each
landslide. c Resegmentation of landslide objects using curvature layer. d Classification of
landslides using curvature value to rotational (cyan outline) and translational (yellow outline)
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multi-temporal landslide inventory prepared for the study area in Nilgiri hills
(B in Fig. 9.1). Landslide hazard studies along a transportation line (road or
railroad) focus on the landslides that may directly affect the infrastructure. The
method requires assessment of two essential parameters:

1. The probability that a landslide affecting the infrastructure are of a given
magnitude, and

2. The total number of landslides per kilometer affecting the infrastructure in a
given return period.

In literature no established classification for landslide magnitude is available
(Guzzetti et al. 2002). Some researchers have used landslide area or volume as a
proxy for magnitude, for certain landslide types such as slides or flows (Guzzetti
et al. 2005). In this study, a different landslide magnitude class is proposed. The
landslides in the study area were grouped into five magnitude classes ranging from
I (less severe) to V (catastrophic). The classification is essentially based on
landslide type and volume, but it also addresses other characteristics such as the
location of the source, damage potential and human perception about the risk
related to landslides. The classification is semi-quantitative and derived on the
basis of the historical information obtained during the inventory mapping
(Table 9.1). The probability that a landslide affecting the infrastructure is of a
given magnitude class was estimated using magnitude-frequency relationships.
The probability was obtained from the probability density, for which a scatter plot
was generated with landslide volume (in m3) on the x-axis and probability density
on the y-axis. The probability density function of landslide volume was found to
have a good correlation with a power law distribution of type:

p VLð Þ ¼ k VLð Þ�b ð1Þ

where k is a constant and b is the power-law scaling exponent. Annual probability
of landslide occurrence can be estimated from the observation of the frequency of
past landslide events. The method generally used for estimating probability is by
determining the annual exceedance probability (AEP), which is the estimated
probability that an event will be exceeded in any year (Fell et al. 2005). The
Poisson and Binomial distribution models are the two most commonly used
models for such analysis (e.g., Coe et al. 2004; Guzzetti et al. 2005). The esti-
mation of landslide risk, particularly indirect risk resulting from the blockage of
transportation line, requires estimation of the number of landslides reaching the
infrastructure per annum. The above model provides estimate of probability of
experiencing one or more landslides and not the specific number of landslides. The
number of landslides is required to calculate the blockage period based on
clearance time needed per cubic meter of debris. The relation between the annual
probability of occurrence of landslides (or return period) and the number of
landslides of a magnitude class per kilometer can be established using a Gumbel
extreme value distribution (Gumbel 1958).

9 Landslide Inventory, Hazard and Risk Assessment in India 257



For this study the annual probability was estimated from the total number of
landslides per section of a transportation line in one year. The total number of
landslides in a year per section of the transportation lines was selected from the
inventory covering 21 years from 1987 to 2007. The yearly values were ranked
from low to high, such that lowest rank 1 was assigned to the lowest data value and
the highest rank 21 to the highest data value. At each section of the road and the
railroad the expected number of landslides in 1, 3, 5, 15, 25 and 50 years return
period were estimated. The Gumbel’s distribution allows estimating the proba-
bility for return periods of 100 years or even more depending on the total length of
the data. But, as a general rule, frequency analysis should be limited to expected
events within a period twice the record length. In this study we estimated prob-
ability only up to 50 years return period, which is slightly more than twice the
record length available for the study.

After obtaining all the relevant information such as the probability and mag-
nitude of the landslide reaching the transportation line, the total number of land-
slides affecting the infrastructure in a given return period and its annual
probability, the quantitative landslide hazard assessment was conducted for dif-
ferent sections of the transportation line. The landslide hazard, expressed as the
number of landslides of a given magnitude per kilometer of the transportation line
in a given return period, was calculated by multiplying the total number of
landslides with the probability that the landslides are of a given of magnitude. The
hazard estimation can be performed for a number of scenarios using different
combination of landslide magnitude class and return period. For this study 24
scenarios were generated using four magnitude classes and six return periods.

Along the railroad Gumbel’s analysis was carried out for segments of one
kilometer thereby producing 19 Gumbel’s plots for the total 19 km railroad.
During the period from 1987 to 2007, the entire railroad was affected by 898
landslides of which the lowest was recorded in the vicinity of the kilometer stone
number (ksn hereafter) 26 (14 landslides) and the highest around ksn-12 (101
landslides). During the same period the road was affected by 124 landslides with
an average of 4.76 landslides per kilometer. The frequency of landslides in a year
for different return intervals along the railroad line is shown in Fig. 9.9. A five
kilometer stretch (from ksn-9 to ksn-13) is relatively more prone to be hit by
landslides, as is the 10 km section (from ksn-390 to ksn-399) along the road.

Landslide hazard was estimated for 24 scenarios using the combination of four
magnitude classes (class I–IV) and six return periods (1, 3, 5, 15, 25 and 50 years).
An example of the scenario with 50 years return period along the railroad is given
in Table 9.2. The results indicate that on an average once in 50 years (annual
probability of 0.02) the entire railroad will be affected by 164, 56, 6, and 0.5
landslides of magnitude class I, II, III and IV, and the road by 5, 2, 0.2, 0.02
landslides of these classes.

The study showed that a direct landslide hazard assessment can be carried out if
a complete landslide inventory is available. Hazard estimation in terms of number
of landslides per kilometer and per year is possible only if the rate of occurrence of
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landslides is known and for such analysis continuous records of landslide inci-
dences over a period of time is required. Any gap in the record may result in the
over or underestimation of the probability. The Gumbel’s distribution used in this

Fig. 9.9 Frequency of landslides in a year for different return periods along the railroad

Table 9.2 Landslide hazard
along the railroad in 50 years
return period

Kilometer
stone number

Total number of landslides of different
magnitude class that can occur in a year

km I II III IV

8 9.31 3.20 0.34 0.03
9 12.25 4.21 0.44 0.03
10 15.26 5.24 0.55 0.04
11 18.68 6.42 0.67 0.05
12 16.56 5.69 0.60 0.05
13 13.15 4.52 0.47 0.04
14 8.79 3.02 0.32 0.02
15 8.82 3.03 0.32 0.02
16 7.67 2.64 0.28 0.02
17 7.03 2.42 0.25 0.02
18 6.14 2.11 0.22 0.02
19 5.09 1.75 0.18 0.01
20 4.74 1.63 0.17 0.01
21 5.10 1.75 0.18 0.01
22 6.22 2.14 0.22 0.02
23 5.03 1.73 0.18 0.01
24 5.10 1.75 0.18 0.01
25 4.62 1.59 0.17 0.01
26 4.01 1.38 0.14 0.01

Total 163.56 56.18 5.89 0.45
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study is very appropriate in modeling extreme events such as incidences of large
number of landslides. It helps in establishing a relation between the return period
and number of landslides. The inclusion of the proposed magnitude class in the
hazard assessment will help in analyzing the phenomena both in terms of risk to
life and property. Ideally it should be quantified based on absolute values of
landslide velocity, its intensity, its peak discharge, etc. But such parameters are
very site specific and vary with local conditions such as channel geometry, terrain
roughness, and land use, etc. and thus difficult to obtain and integrate in the hazard
map. Due to this limitation and the complexity of landslide phenomena, the pro-
posed classification is considered the most pragmatic solution. For the risk anal-
ysis, hazard assessment based on the number of landslides expected to hit per
kilometer in a given return period is a workable solution. The assessment of direct
and indirect risk becomes possible once the total volume of the expected landslide
material is known.

9.4.2 Rock Failure Modeling Using Gis

Many of the landslides in the Himalayas are rock slides, or are in weathering soil
with a clear structural control. Structure represents nature and extent of discon-
tinuity in the rock mass. For rock slides, since failure propagates along a near-
planar surface (planar) or triggered along the intersection of two planes (wedge),
presence/absence of any planar discontinuity, its nature, extent, orientation and
frequency of occurrence in relation to topography are crucial deciding geofactors.
The principle attributes considered in the rock structure are (i) blockiness or
degree of rock dissection, (ii) geometric shape, orientation and form of the blocks
and fragments and (iii) degree of looseness of the potentially unfavourable rock
mass (Varnes and IAEG Commission on Landslides and other Mass-Movements
1984). Apart from the effect of predominance in the concentration of joints, faults
and shears, locally, the geometric or kinematic interrelationships between the
attitudes of bedding/foliation/joint planes and topography could be pivotal in
deciding the mode of movement of rock slides (Briggs 1974; Günther et al. 2004;
Hocking 1976; Hoek and Bray 1981; Meentemeyer and Moody 2000).

To determine the unfavourable discontinuity-topography/structure domains, we
mapped different topographic segments after establishing the geometric interre-
lationships of the orientations between topography and prominent discontinuity
surface following the classification proposed by Meentemeyer and Moody (2000).
For the calculation of the angular interrelationship, raster maps of topographic
slope (S: 0–90�), topographic aspect (A: 0–360�), discontinuity dip (h: 0–90�) and
discontinuity dip direction (a: 00–360�) were used. Slope and Aspect maps were
directly derived from the 10 m 9 10 m DEM. Dip and dip direction raster maps of
prominent discontinuities were generated through interpolation (Inverse Distance
Weighted) of discrete dip/dip direction values of foliation planes, measured at
different point locations. After this, structure domains (Fig. 9.10) were derived by
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combining the above four raster maps and calculating their angular relationships.
This map can be used as a predictor maps in susceptibility assessment.

Different rock slide failure mechanisms can also be successfully identified spatially
by studying the kinematic interrelationships between the attitudes of distributed
bedding/foliation/joint planes and topography through spatial correlation (Günther
et al. 2004), which follows the criterion suggested by Hoek and Bray (1981).

The RSS-GIS extension of ArcView� 3.X is one of the very few software
capable of automated spatial analysis with distributed rock structure data in a GIS
platform (Günther 2005). This package was applied in the Kurseong study area
(D in Fig. 9.11) to delineate the wedge and planar failure modes. The best
approach would be to parameterize all these structure domains per failure mech-
anism spatially and utilize them for the detailed quantitative rock slope suscep-
tibility analysis.

Fig. 9.10 Map showing different structure domains of Kurseong (D in Fig. 9.1)
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9.4.3 Multivariate Statistical Analysis

Landslide susceptibility can quantitatively be determined by a number of statistical
and mathematical methods in a GIS using spatial relations of landslides and their
relevant causal predictors. Amongst these, multivariate quantitative methods such
as discriminant analysis (Carrara et al. 1991) and logistic regression (Mark and
Ellen 1995) have proven to lead to better prediction results than other statistical
methods, although the interpretation of the contribution of each causal parameter is
less straightforward. Several multivariate susceptibility methods are available
however there exists considerable difference between the scope of these methods
and the usability of produced susceptibility maps (Aleotti and Chowdhury 1999;
Brabb 1984; Chung and Fabbri 2008; Guzzetti et al. 1999; Soeters and van Westen
1996; van Westen et al. 1997). Thus, to ensure the quality of any quantitative
prediction cross validation is necessary, which is best done by separating the

Fig. 9.11 Preliminary results of the application of RSS-GIS in Kurseong area, Darjeeling
district, India. a Planar failure modes caused by prominent foliation orientation. b Planar failure
modes caused by one prominent joint plane. c Wedge failure modes caused by foliation and joint
plane and d Combination of all failure modes (Black polygons are rock slides of 1968–2007)
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landslide population into two independent groups—one for model calibration/
training and the other for validation (Chung and Fabbri 1999, 2008; Chung 2003).

Multivariate statistical analysis of landslide susceptibility was carried out for
the Kurseong area, where both logistic regression (LR) and discriminant analysis
(DA) were applied. For this study, 342 shallow translational rock slides of pre-
2004 period were used as the training data and 183 rock slides of 2004–2007
periods were used for cross-validation. Multivariate model calibration with such
landslide data was carried out through establishing the multivariate spatial sig-
nature of different causal parameters/geofactors as relevant independent/explana-
tory/predictor variables in each terrain mapping unit against the presence or
absence of calibrating landslides as grouping or dependent variables. In the study
area, 1126 slope units were used as terrain mapping unit, which were semi-
automatically derived through sub-division of the terrain into different small
hydrological subunits. For this subdivision, digital topographic information from a
10 m 9 10 m digital elevation model (DEM) was used along with ridge lines and
drainages. This type of terrain sub-division has been successfully implemented by
a number of authors in for predicting new landslides (Cardinali et al. 2002; Carrara
1999; Galli et al. 2008; Guzzetti et al. 2006; Van Den Eeckhaut et al. 2009).

Density of landslides in each of the slope units (1126) was calculated using the
pre-2003 landslide inventory. The slope units (855) with landslide density [2%
was considered as landslide prone and the rest (271) were grouped as landslide
free. Nine relevant causal geofactor maps comprising different morphometric and
geo-environmental parameters were used as explanatory variables. These include
slope material, structure, geomorphology, land use, fracture density and aspect as
categorical variables and minimum, maximum, range, mean and standard devia-
tion of elevation, slope, rainfall, wetness index, curvature as continuous variables.
The categorical explanatory variables were converted to their continuous equiv-
alents by calculating the cumulative area percentage of each geofactor class for
each mapping unit (slope unit).

The application of the DA and LR methods for rock slides resulted in an overall
model classification of slope units (both landslide-bearing and non-landslide-
bearing slope units) of 76.5% (Table 9.3) and 81.2% (Table 9.4) respectively with
a receiver operator characteristic (ROC) area of 0.82 and 0.84 respectively. The
resultant maps are shown in Fig. 9.12 and the ROC curves in Fig. 9.13. Both
susceptibility maps shows moderate to high rate of goodness-of-model-fit and
prediction, though, the performance of LR is comparatively better than the DA

Table 9.3 Contingency table (rock slides—discriminant analysis, 76.5% original grouped cases
classified)

Observed Non-landslide
slope units

Landslide
slope units

Total

Count Non-landslide slope units 667 188 855
Landslide slope units 77 194 271

% Non-landslide slope units 78.0 22.0 100
Landslide slope units 28.4 71.6 100
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Table 9.4 Contingency table (rock slides—logistic regression, 81.2% original grouped cases
classified)

Observed Non-landslide
slope units

Landslide
slope units

Total

Count Non-landslide slope units 800 55 855
Landslide slope units 157 114 271

% Non-landslide slope units 93.6 6.4 100
Landslide slope units 57.9 42.1 100

Fig. 9.12 Susceptibility maps generated using Discriminant Analysis (left) and logistic regres-
sion (right)

Fig. 9.13 Success and prediction rate curves. Left Discriminant analysis. Right Logistic
regression
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model. With the DA model only 23% of the landslides in the validation data set
could be explained, while using the LR 72–73% of the landslides in the validation
data could be explained.

This research was a joint effort with researchers from IRPI, CNR, Italy. The
multivariate statistical models used were either those readily available in SPSS 4.0�

or R-scripts developed at IRPI CNR Perugia (IRPI CNR 2009). The preliminary
results were presented by Ghosh et al. (2009b) in the European Geosciences Union
General Assembly 2009.

9.4.4 Physical modeling of landslide initiation and runout

Physically-based spatial modelling of landslide hazard necessitates the processes to
be mathematically abstracted based on the known universal laws of physics (Davies
1992). The hazard area entails the three major chronological phases (Fig. 9.14): the
initiation zone, transportation path and deposition fan (Chen and Lee 2004).
Modelling this sequential chain of events by integrating the various governing
equations into one model is complicated. This is due to the fact that the varying
temporal and spatial scales of these processes will cause multi-dimensional
uncertainties that cannot be quantitatively accounted. Hence, landslide initiation is
modelled independent of landslide run-out; the run-out accounts for both trans-
portation and deposition.

Physically-based models can be static or dynamic. Static models consider
landslides in its stable state and seek to determine which stimuli caused the
instability (Bromhead 1996). Dynamic models are capable to run forward in time,
using rules of cause and effect to simulate temporal changes in the landscape

Fig. 9.14 Chronological phases and processes in shallow landslides and consequent debris flows
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(Karssenberg 2002). A dynamic landslide hazard model addresses the spatial and
temporal variation of landslide initiation (Brooks et al. 2004; van Beek and van
Asch 2004) or runout (Cannon and Savage 1988; Rickenmann 2005). Even though
physically-based models do not necessarily demand long term data, availability of
such data can improve model calibration significantly. However, such models
demand high spatial resolution and measurement precision for accurate predictions.
With the increasing trend of quantitative studies in geomorphology, application of
such models has substantial increased in the last two decades. Such models are
valuable tools for quantitatively assessing the influence of various parameters
contributing to the initiation (Kuriakose et al. 2009c) and runout of landslides.

9.4.5 The Models

There are several physically-based spatial models capable of modelling the
landslide initiation and runout, though attempts to adopt them to Indian conditions
are limited. This article illustrates the application of a physically-based dynamic
slope hydrology coupled slope stability model [STARWARS ? PROBSTAB
(Storage and Redistribution of Water on Agricultural and Re-vegetated
Slopes ? Probability of Stability) (van Beek 2002)] and a runout model [Mass-
Mov 2D (Begueria et al. 2009)] in a landslide prone region in the Western Ghats of
Kerala, India. STARWARS ? PROBSTAB was developed by van Beek (2002).
They comprise a distributed dynamic hydrological model (STARWARS) that is
coupled to a stability model (PROBSTAB). The dynamic spatial outputs of the
hydrological model are the inputs for the slope stability model. An added
advantage of the models is that its open architecture allows modification of the
model script and thereby enables different parameterizations appropriate for the
study area. Both the models are embedded in PCRaster, a GIS with an advanced
Environmental Modelling Language (www.pcraster.nl).

STARWARS was originally designed to evaluate the effects of vegetation on
hillslope hydrology in SE Spain. Soil hydrological properties can be assigned to
specific land use types and the model originally included the processes of
interception and evapotranspiration. The amount of actual evapotranspiration is
scaled to the available storage and FAO crop factors (Doorenbos and Pruitt
1977). It contains a detailed description of the unsaturated zone that is present in
the soil mantle over a semi-impervious lithic contact, which in this case is the
Charnockites. The soil profile is subdivided into three layers that can be inter-
preted as the A, B and C horizons. Percolation of soil moisture is driven by
gravity and depends on the unsaturated hydraulic conductivity which is pre-
scribed by the soil water retention curve of Farrel and Larson (1972) and the
unsaturated hydraulic conductivity relationship of Millington and Quirk (1959).
At the lower end of the soil mantle, the percolation into the underlying bedrock
is impeded and a perched water table may form. The resulting perched water
table will drain laterally according to the gradient of the phreatic surface. All

266 C. J. van Westen et al.

http://www.pcraster.nl


unsaturated fluxes are considered to be vertical only. PROBSTAB is based on
the infinite slope model and as such is valid for translational slides (Skempton
and DeLory 1957). This is consistent with the type of failures in the study area.
PROBSTAB calculates Factor of Safety for the entire soil column (FOS), and if
required the depth of failure (ZF), based on the daily variation of water level and
volumetric moisture content, which are the outputs of STARWARS. In addition,
PROBSTAB uses the matric suction to calculate the unsaturated shear strength
when a perched water table is absent using Fredlund’s (1987) equation and it
includes the mechanical effects of root reinforcement and surcharge on slope
stability. Hence the calculated stability varies on a day-to-day basis with the
hydrological input. The model is also capable of accounting for the probability
of failure (PF). Probability of failure was obtained using the first-order second
moment (FOSM) approach (Ang and Tang 1984) which takes into account the
uncertainty in the estimation of the mechanical effects of vegetation, shear
strength parameters, soil depth and slope angle. FOSM method necessitates the
assumption of a normal curve. The curve is implemented in the model with the
first standard deviation on the positive and negative side for a given parameter.
This draws from the assumption that by using the first standard deviation on
either sides of the curve, 66.6% of the total possible variation of the parameter is
captured. This is also a direct indicator of the sensitivity of the model to the
parameter and thus can also partially address the issue of uncertainty in
parameter estimation.

Owing to the data poor situation some modifications to the models and their
dependency were made. For example, the model was modified to account for
root-induced cohesion and surcharge that were not originally considered by van
Beek (2002). Potential evapotranspiration (PET) was calculated outside the
model environment using Hargreave’s equation (Hargreaves and Samani 1982)
which is less data demanding than the Penman’s equation (Penman 1948)
originally used by van Beek (2002). Interception was computed by means of
‘‘Aston’s (1979)’’ equation (Eq. 1), and throughfall and evapotranspiration of the
canopy storage was addressed outside the model environment. A detailed
description of these modifications, calibration and application of the model in a
larger area containing the study area can be found in Kuriakose et al. (2009c).

MassMov was developed by Begueria et al. (2009). It is linked to the PCRaster
GIS package, and uses a fixed finite-differences mesh and a two-step Lax-type
explicit numerical scheme with variable temporal resolution to ensure stability.
The flow is modelled as a 2D continuum by using a depth-integrated form of the
Navier–Stokes equations under the shallow water assumption (Saint–Venant
equation). The flow behaviour is controlled by the resisting forces, for which a set
of alternative rheological models can be used. For the present study Vollehmy
rehology was chosen due to the known frictional behaviour of debris flows in the
region. The model uses bed entrainment by defining an entrainment zone, a
maximum depth of supply material and the average growth or erosion rate
(McDougall and Hungr 2005).
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9.4.6 The Data

The models were tested in the study area in Kerala (Fig. 9.2). The slope hydrology
coupled slope stability model was applied in Aruvikkal catchment, a 9.5 km2

sub-catchment of Tikoy River which in turn is a tributary of the Meenachil River.
The run-out was tested on a specific landslide that occurred near Peringalam
village in the upper reaches of Meenachil River. All necessary data for
STARWARS ? PROBSTAB were derived from preceding research works and
associated field work (Kuriakose et al. 2009a; Thampi et al. 1998). The data
available were daily rainfall, crop factors, potential evapotranspiration, MODIS
NDVI 16 day composites, soil types, soil properties, contour map from topo-
graphic sheet, soil depth, root cohesion, soil depth, root cohesion, land use/land
cover and a rudimentary landslide inventory containing only the date and the
location of events. Calibration and validation was also carried out in a similar
manner as described in Kuriakose et al. (2009a). The model validation was carried
out for the year 2001 as the study area experienced six shallow landslides on 8th
July 2001. The DEM and other spatially parameterized data had a spatial reso-
lution of 10 m by 10 m.

Data such as the deposit area and depth of the Peringalam landslide necessary
for calibrating and validating MassMov2D was generated during a field survey in
2007 using simple hand held Garmin GPS and information of final deposit height
collected by interviews with the local inhabitants. Initial volume and scouring data
was also generated in a similar manner. The pre event DEM with 1 m resolution of
the area was derived from a 20 m interval contour map of the region prepared
based on a survey conducted in the 1970s and interpolating the field survey points
that were outside the landslide body. The parameters and the calibrated values of
each of them as used in MassMov2D are provided in Table 9.5. The model was

Table 9.5 Parameters used for simulating the debris flow using MassMov 2D (Voellmy
Rheology)

• Density of the DF: 2000 kg/m3 • DEM subtracted by soil depth (SD) at the
initiation zone

• Chezy roughness: 250 m/s2 • Soil depth at the initiation zone: Initial
volume—1669 m3, Initiation area—
782 m2, Area affected by scouring—
2337 m2

• Angle of basal friction: 30� • Soil depth along the runout and deposition
zones

• Angle of internal friction: 35�
• Density of the soil: 2000 kg/m3

• Scouring rate: 0.0035 m/s
• Fluid rate: 10 m/s (Transition from solid to

fluid)
• Total time steps: 100 s
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calibrated based on the volume of deposit and was cross validated with the
observed area and depth of failure.

9.4.7 The Results

The model simulated transient hydrological and slope stability conditions on a daily
time step with (Fig. 9.15) and without considering vegetation effects. A detailed
investigation revealed that the hydrological effects of vegetation are crucial for the
long term stability of the study area. However, its effects on slope stability during
high intensity rainfall are negligible. Mechanical effect of vegetation, especially
root induced cohesion was the most significant effect of vegetation on slope
stability in the region. The unstable area (FOS \1) as calculated by the model,
considering vegetation effects was 2.1 km2 (Fig. 9.16a); without considering
vegetation effects the unstable area was 5.5 km2 (Fig. 9.16b). About 0.8 km2 of this
area was persistently unstable (FOS\1) which may be attributed to the inaccurate
parameterization in such areas. This over estimation of unstable area was in
agreement with similar studies elsewhere (Simoni et al. 2008; van Beek and van
Asch 2004). Sensitivity analysis indicated that the FOS was the most sensitive to
slope, angle of internal friction and soil depth (Fig. 9.17). The DEM resolution of
10 m derived from a 20 m contour map interpolation was also a significant con-
tributor to the overestimation. All six landslide locations were predicted as failed on

Fig. 9.15 Daily variation of factor of safety in the year 2001—Predicted by STARWARS ?

PROBSTAB
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the known date of failure with PF (FOS \1) C 60% indicating accurate temporal
predictive capability of the model.

The slope-stability modelling indicates that the antecedent moisture conditions
and the persistence of high pore-water pressure for a significantly long period may
have been the immediate preparatory conditions for the failures. The trigger of the
events was probably an extremely high intensity rainfall which resulted in a sharp
increase of pore-water pressure. This response pattern was also apparent from the
instrumented monitoring of hollows in the region (Kuriakose et al. 2008). The
research conclusively highlights the significance of vegetation effects on slope
stability. Better input data, especially DEM and soil depth can significantly
improve the predictions.

Table 9.6 shows the comparison of predicted to observed properties of the
debris flow. Figure 9.18 shows the temporal evolution of the debris flow height as

Fig. 9.16 Minimum factor of safety of every pixel (2001). a Considering vegetation and b Without
considering vegetation

Fig. 9.17 Sensitivity of
PROBSTAB to parameters
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predicted by the model. The predicted deposit volume was underestimated; the
discrepancy was not of very high orders. It has to be noted that the field survey of
the slide occurred after three years causing errors in the estimation of the slide
body and volume. A part of the material (the slurry) may have been eroded over
time resulting in the underestimation of the observed deposit volume. The pre-
dicted deposit area was grossly underestimated. This can be attributed to the fact
that in reality, the moving mass is not uniform in its rehology.

Improving the run-out model predictions necessitate high resolution DEM ([1 m).
Methods for incorporating the transient rheology of the flow should be attempted.
Immediate surveys after the occurrence of the events is a necessity such that accurate
estimates of initial volume, scoured volume and deposit volume can be made.

The present study was an attempt to evaluate the hazard quantification potential
of physically based models in data poor regions. Although both STARWARS ?

PROBSTAB and MassMov provided outputs that have physical meaning it was

Table 9.6 Comparison of observed and predicted properties of the debris flow

Observed Predicted by MassMov 2D

Initial volume (m3) 443
Entrained volume (m3) 1226 813
Total volume (m3) 1669 –
Total deposit volume (m3) 1553 1253
Max. velocity (m/s) 1.5 min to reach 180 m 24
Mean max. velocity (m/s) 21
Min. deposit thickness (m) 0.1 0.1
Mean deposit thickness (m) 1.2 1.7
Max. deposit thickness (m) 6.4 3.5
Deposit area (m2) 2686 1634
Observed deposit area overlaid by predicted deposit area (%) 61

Fig. 9.18 Temporal evolution of debris flow height as predicted by MassMov2D
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not possible to conduct an appropriate evaluation of the model performance due to
the limited nature of the calibration and validation data. Thus the results are
merely indicative of what can be achieved by using such models for a quantitative
evaluation of landslide hazard.

It is evident from this study that physically-based spatial models are ideal to
quantitatively understand the contribution of a specific parameter towards land-
slide hazard. As need is a motive for quality, it is certain that with more and more
researchers turning their attention towards utilizing physically-based models, data
quality will improve over time.

9.5 Risk Assessment

The landslide risk definition given by Varnes and IAEG Commission on Land-
slides and other Mass-Movements (1984) can be represented by the following
equation (van Westen et al. 2006):

Risk ¼
X

H
X

VAð Þ
� �

ð2Þ

Rprop ¼
Xk

i¼1

HixPT :LxPS:T xVprop:i

� �
xA

( )
ð3Þ

where, Rprop is the expected loss to the infrastructure property due to landsliding in
a given return period, Hi is the hazard due to a landslide with a magnitude ‘i’ in a
given return period, PT:L is the probability of a landslide with a magnitude ‘i’
reaching the infrastructure, PS:T is the temporal spatial probability of the infra-
structure, Vprop:i is the vulnerability of the infrastructure property for a landslide of
magnitude ‘i’, and A is the cost of making one kilometer of a new infrastructure.
The landslide belongs to different magnitude class ranging from I to IV. The
specific risk for the two important infrastructure properties i.e. the railroad (Rs_rl)
and the highway road (Rs_rd) can be estimated by using Eq (3). The value of PS:T

is taken as 1.0 as both the elements are stationary object and always remain on or
in the path of the landslide. The value of PT:L is also taken as 1.0 as the hazard was
estimated for landslides that affect the infrastructures. The assessment of vulner-
ability can be based on the detailed analysis of the past damage records. The
degree of damage can be either monetary or physical (structural damage).

The study are in Nilgiri with the railroad and road was selected as study site for
the risk assessment, as it has detailed landslide data as well as traffic information.
The infrastructure vulnerability was calculated as the ratio of the total restoration
cost of the damaged infrastructure due to a landslide of a given type and magnitude
to the actual cost of constructing one kilometer of new railroad or tarmaced road.
The total restoration cost of the railroad includes cost of removing debris of
magnitude ‘i’ and cost of replacing the damaged rail structure (i.e. rail, rake bar,
sleeper and pebbles). Vulnerability in terms of the physical loss to the railroad and
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the road due to a landslide of magnitude I, II, III and IV is given in Table 9.7.
Maximum vulnerability for the railroad (0.6) and for the road (0.5) was obtained
for landslide of magnitude IV and the value decreases with the decrease in the size
of the landslide.

The risk to a moving vehicle, i.e. a vehicle being hit by a landslide, largely
depends on the temporal spatial probability of the vehicle at the time of occurrence
of the landslide. This value of probability (PS:T) can be used to calculate risk to a
moving vehicle by using the following three expressions (AGS 2000):

Rv ¼
Xk

i¼1

P Vð ÞxVveh:jxNv

� �
( )

ð4Þ

P Við Þ ¼ 1� 1� PS:Tð ÞNR� �
ð5Þ

PS:T ¼ ADT x L x SLð Þ= 24 x 1000 x Vvð Þ ð6Þ

where, Rv is the expected loss of vehicles of a given type due to landsliding in a given
return period ($), P(Vi) is the probability of the vehicle being hit by a landslide with a
magnitude ‘i’, Vveh:i is the vulnerability of the vehicle for a landslide of magnitude ‘i’,
A is the cost of the vehicle ($), Nv is the number of vehicles of a given type in a
landslide zone at any given time, PS:T is the temporal spatial probability of the
vehicle, NR is the number of landslides of magnitude ‘i’ reaching the transportation
line in a given return period, ADT is the average daily traffic (vehicles per day), L is
the average length of the vehicle (m), SL is the length of the landslide affected zone
(km), and Vv is the velocity of the vehicle (km/hr).

Table 9.7 Vulnerability for elements at risk when hit by a landslide

Type of element at risk Vulnerability in different
magnitude class

Comments

I II III IV

Physical damage to a infrastructure Damaged caused by one
landslide of a given
magnitude in one kilometer

Railroad 0.01 0.08 0.25 0.60
Road (Asphalt) 0.001 0.01 0.10 0.50
Physical damage to a moving vehicle Damaged calculated based on

past recordsBus 0.01 0.10 0.80 1.0
Lorry 0.01 0.10 0.80 1.0
Car 0.10 0.50 1.0 1.0
Motorbike 0.50 0.80 1.0 1.0
Person in a moving vehicle Damaged calculation partly

based on past incidents and
expert judgment

Bus 0.001 0.10 0.80 1.0
Lorry 0.001 0.10 0.80 1.0
Car 0.01 0.10 1.0 1.0
Motorbike 0.50 1.0 1.0 1.0
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In this chapter, the assessment of vulnerability of different types of moving
vehicles (bus, lorry, car and motorbike) and train for a landslide of magnitude ‘i’ is
carried out based on the historical records, experience of the local people and expert
knowledge. Other variables were obtained from historical records and field cal-
culations. The average speed for the road cruising vehicles and train was measured
as 26 and 11 km/hr, respectively. The ADT for bus, lorry, car and motorbike was
obtained as 137, 309, 554 and 90 vehicles per day, respectively and for train it is
two per day. The length of landslide affected zone (SL) along the road and the
railroad was calculated from landslide density, which is the ratio of the total
landslide scar width to the total length of the transportation line. The total SL along
the road and the railroad is 2.1 and 3.84 km, respectively. The average length (L) of
a bus, lorry, car, motorbike and train was measured as 12, 8, 5, 2 and 55 m,
respectively. By using the above values and Eqs (4–6) specific risk to a bus (Rs_b),
lorry (Rs_l), car (Rs_c), motorbike (Rs_mb) and train (Rs_t) in terms of monetary
loss ($) can be calculated for each hazard scenario.

The risk of life or the annual probability of a person losing his/her life while
travelling in a vehicle depends on the probability of the vehicle being hit by a
landslide and the probability of death of the person (vulnerability) given the
landslide impact on the vehicle. The vulnerability of commuter to a landslide
depends on the type, speed and size of the landslide, the speed and type of the
vehicle, and whether the person is in the open or enclosed in a vehicle (Wilson
et al. 2005). It also depends on whether the debris have directly hit the vehicle
from the top or moved horizontally and hit the side of the vehicle. Even with the
availability of some known incidents and damaged records the assessment of
vulnerability of death still remains fuzzy. Due to such large variability of factors
the assessment of vulnerability was somewhat subjective and knowledge driven.
The risk of life for the commuters travelling along the road using different mode of
travel such as bus, lorry, car or motorbike, and also in the train were estimated.
The analysis shows that the annual probability of the person most at risk losing his/
her life by driving along the road in a hazard of 3, 5, 15, 25 and 50 years return
period is 1.3 9 10-6, 2.6 9 10-6, 5.2 9 10-6, 6.3 9 10-6 and 7.8 9 10-6 per-
sons/annum, respectively. Along the railroad these values are 6.8 9 10-3,
1.0 9 10-2, 1.7 9 10-2, 2.0 9 10-2, 2.4 9 10-2 persons/annum, respectively.

The total landslide risk is the summation of all the specific risks related to
landslides in an area. In this study, total landslide risk in terms of the monetary loss
was calculated by adding all the specific direct and indirect risks evaluated for 24
hazard scenarios as described above:

RT Pð Þ ¼
X24

h¼1

RDþ RI½ �

¼
X24

h¼1

RS rlþ RS rd þ RS bþ RS lþ RS cþ RS mbþ RS tð Þ þ RI½ �

ð7Þ
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where, RT(P) is total risk for monetary loss expressed in US dollars. The total
landslide risk for the loss of life, RT(D) expressed as number of people per annum
was calculated by adding all specific loss of lives such as:

RT Dð Þ ¼
X24

h¼1

RS Dbþ RS Dlþ RS Dcþ RS Dmb þ RS Dt½ � ð8Þ

.
The occurrence of a certain number of landslides will incur indirect loss

resulting from the temporary interruption of the road (NH67) and the railroad. The
indirect loss for additional fuel consumption due to the detour was calculated. The
total loss for the 24 hazard scenarios amounts to $ 963470 of which the loss to
Nilgiri and tourists vehicles was $ 790570 and $ 172900, respectively. In the event
of the interruption of NH67 the daily commuters have to travel an additional
32 km for which they have to bear additional tickets cost for a longer journey.

Besides commuters the traffic interruption also affects the local business along
NH67 and their livelihood which is totally dependent on tourists travelling along
the road. The indirect loss of income for business around Katteri and Burliyar area
was estimated. The total loss for the 24 hazard scenarios amounts to $ 912, $ 3009,
$ 27512 for shops, commodity and liquor business respectively, located in Katteri
and $ 10640 for shops in Burliyar. Besides national highway, the railroad is also
prone to interruption due to landslides. The revenue loss to the railway company
was estimated for all hazard scenarios, for a 50 years return period. The blockage
period for the railroad is much higher than the road for a given landslide. The
cumulative loss from the 24 hazard scenarios was $ 677419.

The total indirect loss resulting from the traffic interruption of the road and the
railroad by landslides in six return periods amounts to $ 1801525, and in 3, 5, 15,
25, and 50 years return period it was estimated to be around $ 147580, $ 233921, $

Fig. 9.19 Curve including
both direct and indirect losses
expressed in monetary value
(in US $)
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398,283, $ 464982 and $ 556758, respectively. The total direct loss for all the
hazard scenarios amounts to $ 3205711 and in 3, 5, 15, 25, and 50 years return
period it was estimated to be around $ 273756, $ 416611, $ 703160, $ 822896 and
$ 989286, respectively. The total risk for all hazard scenarios was estimated as $
5007236. Similarly, human fatalities as a consequence of vehicles and trains being
directly hit by landslides were estimated to be 15 persons per year. The output of
the result is displayed as a risk curve, containing the relation between hazard with
different annual probabilities and the corresponding total specific losses
(Fig. 9.19). The result indicates that the loss.

9.6 Conclusions

Risk assessment is the final step in a chain of scientific and methodological pre-
ludes for disaster risk reduction. Thus uncertainties from all the previous steps
propagate to this logical culmination of landslide hazard and risk analysis. Despite
the explicit uncertainties in quantifying risk and defining vulnerability, landslide
risk assessment is a formal land use planning necessity in several developed
countries, especially along transportation lines. In India, Several human fatalities
are reported annually as a direct consequence of landslides in the country. The
sectors that are affected by continuous landslide problems are fairly well known
and thus the need of the hour is to develop pragmatic remedial measures such as
bio-engineering methods and structural designs capable of reducing slope insta-
bility conditions.

In January 2009 a panel discussion was held at the head office of the Geological
Survey of India on some of the problems and possible solutions for a uniform and
relevant method of medium-scale landslide hazard and risk assessment in India.
Some of the conclusions were that:

• India should consider conducting landslide susceptibility mapping as the first
step towards a comprehensive landslide hazard and risk assessment and follow
this up with detailed analysis for specific areas.

• It is doubtful whether a uniform methodology can be applied to all landslide
prone regions of India given the varied geological and climatic conditions.
Hence, generalized susceptibility mapping approaches applicable for different
landslide prone regions of the country are to be developed taking into account
this variability in the prevailing environmental conditions. Also specific meth-
ods for different landslide types are required.

• Attention should on maintaining the uniformity of the output maps, which is
extremely important for proper understanding by planners and other end user
agencies. The scale of mapping for regional assessment could be 1:50,000. The
output map may depict only three classes of susceptibility, ‘‘Low’’ containing
\2% of all landslides, ‘‘Moderate’’ having ±8% of all landslides and ‘‘High’’
[90% of all landslides.
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• The existing BIS guidelines completely ignores the necessity of a detailed
landslide inventory, which is an extremely important input for a comprehensive
hazard and risk assessment. A team of dedicated and trained experts should be
employed to generate such a detailed landslide inventory using aerial photo-
graphs, stereo image interpretation and other ancillary datasets. Subsequently, a
heuristic approach using a weighting system of geofactors may be adopted that
is relevant to specific geo-environments (taking into account the landslide
inventory), which could then be used to generate the susceptibility map. Sta-
tistical methods or Spatial Multi Criteria Evaluation (SMCE) could be an
alternative to the heuristic weighting and rating method, depending on the
availability of data and the choice of the researcher.

• The methods should be reproducible and scientifically dependable and clearly
specify how the maps have been prepared and validated. For validation, the
importance of using independent landslide inventory data is recommended.

GSI should work in tandem with other similar organizations in India to develop
an open-source, web-based National Landslide Database containing information
about landslide type, dimension, location, time of occurrence, topographic char-
acteristics, etc. Though this may seem to be an enormous undertaking, given the
state-of-the-art communication network and the participation and sharing of data
between large numbers of interested working groups in central and state level
organizations/institutions, it is quite feasible in India. It is reiterated here that an
up-to-date landslide inventory is absolutely essential, without which a compre-
hensive landslide hazard and risk analysis is impossible.
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Chapter 10
Vision-Based Terrestrial Surface
Monitoring

Gerhard Paar, Niko Benjamin Huber, Arnold Bauer,
Michael Avian and Alexander Reiterer

Abstract The monitoring of geo-risk areas is getting more and more importance
due to increasing damage caused by hazardous events such as rock slides, as a
result of the environmental change. Terrestrial long-range sensing (up to several
kilometres of distance between sensor and target region) is a valuable means for
monitoring such sites using non-signalized targets in high resolution, which is
necessary to detect regions, amount, direction and trends of motion early enough to
take risk mitigation measures. The technology to realize such a sensing strategy
combines various fields of research, such as sensor technology, surveying, com-
puter vision and geological sciences. This chapter describes two vision-based
sensing techniques suited for terrestrial surface monitoring (terrestrial laser
scanning, and image-based tacheometers), and their sensing strategies, data pro-
cessing and data exploitation issues. Examples for monitoring frameworks are
given, and technical and engineering solutions are described. A set of applications
from permafrost, glacier and snow cover monitoring, as well as rock fall site
monitoring shows the relevance, technologic maturity and limits of existing
approaches. Rock falls and other geo-hazards being the major fields of application
for such systems, the chances of saving lives, protecting infrastructure and habitats
and avoiding injury to field personnel are increased so that the better and more
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accurate event can be monitored. The research and technology described in this
chapter will help the surveying, photogrammetry and computer vision community
fighting global warming impacts.

Keywords Terrestrial laser scanning � Image-based tacheometers �Digital surface
model � Point tracking � Deformation monitoring � Rock glacier movement �
Glacier change monitoring � Snow avalanche prediction � Geo-risk monitoring

10.1 Introduction and Scope

The necessity for monitoring geo-risk areas such as rock slides or avalanche areas is
growing due to the increasing probability of such events caused by environmental
change. For example, in Europe, rock slides cause increasing damage particularly in
alpine areas. Efficient, automated, high-resolution, terrestrial, long range sensing
measurement and analysis is able to monitor geo-risk (and related) objects by
means of non-signalized natural target points—which is a key to such systems due
to the lack of reachability and the required distance-to-the-object: commonly used
systems such as locally established survey networks, on-site movement sensors or
the incorporation of reflective targets fail due to their dependency on site
accessibility. Even novel sensor concepts such as terrestrial laser scanning can only
cover a subset of the requirements, they limit the distance of application to 1–2 km
and do not provide the ability to track individual surface points in high resolution—
an important feature to detect regions of motion early enough for taking measures
of protection, warning inhabitants, closing infrastructure or evacuation.

Services in this area are reacting with a case-by-case strategy, using conven-
tional technology. There is no well established market yet on this family of
applications, although the occurrence of dozens of events per year indicates that a
mature observation system is overdue.

Technology and research targeted to the non-contact terrestrial monitoring of
such surface-changing events and processes combines methods and techniques
from standard surveying, computer vision, photogrammetry, mechatronics, soft-
ware engineering, and geological sciences. The main step beyond currently
available techniques lies in the introduction of a novel modular suite of terrestrial
visual survey sensors, be it Image Assisted Total Stations (IATS, used to perform
long-range high-resolution measurements on single points), Terrestrial long-range
Laser Scanners (TLS, used to survey large areas) or terrestrial radar measurements.

Sensors, their control and data processing, existing frameworks that enable
expert users (geodesist/geologist) to operate the software, applications, test envi-
ronments and verification procedures are still subject of dedicated research.

Rock falls and other geo-hazard events are the major fields of application for
such systems, since these events generally can only be anticipated but not avoided.
Chances of saving lives, protecting infrastructure and habitats and avoiding injury
to field personnel increase the better and more accurate such an event can be
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monitored. This chapter covers some of these aspects, and together with related
technologies it will help the surveying, photogrammetry and computer vision
community fighting global warming impacts.

10.2 Sensing Techniques

10.2.1 Sensors

10.2.1.1 Terrestrial Laser Scanner

Scanning laser imaging has turned out to be an essential component of geotech-
nical disaster monitoring. The available laser devices have reached a technological
fitness for this class of application over the last decade (Paar and Bauer 2001).
With a maximum range of more than 2 km to naturally reflecting targets, a wide
field-of-view, and a ranging accuracy of better than 2 cm remote monitoring of
events like the Schwaz rock slide, Austria, Summer 1999 (Scherer 2004; Paar et al.
2000) could be accomplished.

There are quite a few systems on the market with an operating range between
near-range (up to 10 m) and 300 m (hds.leica-geosystems.com 2010). However, to
our knowledge the target range of more than 1 km for non-reflective targets is
currently covered only by the LPM product line by Riegl Laser Measurement
Systems (Horn, Austria) (www.riegl.co.at) with the current version of LPM-321
(Fig. 10.1; Table 10.1).

The distance measurement device is based on the time-of-flight method, for
each single measurement a burst of several hundred laser pulses are emitted. The
reflected return pulses are analyzed by a digital signal processor (DSP) to compile
a single distance measurement. The distance measurement unit is mounted on a
pan and tilt orientation unit motorized by step engines, similarly to a motorized
theodolite the exact pan and tilt angles are read out by encoders. The device is
controlled by an off-the-shelf PC via Serial- or Ethernet-interface, which handle
both the device control and the data transfer from the sensor to the PC. The control
software on the scanning device allows the acquisition of an (almost) rectangular
regular grid of measurements, which is stored as one data file on the control PC.
Each individual element within this grid consists of distance, reflectance value, the
two angular measurements from the encoders of the mounting unit, and an esti-
mated root mean square error of the distance measurement for reliability.

For the past few years, terrestrial 3D laser scanning systems have been suc-
cessfully employed in the design and manufacturing industries as well as in
industrial surveying (Pfeifer and Lichti 2004). Further development in terms of
measurement speed, accuracy, range, field-of-view, and data sampling rate allow
TLS to be applied in terrain surveying (Bauer and Paar 2004; Bauer et al. 2005)
thus making this technique a very interesting instrument for measuring high
mountain environments. In general several methodological, technical, and logistic
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problems are to be encountered when establishing an integrated monitoring system
in such an environment. This includes, amongst others, the stability of device
control software, the automatic sensor orientation, the high number of measure-
ments, the compensation of refraction and atmospheric influences, and the selec-
tion of reliable measurements. Many years of experience in the field of TLS
(beginning in 2000) result in the development of a well-engineered and stable
acquisition and analysis system which in combination with expert field work copes
with all these conditions.

Table 10.1 Comparison of technical parameters of long range TLS by Riegl Laser Measurement
Systems

Riegl LPM-2K Riegl LPM-321 Riegl LMS Z620

Market launch 1999 2007 2008
Measuring range

good diffusely refl. targets Up to 2,500 m Up to 6,000 m Up to 2,000 m
bad diffusely refl. targets [800 m [1,500 m Up to 750 m

Minimum distance 10 m 10 m 2 m
Ranging accuracy 25 mm 25 mm 10 mm
Positioning accuracy 0.01 Gon 0.01 Gon
Measurement Rate (points/s) 1–4 10–1,000 8,000–11,000
Measuring beam divergence

(mrad)
1.2 0.8 0.15

Laser wavelength (lm) 0.9 0.9 0.9
Scanning range hor./vert. 400 Gon/180 Gon 400 Gon/165 Gon 400 Gon/160 Gon
Laser safety class 3B 1 M 1
Power supply (Volts DV) 11–18 12–28 12–28
Operation temperature range (�C) -10 to +50 0 to +45 0 to +40

Fig. 10.1 Long range laser profiler/scanner. Left first generation Riegl LPM-2k. Middle Riegl
LPM-321. Right Riegl LMS Z620
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The integrated measurement system is capable of describing 3D motion and
deformation of glacier (Avian and Bauer 2005; Avian et al. 2005b; Kellerer-
Pirklbauer et al. 2005) as well as rock glacier (Bauer et al. 2003) surface within a
few hours or even minutes of measurement depending on the device and the
desired point density (Table 10.1). Besides the technical limitations of the mea-
suring device maximum range also depends on the reflectivity of surface (which is
favourable for snow and debris covered terrain at the wavelength of 900–1,200 nm
and atmospheric visibility (best for clear visibility, bad for haze and fog).
A measuring range of up to 6,000 m (Table 10.1) allows hazardous sites to be
easily measured from a safe distance. Since each single measurement consists of a
multitude of laser-pulses, different measurement modes (first pulse, last pulse,
strongest pulse) give proper results even during bad weather conditions and on
unfavourable surfaces like vegetated, moist or roughly structured terrain, that may
otherwise lead to ambiguous measurements. For example, the last pulse technique
allows detecting the range of the last target even if the measuring beam partially
hits or penetrates other targets (like fog) before.

Monitoring systems based on a terrestrial laser scanner are described in
Sect. 10.3.

10.2.1.2 Image-Based Tacheometers

Today’s tacheometers measure directions with electronic sensors automatically.
The axes are driven by motors controlled by a computer, automatic pointing is
possible if special cooperative targets or active targets are used, and data can be
captured, stored, and evaluated without human interaction. A higher degree of
flexibility and automation however, will be possible, if artificial targets must no
longer be fixed on the objects to be monitored. This will be possible, if the images
of the telescopes visual field are used in a more flexible way.

Image-based tacheometers have a CCD/CMOS camera in its optical path. The
images of the telescopes visual field are projected onto the image chip. The camera
is capable of capturing mosaic panoramic images through camera rotation, if the
axes of the tacheometer are driven by computer controlled motors. With appro-
priate calibration these images are accurately geo-referenced and oriented as the
horizontal and vertical angles of rotation are continuously measured and fed into
the computer. In such a system viewing angles must be addressed to image pixels
inside the optical field of view. That means, especial calibration methods have to
be used for the tacheometer, an autofocus unit has to be added to the optical path,
and special digital image processing procedures have to be integrated.

An optical system for such a system was developed by Leica Geosystems (see
Fig. 10.2) (Walser 2004). It is reduced to a two-lens system consisting of the front
and the focus lens. Instead of an eyepiece a CCD sensor is placed in the inter-
mediate focus plane of the objective lens. The image data from the CCD sensor
are fed into a computer using a synchronized frame grabber. For the transforma-
tion of the measured image points into the object space the camera constant

10 Vision-Based Terrestrial Surface Monitoring 287



must be known. In an optical system with a focus lens the camera constant,
however, changes with the distance of the object.

The camera constant can be derived from the focal length. This can be per-
formed automatically if an encoder measures the focus lens position relative to an
origin, which is chosen when focusing to infinity. The optical mapping model
includes not only the tacheometer axis errors and the vertical index error, but also
errors resulting from a displacement of the projection centre from the intersection
of the tacheometer axes and from the optical distortions for field points. Conse-
quently calibration of an image-based tacheometer has to comprise all these errors.

Image-based tacheometers can work like a traditional theodolite without dis-
tance measuring—for the measurement and calculation of 3D point co-ordinates
two or more measurement systems are used (master/slave mode); one (master)
scans the object while the other one (slave) tracks it. Another approach is to
combine the image-based measurement system with an integrated distance mea-
surement unit. The system can be compared with a traditional tacheometer (total
station) supported by image-based measuring. Reflectorless distance measure-
ments can be performed until a maximal range of *1,000 m.

Image-based tacheometers are currently available as prototype systems only.
Such research devices have been developed by Walser (2004) and Reiterer (2004).
Productive image-assisted tacheometers such as the Trimble VX (www.trimble.com)
or the Topcon GPT7000i (www.topcon.eu) are using images as passive tool only and
can not be used for the integration into an automated image-based geo-monitoring
process.

Fig. 10.2 Prototype systems developed by Leica Geosystems
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10.2.2 Data Acquisition Strategies

10.2.2.1 Sensor Control

TLS

The laser scanner performs tasks of a predefined measurement schedule to auto-
matically measure regions of interest (ROIs) round the clock. A ROI defines both
the measurement raster, and the distance measurement parameters like integration
time and mode. Several ROIs are combined to a measurement task. A measure-
ment task list defines the measurement strategy in terms of order, priority, and
point of time. On the scanner control PC a server is continuously parsing the task
list and revaluating the measurement schedule. As soon as the scanner is idle, the
next ROI is selected and executed. Unsuccessful measurements (i.e. due to bad
environmental conditions or communication problems) are detected automatically;
they are repeated and reassumed into the measurement list.

Different automatically selected strategies, like for example increasing the
integration time for a single distance measurement in case of bad weather, or
focusing on ROIs with top priority, allow retrieving maximum information
dependent on the environmental situation.

Once a region of interest for data acquisition has been defined, the control
software causes the scanner to acquire the selected rectangular region in spherical
co-ordinates. A data logging scheme allows the establishment of a data base
making sure that all relevant original data and their relations remain complete,
unique and unchanged.

IATS

In case of the IATS, the so called system control component operates the
sensors (device control, data readout, synchronization, etc.) and the algorithms
(image preprocessing, point detection, etc.). The briefing about sensor unit, suit-
able measurement algorithms, and information about the points to be detected are
located within separated subsystems.

The final output of this component is a list of coordinates (incl. additional data)
of interesting points and/or regions of interest that will be stored in the common
storage unit. User interaction with the system is implemented in the form of a
simple graphical user interface (GUI) that allows the user to control the whole
measurement process and to verify the decisions of the system.

10.2.2.2 Sensor Orientation

Sensor orientation for passive vision sensors in most cases is done by using
reflective reference targets. An area around such a target is scanned with small grid
width; a centroid localization algorithm (see Fig. 10.3) on the resulting image
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(subsampled, since the input measurements in general do not describe a regular
grid) gains the angular components of the target co-ordinates in the scanner polar
co-ordinate system. The distance is calculated as weighted average of all indi-
vidual distance measurements covering the target.

Since most of the long-range TLS do not contain an electronic levelling sensor
like standard theodolite it is necessary to determine all unknown position and
orientation parameters using the reference targets. An optimization method is used
which optionally keeps the sensor position fixed or variant. Result is a transfor-
mation vector and a rotation matrix. A minimum of 5 targets is advisable for
proper sensor orientation, regardless of whether the position is fixed or not.

This step is the key to measurement accuracy; it involves several individual
tasks that are still subject to improvement:

• Distribution of the orientation targets.
• Robust automatic evaluation of the usability of target measurements.
• Stable mathematical methods and algorithms for sensor orientation under var-

ious restrictions.
• Current research aims at using natural such as (non-moving) distinct landmarks

(like rock formations) for continuous sensor orientation.

In addition to the determination of sensor orientation and location, the reference
targets can be used to determine compensation values for atmospheric effects on
the distance measurements.

The above mentioned targets forming a geodetic network can also be used by
IATS for orientation purposes. If synchronized measurements of multiple devices
are required for later triangulation they rely on a set of common targets for a
mutual orientation.

10.2.2.3 Data Handling

All measurements are managed in a simple database that contains meta data
(Sensor state, reliability, ROI data, etc.) and the measurements itself. Elements of
such a database are

Fig. 10.3 Location of reflective target centre on sensor image. Left to right reflective target as
seen by a standard camera, target reflectivity scanner image, target distance scanner image,
subsampled reflectivity image and found target centroid
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• Measurements in the raw file format of the sensor provider(s)
• Time period of sensing
• Calibration status of the sensor system (in simplest case the current transfor-

mation vector and rotation matrix between scanner co-ordinate system and the
global co-ordinate system of the measurement project)

• Quick looks to support data handling tools
• Statistics of individual measurements to enable a quick filtering of unusable

measurements
• Environment conditions during measurement such as temperature, pressure and

humidity.

10.2.3 Data Evaluation

10.2.3.1 Surface Reconstruction

Pre-Processing

A classification of the raw laser measurements allows the examination of the
quality and reliability of the distance measurements. Uncertain measurements are
smaller weighted or even dismissed for the subsequent data evaluation.

The classification is based on an analysis of the laser beam reflectivity, the RMSE
(as each single measurement consists of a multitude of laser-pulses), the structure
(e.g. detected artefacts due to moisture), and external sensors (e.g. meteorological
stations to estimate atmospheric influences to laser distance measurement).

Surface Model Generation

Once the measurements’ reliability has been checked, all useful measurements
are to be processed in order to obtain a 3D reconstruction of the current shape of
the respective surface. Therefore each individual measurement (given in spherical
co-ordinate system of the TLS) is transformed into a geo-referenced co-ordinate
system by means of the sensor state stored with the measurement.

To represent each measurement in a reference co-ordinate system, a dense Digital
Surface Model (DSM) is generated of the scene to be surveyed. A DSM is a regularly
spaced grid in desired resolution on an analytical model of the local surface, in the
simplest case a horizontal or vertical plane. It is used to store the elevation as a vertical
distance at the grid points. We generalize the DSM to an arbitrary reference surface, to
be able to represent the surface data in best resolution, since most of the potentially
insecure surfaces are characterized by steep fronts. This data structure well complies
with the practical requirements such as difference measuring, volume change evalu-
ation, and various visualization tasks. Neighbourhood relations of measurement data
points are directly described in the DSM structure; therefore operating on DSMs
allows quick access to the surface heights in a well-defined geometry.
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Direct mapping from the sensor spherical system to the DSM Cartesian
co-ordinate space would result in a sparse and non-uniform elevation map, espe-
cially at large distances and flat angles to the surface. To avoid interpolation
artefacts, the Laser Locus Method (Bauer and Paar 1999) for DSM (Kweon and
Kanade 1992; Lieb 1991) generation proves to be a robust tool particularly with
regard to glancing intersections, multiple heights, and occlusions. It supports error
detection and utilization of additional confidence values provided by the range
sensor. The Locus Method completely works in sensor space to compute the
surface heights. For each grid point on the reference plane a hypothetical vertical
line is inspected. Its intersection with the observed terrain is determined com-
pletely in sensor space utilizing regularly spaced sensor measurements. This yields
a dense DSM with predefined resolution and elevation measurement uncertainty.

Since the DSMs of (temporally) different surface measurements are geo-
referenced, simple differences between the DSMs reflect the changes in elevation.
In consequence we can derive a full description of change in volume, spatial
distribution of shape, or arbitrary profiles on the surface.

Single time-of-flight measurements are automatically combined to a measure-
ment grid that enables the generation of a dense digital elevation model (DSM) of
the object’s glacier surface. Repeatable sensor orientation is performed using
reflective targets fixed on stable surfaces somewhere in the spherical field of view
of the sensor.

10.2.3.2 Manual Data Exploitation by Visualization

Since the DSM is given in a georefgeo-referenced co-ordinate system the
visualization is mainly application driven and can be performed by standard
commercial systems.

Current modes of visualization include pseudo-colour overlay on ortho image,
animated 3D view, arbitrary profiles and simple numerical values within a pre-
defined grid. Volume measurements and the output of statistical trends help to
assess the further proceeding of a surface motion event. Such products include

• Interactive motion diagrams on a single ROI
• Video sequences of ROI structure
• 3D surface rendering with pseudo-colour overlay of distance change
• Lists of ROI statistics (time dependent) in different formats

10.2.3.3 Temporal Surface Comparison

The resulting DSM from each measurement campaign represents a dated state of
the region covered by the sensor measurements. Since the data is georeferenced,
simple differences between the DSMs reflect the changes in elevation between the
campaign dates.
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In a first step distance changes from the observer to selected points and ROIs can
be measured and immediately statistically evaluated. Further analysis quantifies
more complex movements, just as changes by debris/rock fall or accumulation.
Eventually the objective is to classify the meaning of the event semantically.

The DSM difference describes only the component of the surface change per-
pendicular to the analytical DSM reference plane. In order to examine the complex
kinematics of surface deformation the knowledge on surface motion in all three
dimensions is required. 3D motion as well as structure changes like rock falls can
be calculated by means of optical flow detection on the grey level images using
correlation-based matching. A dedicated matching technique (Hierarchical Feature
Vector Matching) (Paar and Pölzleitner 1992; Reiterer et al. 2003) can use both the
surface structure (distance measurement texture) and/or the radiometric surface
texture (RGB sensor or laser beam reflectivity). In such a way a single ROI
behaviour can be categorized into simple classes such as insignificant change,
significant change, unusable measurement, material loss, or aggregation
(Figs. 10.36, 10.37). This enables to quickly focus the attention of experts and
further automatic decision steps to potentially hazardous areas and events.

A possible hazard warning system uses the ROI tracking results and sets off an
alarm if motion exceeds a critical threshold, or the structure has changed due to a
recent landslide or rock-fall. Using higher-level information such as the spatial
distribution of deformations on the entire hazardous site, the temporal behaviour of
singular or multiple ROI motions, or a knowledge-based expert system could
perform the semantic classification of the kind and relevance of the change event.

10.2.3.4 Point Tracking

In contrast to the above described comparison of DSMs, image-based systems
make use of a more direct approach of motion or deformation detection. Using
specific image analysis techniques it is possible to track homologue points over
multiple measurement epochs and to calculate according deformation vectors.

Using a pair of synchronised image-based sensors that are capturing data of the
same ROI from differing viewpoints at the same time 3D object points may be
determined by spatial forward intersection provided homologues points in corre-
sponding image sections are detected. In order to make use of these points in a
geodetically deformation analysis, it is also necessary to recognise these points in
multiple measurement epochs (this can also be referred to as point tracking). This
result in the requirement of a dual point matching procedure: (1) inside one
measurement epoch in corresponding stereo images and (2) over multiple epochs.

In the following section the method is being described that is used (with nec-
essary adaptations) for both tasks. The hereby used process can be divided in three
independent subtasks. In a first step, the single images have to be analysed for their
information content. Points with a potentially high repeatability, so called Interest
Points (IPs), are being detected and their image co-ordinates are saved. The hereby
used process is called Interest Point Detection. As a second step every IP gets an
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orientation and information about the detected scale in order to being able to
compare images of different size or taken from different view points. Dependent
on orientation and scale the environment of the point is captured and saved in form
of a descriptive feature vector. This operation is called Interest Point Description.
The generated feature vectors can be compared and matched against a reference
set generated from a corresponding image to obtain homologues pairs of points.

To track the detected points over multiple measurement epochs the same
process is applied again with the adaptation that homologue points of the current
epoch are matched with a saved set of descriptive feature vectors corresponding to
the homologue points of the reference epoch.

A main requirement for this application is a high invariance towards changes in
environmental conditions such as illumination or transformations in the image
domain like differing viewpoints. Furthermore the time span used to measure and
calculate one epoch is restricted by the frequency of the measurements. Ultimately
the used operators must be deployable on standard field capable hardware.

Two algorithms which fulfil the above mentioned requirements are the SIFT—
Scale Invariant Feature Transform (Lowe 2004) and the SURF—Speeded Up
Robust Features (Bay et al. 2008) Methods.

10.2.3.5 Deformation Monitoring

The above mentioned methods are usually used to carry out a deformation mon-
itoring, wherein any deformation of an object can be seen as the result of a
physical process. Modern deformation monitoring techniques offer the possibilities
to measure and analyze such a process in all details. Today geodetic deformation
analysis means geodetic analysis of dynamic processes (Teskey 1985; Welsch
et al. 2000). This implies time varying stresses and time varying reactions; the
object is permanently in motion. Monitoring such situations requires permanent
and automatic observation procedures and measurement systems. DSM differences
describe only the vertical component of the surface change. In order to understand
the complex kinematics of, e.g. rock glacier deformation furthermore the knowl-
edge on surface motion in all three dimensions is required.

Kääb et al. (2003) and Kaufmann and Ladstaedter (2000) provide solutions to
calculate the 3D motion by means of optical flow detection on the gray level
images using correlation-based matching. This method is not applicable to the
current laser scanning setup, since it cannot be assured to have similar reflectance
conditions, which is a prerequisite for robust matching.

Despite this lack of textural information the tracking of objects on the surface
can still be performed by the high resolution structural data provided by the DSM.
State-of-art matching methods (Paar and Almer 1993) obtain dense tracking
vectors only on regions where the structural surface changes are relatively small.
In combination with the DSM differences mentioned above, this results in a three
dimensional vector field that describes the kinematics state of object’s surface
between the given epochs.
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To process a geodetic deformation analysis, several commercial software
packages are available (e.g. GOCA, PANDA, etc.). These methods make use of
3D object coordinates which can be derived using the above described process
of point tracking using input data from oriented image-based sensors. Newest
trends aim to integrate numerical models or more sophisticated methods such as
the application of so-called knowledge-based systems into the analysis and
alerting process in order to reduce the manual input of an operator/expert
(Vicovac et al. 2009). Actual hazard alerting is a topic that goes beyond the
scope of most actual research projects. However, alerting strategies that are
immediately derived from the obtained deformation monitoring status, such as
the analysis of deformation acceleration pose a challenging field of future
research.

10.3 Monitoring Frameworks

10.3.1 Geoscanner

The DIBIT Geoscanner (www.dibit-scanner.at) is a measurement framework that
was developed by Joanneum Research in Graz, Austria (www.joanneum.at), to
enable TLS-based 3D-measurements for geo-monitoring purposes. The main focus
of the system is the automated monitoring of geo hazard zones, especially in alpine
areas, with no direct access to the monitored site because of the reflectorless
laserscanning approach. According to the application different laser scanner
models can be used, which are installed either permanently or temporarily on the
site.

The Geoscanner software (Fig. 10.4) allows to scan either individual Regions
Of Interest (ROIs) or to plan and execute long-term scanning and monitoring
scenarios which run automated according to a specified schedule. An integrated
data interpretation module offers an immediate evaluation and visual representa-
tion of the measurement results. The Geoscanner system operates round-the-clock
and automatically provides TLS measurements, 3D evaluation, and interpretation
without any user interaction.

The Geoscanner framework described above is available both for scientific and
commercial use. Specifically it consists of the following modules:

1. Data acquisition unit for stationary and mobile automatic scanner control and
data storage.

2. Orientation unit to identify the sensor orientation within a geodetic network.
3. Visualization unit to visualize the changes obtained by the system and to

integrate them into formats well known by the user community.

As mentioned before all the results are immediately available, which makes the
Geoscanner monitoring a valuable tool for hazard prediction, risk evaluation and
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scientific fieldwork. Such a system can be either operated non-stationary, or
installed within less than two days at any location having access to power supply
and mobile telephone connection. All relevant data processing and visualization
can be done on-site which makes the system extremely useful for efficient research
in the field.

Figure 10.5 shows a sketch of the Geoscanner framework’s workflow. The laser
scanning device is controlled by a server which also reads out the data. The server
runs a sequence of individual measurements on ROIs (given in a task list) and
stores them in a data base which is available over the internet. Certain measure-
ments are used for continuous orientation of the sensor, also in order to store the
current sensor orientation state in the data base. This is done using geodetically
measured reflective targets. Auxiliary functions filter the measurements in terms of
reliability, the distance measurements are corrected by compensation values
gained by distance measurements to reference targets.

For further application the measurements are read from the database to generate
DSMs which are aligned in the global geometrical context due to continuous
knowledge of sensor orientation. The DSMs are combined to cover the entire area
of interest, which serves as a data source for further display in combination with
other georefgeo-referenced data like ortho image, GIS data or additional Virtual
Reality (VR) objects.

Fig. 10.4 DIBIT Geoscanner main window layout
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10.3.2 Site Monitor

‘‘Site Monitor’’ is a complete laser measurement-based system for measuring and
monitoring the stability of rock faces, landslides, and buildings. It was developed
by ‘‘3D Laser Mapping’’, a UK based company that is specialised on providing
LiDAR software and hardware solutions (www.3dlasermapping.com).

The Site Monitor system uses reflectorless laser scanning (Fig. 10.6, right) to
make range measurements on a pre-defined grid of points covering the area of
interest, at a selected interval in order to provide comparable data for further
monitoring. The reflectorless approach has the advantage of not having to apply
prisms or reflector targets which would result in a much sparser grid and may not
be possible in cases without physical access to the monitored site.

The influence of atmospheric conditions on the range measurements can be
corrected by measuring a number of control points with known co-ordinates to
compare the true range with the measured range and apply the correction to the
data.
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Site Monitor can be used either in a continuous or a periodic setting. In con-
tinuous mode of operation the scanner would typically be set up in a protective
housing on a stable pillar with fixed power supply. The scanning runs automati-
cally according to a defined schedule without further operator intervention. Via
network connection alerts can be sent out to the operator in case of movement,
alarm, or error.

The manual mode can be used to switch the scanner between multiple survey
pillars or in areas where continuous monitoring is not necessary or not possible.
Power is supplied from a battery or from a vehicle on which the scanner can be
mounted and controlled from.

Data Interpretation is carried out by a separated Analysis tool (Fig. 10.6, left)
that provides 1D, 2D and 3D visualisations, horizontal and vertical cross-sections,
and range, displacement and displacement rate graphs to allow an interpretation of
structural integrity of the monitored site.

10.3.3 i-MeaS

Since a couple of years a strong trend towards image- and laser-based measure-
ment systems can be seen in the field of engineering geodesy. These methods are
primarily used to document an as-built state or to conduct planning and for
architectural object reconstruction. In addition they are particularly well suited for
ongoing deformation measurements because of the high degree of possible
automation.

As mentioned above the combination of a conventional tacheometer with an
imaging sensor poses a hybrid approach. By means of such a system geo-refer-
enced images for further computation can be captured in an automated way.

Former research work was mainly focused on fundamental problems like
calibration (Walser 2004; Wasmeier 2009), image pre-processing (Roic 1996),
manual (Scherer 2004) and automated point detection (Mischke and Kahmen 1997;

Fig. 10.6 Left screenshot of the SiteMonitor analysis for geotechnical monitoring. Right sensor
in high-transmissivitiy glass housing for weather protection
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Reiterer et al. 2009). The aspect of repeatability which is of particular interest for the
engineer geodetically deformation analysis remained untouched (examinations
concerning the accuracy of manually detected points were partly carried out by
Mischke and Kahmen 1997 and Wasmeier 2009). In the past couple of years
intensive research on the development of a deformation measurement system based
on image-based tacheometers has been carried out at the Institute of Geodesy and
Geophysics at the Vienna University of Technology (Austria). A current research
project (i-MeaS—An Intelligent Image-Based Measurement System for Rock Fall
Monitoring) concentrates on the concrete application of geo-monitoring (rockfall,
landslide, etc.). The measurement system is based on two image-based tacheometers
connected with a central controlling computer running according software. Using
two synchronized measurement devices, object points can be determined by spatial
forward intersection thus enhancing measurement distance and accuracy.

10.3.3.1 System Layout

System layout of the i-MeaS system consists of the following components:
sensors, system control component, knowledge-base, deformation analysis system,
image analysis and learning unit, alerting system, cache and storage unit.

The component for system control has the task to operate the sensors (device
control, data readout, synchronization, etc.) and the algorithms (image pre-pro-
cessing, point detection, etc.). The briefing about sensor unit, suitable measurement
algorithms (for the image-based tacheometer), and information about the points to
be detected will be located within the knowledge-based subsystems. The final output
of this component is a list of co-ordinates (incl. additional data) of interesting points
and/or ROIs that will be stored in the common storage unit (Fig. 10.7).

System Control 
Component

Image Analysis and
Learning

Knowledge Base

System for Deformation 
Analysis (GOCA)

Common
Storage

Cache

Sensor Systems

i-MeaS

Alerting System

user

knowledge 
expert

Fig. 10.7 Block scheme of information exchange between the functional system units
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Detected points are being sorted according to their image coordinates and only
compared with those that lie in a certain window in the reference data. In case of
stereo image pairs this window is determined by epipolar-geometric constraints.
Namely an epipolar-line is being calculated based on the known orientation of the
images and further constrained using the known average object distance.
The height of the matching window can be determined per parameter according to
the stability of the object and the time difference between compared measurement
epochs (expected deformation). Figure 10.8 illustrates the geometric constraints
leading to the described matching window. The achievable speed-up can be
described with the help of some example figures: two lists of feature vectors (as
described above) of 25 thousand points each, require 625 million vector com-
parisons (quadratic runtime). Using the calculated constraints this process can be
reduced to about 1,25 million comparisons (based on the assumption of an even
point distribution in images of 2,560 9 1,920 pixel and a matching window of
200 9 50 pixel) resulting in a fraction of the original computation time only.

Decisions in the course of the whole processing sequence are executed by an
appropriate (knowledge-based) decision system. From an architectural point of
view, this component is not a monolithic system, but consists of a number of
subsystems dedicated to the different subtasks. Knowledge between these sub-
systems is shared using a central knowledge base.

The deformation analysis system is realized by an integrated commercial sys-
tem (e.g. GOCA). From the viewpoint of i-MeaS, the interaction between the
deformation analysis part and the other components represents the generation of
output files and the reading/importing of deformation analysis files. The output
files contain the measured image point co-ordinates, the calculated 3D point
co-ordinates (for more details about the calculation of 3D point co-ordinates using
image-based measurement systems can be found in Reiterer et al. (2003), and the
captured additional data (e.g. information from the image analysis process).
All these data sets are used for deformation analysis and for the alerting system.

Fig. 10.8 Matching window based on epipolar-constraints
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In contrast to conventional monitoring tools, with i-MeaS it is possible to
perform a deformation interpretation. Based on the measured deformation vectors,
a measurement preprocessing is performed (mainly clustering to detect areas of
similar movement). On the basis of this information and additional data about
velocity and orientation, some conclusions about the kind of occurring movement
can be drawn. Additionally, data of different, heterogeneous sources, such as
geodetic deformation measurements, geotechnical measurements, geological
maps, geomorphological maps, in situ investigations, and numerical modeling
methods can be included (Vicovac et al. 2009).

10.3.3.2 System Verification

Through the implementation of automated point detection and matching algo-
rithms the necessity arises to evaluate the accuracy and reliability of the system as
well as other extrinsic influencing factors. Thus the next section is dedicated to an
evaluation concerning overall quality and performance of the developed i-MeaS
prototype measurement system.

In the literature examinations and evaluations of the used algorithms and oper-
ators can be found, e.g. Bauer et al. (2007). A comprehensive study comparing the
performance of local descriptors can be found in Mikolajczyk and Schmid (2005).
According to them SIFT and SIFT-like descriptors reach their highest accuracies
under viewpoint changes of up to 30�. Results in the area of textured as well as in
structured scenes were significantly better then previous algorithms could achieve.
The developers of the SURF operator (Bay et al. 2008) showed that their algorithm
reaches a similar performance and robustness against changes in environmental
conditions while the computation time was reduced by a factor of around five. These
results were approved in an independent evaluation in 2007 (Bauer et al. 2007).

For the project at hand variable tests were carried out to evaluate the results of
the automated point detection process. They can be divided into three main groups.

• offline-tests (simulations),
• online-tests under laboratory conditions,
• online-tests under real conditions.

Offline-Tests (simulations)
In a first step offline tests where carried out in order to verify and optimize the

point detection and matching process. For the evaluation process image data from
the IATS sensor system (5 MP) was used as well as pictures taken with a high
resolution Digital Single Lens Reflex (DSLR) camera (12 MP).

A central issue arising from the use of a specific automated point detection
process is the selection of appropriate parameters for the used algorithms. For the
evaluation of the point detection and matching process a simple supporting tool
was developed and implemented. Its main purpose was to help compare and
evaluate the repeatability, the quality of the results and the computation time
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needed by different existing operators. The separated creation of the image anal-
ysis component and the measurement system which were combined and integrated
later via previously defined interfaces enabled a completely autonomous devel-
opment and testing of the respective parts.

Figure 10.9 shows the application of the SURF-operator, wherein areas not
suitable for deformation analysis (e.g. vegetation) were masked manually.
A higher image resolution increases the amount of detected IPs (using the same
set of parameters) in an almost linear manner thus extending the computation
time. This means that the sensors used in the i-MeaS project pose a sound
compromise for an online-system regarding resolution and computation time.

Fig. 10.9 Stereo picture pairs from top to bottom with *50 m base and *80 m average object
distance, respectively. Top original high resolution (12 MP) stereo images (site in Triestingtal
near Vienna). Middle interest points in masked area including descriptor size and orientation of
the ‘‘matches’’ (framed sample sub-region). Bottom zoomed out sub-region showing homologue
points (including descriptor window) connected by arrows (background displays all other
matches)
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However an increased amount of available object points may still improve the
quality of deformation representation (a chart illustrating this relation can be
found in Fig. 10.12).

Extensive offline-tests should also determine the optimal set of parameters for the
adaptation of the used operator (different image resolutions as well as the influence
of changed illumination conditions were simulated). It could be demonstrated that
the influence of illumination (cast shadows) could be greatly reduced by applying
specific image pre-processing operations. Histogram equalization may improve the
results by adapting image contrast conditions in the stereo images in a similar
manner. Since these contrast values are unevenly distributed over the image, the
result of such a global image enhancement is not optimal and was replaced by
‘‘adaptive histogram equalization’’. Therein the contrast adaptations are made
within a certain predefined image neighbourhood using a sliding window technique.
As a further improvement the Contrast Limited Adaptive Histogram Equalization
(CLAHE) was used to threshold the maximum contrast enhancement and minimize
the amplification of noise in homogeneous areas. Figure 10.10 illustrates the
improvement of the results that can be achieved without image pre-processing (a),
with global histogram equalization (b) and adaptive histogram equalization (c).

A standardized set of parameters controlling the SURF-algorithm proved to be
not practicable—particularly in regard to the constitution of the surface (structure,
colour, etc.) which requires additional adaptations.

The customisation of the parameters for the point detection algorithm to a
specific test object or site poses a central challenge for an automated system.
As mentioned before current development is focusing on rock surfaces. Vegetation
and other non-stable or unwanted objects in the image domain have to be masked
in the course of selecting a reference epoch. An automated detection of these
structures may be addressed in future research but has to deal with serious prob-
lems from the field of image segmentation.

Online-Tests Under Laboratory Conditions

Primary objective of the online-tests under laboratory conditions was the
confirmation of the simulation results in the controlled environment of a measure-
ment lab. In order to carry out an automated point detection using image based
tacheometers a couple of surrounding conditions have to be met. Aside from known
errors of geodetic instruments like the axis error for instance, additional problems
caused by the imaging sensor system have to be considered. In the present mea-
surement system this is addressed by a highly complex calibration procedure (Walser
2004; Wasmeier 2009). Simplified this means that the mechanics’ and imaging
sensors’ imperfections are considered so that every point on the imaging sensor can
be related to its own specific angle values (horizontal Hz and vertical angle V).

The online-tests described below are focused mainly on the evaluation of the
repeatability of the automated point measurements. The multi-sensor-system
consisting of the tacheometer and the imaging sensor has will be considered as one
single device (a separate examination will be carried out at a later date).
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In the course of the laboratory test an adequate target panel was stably mounted
approximately 4 m in front of the sensors. The two imaging tacheometers were
oriented and focused in the direction of the panel (the captured each covered a part

Fig. 10.10 Effect of image pre-processing on operator performance on data containing cast
shadows (high threshold used to reduce the amount of detected points), a original data: 9 correct
matches, b global histogram equalization: 61 correct matches, c contrast limited adaptive
histogram equalization: 81 correct matches
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of the target). Subsequently points were detected using the SURF-operator and
their 3D co-ordinate in the object domain were calculated by means of spatial
forward intersection. Both tacheometers were first rotated by 90� before targeting
the panel again and obtaining the formerly measured 3D-points once more.
This process was repeated 10 times thus creating a test series containing 10
measurement epochs. In each epoch about 250 points were detected and tracked
over time. It was shown that the maximal difference between the reference- and a
consecutive-epoch was 0.1 mm. This value lies within the measuring tolerance of
the system. Hence it was clearly shown that the limiting factor is not the imaging
chip but the tacheometer on which the sensor system was build.

In order to address the issue of changing illumination conditions and their
influence on the point detection and matching process the above described 10
measurements were complemented by another set of 10 epochs. The configuration
was complemented by an additional light source illuminating the target from
different angles. Using appropriate image pre-processing steps and optimised
image capturing (shutter speed) the system can be adapted to changed environ-
mental conditions. The consideration of irregular illumination like cast shadows
poses a much greater challenge. Simulations regarding this factor of influence have
yet to be carried out. However first conclusions can be drawn based on tests
executed under real conditions.

In addition these online-tests have to take the influence of temperature into
consideration (thermal stability). This influence factor has been extensively cov-
ered by Wasmeier (2009) and should therefore only be referred to the existing
literature for the sake of completeness.

Online-tests under real conditions

In order to test the measurement system including the used operators and
algorithms under realistic field conditions a fixed installation of the sensor system
was conducted over several days. The installation was made on the Pasterze, the
largest glacier in the eastern Alps. A lower, debris covered part of the glacier as
well as a geologically stable rock face was chosen as test site. Main purpose of the
test was not so much the examination of accuracies but the evaluation of the point
detection and matching process and the consecutive calculation of 3D co-ordinates
on the object under realistic environmental (especially illumination) conditions.

The two imaging tacheometers were positioned in a mutual distance (base) of
ca. 70 m and an average distance to the object of 1,000 m. A stable positioning
towards the monitored object could be carried out based on local conditions. The
angle of sight can be described as optimal whereas the relatively small base length
compared to the large distance to the object did not represent an ideal configura-
tion. However due to the primary focus on point detection and matching this did
not pose a further problem. An overview over the region of interest (ROI) on the
object is given in Fig. 10.11.

The region of interest was covered by 11 9 23 = 253 images with an overlap
of 20% by both scanning positions. The scanning process took approximately
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30 min for each of the two positions. Caused by the implementation (being
a prototype system) only sequential image capturing is possible, resulting in a
combined scanning time of about one hour per measuring epoch.

Immediately after the image capturing the automated point detection process is
started. The first measurement epoch is defined as zero or reference epoch and
homologue stereo points are therefore being searched in all picture pairs and
results are saved in Descriptive Feature Vectors. Caused by the long computation
time of this operation the process was computed offline. This was made possible by
the modular structure of the system: the process of measurement can be saved at
certain pre-defined stages, aborted and continued later on. In consecutive epochs
the feature vectors of an image pair are not mutually matched but against the
respective previously saved vectors of the reference epoch. Caused by the reduced
size of the saved vectors (containing only the homologue points of the reference
epoch), computation time decreases to only a fraction of a full matching run. In a
third step the remaining points are mutually matched to ensure a stereo relation of
the tracked points in the current epoch.

The main parameter settings used were a threshold of 0.001 and 4 octaves
divided into 4 intervals. This ensures a high amount of found IPs and homologue
points in the reference epoch, resulting in a high amount of points being tracked
over time without overly increasing computation time. It has to be mentioned that
illumination conditions strongly varied both between corresponding stereo epochs
(fast moving clouds) as well as between the former and consecutive epochs (time
of day) this factor was compensated by a histogram equalisation. These differences
in environmental conditions complicate the detection and use of only a few but
very concise IPs and require a higher basic set of points.

Figure 10.12 shows a compressed analysis of a sample set of stereo- and
consecutive epochs well suited to represent the region of interest. It illustrates the
total amount of ‘‘interest points’’ found, the amount of matched homologue points in
the reference epoch and the points that could be tracked in a consecutive epoch (first,
fourth and fifth line from top respectively, absolute scale on horizontal axis to the
left) under the influence of different threshold parameter settings (values on vertical
axis). Furthermore the corresponding computation time in seconds is shown on the
right.

Fig. 10.11 Panorama of measurement site at the Pasterze glacier, including scanning position
(left) and region of interest (ROI) on the object (area covers about 370 9 120 m)
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The point quality was assessed by a manual review of the visual representation of
the results to determine the amount of false matches. This was done up to about
2,500 detected homologue points resulting in a false matching rate of 5–10% in the
reference epoch which could be reduced to zero for points tracked in the consecutive
epoch because of the chosen multiple matching strategy. With a increasing matching
rate (amount of homologue points detected) in the reference epoch more and more
homologue points get lost in the course of the epoch matching.

The measurements under realistic conditions (changing illumination shadows,
etc.) provide a sufficient amount of points for a representation of potential defor-
mations. A remaining problem is the distribution of these points, which is currently
only defined by mathematically defined local extrema in the image domain. A regular
distribution of the points can be reached by a suitable grating of the image (the used
process could be applied to each part of a regular grid with different parameter
settings in order to obtain a regular distribution of detected points). The systems most
urgent problem is currently the computation time of the process. The detection of IPs
and the necessary matching takes about 20–30 s for one pair of images (dependent on
the amount of detected IPs). For the whole region of interest this means an overall
computation time of about 105 min. These values refer to the limited computational
power of a conventional field notebook (2.4 GHz Intel Core 2 Duo, 2 GB Ram). This
shows that the current system is only limited suitable for an online application. There
is constant ongoing work on the enhancement of the prototypical implementation
of the point detection, description and matching regarding computation time by
reimplementation, optimisation, parallelisation, etc. Ultimate goal is a parallel
measurement and evaluation of the data.

10.3.3.3 i-MeaS Prospects

The present section describes the first evaluation results of image-based defor-
mation measurements. The used point detection and matching mechanisms have
been described in detail. It could be shown that the developed system concept

Fig. 10.12 Overview over the test series—SURF-Operator
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poses a promising approach which allows measuring large point clouds with high
accuracy. The influence of illumination conditions can be strongly reduced by
means of appropriate image pre-processing steps whereas the issue of cast shad-
ows requires further research.

The advantage of such a measurement system compared to terrestrial laser
scanning lies in the detection of distinctive points on the object (in contrast to an
unstructured point cloud). The disadvantage is the necessity of constant illumi-
nation during the measurement which is not the case for terrestrial laser scanning.

Ongoing work concentrates on the improvement of the point detection and
matching. Furthermore the measurement system will be integrated in a geo-
monitoring-framework which incorporates an alerting and early-warning-system
as well as an interpretation and classification of the occurred deformations.

10.4 Applications

10.4.1 Introduction

Similar relevant work on vision-based terrestrial surface monitoring started close
to the end of the twentieth century. A variety of use cases have been since
documented, both for commercial and scientific applications, and with different
levels of maturity. Each individual case gained a set of experiences, modifications,
improvements, feasibility statements and—most important in the context of this
book—new research and development challenges for such systems. In the fol-
lowing sections a heterogeneous set of application classes and specific usage of
terrestrial surface monitoring is documented.

10.4.2 Permafrost

The evaluation of rock glacier surface changes needs fast and cheap observation
methods with accuracy in the range of a few centimetres. Long-range laser scanners
can achieve measuring distances up to a few kilometres of range. It is shown that a
system using such a device is able to successfully perform an efficient long-term
change survey. We report on the sensor and software setup, the logistics and the
procedure for data evaluation to perform the proposed monitoring task. An exper-
iment was carried out at the Hinteres Langtalkar rock glacier in the Hohe Tauern
range of the Austrian Alps. The obtained results enable the access to high-resolution
surface deformation data in all three dimensions. Relevant parameters and advan-
tages of the systems as well as drawbacks and ideas for further improvements are
pointed out. The operational system is available for further scientific exploitation.

Surface dynamics of rock glaciers are of increasing interest due to its high
relationship to thermal conditions of permafrost areas. A few rock glaciers in the
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Alpine arc reacted on increasing air temperatures with extraordinary high move-
ment rates over several years (Roer et al. 2005). Most of them now show
decreasing surface velocities (Delaloye et al. 2008). The rock glacier Hinteres
Langtalkar changed its behaviour most likely in 1994, moving over a prominent
bedrock ridge into steeper terrain (Avian et al. 2005b). Despite the remoteness of
the location, a comprehensive monitoring network has been installed to get a better
understanding of present processes such as geodetic survey (annually since 1998;
Kienast and Kaufmann 2004), monitoring of the near-surface and surface thermal
regime (since 2006 within the project ALPCHANGE), terrestrial laser scanning
(two times in 2000, two times in 2001, 2004, 2005, 2006, 2007; Bauer et al. 2003)
and digital photogrammetry (1969, 1974, 1983, 1997; Kaufmann and Ladstädter
2004a) providing data of different nature and in different resolutions in time and
space. Long range TLS is ought to monitor the lowest part of the rock glacier to
gather information about vertical surface changes and 3D movement rates.

The automatic detection and evaluation of three-dimensional deformations, the
generation of velocity fields and a full spatial high-resolution coverage of entire
rock glaciers concerning these effects has only been made possible since imaging
sensors in combination with computer-based data processing are available. Recent
advances have been made both in the field of active remote sensing from space
(Kenyi and Kaufmann 2003b) and aircraft (Baltsavias et al. 2001), aerial photo-
grammetry (Kaufmann and Ladstaedter 2003), and most recently with the avail-
ability of high-resolution optical remote sensing (Kääb 2002). Sharov and Gutjahr
(2002) detected changes up to a height resolution of a few cm using SAR imagery.

Most of these methods rely on sensing from nearly vertical viewing angles which
means that steep slopes can only be covered with strong restrictions in measurement
performance, if at all. Rock glaciers are creeping ice/rock mixtures as a typical
landform in permafrost areas and express themselves as highly complex in
dynamics and shape. Amongst others active rock glaciers are characterized by steep
fronts, causing most of the remote sensing based strategies to fail or degrade due to
the above mentioned restriction. Moreover the front slopes of several rock glaciers
(Roer et al. 2005) now rapidly change in shape, texture and object distribution due
to rock falls, sliding processes and a general modification of the surface.

In the last years beginning with 2000 a set of experiments was started using this
new technology for monitoring both glaciers and rock glaciers in the Austrian
Alps. The test sites include the Pasterze glacier as well as a debris covered glacier
of Gössnitzkees (glacial processes) and the rock glacier Hinteres Langtalkar
(periglacial/permafrost processes), all located in the Hohe Tauern National Park.

10.4.2.1 Hinteres Langtalkar Rock Glacier

The rock glacier Hinteres Langtalkar was measured the first time in July and
August 2000 and 2001, respectively (Table 10.2). The ongoing sliding process and
the steepness of the rock glacier front slope prevent standard geodetic measure-
ments as well as surface motion analysis by photogrammetric methods. A detailed
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description of the situation including maps can be found in Kaufmann and
Ladstaedter (2003).

Geographical Setting

The cirque-system Hinteres Langtalkar (N46�590, E12�470) is situated in the
Schober Mountains within the Hohe Tauern Range (Central Alps, Austria)
(Fig. 10.13). The cirque-system is a hanging valley at the orthographic right side of
the Gössnitz Valley. The cirque covers an altitudinal range between 2,300 and
3,019 m a.s.l. The NW facing tongue shaped rock glacier itself covers the entire
upper cirque floor with a lower margin at 2,455 m a.s.l., root zones beginning in
appr. 2,700 m a.s.l. and a geometry of 600 9 300 m (Fig. 10.14). In general, rock
glaciers are very frequent in the Schober Mountains due to favourable geological
conditions leading to a total number of 77 intact rock glaciers (Lieb 1991).
Furthermore the main range of the Central Alps (10 km to the N) causes pronounced
continental climatic characteristics with a mean annual air temperature (MAAT) of
0�C at 2,200 m a.s.l. and precipitation of appr. 1,500 mm at 2,000 m a.s.l. Glacia-
tions in the Schober Mountains is developed only in some cirques and decreased
rapidly during the last decades due to atmospheric warming (Kellerer-Pirklbauer
et al. 2005). Auer et al. (2002) report from a rising of the MAAT of 1.6�C since 1886
at the Hoher Sonnblick Meteorological station (3,106 m a.s.l., 15 km E of Hinteres
Langtalkar) which is above the global average of 0.74�C (Solomon et al. 2007).

Table 10.2 Periods of data acquisition and quality parameters

Period Total points Used points PRa OAb

07/2000 27,048 26,381 0.98 0.07
08/2000 27,048 26,437 0.98 0.06
07/2001 27,048 26,274 0.97 0.02
08/2001 26,910 26,312 0.98 0.02
08/2004 20,424 19,818 0.97 0.02
08/2005 27,048 17,843 0.65 0.02
09/2006 7,836 6,048 0.77 0.02
07/2007 6,384 5,739 0.90 0.02

a PR point ratio = numbers of points used/total number of points measured, b OA orientation
accuracy ± [m]

Fig. 10.13 Location of
Hinteres Langtalkar within
Austria
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For sensor orientation a geodetic network of five reference points was provided
by the Institute of Geodesy at TU-Graz. For each of the four individual
measurements the sensor orientation was obtained independently. The sensor
location was selected at a distance of about 100 m to the foot of the rock glacier
front slope (Fig. 10.15). The resolution of the measurements was mainly limited
by the acquisition time. A grid width of 0.5 m could be established at the centre of
the front slope, corresponding to 140 9 200 single measurements.

Figure 10.16 shows the original laser measurement data and the resulting DSM.
Figure 10.17, left, shows the difference DSM within a period of one year. The
elevation change varies from –2.0 to +1.5 m. The bright areas indicate areas with
large elevation change of the surface. Stable areas outside the rock glacier show an
RMSE of ±11 cm and a systematic difference of 3 cm in height.

On Fig. 10.17, right, a debris flow event is documented. The spatial distribution
of the observed mass movement can be identified and numerically evaluated. The
flow has been caused by subsurface drainage after heavy rainfall. The first indi-
cations of this event can already be recognized at the diagonal vertical structure on
the centre of Fig. 10.15.

Fig. 10.14 The cirque-system Hinteres Langtalkar including the monitoring configuration.
Codes in photograph: (1) Area of intensive rock glacier movement and disintegration, (2)
prominent bedrock ridge partly covered by periglacially weathered debris, (3) latero-terminal
moraine ridges dating from the Little Ice Age (*1850 AD), (4) crevasses on rock glacier
indicating high strain rates, (5) meteorological station and (6) fresh boulders spreading over
alpine meadows adjacent to the rock glacier front. The thin dashed line comprises the recently
fast moving part of the rock glacier. Scanner position is in a distance of appr. 90 m to the rock
glacier front (Photograph by Viktor Kaufmann 24.08.2003)

10 Vision-Based Terrestrial Surface Monitoring 311



Discussion

The full end-to-end chain of rock glacier monitoring using a long-range terrestrial
laser scanner has been demonstrated in the experiment (Bauer et al. 2005a). Small
debris falls as well as accumulation of debris and scree can be detected, the local
mass movements can be evaluated down to single cubic meters. Dangerous geo-
detic field work in areas of difficult direct access can be completely avoided.

The result of the DSM structure based motion field analysis is shown on
Fig. 10.18, combined with the vertical change obtained from the DSM differences.
A horizontal motion up to 1.5 m a-1 and a vertical surface deformation up to
1.2 m a-1 could be detected. Within stable areas (e.g. upper right) no statistically

Fig. 10.15 Measurement campaign of July 2000 at the Hinteres Langtalkar rock glacier in the
Austrian National Park Hohe Tauern

Fig. 10.16 Left laser scanner distance measurement of 12-07-2000 (grey coded black = near,
white = far). White areas within the DSM could not be measured due to occlusions. Right digital
elevation model (rendered) after geocoding
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significant change in all three components can be observed. The distribution of the
detected motion directions is consistent with the assumption that the overall
motion is mainly induced by gravity action, although local irregularities may be
caused either by local sliding events or errors of the matching process.

To control the significance of the image matching data, cross checking with
displacement rates from adjacent parts of the rock glacier were considered. Geodetic
survey has been carried out in the middle part of the rock glacier with its lower
measurement boundary at the disintegrated lower part of the rock glacier. These
campaigns provide verification data for the displacement vectors derived from image

Fig. 10.18 Results of surface structure matching: change between August 2000 and August
2001. Circles describe vertical changes, the vector field displays the horizontal movement

Fig. 10.17 Left difference DSM from August 2001 to August 2000 (grey coded). Right part of
difference DSM from 21-08-2000 to the first campaign of 12-07-2000 (grey coded)
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matching (Table 10.2). Some limitations in interpretation have to be considered due
to distances of up to 60 m between scanning area and the respective control points.

Results

To get more information about interpretability, a review of data quality is
essential. In the period 2000–2005 the total number of acquired points is high with
20,000 to 30,000 per campaign. The surface topography of a rock glacier consists
of boulders with sizes between a few decimetres up to some metres. This is of
crucial importance in the face of a true reproduction of the real surface and
subsequently to receive reasonable results in terms of surface motion patterns. Due
to problems with energy supply in 2006 and 2007, the scanning increment had to
be reduced during these campaigns leading to total point numbers below 10,000.
This low number is unfavourable for interpolation and obtaining a DSM for an
area wide precise motion analysis. Orientation accuracy is satisfying for all periods
with ranging from ±0.02 to ±0.07 m (Table 10.2).

The results of the rock glacier motion analysis based on image matching are
given in mean annual horizontal displacement rates.

2000–2001: The stepped lowest part differentiates clearly in velocity patterns. The
ridges show mean annual displacement rates of 0.78 m a-1 (max. 1.38 m a-1)
(Fig. 10.19a; zone 1), 0.95 m a 1 (max. 1.73 m a-1) (Fig. 10.19a; zone 2), 1.38 m a-1

(max. 1.64 m a-1) (Fig. 10.19a; zone 3), and 1.35 m a-1 (max. 1.75 m a-1)
(Fig. 10.19a; zone 4). The adjacent scree slope at the orthographic left side of the rock
glacier shows very constant movement rates of 0.02–0.06 m a-1 over the entire
scanning area.

2004–2005: Quality of velocity data from this period tend to be not satisfying in
some areas. Distinct differentiation between obvious moving and akinetic areas at
the margin of the rock glacier is not possible.

2005–2006: Flow velocities and patterns are more difficult to interpret although
the ridges are detectable due to higher displacement rates (0.75 m a-1). The main
front shows rates around 0.15 m a-1, the left margin is distinguishable towards the
non moving scree slope. Coarse point resolution leading to small spots of areal
data does not allow reasonable interpretation of the upper part of the rock glacier
tongue (uppermost scanning area in Fig. 10.14).

Direction of movement at the terminus zone of the rock glacier shows outwards
movement of displacement vectors as expected. The ongoing development of the
imbrications and the distinct shifting of detritus is visible in abrupt changes of the
magnitude and the direction of velocity vectors (Fig. 10.19a–c, 1–4).

High deviation values in a cross check with data acquired in a geodetic survey,
at some areas of the right margin of the rock glacier, the bedrock, and vegetated
areas are results due to unfavourable scanning geometry and therefore not taken
into account as the exact rock glacier extent is known from fieldwork.

In terms of the accuracy of the measurements a crucial factor is the availability
of independent measurements to validate the acquired data. Furthermore stable
bedrock areas—forming ‘‘natural targets’’—are rare in the scanning sector, but will
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be integrated in future measurements. An airborne LiDAR survey was carried out in
late summer 2008. These data will be compared with TLS data to validate results
and accuracy. The next monitoring campaigns will be carried out with a new sensor

Fig. 10.19 Horizontal
displacement rates [m a-1]
for three annual periods:
a 2000/01, b 2004/05 and
c 2005/06. Motion vectors are
obtained from DSM
differences, DSMs were
derived from TLS data.
Numbers (1–4) indicate zones
of different behaviour in
terms of surface velocity, for
details refer to text
(Orthophotograph �
Nationalpark Hohe Tauern
1998)
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system (Riegl LMS-Z620 see Table 10.1) which allows faster data acquisition to
avoid problems concerning sensor levelling during the measurements.

10.4.3 Glaciers

Monitoring of glacier behaviour is an important task in environmental research. For
detailed detection of glacier surface and volumetric changes terrestrial laser scan-
ning is a very effective and cheap observation method, due to the ability to acquire
high-resolution 3D data. Advancing or retreating glaciers have a complex impact on
their neighbouring environment, as e.g. on permafrost, geomorphic processes (thus
natural hazards) or vegetation. In Austria, monitoring of glacier behaviour is an
important task in environmental research. Since many decades the Austrian Alpine
Association (OeAV) co-ordinates annual glacier measurement campaigns. Of the
925 Austrian glaciers—according to the first Austrian glacier inventory from the
year 1969 (Patzelt 1980)—107 glaciers are currently monitored on an annual basis
by this program (Patzelt 2005); the majority of them only in a very general way (e.g.
change of glacier terminus). In addition to these activities, annual mass balance
measurements are carried out at a much smaller number of Austrian glaciers within
the framework of the World Glacier Monitoring Service (WGMS). Currently, a new
Austrian glacier inventory is in progress. For this purpose, 49 glaciers of different
types have been surveyed between 1995 and 2003 with the aid of ground penetrating
radar (Würländer and Kuhn 2000; Fischer and Span 2005; Lambrecht et al. 2005).
Knowledge of glaciation changes is essential for the interpretation of glacier-climate
interaction and glacier-climate modelling studies. Furthermore, the total volume of a
glacier body is an interesting parameter for water resource management, in partic-
ular in areas where glacier water is essentially used for irrigation during the summer
period (e.g. Hunza valley, Pakistan) or used for hydropower production (e.g.
Kaprun, Austria). Numerical requirements on the quality of glaciological data are
high in order to allow reliable predictions for all these issues. A number of different
methods on a local, regional and global scale for glacier monitoring are available.
For detection of glacier surface and thus volumetric changes in a very high spatial
resolution terrestrial laser scanning is a very effective observation method, due to the
ability to acquire high-resolution 3D data in a very short period of time. The auto-
matic detection and evaluation of three-dimensional (3D) deformations, the gen-
eration of velocity fields and a full spatial high-resolution coverage of entire glaciers
concerning these effects have only been made possible since imaging sensors in
combination with computer-based data processing are available.

10.4.3.1 Pasterze Glacier

This section discusses the results of annual terrestrial laser scanning campaigns
beginning in 2001 within the monitoring framework at the Pasterze glacier tongue.
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Geographical Setting

The Glockner Mountains comprise the longest glacier in the Eastern Alps with
the main attraction Pasterze Glacier (Central Alps, Fig. 10.20, 12�440E, 47�040N).
The glacier’s dimension changed from 1852 to 2002 as follows: length 11.4 to
8.4 km (-26%) and area 26.5 to 18.5 km2 (-30%). The dramatic loss of ice in the
last decades is documented in a comprehensive modification of this alpine envi-
ronment on the glacier itself as well as in the paraglacial area. Quantification of
these changes such as spatial measurements of glacier surface changes are a pri-
mary task in the last 20 years with new remote sensing techniques using photo-
grammetric analyses (Kaufmann and Ladstädter 2004c), Airborne laserscanning
(Geist et al. 2003; Kellerer-Pirklbauer et al. 2005) and radar-interferometry (Ka-
ufmann et al. 2005). The selection of terrestrial laser scanning on this part of the
Pasterze glacier is due to following reasons providing several advantages:

• Perfect accessibility keeps costs low (mountain road ‘‘Großglockner-Ho-
chalpenstraße’’ to end point ‘‘Franz-Josefs-Höhe’’).

• The lowest part of the glacier, i.e. the glacier terminus, is object of an intense
retreat which goes along with a massive modification of its proglacial landscape.
In the upper part of the scanning area (at the ‘‘Seeland-Linie’’ profile beneath the

Fig. 10.20 Location of the Pasterze glacier, glacier extent and position of the TLS-sites as well as
profiles of tachymetric measurements (Orthophotograph 1998, � National Park Hohe Tauern 2006)
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Hofmanns-Hütte) the glacier lost 38% in width, 61% of thickness, and 75% of
the area concerning the vertical cross-section (Wakonigg and Lieb 1996; Kro-
bath 2003).

Terrestrial laser scanning measures the position of a theoretical stable point on the
surface within a given reference-system. Resulting elevation differences do not
reflect mass-losses at this particular point because surface velocity has not been taken
into account yet. To ensure to probability to analyse surface velocity distribution,
measurements have to be carried out with higher resolution e.g. 0.02 Gon instead of
0.2 Gon, exploiting the abilities of newest sensor technology.

Scanning Campaigns

Surface lowering and ongoing deglaciation of terrain were successfully mea-
sured four times resulting in three data-sets of surface elevation changing rates
(xy-resolution 1 m, z-resolution 5 cm) at following dates:

• Campaign 1: 19./20.10.2001
• Campaign 2: 21./22.9.2002
• Campaign 3: 14./15./16.8.2003
• Campaign 4: 20./21.9.2004

2001–2002: This first year of measurements is mainly focused on the set up and
instrumentation than taking into account glacial questions. The main question is to
figure out the best increment for the different aspects in monitoring glaciers
regarding time and resolution. As glaciers retreat recently deglaciated areas are
characterized by high rates of sediment delivery (e.g. kame terraces) and deposit
(e.g. sandur). This paraglacial area at the Pasterze is subject to conditions of
comprehensive modifications at a mean magnitude from -1 to +1 m in vertical
surface elevation changes (max. up to -3.4 m, Fig. 10.21 left, a).

The debris covered, right part of the glacier shows a very interesting linear
succession of surface lowering. Beginning at its right margin rates increase from
around -1.5 to -4.8 m at the supra-glacial melt water channel marking the border
between debris covered and bare ice part of the Pasterze glacier (Fig. 10.21 left,
b). This left part of the glacier is subject of dramatic modifications. Area wide
surface elevation changes range from -6.2 to -7.2 m and is very homogenous in
terms of spatial distribution at the entire bar-ice glacier terminus. These rates do
not include areas showing the beginning of intensive collapses of the ice body that
mainly occurs at the left margin of the bare ice glacier surface. The lowest event in
terms of absolute elevation is already visible due to developing crevasses near the
fenced tourist areas (Fig. 10.21 left, c, Fig. 10.24 right), large areas show sinking
rates over -12 m, maximum rates reach up to -19.2 m. Following the left glacier
margin 550 m upwards an area of extraordinary sinking rates is detectable in the
results (mean -7.8 m, max. -10.2 m). The magnitude of the sinking rates within
this area exceeds surrounding rates by *2.0 m. The occurrence of debris cover in
some parts of the bare ice left part is visible in significant smaller sinking rates.
Albedo of clean ice is about 40% compared to shallow debris covered ice where
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albedo reaches values in the range of 10–15%. Less energy is available for ablation
on snow surfaces than on debris covered ice. Highest ablation rates occur at a
thickness of debris cover of 0.3 cm; if debris cover increases to 5 cm, ablation
rates on bare ice and debris covered parts are equal. Debris cover with a thickness
of at least 7 cm is a significant protection against incoming short wave radiation
(Benn and Evans 1998; Nakawo et al. 2000). The thickness of debris cover was not
analysed particularly but rough estimations on the glacier during fieldwork pro-
vided results of around 10–15 cm.

2002–2003: Dynamics of modification of paraglacial areas follows the
retreating glacier terminus. Surface elevation changes decrease depending on
the distance to the glacier terminus (as expected). Surface lowering probably
connected to melting of dead ice bodies is also visible as in the previous period.
The two mentioned collapsing areas still remain in extraordinary spatial dynamics;
especially the upper one increases sinking rates (mean -8.3 m, max. -10.8 m;
Fig. 10.21 right; Fig. 10.24 right). A new zone of massive surface lowering is
developing another 400 m upwards on the left glacier margin (max. -9.5 m, mean
-8.5 m, surrounding: -7.3 m). Ongoing increasing surface lowering towards the
glacier terminus of the entire bare ice part is visible. This process is strongly
influenced by a decrease of ice-supply due to reduced glacier surface velocities in
the lower part since 1983 (Wakonigg and Lieb 1996). Surface elevation changes at

Fig. 10.21 Spatial distribution of surface elevation changes on the Pasterze glacier in the period
2001/2002 and 2002/2003. Orthophotograph 1998, � Nationalpark Hohe Tauern
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the debris covered part decrease mainly at the upper part, increase at the middle
section and decrease to the lowest part. The mass loss on the debris covered glacier
tongue is detectable at a magnitude of *-3.5 m at lower edge decreasing to *-

2.1 m at the upper edge (Fig. 10.22).
2003–2004: In 2004 we planned to increase the temporal resolution with

measurements in the summer period at four epochs (mid of June, July, August, and
September) to get a better picture of the inter-annual ablation dynamics. Com-
plications due to unstable weather conditions and problems in sensor orientation
inhibited the first three campaigns completely. Results were only carried out in
September, where only 33% of the area of 2001, 2002, and 2003 could be used for
reasonable comparisons.

The most obvious indication is a beginning of a comprehensive collapse of the
entire left part of the bare ice glacier tongue. Gentle signs of this process are
already visible in some parts since 2001, massive and homogenous surface low-
ering (over -9 m) as well as newly developed crevasses supports this assumption
(Figs. 10.23, 10.24). Mean sinking rates arise from -9.8 to -10.5 m with maxi-
mums in collapsed areas up to -20.5 m. The sub-glacial melt water channel is
visible a few meters (near the tourist-area) beginning to isolate several ice-bodies.
The entire lowest part of the bare ice glacier part shows surface lowering with
more than -7.7 m (Fig. 10.23).

Adjacent slopes to the Franz-Josefs-Höhe also show surface lowering due to
processes such as melting of dead ice and different types of mass movements. This

Fig. 10.22 Lowest part of Pasterze glacier and proglacial area from the scanning position. Note
the decrease of surface elevation changes towards to glacier terminus (debris covered), and to the
right margin of the debris covered glacier part (Image 25.09.2006)
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part has not been measured consequently in the last periods but visual observations
as well as the well known succession following glacier retreat support this
assumption. Due to the lack of data on the debris covered part statements are not
reasonable. Area wide information is not available, but the scanned sections show
similar behaviour than in previous periods.

In order to get comparable data sets, a prior frequency distribution of all data
sets was carried out to provide sub-zones on the clean ice part named collapse area,
ice margin and main ice part. Surface elevation changes on the glacier tongue
express the continuation and intensification of ice disintegration processes in the
entire monitoring period of TLS. Surface lowering increases over the entire glacier
tongue area with a growth of 38% since 2001/2002 (Table 10.3).

All periods show a constant lowering of the glacier surface with a noticeable
acceleration of the process since 2003. This is again important to underline since
collapsing areas—or the different behaviour of the ice margin—have no influence
on the areal statistics. The period 2004/2005 demonstrates the tremendous mag-
nitude of landscape modification in the Pasterze area with mean sinking rates of
-7.45 m on the clean ice part (max. -16.85 m, 55% quartile -7.85 m, median
-7.45 m, 25% quartile -7.10 m, min. 0.25 m) and -4.65 m on the debris cover
part (max. -16.85 m, 75% quartile -5.00 m, median -4.65 m, 25% quartile
-4.35 m, min. -0.15 m) on the debris cover part (Fig. 10.25). As a consequence

Fig. 10.23 Spatial distribution of surface elevation changes on the Pasterze glacier in the period
2003–2004 with scanner position, reference points and tourist infrastructure. Orthophotograph
1998, � National Park Hohe Tauern
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of these accompanying morphological processes technical problems occur due to
disturbed terrain characteristics like shadowing effects or malfunctions in pulse
reception due to increasing melt water discharge.

The clean ice part retreats rapidly in the last decade (mean -6.50 m a-1,
2001–2005) exposing wide proglacial areas consisting of large debris deposits
(e.g. kame terraces), dead ice bodies and melt water lakes. This micro-scale
topography tends to be an excellent area for methodological tests for TLS. Several
dead ice holes have been developed in the last years visible in Fig. 10.26. Annual
mean surface elevation differences are within the range of 2.10–2.50 m at these
three examples. The erosion of kame terraces marks a very frequent process in this
very young and instable deposit landscape. Melting interior ice bodies and lateral
erosion of the glacier creek caused a total loss of *1,600 m3 and very stable
surface elevation losses of mean -5.20 m within one year (2004–2005).

Year Glacier Terminus bare ice Collapse area

2001

2003

2004

Fig. 10.24 Progression of glacier retreat at the lowest part of Pasterze glacier. Images: Avian
Michael (15.09.2002, 20.09.2004); Kaltenböck Alexander (19.10.2001), Kellerer-Pirklbauer
Andreas (18.09.2003)

322 G. Paar et al.



T
ab

le
10

.3
S

ur
fa

ce
el

ev
at

io
n

ch
an

ge
s,

st
at

is
ti

ca
l

pa
ra

m
et

er
s

an
d

sc
an

ni
ng

ar
ea

s
fo

r
th

e
pe

ri
od

s
20

01
–2

00
5

Z
on

e
M

ed
ia

n
of

su
rf

ac
e

lo
w

er
in

g
(m

)
(X

m
ed

),
S

ta
nd

ar
d

de
vi

at
io

n
(S

D
)

M
ax

.
su

rf
ac

e
lo

w
er

in
g

(m
)

A
re

a
(h

a)

P
er

io
d

01
/0

2
02

/0
3

03
/0

4
04

/0
5

01
/0

2
02

/0
3

03
/0

4
04

/0
5

C
le

an
ic

e
x m

ed
-

3.
65

-
3.

05
-

4.
20

-
4.

65
-

13
.8

5
-

8.
05

-
10

.0
0

-
10

.9
5

Ic
e

m
ar

gi
n

S
D

1.
94

1.
71

2.
50

1.
63

0.
41

3.
10

0.
92

0.
97

C
le

an
ic

e
x m

ed
-

8.
70

-
7.

20
-

4.
95

-
8.

55
-

18
.2

0
-

17
.7

0
-

17
.5

0
-

16
.8

5
C

ol
la

ps
e

S
D

2.
47

2.
24

3.
60

1.
53

0.
21

2.
12

1.
92

3.
28

C
le

an
ic

e
x m

ed
-

5.
95

-
6.

05
-

7.
15

-
7.

10
-

19
.3

0
-

11
.2

0
-

13
.5

0
-

11
.1

5
M

ai
n

ic
e

pa
rt

S
D

0.
73

0.
67

0.
78

0.
58

42
.8

4
38

.8
7

38
.1

6
23

.6
1

C
le

an
ic

e
x m

ed
-

5.
95

-
6.

00
-

7.
15

-
7.

45
-

19
.3

0
-

11
.2

0
-

17
.5

0
-

16
.8

5
S

D
1.

40
1.

26
1.

48
1.

20
43

.4
6

44
.0

9
41

.0
0

27
.8

6
D

eb
ri

s
co

ve
r

x m
ed

-
3.

75
-

3.
45

-
3.

80
-

4.
65

-
10

.2
0

-
9.

15
-

8.
90

-
9.

35
S

D
1.

07
1.

04
0.

70
0.

74
30

.4
8

29
.7

2
22

.7
9

9.
28

G
la

ci
er

to
ng

ue
x m

ed
-

5.
25

-
5.

35
-

6.
95

-
7.

25
-

19
.3

0
-

17
.7

0
-

17
.5

0
-

16
.8

5
S

D
1.

75
1.

76
1.

87
1.

64
73

.9
4

73
.8

1
63

.7
9

37
.1

4

T
he

di
ff

er
en

ti
at

io
n

cl
ea

n
ic

e
m

ar
gi

n,
cl

ea
n

ic
e

co
ll

ap
se

,a
nd

cl
ea

n
ic

e
m

ai
n

ic
e

pa
rt

ag
gr

eg
at

es
in

th
e

te
rm

cl
ea

n
ic

e;
cl

ea
n

ic
e

an
d

de
br

is
co

ve
r

ag
gr

eg
at

es
in

th
e

te
rm

gl
ac

ie
r

to
ng

ue
re

sp
ec

ti
ve

ly

10 Vision-Based Terrestrial Surface Monitoring 323



Fig. 10.25 Monitoring configuration of TLS with additional scanner position for 2007. Surface
elevation changes 2004–2005 with ice disintegration zones and areas of above-average surface
lowering. The current position of the laser-scanner is getting unfavourable due to the fast retreat
of the Pasterze glacier. The glacier terminus reached the scanning centreline in 2006, so only 50%
of the collected data represent clean glacier ice. We defined a second scanning position located on
the trail ‘‘Gamsgrubenweg’’ in the vicinity of the former Hofmannshütte (elevation: 2,456 m) in
September 2006 to ensure high quality data and an area wide analysis of the glacier variation,
exact positioning and first measurements will be carried out in June 2007 (Photographs by A.
Kellerer-Pirklbauer, 23.09.2006, Orthophotograph 12.09.1997, � BEV Vienna)

Fig. 10.26 Quantitative assessment of proglacial modification, surface lowering 2002/03:
artificial 3D-illustration of the surface lowering rates (acquisition date: 15.08.2003) and
orthophotograph (acquisition date: 04.09.2003). (1) Dead ice bodies, (2) erosion of kame terraces,
and (3) ice disintegration
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At the glacier itself ice disintegration is in progress due to several reasons. The
glacier creek—subglacial until 2005—eroded the lowest part of the glacier tongue
leading to a collapse of the ice body showing first signs of large crevasses in 2001.
Now it isolates large ice bodies from the main glacier on the left rim of the glacier. In
this area erosive processes are more dominant than ablation causing major problem
especially in the tourist area. Even with TLS a point density of 1 m-1 is possible
leading to an excellent geometric resolution for these proglacial areas in reasonable
time providing an adequate data set for geomorphic interpretation (Fig. 10.27).

Conclusion

As expected from simultaneous tacheometric measurements all data sets show a
clear trend in spatial variations of glacier retreat. There is a significant distribution
of mass loss from the SW to the NE which also increases towards the glacier
terminus on the bare ice glacier part. Here we can observe a clear leap in mass loss
difference between the two obviously different glacier parts from the upper part to
the lowest part. Debris cover with a thickness of at least 7 cm proofs to be a
significant protection against incoming short wave radiation and therefore ablation
(Kellerer-Pirklbauer 2008). Another aspect in terms of different ablation rates of
glacier parts is less potential radiation in the summer period due to the shadowing
effect of the south-east facing, adjacent Großglockner ridge.

The left part of the entire bare ice glacier part is beginning to collapse com-
prehensively. The lowermost event is already visible in the last years with a
dramatic landscape modification near the fenced off tourist area. The dynamics of
the lowest event is already decelerating. Following the glacier upwards two further
small ‘‘basins’’ flanked by circular to semi-circular crevasses are developing with a
distance of 500 m from the lower one which seem to coalesce in 2004. All
indications on the lowest bare ice part of the Pasterze glacier including the
behaviour of the melt water channel lead to the prediction that the entire foot slope
is about to collapse. The lower part of the adjacent slope facing to the ‘‘Gams-
grubenweg’’ is also getting increasingly unstable which is observable in mass
losses already above dead ice. This part has not been measured consequently in the
last years, no comparable rates are calculated.

Fig. 10.27 Features: (1)
Sandur with water channels,
(2) kame terraces, (3) lateral
slope of terraces, and (4 and
5) melt water lake (image by
A. Kellerer-Pirklbauer
19.09.2006)
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The lowest part of the study area comprises the paraglacial area where a
consequent decelerating of processes depending on the distance to the glacier as
well as the outcrop of dead ice bodies is observable.

Terrestrial laser scanning proved to be a promising tool in monitoring local
events with dimensions of 2–2.5 km. Single day’s campaigns of one person with
consecutively short post-processing keep costs low and allow measures at short
notice to react on dynamic processes.

10.4.3.2 Gößnitzkees Glacier

Since summer 2000 this method is applied at the Gößnitzkees glacier, a small debris-
covered glacier located in central Austria (12�450E, 46�580N; size c.0.75 km2. Note:
‘‘Kees’’ is a regional term for glacier). More than 60% of the glacier is covered by a
prominent debris mantle. Measurements with TLS allow the comparison of three
different time scales (intermonthly, interannual, four years). The results demonstrate
that accumulation and ablation (snow/firn/ice) can be monitored very accurately.
The debris cover reduces net ablation at the glacier surface by up to 75% whereas the
amount of incoming solar radiation is less important. A highly active feature is the
retreating steep ice wall at the glacier terminus. It is shown that by use of this method
it is easily possible to detect small changes on a glacier surface (clean and debris-
covered) relevant for glacier-climate modelling but also for aspects in hydrology and
natural hazard management.

Study Area

Gößnitzkees is located to the south of the main crest of the Hohe Tauern range in
the central part of the Schober group at the valley head of the Gößnitz valley and is
thus in the inner zone of the Hohe Tauern National Park at 12�450E and 46�580N
(Fig. 10.28). Gößnitzkees was included into the network of the mentioned annual
glacier measurements of the OeAV in 1982. Due to the unsuitable topographic
(steep rock faces, narrow crests, lack of flat surfaces at high elevations above the
regional ELA) and climatic conditions (continental climate: low precipitation—
c.1,500 mm at 2,000 m a.s.l., 0�C at 2,300 m a.s.l.) of the Schober group, the
glaciation is limited to a few positions at the foot of rock faces in northern expo-
sitions. The mean size of the glaciers does not exceed 0.18 km2 (N = 29) and
making Gößnitzkees with its c.0.75 km2 in 1997 the largest glacier of this mountain
group (Lieb 2000; Kaufmann and Ladstaedter 2003). The general exposure of the
glacier is NW with high crests and mountain tops to the S. The accumulation area of
the glacier is very small. A high amount of snow accumulation originates from
avalanches, in particular at the western head of the glacier at the foot of some
pronounced couloirs (Fig. 10.29). More than 60% of the glacier is covered by a
prominent debris mantle with variable thickness. The overall appearance of
the Gößnitzkees indicates a very inactive glacier also expressed by low
mean annual flow velocities of 30–60 cm a-1 (Kaufmann and Ladstädter 2004b).
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Due to the described topographic and climatic situation in the Schober group the
entire area favours permafrost conditions. In NW-, N- and NE-aspects discontin-
uous permafrost can be expected above 2,600 m with frequent occurrence of
creeping permafrost features, i.e. active rock glaciers. The existence of the 77
intact rock glaciers is further enhanced by the mentioned lithologies; some of them
may also contain some glacier ice (Lieb 1991; Krainer and Mostler 2000; Lieb et al.
2004; Avian et al. 2005a). Summing up, relief and geoecological elements of the

Fig. 10.28 Location and setting of the study area Gößnitzkees. The delineation of the glacier and
the distribution of debris-covered and clean surfaces are based on the aerial photographs from the
year 1998. The square in the main map indicates the location of the maps shown in Fig. 10.30

Fig. 10.29 Terrestrial overview of the study area. Note the steep ice front of the mostly debris-
covered glacier adjacent to the proglacial lake and the group of people standing next to the
location of the laser scanner; view towards SE (Photo: Kellerer-Pirklbauer 20-08-2004)
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Schober group are highly representative for the Central Alps and thus for the
National Park Hohe Tauern.

Methods and Experimental Setup

Between July 2000 and August 2009 ten terrestrial laser scanning campaigns
have been carried out covering the central part of the Gößnitzkees including the
glacier terminus. This chapter focuses on the results of the monitoring term of
2000–2004. The area that has been investigated during each laser scanning cam-
paign covers 0.09–0.13 km2 or 11.8–17.1% of the entire glacier surface gives the
spatial coverage during the five campaigns as well as the locations of the laser
scanner and the reflective reference targets relevant for sensor orientation. DTM-
differences were performed for three different time scales (intermonthly, inter-
annual, four years). Further description of measurement procedure and data pro-
cessing is found in Bauer et al. (2003).

Results

Based on the measured terrain data glaciation changes over three different time
scales have been calculated: two times intermonthly—07 to 08-2000, 07 to 08-2001,
two times interannual—07-2000 to 07-2001, 08-2000 to 08-2001, and once over
four years—08-2000 to 08-2004. The results are presented in Fig. 10.30. Table 10.4
gives a numerical overview of the calculated results and an estimation of volume
changes for the total glacier for each time interval. The scanned area covers a profile
sector from the cirque headwall to the glacier terminus and is representative for the
entire area. Thus, it is assumed that the detected changes are not only valid for the
measured sector but also can be—more or less—extrapolated on the entire glacier.

Discussion

The results shown in Fig. 10.30 clearly demonstrate non-uniform and peculiar
retreat behaviour of the Gößnitzkees during all three studied periods. The distri-
bution and characteristics of the debris cover plays a crucial role in the behaviour
of the Gößnitzkees. During all three time scales, glacier surface changes are
greatly influenced by the presence or absence of a debris mantle (Figs. 10.30,
10.31). In some areas the debris cover reduced net ablation at the glacier surface
by up to 75% compared to clean ice surfaces in close neighbourhood. Glaciers
mantled by a pronounced debris-cover behave differently to normal or ‘clean’
glaciers. An important aspect in this context is the increasing input of debris on
glaciers; lower glaciation causes a higher input of debris on the remaining glacier
body due to pressure release and paraglacial instabilities on adjacent slopes and the
cirque headwall. The results measured and calculated for the entire monitoring
period give a mean elevation change of about c.-5.8 m (-1.45 m a-1) and an
estimated total volume loss of more than 4.3 Mio m3 (1.08 Mio m3 a-1 for the
whole glacier) strongly indicating once more a retreating glacier. As an example of
utilizing high resolution laser scanner data only a few glaciological aspects are
pointed out in this paper. Further analysis and interpretations are in progress.
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Technical and glaciological conclusions

• Monitoring of glacier surface changes with high temporal and spatial resolution
in alpine terrain is feasible.

• Operational system is available as mobile or stationary unit.
• Results are available immediately after measurement.
• Accuracy depends on viewing geometry and footprint size of the laser beam.
• 3D high resolution surface change data (accumulation of snow and debris;

ablation of snow/firn/ice) is obtained by DSM analysis.

Fig. 10.30 Glacier surface changes during three different time scales (intermonthly, interannual,
four years). Positive values indicate areas of thinning and\0 values indicate areas of thickening
respectively (i.e. accumulation of snow/firn). Note the increase in thickness in some areas at the
1 year time scales due to a favourable glaciological year 2000/2001
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• Both large scale (e.g. estimation of total glacier volume change) and small scale
(e.g. quantification of supraglacial melt water channel incision) glaciological
features can be quantified.

• PSWR during summer plays a minor role in different ablation and accumulation
behaviour on a heavily debris-covered glacier.

• An existing debris cover causes a striking difference in net ablation at areas
mantled by debris relative to clean ice surfaces within close distance (up to
75%), in particular at the debris-free vertical glacier terminus. A detailed
analysis of the debris cover on the glacier (e.g. thickness of layer, spatial dis-
tribution, clast size) is planned in the near future.

Table 10.4 Numerical overview of the calculated and estimated results for each time interval
Difference
calculations

Area considered in the
difference calculations

Area consi-
dered on the
entire glaciera

(%)

Mean
change in
eleva-tion
(m)

Measured volume
change at the
monitored
glacier
section (m3)

Estimated
volume
change for
the entire
glaciera

(m3)

Total [a]
(m2)

On the glacier [b] d of a
and b
(%)

(m2) (%)

1 month: 07 to
08-2000

87,763 85,262 97.2 2.8 11.4 -0.971 -82,789 -728,250

1 month: 07 to
08-2001

120,241 118,175 98.3 1.7 15.8 -1.113 -131,529 -834,750

1 year: 07-2000
to 07-2001

86,262 84,224 97.6 2.4 11.2 -0.829 -69,822 -621,750

1 year: 08-2000
to 08-2001

119,962 117,896 98.3 1.7 15.7 -1.179 -138,999 -884,250

4 years: 08-2000
to 08-2004

63,083 62,894 99.7 0.3 8.4 -5.755 -361,955 -4,316,250

a Glacier size 0.75 km2

Fig. 10.31 Section examples of Fig. 10.30 showing surface changes—both increase and
decrease—at the glacier at different time scales and at different locations; (a and b): sections
of 1-year change maps (07.2000 to 07.2001), bright areas indicate accumulation of snow—a:
in the supraglacial melt water channel (white arrow), b: at the foot of cirque headwall; (c and
d): sections of 1-month change maps (07.2001 to 08.2001); dark areas indicate enhanced ice
melting—c: at the supraglacial melt water channel (white arrow) at the glacier terminus and
in areas with a minor debris cover, d: melting of winter snow at the foot of the cirque
headwall
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• Obviously, the principal factor causing an uneven distribution of surface
changes within a short horizontal distance between two compared time periods
is the specific accumulation/ablation history.

• It is clearly shown that multi-temporal terrestrial laser scanning analyses provide
a high potential for mass balance estimates and thus glacier dynamics studies.

10.4.4 Snow

Although the data generated by the measurement devices can in principle be
directly used for further visualization and measurement, several methodological,
technical and logistic problems are to be encountered when establishing a fully
automatic monitoring system. Stability of device control software, automatic
sensor orientation, high number of measurements, compensation of weather
influences such as fog or precipitation, and a selection of reliable measurements
are some of them. One of the limitations in accuracy is a highly heterogeneous
surface in terms of material (rock, vegetation, and humidity in general) and
structure. In the case of snow cover measurement surface structure and surface
material are more cooperative in this respect.

10.4.4.1 Monitoring for Snow Avalanche Prediction

During winters 1999/2000 and 2000/2001, the SAMPLE study (SAMPLE) dealing
with feasibility of snow avalanche prognosis used a sensor framework containing a
laser scanner as key component. It resulted in the necessary knowledge in terms of
sensor technology, control software and data handling for that purpose. Beside
valuable hints in the possiblities and limits of such technology for the purpose of
avalanche prognosis and warning, already some explicit cases for usability could
be demonstrated. Figure 10.32 gives an idea of such a use case: one important
indicator of growing avalanche risk at a certain slope are cracks on top of the
hazardous region, particularly the speed of width increase of such cracks. The
installation at St. Anton (see next section) allowed to evaluate several of such
dynamic processes.

10.4.4.2 The St. Anton Campaign: Touristic Visualization
of Arlberg Snow Cover

Starting in winter 2000/2001 together with the St. Anton Snow Avalanche
Commission as an experienced target user, a prototype system for snow cover
monitoring on the Valluga Mountain at St. Anton, midst a large alpine skiing area,
was established.
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To get measurements without snow cover for later determination of absolute
snow height, in September 2000 a set of six ROIs on different slopes were defined.
In addition, five ROIs were used for the reflective reference targets. All the ROIs
were scanned within stable temperature conditions during night time. The refer-
ence targets were measured using standard geodetic methods which enabled fur-
ther geocoding of the scanner data. Standard resolution on the slope ROIs was
0.2 Gon (with two of them having 0.1 Gon in one direction due to flat view), the
reference targets were scanned with 0.02 Gon resolution.

For continuous monitoring the scanner was placed within a weatherproof heated
housing. To facilitate maintenance during this first field application a placement
near the upper station of the Valluga cable car at an altitude of about 2,600 m
above sea level was selected. The housing is mounted on a 2 m high concrete pile
(Fig. 10.33) with a wire channel inside which enables a direct connection to power
supply and PC in the cable car station.

The sensor orientation was determined four times within the entire measure-
ment period. At the beginning of the campaign a significant movement of the
sensor could be detected, which was probably caused by beginning freezing of the
ground (hence causing slight movements of the pile with respect to the rocks
underneath). Each orientation process resulted in an average inconsistency of
about 2 cm for the five reflective targets, which was mainly caused by atmospheric
effects that changed the distance measurement.

In January 2001 the operational phase of data acquisition started. Each ROI was
measured 2–3 times a day, giving access to one pseudo-coloured snow cover map

Fig. 10.32 Glide cracks. Left absolute snow cover. Right snow cover change (3 days)
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(snow height as difference to zero measurements in September 2000), and one
pseudo-coloured snow cover change map (difference to one of the prior
measurements). Figure 10.34 shows an example for a snow cover map which was
the primary result of the system passed to the avalanche commission.

10.4.5 Disaster Monitoring Application Case Studies

The evaluation and classification of instable surfaces need fast and cheap
automatic sensing methods with accuracy in the range of a few centimetres.
A terrestrial laser scanning system is able to successfully perform an efficient
change survey and is capable to automatically detect changes and motion on the
surface of an active rockslide area.

A landslide is the movement of a mass of rock, debris or earth down a slope.
A rockslide involves a downward, usually sudden and rapid movement of newly
detached segments of bedrock over an inclined surface. A rock fall is the fastest
moving landslide. A newly detached segment of bedrock of any size suddenly falls
down from a very steep slope.

Once a landslide is triggered along a plane of weakness, material is transported
by various mechanisms including sliding, flowing or falling. After falling or
precipitously moving, the mass of materials deposits at the base of the slope. The
moving mass is greatly deformed and usually breaks up into many smaller slides.
Rockslides can vary in size from a single boulder in a rock fall or topple to tens of
millions of cubic meters of material in a debris avalanche.

Fig. 10.33 Laser scanner LPM-2k with weatherproof housing, near Valluga cable car station
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Rockslides can be triggered by natural causes or by human activity. Natural
causes include extreme weather conditions like heavy rainfalls, saturation of slope
material from rainfall or seepage, vibrations caused by earthquakes, or undercut-
ting of banks by rivers. Also rockslides frequently occur in high mountain areas
during spring and autumn when there is repeated freezing and thawing. Another
reason is the climate change observed in the last decades. In particular the global
warming increases the permafrost level and material formerly frozen gets instable.

Fig. 10.34 Top snow cover map (27.2.2001) overlaid on ortho image (4 ROIs). Area about
� km2: large snow height in valleys is clearly visible. In the lower left ROI a flat ski track passes
which causes lower snow height. Small areas with negative snow height are caused by noise at
highly structured rocks with insufficient DSM representation. Bottom 3D visualization of a
similar area
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Human activities may include the removal of vegetation like the removal of
protection forest, interference with or changes to natural drainage, the modification
of slopes by construction of trails, roads, railways or buildings, housing sprawl,
mining activities, vibrations from heavy traffic or blasting, and excavation or
displacement of rocks.

Rockslides are extremely hazardous. They involve a rapid sliding of large
masses of fractured rock and regolith. They can move millions of tons of rocks in a
short time. Rockslides may endanger or damage buildings, roads, railways,
pipelines, protection forest, agricultural land and crops.

The risk assessment of landslides requires an accurate evaluation of the geol-
ogy, hydrogeology, landform, and interrelated factors such as environmental
conditions and human activities. It is of particular importance for engineers and
geologists to assess slope stability and landslides in order to take appropriate,
effective, and timely measures. Potential measures may vary from road closure,
and excavation of buildings within the area of risk, to investments in protection
buildings like protective barriers, retaining walls, retention capacity, and rock
anchors. Disaster alert plans have to be developed. Above all engineering and geo-
technical investigations have to define the landslide hazard and risk.

Potential indicators of active landslides include slope cracks, curved tree trunks,
tilted poles, tilted walls, and the presence of wet or seepage areas. Before a rock
fall, in most cases a slight shear continuous distortion over a specific period can be
observed.

Rock fall models can be useful tools to predict the risk posed by individual falling
rocks (Dorren 2003). One essential part of the management strategy for slope
instability risk mitigation is a remote monitoring system for a continuous observation
of the mass movement, which is often performed over long periods of time (Jabo-
yedoff et al. 2004). Remote monitoring of slope movement of unstable or potentially
unstable slopes normally is a multidisciplinary approach incorporating several sen-
sors. For example, movements and deformation can be measured with inclinometers,
tilt-meters, extensometers, time-domain reflectometry, radar, and GPS. Water levels
can be observed using vibrating wire piezometers (Kane and beck 2000).

In the standard case the area of a rockslide event is not achievable for the
application of standard geodetic targets. Therefore remote techniques must be used
that are continuously available, which excludes air-based or satellite remote
sensing (Kenyi and Kaufmann 2003a) from the list of candidate techniques.

Terrestrial scanning laser imaging has turned out to be an essential component
of geo-technical disaster monitoring, since it provides high resolution, a wide field
of view, medium accuracy and high availability over long periods of time with
comparably low cost.

10.4.5.1 Schwaz

On July, 10th, 1999 an unexpected large rockfall occurred at the Eiblschrofen near
Schwaz (Tyrol, Austria). Several 1,000 m3 of material were falling towards the
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valley, endangering the city of Schwaz. About 50 buildings and ten companies
were evacuated, and about 250 inhabitants had to leave their homes immediately.

Due to the imminent threat for the inhabitants, immediately after the rockfall,
geodetic, geological, geophysical, and geotechnical monitoring started at the
Eiblschrofen area in order to monitor the actual situation, to find out the long-term
trend of the movement, and to guarantee the safety of the workers at the protection
dams. The rapid alert system (Scheikl et al. 2000a) was amongst others based on
the following sensors: video surveillance, tachymeter, GPS, extensometer,
high-precision levelling, infrared measurements, radio interferometry, acoustic
monitoring, and terrestrial laser scanning.

Since long-range TLS systems (up to 2 km to naturally reflecting targets) were
first available in 1998, this rockfall was the first practical test and major challenge
to prove that ground-based remote monitoring using TLS offers the possibility for
detailed real-time monitoring of surface motion with high temporal resolution.

The TLS monitoring system applied at Eiblschrofen (Scheikl et al. 2000b)
was established in a successful co-operation between the scanner manufacturer
(Riegl Laser Measurement Systems GmbH—Horn, Austria, www.riegl.co.at),
software development (Joanneum Research—Graz, Austria, www.joanneum.at)
and the main contractor (ILF—Innsbruck, Austria, www.ilf.com) who performed
the integration into the geodetic framework as well as the operation. The acquired
and processed data (with an accuracy of few centimetres for displacement
measurements) were reviewed to be essential as a decision-making basis for the
emergency response team.

10.4.5.2 Gries

The prototype of the Dibit Geoscanner monitoring system was field-tested at a
rock fall near Gries, Austria. In June 2003 pieces of cliff as big as humans had
dislodged due to mass movements in terms of a rockslide. Safety measures
including the evacuation of several houses and road closures in the affected
residential area were quickly initiated.

To assess the risk of succeeding rock falls, a laser-scanner monitoring system
was installed which measured potentially instable regions over a period of more
than two months.

Figure 10.35 shows an overview of the Gries rock fall area. In collaboration
with geologists, a set of 11 ROIs were identified to be measured in high resolution
round the clock. Additionally two ROIs, covering almost the whole instable area,
were defined to be measured in lower resolution once a day. Five ROIs were used
for the reflective reference targets to compensate atmospheric influences, and
another five ROIs in the close-up range of the scanner position were used for
sensor orientation. Each reference target was measured once using standard geo-
detic methods, which enabled further geocoding and comparability of the scanner
data. Standard resolution on the slope ROIs was 0.05 Gon, and the reference
targets were scanned with 0.02 Gon resolution.
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For continuous monitoring the scanner was mounted on a stable console on the
opposite slope with an average distance to the target area of 800 m.

The sensor orientation was determined four times a day to compensate slight
movements and misalignments of the scanner. Before each slope measurement, a
reference target was measured to compensate for atmospheric effects that have an
influence on the scanner distance measurements.

Figure 10.36 shows an example of subsequent distance measurements of one
ROI over a period of two days. The accuracy obtained is within a range of 5 cm in
all three co-ordinate axes. Involving image processing and classification allows
deriving simple deformation categories as shown in Fig. 10.37.

Figure 10.38 illustrates the 3D deformation of the whole instable area, and
Fig. 10.39 shows an example of the deformation of one ROI as a result from
region tracking.

Currently the measurement results are verified using geodetic measurements
and ground truth information. Future research will emphasize the application
dependent knowledge-based systems for ROI tracking, detection and correction of
measurement outliers, accuracy investigations, an optimised sensing strategy and

Fig. 10.35 Overview of the Gries rock fall area, Austria. A set of 13 monitoring ROIs were
scanned, together with five reflective targets
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additional sensors (Reiterer 2004) as well as the automatic selection of regions of
interest.

The results show the usability of this approach in various related application
areas such as landslides, glaciers and the monitoring of large edifices. All the
results are available immediately, which makes the terrestrial laser scanner
monitoring a valuable tool for risk evaluation and prediction.

10.4.6 Geo-Risk Monitoring Case Studies and Systems

Scanning laser imaging has turned out to be an essential component of geotech-
nical disaster monitoring. The following section will give a short overview over
existing applications and case studies conducted in the field of geo-hazard
monitoring.

Two TLS based measurement frameworks focused on the monitoring of geo-
hazard zones are the ‘‘DIBIT Geoscanner’’ (Sect. 10.3.1), developed by Joanneum
Research and DMG and the ‘‘Site Monitor’’ (Sect. 10.3.2) developed by the UK
based company ‘‘3D Laser Mapping’’. Both systems combine TLS data acquisi-
tion, visualisation and evaluation and offer an automated monitoring process.

Fig. 10.36 Grey-level coded distance images of a ROI (10 9 7 m) in the Gries rock fall area
measured over a period of two days (data acquisition every 6 h). Bright 635 m, dark 620 m
distance. The motion between frames 55 and 56 was considerably slow, whereas a rock fall
occurred between frames 58 and 59 (note that the structure changes completely)

Fig. 10.37 Output of a simple deformation categorization process based on the data depicted in
Fig. 10.36. In the rightmost column the decision of the system is displayed (structure change
caused by a rock fall, irrelevant motion of the terrain surface, or considerable side motion of the
terrain between subsequent measurements). The decision is based on statistics of matching results
between subsequent distance images (some of the statistical parameters—matching area covered,
reliability, and angular displacements—are displayed in the output list as separate columns)
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Beside these commercial attempts, some case studies have reached a level of
maturity in very specific aspects (see Table 10.5 for an overview): applications for
geo-hazard monitoring were tested all around the world and several specific
measurement frameworks have been developed for the scientific community
(Lehmann et al. 2009) as well as for commercial applications (e.g. mine monitoring
www.3dlasermapping.com, see above), or both (www.dibit-scanner.at). For
various applications different TLS systems exist on the market with an operating
distance between near-range (up to 10 m), midrange (*300 m) and long range
(up to 6,000 m). The ability of TLS to acquire high-resolution 3D data of surface
structures makes this technique a very interesting instrument for measuring haz-
ardous or non accessible sites such as high mountain environments and extensive
or susceptible man made structures. Another approach is the so called Ground Based
Interferometric Synthetic Aperture Radar (GBInSAR) technique. It allows

Fig. 10.38 3D deformation model of the whole instable area (ROI B-1 and B-2 in Fig. 10.35.)
over a period of three weeks. The deformation is grey level coded with white colour indicating
almost no changes regarding to the reference measurement at the beginning of the monitoring
period, and black colour indicating up to 9 m of break-off or accumulation. For significant terrain
regions the deformation amount is displayed in all three dimensions
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to measure considerably higher accuracies (deviations in the range of millimeters
(Alba et al. 2008) compared to centimeter using TLS (e.g. Abellán et al. 2009;
Bitelli et al. 2004; Hsiao et al. 2003) and shows a good robustness towards
fog and rain.

On the other hand these techniques have several shortcomings. Compared to
IATS based measurement systems (as introduced in Lehmann et al. 2009) TLS
offer a limited range and less reliable measurement accuracies whereas GBInSAR
is more accurate but requires heavy stationary equipment (Alba et al. 2008) which
confines possible measurement sites.

10.5 Conclusions and Prospects

The major advantages of the terrestrial remote sensing of surface motion lie in the
accessibility of unreachable (steep slope, hazardous) areas, together with the
ability to identify and evaluate both global and local surface motion and change
effects. Furthermore, fix installed systems allow a frequent geo-coded measure-
ment of the same area for long periods of time.

High resolution DSMs derived particularly from long range terrestrial laser
scanning are a good data basis for monitoring processes related to geo-hazards.
Derivates like surface elevation changes and displacement vectors (in case of the

Fig. 10.39 Deformation of a significant area over a period of one month. Starting from July 11th
the average position was tracked. The area moved slightly until July 24th. Mainly due to a heavy
rainfall period the region slid up to 5 m until July 31st. Subsequently the region movement
stabilized
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availability of multi-temporal high resolution DSMs) provide useful information
about 3D surface dynamics. However, the quality of data sets and concepts for
calculating morphometric parameters have to be assessed critically. Point density
is a crucial factor (Bodin et al. 2008) as well as the quality of the measurement
itself (high point ratio and total point number). Remoteness (sufficient energy
supply) and atmospheric conditions (e.g. air humidity) are crucial limiting factors.
Furthermore, exemplary studies (e.g. those conducted for rock glaciers) demon-
strate the importance of independent control data for evaluation and the problems
in acquisition of the latter. High landscape dynamics such as frequent shifting of
material and block falls inhibit terrestrial surveys. Methodological problems in
automatic data interpretation (e.g. inadequate texture for photogrammetry) com-
plicate remote sensing approaches.

In the following, a vision of a productive system to cope with the requirements
of the various deformation monitoring cases is given. Table 10.6 lists key
parameters to be fulfilled, up-to-date sensor concepts appear mature enough to
deliver proper data.

For highly mature terrestrial monitoring systems as sketched in this section, the
Measurement and Data evaluation will combine several methods and data:

(1) A suitable calibration method. Due to the complex system design cali-
bration of the whole multi-sensor system is necessary. This process includes
instrument calibration as well as the calibration of image-related parts. Main
goal is to be able to collect any point of the observed surface within an
accuracy of 0.3 mGon, which enables a 3D point localization in the range of
*25 mm from a distance of 1 km.

(2) Selection of robust targets for monitoring: Vegetation needs to be sep-
arated from soil, rock or debris. It is targeted to be able to automatically
determine at least 80 percent of the usable—non vegetated—area.

(3) Decision on adequate target selection: Due to a relatively low measure-
ment speed, point measurement devices such as IATS can only cover a

Table 10.6 Key parameters for a long-range terrestrial geo-risk monitoring system

Quantitative objective Target value

Measurement range [5 km
Accuracy of single 3D point detection

(for 1,000 m distance)
\3 cm (x, y, z)

Necessary measurement grid width on
surface

\1 m

Accuracy of full area cover change
detection

\5 cm (distance)

Operation effort 1 person operating, 2 h establishment
Application maturity Similar to tacheometers: ruggedized,

weatherproof ? field capable
Measurement speed (single point) [3 points/s
Measurement speed (full area cover

10 * 10 degrees)
\1 h
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limited set of measurement points within a repetitive period. It is therefore
essential to decide upon the relevant target before the measurement cam-
paign starts.

(4) A 3D point detection and matching system which is nearly independent
towards changing illumination conditions (Cast shadows, direct sunlight,
ambient light). This is the key to accurate 3D measurement in time-series.

(5) Filtering of measurements to evaluate their reliability, taking into
account various conditions: Meteorological (temperature distribution of
atmosphere, haze, rainfall, etc.), surface (e.g. moisture), and illumination
(sun incidence angle, ambient, white balance, etc.) influences need to be
compensated in order to be able to compare measurements from different
instances of time.

(6) Any vision-based long-range measurements are strongly exposed to the
atmospheric conditions. One of the main problems when working with
image-based sensor systems therefore is the consideration of the refraction
of light, due to different densities of the atmosphere: The influence of the
refraction depends on the measured azimuth (vertical angle) and the
meteorological conditions. For a distance of 1,000 m and comfort meteo-
rological conditions (20�C, 1,013 hPa) this influence can be in the order of
1–2 cm. For long-range measurements also the earth curvature has to be
taken into account. To consider this influence will be a challenging task.

(7) Combine 2D and 3D information for target recognition and matching: It is
not always possible to use just image texture for matching, particularly if
different epochs with different illumination conditions are involved. Such
matching is robust, however, when the 3D structure (which does not change
locally in the narrow field-of-view of the IATS cameras) is used, which can
be a by-product from target selection. To remain below the influence of
refraction is the requirement here assuming it cannot be feasibly modeled.

(8) A major challenge is the independence/robustness with regard to
illumination conditions1 (see previous point). A robust system can only be
implemented regarding changes in light and shadow during point capturing.
This can be considered on the one hand by recognizing similar illumination
conditions (in the simplest case selection the same time of day for
comparative measurements), on the other hand by computer vision methods
that are robust to illumination conditions. The selection of proper targets on
the basis of 3D information (see above) is another means to partly solve
this problem, also here keeping accuracy better than the refraction influence
is the target.

(9) For data interpretation, adequate data exploitation is required: The
problem of automated and semi-automated data interpretation is the huge-
ness of a 3D point detection system. Efficient data interpretation can only be
processed on a properly preprocessed data set. This preprocessing can be

1 Of course an active system such as Radar Interferometry is not prone to such restrictions.
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done in form of data clustering (e.g. points belonging to a unique form of
movement are summarized to one cluster and in further processing steps
represented by this cluster). Outlier detection and removal is the most
important measure of filtering, a rate close to zero will be the target for a
commercial system in order to keep the rate of unmotivated sensible
measures (e.g. evacuation due to false alarm) as low as possible.

(10) For implementing and combining all techniques into a productive proto-
type system, the use of an open architecture and the connection with
existing program modules such as sensor control, Graphical User
Interface (GUI), and a sensing data base is essential.
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LaSIRF: Landslide Safe Intelligent Route
Finder for Mountainous Terrain in GIS
Environment

M. K. Arora, A. K. Saha, P. Gupta and R. P. Gupta

Abstract Route planning in hilly areas is a compound job as it involves con-
sideration of a number of factors. The conventional route planning practice is time
consuming and does not consider factors related to geo-hazards such as landslide
hazard zones, geological faults etc., thereby resulting in increased cost of road
design, maintenance etc. The aim of this chapter is to develop a Geographic
Information System (GIS) based software for planning a road route that passes
through landslide safe areas. A number of thematic cost factors have been inte-
grated in GIS. Dijkstra’s least-cost finding algorithm together with improved
neighbourhood analysis to compute the neighbourhood movement cost has been
used to find landslide safe route. Working examples have been presented to
demonstrate the utility of the software for route planning in highly landslide prone
area in the Himalayas.
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11.1 Introduction

In mountainous terrain, roads generally constitute the only mode of transport to link
various habitat areas, which are often very distant from each other. In a rugged and
tectonically active area, such as the Himalayas, occurrence of frequent landslides,
particularly in the monsoon season, happen to be a major problem causing exten-
sive damage to life, property and communication every year. It has been observed
that in general, most of the roads are constructed disregarding the distribution of
Landslide Hazard Zones and geological factors such as thrusts, shear zones etc. in
the Himalayan region. Therefore, a huge amount of money and manpower are spent
on the maintenance of roads throughout the year. Moreover, several roads usually
get closed due to landslides in rainy season, thereby disconnecting many villages
and towns in the area causing acute local civic miseries. Hence, there is a tre-
mendous need for proper planning of roads that considers efficient engineering
design as well as geological factors in terms of slope stability and safety measures.

Route planning and development in hilly areas has always been a difficult task
as the nature of terrain plays an important role. A road in the mountainous region
has to traverse a longer path with numerous curves and turnings to meet the
elevation requirements in hilly areas, in contrast to the roads in the plain areas,
which are usually straight and traverse the shortest distance. Therefore, for hill
road planning, a number of factors ought to be taken into consideration (Khanna
and Justo 1987). These include:

a. Distance from source to destination
b. Geological safety and soundness
c. Stability of slopes
d. Landslide hazards
e. Drainage crossings and extent of waterways
f. Necessity of passing through obligatory points, e.g., villages, etc.
g. Topography and gradient
h. Need for special structures, e.g., bridge, tunnel, retaining wall, etc.
i. Value of land
j. Construction cost, earthworks, etc.
k. Availability of construction material

Although, these factors are expected to be considered for efficient and accurate
route planning, the hill roads are generally planned only on the basis of the
topography and the length of the road. Other factors such as the geological hazards
are often ignored.

The conventional route planning practice adopted in India is typically based on
the manual method. A reconnaissance survey for selection of alternative route
alignments, based on the Survey of India toposheets (scale commonly 1:50,000 and
contour interval: *50 m), is first carried out, which are followed with preliminary
and detail surveys for complete route planning. On the base (contour) map, traces
are drawn with a divider to demarcate the possible routes at a specified gradient.
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In this way, various alternative routes are drawn and the same are comparatively
evaluated in terms of length and cost of the route to identify the best route. Hence,
the process is largely manual, tedious and time consuming, and based only on the
topographic data obtained from the SOI maps. Therefore, there is always a possi-
bility that all the possible routes may not be considered and a route, which may not
be the best, gets selected.

Introduction of the aerial photogrammetric techniques in 1960s resulted in
overcoming some of the limitations of the conventional manual route planning
approach. The aerial photographs provide a synoptic overview as well as the three-
dimensional perspective of the terrain. These also help the experts to work in the
laboratory and reduces the necessity of cumbersome field surveys.

However, in either manual or photogrammetric route planning approach, geo-
logical aspects, particularly landslide distribution, which is a key factor for cost
escalation in hilly areas, are generally not taken into consideration; this may lead
to recurring problems of landslide activities all along the route. Besides, in the
manual approach, it is also nearly impossible to integrate all the factors as
mentioned earlier.

Hence, there is a great demand to utilise computer-assisted methodologies for
route planning that may consider various factors including landslide hazards. The
availability of digital remote sensing data and Geographic Information System
(GIS) based computing techniques, has given further impetus on computer-assisted
methodologies by virtue of their numerous advantages in route planning, as it
requires efficient processing, interpretation and analysis of a large amount of
spatial data corresponding to various factors.

The GIS-based methodology for route planning is based on integration of raster
and vector spatial data thematic layers. Thus, the success of a GIS-based meth-
odology depends on the efficient design of network patterns and consideration of
various factors in the form of thematic layers. For example, the G-Route, a raster
GIS tool developed by ITC, Netherlands (Ellis 1990) for route planning is based on
a 3 9 3 cells neighbourhood analysis approach. This approach, however, results
into the creation of zig-zag pattern of predicted least-cost route and also high and
abnormal direction dependent gradient for normal vehicle movement. A few other
commercial software containing appropriate route planning modules to generate
least cost path have also been developed. These include PATHDISTANCE in
ArcGIS, VARCOST and PATHWAY in IDRISI software. However, in all these
route planning modules, the neighbourhood search is limited to 3 9 3 cells only.
In a 3 9 3 cells kernel, a maximum of 8 neighbourhood directions, and in a 5 9 5
cells matrix, 16 neighbourhood directions are possible. The use of these neigh-
bourhoods may, however, result in rather sharply zigzag and unrealistic paths.

Yu et al. (2003) presented a GIS based algorithm for route planning based on a
5 9 5 cells neighbourhood pattern establishing an analogy with the game of chess.
Only, two factors, namely landuse and topography in the form of Digital Elevation
Model (DEM) were used for route planning.

In this chapter, the work Yu et al. (2003) has been extended further to propose a
GIS based approach for route planning in landslide hazardous areas by considering a
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number of other factors, and also two new neighbourhood patterns based on 7 9 7
cells kernels for the generation of least cost route that permits gentler gradients.
Similar to other studies (e.g., Yu et al. 2003; Rees 2004), the least cost route has been
determined based on Dijkstra’s algorithm in the proposed GIS based approach. An
indigenous software acronymed as Landslide Safe Intelligent Route Finder
(LaSIRF) has been developed. The conceptual background and detailed description
of the proposed approach can be found in Saha et al. (2005b). In this chapter, focus is
placed on the design and description of the LaSIRF software, its usage and imple-
mentation to some typical route planning problems in the Himalayas.

11.2 Methodology

In this section, a brief description of the methodology adopted in the route plan-
ning approach has been provided. It consists of four major steps:

11.2.1 Generation of Thematic Cost Map

The thematic cost map has been defined as a raster map, where attribute of each
cell indicates the estimated relative cost of route development and maintenance.
The cost is cumulative, having possible inputs from various thematic data layers
pertaining to the factors considered, namely, landslide distribution, landslide
hazard zonation, landuse/landcover, lithology and drainage order etc. Additional
relevant thematic data layers may also be considered as per the requirements of the
application. Remote sensing and GIS tools have been used to generate various
thematic data layers. These include landslide distribution (size), landslide hazard
zonation, drainage order, landuse/landcover and lithology. The attributes of each
data layers are of diverse data types (e.g., categorical, ordinal and ratio/interval
data) at different measurement scales and units. Therefore, an ordinal weighting-
rating scheme based on the experience of route planning projects or experts’
opinion has been applied on each thematic data layer individually, which have then
been integrated to produce the cumulative data layer. The weights range from
0 to 9, with 0 signifying the minimum cost and 9 implying the highest cost. For
example, a higher cost at a cell may be related to higher cost of bridge con-
struction, road maintenance due to landslides, land acquisition, blasting, etc.

11.2.2 Selection of Connected Neighbours

In raster or grid based models, such as those used in the proposed approach, each
cell can be regarded as a node. The term neighbourhood may be defined as the
location within proximity of some starting point or grid cell. Neighbourhood
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analysis is important in route planning to find various possibilities of movement
from a source node to its immediate neighbour, such that the cost associated with
that connection may be calculated. In this study, a 7 9 7 cells kernel has been
considered and 32 unique neighbourhood patterns have been defined (Fig. 11.1).

For example, considering ‘S’ as the source node, its unique neighbours may be
defined as 1 to 32. The connections from ‘S’ to either of 1 to 32 may be considered
similar to the moves in the game of chess. The vertical and horizontal movements
(1 to 4) are similar to the moves of Rook and the diagonal movements (5 to 8) are
similar to the moves Bishop (Yu et al. 2003; Xu and Lathrop 1994). The move-
ments from 9 to 16 can be considered as analogous to the movements of Knight,
which moves two-step straight and one step left or right of the direction of
movement, to occupy the new position. Saha et al. (2005b) considered two
additional neighbourhood patterns, which do not exist in the game of chess, these
originate from the concept of Knight’s movement, and have therefore been named
as Knight31 and Knight32. The Knight31 first moves 3 nodes straight and then one
node towards either left or right (17 to 24), whereas Knight32 moves 3 nodes
straight and then 2 nodes towards either left or right (25 to 32). It may thus be
noted that in these new neighbourhood patters, since the location of neighbours is
far from the central node, the identified route may be smoother with gentler
gradients. Each node has been given a unique identification number and a math-
ematical relationship has been used to find out the neighbourhood pattern.

11.2.3 Computation of Neighbourhood Movement
Cost (NM-cost)

Once the connected neighbours have been selected, the next step is to calculate the
cost of moving from a source node to the connected neighbour. This has been
termed here as NM-cost and is computed from three input data: cost related to
neighbour-distance, cost related to gradient and the thematic cost.

32 23 24 25

31 33 15 34 16 35 26

22 14 8 1 5 9 17

40 4 S 2 36

21 13 7 3 6 10 18

30 39 12 38 11 37 27

29 20 19 28

Possible movement from 
source S to pixel number

Rook’s Pattern: 1,2,3,4

Bishop’s Pattern: 5,6,7,8

Knight’s Pattern: 9,10,11,12,13,14,15,16

Knight31’s Pattern: 17,18,19,20,21,22,23,24

Knight32’s Pattern: 25,26,27,28,29,30,31,32

Note: Pixel numbers 33-40 are not treated as 
connected neighbours but used in Table 11.1 for 
thematic cost calculation.

Fig. 11.1 Various possible neighbourhood pattern in a 7 9 7 cell kernel
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In a real-world situation, the topography is uneven, particularly in a terrain such
as the Himalayas where slopes vary in different directions. Hence, the NM-cost
must also consider this direction-dependency (anisotropy) (Yu et al. 2003). For an
anisotropic surface, the NM-cost may be given as,

NM-cost ¼ Distance � ðp � Thematic cost þ q � Gradient costÞ ð11:1Þ

where, p and q are weights to normalize the thematic and gradient costs.
The actual distance between successive neighbours in a three-dimensional

space can be calculated using Euclidean distance, which requires spatial dimension
(i.e., size) of each cell and elevation difference between the connected neighbours.
In case of raster data, the mid points of various cells may be used to determine the
spatial extents for distance computations.

Gradient or slope is also a key factor to be considered in route planning in a
terrain, such as the Himalayas. The gradient can be defined as the rate of rise or fall
along the length of the road with respect to the horizontal. It may be noted that this
gradient angle is direction dependent. A vehicle may move to its connected
neighbour according to the permissible gradient. The gradient values may be
categorized and a weight may be assigned to each as per the difficulty in the
movement of a vehicle on a slope.

Thus, based on values of p and q, the NM-cost for various neighbourhood
patterns can be formulated and are given in Table 11.1.

11.2.4 Selection of Least-Cost Route

Dijkstra’s algorithm (Dijkstra 1959) has been widely used for finding least-cost
path. Here also, the classical Dijkstra’s algorithm has been designed for identifying
the shortest path in a network with nodes connected by weighted links. The
algorithm works only in the case where all the associated costs of neighbourhood
connections are positive. It generates the least-cost route from the source node to
all the nodes in a raster network. To increase the computational efficiency, the
algorithm stops when the pre-defined destination node is reached.

11.3 Description of the Software

In a standard raster GIS route planning model, each pixel in an image is usually
associated with single attribute information along with its geographic location. In
the proposed approach, a maximum of 7 9 7 cells kernel has been considered to
incorporate 32 unique neighbourhood movements from a cell, there is a need to
store 32 NM-cost values for each cell in addition to the direction of the movement.
Therefore, a higher level of data structuring models is required, which may not be
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easily interfaced with existing raster-based GIS. Moreover, Dijkstra’s algorithm
consists of a number of complex steps, which require storage of a large volume of
temporary data and pointers. Therefore, a customised software, named as LaSIRF
has been written in C++ and interfaced with a raster based GIS to implement the
route planning approach as described earlier.

The output from the LaSIRF will be a safe route that avoids potential landslide-
prone areas in a hilly terrain. The software can be compiled and executed using a
Windows based Microsoft Visual Studio compiler. The process is computationally
intensive and hence at least dual core processor with a minimum of 1GB RAM
hardware is recommended.

The DEM, and the thematic cost map generated via a number of spatial the-
matic data layers are the major inputs to the LaSIRF to generate the least-cost
route between a user-defined source and destination nodes. The software has four
basic modules:

a) DATEXP (for creation of input data file)
b) NMCOST (for computation of neighbourhood movement cost)
c) DIJKSTRA (for finding out least-cost route)
d) INTERFACE (for interfacing with ILWIS).

a) Creation of Input Data Files

The DEM and thematic cost map in ILWIS raster format (*.mpr and *.mp#) have
to be exported to ASCII (*.asc format for ILWIS ASCII export) for their direct
input to LaSIRF. ILWIS ASCII export option was used for this purpose
(Fig. 11.2). The DATEXP module reads the ASCII data, converts row/column
location of each cell into a node number and stores the thematic cost and the
elevation data for each node into a data file (cost_elev.dat). The structure of the
output data file is shown in Fig. 11.2.

b) NM-cost Calculation

NMCOST module computes the neighbourhood movement cost for each node.
The module requires ‘cost_elev.dat’ file, generated by DATEXP as input, as
node wise processing has been carried out. For example, it reads the node
number of a pixel’s 32 neighbours (in 7 9 7 pixel window) and calculates the
distance, gradient and thematic cost according to the pattern of connection (viz.,
Rook, Bishop, Knight, etc.). The gradient value is classified and a cost value is
assigned to each class. The distance, gradient cost and thematic cost are inte-
grated for each node to calculate the NM-cost for various patterns. The output
NM-cost values are stored in a data file (nmcost.dat). If there is no possible
connection between any two nodes or the NM-cost associated is too high, ‘-1’
is assigned to such connection. As Dijkstra’s algorithm is based only on ‘non-
negative’ values, these connections are automatically eliminated from the net-
work. Fig. 11.3 shows the procedural layout of the NMCOST module and the
associated output data file structure.
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Fig. 11.2 Flow diagram showing the steps involved in input data preparation with the help of
DATEXP module of LaSIRF. The output from this module ‘cost_elev.dat’ is used as the input for
neighbourhood movement cost calculation in the next step
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Fig. 11.3 Flow diagram showing the steps of NMCOST module for calculating the
neighbourhood movement cost for each cell/node. The output from this module is used as
input to DIJKSTRA module for least-cost route selection. (‘dir 1’, ‘dir 2’ denote the
neighbourhood position from the source
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c) Route Finding Using Dijkstra’s Algorithm

DIJKSTRA module is the most important component of the software LaSIRF to
find the least-cost route between user-defined source and destination nodes. DI-
JKSTRA can read the source and destination information in the form of node
numbers. A function ROWCOL2NODE supplements the DIJKSTRA to determine
the node number of a pixel if the pixel location information is in the form of row
and column coordinates. In this case, the size of the map (i.e., total number of rows
and columns under consideration) is to be provided. DIJKSTRA reads the
‘nmcost.dat’ file, generated by NMCOST and allocates it in its Random Access
Memory (RAM) for fast retrieval and computation. It calculates the least-cost
route using Dijkstra’s algorithm, as described in Rees (2004). A number of
functions associated with this module and their utility are given in Table 11.2. The
least-cost route and the cumulative cost for the route are stored in a data file
(result.dat). The processing steps for this module are shown in Fig. 11.4.

d) Interface of LaSIRF with ILWIS

The INTERFACE module converts the least-cost route stored in the form of nodes
in ‘result.dat’ file, generated by DIJKSTRA module, into ILWIS readable segment
file in ASCII (*.smt). The user has to enter cell size, number of rows and columns
and the projection information for the map being created. These data are required
since the thematic cost and elevation ASCII files are in the form of row and
column matrix. The projection information can be readily obtained from the
properties of raster maps (in ILWIS). INTERFACE module converts the
‘result.dat’ into ‘least_cost_path.smt’ file, which can be imported directly through
import option of ILWIS and laid over elevation or thematic map to visualise the
least-cost route computed (Fig. 11.5.)

Table 11.2 Functions created in DIJKSTRA module and their purpose

C ++ functions Purpose

get_nmcostmatrix() - This function reads the ‘nmcost.dat’ file as a two-dimensional
matrix

- Store the data in RAM
- This function checks if the nodes are connected

nmcost_between() - If there is a connection, it supplies the NM-cost value to
leastcost_path() else ‘–1’ i.e. no connection

- Iteratively checks the next node to be on the path as per the
algorithm

leastcost_path() - When destination node is reached, it prints the nodes on least-cost
path in ‘result.dat’ file
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Fig. 11.4 Flow diagram showing the steps of DIJKSTRA module of LaSIRF software for
calculating the least-cost path
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Fig. 11.5 Flow diagram showing the INTERFACE module of LaSIRF software. The least-cost
path computed by DIJKSTRA is displayed on DEM of the area in ILWIS GIS

11 LaSIRF: Landslide Safe Intelligent Route Finder 361



The salient features of LaSIRF can thus be summarised as,

• The software is fast with reasonable computational efficiency.
• The software can be applicable to a study area of any dimension, though it also

depends on the hardware specification.
• The software can be easily interfaced with ILWIS GIS.

11.4 Working Examples to Demonstrate Implementation
of the Software

A landslide prone highly rugged mountainous area in the Indian Himalayas
(Latitude 30�200-30�340N and Longitude 79�050-79�220E) is selected. A number of
thematic data layers viz., DEM, lithology, landuse/landcover, drainage order,
landslide distribution and landslide hazard zonation (LHZ) have been generated
using remote sensing - GIS tools. IRS 1C LISS-III multispectral and PAN images,
topographic and geological maps, and road design parameters are used as data
sources to generate various thematic data layers. Field data were also collected for
verification purposes.

Contours at 40 m contour interval in Survey of India topographic map
(1:50,000) are digitised, interpolated and resampled to generate the Digital
Elevation Model (DEM). Slope, aspect and relative relief data layers are then
derived from the DEM using standard processes in raster GIS. Lithological and
structural features have been extracted through digitisation of features in the
geological map. The lineaments are interpreted by applying a 3 9 3 pixels edge-
enhancement filter on LISS-III image in association with the geological map. At
this stage, the structural features and lineaments are merged in a single thematic
layer and a distance lineament buffer data layer has been generated, which is
suitably categorised. The drainage features have been digitised from topographic
map and classified according to Strahler’s ordering of streams. A drainage density
data layer is also generated. Landuse/landcover data layer has been produced from
multi-source image classification of an integrated dataset consisting of IRS-1C
LISS-III image, Normalized Difference Vegetation Index (NDVI) and DEM, using
maximum likelihood classifier. Nine landuse/landcover classes that may have
impact on landslide activities in the region are considered. These include dense
forest, sparse vegetation, agriculture, fallow land, barren land, settlements, fresh
sediments, water body and snow. Further description on multisource classification
can be found in Saha et al. (2005a).

The PAN-sharpened LISS-III image, augmented with substantial field obser-
vations have been used to produce an existing landslide distribution map, has been
used as a reference data source for development and validation of statistical model
for the generation of landslide hazard zonation (LHZ) data layer. For the prepa-
ration of the LHZ data layer, a new statistical model, Landslide Nominal
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Susceptibility Factor (LNSF) model has been developed. The inputs to this model
are attribute information from thematic data layers, namely, slope, aspect, relative
relief, lithology, structure-buffers, drainage density and landuse/landcover. Further
details on this statistical approach for LHZ can be found in Saha et al. (2005c).

For computing the cost of road development and maintenance, following the-
matic data layers have been considered:

a) existing landslide distribution map classified according to size
b) landslide hazard zones
c) higher order drainage (to consider bridge construction cost)
d) landuse/landcover
e) lithology

The data layers have been integrated using an ordinal scale weighting-rating
method. The thematic layers are arranged in a hierarchical fashion, in ascending
order of cost and a weight number (from 0 to 9) has been given to each layer.
Similarly, each class within a thematic data layer has been given an ordinal rating.
These weighted layers are aggregated to generate a thematic cost map. The
attribute value of each cell in this map implies the thematic cost to move through
that cell.

The thematic cost map and the DEM are used as the inputs to the LaSIRF
software for determining least-cost route between a source node and a destination
node.

11.4.1 Efficiency of the Software

The efficiency of the software has been tested using a sample test areas of 250 9

250 cells and 500 9 500 cells on an Intel P4 2.8GHz and 512MB RAM work-
station. It has been found that the LaSIRF software takes 13 min and 2 h 30 min
respectively to find a route between the diagonally opposite corners for the two
selected tests areas. The computational time for individual module has been listed
in Table 11.3. It may be noted that for a specific study area, the computation of
Neighbourhood Movement Cost (NM-cost) is only a single time activity. Once the

Table 11.3 Comparative study of efficiency of the LaSIRF software

LaSIRF modules Test area size in cells

250 9 250 500 9 500

DATEXP 14 s. 1 min.
NMCOST 7 min. 28 min.
DIJKSTRA 5 min. 11 s. 1 h. 45 min.
INTERFACE 2 s. 5 s.
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NM-cost file (‘nmcost.dat’) is prepared for the study area, the same file can be used
for determination of multiple routes in that study area. This may result in elimi-
nation of time factor required for generation of NM-cost and, hence, in improving
the efficiency of the software while determinations of multiple routes in the same
study area.

Fig. 11.6 Given the task that the northeast corner has to be joined with the southwest corner, this
example shows alternative route alignments. When only topography is considered, the alignment
passes through higher thematic cost zones and landslide zones; when both the topography and
thematic cost are considered, the route passes through mainly lower thematic cost zones and
avoids the landslide areas. (S–Source, D–Destination)
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It may also be desirable to use the software on a high-end workstation having
high computational power (such as dual or quad core CPUs) and large Random
Access Memory (RAM) size to boost the computation speed of the NM-cost and
Dijkstra’s algorithm.

11.4.2 Working Examples

In order to examine the implementation of the concept and the methodology via
LaSIRF, for route planning in a landslide-prone rugged terrain, a few test areas of
1.5 km 9 1.5 km size, with different combinations of terrain conditions and
landslide susceptibility have been selected. The results of these test areas are
discussed in the following.

11.4.2.1 Working Example 1

This example considers the case of occurrence of major and minor landslides in
adjacent areas such that the source and destination points are located on opposite
sides of a set of landslides. Figure 11.6 shows the test area, which is situated west
of the Gopeshwar town (latitude 30�250 N, longitude 79�190E). There is a major
landslide along with a debris flow channel that carries the debris to the river valley
in the east.

Assuming that the entire area covered by the landslide and the associated debris
flow track is unsuitable for route location, the landslides must be avoided. For such
a situation, a buffer zone can be created around the landslide and debris flow track
and the entire zone can be assigned a high value in the thematic cost layer. The
source and destination points have been selected at nearly same elevation
(approximately 1600 m) on either side of the set of major and minor landslides
(Fig. 11.6). First, a route has been generated by considering only topography. This
route normally follows the contour line but crosses the minor and major landslides
right through the middle. However, when both topography and thematic cost are
used in the proposed software, the identified route passes through the minor
landslides but avoids the major landslide and its buffer zone, though it takes a
longer path to reach the destination point.

11.4.2.2 Working Example 2

This example shows the suitability of the route planning methodology for cases
involving no-trespassing zones. The no-trespassing zone may include, for exam-
ple, archaeological-cultural heritage sites, strategic installations, exceptionally
high land costs or reserved parks. Thus, the condition is that the route may touch
the boundary of the no-trespassing area, but can not pass through the area. For this
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case, a landuse/landcover map has been draped over shaded relief model such that
the no-trespassing area is depicted in red colour (very high attribute value of the
cell) (Fig. 11.7).

The source and destination nodes have been selected at the corners of two no-
trespassing zones. The route computed from thematic cost, gradient cost and
distance is shown in yellow, as determined through LaSIRF, passes outside the
periphery of the no-trespassing zones.

Fig. 11.7 Route alignment for connecting no-trespassing zones. (S–Source, D–Destination)
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These two examples sufficiently demonstrate the versatility of the methodology
and the software LaSIRF developed in this study.

11.5 Summary and Conclusions

In this chapter, particulars of an indigenous software named as LaSIRF developed
exclusively for route planning in landslide prone hilly areas in GIS environment
were discussed. A methodology based on Dijkstra’s Algorithm for finding the
least-cost path was implemented in the software.

The software is built on four basic modules one each for creation of input data
files, computation of neighbourhood movement cost, finding of least-cost route
and interfacing with commercial GIS software ILWIS respectively. The LaSIRF
software is intelligent, fast and efficient and considers all possible combinations of
routes between the source and the destination points. The least-cost path generated
by the software provides the best option with greater degree of confidence.

The efficacy of the software was successfully examined through working
examples in a landslide-prone hilly terrain. It was observed that the routes iden-
tified by the proposed software in the high-altitude, rugged Himalayan terrain with
markedly different landslide susceptibility conditions passed through relatively
safe areas avoiding major landslides.

The route planning through this software was also found to be very efficient in
comparison to the conventional manual practice. The working examples showed
that for a test area of 1.5 km x 1.5 km, a CPU time of only 13 min was consumed,
a task which would have been completed in many days by the manual approach
even with all the data in hand. Nevertheless, the efficiency of the proposed
algorithm can further be increased with efficient data structuring techniques.

Moreover, the LaSIRF software considers gradient for various direction-
dependent connected neighbours, thematic cost and distance in a three-dimen-
sional space. The path gradient can be adjusted interactively in the software as per
requirements, depending upon the terrain conditions, thus permitting design of
quite a realistic route in an automated way by merely changing some of the
parameters in the software. A GUI based interface of the software is under
development.
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Chapter 12
Identification of Potentially Dangerous
Glacial Lakes in the Northern Tian Shan

Tobias Bolch, Juliane Peters, Alexandr Yegorov, Biswajeet Pradhan,
Manfred Buchroithner and Victor Blagoveshchensky

Abstract Like in many other parts of the world, the glaciers in northern Tian
Shan are receding, and the permafrost is thawing. Concomitantly, glacial lakes are
developing. Historically, outbursts of these glacial lakes have resulted in severe
hazards for infrastructures and livelihood. Multi-temporal space imageries are an
ideal means to study and monitor glaciers and glacial lakes over large areas.
Geomorphometric analysis and modeling allows to estimate the potential danger
for glacial lake outburst floods (GLOFs). This paper presents a comprehensive
approach by coupling of remote sensing, geomorphometric analyses aided with
GIS modelling for the identification of potentially dangerous glacial lakes. We
suggest a classification scheme based on an additive ratio scale in order to pri-
oritise sites for detailed investigations. The identification and monitoring of glacial
lakes was carried out semi-automatically using band ratioing and the normalised
difference water index (NDWI) based on multi-temporal space imagery from the
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years 1971–2008 using Corona, ASTER and Landsat data. The results were
manually edited when required. The probability of the growth of a glacial lake was
estimated by analysing glacier changes, glacier motion and slope analysis.
A permafrost model was developed based on geomorphometric parameters, solar
radiation and regionalised temperature conditions which permitted to assess the
influence of potential permafrost thawing. Finally, a GIS-based model was applied
to simulate the possibly affected area of lake outbursts. The findings of this study
indicate an increasing number and area of glacial lakes in the northern Tian Shan
region. We identified several lakes with a medium to high potential for an outburst
after classification according to their outburst probability and their downstream
impact. These lakes should be investigated more in detail.

Keywords Glacial lakes � GLOF � Debris-flow � Remote sensing � Geomatics �
GIS � Modelling � Hazard assessment � Tian Shan

12.1 Introduction

Climate change and concomitant glacier recession has caused the development and
expansion of glacial lakes in mountain areas of the world which leads to an
increasing risk of lake outbursts. Outbursts of glacial lakes represent a serious
hazard especially for populated regions in the mountains all over the world
(Clague and Evans 2000; Huggel et al. 2003, 2005; Iwata et al. 2002; Ma et al.
2004; Popov 1988; Richardson and Reynolds 2000). These glacial lake outburst
floods (GLOF, also called jökullhlaup) can cause extremely high water discharges
as well as large mudflow events. Triggering events for an outburst can be moraine
failures induced by an earthquake, by the degradation of permafrost and increased
water pressure, or a rock, snow, or ice avalanche into the lake causing a flood wave
with a subsequent outburst (Buchroithner et al. 1982; Fujita et al. 2008; Ives 1986;
Vuichard and Zimmermann 1987). The potential downstream path has to be taken
into account in order to asses the potential effect of a GLOF event on the infra-
structure and human population. Previous studies showed that the susceptibility of
lake development is highest where the glaciers have a low surface slope angle and
a low flow velocity or are stagnant (Bolch et al. 2008; Frey et al. 2010a; Quincey
et al. 2007; Reynolds 2000).

Glacial lakes that develop in remote mountainous areas are often difficult to
access and field studies are laborious and cost-intensive. Therefore, remote sensing
data and GIS are ideal tools for studying and monitoring glacial lakes and
assessing their hazard potential (Buchroithner 1996; Huggel et al. 2003; Schneider
2004; Kääb et al. 2005; Quincey et al. 2005; Bolch et al. 2008).

Recently, several studies demonstrated the suitability of optical remote sensing
data for detection of glacial lakes in an automated way (Huggel et al. 2002;
Quincey et al. 2005; Bolch et al. 2008; Frey et al. 2010a). The aforementioned
literature review indicates that one of the main drawbacks in the automated
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methods is the difficulty in differentiating the lakes with turbid water and the fact
that the areas with cast shadow are usually misclassified. While the latter can be
addressed by applying a shadow mask using a precise digital elevation model
(Huggel et al. 2002), so far no real promising method for turbid water is existing in
the literature. Hence, manual checking and editing is still essential. Manual dig-
itizing is also required for panchromatic data such as aerial imagery and declas-
sified intelligence data such as Corona.

A digital elevation model (DEM) of the study area is essential to obtain the
geomorphometric data of the glaciers, glacial lakes and its surroundings and
especially for modeling of the probable outburst path. The freely available near-
global void-filled SRTM3 DEM and the ASTER GDEM are a good choice if no
other detailed local DEM is available (Frey et al. 2010b). The SRTM3 DEM and
ASTER derived DEMs were shown to be suitable with the limitation that the
elevation and characteristics of smaller features such as the lateral moraines and
deep gorges may not be accurately and precisely depicted (Fujita et al. 2008;
Huggel et al. 2003; Kamp et al. 2005). Additional errors occur especially on steep
slopes due to low contrast in areas with cast shadow in the utilised imagery
(GDEM) and layover and foreshortening of the radar data (SRTM DEM, Kocak
et al. 2004). Reported RSME values are 15 m for mountainous terrain (Berry et al.
2007; Falorni et al. 2005).

The northern Tian Shan is prone to natural hazards due to gravitative processes
such as avalanches, landslides, debris flows and flash floods (Havenith et al. 2003;
Passmore et al. 2008; Severskiy and Zichu 2000; Storm and Korup 2006; Yegorov
2007). Several catastrophic mudflows have been documented during the last
100 years and before (Gorbunov and Severskiy 2001; Blagoveshchenskiy and
Yegorov 2009, Table 12.1). It has been shown that about 11% of the catastrophic
mudflows were triggered by GLOFs (Popov 1988; Medeuov and Nurlanov 1996;
Medeuov et al. 1993, Yegorov 2007).

The aim of this study is to investigate the suitability of a comprehensive geo-
matics-based approach to detect and monitor potential dangerous glacial lakes
(PDGL) in the northern Tian Shan and classify the glacial lakes according to their
hazard potential. Hence, we address level 1 (basic detection of glacial lakes) and
level 2 (assessment of hazard potential) based on the multi-level strategy as sug-
gested by Huggel et al. (2002). A further aim is to recommend which lakes should be
further investigated using high resolution imagery and in the field (level 3).
Addressing the risk for the society of a GLOF event is beyond the scope of this study.
The utilised approach should be based on standardised criteria, sophisticated yet
rather simple and suitable for assessing a large number of glaciers simultaneously.
The conditioning parameters which influence the potential danger of a glacial
lake are widely published in some of the aforementioned papers on GLOFs. The
interpretation, however, is mainly based on description or subjective classification.
The analysis presented here uses the above mentioned conditioning parameters and
is more objective.
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12.2 Study Area

The mountain ranges Ile Alatau and Kungöj Ala–Too (also: Zailijskij and Kungej
Alatau, 42�300–43�300N, 75�–79�E) of the northern Tian Shan are located in Central
Asia at the border between Kazakhstan and Kyrgyzstan (Fig. 12.1). These ranges
rise from the Kazakh Steppe at an elevation of about 800 m asl to nearly 5,000 m asl.
The southern edge is an intramountainous basin filled by Lake Issyk–Kul
(also: Isyk–Köl, 1,608 m asl). Many villages, the million habitant city of Almaty and
important tourist destinations such as Cholpon–Ata at lake Issyk–Kul as well as
major roads are situated directly at the foothills of these mountains.

The mountain chain of the northern Tian Shan originate from the Caledonian
orogenesis but are still affected by compression and are still slightly uplifting. The
area is situated within the Chilik–Kemin Seismic Zone (Chedija 1986; Utirov
1978) with several predominant WSW–ENE-striking faults.

The appearance of the seismically active mountain ranges is mainly formed by
neotectonic activity (Chedija 1986). Several major earthquakes have occurred since
the end of the 19th century and thousands of smaller seismic events have been
recorded (Lukk et al. 1995). The major earthquake of the year 1887 (Ms = 7.3)
affected the large town Almaty (called Vernyi at that time) situated at the edge of Ile
Alatau (Yadav and Kulieshhius 1992). Another major earthquake (Kemin earth-
quake, Ms = 8.2) occurred in 1911 and caused numerous landslides and rock ava-
lanches in northern Tian Shan (Delevaux et al. 2001). Moreover, evidence of several
prehistoric earthquakes also exists in this region (Korjenkov et al. 2004).

Fig. 12.1 Location of the study area
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Due to the topography, the overall continental climate is characterised by
distinct local variability. Precipitation at altitudes about 3,000 m asl ranges from
more than 1,000 mm/a on windward northern slopes to less than 800 mm in a
leeward valley south of the main mountain ridges (Bolch 2007). The minimum
precipitation occurs in the study area during winter due to the Siberian anticyclone
and the maximum occurs in early summer due to both cyclonic activity and
convective precipitation (Böhner 1996). Mean annual air temperature (MAAT)
recorded at Tuyuksu glacier station (3,434 m asl) is about -4�C. The zero degree
isotherm is situated just above 2,700 m asl. The steady-state equilibrium line
altitude of glaciers is situated at about 3,800 m asl on northern slopes and between
3,900 and 4,000 m asl on southern slopes (Bolch 2007). A characteristic feature of
the northern Tian Shan is its pronounced periglacial zone with many large and
active rock glaciers. This zone is characterised by frequent diurnal freeze–thaw
cycles (Marchenko 1999). Permafrost is sporadic at about 2,700–3,200 m asl,
discontinuous at 3,200–3,500 m asl, and continuous above 3,500 m asl (Gorbunov
et al. 1996). Hence, the drained lakes discussed above were situated in the dis-
continuous permafrost zone.

12.3 Data and Methods

12.3.1 Data

Important data used in this study are remote sensing imagery from different time
periods (Table 12.2). The earliest available remote sensing data are Corona and
Landsat MSS from the 1970s while the recent data are ASTER and Landsat ETM+

Table 12.2 List of satellite data used in this study

Time
period

Date Satellite and
sensor

Resolution
(m)

Source RMSx,y Spectral
bands

1971/
1972

17 September
1971

Corona KH-4B *5 USGS 56 m PAN

07 September
1972

Landsat MSS 60 (res.) GLCF 47 m VIS, NIR

*2000 08 August 1999 Landsat ETM+ 15/30 USGS Reference VIS, NIR,
SWIR

13 October
2000

Terra ASTER 15 USGS 64 m VIS, NIR,
SWIR

05 September
2001

Terra ASTER 15 USGS 40 VIS, NIR,
SWIR

30 September
2001

Terra ASTER 15 USGS 41 VIS, NIR,
SWIR

*2007 14 August 2007 Landsat SLCoff 15/30 USGS 21 VIS, NIR,
SWIR

13 June 2008 Landsat SLCoff 15/30 USGS 11 VIS, NIR,
SWIR
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SLCoff (with data gaps due to a scan-line error). Fortunately, larger parts of the
study region are within the central part of the SLCoff scenes and are thus not or
only partly affected by the gaps.

Most of the utilised scenes show little seasonal snow cover and are therefore
suitable for lake and glacier identification. Only the ASTER scene from 13 Sep-
tember 2001 showed the presence of larger snow cover. Nevertheless, it was used
as supplementary information as most of the lakes are identifiable. Unfortunately,
no suitable scene from the 1990s was available for this study. Soviet topographical
maps with the scale, 1:100,000 from the 1980s and GPS points obtained during
multiple fieldworks in the years 2001–2004 were used for orthorectification of the
master image (Landsat ETM+, 1999). All other images were co-registered to this
image. The void-filled SRTM3 DEM, vers. 4 from CGIAR was used (srtm.csi.c-
giar.org/) for rectification. The geometry of the Corona imagery is complex with
the least distortion in the centre of the image (Dashora et al. 2007). Fortunately,
the area of interest is located around this centre and hence, the distortion is found
to be low. For co-registration purposes, a projective transformation followed by
rubber sheeting was used in ERDAS Imagine 9.1. The latter was necessary to
improve the accuracy which is caused by panoramic distortion. The overall
RMSx,y error is less than two Landsat pixels (*56 m, Table 12.2) which is
acceptable considering the complex image geometry and the mountainous terrain.
The RMSx,y of the other imagery was lower, mostly in the range of one Landsat
TM pixel (*30 m, Table 12.2). The void-filled SRTM3 DEM was also used for
the modelling (e.g. mass movements, probable outburst path). The reported
accuracy for the SRTM DEM proved true for the study area (Bolch et al. 2005;
Bolch 2008).

12.3.2 Glacial Lake Identification

Water reflects mainly within the visible spectrum with a maximum value in the
green band. This typical characteristic enables to identify the clean water using
multi-spectral imagery. We tested several methods like ratioing and the normalised
differenced water index (NDWI) with different band combinations (e.g. Blue,
Green, NIR, SWIR). The main aim was to obtain the most precise delineation of
lakes with some ice on the water and turbid lakes with minimum misclassification
error. The best results were obtained using the NDWI approach by employing NIR
and Blue or NIR and Green bands. The water index using Blue performed better in
the shaded areas while the index with Green had lesser problems with ice on the

Table 12.3 Overview of the utilised NDWI thresholds for different sensors

Landsat MSS ASTER Landsat ETM+

Threshold 0.45–0.9 0.3–0.7 0.3–0.9
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water bodies. Finally, the NDWI was used by employing NIR and Green bands
(Green - NIR/Green ? NIR). The utilised thresholds were adapted for each of the
individual scene (Table 12.3). The misclassified shadow areas were eliminated
using a shadow mask (Huggel et al. 2002). Hence, few lakes in shadow had to be
digitized manually. The procedure for the lake identification is shown by Fig. 12.2.

The delineated water bodies with the coarser resolution of MSS were manually
improved using the Corona data. An image stretching algorithm was used in order
to facilitate the visual detection of water bodies in the panchromatic Corona
images. The position of some lakes did not match perfectly with MSS images due
to the distortion of the Corona images. In this case, the lakes were completely
digitised from the Corona imagery and manually shifted in order to match with the

Fig. 12.2 Procedure
showing automated lake
identification
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correct position in the MSS data. Not all glacial lakes could be identified on each
image. This largely depended on the image quality. Presence of shadow and
especially snow cover hampers the identification of high altitude lakes. On the
other hand, some lakes might have disappeared due to slow lake drainage or a
sudden outburst.

Apart from the quality of the scene, sources of possible errors are attributed to
the accuracy of the lake delineation and the error during co-registration. The
highest RMSEx,y in co-registration is about 50 m (Table 12.2). However, as we
compared the absolute change in area and not the exact location, therefore the
impact of this on the derived data is relatively negligible. The remaining errors
were estimated based on a buffer method using similar approach as suggested by
Granshaw and Fountain (2006). Half a pixel was chosen as the buffer size as this is
supposed to represent the worst possible case in which all margin pixels were
wrongly classified. This method also includes relatively higher error of smaller
polygons as those may have a higher number of edge pixels.

12.3.3 Hazard Assessment

Several factors need to be taken into account when assessing the hazard potential
of a glacial lake outburst. In this study, the methodology of Huggel et al. (2002)
and Bolch et al. (2008) was adapted and expanded as we introduce a higher
number of variables for hazard assessment. The hazard assessment can be sum-
marised by four major parameter groups: lake characteristics, characteristics of the
lake surroundings, characteristics of the adjacent glaciers, impact on downstream
areas. Each of those groups consists of several variables. Table 12.4 gives an
overview of the addressed variables and its applicability using remote sensing and
references for this task.

12.3.3.1 Lake Characteristics

One of the most important variables for analysing the potential danger of a GLOF
is the change of the glacial lake. We address the issue of changes based on space
imagery from three different time periods (Table 12.4). The growth of a supra-
glacial or proglacial lake depends primarily on the glacier characteristics and
retreat. We expanded the analysis on glacier shrinkage based on Bolch (2007,
2008) and include the glacier area of 2007 for those lakes adjacent to a glacier. The
volume of the lakes is addressed based on the empirical formula (Eq. 12.1) sug-
gested by Huggel et al. (2002) which is primarily based on 15 lakes with existing
depth measurements.

V ¼ 0:104 A1:42 ð12:1Þ
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However, it is important to highlight here that this scaling formula may serve as
a first estimation only as the lake volume depends on several variables. By
applying this formula, (Eq. 12.1) for the lakes in Kishi Almaty valley with existing
measurements of the bathymetry (Kasatkin and Kapista 2009; Tokmagambetov
2009) reveals an overestimation of the volume of up to 20% (Lake no. 1: modelled
value: 33,040 m3, measured value 27,618 m3, lake no. 9: 21,563, 17,165 m3).
Similar uncertainty was also mentioned by Huggel et al. (2002).

12.3.3.2 Characteristics of Adjacent Glaciers

The recent glaciers were delineated based on the 2007 and 2008 Landsat
ETM+ data (Table 12.2) using band ratioing (Band 4/Band 5) approach in order to
be consistent with the method used by Bolch (2007) for the 1999 ETM+ Scene.
The glacier velocity was estimated from multi-temporal optical imagery based on
feature tracking using cross-correlation techniques (Berthier et al. 2005; Bolch
et al. 2008; Kääb 2005). Unfortunately, no suitable ASTER data were available.
Hence, we chose Landsat scenes from 1999, 2007 and 2008 and used the near
infrared band due to the better contrast than in the higher resolution panchromatic
band. The open source software ‘Cosi–Corr’ (Leprince et al. 2007) was applied for
the automated estimation of the velocity. This software proved to be well suitable
for mountain glaciers (Scherler et al. 2008). Here, it should be noted that Cosi–
Corr was developed and applied for imagery from push broom scanners such as
SPOT and ASTER with known image geometry while Landsat TM/ETM+ data
has some inaccuracies in this respect. However, this affects the obtained results
only marginally as the main interest here is to know about the activity and not the
absolute values of the glacier movement. We estimate a glacier to be stagnant at
the snout if the calculated velocity is below the uncertainty of one pixel (30 m).

The slope of the glacier surface gives a hint where glacial lakes can develop or
an existing lake can extend in the near future. A threshold of 2� for supraglacial
lake formation on debris-covered glaciers in the Himalaya (Quincey et al. 2007;
Reynolds 2000; cf Bolch et al. 2008) or 5� for the formation of proglacial lakes in
overdeepenings of debrisfree glaciers in the Alps (Frey et al. 2010b) have been
suggested. We applied a slope threshold of 5� as only very few glaciers in the
study area have larger portions of debris cover.

12.3.3.3 Characteristics of Lake Surroundings

Mass movements like rock fall or ice avalanches into a lake are important trig-
gering mechanisms for an outburst. Hence, an analysis of the surrounding
topography is highly sought after. We applied the modified single-flow model
(MSF, Huggel et al. 2003) which was developed to model mass movements like
debris flows and ice avalanches based on the surrounding topography. The model
is a modified D8 flow direction algorithm and calculates the likelihood that a raster
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cell will be affected by such a mass movement. Similar methods to model rock and
ice avalanches were applied by Allen et al. (2009) and Salzmann et al. (2004).
Unfortunately, no detailed ground information is available for the study area.
Hence, we chose to model the probability of a rock fall based on Kaibori et al.
(1988) who presented detailed statistics for the slope at the detachment zone and
for the angle of friction. The angle of friction defines the average slope between the
starting and end points of the mass movement (Hsü 1975). In contrast to the results
of Kaibori et al. (1988) who chose average values, we estimated the minimum
values so that 90% of all occurred events are included. The threshold values are
30� for the slope at the detachment zone and 20� for the angle of friction
(Table 12.5). We modelled ice avalanches in a similar way but chose the
thresholds to be 25� and 17� based on the empirical work of Alean (1985,
Fig. 12.3a). Although the utilised values are based on studies in the Alps and high
mountains in Japan, and may be slightly different for the northern Tian Shan
these values seem to be reasonable for estimation as they represent a worst case
scenario. For example, Alean (1985) suggested a threshold of 45� for the slope of
the detachment zone for cold glaciers and 25� for warm glaciers. Most of the
glaciers of the study area are, however, either cold or polythermal. Van der Woerd
et al. (2004) estimated a slope of about 45� for the origin of ice avalanches for cold
glaciers in the Central Asian Kunlun Shan.

The probability of a dam failure mainly depends on the characteristics of the
lake dam itself. In the study area, most of the lake dams comprise morainic

Fig. 12.3 Examples from the flow modelling. a Probability of an area affected by ice avalanches,
b probability of an area affected by flash floods and mudflows
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materials. The width and height of the dam as well as the freeboard between the
lake level and the crest can be visually determined by means of a high resolution
DEM and satellite imagery. The available SRTM can provide a hint but the
resolution is too coarse for detailed investigations (Fujita et al. 2008). A dam can
become unstable if it contains permafrost or buried ice which thaws or will thaw
due to changing temperature conditions (Richardson and Reynolds 2000). Com-
parison of multi-temporal high resolution DEMs can give a hint at the thawing of
the ice content and the extent of the lowering of the dam can also be detected
(Fujita et al. 2008). However, multi-temporal DEMs of suitable resolution were
not available for this study.

In order to obtain some measure whether the moraine dam is currently within
the permafrost zone and could be affected by thawing, we modelled the permafrost
using a simple empirical model based on Permakart (Keller 1992). This model is
based on empirical findings of the permafrost distribution as well as geomor-
phometric parameters, mean annual air temperature (MAAT) which can be
computed using a DEM and additional data. We extended this model and included
the solar radiation as additional information. We used the regionalisation of the
MAAT as suggested by Bolch (2007, 2008) and the limits of the permafrost
distribution [sporadic: 2,700 m asl, discontinuous: 3,200, and continuous: 3,500 m
asl, Gorbunov et al. (1996)]. The physical model by Marchenko (2001) developed
for a small subset of the study area (Kishi and Ulken Almaty valley) served as an
evaluation dataset. Overall, the model showed a good agreement with the results
obtained by Marchenko (2001), but small-scale variability (e.g. caused by the land
cover) could not be captured. Climate change had also an impact on the permafrost
distribution and permafrost area diminished during the last 130 years (Marchenko
et al. 2007). We consider that a dam may become unstable if it is outside the
continuous permafrost area. Although being a rough estimation, especially when
taking into account that the blocky morainic material itself may retard thawing
(Gorbunov et al. 2004) this approach provides a relatively quick estimation about
the possible current existence and condition of permafrost in the moraine dam
(Fig. 12.4).

12.3.3.4 Impact of Glacial Lake Outburst Floods

A GLOF presents a risk if human life and infrastructures would be affected.
Therefore, the probability was calculated to which the downstream area would be
affected by a GLOF using the previously mentioned MSF model introduced by
Huggel et al. (2003). Flashfloods in the Tian Shan and elsewhere often lead to
debris flows. Besides the presence of loose sediments, a certain velocity of the
water is needed to transport the debris. This again depends mainly on the steepness
of slope. In this research, the values for a debris flow were adopted based on the
findings of Haeberli (1983) and Huggel et al. (2002) who suggested that the debris
flow ends if an average incline of 11� is reached. We estimated that flash flood
would occur when if the angle of friction is lower than this threshold and stopped
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the calculation at an angle of friction of less than 3�_ (Allen et al. 2009,
Table 12.5). However, these thresholds are rough estimations and in reality tran-
sitions exist with different flow types occurring in the same event.

As a result, the relative probabilities of an affected downstream area can be
calculated (Fig. 12.3b). A major decisive parameter is the quality of the applied

Fig. 12.5 General workflow for the classification of potential dangerous glacial lakes

Fig. 12.4 Modelled permafrost extend
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DEM. Therefore, the existing infrastructures are visually interpreted based on the
satellite imagery in addition to the existing data of the Tian–Shan–GIS [major
roads, settlements, Bolch (2008)] for verification.

12.3.4 Identification of Potentially Dangerous Glacial Lakes

In order to be able to identify potentially dangerous glacial lakes in an automated
and a most objective way, it is necessary to combine the above mentioned con-
ditioning parameters. We suggest a numerical approach on the basis of additive
ratio scales similar to those utilised in business studies (Kahle 1998). The general
workflow is presented in Fig. 12.5. The aim in this context is to have an efficient
tool to help to make decisions (e.g. to find the right location(s) for the new
business centre). In this case, this approach helps to find out which lakes are
potentially of high danger and should be further investigated. For this, each
introduced variable has to be tested if it applies to the investigated lake. If so (e.g.
if a potential ice avalanche would reach a lake or a lake is in direct contact to the
glacier), a value of one (1) is assigned to the lake otherwise a zero (0). However,
this approach is not applicable for the lake area and lake growth. A larger lake area
usually contains more water and can therefore cause higher damage. We intro-
duced three classes (small, medium, large) and assign 0.5, 1 and 1.5 to each lake
according to its area (Table 12.6). We do not differentiate further as this would
usually require subjective interpretation which we want to avoid so that the
approach can be utilised for a large number of lakes. The lake growth was treated
in a similar way (Table 12.6).

Ideally, the utilised variables should be independent. This is the case with most
of the variables we choose but there are some exceptions: For example, a flash
flood will always occur if a mudflow is modelled. Therefore we introduced the
precondition factor that a flash flood is only considered if a mudflow did not occur.
Also, the increase of lake area depends at least partly on the glacier retreat if a
glacier is in direct contact to the glacier. Glacier flow velocity and the variable
slope below 5�_ is also not independent. We considered these two issues while
assigning the weighting factors to each variable. A weighting scheme is also
needed in order to account for the different impacts on the potential danger of the
investigated lakes. However, the weighting is often subjective and depends also on
the special situation in the study area.

We suggest a weighting scheme after a sequential order of the parameters as
this is most objective and each variable is treated separately. The first and crucial
step for the suggested scheme is the ordering of the variables after the estimated
hazard potential from the highest to the lowest. We considered the knowledge
from literature and past GLOF events (Table 12.1) for this step. Then, the weights
are linearly distributed while the 2nd lowest weight is two times the lowest weight,
the 3rd lowest is the sum of the 2nd lowest plus the lowest weight and so on. The
sum of the weighting factor is set to 1 by default (Table 12.6). The variables which
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were applied for each lake are then multiplied with the weighting factor and
subsequently added up. Thereafter, a total of nine remote sensing data derived
parameters were included and modelled in GIS environment for the current situ-
ation, and two additional parameters are also included which indicate whether the
glacial lake may continue to grow in the near future.

The characteristics of the moraine dams (width, height, freeboard) could only
be addressed visually while other critical measures of the dam stability such as
material composition or piping can hardly be addressed from remote sensing. The
importance of those is included in the discussion section.

The final classification was established by the definition of qualitative threshold
values ranging from very low potential danger to a high danger. The calculated
values for the lakes range between 0.03 and 0.88. A very low hazard potential

Table 12.6 Weight factors of the selected variables

Variable Weight
factor

Lake area change 0.1661 0: Shrinkage or no significant growth
0.5: growth \ 50% of the initial area
1: growth \ 100% of the initial area
1.5: growth \ 150% of the initial area
2: growth [ 150% of the initial area

Risk of ice avalanche 0.1510 1: Modelled deposits hit lake
0: Modelled deposits do not hit lake

Risk of rock fall/avalanche 0.1359 1: Modelled deposits hit lake
0: Modelled deposits do not hit lake

Instable dama 0.1208 1: Dam is within discontinuous permafrost
0: Dam is outside discontinuous permafrost

Debris flow 0.1057 1: Debris flow would occur if an outburst would happen
0: Debris flow would not occur if an outburst would happen

Flash flood 0.0906 1: Flash flood would occur if an outburst would happen
0: Flash flood would not occur if an outburst would happen

Contact to glacier 0.0755 1: Lake is in direct contact with glacier
0: Lake is not in direct contact with glacier

Lake area 0.0604 0.5: Small (size \ 50,000 m2)
1.0: Medium ([ 50,000 and \ 100,000 m2)
1.5: Large ([ 100,000 m2)

Glacier shrinkage 0.0453 1: Significant glacier shrinkage
0: No significant glacier shrinkage

Glacier slope \5� at
the terminus

0.0302 1: Glacier has slope angels below 5� adjacent to the lake
0: Glacier has slope angels above 5� adjacent to the lake

Stagnant ice at the terminus 0.0151 1: No significant glacier velocity was detected at terminus
0: Significant glacier velocity was detected at the terminus

Sum of the weights 1.000
a Although an unstable dam is one of the most important parameter for the potentially danger lake, we
consider a lower weighting as we can only address roughly the thawing of permafrost based on the
permafrost model
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Fig. 12.6 The location of potentially dangerous glacial lakes in the study area of northern Tian
Shan
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should have a lake only if no or only one factor with low weight applies to the
lake. Hence, we choose 0.1 as the first threshold. We consider a lake can be
potentially of high danger if the four most important factors apply to the lake or a
combination of several factors reaching the sum of the weights of the four most
important factors (in our case 0.574). The threshold between the low and medium
potentially dangerous glacial lakes should be the mean value between class 1 and 4
(0.325, Table 12.8). We evaluated the weighting and classification scheme based
on visual interpretation of the morphometric variables and the satellite imagery of
selected case studies, previous GLOF events and knowledge from field visits from
the authors and their colleagues from the Institute of Geography, Almaty and the
State Agency for Mudflow Protection of the Ministry of Emergency Situations of
the Republic of Kazakhstan (Kazselezashchita). We focused on the identified lakes
with a high danger and its surrounding lakes.

12.4 Results

12.4.1 Glacial Lakes and its Changes

Overall, 66 lakes were identified in the imagery of the 1970s, while this number
had increased to 132 in 2007 (Table 12.7). The number of the lakes almost dou-
bled between 1972 and 2000 while it remained nearly constant between 2000 and
2007. Twelve of the lakes showed no significant changes over the investigated
period. The two largest lakes are Bolshoje Almatinskoje lake and lake Dzhazil–
Köl. The former, which is close to Almaty, developed after a rock avalanche and is
now dammed by an artificial dam. The latter, situated at the end of Chon–Kemin
valley, is dammed by two joining rock glaciers. About 60% of the identified lakes
are in direct contact with the glacier ice. The overall area of the lakes increased
from about 2.56 km2 to about 3.44 km2 and the estimated volume from
*42.4 9 106 m3 to *50.1 9 106 m3 (1972–2007). Both the absolute lake area
and the change rate increased from the periods 1972–2000 to 2000–2007. How-
ever, during this time it is observed that several lakes also lost surface area or
disappeared completely. This is likely to be caused by lake drainages some of
which may have occurred rapidly causing a GLOF, as e.g. in Kishi Almaty
(Malaya Almatinka) valley in 1973 (Popov 1988).

Table 12.8 Numbers of glacial lakes in each class

Class Risk index No. of lakes

I (very low danger) B0.1 6
II (low danger) 0.1–0.325 79
III (medium danger) 0.325–0.574 45
IV (high danger) [0.574 2
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12.4.2 Potentially Dangerous Glacial Lakes (PDGL)

The results of the hazard assessment showed that the majority of the lakes are
classified as ‘low danger’ (Table 12.8; Fig. 12.6). These lakes are usually small
and did not change significantly over the time. Overall, 47 out of 132 lakes are
mapped in 2007 and are falling within the high and medium danger category.
There is a medium to high possibility of an outburst of these lakes that can affect
infrastructures or human beings. Therefore, these lakes should be studied and
monitored more in detail. In the following section, we describe the situation of
identified two highly dangerous lakes and some further lakes as case studies.

The lake identified as the highest danger is Lake No. 23 [named Lake No. 6 in the
local literature, e.g. Kasatkin and Kapista (2009)] and situated in Kishi Almaty
(Malaya Almatinka) valley which is close to the Million City of Almaty and was
identified as highly dangerous (Figs. 12.7e, 12.8a). It is in close contact to a steep
glacier and grew significantly since the 1970s. We modelled a high danger of ice
avalanches or rock falls into the lake. Permafrost is likely to be in the dam and, in
addition, the outburst modelling shows a high probability of a mudflow. And in fact
this lake was also identified by the State Agency for Mudflow Protection of the
Ministry of Emergency Situations of the Republic of Kazakhstan (Kazselezashchita)
as a highly dangerous lake (Popov 1988; Kasatkin and Kapista 2009;
Tokmagambetov 2009). This lake has formed in 1959 and increased concomitantly
with the shrinkage of the adjacent Manshuk Mametova Glacier at the altitude of
3,600 m. Its tongue retreated approximately 250 m since 1958. By the end of the
1990s, the lake had a length of 230 m, a width of 150 m, and the area reached
24,000 m2 with a volume close to 250,000 m3. It is estimated that an outburst would

Fig. 12.7 Visualisation of the situation of selected glacial lakes. For each example, we show a
satellite image and the slope of the topography. The arrow indicates a lake
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cause a mudflow with a volume of more than 2 million m3. Kazselezashchita built a
channel in the dam to decrease the mudflow danger in 1997. Therefore, the lake
volume decreased up to 150,000 m3. However, by the year 2010 because of melting
of ice, the average depth of the lake increased again and reached a maximum depth
of 22 m, and the volume again reached 250,000 m3.

Therefore, Kazselezashchita has deepened the channel which has lowered a
water level on 6.6 m to a volume slightly higher than 100,000 m3. The second
highly dangerous lake, Lake No. 122, is situated in a side valley of the Chon–
Kemin river (Fig. 12.7a). The lake is in direct contact to a glacier which has not
only retreated but has also a very flat tongue which makes a further growth of the
lake very likely. In addition, the lake has adjacent steep slopes and is exposed to
both ice and rock avalanches. It is anticipated that no settlements would be affected
by an outburst. However, there is a possibility that the gravel road that connects
the Issyk–Kul with Almaty and which is frequently used by tourists and trekkers
might be destroyed. Similarly, the neighbouring lake has a medium risk. It has
similar conditions but is much smaller and the lake growth is slower. An example
for a medium dangerous lake is No. 67 situated at south of the Shilek (Chilik) river

Fig. 12.8 Two examples of glacial lakes in the northern Tian Shan. Top The highly dangerous
lake No. 23 (Nr. 6 of the valley) in Kishi Almaty (Malaya Almatinka) valley after the surface
lowering by deepening of the outflow channel in 2010 (a view from dam to glacier, b view to
dam, photos: Blagoveshchenskiy), bottom Lake No. 93 in Chon Aksu valley in 1994 (c photo: D.
Wagner) and 2003 (d photo: T. Bolch)
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(Fig. 12.7b). The parent glacier shows characteristics for increasing the outburst
hazard of the glacial lake, such as strong recession and flat snout. In addition,
the lake area has increased by about 40% between 1999 and 2007. However, the
affected area of an outburst will be probably small as the overall slope is gentle.

The characteristics of Lake No. 36 which was classified as medium dangerous
and situated at the end of Levij Talgar valley are similar to those of Lake No. 67
(Fig. 12.7c). In addition, it is comparatively large. Permafrost thaw might desta-
bilise the moraine dam. However, the dam is relatively wide. A new lake has
developed up-valley which can, in case of an outburst, trigger the overflow of Lake
No. 36. Hence, this lake should be continuously monitored also because Levij
Talgar valley is frequently visited by tourists and an outburst in this valley can
destroy infrastructures at the foothills such as in the case of the 2003 outburst
event (Bolch 2008). Another larger lake (No. 22) in this valley is classified as a
medium risk (Fig. 12.7d). This seems reasonable as it is not adjacent to a glacier
and mass movements will not reach the lake. Another example of medium risk is
Lake No. 93 in Chon Aksu valley (Fig. 12.8c), although the lake did not grow
significantly over the observed period. The dam could be affected by permafrost
thaw and an outburst would trigger a flash flood.

12.5 Discussion

12.5.1 Glacial Lakes in Northern Tian Shan

Previous studies have shown that the number and the area of glacial lakes have
increased concomitantly in terms of glacier shrinkage in many regions (Bajracharya
and Mool 2009; Gardelle et al. 2011). The susceptibility of a lake outburst increases
when the thawing of permafrost destabilises the moraine dam or if the glacial lake is
growing (Richardson and Reynolds 2000). Temperatures in northern Tian Shan have
increased about 0.8 K/100a between the period 1900–2000 and about 2.0 K/100a on
average for the second half of the last century (Giese et al. 2007; Bolch 2007). The
increase was found to be less pronounced in the mountainous areas, but is still
obvious. No significant trend was found with the precipitation (Aizen et al. 1997;
Bolch 2007). The glaciers in the study area are shrinking concomitantly with respect
to the climate change. The glacier shrinkage at the northern edge of the Tian Shan is
more pronounced than the central parts with its continental mountain ranges
(Aizen et al. 2006; Bolch 2007; Kutuzov and Shahgedanova 2009; Narama et al.
2010b; Solomina et al. 2004). The lower boundary of permafrost has shifted
upwardly about 150–200 m since the beginning of the 20th century while the area of
permafrost has decreased by approximately 18% (Marchenko et al. 2007). Hence, it
could be expected that the number and area of potentially dangerous lakes increases
in the study area, a fact which is confirmed by this study. Other studies on glacial
lakes in the same and adjacent mountain ranges of the Tian Shan show similar results
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(Erohin and Cerny 2009; Janský et al. 2011; Narama et al. 2009, 2010a; Popov
1988). Further glacier shrinkage will probably lead to higher danger of a GLOF.
Also in the past, several glacial lake outburst events were caused by rapid glacier
shrinkage followed by an overflow of the moraine dam.

The national scientists and the responsible authorities in Kazakhstan and
Kyrgyzstan have been well aware of the glacial lake hazards for several decades.
Different hazard mitigation activities such as the activities for the lowering of the
lake levels (e.g. Kasatkin and Kapista 2009; Popov 1988), mudflow protection
walls and dams (such as in Kishi and Ulken Almatinka valleys, Yegorov 2007)
reduced the risk significantly. However, GLOFs and mudflows still occur and can
endanger infrastructures. This is especially true for areas above the protection
walls and dams.

12.5.2 Methodology

The case studies show that our suggested approach which is based on remote
sensing analysis and modelling can be successfully applied to identify potentially
dangerous glacial lakes. It is hence, suitable for a first comprehensive assessment
of PDGLs for a larger area and addresses the levels 1 and 2 of the suggested
approach by Huggel et al. (2002). We combined the manifold conditioning
parameters which had not been addressed previously in this comprehensive way.
The approach is easily reproducible as it is based on welldeveloped methods such
as the detection of water bodies using multispectral imagery (Huggel et al. (2002),
automated detection of glaciers (Bolch and Kamp 2006; Paul et al. 2002), and their
velocities (Bolch et al. 2008; Kääb 2005) and simple but robust models such as the
modelling of an outburst path or rock/ice avalanches (Huggel et al. 2003), or a
permafrost model (Keller 1992). Older panchromatic imagery such as Corona
proved to be suitable to extend the analysis back in time which was already shown
for glaciers (Narama et al. 2010b; Bolch et al. 2010). It could also be demonstrated
that it is possible to detect PDGLs for a larger area such as mountain ranges
covering a whole Landsat scene (* 185 by 185 km) within a short period of time.
However, the results need to be carefully evaluated and the weighting scheme
possibly adjusted for the special situation in the respective study region. Data from
former outburst events are valuable sources for calibration. In case of the current
study area, they confirmed the importance of lake growth and the possibility of
existing ice in the moraine dam.

The three main limitations of the geomatics-based approach are that (1) the dam
characteristics and the probability of a dam failure can only be addressed mar-
ginally, (2) lakes in shaded areas and turbid lakes are difficult to identify auto-
matically, (3) the modelling was based on the SRTM3 DEM with a spatial
resolution of 30�. The result of the modelling of the outburst path is based on the
SRTM DEM which highlights the most endangered areas. Comparisons with
historical outbursts show that the path length and, hence, the affected areas are
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underestimated. For instance, a flash flood caused by a lake outburst which
happened in 2003 in Leviy Talgar valley after heavy rainfalls destroyed a bridge at
the foothills but the modelled flow path stopped shortly before this point. Similar
uncertainty exists in the modelling of the mass movements based on the SRTM.
Hence, the SRTM3 DEM proved to be suitable for a first assessment but has
inaccuracies which were also concluded by Frey et al. (2010b). A more accurate
DEM should be used if available.

The major limitation of a remote sensed based study is that the characteristics
and stability of the moraine/lake dam cannot or only roughly taken into account.
The used permafrost model is coarse and does not consider the material compo-
sition which can strongly alter the thermal conditions within the materials and also
retard the thawing of the ice. However, this model can be easily applied to other
mountainous regions in order to provide a first hint about the existence of
permafrost. In addition, this model can be applied for estimation of the future
permafrost extent and to address the danger of increased mass movements due to
permafrost thaw. Other critical measures of the stability of the dam are the types of
drainage. While the drainage over the dam could be detected at least with using
high resolution imagery outflows under or through the dam or piping cannot be
addressed. A further limitation is that the water volume of the lakes can only be
roughly calculated based on the area. Field investigations would be necessary to
measure the lake depth and to address the grain size distribution of the moraine.

The applied methodology for the categorisation of the glacial lakes produced
reasonable results. The utilised weighting according to the importance of the
variables, however, should be carefully chosen by an expert and adjusted to the
study region.

12.6 Conclusion

The presented geomatics-based approach successfully detects potentially danger-
ous glacial lakes across a larger area and presents decision criteria where time-and
cost-intensive field studies should be performed. The availability of data from
previous outburst events helps to adjust the weighting scheme for the respective
study region. The main drawback is that the stability of the moraine can currently
only roughly be addressed by remote sensing and modelling. The nearly globally
available SRTM DEM is a good choice for the first assessment but a more accurate
DEM of higher resolution should be utilised for the analysis if available.

We detected two highly dangerous lakes which should be continuously moni-
tored. For these lakes and lakes of medium danger which could affect infra-
structures and endanger human lives (e.g. at the northern slope of Ile Alatau and
the southern slope of Kungey Alatau and in the mountains along trekking routes)
visual checking and manual interpretation are needed. Continuous climate
warming and the resultant permafrost thaw and glacier recession will increase the
potential danger of lake outbursts.
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