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Preface to the sixth edition

The subject of engineering surveying continues to develop at a rapid pace and this has been reflected
in the many and substantial changes that have been made in updating and revising the previous edition.
The authors have taken the opportunity to examine in detail all the previous material making both minor
and major changes throughout. As always, decisions have to be made as to what should be retained that
is still current and relevant and to identify the material that needs to be cut to make way for new text to
describe the emerging technologies.

The subject of survey control is now treated in much greater depth. The chapter on traditional methods
still in current practice is followed by a whole new chapter on rigorous methods of control, that is, the
application of the technique of least squares in the determination of coordinates and their quality. This
topic was dropped from the fifth edition of this book but now reappears in a completely rewritten chapter
which reflects modern software applications of a technique that underlies much of satellite positioning and
inertial navigation as well as rigorous survey control.

Satellite positioning brings up to date the many advances that have been made in the development of
GPS and its applications, as well as looking to the changes now taking place with GLONASS and the
European GALILEO systems.

The chapter on underground surveying includes an enlarged section on gyrotheodolites which reflects
new techniques that have been developed and the application of automation in modern instrumentation.
The final chapter on mass data methods brings together substantial sections on simple applications of
photogrammetry with the revolutionary new technology of laser scanning by aerial and terrestrial means.
Inertial technology, once seen as an emerging standalone surveying technology, now reappears in a com-
pletely new guise as part of aircraft positioning and orientation systems used to aid the control of aerial
photogrammetry and laser scanners.

In spite of all this new material the authors have been able to keep the same level of worked examples
and examination questions that have been so popular in previous editions. We are confident that this new
edition will find favour with students and practitioners alike in the areas of engineering and construction
surveying, civil engineering, mining and in many local authority applications. This book will prove valuable
for undergraduate study and professional development alike.

Mark Breach





Preface to the fifth edition

Since the publication of the fourth edition of this book, major changes have occurred in the following
areas:

• surveying instrumentation, particularly Robotic Total Stations with Automatic Target Recognition,
reflectorless distance measurement, etc., resulting in turnkey packages for machine guidance and
deformation monitoring. In addition there has been the development of a new instrument and technique
known as laser scanning

• GIS, making it a very prominent and important part of geomatic engineering
• satellite positioning, with major improvements to the GPS system, the continuance of the GLONASS

system, and a proposal for a European system called GALILEO
• national and international co-ordinate systems and datums as a result of the increasing use of satellite

systems.

All these changes have been dealt with in detail, the importance of satellite systems being evidenced by
a new chapter devoted entirely to this topic.

In order to include all this new material and still retain a economical size for the book, it was necessary
but regrettable to delete the chapter on Least Squares Estimation. This decision was based on a survey by
the publishers that showed this important topic was not included in the majority of engineering courses.
It can, however, still be referred to in the fourth edition or in specialised texts, if required.

All the above new material has been fully expounded in the text, while still retaining the many worked
examples which have always been a feature of the book. It is hoped that this new edition will still be
of benefit to all students and practitioners of those branches of engineering which contain a study and
application of engineering surveying.

W. Schofield
February 2001
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Basic concepts of surveying

The aim of this chapter is to introduce the reader to the basic concepts of surveying. It is therefore the most
important chapter and worthy of careful study and consideration.

1.1 DEFINITION

Surveying may be defined as the science of determining the position, in three dimensions, of natural and
man-made features on or beneath the surface of the Earth. These features may be represented in analogue
form as a contoured map, plan or chart, or in digital form such as a digital ground model (DGM).

In engineering surveying, either or both of the above formats may be used for planning, design and
construction of works, both on the surface and underground. At a later stage, surveying techniques are
used for dimensional control or setting out of designed constructional elements and also for monitoring
deformation movements.

In the first instance, surveying requires management and decision making in deciding the appropriate
methods and instrumentation required to complete the task satisfactorily to the specified accuracy and
within the time limits available. This initial process can only be properly executed after very careful and
detailed reconnaissance of the area to be surveyed.

When the above logistics are complete, the field work – involving the capture and storage of field data –
is carried out using instruments and techniques appropriate to the task in hand.

Processing the data is the next step in the operation. The majority, if not all, of the computation will
be carried out with computing aids ranging from pocket calculator to personal computer. The methods
adopted will depend upon the size and precision of the survey and the manner of its recording; whether
in a field book or a data logger. Data representation in analogue or digital form may now be carried out
by conventional cartographic plotting or through a totally automated computer-based system leading to
a paper- or screen-based plot. In engineering, the plan or DGM is used when planning and designing a
construction project. The project may be a railway, highway, dam, bridge, or even a new town complex.
No matter what the work is, or how complicated, it must be set out on the ground in its correct place and to its
correct dimensions, within the tolerances specified. To this end, surveying procedures and instrumentation
of varying precision and complexity are used depending on the project in hand.

Surveying is indispensable to the engineer when planning, designing and constructing a project, so
all engineers should have a thorough understanding of the limits of accuracy possible in the construction
and manufacturing processes. This knowledge, combined with an equal understanding of the limits and
capabilities of surveying instrumentation and techniques, will enable the engineer to complete the project
successfully in the most economical manner and in the shortest possible time.
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1.2 PRINCIPLES

Every profession must be founded upon sound practice and in this engineering surveying is no different.
Practice in turn must be based upon proven principles. This section is concerned with examining the
principles of survey, describing their interrelationship and showing how they may be applied in prac-
tice. Most of the principles below have an application at all stages of a survey and it is an unwise and
unprofessional surveyor who does not take them into consideration when planning, executing, computing
and presenting the results of the survey work. The principles described here have application across the
whole spectrum of survey activity, from field work to photogrammetry, mining surveying to metrology,
hydrography to cartography, and cadastral to construction surveying.

1.2.1 Control

A control network is the framework of survey stations whose coordinates have been precisely determined
and are often considered definitive. The stations are the reference monuments, to which other survey work
of a lesser quality is related. By its nature, a control survey needs to be precise, complete and reliable and
it must be possible to show that these qualities have been achieved. This is done by using equipment of
proven precision, with methods that satisfy the principles and data processing that not only computes the
correct values but gives numerical measures of their precision and reliability.

Since care needs to be taken over the provision of control, then it must be planned to ensure that it
achieves the numerically stated objectives of precision and reliability. It must also be complete as it will
be needed for all related and dependent survey work. Other survey works that may use the control will
usually be less precise but of greater quantity. Examples are setting out for earthworks on a construction
site, detail surveys of a greenfield site or of an as-built development and monitoring many points on a
structure suspected of undergoing deformation.

The practice of using a control framework as a basis for further survey operations is often called ‘working
from the whole to the part’. If it becomes necessary to work outside the control framework then it must
be extended to cover the increased area of operations. Failure to do so will degrade the accuracy of later
survey work even if the quality of survey observations is maintained.

For operations other than setting out, it is not strictly necessary to observe the control before other
survey work. The observations may be concurrent or even consecutive. However, the control survey must
be fully computed before any other work is made to depend upon it.

1.2.2 Economy of accuracy

Surveys are only ever undertaken for a specific purpose and so should be as accurate as they need to be, but
not more accurate. In spite of modern equipment, automated systems, and statistical data processing the
business of survey is still a manpower intensive one and needs to be kept to an economic minimum. Once
the requirement for a survey or some setting out exists, then part of the specification for the work must
include a statement of the relative and absolute accuracies to be achieved. From this, a specification for
the control survey may be derived and once this specification has been achieved, there is no requirement
for further work.

Whereas control involves working from ‘the whole to the part’ the specification for all survey products
is achieved by working from ‘the part to the whole’. The specification for the control may be derived from
estimation based upon experience using knowledge of survey methods to be applied, the instruments to
be used and the capabilities of the personnel involved. Such a specification defines the expected quality of
the output by defining the quality of the work that goes into the survey. Alternatively a statistical analysis
of the proposed control network may be used and this is the preferable approach. In practice a good
specification will involve a combination of both methods, statistics tempered by experience. The accuracy
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of any survey work will never be better than the control upon which it is based. You cannot set out steelwork
to 5 mm if the control is only good to 2 cm.

1.2.3 Consistency

Any ‘product’ is only as good as the most poorly executed part of it. It matters not whether that ‘product’
is a washing machine or open heart surgery, a weakness or inconsistency in the endeavour could cause a
catastrophic failure. The same may apply in survey, especially with control. For example, say the majority
of control on a construction site is established to a certain designed precision. Later one or two further
control points are less well established, but all the control is assumed to be of the same quality. When
holding-down bolts for a steelwork fabrication are set out from the erroneous control it may require a good
nudge from a JCB to make the later stages of the steelwork fit.

Such is the traditional view of consistency. Modern methods of survey network adjustment allow for
some flexibility in the application of the principle and it is not always necessary for all of a particular
stage of a survey to be of the same quality. If error statistics for the computed control are not to be made
available, then quality can only be assured by consistency in observational technique and method. Such a
quality assurance is therefore only second hand. With positional error statistics the quality of the control
may be assessed point by point. Only least squares adjustments can ensure consistency and then only if
reliability is also assured. Consistency and economy of accuracy usually go hand in hand in the production
of control.

1.2.4 The Independent check

The independent check is a technique of quality assurance. It is a means of guarding against a blunder or
gross error and the principle must be applied at all stages of a survey. Failure to do so will lead to the risk,
if not probability, of ‘catastrophic failure’ of the survey work. If observations are made with optical or
mechanical instruments, then the observations will need to be written down. A standard format should be
used, with sufficient arithmetic checks upon the booking sheet to ensure that there are no computational
errors. The observations should be repeated, or better, made in a different manner to ensure that they are
in sympathy with each other. For example, if a rectangular building is to be set out, then once the four
corners have been set out, opposite sides should be the same length and so should the diagonals. The sides
and diagonals should also be related through Pythagoras’ theorem. Such checks and many others will be
familiar to the practising surveyor.

Checks should be applied to ensure that stations have been properly occupied and the observations
between them properly made. This may be achieved by taking extra and different measurements beyond
the strict minimum required to solve the survey problem. An adjustment of these observations, especially
by least squares, leads to misclosure or error statistics, which in themselves are a manifestation of the
independent check.

Data abstraction, preliminary computations, data preparation and data entry are all areas where tran-
scription errors are likely to lead to apparent blunders. Ideally all these activities should be carried out
by more than one person so as to duplicate the work and with frequent cross-reference to detect errors.
In short, wherever there is a human interaction with data or data collection there is scope for error.

Every human activity needs to be duplicated if it is not self-checking. Wherever there is an opportunity
for an error there must be a system for checking that no error exists. If an error exists, there must be a
means of finding it.

1.2.5 Safeguarding

Since survey can be an expensive process, every sensible precaution should be taken to ensure that the
work is not compromised. Safeguarding is concerned with the protection of work. Observations which are
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written down in the field must be in a permanent, legible, unambiguous and easily understood form so that
others may make good sense of the work. Observations and other data should be duplicated at the earliest
possible stage, so that if something happens to the original work the information is not lost. This may be
by photocopying field sheets, or making backup copies of computer files. Whenever the data is in a unique
form or where all forms of the data are held in the same place, then that data is vulnerable to accidental
destruction.

In the case of a control survey, the protection of survey monuments is most important since the precise
coordinates of a point which no longer exists or cannot be found are useless.

1.3 BASIC MEASUREMENTS

Surveying is concerned with the fixing of position whether it be control points or points of topographic
detail and, as such, requires some form of reference system.

The physical surface of the Earth, on which the actual survey measurements are carried out, is not
mathematically definable. It cannot therefore be used as a reference datum on which to compute position.

Alternatively, consider a level surface at all points normal to the direction of gravity. Such a surface
would be closed and could be formed to fit the mean position of the oceans, assuming them to be free from
all external forces, such as tides, currents, winds, etc. This surface is called the geoid and is defined as the
equipotential surface that most closely approximates to mean sea level in the open oceans. An equipotential
surface is one from which it would require the same amount of work to move a given mass to infinity no
matter from which point on the surface one started. Equipotential surfaces are surfaces of equal potential;
they are not surfaces of equal gravity. The most significant aspect of an equipotential surface going through
an observer is that survey instruments are set up relative to it. That is, their vertical axes are in the direction
of the force of gravity at that point. A level or equipotential surface through a point is normal, i.e. at right
angles, to the direction of gravity. Indeed, the points surveyed on the physical surface of the Earth are
frequently reduced, initially, to their equivalent position on the geoid by projection along their gravity
vectors.

The reduced level or elevation of a point is its height above or below the geoid as measured in the
direction of its gravity vector, or plumb line, and is most commonly referred to as its height above or below
mean sea level (MSL). This assumes that the geoid passes through local MSL, which is acceptable for most
practical purposes. However, due to variations in the mass distribution within the Earth, the geoid, which
although very smooth is still an irregular surface and so cannot be used to locate position mathematically.

The simplest mathematically definable figure which fits the shape of the geoid best is an ellipsoid formed
by rotating an ellipse about its minor axis. Where this shape is used by a country as the surface for its
mapping system, it is termed the reference ellipsoid. Figure 1.1 illustrates the relationship between these
surfaces.

The majority of engineering surveys are carried out in areas of limited extent, in which case the reference
surface may be taken as a tangent plane to the geoid and the principles of plane surveying applied. In other
words, the curvature of the Earth is ignored and all points on the physical surface are orthogonally projected
onto a flat plane as illustrated in Figure 1.2. For areas less than 10 km square the assumption of a flat Earth is
perfectly acceptable when one considers that in a triangle of approximately 200 km2, the difference between
the sum of the spherical angles and the plane angles would be 1 second of arc, or that the difference in length
of an arc of approximately 20 km on the Earth’s surface and its equivalent chord length is a mere 8 mm.

The above assumptions of a flat Earth, while acceptable for some positional applications, are not
acceptable for finding elevations, as the geoid deviates from the tangent plane by about 80 mm at 1 km or
8 m at 10 km from the point of contact. Elevations are therefore referred to the geoid, at least theoretically,
but usually to MSL practically.
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Physical surface

EllipsoidA

Geoid

Normal (to the
ellipsoid)

Vertical to the geoid
(direction of gravity)

ξ

Fig. 1.1 Geoid, ellipsoid and physical surface

Fig. 1.2 Projection onto a plane surface

An examination of Figure 1.2 clearly shows the basic surveying measurements needed to locate points
A, B and C and plot them orthogonally as A′, B′ and C′. Assuming the direction of B from A is known then
the measured slope distance AB and the vertical angle to B from A will be needed to fix the position of B
relative to A. The vertical angle to B from A is needed to reduce the slope distance AB to its equivalent
horizontal distance A′B′ for the purposes of plotting. Whilst similar measurements will fix C relative to
A, it also requires the horizontal angle at A measured from B to C (B′A′C′) to fix C relative to B. The
vertical distances defining the relative elevation of the three points may also be obtained from the slope
distance and vertical angle or by direct levelling (Chapter 3) relative to a specific reference datum. The five
measurements mentioned above comprise the basis of plane surveying and are illustrated in Figure 1.3,
i.e. AB is the slope distance, AA′ the horizontal distance, A′B the vertical distance, BAA′ the vertical angle
(α) and A′AC the horizontal angle (θ ).

It can be seen from the above that the only measurements needed in plane surveying are angle and
distance. Nevertheless, the full impact of modern technology has been brought to bear in the acquisition
and processing of this simple data. Angles may now be resolved with single-second accuracy using optical
and electronic theodolites; electromagnetic distance measuring (EDM) equipment can obtain distances up
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Fig. 1.3 Basic measurements

to several kilometres with millimetre precision, depending on the distance measured; lasers and north-
seeking gyroscopes are virtually standard equipment for tunnel surveys; orbiting satellites are being used
for position fixing offshore as well as on; continued improvement in aerial and terrestrial photogrammetric
and scanning equipment makes mass data capture technology an invaluable surveying tool; finally, data
loggers and computers enable the most sophisticated procedures to be adopted in the processing and
automatic plotting of field data.

1.4 CONTROL NETWORKS

The establishment of two- or three-dimensional control networks is the most fundamental operation in the
surveying of large or small areas of land. Control networks comprise a series of points or positions which
are spatially located for the purpose of topographic surveying, for the control of supplementary points, or
dimensional control on site.

The process involved in carrying out the surveying of an area, the capture and processing of the field
data, and the subsequent production of a plan or map, will now be outlined briefly.

The first and obvious step is to know the purpose and nature of the project for which the surveys are
required in order to assess the accuracy specifications, the type of equipment required and the surveying
processes involved.

For example, a major construction project may require structures, etc., to be set out to subcentimetre
accuracy, in which case the control surveys will be required to an even greater accuracy. Earthwork volumes
may be estimated from the final plans, hence contours made need to be plotted at 2 m intervals or less.
If a plan scale of 1/500 is adopted, then a plotting accuracy of 0.5 mm would represent 0.25 m on the
ground, thus indicating the accuracy of the final process of topographic surveying from the supplementary
control and implying major control to a greater accuracy. The location of topographic data may be done
using total stations, GPS satellites, or, depending on the extent of the area, aerial photogrammetry. The
cost of a photogrammetric survey is closely linked to the contour interval required and the extent of the
area. Thus, the accuracy of the control network would define the quality of the equipment and the number
of observations required.

The duration of the project will affect the design of survey stations required for the control points.
A project of limited duration may only require a long, stout wooden peg, driven well into solid, reliable
ground and surrounded by a small amount of concrete. A fine nail in the top defines the geometrical
position to be located. A survey control point designed to be of longer duration is illustrated in Chapter 6,
Figure 6.15.
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The next stage of the process is a detailed reconnaissance of the area in order to establish the best
positions for the control points.

Initially, data from all possible sources should be studied before venturing into the field. Such data
would comprise existing maps and plans, aerial photographs and any previous surveying data of that area.
Longitudinal sections may be drawn from the map contours to ensure that lines of sight between control
points are well above ground level and so free of shimmer or refraction effects. If the surveys are to be
connected into the national surveys of the country (Ordnance Survey National Grid in the UK), then the
position of as many national survey points as possible, such as (in the UK) those on the GPS Active or
Passive Network, should be located. These studies, very often referred to as the ‘paper survey’, should
then be followed up with a detailed field reconnaissance.

This latter process locates all existing control in the area of interest, both local and national, and
establishes the final positions for all the new control required. These final positions should be chosen to
ensure clear, uninterrupted lines of sight and the best observing positions. The location of these points, and
the type of terrain involved, would then influence the method of survey to be used to locate their spatial
position.

Figure 1.4 indicates control points A, B, … , F, in the area to be surveyed. It is required to obtain the
coordinate positions of each point. This could be done using any of the following methods:

(a) Intersection or resection
(b) Traversing
(c) Networks
(d) GPS satellites

E

F

B

C

D

A

FENCE

ROAD

Fig. 1.4 Control points
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A
B

C

D

E

F

Fig. 1.5 A network

Figure 1.5 illustrates possible lines of sight. All the horizontal angles shown would be measured to the
required accuracy to give the shape of the network. At least one side would need to be measured, say AB,
to give the scale or size of the network. By measuring a check baseline, say ED, and comparing it with its
value, computed through the network, the scale error could be assessed. This form of survey is classical
triangulation and although forming the basis of the national maps of many countries, is now regarded as
obsolete because of the need for lines of sight between adjacent points. Such control would now be done
with GPS.

If the lengths of all the sides were measured in the same triangular configuration without the angles,
this technique would be called ‘trilateration’. Although giving excellent control over scale error, swing
errors may occur. For local precise control surveys the modern practice therefore is to use a combination of
angles and distance. Measuring every angle and every distance, including check sights wherever possible,
would give a very strong network indeed. Using sophisticated least squares software it is now possible to
optimize the observation process to achieve the accuracies required.

Probably the most favoured simple method of locating the relative coordinate positions of control points
in engineering and construction is traversing. Figure 1.6 illustrates the method of traversing to locate the
same control points A to F. All the adjacent horizontal angles and distances are measured to the accuracies
required, resulting in much less data needed to obtain coordinate accuracies comparable with the previous
methods. Also illustrated are minor or supplementary control points a, b, c, d, located with lesser accuracy
by means of a link traverse. The field data comprises all the angles as shown plus the horizontal distances
Aa, ab, bc, cd, and dB. The rectangular coordinates of all these points would, of course, be relative to the
major control.

Whilst the methods illustrated above would largely supply a two-dimensional coordinate position, GPS
satellites could be used to provide a three-dimensional position.

All these methods, including the computational processes, are dealt with in later chapters of
this book.
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A
B

DE

DAB

DAa
Dbc

D cd

D dB

Dab

C

D

E

F

DFA

DEF

DCD

DBC

d

c
b

a

Fig. 1.6 Major traverse A to F. Minor link traverse A to B

1.5 LOCATING POSITION

Establishing control networks and their subsequent computation leads to an implied rectangular coordi-
nate system over the area surveyed. The minor control points in particular can now be used to position
topographic data and control the setting out of a construction design.

The methods of topographic survey and dimensional control will most probably be:

(a) by polar coordinates (distance and bearing) using a total station; or
(b) by GPS using kinematic methods.

Considering method (a), a total station would be set up over a control point whose coordinates are known
as ‘a’, and back-sighted to another control point ‘b’ whose coordinates are also known. Depending on
the software on board, the coordinates may be keyed into the total station. Alternatively, the bearing of
the line ‘ab’, computed from the coordinates, may be keyed in. Assuming the topographic position of
a road is required, the total station would be sighted to a corner cube prism fixed to a detail pole held
vertically at (P1), the edge of the road as shown in Figures 1.7 and 1.8. The field data would comprise the
horizontal angle baP1(α1) and the horizontal distance D1 (Figure 1.8). Depending on the software being
used, the angle α1 would be used to compute the bearing aP1 relative to ‘ab’ and, with the horizontal
distance D1, compute the rectangular coordinates of P1 in the established coordinate system. This process
is repeated for the remaining points defining the road edge and any other topographic data within range
of the total station. The whole area would be surveyed in this way by occupying pairs of control points
situated throughout the area.
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Fig. 1.7 Traverse
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Fig. 1.8 Detailing by polar coordinates

For method (b), using GPS equipment, the methods are dealt with in detail in Chapter 9: Satellite
positioning.

A further development is the integration of a total station with GPS. This instrument, produced by Leica
Geosystems and called SmartStation, provides the advantages of both the systems (a) and (b).

If using existing control, the local coordinate data is copied into the SmartStation and used in the usual
manner on existing pairs of control points. Where the GPS cannot be used because of excessive tree cover
for instance, then the total station may be used in the usual way.
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Fig. 1.9 Intersection

Fig. 1.10 Resection

Perhaps the most significant aspect of this instrument is that pairs of points for orientation as well as
position could be established by GPS thereby eliminating the need to establish a prior control network,
with great savings on time and money.

Alternative methods used very often for the location of single points are intersection, where P is fixed
by measuring the horizontal angles BAP and PBA as shown in Figure 1.9, and resection (Figure 1.10).
This method forms the basis of triangulation. Similarly, P could be fixed by the measurement of horizontal
distances AP and BP, and forms the basis of the method of trilateration. In both these instances there is no
independent check, as a position for P (not necessarily the correct one) will always be obtained. Thus at
least one additional measurement is required, either by combining the angles and distances, by measuring
the angle at P as a check on the angular intersection, or by producing a trisection from an extra control
station.

Resection (Figure 1.10) is done by observing the horizontal angles at P to at least three control stations
of known position. The position of P may be obtained by a mathematical solution as illustrated in
Chapter 6.

It can be seen that all the above procedures simply involve the measurement of angles and distances.

1.6 PLOTTING DETAIL

In the past, detail would have been plotted on paper or a more stable medium such as plastic film. However,
today all practical ‘plotting’is computer based and there is now an abundance of computer plotting software
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available that will not only produce a contour plot but also supply three-dimensional views, digital ground
models, earthwork volumes, road design, drainage design, perspective views, etc.

1.6.1 Computer systems

To be economically viable, practically all major engineering/surveying organizations use an automated
plotting system. Very often the total station and data logger are purchased along with the computer
hardware and software as a total operating system. In this way interface and adaptation problems are
precluded. Figure 1.11 shows a computer driven plotter which is networked to the system and located
separately.

The essential characteristics of such a system are:

(1) Capability to accept, store, transfer, process and manage field data that is input manually or directly
from an interfaced data logger (Figure 1.12).

(2) Software and hardware are in modular form for easy access.
(3) Software will use all modern facilities, such as ‘windows’, different colour and interactive screen

graphics, to make the process user friendly.
(4) Continuous data flow from field data to finished plan.
(5) Appropriate database facility for the storage and management of coordinate and cartographic data

necessary for the production of DGMs and land/geographic information systems.
(6) Extensive computer storage facility.
(7) High-speed precision flat-bed or drum plotter.

To be truly economical, the field data, including appropriate coding of the various types of detail, should
be captured and stored by single-key operation, on a data logger interfaced to a total station. The computer

Fig. 1.11 Computer driven plotter
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Fig. 1.12 Data logger

system should then permit automatic transfer of this data by direct interface between the logger and the
system. The software should then: store and administer the data; carry out the mathematical processing,
such as network adjustment, produce coordinates and elevations; generate data storage banks; and finally
plot the data on completion of the data verification process.

Prior to plotting, the data can be viewed on the screen for editing purposes. This can be done from
the keyboard or touch screen using interactive graphics routines. The plotted detail can be examined,
moved, erased or changed as desired. When the examination is complete, the command to plot may then
be activated. Figure 1.13 shows an example of a computer plot.

1.6.2 Digital ground model (DGM)

A DGM is a three-dimensional, mathematical representation of the landform and all its features, stored in a
computer database. Such a model is extremely useful in the design and construction process, as it permits
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Fig. 1.13 Computer plot

quick and accurate determination of the coordinates and elevation of any point. The DGM is formed by
sampling points over the land surface and using appropriate algorithms to process these points to represent
the surface being modelled. The methods in common use are modelling by ‘strings’, ‘regular grids’ or
‘triangulated irregular networks’. Regardless of the methods used, they will all reflect the quality of the
field data.

A ‘string’ comprises a series of points along a feature and so such a system stores the position of
features surveyed. The system is widely used for mapping purposes due to its flexibility, accuracy along
the string and the ability to process large amounts of data very quickly. However, as the system does
not store the relationship between strings, a searching process is essential when the levels of points not
included in a string are required. Thus the system’s weakness lies in the generation of accurate contours
and volumes.

The ‘regular grid’ method uses appropriate algorithms to convert the sampled data to a regular
grid of levels. If the field data permits, the smaller the grid interval, the more representative of
landform it becomes. Although a simple technique, it only provides a very general shape of the land-
form, due to its tendency to ignore vertical breaks of slope. Volumes generated also tend to be rather
inaccurate.

In the ‘triangulated irregular networks’ (TIN) method, ‘best fit’ triangles are formed between the points
surveyed. The ground surface therefore comprises a network of triangular planes at various inclina-
tions (Figure 1.14(a)). Computer shading of the model (Figure 1.14(b)) provides an excellent indication
of the landform. In this method vertical breaks are forced to form the sides of triangles, thereby maintain-
ing correct ground shape. Contours, sections and levels may be obtained by linear interpolation through
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(a) (b)

Fig. 1.14 (a) Triangular grid model, and (b) Triangular grid model with computer shading

Fig. 1.15 Computer generated contour model

the triangles. It is thus ideal for contour generation (Figure 1.15) and computing highly accurate volumes.
The volumes may be obtained by treating each triangle as a prism to the depth required; hence the smaller the
triangle, the more accurate the final result.

1.6.3 Computer-aided design (CAD)

In addition to the production of DGMs and contoured plans, a computer-based surveying system permits
the finished plan to be easily related to the designed structure. The three-dimensional information held in
the database supplies all the ground data necessary to facilitate the finished design. Figure 1.16 illustrates
its use in road design.

The environmental impact of the design can now be more readily assessed by producing perspective
views as shown in Figure 1.17. Environmental impact legislation makes this latter tool extremely valuable.
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Fig. 1.16 Computer aided road design – courtesy of ISP (Integrated Software Products)

Fig. 1.17 Perspectives with computer shading – courtesy of ISP (Integrated Software Products)
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1.7 SUMMARY

In the preceding sections the basic concepts of surveying have been outlined. Because of their importance
they will now be summarized as follows:

(1) Reconnaissance is the first and most important step in the surveying process. Only after a careful and
detailed reconnaissance of the area can the surveyor decide upon the techniques and instrumentation
required to complete the work economically and meet the accuracy specifications.

(2) Control networks not only form a reference framework for locating the position of topographic detail
and setting out constructions, but may also be used for establishing minor control networks containing
a greater number of control stations at shorter distances apart and to a lower order of accuracy, i.e.
a, b, c, d in Figure 1.6. These minor control stations may be better placed for the purpose of locating
the topographic detail.

This process of establishing the major control to the highest order of accuracy, as a framework on
which to connect the minor control, which is in turn used as a reference framework for detailing, is
known as working from the whole to the part and forms the basis of all good surveying procedure.

(3) Errors are contained in all measurement procedures and a constant battle must be waged by the surveyor
to minimize and evaluate their effect.

It follows from this that the greater the accuracy specifications the greater the cost of the survey
because it results in more observations, taken with greater care, over a longer period of time and
using more precise (and therefore more expensive) equipment. It is for this reason that major control
networks contain the minimum number of stations necessary and surveyors adhere to the economic
principle of working to an accuracy neither greater than nor less than that required.

(4) Independent checks should be introduced not only into the field work, but also into the subsequent
computation and reduction of field data. In this way, errors can be quickly recognized and dealt with.
Data should always be measured more than once and preferably in different ways. Examination of sev-
eral measurements will generally indicate if there are blunders in the measuring process. Alternatively,
close agreement of the measurements is indicative of high precision and generally acceptable field
data, although, as shown later, high precision does not necessarily mean high accuracy, and further
data processing may be necessary to remove any systematic error that may be present.

(5) Commensurate accuracy is advised in the measuring process, i.e. the angles should be measured to
the same degree of accuracy as the distances and vice versa. For guidance: 1′′ of arc subtends 1 mm
at 200 m. This means that if distance is measured to, say, 1 in 200 000, the angles should be measured
to 1′′ of arc, and so on.

In the majority of engineering projects, sophisticated instrumentation such as ‘total stations’ interfaced
with electronic data recording is the norm. In some cases the recorded data can be used to produce screen
plots in real time.

GPS and other satellite systems are used to fix three-dimensional position. Such is the accuracy and
speed of positioning using satellites that they may be used to establish control points, fix topographic
detail, set out position on site and carry out continuous deformation monitoring. However, they cannot be
used to solve every positioning problem and conventional survey techniques continue to have about equal
importance.

However, regardless of the technological advances in surveying, attention must always be given to
instrument calibration and checking, carefully designed projects and meticulous observation. As surveying
is essentially the science of measurement, it is necessary to examine the measured data in more detail, as
discussed in the next chapter.
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Error and uncertainty

In surveying nothing is ever absolutely certain.
The product of surveying may be thought of as being in two parts, that is, the derivation of the desired

quantities such as coordinates of, or distances between, points, and the assessment and management of
the uncertainty of those quantities. In other words not only must the survey results be produced, but there
should be numerical statements of the quality of the results for them to be meaningful.

Survey results can never be exactly true for a number of reasons. Surveying equipment, like any other
piece of equipment in the real world can only be manufactured to a certain level of precision. This means
that there is a limit upon the quality of a measurement that can be made by any instrument. Although survey
measuring procedures are designed to remove as many errors as possible there will always be some sources
of error that cannot be compensated for. Whatever the scale on the instrument, be it digital or analogue,
there is a limit to the number of significant digits that it can be read to. Surveyors are trained to get the
most out of their instrumentation, but no observer can make perfect measurements. There is a limit to the
steadiness of the hand and the acuity of the eye. All survey measurements are subject to external factors,
for example all observed angles are subject to the effects of refraction, and observed distances, whether
EDM or tape, will vary with temperature. The process of getting from observations to coordinates involves
reductions of, and corrections to, observed data. Some mathematical formulae are rigorous, others are
approximate. These approximations and any rounding errors in the computations will add further error to
the computed survey results.

The surveyor’s task is to understand the source and nature of the errors in the survey work and appreciate
how the observing methods and the computing process may be designed to minimize and quantify them. It is
important to understand the nature of the measurement process. Firstly, the units in which the measurement
is to take place must be defined, for example distances may be measured in metres or feet and angles may
be in degrees, gons or mils. Next, the operation of comparing the measuring device with the quantity to
be measured must be carried out, for example laying a tape on the ground between two survey stations.
A numerical value in terms of the adopted units of measure is then allocated to the measured quantity.
In one of the examples already quoted the readings of the tape at each station are taken and the difference
between them is the allocated numerical value of the distance between the stations. The important point is
that the true value of the interstation distance is never known, it can only be estimated by an observational
and mathematical process.

Since the true value of a measurement or coordinate can never be known it is legitimate to ask what is
the accuracy or the precision of, or the error in, the estimate of that measurement or coordinate. Accuracy,
precision and error have specific meanings in the context of surveying. Accuracy is a measure of reliability.
In other words

Accuracy = True value − Most probable value

where the ‘most probable value’ is derived from a set of measurements. In the example above the most
probable value might be the arithmetic mean of a number of independent measurements. Since the true
value is never known then it is also impossible for the accuracy to be known. It can only be estimated.
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Accuracy can be estimated from ‘residuals’, for example, in the two sets of measurements below, which
mean is the more accurate, that of the measurements of line AB or line XY?

Line AB XY

measure residuals measure residuals

25.34 m +0.02 m 25.31 m −0.01 m
25.49 m +0.17 m 25.33 m +0.01 m
25.12 m −0.20 m 25.32 m 0.00 m
25.61 m +0.29 m 25.33 m +0.01 m
25.04 m −0.28 m 25.31 m −0.01 m

Mean 25.32 m 25.32 m

The residuals in this case are differences between the individual observations and the best estimate of
the distance, that is the arithmetic mean. It is clear from inspection of the two sets of residuals that the
length of line XY appears to be more accurately determined than that of line AB.

Precision is a measure of repeatability. Small residuals indicate high precision, so the mean of line XY
is more precisely determined than the mean of line AB. High precision does not necessarily indicate high
accuracy. For example, if the tape used to measure line XY was in decimals of a yard and the surveyor
assumed it was in metres, then the computed mean of line XY would be very precise but also very inaccurate.
In general

Precision > Accuracy

but in practice the computed precision is often taken as the assessed accuracy.
Coordinates and their accuracy and precision may be stated as being ‘relative’ or ‘absolute’. Absolute

values are with respect to some previously defined datum. Relative values are those with respect to another
station. For example, the Ordnance Survey (OS) coordinates of a GPS passive network station might
be assumed to be absolute coordinates since they are with respect to the OSTN02 datum of UK. The
coordinates of a new control station on a construction site may have been determined by a series of
observations including some to the GPS station. The precision of the coordinates of the new station may
better be expressed with respect to the OSTN02 datum, or alternatively with respect to the coordinates
of another survey station on site. In the former case they may be considered as absolute and in the latter
as relative. The difference between absolute and relative precisions is largely one of local definition and
therefore of convenience. In general

Relative precision > Absolute precision

Accuracy and precision are usually quoted as a ratio, or as parts per million, e.g. 1:100 000 or 10 ppm, or
in units of the quantity measured, e.g. 0.03 m.

Error is the difference between an actual true valve and an estimate of that true value. If the estimate is
a bad one, then the error will be large.

Of these three concepts, accuracy, precision and error, only precision may be numerically defined
from appropriate computations with the observations. Accuracy and error may be assumed, sometimes
erroneously, from the precision but they will never be known for sure. The best estimate of accuracy is
usually the precision but it will usually be overoptimistic.
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2.1 UNITS OF MEASUREMENT

The system most commonly used for the definition of units of measurement, for example of distance and
angle, is the ‘Système Internationale’, abbreviated to SI. The basic units of prime interest are:

Length in metres (m)

from which we have:

1 m = 103 millimetres (mm)

1 m = 10−3 kilometres (km)

Thus a distance measured to the nearest millimetre would be written as, say, 142.356 m.
Similarly for areas we have:

1 m2 = 106 mm2

104 m2 = 1 hectare (ha)

106 m2 = 1 square kilometre (km2)

and for volumes, m3 and mm3.
There are three systems used for plane angles, namely the sexagesimal, the centesimal and radians

(arc units).
The sexagesimal units are used in many parts of the world, including the UK, and measure angles in

degrees (◦), minutes (′) and seconds (′′) of arc, i.e.

1◦ = 60′

1′ = 60′′

and an angle is written as, say, 125◦ 46′ 35′′.
The centesimal system is quite common in Europe and measures angles in gons (g), i.e.

1 gon = 100 cgon (centigon)

1 cgon = 10 mgon (milligon)

A radian is that angle subtended at the centre of a circle by an arc on the circumference equal in length to
the radius of the circle, i.e.

2π rad = 360◦ = 400 gon

Thus to transform degrees to radians, multiply by π /180◦, and to transform radians to degrees, multiply
by 180◦/π . It can be seen that:

1 rad = 57.2957795◦ (= 57◦ 17′ 44.8′′) = 63.6619972 gon

A factor commonly used in surveying to change angles from seconds of arc to radians is:

α rad = α′′/206 265

where 206 265 is the number of seconds in a radian.
Other units of interest will be dealt with where they occur in the text.
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2.2 SIGNIFICANT FIGURES

Engineers and surveyors communicate a great deal of their professional information using numbers. It is
important, therefore, that the number of digits used, correctly indicates the accuracy with which the field
data were measured. This is particularly important since the advent of pocket calculators, which tend to
present numbers to as many as eight places of decimals, calculated from data containing, at the most, only
three places of decimals, whilst some eliminate all trailing zeros. This latter point is important, as 2.00 m
is an entirely different value to 2.000 m. The latter number implies estimation to the nearest millimetre as
opposed to the nearest 10 mm implied by the former. Thus in the capture of field data, the correct number
of significant figures should be used.

By definition, the number of significant figures in a value is the number of digits one is certain of
plus one, usually the last, which is estimated. The number of significant figures should not be confused
with the number of decimal places. A further rule in significant figures is that in all numbers less than
unity, the zeros directly after the decimal point and up to the first non-zero digit are not counted. For
example:

Two significant figures: 40, 42, 4.2, 0.43, 0.0042, 0.040

Three significant figures: 836, 83.6, 80.6, 0.806, 0.0806, 0.00800

Difficulties can occur with zeros at the end of a number such as 83 600, which may have three, four or
five significant figures. This problem is overcome by expressing the value in powers of ten, i.e. 8.36 ×
104 implies three significant figures, 8.360 × 104 implies four significant figures and 8.3600 × 104 implies
five significant figures.

It is important to remember that the accuracy of field data cannot be improved by the computational
processes to which it is subjected.

Consider the addition of the following numbers:

155.486
7.08

2183.0
42.0058

If added on a pocket calculator the answer is 2387.5718; however, the correct answer with due regard
to significant figures is 2387.6. It is rounded off to the most extreme right-hand column containing
all the significant figures, which in the example is the column immediately after the decimal point. In
the case of 155.486 + 7.08 + 2183 + 42.0058 the answer should be 2388. This rule also applies to
subtraction.

In multiplication and division, the answer should be rounded off to the number of significant figures
contained in that number having the least number of significant figures in the computational process.
For instance, 214.8432 × 3.05 = 655.27176, when computed on a pocket calculator; however, as 3.05
contains only three significant figures, the correct answer is 655. Consider 428.4 × 621.8 = 266379.12,
which should now be rounded to 266 400 = 2.664 × 105, which has four significant figures. Similarly,
41.8 ÷ 2.1316 = 19.609683 on a pocket calculator and should be rounded to 19.6.

When dealing with the powers of numbers the following rule is useful. If x is the value of the first
significant figure in a number having n significant figures, its pth power is rounded to:

n − 1 significant figures if p ≤ x

n − 2 significant figures if p ≤ 10x

For example, 1.58314 = 6.28106656 when computed on a pocket calculator. In this case x = 1, p = 4 and
p ≤ 10x; therefore, the answer should be quoted to n − 2 = 3 significant figures = 6.28.
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Similarly, with roots of numbers, let x equal the first significant figure and r the root; the answer should
be rounded to:

n significant figures when rx ≥ 10

n − 1 significant figures when rx < 10

For example:

36
1
2 = 6, because r = 2, x = 3, n = 2, thus rx < 10, and answer is to n − 1 = 1 significant figure.

415.36
1
4 = 4.5144637 on a pocket calculator; however, r = 4, x = 4, n = 5, and as rx > 10, the

answer is rounded to n = 5 significant figures, giving 4.5145.

As a general rule, when field data are undergoing computational processing which involves several inter-
mediate stages, one extra digit may be carried throughout the process, provided the final answer is rounded
to the correct number of significant figures.

2.3 ROUNDING NUMBERS

It is well understood that in rounding numbers, 54.334 would be rounded to 54.33, whilst 54.336 would
become 54.34. However, with 54.335, some individuals always round up, giving 54.34, whilst others
always round down to 54.33. Either process creates a systematic bias and should be avoided. The process
which creates a more random bias, thereby producing a more representative mean value from a set of
data, is to round to the nearest even digit. Using this approach, 54.335 becomes 54.34, whilst 54.345 is
54.34 also.

2.4 ERRORS IN MEASUREMENT

It should now be apparent that position fixing simply involves the measurement of angles and distance.
However, all measurements, no matter how carefully executed, will contain error, and so the true value of
a measurement is never known. It follows from this that if the true value is never known, the true error can
never be known and the position of a point known only with a certain level of uncertainty.

The sources of error fall into three broad categories, namely:

(1) Natural errors caused by variation in or adverse weather conditions, refraction, unmodelled gravity
effects, etc.

(2) Instrumental errors caused by imperfect construction and adjustment of the surveying instruments
used.

(3) Personal errors caused by the inability of the individual to make exact observations due to the limitations
of human sight, touch and hearing.

2.4.1 Classification of errors

(1) Mistakes are sometimes called gross errors, but should not be classified as errors at all. They are
blunders, often resulting from fatigue or the inexperience of the surveyor. Typical examples are
omitting a whole tape length when measuring distance, sighting the wrong target in a round of angles,
reading ‘6’ on a levelling staff as ‘9’ and vice versa. Mistakes are the largest of the errors likely to
arise, and therefore great care must be taken to obviate them. However, because they are large they
are easy to spot and so deal with.
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(2) Systematic errors can be constant or variable throughout an operation and are generally attributable to
known circumstances. The value of these errors may often be calculated and applied as a correction to
the measured quantity. They can be the result of natural conditions, examples of which are: refraction
of light rays, variation in the speed of electromagnetic waves through the atmosphere, expansion or
contraction of steel tapes due to temperature variations. In all these cases, corrections can be applied
to reduce their effect. Such errors may also be produced by instruments, e.g. maladjustment of the
theodolite or level, index error in spring balances, ageing of the crystals in EDM equipment. One
form of systematic error is the constant error, which is always there irrespective of the size of the
measurement or the observing conditions. Examples of constant errors in tape measurement might be
due to a break and join in the tape or tape stretch in the first metre of the tape. In this case the remedy
is to ensure that the tape is undamaged and also not to use the first metre of the tape. Examples of
constant errors in the repeated observations of a horizontal angle with a theodolite to elevated targets
might be miscentring over the station or dislevelment of the theodolite. In this case, the remedy is to
ensure that the theodolite is correctly set up.

There is the personal error of the observer who may have a bias against setting a micrometer or
in bisecting a target, etc. Such errors can frequently be self-compensating; for instance, a person
observing a horizontal angle to a cylindrical target subject to phase, the apparent biased illumination
by the sun when shining on one side will be subject to a similar bias on a similar target nearby and so
the computed angle between will be substantially correct.

Systematic errors, in the main, conform to mathematical and physical laws; thus it is argued that
appropriate corrections can be computed and applied to reduce their effect. It is doubtful, however,
whether the effect of systematic errors is ever entirely eliminated, largely due to the inability to obtain an
exact measurement of the quantities involved. Typical examples are: the difficulty of obtaining group
refractive index throughout the measuring path of EDM distances; and the difficulty of obtaining
the temperature of the steel tape, based on air temperature measurements with thermometers. Thus,
systematic errors are the most difficult to deal with and therefore they require very careful consideration
prior to, during, and after the survey. Careful calibration of all equipment is an essential part of
controlling systematic error.

(3) Random errors are those variates which remain after all other errors have been removed. They are
beyond the control of the observer and result from the human inability of the observer to make exact
measurements, for reasons already indicated above.

Random errors should be small and there is no procedure that will compensate for or reduce any
one single error. The size and sign of any random error is quite unpredictable. Although the behaviour
of any one observation is unpredictable the behaviour of a group of random errors is predictable and
the larger the group the more predictable is its behaviour. This is the basis of much of the quality
assessment of survey products.

Random variates are assumed to have a continuous frequency distribution called normal distribution
and obey the law of probability. A random variate, x, which is normally distributed with a mean and
standard deviation, is written in symbol form as N(µ, σ 2). Random errors alone are treated by statistical
processes.

2.4.2 Basic concept of errors

The basic concept of errors in the data captured by the surveyor may be likened to target shooting.
In the first instance, let us assume that a skilled marksman used a rifle with a bent sight, which resulted

in his shooting producing a scatter of shots as at A in Figure 2.1.
That the marksman is skilled (or consistent) is evidenced by the very small scatter, which illustrates

excellent precision. However, as the shots are far from the centre, caused by the bent sight (systematic
error), they are completely inaccurate. Such a situation can arise in practice when a piece of EDM equipment
produces a set of measurements all agreeing to within a few millimetres (high precision) but, due to an
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Fig. 2.1 Scatter

operating fault and lack of calibration, the measurements are all incorrect by several centimetres (low
accuracy). If the bent sight is now corrected, i.e. systematic errors are minimized, the result is a scatter of
shots as at B. In this case, the shots are clustered near the centre of the target and thus high precision, due
to the small scatter, can be related directly to accuracy. The scatter is, of course, due to the unavoidable
random errors.

If the target was now placed face down, the surveyors’ task would be to locate the most probable position
of the centre based on an analysis of the position of the shots at B. From this analogy several important
facts emerge, as follows.

(1) Scatter is an ‘indicator of precision’. The wider the scatter of a set of results about the mean, the less
repeatable the measurements are.

(2) Precision must not be confused with accuracy; the former is a relative grouping without regard to
nearness to the truth, whilst the latter denotes absolute nearness to the truth.

(3) Precision may be regarded as an index of accuracy only when all sources of error, other than random
errors, have been eliminated.

(4) Accuracy may be defined only by specifying the bounds between which the accidental error of a
measured quantity may lie. The reason for defining accuracy thus is that the absolute error of the
quantity is generally not known. If it were, it could simply be applied to the measured quantity to give
its true value. The error bound is usually specified as symmetrical about zero. Thus the accuracy of
measured quantity x is x ± εx where εx is greater than or equal to the true but unknown error of x.

(5) Position fixing by the surveyor, whether it is the coordinate position of points in a control network, or
the position of topographic detail, is simply an assessment of the most probable position and, as such,
requires a statistical evaluation of its precision.

2.4.3 Further definitions

(1) The true value of a measurement can never be found, even though such a value exists. This is evident
when observing an angle with a one-second theodolite; no matter how many times the angle is read,
a slightly different value will always be obtained.

(2) True error (εx) similarly can never be found, for it consists of the true value (X) minus the observed
value (x), i.e.

X − x = εx

(3) Relative error is a measure of the error in relation to the size of the measurement. For instance, a distance
of 10 m may be measured with an error of ±1 mm, whilst a distance of 100 m may also be measured
to an accuracy of ±1 mm. Although the error is the same in both cases, the second measurement may
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clearly be regarded as more accurate. To allow for this, the term relative error (Rx) may be used, where

Rx = εx/x

Thus, in the first case x = 10 m, εx = ±1 mm, and therefore Rx = 1/10 000; in the second case,
Rx = 1/100 000, clearly illustrating the distinction. Multiplying the relative error by 100 gives the
percentage error. ‘Relative error’ is an extremely useful definition, and is commonly used in expressing
the accuracy of linear measurement. For example, the relative closing error of a traverse is usually
expressed in this way. The definition is clearly not applicable to expressing the accuracy to which an
angle is measured, however.

(4) Most probable value (MPV) is the closest approximation to the true value that can be achieved from
a set of data. This value is generally taken as the arithmetic mean of a set, ignoring at this stage the
frequency or weight of the data. For instance, if A is the arithmetic mean, X the true value, and εn the
errors of a set of n measurements, then

A = X − �εn

n
where �εn is the sum of the errors. As the errors are equally as likely to be positive as negative, then
for a finite number of observations �εn/n will be very small and A ≈ X. For an infinite number of
measurements, it could be argued that A = X.

(5) The residual is the difference between the MPV of a set, i.e. the arithmetic mean, and the observed
values. Using the same argument as before, it can be shown that for a finite number of measurements,
the residual r is approximately equal to the true error ε.

2.4.4 Probability

Consider a length of 29.42 m measured with a tape and correct to ±0.05 m. The range of these measure-
ments would therefore be from 29.37 m to 29.47 m, giving 11 possibilities to 0.01 m for the answer. If the
next bay was measured in the same way, there would again be 11 possibilities. Thus the correct value for
the sum of the two bays would lie between 11 × 11 = 121 possibilities, and the range of the sum would
be 2 × ±0.05 m, i.e. between −0.10 m and +0.10 m. Now, the error of −0.10 m can occur only once,
i.e. when both bays have an error of −0.05 m; similarly with +0.10. Consider an error of −0.08; this
can occur in three ways: (−0.05 and −0.03), (−0.04 and −0.04) and (–0.03 and –0.05). Applying this
procedure through the whole range can produce Table 2.1, the lower half of which is simply a repeat of

Table 2.1 Probability of errors

Error Occurrence Probability

−0.10 1 1/121 = 0.0083
−0.09 2 2/121 = 0.0165
−0.08 3 3/121 = 0.0248
−0.07 4 4/121 = 0.0331
−0.06 5 5/121 = 0.0413
−0.05 6 6/121 = 0.0496
−0.04 7 7/121 = 0.0579
−0.03 8 8/121 = 0.0661
−0.02 9 9/121 = 0.0744
−0.01 10 10/121 = 0.0826

0 11 11/121 = 0.0909
0.01 10 10/121 = 0.0826
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Fig. 2.2 Probability histogram

the upper half. If the decimal probabilities are added together they equal 1.0000. If the above results are
plotted as error against probability the histogram of Figure 2.2 is obtained, the errors being represented
by rectangles. Then, in the limit, as the error interval gets smaller, the histogram approximates to the
superimposed curve. This curve is called the normal probability curve. The area under it represents the
probability that the error must lie between ±0.10 m, and is thus equal to 1.0000 (certainty) as shown in
Table 2.1.

More typical bell-shaped probability curves are shown in Figure 2.3; the tall thin curve indicates small
scatter and thus high precision, whilst the flatter curve represents large scatter and low precision. Inspection
of the curve reveals:

(1) Positive and negative errors are equal in size and frequency; they are equally probable.
(2) Small errors are more frequent than large; they are more probable.
(3) Very large errors seldom occur; they are less probable and may be mistakes or untreated systematic

errors.

The equation of the normal probability distribution curve is:

y = e− 1
2 (x−µ)2σ−2

σ (2π )
1
2

where y = probability of the occurrence of x − µ, i.e. the probability that x the variate deviates this far
from the central position of the distribution µ, σ is the spread of the distribution and e = the base of natural
logarithms. If µ = 0, i.e. the centre of the distribution is at zero and σ = 1, i.e. the spread is unity, the
formula for the probability simplifies to:

y = e− 1
2 x2

(2π )
1
2

As already illustrated, the area under the curve represents the limit of relative frequency, i.e. probability,
and is equal to unity. Thus a table of Normal Distribution curve areas (Table 2.2) can be used to calculate
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Fig. 2.3 Probability curve

Table 2.2 Area under the Normal Distribution curve

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

How to use the table: If (x − µ)/σ = 1.75 look down the left column to 1.7 and across the row to the element in the column headed
0.05; the value for the probability is 0.9599, i.e. the probability is 95.99%.
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probabilities provided that the distribution is the standard normal distribution, i.e. N(0, 12). If the variable
x is N(µ, σ 2), then it must be transformed to the standard normal distribution using Z = (x − µ)/σ , where

Z has a probability density function equal to (2π )− 1
2 e−Z2/2.

For example, when x = N(5, 22) then Z = (x − 5)/2
When x = 9 then Z = 2

Thus the curve can be used to assess the probability that a variable x will fall between certain values.
There are two new terms, µ and σ which are usually found from the data, rather than being assumed before
the data is investigated. In the normal distribution, the variable x may take values from minus infinity to
plus infinity. µ is estimated as the mean value of x and σ gives a measure of the spread or width of the
distribution. σ is estimated as the square root of the sum of the squares of the individual differences of
x from µ divided by the number of differences less 1, that is the degrees of freedom. Note that whatever
the population, for example a set of repeated measurements, µ and σ can only be estimated from the
population, they are never known exactly. σ is known as the standard deviation or more often in surveying
terminology, the standard error.

An assumption here is that the population of x is large, in fact theoretically infinite. Clearly sets of
measurements are never infinite but providing the sets are large then this theoretical problem does not
become a practical problem. When the population is small then the ‘t’ distribution, described later, is more
appropriate.

Any single observation will deviate from its expected value for two reasons. There will be random
errors in the individual observation including rounding errors and there may be systematic errors that
unknowingly invalidate the expectation. In practical survey statistics the process of testing whether the
difference between an individual observation and the mean of the set is significant is first to estimate the
parameters of the appropriate normal distribution, µ and σ , and then test whether the individual observation
is an outlier.

In Figure 2.3, the area under the curve represents the sum total of all possibilities and therefore is 1.
The greater the value of σ , the flatter and hence broader is the curve. The maximum gradients of the curve
are where

x = µ ± σ

For example, the probability that x will fall between 0.5 and 2.4 is represented by area A on the normal
curve (Figure 2.4(a)). This statement can be written as:

P(0.5 < x < 2.4) = area A

Now Area A = Area B − Area C (Figure 2.4(b) and (c))

where Area B represents P(x < 2.4)

and Area C represents P(x < 0.5)

i.e. P(0.5 < x < 2.4) = P(X < 2.4) − P(X < 0.5)

From the table of the Normal Distribution (Table 2.2):

When x = 2.4, Area = 0.9918

When x = 0.5, Area = 0.6915

∴ P(0.5 < x < 2.4) = 0.9918 − 0.6195 = 0.3723

That is, there is a 37.23% probability that x will lie between 0.5 and 2.4.
If verticals are drawn from the points of inflexion of the normal distribution curve (Figure 2.5) they will

cut that base at −σx and +σx , where σx is the standard deviation. The area shown indicates the probability
that x will lie between ±σx and equals 0.683 or 68.3%. This is a very important statement.
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Fig. 2.5 Normal distribution curve

The standard deviation (σx), if used to assess the precision of a set of data, implies that 68% of the time,
the arithmetic mean (x̄) of that set should lie between (x̄ ± σx). Put another way, if the sample is normally
distributed and contains only random variates, then 7 out of 10 should lie between (x̄ ± σx). It is for this
reason that two-sigma or three-sigma limits are preferred in statistical analysis:

±2σx = 0.955 = 95.5% probability

and ±3σx = 0.997 = 99.7% probability

Thus using two-sigma, we can be 95% certain that a sample mean (x̄) will not differ from the population
mean µ by more than ±2σx . These are called ‘confidence limits’, where x̄ is a point estimate of µ and
(x̄ ± 2σx) is the interval estimate.

If a sample mean lies outside the limits of ±2σx we say that the difference between x̄ and µ is statistically
significant at the 5% level. There is, therefore, reasonable evidence of a real difference and the original
null hypothesis (H0 · x̄ = µ) should be rejected.

It may be necessary at this stage to more clearly define ‘population’ and ‘sample’. The ‘population’ is
the whole set of data about which we require information. The ‘sample’ is any set of data from population,
the statistics of which can be used to describe the population.

2.5 INDICES OF PRECISION

It is important to be able to assess the precision of a set of observations, and several standards exist for
doing this. The most popular is standard deviation (σ ), a numerical value indicating the amount of variation
about a central value.

In order to find out how precision is determined, one must first consider a measure which takes into
account all the values in a set of data. Such a measure is the deviation from the mean (x̄) of each observed
value (xi), i.e. (xi − x̄), and one obvious consideration would be the mean of these values. However, in a
normal distribution the sum of the deviations would be zero because the sum of the positive deviations
would equal the sum of the negative deviations. Thus the ‘mean’ of the squares of the deviations may be
used, and this is called the variance (σ 2).

σ 2 =
i=n∑

i=1

(xi − x̄)2/n (2.1)

Theoretically σ is obtained from an infinite number of variates known as the population. In practice,
however, only a sample of variates is available and S is used as an unbiased estimator. Account is taken of
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the small number of variates in the sample by using (n − 1) as the divisor, which is referred to in statistics
as the Bessel correction; hence, variance is:

S2 =
n∑

i=1

(xi − x̄)2/n − 1 (2.2)

As the deviations are squared, the units in which variance is expressed will be the original units squared.
To obtain an index of precision in the same units as the original data, therefore, the square root of the variance
is used, and this is called standard deviation (S), thus:

Standard deviation = S =
{

n∑

i=1

(xi − x̄)2/n − 1

} 1
2

(2.3)

Standard deviation is represented by the shaded area under the curve in Figure 2.5 and so establishes
the limits of the error bound within which 68.3% of the values of the set should lie, i.e. seven out of a
sample of ten.

Similarly, a measure of the precision of the mean (x̄) of the set is obtained using the standard error
(Sx̄), thus:

Standard error = Sx̄ =
{

n∑

i=1

(xi − x̄)2/n(n − 1)

} 1
2

= S/n
1
2 (2.4)

Standard error therefore indicates the limits of the error bound within which the ‘true’ value of the mean
lies, with a 68.3% certainty of being correct.

It should be noted that S and Sx̄ are entirely different parameters. The value of S will not alter signifi-
cantly with an increase in the number (n) of observations; the value of Sx̄ , however, will alter significantly
as the number of observations increases. It is important therefore that to describe measured data both values
should be used.

2.6 WEIGHT

Weights are expressed numerically and indicate the relative precision of quantities within a set. The greater
the weight, the greater the precision of the observation to which it relates. Thus an observation with a weight
of two may be regarded as more precise than an observation with a weight of one. Consider two mean
measures of the same angle: A = 50◦ 50′ 50′′ of weight one, and B = 50◦ 50′ 47′′ of weight two. This is
equivalent to three observations, 50′′, 47′′, 47′′, all of equal weight, and having a mean value of

(50′′ + 47′′ + 47′′)/3 = 48′′

Therefore the mean value of the angle = 50◦ 50′ 48′′.
Inspection of this exercise shows it to be identical to multiplying each observation a by its weight, w,

and dividing by the sum of the weights �w, i.e.

Weighted mean = Am = a1w1 + a2w2 + · · · + anwn

w1 + w2 + · · · + wn
= �aw

�w
(2.5)

Weights can be allocated in a variety of ways, such as: (a) by personal judgement of the prevailing
conditions at the time of measurement; (b) by direct proportion to the number of measurements of the
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quantity, i.e. w ∝ n; (c) by the use of variance and co-variance factors. This last method is recommended
and in the case of the variance factor is easily applied as follows. Equation (2.4) shows

Sx̄ = S/n
1
2

That is, error is inversely proportional to the square root of the number of measures. However, as w ∝ n,
then

w ∝ 1/S
2

x̄

i.e. weight is proportional to the inverse of the variance.

2.7 REJECTION OF OUTLIERS

It is not unusual, when taking repeated measurements of the same quantity, to find at least one which appears
very different from the rest. Such a measurement is called an outlier, which the observer intuitively feels
should be rejected from the sample. However, intuition is hardly a scientific argument for the rejection of
data and a more statistically viable approach is required.

As already indicated, standard deviation σ represents 68.3% of the area under the normal curve and
is therefore representative of 68.26% confidence limits. This leaves 31.74% of the area under the tails
of the curve, i.e. 0.1587 or 15.87% on each side. In Table 2.2 the value of z at 1.00 × σ is 0.8413
(0.8413 = 1−0.1587) and indicates that the table is only concerned with the tail on one side of µ not both.
Therefore to calculate confidence limits for a variate both tails must be considered, so if 95% confidence
limits are required that implies that each tail will be 2.5% and so look for 97.5% or 0.9750 in the table.
The value of z = (µ − x)/σ associated with 0.9750 in Table 2.2 is 1.96. This indicates that for a Normal
Distribution 95% of the population lies within 1.96 × σ of µ.

Thus, any random variate xi, whose residual error (xi − x̄) is greater than ±1.96S, must lie in the extreme
tail ends of the normal curve and might therefore be ignored, i.e. rejected from the sample. In the Normal
Distribution the central position of the distribution is derived from the theoretical infinite population.
In practice, in survey, it is derived from a limited data set. For example, the true value of a measurement
of a particular distance could only be found by averaging an infinite number of observations by an infinite
number of observers with an infinite number of measuring devices. The best one could hope for in practice
would be a few observations by a few observers with very few instruments. Therefore the computed mean
value of the observations is an estimate, not the true value of the measurement. This uncertainty is taken
into account by using the ‘t’ distribution (Table 2.3) rather than the Normal Distribution.

Worked example

Example 2.1. The following observations of an angle have been taken:

30◦ 42′ 24′′ 30◦ 42′ 22′′ 30◦ 42′ 23′′
30◦ 42′ 25′′ 30◦ 42′ 22′′ 30◦ 42′ 40′′

What is the probability that the last observed angle is an outlier?

Compute the mean of the sample 30◦ 42′ 26′′
Find the deviation, d, of the last observation 30◦ 42′ 40′′ − 30◦ 42′ 26′′ = 14′′
Compute s, the estimate of σ , from the mean and the residuals 6.78′′
Find t = d/s = 14′′/6.78′′ = 2.064
Number of degrees of freedom, N = number of observations −1 = 5
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Table 2.3 Area under the ‘t’ distribution curve

Area = probability 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999

degrees of freedom N ‘t’

1 1.376 3.078 6.314 15.895 31.821 63.657 159.153 318.309
2 1.061 1.886 2.920 4.849 6.965 9.925 15.764 22.327
3 0.978 1.638 2.353 3.482 4.541 5.841 8.053 10.215
4 0.941 1.533 2.132 2.999 3.747 4.604 5.951 7.173
5 0.920 1.476 2.015 2.757 3.365 4.032 5.030 5.893
6 0.906 1.440 1.943 2.612 3.143 3.707 4.524 5.208
7 0.896 1.415 1.895 2.517 2.998 3.499 4.207 4.785
8 0.889 1.397 1.860 2.449 2.896 3.355 3.991 4.501
9 0.883 1.383 1.833 2.398 2.821 3.250 3.835 4.297

10 0.879 1.372 1.812 2.359 2.764 3.169 3.716 4.144
12 0.873 1.356 1.782 2.303 2.681 3.055 3.550 3.930
14 0.868 1.345 1.761 2.264 2.624 2.977 3.438 3.787
16 0.865 1.337 1.746 2.235 2.583 2.921 3.358 3.686
18 0.862 1.330 1.734 2.214 2.552 2.878 3.298 3.610
20 0.860 1.325 1.725 2.197 2.528 2.845 3.251 3.552
25 0.856 1.316 1.708 2.167 2.485 2.787 3.170 3.450
30 0.854 1.310 1.697 2.147 2.457 2.750 3.118 3.385
40 0.851 1.303 1.684 2.123 2.423 2.704 3.055 3.307
60 0.848 1.296 1.671 2.099 2.390 2.660 2.994 3.232

100 0.845 1.290 1.660 2.081 2.364 2.626 2.946 3.174
1000 0.842 1.282 1.646 2.056 2.330 2.581 2.885 3.098

Find the appropriate value in the row N = 5 in the t table (Table 2.3). At a probability of 0.95 the value of
t is 2.015 therefore the computed value of 2.064 indicates that there is slightly more than a 95% chance
that the last observation contains a non-random error.

It should be noted that successive rejection procedures should not be applied to the sample.

2.8 COMBINATION OF ERRORS

Much data in surveying is obtained indirectly from various combinations of observed data, for instance
the coordinates of the ends of a line are a function of its length and bearing. As each measure-
ment contains an error, it is necessary to consider the combined effect of these errors on the derived
quantity.

The general procedure is to differentiate with respect to each of the observed quantities in turn and sum
them to obtain their total effect. Thus if a = f (x, y, z, . . .), and each independent variable changes by a
small amount (an error) δx, δy, δz, . . . , then a will change by a small amount equal to δa, obtained from
the following expression:

δa = ∂a

∂x
· δx + ∂a

∂y
· δy + ∂a

∂z
· δz + · · · (2.6)

in which ∂a/∂x is the partial derivative of a with respect to x, etc.
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Consider now a set of measurements and let the residuals δxi, δyi, and δzi, be written as xi, yi, and zi

and the error in the derived quantity δaI is written as ai:

a1 = ∂a

∂x
· x1 + ∂a

∂y
· y1 + ∂a

∂z
· z1 + · · ·

a2 = ∂a

∂x
· x2 + ∂a

∂y
· y2 + ∂a

∂z
· z2 + · · ·

...
...

...
...

an = ∂a

∂x
· xn + ∂a

∂y
· yn + ∂a

∂z
· zn + · · ·

Now squaring both sides gives

a2
1 =

(
∂a

∂x

)2

· x2
1 + 2

(
∂a

∂x

) (
∂a

∂y

)
x1y1 + · · · +

(
∂a

∂y

)2

y2
1 + · · ·

a2
2 =

(
∂a

∂x

)2

· x2
2 + 2

(
∂a

∂x

) (
∂a

∂y

)
x2y2 + · · · +

(
∂a

∂y

)2

y2
2 + · · ·

...
...

...
...

a2
n =

(
∂a

∂x

)2

· x2
n + 2

(
∂a

∂x

) (
∂a

∂y

)
xnyn + · · · +

(
∂a

∂y

)2

y2
n + · · ·

In the above process many of the square and cross-multiplied terms have been omitted for simplicity.
Summing the results gives

∑
a2 =

(
∂a

∂x

)2 ∑
x2 + 2

(
∂a

∂x

)(
∂a

∂y

) ∑
xy + · · · +

(
∂a

∂y

)2 ∑
y2 + · · ·

As the measured quantities may be considered independent and uncorrelated, the cross-products tend to
zero and may be ignored.

Now dividing throughout by (n − 1):
∑

a2

n − 1
=

(
∂a

∂x

)2 ∑
x2

n − 1
+

(
∂a

∂y

)2 ∑
y2

n − 1
+

(
∂a

∂z

)2 ∑
z2

n − 1
+ · · ·

The sum of the residuals squared divided by (n − 1), is in effect the variance σ 2, and therefore

σ 2
a =

(
∂a

∂x

)2

σ 2
x +

(
∂a

∂y

)2

σ 2
y +

(
∂a

∂z

)2

σ 2
z + · · · (2.7)

which is the general equation for the variance of any function. This equation is very important and is used
extensively in surveying for error analysis, as illustrated in the following examples.

2.8.1 Uncertainty of addition or subtraction

Consider a quantity A = a + b where a and b have standard errors σa and σb, then

σ 2
A =

{
∂(a + b)

∂a
σa

}2

+
{

∂(a + b)

∂b
σb

}2

= σ 2
a + σ 2

b ∴ σA =
(
σ 2

a + σ 2
b

) 1
2

(2.8)

As subtraction is simply addition with the signs changed, the above also holds for the error in a difference:

If σa = σb = σ , then σA = σ (n)
1
2 (2.9)

Equation (2.9) should not be confused with equation (2.4) which refers to the mean, not the sum as above.
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Worked examples

Example 2.2. Three angles of a triangle each have a standard error of 2′′. What is the total error (σT ) in
the triangle?

σT = (22 + 22 + 22)
1
2 = 2(3)

1
2 = 3.5′′

Example 2.3. In measuring a round of angles at a station, the third angle c closing the horizon is obtained
by subtracting the two measured angles a and b from 360◦. If angle a has a standard error of 2′′ and angle b
a standard error of 3′′, what is the standard error of angle c?

since c = 360◦ − a − b

then σc = (σ 2
a + σ 2

b )
1
2 = (22 + 32)

1
2 = 3.6′′

Example 2.4. The standard error of a mean angle derived from four measurements is 3′′; how many
measurements would be required, using the same equipment, to halve this uncertainty?

From equation (2.4) σm = σs

n
1
2

∴ σs = 3′′ × 4
1
2 = 6′′

i.e. the instrument used had a standard error of 6′′ for a single observation; thus for σm = 1.5′′, when
σs = 6′′:

n =
(

6

1.5

)2

= 16

Example 2.5. If the standard error of the sum of independently observed angles in a triangle is to be not
greater than 6.0′′, what is the permissible standard error per angle?

From equation (2.9) σT = σp(n)
1
2

where σT is the triangular error, σp the error per angle, and n the number of angles.

∴ σp = σT

(n)
1
2

= 6.0′′

(3)
1
2

= 3.5
′′

2.8.2 Uncertainty of a product

Consider A = (a × b × c) where a, b and c have standard errors σa, σb and σc. The variance

σ 2
A =

{
∂(abc)

∂a
σa

}2

+
{

∂(abc)

∂b
σb

}2

+
{

∂(abc)

∂c
σc

}2

= (bcσa)2 + (acσb)2 + (abσc)2

∴ σA = abc

{(σa

a

)2 +
(σb

b

)2 +
(σc

c

)2
} 1

2

(2.10)

The terms in brackets may be regarded as the relative errors Ra, Rb, Rc giving

σA = abc (R2
a + R2

b + R2
c)

1
2 (2.11)
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2.8.3 Uncertainty of a quotient

Consider A = a/b, then the variance

σ 2
A =

{
∂(ab−1)

∂a
σa

}2

+
{

∂(ab−1)

∂b
σb

}2

=
(σa

b

)2 +
(σba

b2

)2
(2.12)

∴ σA = a

b

{(σa

a

)2 +
(σb

b

)2
} 1

2

= a

b
(R2

a + R2
b)

1
2 (2.13)

2.8.4 Uncertainty of powers and roots

The case for the power of a number must not be confused with the case for multiplication, for example
a3 = a × a × a, with each term being exactly the same.

Thus if A = an, then the variance

σ 2
A =

(
∂an

∂a
σa

)2

=
(

nan−1σa

)2
∴ σA =

(
nan−1σa

)
(2.14)

Alternatively RA = σA

an
= nan−1σa

an
= nσa

a
= nRa (2.15)

Similarly for roots, if the function is A = a1/n, then the variance

σ 2
A =

(
∂a1/n

∂a
σa

)2

=
(

1

n
a1/n−1σa

)2

=
(

1

n
a1/na−1σa

)2

(2.16)

=
(

a1/n

n

σa

a

)2

∴ σA =
(

a1/n

n

σa

a

)
(2.17)

The same approach is adapted to general forms which are combinations of the above.

Worked examples

Example 2.6. The same angle was measured by two different observers using the same instrument,
as follows:

Observer A Observer B
◦ ′ ′′ ◦ ′ ′′

86 34 10 86 34 05
33 50 34 00
33 40 33 55
34 00 33 50
33 50 34 00
34 10 33 55
34 00 34 15
34 20 33 44
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Calculate: (a) The standard deviation of each set.
(b) The standard error of the arithmetic means.
(c) The most probable value (MPV) of the angle. (KU)

Observer A r r2

◦ ′ ′′ ′′ ′′

86 34 10 10 100
33 50 −10 100
33 40 −20 400
34 00 0 0
33 50 −10 100
34 10 10 100
34 00 0 0
34 20 20 400

Mean = 86 34 00 0 1200 = �r2

Observer B r r2

◦ ′ ′′ ′′ ′′

86 34 05 7 49
34 00 2 4
33 55 −3 9
33 50 −8 64
34 00 2 4
33 55 −3 9
34 15 17 289
33 44 −14 196

86 33 58 0 624 = �r2

(a) (i) Standard deviation (�r2 = �(xi − x̄)2)

SA =
( ∑

r2

n − 1

) 1
2

=
(

1200

7

) 1
2 = 13.1′′

(b) (i) Standard error Sx̄A = SA

n
1
2

= 13.1

8
1
2

= 4.6′′

(a) (ii) Standard deviation SB =
(

624

7

) 1
2 = 9.4′′

(b) (ii) Standard error Sx̄B = 9.4

8
1
2

= 3.3′′

(c) As each arithmetic mean has a different precision exhibited by its Sx̄ value, the arithmetic means must
be weighted accordingly before they can be averaged to give the MPV of the angle:

Weight of A ∝ 1

S2
x̄A

= 1

21.2
= 0.047

Weight of B ∝ 1

10.9
= 0.092

The ratio of the weight of A to the weight of B is 0.047:0.092

∴ MPV of the angle = (0.047 × 86◦ 34′ 00′′ + 0.092 × 86◦ 33′ 58′′)
(0.047 + 0.092)

= 86◦ 33′ 59′′

As a matter of interest, the following point could be made here: any observation whose residual is
greater than 2.998S should be rejected at the 98% level (see Section 2.7). Each data set has 8 observations
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and therefore the mean has 7 degrees of freedom. This is a 2-tailed test therefore the 0.99 column is used.
As 2.998SA = 39.3′′ and 2.998SB = 28.2′′, all the observations should be included in the set. This test
should normally be carried out at the start of the problem.

Example 2.7. Discuss the classification of errors in surveying operations, giving appropriate examples.
In a triangulation scheme, the three angles of a triangle were measured and their mean values recorded

as 50◦ 48′ 18′′, 64◦ 20′ 36′′ and 64◦ 51′ 00′′. Analysis of each set gave a standard deviation of 4′′ for each of
these means. At a later date, the angles were re-measured under better conditions, yielding mean values of
50◦ 48′ 20′′, 64◦ 20′ 39′′ and 64◦ 50′ 58′′. The standard deviation of each value was 2′′. Calculate the most
probable values of the angles. (KU)

The angles are first adjusted to 180◦. Since the angles within each triangle are of equal weight, then the
angular adjustment within each triangle is equal.

50◦ 48′ 18′′+ 2′′ = 50◦ 48′ 20′′ 50◦ 48′ 20′′+ 1′′ = 50◦ 48′ 21′′
64◦ 20′ 36′′+ 2′′ = 64◦ 20′ 38′′ 64◦ 20′ 39′′+ 1′′ = 64◦ 20′ 40′′
64◦ 51′ 00′′+ 2′′ = 64◦ 51′ 02′′ 64◦ 50′ 58′′+ 1′′ = 64◦ 50′ 59′′

179◦ 59′ 54′′ 180◦ 00′ 00′′ 179◦ 59′ 57′′ 180◦ 00′ 00′′

Weight of the first set = w1 = 1/42 = 1

16

Weight of the second set = w2 = 1/22 = 1

4

Thus w1 = 1, when w2 = 4.

∴ MPV = (50◦ 48′ 20′′) + (50◦ 48′ 21′′ × 4)

5
= 50◦ 48′ 20.8′′

Similarly, the MPVs of the remaining angles are:

64◦ 20′ 39.6′′ 64◦ 50′ 59.6′′

The values may now be rounded off to single seconds.

Example 2.8. A base line of ten bays was measured by a tape resting on measuring heads. One observer
read one end while the other observer read the other – the difference in readings giving the observed length
of the bay. Bays 1, 2 and 5 were measured six times, bays 3, 6 and 9 were measured five times and the
remaining bays were measured four times, the means being calculated in each case. If the standard errors
of single readings by the two observers were known to be 1 mm and 1.2 mm, what will be the standard
error in the whole line due only to reading errors? (LU)

Standard error in reading a bay Ss = (12 + 1.22)
1
2 = 1.6 mm

Consider bay 1. This was measured six times and the mean taken; thus the standard error of the mean is:

Sx̄ = Ss

l
1
2

= 1.6

6
1
2

= 0.6 mm

This value applies to bays 2 and 5 also. Similarly for bays 3, 6 and 9:

Sx̄ = 1.6

5
1
2

= 0.7 mm
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For bays 4, 7, 8 and 10 Sx̄ = 1.6

4
1
2

= 0.8 mm

These bays are now summed to obtain the total length. Therefore the standard error of the whole line is

(0.62 + 0.62 + 0.62 + 0.72 + 0.72 + 0.72 + 0.82 + 0.82 + 0.82 + 0.82)
1
2 = 2.3 mm

Example 2.9.

(a) A base line was measured using electronic distance-measuring (EDM) equipment and a mean distance
of 6835.417 m recorded. The instrument used has a manufacturer’s quoted accuracy of 1/400 000
of the length measured 20 mm. As a check the line was re-measured using a different type of EDM
equipment having an accuracy of 1/600 000 ± 30 mm; the mean distance obtained was 6835.398 m.
Determine the most probable value of the line.

(b) An angle was measured by three different observers, A, B and C. The mean of each set and its standard
error is shown below.

Observer Mean angle Sx̄

◦ ′ ′′ ′′

A 89 54 36 0.7
B 89 54 42 1.2
C 89 54 33 1.0

Determine the most probable value of the angle. (KU)

(a) Standard error, 1st instrument Sx̄1 =
{(

6835

400 000

)2

+ (0.020)2

} 1
2

= 0.026 m

Standard error, 2nd instrument Sx̄2 =
{(

6835

600 000

)2

+ (0.030)2

} 1
2

= 0.032 m

These values can now be used to weight the lengths and find their weighted means as shown below.

Length, L (m) Sx̄ Weight ratio Weight, W L × W

1st instrument 0.417 0.026 1/0.0262 = 1479 1.5 0.626
2nd instrument 0.398 0.032 1/0.0322 = 977 1 0.398

�W = 2.5 1.024 = �LW

∴ MPV = 6835 + 1.024

2.5
= 6835.410 m
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(b)

Observer Mean angle Sx̄ Weight ratio Weight, W L × W
◦ ′ ′′ ′′

A 89 54 36 0.7 1/0.72 = 2.04 2.96 6′′ × 2.96 = 17.8′′
B 89 54 42 1.2 1/1.22 = 0.69 1 12′′ × 1 = 12′′
C 89 54 33 1.0 1/12 = 1 1.45 3′′ × 1.45 = 4.35′′

�W = 5.41 34.15 = �LW

∴ MPV = 89◦ 54′ 30′′ + 34.15′′

5.41
= 89◦ 54′ 36′′

Example 2.10. In an underground correlation survey, the sides of a Weisbach triangle were measured as
follows:

W1W2 = 5.435 m W1W = 2.844 m W2W = 8.274 m

Using the above measurements in the cosine rule, the calculated angle WW1W2 = 175◦ 48′ 24′′. If the
standard error of each of the measured sides is 1/20 000 of its length, find the standard error of the
calculated angle in seconds of arc. (KU)

From Figure 2.6, by the cosine rule c = a2 + b2 − 2ab cos W1.
Differentiating with respect to each variable in turn:

2cδc = 2ab sin W1δW1 thus δW1 = cδc

ab sin W1

Similarly: a = c − b2 + 2ab cos W1

2aδa = 2b cos W1δa − 2ab sin W1δW1

∴ δW1 = 2b cos W1δa − 2aδa

2ab sin W1
= δa(b cos W1 − a)

ab sin W1

but, since angle W1 ≈ 180◦, cos W1 ≈ −1 and (a + b) ≈ c

∴ δW1 = −cδa

ab sin W1

now b2 = a2 − c2 + 2ab cos W1

and 2bδb = 2a cos W1δb − 2ab sin W1δW1

∴ δW1 = δb(a cos W1 − b)

ab sin W1
= −cδb

ab sin W1

Fig. 2.6 Cosine rule
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Since W1 is a function of a, b and c:

σw1 = c

ab sin W1
(σ 2

a + σ 2
b + σ 2

c )
1
2

where σa = 5.435

20 000
= 2.7 × 10−4

σb = 2.844

20 000
= 1.4 × 10−4

σa = 8.274

20 000
= 4.1 × 10−4

∴ σw1 = 8.274 × 206 265 × 10−4

5.435 × 2.844 sin 175◦ 48′ 24′′ (2.72 + 1.42 + 4.12)
1
2

= 56′′

This is a standard treatment for small errors. There are numerous examples of its application throughout
the remainder of this book.

Exercises

(2.1) Explain the meaning of the terms random error and systematic error, and show by example how each
can occur in normal surveying work.

A certain angle was measured ten times by observer A with the following results, all measurements
being equally precise:

74◦ 38′ 18′′, 20′′, 15′′, 21′′, 24′′, 16′′, 22′′, 17′′, 19′′, 13′′

(The degrees and minutes remained constant for each observation.)
The same angle was measured under the same conditions by observer B with the following results:

74◦ 36′ 10′′, 21′′, 25′′, 08′′, 15′′, 20′′, 28′′, 11′′, 18′′, 24′′

Determine the standard deviation for each observer and relative weightings. (ICE)

(Answer: 3.4′′; 6.5′′. A:B is 9:2)

(2.2) Derive from first principles an expression for the standard error in the computed angle W1 of a
Weisbach triangle, assuming a standard error of σw in the Weisbach angle W , and equal proportional
standard errors in the measurement of the sides. What facts, relevant to the technique of correlation using
this method, may be deduced from the reduced error equation? (KU)

(Answer: see Chapter 13)
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Vertical control

3.1 INTRODUCTION

This chapter describes the various heighting procedures used to obtain the elevation of points of interest
above or below a reference datum. The most commonly used reference datum is mean sea level (MSL).
There is no such thing as a common global MSL, as it varies from place to place depending on local
conditions. It is important therefore that MSL is clearly defined wherever it is used.

The engineer is, in the main, more concerned with the relative height of one point above or below
another, in order to ascertain the difference in height of the two points, rather than a direct relationship
to MSL. It is not unusual, therefore, on small local schemes, to adopt a purely arbitrary reference datum.
This could take the form of a permanent, stable position or mark, allocated such a value that the level
of any point on the site would not be negative. For example, if the reference mark was allocated a value
of 0.000 m, then a ground point 10 m lower would have a negative value, minus 10.000 m. However, if
the reference value was 100.000 m, then the level of the ground point in question would be 90.000 m.
As minus signs in front of a number can be misinterpreted, erased or simply forgotten about, they should,
wherever possible, be avoided.

The vertical height of a point above or below a reference datum is referred to as the reduced level or
simply the level of a point. Reduced levels are used in practically all aspects of construction: to produce
ground contours on a plan; to enable the optimum design of road, railway or canal gradients; to facilitate
ground modelling for accurate volumetric calculations. Indeed, there is scarcely any aspect of construction
that is not dependent on the relative levels of ground points.

3.2 LEVELLING

Levelling is the most widely used method for obtaining the elevations of ground points relative to a
reference datum and is usually carried out as a separate procedure from that used for fixing planimetric
position.

Levelling involves the measurement of vertical distance relative to a horizontal line of sight. Hence it
requires a graduated staff for the vertical measurements and an instrument that will provide a horizontal
line of sight.
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3.3 DEFINITIONS

3.3.1 Level line

A level line or level surface is one which at all points is normal to the direction of the force of gravity as
defined by a freely suspended plumb-bob. As already indicated in Chapter 1 in the discussion of the geoid,
such surfaces are ellipsoidal in shape. Thus in Figure 3.1 the difference in level between A and B is the
distance A′B, provided that the non-parallelism of level surfaces is ignored.

3.3.2 Horizontal line

A horizontal line or surface is one that is normal to the direction of the force of gravity at a particular point.
Figure 3.1 shows a horizontal line through point C.

3.3.3 Datum

A datum is any reference surface to which the elevations of points are referred. The most commonly used
datum is that of mean sea level (MSL).

In the UK the MSL datum was measured and established by the Ordnance Survey (OS) of Great Britain,
and hence it is often referred to as Ordnance Datum (OD). It is the mean level of the sea at Newlyn in
Cornwall calculated from hourly readings of the sea level, taken by an automatic tide gauge over a six-year
period from 1 May 1915 to 30 April 1921. The readings are related to the Observatory Bench Mark, which
is 4.751 m above the datum. Other countries have different datums; for instance, Australia used 30 tidal
observatories, interconnected by 200 000 km of levelling, to produce their national datum, whilst just
across the English Channel, France uses a different datum, rendering their levels incompatible with those
in the UK.

Fig. 3.1 Horizontal and level lines
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3.3.4 Bench mark (BM)

In order to make OD accessible to all users throughout the country, a series of permanent marks were estab-
lished, called bench marks. The height of these marks relative to OD has been established by differential
levelling and until about 1970 was regularly checked for any change in elevation.

(1) Cut bench marks

The cut bench mark is the most common type of BM and is usually cut into the vertical surface of a stable
structure (Figure 3.2).

(2) Flush brackets

Flush brackets are metal plates, 180 mm × 90 mm, cemented into the face of buildings and were established
at intervals of about 2 km (Figure 3.3).

(3) Bolt bench marks

Bolt bench marks are 60-mm-diameter brass bolts set in horizontal surfaces and engraved with an arrow
and the letters OSBM (Figure 3.4).

(4) Fundamental bench marks (FBM)

In the UK, FBMs were established by precise geodetic levelling, at intervals of about 50 km. Each mark
consists of a buried chamber containing two reference points, whilst the published elevation is to a brass
bolt on the top of a concrete pillar (Figure 3.5).

Rivet and pivot BMs are also to be found in horizontal surfaces.
Details of BMs within the individual’s area of interest may be obtained in the form of a Bench Mark

List from the OS. Their location and value are currently also shown on OS plans at the 1/2500 and 1/1250
scales. Their values are quoted as precise to the nearest 12 mm relative to neighbouring bench marks at
the time of the original observation only.

Bench marks established by individuals, other than the OS, such as engineers for construction work,
are called temporary bench marks (TBM).

These are to be found on the 
vertical faces of buildings, 
bridges, walls, milestones, gate 
posts, etc.

The mark is approximately 
0.1 m × 0.1 m and cut to a depth 
of about 6 mm and placed about 
0.5 m above ground level.

Some very old marks may be 
considerably larger than this 
and Initial Levelling marks 
1840–60 may have a copper 
bolt set in the middle of the 
horizontal bar or offset to one 
side of the mark.

The exact point of reference 
is the centre of the V shaped 
horizontal bar.

Fig. 3.2 Cut bench mark
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DESCRIPTION
These are normally placed on vertical walls of buildings and in the sides of triangulation pillars.
They are cast in brass and rectangular in shape (180 mm × 90 mm) with a large boss at the rear of the plate. The 

boss is cemented into a prepared cavity, so that the face of the bracket is vertical and in line with the face of the object 
on which it is placed. These marks in precise levelling necessitate the use of a special fitting as above.

Each flush bracket has a unique serial number and is referred to in descriptions as F.I. Br. No........
They are sited at approximately 2 kilometre intervals along Geodetic lines of levels and at 5 to 7 kilometre intervals on 

Secondary lines of levels.

Fig. 3.3 Flush bracket (front and side view)

Fig. 3.4 Bolt bench mark

3.3.5 Reduced level (RL)

The RL of a point is its height above or below a reference datum.
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DESCRIPTION
The sites are specially selected with reference to the geological structure, so that 

they may be placed on sound strata clear of areas liable to subsidence. They are 
established along the Geodetic lines of levels throughout Great Britain at 
approximately 50 kilometre intervals. They have three reference points, two of which, a 
gun metal bolt and a flint are contained in a buried chamber. The third point is a gun 
metal bolt set in the top of a pillar projecting about I foot above ground level.

The piller bolt is the reference point to be used by Tertiary Levellers and other 
users.

The buried chamber is only opened on instructions from Headquarters.
Some Fundamental Bench Marks are enclosed by iron railings, this was done 

where necessary, as a protective measure. These marks are generally referred to as 
F.B.M's.

Fig. 3.5 Fundamental bench mark
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3.4 CURVATURE AND REFRACTION

Figure 3.6 shows two points A and B at exactly the same level. An instrument set up at X would give a
horizontal line of sight through X ′. If a graduated levelling staff is held vertically on A the horizontal line
would give the reading A′. Theoretically, as B is at the same level as A, the staff reading should be identical
(B′). This would require a level line of sight; the instrument, however, gives a horizontal line and a reading
at B′′ (ignoring refraction). Subtracting vertical height AA′ from BB′′ indicates that point B is lower than
point A by the amount B′B′′. This error (c) is caused by the curvature of the Earth and its value may be
calculated as follows:

With reference to Figure 3.7, in which the instrument heights are ignored and the earth is assumed to
be sperical with a radius of R:

(X ′B′′)2 = (OB′′)2 − (OX ′)2 = (R + c)2 − R2 = R2 + 2Rc + c2 − R2 = (
2Rc + c2)

As both c and the instrument heights have relatively small values the distance X ′B′′ may be assumed equal
to the arc distance XB = D. Therefore

D = (
2Rc + c2) 1

2

Now as c is very small compared with R, c2 may be ignored, giving

c = D2/2R (3.1)

Taking the distance D in kilometres and an average value for R equal to 6370 km, we have

c = (D × 1000)2/2 × 6370 × 1000

c = 0.0785D2
(3.2)

with the value of c in metres, when D is in kilometres.
In practice the staff reading in Figure 3.6 would not be at B′′ but at Y due to refraction of the line of

sight through the atmosphere. In general it is considered that the effect is to bend the line of sight down,

Fig. 3.6 Horizontal and level lines
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Fig. 3.7 Refraction effect

reducing the effect of curvature by 1/7th. Thus the combined effect of curvature and refraction (c − r) is
(6/7)(0.0785D2), i.e.

(c − r) = 0.0673D2 (3.3)

Thus if D is 122 m the value of (c − r) is only 1 mm. So in tertiary levelling, where the length of sights
are generally 25–30 m, the effect may be ignored.

It should be noted that although the effect of refraction has been shown to bend the line of sight down
by an amount equal to 1/7th that of the effect of curvature, this is a most unreliable assumption for precise
levelling.

Refraction is largely a function of atmospheric pressure and temperature gradients, which may cause
the bending to be up or down by extremely variable amounts.

There are basically three types of temperature gradient (dT /dh):

(1) Absorption: occurs mainly at night when the colder ground absorbs heat from the atmosphere. This
causes the atmospheric temperature to increase with distance from the ground and dT /dh > 0.

(2) Emission: occurs mainly during the day when the warmer ground emits heat into the atmosphere,
resulting in a negative temperature gradient, i.e. dT /dh < 0.

(3) Equilibrium: no heat transfer takes place (dT /dh = 0) and occurs only briefly in the evening and
morning.

The result of dT /dh < 0 is to cause the light ray to be convex to the ground rather than concave as generally
shown. This effect increases the closer to the ground the light ray gets and errors in the region of 5 mm/km
have occurred.

Thus, wherever possible, staff readings should be kept at least 0.5 m above the ground, using short
observation distances (25 m) equalized for backsight and foresight.

3.5 EQUIPMENT

The equipment used in the levelling process comprises optical levels and graduated staffs. Basically, the
optical level consists of a telescope fitted with a spirit bubble or automatic compensator to ensure long
horizontal sights onto the vertically held graduated staff (Figure 3.8).



Vertical control 49

3.5.1 Levelling staff

Levelling staffs are made of wood, metal or glass fibre and graduated in metres and centimetres. The
alternate metre lengths are usually shown in black and red on a white background. The majority of staffs
are telescopic or socketed in three or four sections for easy carrying. Although the graduations can take
various forms, the type adopted in the UK is the British Standard (BS 4484) E-pattern type as shown
in Figure 3.9. The smallest graduation on the staff is 0.01 m and readings are estimated to the nearest
millimetre. As the staff must be held vertical during observation it should be fitted with a circular bubble.

3.5.2 Optical levels

The types of level found in general use are the tilting, the automatic level, and digital levels.

(1) Tilting level

Figure 3.10 shows the telescope of the tilting level pivoted at the centre of the tribrach; an attachment plate
with three footscrews. The footscrews are used to centre the circular bubble, thereby setting the telescope
approximately in a horizontal plane. After the telescope has been focused on the staff, the line of sight
is set more precisely to the horizontal using the highly sensitive tubular bubble and the tilting screw that
raises or lowers one end of the telescope.

The double concave internal focusing lens is moved along the telescope tube by its focusing screw until
the image of the staff is brought into focus on the cross-hairs. The Ramsden eyepiece, with a magnification
of about 35 diameters, is then used to view the image in the plane of the cross-hairs.

Fig. 3.8 Levelling procedure – the observer uses an automatic level to view a staff held vertically on a
levelling plate
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Fig. 3.9 Levelling staff

Fig. 3.10 Tilting level
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The cross-hairs which are etched onto a circle of fine glass plate called a reticule must be brought into
sharp focus by the eyepiece focusing screw prior to commencing observations. This process is necessary
to remove any cross-hair parallax caused by the image of the staff being brought to a focus in front of
or behind the cross-hair. The presence of parallax can be checked by moving the head from side to side
or up and down when looking through the telescope. If the image of the staff does not coincide with the
cross-hair, movement of the observer’s head will cause the cross-hair to move relative to the staff image.
The adjusting procedure is therefore:

(1) Using the eyepiece focusing screw, bring the cross-hair into very sharp focus against a light background
such as a sheet of blank paper held in front of the object lens.

(2) Now focus on the staff using the main focusing screw until a sharp image is obtained without losing
the clear image of the cross-hair.

(3) Check by moving your head from side to side several times. Repeat the whole process if necessary.

Different types of cross-hair are shown in Figure 3.11. A line from the centre of the cross-hair and
passing through the centre of the object lens is the line of sight or line of collimation of the telescope.

The sensitivity of the tubular spirit bubble is determined by its radius of curvature (R) (Figure 3.12);
the larger the radius, the more sensitive the bubble. It is filled with sufficient synthetic alcohol to leave a
small air bubble in the tube. The tube is graduated generally in intervals of 2 mm.

If the bubble moves off centre by one such interval it represents an angular tilt of the line of sight of
20 seconds of arc. Thus if 2 mm subtends θ = 20′′, then:

R = (2 mm × 206 265)/20′′ = 20.63 m

The bubble attached to the tilting level may be viewed directly or by means of a coincidence reading
system (Figure 3.13). In this latter system the two ends of the bubble are viewed and appear as shown
at (a) and (b). (a) shows the image when the bubble is centred by means of the tilting screw; (b) shows the
image when the bubble is off centre. This method of viewing the bubble is four or five times more accurate
than direct viewing.

The main characteristics defining the quality of the telescope are its powers of magnification, the size
of its field of view, the brightness of the image formed and the resolution quality when reading the staff.

Fig. 3.11 Cross-hairs

Fig. 3.12 Tubular bubble
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(a) (b)

Fig. 3.13 Bubble coincidence reading system: (a) bubble centred, (b) bubble off centre

All these are a function of the lens systems used and vary accordingly from low-order builders’ levels to
very precise geodetic levels.

Magnification is the ratio of the size of the object viewed through the telescope to its apparent size when
viewed by the naked eye. Surveying telescopes are limited in their magnification in order to retain their
powers of resolution and field of view. Also, the greater the magnification, the greater the effect of heat
shimmer, on-site vibration and air turbulence. Telescope magnification lies between 15 and 50 times.

The field of view is a function of the angle of the emerging rays from the eye through the telescope, and
varies from 1◦ to 2◦. Image brightness is the ratio of the brightness of the image when viewed through the
telescope to the brightness when viewed by the naked eye. It is argued that the lens system, including the
reticule, of an internal focusing telescope loses about 40% of the light. The resolution quality or resolving
power of the telescope is its ability to define detail and is independent of magnification. It is a function of
the effective aperture of the object lens and the wavelength (λ) of light and is represented in angular units.
It can be computed from P radians = 1.2λ/(effective aperture).

(2) Using a tilting level

(1) Set up the instrument on a firm, secure tripod base.
(2) Centralize the circular bubble using the footscrews or ball and socket arrangement.
(3) Eliminate parallax.
(4) Centre the vertical cross-hair on the levelling staff and clamp the telescope. Use the horizontal slow-

motion screw if necessary to ensure exact alignment.
(5) Focus onto the staff.
(6) Carefully centre the tubular bubble using the tilting screw.
(7) With the staff in the field of view as shown in Figure 3.14 note the staff reading (1.045) and record it.

Operations (4) to (7) must be repeated for each new staff reading.

(3) Automatic levels

The automatic level is easily recognized by its clean, uncluttered appearance. It does not have a tilting
screw or a tubular bubble as the telescope is rigidly fixed to the tribrach and the line of sight is made
horizontal by a compensator inside the telescope.

The basic concept of the automatic level can be likened to a telescope rigidly fixed at right angles to
a pendulum. Under the influence of gravity, the pendulum will swing into the vertical, as defined by a
suspended plumb-bob and the telescope will move into a horizontal plane.

As the automatic level is only approximately levelled by means of its low-sensitivity circular bubble,
the collimation axis of the instrument will be inclined to the horizontal by a small angle α (Figure 3.15)
so the entering ray would strike the reticule at a with a displacement of ab equal to fα. The compensator
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Fig. 3.14 Staff and cross-hairs

Fig. 3.15 Principle of compensator

situated at P would need to redirect the ray to pass through the cross-hair at b. Thus

fα = ab = sβ

and β = fα
s = nα

It can be seen from this that the positioning of the compensator is a significant feature of the compensation
process. For instance, if the compensator is fixed halfway along the telescope, then s ≈ f /2 and n = 2,
giving β = 2α. There is a limit to the working range of the compensator, about 20′; hence the need of a
circular bubble.

In order, therefore, to compensate for the slight residual tilts of the telescope, the compensator requires
a reflecting surface fixed to the telescope, movable surfaces influenced by the force of gravity and a
dampening device (air or magnetic) to swiftly bring the moving surfaces to rest and permit rapid viewing
of the staff. Such an arrangement is illustrated in Figure 3.16.
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Fig. 3.16 Suspended compensation

The advantages of the automatic level over the tilting level are:

(1) Much easier to use, as it gives an erect image of the staff.
(2) Rapid operation, giving greater productivity.
(3) No chance of reading the staff without setting the bubble central, as can occur with a tilting

level.
(4) No bubble setting error.

A disadvantage is that it is difficult to use where there is vibration caused by wind, traffic or, say, piling
operations on site, resulting in oscillation of the compensator. Improved damping systems have, however,
greatly reduced this defect. During periods of vibration it may be possible to reduce the effect by lightly
touching a tripod leg.

(4) Using an automatic level

The operations are identical to those for the tilting level with the omission of operation (6). Some automatic
levels have a button, which when pressed moves the compensator to prevent it sticking. This should be
done just prior to reading the staff, when the cross-hair will be seen to move. Another approach to ensure
that the compensator is working is to move it slightly off level and note if the reading on the staff is
unaltered, thereby proving the compensator is working.

3.6 INSTRUMENT ADJUSTMENT

For equipment to give the best possible results it should be frequently tested and, if necessary, adjusted.
Surveying equipment receives continuous and often brutal use on construction sites. In all such cases a
calibration base should be established to permit weekly checks on the equipment.
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Fig. 3.17 Two-peg test

3.6.1 Tilting level

The tilting level requires adjustment for collimation error only. Collimation error occurs if the line of sight
is not truly horizontal when the tubular bubble is centred, i.e. the line of sight is inclined up or down from
the horizontal. A check known as the ‘Two-Peg Test’ is used, the procedure being as follows (Figure 3.17):

(a) Set up the instrument midway between two pegs A and B set, say, 20 m apart and note the staff readings,
a1 and b1, equal to, say, 1.500 m and 0.500 m respectively.

Let us assume that the line of sight is inclined up by an angle of α; as the lengths of the sights
are equal (10 m), the error in each staff reading will be equal and so cancel out, resulting in a ‘true’
difference in level between A and B.

�HTRUE = (a1 − b1) = (1.500 − 0.500) = 1.000 m

Thus we know that A is truly lower than B by 1.000 m. We do not at this stage know that collimation
error is present.

(b) Move the instrument to C, which is 10 m from B and in the line AB and observe the staff readings a2
and b2 equal to, say, 3.500 m and 2.000 m respectively. Then

�H = (a2 − b2) = (3.500 − 2.000) = 1.500 m

Now as 1.500 �= the ‘true’ value of 1.000, it must be ‘false’.

�HFALSE = 1.500 m

and it is obvious that the instrument possesses a collimation error the amount and direction of which
is as yet still unknown, but which has been revealed by the use of unequal sight lengths CB (10 m) and
CA (30 m). Had the two values for �H been equal, then there would be no collimation error present
in the instrument.

(c) Imagine a horizontal line from reading b2 (2.000 m) cutting the staff at A at reading a3. Because A
is truly 1.000 m below B, the reading at a3 must be 2.000 + 1.000 = 3.000 m. However, the actual
reading was 3.500 m, and therefore the line of sight of the instrument was too high by 0.500 m in 20 m
(the distance between the two pegs). This is the amount and direction of collimation error.
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(d) Without moving the instrument from C, the line of sight must be adjusted down until it is horizontal.
To do this one must compute the reading (a4) on staff A that a horizontal sight from C, distance 30 m
away, would give.

By simple proportion, as the error in 20 m is 0.500, the error in 30 m = (0.500×30)/20 = 0.750 m.
Therefore the required reading at a4 is 3.500 − 0.750 = 2.750 m.

(e) (i) Using the ‘tilting screw’, tilt the telescope until it reads 2.750 m on the staff. (ii) This movement
will cause the tubular bubble to go off centre. Re-centre it by means of its adjusting screws, which will
permit the raising or lowering of one end of the bubble.

The whole operation may be repeated if thought necessary.
The above process has been dealt with in great detail, as collimation error is one of the main sources of

error in the levelling process.
The diagrams and much of the above detail can be dispensed with if the following is noted:

(1) (�HFALSE − �HTRUE) = the amount of collimation error.
(2) If �HFALSE > �HTRUE then the line of sight is inclined up and vice versa.

An example follows which illustrates this approach.

Worked example

Example 3.1. Assume the same separation for A, B and C. With the instrument midway between A and
B the readings are A(3.458), B(2.116). With the instrument at C, the readings are A(4.244), B(2.914).

(i) From ‘midway’ readings, �HTRUE = 1.342
(ii) From readings at ‘C’, �HFALSE = 1.330

Amount of collimation error = 0.012 m in 20 m

(iii) �HFALSE < �HTRUE, therefore direction of line of sight is down
(iv) With instrument at C the reading on A(4.244) must be raised by (0.012 × 30)/20 = 0.018 m to read

4.262 m

Some methods of adjustment advocate placing the instrument close to the staff at B rather than a distance
away at C. This can result in error when using the reading on B and is not suitable for precise levels. The
above method is satisfactory for all types of level.

For very precise levels, it may be necessary to account for the effect of curvature and refraction when
carrying out the above test. See Equation 3.3. A distance of 50 m would produce a correction to the staff
readings of only −0.17 mm so it can be ignored for all but the most precise work.

An alternative two-peg test that removes the need for placing the instrument exactly midway between
the staffs is as follows (Figure 3.18). The staffs at pegs A and B are observed by the instrument from
positions C and D. The readings are as shown. In this case the collimation of the instrument is given by

tan α = (a2 − a1 − b2 + b1)/2d

3.6.2 Automatic level

There are two tests and adjustments necessary for an automatic level:

(1) To ensure that the line of collimation of the telescope is horizontal, within the limits of the bubble,
when the circular bubble is central.

(2) The two-peg test for collimation error.
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Fig. 3.18 Alternative two-peg test

(1) Circular bubble

Although the circular bubble is relatively insensitive, it nevertheless plays an important part in the efficient
functioning of the compensator:

(1) The compensator has a limited working range. If the circular bubble is out of adjustment, thereby
resulting in excessive tilt of the line of collimation (and the vertical axis), the compensator may not
function efficiently or, as it attempts to compensate, the large swing of the pendulum system may cause
it to stick in the telescope tube.

(2) The compensator gives the most accurate results near the centre of its movement, so even if the bubble
is in adjustment, it should be carefully and accurately centred.

(3) The plane of the pendulum swing of the freely suspended surfaces should be parallel to the line of
sight, otherwise over- or under-compensation may occur. This would result if the circular bubble were
in error transversely. Any residual error of adjustment can be eliminated by centring the bubble with
the telescope pointing backwards, whilst at the next instrument set-up it is centred with the telescope
pointing forward. This alternating process is continued throughout the levelling.

(4) Inclination of the telescope can cause an error in automatic levels, which does not occur in tilting
levels, known as ‘height shift’. Due to the inclination of the telescope the centre of the object lens is
displaced vertically above or below the centre of the cross-hair, resulting in very small reading errors,
but which cannot be tolerated in precise work.

From the above it can be seen that not only must the circular bubble be in adjustment but it should also be
accurately centred when in use.

To adjust the bubble, bring it exactly to centre using the footscrews. Now rotate the instrument
through 180◦ about the vertical axis. If the bubble moves off centre, bring it halfway back to centre
with the footscrews and then exactly back to the centre using its adjusting screws.

(2) Two-peg test

This is carried out exactly as for the tilting level. However, the line of sight is raised or lowered to its
correct reading by moving the cross-hair by means of its adjusting screws.

If the instrument is still unsatisfactory the fault may lie with the compensator, in which case it should
be returned to the manufacturer.
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3.7 PRINCIPLE OF LEVELLING

The instrument is set up and correctly levelled in order to make the line of sight through the telescope
horizontal. If the telescope is turned through 360◦, a horizontal plane of sight is swept out. Vertical
measurements from this plane, using a graduated levelling staff, enable the relative elevations of ground
points to be ascertained. Consider Figure 3.19 with the instrument set up approximately midway between
ground points A and B. If the reduced level (RL) of point A is known and equal to 100.000 m above OD
(AOD), then the reading of 3.000 m on a vertically held staff at A gives the reduced level of the horizontal
line of sight as 103.000 m AOD. This sight onto A is termed a backsight (BS) and the reduced level of the
line of sight is called the height of the plane of collimation (HPC). Thus:

RLA + BS = HPC

The reading of 1.000 m onto the staff at B is called a foresight (FS) and shows the ground point B to be
1.000 m below HPC; therefore its RL = (103.000 − 1.000) = 102.000 m AOD.

An alternative approach is to subtract the FS from the BS. If the result is positive then the difference is
a rise from A to B, and if negative a fall, i.e.

(3.000 − 1.000) = +2.000 m rise from A to B;

therefore, RLB = 100.000 + 2.000 = 102.000 m AOD

This then is the basic concept of levelling which is further developed in Figure 3.20.
The field data are entered into a field book that is pre-drawn into rows and columns. An example of

levelling observations from a practical project is shown in Figure 3.21. Observations are booked using
either the rise and fall or the HPC method.

It should be clearly noted that, in practice, the staff readings are taken to three places of decimals, that
is, to the nearest millimetre. However, in the following description only one place of decimals is used
and the numbers kept very simple to prevent arithmetic interfering with an understanding of the concepts
outlined.

The field procedure for obtaining elevations at a series of ground points is as follows.
The instrument is set up at A (as in Figure 3.20) from which point a horizontal line of sight is possible

to the TBM at 1A. The first sight to be taken is to the staff held vertically on the TBM and this is called a

Fig. 3.19 Basic principle of levelling
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Fig. 3.20 A levelling line

Fig. 3.21 Project levelling observations
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backsight (BS), the value of which (1.5 m) would be entered in the appropriate column of a levelling book.
Sights to points 2A and 3A where further levels relative to the TBM are required are called intermediate
sights (IS) and are again entered in the appropriate column of the levelling book. The final sight from
this instrument is set up at 4A and is called the foresight (FS). It can be seen from the figure that this is
as far as one can go with this sight. If, for instance, the staff had been placed at X, it would not have
been visible and would have had to be moved down the slope, towards the instrument at A, until it was
visible. As foresight 4A is as far as one can see from A, it is also called the change point (CP), signifying a
change of instrument position to B. To achieve continuity in the levelling the staff must remain at exactly
the same point 4A although it must be turned to face the instrument at B. It now becomes the BS for
the new instrument set-up and the whole procedure is repeated as before. Thus, one must remember that
all levelling commences on a BS and finishes on a FS with as many IS in between as are required; and
that CPs are always FS/BS. Also, it must be closed back into a known BM to ascertain the misclosure
error.

3.7.1 Reduction of levels

From Figure 3.20 realizing that the line of sight from the instrument at A is truly horizontal, it can be seen
that the higher reading of 2.5 at point 2A indicates that the point is lower than the TBM by 1.0, giving 2A
a level therefore of 59.5. This can be written as follows:

1.5 − 2.5 = −1.0, indicating a fall of 1.0 from 1A to 2A

Level of 2A = 60.5 − 1.0 = 59.5

Similarly between 2A and 3A, the higher reading on 3A shows it is 1.5 below 2A, thus:

2.5 − 4.0 = −1.5 (fall from 2A to 3A)

Level of 3A = level of 2A − 1.5 = 58.0

Finally the lower reading on 4A shows it to be higher than 3A by 2.0, thus:

4.0 − 2.0 = +2.0, indicating a rise from 3A to 4A

Level of 4A = level of 3A + 2.0 = 60.0

Now, knowing the reduced level (RL) of 4A, i.e. 60.0, the process can be repeated for the new instrument
position at B. This method of reduction is called the rise-and-fall (R-and-F) method.

3.7.2 Methods of booking

(1) Rise-and-fall

The following extract of booking is largely self-explanatory. Note that:

(a) Each reading is booked on a separate line except for the BS and FS at change points. The BS is booked
on the same line as the FS because it refers to the same point. As each line refers to a specific point it
should be noted in the remarks column.

(b) Each reading is subtracted from the previous one, i.e. 2A from 1A, then 3A from 2A, 4A from 3A and
stop; the procedure recommencing for the next instrument station, 2B from 1B and so on.
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BS IS FS Rise Fall RL Distance Remarks

1.5 60.5 0 TBM (60.5) 1A
2.5 1.0 59.5 30 2A
4.0 1.5 58.0 50 3A

3.0 2.0 2.0 60.0 70 CP 4A (1B)
5.5 2.5 57.5 95 2B

6.0 1.0 4.5 62.0 120 CP 3B (1C)
3.0 3.0 65.0 160 TBM (65.1) 2C

10.5 6.0 9.5 5.0 65.0 Checks
6.0 5.0 60.5 Misclosure 0.1

4.5 4.5 4.5 Correct

(c) Three very important checks must be applied to the above reductions, namely:

The sum of BS − the sum of FS = sum of rises − sum of falls

= last reduced level − first reduced level

These checks are shown in the above table. It should be emphasized that they are nothing more than
checks on the arithmetic of reducing the levelling results; they are in no way indicative of the accuracy
of fieldwork.

(d) It follows from the above that the first two checks should be carried out and verified before working
out the reduced levels (RL).

(e) Closing error = 0.1, and can be assessed only by connecting the levelling into a BM of known and
proved value or connecting back into the starting BM.

(2) Height of collimation

This is the name given to an alternative method of booking. The reduced levels are found simply by
subtracting the staff readings from the reduced level of the line of sight (plane of collimation). In Figure 3.20,
for instance, the height of the plane of collimation (HPC) at A is obviously (60.5 + 1.5) = 62.0; now 2A is
2.5 below this plane, so its level must be (62.0−2.5) = 59.5; similarly for 3A and 4A to give 58.0 and 60.0
respectively. Now the procedure is repeated for B. The tabulated form shows how simple this process is:

BS IS FS HPC RL Remarks

1.5 62.0 60.5 TBM (60.5) 1A
2.5 59.5 2A
4.0 58.0 3A

3.0 2.0 63.0 60.0 Change pt 4A (1B)
5.5 57.5 2B

6.0 1.0 68.0 62.0 Change pt 3B (1C)
3.0 65.0 TBM (65.1) 2C

10.5 12.0 6.0 65.0 Checks
6.0 60.5 Misclosure 0.1

4.5 4.5 Correct
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Thus it can be seen that:

(a) BS is added to RL to give HPC, i.e. 1.5 + 60.5 = 62.0.
(b) Remaining staff readings are subtracted from HPC to give the RL.
(c) Procedure repeated for next instrument set-up at B, i.e. 3.0 + 60.0 = 63.0.
(d) Two checks same as R-and-F method, i.e.:

sum of BS − sum of FS = last RL − first RL

(e) The above two checks are not complete; for instance, if when taking 2.5 from 62.0 to get RL of
59.5, one wrote it as 69.5, this error of 10 would remain undetected. Thus the intermediate sights
are not checked by those procedures in (d) above and the following cumbersome check must be
carried out:

sum of all the RL except the first = (sum of each HPC multiplied by the number of IS or FS
taken from it) − (sum of IS and FS)

e.g. 362.0 = 62.0 × 3 + 63.0 × 2 + 68.0 × 1 − (12.0 + 6.0)

3.7.3 Inverted sights

Figure 3.22 shows inverted sights at B, C and D to the underside of a structure. It is obvious from
the drawing that the levels of these points are obtained by simply adding the staff readings to the
HPC to give B = 65.0, C = 63.0 and D = 65.0; E is obtained in the usual way and equals 59.5.
However, the problem of inverted sights is completely eliminated if one simply treats them as negative
quantities.

BS IS FS Rise Fall HPC RL Remarks

2.0 62.0 60.0 TBM A
−3.0 5.0 65.0 B
−1.0 2.0 63.0 C
−3.0 2.0 65.0 D

2.5 5.5 59.5 Misclosure E (59.55)

2.0 −7.0 2.5 7.0 7.5 60.0 Checks
2.0 7.0 59.5 Misclosure 0.05

0.5 0.5 0.5 Correct

R-and-F method HPC method

2.0 − (−3.0) = +5.0 = Rise 62.0 − (−3.0) = 65.0
−3.0 − (−1.0) = −2.0 = Fall 62.0 − (−1.0) = 63.0
−1.0 − (−3.0) = +2.0 = Rise 62.0 − (−3.0) = 65.0

−3.0 − 2.5 = −5.5 = Fall 62.0 − (+2.5) = 59.5
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Fig. 3.22 Inverted sights

In the checks, inverted sights are treated as negative quantities; for example check for IS in HPC method
gives:

252.5 = (62.0 × 4.0) − (−7.0 + 2.5)

= (248.0) − (−4.5) = 248.0 + 4.5 = 252.5

3.7.4 Comparison of methods

The rise-and-fall method of booking is recommended as it affords a complete arithmetical check on all the
observations. Although the HPC method appears superior where there are a lot of intermediate sights, it
must be remembered that there is no simple straightforward check on their reduction.

The HPC method is useful when setting out levels on site. For instance, assume that a construction
level, for setting formwork, of 20 m AOD is required. A BS to an adjacent TBM results in an HPC of
20.834 m; a staff reading of 0.834 would then fix the bottom of the staff at the required level.

3.8 SOURCES OF ERROR

All measurements have error. In the case of levelling, these errors will be instrumental, observational and
natural.

3.8.1 Instrumental errors

(1) The main source of instrumental error is residual collimation error. As already indicated, keeping the
horizontal lengths of the backsights and foresights at each instrument position equal will cancel this
error. Where the observational distances are unequal, the error will be proportional to the difference
in distances.

The easiest approach to equalizing the sight distances is to pace from backsight to instrument and
then set up the foresight change point the same number of paces away from the instrument.

(2) Parallax error has already been described.
(3) Staff graduation errors may result from wear and tear or repairs and the staffs should be checked

against a steel tape. Zero error of the staff, caused by excessive wear of the base, will cancel out on
backsight and foresight differences. However, if two staffs are used, errors will result unless calibration
corrections are applied.

(4) In the case of the tripod, loose fixings will cause twisting and movement of the tripod head. Overtight
fixings make it difficult to open out the tripod correctly. Loose tripod shoes will also result in unstable
set-ups.
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3.8.2 Observational errors

(1) Levelling involves vertical measurements relative to a horizontal plane so it is important to ensure that
the staff is held strictly vertical.

It is often suggested that one should rock the staff back and forth in the direction of the line of
sight and accept the minimum reading as the truly vertical one. However, as shown in Figure 3.23,
this concept is incorrect when using a flat-bottomed staff on flat ground, due to the fact that the staff
is not being tilted about its face. Thus it is preferable to use a staff bubble, which should be checked
frequently with the aid of a plumb-bob.

(2) There may be errors in reading the staff, particularly when using a tilting level which gives an inverted
image. These errors may result from inexperience, poor observation conditions or overlong sights.
Limit the length of sight to about 25–30 m, to ensure the graduations are clearly defined.

(3) Ensure that the staff is correctly extended or assembled. In the case of extending staffs, listen for the
click of the spring joint and check the face of the staff to ensure continuity of readings. This also
applies to jointed staffs.

(4) Do not move the staff off the CP position, particularly when turning it to face the new instrument
position. Always use a well defined and stable position for CPs. Levelling plates (Figure 3.24) should
be used on soft ground.

r1 r2 > r3 < r4 =

Fig. 3.23 The effect of rocking the staff on staff readings r1, r2, r3, r4

Fig. 3.24 Levelling plate
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(5) Avoid settlement of the tripod, which may alter the height of collimation between sights or tilt the line
of sight. Set up on firm ground, with the tripod feet firmly thrust well into the ground. On pavements,
locate the tripod shoes in existing cracks or joins. In precise levelling, the use of two staffs helps to
reduce this effect.

Observers should also refrain from touching or leaning on the tripod during observation.
(6) Booking errors can, of course, ruin good field work. Neat, clear, correct booking of field data is

essential in any surveying operation. Typical booking errors in levelling are entering the values in
the wrong columns or on the wrong lines, transposing figures such as 3.538 to 3.583 and making
arithmetical errors in the reduction process. Very often, the use of pocket calculators simply enables
the booker to make the errors quicker.

To avoid this error source, use neat, legible figures; read the booked value back to the observer and
have them check the staff reading again; reduce the data as it is recorded.

(7) When using a tilting level remember to level the tubular bubble with the tilting screw prior to each
new staff reading. With the automatic level, carefully centre the circular bubble and make sure the
compensator is not sticking.

Residual compensator errors are counteracted by centring the circular bubble with the instrument
pointing backwards at the first instrument set-up and forward at the next. This procedure is continued
throughout the levelling.

3.8.3 Natural errors

(1) Curvature and refraction have already been dealt with. Their effects are minimized by equal observation
distances to backsight and foresight at each set-up and readings more than 0.5 m above the ground.

(2) Wind can cause instrument vibration and make the staff difficult to hold in a steady position. Precise
levelling is impossible in strong winds. In tertiary levelling keep the staff to its shortest length and use
a wind break to shelter the instrument.

(3) Heat shimmer can make the staff reading difficult if not impossible and may make it necessary to delay
the work to an overcast day. In hot sunny climes, carry out the work early in the morning or in the
evening.

Careful consideration of the above error sources, combined with regularly calibrated equipment, will
ensure the best possible results but will never preclude random errors of observation.

3.9 CLOSURE TOLERANCES

It is important to realize that the amount of misclosure in levelling can only be assessed by:

(1) Connecting the levelling back to the BM from which it started, or
(2) Connecting into another BM of known and proved value.

When the misclosure is assessed, one must then decide if it is acceptable or not.
In many cases the engineer may make the decision based on his/her knowledge of the project and the

tolerances required.
Alternatively the permissible criteria may be based on the distance levelled or the number of set-ups

involved.
A common criterion used to assess the misclosure (E) is:

E = m(K)
1
2 (3.4)
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where K = distance levelled in kilometres, m = a constant with units of millimetres, and E = the allowable
misclosure in millimetres.

The value of m may vary from 2 mm for precise levelling to 12 mm or more for engineering levelling.
In many cases in engineering, the distance involved is quite short but the number of set-ups quite high,

in which case the following criterion may be used:

E = m(n)
1
2 (3.5)

where n = the number of set-ups, and m = a constant in millimetres.
As this criterion would tend to be used only for construction levelling, the value for m may be a matter

of professional judgement. A value frequently used is ±5 mm.

3.10 ERROR DISTRIBUTION

In previous levelling examples in this chapter misclosures have been shown. The misclosure cannot
be ignored and the error must be distributed among the points concerned. In the case of a levelling
circuit, a simple method of distribution is to allocate the error in proportion to the distance levelled.
For instance, consider a levelling circuit commencing from a BM at A, to establish other BMs at B, C,
D and E (Figure 3.25) for which the heights have been computed without taking the misclosure into
account.

On completing the circuit the observed value for the BM at A is 20.018 m compared, with its known
and hence starting value of 20.000 m, so the misclosure is 0.018 m. The distance levelled is 5.7 km.
Considering the purpose of the work, the terrain and observational conditions, it is decided to adopt

a value for m of 12 mm. Hence the acceptable misclosure is 12(5.7)
1
2 = 29 mm, so the levelling is

acceptable.
The difference in heights is corrected by (0.018/5.7) × distance in kilometres travelled. Therefore

correction to AB = −0.005 m, to BC = −0.002 m, to CD = −0.003 m, to DE = −0.006 m and to
EA = −0.002 m. The values of the BMs will then be B = 28.561 m, C = 35.003 m, D = 30.640 m,
E = 22.829 m and A = 20.000 m.

In many instances, a closing loop with known distances is not the method used and each reduced level
is adjusted in proportion to the cumulative number of set-ups to that point from the start. Consider the table

Fig. 3.25 Levelling circuit
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below which shows the observations for a short section of levelling between two bench marks of known
height:

BS IS FS Rise Fall R.L. Adj. Final R.L. Remarks

1.361 20.842 20.842 TBM ‘A’
2.844 1.483 19.359 –0.002 19.357
2.018 0.826 20.185 –0.002 20.183

0.855 3.015 0.997 19.188 –0.002 19.186 C.P.
0.611 0.244 19.432 –0.004 19.428

2.741 1.805 1.194 18.238 –0.004 18.234 C.P.
2.855 1.711 1.030 19.268 –0.006 19.262 C.P.

1.362 1.493 20.761 –0.008 20.753
2.111 0.749 20.012 –0.008 20.004
0.856 1.255 21.267 –0.008 21.259

2.015 1.159 20.108 –0.008 20.100 TBM ‘B’ (20.100)

7.812 8.546 4.848 5.582 20.842
7.812 4.848 20.108

0.734 0.734 0.734 Arith. check

(1) There are four set-ups, and therefore E = 5(4)
1
2 = 0.010 m. As the misclosure is only 0.008 m, the

levelling is acceptable.
(2) The correction per set-up is (0.008/4) = −0.002 m and is cumulative as shown in the table.

3.11 LEVELLING APPLICATIONS

Of all the surveying operations used in construction, levelling is the most common. Practically every
aspect of a construction project requires some application of the levelling process. The more general are
as follows.

3.11.1 Sectional levelling

This type of levelling is used to produce ground profiles for use in the design of roads, railways and
pipelines.

In the case of such projects, the route centre-line is set out using pegs at 10 m, 20 m or 30 m intervals.
Levels are then taken at these peg positions and at critical points such as sudden changes in ground profiles,
road crossings, ditches, bridges, culverts, etc. A plot of these elevations is called a longitudinal section.
When plotting, the vertical scale is exaggerated compared with the horizontal, usually in the ratio of 10 : 1.
The longitudinal section is then used in the vertical design process to produce formation levels for the
proposed route design (Figure 3.26).

Whilst the above process produces information along a centre-line only, cross-sectional levelling extends
that information at 90◦ to the centre-line for 20–30 m each side. At each centre-line peg the levels are taken
to all points of interest on either side. Where the ground is featureless, levels at 5 m intervals or less are
taken. In this way a ground profile at right angles to the centre-line is obtained. When the design template
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Fig. 3.26 Longitudinal section of proposed route

showing the road details and side slopes is plotted at formation level, a cross-sectional area is produced,
which can later be used to compute volumes of earthwork. When plotting cross-sections the vertical and
horizontal scales are the same, to permit easy scaling of the area and side slopes (Figure 3.27).

From the above it can be seen that sectional levelling also requires the measurement of horizontal distance
between the points whose elevations are obtained. As the process involves the observation of many points,
it is important to connect to existing BMs at regular intervals. In most cases of route construction, one of
the earliest tasks is to establish BMs at 100 m intervals throughout the area of interest.

Levelling which does not require the measurement of distance, such as establishing BMs at known
positions, is sometimes called ‘fly levelling’.

3.11.2 Contouring

A contour is a horizontal curve connecting points of equal elevation. Contours graphically represent, in a
two-dimensional format on a plan or map, the shape or morphology of the terrain. The vertical distance
between contour lines is called the contour interval. Depending on the accuracy required, they may be
plotted at 0.1 m to 0.5 m intervals in flat terrain and at 1 m to 10 m intervals in undulating terrain. The
interval chosen depends on:

(1) The type of project involved; for instance, contouring an airstrip requires an extremely small contour
interval.

(2) The type of terrain, flat or undulating.
(3) The cost, for the smaller the interval the greater the amount of field data required, resulting in greater

expense.

Contours are generally well understood so only a few of their most important properties will be
outlined here.

(1) Contours are perpendicular to the direction of maximum slope.
(2) The horizontal separation between contour lines indicates the steepness of the ground. Close spacing

defines steep slopes, wide spacing gentle slopes.
(3) Highly irregular contours define rugged, often mountainous terrain.
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Fig. 3.27 Cross-section No. 3 at chainage 360.000 m

(4) Concentric closed contours represent hills or hollows, depending on the increase or decrease in
elevation.

(5) The slope between contour lines is assumed to be regular.
(6) Contour lines crossing a stream form V’s pointing upstream.
(7) The edge of a body of water forms a contour line.

Contours are used by engineers to:

(1) Construct longitudinal sections and cross-sections for initial investigation.
(2) Compute volumes.
(3) Construct route lines of constant gradient.
(4) Delineate the limits of constructed dams, road, railways, tunnels, etc.
(5) Delineate and measure drainage areas.

If the ground is reasonably flat, the optical level can be used for contouring using either the direct or
indirect methods. In steep terrain it is more economical to use other heighting, as outlined later.

(1) Direct contouring

In this method the actual contour is pegged out on the ground and its planimetric position located. A back-
sight is taken to an appropriate BM and the HPC of the instrument is obtained, say 34.800 m AOD. A
staff reading of 0.800 m would then place the foot of the staff at the 34 m contour level. The staff is then
moved throughout the terrain area, with its position pegged at every 0.800 m reading. In this way the 34 m
contour is located. Similarly a staff reading of 1.800 m gives the 33 m contour and so on. The planimetric
position of the contour needs to be located using an appropriate survey technique.
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This method, although quite accurate, is tedious and uneconomical and could never be used over a
large area. It is ideal, however, in certain construction projects that require excavation to a specific single
contour line.

(2) Indirect contouring

This technique requires establishing a grid of intersecting evenly spaced lines over the site. A theodolite and
steel tape may be used to set out the boundary of the grid. The grid spacing will depend upon the roughness
of the ground and the purpose for which the data are required. All the points of intersection throughout the
grid may be pegged or shown by means of paint from a spray canister. Alternatively ranging rods at the
grid intervals around the periphery would permit the staff holder, with the aid of an optical square, to align
himself with appropriate pairs and thus fix each grid intersection point, for example, alignment with rods
B-B and 2-2 fixes point B2 (Figure 3.28). Alternatively assistants at ranging rods B and 2 could help to
line up the staff holder. When the RLs of all the intersection points are obtained, the contours are located
by linear interpolation between the levels, on the assumption of a uniform ground slope between each pair
of points. The interpolation may be done arithmetically using a pocket calculator, or graphically.

Consider grid points B2 and B3 with reduced levels of 30.20 m and 34.60 m respectively and a horizontal
grid interval of 20 m (Figure 3.29). The height difference between B2 and B3 is 4.40 m and the 31 m contour
is 0.80 m above B2. The horizontal distance of the 31 m contour from B2 = x1

where (20/4.40) = 4.545 m = K

and x1 = K × 0.80 m = 3.64 m

Similarly for the 32 m contour:

x2 = K × 1.80 m = 8.18 m

and so on, where (20/4.40) is a constant K , multiplied each time by the difference in height from the
reduced level of B2 to the required contour value. For the graphical interpolation, a sheet of transparent
paper (Figure 3.30) with equally spaced horizontal lines is used. The paper is placed over the two points
and rotated until B2 obtains a value of 30.20 m and B3 a value of 34.60 m. Any appropriate scale can be
used for the line separation. As shown, the 31, 32, 33 and 34 m contour positions can now be pricked
through onto the plan.

Fig. 3.28 Grid layout for contouring
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Fig. 3.29 Contour calculations

Fig. 3.30 Graphical contour plotting

This procedure is carried out on other lines and the equal contour points joined up to form the contours
required.

An alternative way of creating the grid intersections that does not require the use of an optical square
is to set out the ranging rods as in Figure 3.31. In this case it is important that the pairs of ranging rods at
A, B, . . . 1, 2, etc are set out precisely. However once set out, the staff holder can find position much more
easily.

3.12 RECIPROCAL LEVELLING

When obtaining the relative levels of two points on opposite sides of a wide gap such as a river, it is
impossible to keep the length of sights short and equal. Collimation error, Earth curvature and refraction
affect the longer sight much more than the shorter one. In order to minimize these effects, the method of
reciprocal levelling is used, as illustrated in Figure 3.32.

If the instrument near A observes a backsight onto A and a foresight onto B, the difference in elevation
between A and B is:

�HAB = x2 − x1 − (c − r)
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Fig. 3.31 Alternative Grid layout for contouring

where: x1 = BS on A
x2 = FS on B

(c − r) = the combined effect of curvature and refraction
(with collimation error intrinsically built into r)

Similarly with the instrument moved to near B:

�HAB = y1 − y2 + (c − r)

where y1 = BS on B

y2 = FS on A

then 2�HAB = (x2 − x1) + (y1 − y2)

and �HAB = 1

2
[(x2 − x1) + (y1 − y2)] (3.6)

This proves that the mean of the difference in level obtained with the instrument near A and then with the
instrument near B is free from the errors due to curvature, refraction and collimation error. Random errors
of observation will still be present, however.

Equation (3.6) assumes the value of refraction is equal in both cases. Refraction is a function of
temperature and pressure and so varies with time. Thus refraction may change during the time taken to
transport the instrument from side A to side B. To preclude this it is advisable to use two levels and take
simultaneous reciprocal observations. However, this procedure creates the problem of each instrument
having a different residual collimation error. The instruments should therefore be interchanged and the
whole procedure repeated. The mean of all the values obtained will then give the most probable value for
the difference in level between A and B.
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Fig. 3.32 Reciprocal levelling

3.13 PRECISE LEVELLING

Precise levelling may be required in certain instances in construction such as in deformation monitoring,
the provision of precise height control for large engineering projects such as long-span bridges, dams
and hydroelectric schemes and in mining subsidence measurements. For example, a dam that has been
in place for many years is unlikely to be moving. However, should the dam fail the results would be
catastrophic for those on the downstream side. Being under the pressure of water when full, the dam may
be liable to distortion. The behaviour of the dam must therefore be monitored. One way of monitoring
any vertical movement along the dam is by levelling. Since early warning of small movement is required,
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and since conclusions about movement must be made with statistical confidence, the levelling must be
very precise.

There is more to precise levelling than precise levels. High quality equipment is very important, but so
is the method by which it is used. Indeed the two components of precise levelling are precise equipment
and precise procedures. Precise levelling uses the same principles as ordinary levelling but with:

(1) Higher quality instruments and more accurate staves
(2) More rigorous observing techniques
(3) Restricted climatic and environmental conditions
(4) Refined booking and reduction
(5) Least squares adjustment for a levelling net

3.13.1 Precise invar staff

The precise levelling staff has its graduations precisely marked (and checked by laser interferometry) on
invar strips, which are attached to wooden or aluminium frames. The strip is rigidly fixed to the base of
the staff and held in position by a spring-loaded tensioning device at the top. This arrangement provides
support for the invar strip without restraining it in any way.

Usually there are two scales on each staff, offset from each other by a fixed amount (Figure 3.33).
The staff is placed upon a change plate at intermediate stations. A conventional levelling change plate is
small and light and is designed to give a firm platform for the staff on soft ground. Precise levelling should
only ever take place on firm ground and the precise levelling change plate is designed to be unmoving on
a hard surface. It is therefore heavy. The feet are rounded so that they do not slowly sink or heave when
placed on tarmac. The top is smooth, round and polished. The change plate in Figure 3.34 is made from a
solid piece of steel and weighs about 10 kilograms.

Fig. 3.33 Segment of a precise levelling staff
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Fig. 3.34 Precise levelling change plate

For the most precise work, two staffs are used; in which case they should be carefully matched in every
detail. A circular bubble built into the staff is essential to ensure verticality during observation. The staff
should be supported by means of steadying poles or handles.

(1) The staff should have its circular bubble tested at frequent intervals using a plumb-bob.
(2) Warping of the staff can be detected by stretching a fine wire from end to end.
(3) Graduation and zero error can be counteracted by regular calibration.
(4) For the highest accuracy a field thermometer should measure the temperature of the strip in order to

apply scale corrections.

3.13.2 Instruments

The instruments used should be precise levels of the highest accuracy. They should provide high-quality
resolution with high magnification (×40) and be capable of being adjusted to remove any significant
collimation. This may be achieved with a highly sensitive tubular bubble with a large radius of curvature
that gives a greater horizontal bubble movement per angle of tilt. In the case of the automatic level a highly
refined compensator would be necessary.

In either case a parallel plate micrometer, fitted in front of the object lens, would be used to obtain
submillimetre resolution on the staff.

The instrument’s cross-hairs may be as shown in Figure 3.35(a). The distance that the staff is away
from the instrument will affect which side of the cross-hairs is to be used. If the staff is far away use the
normal horizontal hair, right-hand side of diagram. If the staff is close, the mark on the staff will appear
too large to be bisected accurately. By comparing the two white wedges formed by the sloping cross-hairs
and the mark on the staff, see the arrows in Figure 3.35(b) where the mark on the staff is not correctly
aligned and Figure 3.35(c) where it is, a more precise setting of the micrometer can be made.
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(a) (b) (c)

Fig. 3.35 Precise level cross-hairs

3.13.3 Parallel plate micrometer

For precise levelling, the estimation of 1 mm is not sufficiently accurate. A parallel plate glass micrometer
in front of the object lens enables readings to be made direct to 0.1 mm, and estimated to 0.01 mm. The
parallel plate micrometer works by refracting the image of a staff graduation to make it coincident with the
cross-hair. There is, therefore, no estimation of the position of the cross-hair with respect to the graduation.
The principle of the attachment is seen from Figure 3.36. Had the parallel plate been vertical the line of sight
would have passed through without deviation and the reading would have been 1.026 m, the final figure
being estimated. However, by manipulating the micrometer the parallel plate is tilted until the line of sight is
displaced to the nearest division marked on the staff, which is 1.02 m. The rotation of the micrometer drum
is proportional to the displacement of the image of the staff. The amount of displacement s is measured
on the micrometer and added to the exact reading to give 1.02647 m, only the last decimal place is
estimated.

It can be seen from Figure 3.36 that the plate could have been moved in the opposite direction, displacing
the line of sight up. Since the parallel plate micrometer run is normally equal to the gap between two
successive divisions on the staff it will not be possible to gain coincidence on more than one division.

The displacement is related to the rotation of the parallel plate as follows. In Figure 3.37 the plate pivots
about A. The displacement is BC and the rotation is equal to the angle of incidence i. The thickness of the
plate is t and the ray of light from the staff is refracted by an angle r. µ is the refractive index of the glass
of the plate.

Displacement = BC = AB sin(i − r)

Fig. 3.36 Parallel plate micrometer
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Fig. 3.37 Parallel plate displacement

But AB = t sec r so

Displacement = t sin(i − r) sec r

= t(sin i cos r − cos i sin r) sec r

= t(sin i − cos i sin r sec r)

But from Snell’s Law of refraction sin i = µ sin r. So upon substitution and rearrangement the equation
becomes

Displacement = t sin i
{

1 − (1 − sin2 i)
1
2 (µ2 − sin2 i)−

1
2

}

If i is small then sin2 i is negligible compared with 1 or µ2 and sin i = i radians. So

Displacement = t
(
1 − µ−1)i

Since t and µ are fixed properties of the plate then displacement is directly proportional to rotation. Parallel
plate micrometers are also manufactured for use with 5 mm graduations.

3.13.4 Field procedure

At the beginning and end of each levelling run a stable and precise benchmark is required. Intermediate
points are not observed. To avoid accidental damage or vandalism wall mounted benchmarks can be
removed from the wall leaving the barrel, which has been fixed with epoxy resin, capped for protection
(Figure 3.38).

The size of the levelling team depends upon the observing conditions and the equipment available.
In ordinary levelling an observer and staff holder are required. In precise levelling there are two staves and
therefore two staff holders are required. If a programmed data logger is available then the observer can
also do the booking. If the observations are to be recorded on paper a booker should also be employed.
The booker’s task, other than booking, is to do a series of quality control checks at the end of each set
of observations, before moving to the next levelling bay. Finally, in sunny weather, an umbrella holder
is required because it is necessary to shield the instrument and tripod from the heating effects of the
sun’s rays.
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Fig. 3.38 Wall mounted benchmark

Just as with ordinary levelling, a two-peg test is required to confirm that the instrumental collimation is
acceptable. Precise levelling procedures are designed to minimize the effect of collimation, but even so,
only a well-adjusted instrument should be used.

Precise level lines should follow communication routes where possible because they generally avoid
steep gradients; they are accessible and have hard surfaces. However, there may be vibration caused by
traffic, especially if using an automatic level.

The following procedures should be adhered to when carrying out precise levelling:

(1) Precise levelling can be manpower intensive, and therefore expensive to undertake. It is important
to carry out a full reconnaissance of the proposed levelling route prior to observations being taken to
ensure that the best possible route has been chosen.

(2) End and intermediate benchmarks should be constructed well before levelling starts to prevent settling
during levelling operations.

(3) Steep slopes are to be avoided because of the unequal and uncertain refraction effects on the tops and
bottoms of staves.

(4) Long lines should be split into workable sections, usually each section will not be more than about
3 km, because that is about as much as a team can do in one day. There must be a benchmark at
each end of the line to open and close on. The length of each line will depend upon terrain, transport,
accommodation and other logistical considerations.

(5) Each section is to be treated as a separate line of levelling and is checked by forward and backward
levelling. This will isolate errors and reduce the amount of re-levelling required in the case of an
unacceptable misclosure.

(6) On each section, if the forward levelling takes place in the morning of day 1, then the backward
levelling should take place in the afternoon or evening of day 2. This will ensure that increasing
refraction on one part of the line in one direction will be replaced by decreasing refraction when
working in the other direction. This will help to compensate for errors due to changing refraction
effects.

(7) On bright or sunny days an observing umbrella should be held over the instrument and tripod to avoid
differential heating of the level and of the tripod legs.

(8) Take the greatest care with the base plate of the staff. Keep it clean. Place it carefully onto the change
plate and do not drop the staff. This will avoid any change in zero error of the staff. When the staff
is not being used, it should be rested upon the staff-man’s clean boot.
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(9) The distances of foresight and backsight must be as nearly equal as possible so as to limit the effect
of the Earth’s curvature, refraction and bad instrumental collimation. This will also avoid the need
to re-focus the level between sightings.

(10) Take care when levelling along roads or railways. Stop levelling when traffic or vibrations are heavy.
When the staff is not being used, it should be rested upon the staff-man’s clean boot. Vibration may
damage the staff base plate and so change its zero error.

(11) On tarmac and soft ground the instrument or staff may rise after it has been set up. This may be
apparent to the observer but not by the staff person.

(12) In gusty or windy conditions stop levelling because there will be uncertainty in the readings. In variable
weather conditions consider levelling at night.

(13) The bottom 0.5 m of the staff should not to be used because of unknown and variable refraction
effects near the ground.

(14) If a precise automatic level is to be used, it should be lightly tapped and rotated before each reading
to ensure that the compensator is freely operative. This will reduce errors by ensuring that the
compensator always comes from the same direction. Some automatic levels have a press button for
this purpose.

(15) The rounded centre on the change plate should be kept polished and smooth to ensure that the same
staff position is taken up each time it is used.

(16) The change plate must be firmly placed and not knocked or kicked between foresight and backsight
readings. Remember there is no check on the movement of a change plate between these observations.
The staff holder should stand clear between observations.

(17) The observation to the back staff must be followed immediately by an observation to the forward
staff, both on one scale. This is to ensure that refraction remains constant during the forward and
back observations of one bay. Then, an observation to the forward staff is followed immediately by
an observation to the back staff on the other scale. This procedure helps to compensate for unknown
changes in refraction, by balancing the errors. Using two double scale rods the sequence of observation
would be:

(1) BS left-hand scale on staff A

(2) FS left-hand scale on staff B

(3) FS right-hand scale on staff B

(4) BS right-hand scale on staff A

Then (1)−(2) = �H1 and (4)−(3) = �H2; if these differences agree within the tolerances specified,
the mean is accepted. Staff A is now leapfrogged to the next position and the above procedure repeated
starting with staff A again (Figure 3.39).

(18) If the back staff is observed first at one set-up, then the forward staff is observed first at the
next set-up. This ensures that changing refraction will affect each successive bay in an equal and

Fig. 3.39 Staff leapfrog
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opposite manner. The order of observations this time will be:

(1) FS left-hand scale on staff A
(2) BS left-hand scale on staff B
(3) BS right-hand scale on staff B
(4) FS right-hand scale on staff A

Note that in each case the first observation of a bay is to the same staff, which is alternately the back
and then the forward staff.

(19) The same staff that was used for the opening backsight must also be used for the closing foresight.
This will eliminate the effect of different zero errors on the two staves. This means that there must
always be an even number of set-ups on any line.

(20) Levelling should always be carried out in both directions, forward and back. If, on the forward
levelling, the A staff was used to open and close the line, then the B staff should be used to open and
close the line on the backward levelling. This will equalize the number of readings on each staff.

(21) Lines of sight should not exceed 50 m, especially in haze, or on sloping ground. This will minimize
the effects of refraction, curvature of the Earth and difficulty of reading the staff. A good average
length of sight is 35 m.

(22) Use the procedure already outlined for levelling the circular bubble on automatic levels. This will
happen as a matter of course if the telescope is aimed at staff A each time when centring the circular
bubble.

3.13.5 Booking and computing

Figure 3.40 shows a sample of precise levelling observations. Note the order in which the observations
are made and that it agrees with paragraphs (17) and (18) above. Once the observations are complete and

Back
Staff
A/B

Run
Diff

Height

A 30.1 0.85419 4.01683 3.16264 4.87102 30.2 2.44140 5.60412 3.16272 8.04552 +0.1 −1.58725 ✓ ✓ ✓ 

B 30.5 0.21760 3.38033 3.16273 3.59793 30.3 2.09982 5.26243 3.16261 7.36225 −0.1 −3.46941 ✓ ✓ ✓ 

A 29.7 1.10329 4.26617 3.16288 5.36946 29.8 1.71900 4.88162 3.16262 6.60062 0.0 −4.08499 ✓ ✓  ✓

B 30.1 1.42299 4.58562 3.16263 6.00861 30.2 1.45819 4.62135 3.16316 6.07954 +0 .1 −4.12046 ✓ ✓ ✓
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B 1 4 5 2 3 6
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Fig. 3.40 Precise levelling observations
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before the back staff and the instrument leapfrog forward the following reductions and quality checks are
made. Examples from the fourth line of the observations are shown.

(1) Compute the Right minus Left readings for the back staff and the forward staff. Because these are
constants of the invar strips they should be the same. Check that they are within 0.00070 m of each other.

Back R − L = 4.58562 − 1.42299 = 3.16263

Forward R − L = 4.62135 − 1.45819 = 3.16316

Check 0.0007 > (3.16263 − 3.16316 = −0.00053) > −0.0007. It is.

(2) Check that the forward and back distances are both less than 50 m and that they agree to within 0.3 m
of each other.

Distances are 30.1 and 30.2.

(3) Compute the Running Difference Distance as the forward − back distance + the previous value. And
make sure that it stays close to 0.0 m by adjusting future forward or back distances as appropriate.

30.2 − 30.1 + 0.0 = +0.1

(4) Compute the Right plus Left readings for the back staff. This is equivalent to twice a back staff reading
plus a large but constant offset. Do likewise for the forward staff readings.

Back R + L = 4.58562 + 1.42299 = 6.00861

Forward R + L = 4.62135 + 1.45819 = 6.07954

(5) Compute the Running Difference Height as sum of its previous value + 1
2 (Forward R + L) −

1
2 (Back R + L).

Running Difference Height = −4.08499 + 1
2 6.07954 − 1

2 6.00861 = −4.12046

3.14 DIGITAL LEVELLING

The digital level is an instrument that uses electronic image processing to evaluate the staff reading. The
observer is in effect replaced by a detector which derives a signal pattern from a bar-code type levelling
staff. A correlation procedure within the instrument translates the pattern into the vertical staff reading
and the horizontal distance of the instrument from the staff. Staff-reading errors by the observer are thus
eliminated.

The basic field data are automatically stored by the instrument thus further eliminating booking errors
(Figure 3.41).

3.14.1 Instrumentation

The design of both the staff and instrument are such that it can be used in the conventional way as well as
digitally.
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Fig. 3.41 Digital level and staff

(1) The levelling staff

The staff is usually made from a synthetic material, which has a small coefficient of expansion. The staff
may be in one or more sections. There are precise invar staves for precise levelling. On one side of the
staff is a binary bar code for electronic measurement, and on the other side there are often conventional
graduations in metres. The black and white binary code comprises many elements over the staff length. The
scale is absolute in that it does not repeat along the staff. As the correlation method is used to evaluate the
image, the elements are arranged in a pseudo-random code. The code pattern is such that the correlation
procedure can be used over the whole working range of the staff and instrument. Each manufacturer
uses a different code on their staffs therefore an instrument will only work with a staff from the same
manufacturer.

(2) The digital level

The digital level has the same optical and mechanical components as a normal automatic level. However,
for the purpose of electronic staff reading a beam splitter is incorporated which transfers the bar code
image to a detector. Light reflected from the white elements of the bar code is divided and sent to the
observer and to the detector. The detector is a form of charge couple device (CCD) which turns the
black and white staff pattern into a binary code. The angular aperture of the instrument is quite small,
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of the order of 1◦–2◦, resulting in a short section of the staff being imaged at the minimum range and
up to the whole staff at the maximum range. The bar code image is compared with a stored reference
code to find the height collimation on the staff. The instrument may not need to see the part of the
staff where the cross-hairs lie. The distance from instrument to staff is dependent on the image scale of
the code.

The data processing is carried out within the instrument and the data are displayed in a simple format.
The measurement process is initiated by a very light touch on a measure button. A keypad on the

eyepiece face of the instrument permits the entry of further numerical data and pre-programmed commands.
The data can be stored and transferred to a computer when required. The instrument may have an interface,
which permits external control, data transfer and power supply.

3.14.2 Measuring procedure

There are two external stages to the measuring procedure; pointing and focusing on the staff and triggering
the digital measurement. The whole process takes a few seconds.

Triggering the measurement determines the focus position, from which the distance to the staff is
measured, and initiates monitoring of the compensator.

Acoarse correlation approximately determines the target height and the image scale and a fine correlation
using calibration constants produces the final staff reading and instrument to staff distance.

For best results a number of observations are taken automatically and the result averaged. This reduces
biases due to oscillations of the compensator and air turbulence within the instrument.

The results may be further processed within the instrument, displayed and recorded. The programs
incorporated will vary from instrument to instrument but typically may include those for:

(1) A single measurement of staff reading and horizontal distance.

(2) The start of a line of levelling and its continuation including intermediate sights. Automatic reduction
of data. Setting out of levels.

(3) Calibration and adjustment of the instrument (two-peg test).

(4) Data management.

(5) Recognition of an inverted staff.

(6) Set the parameters of the instrument; a process similar to the initializing procedures used when setting
up electronic theodolites.

3.14.3 Factors affecting the measuring procedure

Every operation in a measurement procedure is a possible error source and as such requires careful
consideration in order to assess the effect on the final result.

(1) Pointing and focusing

Obviously the instrument will not work if it is not pointed at the staff. The amount of staff that needs to
be read depends on the range of the instrument to the staff. However, there will be a minimum amount
necessary at short ranges. It may not be critical to have the staff pointing directly at the instrument.

The precision of the height measurement may be independent of sharpness of image; however, a clear,
sharply focused image reduces the time required for the measurement. If the image is too far out of focus
then the instrument may not read at all. Some instruments have an auto-focus function to avoid potential
focusing problems.
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(2) Vibrations and heat shimmer

Vibration of the compensator caused by wind, traffic, etc., has a similar effect on the bar code image as that
of heat shimmer. However, as digital levelling does not require a single reading, but instead is dependent
on a section of the code, the effects of shimmer and vibration may not be critical.

Similarly, scale errors on the staff are averaged.

(3) Illumination

As the method relies on reflected light from the white intervals of the bar code, illumination of the staff
is important. During the day, this illumination will be affected by cloud, sun, twilight and the effects of
shadows. Up to a point these variations are catered for by the instrument but under adverse conditions
there may be an increase in the measuring time.

(4) Staff coverage

In some conditions part of the bar code section being interrogated by the instrument may be obscured.
Consult the manufacturer’s handbook to ensure that sufficient of the staff is showing to the instrument.

(5) Collimation

The collimation value is set in the instrument but can be checked and changed as required. The method
of determining the collimation is based upon one of the two peg methods described earlier. Once the
collimation value has been determined it is applied to subsequent readings thereby minimizing its effect.
Note, however, that it can never be completely removed and appropriate procedures according to the
precision required must still be applied.

(6) Physical damage

It is likely that the instrument will be seriously damaged if it is pointed directly at the sun.

3.14.4 Operating features

The resolution for most instruments is 0.1 mm for height and 10 mm for distance or better with instrumental
ranges up to 100 m. At such distances the effects of refraction and curvature become significant. The effect
of curvature can be precisely calculated, the effect of refraction cannot. Most digital levels can also be
used as conventional optical automatic levels but in that case the standard error of 1 km of double-run
levelling becomes less. Although the digital level can also measure distance, the precision of the distance
measurement is only of the order of a few centimetres.

3.14.5 Advantages of digital levelling

One advantage claimed for digital levelling is that there is less fatigue for the observer. While it is true
that the observer does not have to make observations the instrument still needs to be set up, pointed at
the target and focused. The digital display needs no interpretation such as reading the centimetre from the
E on a conventional staff and estimating the millimetre. Measurements are of consistent quality, subject
to the observer taking the same care with the instrument to ensure consistency of target distances and
illumination of the staff. Also the staff holder must not move the staff between the forward reading in one
bay and the back reading in the next, and that the staff must be kept vertical.
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There is an acceptable range of illumination, but too much or too little light may make observations
impossible. Some, but not all, digital levels will recognize when staffs are inverted, others will indicate an
error if not told that the staff is inverted. Like any automatic level, the digital level will need to be at least
coarsely levelled for the compensator to be in range.

Although exact focusing may not be required, the instrument will not work if the focusing is too far out
but if the instrument has automatic focusing this would not be a problem. Automatic data storage eliminates
the need for manual booking and its associated errors, and automatic reduction of data to produce ground
levels eliminates arithmetical errors. However, checks for levelling circuit misclosure need to be made or
at least checked and an adjustment to the intermediate points for misclosure needs to be made.

As with all surveying instruments the digital level should be allowed to adapt to the ambient air
temperature.

The scale of the height measurements is primarily fixed by the scale of the staff. An invar staff will
vary less with change of temperature. The scale will also be dependent on the quality of the CCD. How
the dimensional stability of CCDs may vary with time is not well known.

There are a number of menus and functions that can be called on to make the levelling process easier,
in particular the two-peg test for collimation error and calibration.

Overall, digital levelling is generally a faster process than levelling with an automatic level. Data can
be directly downloaded to a suitable software package to enable computation and plotting of longitudinal
sections and cross-sections. The digital level can be used in just about every situation where a conventional
level can be used, and should the batteries fail it can be used as a conventional level if necessary.

Worked examples

Example 3.2. The positions of the pegs which need to be set out for the construction of a sloping concrete
slab are shown in the diagram. Because of site obstructions the tilting level which is used to set the pegs at
their correct levels can only be set up at station X which is 100 m from the TBM. The reduced level of peg A
is to be 100 m and the slab is to have a uniform diagonal slope from A towards Jof 1 in 20 downwards.

To ensure accuracy in setting out the levels it was decided to adjust the instrument before using it, but
it was found that the correct adjusting tools were missing from the instrument case. A test was therefore
carried out to determine the magnitude of any collimation error that may have been present in the level,
and this error was found to be 0.04 m per 100 m downwards.

Assuming that the backsight reading from station X to a staff held on the TBM was 1.46 m, determine
to the nearest 0.01 m the staff readings which should be obtained on the pegs at A, Fand H, in order that
they may be set to correct levels.

Describe fully the procedure that should be adopted in the determination of the collimation error of the
tilting level. (ICE)



86 Engineering Surveying

The simplest approach to this question is to work out the true readings at A, Fand Hand then adjust them
for collimation error. Allowing for collimation error the true reading on TBM = 1.46 + 0.04 = 1.50 m.

HPC = 103.48 + 1.50 = 104.98 m

True reading on A to give a level of 100 m = 4.98 m
Distance AX = 50 m (�AXB = 3, 4, 5)
∴ Collimation error = 0.02 m per 50 m
Allowing for this error, actual reading at A = 4.98 − 0.02 = 4.96 m
Now referring to the diagram, line HF through E′ will be a strike line
∴ H and F have the same level as E′
Distance AE′ = (602 + 602)

1
2 = 84.85 m

Fall from A to E′ = 84.85 ÷ 20 = 4.24 m
∴ Level at E′ = level at F and H = 100 − 4.24 = 95.76 m
Thus true staff readings at F and H = 104.98 − 95.76 = 9.22 m

Distance XF = (702 + 402)
1
2 = 80.62 m

Collimation error ≈ 0.03 m
Actual reading at F = 9.22 − 0.03 = 9.19 m
Distance XH = 110 m, collimation error ≈ 0.04 m
Actual reading at H = 9.22 − 0.04 = 9.18 m

Example 3.3. The following readings were observed with a level: 1.143 (BM 112.28), 1.765, 2.566, 3.820
CP; 1.390, 2.262, 0.664, 0.433 CP; 3.722, 2.886, 1.618, 0.616 TBM.

(1) Reduce the levels by the R-and-F method.
(2) Calculate the level of the TBM if the line of collimation was tilted upwards at an angle of 6′ and each

BS length was 100 m and FS length 30 m.
(3) Calculate the level of the TBM if in all cases the staff was held not upright but leaning backwards at

5◦ to the vertical. (LU)

(1) The answer here relies on knowing once again that levelling always commences on a BS and ends on
a FS, and that CPs are always FS/BS (see table below)

(2) Due to collimation error

the BS readings are too great by 100 tan 6′
the FS readings are too great by 30 tan 6′

net error on BS is too great by 70 tan 6′
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BS IS FS Rise Fall RL Remarks

1.143 112.280 BM
1.765 0.622 111.658
2.566 0.801 110.857

1.390 3.820 1.254 109.603
2.262 0.872 108.731
0.664 1.598 110.329

3.722 0.433 0.231 110.560
2.886 0.836 111.396
1.618 1.268 112.664

0.616 1.002 113.666 TBM

6.255 4.869 4.935 3.549 113.666
4.869 3.549 112.280

1.386 1.386 1.386 Checks

Note that the intermediate sights are unnecessary in calculating the value of the TBM; prove it for
yourself by simply covering up the IS column and calculating the value of TBM using BS and FS only.

There are three instrument set-ups, and therefore the total net error on BS = 3×70 tan 6′ = 0.366 m
(too great).

level of TBM = 113.666 − 0.366 = 113.300 m

(3) From the diagram it is seen that the true reading AB = actual reading CB × cos 5◦ Thus each BS and
FS needs to be corrected by multiplying it by cos 5◦; however, this would be the same as multiplying
the

∑
BS and

∑
FS by cos 5◦, and as one subtracts BS from FS to get the difference, then

True difference in level = actual difference × cos 5◦

= 1.386 cos 5◦ = 1.381 m

level of TBM = 112.28 + 1.381 = 113.661 m

Example 3.4. One carriageway of a motorway running due N is 8 m wide between kerbs and the following
surface levels were taken along a section of it, the chainage increasing from S to N. A concrete bridge
12 m in width and having a horizontal soffit, carries a minor road across the motorway from SW to NE,
the centre-line of the minor road passing over that of the motorway carriageway at a chainage of 1550 m.

Taking crown (i.e. centre-line) level of the motorway carriageway at 1550 m chainage to be 224.000 m:

(a) Reduce the above set of levels and apply the usual arithmetical checks.
(b) Assuming the motorway surface to consist of planes, determine the minimum vertical clearance

between surface and the bridge soffit. (LU)

The HPC method of booking is used because of the numerous intermediate sights.

Intermediate sight check

2245.723 = [(224.981 × 7) + (226.393 × 3) − (5.504 + 2.819)]
= 1574.867 + 679.179 − 8.323 = 2245.723
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BS IS FS Chainage (m) Location

1.591 1535 West channel
1.490 1535 Crown
1.582 1535 East channel

−4.566 Bridge soffit*
1.079 1550 West channel
0.981 1550 Crown
1.073 1550 East channel

2.256 0.844 CP
1.981 1565 West channel
1.884 1565 Crown

1.975 1565 East channel

*Staff inverted

BS IS FS HPC RL Remarks

1.591 223.390 1535 West channel
1.490 223.491 1535 Crown
1.582 223.399 1535 East channel

−4.566 229.547 Bridge soffit
1.079 223.902 1550 West channel
0.981 224.981∗ 224.000 1550 Crown
1.073 223.908 1550 East channel

2.256 0.844 226.393 224.137 CP
1.981 224.412 1565 West channel
1.884 224.509 1565 Crown

1.975 224.418 1565 East channel

3.847 5.504 2.819 224.418
2.819 223.390

1.028 1.028 Checks

*Permissible to start here because this is the only known RL; also, in working back to 1535 m
one still subtracts from HPC in the usual way.
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Now draw a sketch of the problem and add to it all the pertinent data as shown.

Examination of the sketch shows the road to be rising from S to N at a regular grade of 0.510 m in 15 m.
This implies then, that the most northerly point (point B on east channel) should be the highest; however,
as the crown of the road is higher than the channel, one should also check point A on the crown; all other
points can be ignored. Now, from the illustration the distance 1550 to A on the centre-line:

= 6 × (2)
1
2 = 8.5 m

∴ Rise in level from 1550 to A = (0.509/15) × 8.5 = 0.288 m

∴ Level at A = 224.288 m giving a clearance of (229.547 − 224.288) = 5.259 m

Distance 1550 to B along the east channel 8.5 + 4 = 12.5 m

∴ Rise in level from 1550 to B = (0.510/15) × 12.5 = 0.425 m

∴ Level at B = 223.908 + 0.425 = 224.333 m

∴ Clearance at B = 229.547 − 224.333 = 5.214 m

∴ Minimum clearance occurs at the most northerly point on the east channel, i.e. at B

Example 3.5. In extending a triangulation survey of the mainland to a distant off-lying island, observations
were made between two trig stations, one 3000 m and the other 1000 m above sea level. If the ray from
one station to the other grazed the sea, what was the approximate distance between stations, (a) neglecting
refraction, and (b) allowing for it? (R = 6400 km) (ICE)

Refer to equation (3.1).

(a) D1 = (2Rc1)
1
2 = (2 × 6400 × 1)

1
2 = 113 km

D2 = (2Rc2)
1
2 = (2 × 6400 × 3)

1
2 = 196 km

Total distance = 309 km

(b) With refraction: D1 = (7/6 × 2Rc1)
1
2 , D2 = (7/6 × 2Rc2)

1
2 .
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By comparison with the equation in (a) above, it can be seen that the effect of refraction is to increase

distance by (7/6)
1
2 :

∴ D = 309(7/6)
1
2 = 334 km

Example 3.6. Obtain, from first principles, an expression giving the combined correction for the Earth’s
curvature and atmospheric refraction in levelling, assuming that the Earth is a sphere of 12740 km diameter.
Reciprocal levelling between two points Y and Z 730 m apart on opposite sides of a river gave the following
results:

Instrument at Height of instrument (m) Staff at Staff reading (m)

Y 1.463 Z 1.688
Z 1.436 Y 0.991

Determine the difference in level between Y and Z and the amount of any collimation error in the
instrument. (ICE)

(1) (c − r) = 6D2

14R
= 0.0673D2 m

(2) With instrument at Y , Z is lower by (1.688 − 1.463) = 0.225 m
With instrument at Z , Z is lower by (1.436 − 0.991) = 0.445 m

True height of Z below Y = 0.225 + 0.445

2
= 0.335 m

Instrument height at Y = 1.463 m; knowing now that Z is lower by 0.335 m, then a truly horizontal reading
on Z should be (1.463 + 0.335) = 1.798 m; it was, however, 1.688 m, i.e. −0.11 m too low (− indicates
low). This error is due to curvature and refraction (c − r) and collimation error of the instrument (e).

Thus: (c − r) + e = −0.110 m

Now (c − r) = 6D2

14R
= 6 × 7302

14 × 6370 × 1000
= 0.036 m

∴ e = −0.110 − 0.036 = −0.146 m in 730 m

∴ Collimation error e = 0.020 m down in 110 m

Example 3.7. A and B are 2400 m apart. Observations with a level gave:

A, height of instrument 1.372 m, reading at B 3.359 m
B, height of instrument 1.402 m, reading at A 0.219 m
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Calculate the difference of level and the error of the instrument if refraction correction is one seventh
that of curvature. (LU)

Instrument at A, B is lower by (3.359 − 1.372) = 1.987 m
Instrument at B, B is lower by (1.402 − 0.219) = 1.183 m

True height of B below A = 0.5 × 3.170 m = 1.585 m

Combined error due to curvature and refraction

= 0.0673D2 m = 0.0673 × 2.42 = 0.388 m

Now using same procedure as in Example 3.6:

Instrument at A = 1.372, thus true reading at B = (1.372 + 1.585)
= 2.957 m

Actual reading at B = 3.359 m

Actual reading at B too high by + 0.402 m

Thus: (c − r) + e = +0.402 m

e = +0.402 − 0.388 = +0.014 m in 2400 m

Collimation error e = +0.001 m up in 100 m

Exercises

(3.1) The following readings were taken with a level and a 4.25-m staff:

0.683, 1.109, 1.838, 3.398 [3.877 and 0.451] CP, 1.405, 1.896, 2.676 BM (102.120 AOD), 3.478 [4.039
and 1.835] CP, 0.649, 1.707, 3.722

Draw up a level book and reduce the levels by

(a) R-and-F,
(b) height of collimation.

What error would occur in the final level if the staff had been wrongly extended and a plain gap of over
12 mm occurred at the 1.52-m section joint? (LU)

Parts (a) and (b) are self checking. Error in final level = zero.
(Hint: all readings greater than 1.52 m will be too small by 12 mm. Error in final level will be calculated
from BM only.)

(3.2) The following staff readings were observed (in the order given) when levelling up a hillside from
a TBM 135.2 m AOD. Excepting the staff position immediately after the TBM, each staff position was
higher than the preceding one.

1.408, 2.728, 1.856, 0.972, 3.789, 2.746, 1.597, 0.405, 3.280, 2.012, 0.625, 4.136, 2.664, 0.994, 3.901,
1.929, 3.478, 1.332

Enter the readings in level-book form by both the R-and-F and collimation systems (these may be
combined into a single form to save copying). (LU)
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(3.3) The following staff readings in metres were obtained when levelling along the centre-line of a straight
road ABC.

BS IS FS Remarks

2.405 Point A (RL = 250.05 m AOD)
1.954 1.128 CP
0.619 1.466 Point B

2.408 Point D
−1.515 Point E

1.460 2.941 CP
2.368 Point C

D is the highest point on the road surface beneath a bridge crossing over the road at this point and the
staff was held inverted on the underside of the bridge girder at E, immediately above D. Reduce the levels
correctly by an approved method, applying the checks, and determine the headroom at D. If the road is to
be regraded so that AC is a uniform gradient, what will be the new headroom at D?
The distance AD = 240 m and DC = 60 m. (LU)

(Answer: 3.923 m, 5.071 m)

(3.4) Distinguish, in construction and method of use, between dumpy and tilting levels. State in general
terms the principle of an automatic level.

(3.5) The following levels were taken with a metric staff on a series of pegs at 100-m intervals along the
line of a proposed trench.

BS IS FS Remarks

2.10 TBM 28.75 m
2.85 Peg A

1.80 3.51 Peg B
1.58 Peg C
2.24 Peg D

1.68 2.94 Peg E
2.27
3.06

3.81 TBM 24.07 m

If the trench is to be excavated from peg A commencing at a formation level of 26.5 m and falling to peg E
at a grade of 1 in 200, calculate the height of the sight rails in metres at A, B, C, D and E, if a 3-m boning
rod is to be used.

Briefly discuss the techniques and advantages of using laser beams for the control of more precise
work. (KU)

(Answer: 1.50, 1.66, 0.94, 1.10, 1.30 m)
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(3.6) (a) Determine from first principles the approximate distance at which correction for curvature and
refraction in levelling amounts to 3 mm, assuming that the effect of refraction is one seventh that of the
Earth’s curvature and that the Earth is a sphere of 12740 km diameter.
(b) Two survey stations A and B on opposite sides of a river are 780 m apart, and reciprocal levels have
been taken between them with the following results:

Instrument at Height of instrument (m) Staff at Staff reading (m)

A 1.472 B 1.835
B 1.496 A 1.213

Compute the ratio of refraction correction to curvature correction, and the difference in level between A
and B.

(Answer: (a) 210 m (b) 0.14 to 1; B lower by 0.323 m)

3.15 TRIGONOMETRICAL LEVELLING

Trigonometrical levelling is used where difficult terrain, such as mountainous areas, precludes the use
of conventional differential levelling. It may also be used where the height difference is large but the
horizontal distance is short such as heighting up a cliff or a tall building. The vertical angle and the slope
distance between the two points concerned are measured. Slope distance is measured using electromagnetic
distance measurers (EDM) and the vertical (or zenith) angle using a theodolite.

When these two instruments are integrated into a single instrument it is called a ‘total station’. Total
stations contain algorithms that calculate and display the horizontal distance and vertical height, This latter
facility has resulted in trigonometrical levelling being used for a wide variety of heighting procedures,
including contouring. However, unless the observation distances are relatively short, the height values
displayed by the total station are quite useless, if not highly dangerous, unless the total station contains
algorithms to apply corrections for curvature and refraction.

3.15.1 Short lines

From Figure 3.42 it can be seen that when measuring the angle

�h = S sin α (3.7)

When using the zenith angle z

�h = S cos z (3.8)

If the horizontal distance is used

�h = D tan α = D cot z (3.9)

The difference in elevation (�H) between ground points A and B is therefore

�H = hi + �h − ht

= �h + hi − ht (3.10)

where hi = vertical height of the measuring centre of the instrument above A
ht = vertical height of the centre of the target above B
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Fig. 3.42 Trigonometric levelling – short lines

This is the basic concept of trignometrical levelling. The vertical angles are positive for angles of elevation
and negative for angles of depression. The zenith angles are always positive, but naturally when greater
than 90◦ they will produce a negative result.

What constitutes a short line may be derived by considering the effect of curvature and refraction
compared with the accuracy expected. The combined effect of curvature and refraction over 100 m =
0.7 mm, over 200 m = 3 mm, over 300 m = 6 mm, over 400 m = 11 mm and over 500 m = 17 mm.

If we apply the standard treatment for small errors to the basic equation we have

�H = S sin α + hi − ht (3.11)

and then

δ(�H) = sin α · δS + S cos α δα + δhi − ht (3.12)

and taking standard errors:

σ 2
�H = (sin α · σs)

2 + (S cos α · σα)2 + σ 2
i + σ 2

t

Consider a vertical angle of α = 5◦, with σα = 5′′ (= 0.000024 radians), S = 300 m with σs = 10 mm
and σi = σt = 2 mm. Substituting in the above equation gives:

σ 2
�H = 0.92 mm2 + 7.22 mm2 + 22 mm2 + 22 mm2

σ�H = 7.8 mm

This value is similar in size to the effect of curvature and refraction over this distance and indicates that
short sights should never be greater than 300 m. It also indicates that the accuracy of distance S is not
critical when the vertical angle is small. However, the accuracy of measuring the vertical angle is very
critical and requires the use of a theodolite, with more than one measurement on each face.
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Fig. 3.43 Trigonometric levelling – long lines

3.15.2 Long lines

For long lines the effect of curvature (c) and refraction (r) must be considered. From Figure 3.43, it can
be seen that the difference in elevation (�H) between A and B is:

�H = GB = GF + FE + EH − HD − DB

= hi + c + �h − r − ht

= �h + hi − ht + (c − r) (3.13)

Thus it can be seen that the only difference from the basic equation for short lines is the correction for
curvature and refraction (c − r).

Although the line of sight is refracted to the target at D, the telescope is pointing to H, thereby measuring
the angle α from the horizontal. It follows that S sin α = �h = EH and requires a correction for refraction
equal to HD.
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The correction for refraction is based on a quantity termed the ‘coefficient of refraction’(K). Considering
the atmosphere as comprising layers of air which decrease in density at higher elevations, the line of sight
from the instrument will be refracted towards the denser layers. The line of sight therefore approximates
to a circular arc of radius Rs roughly equal to 8R, where R is the radius of the Earth. However, due to the
uncertainty of refraction one cannot accept this relationship and the coefficient of refraction is defined as

K = R/Rs (3.14)

An average value of K = 0.15 is frequently quoted but, as stated previously, this is most unreliable
and is based on observations taken well above ground level. Recent investigation has shown that not
only can K vary from −2.3 to +3.5 with values over ice as high as +14.9, but it also has a daily cycle.
Near the ground, K is affected by the morphology of the ground, by the type of vegetation and by other
assorted complex factors. Although much research has been devoted to modelling these effects, in order to
arrive at an accurate value for K , the most practical method still appears to be by simultaneous reciprocal
observations.

As already shown, curvature (c) can be approximately computed from c = D2/2R, and as D ≈ S we
can write

c = S2/2R (3.15)

Now considering Figures 3.43 and 3.44 the refracted ray JD has a radius Rs and a measured distance S and
subtends angles δ at its centre, then

δ = S/Rs

δ/2 = S/2Rs

As the refraction K = R/Rs we have

δ/2 = SK /2R

Fig. 3.44 Curvature and refraction
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Without loss of accuracy we can assume JH = JD = S and treating the HD as the arc of a circle of radius S:

HD = S · δ/2 = S2K /2R = r (3.16)

(c − r) = S2(1 − K)/2R (3.17)

All the above equations express c and r in linear terms. To obtain the angles of curvature and refraction,
EJF and HJD in Figure 3.43, reconsider Figure 3.44. Imagine JH is the horizontal line JE in Figure 3.43
and JD the level line JF of radius R. Then δ is the angle subtended at the centre of the Earth and the angle
of curvature is half this value. To avoid confusion let δ = θ and as already shown:

θ /2 = S/2R = ĉ (3.18)

where the arc distance at MSL approximates to S. Also, as shown:

δ/2 = SK /2R = r̂ (3.19)

Therefore in angular terms:

(ĉ − r̂) = S(1 − K)/2R rads (3.20)

Note the difference between equations in linear terms and those in angular.

3.15.3 Reciprocal observations

Reciprocal observations are observations taken from A and B, the arithmetic mean result being accepted.
If one assumes a symmetrical line of sight from each end and the observations are taken simultaneously,
then the effect of curvature and refraction is cancelled out. For instance, for elevated sights, (c−r) is added
to a positive value to increase the height difference. For depressed or downhill sights, (c − r) is added to
a negative value and decreases the height difference. Thus the average of the two values is free from the
effects of curvature and refraction. This statement is not entirely true as the assumption of symmetrical
lines of sight from each end is dependent on uniform ground and atmospheric conditions at each end, at
the instant of simultaneous observation.

In practice over short distances, sighting into each other’s object lens forms an excellent target, with
some form of communication to ensure simultaneous observation.

The following numerical example is taken from an actual survey in which the elevation of A and B had
been obtained by precise geodetic levelling and was checked by simultaneous reciprocal trigonometrical
levelling.

Worked example

Example 3.8.

Zenith angle at A = ZA = 89◦ 59′ 18.7′′ (VA 0◦ 00′ 41.3′′)

Zenith angle at B = ZB = 90◦ 02′ 59.9′′ (VA = −0◦ 02′ 59.9′′)

Height of instrument at A = hA = 1.290 m

Height of instrument at B = hB = 1.300 m

Slope distance corrected for meteorological conditions = 4279.446 m

Each target was set at the same height as the instrument at its respective station.
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As the observations are reciprocal, the corrections for curvature and refraction are ignored:

�HAB = S cos ZA + hi − ht

= 4279.446 cos 89◦ 59′ 18.7′′ + 1.290 − 1.300 = 0.846 m

�HBA = 4279.446 cos 90◦ 02′ 59.9′′ + 1.300 − 1.290 = −3.722 m

�HAB = 3.722 m

Mean value �H = 2.284 m

This value compares favourably with 2.311 m obtained by precise levelling. However, the disparity between
the two values 0.846 and −3.722 shows the danger inherent in single observations uncorrected for curvature
and refraction. In this case the correction for curvature only is +1.256 m, which, when applied, brings the
results to 2.102 m and −2.466 m, producing much closer agreement. To find K simply substitute the mean
value �H = 2.284 into the equation for a single observation.

From A to B:

2.284 = 4279.446 cos 89◦ 59′ 18.7′′ + 1.290 − 1.300 + (c − r)

where (c − r) = S2(1 − K)/2R

and the local value of R for the area of observation = 6 364 700 m

2.284 = 0.856 − 0.010 + S2(1 − K)/2R

1.438 = 4279.4462(1 − K)/2 × 6 364 700 m

K = 0.0006

From B to A:

2.284 = −3.732 + 1.300 − 1.290 + S2(1 − K)/2R

K = 0.0006

Now this value for K could be used for single ended observations taken within the same area, at the same
time, to give improved results.

A variety of formulae are available for finding K directly. For example, using zenith angles:

K = 1 − ZA + ZB − 180◦

180◦/π
× R

S
(3.21)

and using vertical angles:

K = (θ + α0 + β0)/θ (3.22)

where θ = the angle subtended at the center of the Earth by the arc distance ≈ S and is calculated using:

θ ′′ = Sρ/R where ρ = 206 265

In the above formulae the values used for the angles must be those which would have been observed had
hi = ht and, in case of vertical angles, entered with their appropriate sign. As shown in Figure 3.45,
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Fig. 3.45 Correction for unequal instrument and target height

By sine rule: α0 = α − e and for an angle of depression it becomes β0 = β + e.

sin e = ht−i sin(90◦ − α)

S

e = sin−1
(

ht−i cos α

S

)

= ht−1

S
cos α + h3

t−i

6S3
cos3 α + · · ·

∴ e = (ht−i cos α)/S (3.23)

For zenith angles:

e = (ht−i sin Z)/S (3.24)

3.15.4 Sources of error

Consider the formula for a single observation, found by substituting equations 3.8 and 3.17 into 3.13:

�H = S sin α + hi − ht + S2(1 − K)/2R

The obvious sources of error lie in obtaining the slope distance S, the vertical angle α the heights of
the instrument and target, the coefficient of refraction K and a value for the local radius of the Earth R.
Differentiating gives:

δ(�H) = δS sin α + S cos α · δα + δhi + δht + S2 δK /2R + S2(1 − K) δR/2R2

and taking standard errors:

σ 2
�H = (σs sin α)2 + (S cos ασα)2 + σ 2

i + σ 2
t + (S2σK /2R)2 + (S2(1 − K)σR/2R2)2

Taking S = 2000 m, σS = 0.005 m, α = 8◦, σα = 7′′ (= 0.000034 radians), σi = σt = 2 mm, K = 0.15,
σK = 1, R = 6380 km, and σR = 10 km, we have

σ 2
�H = (0.7)2 + (48.0)2 + 22 + 22 + (156.7)2 + (0.4)2 mm2

σ�H = 164 mm
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Once again it can be seen that the accuracy required to measure S is not critical.
However, the measurement of the vertical angle is critical and the importance of its precision will

increase with greater distance. The error in the value of refraction is the most critical component and
will increase rapidly as the square of the distance. Thus to achieve reasonable results over long sights,
simultaneous reciprocal observations are essential.

3.15.5 Contouring

The ease with which total stations produce horizontal distance, vertical height and horizontal direction
makes them ideal instruments for rapid and accurate contouring in virtually any type of terrain. The data
recorded may be transformed from direction, distance and elevation of a point, to its position and elevation
in terms of three-dimensional coordinates. These points thus comprise a digital terrain or ground model
(DTM/DGM) from which the contours are interpolated and plotted.

The total station and a vertical rod that carries a single reflector are used to locate the ground points
(Figure 3.46). A careful reconnaissance of the area is necessary, in order to plan the survey and define the
necessary ground points that are required to represent the characteristic shape of the terrain. Break lines,
the tops and bottoms of hills or depressions, the necessary features of water courses, etc., and enough
points to permit accurate interpolation of contour lines at the interval required, comprise the field data.
As the observation distances are relatively short, curvature and refraction might be ignored. However, in
most total stations corrections for curvature and refraction may be applied.

Fig. 3.46 Contouring with a total station and detail pole
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Fig. 3.47 Radiation method

From Figure 3.42, it can be seen that if the reduced level of point A (RLA) is known, then the reduced
level of ground point B is:

RLB = RLA + hi + �h − ht

When contouring, the height of the reflector is set to the same height as the instrument, i.e. ht = hi, and
cancels out in the previous equation. Thus the height displayed by the instrument is the height of the ground
point above A:

RLB = RLA + �h

In this way the reduced levels of all the ground points are rapidly acquired and all that is needed are their
positions. One method of carrying out the process is by radiation.

As shown in Figure 3.47, the instrument is set up on a control point A, whose reduced level is known,
and sighted to a second control point (RO). The horizontal circle is set to the direction computed from the
coordinates of A and the RO. The instrument is then turned through a chosen horizontal angle (θ ) defining
the direction of the first ray. Terrain points along this ray are then located by measured horizontal distance
and height difference. This process is repeated along further rays until the area is covered. Unless a very
experienced person is used to locate the ground points, there will obviously be a greater density of points
near the instrument station. The method, however, is quite easy to organize in the field. The angle between
successive rays may vary from 20◦ to 60◦ depending on the terrain.

Many ground-modelling software packages interpolate and plot contours from strings of linked terrain
points. Computer processing is aided if the ground points are located in continuous strings throughout
the area, approximately following the line of the contour. They may also follow the line of existing
watercourses, roads, hedges, kerbs, etc. (Figure 3.48).

Depending on the software package used, the string points may be transformed into a triangular or
gridded structure. Heights can then be determined by linear interpolation and the terrain represented
by simple planar triangular facets. Alternatively, high-order polynomials may be used to define three-
dimensional surfaces fitted to the terrain points. From these data, contours are interpolated and a contour
model of the terrain produced.
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Fig. 3.48 Plotting

Worked examples

Example 3.9. (a) Define the coefficient of refraction K , and show how its value may be obtained from
simultaneous reciprocal trigonometric levelling observations.

(b) Two triangulation stations A and B are 2856.85 m apart. Observations from A to B gave a mean
vertical angle of +01◦ 35′ 38′′, the instrument height being 1.41 m and the target height 2.32 m. If the
level of station A is 156.86 m OD and the value of K for the area is 0.16, calculate the reduced level of B
(radius of Earth = 6372 km). (KU)

(a) Refer to Section 3.15.2.
(b) This part will be answered using both the angular and the linear approaches.

Angular method
Difference in height of AB = �H = D tan[α + (ĉ − r̂)] where ĉ = θ /2 and

θ = D

R
= 2856.85

6 372 000
= 0.000 448 rad

∴ ĉ = 0.000 224 rad

r̂ = K(θ /2) = 0.16 × 0.000 224 = 0.000 036 rad

∴ (ĉ − r̂) = 0.000 188 rad = 0◦ 00′ 38.8′′

∴ �H = 2856.85 tan(01◦ 35′ 38′′ + 0◦ 00′ 38.8′′) = 80.03 m

Refer to Figure 3.42.

RL of B = RL of A + hi + �H − ht

= 156.86 + 1.41 + 80.03 − 2.32 = 235.98 m
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Linear method

�H = D tan α + (c − r)

where (c − r) =
(

D2

2R

)
(1 − K) = 2856.852

2 × 6 372 000
× 0.084 = 0.54 m

D tan α = 2856.85 tan(01◦ 35′ 39′′) = 79.49 m

where ∴ �H = 79.49 + 0.54 = 80.03 m

Example 3.10. Two stations A and B are 1713 m apart. The following observations were recorded: height
of instrument at A 1.392 m, and at B 1.464 m; height of signal at A 2.199 m, and at B 2 m. Elevation to signal
at B 1◦ 08′ 08′′, depression angle to signal at A 1◦ 06′ 16′′. If 1′′ at the Earth’s centre subtends 30.393 m at
the Earth’s surface, calculate the difference of level between A and B and the refraction correction. (LU)

�H = D tan

(
α + β

2

)
+ (h′

t − h′
i) − (ht − hi)

2

where hi = height of instrument at A; ht = height of target at B; h′
i = height of instrument at B;

h′
t = height of target at A.

∴ �H = 1713 tan

(
(1◦ 08′ 08′′) + (1◦ 06′ 15′′)

2

)
+ (2.199 − 1.464) − (2.000 − 1.392)

2

= 33.490 + 0.064 = 33.55 m

Using the alternative approach of reducing α and β to their values if hi = ht .

Correction to angle of elevation:

e′′ ≈ 1.392 − 2.000

1713.0
× 206 265 = −73.2′′

∴ α = (1◦ 08′ 08′′) − (01′ 13.2′′) = 1◦ 06′ 54.8′′

Correction to angle of depression:

e′′ ≈ (2.199 − 1.464)

1713.0
× 206 265 = 88.5′′

∴ β = (1◦ 06′ 15′′) + (01′ 28.5′′) = 1◦ 07′ 43.5′′

∴ �H = 1713 tan

(
(1◦ 06′ 54.8′′) + (1◦ 07′ 43.5′′)

2

)
= 33.55 m

Refraction correction r̂ = 1

2
(θ + α + β)

where θ ′′ = 1713.0/30.393 = 56.4′′

= 1

2
[56.4′′ + (1◦ 06′ 54.8′′) − (1◦ 07′ 43.5′′)] = 3.8′′

and also K = r̂

θ /2
= 3.8′′

28.2′′ = 0.14
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Example 3.11. Two points A and B are 8 km apart and at levels of 102.50 m and 286.50 m OD, respectively.
The height of the target at A is 1.50 m and at B 3.00 m, while the height of the instrument in both cases
is 1.50 m on the Earth’s surface subtends 1′′ of arc at the Earth’s centre and the effect of refraction is one
seventh that of curvature, predict the observed angles from A to B and B to A.

Difference in level A and B = �H = 286.50 − 102.50 = 184.00 m

∴ by radians φ′′= 184

8000
× 206 265 = 4744′′ = 1◦ 19′ 04′′

Angle subtended at the centre of the Earth = θ ′′ = 8000

31
= 258′′

∴ Curvature correction ĉ = θ /2 = 129′′ and r̂ = ĉ/7 = 18′′

Now �H = D tan φ

where φ = α + (ĉ + r̂)

∴ α = φ − (ĉ − r̂) = 4744′′ − (129′′ − 18′′) = 4633′′ = 1◦ 17′ 13′′

Similarly φ = β − (ĉ − r̂)

∴ β = φ + (ĉ − r̂) = 4855′′ = 1◦ 20′ 55′′

The observed angle α must be corrected for variation in instrument and signal heights. Normally the
correction is subtracted from the observed angle to give the truly reciprocal angle. In this example, α is
the truly reciprocal angle, thus the correction must be added in this reverse situation:

e′′ ≈ [(ht − hi)/D] × 206 265 = [(3.00 − 1.50)/8000] × 206 265 = 39′′

∴ α = 4633′′ + 39′′ = 4672′′ = 1◦ 17′ 52′′

Example 3.12. A gas drilling-rig is set up on the sea bed 48 km from each of two survey stations which
are on the coast and several kilometres apart. In order that the exact position of the rig may be obtained,
it is necessary to erect a beacon on the rig so that it may be clearly visible from theodolites situated at the
survey stations, each at a height of 36 m above the high-water mark.

Neglecting the effects of refraction, and assuming that the minimum distance between the line of sight
and calm water is to be 3 m at high water, calculate the least height of the beacon above the high-water
mark, at the rig. Prove any equations used.

Calculate the angle of elevation that would be measured by the theodolite when sighted onto this beacon,
taking refraction into account and assuming that the error due to refraction is one seventh of the error due
to curvature of the Earth. Mean radius of Earth = 6273 km. (ICE)

From Figure 3.49:

D1 = (2c1R)
1
2 (equation 3.1)

∴ D1 = (2 × 33 × 6 273 000) = 20.35 km

∴ D2 = 48 − D1 = 27.65 km

∴ since D2 = (2c2R)
1
2

c2 = 61 m, and to avoid grazing by 3 m, height of beacon = 64 m
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Fig. 3.49 Lines of sight

Difference in height of beacon and theodolite = 64 − 36 = 28 m; observed vertical angle α = φ − (ĉ − r̂)
for angles of elevation, where

φ′′ = 28 × 206 265

480 00
= 120.3′′

ĉ = θ /2

where θ ′′ =
(

48

6273

)
× 206 265 = 1578.3′′

∴ ĉ = 789.2′′ and r̂ = ĉ/7 = 112.7′′

∴ α = 120.3′′ − 789.2′′ + 112.7′′ = −556.2′′ = −0◦ 09′ 16′′

The negative value indicates α to be an angle of depression, not elevation, as quoted in the question.

3.16 HEIGHTING WITH GPS

This aim of this short section is to introduce an alternative technology, which can be very useful for
heighting, where many points in a given area are required. The subject of satellite positioning is covered in
depth in Chapter 8. The main advantages of using Global Positioning System (GPS) receivers for heighting
are that no line of sight is required between instrument and target and the speed with which heights with
their plan positions can be collected. The practical limit is usually the speed at which the GPS receiver can
be moved over the ground. Suppose the heights of some open ground are required with a density of not
less than a point every 5 m and a vehicle with a GPS antenna mounted on its roof is available. If the GPS
records 10 points every second, then the maximum theoretical speed of the vehicle would be 180 km per
hour! Although it is unlikely that the surveyor would be travelling at such speeds over rough terrain this
example illustrates the potential of the system.

On the negative side, GPS has limits as to the practical precision that can be achieved. Height of
one instrument relative to another nearby instrument may be obtained with a precision of about 0.02 m.
However, the heights are related to the World Geodetic System 1984 (WGS84) ellipsoidal model of the
Earth and to be useful would need to be converted to heights above the local datum. The relationship
between WGS84 and the local datum will not be constant and will vary smoothly by up to 0.1 m per
kilometre across the area of interest. Therefore external data will be required to apply the appropriate
corrections to make the GPS derived heights useful to the surveyor. If the GPS antenna is mounted on a
vehicle then the relationship between the antenna and the ground will vary as the vehicle bounces across
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the terrain adding further random error to the heights of individual points. This may not be so important if
the purpose to the heighting is to determine volume of ground to be cut or filled, as the errors in individual
heights will tend to cancel each other out.

GPS equipment is rather more expensive than conventional levelling equipment or total stations. GPS
equipment works very well in a GPS friendly environment, i.e. where there is an open sky. It becomes
much less useful if there are many obstructions such as tall buildings or under tree canopies. In such cases
conventional techniques would be more appropriate.



4

Distance measurement

Distance is one of the fundamental measurements in surveying. Although frequently measured as a spatial
distance (sloping distance) in three-dimensional space, usually it is the horizontal component which is
required.

Distance is required in many instances, e.g. to give scale to a network of control points, to fix the position
of topographic detail by offsets or polar coordinates, to set out the position of a point in construction
work, etc.

The basic methods of measuring distance are, at the present time, by taping or by electromagnetic
(or electro-optical ) distance measurement, generally designated as EDM. For very rough reconnaissance
surveys or approximate estimates pacing may be suitable.

For distances over 5 km, GPS satellite methods, which can measure the vectors between two points
accurate to 1 ppm are usually more suitable.

4.1 TAPES

Tapes come in a variety of lengths and materials. For engineering work the lengths are generally 10 m,
30 m, 50 m and 100 m.

Linen or glass fibre tapes may be used for general use, where precision is not a prime consideration.
The linen tapes are made from high quality linen, combined with metal fibres to increase their strength.
They are sometimes encased in plastic boxes with recessed handles. These tapes are often graduated in
5-mm intervals only.

More precise versions of the above tapes are made of steel and graduated in millimetres.
For high-accuracy work, steel bands mounted in an open frame are used. They are standardized so that

they measure their nominal length at a designated temperature usually 20◦C and at a designated applied
tension usually between 50 N to 80 N. This information is clearly printed on the zero end of the tape.
Figure 4.1 shows a sample of the equipment.

For the most precise work, invar tapes made from 35% nickel and 65% steel are available. The singular
advantage of such tapes is that they have a negligible coefficient of expansion compared with steel, and
hence temperature variations are not critical. Their disadvantages are that the metal is soft and weak, whilst
the price is more than ten times that of steel tapes. An alternative tape, called a Lovar tape, is roughly,
midway between steel and invar.

Much ancillary equipment is necessary in the actual taping process, e.g.

(1) Ranging rods are made of wood or steel, 2 m long and 25 mm in diameter, painted alternately red and
white and have pointed metal shoes to allow them to be thrust into the ground. They are generally used
to align a straight line between two points.

(2) Chaining arrows made from No. 12 steel wire are also used to mark the tape lengths (Figure 4.2).
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Fig. 4.1 (a) Linen tape, (b) fibreglass, (c) steel, (d) steel band, (e) spring balance

Arrow

Fig. 4.2 Using an arrow to mark the position of the end of the tape
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Fig. 4.3 (a) Measuring plate, (b) spring balance tensioning the tape

(3) Spring balances are generally used with roller-grips or tapeclamps to grip the tape firmly when the
standard tension is applied. As it is quite difficult to maintain the exact tension required with a spring
balance, it may be replaced by a tension handle, which ensures the application of correct tension.

(4) Field thermometers are also necessary to record the tape temperature at the time of measurement,
thereby permitting the computation of tape corrections when the temperature varies from standard.
These thermometers are metal cased and can be clipped onto the tape if necessary, or simply laid on
the ground alongside the tape but must be shaded from the direct rays of the sun.

(5) Hand levels may be used to ensure that the tape is horizontal. This is basically a hand-held tube
incorporating a spirit bubble to ensure a horizontal line of sight. Alternatively, an Abney level may be
used to measure the slope of the ground.

(6) Plumb-bobs may be necessary if stepped taping is used.
(7) Measuring plates are necessary in rough ground, to afford a mark against which the tape may be read.

Figure 4.3 shows the tensioned tape being read against the edge of such a plate. The corners of the
triangular plate are turned down to form grips, when the plate is pressed into the earth and thereby
prevent its movement.

In addition to the above, light oil and cleaning rags should always be available to clean and oil the tape
after use.

4.2 FIELD WORK

4.2.1 Measuring along the ground (Figures 4.3 and 4.4)

The most accurate way to measure distance with a steel band is to measure the distance between pre-set
measuring marks, rather than attempt to mark the end of each tape length. The procedure is as follows:

(1) The survey points to be measured are defined by nails in pegs and should be set flush with the ground
surface. Ranging rods are then set behind each peg, in the line of measurement.
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Fig. 4.4 Plan view

(2) Using a linen tape, arrows are aligned between the two points at intervals less than a tape length.
Measuring plates are then set firmly in the ground at these points, with their measuring edge normal
to the direction of taping.

(3) The steel band is then carefully laid out, in a straight line between the survey point and the first plate.
One end of the tape is firmly anchored, whilst tension is slowly applied at the other end. At the exact
instant of standard tension, both ends of the tape are read simultaneously against the survey station
point and the measuring plate edge respectively, on command from the person applying the tension.
The tension is eased and the whole process repeated at least four times or until a good set of results is
obtained.

(4) When reading the tape, the metres, decimetres and centimetres should be noted as the tension is being
applied; thus on the command ‘to read’, only the millimetres are required.

(5) The readings are noted by the booker and quickly subtracted from each other to give the length of the
measured bay.

(6) In addition to ‘rear’ and ‘fore’ readings, the tape temperature is recorded, the value of the applied
tension, which may in some instances be greater than standard, and the slope or difference in level of
the tape ends are also recorded.

(7) This method requires a survey party of five; one to anchor the tape end, one to apply tension, two
observers to read the tape and one booker.

(8) The process is repeated for each bay of the line being measured, care being taken not to move the first
measuring plate, which is the start of the second bay, and so on.

(9) The data may be booked as follows:

Bay Rear Fore Difference Temp. Tension Slope Remarks

A–1 0.244 29.368 29.124 08◦C 70 N 5◦ 30′ Standard values
0.271 29.393 29.122 20◦C, 70 N
0.265 29.389 29.124
0.259 29.382 29.123 Range 2 mm

Mean = 29.123

1–2 2nd bay

The mean result is then corrected for:

(1) Tape standardization.
(2) Temperature.
(3) Tension (if necessary).
(4) Slope.

The final total distance may then be reduced to its equivalent MSL or mean site level.
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4.2.2 Measuring in catenary

Although the measurement of base lines in catenary is virtually obsolete, it is still the most accurate method
of obtaining relatively short distances over rough terrain and much better than can be obtained with GPS
or even a total station. The only difference from the procedures outlined above is that the tape is raised off
the ground between two measuring marks and so the tape sags in a curve known as a catenary.

Figure 4.5 shows the basic set-up, with tension applied by levering back on a ranging rod held through
the handle of the tape (Figure 4.6).

Figure 4.7 shows a typical measuring head with magnifier attached. In addition to the corrections already
outlined, a further correction for sag in the tape is necessary.

For extra precision the measuring heads may be aligned in a straight line by theodolite, the difference
in height of the heads being obtained by levelling to a staff held directly on the heads.

Fig. 4.5 Suspended tape

Fig. 4.6 Ranging rod used to apply tension to a steel band suspended in catenary
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Fig. 4.7 Measuring head

4.2.3 Step measurement

Step measurement is the process of breaking the overall distance down into manageable short sections,
each much less than a whole tape length. The tape is stretched horizontally and a plumb-bob suspended
from the elevated end of the tape. This method of measurement over sloping ground should be avoided if
high accuracy is required. The main source of error lies in attempting to accurately locate the suspended
end of the tape, as shown in Figure 4.8.

Fig. 4.8 Step measurement
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The steps should be kept short enough to minimize sag in the tape. Thus the sum of the steps equals the
horizontal distance required.

4.3 DISTANCE ADJUSTMENT

To eliminate or minimize the systematic errors of taping, it is necessary to adjust each measured bay to its
final horizontal equivalent as follows.

4.3.1 Standardization

During a period of use, a tape will gradually alter in length for a variety of reasons. The amount of
change can be found by having the tape standardized at either the National Physical Laboratory (NPL)
for invar tapes or the Department of Trade and Industry (DTI) for steel tapes, or by comparing it with a
reference tape kept purely for this purpose. The tape may then be specified as being 30.003 m at 20◦C and
70 N tension, or as 30 m exactly at a temperature other than standard.

Worked examples

Example 4.1. A distance of 220.450 m was measured with a steel band of nominal length 30 m. On
standardization the tape was found to be 30.003 m. Calculate the correct measured distance, assuming the
error is evenly distributed throughout the tape.

Error per 30 m = 3 mm

∴ Correction for total length =
(

220.450

30

)
× 3 mm = 22 mm

∴ Correct length is 220.450 + 0.022 = 220.472 m

Note that:

(1) Figure 4.9 shows that when the tape is too long, the distance measured appears too short, and the
correction is therefore positive. The reverse is the case when the tape is too short.

(2) When setting out a distance with a tape the rules in (1) are reversed.
(3) It is better to compute Example 4.1 on the basis of the correction (as shown), rather than the total

corrected length. In this way fewer significant figures are required.

Example 4.2. A 30-m band standardized at 20◦C was found to be 30.003 m. At what temperature is the
tape exactly 30 m? Coefficient of expansion of steel = 0.000 011/◦C.

Expansion per 30 m per ◦C = 0.000 011 × 30 = 0.000 33 m

Expansion per 30 m per 9◦C = 0.000 33 × 9 = 0.003 m

So the tape is 30 m at 20◦C − 9◦C = 11◦C

Alternatively, using equation (4.1) where �t = (ts − ta), then

ta = Ct

KL
+ ts = −

(
0.003

0.000 011 × 30

)
+ 20◦C = 11◦C



114 Engineering Surveying

Tape too long – recorded measurement (29.9 m) too short

Tape too short – recorded measurement (30.1 m) too long

Length to be measured, 30 m

10 m 20 m 30 m

30 m20 m10 m

Fig. 4.9 Measurements with short and stretched tapes

where Ct = tape correction, K = coefficient of thermal expansion, L = measured length of the tape (m),
ta = actual temperature and ts = standard temperature (◦C). This then becomes the standard temperature
for future temperature corrections.

4.3.2 Temperature

Tapes are usually standardized at 20◦C. Any variation above or below this value will cause the tape to
expand or contract, giving rise to systematic errors. Difficulty of obtaining true temperatures of the tapes
lead to the use of invar tapes. Invar is a nickel-steel alloy with a very low coefficient of expansion.

Coefficient of expansion of steel K = 11.2 × 10−6 per ◦C

Coefficient of expansion of invar K = 0.5 × 10−6 per ◦C

Temperature correction Ct = KL�t (4.1)

where �t = difference between the standard and field temperatures (◦C) = (ts − ta).
The sign of the correction is in accordance with the rule specified in note (1) above.

4.3.3 Tension

Generally the tape is used under standard tension, in which case there is no correction. It may, however,
be necessary in certain instances to apply a tension greater than standard. From Hooke’s law:

stress = strain × a constant

This constant is the same for a given material and is called the modulus of elasticity (E). Since strain is
a non-dimensional quantity, E has the same dimensions as stress, i.e. N/mm2:

∴ E = Direct stress

Corresponding strain
= �T

A
÷ CT

L

∴ CT = L × �T

AE
(4.2)

�T is normally the total stress acting on the cross-section, but as the tape would be standardized under
tension, �T in this case is the amount of stress greater than standard. Therefore �T is the difference
between field and standard tension. This value may be measured in the field in kilograms and should be
converted to newtons (N) for compatibility with the other units used in the formula, i.e. 1 kgf = 9.806 65 N.
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Fig. 4.10 Catenary

E is modulus of elasticity in N/mm2; A is cross-sectional area of the tape in mm2; L is measured length
in m; and CT is the extension and thus correction to the tape length in m. As the tape is stretched under the
extra tension, the correction is positive.

4.3.4 Sag

When a tape is suspended between two measuring heads, A and B, both at the same level, the shape it takes
up is a catenary (Figure 4.10). If C is the lowest point on the curve, then on length CB there are three forces
acting, namely the tension T at B, T0 at C and the weight of portion CB, where w is the weight per unit
length and s is the arc length CB. Thus CB must be in equilibrium under the action of these three forces.
Hence

Resolving vertically T sin θ = ws

Resolving horizontally T cos θ = T0

∴ tan θ = ws

T0

For a small increment of the tape

dx

ds
= cos θ = (1 + tan2 θ )−

1
2 =

(
1 + w2s2

T2
0

)− 1
2

=
(

1 − w2s2

2T2
0

· · ·
)

∴ x =
∫ (

1 − w2s2

2T2
0

)
ds

= s − w2s3

6T2
0

+ K

When x = 0, s = 0, ∴ K = 0 ∴ x = s − w2s3

6T2
0

The sag correction for the whole span ACB = Cs = 2(s − x) = 2

(
w2s3

6T2
0

)

but s = L/2 ∴ Cs = w2L3

24T2
0

= w2L3

24T2
for small values of θ (4.3)

i.e. T0 ≈ T0 cos θ ≈ T
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where w = weight per unit length (N/m)
T = tension applied (N)
L = recorded length (m)

Cs = correction (m)

As w = W /L, where W is the total weight of the tape, then by substitution in equation (4.3):

Cs = W2L

24T2
(4.4)

Although this equation is correct, the sag correction is proportional to the cube of the length as in
equation (4.3) because by increasing the length of the tape you increase its total weight.

Equations (4.3) and (4.4) apply only to tapes standardized on the flat and are always negative. When a
tape is standardized in catenary, i.e. it records the horizontal distance when hanging in sag, no correction
is necessary provided the applied tension, say TA, equals the standard tension Ts. Should the tension TA

exceed the standard, then a sag correction is necessary for the excess tension (TA − TS) and

Cs = w2L3

24

(
1

T2
A

− 1

T2
S

)
(4.5)

In this case the correction will be positive, in accordance with the basic rule.

4.3.5 Slope

If the difference in height of the two measuring heads is h, the slope distance L and the horizontal
equivalent D, then by Pythagoras:

D = (L2 − h2)
1
2 (4.6)

Alternatively if the vertical angle of the slope of the ground is measured then:

D = L cos θ (4.7)

and the correction Cθ = L − D.

Cθ = L(1 − cos θ ) (4.8)

4.3.6 Altitude

If the surveys are to be connected to the national mapping system of a country, the distances will need to be
reduced to the common datum of that system, namely MSL. Alternatively, if the engineering scheme is of a
local nature, distances may be reduced to the mean level of the area. This has the advantage that setting-out
distances on the ground are, without sensible error, equal to distances computed from coordinates in the
mean datum plane.

Consider Figure 4.11 in which a distance L is measured in a plane situated at a height H above MSL.

By similar triangles M = R

R + H
× L

∴ Correction CM = L − M = L − RL

R + H
= L

(
1 − R

R + H

)
= LH

R + H

As H is normally negligible compared with R in the denominator

CM = LH

R
(4.9)
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Fig. 4.11 Distance and altitude

The correction is negative for surface work above MSL or mean level of the area but may be positive for
tunnelling or mining work below MSL or mean level of the area.

4.4 ERRORS IN TAPING

Methods of measuring with a tape have been dealt with, although it must be said that training in the
methods is best undertaken in the field. The quality of the end results, however, can only be appreciated
by an understanding of the errors involved. Of all the methods of measuring, taping is probably the least
automated and therefore most susceptible to personal and natural errors. The majority of errors affecting
taping are systematic, not random, and their effect will therefore increase with the number of bays measured.

The errors arise due to defects in the equipment used; natural errors due to weather conditions and
human errors resulting in tape-reading errors, etc. They will now be dealt with individually.

4.4.1 Standardization

Taping cannot be more accurate than the accuracy to which the tape is standardized. It should therefore be
routine practice to have one tape standardized by the appropriate authority.

This is done on payment of a small fee; the tape is returned with a certificate of standardization quoting
the ‘true’ length of the tape and standard conditions of temperature and tension. This tape is then kept
purely as a standard with which to compare working tapes.

Alternatively a base line may be established on site and its length obtained by repeated measurements
using, say, an invar tape hired purely for that purpose. The calibration base should be then checked at
regular intervals to confirm its stability.

4.4.2 Temperature

When measuring with a steel tape, neglecting temperature effects could be the main source of error. For
example, in winter conditions in the UK, with temperatures at 0◦C, a 50 m tape, standardized at 20◦C,
would contract by

11.2 × 10−6 × 50 × 20 = 11.2 mm per 50 m

Thus even for ordinary precision measurement, the temperature effect cannot be ignored.
Even if the tape temperature is measured there may be an index error in the thermometer used, part of the

tape may be in shade and part in the sun, or the thermometer may record ground or air temperature which
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may not be the same as the tape temperature. Although the use of an invar tape would resolve the problem,
this is rarely, if ever, a solution applied on site. This is due to the high cost of such tapes and their fragility.
The effect of an error in temperature measurement can be assessed by differentiating equation (4.1), i.e.

δCt = KL δ(�t)

If L = 50 m and the error in temperature is +2◦C then δCt = +1.1 mm. However, if this error remained
constant the total error in the measured line would be proportional to the number of tape lengths. Every effort
should therefore be made to obtain an accurate value for tape temperature using calibrated thermometers.

4.4.3 Tension

If the tension in the tape is greater or less than standard the tape will stretch or become shorter. Tension
applied without the aid of a spring balance or tension handle may vary from length to length, resulting
in random error. Tensioning equipment containing error would produce a systematic error proportional to
the number of tape lengths. The effect of this error is greater on a light tape having a small cross-sectional
area than on a heavy tape.

Consider a 50 m tape with a cross-sectional area of 4 mm2, a standard tension of 50 N and a value for
the modulus of elasticity of E = 210 kN/mm2. Under a pull of 90 N the tape would stretch by

CT = 50 000 × 40

4 × 210 × 103
= 2.4 mm

As this value would be multiplied by the number of tape lengths measured it is very necessary to cater for
tension in precision measurement, using calibrated tensioning equipment.

4.4.4 Sag

The correction for sag is equal to the difference in length between the arc and its subtended chord and is
always negative. As the sag correction is a function of the weight of the tape, it will be greater for heavy
tapes than light ones. Correct tension is also very important.

Consider a 50 m heavy tape of W = 1.7 kg with a standard tension of 80 N. From equation (4.4):

Cs = (1.7 × 9.81)2 × 50

24 × 802
= 0.090 m

and indicates the large corrections necessary.
If the above tape was supported throughout its length to form three equal spans, the correction per span

reduces to 0.003 m. This important result shows that the sag correction could be virtually eliminated by
the choice of appropriate support.

The effect of an error in tensioning can be found by differentiating equation (4.4) with respect to T :

δCs = −W2L δT /12T3

In the above case, if the error in tensioning was +5 N, then the error in the correction for sag would
be −0.01 m. This result indicates the importance of calibrating the tensioning equipment.

The effect of error in the weight (W ) of the tape can be found by differentiating equation (4.4) with
respect to W :

δCs = WL δW /12T2

and shows that an error of +0.1 kg in W produces an error of +0.011 m in the sag correction.
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4.4.5 Slope

Correction for slope is always important.
Consider a 50 m tape measuring on a slope with a difference in height of 5 m between the ends.

Upon taking the first term of the binomial expansion of equation (4.4) the correction for slope may be
approximated as:

Ch = −h2/2L = −25/100 = −0.250 m

and would constitute a major source of error if ignored. The second-order error resulting from not using
the second term h4/8L3 is less than 1 mm.

Error in the measurement of the difference in height (h) can be assessed using

δCh = −h δh/L

Assuming an error of +0.005 m there would be an error of – 0.0005 m (δCh). Thus error in obtaining the
difference in height is negligible and as it is proportional to h, would get smaller on less steep slopes.

By differentiating equation (4.4) with respect to θ , we have

δCθ = L sin θ δθ

so δθ ′′ = δCθ × 206 265/L sin θ

If L = 50 m is required to an accuracy of ±5 mm on a slope of 5◦ then

δθ ′′ = 0.005 × 206 265/50 sin 5◦ = 237′′ ≈ 04′

This level of accuracy could easily be achieved using an Abney level to measure slope. As the slopes get
less steep the accuracy required is further reduced; however, for the much greater distances obtained using
EDM, the measurement of vertical angles is much more critical. Indeed, if the accuracy required above
is changed to, say, ±1 mm, the angular accuracy required changes to ±47′′ and the angle measurement
would require the use of a theodolite.

4.4.6 Misalignment

If the tape is not in a straight line between the two points whose distance apart is being measured, then the
error in the horizontal plane can be calculated in a similar manner to the error due to slope in the vertical
plane. If the amount by which the end of the tape is off line is e, then the resultant error is e2/2L.

A 50 m tape, off line at one end by 0.500 m (an excessive amount), would lead to an error of 2.5 mm
in the measured distance. The error is systematic and will obviously result in a recorded distance longer
than the actual distance. If we consider a more realistic error in misalignment of, say, 0.05 m, the resulting
error is 0.025 mm and completely negligible. Thus for the majority of taping, alignment by eye is quite
adequate.

4.4.7 Plumbing

If stepped measurement is used, locating the end of the tape by plumb-bob will inevitably result in error.
Plumbing at its best will probably produce a random error of about ±3 mm. In difficult, windy conditions
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it would be impossible to use, unless sheltered from the wind by some kind of makeshift wind break,
combined with careful steadying of the bob itself.

4.4.8 Incorrect reading of the tape

Reading errors are random and quite prevalent amongst beginners. Care and practice are needed to
obviate them.

4.4.9 Booking error

Booking error can be reduced by adopting the process of the booker reading the measurement back to the
observer for checking purposes. However, when measuring to millimetres with tensioning equipment, the
reading has usually altered by the time it comes to check it. Repeated measurements will generally reveal
booking errors, and thus distances should always be measured more than once.

4.5 ACCURACIES

If a great deal of taping measurement is to take place, then it is advisable to construct graphs of all the
corrections for slope, temperature, tension and sag, for a variety of different conditions. In this way
the corrections can be obtained rapidly and applied more easily. Such an approach rapidly produces in
the measurer a ‘feel’ for the effect of errors in taping.

Random errors increase as the square root of the distance but systematic errors are proportional to
distance and reading errors are independent of distance so it is not easy to produce a precise assessment of
taping accuracies under variable conditions. Considering taping with a standardized tape corrected only for
slope, one could expect an accuracy in the region of 1 in 5000 to 1 in 10 000. With extra care and correcting
for all error sources the accuracy would rise to the region of 1 in 30 000. Precise measurement in catenary
may be made with accuracies of 1 in 100 000 and better. However, the type of catenary measurement
carried out on general site work would probably achieve about 1 in 50 000.

The worked examples should now be carefully studied as they illustrate the methods of applying these
corrections both for measurement and setting out.

As previously mentioned, the signs of the corrections for measurement are reversed when setting out.
As shown, measuring with a tape which is too long produces a smaller measured distance which requires
positive correction. However, a tape that is too long will set out a distance that is too long and will require
a negative correction. This can be expressed as follows:

Horizontal distance (D) = measured distance (M) + the algebraic sum of the corrections (C)

i.e. D = M + C

When setting out, the horizontal distance to be set out is known and the engineer needs to know its
equivalent measured distance on sloping ground to the accuracy required. Therefore M = D − C, which
has the effect of automatically reversing the signs of the correction. Therefore, compute the correc-
tions in the normal way as if for a measured distance and then substitute the algebraic sum in the above
equation.

Worked examples

Example 4.3. A base line was measured in catenary in four lengths giving 30.126, 29.973, 30.066 and
22.536 m. The differences of level were respectively 0.45, 0.60, 0.30 and 0.45 m. The temperature
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during observation was 10◦C and the tension applied 15 kgf. The tape was standardized as 30 m, at 20◦C,
on the flat with a tension of 5 kg. The coefficient of expansion was 0.000 011 per ◦C, the weight of the tape
1 kg, the cross-sectional area 3 mm2, E = 210 × 103 N/mm2 (210 kN/mm2), gravitational acceleration
g = 9.806 65 m/s2.

(a) Quote each equation used and calculate the length of the base.
(b) What tension should have been applied to eliminate the sag correction? (LU)

(a) As the field tension and temperature are constant throughout, the first three corrections may be
applied to the base as a whole, i.e. L = 112.701 m, with negligible error.

Tension + −

CT = L�T

AE
= 112.701 × (10 × 9.806 65)

3 × 210 × 103
= +0.0176

Temperature

Ct = LK�t = 112.701 × 0.000 011 × 10 = −0.0124

Sag

Cs = LW2

24T2
= 112.701 × 12

24 × 152
= −0.0210

Slope

Ch = h2

2L
= 1

2 × 30
(0.452 + 0.602 + 0.302) + 0.452

2 × 22.536
= −0.0154

+0.0176 −0.0488

Horizontal length of base (D) = measured length (M) + sum of corrections (C)

= 112.701 m + (−0.031)

= 112.670 m

N .B. In the slope correction the first three bays have been rounded off to 30 m, the resultant second-
order error being negligible.

Consider the situation where 112.670 m is the horizontal distance to be set out on site. The
equivalent measured distance would be:

M = D − C

= 112.670 − (−0.031) = 112.701 m

(b) To find the applied tension necessary to eliminate the sag correction, equate the two equations:

�T

AE
= W2

24T2
A
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where �T is the difference between the applied and standard tensions, i.e. (TA − TS).

∴ TA − TS

AE
= W2

24T2
A

∴ T3
A − T2

ATS − AEW2

24
= 0

Substituting for TS , W , A and E, making sure to convert TS and W to newtons gives

T3
A − 49T2

A − 2 524 653 = 0

Let TA = (T + x)

then (T + x)3 − 49(T + x)2 − 2 524 653 = 0

T3
(

1 + x

T

)3 − 49T2
(

1 + x

T

)2 − 2 524 653 = 0

Expanding the brackets binomially gives

T3
(

1 + 3x

T

)
− 49T2

(
1 + 2x

T

)
− 2 524 653 = 0

∴ T3 + 3T2x − 49T2 − 98Tx − 2 524 653 = 0

∴ x = 2 524 653 − T3 + 49T2

3T2 − 98T

assuming T = 15 kgf = 147 N, then x = 75 N

∴ at the first approximation TA = (T + x) = 222 N

Example 4.4. A base line was measured in catenary as shown below, with a tape of nominal length 30 m.
The tape measured 30.015 m when standardized in catenary at 20◦C and 5 kgf tension. If the mean reduced
level of the base was 30.50 m OD, calculate its true length at mean sea level.

Given: weight per unit length of tape = 0.03 kg/m (w); density of steel = 7690 kg/m3(ρ); coefficient
of expansion = 11 × 10−6 per ◦C; E = 210 × 103 N/mm2; gravitational acceleration g = 9.806 65 m/s2;
radius of the Earth = 6.4 × 106 m (R). (KU)

Bay Measured length Temperature Applied tension Difference in level
(m) (◦C) (kgf ) (m)

1 30.050 21.6 5 0.750
2 30.064 21.6 5 0.345
3 30.095 24.0 5 1.420
4 30.047 24.0 5 0.400
5 30.041 24.0 7 –



Distance measurement 123

Standardization: + −
Error/30 m = 0.015 m
Total length of base = 150.97 m

∴ Correction = 150.297

30
× 0.015 = +0.0752

Temperature:

Bays 1 and 2 Ct = 60 × 11 × 10−6 × 1.6 = 0.0010 m
Bays 3, 4 and 5 Ct = 90 × 11 × 10−6 × 4 = 0.0040 m

}
+0.0050

(Second-order error negligible in rounding off bays to 30 m.)

Tension:

Bay 5 only CT = L�T

AE
, changing �T to newtons

where cross-sectional area A = w

ρ

∴ A = 0.03

7690
× 106 = 4 mm2

∴ CT = 30 × 2 × 9.81

4 × 210 × 103
= +0.0007

Slope:

Ch = h2

2L
− 1

2 × 30
(0.7502 + 0.3452 + 1.4202 + 0.4002) = −0.0476

The second-order error in rounding off to 30 m is negligible in this
case also. However, care should be taken when many bays are
involved, as their accumulative effect may be significant.

Sag:

Bay 5 only Cs = L3w3

24

(
1

T2
S

− 1

T2
A

)

= 303 × 0.032

24

(
1

52
− 1

72

)
= +0.0006

Altitude:

CM = LH

R
= 150 × 30.5

6.4 × 106
= −0.0007

+0.0815 −0.0483

Therefore Total correction = +0.0332 m
Hence Corrected length = 150.297 + 0.0332 = 150.3302 m

Example 4.5. (a) A standard base was established by accurately measuring with a steel tape the distance
between fixed marks on a level bed. The mean distance recorded was 24.984 m at a temperature of 18◦C
and an applied tension of 155 N. The tape used had recently been standardized in catenary and was 30 m
in length at 20◦C and 100 N tension. Calculate the true length between the fixed marks given: total weight
of the tape = 0.90 kg; coefficient of expansion of steel = 11 × 10−6 per ◦C; cross-sectional area = 2 mm2;
E = 210 × 103 N/mm2; gravitational acceleration = 9.807 m/s2.
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(b) At a later date the tape was used to measure a 30-m bay in catenary. The difference in level of the
measuring heads was 1 m, with an error of 3 mm. Tests carried out on the spring balance indicated that the
applied tension of 100 N had an error of 2 N. Ignoring all other sources of error, what is the probable error
in the measured bay? (KU)

(a) If the tape was standardized in catenary, then when laid on the flat it would be too long by an amount
equal to the sag correction. This amount, in effect, then becomes the standardization correction:

Error per 30 m = LW2

24T2
S

= 30 × (0.90 × 9.807)2

24 × 1002
= 0.0097 m

∴ Correction = 0.0097 × 24.984

30
= 0.0081 m

Tension = 24.984 × 55

2 × 210 × 103
= 0.0033 m

Temperature = 24.984 × 11 × 10−6 × 2 = −0.0006 m

∴ Total correction = 0.0108 m

∴ Corrected length = 24.984 + 0.011 = 24.995 m

(b) Effect of levelling error: Ch = h2

2L

∴ δCh = h × δh

L
= 1 × 0.003

30
= 0.0001 m

Effect of tensioning error: Sag Cs = LW2

24T2

∴ δCs = − LW2

12T3
δT

∴ δCs = 30 × (0.9 × 9.807)2 × 2

12 × 1003
= 0.0004 m

Tension CT = L�T

AE

∴ δCT = L × δ(�T )

A × E
= 30 × 2

2 × 210 × 103
= 0.0001 m

∴ Total error = 0.0006 m

Example 4.6. A 30-m invar reference tape was standardized on the flat and found to be 30.0501 m at 20◦C
and 88 N tension. It was used to measure the first bay of a base line in catenary, the mean recorded length
being 30.4500 m.

Using a field tape, the mean length of the same bay was found to be 30.4588 m. The applied tension
was 88 N at a constant temperature of 15◦C in both cases.

The remaining bays were now measured in catenary, using the field tape only. The mean length of the
second bay was 30.5500 m at 13◦C and 100 N tension. Calculate its reduced length given: cross-sectional
area = 2 mm2; coefficient of expansion of invar = 6 × 10−7 per ◦C; mass of tape per unit length =
0.02 kg/m; difference in height of the measuring heads = 0.5 m; mean altitude of the base = 250 m OD;
radius of the Earth = 6.4×106 m; gravitational acceleration = 9.807 m/s2; Young’s modulus of elasticity =
210 kN/mm2. (KU)
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To find the corrected length of the first bay using the reference tape:

Standardization: + −
Error per 30 m = 0.0501 m
∴ Correction for 30.4500 m = +0.0508
Temperature = 30 × 6 × 10−7 × 5 = −0.0001

Sag = 303 × (0.02 × 9.807)2

24 × 882
= −0.0056

+0.0508 −0.0057

Therefore Total correction = +0.0451 m
Hence Corrected length = 30.4500 + 0.0451 = 30.4951 m

(using reference tape). Field tape corrected for sag measures 30.4588 – 0.0056 = 30.4532 m.
Thus the field tape is measuring too short by 0.0419 m (30.4951 – 30.4532) and is therefore too long

by this amount. Therefore field tape is 30.0419 m at 15◦C and 88 N.

To find length of second bay:

Standardization: + −
Error per 30 m = 0.0419 m

∴ Correction = 30.5500

30
× 0.0419 = +0.0427

Temperature = 30 × 6 × 10−7 × 2 = −0.000 04

Tension = 30 × 12

2 × 210 × 103
= +0.0009

Sag = 303 × (0.02 × 9.807)2

24 × 1002
= −0.0043

Slope = 0.5002

2 × 30.5500
= −0.0041

Altitude = 30.5500 × 250

6.4 × 106
= −0.0093

+0.0436 −0.0177

Therefore Total correction = +0.0259 m
Hence Corrected length of second bay = 30.5500 + 0.0259 = 30.5759 m

N .B. Rounding off the measured length to 30 m is permissible only when the resulting error has a negligible
effect on the final distance.

Example 4.7. A copper transmission line of 12 mm diameter is stretched between two points 300 m apart,
at the same level with a tension of 5 kN, when the temperature is 32◦C. It is necessary to define its
limiting positions when the temperature varies. Making use of the corrections for sag, temperature and
elasticity normally applied to base-line measurements by a tape in catenary, find the tension at a temperature
of −12◦C and the sag in the two cases.
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Young’s modulus for copper is 70 kN/mm2, its density 9000 kg/m3 and its coefficient of linear expansion
17.0 ×10−6/◦C. (LU)

In order first of all to find the amount of sag in the above two cases, one must find (a) the weight per
unit length and (b) the sag length of the wire.

(a) w = area × density = πr2ρ

= 3.142 × 0.0062 × 9000 = 1.02 kg/m

(b) at 32◦C, the sag length of wire = LH +
(

L3w2

24T2

)

where L is itself the sag length. Thus the first approximation for L of 300 m must be used.

∴ Sag length = 300 +
(

3003 × (1.02 × 9.807)2

24 × 50002

)
= 304.5 m

Second approximation = 300 +
(

304.53 × (1.02 × 9.807)2

24 × 50002

)

= 304.71 m = L1

∴ Sag = y1 = wL2
1

8T
= (1.02 × 9.807) × 304.712

8 × 5000
= 23.22 m

At −12◦C there will be a reduction in L1 of

(L1K�t) = 304.71 × 17.0 × 10−6 × 44 = 0.23 m

∴ L2 = 304.71 − 0.23 = 304.48 m

y1 ∝ L2
1 ∴ y2 = y1

(
L2

y1

)2

= 23.22
(304.48)2

(304.71)2
= 23.18 m

Similarly, y1 ∝ 1/T1 ∴ T2 = T1

(
y1

y2

)
= 5000

(
23.22

23.18

)
= 5009 N or 5.009 kN

Exercises

(4.1) A tape of nominal length 30 m was standardized on the flat at the NPL, and found to be 30.0520 m
at 20◦C and 44 N of tension. It was then used to measure a reference bay in catenary and gave a mean
distance of 30.5500 m at 15◦C and 88 N tension. As the weight of the tape was unknown, the sag at the
mid-point of the tape was measured and found to be 0.170 m.

Given: cross-sectional area of tape = 2 mm2; Young’s modulus of elasticity = 200 × 103 N/mm2;
coefficient of expansion = 11.25 × 10−6 per ◦C; and difference in height of measuring heads = 0.320 m.
Find the horizontal length of the bay. If the error in the measurement of sag was ±0.001 m, what is the
resultant error in the sag correction? What does this resultant error indicate about the accuracy to which
the sag at the mid-point of the tape was measured? (KU)

(Answer: 30.5995 m and ±0.000 03 m)

(4.2) The three bays of a base line were measured by a steel tape in catenary as 30.084, 29.973 and
25.233 m, under respective pulls of 7, 7 and 5 kg, temperatures of 12◦, 13◦ and 17◦C and differences of
level of supports of 0.3, 0.7 and 0.7 m. If the tape was standardized on the flat at a temperature of 15◦C
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under a pull of 4.5 kg, what are the lengths of the bays? 30 m of tape is exactly 1 kg with steel at 8300 kg/m3,
with a coefficient of expansion of 0.000 011 per ◦C and E = 210 × 103 N/mm2. (LU)

(Answer: 30.057 m, 29.940 m and 25.194 m)

(4.3) The details given below refer to the measurement of the first 30-m bay of a base line.
Determine the correct length of the bay reduced to mean sea level.

With the tape hanging in a catenary at a tension of 10 kg and at a mean temperature of 13◦C, the recorded
length was 30.0247 m. The difference in height between the ends was 0.456 m and the site was 500 m
above MSL. The tape had previously been standardized in catenary at a tension of 7 kg and a temperature
of 16◦C, and the distance between zeros was 30.0126 m.

R = 6.4 × 106 m; weight of tape per m = 0.02 kg; sectional area of tape = 3.6 mm2; E = 210 ×
103 N/mm2; temperature coefficient of expansion of tape = 0.000 011 per ◦C. (ICE)

(Answer: 30.0364 m)

(4.4) The following data refer to a section of base line measured by a tape hung in catenary.

Bay Observed length Mean temperature Reduced levels of index marks
(m) (◦C) (m)

1 30.034 25.2 293.235 293.610
2 30.109 25.4 293.610 294.030
3 30.198 25.1 294.030 294.498
4 30.075 25.0 294.498 294.000
5 30.121 24.8 294.000 293.355

Length of tape between 0 and 30 m graduations when horizontal at 20◦C and under 5 kg tension is
29.9988 m; cross-sectional area of tape = 2.68 mm2; tension used in the field = 10 kg; temperature
coefficient of expansion of tape = 11.16 × 10−6 per ◦C; elastic modulus for material of tape = 20.4 ×
104 N/mm2; weight of tape per metre length = 0.02 kg; mean radius of the Earth = 6.4×106 m. Calculate
the corrected length of this section of the line. (LU)

(Answer: 150.507 m)

4.6 ELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)

The main instrument for surveyors on site today is the ‘total station’. It is an instrument that combines
the angle measurements that could be obtained with a traditional theodolite with electronic distance
measurements. Taping distance, with all its associated problems, has been rendered obsolete for all base-
line measurement. Distance can now be measured easily, quickly and with great accuracy, regardless of
terrain conditions. Modern total stations as in Figure 4.12 and Figure 4.13 contain algorithms for reducing
the slope distance to its horizontal and vertical components. For engineering surveys total stations with
automatic data logging are now standard equipment on site. A standard measurement of distance takes
between 1.5 and 3 s. Automatic repeated measurements can be used to improve reliability in difficult



Fig. 4.12 Total station – courtesy of Leica Geosystems

Fig. 4.13 Total station – courtesy of Topcon
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atmospheric conditions. Tracking modes, for the setting out of distance, repeat the measurement several
times a second. Total stations with their inbuilt EDM enable:

(1) Traversing over great distances, with much greater control of swing errors.
(2) The inclusion of many more measured distances into control networks, rendering classical triangulation

obsolete. This results in much greater control of scale error.
(3) Setting-out and photogrammetric control, over large areas, by polar coordinates from a single base

line.
(4) Deformation monitoring to sub-millimetre accuracies using high-precision EDM, such as the

Mekometer ME5000. This instrument has a range of 8 km and an accuracy of ±0.2 mm ±0.2 mm/km
of the distance measured ignoring unmodelled refraction effects.

4.6.1 Classification of instruments

Historically EDM instruments have been classified according to the type and wavelength of the elec-
tromagnetic energy generated or according to their operational range. Very often one is a function
of the other. For survey work most instruments use infra-red radiation (IR). IR has wavelengths of
0.8–0.9 µm transmitted by gallium arsenide (GaAs) luminescent diodes, at a high, constant frequency.
The accuracies required in distance measurement are such that the measuring wave cannot be used
directly due to its poor propagation characteristics. The measuring wave is therefore superimposed on
the high-frequency waves generated, called carrier waves. The superimposition is achieved by amplitude
(Figure 4.14), frequency (Figure 4.15) or impulse modulation (Figure 4.16). In the case of IR instruments,
amplitude modulation is used. Thus the carrier wave develops the necessary measuring characteristics
whilst maintaining the high-frequency propagation characteristics that can be measured with the requisite
accuracy.

In addition to IR, visible light, with extremely small wavelengths, can also be used as a carrier.
Many of the instruments using visual light waves have a greater range and a much greater accuracy
than that required for more general surveying work. Typical of such instruments are the Kern Mekometer
ME5000, accurate to ±0.2 mm ±0.2 mm/km, with a range of 8 km, and the Com-Rad Geomensor
CR204.

4.7 MEASURING PRINCIPLES

Although there are many EDM instruments available, there are basically only two methods of measurement
employed, namely the pulse method and the more popular phase difference method.

4.7.1 Pulse method

A short, intensive pulse of radiation is transmitted to a reflector target, which immediately transmits it
back, along a parallel path, to the receiver. The measured distance is computed from the velocity of the
signal multiplied by the time it took to complete its journey, i.e.

2D = c · �t

D = c · �t/2 (4.10)



130 Engineering Surveying

Fig. 4.14 Amplitude modulation of the carrier wave

Fig. 4.15 Frquency modulation of the carrier wave
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Fig. 4.16 Impulse modulation of the carrier wave

Fig. 4.17 Principle of pulse distance meter

If the time of departure of the pulse from gate A is tA and the time of its reception at gate B is tB, then
(tB − tA) = �t.

c = the velocity of light in the medium through which it travelled

D = the distance between instrument and target

It can be seen from equation (4.10) that the distance is dependent on the velocity of light in the medium and
the accuracy of its transit time. Taking an approximate value of 300 000 km/s for the speed of light, 10−10 s
would be equivalent to 15 mm of measured distance.

The distance that can be measured is largely a function of the power of the pulse. Powerful laser systems
can obtain tremendous distances when used with corner-cube prisms and even medium distances when the
pulse is ‘bounced’ off natural or man-made features.

4.7.2 Phase difference method

The majority of EDM instruments, whether infra-red or light, use this form of measurement. Basically
the instrument measures the amount (δλ) by which the reflected signal is out of phase with the emitted
signal. Figure 4.18(a) shows the signals in phase whilst (b) shows the amount (δλ) by which they are
out of phase. The double distance is equal to the number (M) of full wavelengths (λ) plus the fraction of
a wavelength (δλ). The phase difference can be measured by analogue or digital methods. Figure 4.19
illustrates the digital phase measurement of δλ.

Basically, all the equipment used works on the principle of ‘distance “equals” velocity × time’. However,
as time is required to such very high accuracies, recourse is made to the measurement of phase difference.
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Fig. 4.18 Principle of phase difference method

As shown in Figure 4.19, as the emitted and reflected signals are in continuous motion, the only constant
is the phase difference δλ.

Figure 4.20 shows the path of the emitted radiation from instrument to reflector and back to instrument,
and hence it represents twice the distance from instrument to reflector. Any periodic phenomenon which
oscillates regularly between maximum and minimum values may be analysed as a simple harmonic motion.
Thus, if P moves in a circle with a constant angular velocity ω, the radius vector A makes a phase angle φ

with the x-axis. A graph of values, computed from

y = A sin(ωt) (4.11)

= A sin φ (4.12)

for various values of φ produces the sine wave illustrated and shows

A = amplitude or maximum strength of the signal
ω = angular velocity
t = time
φ = phase angle

The value of B is plotted when φ = π /2 = 90◦, C when φ = π = 180◦, D when φ = 1.5π = 270◦ and
A′ = 2π = 360◦. Thus 2π represents a complete wavelength (λ) and φ/2π a fraction of a wavelength (δλ).
The time taken for A to make one complete revolution or cycle is the period of the oscillation and is
represented by t s. Hence the phase angle is a function of time. The number of revolutions per second
at which the radius vector rotates is called the frequency f and is measured in hertz, where one hertz is
one cycle per second.
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Fig. 4.19 Digital phase measurement

With reference to Figure 4.20, it can be seen that the double path measurement (2D) from instrument
to reflector and back to instrument is equal to

2D = Mλ + δλ (4.13)

where

M = the integer number of wavelengths in the medium

δλ = the fraction of a wavelength = φ

2π
λ

As the phase difference method measures only the fraction of wavelength that is out of phase, a second
wavelength of different frequency is used to obtain a value for M.

Consider Figure 4.20. The double distance is 3.75λ; however, the instrument will only record the phase
difference of 0.75. A second frequency is now generated with a wavelength four times greater, producing
a phase difference of 0.95. In terms of the basic measuring unit, this is equal to 0.95×4 = 3.80, and hence
the value for M is 3. The smaller wavelength provides a more accurate assessment of the fractional portion,
and hence the double path measurement is 3 + 0.75 = 3.75λ. Knowing the value of λ in units of length
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Fig. 4.20 Principle of electromagnetic distance measurement

would thus produce the distance. This then is the basic principle of the phase difference method, further
illustrated below:

f λ λ/2 δλ

Fine reading 15 MHz 20 m 10 m 6.325
1st rough reading 1.5 MHz 200 m 100 m 76.33
2nd rough reading 150 kHz 2000 m 1000 m 876.3

Measured distance 876.325

The first number of each rough reading is added to the initial fine reading to give the total distance. Thus
the single distance from instrument to reflector is:

D = M(λ/2) + φ

2π
(λ/2) (4.14)

where it can be seen that λ/2 is the main unit length of the instrument. The value chosen for the main unit
length has a fundamental effect on the precision of the instrument due to the limited resolution of phase
measurement. The majority of EDM instruments use λ/2 equal 10 m. With a phase resolution of 3 × 10−4

errors of 3 mm would result.
Implicit in the above equation is the assumption that λ is known and constant. However in most EDM

equipment this is not so, only the frequency f is known and is related to λ as follows:

λ = c/f (4.15)

where

c = the velocity of electromagnetic waves (light) in a medium



Distance measurement 135

This velocity c can only be calculated if the refractive index n of the medium is known, and also the
velocity of light co in a vacuum:

n = co/c (4.16)

where n is always greater than unity.
At the 17th General congress on Weights and Measures in 1983 the following exact defining value for

co was adopted and is still in use today:

co = 299 792 458 m/s (4.17)

From the standard deviation quoted, it can be seen that this value is accurate to 0.004 mm/km and can
therefore be regarded as error free compared with the most accurate EDM measurement.

The value of n can be computed from basic formulae available. However, Figure 4.14 shows the
carrier wave contained within the modulation envelope. The carrier travels at what is termed the phase
velocity, whilst the group of frequencies travel at the slower group velocity. The measurement proce-
dure is concerned with the modulation and so it is the group refractive index ng with which we are
concerned.

From equation (4.16) c = co/n and from equation (4.15) λ = co/nf .
Replace n with ng and substitute in equation (4.14):

D = M
(co)

(2ng f )
+ φ

2π

(co)

(2ng f )
(4.18)

Two further considerations are necessary before the final formula can be stated:

(1) The physical centre of the instrument which is plumbed over the survey station does not coincide with
the position within the instrument to which the measurements are made. This results in an instrument
constant K1.

(2) Similarly with the reflector. The light wave passing through the atmosphere, whose refractive index
is approximately unity, enters the glass prism of refractive index about 1.6 and is accordingly slowed
down. This change in velocity combined with the light path through the reflector results in a correction
to the measured distance called the reflector constant K2.

Both these constants are combined and catered for in the instrument; then

D = M
(co)

(2ng f )
+ φ

2π

(co)

(2ng f )
+ (K1 + K2) (4.19)

is the fundamental equation for distances measured with EDM equipment.
An examination of the equation shows the error sources to be:

(1) In the measurement of phase φ.
(2) In the measurement of group refractive index ng.
(3) In the stability of the frequency f .
(4) In the instrument/reflector constants K1 and K2.

4.7.3 Corner-cube prism

In contrast to the total station with its EDM which is a complex and sophisticated instrument, the target is
simply a glass prism designed to return the signal it receives back to the instrument it came from. Imagine a
cube of glass which has been cut across its corner and the corner piece retained. Figure 4.21(a) is a picture
of a corner-cube prism and Figure 4.21(b) represents a corner-cube prism drawn in two dimensions, i.e.
with two internal faces 90◦ apart. The signal enters through the front face of the prism and is refracted.
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(a) (b)

Fig. 4.21 (a) Corner cube prism. (b) Rays of light through a corner cube prism

It is then reflected off the two internal faces back to the front face where it is refracted again and returns on
the same path by which it entered. For a real corner-cube prism, which is three-dimensional and therefore
has three internal faces, the effect is just the same, except that the signal is reflected off the three internal
faces but the return signal is returned along the same path as the incoming signal.

This may be verified by holding a corner cube prism, closing one eye, and with the other looking in
through the front face at the opposite corner. You will see an image of your eye, with your pupil centred
on the opposite corner. Even if you rotate the prism from left to right or up and down your pupil will
stay centred on the opposite corner. Therefore if a survey target with a corner-cube prism is set up but not
pointed directly at the instrument it will still return a signal to the EDM. Similarly if the total station is
moved from one survey point to another and the target is not adjusted to point at the total station in its new
position the EDM will still get a returned signal from the target.

In Figure 4.21(b) the length of the light path into the prism plus the length of the light path out of
the prism is the same for both the solid and the dotted rays. Similarly the length of the light path through
the prism is the same for both the solid and the dotted rays. Therefore, whatever the refractive index of the
glass, the path length of both solid and dotted rays is the same and so a coherent signal entering the prism
also emerges as a coherent signal.

4.7.4 Reflective targets

There are a large number of reflective targets available on the market (Figure 4.22). Reflective targets
are cheap, unobtrusive and expendable. They may be applied to a structure as targets for deformation
monitoring where their great advantage is that they do not need to be removed and replaced at suc-
cessive epochs. However, they are less durable than corner-cube prisms and an EDM will have less
range. Often they have a black and grey or silver appearance which can make them difficult to find
upon revisiting a site or structure. A photo of a structure from a digital camera with flash will show up
where the targets are because the targets, like a corner-cube prism, return the light directly to its source
(Figure 4.23).
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Fig. 4.22 Reflective targets

Fig. 4.23 Flash photo of a wall with reflective targets

4.8 METEOROLOGICAL CORRECTIONS

Using EDM equipment, the measurement of distance is obtained by measuring the time of propagation
of electromagnetic waves through the atmosphere. Whilst the velocity of these waves in a vacuum (co) is
known, the velocity will be reduced depending on the atmospheric conditions through which the waves
travel at the time of measurement. As shown in equation (4.16), knowledge of the refractive index (n) of
the prevailing atmosphere is necessary in order to apply a correction for velocity to the measured distance.
Thus if D′ is the measured distance, the corrected distance D is obtained from

D = D′/n (4.20)

The value of n is affected by the temperature, pressure and water vapour content of the atmosphere as well
as by the wavelength λ of the transmitted electromagnetic waves. It follows from this that measurements
of these atmospheric conditions are required at the time and place of measurement.

As already shown, steel tapes are standardized under certain conditions of temperature and tension. In
a similar way, EDM equipment is standardized under certain conditions of temperature and pressure. It
follows that even on low-order surveys the measurement of temperature and pressure is important.

The refractive index is related to wavelength via the Cauchy equation:

n = A + B

λ2
+ C

λ4
(4.21)
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where A, B and C are constants relative to specific atmospheric conditions. To afford a correction in parts
per million (ppm) the refractive number or refractivity (N) is used:

N = (n − 1) × 106 (4.22)

If n = 1.000 300, then N = 300.
A value for n for standard air (0◦C temperature, 1013.25 hPa pressure and dry air with 0.03% CO2) is

given by Barrel and Sears as

(n − 1) × 106 =
(

287.6155 + 1.628 87

λ2
+ 0.013 60

λ4

)
(4.23)

However, as stated in Section 4.7.2, it is the refractive index of the modulated beam, not the carrier, that
is required; hence the use of group refractive index where

Ng = A + 3B

λ2
+ 5C

λ4
(4.24)

and therefore, for group velocity in standard air with λ in µm:

Ng = (ng − 1) × 106 = 287.6155 + 4.886 60

λ2
+ 0.068 00

λ4
(4.25)

The above formula is accurate to ±0.1 ppm at wavelengths between 560 and 900 nm. It follows that
different instruments using different wavelengths will have different values for refractivity; for example:

λ = 0.910 µm gives Ng = 293.6

λ = 0.820 µm gives Ng = 295.0

To accommodate the actual atmospheric conditions under which the distances are measured, equation (4.25)
was modified by Barrel and Sears:

N ′
g = Ng × Q × P

T
− V × e

T
(4.26)

where T = absolute temperature in degrees Kelvin (◦K) = 273.15 + t
t = dry bulb temperature in ◦C

P = atmospheric pressure
e = partial water vapour pressure

with P and e in hPa, Q = 0.2696 and V = 11.27
with P and e in mmHg, Q = 0.3594 and V = 15.02

The value for e can be calculated from

e = es − 0.000 662 × P × (t − tw) (4.27)

where t = dry bulb temperature
tw = wet bulb temperature
es = saturation water vapour pressure

The value for es can be calculated from

log es = 7.5 tw
tw + 237.3

+ 0.7857 (4.28)

Using equation (4.28), the following table can be produced:

tw (◦C) 0 10 20 30 40
es 6.2 12.3 23.4 42.4 73.7

es is therefore quite significant at high temperatures.
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Working back through the previous equations it can be shown that at 100% humidity and a temperature
of 30◦C, a correction of approximately 2 ppm is necessary for the distance measured. In practice, humidity
is generally ignored in the velocity corrections for instruments using light waves as it is insignificant
compared with other error sources. However, for long lines being measured to very high accuracies in hot,
humid conditions, it may be necessary to apply corrections for humidity.

The velocity correction is normally applied by entry of prevailing temperature and pressure into the
instrument. In the case of infra-red/ light waves, the humidity term is ignored as it is only relevant in
conditions of high humidity and temperature. Under normal conditions the error would be in the region
of 0.7 ppm.

For maximum accuracy, it may be necessary to compute the velocity correction from first principles,
and if producing computer software to reduce the data, this would certainly be the best approach. When
using this approach the standard values for t and P are entered into the instrument. The following example
will now be computed in detail in order to illustrate the process involved.

Worked example

Example 4.8. An EDM instrument has a carrier wave of 0.91 µm and is standardized at 20◦C and
1013.25 hPa. A distance of 1885.864 m was measured with the mean values P = 1030 hPa, dry bulb
temperature t = 30◦C, wet bulb temperature tw = 25◦C. Calculate the velocity correction.

Step 1. Compute the value for partial water vapour pressure e:

log es = 7.5tw
tw + 237.3

+ 0.7857

= 7.5 × 25

25 + 237.3
+ 0.7857

es = 31.66 hPa

Using equation (4.27):

e = es − 0.000 662 × P × (t − tw)

= 31.66 − 0.000 662 × 1030 × (30 − 25) = 28.25 hPa

Step 2. Compute refractivity (Ng) for standard atmosphere using equation (4.25):

Ng = 287.6155 + 4.886 60

λ2
+ 0.068 00

λ4

= 287.6155 + 4.886 60

0.912
+ 0.068 00

0.914

= 293.616

Step 3. Compute refractivity for the standard conditions of the instrument, i.e. 20◦C and 1013.25 hPa,
using equation (4.26) which for P and e in hPa becomes

N ′
g = Ng(0.2696P)

273.15 + t
− 11.27e

273.15 + t

= 79.159P

273.15 + t
− 11.27e

273.15 + t
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This in effect is the equation for computing what is called the reference or nominal refractivity for the
instrument:

N ′
g = 79.159 × 1013.25

273.15 + 20
− 11.27 × 28.25

273.15 + 20

= 272.52

Step 4. The reference refractivity now becomes the base from which the velocity correction is obtained.
Now compute refractivity (N ′′

g ) under the prevailing atmospheric conditions at the time of measurement:

N ′′
g = 79.159 × 1030

273.15 + 30
− 11.27 × 28.25

273.15 + 30
= 267.90

∴ Velocity correction in ppm = 272.51 − 267.90 = 4.6 ppm

Correction in mm = 1885.864 × 4.6 × 10−6 = 8.7 mm

Corrected distance = 1885.873 m

Using equation (4.16):

(1) Velocity of light waves under standard conditions:

cs = co/ng = 299 792 458/1.000 2725 = 299 710 770 m/s

(2) Velocity under prevailing conditions:

Cp = 299 792 458/1.000 2679 = 299 712 150 m/s

As distance = (velocity × time), the increased velocity of the measuring waves at the time of measuring
would produce a positive velocity correction, as shown.

Now considering equation (4.26) and differentiating with respect to t, P and e, we have

δN ′
g = 0.2696NgP δt

(273.15 + t)2
+ 0.2696Ng δP

(273.15 + t)
− 11.27 δe

(273.15 + t)

At t = 15◦C, P = 1013 hPa, e = 10 hPa and Ng = 294, an error of 1 ppm in N ′
g and therefore in distance

will occur for an error in temperature of ±1◦C, in pressure of ±3 hPa and in e of ±39 hPa.
From this it can be seen that the measurement of humidity can ordinarily be ignored for instruments using

light. Temperature and pressure should be measured using carefully calibrated, good quality equipment,
but not necessarily very expensive, highly accurate instruments. The measurements are usually taken at
each end of the line being measured, on the assumption that the mean values of temperature and pressure at
the ends of the line are equal to the average values measured along the line. However, tests on a 3-km test
line showed the above assumption to be in error by 2◦C and –3 hPa. The following measuring procedure
is therefore recommended:

(1) Temperature and pressure should be measured at each end of the line.
(2) The above measurements should be taken well above the ground (3 m if possible) to avoid ground

radiation effects so that they properly reflect mid-line conditions.
(3) The measurements should be synchronized with the EDM measurements.
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(4) If possible, mid-line observations should be included.
(5) Ground-grazing lines should be avoided.

4.9 GEOMETRICAL REDUCTIONS

The measured distance, after the velocity corrections have been applied, is the spatial distance from
instrument to target. This distance will almost certainly have to be reduced to the horizontal and then to
its equivalent on the ellipsoid of reference.

From Figure 4.24, D1 represents the measured distance (after the velocity corrections have been applied)
which is reduced to its chord equivalent D2; this is in turn reduced to D3; the chord equivalent of the
ellipsoidal distance (at MSL) D4. Strictly speaking the ellipsoid of reference may be different from the
geoid at MSL. A geoid–ellipsoid separation of 6 m would affect the distance by 1 mm/km. In the UK, for
instance, maximum separation is in the region of 4.2 m, producing a scale error of 0.7 mm/km. However,
if the WGS84 ellipsoid were used in the UK separations of the order of 50 m would be found leading to
scale errors of the order of 8 ppm. However, where such information is unavailable, the geoid and ellipsoid
are assumed coincident.

Fig. 4.24 Distance reductions
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(1) Reduction from D1 to D2

D2 = D1 − C1

where C1 = K2D3
1/24R2 (4.29)

and K = coefficient of refraction

R, the radius of the ellipsoid in the direction α from A to B, may be calculated from equations (8.21–8.23)
or with sufficient accuracy for lines less than 10 km from

R = (ρν)
1
2 (4.30)

where ρ and ν are defined by equations (8.21–8.23).
For the majority of lines in engineering surveying this first correction may be ignored.
The value for K is best obtained by simultaneous reciprocal observations, although it can be obtained

from

K = (n1 − n2)R/(H1 − H2) (4.31)

where n1 and n2 are the refractive indices at each end of the line and H1 and H2 are the respective heights
above MSL.

(2) Reduction from D2 to D3

In triangle ABO using the cosine rule:

cos θ = [(R + HB)2 + (R + HA)2 − D2
2]/2(R + HB) (R + HA)

but cos θ = 1 − 2 sin2(θ /2) and sin θ /2 = D3/2R

∴ cos θ = 1 − D2
3/2R2

1 − D2
3/2R2 = [(R + HB)2 + (R + HA)2 − D2

2]/2(R + HB)(R + HA)

D3 = R

{ [D2 − (HB − HA)] [D2 + (HB − HA)]
(R + HA) (R + HB)

} 1
2

=
[

D2
2 − (HB − HA)2

(1 + HA/R) (1 + HB/R)

] 1
2

(4.32)

where HA = height of the instrument centre above the ellipsoid (or MSL)
HB = height of the target centre above the ellipsoid (or MSL)

The above rigorous approach may be relaxed for the relatively short lines measured in the majority of
engineering surveys.

Pythagoras’ theorem may be used as follows:

DM = [D2
2 − (HB − HA)2] 1

2 (4.33)

where DM = the horizontal distance at the mean height HM where HM = (HB + HA)/2.
DM would then be reduced to MSL using the altitude correction:

CA = (DMHM )/R (4.34)

then D3 = D4 = DM − CA
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(3) Reduction of D3 to D4

Figure 4.24 shows

θ /2 = D4/2R = sin−1(D3/2R)

where

sin−1(D3/2R) = D3/2R + D3
3/8R × 3! + 9D5

3/32R5 × 5!
D4/2R = D3/2R + D3

3/48R3

D4 = D3 + (D3
3/24R2) (4.35)

For lines less than 10 km, the correction is 1 mm and is generally ignored.
It can be seen from the above that for the majority of lines encountered in engineering (<10 km), the

procedure is simply:

(1) Reduce the measured distance D2 to the mean altitude using equation (4.33) = DM .
(2) Reduce the horizontal distance DM to D4 at MSL using equation (4.34).

(4) Reduction by vertical angle

Total stations have the facility to reduce the measured slope distance to the horizontal using the vertical
angle, i.e.

D = S cos α (4.36)

where α = the vertical angle
S = the slope distance
D = the horizontal distance

However, the use of this simple relationship will be limited to short distances if the effect of refraction is
ignored.

Whilst S may be measured to an accuracy of, say, ±5 mm, reduction to the horizontal should not result
in further degradation of this accuracy. Assume then that the accuracy of reduction must be ±1 mm.

Then δD = −S sin αδα

and δα′′ = δD × 206 265/S sin α (4.37)

where δD = the accuracy of reduction

δα′′ = the accuracy of the vertical angle

Consider S = 1000 m, measured on a slope of α = 5◦; if the accuracy of reduction to the horizontal is to
be practically error free, let δD = ±0.001 m and then

δα′′ = 0.001 × 206 265/1000 sin 5◦ = ±2.4′′

This implies that to achieve error-free reduction the vertical angle must be measured to an accuracy
of ±2.4′′. If the accuracy of the double face mean of a vertical angle is, say, ±4′′, then a further such
determination is required to reduce it to 4′′/(2)

1
2 = ±2.8′′. However, the effect of refraction assuming

an average value of K = 0.15 is 2.4′′ over 1000 m. Hence the limit has been reached where refraction
can be ignored. For α = 10◦, δα = ±1.2′′, and hence refraction would need to be considered over this
relatively steep sight. At α = 2◦, δα′′ = ±6′′ and the effect of refraction is negligible. It is necessary to
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carry out this simple appraisal which depends on the distances and the slopes involved, in order to assess
the consequence of ignoring refraction.

In some cases, standard corrections for refraction (and curvature) are built into the total station which
may or may not help the reduction accuracy. The true value of refraction can be so variable that it cannot be
accounted for unless the effect is made to be self cancelling by using the mean of simultaneous reciprocal
vertical angles. If the distances involved are long, then the situation is as shown in Figure 4.25. If α and β

are the reciprocal angles, corrected for any difference of height between the instrument and the target, as
described in Section 2.15.2, then

α0 = (α − β)/2 (4.38)

where β is negative for angle of depression and

S cos α0 = AC (4.39)

However, the distance required is AB′ where

AB′ = AC − B′C (4.40)

but BC = S sin α0

and B′C = BC tan θ /2

Fig. 4.25 Reduction by vertical angle
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where

θ ′′ = AC × 206 265

R + H ′
A

= S × 206 265

R + H ′
A

(4.41)

This will give the horizontal distance (AB′) at the height of the instrument axis above MSL, i.e. H ′
A.

AB′ can then be reduced to A1B1 at MSL using the altitude correction (equation (4.34)).
Alternatively, the above procedure can be rearranged to give

AB′ = S cos(α0 + θ /2) sec θ /2 (4.42)

Both procedures will now be demonstrated by an example.

Worked example

Example 4.9. Consider S = 5643.856 m and reciprocal vertical angles of α = 5◦ 00′ 22′′, β = 5◦ 08′ 35′′.
If station A is 42.95 m AOD and the instrument height is 1.54 m, compute the horizontal distance (AB′) at
instrument height above MSL (Figure 4.25) (R = 6380 km).

α0 = [5◦ 00′ 22′′ − (−5◦ 08′ 35′′)]/2 = 5◦ 04′ 29′′

AC = 5643.856 cos 5◦ 04′ 29′′ = 6521.732 m

BC = 5643.856 sin 5◦ 04′ 29′′ = 499.227 m

θ ′ = (5621.732 × 206 265)/(6 380 000 + 44.49) = 03′ 02′′

B′C = 499.227 tan 01′ 31′′ = 0.220 m

AB′ = 5621.732 − 0.220 = 5621.512 m

Alternatively from equation (4.42):

AB′ = S cos(α0 + θ /2) sec θ /2

= 5643.856 cos(−5◦ 04′ 29′′ + 01′ 31′′) sec 01′ 31′′

= 5621.512 m

AB′ is now reduced to A1B1 using the correction (equation (4.34)) where the height above MSL includes
the instrument height, i.e. 42.95 + 1.54 = 44.49 m.

If a value for the angle of refraction (r̂) is known and only one vertical angle α is observed then

AB′ = S cos(α′ + θ ) sec θ /2 (4.43)

where α′ = α − r̂.
Adapting the above example and assuming an average value for K of 0.15:

r′′ = SKρ/2R

= 5643.856 × 0.15 × 206 265

2 × 6 380 000
= 14′′

α′ = 5◦ 00′ 22′′ − 14′′ = 5◦ 00′ 08′′

AB′ = 5643.856 cos(5◦ 00′ 08′′ + 3′ 02′′) sec 01′ 31′′

= 5621.924 m
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The difference of 0.412 m once again illustrates the dangers of assuming a value for K .
If zenith angles are used then:

AB′ = S

[
sin ZA − θ (2 − K)/2

cos θ /2

]
(4.44)

where K = the coefficient of refraction.
For most practical purposes equation (4.44) is reduced to

AB′ = S sin ZA − S2(2 − K) sin 2ZA

4R
(4.45)

4.10 ERRORS, CHECKING AND CALIBRATION

Although modern EDM equipment is exceptionally well constructed, the effects of age and general wear
and tear may alter its performance. It is essential therefore that all field equipment should be regularly
checked and calibrated. Checking and calibration are two quite separate activities. Checking is concerned
with verifying that the instrument is performing within acceptable tolerances. Calibration is the process
of estimating the parameters that need to be applied to correct actual measurements to their true values.
For example, in the case of levelling the two-peg test could be used for both checking and calibrating a
level. The two-peg test can be used to check whether the level is within ±10 mm at 20 m or whatever
is appropriate for the instrument concerned. It could also be used to discover what the actual collimation
error is at, say, 20 m, so that a proportional correction, depending on distance, could be applied to each
subsequent reading. This latter process is calibration. In the case of levelling both checking and calibration
are quite simple procedures. Rather more is involved with checking and calibrating EDM. A feature of
calibration is that it should be traceable to superior, usually national, standards. From the point of view of
calibration, the errors have been classified under three main headings.

4.10.1 Zero error (independent of distance)

Zero error arises from changes in the instrument/reflector constant due to ageing of the instrument or as a
result of repairs. The built-in correction for instrument/reflector constants is usually correct to 1 or 2 mm
but may change with different reflectors and so should be assessed for a particular instrument/reflector
combination. Avariety of other matters may affect the value of the constant and these matters may vary from
instrument to instrument. Some instruments have constants which are signal strength dependent, while
others are voltage dependent. The signal strength may be affected by the accuracy of the pointing or by
prevailing atmospheric conditions. It is very important, therefore, that periodical calibration is carried out.

A simple procedure can be adopted to obtain the zero error for a specific instrument/reflector
combination. Consider three points A, B, C set out in a straight line such that AB = 10 m, BC = 20 m and
AC = 30 m (Figure 4.26).

Assume a zero error of +0.3 m exists in the instrument; the measured lengths will then be 10.3, 20.3
and 30.3. Now:

AB + BC = AC

A B C

20 m10 m

Fig. 4.26 Simple calibration baseline
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But the measurements 10.3 + 20.3 �= 30.3
The error may be found from 10.3 + 20.3 − 30.3 = +0.3
Now as

Correction = – Error

every measured distance will need a correction of – 0.3 m. Or in more general terms

zero error = ko = lAB + lBC − lAC (4.46)

from which it can be seen that the base-line lengths do not need to be known prior to measurement. If there
are more than two bays in the base line of total length L, then

ko = (L − �li) /(n − 1) (4.47)

where li is the measured length of each of the n sections.
Alternatively the initial approach may be to observe the distances between all possible combinations of

points. For example, if the base line comprises three bays AB, BC and CD, we have

AB + BC − AC = ko

AC + CD − AD = ko

AB + BD − AD = ko

BC + CD − BD = ko

with the arithmetic mean of all four values being accepted.
The most accurate approach is a least squares solution of the observation equations. Readers unfamiliar

with least squares methods may wish to pass over the remainder of this section until they have read
Chapter 7 and Appendix A.

Let the above bays be a, b and c, with measured lengths l and residual errors of measurement r.

Observation equations:

a + ko = lAB + r1

a + b + ko = lAC + r2

a + b + c + ko = lAD + r3

b + ko = lBC + r4

b + c + ko = lBD + r5

c + ko = lCD + r6

which may be written in matrix form as Ax = b + v




1 0 0 1
1 1 0 1
1 1 1 1
0 1 0 1
0 1 1 1
0 0 1 1









a
b
c
ko



 =





lAB

lAC

lAD

lBC

lBD

lCD




+





r1
r2
r3
r4
r5
r6





The solution for x is x = (ATWA)−1ATWb and gives a solution for estimates of the length of each bay a,
b and c as well as the zero error ko. Provided that the quality of all the observations of distance is the same
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then the solutions are simply

a = (lAB + lAC + 2lAD − 2lBC − lBD − lCD)/4

b = (−2lAB + lAC + lAD + lBC + lBD − 2lCD)/4

c = (−lAB − lAC + 2lAD − 2lBC + lBD + lCD)/4

ko = (lAB + lBC + lCD − lAD)/2

Substituting the values for a, b, c and ko back into the observation equations gives the residual values r,
which can give an indication of the overall magnitude of the other errors.

The distances measured should, of course, be corrected for slope before they are used to find
ko. If possible, the bays should be in multiples of λ/2 if the effect of cyclic errors is to be
cancelled.

4.10.2 Cyclic error (varies with distance)

As already shown, the measurement of the phase difference between the transmitted and received waves
enables the fractional part of the wavelength to be determined. Thus, errors in the measurement of phase
difference will produce errors in the measured distance. Phase errors are cyclic and not proportional to the
distance measured and may be non-instrumental and/or instrumental.

The non-instrumental cause of phase error is spurious signals from reflective objects illuminated by
the beam. Normally the signal returned by the reflector will be sufficiently strong to ensure complete
dominance over spurious reflections. However, care should be exercised when using vehicle reflectors or
reflective material designed for clothing for short-range work.

The main cause of phase error is instrumental and derives from two possible sources. In the first
instance, if the phase detector were to deviate from linearity around a particular phase value, the resulting
error would repeat each time the distance resulted in that phase. Excluding gross malfunctioning, the
phase readout is reliably accurate, so maximum errors from this source should not exceed 2 or 3 mm.
The more significant source of phase error arises from electrical cross-talk, or spurious coupling, between
the transmit and receive channels. This produces an error which varies sinusoidally with distance and is
inversely proportional to the signal strength.

Cyclic errors in phase measurement can be determined by observing to a series of positions distributed
over a half wavelength. A bar or rail accurately divided into 10-cm intervals over a distance of 10 m would
cover the requirements of most short-range instruments. A micrometer on the bar capable of very accurate
displacements of the reflector of +0.1 mm over 20 cm would enable any part of the error curve to be more
closely examined.

The error curve plotted as a function of the distance should be done for strong and weakest signal
conditions and may then be used to apply corrections to the measured distance. For the majority of
short-range instruments the maximum error will not exceed a few millimetres.

Most short-range EDM instruments have values for λ/2 equal to 10 m. A simple arrangement for the
detection of cyclic error which has proved satisfactory is to lay a steel band under standard tension on a
horizontal surface. The reflector is placed at the start of a 10-m section and the distance from instrument
to reflector obtained. The reflector is displaced precisely 100 mm and the distance is re-measured. The
difference between the first and second measurement should be 100 mm; if not, the error is plotted at the
0.100 m value of the graph. The procedure is repeated every 100 mm throughout the 10-m section and an
error curve produced. If, in the field, a distance of 836.545 m is measured, the ‘cyclic error’ correction is
abstracted from point 6.545 m on the error curve.
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4.10.3 Scale error (proportional to distance)

Scale errors in EDM instruments are largely due to the fact that the oscillator is temperature dependent. The
quartz crystal oscillator ensures the frequency ( f ) remains stable to within ±5 ppm over an operational
temperature range of –20◦C to 50◦C. The modulation frequency can, however, vary from its nominal
value due to incorrect factory setting, ageing of the crystal and lack of temperature stabilization. Most
modern short-range instruments have temperature-compensated crystal oscillators which have been shown
to perform well. However, warm-up effects have been shown to vary from 1 to 5 ppm during the first hour
of operation.

Diode errors also cause scale error, as they could result in the emitted wavelength being different from
its nominal value.

The magnitude of the resultant errors may be obtained by field or laboratory methods.
The laboratory method involves comparing the actual modulation frequency of the instrument with

a reference frequency. The reference frequency may be obtained from off-air radio transmissions such
as MSF Rugby (60 kHz) in the UK or from a crystal-generated laboratory standard. The correction for
frequency is equal to

(
Nominal frequency − Actual frequency

Nominal frequency

)

A simple field test is to measure a base line whose length is known to an accuracy greater than the mea-
surements under test. The base line should be equal to an integral number of modulation half wavelengths.
The base line AB should be measured from a point C in line with AB; then CB−CA = AB. This differential
form of measurement will eliminate any zero error, whilst the use of an integral number of half wavelengths
will minimize the effect of cyclic error. The ratio of the measured length to the known length will provide
the scale error.

4.10.4 Multi-pillar base lines

The establishment of multi-pillar base lines for EDM calibration requires careful thought, time and money.
Not only must a suitable area be found to permit a base line of, in some cases, over 1 km to be established,
but suitable ground conditions must also be present. If possible the bedrock should be near the surface to
permit the construction of the measurement pillars on a sound solid foundation. The ground surface should
be reasonably horizontal, free from growing trees and vegetation and easily accessible. The construction
of the pillars themselves should be carefully considered to provide maximum stability in all conditions
of wetting and drying, heat and cold, sun and cloud, etc. The pillar-centring system for instruments and
reflectors should be carefully thought out to avoid any hint of centring error. When all these possible error
sources have been carefully considered, the pillar separations must then be devised.

The total length of the base line is obviously the first decision, followed by the unit length of the equip-
ment to be calibrated. The inter-pillar distances should be spread over the measuring range of equipment,
with their fractional elements evenly distributed over the half wavelength of the basic measuring wave.

Finally, the method of obtaining inter-pillar distances to the accuracy required has to be consid-
ered. The accuracy of the distance measurement must obviously be greater than the equipment it is
intended to calibrate. For general equipment with accuracies in the range of 3–5 mm, the base line could
be measured with equipment of superior accuracy such as those already mentioned.

For even greater accuracy, laser interferometry accurate to 0.1 ppm may be necessary.
When such a base line is established, a system of regular and periodic checking must be instituted and

maintained to monitor short- and long-term movement of the pillars. Appropriate computer software must
also be written to produce zero, cyclic and scale errors per instrument from the input of the measured
field data.
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In the past several such base lines have been established throughout the UK, the most recent one
by Thames Water at Ashford in Middlesex, in conjunction with the National Physical Laboratory at
Teddington, Middlesex. In 2006, it was understood to be no longer operational, along with all the other
UK base lines. It is hoped the situation will change. However, this is a good example of a pillar base line
and will be described further to illustrate the principles concerned. This is an eight-pillar base line, with a
total length of 818.93 m and inter-pillar distances affording a good spread over a 10-m period, as shown
below:

2 3 4 5 6 7 8

1 260.85 301.92 384.10 416.73 480.33 491.88 818.93
2 41.07 123.25 155.88 219.48 231.03 558.08
3 82.18 114.81 178.41 189.96 517.01
4 32.63 96.23 107.78 434.83
5 63.60 75.15 402.20
6 11.55 338.60
7 327.05

With soil conditions comprising about 5 m of gravel over London clay, the pillars were constructed by
inserting 8 × 0.410 m steel pipe into a 9-m borehole and filling with reinforced concrete to within 0.6 m of
the pillar top. Each pillar top contains two electrolevels and a platinum resistance thermometer to monitor
thermal movement. The pillars are surrounded by 3 × 0.510 m PVC pipe, to reduce such movement
to a minimum. The pillar tops are all at the same level, with Kern baseplates attached. Measurement
of the distances has been carried out using a Kern ME5000 Mekometer and checked by a Terrameter.
The Mekometer has in turn been calibrated by laser interferometry. The above brief description serves to
illustrate the care and planning needed to produce a base line for commercial calibration of the majority
of EDM equipment.

4.11 OTHER ERROR SOURCES

4.11.1 Reduction from slope to horizontal

The reduction process using vertical angles has already been dealt with in Section 4.10.4. On steep slopes
the accuracy of angle measurement may be impossible to achieve, particularly when refraction effects
are considered. An alternative procedure is, of course, to obtain the difference in height (h) of the two
measuring sources and correct for slope using Pythagoras. If the correction is Ch, then the first term of a
binomial expansion of Pythagoras gives

CL = h2/2S

where S = the slope length measured. Then

δCh = h δh/S (4.48)

and for S = 1000 m, h = 100 m and the accuracy of reduction δCh = ±0.001 m, substituting in
equation (4.48) gives δh = ±0.010 m. This implies that the difference in level should be obtained to
an accuracy of ±0.010 m, which is within the accuracy criteria of tertiary levelling. For h = 10 m,
δh = ±0.100 m, and for h = 1 m, δh = ±1 m.
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Analysis of this sort will enable the observer to decide on the method of reduction, i.e. vertical angles
or differential levelling, in order to achieve the required accuracy.

4.11.2 Reduction to the plane of projection

Many engineering networks are connected to the national grid system of their country; a process which
involves reducing the horizontal lengths of the network to mean sea level (MSL) and then to the projection
using local scale factors (LSF).

Reduction to MSL is carried out using

CM = LH

R
(4.49)

where CM = the altitude correction, H = the mean height of the line above MSL or the height of the
measuring station above MSL and R = mean radius of the Earth (6.38 × 106 m).

Differentiating equation (4.49) gives

δCM = L δH/R

and for L = 1000 m, δCM = ±1 mm, then δH = ±6.38 m. As Ordnance Survey (OS) tertiary bench
marks are guaranteed to ±10 mm, and the levelling process is of more than comparable accuracy, the
errors from this source may be ignored.

Reduction of the horizontal distance to MSL theoretically produces the chord distance, not the arc or
spheroidal distance. However, the chord/arc correction is negligible at distances of up to 10 km and will
not therefore be considered further.

To convert the ellipsoidal distance to grid distance it is necessary to calculate the LSF and multiply the
distance by it. The LSF changes from point to point. Considering the OS national grid (NG) system of the
UK, the LSF changes at the rate of 0 ppm km−1 on the central meridian, 2.5 ppm km−1 at 100 km from
the central meridian and 7.4 ppm km−1 at 300 km from the central meridian.

For details of scale factors, their derivation and application, refer to Chapter 5.
The following approximate formula for scale factors will now be used for error analysis, of the UK

system.

F = F0[1 + (E2
m/2R2)] (4.50)

where Em = the NG difference in easting between the mid-point of the line and the central meridian
= 4 000 000 m

F0 = the scale factor at the central meridian = 0.999 601 27
R = the mean radius of the Earth (6.38 ×106 m)

Then the scale factor correction is CF = LF0[1 + (E2
m/2R2)] − L

and δCF = LF0(Em/R2) δEm (4.51)

Then for L = 1000 m, δC = ±1 mm and Em = 120 km, δEm = ±333 m; thus the accuracy of assessing
one’s position on the NG is not critical. Now, differentiating with respect to R

δCF = −LF0E2
m/R3 δR (4.52)

and for the same parameters as above, δR = ±18 km. The value for R = 6380 km is a mean value for
the whole Earth and is accurate to about 10 km between latitudes 30◦ and 60◦, while below 30◦ a more
representative value is 6.36 × 106 m.

It can be seen therefore that accuracy of the reduction to MSL and thereafter to NG will usually have a
negligible effect on the accuracy of the reduced horizontal distance.
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4.11.3 Eccentricity errors

These errors may arise from the manner in which the EDM is mounted with respect to the transit axis of
the total station and the type of prism used. Although there are few of (1) and (2) below remaining, they
illustrate a problem and its simple solution. In practice these problems will not appear with the majority
of total stations where the EDM is located co-axially with the telescope.

(1) Consider telescope-mounted EDM instruments used with a tilting reflector which is offset the same
distance, h, above the target as the centre of the EDM equipment is above the line of sight of the
telescope (Figure 4.27 ).

In this case the measured distance S is equal to the distance from the centre of the theodolite to
the target and the eccentricity e is self-cancelling at instrument and reflector. Hence D and �H are
obtained in the usual way without further correction.

(2) Consider now a telescope-mounted EDM unit with a non-tilting reflector, as in Figure 4.28. The
measured slope distance S will be greater than S′ by length AB = h tan α. If α is negative, S will be
less than S′ by h tan α.

Thus if S is used in the reduction to the horizontal D will be too long by AF = h sin α when α is
positive, and too small when α is negative.

Fig. 4.27 EDM and prism on tilting reflector

Fig. 4.28 EDM and prism on non-tilting reflector
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If we assume an approximate value of h = 115 mm then the error in D when α = 5◦ is 10 mm, at
10◦ it is 20 mm and so on to 30◦ when it is 58 mm. The errors in �H for the above vertical angles are
1 mm, 14 mm and 33 mm, respectively.

(3) When the EDM unit is co-axial with the telescope line of sight and observations are direct to the centre
of the reflector, there are no eccentricity corrections.

4.12 INSTRUMENT SPECIFICATIONS

The measuring accuracy of all EDM equipment is specified in manufacturers’ literature in different ways
but often in the form of +a mm +b ppm or ±(a mm + b ppm). This can be a little misleading as the
constant uncertainty, a mm, is unrelated to the uncertainty of scale error, b ppm. Therefore these statements
should be interpreted as being that the total uncertainty (σ ) is given by

σ = (a2 + (bL × 10−6)2)1/2 mm

where L is the length of the line in kilometres.
Using the a typical example of a = 3 mm and b = 5 ppm the uncertainty of a measured distance if

1.2 km would be

σ = (32 + (5 × 1.2)2)1/2 mm = 7 mm

In the above specification, a is a result of errors in phase measurement (θ ) and zero error (z), i.e.

a2 = σ 2
θ + σ 2

z

In the case of b, the resultant error sources are error in the modulation frequency f and in the group
refractive index ng, i.e.

b2 = (σf /f )2 + (σng /ng)2

The reason why the specification is expressed in two parts is that θ and z are independent of distance,
whilst f and ng are a function of distance.

For short distances such as a few tens or even hundreds of metres, as frequently encountered in
engineering, the a component is more significant and the b component can largely be ignored.

4.13 DEVELOPMENTS IN EDM

Improvements in technology have transformed EDM instruments from large, cumbersome units, which
measured distance only, to component parts of total stations.

The average total station is a fully integrated instrument that captures all the spatial data necessary for
a three-dimensional position fix. The angles and distances are displayed on a digital readout and can be
recorded at the press of a button. Modern total stations have many of the following features:

• Dual axis compensators built into the vertical axis of the instrument which constantly monitor the
inclination of the vertical axis in two directions. These tilt sensors have a range of a few minutes.
The horizontal and vertical angles are automatically corrected, thus permitting single-face observations
without significant loss of accuracy.

• A graphic electronic levelling display illustrates the levelling situation parallel to a pair of footscrews
and at right angles, enables rapid, precise levelling without rotation of the alidade. The problems caused
by direct sunlight on plate bubbles are also eradicated.
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• On-board memory is available in various capacities for logging observations. These devices can usually
store at least all the data a surveyor is likely to record in a day. The memory unit can be connected to
any external computer or to a special card reader for data transfer. Alternatively, the observations can
be downloaded directly into intelligent electronic data loggers. Both systems can be used in reverse to
load information into the instruments.

Some instruments and/or data loggers can be interfaced directly with a computer for immediate
processing and plotting of data.

• A friction clutch and endless drive eliminates the need for horizontal and vertical circle clamps plus the
problem of running out of thread on slow motion screws.

• A laser plummet incorporated into the vertical axis, replaces the optical plummet. A clearly visible laser
dot is projected onto the ground permitting quick and convenient centring of the instrument.

• Keyboards with displays of alphanumeric and graphic data control every function of the instrument.
Built-in software with menu and edit facilities, they automatically reduce angular and linear observations
to three-dimensional coordinates of the vector observed. This facility can be reversed for setting-out
purposes. Keyboards and displays may be on both sides of the instrument allowing observations and
readings to be made easily on both faces.

• Guide light fitted to the telescope of the instrument enables the target operator to maintain alignment
when setting-out points. This light changes colour when the operator moves off-line. With the instrument
in the tracking mode, taking measurements every 0.3 s, the guide light speeds up the setting-out process.

• Automatic target recognition (ATR) is incorporated in most robotic instruments and is more accurate
and consistent than human sighting. The telescope is pointed in the general direction of the target, and
the ATR module completes the fine pointing with excellent precision and minimum measuring time
as there is no need to focus. It can also be used on a moving reflector. After initial measurement, the
reflector is tracked automatically (Figure 4.29). A single key touch records all data without interrupting
the tracking process. To ensure that the prism is always pointed to the instrument, 360◦ prisms are
available from certain manufacturers. ATR recognizes targets up to 1000 m away and maintains lock
on prisms moving at a speed of 5 m s–1. A further advantage of ATR is that it can operate in darkness.

(a) (b)

Fig. 4.29 Robotic total station system – courtesy of (a) Leica-Geosystems, (b) Topcon
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• In order to utilize ATR, the instrument must be fitted with servo motors to drive both the horizontal and
vertical movements of the instrument. It also permits the instrument to automatically turn to a specific
bearing (direction) when setting out, calculated from the up-loaded design coordinates of the point.

• Reflectorless measurement is also available on many instruments, typically using two different coaxial
red laser systems. One laser is invisible and is used to measure long distances, up to a few kilometres
to a single reflector, the other is visible, does not require a reflector, and has a limited range of a few
hundred metres. The range depends on the reflectivity of the surface being measured to. Concrete and
wood give good returns while dark coloured rock has a lesser range. A single key stroke allows one to
alternate between the visible or invisible laser.

Possible uses for this technique include surveying the façades of buildings, tunnel profiling, cooling
tower profiling, bridge components, dam faces, overhead cables, points in traffic or other hazardous
situations, points where it is impossible to place a target – indeed any situation which is difficult
or impossible to access directly. The extremely narrow laser used clearly defines the target point
(Figure 4.30).

• Wireless communication enables communication between instrument and surveyor when the surveyor
is remote from the instrument and enables downloading data to a computer without the need for cables.

• Target identification enables locking onto only the correct target without the possibility of acquiring
false targets.

Fig. 4.30 Reflectorless total station – courtesy of Topcon
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• Built-in programmes are available with most total stations. Examples of which are: Traverse coordinate
computation with Bowditch adjustment; Missing line measurement in the horizontal and vertical planes
to any two points sighted from the instrument; Remote object elevation determines the heights of
inaccessible points; Offset measurement gives the distance and bearing to an inaccessible point close
to the reflector by obtaining the vector to the reflector and relative direction to the inaccessible point;
Resection to a minimum of two known points determines the position of the total station observing
those points; Building façade survey allows for the coordination of points on the face of a building or
structure using angles only; Three-dimensional coordinate values of points observed; Setting-out data
to points whose coordinates have been uploaded into the total station; Coding of the topographic detail
with automatic point number incrementing.

The above has detailed many of the developments in total station design and construction which have
led to the development of fully automated one-man systems, frequently referred to as robotic surveying
systems. Robotic surveying produces high productivity since the fully automatic instrument can be left
unmanned and all operations controlled from the target point that is being measured or set out. In this
case it is essential that the instrument is in a secure position. The equipment used at the target point would
consist of an extendible reflector pole with a circular bubble. It would carry a 360◦ prism and a control
unit incorporating a battery and radio modem. Import and export of data is via the radio modem. Storage
capacity would be equal to at least 10 000 surveyed points, plus customized software and the usual facilities
to view, edit, code, set-out, etc. The entire measurement procedure is controlled from the reflector pole
with facilities for keying the start/stop operation, aiming, changing modes, data registration, calculations
and data input.

4.13.1 Machine guidance

Robotic surveying has resulted in the development of several customized systems, not the least of which
are those for the control of construction plant on site. These systems, produced by the major companies
Leica Geosystems and Trimble, are capable of controlling slip-form pavers, rollers, motorgraders and even
road headers in tunnelling. In each case the method is fundamentally the same. See Figure 4.31.

The machine is fitted with a customized 360◦ prism strategically positioned on the machine. The total
station is placed some distance outside the working area and continuously monitors the three-dimensional
position of the prism. This data is transmitted via the radio link to an industrial PC on board the con-
struction machine. The PC compares the construction project data with the machine’s current position and
automatically and continuously sends the appropriate control commands to the machine controller to give
the necessary construction position required. All the information is clearly displayed on a large screen.
Such information comprises actual and required grading profiles; compression factors for each surface area
being rolled and the exact location of the roller; tunnel profiles showing the actual position of the cutter
head relative to the required position. In slip forming, for example, complex profiles, radii and routes are
quickly completed to accuracies of 2 mm and 5 mm in vertical and lateral positions respectively. Not only
do these systems provide extraordinary precision, they also afford greater safety, speedier construction and
are generally of a higher quality than can be achieved with GPS systems employed to do similar tasks.

Normally, without machine guidance, all these operations are controlled using stringlines, profile boards,
batter boards, etc. As these would no longer be required, their installation and maintenance costs are
eliminated, they do not interfere with the machines and construction site logistics, and so errors due to
displacement of ‘wood’ and ‘string’ are precluded.

Worked examples

Example 4.10. The majority of short-range EDM equipment measures the difference in phase of the
transmitted and reflected light waves on two different frequencies, in order to obtain distance.
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Machine Prism Industrial PC

X-Y Tilt Sensor

(a)

(b)

Fig. 4.31 Machine guidance by robotic surveying system

The frequencies generally used are 15 MHz and 150 kHz. Taking the velocity of light as 299 793 km/s
and a measure distance of 346.73 m, show the computational processes necessary to obtain this distance,
clearly illustrating the phase difference technique.

Travel distance = 2 × 346.73 = 693.46 m

Travel time of a single pulse = t = D/V = 693.46/299 793 000

= 2.313 µs = 2313 ns

Standard frequency = f = 15 MHz = 15 × 106cycles/s

Time duration of a single pulse = 1/15 × 106 s = 66.6̄ ns = tp.

∴ No. of pulses in the measured distance = t/tp = 2313/66.6̄ = 34.673
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i.e. 2D = Mλ + δλ = 34λ + 0.673λ

However, only the phase difference δλ is known and not the value of M; hence the use of a second
frequency.

A single pulse (λ) takes 66.6 ns, which at 15 MHz = 20 m, and λ/2 = 10 m.

∴ D = M(λ/2) + 0.673(λ/2) = 6.73 m

Now using f = 150 kHz = 150 × 103 cycles/s, the time duration of a single pulse = 1/150 × 103 =
6.667 µs.

At 150 kHz, 6.6674 µs = 1000 m

No. of pulses = t/tp =2.313/6.667 = 0.347

∴ D = 0.347 × 1000 m = 347 m

Fine measurement using 15 MHz = 6.73 m

Coarse measurement using 15 kHz = 347 m

Measured distance = 346.73 m

Example 4.11. (a) Using EDM, top-mounted on a theodolite, a distance of 1000 m is measured on an angle
of inclination of 09◦ 00′ 00′′. Compute the horizontal distance.

Now, taking R = 6.37 × 106 m and the coefficient of refraction K = 1.10, correct the vertical angle for
refraction effects, and recompute the horizontal distance.

(b) If the EDM equipment used above was accurate to ± 3 mm ± 5 ppm, calculate the required accuracy
of the vertical angle, and thereby indicate whether or not it is necessary to correct it for refraction.

(c) Calculate the equivalent error allowable in levelling the two ends of the above measured
line. (KU)

(a) Horizontal distance = D = S cos α = 1000 cos 9◦ = 987.688 m

r̂′′ = SKρ/2R = 987.69 × 1.10 × 206 265/2 × 6 370 000 = 17.6′′

Corrected angle = 8◦ 59′ 42′′

∴ D = 1000 cos 8◦ 59′ 42′′ = 987.702 m

Difference = 14 mm

(b) Distance is accurate to ±(32 + 52)
1
2 = ±5.8 mm

D = S cos α

δD = −S sin α δα

δα′′ = δDρ/S sin α = 0.0058 × 206 265/10 000 sin 9◦ = ±7.7′′

Vertical angle needs to be accurate to ±7.7′′, so refraction must be catered for.
(c) To reduce S to D, apply the correction −h2/2S = Ch

δCh = h δh/S

and δh = δChS/h

where h = S sin α = 1000 sin 9◦ = 156.43 m

δh = 0.0058 × 1000/156.43 = ±0.037 m
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Example 4.12.

(a) Modern total stations supply horizontal distance (D) and vertical height (�H) at the press of a button.
What corrections must be applied to the initial field data of slope distance and vertical angle to

obtain the best possible values for D and �H?
(b) When using EDM equipment of a particular make, why is it inadvisable to use reflectors from other

makes of instrument?
(c) To obtain the zero error of a particular EDM instrument, a base line AD is split into three sections AB,

BC and CD and measured in the following combinations:

AB = 20.512, AC = 63.192, AD = 153.303

BC = 42.690, BD = 132.803, CD = 90.1201

Using all possible combinations, compute the zero error: (KU)

(a) Velocity correction using temperature and pressure measurements at the time of measurement.
Vertical angle corrected for refraction to give D and for Earth curvature to give �H.

(b) Instrument has a built-in correction for the reflector constant and may have been calibrated for that
particular instrument/reflector combination.

(c)

20.512 + 42.690 − 63.192 = + 0.010

63.192 + 90.120 − 153.303 = + 0.009

20.512 + 132.803 − 153.303 = + 0.012

42.690 + 90.120 − 132.803 = + 0.007

Mean = + 0.009 m

Correction = − 0.009 m

Example 4.13. Manufacturers specify the accuracy of EDM equipment as

±a ± bD mm

where b is in ppm of the distance measured, D.
Describe in detail the various errors defined by the variables a and b. Discuss the relative importance

of a and b with regard to the majority of measurements taken in engineering surveys.
What calibration procedures are required to minimize the effect of the above errors in EDM

measurement. (KU)

For answer, refer to appropriate sections of the text.
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Angle measurement

As shown in Chapter 1, horizontal and vertical angles are fundamental measurements in surveying.
The vertical angle, as already illustrated, is used in obtaining the elevation of points (trig levelling) and

in the reduction of slant distance to the horizontal.
The horizontal angle is used primarily to obtain direction to a survey control point, or to topographic

detail points, or to points to be set out.
An instrument used for the measurement of angles is called a theodolite, the horizontal and vertical

circles of which can be likened to circular protractors set in horizontal and vertical planes. It follows that,
although the points observed are at different elevations, it is always the horizontal angle and not the space
angle which is measured. For example, observations to points A and C from B (Figure 5.1) will give the
horizontal angle ABC = θ . The vertical angle of elevation to A is α and its zenith angle is ZA.

5.1 THE THEODOLITE

There are basically two types of theodolite, the optical mechanical type or the electronic digital type, both
of which may be capable of reading directly to 1′, 20′′, 1′′ or 0.1′′ of arc, depending upon the precision
of the instrument. The selection of an instrument specific to the survey tolerances of the work in hand is
usually overridden by the commercial considerations of the company and a 1′′ instrument may be used
for all work. When one considers that 1′′ of arc subtends 1 mm in 200 m, it is sufficiently accurate for
practically all work carried out in engineering.

Figure 5.2 shows a typical theodolite, whilst Figure 5.3 shows the main components of a theodolite. This
exploded diagram enables the relationships of the various parts to be more clearly understood along with
the relationships of the main axes. In a correctly adjusted instrument these axes should all be normal to each
other, with their point of intersection being the point about which the angles are measured. Neither figure
illustrates the complexity of a modern theodolite or the very high calibre of the process of its production.

The basic features of a typical theodolite are, with reference to Figure 5.3, as follows:

(1) The trivet stage forming the base of the instrument connects it to the tripod head.
(2) The tribrach supports the rest of the instrument and with reference to the plate bubble can be levelled

using the footscrews which act against the fixed trivet stage.
(3) The lower plate carries the horizontal circle which is made of glass, with graduations from 0◦ to

360◦ photographically etched around the perimeter. This process enables lines of only 0.004 mm
thickness to be sharply defined on a small-diameter circle (100 mm), thereby resulting in very
compact instruments.

(4) The upper plate carries the horizontal circle index and fits concentrically with the lower plate.
(5) The plate bubble is attached to the upper plate and when adjusted, using the footscrews, makes the

instrument axis vertical. Some modern digital or electronic theodolites have replaced the spirit bubble
with an electronic bubble.
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Fig. 5.1 Horizontal, vertical and zenith angles

Fig. 5.2 Typical optical mechanical theodolite
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Fig. 5.3 Simplified theodolite

(6) The upper plate also carries the standards which support the telescope by means of its transit
axis. The standards are tall enough to allow the telescope to be fully rotated about its transit axis.

(7) The vertical circle, similar in construction to the horizontal circle, is fixed to the telescope axis and
rotates with the telescope.

(8) The vertical circle index, against which the vertical angles are measured, is set normal to gravity by
means of (a) an altitude bubble attached to it, or (b) an automatic compensator. The latter method is
now universally employed in modern theodolites.

(9) The lower plate clamp (Figure 5.2) enables the horizontal circle to be clamped into a fixed position.
The lower plate slow motion screw permits slow movement of the theodolite around its vertical axis,
when the lower plate clamp is clamped. Most modern theodolites have replaced the lower plate clamp
and slow motion screw with a horizontal circle-setting screw. This single screw rotates the horizontal
circle to any reading required.

(10) Similarly, the upper plate clamp and slow motion screw have the same effect on the horizontal circle
index.

(11) The telescope clamp and slow motion screw fix and allow fine movement of the telescope in the
vertical plane.
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(12) The altitude bubble screw centres the altitude bubble, which, as it is attached to the vertical circle
index, makes it horizontal prior to reading the vertical circle. As stated in (8), this is now done by
means of an automatic compensator.

(13) The optical plummet, built into either the base of the instrument or the tribrach (Figure 5.12), enables
the instrument to be centred precisely over the survey point. The line of sight through the plummet
is coincidental with the vertical axis of the instrument.

(14) The telescopes are similar to those of the optical level but usually shorter in length. They also possess
rifle sights or collimators for initial pointing.

5.1.1 Reading systems

The theodolite circles are generally read by means of a small auxiliary reading telescope at the side of
the main telescope (Figure 5.2). Small circular mirrors reflect light into the complex system of lenses and
prisms used to read the circles.

There are basically three types of reading system; optical scale reading, optical micrometer reading and
electronic digital display.

(1) The optical scale reading system is generally used on theodolites with a resolution of 20′′ or less. Both
horizontal and vertical scales are simultaneously displayed and are read directly with the aid of the
auxiliary telescope.

The telescope used to give the direct reading may be a ‘line microscope’ or a ‘scale microscope’.
The line microscope uses a fine line etched onto the graticule as an index against which to read the

circle.
The scale microscope has a scale in its image plane, whose length corresponds to the line separation

of the graduated circle. Figure 5.4 illustrates this type of reading system and shows the scale from
0′ to 60′ equal in scale of one degree on the circle. This type of instrument is frequently referred to
as a direct-reading theodolite and, at best, can be read, by estimation, to 20′′.

(2) The optical micrometer system generally uses a line microscope, combined with an optical micrometer
using exactly the same principle as the parallel plate micrometer on a precise level.

Figure 5.5 illustrates the principle involved. If the observer’s line of sight passes at 90◦ through
the parallel plate glass, the circle reading would be 23◦ 20′ + S, with the value of S unknown. The
parallel plate is rotated using the optical micrometer screw (Figure 5.2) until the line of sight is at an
exact reading of 23◦ 20′ on the circle. This is as a result of the line of sight being refracted towards
the normal and emerging on a parallel path. The distance S through which the observer’s line of sight
was displaced is recorded on the micrometer scale as 11′ 40′′.

Fig. 5.4 Wild T16 direct reading theodolite



164 Engineering Surveying

Fig. 5.5 Micrometer

Fig. 5.6 Watts Microptic No 1 theodolite reading system

The shift of the image is proportional to the angle of tilt of the parallel plate and is read on the
micrometer scale. Before the scale can be read, the micrometer must be set to give an exact reading
(23◦ 20′), as shown on Figure 5.6, and the micrometer scale reading (11′ 40′′) added on. Thus the total
reading is 23◦ 31′ 40′′. In this instance the optical micrometer reads only one side of the horizontal
circle, which is common to 20′′ instruments.

On more precise theodolites, reading to 1′′ of arc and above, a coincidence microscope is used. This
enables diametrically opposite sides of the circle to be combined and a single mean reading taken.
This mean reading is therefore free from circle eccentricity error.

Figure 5.7 shows the diametrically opposite scales brought into coincidence by means of the optical
micrometer screw. The number of divisions on the main scale between 94◦ and 95◦ is three; therefore
each division represents 20′. The indicator mark can only take up one of two positions, either mid-
division or on a full division. In this case it is mid-division and represents a reading of 94◦ 10′;
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Fig. 5.7 Wild T2 (old pattern) theodolite reading system

Fig. 5.8 Wild T2 (new pattern)

the micrometer scale reads 2′ 44′′ to the nearest second, giving a total reading of 94◦ 12′ 44′′. An
improved version of this instrument is shown in Figure 5.8.

The above process is achieved using two parallel plates rotating in opposite directions, until the
diametrically opposite sides of the circle coincide.

(3) There are basically two systems used in the electro-optical scanning process, either the incremental
method or the code method (Figure 5.9).

The basic concept of the incremental method can be illustrated by considering a glass circle of
70–100 mm diameter, graduated into a series of radial lines. The width of these photographically
etched lines is equal to their spacing. The circle is illuminated by a light diode; a photodiode, equal
in width to a graduation, forms an index mark. As the alidade of the instrument rotates, the glass
circle moves in relation to the diode. The light intensity signal radiated approximates to a sine curve.
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Fig. 5.9 (a) Incremental disk, (b) binary coded disk

Fig. 5.10 Sine wave to square wave modulation

The diode converts this to an electrical signal correspondingly modulated to a square wave signal
(Figure 5.10). The number of signal periods is counted by means of the leading and trailing edges
of the square wave signal and illustrated digitally in degrees, minutes and seconds on the LCD. This
simplified arrangement would produce a relatively coarse least count resolution, requiring further
refinement.

For example, consider a glass circle that contains 20 000 radial marks, each 5.5 µm thick, with
equal width spacing. Asection of the circle comprising 200 marks is superimposed on the diametrically
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Fig. 5.11 Fine reading using moiré pattern brightness

opposite section, forming a moiré pattern. Afull period (light–dark variation) corresponds to an angular
value of approximately 1 min of arc, with a physical length of 2 mm. A magnification of this period
by two provides a length of 4 mm over which the brightness pattern can be electronically scanned.
Thus the coarse measurement can be obtained from 40 000 periods per full circle, equivalent to 30′′
per period.

The fine reading to 0.3′′ is obtained by monitoring the brightness distribution of the moiré pattern
using the four diodes shown (Figure 5.11). The fine measurement obtains the scanning position location
with respect to the leading edge of the square wave form within the last moiré pattern. It is analogous
to measuring the fraction of a wavelength using the phase angle in EDM measurement.

The code methods use coded graduated circles (Figure 5.9(b)). Luminescent diodes above the glass
circle and photodiodes below, one per track, detect the light pattern emitted, depending on whether
a transparent track (signal 1) or an opaque track (signal 0) is opposite the diode at that instant. The
signal is transferred to the computer for processing into a digital display. If there are n tracks, the full
circle is divided into 2n equal sectors. Thus a 16-track disk has an angular resolution of 216, which is
65 532 parts of a full circle and is equivalent to a 20′′ resolution.

The advantage of the electronic systems over the glass arc scales is that they produce a digital
output free from misreading errors and in a form suitable for automatic data recording and processing.
Figure 5.12 illustrates the glass arc and electronic theodolites.

5.2 INSTRUMENTAL ERRORS

In order to achieve reliable measurement of the horizontal and vertical angles, one must use an instrument
that has been properly adjusted and adopt the correct field procedure.

In a properly adjusted instrument, the following geometrical relationships should be maintained
(Figure 5.3):

(1) The plane of the horizontal circle should be normal to the vertical axis of rotation.
(2) The plane of the vertical circle should be normal to the horizontal transit axis.
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(a) (b)

Fig. 5.12 (a) Wild T1 glass arc theodolite with optical plummet in the alidade, (b) Wild T1600 electronic
theodolite with optical plummet in the tribrach

(3) The vertical axis of rotation should pass through the point from which the graduations of the horizontal
circle radiate.

(4) The transit axis of rotation should pass through the point from which the graduations of the vertical
circle radiate.

(5) The principal tangent to the plate bubble should be normal to the main axis of rotation.
(6) The line of sight should be normal to the transit axis.
(7) The transit axis should be normal to the main axis of rotation.
(8) When the telescope is horizontal, the vertical circle indices should be horizontal and reading zero,

and the principal tangent of the altitude bubble should, at the same instance, be horizontal.
(9) The main axis of rotation should meet the transit axis at the same point as the line of sight meets

this axis.
(10) The line of sight should maintain the same position with change of focus (an important fact when

coplaning wires).

Items (1), (2), (3) and (4) above are virtually achieved by the instrument manufacturer and no provision
is made for their adjustment. Similarly, (9) and (10) are dealt with, as accurately as possible, in the
manufacturing process and in any event are minimized by double face observations. Items (5), (6), (7) and
(8) can, of course, be achieved by the usual adjustment procedures carried out by the operator.

The procedure referred to above as ‘double face observation’is fundamental to the accurate measurement
of angles.An examination of Figure 5.2 shows that an observer looking through the eyepiece of the telescope
would have the vertical circle on the left-hand side of his/her face; this would be termed a ‘face left’ (FL)
observation. If the telescope is now rotated through 180◦ about its transit axis and then the instrument
rotated through 180◦ about its vertical axis, the vertical circle would be on the right-hand side of the
observer’s face when looking through the telescope eyepiece. This is called a ‘face right’ (FR) observation.
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Fig. 5.13 Eccentricity of centres

The mean result of a FL and FR observation, called a double face observation, is free from the majority of
instrumental errors present in the theodolite.

The main instrumental errors will now be dealt with in more detail and will serve to emphasize the
necessity for double face observation.

5.2.1 Eccentricity of centres

This error is due to the centre of the central pivot carrying the alidade (upper part of the instrument) not
coinciding with the centre of the hollow pivot carrying the graduated circle (Figures 5.3 and 5.13).

The effect of this error on readings is periodic. If B is the centre of the graduated circle and A is the
centre about which the alidade revolves, then distance AB is interpreted as an arc ab in seconds on the
graduated circle and is called the error of eccentricity. If the circle was read at D, on the line of the two
centres, the reading would be the same as it would if there were no error. If, at b, it is in error by ba = E,
the maximum error. In an intermediate position d, the error will be de = BC = AB sin θ = E sin θ , θ being
the horizontal angle of rotation.

The horizontal circle is graduated clockwise, so, a reading supposedly at b will actually be at a, giving
a reading too great by +E. On the opposite side, the reading of the point supposedly at b′ will actually be
at a′, thereby reading too small by −E. Similarly for the intermediate positions at d and d′, the errors will
be +E sin θ and −E sin θ . Thus the mean of the two readings 180◦ apart, will be free of error.

Glass-arc instruments in the 20′′ class can be read on one side of the graduated circle only, thus producing
an error which varies sinusoidally with the angle of rotation. The mean of the readings on both faces of the
instrument would be free of error. With 1′′ theodolites the readings 180◦ apart on the circle are automatically
averaged and so are free of this error.

Manufacturers claim that this source of error does not arise in the construction of modern glass-arc
instruments.

5.2.2 Collimation in azimuth

Collimation in azimuth error refers to the error which occurs in the observed angle due to the line of sight,
or more correctly, the line of collimation, not being at 90◦ to the transit axis (Figure 5.3). If the line of
sight in Figure 5.14 is at right angles to the transit axis it will sweep out the vertical plane VOA when the
telescope is elevated through the vertical angle α.

If the line of sight is not at right angles but in error by an amount e, the line of sight will describe a
cone with its axis about the transit axis and an apex angle of just under 90◦. So, in Figure 5.14(b), the
instrument is at O and the elevated target is at A which is where the line of sight points to. Because of the
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Fig. 5.14 Collimation in azimuth

collimation error the axis of the telescope actually points to B so the error in the horizontal pointing is +φ

(positive because the horizontal circle is graduated clockwise).

tan φ = AB

OV
= OA tan e

OV
but

OA

OV
= sec α

∴ tan φ = sec α tan e

as φ and e are very small, the above may be written

φ = e sec α (5.1)

On changing face VOB will fall to the other side of A and give an equal error of opposite sign, i.e. −φ.
Thus the mean of readings on both faces of the instrument will be free of this error.

φ is the error of one sighting to a target of elevation α. An angle, however, is the difference between
two sightings; therefore the error in an angle between two objects of elevation, α1 and α2, will be
e(sec α1 − sec α2) and will obviously be zero if α1 = α2, or if measured in the horizontal plane, (α = 0).

On the opposite face the error in the angle simply changes sign to −e(sec α1 − sec α2), indicating that
the mean of the two angles taken on each face will be free of error regardless of elevation.

Similarly it can be illustrated that the true value of a vertical angle is given by sin α = sin α1 cos e
where α is the measured altitude and α1 the true altitude. However, as e is very small, cos e ≈ 1, hence
α1 ≈ α, proving that the effect of this error on vertical angles is negligible, provided that α is not
close to 90◦.

5.2.3 Transit axis error

Error will occur in the measurement of the horizontal angle if the transit axis is not at 90◦ to the instrument
axis (Figure 5.3). When measuring, the instrument axis should be vertical. If the transit axis is set correctly
at right angles to the vertical axis, then when the telescope is elevated it will sweep out the truly vertical
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Fig. 5.15 The effect of transit axis error on horizontal pointing

plane AOV (Figure 5.15). Assuming the transit axis is inclined to the horizontal by e, the telescope will
sweep out the plane AOB which is inclined to the vertical by e. This will create an error −φ in the horizontal
reading of the theodolite (negative as the horizontal circle is graduated clockwise).

If α is the angle of elevation then

sin φ = BV

VO
= AV tan e

VO
= VO tan α tan e

VO
= tan α tan e (5.2)

Now, as φ and e are small, φ = e tan α.
From Figure 5.15 it can be seen that the correction, φ, to the reading to the elevated target at A, due to

a clockwise rotation of the transit axis, is negative because of the clockwise graduations of the horizontal
circle. Thus, when looking through the telescope towards an elevated object, if the left-hand end of the
transit axis is high, then the correction to the reading is negative, and vice versa.

On changing face, AOB will fall to the other side of A and give an equal error of opposite sign. Thus,
the mean of the readings on both faces of the instrument will be free from error. As previously, the error
in the measurement of an angle between two objects of elevations α1 and α2 will be

e(tan α1 − tan α2)

which on changing face becomes −e(tan α1 − tan α2) indicating that the mean of two angles taken one on
each face, will be free from error regardless of the elevation of the target. Also, if α1 = α2, or the angle is
measured in the horizontal plane (α = 0), it will be free from error.

Using Figure 5.16, if the observed vertical angle is α1 then the correct vertical angle α can be found from

sin α = AV

AO
= AB sec e

AO
= AO sin α1 sec e

AO
= sin α1 sec e (5.3)

As e is very small sec e ≈ 1, thus α1 ≈ α. The effect of this error on vertical angles is negligible
provided that the vertical angle is not close to 90◦.
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Fig. 5.16 The effect of transit axis error on vertical angle

5.2.4 Effect of non-verticality of the instrument axis

If the plate levels of the theodolite are not in adjustment, then the instrument axis will be inclined to the
vertical, and hence measured azimuth angles will not be truly horizontal. Assuming the transit axis is in
adjustment, i.e. perpendicular to the vertical axis, then error in the vertical axis of e will cause the transit
axis to be inclined to the horizontal by e, producing an error in pointing of φ = e tan α as derived from
equation (5.2). Here, however, the error is not eliminated by double-face observations (Figure 5.17), but
varies with different pointings of the telescope. For example, Figure 5.18(a) shows the instrument axis
truly vertical and the transit axis truly horizontal. Imagine now that the instrument axis is inclined through
e in a plane at 90◦ to the plane of the paper (Figure 5.18(b)). There is no error in the transit axis. If the
alidade is now rotated clockwise through 90◦ into the plane of the paper, it will be as in Figure 5.18(c), and
when viewed in the direction of the arrow, will appear as in Figure 5.18(d) with the transit axis inclined
to the horizontal by the same amount as the vertical axis, e. Thus, the error in the transit axis varies from
zero to maximum through 90◦. At 180◦ it will be zero again, and at 270◦ back to maximum in exactly the
same position.

If the horizontal angle between the plane of the transit axis and the plane of dislevelment of the vertical
axis is δ, then the transit axis will be inclined to the horizontal by e cos δ. For example, in Figure 5.18(b),
δ = 90◦, and therefore as cos 90◦ = 0, the inclination of the transit axis is zero, as shown.

For an angle between two targets at elevations α1 and α2, in directions δ1 and δ2, the correction will be
e(cos δ1 tan α1 −cos δ2 tan α2). When δ1 = δ2, the correction is a maximum when α1 and α2 have opposite
signs. When δ1 = −δ2, that is in opposite directions, the correction is maximum when α1 and α2 have the
same sign.

If the instrument axis is inclined to the vertical by an amount e and the transit axis further inclined
to the horizontal by an amount i, both in the same plane, then the maximum dislevelment of the transit
axis on one face will be (e + i), and (e − i) on the reverse face (Figure 5.19). Thus, the correction to a
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Fig. 5.17 Non-vertical instrument axis

Fig. 5.18 The effect of non-verticality of the instrument axis

pointing on one face will be (e + i) tan α and on the other (e − i) tan α, resulting in a correction of e tan α

to the mean of both face readings.
As shown, the resultant error increases as the angle of elevation α increases and is not eliminated by

double face observations. As steep sights frequently occur in mining and civil engineering surveys, it is
very important to recognize this source of error and adopt the correct procedures.

Thus, as already illustrated, the correction for a specific direction δ due to non-verticality (e) of the
instrument axis is e cos δ tan α. The value of e cos δ = E can be obtained from

E′′ = S′′ (L − R)

2
(5.4)
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Fig. 5.19 Non-vertical instrument axis. (a) Face left, (b) face right

Count first division as 1. So bubble readings are L = 3.9, R = 1.7

Fig. 5.20 Reading a bubble

where S′′ = the sensitivity of the plate bubble in seconds of arc per bubble division
L and R = the left- and right-hand readings of the ends of the plate bubble measured out from the

centre of the bubble when viewed from the eyepiece end of the telescope. See Figure 5.20
for an example.

Then the correction to each horizontal circle reading is C′′ = E′′ tan α, and is positive when L > R and
vice versa.

For high-accuracy survey work, the accuracy of the correction C will depend upon how accurately E
can be assessed. This, in turn, will depend on the sensitivity of the plate bubble and how accurately the
ends of the bubble can be read. For very high accuracy involving extremely steep sights, an Electrolevel
attached to the theodolite will measure axis tilt directly. This instrument has a sensitivity of 1 scale
division equal to 1′′ of tilt and can be read to 0.25 div. The average plate bubble has a sensitivity of
20′′ per div.

Assuming that one can read each end of the plate bubble to an accuracy of ±0.5 mm, then for a bubble
sensitivity of 20′′ per (2 mm) div, on a vertical angle of 45◦, the error in levelling the instrument (i.e. in
the vertical axis) would be ±0.35 × 20′′ tan 45◦ = ±7′′. It has been shown that the accuracy of reading a
bubble through a split-image coincidence system is about ten times greater. Thus, if the altitude bubble,
usually viewed through a coincidence system, were used to level the theodolite, error in the axis tilt could
be reduced to as little as ±0.7′′ provided that the tripod is sufficiently stable.

More recent theodolites have replaced the altitude bubble with automatic vertical circle indexing with
stabilization accuracies of ±0.3′′. This may therefore be used for high-accuracy levelling of the instrument
as follows:

(1) Accurately level the instrument using its plate bubble in the normal way.
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(2) Clamp the telescope in any position, place the plane of the vertical circle parallel to two footscrews
and note the vertical circle reading.

(3) With telescope remaining clamped, rotate the alidade through 180◦ and note the vertical circle reading.
(4) Using the two footscrews of (2) above, set the vertical circle to the mean of the two readings obtained

in (2) and (3).
(5) Rotate through 90◦ and by using only the remaining footscrew obtain the same mean vertical circle

reading.

The instrument is now precisely levelled to minimize axis tilt and virtually eliminate this source of error
on all but the steepest sites.

Vertical angles are not affected significantly by non-verticality of the instrument axis as their horizontal
axis of reference is established independently of the plate bubble.

5.2.5 Circle graduation errors

In the construction of the horizontal and vertical circles of a 1′′ direct reading theodolite, the graduation
lines on a 100-mm-diameter circle have to be set with an accuracy of 0.4 µm. In spite of the sophisticated
manufacturing processes available, both regular and irregular errors of graduation occur.

It is possible to calibrate each instrument by producing error curves. However, with a 1′′ direct reading
theodolite such curves generally show maximum errors in the region of only ±0.3′′. In practice, therefore,
such errors are dealt with by observing the same angle on different parts of the circle, distributed sym-
metrically around the circumference. If the angle is to be observed 2, 4 or n times, where a double face
measurement is regarded as a single observation, then the alidade is rotated through 180◦/n prior to each
new round of measurements.

5.2.6 Optical micrometer errors

When the optical micrometer is rotated from zero to its maximum position, then the displacement of the
circle should equal the least count of the main scale reading. However, due to circle graduation error, plus
optical and mechanical defects, this may not be so. The resultant errors are likely to be small but cyclic.
Their effects can be minimized by using different micrometer settings.

5.2.7 Vertical circle index error

In the measurement of a vertical angle it is important to note that the vertical circle is attached to and rotates
with the telescope. The vertical circle reading is relevant to a fixed vertical circle index which is rendered
horizontal by means of its attached altitude bubble (Figure 5.3) or by automatic vertical circle indexing.

Vertical circle index error occurs when the index is not horizontal. Figure 5.21 shows the index inclined
at e to the horizontal. The measured vertical angle on FL is M, which requires a correction of +e, while
on FR the required correction is −e. The index error is thus eliminated by taking the mean of the FL and
FR readings.

5.3 INSTRUMENT ADJUSTMENT

In order to maintain the primary axes of the theodolite in their correct geometrical relationship (Figure 5.3),
the instrument should be regularly tested and adjusted. Although the majority of the resultant errors are
minimized by double face procedures, this does not apply to plate bubble error. Also, many operations in
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Fig. 5.21 Vertical circle index error. (a) Face left, (b) face right

engineering surveying are carried out on a single face of the instrument, and hence regular checking is
important.

5.3.1 Tests and adjustments

(1) Plate level test

The instrument axis must be truly vertical when the plate bubble is centralized. The vertical axis of the
instrument is perpendicular to the horizontal plate which carries the plate bubble. Thus to ensure that the
vertical axis of the instrument is truly vertical, as defined by the bubble, it is necessary to align the bubble
axis parallel to the horizontal plate.

Test: Assume the bubble is not parallel to the horizontal plate but is in error by angle e. It is set parallel
to a pair of footscrews, levelled approximately, then turned through 90◦ and levelled again using the third
footscrew only. It is now returned to its former position, accurately levelled using the pair of footscrews,
and will appear as in Figure 5.22(a). The instrument is now turned through 180◦ and will appear as
in Figure 5.22(b), i.e. the bubble will move off centre by an amount representing twice the error in the
instrument (2e).

Adjustment: The bubble is brought half-way back to the centre using the pair of footscrews which are
turned by a strictly equal and opposite amount. The bubble moves in the direction of the left thumb. See
Figure 5.28. This will cause the instrument axis to move through e, thereby making it truly vertical and,
in the event of there being no adjusting tools available, the instrument may be used at this stage. The

Fig. 5.22 Misaligned plate bubble. (a) When levelled over two footscrews, (b) when turned through 180°
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Fig. 5.23 Collimation in azimuth

bubble will still be off centre by an amount proportional to e, and should now be centralized by raising or
lowering one end of the bubble using its capstan adjusting screws.

(2) Collimation in azimuth

The purpose of this test is to ensure that the line of sight is perpendicular to the transit axis.
Test: The instrument is set up, and levelled, and the telescope directed to bisect a fine mark at A, situated
at instrument height about 50 m away (Figure 5.23). If the line of sight is perpendicular to the transit axis,
then when the telescope is rotated vertically through 180◦, it will intersect at A1. However, assume that
the line of sight makes an angle of (90◦ − e) with the transit axis, as shown dotted in the face left (FL)
and face right (FR) positions. Then in the FL position the instrument would establish a fine mark at AL .
Change face, re-bisect point A, transit the telescope and establish a fine mark at AR. From the sketch it is
obvious that distance ALAR represents four times the error in the instrument (4e).

Adjustment: The cross-hairs are now moved in azimuth using their horizontal capstan adjusting screws,
from AR to a point mid-way between AR and A1; this is one-quarter of the distance ALAR.

This movement of the reticule carrying the cross-hair may cause the position of the vertical hair to be
disturbed in relation to the transit axis; i.e. it should be perpendicular to the transit axis. It can be tested by
traversing the telescope vertically over a fine dot. If the vertical cross-hair moves off the dot then it is not
at right angles to the transit axis and is corrected with the adjusting screws.

This test is frequently referred to as one which ensures the verticality of the vertical hair, which will be
true only if the transit axis is truly horizontal. However, it can be carried out when the theodolite is not
levelled, and it is for this reason that a dot should be used and not a plumb line as is sometimes advocated.

(3) Spire test (transit axis test)

The spire test ensures that the transit axis is perpendicular to the vertical axis of the instrument.

Test: The instrument is set up and carefully levelled approximately 50 m from a well-defined point of
high elevation, preferably greater than 30◦ (Figure 5.24). A well-defined point A, such as a church spire,
is bisected and the telescope then lowered to its horizontal position and the vertical cross-hair is used to
mark a point on a peg or a wall. If the transit axis is in adjustment the point will appear at A1 directly
below A. If, however, it is in error by the amount e (transit axis shown dotted in FL and FR positions), the
mark will be made at AL . The instrument is now changed to FR, point A bisected again and the telescope
lowered to the horizontal, to fix point AR. The distance ALAR is twice the error in the instrument (2e).

Adjustment: Length ALAR is bisected and a fine mark made at A1. The instrument is now moved in azimuth,
using a plate slow-motion screw until A1 is bisected. Note that no adjustment of any kind has yet been
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Fig. 5.24 Spire test (transit axis test)

Fig. 5.25 Vertical circle index test

made to the instrument. Thus, when the telescope is raised back to A it will be in error by the horizontal
distance ALAR/2. By moving one end of the transit axis using the adjusting screws, the line of sight is made
to bisect A. This can only be made to bisect A when the line of sight is elevated. Movement of the transit
axis when the telescope is in the horizontal plane ALAR, will not move the line of sight to A1, hence the
need to incline steeply the line of sight.

It should be noted that in modern instruments this adjustment cannot be carried out, i.e. there is no facility
for moving the transit axis. Manufacturers claim that this error does not occur in modern equipment. Its
effect is removed with the mean of FL and FR pointings. Alternatively the effect of the dislevelment of the
transit axis can be computed by the same process and formulae described in Section 5.2.4.

(4) Vertical circle index test

This is to ensure that when the telescope is horizontal and the altitude bubble central, the vertical circle
reads 0◦, 90◦ or 270◦ depending on the instrument.

Test: Centralize the altitude bubble using the altitude bubble levelling screw and, by rotating the telescope,
set the vertical circle to read zero (or its equivalent for a horizontal sight).

Note the reading on a vertical staff held about 50 m away. Change face and repeat the whole procedure.
If error is present, a different reading on each face is obtained, namely AL and AR in Figure 5.25.
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Adjustment: Set the telescope to read the mean of the above two readings, thus making the telescope truly
horizontal. The vertical circle will then no longer read zero, and must be brought back to zero without
affecting the horizontal pointing of the telescope. This is done by means of the bubble’s capstan adjusting
screws.

(5) Optical plummet

The line of sight through the optical plummet must coincide with the vertical instrument axis of the
theodolite.

If the optical plummet is fitted in the alidade of the theodolite (Figure 5.12(a)), rotate the instrument
through 360◦ in 90◦ intervals and make four marks on the ground. If the plummet is out of adjustment,
the four marks will form a square, intersecting diagonals of which will give the correct point. Adjust the
plummet cross-hairs to bisect this point.

If the plummet is in the tribrach it cannot be rotated. The instrument is set on its side, firmly on a
stable table with the plummet viewing a nearby wall and a mark aligned on the wall. The tribrach is then
turned through 180◦ and the procedure repeated. If the plummet is out of adjustment a second mark will
be aligned. The plummet is adjusted to intersect the point midway between the two marks.

5.3.2 Alternative approach

(1) Plate level test

The procedure for this is as already described.

(2) Collimation in azimuth

With the telescope horizontal and the instrument carefully levelled, sight a fine mark and note the reading.
Change face and repeat the procedure. If the instrument is in adjustment, the two readings should differ by
exactly 180◦. If not, the instrument is set to the corrected reading as shown below using the slow-motion
screw; the line of sight is brought back on to the fine mark by adjusting the cross-hairs.

e.g. FL reading 01◦ 30′ 20′′
FR reading 180◦ 31′ 40′′

Difference = 2e = 01′ 20′′
∴ e = +40′′

Corrected reading = 181◦ 31′ 00′′ or 01◦ 31′ 00′′

(3) Spire test

First remove collimation in azimuth, then with the instrument carefully levelled, sight a fine point of
high elevation and note the horizontal circle reading. Change face and repeat. If error is present, set the
horizontal circle to the corrected reading, as above. Adjust the line of sight back on to the mark by raising
or lowering the transit axis. (Not all modern instruments are capable of this adjustment.)

(4) Vertical circle index test

Assume the instrument reads 0◦ on the vertical circle when the telescope is horizontal and in FL position.
Carefully level the instrument, make the altitude bubble horizontal and sight a fine point of high elevation.
Change face and repeat. The two vertical circle readings should sum to 180◦, any difference being twice
the index error.
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Fig. 5.26 Vertical circle index test readings: (a) face left, (b) face right

e.g. FL reading (Figure 5.26(a)) 09◦ 58′ 00′′
FR reading (Figure 5.26(b)) 170◦ 00′ 20′′

Sum = 179◦ 58′ 20′′
Correct sum = 180◦ 00′ 00′′

2e = −01′ 40′′
e = −50′′

Thus with the target still bisected, the vertical circle is set to read 170◦ 00′ 20′′ + 50′′ = 170◦ 01′ 10′′
by means of the altitude bubble levelling screw. The altitude bubble is then centralized using its capstan
adjusting screws. If the vertical circle reads 90◦ and 270◦ instead of 0◦ and 180◦, the readings sum
to 360◦.

These alternative procedures have the great advantage of using the theodolite’s own scales rather than
external scales, and can therefore be carried out by one person.

5.4 FIELD PROCEDURE

The methods of setting up the theodolite and observing angles will now be dealt with. It should be
emphasized, however, that these instructions are no substitute for practical experience.

5.4.1 Setting up using a plumb-bob

Figure 5.27 shows a theodolite set up with the plumb-bob suspended over the survey station. The procedure
is as follows:

(1) Extend the tripod legs to the height required to provide comfortable viewing through the theodo-
lite. It is important to leave at least 100 mm of leg extension to facilitate positioning of the
plumb-bob.

(2) Attach the plumb-bob to the tripod head, so that it is hanging freely from the centre of the head.
(3) Stand the tripod approximately over the survey station, keeping the head reasonably horizontal.
(4) If the tripod has them, tighten the wing units at the top of the tripod legs and move the whole tripod

until the plumb-bob is over the station.
(5) Now tread the tripod feet firmly into the ground.
(6) Unclamp a tripod leg and slide it in or out until the plumb-bob is exactly over the station. If this cannot

be achieved in one movement, then use the slide extension to bring the plumb-bob in line with the
survey point and another tripod leg. Using this latter leg, slide in or out to bring the plumb-bob onto
the survey point.

(7) Remove the theodolite from its case and holding it by its standard, attach it to the tripod head.
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Fig. 5.27 Theodolite with plumb-bob

(8) The instrument axis is now set truly vertical using the plate bubble as follows:

(a) Set the plate bubble parallel to two footscrews A and B as shown in (Figure 5.28(a)) and centre
it by equal amounts of simultaneous contra-rotation of both screws. (The bubble follows the
direction of the left thumb.)

(b) Rotate alidade through 90◦ (Figure 5.28(b)) and centre the bubble using footscrew C only.
(c) Repeat (a) and (b) until bubble remains central in both positions. If there is no bubble error this

procedure will suffice. If there is slight bubble error present, proceed as follows.
(d) From the initial position at B (Figure 5.28(a)), rotate the alidade through 180◦; if the bubble

moves off centre bring if half-way back using the footscrews A and B.
(e) Rotate through a further 90◦, placing the bubble 180◦ different to its position in Figures 5.28(b).

If the bubble moves off centre, bring it half-way back with footscrew C only.
(f) Although the bubble is off centre, the instrument axis will be truly vertical and will remain so as

long as the bubble remains the same amount off centre (Section 5.3.2).
(g) Test that the instrument has been correctly levelled by turning the instrument to any arbitrary

direction. If the instrument is correctly levelled the bubble will remain in the same position within
its vial no matter where the instrument is pointed.

(9) Check the plumb-bob; if it is off the survey point, slacken off the whole theodolite and shift it laterally
across the tripod head, taking care not to allow it to rotate, until the plumb-bob is exactly over the
survey point.

(10) Repeat (8) and (9) until the instrument is centred and levelled.



182 Engineering Surveying

Fig. 5.28 Footscrews

5.4.2 Setting up using the optical plumb-bob

It is rare, if ever, that a theodolite is centred over the survey station using only a plumb-bob. All modern
instruments have an optical plummet built into the alidade section of the instrument (Figures 5.2 and
5.12(a)), or into the tribrach section (Figures 5.4 and 5.12(b)). Proceed as follows:

(1) Establish the tripod roughly over the survey point using a plumb-bob as in (1) to (5) of Section 5.4.1.
(2) Depending on the situation of the optical plummet, attach the tribrach only, or the theodolite, to the

tripod.
(3) Using the footscrews to incline the line of sight through the plummet, centre the plummet exactly on

the survey point.
(4) Using the leg extension, slide the legs in or out until the circular bubble of the tribrach/theodolite is

exactly centre. Even though the tripod movement may be excessive, the plummet will still be on the
survey point. Thus the instrument is now approximately centred and levelled.

(5) Precisely level the instrument using the plate bubble, as described in (8) of Section 5.4.1.
(6) Unclamp and move the whole instrument laterally over the tripod until the plummet cross-hair is

exactly on the survey point.
(7) Repeat (5) and (6) until the instrument is exactly centred and levelled.

5.4.3 Centring errors

Provided there is no wind, centring with a plumb-bob is accurate to ±3−5 mm. In windy conditions it is
impossible to use unless protected in some way.

The optical plummet is accurate to ±1−0.5 mm, provided the instrument axis is truly vertical and is
not affected by adverse weather conditions.

Forced centring or constrained centring systems are used to control the propagation of centring error in
precise traversing. Such systems give accuracies in the region of ±0.1−0.3 mm. They will be dealt with
in Chapter 6.

The effect of centring errors on the measured horizontal angle (θ ) is shown in Figure 5.29.
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Fig. 5.29 Centring error

Due to a miscentring error, the theodolite is established at B′, not the actual station B, and the angle θ is
observed, not θ ′. The maximum angular error (eθ ) occurs when the centring error BB′ lies on the bisector
of the measured angle and can be shown to be equal to:

(θ − θ ′) = eθ = 2eC tan(½θ )(LAB + LBC)/(LABLBC) radians (5.5)

and is positive if B is further from the line AC than B′ but negative if B is closer to the line AC than B′

where eC = the centring error BB′
LAB, LBC = horizontal lengths AB and BC

The effect of target-centring errors on the horizontal angle at B can be obtained as follows. If the target
errors are small then at A the target error is etA = eA/LAB and similarly the target error at C is etC = eC /LBC

where eA and eC are the component parts of the error in target position at right angles to the lines BA and
BC respectively to the right of their lines when viewed from B. The error in the angle would therefore be
equal to the difference of these two errors:

eθ t = eC /LBC − eA/LAB radians (5.6)

It can be seen from equations (5.5) and (5.6) that as the lengths L decrease, the error in the measured angles
will increase. Consider the following examples.

Worked examples

Example 5.1. In Figure 5.29 in the triangle ABC, AB is 700 m and BC is 1000 m. If the error in centring
the targets at A and C is 5 mm to the left of line AB as viewed from B and 5 mm to the right of the line BC
as viewed from B, what will be the resultant error in the measured angle?

eθ t
′′ = (0.005/700 + 0.005/1000) 206 265 = 2.5′′

In the scenario leading to equation (5.6) the erroneous positions are on the same side of the respective
lines from B so the errors are partially self-cancelling, hence the minus sign in the equation. In this worked
example the erroneous positions are on opposite sides of their lines and hence the errors add together.

Example 5.2. Consider the same question as in Example 5.1 with AB = 70 m, BC = 100 m.

eθ t
′′ = (0.005/70 + 0.005/100) 206 265 = 25′′

It can be seen that decreasing the lengths by a factor of 10 increases the angular error by the same factor.
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Example 5.3. Assuming angle ABC is 90◦ and the centring error of the theodolite is 3 mm away from the
line AC, what is the maximum error in the observed angle due to the centring error?

Then from equation (5.5):

eθ
′′ = 206 265 × 2 × 0.003 × (

1

2
)

1
2 × (1700)/(700 × 1000) = 2.1′′

Example 5.4. If the situations in examples 5.2 and 5.3 both apply what is the total error in the observed
angle.

e′′ = eθ
′′ + eθ t

′′ = 2.1′′ + 2.5′′ = 4.6′′

5.5 MEASURING ANGLES

Although the theodolite or total station is a very complex instrument the measurement of horizontal and
vertical angles is a simple concept. The horizontal and vertical circles of the instrument should be regarded
as circular protractors graduated from 0◦ to 360◦ in a clockwise manner. Then a simple horizontal angle
measurement between three survey points A, B and C in the sense of measuring at A clockwise from
B to C would be as shown in Figure 5.30.

(1) The instrument is set up and centred and levelled on survey point B. Parallax is removed.
(2) Commencing on, say, ‘face left’, the target set at survey point A is carefully bisected and the horizontal

scale reading noted = 25◦.
(3) The instrument is rotated to survey point C which is bisected. The horizontal scale reading is

noted = 145◦.
(4) The horizontal angle is then the difference of the two directions, i.e. Forward Station (C) minus Back

Station (A), (FS − BS) = (145◦ − 25◦) = 120◦.
(5) Change face and observe survey point C on ‘face right’, and note the reading = 325◦.
(6) Swing to point A, and note the reading = 205◦.
(7) The readings or directions must be subtracted in the same order as in (4), i.e. C − A.

Thus (325◦ − 205◦) = 120◦

Fig. 5.30 Measuring a horizontal circle
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(8) Note how changing face changes the readings by 180◦, thus affording a check on the observations.
The mean of the two values would be accepted if they are in good agreement.

(9) Try to use the same part of the vertical hair when pointing to the target. If the target appears just above
the central cross on FL it should appear just below the central cross on FR. This will minimize the
effect of any residual rotation of the cross-hairs.

Had the BS to A read 350◦ and the FS to C 110◦, it can be seen that 10◦ has been swept out from 350◦
to 360◦ and then from 360◦ or 0◦ to 110◦, would sweep out a further 110◦. The total angle is therefore
10◦ + 110◦ = 120◦ or (FS − BS) = [(110◦ + 360◦) − 350◦] = 120◦.

A further examination of the protractor shows that (BS − FS) = [(25◦ + 360◦) − 145◦] = 240◦,
producing the external angle. It is thus the manner in which the data are reduced that determines whether
or not it is the internal or external angle which is obtained.

A method of booking the data for an angle measured in this manner is shown in Table 5.1. This approach
constitutes the standard method of measuring single angles in traversing, for instance.

5.5.1 Measurement by directions

The method of directions is generally used when observing a set of angles as in Figure 5.31. The angles
are observed, commencing from A and noting all the readings, as the instrument moves from point to point
in a clockwise manner. On completion at D, face is changed and the observations repeated moving from
D in an anticlockwise manner. Finally the mean directions are reduced relative to the starting direction for
PA by applying the ‘orientation correction’. For example, if the mean horizontal circle reading for PA is
48◦ 54′ 36′′ and the known bearing for PA is 40◦ 50′ 32′′, then the orientation correction applied to all the
mean bearings is obviously −8◦ 04′ 04′′.

The observations as above, carried out on both faces of the instrument, constitute a full set. If measuring
n sets the reading is altered by 180◦/n each time.

Table 5.1

Sight to Face Reading Angle

◦ ′ ′′ ◦ ′ ′′
A L 020 46 28 80 12 06
C L 100 58 34

C R 280 58 32 80 12 08
A R 200 46 24

A R 292 10 21 80 12 07
C R 012 22 28

C L 192 22 23 80 12 04
A L 112 10 19

Mean = 80 12 06

Note the built-in checks supplied by changing face, i.e. the reading should change by 180◦.
Note that to obtain the clockwise angle one always deducts BS (A) reading from the FS (C)
reading, regardless of the order in which they are observed.
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Fig. 5.31 Directions measurements

5.5.2 Further considerations of angular measurement

Considering Figure 5.31, the angles may be measured by ‘closing the horizon’. This involves observing
the points in order from A to D and continuing clockwise back to A, thereby completing the full circle.
The difference between the sum of all the angles and 360◦ is distributed evenly amongst all the angles to
bring their sum to 360◦. Repeat anticlockwise on the opposite face. Table 5.2 shows an example.

5.5.3 Vertical angles

In the measurement of horizontal angles the concept is of a measuring index moving around a protractor.
In the case of a vertical angle, the situation is reversed and the protractor moves relative to a fixed horizontal
index.

Figure 5.32(a) shows the telescope horizontal and reading 90◦; changing face would result in a reading
of 270◦. In Figure 5.32(b), the vertical circle index remains horizontal whilst the protractor rotates with
the telescope, as the top of the spire is observed. The vertical circle reading of 65◦ is the zenith angle,
equivalent to a vertical angle of (90◦ − 65◦) = +25◦ = α. This illustrates the basic concept of vertical
angle measurement.

Table 5.2

Sight to Face Reading Apply misclosure Mean of FL and FR
reduced to FL◦ ′ ′′ ◦ ′ ′′

◦ ′ ′′
A L 20 26 36 20 26 36 20 26 31
B L 65 37 24 65 37 22 65 37 18
C L 102 45 56 102 45 52 102 45 54
D L 135 12 22 135 12 16 135 12 16
A L 20 26 44 20 26 36 20 26 31
Misclosure +8 0
A R 200 26 26 200 26 26
D R 315 12 14 315 12 15
C R 282 45 44 282 45 46
B R 245 37 12 245 37 15
A R 200 26 22 200 26 26
Misclosure −4 0
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Fig. 5.32 Vertical angles

5.6 SOURCES OF ERROR

Error in the measurement of angle occurs because of instrumental, personal or natural factors.
The instrumental errors have been dealt with and, as indicated, can be minimized by taking several

measurements of the angle on each face of the theodolite. Regular calibration of the equipment is also of
prime importance. The remaining sources will now be dealt with.

5.6.1 Personal error

(1) Careless centring of the instrument over the survey point. Always ensure that the optical plummet is
in adjustment. Similarly for the targets.

(2) Lightly clamp the horizontal and vertical movement. Hard clamping can affect the pointing and is
unnecessary.
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(3) The final movement of the slow motion screws should be clockwise, thus producing a positive move-
ment against the spring. An anticlockwise movement which releases the spring may cause backlash.
This was a major source of error in older precise instruments but is less important with modern
instruments.

(4) Failure to eliminate parallax and poor focusing on the target can affect accurate pointing. Keep the
observed target near the centre of the field of view.

(5) Incorrect levelling of the altitude bubble, where there is one, will produce vertical angle error.
(6) The plate bubble must also be carefully levelled and regularly checked throughout the measuring

process, but must not be adjusted during a round of observations.
(7) Make quick, decisive observations. Too much care can be counterproductive.
(8) All movement of the theodolite should be done gently whilst movement around the tripod should be

reduced to a minimum.
(9) Do not knock the tripod by tripping. Remove the instrument box, which should be closed, and all other

items to a point at least three metres away from the instrument.

5.6.2 Natural errors

(1) Wind vibration may require some form of wind shield to be erected to protect the instrument. Dual
axis tilt sensors in modern total stations have greatly minimized this effect.

(2) Vertical and lateral refraction of the line of sight is always a problem. The effect on the vertical angle
has already been discussed in Chapter 3. Lateral refraction, particularly in tunnels, can cause excessive
error in the horizontal angle. A practical solution in tunnels is to use zig-zag traverses with frequent
gyro-theodolite azimuths included.

(3) Ensure that the line of sight does not pass near sources of heat such as chimneys or open fires.
(4) Temperature differentials can cause unequal expansion of the various parts of the instrument. Plate

bubbles will move off centre towards the hottest part of the bubble tube. Heat shimmer may make
accurate pointing impossible. Sheltering the instrument and tripod by means of a large survey umbrella
will greatly help in this situation.

(5) Avoid tripod settlement by selecting the site carefully being mindful of ground conditions. If necessary
use pegs to pile the ground on which the tripod feet are set or use walk boards to spread the weight of
the observer.

All the above procedures should be included in a pre-set survey routine, which should be strictly adhered to.
Inexperienced observers should guard against such common mistakes as:

(1) Turning the wrong screw.
(2) Sighting the wrong target.
(3) Using the stadia instead of the cross-hair.
(4) Forgetting to set the micrometer, where there is one.
(5) Misreading the circles.
(6) Transposing figures when booking the data.
(7) Not removing parallax.
(8) Not centring over the survey point.
(9) Failing to level the instrument correctly.
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Conventional control surveys

A control survey provides a framework of survey points, whose relative positions, in two or three dimen-
sions, are known to specified degrees of accuracy. The areas covered by these points may extend over
a whole country and form the basis for the national maps of that country. Alternatively the area may be
relatively small, encompassing a construction site for which a large-scale plan is required. Although the
areas covered in construction are usually quite small, the accuracy may be required to a very high order.
The types of engineering project envisaged are the construction of long tunnels and/or bridges, deformation
surveys for dams and reservoirs, three-dimensional tectonic ground movement for landslide prediction,
to name just a few. Hence control networks provide a reference framework of points for:

(1) Topographic mapping and large-scale plan production.
(2) Dimensional control of construction work.
(3) Deformation surveys for all manner of structures, both new and old.
(4) The extension and densification of existing control networks.

The methods of establishing the vertical control have already been discussed in Chapter 3, so only two-
dimensional horizontal control will be dealt with here. Elements of geodetic surveying will be dealt with
in Chapter 8 and so we will concentrate upon plane surveying for engineering control here.

The methods used for control surveys are:

(1) Traversing.
(2) Intersection and resection.
(3) Least squares estimation of survey networks.
(4) Satellite position fixing (see Chapter 9).

6.1 PLANE RECTANGULAR COORDINATES

A plane rectangular coordinates system is as defined in Figure 6.1.
It is split into four quadrants with the typical mathematical convention of the axis to the north and east

being positive and to the south and west, negative.
In pure mathematics, the axes are defined as x and y, with angles measured anticlockwise from the

x-axis. In surveying, the x-axis is referred to as the east-axis (E) and the y-axis as the north-axis (N), with
angles (α) measured clockwise from the N-axis.

From Figure 6.1, it can be seen that to obtain the coordinates of point B, we require the coordinates of
point A and the difference in coordinates between the ends of the line AB, i.e.

EB = EA + �EAB and

NB = NA + �NAB

It can further be seen that to obtain the difference in coordinates between the ends of the line AB we require
its horizontal distance and direction.



190 Engineering Surveying

Fig. 6.1 Plane rectangular coordinate system

The system used to define a direction is called the whole circle bearing system (WCB). A WCB is the
direction measured clockwise from 0◦ full circle to 360◦. It is therefore always positive and never greater
than 360◦.

Figure 6.2 shows the WCB of the lines as follows:

WCB OA = 40◦

WCB OB = 120◦

WCB OC = 195◦

WCB OD = 330◦

As shown in Figure 6.2, the reverse or back bearing is 180◦ different from the forward bearing, thus:

WCB AO = 40◦ + 180◦ = 220◦

WCB BO = 120◦ + 180◦ = 300◦

WCB CO = 195◦ − 180◦ = 15◦

WCB DO = 330◦ − 180◦ = 150◦

Thus if WCB < 180◦ it is easier to add 180◦ to get the reverse bearing, and if >180◦ subtract, as shown.
The above statement should not be confused with a similar rule for finding WCBs from the observed

angles. For instance (Figure 6.3), if the WCB of AB is 0◦ and the observed angle ABC is 140◦, then the
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Fig. 6.2 Whole circle bearings

Fig. 6.3 Whole circle bearing

relative WCB of BC is 320◦, i.e.

WCB of AB = 0◦

Angle ABC = 140◦

Sum = 140◦
+180◦

WCB of BC = 320◦

Similarly (Figure 6.4), if WCB of AB is 0◦ and the observed angle ABC is 220◦, then the relative WCB of
BC is 40◦, i.e.
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Fig. 6.4 Whole circle bearing

WCB of AB = 0◦
Angle ABC = 220◦

Sum = 220◦
−180◦

WCB of BC = 40◦

Occasionally, when subtracting 180◦, the resulting WCB is still greater than 360◦, in this case, one would
need to subtract a further 360◦. However, this problem is eliminated if the following rule is used.

Add the angle to the previous WCB:

If the sum <180◦, then add 180◦
If the sum >180◦, then subtract 180◦
If the sum >540◦, then subtract 540◦

The application of this rule to traverse networks is shown in Section 6.2.
It should be noted that if both bearings are pointing out from B, then

WCB BC = WCB BA + angle ABC

as shown in Figure 6.5, i.e.

WCB BC = WCB BA (30◦) + angle ABC (110◦) = 140◦

Having now obtained the WCB of a line and its horizontal distance (polar coordinates), it is possible to
transform them to �E and �N , the difference in rectangular coordinates. From Figure 6.1, it can clearly
be seen that from the right-angled triangle ABC:

�E = D sin α (6.1a)

�N = D cos α (6.1b)

where D = horizontal length of the line
α = WCB of the line
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Fig. 6.5 Whole circle bearing

�E = difference in eastings of the line
�N = difference in northings of the line

It is important to appreciate that the difference in coordinates �E, �N define a line, whilst the coordinates
E, N define a point.

From the above basic equations, the following can be derived:

α = tan−1(�E/�N) = cot−1(�N /�E) (6.2)

D = (�E2 + �N2)
1
2 (6.3)

D = �E/ sin α = �N / cos α (6.4)

In equation (6.2) it should be noted that the trigonometrical functions of tan and cot can become very
unreliable on pocket calculators as α approaches 0◦ or 180◦ and 90◦ or 270◦ respectively. To deal with
this problem:

Use tan when |�N | > |�E|, and

use cot when |�N | < |�E|
Exactly the same situation occurs with sin and cos in equation (6.4); thus:

Use cos when |�N | > |�E|, and

use sin when |�N | < |�E|
The two most fundamental calculations in surveying are computing the ‘polar’ and the ‘join’.

6.1.1 Computing the polar

Computing the polar for a line involves calculating �E and �N given the horizontal distance (D) and
WCB (α) of the line.
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Worked example

Example 6.1 Given the coordinates of A and the distance and bearing of AB, calculate the coordinates of
point B.

EA = 48 964.38 m, NA = 69 866.75 m, WCB AB = 299◦ 58′ 46′′

Horizontal distance = 1325.64 m

From the WCB of AB, the line is obviously in the fourth quadrant and signs of �E, �N are therefore
(−, +) respectively. A pocket calculator will automatically provide the correct signs.

�EAB = D sin α = 1325.64 sin 299◦ 58′ 46′′ = −1148.28 m

�NAB = D cos α = 1325.64 cos 299◦ 58′ 46′′ = +662.41 m

∴ EB = EA + �EAB = 48 964.38 − 1148.28 = 47 816.10 m

NB = NA + �NAB = 69 866.75 + 662.41 = 70 529.16 m

This computation is best carried out using the P (Polar) to R (Rectangular) keys of the pocket calculator.
However, as these keys work on a pure math basis and not a surveying basis, one must know the order in
which the data are input and the order in which the data are output.

The following methods apply to the majority of pocket calculators. However, as new types are being
developed all the time, then it may be necessary to adapt to a specific make.

Using P and R keys:

(1) Enter horizontal distance (D); press P → R or (x ↔ y)

(2) Enter WCB (α); press = or (R)

(3) Value displayed is ±�N

(4) Press x ↔ y to get ±�E

Operations in brackets are for an alternative type of calculator.

6.1.2 Computing the join

This involves computing the horizontal distance (D) and WCB (α) from the difference in coordinates
(�E, �N) of a line.

Worked example

Example 6.2 Given the following coordinates for two points A and B, compute the length and bearing of AB.

EA = 48 964.38 m NA = 69 866.75 m
EB = 48 988.66 m NB = 62 583.18 m

�EAB = 24.28 m �NAB = −7283.57 m

Note:

(1) A rough plot of the E, N of each point will show B to be south-east of A, and line AB is therefore in
the second quadrant.

(2) If the direction is from A to B then:

�EAB = EB − EA

�NAB = NB − NA
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If the required direction is B to A then:

�EBA = EA − EB

�NBA = NA − NB

(3) As �N > �E use tan:

αAB = tan−1(�E/�N) = tan−1{24.28/(−7283.57)}
= −0◦11′ 27′′

It is obvious that as αAB is in the second quadrant and must therefore have a WCB between 90◦ and
180◦, and as we cannot have a negative WCB, −0◦ 11′ 27′′ is unacceptable. Depending on the signs of the
coordinates entered into the pocket calculator, it will supply the angles as shown in Figure 6.6.

If in quadrant I + α1 = WCB
If in quadrant II − α2, then (−α2 + 180) = WCB
If in quadrant III + α3, then (α3 + 180) = WCB
If in quadrant IV − α4, then (−α4 + 360) = WCB
∴ WCB AB = −0◦ 11′ 27′′ + 180◦ = 179◦ 48′ 33′′

Horizontal distance AB = DAB = (�E2 + �N2)
1
2

(24.282 + 7283.572)
1
2 = 7283.61 m

Also as �N > �E use DAB = �N / cos α = 7283.57/ cos 179◦ 48′ 33′′ = 7283.61 m

Note what happens with some pocket calculators when �E/ sin α is used:

DAB = �E/ sin α = 24.28/ sin 179◦ 48′ 33′′ = 7289.84 m

This enormous error of more than 6 m shows that when computing distance it is advisable to use the

Pythagoras equation D = (�E2 + �N2)
1
2 , at all times. Of the remaining two equations, the appropriate

one may be used as a check.

Fig. 6.6 Calculation of WCB with a calculator
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Fig. 6.7 Calculation of WCB using P and R keys

Using R and P keys:

(1) Enter ±�N ; press R → P or (x ↔ y)

(2) Enter ±�E; press = or (P)

(3) Value displayed is horizontal distance (D)

(4) Press x ↔ y to obtain WCB in degrees and decimals

(5) If value in ‘4’ is negative, add 360◦

(6) Change to d.m.s. (◦, ′, ′′)

When using the P and R keys, the angular values displayed in the four quadrants are as in Figure 6.7; thus
only a single ‘IF’ statement is necessary as in (5) above.

6.2 TRAVERSING

Traversing is one of the simplest and most popular methods of establishing control networks in engineering
surveying. In underground mining it is the only method of control applicable whilst in civil engineering it
lends itself ideally to control surveys where only a few intervisible points surrounding the site are required.
Traverse networks have the following advantages:

(1) Little reconnaissance is required compared with that needed for an interconnected network of
points.

(2) Observations only involve three stations at a time so planning the task is simple.
(3) Traversing may permit the control to follow the route of a highway, pipeline or tunnel, etc., with the

minimum number of stations.
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6.2.1 Types of traverse

Using the technique of traversing, the relative position of the control points is fixed by measuring the hori-
zontal angle at each point, between the adjacent stations, and the horizontal distance between consecutive
pairs of stations.

The procedures for measuring angles have been dealt with in Chapter 5 and for measuring distance in
Chapter 4. For the majority of traverses carried out today the field data would most probably be captured
with a total station. Occasionally, steel tapes may be used for distance.

The susceptibility of a traverse to undetected error makes it essential that there should be some external
check on its accuracy. To this end the traverse may commence from and connect into known points of greater
accuracy than the traverse. In this way the error vector of misclosure can be quantified and distributed
throughout the network, to minimize the errors. Such a traverse is called a ‘link’ traverse.

Alternatively, the error vector can be obtained by completing the traverse back to its starting point. Such
a traverse is called a ‘polygonal’ or ‘loop’ traverse. Both the ‘link’ and ‘polygonal’ traverse are generally
referred to as ‘closed’ traverses.

The third type of traverse is the ‘free’ or ‘open’ traverse, which does not close back onto any known
point and which therefore has no way of detecting or quantifying the errors.

(1) Link traverse

Figure 6.8 illustrates a typical link traverse commencing from the precisely coordinated point Y and closing
onto point W , with terminal orienting bearing to points X and Z . Generally, points X, Y , W and Z would be
part of an existing precisely coordinated control network, although this may not always be the case. It may
be that when tying surveys into the OS NG, due to the use of very precise EDM equipment the intervening
traverse is more precise than the relative positions of the NG stations. This may be just a problem of scale
arising from a lack of knowledge, on the behalf of the surveyor, of the positional accuracy of the grid
points. In such a case, adjustment of the traverse to the NG could result in distortion of the intervening
traverse.

The usual form of an adjustment generally adopted in the case of a link traverse is to hold points Y and
W fixed whilst distributing the error throughout the intervening points. This implies that points Y and W
are free from error and is tantamount to allocating a weight of infinity to the length and bearing of line YW.
It is thus both obvious and important that the control into which the traverse is linked should be of a higher
order of precision than the connecting traverse.

The link traverse has certain advantages over the remaining types, in that systematic error in distance
measurement and orientation are clearly revealed by the error vector.

Fig. 6.8 Link traverse
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(2) Polygonal traverse

Figures 6.9 and 6.10 illustrate the concept of a polygonal traverse. This type of network is quite popular
and is used extensively for peripheral control on all types of engineering sites. If no external orientation is
available, the control can only be used for independent sites and plans and cannot be directly connected to
other survey systems.

In this type of traverse the systematic errors of distance measurement are not eliminated and enter into
the result with their full weight. Similarly, orientation error would simply cause the whole network to
swing through the amount of error involved and would not be revealed in the angular misclosure.

This is illustrated in Figures 6.11 and 6.12. In the first instance a scale error equal to X is introduced into
each line of a rectangular-shaped traverse ABCD. Then, assuming the angles are error free, the traverse
appears to close perfectly back to A, regardless of the totally incorrect coordinates which would give the
position of B, C and D as B′, C′ and D′.

Figure 6.12 shows the displacement of B, C and D to B′, C′ and D′ caused by an orientation error (θ )
for AB. This can occur when AB may be part of another network and the incorrect value is taken for its
bearing. The traverse will still appear to close correctly, however. Fortunately, in this particular case, the
coordinates of B would be known and would obviously indicate some form of mistake when compared
with B′.

Fig. 6.9 Loop traverse (oriented)

Fig. 6.10 Loop traverse (independent)
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Fig. 6.11 Scale error in a traverse

Fig. 6.12 Orientation error in a traverse

(3) Open (or free) traverse

Figure 6.13 illustrates the open traverse which does not close into any known point and therefore cannot
provide any indication of the magnitude of measuring errors. In all surveying literature, this form of
traversing is not recommended due to the lack of checks. Nevertheless, it is frequently utilized in mining
and tunnelling work because of the physical restriction on closure.

Fig. 6.13 Open (or free) traverse
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6.2.2 Reconnaissance

Reconnaissance is a vitally important part of any survey project, as emphasized in Chapter 1. Its purpose
is to decide the best location for the traverse points.

Successive points in the traverse must be intervisible to make observations possible.
If the purpose of the control network is the location of topographic detail only, then the survey points

should be positioned to afford the best view of the terrain, thereby ensuring that the maximum amount of
detail can be surveyed from each point.

If the traverse is to be used for setting out, say, the centre-line of a road, then the stations should be
sited to afford the best positions for setting out the intersection points (IPs) and tangent points (TPs).

The distance between stations should be kept as long as possible to minimize effect of centring errors.
Finally, as cost is always important, the scheme should be one that can be completed in the minimum

of time, with the minimum of personnel.
The type of survey station used will also be governed by the purpose of the traverse points. If the

survey stations are required as control for a quick, one-off survey of a small area, then wooden pegs about
0.25 m long and driven down to ground level may suffice. A fine point on the top of the peg such as
the centre of a nail head may define the control point. Alternatively, longer lasting stations may require
construction of some form of commercially manufactured station mark. Figure 6.14 shows the type of
survey station recommended by the Department for Transport (UK) for major road projects. They are
recommended to be placed at 250-m intervals and remain stable for at least five years. Figure 6.15 shows
a commercially available earth anchor type of station. Road, masonry or Hilti nails may be used on paved
or black-topped surfaces.

Fig. 6.14 Survey station
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Fig. 6.15 Anchored survey station

6.2.3 Sources of error

The sources of error in traversing are:

(1) Errors in the observation of horizontal and vertical angles (angular error).
(2) Errors in the measurement of distance (linear error).
(3) Errors in the accurate centring of the instrument and targets, directly over the survey point (centring

error).

Linear and angular errors have been fully dealt with in Chapters 4 and 5 respectively.
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Fig. 6.16 Interchangeable total station and target with tribrach

Centring errors were dealt with in Chapter 5 also, but only insofar as they affected the measurement of
a single angle. Their propagation effects through a traverse will now be examined.

In precise traversing the effect of centring errors will be greater than the effect of reading errors if
appropriate procedures are not adopted to eliminate them. As has already been illustrated in Chapter 5,
the shorter the legs, the greater the effect on angular measurements.

The inclusion of short lines cannot be avoided in many engineering surveys, particularly in underground
tunnelling work. In order, therefore, to minimize the propagation of centring error, a constrained centring
system called the three-tripod system (TTS) is used.

The TTS uses interchangeable levelling heads or tribrachs and targets, and works much more efficiently
with a fourth tripod (Figure 6.16).

Consider Figure 6.17. Tripods are set up at A, B, C and D with the detachable tribrachs carefully levelled
and centred over each station. Targets are clamped into the tribrachs at A and C, whilst the theodolite is
clamped into the one at B. When the angle ABC has been measured, the target (T1) is clamped into the
tribrach at B, the theodolite into the tribrach at C and the target just moved into the tribrach at D. Whilst the
angle BCD is being measured, the tripod and tribrach are removed from A and set up at E in preparation
for the next move forward. This technique not only produces maximum speed and efficiency, but also
confines the centring error to the station at which it occurred. Indeed, the error in question here is not one
of centring in the conventional sense, but one of knowing that the central axes of the targets and theodolite,
when moved forward, occupy exactly the same positions as did their previous occupants.

However, such a process does not guarantee that the tribrachs have been set up correctly over the survey
station. The coordinates computed by this process will be those of the tribrach, not necessarily those of
the survey station.

Figure 6.18 shows how centring errors may be propagated. Consider first the use of the TTS. The target
erected at C, 100 m from B, is badly centred, resulting in a displacement of 50 mm to C′. The angle
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Fig. 6.17 Conventional three-tripod system

Fig. 6.18 Propagation of centring error

measured at B would be ABC′ in error by e. The error is 1 in 2000 ≈2 min. (N.B. If BC was 10 m long,
then e = 20 min.)

The target is removed from C′ and replaced by the theodolite, which measures the angle BC′D, thus
bringing the survey back onto D. The only error would therefore be a coordinate error at C equal to the
centring error and would obviously be much less than the exaggerated 50 mm used here.

Consider now conventional equipment using one tripod and theodolite and sighting to ranging rods.
Assume that the rod at C, due to bad centring or tilting, appears to be at C′; the wrong angle, ABC′, would
be measured. Now, when the theodolite is moved it would this time be correctly centred over the station
at C and the correct angle BCD measured. However, this correct angle would be added to the previous
computed bearing, which would be that of BC′, giving the bearing C′D′. Thus the error e is propagated
from the already incorrect position at C′, producing a further error at D′ of the traverse. Centring of the
instrument and targets precisely over the survey stations is thus of paramount importance; hence the need
for constrained centring systems in precise traversing.

It can be shown that if the theodolite and targets are re-centred with an error of ±0.3 mm, these centring
errors alone will produce an error of ±6′′ in bearing after 1500 m of traversing with 100-m sights. If the
final bearing is required to ±2′′, the component caused by centring must be limited to about one-third of the
total component, which is ±0.6′′, and would therefore require centring errors in the region of ±0.03 mm.
Thus in general a mean error ±0.1 mm would be compatible with a total mean error of ±6′′ in the
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Fig. 6.19 Suggested three-tripod system

final bearing of the above traverse. This therefore imposes a very rigorous standard required of constrained
centring systems.

When considering the errors of constrained centring, the relevant criterion is the repeatability of the
system and not the absolute accuracy of centring over a ground mark. One is concerned with the degree to
which the vertical axis of the theodolite placed in a tribrach coincides with the vertical through the centre
of the target previously occupying the tribrach.

The error sources are:

(1) The aim mark of the target, eccentric to the vertical axis.
(2) The vertical axis of the total station eccentric to the centring axis as these are separate components.
(3) Variations in clamping pressures.
(4) Tolerance on fits, which is essentially a manufacturing problem.

An alternative arrangement for moving instruments and targets, in which target errors are partly self
cancelling, is shown in Figure 6.19. If the error in the target T2 in the first bay is such that the mea-
sured angle is too small then the same target in bay 2 will cause the measured angle in bay 2 to be too
large.

6.2.4 Traverse computation

The various steps in traverse computation will now be carried out, with reference to the traverse shown in
Figure 6.20. The observed horizontal angles and distances are shown in columns 2 and 7 of Table 6.1.

A common practice is to assume coordinate values for a point in the traverse, usually the first station,
and allocate an arbitrary bearing for the first line from that point. For instance, in Figure 6.20, point A
has been allocated coordinates of E 1000.00, N 2000.00, and line AB a bearing of 0◦ 00′ 00′′. If values
of E 0.00, N 0.00 had been chosen there would have been negative values for the coordinates of some of
the stations. Negative coordinates can be confusing. This has the effect of establishing a plane rectangular
grid and orientating the traverse on it. As shown, AB becomes the direction of the N-axis, with the E-axis
at 90◦ and passing through the grid origin at A.

The computational steps, in the order in which they are carried out, are:

(1) Obtain the angular misclosure W , by comparing the sum of the observed angles (α) with the sum of
error-free angles in a geometrically correct figure.

(2) Assess the acceptability or otherwise of W .
(3) If W is acceptable, distribute it throughout the traverse in equal amounts to each angle.
(4) From the corrected angles compute the whole circle bearing of the traverse lines relative to AB.
(5) Compute the coordinates (�E, �N) of each traverse line.
(6) Assess the coordinate misclosure (�′E, �′N).
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Fig. 6.20 Polygonal traverse

(7) Balance the traverse by distributing the coordinate misclosure throughout the traverse lines.
(8) Compute the final coordinates (E, N) of each point in the traverse relative to A, using the balanced

values of �E, �N per line.

The above steps will now be dealt with in detail.

(1) Distribution of angular error

The majority of the systematic errors associated with horizontal angles in a traverse are eliminated by
repeated double-face observation. The remaining random errors are distributed equally around the network
as follows.

In a polygon the sum of the internal angles should equal (2n − 4)90◦, the sum of the external angles
should equal (2n + 4)90◦.

∴ Angular misclosure = W =
n∑

i=1

αi − (2n ± 4)90◦ = −50′′ (Table 6.1)

where α = observed angle
n = number of angles in the traverse

The angular misclosure W is now distributed by equal amounts on each angle, thus:

Correction per angle = W /n = +10′′ (Table 6.1)

However, before the angles are corrected, the angular misclosure W must be considered to be acceptable.
If W was too great, and therefore indicative of poor observations, the whole traverse may need to be
re-measured. A method of assessing the acceptability or otherwise of W is given in the next section.

(2) Acceptable angular misclosure

The following procedure may be adopted provided the variances of the observed angles can be assessed, i.e.

σ 2
w = σ 2

a1 + σ 2
a2 + · · · + σ 2

an
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where σ 2
an = variance of observed angle

σ 2
w = variance of the sum of the angles of the traverse

Assuming that each angle is measured with equal precision:

σ 2
a1 = σ 2

a2 = · · · = σ 2
an = σ 2

A

then σ 2
w = n · σ 2

A and

σw = n
1
2 · σA (6.5)

Angular misclosure = W =
n∑

i=1

αi − [(2n ± 4)90◦]

where α = mean observed angle
n = number of angles in traverse

then for 95% confidence:

P(−1.96σw < W < +1.96αw) = 0.95 (6.6)

and for 99.73% confidence:

P(−3σw < W < +3σw) = 0.9973 (6.7)

For example, consider a closed traverse of nine angles. Tests prior to the survey showed that an observer
with a particular theodolite observes with a standard error (σA) of 3′′. What would be considered an
acceptable angular misclosure for the traverse?

σw = 9
1
2 × 3′′ = 9′′

P(−1.96 × 9′′ < W < +1.96 × 9′′) = 0.95

P(−18′′ < W < +18′′) = 0.95

Similarly P(−27′′ < W < +27′′) = 0.9973

Thus, if the angular misclosure W is greater than ±18′′ there is evidence to suggest unacceptable error in
the observed angles, provided the estimate for σA is reliable. If W exceeds ±27′′ there is definitely angular
error present of such proportions as to be quite unacceptable.

Research has shown that a reasonable value for the standard error of the mean of a double face
observation is about 2.5 times the least count of the instrument. Thus for a 1-second theodolite:

σA = 2.5′′

Assuming the theodolite used in the traverse of Figure 6.20 had a least count of 10′′:

σw = 5
1
2 × 25′′ = ±56′′

Assuming the survey specification requires 95% confidence:

P(−110′′ < W < 110′′) = 0.95

Thus as the angular misclosure is within the range of ±110′′, the traverse computation may proceed and
after the distribution of the angular error, the WCBs are computed.
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(3) Whole circle bearings (WCB)

The concept of WCBs has been dealt with earlier in this chapter and should be referred to for the ‘rule’
that is adopted. The corrected angles will now be changed to WCBs relative to AB using that rule.

Degree Minute Second

WCB AB 000 00 00
Angle ABC 120 26 00

Sum 120 26 00
+180

WCB BC 300 26 00
Angle BCD 149 34 00

Sum 450 00 00
−180

WCB CD 270 00 00
Angle CDE 95 42 00

Sum 365 42 00
−180

WCB DE 185 42 00
Angle DEA 93 06 00

Sum 278 48 00
−180

WCB EA 98 48 00
Angle EAB 81 12 00

Sum 180 00 00
−180

WCB AB 000 00 00 (Check)

(4) Plane rectangular coordinates

Using the observed distance, reduced to the horizontal, and the bearing of the line, transform this data (polar
coordinates) to rectangular coordinates for each line of the traverse. This may be done using equation (6.1).

�E = L sin WCB

�N = L cos WCB

or the P → R keys on a pocket calculator. The results are shown in columns 8 and 9 of Table 6.1.
As the traverse is a closed polygon, starting from and ending on point A, the respective algebraic sums

of the �E and �N values would equal zero if there were no observational error in the distances present.
However, as shown, the error in �E = −0.55 m and in �N = −0.83 m and is ‘the coordinate misclosure’.
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Fig. 6.21 Coordinate misclosure

As the correction is always of opposite sign to the error, i.e.

Correction = −Error (6.8)

then the �E values must be corrected by +0.55 = �′E and the �N values by +0.83 = �′N . The situation
is as shown in Figure 6.21, where the resultant amount of misclosure AA′ is called the ‘error vector’. This
value, when expressed in relation to the total length of the traverse, is used as a measure of the precision
of the traverse.

For example:

Error vector = (�′E2 + �′N2)
1
2 = 0.99 m

Accuracy of traverse = 0.99/1239 = 1/1252

(The error vector can be computed using the R → P keys.)

(5) Balancing the traversing

Balancing the traverse, sometimes referred to as ‘adjusting’ the traverse, involves distributing �′E and
�′N throughout the traverse in order to make it geometrically correct.

There is no ideal method of balancing and a large variety of procedures are available, ranging from
the very elementary to the much more rigorous. Where a non-rigorous method is used, the most popular
procedure is to use the Bowditch rule.

The ‘Bowditch rule’ was devised by Nathaniel Bowditch, surveyor, navigator and mathematician, as
a proposed solution to the problem of compass traverse adjustment, which was posed in the American
journal The Analyst in 1807.

The Bowditch rule is as follows:

δEi = �′E∑n
i=1 Li

× Li = K1 × Li (6.9)

and

δNi = �′N∑n
i=1 Li

× Li = K2 × Li (6.10)
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where δEi, δNi = the coordinate corrections

�′E, �′N = the coordinate misclosure (constant)
n∑

i=1
Li = the sum of the lengths of the traverse (constant)

Li = the horizontal length of the ith traverse leg

K1, K2 = the resultant constants

From equations (6.5) and (6.6), it can be seen that the corrections made are simply in proportion to the
length of the line.

The correction for each length is now computed in order.
For the first line AB:

δE1 = (�′E/�L)L1 = K1 × L1

where K1 = +0.55/1239 = 4.4 × 10−4

∴ δE1 = (4.4 × 10−4)155.00 = +0.07

Similarly for the second line BC:

δE2 = (4.4 × 10−4)200.00 = +0.09

and so on:
δE3 = (4.4 × 10−4)249.00 = +0.11
δE4 = (4.4 × 10−4)190.00 = +0.08
δE5 = (4.4 × 10−4)445.00 = +0.20

Sum = +0.55 (Check)

Similarly for the �N value of each line:

δN1 = (�′N /�L)L1 = K2L1

where K2 = +0.83/1239 = 6.7 × 10−4

∴ δN1 = (6.7 × 10−4)155.00 = +0.10

and so on for each line:

δN2 = +0.13
δN3 = +0.17
δN4 = +0.13
δN5 = +0.30

Sum +0.83 (Check)

These corrections (as shown in columns 10 and 11 of Table 6.1) are added algebraically to the values �E,
�N in columns 8 and 9 to produce the balanced values shown in columns 12 and 13.

The final step is to algebraically add the values in columns 12 and 13 to the coordinates in the previous
row of columns 14 and 15 respectively to produce the coordinates of each point in turn, as shown in the
final three columns of Table 6.1.

6.2.5 Link traverse adjustment

A link traverse (Figure 6.22) commences from known stations, A and B, and connects to known stations C
and D. Stations A, B, C and D are usually fixed to a higher order of accuracy. Their values remain unaltered
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Fig. 6.22 Link traverse adjustment

in the subsequent computation. The method of computation and adjustments proceeds as follows:

(1) Angular adjustment

(1) Compute the WCB of CD through the traverse from AB and compare it with the known bearing of
CD. The difference (�) of the two bearings is the angular misclosure.

(2) As a check on the value of � the following rule may be applied. Computed WCB of CD = (sum of
observed angles + initial bearing (AB)) – n × 180◦ where n is the number of angles. If the result is
outside the range 0◦−360◦ add or subtract 360◦ as appropriate.

(3) The correction per angle would be �/n, which is distributed accumulatively over the WCBs as shown
in columns 5 and 6 of Table 6.2.

(2) Coordinate adjustment

(1) Compute the initial coordinates of C through the traverse from B as origin. Comparison with the
known coordinates of C gives the coordinate misclosure �′E, and �′N .

(2) As the computed coordinates are full, not partial, coordinates, distribute the misclosure accumulatively
over stations E1 to C.

Now study the example given in Table 6.2.

6.2.6 The effect of the balancing procedure

The purpose of this section is to show that balancing a traverse does not in any way improve it; it simply
makes the figure geometrically correct.

The survey stations set in the ground represent the ‘true’ traverse, which in practice is unknown.
Observation of the angles and distances is an attempt to obtain the value of the true traverse. It is never
achieved, due to observational error, and hence we have an ‘observed’ traverse, which may approximate
very closely to the ‘true’, but is not geometrically correct, i.e. there is coordinate misclosure. Finally, we
have the ‘balanced’ traverse after the application of the Bowditch rule. This traverse is now geometrically
correct, but in the majority of cases will be significantly different from both the ‘true’ and ‘observed’
network.

As field data are generally captured to the highest accuracy possible, relative to the expertise of the
surveyor and the instrumentation used, it could be argued that the best balancing process is that which
alters the field data the least.

Basically the Bowditch rule adjusts the positions of the traverse stations, resulting in changes to the
observed data. For instance, it can be shown that the changes to the angles will be equal to:

δαi = 2 cos
αi

2
(�′E cos β + �′N sin β)/�L (6.11)
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where β is the mean bearing of the lines subtending the angle α. This does not, however, apply to the first
and last angle, where the corrections are:

δα1 = −(�′E sin β1 + �′N cos β1)/�L (6.12)

δαn = +(�′E sin βn + �′N cos βn)/�L (6.13)

The Bowditch adjustment results in changes to the distances equal to

δL = f L

t
(�′N cos β + �′E sin β) (6.14)

where f = the factor of proportion
t = the error vector.

It can be seen from equation (6.11) that in a relatively straight traverse, where the angle (α) approximates
to 180◦, the corrections to the angles (δα) will be zero for all but the first and last angles.

6.2.7 Accuracy of traversing

The weak geometry of a traverse means that it generally has only three degrees of freedom (that is three
redundant observations), and so it is difficult to estimate its accuracy. Add to that the arbitrary adjustment
by the Bowditch method and it becomes virtually impossible. Although there have been many attempts to
produce equations defining the accuracy of a traverse, the best approach is to use a least squares adjustment
of the traverse network to assess the uncertainty in the derived coordinates. See Chapter 7.

6.2.8 Blunders in the observed data

Blunders or mistakes in the measurement of the angles results in gross angular misclosure. Provided there
is only a single blunder it can easily be located.

In the case of an angle, the traverse can be computed forward from X (Figure 6.23) and then backwards
from Y . The point which has the same coordinates in each case, is where the blunder occurred and the angle
must be reobserved. This process can be carried out by plotting using a protractor and scale. Alternatively
the right angled bisector of the error vector YY ′ of the plotted traverse, will pass through the required point
(Figure 6.23). The theory is that BYY ′ forms an equilateral triangle.

In the case of a blunder in measuring distance, the incorrect leg is the one whose bearing is similar to
the bearing of the error vector. If there are several legs with similar bearings the method fails. Again the
incorrect leg must be remeasured.

Fig. 6.23 Detection of angle error in a traverse
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6.3 TRIANGULATION

Because, at one time, it was easier to measure angles than it was distance, triangulation was the preferred
method of establishing the position of control points.

Many countries used triangulation as the basis of their national mapping system. The procedure was
generally to establish primary triangulation networks, with triangles having sides ranging from 30 to 50 km
in length. The primary trig points were fixed at the corners of these triangles and the sum of the measured
angles was correct to ±3′′. These points were usually established on the tops of mountains to afford
long, uninterrupted sight lines. The primary network was then densified with points at closer intervals
connected into the primary triangles. This secondary network had sides of 10–20 km with a reduction in
observational accuracy. Finally, a third-order net, adjusted to the secondary control, was established at
3–5-km intervals and fourth-order points fixed by intersection. Figure 6.24 illustrates such a triangulation
system established by the Ordnance Survey of Great Britain and used as control for the production of
national maps. The base line and check base line were measured by invar tapes in catenary and connected
into the triangulation by angular extension procedures. This approach is classical triangulation, which is

Fig. 6.24 An example of a triangulation network
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now obsolete. The more modern approach would be to use GPS which would be much easier and would
afford greater control of scale error.

Although the areas involved in construction are relatively small compared with national surveys the
accuracy required in establishing the control is frequently of a very high order, e.g. for long tunnels or
for dam deformation measurements. There are two useful elements from triangulation that still remain
applicable. If it is not possible to set a target over the point being observed then a distance cannot be
measured. If the inaccessible point is to be coordinated from known points then the process is one of
intersection. If the inaccessible point has known coordinates and the instrument station is to be coordinated
then the process is one of resection.

6.3.1 Resection and intersection

Using these techniques, one can establish the coordinates of a point P, by observations to or from known
points. These techniques are useful for obtaining the position of single points, to provide control for setting
out or detail survey in better positions than the existing control may be.

(1) Intersection

This involves sighting in to P from known positions (Figure 6.25). If the bearings of the rays are used,
then using the rays in combinations of two, the coordinates of P are obtained as follows:

In Figure 6.26 it is required to find the coordinates of P, using the bearings α and β to P from known
points A and B whose coordinates are EA, NA and EB, NB.

PL = EP − EA AL = NP − NA

PM = EP − EB MB = NP − NB

Now as PL = AL tan α (6.15)

then EP − EA = (NP − NA) tan α

Similarly PM = MB tan β

then EP − EB = (NP − NB) tan β (6.16)

Fig. 6.25 Intersection by angles
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Fig. 6.26 Intersection by bearings

Subtracting equation (6.16) from (6.15) gives

EB − EA = (NP − NA) tan α − (NP − NB) tan β

= NP tan α − NA tan α − NP tan β + NB tan β

∴ NP(tan α − tan β) = EB − EA + NA tan α − NB tan β

Thus NP = EB − EA + NA tan α − NB tan β

tan α − tan β
(6.17)

Similarly NP − NA = (EP − EA) cot α

NP − NB = (EP − EB) cot β

Subtracting NB − NA = (EP − EA) cot α − (EP − EB) cot β

Thus EP = NB − NA + EA cot α − EB cot β

cot α − cot β
(6.18)

Using equations (6.17) and (6.18) the coordinates of P are computed. It is assumed that P is always to
the right of A → B, in the equations.

If the observed angles α and β, measured at A and B are used (Figure 6.25) the equations become

EP = NB − NA + EA cot β + EB cot α

cot α + cot β
(6.19)

NP = EA − EB + NA cot β + NB cot α

cot α + cot β
(6.20)

The above equations are also used in the direct solution of triangulation. The inclusion of an additional ray
from C, affords a check on the observations and the computation.

(2) Resection

This involves the angular measurement from P out to the known points A, B, C (Figure 6.27). It is an
extremely useful technique for quickly fixing position where it is best required for setting-out purposes.
Where only three known points are used a variety of analytical methods is available for the solution of P.
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Fig. 6.27 Resection

Method 1 From Figure 6.27.

Let BAP = θ , then PCB = (360◦ − α − β − φ) − θ = S − θ

where φ is computed from the coordinates of stations A, B and C; thus S is known.

From �PAB PB = BA sin θ /sin α (6.21)

From �PBC PB = BC sin(S − θ )/sin β (6.22)

Equating (6.21) and (6.22):

sin(S − θ )

sin θ
= BA sin β

BC sin α
= Q (known) (6.23)

then ( sin S cos θ − cos S sin θ )/ sin θ = Q

sin S cot θ − cos S = Q

∴ cot θ = (Q + cos S)/ sin S (6.24)

Thus, knowing θ and (S – θ ), the triangles can be solved for lengths and bearings AP, BP and CP, and
three values for the coordinates of P obtained if necessary.

The method fails, as do all three-point resections, if P lies on the circumference of a circle passing
through A, B and C because it has an infinite number of possible positions which are all on the same
circle.

Worked example

Example 6.3 The coordinates of A, B and C (Figure 6.27) are:

EA 1234.96 m NA 17 594.48 m
EB 7994.42 m NB 24 343.45 m
EC 17 913.83 m NC 21 364.73 m
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Observed angles are:

APB = α = 61◦ 41′ 46.6′′

BPC = β = 74◦ 14′ 58.1′′

Find the coordinates of P.

(1) From the coordinates of A and B:

�EAB = 6759.46, �NAB = 6748.97

∴ Horizontal distance AB = (�E2 + �N2)
1
2 = 9551.91 m

Bearing AB = tan−1(�E/�N) = 45◦ 02′ 40.2′′

(or use the R → P keys on pocket calculator)
(2) Similarly from the coordinates of B and C:

�EBC = 9919.41 m, �NBC = −2978.72 m

∴ Horizontal distance BC = 10 357.00 m

Bearing BC = 106◦ 42′ 52.6′′

From the bearings of AB and BC:

CB̂A = φ = 180◦ 19′ 47.6′′

(3) S = (360◦ − α − β − φ) = 105.724 352◦

and Q = AB sin β/BC sin α = 1.008 167

∴ cot θ = (Q + cos S)/ sin S, from which

θ = 52.554 505◦

(4) BP = AB sin θ /sin α = 8613.32 m

BP = BC sin(S − θ )/ sin β = 8613.32 m (Check)

Angle CBP = 180◦ − [β + (S − θ )] = 52.580 681◦

∴ Bearing BP = Bearing BC + CB̂P = 159.295 29◦ = δ

Now using length and bearing of BP, transform to rectangular coordinate by formulae or P → R keys.

�EBP = BP sin δ = 3045.25 m

�NBP = BP cos δ = −8057.03 m

EP = EB + �EBP = 11 039.67 m

NP = NB + �NBP = 16 286.43 m

Checks on the observations and the computation can be had by computing the coordinates of P using the
length and bearing of AP and CP.
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Fig. 6.28 Resection figures

Method 2 A, B and C (Figure 6.27) are fixed points whose coordinates are known, and the coordinates
of the circle centres O1 and O2 are:

E1 = 1
2 [EA + EB + (NA − NB) cot α]

N1 = 1
2 [NA + NB − (EA − EB) cot α]

E2 = 1
2 [EB + EC + (NB − NC) cot β]

N2 = 1
2 [NB + NC − (EB − EC) cot β]

Thus the bearing δ of O1 → O2 is obtained in the usual way, i.e.

δ = tan−1[(E2 − E1)/(N2 − N1)]
then EP = EB + 2[(EB − E1) sin δ − (NB − N1) cos δ] sin δ (6.25)

NP = NB + 2[(EB − E1) sin δ − (NB − N1) cos δ] cos δ (6.26)

Method 3 ‘Tienstra’s method’ In the three point resection, angles are observed at the unknown station
between each of three known stations. Angles at each of the known stations, between the other two known
stations, are calculated from coordinates. Three intermediate terms, K1, K2 and K3 are also computed.
These are then used in conjunction with the coordinates of the known stations to compute the coordinates
of the unknown station, as in the formulae below.

The coordinates of stations A, B and C are known (Figure 6.28). The angles x and y are measured. Angle
z is calculated from the sum of angles in a circle. The angles a, b and c are computed from coordinates of
stations A, B and C. The process is then to compute:

K1 = 1

cot a − cot x
= sin a sin x

sin(x − a)

K2 = 1

cot b − cot y
= sin b sin y

sin(y − b)

K3 = 1

cot c − cot z
= sin c sin z

sin(z − c)
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and then compute the coordinates of F from

EF = K1EA + K2EB + K3EC

K1 + K2 + K3

NF = K1NA + K2NB + K3NC

K1 + K2 + K3

The notation in the diagram is all important in that the observed angles x, y and z, the computed angles
a, b and c, and the stations A, B and C must all go in the same direction around the figure, clockwise or
anti-clockwise. x must be the angle between the known stations A and B, measured from A to B, clockwise
if lettering is clockwise, anti-clockwise if lettering is anti-clockwise. The point F need not lie within the
triangle described by the known stations A, B and C but may lie outside, in which case the same rules for
the order of the angles apply.

Intersection and resection can also be carried out using observed distances.
Although there are a large number of methods for the solution of a three-point resection, all of them

fail if A, B, C and P lie on the circumference of a circle. Many of the methods also give dubious results
if A, B and C lie in a straight line. C are should be exercised in the method of computation adopted
and independent checks used wherever possible. Field configurations should be used which will clearly
eliminate either of the above situations occurring; for example, siting P within a triangle formed by A, B
and C, is an obvious solution.

Worked examples

Example 6.4 The following survey was carried out from the bottom of a shaft at A, along an existing tunnel
to the bottom of a shaft at E.

Line WCB Measured Remarks
◦ ′ ′′ distance (m)

AB 70 30 00 150.00 Rising 1 in 10
BC 0 00 00 200.50 Level
CD 154 12 00 250.00 Level
DE 90 00 00 400.56 Falling 1 in 30

If the two shafts are to be connected by a straight tunnel, calculate the bearing A to E and the grade.
If a theodolite is set up at A and backsighted to B, what is the value of the clockwise angle to be turned

off, to give the line of the new tunnel? (KU)

Horizontal distance AB = 150

(101)
1
2

× 10 = 149.25 m

Rise from A to B = 150

(101)
1
2

= 14.92 m

Fall from D to E = 400.56

(901)
1
2

= 13.34 m

Horizontal distance DE = 400.56

(901)
1
2

× 30 = 400.34 m
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Fig. 6.29 Railway centre-line

Coordinates (�E, �N) 0 0 A

149.25 sin
cos70◦ 30′ 00′′ 140.69 49.82 B

200.50 due N 0 200.50 C

200.00 sin
cos154◦12′ 00′′ 108.81 −225.08 D

400.34 due E 400.34 0 E

Total coords of E (E) 649.84 (N) 25.24

∴ Tunnel is rising from A to E by (14.92 − 13.34) = 1.58 m

∴ Bearing AE = tan−1 +649.84

+25.24
= 87◦ 47

Length = 649.84/ sin 87◦47′ = 652.33 m

Grade = 1.58 in 652.33 = 1 in 413

Angle turned off = BAE = (87◦ 47′ − 70◦ 30′) = 17◦ 17′ 00′′

Example 6.5 A level railway is to be constructed from A to D in a straight line, passing through a large
hill situated between A and D. In order to speed the work, the tunnel is to be driven from both sides of the
hill (Figure 6.29).

The centre-line has been established from A to the foot of the hill at B where the tunnel will commence,
and it is now required to establish the centre-line on the other side of the hill at C, from which the tunnel
will be driven back towards B.

To provide this data the following traverse was carried out around the hill:

Side Bearing Horizontal
distance (m)

Remarks
◦ ′ ′′

AB 88 00 00 − Centre line of railway
BE 46 30 00 495.8 m
EF 90 00 00 350.0 m
FG 174 12 00 − Long sight past hill
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Calculate:

(1) The horizontal distance from F along FG to establish point C.
(2) The clockwise angle turned off from CF to give the line of the reverse tunnel drivage.
(3) The horizontal length of tunnel to be driven. (KU)

Find total coordinates of F relative to B

�E (m) �N (m) Station

495.8 sin
cos 46◦ 30′ 00′′ → 359.6 341.3 BE

350.0 − 90◦ 00′ 00′′ → 350.0 − EF

Total coordinates of F E 709.6 N 341.3 F

WCB of BF = tan−1 709.60

341.30
= 64◦ 18′ 48′′

Distance BF = 709.60/ sin 64◦ 18′ 48′′ = 787.42 m

Solve triangle BFC for the required data.
The bearings of all three sides of the triangle are known, from which the following values for the angles

are obtained:

FBC = 23◦ 41′ 12′′
BCF = 86◦ 12′ 00′′
CFB = 70◦ 06′ 48′′

180◦ 00′ 00′′ (Check)

By sine rule:

(a) FC = BF sin FBC

sin BCF
= 787.42 sin 23◦ 41′ 12′′

sin 86◦ 12′ 00′′ = 317.03 m

(b) 360◦ − BCF = 273◦ 48′ 00′′

(c) BC = BF sin CFB

sin BCF
= 787.42 sin 70◦ 06′ 48′′

sin 86◦ 12′ 00′′ = 742.10 m

Example 6.6
Table 6.3 Details of a traverse ABCDEFA

Line Length (m) WCB �E (m) �N (m)

AB 560.5 0 −560.5
BC 901.5 795.4 −424.3
CD 557.0 −243.0 501.2
DE 639.8 488.7 412.9
EF 679.5 293◦ 59′
FA 467.2 244◦ 42′

Adjust the traverse by the Bowditch method and determine the coordinates of the stations relative to
A(0.0). What are the length and bearing of the line BE? (LU)
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Complete the above table of coordinates:

Line �E (m) �N (m)

679.5 sin
cos 293◦ 59′ →EF −620.8 +276.2

467.2 sin
cos 244◦ 42′ →FA −422.4 −199.7

Table 6.4

Line Lengths (m) �E (m) �N (m) Corrected �E Corrected �N E N Stns

A 0.0 0.0 A
AB 560.5 0 −560.5 0.3 −561.3 0.3 −561.3 B
BC 901.5 795.4 −424.3 795.5 −425.7 796.2 −987.0 C
CD 557.0 −243.0 501.2 −242.7 500.3 553.5 −486.7 D
DE 639.8 488.7 412.9 489.0 411.9 1042.5 −74.8 E
EF 679.5 −620.8 276.2 −620.4 275.2 422.1 200.4 F
FA 467.2 −422.4 −199.7 −422.1 −200.4 0.0 0.0 A

Check Check

Sum 3805.5 −2.1 5.8 0.0 0.0

Correction to 2.1 −5.8
coordinates

The Bowditch corrections (δE, δN) are computed as follows, and added algebraically to the coordinate
differences, as shown in Table 6.4.

Line δE (m) δN (m)

2.1

3805.5
× 560.5 giving

−5.8

3805.5
× 560.5 giving

AB K2 × 560.5 = 0.3 K1 × 560.5 = −0.8
BC K2 × 901.5 = 0.5 K1 × 901.5 = −1.4
CD K2 × 557.0 = 0.3 K1 × 557.0 = −0.9
DE K2 × 639.8 = 0.3 K1 × 639.8 = −1.0
EF K2 × 679.5 = 0.4 K1 × 679.5 = −1.0
FA K2 × 467.2 = 0.3 K1 × 467.2 = −0.7

Sum = 2.1 Sum = −5.8

To find the length and bearing of BE:

�E = 1042.2, �N = 486.5

∴ Bearing BE = tan−1 1042.2

486.5
= 64◦ 59′

Length BE = 1042.2/ sin 64◦ 59′ = 1150.1 m
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6.4 NETWORKS

Simple survey figures have their limitations. If, as in intersection or resection, two angles are measured to
find the two coordinates, easting and northing, of an unknown point then only the minimum number of
observations have been taken and there is no check against error in either observations or the computations.
A fully observed traverse is a little better in that there are always three more observations than the strict
minimum. If the traverse has many stations then this redundancy of three is spread very thinly in terms of
check against error.

A survey is designed for a specific purpose so that a technical or commercial objective can be achieved
at a minimum cost. The major questions the planner will ask are: What is the survey for? How extensive
must it be? With logistical constraints in mind, where is it? How precise and reliable does it need to be?

The first of these four questions puts the last into context. The second and third require administrative
answers which are outside the scope of this book. The last question is entirely technical and is the most
difficult to answer.

In this context the terms precise and reliable have specific meaning. Precision is a measure of the
repeatability of the assessment of a parameter under question. Precise observations usually lead to precise
coordinates. Accuracy is a measure of truth. Precision is related to accuracy in that it is a practical best
estimate of accuracy because true values of survey quantities are never known, they can only be estimated.
Measurement is an estimation process. It is therefore quite possible to have a set of measurements that are
very precise but wholly inaccurate.

Reliability is an assessment of the fact that what has been found is what it appears to be. A distance
measurement made with a tape from one control station to another could be in yards or metres, the
difference between them is only about 10%. A way to be assured that the measure is in the units that
you believe it to be in, would be to include measurements from other control points in the solution, so
that it will be apparent that the suspect measurement does or does not fit at a certain level of statistical
confidence.

Consider Figure 6.30, where the stations A, B and C are fixed stations with known coordinates. Stations D
and E have yet to be computed. The distance measurements from D have been made by pacing and the
directions to A, B and C observed with a handheld compass. The angle ABE has been observed with a
theodolite and the distance BE measured with a tape measure. The quality of the observations that will be
used to compute the coordinates of D is very poor so the precision of the computed coordinates of D will
also be poor. The observations’ reliability will be good because there are many more observations than the
strict minimum necessary to estimate the coordinates of D.

D

A
B

E

C

Fig. 6.30 Precision and reliability
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On the other hand the coordinates of E may be precise because of the quality of the instrumenta-
tion that has been used but they will have zero reliability because a gross error in either of the two
observations would not be detected. Consider the independent check in the context of this situation.
If precision is the measure of repeatability, then reliability is the measure of assurance of absence of
error.

Statements of precision and reliability may be obtained from the least squares adjustment of a survey
that has been carried out. Precision and reliability may also be estimated for a survey that has yet to be
undertaken, provided the number and quality of the proposed observations is known. These will then lead
to an estimate of the cost of the work. If the estimate is not acceptable, then it may be possible to redesign
the survey, by network analysis, or failing that, the requirements of precision and reliability may need to
be reconsidered.

Exercises

(6.1) In a closed traverse ABCDEFA the angles and lengths of sides were measured and, after the angles
had been adjusted, the traverse sheet shown below was prepared.

It became apparent on checking through the sheet that it contained mistakes. Rectify the sheet where
necessary and then correct the coordinates by Bowditch’s method. Hence, determine the coordinates of all
the stations. The coordinates of A are E −235.5, N + 1070.0.

Line Length (m) WCB Reduced bearing �E (m) �N (m)
◦ ′ ′′ ◦ ′ ′′

AB 355.52 58 30 00 N 58 30 00 E 303.13 185.75
BC 476.65 185 12 30 S 84 47 30 W −474.70 −43.27
CD 809.08 259 32 40 S 79 32 40 W −795.68 −146.82
DE 671.18 344 35 40 N 15 24 20 W −647.08 178.30
EF 502.20 92 30 30 S 87 30 30 E 501.72 −21.83
FA 287.25 131 22 00 S 48 38 00 E 215.58 −189.84

(Answer: Mistakes Bearing BC to S 5◦ 12′ 30′′ W, hence �E and �N interchange. �E and �N of DE
interchanged. Bearing EF to S 87◦ 29′ 30′′ E, giving new �N of −21.97 m. Coordinates (B) E 67.27, N
1255.18; (C) E 23.51, N 781.19; (D) E −773.00, N 634.50; (E) E −951.99, N 1281.69; (F) E −450.78,
N 1259.80)

(6.2) In a traverse ABCDEFG, the line BA is taken as the reference meridian. The coordinates of the sides
AB, BC, CD, DE and EF are:

Line AB BC CD DE EF

�N −1190.0 −565.3 590.5 606.9 1017.2
�E 0 736.4 796.8 −468.0 370.4

If the bearing of FG is 284◦ 13′ and its length is 896.0 m, find the length and bearing of GA. (LU)

(Answer: 947.8 m, 216◦ 45′)
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(6.3) The following measurements were obtained when surveying a closed traverse ABCDEA:

Line EA AB BC
Length (m) 793.7 1512.1 863.7

Included angles DEA EAB ABC BCD
93◦ 14′ 112◦ 36′ 131◦ 42′ 95◦ 43′

It was not possible to occupy D, but it could be observed from C and E. Calculate the angle CDE and
the lengths CD and DE, taking DE as the datum, and assuming all the observations to be correct. (LU)

(Answer: CDE = 96◦45′, DE = 1847.8 m, CD = 1502.0 m)

(6.4) An open traverse was run from A to E in order to obtain the length and bearing of the line AE which
could not be measured direct, with the following results:

Line AB BC CD DE
Length (m) 1025 1087 925 1250
WCB 261◦ 41′ 09◦ 06′ 282◦ 22′ 71◦ 31′

Find, by calculation, the required information. (LU)

(Answer: 1620.0 m, 339◦ 46′)

(6.5) A traverse ACDB was surveyed by theodolite and tape. The lengths and bearings of the lines AC, CD
and DB are given below:

Line AC CD DB
Length (m) 480.6 292.0 448.1
Bearing 25◦ 19′ 37◦ 53′ 301◦ 00′

If the coordinates of A are x = 0, y = 0 and those of B are x = 0, y = 897.05, adjust the traverse and
determine the coordinates of C and D. The coordinates of A and B must not be altered.

(Answer: Coordinate error: x = 0.71, y = 1.41. (C) x = 205.2, y = 434.9, (D) x = 179.1, y = 230.8).
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Rigorous methods of control

7.1 INTRODUCTION

The control methods described in the last chapter are limited to specific figures such as intersection,
resection and traverse. Only in the case of the traverse is more than the minimum number of observations
taken and even then the computational method is arbitrary as far as finding the coordinates of the points
from the observations is concerned. A much better, but more complex, process is to use least squares
estimation; that is what this chapter is about.

‘Least squares’ is a powerful statistical technique that may be used for ‘adjusting’ or estimating the
coordinates in survey control networks. The term adjustment is one in popular usage but it does not
have any proper statistical meaning. A better term is ‘least squares estimation’ since nothing, especially
observations, are actually adjusted. Rather, coordinates are estimated from the evidence provided by the
observations.

The great advantage of least squares over all the methods of estimation, such as traverse adjustments,
is that least squares is mathematically and statistically justifiable and, as such, is a fully rigorous method.
It can be applied to any overdetermined network, but has the further advantage that it can be used on
one-, two- and three-dimensional networks. A by-product of the least squares solution is a set of statistical
statements about the quality of the solution. These statistical statements may take the form of standard
errors of the computed coordinates, error ellipses or ellipsoids describing the uncertainty of a position in
two or three dimensions, standard errors of observations derived from the computed coordinates and other
meaningful statistics described later.

The major practical drawback with least squares is that unless the network has only a small number of
unknown points, or has very few redundant observations, the amount of arithmetic manipulation makes
the method impractical without the aid of a computer and appropriate software.

The examples and exercises in this material use very small networks in order to minimize the compu-
tational effort for the reader, while demonstrating the principles. Real survey networks are usually very
much larger.

7.2 PRINCIPLE OF LEAST SQUARES

A ‘residual’ may be thought of as the difference between a computed and an observed value. For example,
if in the observation and estimation of a network, a particular angle was observed to be 30◦ 0′ 0′′ and after
adjustment of the network the same angle computed from the adjusted coordinates was 30◦ 0′ 20′′, then
the residual associated with that observation would be 20′′. In other words:

computed value − observed value = residual

Any estimation of an overdetermined network is going to involve some change to the observations to make
them fit the adjusted coordinates of the control points. The best estimation technique is the one where
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the observations are in best agreement with the coordinates computed from them. In least squares, at its
simplest, the best agreement is achieved by minimizing the sum of the squares of the weighted residuals
of all the observations.

7.3 LEAST SQUARES APPLIED TO SURVEYING

In practical survey networks, it is usual to observe more than the strict minimum number of observations
required to solve for the coordinates of the unknown points. The extra observations are ‘redundant’ and
can be used to provide an ‘independent check’but all the observations can be incorporated into the solution
of the network if the solution is by least squares.

All observations have errors so any practical set of observations will not perfectly fit any chosen set of
coordinates for the unknown points.

Some observations will be of a better quality than others. For example, an angle observed with a 1′′
theodolite should be more precise than one observed with a 20′′ instrument. The weight applied to an
observation, and hence to its residual, is a function of the previously assessed quality of the observation.
In the above example the angle observed with a 1′′ theodolite would have a much greater weight than one
observed with a 20′′ theodolite. How weights are calculated and used will be described later.

If all the observations are to be used, then they will have to be ‘adjusted’ so that they fit with the
computed network. The principle of least squares applied to surveying is that the sum of the squares of the
weighted residuals must be a minimum.

7.3.1 A simple illustration

A locus line is the line that a point may lie on and may be defined by a single observation. Figure 7.1(a),
(b) and (c) show the locus lines associated with an angle observed at a known point to an unknown point,
a distance measured between a known point and an unknown point and an angle observed at an unknown
point between two known points respectively. In each case the locus line is the dotted line. In each case
all that can be concluded from the individual observation is that the unknown point lies somewhere on the
dotted line, but not where it lies.

In the following, the coordinates of new point P are to be determined from horizontal angles observed
at known points A, B, C and D as in Figure 7.2(a). Each observation may be thought of as defining a locus
line. For example, if only the horizontal angle at A had been observed then all that could be said about P
would be that it lies somewhere on the locus line from A towards P and there could be no solution for the
coordinates of P. With the horizontal angles at A and B there are two locus lines, from A towards P and
from B towards P. The two lines cross at a unique point and if the observations had been perfect then the

Observed
angle

Observed
distance

Observed
angle

(a) (b) (c)

Fig. 7.1 Locus lines
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Fig. 7.2 Intersection of locus lines

unique point would be exactly at P. But since observations are never perfect when the horizontal angles
observed at C and D are added to the solution the four locus lines do not all cross at the same point and
the mismatch gives a measure of the overall quality of the observations. Figure 7.2(b) shows the detail at
point P where the four lines intersect at six different points. The cross is at the unique point where the sum
of the squares of the residuals is a minimum.

7.3.2 The mathematical tools

By far the easiest way to handle the enormous amounts of data associated with least squares estimation
is to use matrix algebra. In least squares it is necessary to create a system of equations with one equation
for each observation and each ‘observation equation’ contains terms for each of the coordinates of each
of the unknown points connected by the observation. So, for example, in a two-dimensional network of
10 points where there are a total of 50 observations there would be a set of 50 simultaneous equations in
20 unknowns. Although this represents only a small network, the mathematical problem it presents would
be too difficult to solve by simple algebraic or arithmetic methods. Readers unfamiliar with matrix algebra
should first read Appendix A – An introduction to matrix algebra.

7.4 LINEARIZATION

In surveying, equations relating observations with other observations or coordinates are seldom in a linear
form. For example, the observation equation for the observation of distance between two points A and
B is defined by Pythagoras’ equation which relates the differences of the eastings and northings of the
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points A and B with the distance between the two points.

lAB − {(EA − EB)2 + (NA − NB)2} 1
2 = 0

So the observation equations are not normally capable of being expressed in terms of a series of unknowns
multiplied by their own numerical coefficients. The solution of a series of equations by matrix methods
requires that this is so. For example, the following pair of equations:

3x + 4y = 24

4x + 3y = 25

can be expressed in matrix terms as:

[
3 4
4 3

] [
x
y

]
=
[

24
25

]

and solved as:

[
x
y

]
=
[

3 4
4 3

]−1 [24
25

]

The same cannot be done with these non-linear equations!

(x − 3)2 + (2y − 8)2 − 5 = 0

(x − 4)2 + (y − 10)2 − 49 = 0

A route to the solution of these equations, but obviously not the only one, is to make use of the first part
of a Taylor expansion of the two functions:

f1(x, y) = 0

f2(x, y) = 0

The application of Taylor’s theorem leads to:

f1(x, y) = 0 = f1(x0, y0) +
{

∂

∂x
( f1(x, y))

∣∣∣∣x=x0
y=y0

}
(x − x0) +

{
∂

∂y
(f1(x, y))

∣∣∣∣x=x0
y=y0

}
(y − y0)

+ higher order terms (7.1)

and

f2(x, y) = 0 = f2(x0, y0) +
{

∂

∂x
(f2(x, y))

∣∣∣∣x=x0
y=y0

}
(x − x0) +

{
∂

∂y
(f2(x, y))

∣∣∣∣x=x0
y=y0

}
(y − y0)

+ higher order terms (7.2)

where x0 and y0 are estimated or provisional values of x and y. f1(x0, y0) is f1(x, y) where x and y take
the values x0 and y0 and the notation | means ‘under the condition that . . .’. Therefore

∂

∂x
(f1(x, y))

∣∣∣∣x=x0
y=y0
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is f1(x, y) differentiated with respect to x, and with x and y then taking the values x0 and y0. (x − x0) is now
the correction to the provisional value of x since

x0 + (x − x0) = x

and so the equations are now linear in (x − x0) and (y − y0). A simple one-dimensional example may help
to illustrate the mathematical statements above.

Worked example

Example 7.1 Use linearization to solve the equation f (x) = x3 − 7x − 6 = 0 in the region of x is 3.5.
From the graph at Figure 7.3 it is clear that a better estimate of the value of x may be found from taking

the provisional value of x0 = 3.5 and subtracting the x offset, (x − x0), described by the triangle. The x
offset is f (x) when x = 3.5, divided by the gradient of the tangent to the curve where x is 3.5, that is:

f1(x) = 0 = f1(x0) +
{

∂

∂x
(f1(x))

∣∣∣∣
x=x0

}
(x − x0)

where:

f1(x) = 0 = x3 − 7x − 6

x0 = 3.5

f1(x0) = 12.375
∂

∂x
( f1(x)) = 3x2 − 7

∂

∂x
( f1(x))

∣∣∣∣
x=x0

= 29.75

f (x)

3.5

(x – x0) x

Fig. 7.3 Linearization
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and on substituting these numbers into the above equation:

f1(x) = 0 = 12.375 + 29.75(x − x0)

(x − x0) = −12.375

29.75
= −0.416

so x = 3.5 − 0.416
= 3.084

The exercise may now be repeated with x0 taken as 3.084 to find a yet better estimate of x. This is left to
the reader, who will find that the solution converges to x = 3 exactly.

This is as complex a problem as can be illustrated graphically. The Taylor series is, in effect, a mul-
tidimensional application of the idea expressed by the above example where each unknown coordinate
represents a dimension. A more complex example follows.

Worked example

Example 7.2 Solve the equations

(x − 3)2 + (2y − 8)2 − 5 = 0

(x − 4)2 + (y − 10)2 − 49 = 0

by firstly linearizing them as the first part of a Taylor expansion. Use provisional values of x and y as:

x0 = 5
y0 = 4

From these equations:

f1(x0, y0) = (x0 − 3)2 + (2y0 − 8)2 − 5 = −1

f2(x0, y0) = (x0 − 4)2 + (y0 − 10)2 − 49 = −12

∂

∂x
(f1(x, y))

∣∣∣x=x0
y=y0

= (2x − 6)
∣∣∣x=x0
y=y0

= 4

∂

∂x
(f1(x, y))

∣∣∣x=x0
y=y0

= (8y − 32)
∣∣∣x=x0
y=y0

= 0

∂

∂x
(f2(x, y))

∣∣∣x=x0
y=y0

= (2x − 8)
∣∣∣x=x0
y=y0

= 2

∂

∂x
(f2(x, y))

∣∣∣x=x0
y=y0

= (2y − 20)
∣∣∣x=x0
y=y0

= −12

so the equations can be evaluated as:

0 = −1 + 4(x − x0) + 0(y − y0)

0 = −12 + 2(x − x0) − 12(y − y0)
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In matrix terms the equation may be expressed as
[

4 0
2 −12

] [
(x − x0)
(y − y0)

]
=
[

1
12

]

and the solution is:

(x − x0) = +0.25

(y − y0) = −0.958333

which leads to:

x = 5.25
y = 3.041667

It will be found that these values do not satisfy the original equations. The reason is that the higher order
terms, which were ignored, are significant when the provisional values are not very close to the true values.
The closer the provisional values are to the true values, the faster the solution will converge with successive
iterations. In this case, if the problem is now re-worked with the derived values of x and y above, then the
next and subsequent solutions are:

x y
4.226630 2.928312
4.017291 2.996559
4.000083 2.999978

. . . . . .
4 exactly 3 exactly

In practical survey networks good provisional coordinates make a successful solution more likely and less
iteration will be required.

7.5 DERIVATION OF THE LEAST SQUARES FORMULAE

In surveying, all equations involving observations can be reduced, by linearization where necessary, to:

Ax = b + v

x is a vector of the terms to be computed which will include the coordinates
b is a vector which relates to the observations
A is a matrix of coefficients
v is a vector of the residuals

When describing the principle of least squares above it was stated that the best agreement between original
observations and final coordinates is achieved by minimizing the sum of the squares of the weighted
residuals of all the observations. More strictly, the best agreement is defined as being when the ‘quadratic
form’, vT σ(b)

−1v is a minimum, where v is the vector of the residuals and σ(b) is the variance-covariance
matrix of the observations. If σ(b) is a diagonal matrix, which it often is in survey problems, then the simple
definition above will suffice.
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The least squares requirement is to minimize the quadratic form vT σ(b)
−1v. The term σ(b)

−1 is often
written as W for simplicity and referred to as the weight matrix.

vT σ(b)
−1v = vT Wv

= (Ax − b)T W(Ax − b)

which when multiplied out gives:

vT Wv = (Ax)T WAx − bT WAx − (Ax)T Wb + bT Wb

= xT AT WAx − bT WAx − xT AT Wb + bT Wb

To find the value of x when the quadratic form is a minimum, differentiate the function with respect to x
and set it equal to 0.

d

dx

{
xT AT WAx − bT WAx − xT AT Wb + bT Wb

} = 0

The first three terms in the brackets { } are, in order, quadratic, bilinear and bilinear in x, so the equation
becomes:

2AT WAx − 2AT Wb = 0

So: AT WAx − AT Wb

This part of the solution is usually referred to as the normal equations, and is solved for x as:

x = (AT WA)−1AT Wb

The coordinates are only part of the solution. At this stage several sets of useful statistics may be derived
and these will be discussed later. An examination of the residuals will show quickly if there are any major
discrepancies in the observations.

Since Ax = b + v

then v = Ax − b

Each row in the A matrix represents the coefficients of the terms in the x vector that arise from one
observation equation. The b vector contains all the numerical terms in the observation equation, i.e. those
that are not coefficients of terms in the x vector. The weight matrix W applies the right level of importance
to each of the observation equations and v, the residuals vector, describes how well the observations fit
the computed coordinates. In the following sections of this chapter the terms of the above equation will be
more fully described.

7.6 PARAMETER VECTOR

The parameter vector, or x vector, lists the parameters to be solved for. Usually these will be coordinates of
the unknown points, if the solution is to be a direct one. More often the x vector is a vector of corrections
to provisional values that have been previously computed or are guessed best estimates of the coordinates
of the unknown points. This latter method is known as ‘variation of coordinates’.

When formulating the problem the x vector is specified first. Once the order of terms in this vector
has been decided that dictates the order of terms in each row of the A matrix. The parameter vector
may also contain a few other terms that need to be solved for at the same time as the coordinates. Two
examples might be the local or instrumental scale factor or the orientation of the horizontal circle of the
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theodolite at each point if directions rather than horizontal angles are observed. Some examples of an
x vector are:

Height network
direct solution

Height network
by variation of
coordinates

Plan network in
2D by variation
of coordinates

Plan network in
3D by variation
of coordinates





HW

HX

HY

HZ









�HW

�HX

�HY

�HZ









�EX

�NX

�EY

�NY

�EZ

�NZ









�EX

�NX

�HX

�EY

�NY

�HY

�EZ

�NZ

�HZ





The only networks that can be solved directly are those of height, or of difference of position such as may
be obtained from the Global Positioning System. All others must be by variation of coordinates because
the observation equations cannot be formed as a series of coefficients multiplied by individual parameters.
In other words the observation equations must first be linearized and its application will be covered in the
section on the design matrix below. In variation of coordinates the x vector is a vector of corrections to
provisional values. The final adjusted coordinates are then computed from

x̂ = xp + δx

where

x̂ is the final vector of adjusted coordinates
xp is the vector of provisional values
δx is the computed vector of corrections to the provisional values.

The dimensions of the x vector are n × 1 where n is the number of parameters to be solved for.

7.7 DESIGN MATRIX AND OBSERVATIONS VECTOR

The design matrix and the observations vector will be dealt with together in this section because the elements
of both are derived from the same theoretical considerations. The observations vector contains more than
just the observations. For each linearized observation equation there is an element in the observations
vector that represents the ‘observed minus computed’ term, described below, and the vector of these terms
is often given this name.

7.7.1 Height network

Before dealing with observation equations that need to be linearized, it is worth examining the simple case
of a one-dimensional height network. In Figure 7.4 point A is a datum point and its height is considered
fixed. Levelling has been undertaken between the other points in order to find the heights of points X,
Y and Z .

The six observations are �hAX , �hAY , �hAZ , �hYX , �hZX and �hZY . hA is the height of point A, etc.
The six equations linking the observations of height difference with the parameters, the heights of the
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A

Z

Y

X

Fig. 7.4 A levelling network

points, are:

hX − hA = �hAX + v1
hY − hA = �hAY + v2
hZ − hA = �hAZ + v3
hX − hY = �hYX + v4
hX − hZ = �hZX + v5
hY − hZ = �hZY + v6

v1 is the residual associated with the first observation, etc. Since the height of A is known, these equations
can be rewritten to leave only the unknowns on the left-hand side of the equations.

hX = hA + �hAX + v1
hY = hA + �hAY + v2
hZ = hA + �hAZ + v3
hX − hY = �hYX + v4
hX − hZ = �hZX + v5
hY − hZ = �hZY + v6

and this may be expressed in matrix terms as:




1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1
0 1 −1








hX

hY

hZ



 =





hA + �hAX

hA + �hAY

hA + �hAZ

�hYX

�hZX

�hZY




+





v1
v2
v3
v4
v5
v6





This is in the form:

Ax = b + v
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7.7.2 Plan network

Plan networks are solved by variation of coordinates because the observation equations are not linear in
the unknowns. In the following pages, the observation equation for each type of observation is developed,
linearized, and presented in a standard format. Finally, all the elements that may be in the design matrix
are summarized.

The way to set up the linearized equation is as follows.

(1) Form an equation relating the true values of the observations to the true values of the parameters,
preferably, but not essentially, in the form

observation = f (parameters) {l̄ = f (x̄)}

(2) Make the equation equate to zero by subtracting one side from the other. The equation becomes:

f (observation, parameters) = 0 {f (x̄, l̄) = 0}

(3) Linearize as the first part of a Taylor series. The equations, expressed in the section on linearization
above, may be rewritten as:

f1(x̄, l̄) = 0 = f1(xp, lo) +
∑{

∂

∂x
(f1(x, l))

∣∣∣∣x=xp
l=lo

}
(x − xp) +

∑{
∂

∂y
(f1(x, l))

∣∣∣∣x=xp
l=lo

}
(l − lo)

Where f (x̄, l̄) is the true value of the function with the true values of the parameters and the true values of
the observations. From step 2 above, it must, by definition be zero.

f (xp, lo) is the same function but the parameters take their provisional values and the observations their
observed values.

{
∂

∂x
f (x, l)

∣∣∣∣x=xp
l=lo

}
(x − xp)

is the function differentiated with respect to a parameter and evaluated using provisional values of the
parameters and observed values of the observations. It is then multiplied by the difference between the
true value of that parameter and its provisional value. In observation equations, if f (x, l) has been set up in
the form described in step 1, then the differentiated function does not contain any observation terms. The
term (x − xp) is what is solved for.

{
∂

∂l
f (x, l)

∣∣∣∣x=xp
l=lo

}
(l − lo)

is a similar function to the one above, except the differentiation is with respect to the observations and
(l − lo) is the residual. These terms appear in observation equations as 1 if the function is formed as in
steps 1 and 2 above.

From the above the linearized equation becomes:

−
∑{

∂

∂x
(f1(x, l))

∣∣∣∣x=xp
l=lo

}
(x − xp) = f (xp, lo) + (l − lo)

which in matrix terms is one row of the A matrix times the x vector equals an element of the b vector
plus the residual. The above will now be applied to the usual survey observation types for a plan, or
two-dimensional estimation.
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7.7.3 Distance equation

Following the three steps above the distance between two points i and j can be related to their eastings and
northings by the equation:

lij −
{

(Ej − Ei)
2 + (Nj − Ni)

2
} 1

2 = 0

Differentiating with respect to the parameters gives:

(Ej −Ei)
{
(Ej −Ei)2+(Nj −Ni)2

} 1
2

δEj + −(Ej −Ei)
{
(Ej −Ei)2+(Nj −Ni)2

} 1
2

δEi + (Nj −Ni)
{
(Ej −Ei)2+(Nj −Ni)2

} 1
2

δNj

+ −(Nj −Ni)
{
(Ej −Ei)2+(Nj −Ni)2

} 1
2

δNi = lij −
{
(Ej −Ei)

2+(Nj −Ni)
2} 1

2

In the four terms on the left-hand side of the equation, the coefficient may be re-expressed as a trigonomet-
rical function of the direction of point j from point i. δEj is the correction to the provisional value of Ej, etc.

On the right-hand side of the equation {(Ej −Ei)2 + (Nj −Ni)2} 1
2 is the distance lij derived from provisional

values of the parameters. The right-hand side could now be written as lij(o−c) where the notation indicates
that it is the observed value of the observation minus the computed value of the observation. With a change
of sign and re-ordering the terms, the equation may now be more simply expressed in matrix notation as:

[− sin aij − cos aij sin aij cos aij
]





δEi

δNi

δEj

δNj



 = [
lij(o−c)

]

where aij is the bearing of j from i and is found from provisional values of coordinates of i and j:

tan aij = (Ej − Ei)

(Nj − Ni)

If the units of distance are out of sympathy with the units of the coordinates, and the difference in scale is
not known, it can be added to and solved for in the observation equation. This situation might occur when
computing on the projection, or when observations have been made with an EDM instrument with a scale
error, or even with a stretched tape.

7.7.4 Distance with scale bias equation

The distance with scale bias equation is:

lij − (1 + 10−6s)
{

(Ej − Ei)
2 + (Nj − Ni)

2
} 1

2 = 0

where s is the scale bias in parts per million (ppm).
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The final equation above may now be replaced with:

[−(1+10−6s)sinaij −(1+10−6s)cosaij (1+10−6s)sinaij (1+10−6s)cosaij 10−6lij
]





δEi

δNi

δEj

δNj

δs





= [lij(o−c)
]

7.7.5 Bearing equation

Very seldom would a bearing be observed. It is introduced here as stepping stone towards the angle equation.
The bearing equation is:

bij − tan−1
{

Ej − Ei

Nj − Ni

}
= 0

Upon differentiating and rearranging as above the final equation in matrix form is:

[− cos aij

lij sin 1′′
sin aij

lij sin 1′′
cos aij

lij sin 1′′
− sin aij

lij sin 1′′

]




δEi

δNi

δEj

δNj



 = [
bij(o−c)

]

The units of b are arc seconds. Note that the ratio of 1 second of arc to 1 radian is sin 1′′:1.

7.7.6 Direction equation

If a round of angles has been observed at a point and it is desired to use the observations in an uncor-
related form to maintain a strictly diagonal weight matrix, then each of the pointings may be used in
a separate observation equation. An extra term will be required for each theodolite set up, to account
for the unknown amount, z, that the horizontal circle zero direction differs from north. The direction
equation is:

dij − tan−1
{

Ej − Ei

Nj − Ni

}
+ z = 0

This expression is very similar to the bearing equation above, and the derivation of coefficients of the
parameters is exactly the same, but with the addition of one extra term. Upon differentiating and rearranging
the final equation in matrix form is

[− cos aij

lij sin 1′′
sin aij

lij sin 1′′
cos aij

lij sin 1′′
− sin aij

lij sin 1′′ − 1
]





δEi

δNi

δEj

δNj

δz′′




= [

dij(o−c)
]

7.7.7 Angle equation

An angle is merely the difference of two bearings. In the current notation it is the bearing of point k from
point i minus the bearing of point j from point i (Figure 7.5).
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j

k

i

Fig. 7.5 Angle equation

The angle equation is:

ajik − tan−1
{

Ek − Ei

Nk − Ni

}
+ tan−1

{
Ej − Ei

Nj − Ni

}
= 0

Again, the terms in this are very similar to those in the bearing equation. Now there are six parameters, i.e.
the corrections to the provisional coordinates of points i, j and k. Point i is associated with the directions
to point j and k so the coefficients of the corrections to the provisional coordinates of point i are a little
more complicated.

[{
cosaij

lij sin1′′ −
cosaik

lik sin1′′

}{
sinaik

lik sin1′′ −
sinaij

lij sin1′′

}−cosaij

lij sin1′′
sinaij

lij sin1′′
cosaik

lik sin1′′
−sinaik

lik sin1′′

]





δEi

δNi

δEj

δNj

δEk

δNk




= [ajik(o−c)

]

If observations are made to or from points which are to be held fixed, then the corrections to the provisional
values of the coordinates of those points, by definition, must be zero. Fixed points therefore do not appear
in the x vector and therefore there are no coefficients in the A matrix.

7.8 WEIGHT MATRIX

Different surveyors may make different observations with different types of instruments. Therefore the
quality of the observations will vary and for a least squares solution to be rigorous the solution must take
account of this variation of quality. Consider a grossly overdetermined network where an observation has
an assumed value for its own standard error, and thus an expected value for the magnitude of its residual.
If all the terms in the observation equation are divided by the assumed, or a priori, standard error of the
observation, then the statistically expected value of the square of the residual will be 1. If all the observation
equations are likewise scaled by the assumed standard error of the observation, then the expected values
of all the residuals squared will also be 1. In this case the expected value of the mean of the squares of the
residuals must also be 1. The square root of this last statistic is commonly known as the ‘standard error
of an observation of unit weight’, although the statistic might be better described as the square root of the
‘variance factor’ or the square root of the ‘reference variance’.
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If all the terms in each observation equation are scaled by the inverse of the standard error of the
observation then this leads to the solution:

x = (AT WA)−1AT Wb

where W is a diagonal matrix and the terms on the leading diagonal, wii, are the inverse of the respective
standard errors of the observations squared and all observations are uncorrelated. More strictly, the weight
matrix is the inverse of the variance-covariance matrix of the ‘estimated observations’, that is the observed
values of the observations. If:

σ(b) =





σ11 σ12 σ13 σ14 . . .
σ21 σ22 σ23 σ24 . . .
σ31 σ32 σ33 σ34 . . .
σ41 σ42 σ43 σ44 . . .
. . . . . . . . . . . . etc.





where σ(b) is the variance-covariance matrix of the estimated observations, σ11 is the variance of the first
observation and σ23 is the covariance between the 2nd and 3rd observations, etc., then

W = σ(b)
−1

In most practical survey networks it is assumed that all the off-diagonal terms in σ(b)
−1 are 0. In other

words there are no covariances between observations and so all observations are independent of each other.
This will usually be true. An exception is where a round of horizontal angles has been observed at a point.
If there is an error in the horizontal pointing to one point and that pointing is used to compute more than
one horizontal angle then the error in the pointing will be reflected in both computed horizontal angles in
equal, Figure 7.6(a), and possibly opposite, Figure 7.6(b), amounts. In this case the observations will be
correlated, positively and negatively, respectively.

The problem is often ignored in practice but a rigorous solution may still be achieved, if observation
equations are formed for directions rather than angles.

If there are no covariances, then σ(b) becomes:

σ(b) =





σ11 0 0 0 . . .
0 σ22 0 0 . . .
0 0 σ33 0 · · ·
0 0 0 σ44 . . .

. . . . . . . . . . . . etc.





Erroneous pointing
Correct pointing

Erroneous pointing
Correct pointing

(a) (b)

Fig. 7.6 The effect upon computed angles of an error in a common pointing. (a) Same error in angle; (b) opposite
error in angle
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and so since σ(b) is now a diagonal matrix its inverse W is:

W =





σ−2
1 0 0 0 . . .
0 σ−2

2 0 0 . . .
0 0 σ−2

3 0 · · ·
0 0 0 σ−2

4 . . .
. . . . . . . . . . . . etc.





where σ 2
1 = σ11, etc.

Generally, the a priori standard error of an observation does not need to be known precisely. It is unlikely
that it can be estimated to better than two significant figures and even the second significant figure is likely
to be no more than guesswork. However, once a weight has been assigned to an observation, it must be
held to the same number of significant figures as all the other terms in the least squares computation. Small
errors in the assessment of weights are likely to have a negligible effect upon the values of computed
coordinates, especially in a well-overdetermined network.

Worked example

Example 7.3 In the levelling network in Figure 7.4, point A is a benchmark and has an assumed
height of 100.00 m. Levelling has been undertaken along the lines as shown. The observed height
differences were:

Line Observed height
difference

Approximate
line length

AX 12.483 m 5 km
AY 48.351 m 10 km
AZ 5.492 m 7 km
XY 35.883 m 7 km
XZ −7.093 m 12 km
YZ −42.956 m 9 km

The standard errors of the observed difference heights are believed to be:

σ�h = 0.017
√

K m, where K is the line length in km

Find the best estimate of the heights of points X, Y and Z .

The observation equations are:

hX = hA + �hAX + v1
hY = hA + �hAY + v2
hZ = hA + �hAZ + v3
hX − hY = �hYX + v4
hX − hZ = �hZX + v5
hY − hZ = �hZY + v6
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where hX is the height of point X , etc. This set of equations may be expressed in matrix
terms as:

Ax = b + v




1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1
0 1 −1








hX

hY

hZ



 =





hA + �hAX

hA + �hAY

hA + �hAZ

�hYX

�hZX

�hZY




+





v1
v2
v3
v4
v5
v6




=





112.483 m
148.351 m
105.492 m

35.833 m
−7.093 m

−42.956 m




+





v1
v2
v3
v4
v5
v6





Weights are computed using the formula in the question as follows:

Line Length
(km)

Standard error
of observation

(m)

Weight
(m−2)

AX 5 0.038 692
AY 10 0.054 348
AZ 7 0.045 496
XY 7 0.045 496
XZ 12 0.059 288
YZ 9 0.051 384

Although the choice of weights is open to interpretation, once they have been chosen, they are fixed and
exactly the same values must be used throughout. The weight matrix is:

W =





692 0 0 0 0 0
0 348 0 0 0 0
0 0 496 0 0 0
0 0 0 496 0 0
0 0 0 0 288 0
0 0 0 0 0 384





The necessary matrices and vector are now formed and the computation can proceed to find x from:

x = (AT WA)−1AT Wb
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To minimize the computational process it is useful to start by forming the product AT W since this appears
twice in the above formula:

AT W =



1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1









692 0 0 0 0 0
0 348 0 0 0 0
0 0 496 0 0 0
0 0 0 496 0 0
0 0 0 0 288 0
0 0 0 0 0 384





=



692 0 0 −496 −288 0

0 348 0 496 0 −384
0 0 496 0 288 384





Next form the product AT WA:

AT WA =



692 0 0 −496 −288 0

0 348 0 496 0 −384
0 0 496 0 288 384









1 0 0
0 1 0
0 0 1

−1 1 0
−1 0 1

0 −1 1





=



1476 −496 −288
−496 1228 −384
−288 −384 1168





Invert the matrix to get (AT WA)−1:

(AT WA)−1 =



0.000918866 0.000492633 0.000388531
0.000492633 0.001171764 0.000506708
0.000388531 0.000506708 0.001118559





At this stage a check upon the arithmetic used in the inversion would be to confirm that the product:

(AT WA)(AT WA)−1 = l, the identity matrix. In this case it is:

(AT WA)(AT WA)−1 =



1.0000033 −0.0000005 −0.0000004

−0.0000005 1.0000044 −0.0000006
0.0000004 −0.0000006 1.0000041





which is within acceptable limits of precision. Now form the remaining product in the main equation,
AT Wb:

AT Wb =



692 0 0 −496 −288 0

0 348 0 496 0 −384
0 0 496 0 288 384









112.483
148.351
105.492

35.883
−7.093

−42.956




=



62083.1
85919.2
33786.1




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and finally find x from the product of (AT WA)−1 and AT Wb:

x = (AT WA)−1AT Wb

=



0.000918866 0.000492633 0.000388531
0.000492633 0.001171764 0.000506708
0.000388531 0.000506708 0.001118559








62083.1
85919.2
33786.1





=



112.500 m
148.381 m
105.449 m



 =



hX

hY

hZ





The final result is quoted to 6 significant figures (millimetres) and so all the computations leading to the
final result were kept to 6 significant figures or better. The computation, so far, only derives the best
estimate of the heights of the three points but does not show any error statistics from which an assessment
of the quality of the solution may be made. This will be addressed later.

Worked example

Example 7.4 In Figure 7.7the coordinates of the points A and C are known and new points B, D and E are
to be fixed. All coordinates and distances are in metres.

The known and approximate coordinates of the points are:

A 1000.000 2000.000 known
B 1385.7 1878.2 approximate
C 1734.563 2002.972 known
D 1611.7 2354.7 approximate
E 1238.7 2294.7 approximate

E

D

C

B

A

Fig. 7.7 A control network
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The observed angles are:

ABE 58◦ 02′ 29′′
EBC 89◦ 45′ 36′′
BCD 90◦ 25′ 48′′
DEB 79◦ 41′ 30′′
BEA 58◦ 26′ 17′′

The observed distances are:

AB 404.453 m
AE 379.284 m
BC 370.520 m
BE 441.701 m
CD 372.551 m
DE 377.841 m

The assumed standard errors for all angles is 5′′ and for all distances is 0.004 m.
The first step is to define the x vector, the vector of parameters to be solved for. As long as all the

necessary terms are in the x vector it does not matter in which order they appear but the order once defined
dictates the order of terms across the A matrix. In this case it has been defined to be:

x =





δEB

δNB

δED

δND

δEE

δNE





Now identify and compute all the distances and directions that will be needed to form the elements of the
A matrix. They are formed from the fixed and provisional coordinates of the points.

Directions Distances

BA 287◦ 31′ 32.0′′ 404.4746 m
BE 340◦ 33′ 35.9′′ 441.6800 m
BC 70◦ 19′ 12.9′′ 370.5043 m
CB 250◦ 19′ 12.9′′ 370.5043 m
CD 340◦ 44′ 42.2′′ 372.5693 m
EA 219◦ 00′ 23.9′′ 379.2437 m
EB 160◦ 33′ 35.9′′ 441.6800 m
ED 80◦ 51′ 42.5′′ 377.7949 m

Next set up the four elements in each row of the A matrix. Use the results of Sections 7.7.3 and 7.7.7 above
as a template. Again the choice of which order to tackle the observations is arbitrary, but once chosen it
will dictate the order of the terms in the weight matrix. In this case the order of the angles and distances
as stated in the question is used.



Rigorous methods of control 247

C
oe

ffi
ci

en
to

f
δ
E

B
δ
N

B
δ
E

D
δ
N

D
δ
E

E
δ
N

E

A
ng

le
s

A
B

E
co

sa
B

A
l B

A
si

n
1′′

−
co

sa
B

E
l B

E
si

n
1′′

si
n

a B
E

l B
E

si
n

1′′
−

si
n

a B
A

l B
A

si
n

1′′
0

0
co

sa
B

E
l B

E
si

n
1′′

−
si

n
a B

E
l B

E
si

n
1′′

E
B

C
co

sa
B

E
l B

E
si

n
1′′

−
co

sa
B

C
l B

C
si

n
1′′

si
n

a B
C

l B
C

si
n

1′′
−

si
n

a B
E

l B
E

si
n

1′′
0

0
−

co
sa

B
E

l B
E

si
n

1′′
si

n
a B

E
l B

E
si

n
1′′

B
C

D
−

co
sa

C
B

l C
B

si
n

1′′
si

n
a C

B
l C

B
si

n
1′′

co
sa

C
D

l C
D

si
n

1′′
−

si
n

a C
D

l C
D

si
n

1′′
0

0

D
E

B
co

sa
E

B
l E

B
si

n
1′′

−
si

n
a E

B
l E

B
si

n
1′′

−
co

sa
E

D
l E

D
si

n
1′′

si
n

a E
D

l E
D

si
n

1′′
co

sa
E

D
l E

D
si

n
1′′

−
co

sa
E

B
l E

B
si

n
1′′

si
n

a E
B

l E
B

si
n

1′′
−

si
n

a E
D

l E
D

si
n

1′′

B
E

A
−

co
sa

E
B

l E
B

si
n

1′′
si

n
a E

B
l E

B
si

n
1′′

0
0

co
sa

E
B

l E
B

si
n

1′′
−

co
sa

E
A

l E
A

si
n

1′′
si

n
a E

A
l E

A
si

n
1′′

−
si

n
a E

B
l E

B
si

n
1′′

D
is

ta
nc

es
A

B
si

n
a A

B
co

sa
A

B
0

0
0

0

A
E

0
0

0
0

si
n

a A
E

co
sa

A
E

B
C

−
si

n
a B

C
−

co
sa

B
C

0
0

0
0

B
E

−
si

n
a B

E
−

co
sa

B
E

0
0

si
n

a B
E

co
sa

B
E

C
D

0
0

si
n

a C
D

co
sa

C
D

0
0

D
E

0
0

−
si

n
a D

E
−

co
sa

D
E

si
n

a D
E

co
sa

D
E

N
ow

ev
al

ua
te

al
lt

he
te

rm
s

us
in

g
th

e
di

re
ct

io
ns

an
d

di
st

an
ce

s
co

m
pu

te
d

ab
ov

e.

A
=

                 −2
87

33
1

0
0

44
0

15
5

25
3

68
0

0
0

−4
40

−1
55

18
7

−5
24

52
3

18
3

0
0

−4
40

−1
55

−8
7

53
9

52
7

−3
84

44
0

15
5

0
0

−1
8

−4
98

0.
95

4
−0

.3
01

0
0

0
0

0
0

0
0

0.
62

9
0.

77
7

−0
.9

42
−0

.3
37

0
0

0
0

0.
33

3
−0

.9
43

0
0

−0
.3

33
0.

94
3

0
0

−0
.3

30
0.

94
4

0
0

0
0

0.
98

7
0.

15
9

−0
.9

87
−0

.1
59

                 



248 Engineering Surveying

Next compute the weight matrix. Assuming that all the observations are uncorrelated, the weight matrix
will be a diagonal matrix. Each of the elements on the leading diagonal will be the inverse of the square
of the standard error of the observation taken in the same order as used when setting up the A matrix. This
will be 0.04′′−2 for angles and 62 500 m−2 for distances.

W =





0.04 0 0 0 0 0 0 0 0 0 0
0 0.04 0 0 0 0 0 0 0 0 0
0 0 0.04 0 0 0 0 0 0 0 0
0 0 0 0.04 0 0 0 0 0 0 0
0 0 0 0 0.04 0 0 0 0 0 0
0 0 0 0 0 62 500 0 0 0 0 0
0 0 0 0 0 0 62 500 0 0 0 0
0 0 0 0 0 0 0 62 500 0 0 0
0 0 0 0 0 0 0 0 62 500 0 0
0 0 0 0 0 0 0 0 0 62 500 0
0 0 0 0 0 0 0 0 0 0 62 500





The final part of the vector and matrix preparation is to compute the b vector of ‘observed minus computed’
terms taking the observations in exactly the same order as above.

b =





53◦ 02′ 29′′ − 340◦ 33′ 35.9′′ + 298◦ 31′ 32.0′′
89◦ 45′ 36′′ − 70◦ 19′ 12.9′′ + 340◦ 33′ 35.9′′ − 360◦
90◦ 25′ 48′′ − 340◦ 44′ 42.2′′ + 250◦ 19′ 12.9′′
79◦ 41′ 30′′ − 160◦ 33′ 35.9′′ + 85◦ 51′ 42.5′′
58◦ 26′ 17′′ − 219◦ 00′ 23.9′′ + 160◦ 33′ 35.9′′

404.453 m − 404.4746 m
379.284 m − 379.2437 m
370.520 m − 370.5043 m
441.701 m − 441.6800 m
372.551 m − 372.5693 m
377.841 m − 377.7949 m





=





25.1′′
−1.0′′
18.7′′

−23.4′′
−31.0′′
−0.0216 m

0.0403 m
0.0157 m
0.0210 m

−0.0183 m
0.0461 m





All the vectors and matrices have now been constructed and the process of matrix manipulation is the same
as in the previous example. The objective is to find x from

x = (AT WA)−1AT Wb

Start by forming the product ATW:

AT W=





−11.47 10.11 7.50 −17.62 17.62 59599 0 −58849 20801 0 0
13.23 27.18 −20.97 −6.22 6.22 −18821 0 −21048 −58937 0 0
0 0 20.91 −3.47 0 0 0 0 0 −20611 61707
0 0 7.30 21.56 0 0 0 0 0 59004 9926

17.62 −17.62 0 21.08 −0.71 0 39338 0 −20801 0 −61707
6.22 −6.22 0 −15.34 −19.91 0 48567 0 58937 0 −9926





Then AT WA:

AT WA =





141 937 −13 120 5447 −8126 −26 027 14 249
−13 120 104 111 −10 420 −7179 10 085 −58 455

5447 −10 420 78 948 −7710 −62 752 −8470
−8126 −7179 −7710 70 235 1565 −9848

−26 027 10 085 −62 752 1565 119 246 18 494
14 249 −58 455 −8470 −9848 18 494 112 623




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Invert the matrix to get (AT WA)−1:

(AT WA)−1 =





0.00000765 0.00000036 0.00000158 0.00000090 0.00000261 −0.00000101
0.00000036 0.00001487 0.00000194 0.00000297 −0.00000149 0.00000832
0.00000158 0.00000194 0.00002266 0.00000271 0.00001195 0.00000079
0.00000090 0.00000297 0.00000271 0.00001533 0.00000073 0.00000285
0.00000261 −0.00000149 0.00001195 0.00000073 0.00001578 −0.00000273

−0.00000101 0.00000832 0.00000079 0.00000285 −0.00000273 0.00001408





Now form the remaining product in the main equation, AT Wb:

AT Wb =





−2071
−1293

3693
−992

−1704
3876





and finally find x from the product of (AT WA)−1 and AT Wb:

x = (AT WA)−1AT Wb =





δEB

δNB

δED

δND

δEE

δNE




=





−0.020
0.019
0.058

−0.001
0.002
0.051





Finally, add these computed corrections to the original provisional coordinates to obtain corrected
coordinates.

EA 1000.000 m 1000.000 m fixed
NA 2000.000 m 2000.000 m fixed
EB 1385.7 m −0.020 m 1385.680 m computed
NB 1878.2 m 0.019 m 1878.219 m computed
EC 1734.563 m 1734.563 m fixed
NC 2002.972 m 2002.972 m fixed
ED 1611.7 m 0.058 m 1611.758 m computed
ND 2354.7 m −0.001 m 2354.699 m computed
EE 1238.7 m 0.002 m 1238.702 m computed
NE 2294.7 m 0.051 m 2294.751 m computed

It must be appreciated that the matrices in the above worked example have been kept to a minimum of
size. Practical least squares computations are performed with software because the volumes of data are
enormous. The inversion of the (AT WA) matrix becomes extremely tedious if the dimensions are large.
In practice computing routines that avoid the explicit inversion of this ‘normal equations’ matrix are used.
In the example above, the inversion is of a 6 × 6 matrix only. The size of the normal equations matrix is
usually 2n × 2n where n is the number of points to be solved for.

7.9 ERROR ANALYSIS

In control surveying, making measurements and computing coordinates of points from those measure-
ments is only one half of the surveyor’s business. The other half is error management, which is concerned
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with assessing the quality of the work and drawing the appropriate conclusions. In the following sections
various quality indicators are considered.

7.9.1 Residuals

The first set of statistics that are available from the least squares computation are the residuals of each of the
observations. A residual gives an indication of how well a particular observation fits with the coordinates
computed from that, and all the other observations. A quick glance at a set of residuals will give an indica-
tion if there are any observations that have a gross error. One gross error will distort the whole network but
its worst effect will be in the residual associated with the erroneous observation. The fact that all residuals
are large does not necessarily indicate that there is more than one gross error. In this case, however, the
observation with the largest residual, ignoring weights, will probably be the one that is in error.

The residuals are computed by putting the final computed values of the parameters, with the observed
value of the observation into the original observation equation. In matrix terms:

v = Ax − b

where A and b are computed using the final values of x. A check can be applied to the computation at this
stage. Pre-multiplying both sides of the above equation by AT W gives:

AT Wv = AT WAx − AT Wb

but in the derivation of the least squares formulae it was shown that:

AT WAx = AT Wb

which are the normal equations, and therefore,

AT Wv = 0, a null vector

How close AT Wv is to a null vector will give an indication of the arithmetic correctness of the solution
and of its completeness, i.e. have there been sufficient iterations.

Worked example

Example 7.5 What are the residuals from the adjustment of the levelling network in Example 7.3? The
observation equations were:

hX = hA + �hAX + v1
hY = hA + �hAY + v2
hZ = hA + �hAZ + v3
hX − hY = �hYX + v4
hX − hZ = �hZX + v5
hY − hZ = �hZY + v6

The known value of hA was 100.00 m and the computed values of hX , hY and hZ were 112.500 m,
148.381 m and 105.449 m, respectively. With the original observations also added into the equations
above, the residuals are:

v1 = +0.016 m
v2 = +0.030 m
v3 = −0.044 m
v4 = −0.001 m
v5 = +0.042 m
v6 = +0.023 m

When these values are compared with the a priori standard errors of the observations, it does not appear
that there are any unexpectedly large residuals.
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Worked example

Example 7.6 What are the residuals from the adjustment of the plan network in Example 7.4?

The equation v = Ax − b applied to the matrices computed in Example 7.4 gives:

v =





−4.3′′
−0.0′′
−2.3′′

5.4′′
0.1′′

−0.0029 m
0.0006 m

−0.0035 m
0.0015 m

−0.0018 m
0.0005 m





Again when compared with the a priori standard errors none of the residuals appears unexpectedly large.

7.9.2 Standard error of an observation of unit weight

In an excessively overdetermined network the statistically expected value of the square of each of the
residuals divided by its a priori standard error is 1. This will only be so if all the weights of the observations
have been correctly estimated and there are no gross errors. Therefore the expected mean value of this
statistic, for all observations, will also be 1. Since networks are not infinitely overdetermined, account
must be taken of the ‘degrees of freedom’ in the network. The variance factor is defined as the sum of the
weighted squares of the residuals, divided by the degrees of freedom of the network. The standard error
of an observation of unit weight, σ0, is the positive square root of the variance factor. In notation:

σ 2
0 =

∑
wiv2

i

m − n

w and v are the weights and residuals of the observations, m − n is the number of degrees of freedom of
the network where m and n are, respectively, the number of observations and the number of parameters.

For a small network little can be concluded from σ0 if it is small, except that there is no evidence of
gross error. For large networks, although its expected value is 1, in practice it may lie a little from this
value. For a small network where there are 3 degrees of freedom, the range of 0.6 to 1.6 for σ0 would not be
unreasonable. For a network with 30 degrees of freedom a range of 0.8 to 1.2 would be more appropriate.
If σ0 is much greater than this and the residuals do not suggest a gross error, then the probable cause is
an incorrect level of weighting of some or all of the observations. If σ0 is less than the acceptable range,
then again, the error is probably in a priori assessment of the observation standard errors and hence the
weighting.

In the formula above, it is assumed that there are no covariances in W−1. If W is not a diagonal matrix,
then a more complete statement of σ0 would be

σ 2
0 = vT Wv

m − n

which of course includes the definition, above, as a special case.
The above acceptable values for σ0 are approximate and derived from experience. A more rigorous

assessment of acceptability can be found by using the statistical χ2 test. If

vT Wv ≤ χ2
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where χ2 is evaluated at the appropriate probability of error, typically 5%, for m − n degrees of freedom,
then it can be stated at the given level of probability of error that the adjustment contains only random
errors. This is a one-sided test in that it does not show if the a priori standard errors are too large, only if
they are too small.

The following table shows the critical values for vT Wv or �wiv2
i against values of probability. In

each case if vT Wv or �wiv2
i is less than the value shown in the table then there is no evidence of

gross error.

Degrees of freedom (m−n)
Probability

0.10 0.05 0.02 0.01

1 1.64 1.96 2.33 2.58
2 1.52 1.73 1.98 2.15
3 1.44 1.61 1.81 1.94
4 1.39 1.54 1.71 1.82
5 1.36 1.49 1.64 1.74
6 1.33 1.45 1.58 1.67
8 1.29 1.39 1.51 1.58

10 1.26 1.35 1.45 1.52
12 1.24 1.32 1.42 1.48
15 1.22 1.29 1.37 1.43
20 1.19 1.25 1.32 1.37
40 1.14 1.18 1.23 1.26

100 1.09 1.12 1.15 1.17

Worked example

Example 7.7 The residuals derived in the levelling estimation of Example 7.5 with their weights were:

v1 = +0.016 m w1 = 692 m−2

v2 = +0.030 m w2 = 348 m−2

v3 = −0.044 m w3 = 496 m−2

v4 = −0.001 m w4 = 496 m−2

v5 = +0.042 m w5 = 288 m−2

v6 = +0.023 m w6 = 384 m−2

m, the number of observations, is 6 and n, the number of parameters to solve for, is 3. The standard error
of an observation of unit weight is therefore:

σ 2
0 =

∑
wiv2

i

m − n
= 0.72 leading to σ0 = 0.85

This appears to confirm that the right weights have been used, but this conclusion can only be tentative as
there are so few degrees of freedom in the estimation. Therefore this really only confirms that there have
been no gross errors in the observations.
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Worked example

Example 7.8 The residuals derived in the plan network estimation of Example 7.6 with their weights were:

v1 = −4.3′′ w1 = 0.04′′−2

v2 = −0.0′′ w2 = 0.04′′−2

v3 = −2.3′′ w3 = 0.04′′−2

v4 = 5.4′′ w4 = 0.04′′−2

v5 = 0.1′′ w5 = 0.04′′−2

v6 = −0.0029 m w6 = 62500 m−2

v7 = 0.0006 m w7 = 62500 m−2

v8 = −0.0035 m w8 = 62500 m−2

v9 = 0.0015 m w9 = 62500 m−2

v10 = −0.0018 m w10 = 62500 m−2

v11 = 0.0005 m w11 = 62500 m−2

m, the number of observations, is 11 and n, the number of parameters, is 6. The standard error of an
observation of unit weight is therefore:

σ 2
0 =

∑
wiv2

i

m − n
= 0.75 leading to σ0 = 0.87

Again this tentatively confirms that the right weights have been used but positively confirms that there
have been no gross errors in the observations.

7.10 VARIANCE-COVARIANCE MATRIX OF THE PARAMETERS

Earlier, the weight matrix was defined as the inverse of the variance-covariance matrix of the observations.
This latter matrix, when fully populated, contains the variances of the observations, in order on the leading
diagonal, and the covariances between them, where they exist, as the off-diagonal terms. Similar variance-
covariance matrices can also be set up for all the other vector terms that appear in, or can be derived from,
the least squares solution. The derivations of these variance-covariance matrices all make use of the Gauss
propagation of error law, which may be interpreted like this.

If two vectors s and t are related in the equation:

s = Kt

where K is a matrix, then their variance-covariance matrices are related by the equation:

σ(s) = Kσ(t)KT

The least squares solution for the parameters is:

x = (AT WA)−1AT Wb

where (AT WA)−1AT W is the counterpart of the matrix K above. To find σ(x), apply the Gauss propagation
of error law to the least squares solution for x.

σ(x) = (AT WA)−1AT Wσ(b){(AT WA)−1AT W}T

But σ(b) is W−1 and so can be replaced by it. When the terms in the brackets { } are transposed the
expression becomes:

σ(x) = (AT WA)−1AT WW−1WA(AT WA)−1
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Since (AT WA)−1 is a symmetrical matrix, it is the same as its own transpose. By combining terms that
are multiplied by their own inverse, this expression reduces to:

σ(x) = (AT WA)−1

The variance-covariance matrix of the parameters is therefore the inverse of the normal equations matrix
and this is often written as N−1.

The variance-covariance matrix of the parameters is a symmetrical matrix of the form:

σ(x) =





σ 2
1 σ12 σ13 σ14 . . .

σ21 σ 2
2 σ23 σ24 . . .

σ31 σ32 σ 2
3 σ34 . . .

σ41 σ42 σ43 σ 2
4 . . .

. . . . . . . . . . . . . . .





Matrices, which are symmetrical, such as this one, are often written for convenience as upper triangular
matrices, omitting the lower terms as understood, as below:

σ(x) =





σ 2
1 σ12 σ13 σ14 . . .

σ2
2 σ23 σ24 . . .

σ3
2 σ34 . . .

σ 2
4 . . .

symmetrical





The terms on the leading diagonal are the variances of the parameters, and the off-diagonal terms are the
covariances between them. Covariances are difficult to visualize. A more helpful statistic is the coefficient
of correlation r12, which is defined as:

r12 = σ12

σ1σ2
and is always between +1 and −1

A value of +1 indicates that any error in the two parameters will be in the same sense by a proportional
amount. −1 indicates that it will be proportional, but in the opposite sense. 0 indicates that there is no
relationship between the errors in the two parameters. Matrices of coefficients of correlation are useful for
descriptive purposes but do not have any place in these computations.

Worked example

Example 7.9 What are the standard errors of the heights of the points in the levelling network of Worked
example 7.3? What are the coefficients of correlation between the computed heights?

The inverse of the normal equations matrix, (AT WA)−1, was:

(AT WA)−1 =



0.000918866 0.000492633 0.000388531
0.000492633 0.001171764 0.000506708
0.000388531 0.000506708 0.001118559





Therefore: σhX = 0.0303 m
σhY = 0.0342 m
σHz = 0.0334 m
rhXhY = 0.475
rhXhZ = 0.383
rhYhZ = 0.443
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Worked example

Example 7.10 What are the standard errors of the heights of the eastings and northings in the plan network
of Worked example 7.4? What are the coefficients of correlation between the eastings and northings of all
the points?

The inverse of the normal equations matrix, (AT WA)−1, was:

(AT WA)−1 =





0.00000765 0.00000036 0.00000158 0.00000090 0.00000261 −0.00000101
0.00000036 0.00001487 0.00000194 0.00000297 −0.00000149 0.00000832
0.00000158 0.00000194 0.00002266 0.00000271 0.00001195 0.00000079
0.00000090 0.00000297 0.00000271 0.00001533 0.00000073 0.00000285
0.00000261 −0.00000149 0.00001195 0.00000073 0.00001578 −0.00000273

−0.00000101 0.00000832 0.00000079 0.00000285 −0.00000273 0.00001408





Therefore:

σEB = 0.0028 m σNB = 0.0039 m
σED = 0.0048 m σND = 0.0039 m
σEE = 0.0040 m σNE = 0.0038 m

The coefficients of correlation are:

between NB ED ND EE NE

EB 0.034 0.120 0.083 0.238 −0.098
NB 0.106 0.197 −0.097 0.575
ED 0.146 0.632 0.044
ND 0.047 0.194
EE −0.183

Note the strong positive correlation between NE and NB, which is because of the generally north–south
distance measurement between points E and B and also the strong positive correlation between ED and EE ,
which is because of the generally east–west distance measurement between points D and E. See Figure 7.7.

7.11 ERROR ELLIPSES

An error ellipse is a convenient way of expressing the uncertainty of the position of a point in a graphical
format. Absolute error ellipses give a measure of the uncertainty of a point relative to the position of the
fixed points in a network and relative error ellipses show the uncertainty of one defined point with respect
to another defined point in the network.

7.11.1 Absolute error ellipses

An absolute error ellipse is a figure that describes the uncertainty of the computed position of a point.
If the eastings and northings of points are successive elements in an x vector, then their variances will
appear as successive elements on the leading diagonal of the variance-covariance matrix of the parameters.
The square roots of these variances give the standard errors of the individual northings and eastings of
the points. For descriptive purposes it might be imagined that a rectangular box could be drawn about the
computed point, with sides of length of 2σE in the east–west direction and 2σN in the north–south direction
and the centre of the box at the point. Such a box, it might be supposed, would describe the error in the
computed coordinates of the point. Attractive as such a simple description may be, it is inadequate on two
counts. Firstly, an ellipse better describes a bivariate distribution and secondly, there is no reason why that
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ellipse should have its axes pointing north–south and east–west. To achieve the correct orientation, the
covariance between the computed eastings and northings is required.

The problem is now to find the orientation of the major axis and the sizes of both semi-major and
semi-minor axes of the error ellipse describing the uncertainty of a point. In Figure 7.8 E and N are the
eastings and northings axes. m and n are also a set of orthogonal axes, but rotated by an arbitrary amount a,
with respect to E and N . The origin of both axes is at the computed coordinates of the point.

From a consideration of rotation matrices coordinates in the EN system are related to coordinates in the
mn system by:

[
m
n

]
=
[

cos a − sin a
sin a cos a

] [
E
N

]

From the Gauss propagation of error law, the variance-covariance matrix of the coordinates with respect
to the m and n axes is related to the variance-covariance matrix of the coordinates with respect to the E and
N axes by:

[
σ 2

m σmn

σmn σ 2
n

]
=
[

cos a − sin a
sin a cos a

] [
σ 2

E σEN

σEN σ 2
N

] [
cos a sin a

− sin a cos a

]

When multiplied out this gives:

σ 2
m = σ 2

E cos2 a − 2σEN sin a cos a + σ 2
N sin2 a

σ 2
n = σ 2

E sin2 a + 2σEN sin a cos a + σ 2
N cos2 a

To find the direction of the major axis, find the maximum value of σ 2
n as a changes. This will be when a’s

rate of change is zero.

d

da
σ 2

n = 0 = 2σ 2
E sin a cos a − 2σ 2

N sin a cos a + 2σEN (cos2 a − sin2 a)

= (σ 2
E − σ 2

N ) sin 2a + 2σEN cos 2a

N

E

m

n

a

Fig. 7.8 Coordinate system rotation
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Therefore:

tan 2a = 2σEN

σ 2
N − σ 2

E

This solves for a, the orientation of the major minor axes of the ellipse. 2a takes two values in the range
0◦–360◦, and so a has two values, 90◦ apart in the range 0◦–180◦. If σEN > 0, the value of a that lies
between 0◦ and 90◦ gives the direction of the major axis. If σEN < 0, the value of a that lies in the same
range gives the direction of the minor axis.

Having solved for a, the values of σm and σn may be found by substituting back into the equations above
or may be found directly using terms of the variance-covariance matrix of parameters using the equations
below:

σ 2
max = 1

2

[
σ 2

N + σ 2
E +

{(
σ 2

N − σ 2
E

)2 + 4σ 2
EN

} 1
2
]

σ 2
min = 1

2

[
σ 2

N + σ 2
E −

{(
σ 2

N − σ 2
E

)2 + 4σ 2
EN

} 1
2
]

Worked example

Example 7.11 What are the terms of the absolute error ellipses at points B, D and E in the plan network
of Worked example 7.4?

The inverse of the normal equations matrix, (AT WA)−1, was:

(AT WA−1)=





0.00000765 0.00000036 0.00000158 0.00000090 0.00000261 −0.00000101
0.00001487 0.00000194 0.00000297 −0.00000149 0.00000832

0.00002266 0.00000271 0.00001195 0.00000079
0.00001533 0.00000073 0.00000285

0.00001578 −0.00000273
symmetrical 0.00001408





which is:

(AT WA)−1 =





σ 2
EB σEBNB σEBED σEBND σEBEE σEBNE

σ 2
NB σNBED σNBND σNBEE σNBNE

σ 2
ED σEDND σEDEE σEDNE

σ 2
ND σNDEE σNDNE

σ 2
EE σEENE

symmetrical σ 2
NE




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Point B Point D Point E

tan 2a = 2σEBNB

σ 2
NB − σ 2

EB

= 0.1003 tan 2a = 2σEDND

σ 2
ND − σ 2

ED

= −0.7398 tan 2a = 2σEENE

σ 2
NE − σ 2

EE

= 3.2146

2a = 5◦ 44′ or 185◦ 44′ 2a = 143◦ 30′ or 323◦ 30′ 2a = 72◦ 43′ or 252◦ 43′
a = 2◦ 52′ or 92◦ 52′ a = 71◦ 45′ or 161◦ 45′ a = 36◦ 22′ or 126◦ 22′

σEBNB > 0, so: σEDND > 0, so: σEENE < 0, so:

major axis direction is 2◦ 52′ major axis direction is 71◦ 45′ major axis direction is 126◦ 22′
minor axis direction is 92◦ 52′ minor axis direction is 161◦ 45′ minor axis direction is 36◦ 22′

The magnitudes of the axes for point B are found from

σ 2
max = 1

2

[
σ 2

NB + σ 2
EB +

{(
σ 2

NB − σ 2
EB

)2 + 4σEBNB
2
} 1

2
]

σ 2
min = 1

2

[
σ 2

NB + σ 2
EB −

{(
σ 2

NB − σ 2
EB

)2 + 4σEBNB
2
} 1

2
]

with similar formulae for the other two points.

and so σmax = 0.0039 m
σmin = 0.0028 m

and so σmax = 0.0049 m
σmin = 0.0038 m

and so σmax = 0.0042 m
σmin = 0.0035 m

The absolute error ellipses may be plotted on the network diagram, Figure 7.9, but with an exaggerated
scale.

E

D

C

B

A

Fig. 7.9 A control network with absolute error ellipses
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In this case the error ellipses are all small, similar in size and nearly circular. This suggests that the
overall geometry of the network is good. How to remedy inconsistencies in a network will be discussed in
Section 7.16 on network design.

Error ellipses are drawn on network diagrams at an appropriate scale. If the semi-major axes of the
ellipses are in the order of about 0.5 to 2 centimetres then a scale of 1:1 gives a clear and practical
presentation of the uncertainty of the position.

Earlier it was assumed that an ellipse was the correct figure for the description of the error. The equation
of the variance in any direction, n

σ 2
m = σ 2

E sin2 a − 2σEN sin a cos a + σ 2
N cos2 a

does not describe an ellipse for the locus of σ 2
m as a varies from 0◦–360◦. The actual locus is a pedal curve

which may be shown graphically as the junction of two lines, one in the direction a, and the other at right
angles to it and tangential to the ellipse.

It can be seen from Figure 7.10 that a pedal curve has a greater area that its associated ellipse, especially
if the ellipse is highly eccentric. This shows that an ellipse can be an overoptimistic representation of the
uncertainty of a point.

The error ellipse, therefore, gives a simplified representation of the error figure. In a random population,
one standard error encompasses 68% of the total population. The uncertainty of a position is derived from
a bivariate distribution. The chance that the point actually lies within the error ellipse is 39%. If an error
ellipse is drawn three times full size then the chance that the point lies inside it, rises to 99%.

If the network has an origin, that is there was a single control point that was held as fixed, then the
orientation of the major axes can give an indication of the weaknesses of the network. If all the major axes
are pointing roughly on line from the control point to which they refer towards the origin then it suggests
that the network is weak in scale. If the major axes are at right angles to the line joining the point to which
they refer and the origin, then the network is weak in azimuth.

Absolute error ellipses generally get larger, the further the point is from the origin. If the origin is changed
then so are the absolute error ellipses. The absolute error ellipses are therefore ‘datum dependent’. In a
network which is tied to existing control there is little choice as to which points are held fixed, and overall,
the best solutions are obtained when the network is surrounded by fixed points. This, after all, is no more
than ‘working from the whole to the part’.

a

Fig. 7.10 Pedal curve
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If the standard error of an observation of unit weight does not equal 1 in a large network, and there are
no obvious gross errors in the observations, then it indicates that the weights are in error. The situation
could be rectified by multiplying all the a priori standard errors of the observations by the standard error
of an observation of unit weight and then re-computing the adjustment. This would make the standard
error of observation of unit weight now equal to 1 but it would leave the computed coordinates unchanged.
It would, however, scale all the terms in the variance-covariance matrix of the parameters by the original
standard error of an observation of unit weight squared. This is all more easily done by simply multiplying
all the terms in the variance-covariance matrix of the parameters rather than by a full readjustment with
revised weights of the observations. Alternatively the axes of the error ellipses could be scaled by the
standard error of observation of unit weight if these are ultimately all that are required.

7.11.2 Relative error ellipses

Arelative error ellipse describes the precision of the coordinates of one point with respect to the coordinates
of another point. As such they indicate the internal quality of a network, which is often more important
than knowledge of absolute position, especially if the datum has been arbitrarily defined. The relative error
ellipse between two points may be constructed from a consideration of the relative position of one station
with respect to another and use of the Gauss propagation of error law.

Below is part of an x vector and its associated variance-covariance matrix, N−1, where

N−1 = (AT WA)−1

There is no requirement for the two points concerned to be consecutive in the x vector. A relative error
ellipse may be found for any pair of points, in this case, points F and J .

x =





. . .
δEF

δNF

. . .
δEJ

δNJ

. . .





N−1 =





. . . . . . . . . . . . . . . . . . . . .
σ 2

EF σEFNF . . . σEFEJ σEFNJ . . .
σ 2

NF . . . σNFEJ σNFNJ . . .
. . . . . . . . . . . .

σ 2
EJ σEJNJ . . .

symmetrical σ 2
NJ . . .

. . .





The relationship between the coordinates of F and J , in terms of their relative position, may be expressed as:

[
�E
�N

]
=
[

EF − EJ

NF − NJ

]
=
[

1 0 −1 0
0 1 0 −1

]




EF

NF

EJ

NJ





Using the Gauss propagation of error law to find the variance-covariance matrix of the relative coordinates
gives:

[
σ 2

�E σ�E�N

σ�E�N σ 2
�N

]
=
[

1 0 −1 0
0 1 0 −1

]




σ 2
EF σEFNF σEFEJ σEFNJ

σEFNF σ 2
NF σNFEJ σNFNJ

σEFEJ σNFEJ σ 2
EJ σEJNJ

σEFNJ σNFNJ σEJNJ σ 2
NJ









1 0
0 1

−1 0
0 −1





When selected terms on the right-hand side are multiplied out:

σ 2
�E = σ 2

EF + σ 2
EJ − 2σEFEJ

σ 2
�N = σ 2

NF + σ 2
NJ − 2σNFNJ

σ�E�N = σEFNF + σEJNJ − σEFNJ − σNFEJ
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These terms may now be used in exactly the same way as their counterparts were used when constructing
absolute error ellipses. Absolute error ellipses are drawn at the point to which they refer but relative error
ellipses are normally drawn at the mid-point of the line between the two points concerned.

Worked example

Example 7.12 What are the terms of the relative error ellipses between points B, D and E in the plan
network of Worked example 7.4?

The inverse of the normal equations matrix, (AT WA−1), was stated in Worked example 7.10 as:

(AT WA)−1 = 10−8





765 36 158 90 261 −101
1487 194 297 −149 832

2266 271 1195 79
1533 73 285

1578 −273
symmetrical 1408





=





σ 2
EB σEBNB σEBED σEBND σEBEE σEBNE

σ 2
NB σNBED σNBND σNBEE σNBNE

σ 2
ED σEDND σEDEE σEDNE

σ 2
ND σNDEE σNDNE

σ 2
EE σEENE

symmetrical σ 2
NE





The first step is to find the terms needed to construct the relative error ellipse.

Between point B and D Between point B and E Between point D and E

σ 2
�E = σ 2

EB + σ 2
ED − 2σEBED σ 2

�E = σ 2
EB + σ 2

EE − 2σEBEE σ 2
�E = σ 2

ED + σ 2
EE − 2σEDEE

= 10−8(765 + 2266 − 2 × 158) = 10−8(765 + 1578 − 2 × 261) = 10−8(2266 + 1578 − 2 × 1195)
= 0.00002715 = 0.00001821 = 0.00001454

σ 2
�N = σ 2

NB + σ 2
ND − 2σNBND σ 2

�N = σ 2
NB + σ 2

NE − 2σNBNE σ 2
�N = σ 2

ND + σ 2
NE − 2σNDNE

= 10−8(1487 + 1533 − 2 × 297) = 10−8(1487 + 1408 − 2 × 832) = 10−8(1533 + 1408 − 2 × 285)
= 0.00002426 = 0.00001231 = 0.00002371

σ�E�N = σEBNB + σEDND σ�E�N = σEBNB + σEENE σ�E�N = σEDND + σEENE

−σEBND − σNBED −σEBNE − σNBEE −σEDNE − σNDEE

= 10−8(36 + 271 − 90 − 194) = 10−8(36 − 273 + 101 + 149) = 10−8(271 − 273 − 79 − 73)
= 0.00000023 = 0.00000013 = −0.00000154

tan 2a = 2σ�E�N

σ 2
�N − σ 2

�E

= −0.1660 tan 2a = 2σ�E�N

σ 2
�N − σ 2

�E

= −0.0440 tan 2a = 2σ�E�N

σ 2
�N − σ 2

�E

= −0.3351

2a = 170◦ 35′ or 350◦ 35′ 2a = 177◦ 29′ or 357◦ 29′ 2a = 161◦ 28′ or 341◦ 28′
a = 85◦ 17′ or 175◦ 17′ a = 88◦ 44′ or 178◦ 44′ a = 80◦ 44′ or 170◦ 44′

σ�E�N > 0, so: σ�E�N > 0, so: σ�E�N < 0, so:
major axis direction is 85◦ 17′ major axis direction is 88◦ 44′ major axis direction is 170◦ 44′
minor axis direction is 175◦ 17′ minor axis direction is 178◦ 44′ minor axis direction is 80◦ 44′
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The magnitudes of the axes for each relative ellipse between points are found from:

σ 2
max = 1

2

[
σ 2

�N + σ 2
�E +

{(
σ 2

�N − σ 2
�E

)2 + 4σ 2
�E�N

} 1
2
]

σ 2
min = 1

2

[
σ 2

�N + σ 2
�E −

{(
σ 2

�N − σ 2
�E

)2 + 4σ 2
�E�N

} 1
2
]

and so σmax = 0.0052 m
σmin = 0.0049 m

and so σmax = 0.0043 m
σmin = 0.0035 m

and so σmax = 0.0049 m
σmin = 0.0038 m

The relative error ellipses may be plotted on the network diagram, Figure 7.11, but with the same
exaggerated scale as that used for the absolute error ellipses.

7.11.3 Eigenvalues, eigenvectors and error ellipses

An alternative approach to finding the parameters of error ellipses is to use eigenvalues and eigenvectors.
The eigenvalues of the matrix defined by the relevant parts of the variance-covariance of parameters
give the squares of the sizes of the semi-major and semi-minor axes of the error ellipse. The eigenvectors
give their directions.

The eigenvalue problem is to find values of λ and z that satisfy the equation:

N−1z = λz

or (N−1 − λI)z = 0

where N−1 is defined by the relevant parts of the variance-covariance of parameters.
[

σ 2
E σEN

σEN σ 2
N

]

E

D

C

B

A

Fig. 7.11 A control network with absolute and relative error ellipses



Rigorous methods of control 263

The characteristic polynomial is derived from the determinant of the sub-matrix above:
∣∣∣∣

σ 2
E − λ σEN

σEN σ 2
N − λ

∣∣∣∣ = 0

so that the two solutions for λ are found from the quadratic equation:

(σ 2
E − λ)(σ 2

N − λ) − σ 2
EN = 0

The solutions for this quadratic equation are:

λ = 1

2

[
σ 2

�N + σ 2
�E ±

{
(σ 2

�N − σ 2
�E)2 + 4σ 2

�E�N

} 1
2
]

The magnitudes of the semi-major and semi-minor axes are the square roots of the two solutions for λ. The
directions of the axes are found from the eigenvector associated with each eigenvalue. The eigenvector
associated with λ1 is found from:

(N−1 − λI)z = 0

=
[
σ 2

E − λ1 σEN

σEN σ 2
N − λ1

] [
z1
z2

]

so that the direction of the axis associated with λ1 is given by:

tan−1 {− σEN (σ 2
E − λ1)−1 or

}
tan−1{− (σ 2

N − λ1)σ−1
EN

}

Both formulae give the same answer. λ2 is found in the same way and will be exactly 90◦ different from λ1.

Worked example

Example 7.13 What are the orientations of the axes of the absolute error ellipse at point B in the plan
network of Worked example 7.4?

The full variance-covariance of parameters is stated in Worked example 7.11 above. The part that relates
to point B is:

[
σ 2

EB σEBNB

σEBNB σ 2
NB

]
= 10−8

[
765 36

36 1487

]

The characteristic polynomial is derived from the determinant where:
∣∣∣∣

0.00000765 − λ 0.00000036
0.00000036 0.00001487 − λ

∣∣∣∣ = 0

When evaluated this leads to:

0 = (0.00000765 − λ)(0.00001487 − λ) − 0.000000362

= 1.1373 × 10−10 − 2.2516λ10−5 + λ2 − 1.296 × 10−13

= λ2 − 2.525λ10−5 + 1.1358 × 10−10

The solutions are:

λ1 = 0.000014883 m2

λ2 = 0.000007633 m2

and therefore:

σmax = √
λ1 = 0.0039 m and σmin = √

λ2 = 0.0028 m

The eigenvector associated with λ1 is found from:
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(N−1 − λI)z = 0

=
[

0.00000765 − λ1 0.00000036
0.00000036 0.00001487 − λ1

] [
z1
z2

]

=
[−0.00000723 0.00000036

0.00000036 − 0.00000002

] [
z1
z2

]

The direction of the axis associated with λ1 is given by:

tan−1 {−(0.00000036/−0.00000723)} = 2◦ 52′

The eigenvector associated with λ2 is found from:

(N−1 − λI)z = 0

=
[

0.00000765 − λ2 0.00000036
0.00000036 0.00001487 − λ2

] [
z1
z2

]

=
[

0.00000002 0.00000036
0.00000036 0.00000723

] [
z1
z2

]

and the direction of the axis associated with λ2 is given by:

tan−1 {−(0.00000036/0.00000002)} = 92◦ 52′

7.12 STANDARD ERRORS OF DERIVED QUANTITIES

In engineering surveying it is often necessary to confirm that the distance, and sometimes direction, between
two points is within a certain tolerance. It may be that the distance or direction under investigation was
observed. If it was, then the same quantity, computed from coordinates, will always have an equal or
smaller standard error provided that the computed standard error has not been scaled by the standard
error of an observation of unit weight. A measurement relating any two or three points may be computed
from the estimated coordinates. This applies to measurements that have been observed and also to any
measurements that could have been observed between any of the points. There are two approaches to the
problem of computing standard errors of derived quantities. One is to compute the quantities directly from
the terms used to describe a relative error ellipse and that is what this section is about. The other is to use
the variance-covariance matrix of the computed observations. That will be dealt with in the next section.

In the section above on absolute error ellipses it was shown that, by invoking the Gauss propagation
of error law, the variance in any direction could be related to variances and a covariance derived from the
variance-covariance matrix of the parameters as:

σ 2 = σ 2
�E sin2 a + 2σ�E�N sin a cos a + σ 2

�N cos2 a

The terms are those of the relative error ellipse. If the distance between the two points is of interest, then a
takes the value of the bearing of the line. If direction is of interest then a is at right angles to the line. In the
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case of direction the quantity computed from the above formula will have units of distance and must be
scaled by the length of the line.

Worked example

Example 7.14 Use the data from Worked example 7.11 to find the standard errors of derived distance and
direction between B and D.

Use the computed coordinates of B and D to find the direction and distance BD.

Direction BD = 25◦ 22′ 59′′

Distance BD = 527.394 m

For the computation of the standard error of the derived distance a takes the value of direction BD in the
equation:

σ 2 = σ 2
�E sin2 a + 2σ�E�N sin a cos a + σ 2

�N cos2 a

= 0.00002715 sin2 a + 2 × 0.00000023 sin a cos a + 0.00002426 cos2 a

= 0.00002497 m2

The standard error of the derived distance is the square root:

σdistance BD = 0.0050 m

For the derived direction, a takes the value a + 90◦:

σ 2 = σ 2
�E sin2(a + 90◦) + 2σ�E�N sin(a + 90◦) cos(a + 90◦) + σ 2

�N cos2(a + 90◦)

= 0.00002643 m2

σ = 0.0052 m

The standard error of the derived direction is:

σdirection BD = σ /Distance BD

= 2.0′′

7.13 BLUNDER DETECTION

If an observation contains a gross error and it is included with a set of otherwise good observations then
the least squares process will accommodate it by distorting the network to make it according to the normal
least squares criteria. A quick scan down a list of residuals for the largest may identify the erroneous
observation but if there are several gross errors in the set of observations then there will be many large
residuals. However, by computing the statistic of residual divided by its own standard error it is possible
to identify the most significant gross error. The gross error may be dealt with either by correcting the
error if it can be traced or by eliminating the rogue observation from the set. Now the next worst gross
error may be traced and so on until all gross errors have been removed from the set of observations. The
standard error of a residual may be found as the square root of the element of the leading diagonal of the
variance-covariance matrix of the residuals.
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7.13.1 The variance-covariance matrix of the estimated residuals

The original least squares problem:

Ax = b + v

was solved for the parameters as:

x = (AT WA)−1AT Wb

and so, on putting the estimated value of x back into the original equation, the estimated residuals become:

v =
{

A(AT WA)−1AT W − I
}

b

Using the Gauss propagation of error law:

σ(v) =
{

A(AT WA)−1AT W − I
}

σ(b)

{
A(AT WA)−1AT W − I

}T

but σ(b) = W−1

so σ(v) =
{

A(AT WA)−1AT W − I
}

W−1
{

WA(AT WA)−1AT − I
}

= A(AT WA)−1AT WW−1WA(AT WA)−1AT − W−1WA(AT WA)−1AT

− A(AT WA−1)AT WW−1 + W−1

which, when terms, preceded by their own inverse, are accounted for, simplifies to:

σ(v) = W−1 − A(AT WA)−1AT

The matrix A(AT WA)−1AT will be a large one if the number of observations is large. It is unlikely, however,
that the covariances between derived observations will be required. If so, then only the leading diagonal
of the matrix will be of interest. By considering only non-zero products of the terms of A(AT WA)−1AT it
can be shown that the variance of an observation may be computed from:

[
a1 a2 a3 a4 a5 a6

]





σ 2
1 σ12 σ13 σ14 σ15 σ16

σ 2
2 σ23 σ24 σ25 σ26

σ 2
3 σ34 σ35 σ36

σ 2
4 σ45 σ46

σ 2
5 σ56

symmetrical σ 2
6









a1
a2
a3
a4
a5
a6





where a1, a2, a3, a4, a5 and a6 are the non-zero terms of the row of the A matrix relating to the observation
concerned and the variance-covariance matrix is a sub-set of the already computed (AT WA)−1 where all
the rows and columns containing variances and covariances of parameters not represented in a1 to a6 have
been removed.

The above example might be for a derived angle as there are six terms involved. If the variance for a
derived distance was required then the matrix product would look like this.

[
a1 a2 a3 a4

]





σ 2
1 σ12 σ13 σ14

σ 2
2 σ23 σ24

σ 2
3 σ34

symmetrical σ 2
4









a1
a2
a3
a4





The variance of a derived observation that was not observed may also be found in exactly the same way.
The terms a1 to a4 are computed as if an observation had actually been made and the variance is computed
exactly as above.
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The test to be applied is to compare the estimated residual with its own standard error. The idea is that
if the residual is a significant multiple of its own standard error, then, in a large network, there will be
cause for concern that the error in the observation is more than random and so the observation will need
to be investigated. Although there are strict statistical tests they do not take account of the fact that the
residuals are usually correlated. Therefore the simple rule of thumb often used is that if the residual divided
by its own standard error is within the range of plus or minus 4, then the observation will be accepted as
containing no significant non-random error, i.e. that:

4 >
v

σv
> −4

Worked example

Example 7.15 Use the data from Worked example 7.4 and subsequent worked examples to confirm that
there are no observations with significant residuals.

Compute σ(v) = W−1−A(AT WA)−1AT as follows from the matrices generated in Worked example 7.4.

A(AT WA)−1 = 10−5





−108 545 557 149 528 403
119 956 −367 148 −688 441
223 −617 1162 282 765 −362

−131 −501 450 646 780 −622
388 −164 39 −58 200 −611

0.719 −0.413 0.092 −0.004 0.294 −0.347
0.086 0.553 0.813 0.268 0.781 0.922

−0.733 −0.535 −0.214 −0.184 −0.196 −0.185
0.038 −0.556 0.454 −0.006 −0.556 0.601
0.033 0.217 −0.491 1.358 −0.325 0.244

−0.072 0.253 1.088 0.394 −0.324 0.169





A(AT WA)−1AT

=10−3





5067 479 124 1189 −1727 −2.672 6.456 −0.819 −3.461 −0.430 −0.119
479 9137 −6433 −6207 −67 −1.746 −0.899 −4.336 −2.167 2.610 2.702
124 −6433 10240 5910 1690 3.986 2.000 −0.024 0.602 −1.165 4.944

1189 −6207 5910 10948 1600 0.257 0.079 2.924 −4.174 4.614 −1.251
−1727 −67 1690 1600 4462 4.198 −3.492 −3.102 −3.588 −0.675 −0.708
−2.672 −1.746 3.986 0.257 4.198 0.0081 −0.0008 −0.0054 0.0020 −0.0003 −0.0015

6.456 −0.899 2.000 0.079 −3.492 −0.0008 0.0121 −0.0027 0.0012 −0.0002 −0.0007
−0.819 −4.336 −0.024 2.924 −3.102 −0.0054 −0.0027 0.0087 0.0015 −0.0010 −0.0002
−3.461 −2.167 0.602 −4.174 −3.588 0.0020 0.0012 0.0015 0.0129 0.0014 0.0000
−0.430 2.610 −1.165 4.614 −0.675 −0.0003 −0.0002 −0.0010 0.0014 0.0144 0.0001
−0.119 2.702 4.944 −1.251 −0.708 −0.0015 −0.0007 −0.0002 0.0000 0.0001 0.0143





and the terms on the leading diagonal of W−1 − A(AT WA)−1AT are:




19.933
15.863

14.760
14.052

20.538
0.000007903

0.000003917
0.000007302

0.000003119
0.000001564

0.000001701




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The square roots of these terms are the standard errors of the residuals so, with the residuals, the test
statistic can be computed. There is no evidence of a gross error in any of the observations.

Observation Residual
v

Standard error of
residual σv

Test statistic
v

σv
Is 4 >

v

σv
> −4?

Angles ABE −4.3′′ 4.5′′ −1.0 yes
EBC −0.0′′ 4.0′′ 0.0 yes
BCD −2.3′′ 3.8′′ −0.6 yes
DEB 5.4′′ 3.7′′ 1.4 yes
BEA 0.1′′ 4.5′′ 0.0 yes

Distance AB −0.0029 m 0.0028 m −1.0 yes
AE 0.0006 m 0.0020 m 0.3 yes
BC −0.0035 m 0.0027 m −1.3 yes
BE 0.0015 m 0.0018 m 0.8 yes
CD −0.0018 m 0.0013 m −1.4 yes
DE 0.0005 m 0.0013 m 0.4 yes

7.13.2 The effect of one gross error

One gross error will distort the whole of a network. Therefore the presence of many test statistics suggesting
the presence of gross error does not necessarily mean that there is more than one gross error. In the event
that more than one observation’s test statistic fails investigate only the observation with the worst test
statistic.

Worked example

Example 7.16 In Worked example 7.15 introduce a ‘typo’ gross error into angle ABE by using 35◦ 02′ 29′′
instead of the correct value of 53◦ 02′ 29′′. The above table now appears as:

Observation Residual
v

Standard error of
residual σv

Test statistic
v

σv
Is 4 >

v

σv
> −4?

Angles ABE 51662′′ 4.5′′ 11571 no
EBC −1242′′ 4.0′′ −312 no
BCD −322′′ 3.8′′ −84 no
DEB −3075′′ 3.7′′ −821 no
BEA 4477′′ 4.5′′ 988 no

Distance AB 6.92 m 0.0028 m 2463 no
AE −16.73 m 0.0020 m −8455 no
BC 2.12 m 0.0027 m 784 no
BE 8.97 m 0.0018 m 5080 no
CD 1.11 m 0.0013 m 889 no
DE 0.31 m 0.0013 m 236 no

It appears that the test statistic for all observations has failed. However, the first observation, angle
ABE, has the greatest test statistic but that it is the only observation with a gross error.
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7.14 RELIABILITY OF THE OBSERVATIONS

Where there are many more observations than the strict minimum necessary needed to solve for the
unknown coordinates then all the observations give a degree of independent check to each other. Where
only the minimum number of observations has been made then there is no independent check upon those
observations and they will all be unreliable in the sense that if one or more of them are grossly in error
there is no way that the error can be detected. Hence any coordinates computed using a grossly erroneous
observation will also be grossly in error. Figure 7.12 illustrates the problem where points A and B are fixed
and points C and D are to be found.

In Figure 7.12 the angles in the triangle ABC and the distances AC and AB have been measured with a
low quality total station but the angle DAB and the distance AD have been measured with a high precision
instrument. Therefore it would be expected that the uncertainty of the coordinates of C would be greater
than those of D. However, the coordinates of C would be very reliable because point C is connected to the
fixed points, A and B, by five observations. There are five observations to calculate the two coordinates of
point C, so three of the observations are ‘redundant’. If one of those observations had a gross error, that error
would be easy to detect and deal with. By contrast the coordinates of D would be very unreliable because
that point is connected to the fixed points by only two observations. There are only two observations to
calculate the two coordinates of point D and therefore a redundancy of zero. If one of those observations
had a gross error the error would be undetectable.

7.14.1 The variance-covariance matrix of the estimated observations

The estimated observations are the observations computed from the estimated coordinates. These contrast
with the observations actually observed by the surveyor with survey instruments. By a derivation similar
to that of the section on the variance-covariance matrix of the residuals above it can be shown that the
variance-covariance matrix of the estimated observations, σ(l), is:

σ(l) = A(AT WA)−1AT

A

C

B

D

Fig. 7.12 Precision and reliability
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It will be noted that this matrix has already been computed as part of the process needed to compute the
variance-covariance matrix of the residuals and so very little extra work will be required. In this matrix
the leading diagonal contains the squares of the standard errors of the estimated observations and the
off-diagonal terms are the covariances between them. It is only the leading diagonal that is likely to be
needed.

By comparing the standard error of an estimated observation with the standard error of the equiv-
alent observed observation, it is possible to see what the estimation process has done to improve the
quality of the observed observation to that of the estimated observation. If there is no improvement then
that implies that, whatever the value of the observation, it has been accepted unmodified by the estima-
tion process and therefore the observation is unreliable. Any coordinates that are computed from that
observation would also be unreliable. It is likely therefore that if the unreliable observation is removed
from the estimation process then the normal equations matrix will become singular and the parameter
vector will need to be modified to remove the point that depended only upon the unreliable observa-
tion. Although totally unreliable observations may be identified, all observations have different levels
of reliability in the network solution. If the ratio of the variances of the computed and observed values
of the observation is calculated then this ratio may be tested in an ‘F test’ to determine its statistical
significance.

This may be tedious for all observations, and a general rule of thumb is that the relationship:

σ(l)

σ(b)
< 0.8 should hold for reliable observations

σ(l) is the standard error of an estimated observation and σ(b) is the standard error of an observed observation.
If this test is not satisfied then the observation is considered unreliable and further observations should be
undertaken to improve the quality of the network in the suspect area.

Worked example

Example 7.17 Use the data from Worked example 7.16 to confirm that there are no unreliable observations.
The terms on the leading diagonal of σ(l) = A(AT WA)−1AT in Worked example 7.16 were:





5.067
9.137

10.240
10.948

4.462
0.0000081

0.0000121
0.0000087

0.0000129
0.0000144

0.0000143





The square roots of these terms are the standard errors of the estimated observations so, with the standard
errors of the observed observations, the test statistic can be computed. There is significant evidence of
unreliable observations.
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Observation Standard error of
estimated

observation σ(l)

Standard error of
observed

observation σ(b)

Test statistic
σ(l)

σ(b)
Is

σ(l)

σ(b)
< 0.8?

Angles ABE 2.3′′ 5.0′′ 0.45 yes
EBC 3.0′′ 5.0′′ 0.60 yes
BCD 3.2′′ 5.0′′ 0.64 yes
DEB 3.3′′ 5.0′′ 0.66 yes
BEA 2.1′′ 5.0′′ 0.42 yes

Distance AB 0.0028 m 0.004 m 0.71 yes
AE 0.0035 m 0.004 m 0.87 no
BC 0.0029 m 0.004 m 0.74 yes
BE 0.0036 m 0.004 m 0.90 no
CD 0.0038 m 0.004 m 0.95 no
DE 0.0038 m 0.004 m 0.95 no

7.14.2 Visualization of reliability

Worked example 7.17 has indicated that there are four unreliable distance observations in the network.
They have been marked as dotted lines in Figure 7.13. There is a weakness in the design of the network in
that a small but significant error in any of these observations is at risk of going unnoticed and so causing
a small but significant error in one or more of the coordinates. Imagine the network as being made up of
slightly flexible struts to represent the measured distances, slightly flexible plates at the points to represent
the measured angles and nails at the fixed points attaching them to an immovable board. Now remove
one strut or plate, get hold of this structure by any point and try to move it in the plane of the board. This
action would cause some minor distortions to the structure depending upon how critical the strut or plate
removed was. A critical strut or plate represents unreliable observation.

In this example the distances are all of a similar length of about 400 m and have standard errors of their
observations of 0.004 m. An uncertainty of 0.004 m at 400 m is the equivalent of 2′′. The observed angles

E

D

C

B

A

Fig. 7.13 Unreliable observations
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have standard errors of 5′′. Therefore the distances are lending much more strength to the network than
the angles. This means that in Figure 7.13 the angles do little to restrain the distances but the distances
do much more to brace the angles. Therefore the distances are less checked, or more unreliable, than the
angles.

7.15 SUMMARY OF MATRIX RELATIONSHIPS AND APPLICATIONS OF

OUTPUT STATISTICS

In the foregoing the variance-covariance matrices of all the vectors associated with the least squares process
were derived. They are summarized below.

Vector Variance-covariance matrix of vector
b ‘observed/computed’ observations σ(b) = W−1

x parameters σ(x) = (AT WA)−1

l estimated observations σ(l) = A(AT WA)−1AT

v residuals σ(v) = W−1 − A(AT WA)−1AT

Likewise, the applications of the output statistics are also summarized.

Statistics Applications
x Coordinates or heights of free stations
l Best estimates of distances or directions between stations
v First indicator of existence of blunder(s)
σ0 Detection of the existence of blunder(s). Confirmation of, or scaling factor for,

correct weighting. Scaling error ellipses
σ(x) Error ellipses. Standard errors of derived distances and directions
σ(l) Standard errors of derived quantities
σ(l) & σ(b) Reliability of observations
σ(v) & v Blunder detection

7.16 NETWORK DESIGN

The variance-covariance matrix of the parameters, from which the error ellipses were constructed, was
found to be

σ(x) = (AT WA)−1

The terms in the A and W matrix can all be computed without actual observations being carried out,
provided the approximate coordinates of the stations, the proposed observations and the quality of those
proposed observations are all known. This enables the surveyor to consider networks for the solution of
particular survey problems and test them using all the tests described in preceding sections that do not
involve observed observations. This approach allows the surveyor to optimize a network and allows for
examining ‘what if’ scenarios, such as removing observations, moving or removing proposed control
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stations and the effects of changing the quality of instrumentation. A surveyor can then be assured that
an economic, minimal network that will meet some specified criteria is to be observed. Such criteria
might be:

• The semi-major axis of all absolute error ellipses must be less than a certain value.
• The standard errors of the computed values of all, or specific, interstation distances must be less than a

certain value.
• All observations must be reliable at a certain level.

There are two drawbacks to network analysis. It is reasonably easy to set up a proposed set of observations
that meet the survey specification. It is then quite easy to remove some observations and test the new
network against the criteria. As the optimum network is approached then much time may be spent finding
the remaining few expendable observations, whereas this time might be better spent in the field inadvertently
collecting extra but unnecessary observations.

If the network is reduced to the minimum, and for some reason all the planned observations are not
made, or are found in the adjustment to be insufficiently precise, or to contain gross errors, then the network
will not meet the specification. Although it appears to go against the ideas of network analysis, it is always
a good idea to collect extra observations spread over the whole network. Again, a rule of thumb would
be to collect 10% extra for large networks rising to 30% extra for small ones. The choice of which extra
observations to take would probably be made on the basis of, ‘if you can see it – observe it’.

7.17 PRACTICAL CONSIDERATIONS

It is likely that networks of any size will be estimated using software. To do otherwise would be tedious
in the extreme. A rigorous solution can only be achieved if all the gross errors in the observations have
been removed from the data set first. This can be a tedious process if there are many of them and the
geometry of part of the network is weak. The following contains some hints on how to deal with these
situations.

First check the data for correct formatting and that there are no ‘typos’. When data is manually entered
through a keyboard, errors will often be made. It is much easier to check input data independently before
processing than to use software outputs to try to identify the source of blunders. Once obvious errors
have been removed and the estimation attempted there will one of two outcomes. Either it converges to a
solution, or it does not. If it does not converge to a solution then either there are too many gross errors or
there is very weak geometry somewhere in the network, or both. Weak geometry occurs when the locus
lines from observations associated with a particular point lie substantially parallel to each other in the
region of the point. See Section 7.3.1 for a discussion of locus lines.

It is likely that the software will allow for setting the convergence criteria, either in terms of the largest
correction to a provisional coordinate in successive iterations or the maximum number of iterations to be
performed. Set the convergence criteria to be rather coarse initially, say to 0.01 m or 0.001 m and the number
of iterations to the maximum allowed, or at least the maximum you have patience for. If convergence has
not been achieved then it is not possible to identify suspect observations. One possible check for gross
errors in the coordinates of fixed points or the provisional coordinates of free points is to use the input
coordinates to plot a network diagram to see if there are any obvious errors.

As a very general rule of thumb, points should be within about one third of the shortest distance
in the network of their true value to ensure convergence. Imprecise coordinates of free points coupled
with weak geometry may cause the estimation to fail. Obviously it would be possible to compute bet-
ter provisional coordinates by the methods described in Chapter 5 and of course better coordinates
will improve the likelihood of convergence. However, whether it is worth the effort may be ques-
tionable. If there are no obvious errors in the plot and convergence has not been achieved, compare
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the observation values with their dimensions on the plot to identify large gross errors in any of the
observations.

If the estimation still fails then it is likely that there are problems associated with the geometry part of
the network. These are harder to identify but the following may help. Check to see if there are any points
are connected to the rest of the network by only two observations. If there are then check the locus lines
at the point associated with the two observations to see the quality of their intersection. If that does not
resolve the problem investigate points with three observations and so on.

If this still does not resolve the problem and achieve convergence then more drastic action is called
for. There may be problems associated with the coordinates of the fixed points, the coordinates of the free
points, or the observations and all problems cannot be resolved simultaneously. Isolate the problems of
the coordinates while you resolve the problems with observations by temporarily making all but one point
free and adding a realistic fixed bearing to the set of observations. If convergence can now be achieved
then there was a problem with one of the fixed coordinates which needs to be resolved.

If convergence was not achieved there is at least one, and probably more than one, gross error in
the observations. Convergence needs to be forced. This can be done by removing the fixed bearing and
temporarily treating all the coordinates except those of one fixed point as observations of position where
the observations have a suitable standard error. Start with a large and therefore weak value for the standard
error of a coordinate. If you are confident that you know the coordinates of a point to 10 m, say, use that.
If convergence is achieved relax the standard error to 100 m or 1000 m and so on until you have the largest
value where convergence is still achieved. If convergence is not achieved reduce the standard error to 1 m,
0.1 m, 0.01 m or whatever is needed to make the estimation converge.

Once convergence has been forced it is possible to investigate the observations in spite of the now
highly distorted nature of the network. Examine the estimation output and identify the observation with
the statistic of residual divided by its own standard error remembering that most of the coordinates are now
also ‘observations’. You now have the choice of investigating the observation by reference to the source
data, such as a field sheet, and correcting a transcription error. If that was not the problem then you can
remove the suspect observation from the data set. If you do, that may remove a suspect observation but it
will not solve the problem with it. A better approach is to give that single observation, temporarily, a very
large standard error. If the observation was an angle then 100 000′′ would be appropriate, if a distance then
a standard error of the average distance between stations to one significant figure would suffice. The effect
of this is make the observation of no practical significance to the estimation but the estimation process can
still compute a residual for the observation.

Continue this process, strictly one observation at a time, until the value of the standard error of an
observation of unit weight becomes less than 100. At this stage return to the coordinates and increase
their standard errors as much as you can while still achieving convergence. Return to the process of iden-
tifying and downweighting suspect observations until the standard error of observation of unit weight
is small and relatively stable usually somewhere between 1 and 10. Now all the observations with
gross errors have been identified. There are probably still observations with small gross errors but they
will not be big enough to cause problems of convergence. Examine the residuals of all the observa-
tions that have been downweighted. Some observations will have very large residuals and these are the
ones with gross errors. Check these observations against the source data. Some observations will have
residuals that are not significantly bigger than good observations. These observations were probably
good anyway and the downweighting with a high standard error can be removed so that the observa-
tion will subsequently play its proper part in the estimation process. The remaining observations remain
suspect.

The problems with the observations have now been substantially, but not completely, resolved. The next
step is to investigate the coordinates of the fixed points for error. Make the coordinates of the free points
free, i.e. change the ‘observations’ of coordinates to provisional coordinates of free point. Now examine
the residuals of the ‘observations’ of the coordinates of the fixed points. If there is a gross error in one
of the coordinates then that coordinate will have a larger residual than any other coordinates of the same
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direction, north or east, and that residual will have a sign which is opposite from the sign of other residuals
in the same direction.

As the problems of gross errors in the observations and problems with the coordinates of the fixed
points have been resolved, now is the time to resolve any remaining problems associated with the obser-
vations. Make the coordinates of the fixed points fixed and the coordinates of the free points free. Ensure
that the fixed bearing has been removed from the data set. Perform the estimation process in the nor-
mal way and downweight suspect observations as above. Correct any errors in the observation data
set that you can. Stop when the standard error of an observation does not significantly improve with
each downweighting and there is no one residual divided by its standard error that stands out from
the rest.

Refine the convergence criteria to be one order of magnitude less than the precision that you require in
the computed coordinates. For example, if you require coordinates stated to 0.001 m set the convergence
criteria to 0.0001 m. Rerun the estimation process.

Now all the gross errors in the observations have been resolved. If the original weighting for the
observations was correct then the standard error of an observation of unit weight should be very close to 1.
If this is not so then the overall quality of the observations is not as you supposed and the standard errors
of the observations should be scaled by the standard error of an observation of unit weight. For example,
if the assumed standard error of the angles was 5′′ and the standard error of an observation of unit weight
was 1.6 then the true standard error of the angles was 5′′ × 1.6 = 8′′.

Perform the estimation again and the standard error of an observation of unit weight will now be 1.
An alternative approach to debugging the data, especially if there are difficulties with the above, is to
start with a small network and build it up by stages. Identify a small group of points which have many
observations connecting them and test to see if there is convergence and that the computed standard error
of an observation of unit weight is not more than about 5. If it is it indicates strongly the presence of a gross
error that needs to be identified and resolved using the ideas above. Once the problems have been resolved
add another well-connected point to the network with all the observations that make the connection and
repeat the process. Continue adding individual points and later small groups of points until the network is
complete. The additional group of points should not exceed 10% of the existing network to ensure stability
in the computation.

The same process can be applied to one-, two- and three-dimensional estimations by least squares.

7.18 ESTIMATION IN THREE DIMENSIONS

Most of this chapter, so far, has been concerned with applying least squares principles to estimation in two
dimensions. The principles and processes are exactly the same in three dimensions except that everything
is 50% bigger. The x vector will contain additional terms for the heights of the points and the A matrix will
contain observations for difference height by levelling, slope distances as opposed to horizontal distances
in two dimensions and vertical angles.

7.18.1 The A matrix

The A matrix and the observed minus computed vector are constructed in exactly the same way in three
dimensions as they are in two dimensions. The only major difference is that in three dimensions there are
three parameters, δEi, δNi and δHi, associated with each point. The horizontal angle observation equation
remains unchanged except to add 0s as the coefficients of the δHs.
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Slope distance equation

The slope distance equation is derived by applying Pythagoras’ theorem in three dimensions so the
observation equation is

lij −
{

(Ej − Ei)
2 + (Nj − Ni)

2 + (Hj − Hi)
2
} 1

2 = 0

Upon linearizing and putting into matrix form this becomes:

[−sinaij cosvij −cosaij cosvij −sinvij sinaij cosvij cosaij cosvij sinvij
]





δEi

δNi

δHi

δEj

δNj

δHj




= [lij(o−c)

]

where aij is the bearing of j from i and vij is the vertical angle to j from i and is found from provisional
values of coordinates:

tan vij =




Hj − Hi

{
(Ej − Ei)2 + (Nj − Ni)2

} 1
2






Vertical angle equation

The vertical angle distance equation is:

vij − tan−1
[

(Hj − Hi)
{

(Ej − Ei)
2 + (Nj − Ni)

2
} 1

2
]

= 0

Upon linearizing and putting into matrix form this becomes:

[
sin vij sin aij

lij sin 1′′
sin vij cos aij

lij sin 1′′
− cos vij

lij sin 1′′
− sin vij sin aij

lij sin 1′′
− sin vij cos aij

lij sin 1′′
cos vij

lij sin 1′′

]





δEi

δNi

δHi

δEj

δNj

δHj




= [

Vij(o−c)
]

7.18.2 Error ellipsoids

In Section 7.11 absolute and relative error ellipses in two dimensions were discussed. Two methods for
finding the parameters, the sizes of the semi-major and semi-minor axes and the directions of both were
presented. The latter method, which involved the use of eigenvalues and eigenvectors, is the most suitable
for application in three dimensions. In two dimensions it was only necessary to solve a quadratic equation
to find the two eigenvalues. In three dimensions the characteristic polynomial is a cubic and therefore has
three roots; therefore the solution is a little more complex. In two dimensions, the direction of each axis
was described by a single statistic. In three dimensions, two statistics are required for the direction of an
ellipsoid axis, e.g. orientation in the horizontal plane and elevation from the horizontal plane.

In two dimensions, the error ellipses can be adequately described in a graphical format on two-
dimensional paper or computer screen. The two-dimensional mediums create practical problems in the
presentation of three-dimensional data.
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The relevant part of the variance-covariance matrix of parameters for a single point in three dimensions
is of the form:

N−1 =



σ 2

E σEN σEH

σEN σ 2
N σNH

σEH σNH σ 2
H





and so the eigenvalue problem, (N−1 − λl)z = 0 used to find the magnitudes of the semi axes, is of
the form:∣∣∣∣∣∣

σ 2
E − λ σEN σEH

σEN σ 2
N − λ σNH

σEH σNH σ 2
H − λ

∣∣∣∣∣∣
= 0

Which, when evaluating this determinant leads to the characteristic equation:

(σ 2
E − λ)

(
(σ 2

N − λ)(σ 2
H − λ) − (σNH )2

)
− σEN

(
σEN (σ 2

H − λ) − σNHσEH

)

+ σEH

(
σENσNH − (σ 2

N − λ)σEH

)
= 0

When multiplied out and terms are gathered together this is:

−λ3 + λ2(σ 2
E + σ 2

N + σ 2
H ) + λ

(
−σ 2

Eσ 2
N − σ 2

Eσ 2
H − σ 2

Nσ 2
H + (σNH )2 + (σEN )2 + (σEN )2

)

+
(
σ 2

Eσ 2
Nσ 2

H − σ 2
E(σNH )2 − σ 2

N (σEH )2 − σ 2
H (σEN )2 + 2σEHσENσNH

)
= 0

This may be re-expressed as: f (λ) = g3λ
3 + g2λ

2 + g1λ + g0 = 0

where : g3 = −1

g2 = σ 2
E + σ 2

N + σ 2
H

g1 = −σ 2
Eσ 2

N − σ 2
Eσ 2

H − σ 2
Nσ 2

H + (σNH )2 + (σEN )2 + (σEH )2

g0 = σ 2
Eσ 2

Nσ 2
H − σ 2

E(σNH )2 − σ 2
N (σEH )2 − σ 2

H (σEN )2 + 2σEHσENσNH

A cubic equation has three distinct roots. An ellipsoid must have three axes so all roots will be positive and
real. The coefficient of λ3 is negative so the graph of the function is of the general form of Figure 7.14.

λ1

λ2

λ3

f (λ)

0

Fig. 7.14 Cubic equation of λ
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The solution of the characteristic equation may be found by iterative means. Approximate solutions for
λ must first be found. In Figure 7.14 it can be seen that λ1 lies between 0 and the minimum value of f (λ).
λ2 lies between the minimum and maximum valves of f (λ). λ3 is greater than the maximum value of f (λ).
If the minimum and maximum values of λ are m1 and m2 respectively, then initial values for λ1, λ2 and
λ3 may be found as follows:

Root First approximation

λ1 λ0 = 1
2 m1

λ2 λ0 = 1
2 (m1 + m2)

λ3 λ0 = 1
2 (3m2 − m1)

The values of m1 and m2 are found in the normal way, i.e. as solutions to the equation:

df (λ)

dλ
= 0

Therefore: 3g3m2 + 2g2m + g1 = 0

and with g3 = −1, the solutions are: m1 = 1

3

{
g2 −

√
(g2

2 + 3g1)

}
and m2 = 1

3

{
g2 +

√
(g2

2 + 3g1)

}

Better values of λ1, etc., are found by linearization so:

λ = λ0 − f (λ0)
d

dx
(f (λ))

∣∣∣∣
λ=λ0

= λ0 − λ3
0 − g2λ

2
0 − g1λ0 − g0

3λ2
0 − 2g2λ0 − g1

and is iterated to convergence. The magnitudes of λ1, λ2 and λ3, the three semi axes, are now found. The
next stage is to find directions of the axes using the eigenvectors, i.e. to find solutions for z in the equation:

(N−1 − λl)z = 0

i.e.




σ 2

E − λ σEN σEH

σEN σ 2
N − λ σNH

σEH σNH σ 2
H − λ








z1
z2
z3



 = 0

This leads to a solution for z as:




z1
z2
z3



 =



(σ 2

N − λ)(σ 2
H − λ) − (σNH )2

σEHσNH − σEN (σ 2
H − λ)

(σ 2
N − λ)σEN − σENσNH





Finally, the directions of the axis are given by:

the horizontal direction of the axis: aλ = tan−1{z1z−1
2 }

the elevation of the axis: vλ = tan−1{z3(z2
1 + z2

2)− 1
2 }

Worked example

Example 7.18 Find the terms of the error ellipsoid for a point from the following extract of a variance-
covariance matrix of parameters. The units are all mm2.
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N−1 =



σ 2

E σEN σEH

σEN σ 2
N σNH

σEH σNH σ 2
H



 =



2.678 1.284 1.585
1.284 3.094 2.987
1.585 2.987 6.656





g2 = σ 2
E + σ 2

N + σ 2
H = 12.428

g1 = −σ 2
Eσ 2

N − σ 2
Eσ 2

H − σ 2
Nσ 2

H + (σNH )2 + (σEN )2 + (σEH )2 = −33.621

g0 = σ 2
Eσ 2

Nσ 2
H − σ 2

E(σNH )2 − σ 2
N (σEH )2 − σ 2

H (σEN )2 + 2σEHσENσNH = 24.668

m1 = 1

3

{
g2 −

√
(g2

2 + 3g1)

}
= 1.7025

m2 = 1

3

{
g2 +

√
(g2

2 + 3g1)

}
= 6.5829

Root First approximation

λ1 λ0 = 1
2 m1 = 0.8512

λ2 λ0 = 1
2 (m1 + m2) = 4.1427

λ3 λ0 = 1
2 (3m2 − m1) = 9.0231

λ = λ0 − λ3
0 − g2λ

2
0 − g1λ0 − g0

3λ2
0 − 2g2λ0 − g1

Subsequent iterations produce the following results for λ1, λ2 and λ3:

Approximations

Root 1st 2nd 3rd 4th 5th 6th
√

λ1 0.8512 1.1544 1.2529 1.2649 1.26507 1.26507 1.12
λ2 4.1427 2.5989 2.2556 2.1739 2.16777 2.16773 1.47
λ3 9.0231 8.9954 8.9952 8.9952 8.99519 8.99519 3.00

Find the terms of the eigenvectors:

z1 z2 z3
λ1 0.93744 −2.18755 −0.93646
λ2 −4.76485 −1.02854 −2.36718
λ3 4.88185 7.73792 −13.18870

Horizontal direction of the axis: aλ = tan−1{z1z−1
2 }

Elevation of the axis: vλ = tan−1{z3(z2
1 + z2

2)− 1
2 }

Axis Magnitude Horizontal direction Elevation
semi-minor 1.12 mm 156◦ 48′ −21◦ 29′
semi-middle 1.47 mm 77◦ 49′ 25◦ 54′
semi-major 3.00 mm 32◦ 15′ −55◦ 15′
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In Section 7.11.2 the variances and covariances of the relative positions of two stations were used to find
the terms of the two-dimensional relative error ellipse. In three dimensions a very similar process is used
to find the terms of the three-dimensional error ellipsoid. By a derivation very similar to that of Section
7.11.2 it can be shown that:

σ 2
�E = σ 2

EF + σ 2
EJ − 2σEFEJ

σ 2
�N = σ 2

NF + σ 2
NJ − 2σNFNJ

σ 2
�H = σ 2

HF + σ 2
HJ − 2σHFHJ

σ�E�N = σEFNF + σEJNJ − σEFNJ − σNFEJ

σ�E�H = σEFHF + σEJHJ − σEFHJ − σHFEJ

σ�N�H = σNFHF + σNJHJ − σNFHJ − σHFNJ

These terms may now be used in exactly the same way as their counterparts were used when constructing
absolute error ellipsoids. Absolute error ellipsoids are constructed at the point to which they refer but
relative error ellipses are normally constructed at the mid-point of the line, in three-dimensional space,
between the two stations concerned.

Exercises

(7.1) Solve the following simultaneous equations by linearizing them as the first part of a Taylor series.
Express the formulae in matrix terms, and by substituting with the provisional values of the parameters,
solve the equation for a first estimate of the true values of x and y. Iterate the solution until there is no
change in the third decimal place. Use x = 0.5 radians and y = 1 radian as provisional values for the first
iteration.

sin2 x + cos3 y − 0.375 = 0

sin 3x + cos 2y − 0.5 = 0

(Answer: Solution after first iteration x = 0.526985 rad, y = 1.047880 rad.
Final solution x = 0.523598775 radians = 30◦ exactly, y = 1.047197551 radians = 60◦ exactly)

(7.2) Use linearization to solve the following pair of simultaneous equations.

(x − 1)2 sin y = 0.00216856

(sin 3x − 1)y = −0.748148

where x and y are in radians. Use x = y = 0.9 as provisional values.

(Answer: x = 0.95000, y = 1.05000)

(7.3) A new point, X , is to be added to a control network already containing points A, B and C as in
Figure 7.15. The coordinates of the points are:

Easting Northing
A 5346.852 m 4569.416 m
B 6284.384 m 4649.961 m
C 6845.925 m 4469.734 m
X 5280 m 3560 m (approx.)
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A
C

B

X

Fig. 7.15 A control network

The observations were:

Angles Distances
AXB 39◦ 2′ 4′′ AX 1009.258 m
BXC 17◦ 14′ 19′′ BX 1477.819 m

CX 1806.465 m

The standard errors of the observations are 5′′ for angles and 0.02 m for distances. Find the best estimate
of the coordinates of point X .

Note that several of the later exercises follow from this one so it is worth retaining all your working for
this exercise.

(Answer: EX 5284.061 m NX 3562.119 m)

(7.4) Repeat Exercise 7.3 using the computed values of the coordinates from that exercise as new provi-
sional values for the coordinates of X . By how much do the computed coordinates of point X change with
this further iteration?

(Answer: EX 5284.053 m NX 3562.127 m; change in EX − 0.008 m NX 0.008 m)

(7.5) What are the residuals of the observation equations from Exercise 7.4?

(Answer: Observation Residual

Angle AXB −5.1′′
BXC −0.1′′

Distance AX −0.013 m
BX 0.032 m
CX −0.034 m)

(7.6) Use the residuals computed in Exercise 7.5 to find the standard error of an observation of unit weight.

(Answer: 1.52)
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(7.7) What was the variance-covariance matrix of parameters associated with Exercise 7.5? What are the
standard errors of the coordinates and what is the coefficient of correlation between them?
(

Answer:

[
0.000545 −0.000325

−0.000325 0.000404

]
σEX = 0.023 m, σNX = 0.020 m, rEXNX = −0.69

)

(7.8) Using the variance-covariance matrix of parameters derived in Exercise 7.6 find the terms of the error
ellipse at point X .

(Answer: σmax = 0.028 m, σmin = 0.021 m, orientation of major axis = 128◦ 52′)

(7.9) Using the data from previous exercises confirm or otherwise that there are no observations with
significant residuals.

(Answer: There are no significant residuals.

Observation Residual v Standard error of
residual σv

Test statistic
v

σv
Is 4 >

v

σv
> −4?

Angle AXB −5.1′′ 4.7′′ −1.1 yes
BXC −0.1′′ 4.9′′ −0.0 yes

Distance AX −0.013 m 0.006 m −2.2 yes
BX 0.032 m 0.016 m 2.0 yes
CX −0.034 m 0.013 m −2.6 yes)

(7.10) Using the data from previous exercises confirm or otherwise that there are no unreliable observations.

(Answer: There is one unreliable observation – distance AX

Observation Standard error of
estimated

observation σ(l)

Standard error of
observed

observation σ(b)

Test statistic
σ(l)

σ(b)
Is

σ(l)

σ(b)
< 0.8?

Angle AXB 1.7′′ 5.0′′ 0.34 yes
BXC 1.0′′ 5.0′′ 0.20 yes

Distance AX 0.019 m 0.020 m 0.95 no
BX 0.012 m 0.020 m 0.60 yes
CX 0.015 m 0.020 m 0.75 yes)

(7.11) Find the terms of the error ellipsoid from the following extract of a variance/covariance matrix of
parameters. The units are mm2.

N−1 =



rrrσ 2

E σEN σEH

σEN σ 2
N σNH

σEH σNH σ 2
H



 =



3.020 0.853 4.143
0.853 4.026 −1.348
4.143 −1.348 8.563





(Answer: Axis Magnitude Horizontal direction Elevation
semi-minor 0.53 mm 113◦ 27′ 27◦ 39′
semi-middle 2.11 mm 21◦ 30′ 3◦ 4′
semi-major 3.29 mm 104◦ 31′ −62◦ 4′)
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Position

8.1 INTRODUCTION

Engineering surveying is concerned essentially with fixing the position of a point in two or three dimensions.
For example, in the production of a plan or map, one is concerned in the first instance with the accu-

rate location of the relative position of survey points forming a framework, from which the position of
topographic detail is fixed. Such a framework of points is referred to as a control network.

The same network used to locate topographic detail may also be used to set out points, defining the
position, size and shape of the designed elements of the construction project.

Precise control networks are also used in the monitoring of deformation movements on all types of
structures.

In all these situations the engineer is concerned with relative position, to varying degrees of accuracy
and over areas of varying extent. In order to define position to the high accuracies required in engineering
surveying, a suitable homogeneous coordinate system and reference datum must be adopted.

Depending on the accuracies required and the extent of the area of the project it may or may not be
necessary to take the shape of the Earth into account. For small projects it may be possible to treat the
reference surface of the project area as a plane, in which case the mathematics involved with finding
coordinates of points from the observations associated with them relatively simple. If the shape of the
reference surface needs to be taken into account then the process is rather more involved.

8.2 REFERENCE ELLIPSOID

Consideration of Figure 8.1 illustrates that if the area under consideration is of limited extent, the orthogonal
projection of AB onto a plane surface may result in negligible distortion. Plane surveying techniques
could be used to capture field data and plane trigonometry used to compute position. This is the case
in the majority of engineering surveys. However, if the area extended from C to D, the effect of the
Earth’s curvature is such as to produce unacceptable distortion if treated as a flat surface. It can also be
clearly seen that the use of a plane surface as a reference datum for the elevations of points is totally
unacceptable.

If Figure 8.2 is now considered, it can be seen that projecting CD onto a surface (cd) that was the
same shape and parallel to CD would be more acceptable. Further, if that surface was brought closer to
CD, say c′d′, the distortion would be even less. This then is the problem of the geodetic surveyor: that
of defining a simple mathematical surface that approximates to the shape of the area under consideration
and then fitting and orientating it to the Earth’s surface. The surface used in surveying is a ‘reference
ellipsoid’.

Before describing the reference ellipsoid, it is appropriate to review the other surfaces that are related
to it.
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Fig. 8.1 Projection to a plane surface

Fig. 8.2 Projection to a curved surface

8.2.1 Earth’s surface

The Earth’s physical surface is where surveying observations are made and points are located. However,
due to its irregular surface and overall shape, the physical surface cannot be defined mathematically and
so position cannot be easily computed on its surface. It is for this reason that in surveys of limited extent,
the Earth may be assumed to be flat, and plane trigonometry used to define position.

An implication of this assumption is that the surface which defines the ‘zero of height’ is a plane surface
and that everywhere, on that plane surface, above it and below it all plumb lines are straight and parallel.
In the real world this is not true because the Earth is not flat but round, and being round it is not a sphere or
any other regular mathematical figure. Although a defined surface, such as ‘Mean Sea Level’ (MSL) can
be approximated by an ellipsoid there are separations from the best globally fitting ellipsoid of the order of
100 m or 1 part in 60 000. In relative terms these errors appear small, but for topographic surveying they
may, and for geodetic surveying they must, be taken into consideration. Gravity below, on, or above any
point on the Earth’s surface may be described by a vector. The force of gravity, i.e. its magnitude, varies
largely with distance from the Earth’s mass centre, and to a lesser extent with latitude. It is also affected
by the variations in the distribution of the Earth’s mass and the changes in its density.

The ‘shape’ of the Earth is largely defined by gravity. The Earth is mostly a molten mass with a very
thin stiff crust some 30 km thick. If the Earth was truly molten, of homogeneous density, and not affected
by the gravity field of any external bodies and did not rotate on its own axis (once a day), then through
considerations of gravitational attraction, the surface of the Earth would be fully described as a sphere.
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The main source of error in this idealized model is that which is due to the Earth’s rotation. The centrifugal
force at the equator acts in the opposite direction to that of gravitation and so the figure of the Earth is
better described by an ellipse of rotation about its minor axis, i.e. an ellipsoid or spheroid. The terms are
synonymous.

8.2.2 The geoid

Having rejected the physical surface of the Earth as a computational surface, one is instinctively drawn to
a consideration of a mean sea level surface. This is not surprising, as 70% of the Earth’s surface is ocean.

If these oceans were imagined to flow in interconnecting channels throughout the land masses, then,
ignoring the effects of friction, tides, wind stress, etc., an equipotential surface, approximately at MSL
would be formed. An equipotential surface is one on which the gravitational potential is the same at all
points. It is a level surface and like contours on a map which never cross, equipotential surfaces never
intersect, they lie one within another as in Figure 8.3. Such a surface at MSL is called the ‘geoid’. It is a
physical reality and its shape can be measured. Although the gravity potential is everywhere the same the
value of gravity is not. The magnitude of the gravity vector at any point is the rate of change of the gravity
potential at that point. The surface of the geoid is smoother than the physical surface of the Earth but it still
contains many small irregularities which render it unsuitable for the mathematical location of planimetric
position. These irregularities are due to mass anomalies throughout the Earth.

In spite of this, the geoid remains important to the surveyor as it is the surface to which all terrestrial
measurements are related.

As the direction of the gravity vector (termed the ‘vertical’) is everywhere normal to the geoid, it defines
the direction of the surveyor’s plumb-bob line. Thus any instrument which is made horizontal by means of
a spirit bubble will be referenced to the equipotential surface passing through the instrument. Elevations
in Great Britain, as described in Chapter 2, are related to the equipotential surface passing through MSL,
as defined at Newlyn, Cornwall. Such elevations or heights are called orthometric heights (H) and are
the linear distances measured along the gravity vector from a point on the surface to the equipotential
surface used as a reference datum. As such, the geoid is the equipotential surface that best fits MSL

Fig. 8.3 Equipotential surfaces
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and the heights in question, referred to as heights above or below MSL. It can be seen from this that
orthometric heights are datum dependent. Therefore, elevations related to the Newlyn datum cannot be
related to elevations that are relative to other datums established for use in other countries. The global
MSL varies from the geoid by as much as 3 m at the poles and the equator, largely because the density
of sea water changes with its temperature, and hence it is not possible to have all countries on the same
datum.

8.2.3 The ellipsoid

An ellipsoid of rotation is the closest mathematically definable shape to the figure of the Earth. Its shape is
modelled by an ellipse rotated about its minor axis and the ellipse may be defined by its semi-major axis a
(Figure 8.4) and the flattening f . Although the ellipsoid is merely a shape and not a physical reality, it
represents a smooth surface for which formulae can be developed to compute ellipsoidal distance, azimuth
and ellipsoidal coordinates. Due to the variable shape of the geoid, it is not possible to have a single
global ellipsoid of reference which is a good fit to the geoid for use by all countries. The best-fitting global
geocentric ellipsoid is the Geodetic Reference System 1980 (GRS80), which has the following dimensions:

semi-major axis 6 378 137.0 m

semi-minor axis 6 356 752.314 m

the difference being approximately 21 km.
The most precise global geoid is the Earth Gravitational Model 1996 (EGM96). However, it still remains

a complex, undulating figure which varies from the GRS80 ellipsoid by more than 100 m in places. In the
UK the geoid–ellipsoid separation is as much as 57 m in the region of the Hebrides. As a 6-m vertical

 a = One-half of the major axis = semi-major axis
 b = One-half of the minor axis = semi-minor axis
 PP ′ = Axis of revolution of the Earth's ellipsoid 

Fig. 8.4 Elements of an ellipse
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separation between geoid and ellipsoid would result in a scale error of 1 ppm, different countries have
adopted local ellipsoids that give the best fit in their particular situation. A small sample of ellipsoids used
by different countries is shown below:

Ellipsoid a metres 1/f Where used

Airy (1830) 6 377 563 299.3 Great Britain
Everest (1830) 6 377 276 300.8 India, Pakistan
Bessel (1841) 6 377 397 299.2 East Indies, Japan
Clarke (1866) 6 378 206 295.0 North and Central America
Australian National (1965) 6 378 160 298.2 Australia
South American (1969) 6 378 160 298.2 South America

When f = 0, the figure described is a sphere. The flattening of an ellipsoid is described by f = (a − b)/a.
A further parameter used in the definition of an ellipsoid is e, referred to as the first eccentricity of the

ellipse, and is equal to (a2 − b2)
1
2 /a.

Figure 8.5 illustrates the relationship of all three surfaces. It can be seen that if the geoid and ellipsoid
were parallel at A, then the deviation of the vertical would be zero in the plane shown. If the value for
geoid–ellipsoid separation (N) was zero, then not only would the surfaces be parallel, they would also be
tangential at the point. As the ellipsoid is a smooth surface and the geoid is not, perfect fit can never be
achieved. However, the values for deviation of the vertical and geoid–ellipsoid separation can be used as
indicators of the closeness of fit.

Fig. 8.5 Deviation of the vertical
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8.3 COORDINATE SYSTEMS

8.3.1 Astronomical coordinates

As shown in Figure 8.6, astronomical latitude φA is defined as the angle that the vertical (gravity vector)
through the point in question (P) makes with the plane of the equator, whilst the astronomical longitude λA

is the angle in the plane of the equator between the zero meridian plane parallel to the vertical at Greenwich
and the meridian plane parallel to the vertical through P. Both meridian planes contain the Earth’s mean
spin axis.

The common concept of a line through the North and South Poles comprising the spin axis of the Earth
is not acceptable as part of a coordinate system, as it is constantly moving with respect to the solid body
of the Earth. The instantaneous North Pole wanders once around the International Reference Pole (IRP)
in a period of about 14 months with a distance from the IRP of about 20 metres. The IRP has been defined,
and internationally agreed, by the International Earth Rotation Service (IERS) based in Paris. Similarly,
the Greenwich Meridian adopted is not the one passing through the centre of the observatory telescope.

IRP

Zero
meridian

(IRM)

Spin
axis

Equator

Geoid

Astronomical
latitude fA

Local
meridian
plane

Astronomical
longitude λA
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rti
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Fig. 8.6 Astronomical coordinates
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It is one defined as the mean value of the longitudes of a large number of participating observatories
throughout the world and is called the IERS Reference Meridian (IRM).

The instantaneous position of the Earth with respect to this axis is constantly monitored by the IERS
and published for the benefit of those who need it at http://hpiers.obspm.fr/eop-pc/.

Astronomical position is found from observations to the sun and stars. The methods for doing so are
relatively complex, seldom practised today and therefore outside the scope of this book.

Astronomical latitude and longitude do not define position on the Earth’s surface but rather the direction
and inclination of the vertical through the point in question. Due to the undulation of the equipotential
surface deviation of the vertical varies from point to point so latitude and longitude scales are not entirely
regular. An astronomical coordinate system is therefore unsatisfactory for precise positioning.

8.3.2 Geodetic coordinates

For a point P at height h, measured along the normal through P, above the ellipsoid, the ellipsoidal
latitude and longitude will be φG and λG, as shown in Figure 8.7. Thus the ellipsoidal latitude is the angle
describing the inclination of the normal to the ellipsoidal equatorial plane. The ellipsoidal longitude is

IRP
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Semi-major axis

Fig. 8.7 Geodetic coordinates
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the angle in the equatorial plane between the IRM and the geodetic meridian plane through the point in
question P. The height h of P above the ellipsoid is called the ellipsoidal height. Also, the ellipsoidal
coordinates can be used to compute azimuth and ellipsoidal distance. These are the coordinates used in
classical geodesy to describe position on an ellipsoid of reference.

8.3.3 Cartesian coordinates

As shown in Figure 8.8, if the IERS spin axis is regarded as the Z-axis, the X-axis is in the direction of the
zero meridian (IRM) and the Y -axis is perpendicular to both, a conventional three-dimensional coordinate
system is formed. If we regard the origin of the cartesian system and the ellipsoidal coordinate system as
coincident at the mass centre of the Earth then transformation between the two systems may be carried out
as follows:

(1) Ellipsoidal to cartesian

X = (ν + h) cos φG cos λG (8.1)

Y = (ν + h) cos φG sin λG (8.2)

Z = [(1 − e2)ν + h] sin φG (8.3)

Fig. 8.8 Geocentric cartesian coordinates
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(2) Cartesian to ellipsoidal

tan λG = Y /X (8.4)

tan φG = (Z + e2ν sin φG)/(X2 + Y2)
1
2 (8.5)

h = Xsec φG sec λG − ν (8.6)

= Ysec φG cosec λG − ν (8.7)

where

ν = a/(1 − e2 sin2 φG)
1
2

e = (a2 − b2)
1
2 /a

a = semi-major axis

b = semi-minor axis

h = ellipsoidal height

The transformation in equation (8.5) is complicated by the fact that ν is dependent on φG and so an iterative
procedure is necessary.

This procedure converges rapidly if an initial value for φG is obtained from

φG = sin−1(Z/a) (8.8)

Alternatively, φG can be found direct from

tan φG = Z + εb sin3 θ

(X2 + Y2)
1
2 − e2 a cos3 θ

(8.9)

where ε = (a2/b2) − 1

tan θ = a · Z/b(X2 + Y2)
1
2

Cartesian coordinates are used in satellite position fixing. Where the various systems have parallel axes
but different origins, translation from one to the other will be related by simple translation parameters in
X, Y and Z , i.e. �X , �Y and �Z .

The increasing use of satellites makes a study of cartesian coordinates and their transformation to
ellipsoidal coordinates important.

8.3.4 Plane rectangular coordinates

Geodetic surveys required to establish ellipsoidal or cartesian coordinates of points over a large area require
very high precision, not only in the capture of the field data but also in their processing. The mathematical
models involved must of necessity be complete and hence are quite involved. To avoid this the area of
interest on the ellipsoid of reference, if of limited extent, may be regarded as a plane surface alternatively
the curvature may be catered for by the mathematical projection of ellipsoidal position onto a plane surface.
These coordinates in the UK are termed eastings (E) and northings (N) and are obtained from:

E = fE (φG, λG, ellipsoid and projection parameters)

N = fN (φG, λG, ellipsoid and projection parameters)

How this is done is discussed in later sections of this chapter.
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Fig. 8.9 Plane rectangular coordinates

The result is the definition of position by plane coordinates (E, N) which can be utilized using plane
trigonometry. These positions will contain some distortion compared with their position on the ellipsoid,
which is an inevitable result of projecting a curved surface onto a plane. However, the overriding advantage
is that only small adjustments need to be made to the observed field data to produce the plane coordinates.

Figure 8.9 illustrates the concept involved and shows the plane tangential to the ellipsoid at the local
origin 0. Generally, the projection, used to transform observations in a plane reference system is an
orthomorphic projection, which will ensure that at any point in the projection the scale is the same in all
directions. The result of this is that, for small areas, shape and direction are preserved and the scale varies
but only slightly. Thus when computing engineering surveys in such a reference system, the observed
distance, when reduced to its horizontal equivalent at MSL, simply requires multiplication by a local scale
factor, and observed horizontal angles generally require no further correction.

8.3.5 Height

In outlining the coordinate systems in general use, the elevation or height of a point has been defined as
‘orthometric’ or ‘ellipsoidal’. With the increasing use of satellites in engineering surveys, it is important
to understand the different categories.

Orthometric height (H) is the one most used in engineering surveys and has been defined in Section 8.2.2;
in general terms, it is referred to as height above MSL.

Ellipsoidal height has been defined in Section 8.3.2 and is rarely used in engineering surveys for practical
purposes. However, satellite systems define position and height in X, Y and Z coordinates, which for use
in local systems are first transformed to φG, λG and h using the equations of Section 8.3.3. The value of
h is the ellipsoidal height, which, as it is not related to gravity, is of no practical use, particularly when



Position 293

Fig. 8.10 Ellipsoidal and orthometric heights

dealing with the direction of water flow. It is therefore necessary to transform h to H, the relationship of
which is shown in Figure 8.10:

h = N + H cos ξ (8.10)

However, as ξ is always less then 60′′, and therefore 0.99999995 < cos ε, ≤ 1.0, it can be ignored:

∴ h = N + H (8.11)

with an error of less than 0.4 mm at the worst worldwide (0.006 mm in the UK).
The term N is referred to as the ‘geoid–ellipsoid separation’or ‘geoid height’and to transform ellipsoidal

heights to orthometric, must be known to a high degree of accuracy for the particular reference system
in use. In global terms N is known (relative to the WGS84 ellipsoid) to an accuracy of 2–6 m. However,
for use in local engineering projects N would need to be known to an accuracy greater than h, in order to
provide precise orthometric heights from satellite data. To this end, many national mapping organizations,
such as the Ordnance Survey in Great Britain, have carried out extensive work to produce an accurate
model of the geoid and its relationship to the local ellipsoid.

8.4 LOCAL SYSTEMS

The many systems established by various countries throughout the world for positioning on and mapping
of the Earth’s surface were established with an astrogeodetic origin to the datum. In the UK the origin of
the datum for the Ordnance Survey is at Herstmonceux in Sussex. The origin of the datum for the European
system is at Potsdam and the origin of the datum for North America is at Meades Ranch in Kansas. At each
of these origins the relationship between the geoid and ellipsoid is defined in terms of the tangential planes
between the respective surfaces. Such systems use reference ellipsoids which most closely fit the geoid in
their area of coverage and are defined by the following eight parameters:

(1) The size and shape of the ellipsoid, defined by the semi-major axis a, and one other chosen from the
semi-minor axis b or the flattening f or the eccentricity e (two parameters).
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(2) The minor axis of the ellipsoid is orientated parallel to the mean spin axis of the Earth as defined by
IERS (two parameters).

(3) The geodetic, latitude and longitude are defined as being the same as the astronomical, i.e. gravitational
latitude and longitude and therefore with respect to the geoid, then the tangential planes must be parallel
and the deviations of the vertical at the origin are zero. In this case the vertical to the geoid and the
normal to the ellipsoid are coincident. If the tangential planes are further defined as being coincident
then the separation between the geoid and ellipsoid surface, N , is also zero. This constitutes the
definition of four parameters; two for the deviations of the vertical, East–West and North–South, one
for the separation and one for the implicit definition of the zero direction of longitude.

Satellite datums or datums that are required for global use may be defined as follows.

(1) The Earth’s mass centre is the origin of the coordinate system, e.g. if a Cartesian coordinate system is
being used then at the Earth’s mass centre, X = Y = Z = 0 (three parameters).

(2) The orientation of one of the coordinate axes is defined in inertial space, in practical terms that means
with respect to the ‘fixed’ stars (two parameters).

(3) The orientation of the zero direction in the plane at right angles to the defined direction, e.g. the
direction in which X is always 0 (one parameter).

(4) The shape and size of the reference ellipsoid as above (two parameters).

It follows that all properly defined geodetic systems will have their axes parallel and can be related to each
other by simple translations in X , Y and Z .

The goodness of fit can be indicated by an examination of values for the deviation of the vertical (ξ )
and geoid–ellipsoid separation (N), as indicated in Figure 8.5. Consider a meridian section through the
geoid–ellipsoid (Figure 8.11), it is obvious that the north–south component of the deviation of the vertical

φ φ

Fig. 8.11 A meridianal section
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is a function of the ellipsoidal latitude (φG) and astronomical latitude (φA), i.e.

ξ = φA − φG (8.12)

The deviation of the vertical in the east–west direction (prime vertical) is

H = (λA − λG) cos φ (8.13)

where φ is φA or φG, the difference being negligible. It can be shown that the deviation in any azimuth α

is given by

ψ = −(ξ cos α + η sin α) (8.14)

whilst at 90◦ to α the deviation is

ζ = (ξ sin α − η cos α) (8.15)

Thus, in very general terms, the process of defining a datum may be as follows. A network of points is
established throughout the country to a high degree of observational accuracy. One point in the network
is defined as the origin, and its astronomical coordinates, height above the geoid and azimuth to a second
point are obtained. The ellipsoidal coordinates of the origin can now be defined as

φG = φA − ξ (8.16)

λG = λA − η sec φ (8.17)

h = H + N (8.18)

However, at this stage of the proceedings there are no values available for ξ , η and N , so they are assumed
equal to zero and an established ellipsoid is used as a reference datum, i.e.

φG = φA

λG = λA

h = H

plus a and f , comprising five parameters.
As field observations are automatically referenced to gravity (geoid), then directions and angles will

be measured about the vertical, with distance observed at ground level. In order to compute ellipsoidal
coordinates, the directions and angles must be reduced to their equivalent about the normal on the ellipsoid
and distance reduced to the ellipsoid. It follows that as ξ , η and N will be unknown at this stage, an iterative
process is involved, commencing with observations reduced to the geoid.

The main corrections involved are briefly outlined as follows:

(1) Deviation of the vertical

As the horizontal axis of the theodolite is perpendicular to the vertical (geoid) and not the normal (ellipsoid),
a correction similar to plate bubble error is applied to the directions, i.e.

−ζ tan β (8.19)

where ζ is as in equation (8.15) and β is the vertical angle. It may be ignored for small values of β.
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Fig. 8.12 Distance reduction to the ellipsoid

(2) Reduction of distance to the ellipsoid

The measured distance is reduced to its horizontal component by applying all the corrections appropriate
to the method of measurement as detailed in Chapter 4.

It is then reduced to the ellipsoid by reducing to MSL (geoid), A1B1, and from MSL to the ellipsoid,
A2B2, in one computation. See Figure 8.12:

A2B2 = L − LH/(Rα + H + N) (8.20)

where L = AB, the mean horizontal distance at ground level

H = mean height above MSL

N = height of the geoid above the ellipsoid

Rα = the radius of curvature of the ellipsoid in the direction α of the line

and

Rα = ρv/(ρ sin2 α + v cos2 α) (8.21)

ρ = a(1 − e2)/(1 − e2 sin2 φ)
3
2 = meridional radius of curvature (8.22)

v = a/(1 − e2 sin2 φ)
1
2 = prime vertical radius of curvature (at 90◦ to the meridian) (8.23)

As already stated, values of N may not be available and hence the geoidal distance may have to be ignored.
It should be remembered that if N = 6 m, a scale error of 1 ppm will occur if N is ignored. In the UK,
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the maximum value for N is about 4.5 m, resulting in a scale error of only 0.7 ppm, and may therefore be
ignored for scale purposes. Obviously it cannot be ignored in heighting.

8.5 COMPUTATION ON THE ELLIPSOID

Before proceeding with the computation of ellipsoidal coordinates, it is necessary to consider certain
aspects of direction. In plane surveying, for instance, the direction of BA differs from that of AB by exactly
180◦. However, as shown in Figure 8.13,

Azimuth BA = αAB + 180◦ + �α = αBA (8.24)

where �α is the additional correction due to the convergence of the meridians AP and BP.
Using the corrected ellipsoidal azimuths and distances, the coordinates are now calculated relative to a

selected point of origin.
The basic problems are known as the ‘direct’ and ‘reverse’ problems and are analogous to com-

puting the ‘polar’ and ‘join’ in plane surveying. The simplest computing routine is one that involves
‘mid-latitude’ formulae.

The mid-latitude formulae are generally expressed as:

�φ′′ = L cos αm

ρm sin 1′′

(
1 + �λ2

12
+ �λ2 sin2 φm

24

)
(8.25)

�λ′′ = L sin αm · sec φm

ν sin 1′′

(
1 + �λ2 sin2 φm

24
− �φ2

24

)
(8.26)

�α′′ = �λ′′ sin φm

(
1 + �λ2 sin2 φm

24
+ �λ2 cos2 φm

12
+ �φ2

12

)
(8.27)

φ
φ

φ

Fig. 8.13 Geodetic azimuth
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where �φ = φA − φB

�λ = λA − λB

�α = αBA − αAB ± 180◦

αm = αAB + �α

2

φm = (φA + φB)/2

The above formulae are accurate to 1 ppm for lines up to 100 km in length.

(1) The direct problem

Given:

(a) Ellipsoidal coordinates of A = φA, λA

(b) Ellipsoidal distance AB = LAB

(c) Ellipsoidal azimuth AB = αAB

(d) Ellipsoidal parameters = a, e2

determine:

(a) Ellipsoidal coordinates of B = φB, λB

(b) Ellipsoidal azimuth BA = αBA

As the mean values of ρ, v and φ are required, the process must be an iterative one and will be outlined
using the first term only of the mid-latitude formula:

(a) Determine ρA and vA from equations (8.22) and (8.23) using φA

(b) Determine �φ′′ = LAB cos αAB/ρA sin 1′′
(c) Determine the first value for φm = φA + (�φ/2)
(d) Determine improved values for ρ and v using φm and iterate until negligible change in �φ

(e) Determine �λ′′ = LAB sin αAB sec φm/νm sin 1′′
(f) Determine �α′′ = �λ′′ sin φm and so deduce

αm = αAB + (�α/2)

(g) Iterate the whole procedure until the differences between successive values of �φ, �λ and �α are
insignificant. Three iterations normally suffice.

(h) Using the final accepted values, we have:

φB = φA + �φ

λB = λB + �λ

αBA = αAB + �α ± 180◦

(2) The reverse problem

Given:

(a) Ellipsoidal coordinates of A = φA, λA

(b) Ellipsoidal coordinates of B = φB, λB

(c) Ellipsoidal parameters = a, e2



Position 299

determine:

(a) Ellipsoidal azimuths = αAB and αBA

(b) Ellipsoidal distance = LAB

This procedure does not require iteration:

(a) Determine φm = (φA + φB)/2

(b) Determine νm = a/(1 − e2 sin2 φm)
1
2 and ρm = a(1 − e2)/(1 − e2 sin2 φm)

3
2

(c) Determine αm = νm · �λ cos φm/(ρm · �φ)
(d) Determine LAB from �φ′′ = LAB cos αm/ρm sin 1′′ which can be checked using �λ′′
(e) Determine �α′′ = �λ′′ − sin φm, then αAB = αm − (�α/2) and αBA = αAB + �α ± 180◦

Whilst the mid-latitude formula serves to illustrate the procedures involved, computers now permit the use
of the more accurate equations.

On completion of all the computation throughout the network, values of ξ , η and N can be obtained
at selected stations. The best-fitting ellipsoid is the one for which values of �N2 or �(ξ2 + η2) are a
minimum. If the fit is not satisfactory, then the values of ξ , η and N as chosen at the origin could be
altered or a different ellipsoid selected. Although it would be no problem to change the ellipsoid due to
the present use of computers, in the past it was usual to change the values of ξ , η and N to improve
the fit.

Although the above is a brief description of the classical geodetic approach, the majority of ellipsoids
in use throughout the world were chosen on the basis of their availability at the time. For instance, the Airy
ellipsoid adopted by Great Britain was chosen in honour of Professor Airy who was Astronomer Royal at
the time and had just announced the parameters of his ellipsoid. In fact, recent tests have shown that the fit
is quite good, with maximum values of N equal to 4.5 m and maximum values for deviation of the vertical
equal to 10′′.

8.6 DATUM TRANSFORMATIONS

Coordinate transformations are quite common in surveying. They range from simple translations between
coordinates and setting-out grids on a construction site, to transformation between global systems.

Whilst the mathematical procedures are well defined for many types of transformation, problems can
arise due to varying scale throughout the network used to establish position. Thus in a local system, there
may be a variety of parameters, established empirically, to be used in different areas of the system.

8.6.1 Basic concept

From Figure 8.14 it can be seen that the basic parameters in a conventional transformation between similar
XYZ systems would be:

(1) Translation of the origin 0, which would involve shifts in X, Y and Z , i.e. �X, �Y , �Z .
(2) Rotation about the three axes, θx, θy and θz, in order to render the axes of the systems involved

parallel. θx and θy would change the polar axes, and θz the zero meridian.
(3) One scale parameter (1 + S) would account for the difference of scale between different coordinate

systems.

In addition to the above, the size (a) of the ellipsoid and its shape (f ) may also need to be included.
However, not all the parameters are generally used in practice. The most common transforma-
tion is the translation in X , Y and Z only (three parameters). Also common is the four-parameter
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Fig. 8.14 Transformation parameters

(�X, �Y , �Z + scale) and the five-parameter (�X, �Y , �Z + scale + θz). A full transformation
would entail seven parameters.

A simple illustration of the process can be made by considering the transformation of the coordinates
of P(X ′, Y ′, Z ′) to (X , Y , Z) due to rotation θx about axis OX (Figure 8.15):

X = X ′

Y = Or − qr = Y ′ cos θ − Z ′ sin θ (8.28)

Z = mr + Pn = Y ′ sin θ + Z ′ cos θ (8.29)

In matrix form:


X
Y
Z



 =



1 0 0
0 cos θ − sin θ

0 sin θ cos θ








X ′
Y ′
Z ′



 (8.30)

x = Rθ · x′

Fig. 8.15 Coordinate transformation
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where Rθ = rotational matrix for angle θ

x′ = the vector of original coordinates

Similar rotation matrices can be produced for rotations about axes OY (α) and OZ(β), giving

x = Rθ RαRβx′ (8.31)

If a scale change and translation of the origin by �X, �Y , �Z is made, the coordinates of P would be



X
Y
Z



 =



�X
�Y
�Z



 + (1 + S)




a11 a12 a13
a21 a22 a23
a31 a32 a33








X ′
Y ′
Z ′



 (8.32)

The a coefficients of the rotation matrix would involve the sines and cosines of the angles of rotation,
obtained from the matrix multiplication of Rθ , Rα and Rβ .

For the small angles of rotation the sines of the angles may be taken as their radian measure (sin θ = θ )
and the cosines are unity, with sufficient accuracy. In which case the equation simplifies to




X
Y
Z



 =



�X
�Y
�Z



 + (1 + S)




1 β −α

−β 1 θ

α −θ 1








X ′
Y ′
Z ′



 (8.33)

Equation (8.33) is referred to in surveying as the Helmert transformation and describes the full
transformation between the two geodetic datums.

Whilst the X , Y , Z coordinates of three points would be sufficient to determine the seven parameters,
in practice as many points as possible are used in a least squares solution. Ellipsoidal coordinates (φ, λ, h)
would need to be transformed to X , Y and Z for use in the transformations.

As a translation of the origin of the reference system is the most common, a Molodenskii transform
permits the transformation of ellipsoidal coordinates from one system to another in a single operation, i.e.

φ = φ′ + �φ′′

λ = λ′ + �λ′′

h = h′ + �h

where �φ′′ = (−�X sin φ′ cos λ′ − �Y sin φ′ sin λ′ + �Z cos φ′

+ (a′�f + f ′�a) sin 2φ′)/(ρ sin 1′′) (8.34)

�λ′′ = (−�X sin λ′ + �Y cos λ′)/(ν sin 1′′) (8.35)

�h = (�X cos φ′ cos λ′ + �Y cos φ′ × sin λ′ + �Z sin φ′

+ (a′�f + f ′�a) sin2 φ′ − �a) (8.36)

In the above formulae:

φ′, λ′, h′ = ellipsoidal coordinates in the first system
φ, λ, h = ellipsoidal coordinates in the required system

a′, f ′ = ellipsoidal parameters of the first system
�a, �f = difference between the parameters in each system

�X, �Y , �Z = origin translation values
v = radius of curvature in the prime vertical (equation (8.23))
ρ = radius of curvature in the meridian (equation (8.22))
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It must be emphasized once again that whilst the mathematics of transformation are rigorously defined,
the practical problems of varying scale, etc., must always be considered.

8.7 ORTHOMORPHIC PROJECTION

The ellipsoidal surface, representing a portion of the Earth’s surface, may be represented on a plane using
a specific form of projection, i.e.

E = fE(φ, λ) (8.37)

N = fN (φ, λ) (8.38)

where E and N on the plane of the projection represent φ, λ on the reference ellipsoid.
Representation of a curved surface on a plane must result in some form of distortion, and therefore the

properties required of the projection must be carefully considered. In surveying, the properties desired are
usually:

(1) A line on the projection must contain the same intermediate points as that on the ellipsoid.
(2) The angle between any two lines on the ellipsoid should have a corresponding angle on the projection

and scale at a point is the same in all directions. This property is termed orthomorphism and results in
small areas retaining their shape.

Using the appropriate projection mathematics the shortest line distance on a curved surface between two
points, the geodesic, AB in Figure 8.16 is projected to the curved dotted line ab; point C on the geodesic
will appear at c on the projection. The meridian AP is represented by the dotted line ‘geodetic north’, and
then:

(1) The angle γ between grid and geodetic north is called the ‘grid convergence’ resulting from the
convergence of meridians.

Fig. 8.16 The geodesic represented on the projection



Position 303

(2) The angle α is the azimuth of AB measured clockwise from north.
(3) The angle t is the grid bearing of the chord ab.
(4) The angle T is the angle between grid north and the projected geodesic. From (3) and (4) we have the

(t − T ) correction.
(5) The line scale factor (F) is the ratio between the length (S) of the geodesic AB as calculated from

ellipsoidal coordinates and its grid distance (G) calculated from the plane rectangular coordinates, i.e.

F = G/S (8.39)

Similarly the point scale factor can be obtained from the ratio between a small element of the geodesic
and a corresponding element of the grid distance.

(6) It should be noted that the projected geodesic is always concave to the central meridian.

It can be seen from the above that:

(1) The geodetic azimuth can be transformed to grid bearing by the application of ‘grid convergence’ and
the ‘t – T ’ correction.

(2) The ellipsoidal distance can be transformed to grid distance by multiplying it by the scale factor.

The plane coordinates may now be computed, using this adjusted data, by the application of plane trigono-
metry. Thus apart from the cartographic aspects of producing a map or plan, the engineering surveyor now
has an extremely simple mathematical process for transforming field data to grid data and vice versa.

The orthomorphic projection that is now used virtually throughout the world is the transverse Mercator
projection, which is ideal for countries having their greatest extent in a north–south direction. This can
be envisaged as a cylinder surrounding the ellipsoid (Figure 8.17) onto which the ellipsoid positions are
projected. The cylinder is in contact with the ellipsoid along a meridian of longitude and the lines of latitude
and longitude are mathematically projected onto the cylinder. Orthomorphism is achieved by stretching
the scale along the meridians to keep pace with the increasing scale along the parallels. By opening up the
cylinder and spreading it out flat, the lines of latitude and longitude form a graticule of complex curves
intersecting at right angles, the central meridian being straight.

Fig. 8.17 Cylindrical projection
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It is obvious from Figure 8.17 that the ratio of distance on the ellipsoid to that on the projection would
only be correct along the central meridian, where the cylinder and ellipsoid are in contact, and thus the
scale factor would be unity (F = 1).

If geographical coordinates of the point are known and projection coordinates are required then:

(1) E = F0

[
ν · �λ cos φ + ν

�λ3

6
cos3 φ(ψ − t2) + ν

�λ5

120
cos5 φ(4ψ3(1 − 6t2)

+ψ2(1 + 8t2) − ψ(2t2) + t4) + ν · �λ7

5040
cos7 φ(61 − 479t2 + 179t4 − t6)

]
(8.40)

(2) N = F0

[
M + ν sin φ

�λ2

2
cos φ + ν sin φ

�λ4

24
cos3 φ(4ψ2 + ψ − t2)

+ ν sin φ
�λ6

720
cos5 φ(8ψ4(11 − 24t2) − 28ψ3(1 − 6t2) + ψ2(1 − 32t2)

−ψ(2t2) + t4) + ν sin φ
�λ8

40 320
cos7 φ(1385 − 3111t2 + 543t4 − t6)

]
(8.41)

where:

F0 = scale factor on the central meridian
�λ = difference in longitude between the point and the central meridian

t = tan φ

ψ = ν/ρ
M = meridian distance from the latitude of the origin, and is obtained from:

M = a(A0φ − A2 sin 2φ + A4 sin 4φ − A6 sin 6φ) (8.42)

and A0 = 1 − e2/4 − 3e4/64 − 5e6/256

A2 = (3/8)(e2 + e4/4 + 15e6/128)

A4 = (15/256)(e4 + 3e6/4)

A6 = 35e6/3072

In equations (8.47) and (8.48) E is the difference in easting from the central meridian and N is the
distance north from the projection of the zero northing that passes through the false origin on the central
meridian.

The reverse case is where the projection coordinates (E, N) are known and the geographical
coordinates (φ, �λ) are required. Find by iteration, φ′, the latitude for which:

N = am0(A0φ
′ − A2 sin 2φ′ + A4 sin 4φ′ − A6 sin 6φ′)
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and use it to find v′ and ρ′ and hence φ and �λ from:

φ = φ′ − t′E2

2m2
0ν

′ρ′ + t′E4

24m4
0ν

′3ρ′
{
−4ψ ′2 + 9ψ ′(1 − t′2) + 12t′2

}

− t′E6

720 m6
0ν

′5ρ′
{

8ψ ′4(11 − 24t′2) − 12ψ ′3(21 − 71t′2)

+15ψ ′2(15 − 98t′2 + 15t′4) + 180ψ ′(5t′2 − 3t′4) + 360t′4
}

− t′E8

40 320 m8
0ν

′7ρ′ (1385 + 3633t′2 + 4095t′4 + 1575t′6) (8.43)

�λ = E

m0ν′c′ − E3

6 m3
0ν

′3c′ (ψ
′ + 2t′2)

+ E5

120 m5
0ν

′5c′
{
−4ψ ′3(1 − 6t′2) + ψ ′2(9 − 68t′2) + 72ψ ′t′2 + 24t′4

}

+ E7

5040 m7
0ν

′7c′ (61 + 662t′2 + 1320t′4 + 720t′6) (8.44)

where:

t′ = tan φ′

c′ = cos φ′

ψ ′ = ν′/ρ′

(3) Grid convergence = γ = −�λ sin φ − �λ3

3
sin φ cos2 φ(2ψ2 − ψ) (8.45)

which is sufficiently accurate for most applications in engineering surveying.

(4) The point scale factor can be computed from:

F = F0

[
1 + (E2/2R2

m) + (E4/24R4
m)

]
(8.46a)

The scale factor for the line AB can be computed from:

F = F0

[
1 + (E2

A + EAEB + EB)/6R2
m

]
(8.46b)

where

Rm = ρν

E = distance of the point from the central meridian in terms of the difference in Eastings.

In the majority of cases in practice, it is sufficient to take the distance to the easting of the mid-point of
the line (Em), and then:

F = F0(1 + E2
m/2R2) (8.47)

and R2 = ρν.
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(5) The ‘arc-to-chord’ correction or the (t − T ) correction, as it is more commonly called, from A to B, in
seconds of arc, is

(t − T )′′A = −(NB − NA)(2EA − EB)/6R2 sin 1′′ (8.48)

with sufficient accuracy for most purposes.

8.8 THE UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator Projection (UTM) is a worldwide system of transverse Mercator
projections. It comprises 60 zones, each 6◦ wide in longitude, with central meridians at 3◦, 9◦, etc. The
zones are numbered from 1 to 60, starting with 180◦ to 174◦ W as zone 1 and proceeding eastwards to zone
60. Therefore the central meridian (CM) of zone n is given by CM = 6n◦ – 183◦. In latitude, the UTM
system extends from 84◦ N to 80◦ S, with the polar caps covered by a polar stereographic projection.

The scale factor at each central meridian is 0.9996 to counteract the enlargement ratio at the edges of
the strips. The false origin of northings is zero at the equator for the northern hemisphere and 106 m at the
equator for the southern hemisphere. The false origin for eastings is 5 × 105 m west of the zone central
meridian.

8.9 ORDNANCE SURVEY NATIONAL GRID

The Ordnance Survey (OS) is the national mapping agency for Great Britain; its maps are based on a
transverse Mercator projection of Airy’s ellipsoid called the OSGB (36) datum. The current realization of
OSGB (36) is the OS’s Terrestrial Network 2002 (OSTN02) datum which is a rubber sheet fit of European
Terrestrial Reference System 1989 (ETRS89) coordinates, as derived from GPS to the original OSGB (36).
For most practical purposes there should be no significant difference between OSGB (36) and OSTN02.

The central meridian selected is 2◦ W, with the point of origin, called the false origin, at 49◦ N on this
meridian. The scale factor varies as the square of the distance from the central meridian, and therefore
in order to reduce scale error at the extreme east and west edges of the country the scale factor on the
central meridian was reduced to 0.999 601 27. One can think of this as reducing the radius of the enclosing
cylinder as shown in Figure 8.18.

The projection cylinder cuts the ellipsoid at two quasi-sub-parallels, approximately 180 km each side
of the central meridian, where the scale factor will be unity. Inside these two parallels the scale is too small
by less than 0.04%, and outside of them too large by up to 0.05% on the west coast of mainland Scotland.

The central meridian (2◦ W) which constitutes the N-axis (Y -axis) was assigned a large easting value of
E 400 000 m. The E-axis (X-axis) was assigned a value of N –100 000 m at the 49◦ N parallel of latitude on
the CM. Thus a rectangular grid is superimposed on the developed cylinder and is called the OS National
Grid (NG) (Figure 8.19). The assigned values result in a ‘false origin’ and positive values only throughout,
what is now, a plane rectangular coordinate system. Such a grid thereby establishes the direction of grid
north, which differs from geodetic north by γ , a variable amount called the grid convergence. On the
central meridian grid north and geodetic north are the same direction.

8.9.1 Scale factors

The concept of scale factors has been fully dealt with and it only remains to deal with their application.
It should be clearly understood that scale factors transform distance on the ellipsoid to distance on the
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Fig. 8.18 Scale on the projection

plane of projection. From Figure 8.20, it can be seen that a horizontal distance at ground level AB must
first be reduced to its equivalent at MSL (geoid) A1B1, using the altitude correction, thence to the ellipsoid
A′

1B′
1 using the geoid–ellipsoid value (N) and then multiplied by the scale factor to produce the projection

distance A2B2.
Whilst this is theoretically the correct approach, lack of knowledge of N may result in this step being

ignored. In Great Britain, the maximum value is 4.5 m, resulting in a scale error of only 0.7 ppm if ignored.
Thus the practical approach is to reduce to MSL and then to the projection plane, i.e. from D to S to G, as
in Figure 8.21.

The basic equation for scale factor is given in equation (8.46), where the size of the ellipsoid and the
value of the scale factor on the central meridian (F0) are considered. Specific to the OSGB (36) system,
the following formula may be developed, which is sufficiently accurate for most purposes.

Scale difference (SD) is the difference between the scale factor at any point (F) and that at the central
meridian (F0) and varies as the square of the distance from the central meridian, i.e.

SD = K(�E)2

where �E is the difference in easting between the central meridian and the point in question:

F = F0 + SD = 0.999 601 27 + K(�E)2

Consider a point 180 km east or west of the central meridian where F = 1:

1 = 0.999 601 27 + K(180 × 103)2

K = 1.228 × 10−14

and F = F0 + (1.228 × 10−14 × �E2) (8.49)

where F0 = 0.999 601 27

�E = E − 400 000

Thus the value of F for a point whose NG coordinates are E 638824, N 309912 is:

F = 0.999 601 27 + [1.228 × 10−14 × (638 824 − 400 000)2] = 1.0003016
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Fig. 8.19 National reference system of Great Britain showing 100-km squares. The figures used to designate
them in the former system, and the letters which have replaced the figures – courtesy Ordnance Survey, Crown
Copyright Reserved

As already intimated in equation (8.46), the treatment for highly accurate work is to compute F
for each end of the line and in the middle, and then obtain the mean value from Simpson’s rule.
However, for most practical purposes on short lines, it is sufficient to compute F at the mid-point
of a line. In OSGB (36) the scale factor varies, at the most, by only 6 ppm per km, and hence a
single value for F at the centre of a small site can be regarded as constant throughout the area. On
long motorway or route projects, however, one would need to use different scale factors for different
sections.
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Fig. 8.20 Distance reduction

The following examples will serve to illustrate the classical application of scale factors.

Worked examples

Example 8.1 Grid to ground distance Any distance calculated from NG coordinates will be a grid distance.
If this distance is to be set out on the ground it must:

(1) Be divided by the LSF to give the ellipsoidal distance at MSL, i.e. S = G/F.
(2) Have the altitude correction applied in reverse to give the horizontal ground distance.

Consider two points, A and B, whose coordinates are:

A: E 638 824.076 N 307 911.843
B: E 644 601.011 N 313 000.421

∴ �E = 5776.935 ∴ �N = 5088.578

Grid distance = (�E2 + �N2)
1
2 = 7698.481 m = G

Mid-easting of AB = E 641 712 m
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Fig. 8.21 Distance reduction ignoring separation

∴ F = 1.000 3188 (from equation (8.49))

∴ Ellipsoidal distance at MSL = S = G/F = 7696.027 m

Now assuming AB at a mean height (H) of 250 m above MSL, the altitude correction Cm is

Cm = SH

R
= 7696 × 250

6 384 100
= +0.301 m

∴ Horizontal distance at ground level = 7696.328 m

This situation could arise where the survey and design coordinates of a project are in OSGB (36) / OSTN02.
Distances calculated from the grid coordinates would need to be transformed to their equivalent on the
ground for setting-out purposes.

Example 8.2 Ground to grid distance When connecting surveys to the national grid, horizontal distances
measured on the ground must be:

(a) Reduced to their equivalent on the ellipsoid.
(b) Multiplied by the LSF to produce the equivalent grid distance, i.e. G = S × F.
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Consider now the previous problem worked in reverse:

Horizontal ground distance = 7696.328 m
Altitude correction Cm = −0.301 m

∴ Ellipsoidal distance S at MSL = 7696.027 m
F = 1.0003188

∴ Grid distance G = S × F = 7698.481 m

This situation could arise in the case of a link traverse computed in OSTN02. The length of each leg of
the traverse would need to be reduced from its horizontal distance at ground level to its equivalent distance
on the NG.

There is no application of grid convergence as the traverse commences from a grid bearing and connects
into another grid bearing. The application of the (t − T ) correction to the angles would generally be
negligible, being a maximum of 7′′ for a 10-km line and much less than the observational errors of the
traverse angles. It would only be necessary to consider both the above effects if the angular error was being
controlled by taking gyro-theodolite observations on intermediate lines in the traverse.

The two applications of first reducing to MSL and then to the plane of the projection (NG), illustrated
in the examples, can be combined to give:

Fa = F(1 − H/R) (8.50)

where H is the ground height relative to MSL and is positive when above and negative when below MSL.

Then from Example 8.1:

Fa = 1.0003188(1 − 250/6 384 100) = 1.0002797

Fa is then the scale factor adjusted for altitude and can be used directly to transform from ground to grid
and vice versa.

From Example 8.2:

7696.328 × 1.0002797 = 7698.481 m

8.9.2 Grid convergence

All grid north lines on the NG are parallel to the central meridian (E 400 000 m), whilst the meridians
converge to the pole. The difference between these directions is termed the grid convergence γ .

An approximate formula may be derived from the first term of equation (8.45).

γ = �λ sin φ

but �λ = �E/R cos φm

γ ′′ = �E tan φm × 206 265

R
(8.51)

where �E = distance from the central meridian

R = mean radius of Airy’s ellipsoid = (ρν)
1
2

φm = mean latitude of the line

The approximate method of computing γ is acceptable only for lines close to the central meridian, where
values correct to a few seconds may be obtained. As the distance from the central meridian increases, so
too does the error in the approximate formula and the full equation (8.45) is required.
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If the NG coordinates of a point are E 626 238 and N 302 646 and the latitude, calculated or scaled
from an OS map, is approximately N 52◦ 34′, then taking R = 6 380 847 m gives

γ ′′ = 226 238 tan 52◦ 34′
6 380 847 × 206 265 = 9554′′ = 2◦ 39′ 14′′

8.9.3 (t – T) correction

As already shown, the (t − T ) correction occurs because a geodesic on the ellipsoid is a curved line when
drawn on the projection and differs in direction, at a point, from the chord. Figure 8.22 illustrates the
angle θ as ‘observed’ and the angle β as computed from the grid coordinates; then:

β = θ − (t − T )BA − (t − T )BC

An approximate formula for (t − T ) specific to OSGB(36)/OSTN02 is as follows:

(t − T )′′A = (2�EA + �EB)(NA − NB)K (8.52)

where �E = NG easting −400 000, expressed in km
N = NG northing expressed in km
A = station at which the correction is required
B = station observed to
K = 845 × 10−6

The maximum value for a 10-km line would be about 7′′.
The signs of the corrections for (t − T ) and grid convergence are best obtained from a diagram similar

to that of Figure 8.23, where for line AB:

φ = grid bearing AB
θ = azimuth AB

then θ = φ − γ − (t − T )A, or
φ = θ + γ + (t − T )A

Fig. 8.22 t −T correction
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Fig. 8.23 Sign of t − T correction

For line CD:

θ = φ + γ − (t − T )C , or

φ = θ − γ + (t − T )C

8.10 PRACTICAL APPLICATIONS

All surveys connected to the NG should have their measured distances reduced to the horizontal, and then
to MSL; and should then be multiplied by the local scale factor to reduce them to grid distance.

Consider Figure 8.24 in which stations A, B and C are connected into the NG via a link traverse from
OS NG stations W , X and Y , Z:

(1) The measured distance D1 to D4 would be treated as above.
(2) The observed angles should in theory be corrected by appropriate (t −T ) corrections as in Figure 8.22.

These would generally be negligible but could be quickly checked using

(t − T )′′ = (�NAB × E/2R2)206 265 (8.53)

where E = easting of the mid-point of the line
R = an approximate value for the radius of the ellipsoid for the area

(3) There is no correction for grid convergence as the survey has commenced from a grid bearing and has
connected into another.

(4) Grid convergence and (t − T ) would need to be applied to the bearing of, say, line BC if its
bearing had been found using a gyro-theodolite and was therefore relative to true north (TN)
(see Figure 8.23). This procedure is sometimes adopted on long traverses to control the propagation
of angular error.
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Fig. 8.24 Link traverse

When the control survey and design coordinates are on the NG, the setting out by bearing and distance
will require the grid distance, as computed from the design coordinates, to be corrected to its equivalent
distance on the ground. Thus grid distance must be changed to its MSL value and then divided by the local
scale factor to give horizontal ground distance.

The setting-out angle, as computed from the design (grid) coordinates, will require no correction.

Worked examples

Example 8.3 The national grid coordinates of two points, A and B, are A: EA 238 824.076, NA 307 911.843;
and B: EB 244 601.011, NB 313 000.421

Calculate (1) The grid bearing and length of
→
AB.

(2) The azimuth of
→
BA and

→
AB.

(3) The ground length AB.

Given: (a) Mean latitude of the line = N 54◦ 00′.
(b) Mean altitude of the line = 250 m AOD.
(c) Local radius of the Earth = 6 384 100 m. (KU)

(1) EA = 238 824.076 NA = 307 911.843
EB = 244 601.011 NB = 313 000.421

�E = 5776.935 �N = 5088.578

Grid distance = (�E2 + �N2)
1
2 = 7698.481 m

Grid bearing
→
AB = tan−1 �E

�N
= 48◦ 37′ 30′′

(2) In order to calculate the azimuth, i.e. the direction relative to true north, one must compute
(a) the grid convergence at A and B(γ ) and (b) the (t − T ) correction at A and B (Figure 8.25).

(a) Grid convergence at A = γA = �EA tan φm

R

where �EA = Distance from the central meridian

= 400 000 −EA = 161 175.924 m

∴ γ ′′
A = 161 176 tan 54◦

6 384 100
× 206 265 = 7167′′ = 1◦ 59′ 27′′

Similarly γ ′′
B = 155 399 tan 54◦

6 384 100
× 206 265 = 6911′′ = 1◦ 55′ 11′′
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Fig. 8.25 Grid convergence and t − T corrections

(b) (tA − TA)′′ = (2�EA + �EB)(NA − NB)K

= 477.751 × −5.089 × 845 × 10−6 = −2.05′′

N .B. The eastings and northings are in km.

(tB − TB)′′ = (2�EB + �EA)(NB − NA)K

= 471.974 × 5.089 × 845 × 10−6 = +2.03′′

Although the signs of the (t − T ) correction are obtained from the equation you should
always draw a sketch of the situation.

Referring to Figure 8.25:

Azimuth
→
AB = φA = θA − γA − (tA − TA)

= 48◦ 37′ 30′′ − 1◦ 59′ 27′′ − 02′′ = 46◦ 38′ 01′′

Azimuth
→
BA = φB = θB − γB − (tB − TB)

= (48◦ 37′ 30′′ + 180◦) − 1◦ 55′ 11′′ + 2′′

= 226◦ 42′ 21′′
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(3) To obtain ground length from grid length one must obtain the LSF adjusted for altitude.

Mid-easting of AB = 241 712.544 m = E

LSF = 0.999 601 + [1.228 × 10−14 × (E − 400 000)2] = F

∴ F = 0.999 908

The altitude is 250 m OD, i.e. H = +250. LSF Fa adjusted for altitude is:

Fa = F

(
1 − H

R

)
= 0.999 908

(
1 − 250

6 384 100

)
= 0.999 869

∴ Ground length AB = grid length/Fa

∴ AB = 7698.481/0.999 869 = 7699.483 km

Example 8.4 As part of the surveys required for the extension of a large underground transport system, a
baseline was established in an existing tunnel and connected to the national grid via a wire correlation in
the shaft and precise traversing therefrom.

Thereafter, the azimuth of the base was checked by gyro-theodolite using the reversal point method of
observation as follows:

Reversal points Horizontal circle Remarks
readings

◦ ′ ′′

r1 330 20 40 Left reversal
r2 338 42 50 Right reversal
r3 330 27 18 Left reversal
r4 338 22 20 Right reversal

Horizontal circle reading of the baseline = 28◦ 32′ 46′′

Grid convergence = 0◦ 20′ 18′′

(t − T ) correction = 0◦ 00′ 04′′

NG easting of baseline = 500 000 m

Prior to the above observations, the gyro-theodolite was checked on a surface baseline of known azimuth.
The following mean data were obtained.

Known azimuth of surface base = 140◦ 25′ 54′′

Gyro azimuth of surface base = 141◦ 30′ 58′′

Determine the national grid bearing of the underground baseline. (KU)

Refer to Chapter 13 for information on the gyro-theodolite.
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Using Schuler’s mean

N1 = 1

4
(r1 + 2r2 + r3) = 334◦ 33′ 24′′

N2 = 1

4
(r2 + 2r3 + r4) = 334◦ 29′ 54′′

∴ N = (N1 + N2)/2 = 334◦ 31′ 39′′

Horizontal circle reading of the base = 28◦ 32′ 46′′

∴ Gyro azimuth of the baseline = 28◦ 32′ 46′′ − 334◦ 31′ 39′′

= 54◦ 01′ 07′′

However, observations on the surface base show the gyro-theodolite to be ‘over-reading’ by
(141◦ 30′ 58′′ − 140◦ 25′ 54′′) = 1◦ 05′ 04′′.

∴ True azimuth of baseline φ = gyro azimuth − instrument constant

= 54◦ 01′ 07′′ − 1◦ 05′ 04′′

= 52◦ 56′ 03′′

Now by reference to Figure 8.26, the sign of the correction to give the NG bearing can be seen, i.e.

Azimuth φ = 52◦ 56′ 03′′
Grid convergence γ = −0◦ 20′ 18′′

(t − T ) = −0◦ 00′ 04′′

∴ NG bearing θ = 52◦ 35′ 41′′

Fig. 8.26 Signs of grid convergence and t − T corrections
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Exercises

(8.1) Explain the meaning of the term ‘grid convergence’. Show how this factor has to be taken into account
when running long survey lines by theodolite.

From a point A in latitude 53◦N, longitude 2◦W, a line is run at right angles to the initial meridian for a
distance of 31 680 m in a westernly direction to point B.

Calculate the true bearing of the line at B, and the longitude of that point. Calculate also the bearing
and distance from B of a point on the meridian of B at the same latitude as the starting point A. The radius
of the Earth may be taken as 6273 km. (LU)

(Answer: 269◦ 37′ 00′′; 2◦ 28′ 51′′ W; 106.5 m)

(8.2) Two points, A and B, have the following coordinates:

Latitude Longitude

◦ ′ ′′ ◦ ′ ′′

A 52 21 14 N 93 48 50 E
B 52 24 18 N 93 42 30 E

Given the following values:

Latitude 1′′ of latitude 1′′ of longitude

52◦ 20′ 30.423 45 m 18.638 16 m
52◦ 25′ 30.423 87 m 18.603 12 m

find the azimuths of B from A and of A from B, also the distance AB. (LU)

(Answer: 308◦ 23′ 36′′, 128◦ 18′ 35′′, 9021.9 m)

(8.3) At a terminal station A in latitude N 47◦22′40′′, longitude E 0◦ 41′ 10′′, the azimuth of a line AB of
length 29 623 m was 23◦ 44′ 00′′.

Calculate the latitude and longitude of station B and the reverse azimuth of the line from station B to
the nearest second. (LU)

Latitude 1′′ of longitude 1′′ of latitude

47◦ 30′ 20.601 m 30.399
47◦ 35′ 20.568 m 30.399

(Answer: N 47◦ 37′ 32′′; E 0◦ 50′ 50′′; 203◦ 51′ 08′′)
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Satellite positioning

9.1 INTRODUCTION

Before commencing this chapter, the reader should have studied Chapter 8 and acquired a knowledge of
geoid models, ellipsoids, transformations and heights, i.e. Sections 8.1 to 8.8. The subject of satellite
positioning is changing fast. Throughout this chapter a number of websites are referred to for fur-
ther information and data. The websites are mostly government or academic and are considered to be
likely to be maintained during the life of this edition of this book, although of course that cannot be
guaranteed.

The concept of satellite position fixing commenced with the launch of the first Sputnik satellite by
the USSR in October 1957. This was rapidly followed by the development of the Navy Navigation
Satellite System (NNSS) by the US Navy. This system, commonly referred to as the Transit system,
was created to provide a worldwide navigation capability for the US Polaris submarine fleet. The Tran-
sit system was made available for civilian use in 1967 but ceased operation in 1996. However, as the
determination of position required very long observation periods and relative positions determined over
short distances were of low accuracy, its application was limited to geodetic and low dynamic navigation
uses.

In 1973, the US Department of Defense (DoD) commenced the development of NAVSTAR (Navigation
System with Time and Ranging) Global Positioning System (GPS), and the first satellites were launched
in 1978.

The system is funded and controlled by the DoD but is partially available for civilian and foreign users.
The accuracies that may be obtained from the system depend on the degree of access available to the user,
the sophistication of his/her receiver hardware and data processing software, and degree of mobility during
signal reception.

In very broad terms, the geodetic user in a static location may obtain ‘absolute’ accuracy (with
respect to the mass centre of the Earth within the satellite datum) to better than ±1 metre and posi-
tion relative to another known point, to a few centimetres over a range of tens of kilometres, with data
post-processing. At the other end of the scale, a technically unsophisticated, low dynamic (ship or land
vehicle) user, with limited access to the system, might achieve real time ‘absolute’ accuracy of 10–20
metres.

The GPS navigation system relies on satellites that continuously broadcast their own position in space
and in this the satellites may be thought of as no more than control stations in space. Theoretically, a
user who has a clock, perfectly synchronized to the GPS time system, is able to observe the time delay
of a GPS signal from its own time of transmission at the satellite, to its time of detection at the user’s
equipment. The time delay, multiplied by the mean speed of light, along the path of the transmission
from the satellite to the user equipment, will give the range from the satellite at its known position, to
the user. If three such ranges are observed simultaneously, there is sufficient information to compute the
user’s position in three-dimensional space, rather in the manner of a three-dimensional trilateration. The
false assumption in all this is that the user’s receiver clock is perfectly synchronized with the satellite
clocks.
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In practice, although the satellite clocks are almost perfectly synchronized to the GPS time system, the
user clock will have an error or offset. So the user is not directly able to measure the range to a particular
satellite, but only the ‘pseudo-range’, i.e. the actual range with an unknown, but instantaneously fixed
offset. This is the clock error times the speed of light. There are four unknown parameters to be solved
for in the navigation solution, the three coordinates of user position and the receiver clock offset. A four-
parameter solution therefore requires simultaneous observations to four satellites. At least four satellites
must be visible at all times, to any observer, wherever he/she may be on or above the surface of the Earth.
Not only must at least four satellites be visible but also they, or the best four if there are more, must be in
a good geometric arrangement with respect to the user.

Now that GPS is fully operational, relative positioning to several millimetres, with short observation
periods of a few minutes, have been achieved. For distances in excess of 5 km GPS is generally more
accurate than EDM traversing. Therefore GPS has a wide application in engineering surveying. The
introduction of GPS has had an even greater impact on practice in engineering surveying than that of
EDM. Apart from the high accuracies attainable, GPS offers the following significant advantages:

(1) The results from the measurement of a single line, usually referred to as a baseline, will yield not
only the distance between the stations at the end of the line but their component parts in the X/Y /Z or
Eastings/Northings/Height or latitude/longitude/height directions.

(2) No line of sight is required. Unlike all other conventional surveying systems a line of sight between
the stations in the survey is not required. Each station, however, must have a clear view of the sky
so that it can ‘see’ the relevant satellites. The advantage here, apart from losing the requirement for
intervisibility, is that control no longer needs to be placed on high ground and can be in the same
location as the engineering works concerned.

(3) Most satellite surveying equipment is suitably weatherproof and so observations, with current systems,
may be taken in any weather, by day or by night. A thick fog will not hamper survey operations.

(4) Satellite surveying can be a one-person operation with significant savings in time and labour.
(5) Operators do not need high levels of skill.
(6) Position may be fixed on land, at sea or in the air.
(7) Base lines of hundreds of kilometres may be observed thereby removing the need for extensive geodetic

networks of conventional observations.
(8) Continuous measurement may be carried out resulting in greatly improved deformation monitoring.

However, GPS is not the answer to every survey problem. The following difficulties may arise:

(1) A good electronic view of the sky is required so that the satellites may be ‘seen’ and ‘tracked’. There
should not be obstructions that block the ‘line of sight’ from the receiver to the satellite. This is usually
not a problem for the land surveyor but may become one for the engineering surveyor as a construction
rises from the ground. Satellite surveying cannot take place indoors, nor can it take place underground.

(2) The equipment concerned is expensive. A pair of GPS receivers costs about the same as three or four
total stations, though this will vary from manufacturer to manufacturer. Like total stations, however,
prices are falling while capabilities are increasing.

(3) Because satellites orbit the whole Earth, the coordinate systems that describe the positions of satellites
are global rather than local. Thus, if coordinates are required in a local datum or on a projection, then
the relationship between the local projection and datum, and the coordinate system of the satellite,
must also be known.

(4) The value of height determined by satellite is not that which the engineering surveyor would imme-
diately recognize. Since the coordinate system of GPS is Earth mass centred, then any height of a
point on the Earth’s surface will be relative to some arbitrarily defined datum, such as the surface of
an ellipsoid. If height above the geoid (or mean sea level) is required, then the separation between the
geoid and the chosen ellipsoid will also be required. Some GPS receivers may have a geoid model in
their software to solve this problem; however, the model may be coarse.
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9.2 GPS SEGMENTS

The GPS system can be broadly divided into three segments: the space segment, the control segment and
the user segment.

The space segment is composed of satellites (Figure 9.1). The constellation consists at the time of
writing of 29 satellites including spares. The satellites are in almost circular orbits, at a height of 20 200 km
above the Earth or about three times the radius of the Earth and with orbit times of just under 12 hours.
The six orbital planes are equally spaced (Figure 9.2), and are inclined at 55◦ to the equator. Individual
satellites may appear for up to five hours above the horizon. The system has been designed so that at least
four satellites will always be in view at least 15◦ above the horizon.

The GPS satellites weigh, when in final orbit, approximately 850 kg. The design life of the satellites
is 7.5 years but they carry 10 years’ worth of propulsion consumables. Two sun-seeking single degree of

Fig. 9.1 GPS satellite (courtesy of Air Force Link)

Fig. 9.2 The original planned GPS constellation: 24 satellites in 6 orbital planes, at 55 ◦ inclination and 20 200 km
altitude with 12-hour orbits (courtesy Leica Geosystems)
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freedom solar arrays, which together cover over 7 m2 provide the electrical power. Power is retained during
eclipse periods by three nickel-cadmium batteries. Reaction wheels control the orientation and position of
the satellite in space. Thermal control louvers, layered insulation and thermostatically controlled heaters
control the temperature of this large satellite. The satellite is built with a rigid body of aluminium boarded
honeycomb panels. The satellite may be ‘navigated’ to a very limited extent in space with small hydrazine
jets. There are two small trim thrusters and 20 even smaller attitude control thrusters. Antennae transmit
the satellite’s signals to the user. Each satellite carries two rubidium and two caesium atomic clocks to
ensure precise timing.

As far as the user is concerned, each GPS satellite broadcasts on two L Band carrier frequencies. L1 =
1575.42 MHz (10.23 × 154) and L2 = 1227.6 MHz (10.23 × 120). The carriers are phase modulated to
carry two codes, known as the P code or Precise code or PPS (Precise Positioning Service) and the C/A
code or Course/Acquisition code or SPS (Standard Positioning Service) (Figure 9.3). The C/A code has a
‘chipping rate’, which is a rate of phase modulation, of 1.023 × 106 bits/sec and the code repeats every
millisecond. This means that the sequence that makes up the C/A code is only 1023 bits long. Multiplied
by the speed of light, each bit is then 293 m long and the whole code about 300 km. By contrast, the P code
chips at 10.23 × 106 bits/sec and repeats every 267 days although each satellite only uses a seven-day
segment of the whole code. The P code is thus about 2.4 × 1014 bits long. Without prior knowledge of its
structure, the P code will appear as Pseudo Random Noise (PRN). This means that it is relatively easy for
the user’s equipment to obtain lock onto the C/A code, since it is short, simple and repeats 1000 times a
second. Without knowledge of the P code, it is impossible in practice to obtain lock because the P code is
so long and complex. This is the key to selective access to the GPS system. Only those users approved by
the US DoD will be able to use the P code. A 50 Hz data stream that contains the following information
further modulates each code:

• The satellite ephemeris, i.e. its position in space with respect to time
• Parameters for computing corrections to the satellite clock

Oscillator
F = 10.23 MHz

Data

P code
F

C/A code
F/10

Antenna
output

L1
154 × F

L2
120 × F

Fig. 9.3 GPS signal generation
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• The Hand Over Word (HOW) for time synchronization that allows the user with access to the P code to
transfer from the C/A to P code

• Information on other satellites of the constellation, including status and ephemerides

The satellite navigation message, which describes the satellite positions, is uploaded to the satellites by
the Operational Control Segment (OCS). The OCS operates as three elements:

• Monitor stations at Ascension Island, Diego Garcia, Kwajalein and Hawaii
• A master control station at Colorado Springs, USA
• An upload station at Vandenberg Air Force Base, USA

The monitor stations are remote, unmanned stations, each with a GPS receiver, a clock, meteorological sen-
sors, data processor and communications. Their functions are to observe the broadcast satellite navigation
message and the satellite clock errors and drifts.

The data is automatically gathered and processed by each monitor station and is transmitted to the
master control station. By comparing the data from the various monitor stations the master control station
can compute the errors in the current navigation messages and satellite clocks, and so can compute updated
navigation messages for future satellite transmission. These navigation messages are passed to the upload
station and are in turn processed for transmission to the satellites by the ground antenna. The monitor
stations then receive the updated navigation messages from the satellites and so the data transmission and
processing circle is complete.

The master control station is also connected to the time standard of the US Naval Observatory in
Washington, DC. In this way, satellite time can be synchronized and data relating it to universal time
transmitted. Other data regularly updated are the parameters defining the ionosphere, to facilitate the
computation of refraction corrections to the distances measured. The user segment consists essentially of a
portable receiver/processor with power supply and an omnidirectional antenna (Figure 9.4). The processor
is basically a microcomputer containing all the software for processing the field data.

9.3 GPS RECEIVERS

Basically, a receiver obtains pseudo-range or carrier phase data to at least four satellites. As GPS receiver
technology is developing so rapidly, it is only possible to deal with some of the basic operational charac-
teristics. The type of receiver used will depend largely upon the requirements of the user. For instance, if
GPS is to be used for absolute as well as relative positioning, then it is necessary to use pseudo-ranges. If
high-accuracy relative positioning were the requirement, then the carrier phase would be the observable
involved. For real-time pseudo-range positioning, the user’s receiver needs access to the navigation mes-
sage (Broadcast Ephemerides). If carrier phase observations are to be used, the data may be post-processed
and an external precise ephemeris may also be used.

Most modern receivers are ‘all in view’, that is they have enough channels to track all visible satellites
simultaneously. A channel consists of the hardware and software necessary to track a satellite’s code and/or
carrier phase measurement continuously.

When using the carrier phase observable, it is necessary to remove the modulations. Modern geodetic
receivers may work in a code correlation or codeless way. Code correlation uses a delay lock loop to
maintain alignment with the incoming, satellite-generated signal. The incoming signal is multiplied by its
equivalent part of the generated signal, which has the effect of removing the codes. It does still retain the
navigation message and can therefore utilize the Broadcast Ephemeris.

In the codeless mode a receiver uses signal squaring to multiply the received signal by itself, thereby
doubling the frequency and removing the code modulation. This process, whilst reducing the signal-to-noise
ratio, loses the navigation message.
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Fig. 9.4 Handheld GPS receiver

Code correlation needs access to the P code if tracking on L2 frequency. As the P code may be changed
to the Y code and made unavailable to civilian users, L2 tracking would be impossible. However, with
code correlation receivers are able to track satellites at lower elevations.

Some receivers used for navigation purposes generally track all available satellites obtaining L1 pseudo-
range data and for entering the majority of harbours need to be able to accept differential corrections (DGPS)
from an on-shore reference receiver.

Geodetic receivers used in engineering surveying may be single or dual frequency, with from 12 to
24 channels in order to track all the satellites available. Some geodetic receivers also have channels
available for GLONASS, the Russian system equivalent to GPS.

All modern receivers can acquire the L1 pseudo-range observable using a code correlation process
illustrated later. When the pseudo-range is computed using the C/A code it can be removed from the
signal in order to access the L1 carrier phase and the navigation message. These two observations could
be classified as civilian data. Dual frequency receivers also use code correlation to access the P code
pseudo-range data and the L2 carrier phase. However, this is only possible with the ‘permission’ of the
US military who can prevent access to the P code. This process is called Anti-Spoofing (AS). When AS is
operative a signal squaring technique may be used to access the L2 carrier.
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9.4 SATELLITE ORBITS

The German astronomer Johannes Kepler (1571–1630) established three laws defining the movement of
planets around the sun, which also apply to the movement of satellites around the Earth.

(1) Satellites move around the Earth in elliptical orbits, with the centre of mass of the Earth situated at one
of the focal points G (Figure 9.5). The other focus G′ is unused. The implications of this law are that a
satellite will at times be closer to or further away from the Earth’s surface depending upon which part
of its orbit it is in. GPS satellite orbits are nearly circular and so have very small eccentricity.

(2) The radius vector from the Earth’s centre to the satellite sweeps out equal areas at equal time intervals
(Figure 9.6). Therefore a satellite’s speed is not a constant. The speed will be a minimum when the
satellite is at apogee, at its furthest from the centre of the Earth and a maximum when it is at perigee,
the point of closest approach.

(3) The square of the orbital period is proportional to the cube of the semi-major axis a, i.e. T2 =
a3 × constant. The value of the constant was later shown by Newton to be µ/4π2 where µ is the
Earth’s gravitational constant and is equal to 398 601 km3 s−2. Therefore T2 = a3µ/4π2. So, whatever
the satellite’s orbital eccentricity, providing the semi-major axis is the same, then so will be the period.

Therefore these laws define the geometry of the orbit, the velocity variation of the satellite along its orbital
path, and the time taken to complete an orbit.

apogee perigee

Fig. 9.5 An elliptical orbit

Fig. 9.6 Kepler’s second law
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Fig. 9.7 The orbit in space

Whilst a and e, the semi-major axis and the eccentricity, define the shape of the ellipse (see Chapter 8),
its orientation in space must be specified by three angles defined with respect to a space-fixed reference
coordinate system. The spatial orientation of the orbital ellipse is shown in Figure 9.7 where:

(1) Angle � is the right ascension (RA) of the ascending node of the orbital path, measured on the equator,
eastward from the vernal equinox (γ).

(2) i is the inclination of the orbital plane to the equatorial plane.
(3) ω is the argument of perigee, measured in the plane of the orbit from the ascending node.

Having defined the orbit in space, the satellite is located relative to the point of perigee using the angle f ,
called the ‘true anomaly’ at the time of interest.

The line joining perigee and apogee is called the ‘line of apsides’ and is the X-axis of the orbital space
coordinate system. The Y -axis is in the mean orbital plane at right angles to the X-axis. The Z-axis is
normal to the orbital plane and will be used to represent small perturbations from the mean orbit. The XYZ
space coordinate system has its origin at G. It can be seen from Figure 9.8 that the space coordinates of
the satellite at time t are:

X0 = r cos f

Y0 = r sin f

Z0 = 0 (in a pure Keplerian or normal orbit)

where r = the distance from the Earth’s centre to the satellite.
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Fig. 9.8 Orbital coordinate system

The space coordinates can easily be computed using the information contained in the broadcast
ephemeris. The procedure is as follows:

(1) Compute T , which is the orbital period of the satellite, i.e. the time it takes to complete its orbit. Using
Kepler’s third law:

T = 2πa(a/µ)
1
2 (9.1)

µ is the Earth’s gravitational constant and is equal to 3.986005 × 1014 m3s−2.
(2) Compute the ‘mean anomaly’ M, which is the angle swept out by the satellite in the time interval

(ts − tp) from

M = 2π (ts − tp)/T (9.2)

where ts = the time of the satellite signal transmission and
tp = the time of the satellite’s passage through perigee (obtained from the broadcast

ephemeris).
M defines the position of the satellite in orbit but only for ellipses with e = 0, i.e. circles. To correct
for this it is necessary to obtain the ‘eccentric anomaly’ E and hence the ‘true anomaly’ f (Figure 9.9)
for the near-circular GPS orbits.

(3) From Kepler’s equation: E − e sin E = M (9.3)

where E and M are in radians. The equation is solved iteratively for E. e is the eccentricity of an
ellipse, calculated from

e = (1 − b2/a2)
1
2

Now the ‘true anomaly’ f is computed from

cos f = (cos E − e)/(1 − e cos E) (9.4)

or

tan(f /2) = [(1 + e)/(1 − e)] 1
2 tan(E/2) (9.5)

Use the formula (9.4) or (9.5) which is most sensitive to change in f .
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Fig. 9.9 The orbital ellipse

(4) Finally, the distance from the centre of the Earth to the satellite (GS), equal to r, is calculated from

r = a(1 − e cos E) (9.6)

and, as first indicated,

X0 = r cos f

Y0 = r sin f (9.7)

Z0 = 0

It is assumed here that the position of the satellite may be determined from the terms that define a normal
or Keplerian orbit at the time (ts) of observation. The actual orbit of the satellite departs from the Keplerian
orbit due to the effects of:

(1) the non-uniformity of the Earth’s gravity field
(2) the attraction of the moon and sun
(3) atmospheric drag
(4) direct and reflected solar radiation pressure
(5) earth tides
(6) ocean tides

These forces produce orbital perturbations, the total effect of which must be mathematically modelled
to produce a precise position for the satellite at the time of observation. As already illustrated, the pure,
smooth Keplerian orbit is obtained from the elements:

a – semi-major axis
e – eccentricity

which give the size and shape of the orbit
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i – inclination
� – right ascension of the ascending node

which orient the orbital plane in space with respect to the Earth
ω – argument of perigee
tp – ephemeris reference time

which fixes the position of the satellite within its orbit

Additional parameters given in the broadcast ephemeris describe the deviations of the satellite motion
from the pure Keplerian form. There are two ephemerides available: the broadcast, shown below, and the
precise.

M0 = mean anomaly
�n = mean motion difference

e = eccentricity√
a = square root of semi-major axis
� = right ascension
i0 = inclination
ω = argument of perigee
�̇ = rate of right ascension
i̇ = rate of inclination

Cuc, Cus = correction terms to argument of latitude
Crc, Crs = correction terms to orbital radius
Cic, Cis = correction terms to inclination

tp = ephemeris reference time

Using the broadcast ephemeris, plus two additional values from the WGS84 model, namely:

ωe – the angular velocity of the Earth (7.2921151467 × 10−5 rad s−1)
µ – the gravitational/mass constant of the Earth (3.986005 × 1014 m3 s−2)

The Cartesian coordinates in a perturbed satellite orbit can be computed using:

u – the argument of latitude (the angle in the orbital plane, from the ascending node to the satellite)
r – the geocentric radius, as follows

X0 = r cos u

Y0 = r sin u (9.8)

Z0 = 0

where r = a(1 − e cos E) + Crc cos 2(ω + f ) + Crs sin 2(ω + f )

u = ω + f + Cuc cos 2(ω + f ) + Cus sin 2(ω + f )

where a(1−e cos E) is the elliptical radius, Crc and Crs the cosine and sine correction terms of the geocentric
radius and Cuc, Cus the correction terms for u.

It is now necessary to rotate the orbital plane about the X0-axis, through the inclination i, to make the
orbital plane coincide with the equatorial plane and the Z0-axis coincide with the Z-axis of the Earth fixed
system (IRP). Thus:

XE = X0

YE = Y0 cos i (9.9)

ZE = Y0 sin i
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where

i = i0 + i̇(ts − tp) + Cic cos 2(ω + f ) + Cis sin 2(ω + f )

and i0 is the inclination of the orbit plane at reference time tp
i̇ is the linear rate of change of inclination
Cic, Cis are the amplitude of the cosine and sine correction terms of the inclination of the
orbital plane.

Finally, although the ZE-axis is now correct, the XE-axis aligns with the Ascending Node and requires a
rotation about Z towards the Zero Meridian (IRM) usually referred to as the Greenwich Meridian. The
required angle of rotation is the Right Ascension of the Ascending Node minus the Greenwich Apparent
Sidereal Time (GAST) and is in effect the longitude of the ascending node of the orbital plane (λ0) at the
time of observation ts.

To compute λ0 we use the right ascension parameter �0, the change in GAST using the Earth’s rotation
rate ωe during the time interval (ts − tp) and change in longitude since the reference time, thus:

λ0 = �0 + (�̇ − ωe)(ts − tp) − ωetp

and

X = XE cos λ0 − YE sin λ0

Y = XE sin λ0 + YE cos λ0 (9.10)

Z = ZE

Full details of the computing process, summarized above, may be found in the GPS Interface Control
Document at http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm. Alternatively try keywords GPS
and ICD in a search engine.

The accuracy of the orbit deduced from the Broadcast Ephemeris is about 10 m at best and is directly
reflected in the absolute position of points. Whilst this may be adequate for some applications, such as
navigation, it would not be acceptable for most engineering surveying purposes. Fortunately, differential
procedures and the fact that engineering generally requires relative positioning using carrier phase, sub-
stantially eliminates the effect of orbital error. However, relative positioning accuracies better than 0.1 ppm
of the length of the base line can only be achieved using a Precise Ephemeris. Several different Precise
Ephemerides may be downloaded from http://www.ngs.noaa.gov/GPS/GPS.html.

The GPS satellite coordinates are defined with respect to an ellipsoid of reference called the World
Global System 1984 (WGS84). The system has its centre coinciding with the centre of mass of the Earth
and orientated to coincide with the IERS axes, as described in Chapter 8. Its size and shape is the one that
best fits the geoid over the whole Earth, and is identical to the Ellipsoid GRS80 with a = 6 378 137.0 m
and 1/f = 298.257223563.

In addition to being a coordinate system, other values, such as a description of the Earth’s gravity field,
the velocity of light and the Earth’s angular velocity, are also supplied. Consequently, the velocity of
light as quoted for the WGS84 model must be used to compute ranges from observer to satellite, and the
subsequent position, based on all the relevant parameters supplied.

The final stage of the positioning process is the transformation of the WGS84 coordinates to local
geodetic or plane rectangular coordinates and height. This is usually done using the Helmert transformation
outlined in Chapter 8. The translation, scale and rotational parameters between GPS and national mapping
coordinate systems have been published. The practical problems involved have already been mentioned in
Chapter 8. If the parameters are unavailable, they can be obtained by obtaining the WGS84 coordinates of
points whose local coordinates are known. A least squares solution will produce the parameters required.
(The transformation processes are dealt with later in the chapter.)

It must be remembered that the height obtained from satellites is the ellipsoidal height and will require
accurate knowledge of the geoid–ellipsoid separation (N) to change it to orthometric height.
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9.5 BASIC PRINCIPLE OF POSITION FIXING

Position fixing in three dimensions may involve the measurement of distance (or range) to at least three
satellites whose X , Y and Z position is known, in order to define the user’s Xp, Yp and Zp position.

In its simplest form, the satellite transmits a signal on which the time of its departure (tD) from the
satellite is modulated. The receiver in turn notes the time of arrival (tA) of this time mark. Then the time
which it took the signal to go from satellite to receiver is (tA − tD) = �t called the delay time. The
measured range R is obtained from

R1 = (tA − tD)c = �tc (9.11)

where c = the velocity of light.
Whilst the above describes the basic principle of range measurement, to achieve it one would require

the receiver to have a clock as accurate as the satellite’s and perfectly synchronized with it. As this would
render the receiver impossibly expensive, a correlation procedure, using the pseudo-random binary codes
(P or C/A), usually ‘C/A’, is adopted. The signal from the satellite arrives at the receiver and triggers the
receiver to commence generating its own internal copy of the C/A code. The receiver-generated code is
cross-correlated with the satellite code (Figure 9.10). The ground receiver is then able to determine the
time delay (�t) since it generated the same portion of the code received from the satellite. However, whilst
this eliminates the problem of the need for an expensive receiver clock, it does not eliminate the problem
of exact synchronization of the two clocks. Thus, the time difference between the two clocks, termed clock
bias, results in an incorrect assessment of �t. The distances computed are therefore called ‘pseudo-ranges’.
The use of four satellites rather than three, however, can eliminate the effect of clock bias.

A line in space is defined by its difference in coordinates in an X, Y and Z system:

R = (�X2 + �Y2 + �Z2)
1
2

If the error in R, due to clock bias, is δR and is constant throughout, then:

R1 + δR = [(X1 − Xp)2 + (Y1 − Yp)2 + (Z1 − Zp)2] 1
2

R2 + δR = [(X2 − Xp)2 + (Y2 − Yp)2 + (Z2 − Zp)2] 1
2

R3 + δR = [(X3 − Xp)2 + (Y3 − Yp)2 + (Z3 − Zp)2] 1
2

R4 + δR = [(X4 − Xp)2 + (Y4 − Yp)2 + (Z4 − Zp)2] 1
2

(9.12)

where Xn, Yn, Zn = the coordinates of satellites 1, 2, 3 and 4 (n = 1 to 4)
Xp, Yp, Zp = the coordinates required for point P
Rn = the measured ranges to the satellites

Solving the four equations for the four unknowns Xp, Yp, Zp and δR also solves for the error due to clock
bias.

Fig. 9.10 Correlation of the pseudo-binary codes
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Whilst the use of pseudo-range is sufficient for navigational purposes and constitutes the fundamental
approach for which the system was designed, a much more accurate measurement of range is required
for positioning in engineering surveying. Measuring phase difference by means of the carrier wave in a
manner analogous to EDM measurement does this. As observational resolution is about 1% of the signal
wavelength λ, the following table shows the reason for using the carrier waves; this is referred to as the
carrier phase observable.

GPS signal Approximate wavelength λ 1% of λ

C/A code 300 m 3 m
P code 30 m 0.3 m
Carrier 200 mm 2 mm

Carrier phase is the difference between the incoming satellite carrier signal and the phase of the constant-
frequency signal generated by the receiver. It should be noted that the satellite carrier signal when it arrives
at the receiver is different from that initially transmitted, because of the relative velocity between transmitter
and receiver; this is the well-known Doppler effect. The carrier phase therefore changes according to the
continuously integrated Doppler shift of the incoming signal. This observable is biased by the unknown
offset between the satellite and receiver clocks and represents the difference in range to the satellite at
different times or epochs. The carrier phase movement, although analogous to EDM measurement, is a
one-way measuring system, and thus the number of whole wavelengths (N) at lock-on is missing; this is
referred to as the integer or phase ambiguity. The value of N can be obtained from GPS network adjustment
or from double differencing or eliminated by triple differencing.

9.6 DIFFERENCING DATA

Whilst the system was essentially designed to use pseudo-range for navigation purposes, it is the carrier
phase observable which is used in engineering surveying to produce high accuracy relative positioning.
Carrier phase measurement is similar to the measuring process used in EDM. However, it is not a two-
way process, as with EDM. The observations are ambiguous because of the unknown integer number of
cycles between the satellite and receiver at lock-on. Once the receiver has acquired the satellite signals,
the number of cycles can be tracked and counted (carrier phase) with the initial integer number of cycles,
known as the integer ambiguity, still unknown (Figure 9.11).

By a process of differencing between the phase received at one station from two satellites, from one
satellite at two stations, and between each of these over a period of time it is possible to solve for the
relative position of one station with respect to the other.

There are two major problems here. One is that, although the position on a single radio sine wave from
the satellite may be determined to about 1% of the wavelength, it is not possible to differentiate one sine
wave from another. Therefore, although the distance from a satellite may be computed to a few millimetres
(the wavelength on the L2 frequency is approximately 19 cm) there is an ‘ambiguity’ in that distance of a
whole number (an integer) of 19 cm wavelengths. A major part of the solution is to solve for this integer
ambiguity. This is done by a series of ‘difference’ solutions that are described below.

The other major problem is that of ‘cycle slips’. In the ‘triple difference solution’, which is differencing
over time, the cycles are counted from the start to the end of the observing period. If one or more of
the cycles are missed then the measure will be in error by the number of cycle slips multiplied by the
wavelength of the signal. Cycle slips may be ‘repaired’ if more than the minimum number of observations
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Fig. 9.11 Integer ambiguity

is taken and observations are recorded on a continuous basis. More flexible methods of using the carrier
phase observable have been developed. Kinematic surveying involves taking observations at two stations
for a period of time, say 10 minutes. One instrument is then moved from station to station remaining for
only a short period at each station. The post-processing again is all on a differencing basis. Semi-kinematic
surveying uses the whole number nature of the integer ambiguity and even allows for switching off the
instrument between repeated visits to the stations.

What follows is a demonstration of the concepts involved in the differencing processes and shows how
a solution may be achieved. It does not represent how the software of any specific instrument works.

In Figure 9.12 and in the text that follows, elements associated with satellites have superscripts and
elements associated with ground stations have subscripts.

Rj = position vector of ground station j
ra = position vector of satellite a
pa

j = actual range from satellite a to ground station j

= {
(xa − xj)2 + (ya − yj)2 + (za − zj)2

} 1
2

where xa, ya, za are the coordinates of satellite a
and xj, yj, zj are the coordinates of station j

Pa
j = pseudo-range
c = speed of radio waves in vacuo

Tj = receiver clock time of receipt of signal at station j from satellite a
ta = satellite clock time of transmission of signal at satellite a
gj = GPS time of receipt of signal at station j
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Fig. 9.12 Ranges between and positions of satellite and ground station

ga = GPS time of transmission of signal at satellite a
dTj = receiver clock offset at time of receipt of signal at station j from satellite a
dta = satellite clock offset at time of transmission of signal at satellite a
Fa

j = frequency of signal received from satellite a as measured at station j

The instantaneous phase φa
j of the signal from the ath satellite measured at the jth station receiver is

φa
j = Fa

j Pa
j /c = Fa

j {Tj − ta}
Using the common GPS time scale yields:

φa
j = Fa

j

{
(gj − dTj) − (ga − dta)

}

= Fa
j

{
gj − ga} + Fa

j

{ − dTj + dta}

= Fa
j pa

j /c + Fa
j

{ − dTj + dta}

= Fa
j |ra − Rj|/c + Fa

j

{ − dTj + dta}

(9.13)

The measurement of the phase φa
j needs the signal from the satellite to be a pure sine wave. The signal that

actually comes from the satellite has been phase modulated by the P code and the data, and if it is on the
L1 frequency, by the C/A code as well. If the data has been decoded and the code(s) are known, then they
can be applied in reverse to form the ‘reconstructed carrier wave’. If these are not known, then squaring
the received carrier wave may form a sine wave. Although the advantage is that data and codes do not
need to be known the squared wave signal is very noisy compared with the original signal, it has half the
amplitude and twice the frequency. Reconstructed carrier is an unmodulated wave that therefore does not
contain time information and so it is not possible to determine the time of a measurement. In other words,
the initial phase (or range) is not known.

The equation of a single phase measurement, equation (9.13), implicitly contains as unknowns the
coordinates of the satellite and ground station positions and the satellite and receiver clock offsets. Also in
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Fig. 9.13 Single difference

the measurement of the phase φa
j are the unknown number of whole cycles between the station and the

satellite.
The basic observable of GPS is the phase measurement, but it is necessary to use a linear combination

of the observables for further processing. These combinations are in the form of single differences, double
differences and triple differences and are used to solve for the clock errors and the integer ambiguities.

A single difference is most commonly understood as the difference in phase of ‘simultaneous’ measure-
ment between one satellite position and two observing stations (Figure 9.13). The processing eliminates
the effects of errors in the satellite clock. The single difference equation is:

dφa
jk = φa

k − φa
j − 2πna

jk

which becomes

dφa
jk = Fa

k |ra − Rk|/c − Fa
j |ra − Rj|/c − Fa

k dTk + Fa
j dTj + (Fa

k − Fa
j ) dta − 2πna

jk

where 2πna
jk is the difference between the integer ambiguities. If GPS time is taken as the time system of

the satellite then dta = 0 so the equation becomes

dφa
jk = Fa

k |ra − Rk|/c − Fa
j |ra − Rj|/c − Fa

k dTk + Fa
j dTj − 2πna

jk

and so errors in the satellite clock are eliminated. If the equation is now expanded then:

−dφa
jk + Fa

k {(xa − xk)2 + (ya − yk)2 + (za − zk)2} 1
2 /c − Fa

j {(xa − xj)
2 + (ya − yj)

2

+ (za − zj)
2} 1

2 /c − Fa
k dTk + Fa

j dTj − 2πna
jk = 0

The unknowns are now those of the positions of each ground station and the satellite and also the two
receiver clock offsets. There is also the unknown integer number of difference cycles between each ground
station and the satellite. To solve for this, it is necessary to know na

jk by some means and also to know
the satellite position since the x, y and z components of the satellite position will not be repeated in any
subsequent observation equations. The equation contains the integer ambiguity element 2πna

jk .
Orbital and atmospheric errors are virtually eliminated in relative positioning, as the errors may be

assumed identical. Baselines up to 50 km in length would be regarded as short compared with the height of
the satellites (20 200 km). Thus it could be argued that the signals to each end of the baseline would pass
through the same column of atmosphere, resulting in equal errors cancelling each other out. The above
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Fig. 9.15 Triple difference

differencing procedure is sometimes referred to as the ‘between-station’ difference and is the basis of
differential GPS.

A double difference is the difference of two single differences observed at the same ground stations
but with respect to two different satellites at the same time (Figure 9.14). The double difference formula
cancels out the errors in both the satellite and the ground station clocks. This is the observable that is used
in most GPS surveying software. The equation thus becomes:

dφab
jk = dφa

jk − dφb
jk − 2πnab

jk

= Fa
k |ra − Rk|/c − Fa

j |ra − Rj|/c − Fb
k |rb − Rk|/c + Fb

j |rb − Rj|/c − 2πnab
jk

and contains coordinates of satellites and stations but is also still an integer ambiguity term.



Satellite positioning 337

A solution to this problem is to observe a triple difference phase difference. This is the difference of
two double differences related to the same constellation of receivers and satellites but at different epochs
or events (Figure 9.15). In addition to all the errors removed by double differencing, the integer ambiguity
is also removed. The triple difference equation becomes

dφmn = {dφab
jk }n − {dφab

jk }m

and the 2πnab
jk is eliminated provided that the observations between epochs m and n are continuous. By

using triple differences, the phase ambiguity is eliminated. However, by using the triple difference solution
in the double difference equations to solve for the integer ambiguity, which of course must be an integer,
and by using that integer value back in the double difference solution, a more precise estimate of the
baseline difference in coordinates is obtained, than by using triple differences alone.

Triple differencing reduces the number of observations and creates a high noise level. It can, however,
be useful in the first state of data editing, particularly the location of cycle slips and their subsequent
correction. The magnitude of a cycle slip is the difference between the initial integer ambiguity and the
subsequent one, after signal loss. It generally shows up as a ‘jump’ or ‘gap’ in the residual output from a
least squares adjustment. Graphical output of the residuals in single, double and triple differencing clearly
illustrates the cycle slip and its magnitude (Figure 9.16).

Much of the above processing is transparent to the user in modern GPS processing software.

Fig. 9.16 Cycle slips
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9.7 GPS OBSERVING METHODS

The use of GPS for positioning to varying degrees of accuracy, in situations ranging from dynamic (navi-
gation) to static (control networks), has resulted in a wide variety of different field procedures using one
or other of the basic observables. Generally pseudo-range measurements are used for navigation, whilst
the higher precision necessary in engineering surveys requires carrier frequency phase measurements.

The basic point positioning method used in navigation gives the X, Y , Z position to an accuracy
of better than 20 m by observation to four satellites. However, the introduction of Selective Availabil-
ity (SA), see below, degraded this accuracy to 100 m or more and so led to the development of the
more accurate differential technique. In this technique the vector between two receivers (baseline) is
obtained, i.e. the difference in coordinates (�X, �Y , �Z). If one of the receivers is set up over a fixed
station whose coordinates are known, then comparison with the observed coordinates enables the differ-
ences to be transmitted as corrections to the second receiver (rover). In this way, all the various GPS
errors are lumped together in a single correction. At its simplest the corrections transmitted could be in
a simple coordinate format, i.e. δX , δY , δZ , which are easy to apply. Alternatively, the difference in
coordinate position of the fixed station may be used to derive corrections to the ranges to the various
satellites used. The rover then applies those corrections to its own observations before computing its
position.

The fundamental assumption in Differential GPS (DGPS) is that the errors within the area of survey
would be identical. This assumption is acceptable for most engineering surveying where the areas involved
are small compared with the distance to the satellites.

Where the area of survey becomes extensive this argument may not hold and a slightly different approach
is used called Wide Area Differential GPS.

It can now be seen that, using DGPS, the position of a roving receiver can be found relative to a
fixed master or base station without significant errors from satellite and receiver clocks, ionospheric and
tropospheric refraction and even ephemeris error. This idea has been expanded to the concept of having
permanent base stations established throughout a wide area or even a whole country.

As GPS is essentially a military product, the US Department of Defense has retained the facility to reduce
the accuracy of the system by interfering with the satellite clocks and the ephemeris of the satellite. This is
known as Selective Availability (SA) of the Standard Positioning Service (SPS). This form of degradation
has been switched off since May 2000 and it is unlikely, though possible, that it will be reintroduced as
there are other ways that access to the system can be denied to a hostile power. The P can also be altered to
a Y code, to prevent imitation of the PPS by hostile forces, and made unavailable to civilian users. This is
known as Anti-Spoofing (AS). However, the carrier wave is not affected and differential methods should
correct for most SA effects.

Using the carrier phase observable in the differential mode produces accuracies of 1 ppm of the baseline
length. Post-processing is needed to resolve for the integer ambiguity if the highest quality results are to
be achieved. Whilst this, depending on the software, can result in even greater accuracies than 1 ppm
(up to 0.01 ppm), it precludes real-time positioning. However, the development of Kinematic GPS and
‘on-the-fly’ ambiguity resolution makes real-time positioning possible and greatly reduces the observing
times.

The following methods are based on the use of carrier phase measurement for relative positioning using
two receivers.

9.7.1 Static positioning

This method is used to give high precision over long baselines such as are used in geodetic control surveys.
At its simplest, one receiver is set up over a station of known X, Y , Z coordinates, preferably in the
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WGS84 reference system, whilst a second receiver occupies the station whose coordinates are required.
Observation times may vary from 45 min to several hours. This long observational time is necessary to
allow a change in the relative receiver/satellite geometry in order to calculate the initial integer ambiguity
terms.

More usually baselines are observed when the precise coordinates of neither station are known. The
approximate coordinates of one station can be found by averaging the pseudo-range solution at that station.
Provided that those station coordinates are known to within 10 m it will not significantly affect the computed
difference in coordinates between the two stations. The coordinates of a collection of baselines, provided
they are interconnected, can then be estimated by a least squares free network adjustment. Provided that
at least one, and preferably more, stations are known in WGS84 or the local datum then the coordinates of
all the stations can be found in WGS84 or the local datum.

Accuracies in the order of 5 mm ±1 ppm of the baseline are achievable as the majority of errors
in GPS, such as clock, orbital and atmospheric errors, are eliminated or substantially reduced by the
differential process. The use of permanent active GPS networks established by a government agency or
private company results in a further increase in accuracy for static positioning.

Apart from establishing high precision control networks, it is used in control densification, measuring
plate movement in crustal dynamics and oil rig monitoring.

9.7.2 Rapid static

Rapid static surveying is ideal for many engineering surveys and is halfway between static and kinematic
procedures. The ‘master’ receiver is set up on a reference point and continuously tracks all visible satellites
throughout the duration of the survey. The ‘roving’ receiver visits each of the remaining points to be
surveyed, but stays for just a few minutes, typically 2–10 min.

Using difference algorithms, the integer ambiguity terms are quickly resolved and position, relative to
the reference point, obtained to sub-centimetre accuracy. Each point is treated independently and as it is
not necessary to maintain lock on the satellites, the roving receiver may be switched off whilst travelling
between stations. Apart from a saving in power, the necessity to maintain lock, which is very onerous in
urban surveys, is removed.

This method is accurate and economic where there are many points to be surveyed. It is ideally suited
for short baselines where systematic errors such as atmospheric, orbital, etc., may be regarded as equal at
all points and so differenced out. It can be used on large lines (>10 km) but may require longer observing
periods due to the erratic behaviour of the ionosphere. If the observations are carried out at night when the
ionosphere is more stable observing times may be reduced.

9.7.3 Reoccupation

This technique is regarded as a third form of static surveying or as a pseudo-kinematic procedure. It is
based on repeating the survey after a time gap of one or two hours in order to make use of the change in
receiver/satellite geometry to resolve the integer ambiguities.

The master receiver is once again positioned over a known point, whilst the roving receiver visits the
unknown points for a few minutes only. After one or two hours, the roving receiver returns to the first
unknown point and repeats the survey. There is no need to track the satellites whilst moving from point to
point. This technique therefore makes use of the first few epochs of data and the last few epochs that reflect
the relative change in receiver/satellite geometry and so permit the ambiguities and coordinate differences
to be resolved.

Using dual frequency data gives values comparable with the rapid static technique. Due to the method of
changing the receiver/satellite geometry, it can be used with cheaper single-frequency receivers (although
extended measuring times are recommended) and a poorer satellite constellation.
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9.7.4 Kinematic positioning

The major problem with static GPS is the time required for an appreciable change in the satellite/receiver
geometry so that the initial integer ambiguities can be resolved. However, if the integer ambiguities could
be resolved (and constrained in a least squares solution) prior to the survey, then a single epoch of data
would be sufficient to obtain relative positioning to sub-centimetre accuracy. This concept is the basis of
kinematic surveying. It can be seen from this that, if the integer ambiguities are resolved initially and
quickly, it will be necessary to keep lock on these satellites whilst moving the antenna.

9.7.4.1 Resolving the integer ambiguities

The process of resolving the integer ambiguities is called initialization and may be done by setting up both
receivers at each end of a baseline whose coordinates are accurately known. In subsequent data processing,
the coordinates are held fixed and the integers determined using only a single epoch of data. These values
are now held fixed throughout the duration of the survey and coordinates estimated every epoch, provided
there are no cycle slips.

The initial baseline may comprise points of known coordinates fixed from previous surveys, by static
GPS just prior to the survey, or by transformation of points in a local coordinate system to WGS84.

An alternative approach is called the ‘antenna swap’ method. An antenna is placed at each end of a
short base (5–10 m) and observations taken over a short period of time. The antennae are interchanged,
lock maintained, and observations continued. This results in a big change in the relative receiver/satellite
geometry and, consequently, rapid determination of the integers. The antennae are returned to their original
position prior to the surveys.

It should be realized that the whole survey will be invalidated if a cycle slip occurs. Thus, reconnaissance
of the area is still of vital importance, otherwise reinitialization will be necessary. A further help in this
matter is to observe to many more satellites than the minimum four required.

9.7.4.2 Traditional kinematic surveying

Assuming the ambiguities have been resolved, a master receiver is positioned over a reference point of
known coordinates and the roving receiver commences its movement along the route required. As the
movement is continuous, the observations take place at pre-set time intervals, often less than 1 s. Lock
must be maintained to at least four satellites, or re-established when lost. In this technique it is the trajectory
of the rover that is surveyed and points are surveyed by time rather than position, hence linear detail such
as roads, rivers, railways, etc., can be rapidly surveyed. Antennae can be fitted to fast moving vehicles, or
even bicycles, which can be driven along a road or path to obtain a three-dimensional profile.

9.7.4.3 Stop and go surveying

As the name implies, this kinematic technique is practically identical to the previous one, only in this case
the rover stops at the point of detail or position required (Figure 9.17). The accent is therefore on individual
points rather than a trajectory route, so data is collected only at those points. Lock must be maintained,
though the data observed when moving is not necessarily recorded. This method is ideal for engineering
and topographic surveys.

9.7.4.4 Real-time kinematic (RTK)

The previous methods that have been described all require post-processing of the results. However, RTK
provides the relative position to be determined instantaneously as the roving receiver occupies a position.
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Fig. 9.17 The roving receiver

The essential difference is in the use of mobile data communication to transmit information from the
reference point to the rover. Indeed, it is this procedure that imposes limitation due to the range over which
the communication system can operate.

The system requires two receivers with only one positioned over a known point. A static period of
initialization will be required before work can commence. If lock to the minimum number of satellites
is lost then a further period of initialization will be required. Therefore the surveyor should try to avoid
working close to major obstructions to line of sight to the satellites. The base station transmits code and
carrier phase data to the rover. On-board data processing resolves the ambiguities and solves for a change
in coordinate differences between roving and reference receivers. This technique can use single or dual
frequency receivers. Loss of lock can be regained by remaining static for a short time over a point of known
position.

The great advantage of this method for the engineering surveyor is that GPS can be used for setting-out
on site. The setting-out coordinates can be entered into the roving receiver, and a graphical output indicates
the direction and distance through which the pole-antenna must be moved. The positions of the point to be
set-out and the antenna are shown. When the two coincide, the centre of the antenna is over the setting-out
position.

9.7.4.5 Real-time kinematic on the fly

Throughout all the procedures described above, it can be seen that initialization or reinitialization can only
be done with the receiver static. This may be impossible in high accuracy hydrographic surveys or road
profiling in a moving vehicle. Ambiguity Resolution On the Fly (AROF) enables ambiguity resolution
whilst the receiver is moving. The techniques require L1 and L2 observations from at least five satellites
with a good geometry between the observer and the satellites. There are also restrictions on the minimum
periods of data collection and the presence of cycle slips. Both these limitations restrict this method of
surveying to GPS friendly environments. Depending on the level of ionospheric disturbances, the maximum
range from the reference receiver to the rover for resolving ambiguities whilst the rover is in motion is
about 10 km, with an achievable accuracy of 10–20 mm.

For both RTK and AROF the quality of data link between the reference and roving receiver is important.
Usually this is by radio but it may also be by mobile phone. When using a radio the following issues
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should be considered:

• In many countries the maximum power of the radio is legally restricted and/or a radio licence may be
required. This in turn restricts the practical range between the receivers.

• The radio will work best where there is a direct line of sight between the receivers. This may not always
be possible to achieve so for best performance the reference receiver should always be sited with the
radio antenna as high as possible.

• Cable lengths should be kept as short as possible to reduce signal losses.

9.8 ERROR SOURCES

The final position of the survey station is influenced by:

(1) The error in the range measurement.
(2) The satellite–receiver geometry.
(3) The accuracy of the satellite ephemerides.
(4) The effect of atmospheric refraction.
(5) The multipath environment at the receivers.
(6) The quantity and quality of satellite data collected.
(7) The connections between the observed GPS network and the existing control.
(8) The processing software used.

It is necessary, therefore, to consider the various errors involved, some of which have already been
mentioned.

The majority of the error sources are eliminated or substantially reduced if relative positioning is used,
rather than single-point positioning. This fact is common to many aspects of surveying. For instance, in
simple levelling it is generally the difference in elevation between points that is required. Therefore, if we
consider two points A and B whose heights HA and HB were obtained by measurements from the same
point which had an error δH in its assumed height then:

�HAB = (HA + δH) − (HB + δH)

with the result that δH is differenced out and difference in height is much more accurate than the individual
heights. Thus, if the absolute position of point A fixed by GPS was 10 m in error, the same would apply to
point B but their relative position would be comparatively error free. Then knowing the actual coordinates
of A and applying the computed difference in position between A and B would bring B to its correct relative
position. This should be borne in mind when examining the error sources in GPS.

9.8.1 Receiver clock error

This error is a result of the receiver clock not being compatible and in the same time system as the satellite
clock. Range measurement (pseudo-range) is thus contaminated. As the speed of light is approximately
300 000 km s−1, then an error of 0.01 s results in a range error of about 3000 km. As already shown this
error can be evaluated using four satellites or cancelled using differencing software.

9.8.2 Satellite clock error

Excessive temperature variations in the satellite may result in variation of the satellite clock from GPS
time. Careful monitoring allows the amount of drift to be assessed and included in the broadcast message
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and therefore substantially eliminated if the user is using the same data. Differential procedures eliminate
this error.

9.8.3 Satellite ephemeris error

Orbital data has already been discussed in detail with reference to Broadcast and Precise Ephemeris. Errors
are still present and influence baseline measurement in the ratio:

δb/b = δS/Rs

where

δb = error in baseline b

δS = error in satellite orbit

Rs = satellite range

The specification for GPS is that orbital errors should not exceed 3.7 m, but this is not always possible.
Error in the range of 10–20 m may occur using the Broadcast Ephemeris. Thus, for an orbital error of 10 m
on a 10 km baseline with a range of 20 000 km, the error in the baseline would be 5 mm. This error is
substantially eliminated over moderate length baselines using differential techniques.

9.8.4 Atmospheric refraction

Atmospheric refraction error is usually dealt with in two parts, namely ionospheric and tropospheric. The
effects are substantially reduced by DGPS compared with single-point positioning. Comparable figures are:

Single point Differential

Ionosphere 15–20 m 2–3 m
Troposphere 3–4 m 1 m

If refraction were identical at each end of a small baseline, then the total effect would be cancelled when
using DGPS.

The ionosphere is the region of the atmosphere from 50 to 1000 km in altitude in which ultraviolet
radiation has ionized a fraction of the gas molecules, thereby releasing free electrons. GPS signals are
slowed down and refracted from their true path when passing through this medium. The effect on range
measurement can vary from 5 to 150 m. As the ionospheric effect is frequency dependent, carrier wave
measurement using the different L-band frequencies, i.e. L1 and L2, can be processed to eliminate sub-
stantially the ionospheric error. If the ionosphere were of constant thickness and electron density, then
DGPS, as already mentioned, would eliminate its effect. This, unfortunately, is not so and residual effects
remain. Positional and temporal variation in the electron density makes complete elimination over longer
baselines impossible and may require complex software modelling.

Ionospheric refraction effects vary with the solar cycle. The cycle lasts about 11 years and was at a
minimum in 2005 and will be at a maximum in 2011 therefore users will find increasing difficulty with
GPS work during that period. After 2011 of course the situation will improve until about 2016 when the
cycle will start again. Observations by night, when the observer is not facing the sun, are less affected.

The troposphere is even more variable than the ionosphere and is not frequency dependent. However,
being closer to the ground, the temperature, pressure and humidity at the receiver can be easily measured and
the integrated effect along the line of sight through the troposphere to the satellite modelled. If conditions
are identical at each end of a baseline, then its effect is completely eliminated. Over longer baselines
measurements can be taken and used in an appropriate model to reduce the error by as much as 95%.
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9.8.5 Multipath error

This is caused by the satellite signals being reflected off local surfaces such as buildings or the ground,
resulting in a time delay and consequently a greater apparent range to the satellite (Figure 9.18). At the
frequencies used in GPS they can be of considerable amplitude, due to the fact that the antenna must be
designed to track several satellites and cannot therefore be more directional.

Manufacturers have developed a number of solutions to minimize the effects of multipath. A ground
plane fitted to the antenna will shield the antenna from signals reflected from the ground but may induce
surface waves reflected from buildings onto the ground plane which are then fed to the antenna. This
problem can be solved if a choke ring antenna is used. A series of concentric circular troughs each at a
depth of a quarter of the GPS signal wavelength are placed on the ground plane. These troughs have high
impedance to surface waves. However, choke ring antennae are much larger, heavier and more costly
than ordinary antenna and they cannot attenuate signals arriving from above. Phased array antennae are
designed to have high gain from the direct path to the satellite but attenuate signals from other directions.
However, different satellites have different multipath geometry so there will be several simultaneous
direction patterns required and of course the antenna must respond to changing satellite positions. Such
an antenna will be very expensive. There are a number of software solutions called multipath mitigation
approaches. These include:

• Those associated with narrow pre-correlation of the signal (narrow correlator).
• Using only the first part of the signal arriving at the antenna before it is corrupted by the reflected part

(leading edge).
• Modelling the shape of the total signal including the direct signal and its reflected components

(correlation function shape).
• Modifying the C/A code waveform (modified waveforms).

However, these methods only mitigate against the effects of multipath, they do not remove it entirely.
Whatever hardware and software the surveyor is using it is prudent to take care with the placing survey
stations to ensure that they are clear of any reflecting surfaces. In built-up areas, multipath may present
insurmountable problems. Multipath errors cannot be eliminated by differential techniques because the
multipath environment is specific to each site.

9.8.6 Dilution of Precision

The quality of an instantaneous positioning solution is largely a function of two parameters; the quality of
an individual pseudo-range to a satellite and the geometry of the relative position of observer and satellites.
This situation has its parallels in trilateration in terms of the quality of the EDM in use and the positions
of the known and unknown control stations.

Dilution of Precision (DOP) is the concept whereby the problem of geometry is analysed and a numerical
parameter is derived to describe the quality of the geometric relationship between the user’s equipment
and the chosen satellites.

Depending upon the user’s application, there are several interrelated DOP statistics; Geometrical,
Position, Horizontal, Vertical and Time Dilutions of Precision. In each case the DOP statistics are the
amplification factor, which, when multiplied by the pseudo-range measurement error, give the error of the
computed position or time, etc. These statistics are only a function of the effect of satellite and user geometry.
The reader is probably a surveyor and therefore most interested in three-dimensional position and hence
the PDOP of the satellites. A sailor navigating on the relatively flat sea would be more interested in HDOP,
since they will already have sufficient information about their height. If a particular user were using the GPS
for time transfer, their interest would only be in TDOP, since they will not need to know where they are.

We will consider the surveyor’s PDOP, but similar arguments can apply for any of the DOPs. PDOP
is a dimensionless number which will vary from about 1.6 in the best possible geometrical configurations
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Fig. 9.18 Multipath effect

Fig. 9.19 Satellite configuration
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with four satellites, to much larger numbers when satellites are badly positioned for a particular user. For
example, if the user was able to measure pseudo-range from a user set to a satellite to 5 metres and at a
particular instant the satellite and user geometry was such that the PDOP was 2.2, then the user error of
position would be 2.2 × 5 = 11 m.

PDOP and all the other DOPs are:

• Independent of the coordinate system employed, both in terms of scale (unit of distance) and orientation.
• A means of user selection of the best satellites from those that are visible.
• The amplification factor of pseudo-range measurement error into the user error due to the effect of

satellite geometry.

The basic equations that relate the position of the user and the satellites are derived from considerations
of Pythagoras’ theorem applied in three dimensions as in equation (9.12) and rearranged here.

[(X1 − Xp)2 + (Y1 − Yp)2 + (Z1 − Zp)2] 1
2 + T = R1

[(X2 − Xp)2 + (Y2 − Yp)2 + (Z2 − Zp)2] 1
2 + T = R2

[(X3 − Xp)2 + (Y3 − Yp)2 + (Z3 − Zp)2] 1
2 + T = R3

[(X4 − Xp)2 + (Y4 − Yp)2 + (Z4 − Zp)2] 1
2 + T = R4

where Xi, Yi, Zi = the coordinates of satellites (i = 1 to 4) (known)
Xp, Yp, Zp = the coordinates required for point P (unknown)
Ri = the measured ranges to the satellites (measured)
T = the clock bias times the speed of light (unknown)

These are four non-linear equations in four unknowns.

[(Xi − Xp)2 + (Yi − Yp)2 + (Zi − Zp)2] 1
2 + T = Ri (i = 1 to 4)

or Ri − T − [(Xi − Xp)2 + (Yi − Yp)2 + (Zi − Zp)2] 1
2 = 0 (9.14)

Linearizing equation (9.14) as the first part of a Taylor series and evaluating the terms leads to:

(Xo − Xi)/(Ric − To) δX + (Yo − Yi)/(Ric − To) δY + (Zo − Zi)/(Ric − To) δZ + δT = δRi (9.15)

where Xi, Yi, Zi = the coordinates of satellites from the broadcast ephemeris (known)
Xo, Yo, Zo = the provisional values of the coordinates of point P (defined)
To = the provisional value the clock bias times the speed of light (defined)
Ric = the pseudo-range to the ith satellite computed from the known satellite coordinates, the

provisional ground coordinates of the user’s position and provisional value of the clock
offset times the speed of light

δX , δY , δZ , δT = the corrections to the provisional values of X, Y , Z and T to get their true
values

δRi = the difference between the observed and the computed measurements of pseudo-range.
δRi = Ri − Ric, i.e. observed – computed pseudo-range.

In matrix form, equation (9.15) applied to the measurements from four satellites may be expressed as:




a11 a12 a13 1
a21 a22 a23 1
a31 a32 a33 1
a41 a42 a43 1









δx
δy
δz
δT



 =





δR1
δR2
δR3
δR4




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where aij is the direction cosine of the angle between the range to the ith satellite and jth coordinate axis,
since, for example:

a23 = zo − z2

R2c − To
= zo − z2

{
(xo − x2)2 + (yo − y2)2 + (zo − z2)2

} 1
2

= z component of distance to satellite

distance to satellite

This matrix equation can be expressed in the form:

Ax = r

where A is the direction cosine matrix
x is the vector of unknown corrections
r is the vector of ‘observed-computed’ pseudo-ranges

and so x = A−1r
Since the equation is now linear, we can use it to express the relationship between the errors in the

pseudo-range measurements and the user quantities. Then using the Gauss propagation of error equation:

σ(x) = A−1σ(r)A−T

where σ(x) is the variance-covariance matrix of the parameters and
σ(r) is the variance-covariance matrix of the observations

If there is no correlation between measurements to different satellites and if the standard errors of
measurements to each satellite are the same, then σ(r) may be written as:

σ(r) = σu





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





where σu is the standard error of a measured pseudo-range. Therefore

σ(x) = A−1A−T σu = (AT A)−1σu

A number of useful statistics may be derived from the (AT A)−1 term, such as:

GDOP = (trace(AT A)−1)
1
2

where the trace of a matrix is the sum of the terms on the leading diagonal. If σ 2
x , σ 2

y , σ 2
z and σ 2

T are the
variances of user position and time then:

GDOP = (σ 2
x + σ 2

y + σ 2
z + σ 2

T )
1
2

PDOP = (σ 2
x + σ 2

y + σ 2
z )

1
2

TDOP = σT

So, for example, the error in three-dimensional position is σu × PDOP.
If the ends of the unit vector from the user’s equipment to each satellite all lie in the same plane, for

example the plane at right angles to the z axis, Figure 9.20, then a13 = a23 = a33 = a43 = a3 and the
direction cosine matrix becomes:

A =





a11 a21 a3 1
a21 a22 a3 1
a31 a23 a3 1
a41 a24 a3 1





The matrix is singular since one column is a multiple of another, the third and fourth columns, and so
a solution is not possible. The matrix will also be singular if there is any direction such that the angle
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Fig. 9.20 Satellite directions

between it and the directions to the satellites are all the same. This can be difficult to spot in practice but
may explain why, even though there are many satellites in view and they are well spread about the sky,
that the DOP statistics are very large. This situation can be visualized if the observer can ‘draw’ a circle in
the sky connecting all the satellites. In practice, if the satellite and user geometry approaches this situation
the DOP statistics will become very large and the quality of the solution will degrade rapidly.

9.9 GPS SURVEY PLANNING

There are many factors that need to be considered when planning survey work. Some will be familiar from
conventional surveying, e.g. with total stations, but there are some special factors that apply only to GPS
surveying. This section covers the factors to be considered in planning and executing the fieldwork. It does
not cover the computing processes that will vary with different manufacturers’ software.

For positioning with a single receiver, i.e. absolute positioning, there is little to consider other than to
ensure that there is a clear view of the sky, there are no nearby buildings that may cause multipath effects
and no nearby radio/microwave transmitters that may interfere with the signal. The instantaneous solution
is good to about 10–20 m. If the solution is averaged over 1

2 –2 hours then the solution may be as good as
5 m in plan and 10 m in height.

For relative positioning, i.e. baseline measurements, then there are several extra factors to be taken
into account. The shorter the baseline the more precisely it will be determined. In relative positioning it
is assumed that the effects of the ionosphere and troposphere are the same for both ends of the line. The
shorter the line the truer this will be. It is usually better to measure two baselines of 5 km and add the
results than to measure a single 10 km baseline. This idea can be applied to the observation of networks.
It is better to observe short lines from a small number of reference stations than all lines from one central
reference station.

The independent check is one of the fundamental principles of survey and it must also be applied to
GPS surveying. This can be achieved by independently measuring baselines between stations. Alternatively
treat the survey as a traverse and close all figures, then adjust as a network. If the observer re-observes a
baseline at different times this will ensure that satellite geometry, multipath effects and tropospheric and
ionospheric refraction effects are different. The ionospheric effect is less by night than during the day so
it will be possible to resolve the integer ambiguities for longer lines at night.
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Fig. 9.21 Predicted DOP values at Nottingham, UK, for 10 April 2007. Upper line is GDOP, lower line is PDOP
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Fig. 9.22 Predicted satellite availability at Nottingham, UK, for 10 April 2007

Satellite coverage during the day varies in terms of the number of satellites available and the GDOP.
Use mission planning software to select the best times when to observe: Figure 9.21 shows Predicted DOP
values at Nottingham, UK, for 10 April 2007 with a 10◦ horizon cut-off angle. Ensure that the there are at
least four satellites available when measuring baselines and preferably five or six when operating in any
form of kinematic mode. Figure 9.22 shows, for the same place and time, the availability of all satellites
(top line), GPS satellites (middle line), and GLONASS satellites (bottom line).

Figure 9.23 shows a sky plot for a 24-hour period. The centre is in the observer’s zenith. Satellites
marked ‘G’ are GPS and ‘R’ indicates GLONASS. Note the large hole in the sky surrounding the north
celestial pole, shown as a small circle. This exists because the satellite orbits’ inclinations are considerably
less than 90◦ so no satellite’s ground track goes anywhere near the poles. When planning kinematic
surveys it is usually better to approach an obstruction from the south, as the obstruction will then block
fewer satellites. Note the manufacturer’s recommendations for DOP limitations for baselines and kinematic
work. Figure 9.24 shows a sky plot for a 1-hour period. The satellite number appears at the beginning of
the selected 1-hour period.

Satellite coverage must be common to both receivers. To ensure that the rover receiver is observing the
same satellites as the reference receiver, place the reference receiver where there are no obstructions. It
does not matter that the reference receiver is not at a survey point that is needed; its function is merely to
act as a reference receiver. Ensure also that the reference receiver is at a secure location and will not be
interfered with or stolen.
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Fig. 9.23 Predicted 24-hour sky plot at Nottingham, UK, for 10 April 2007 (Topcon Pinnacle software)

Fig. 9.24 Predicted 1-hour sky plot at Nottingham, UK, for 11:00–12:00 on 10 April 2007 (Topcon Pinnacle
software)

The GPS results will be in a unique WGS84 style of datum. It is likely that the surveyor will
require coordinates in the local datum. At least three, and preferably more, stations in the local datum
must be observed so that the transformation parameters can be computed and applied. The stations
with known local coordinates should surround the project area. If there are more than three stations
one could be in the middle of the project area. When establishing new control stations ensure that
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they have a good view of the sky. The control should be well monumented as further work will be
related to it.

From a business point of view time is money. Consider the number of points, accuracy required,
time at the station and travelling times between stations in assessing the time required for the whole
project. Do not try to cut observing times short to increase the number points. It is better to remain
20% longer at each station and thereby ensure that the ambiguities will be resolved to avoid having
to repeat observations of some of the baselines. Be cautious when working in an urban environment
because multipath is likely to corrupt the results. GPS is not always the best surveying technique, con-
ventional observations with a total station may be more accurate and more reliable. For control surveys
consider using the precise ephemeris rather than the broadcast ephemeris especially if the project area is
large. Make sure when observing a network that all baselines are connected at both ends to other base-
lines in the network. This will ensure that there is reliability for all the observations and hence all the
computed points. Check all the instrumentation before starting a major project by undertaking a simple
local network and fully computing it. In selecting the GPS equipment for the task it is usually better
to use all equipment from one manufacturer. If that is not possible avoid mixing antenna types. Use a
daily routine that includes downloading data at the end of the day and putting all batteries on charge
overnight.

When collecting detail points by any non-static methods ensure that a suitable precision value is set
for individual detail points. Even when working with RTK it is worth recording all the raw data so that if
problems are discovered later it may be possible to recompute the survey without the need to revisit the
field. If positions are successfully recorded using RTK then it will not be necessary to post-process the
data. If there is a loss of lock then pick up at least one previously observed point to ensure that the receiver
has correctly reinitialized. Visit extra points of detail that are already known if GPS derived positions are
to be added to an existing map or point list for an area.

The better the DOP, the better the final solution is likely to be. Avoid periods when there is rapidly
changing DOP, especially when it is getting large. If there are local obstructions that may affect satel-
lite signals use prediction software to check the DOP values with the visibility restrictions taken into
account.

Sites for GPS reference stations should be visited before work starts, to ensure that there are no
microwave, telecommunications, radio or TV transmitters in the area. There should be no buildings or
other reflecting surfaces that could cause multipath and there must be no significant obstructions at the
reference receiver. The reference receiver site must be secure if the instrument is to be left unguarded.
Also ensure that there is an adequate power supply and sufficient memory in the data recorder and that the
antenna is oriented according to the manufacture’s recommendations.

GPS equipment is expensive. Consider whether it is better to buy the equipment outright, hire the
equipment when it is required and operate it yourself or call upon the services of a specialist GPS
survey company. Which you choose will depend upon the current level of GPS expertise in your
company, how often you undertake tasks suitable for GPS and whether you already own your GPS
equipment.

Although the field procedures for GPS surveying are not complex it is easy to make mistakes that
invalidate the recorded data. The most common problems associated with GPS work are battery failure
during operation, damage to cables and connections, failure to record antenna height and misnam-
ing stations. Field operators should receive adequate training and supervised experience. They should
also be knowledgeable about survey techniques so that they understand what they are doing. Pro-
cessing GPS data with the manufacturer’s software is more complex, especially if there are problems
with the data. Knowledge of datums, projections and adjustments is essential and therefore a quali-
fied surveyor should undertake the task. Manufacturers may provide training as part of their aftersales
service.

An excellent publication Guidelines for the use of GPS in Surveying and Mapping, which is an RICS
guidance note and covers all aspects of practical GPS work, is available from RICS Books.
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9.10 TRANSFORMATION BETWEEN REFERENCE SYSTEMS

As all geodetic systems are theoretically parallel, it would appear that the transformation of the Carte-
sian coordinates of a point in one system (WGS84) to that in another system (OSGB36), for instance,
would simply involve a three-dimensional translation of the origin of one coordinate system to the other,
i.e. �X , �Y , �Z (Figure 9.25). However, due to observational errors, the orientation of the coordi-
nate axis of both systems may not be parallel and must therefore be made so by rotations θx , θy, θz

about the X-, Y -, Z-axis. The size and shape of the reference ellipsoid is not relevant when work-
ing in three-dimensional Cartesian coordinates, hence six parameters should provide the transformation
necessary.

However, it is usual to include a seventh parameter S which allows the scale of the axes to vary between
the two coordinate systems.

A clockwise rotation about the X-axis (θx) has been shown in Chapter 8, Section 8.6 to be:




X
Y
Z





θx

=



1 0 0
0 cos θx − sin θx

0 sin θx cos θx








X
Y
Z





WGS84

= Rθx xWGS84 (9.16)

Fig. 9.25 Relationship between local and global best-fit ellipsoids



Satellite positioning 353

Similarly, rotation about the Y -axis (θy) will give:



X
Y
Z





θxy

=



cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy








X
Y
Z





θx

= Rθx Rθy xWGS84 (9.17)

Finally, rotation about the Z-axis (θz) gives:



X
Y
Z





θxyz

=



cos θz sin θz 0

− sin θz cos θz 0
0 0 1








X
Y
Z





θxy

= Rθx Rθy Rθz xWGS84 (9.18)

where R are the rotation matrices. Combining the rotations, including the translation to the origin and
applying the scale factor S, gives:




X
Y
Z



 =



�X
�Y
�Z



 + (1 + S)




r11 r12 r13
r21 r22 r23
r31 r32 r33








X
Y
Z





WGS84

(9.19)

where r11 = cos θy cos θz

r12 = cos θx sin θz + sin θx sin θy cos θz

r13 = sin θx sin θz − cos θx sin θy cos θz

r21 = − cos θy sin θz

r22 = cos θx cos θz − sin θx sin θy cos θz

r23 = sin θx cos θz + cos θx sin θy sin θz

r31 = sin θy

r32 = − sin θx cos θy

r33 = cos θx cos θy

In matrix form:

x = � + S · R · x (9.20)

where x = vector of 3-D Cartesian coordinates in a local system
� = the 3-D shift vector of the origins (�x, �y, �z)
S = scale factor
R = the orthogonal matrix of the three successive rotation matrices, θx , θy, θz

�x = vector of 3-D Cartesian coordinates in the GPS satellite system, WGS84

This seven-parameter transformation is called the Helmert transformation and, whilst mathematically
rigorous, is entirely dependent on the rigour of the parameters used. In practice, these parameters are
computed from the inclusion of at least three known points in the networks. However, the coordinates of
the known points will contain observational error which, in turn, will affect the transformation parameters.
Thus, the output coordinates will contain error. It follows that any transformation in the ‘real’ world can
only be a ‘best estimate’ and should contain a statistical measure of its quality.

As all geodetic systems are theoretically aligned with the International Reference Pole (IRP) and Interna-
tional Reference Meridian (IRM), which is approximately Greenwich, the rotation parameters are usually
less than 5 seconds of arc. In which case, cos θ ≈ 1 and sin θ ≈ θ rads making the Helmert transformation
linear, as follows:




X
Y
Z



 =



�X
�Y
�Z



 +



1 + S −θz θy

θz 1 + S −θx

−θy θx 1 + S








X
Y
Z





WGS84

(9.21)
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The rotations θ are in radians, the scale factor S is unitless and, as it is usually expressed in ppm, must
be divided by a million.

When solving for the transformation parameters from a minimum of three known points, the XYZLOCAL
and XYZWGS84 are known for each point. The difference in their values would give �X, �Y and �Z ,
which would probably vary slightly for each point. Thus a least squares estimate is taken, the three points
give nine observation equations from which the seven transformation parameters are obtained.

It is not always necessary to use a seven-parameter transformation. Five-parameter transformations
are quite common, comprising three translations, a longitude rotation and scale change. For small areas
involved in construction, small rotations can be described by translations (3), and including scale factors
gives a four-parameter transformation. The linear equation (9.21) can still be used by simply setting the
unused parameters to zero.

It is important to realize that the Helmert transformation is designed to transform between two datums and
cannot consider the scale errors and distortions that exist throughout the Terrestrial Reference Framework of
points that exist in most countries. For example, in Great Britain a single set of transformation parameters to
relate WGS84 to OSGB36 would give errors in some parts of the country as high as 4 m. It should be noted
that the Molodensky datum transformation (Chapter 8, Section 8.6) deals only with ellipsoidal coordinates
(φ, λ, h), their translation of origin and changes in reference ellipsoid size and shape. Orientation of the
ellipsoid axes is not catered for. However, the advantage of Molodensky is that it provides a single-stage
procedure between data.

The next step in the transformation process is to convert the X, Y , Z Cartesian coordinates in a local
system to corresponding ellipsoidal coordinates of latitude (φ), longitude (λ) and height above the local
ellipsoid of reference (h) whose size and shape are defined by its semi-major axis a and eccentricity e. The
coordinate axes of both systems are coincident and so the Cartesian to ellipsoidal conversion formulae can
be used as given in Chapter 8, equations (8.4) to (8.7), i.e.

tan λ = Y /X (9.22)

tan φ = (Z + e2v sin φ)/(X2 + Y2)
1
2 (9.23)

h = [X/(cos φ cos λ)] − v (9.24)

where v = a/(1 − e2 sin2 φ)
1
2

e = (a2 − b2)
1
2 /a

An iterative solution is required in equation (9.23), although a direct formula exists as shown in Chapter
8, equation (8.9).

The final stage is the transformation from the ellipsoidal coordinates φ, λ and h to plane projection
coordinates and height above mean sea level (MSL). In Great Britain this would constitute grid eastings
and northings on the Transverse Mercator projection of Airy’s Ellipsoid and height above MSL, as defined
by continuous tidal observations from 1915 to 1921 at Newlyn in Cornwall, i.e. E, N and H.

An example of the basic transformation formula is shown in Chapter 8, Section 8.7, equations (8.40)
to (8.42). The Ordnance Survey offer the following approach:

N0 = northing of true origin (−100 000 m)
E0 = easting of true origin (400 000 m)
F0 = scale factor of central meridian (0.999 601 2717)
φ0 = latitude of true origin (49◦N)
λ0 = longitude of true origin (2◦W)
a = semi-major axis (6 377 563.396 m)
b = semi-minor axis (6 356 256.910 m)

e2 = eccentricity squared = (a2 − b2)/a2
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n = (a − b)/(a + b)

v = aF0(1 − e2 sin2 φ)− 1
2

ρ = aF0(1 − e2)(1 − e2 sin2 φ)− 3
2

η2 = v

ρ
− 1

M = bF0





(
1 + n + 5

4
n2 + 5

4
n3

)
(φ − φ0) −

(
3n + 3n2 + 21
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(9.25)

I = M + N0

II = v

2
sin φ cos φ

III = v

24
sin φ cos3 φ(5 − tan2 φ + 9η2)

IIIA = v

720
sin φ cos5 φ(61 − 58 tan2 φ + tan4 φ)

IV = v cos φ

V = v

6
cos3 φ

(
v

ρ
− tan2 φ

)

VI = v

120
cos5 φ(5 − 18 tan2 φ + tan4 φ + 14η2 − 58(tan2 φ)η2)

then: N = I + II(λ − λ0)2 + III(λ − λ0)4 + IIIA(λ − λ0)6

E = E0 + IV(λ − λ0) + V(λ − λ0)3 + VI(λ − λ0)5

The computation must be done with sufficient precision with the angles in radians.
As shown in Chapter 8, Section 8.3.5, Figure 8.10, it can be seen that the ellipsoidal height h is the

linear distance, measured along the normal, from the ellipsoid to a point above or below the ellipsoid.
These heights are not relative to gravity and so cannot indicate flow in water, for instance.

The orthometric height H of a point is the linear distance from that point, measured along the gravity
vector, to the equipotential surface of the Earth that approximates to MSL. The difference between the two
heights is called the geoid-ellipsoid separation, or the geoid height and is denoted by N , thus:

h = N + H (9.26)

In relatively small areas, generally encountered in construction, GPS heights can be obtained on several
benchmarks surrounding and within the area, provided the benchmarks are known to be stable. The
difference between the two sets of values gives the value of N at each benchmark. The geoid can be
regarded as a plane between these points or a contouring program could be used, thus providing corrections
for further GPS heighting within the area. Accuracies relative to tertiary levelling are achievable.

It is worth noting that if, within a small area, height differences are required and the geoid–ellipsoid
separations are constant, then the value of N can be ignored and ellipsoidal heights only used.

The importance of orthometric heights (H) relative to ellipsoidal heights (h) cannot be over-emphasized.
As Figure 9.26 clearly illustrates, the orthometric heights, relative to the geoid, indicate that the lake is
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Fig. 9.26 Orthometric (H) and ellipsoidal (h) heights. The local geoid model through Newlyn lies approximately
800 mm below the global geoid model

level, i.e. HA = HB. However, the ellipsoidal heights would indicate water flowing from B to A, i.e.
hB > hA. As the engineer generally requires difference in height (�H), then from GPS ellipsoidal heights
the following would be needed:

�HAB = �hAB − �NAB (9.27)

An approximate method of obtaining N on a small site has already been mentioned. On a national basis
an accurate national geoid model is required.

In Great Britain the complex, irregular surface of the geoid was established by a combination of astro-
geodetic, gravimetric and satellite observations (OSGM02) to such an accuracy that precise GPS heights
can be transformed to orthometric with the same accuracy achievable as with precise spirit levelling. How-
ever, over distances greater than 5 km, standard GPS heights (accurate to 20–50 mm), when transformed
using OSGM02 (accurate to 3 mm(k)1/2, where k is the distance in kilometres between points), will pro-
duce relative orthometric values as good as those achieved by standard (tertiary) levelling. This means, in
effect, that the National GPS Network of points can also be treated as benchmarks.

To summarize, the transformation process when using GPS is:

(X, Y, Z)GPS Using Keplerian elements and time parameters
↓

(X, Y, Z)LOCAL Using transformation parameters
↓

(φ, λ, h)LOCAL Using elliposidal conversion formule
↓

(E, N, H )LOCAL Using projection parameters and geoid-ellipsoid separation

9.11 DATUMS

As already mentioned, the Broadcast Ephemeris is sufficiently accurate for relative positioning over a
limited area. For instance, an error of 20 m in the satellite position would produce an error of only 10 mm
in a 10 km baseline. However, to achieve an accuracy of 1 mm would require satellite positioning accurate
to 2 m and so require the use of a Precise Ephemeris.
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Whilst the Broadcast Ephemeris is computed from only five monitoring stations, a Precise is computed
from many stations situated throughout the world. The IGS RAPID orbits (IGR) of the International
GPS Geodynamic Service (IGS) are available just over one day after the event it describes. Precise
Ephemeredes are available from a variety of government, commercial and academic sources including
http://www.ngs.noaa.gov/GPS/GPS.html.

9.11.1 Global datums

Modern engineering surveying uses GPS in an increasing number of situations. Indeed it is often the
primary method of survey. Global datums are established by assigning Cartesian coordinates to various
positions throughout the world. Observational errors in these positions will obviously be reflected in the
datum.

The WGS84 was established from the coordinate position of about 1600 points around the globe, fixed
largely by TRANSIT satellite observations. At the present time its origin is geocentric (i.e. the centre
of mass of the whole Earth) and its axes virtually coincide with the International Reference Pole and
International Reference Meridian. Designed to best fit the global geoid as a whole means it does not fit
many of the local ellipsoids in use by many countries. In Great Britain, for instance, it lies about 50 m
below the geoid and slopes from east to west, resulting in the geoid–ellipsoid separation being 10 m greater
in the west than in the east.

It is also worth noting that the axes are stationary with respect to the average motions of this dynamically
changing Earth. For instance, tectonic plate movement causes continents to move relative to each other
by about 10 cm per year. Local movements caused by tides, pressure weather systems, etc., can result
in movement of several centimetres. The result is that the WGS84 datum appears to move relative to the
various countries. In Great Britain, the latitudes and longitudes are changing at a rate of 2.5 cm per year
in a north-easterly direction. In time, this effect will be noticeable in large-scale mapping.

It can be seen from the above statements that constant monitoring of the WGS84 system is necessary
to maintain its validity. In 1997, 13 tracking stations situated throughout the globe had their positional
accuracies redefined to an accuracy of better than 5 cm, thereby bringing the origin, orientation and scale
of the system to within the accuracy of its theoretical specification. Another global datum almost identical
to the WGS84 Reference System is the International Terrestrial Reference Frame (ITRF) produced by the
International Earth Rotation Service (IERS) in Paris, France. The system was produced from the positional
coordinates of over 500 stations throughout the world, fixed by a variety of geodetic space positioning
techniques such as Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), Lunar Laser
Ranging (LLR), Doppler Ranging Integrated on Satellite (DORIS) and GPS. Combined with the constant
monitoring of Earth rotation, crustal plate movement and polar motion, the IERS have established a very
precise terrestrial reference frame, the latest version of which is the ITRF2000. This TRF has been estab-
lished by the civil GPS community, not the US military. It comprises a list of Cartesian coordinates (X, Y , Z),
with the change in position (dX , dY , dZ) in metres per year for each station. The ITRF2000 is available as a
SINEX format text file from the IERS website. Details are at http://www.iers.org/iers/publications/tn/tn31/.
The ITRF is the most accurate global TRF and for all purposes is identical to the WGS84 TRF. A new
ITRF2005 is in preparation which will be based on the time series of station positions and earth orientation
parameters using observations from at least 1999–2005.

9.11.2 Local datums

Historically, the majority of local datums were made accessible to the user by means of a TRF of points
coordinated by triangulation. These points gave horizontal position only and the triangulation point, mon-
umented by pillars in the UK, were situated on hilltops. A vertical TRF of benchmarks, established by
spirit levelling, required low-lying, easily traversed routes. Hence, there were two different but loosely
connected systems.
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A TRF established by GPS gives a single three-dimensional system of easily accessible points that can
be transformed to give more accurate position in the local system. As WGS84 is continually changing
position due to tectonic movement, the local system must be based on WGS84 at a certain time. Thus, we
have local datums like the North American Datum 1983 and the European Terrestrial Reference System
1989 (ETRS89). In 1989 a high precision European Three-Dimensional Reference Frame (EUREF) was
established by GPS observations on 93 stations throughout Europe (ETRF89). The datum used (ETRS89)
was consistent with WGS84/1TRF2000 and extends into Great Britain, where it forms the datum for the
Ordnance Survey National GPS Network.

The OS system will be briefly described here as it illustrates a representative model that will be of
benefit to the everyday user of GPS. The National GPS network TRF comprises two types of GPS station
consisting of:

• Active network: this is a primary network of about 60 continuously observing, permanent GPS receivers
whose precise coordinates are known. Using a single dual frequency receiver and data downloaded
from these stations, which are located within 100 km of any point in Britain, precise positioning can be
achieved to accuracies of 10 mm. The data is available in RINEX format for the previous 30 days from
http://gps.ordnancesurvey.co.uk/active.asp.

• Passive network: this is a secondary network of about 900 easily accessible stations at a density
of 20–35 km. These stations can be used for control densification or in kinematic form using two
receivers to obtain real-time positioning to accuracies of 50–100 mm. Their details can be found at
http://gps.ordnancesurvey.co.uk/passive.asp.

The coordinates obtained by the user are ETRS89 and can be transformed to and from WGS84/1TRF2000
by a six-parameter transformation published by IERS on their internet site. Of more interest to local users
would be the transformation from ETRS89 to OSGB36, which is the basic mapping system for the country.
The establishment of the OSGB36 TRF by triangulation has resulted in variable scale changes throughout
the framework, which renders the use of a single Helmert transformation unacceptable. The OS have there-
fore developed a ‘rubber-sheet’ transformation called OSTN02, which copes not only with a change of
datum but also with the scale distortions and removes the need to compute local transformation parameters
by the inclusion of at least three known points within the survey. The transformation may be done using
the Ordnance Survey’s ‘Coordinate Converter’ online at http://gps.ordnancesurvey.co.uk/convert.asp. The
same transformation software is included in some GPS manufacturers’ processing software. Using the
National GPS Network in a static, post-processing mode, can produce horizontal accuracy of several mil-
limetres. The same mode of operation using ‘active’ stations and one hour of data would give accuracies of
about 20 mm. Heighting accuracies would typically be twice these values. However, it must be understood
that these accuracies apply to position computed in ETRS89 datum. Transformation to the National Grid
using OSTN02 would degrade the above accuracy, and positional errors in the region of 200 mm have
been quoted. The final accuracy would, nevertheless, be greater than the OS base-map, where errors of
500 mm in the position of detail at the 1/1250 scale are the norm. Thus, transformation to the National
Grid should only be used when integration to the OS base-map is required.

The evolution of GPS technology and future trends have been illustrated by a description of the OS
National GPS Network and its application. Other countries are also establishing continuously operating
GPS reference station networks. For instance, in Japan a network of about 1000 stations is deployed
throughout the country with a spacing of about 20–30 km (GEONET). In Germany the Satellite Position-
ing Service of the German State Survey (SAPOS) has established a network of about 250 permanently
observing reference stations. Three products are available, at a cost, to the user. A DGPS service, for a
one-off fee, allows the user with a single receiver to obtain 0.5–3 m accuracy using only a single GPS fre-
quency. This is suitable for GIS, vehicle navigation and most maritime applications. A‘High Precision Real
Time’ positioning service using carrier phase measurements can give accuracies of 10–20 mm in plan and
20–60 mm in height in real time. The fee for use is charged by the minute and the signals are trans-
mitted by VHF radio and GSM phone. The applications for this service include engineering surveying.
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The ‘High Precision’ positioning service using dual frequency carrier phase observations delivers RINEX
files to the user via email or internet for post-processing for the highest accuracy solutions; 1–10 mm is
claimed. The fee is also by the minute. Further details are at http://www.sapos.de. Other countries are
developing similar systems.

Many innovative techniques have been used in GPS surveying to resolve the problem of ambiguity reso-
lution (AR), reduce observation time and increase accuracy. They involve the development of sophisticated
AR algorithms to reduce the time for static surveying, or carry out ‘on-the-fly’ carrier phase AR whilst the
antenna is continually moving. Other techniques such as ‘stop and go’ and ‘rapid static’ techniques were
also developed. They all, however, require the use of at least two, multi-channel, dual frequency receivers,
and there are limitations on the length of baseline observed (<15 km). However, downloading the data
from only one of the ‘active stations’ in the above network results in the following benefit:

(1) For many engineering surveying operations the use of only one single-frequency receiver, thereby
reducing costs. However, this may result in antenna phase centre variation due to the use of different
antennae.

(2) Baseline lengths greatly extended for rapid static and kinematic procedures.
(3) ‘On-the-fly’ techniques can be used with ambiguity resolution algorithms from a single epoch.

Active network data is not available until two or three hours after it has been recorded.

9.12 VIRTUAL REFERENCE STATIONS AND NETWORKED GPS

Precise relative positioning requires simultaneous observations with two receivers. One of those receivers
can be at a permanent installation such as with the SAPOS system or the OS’s active network. One drawback
of the OS’s active network is that, other than by coincidence, the user will be at a considerable distance
from the nearest active station and so unmodelled differences in ionospheric and tropospheric effects will
limit possible accuracy. The idea of the virtual reference station (VRS) is to create a reference station by
computer at about a metre from the user. A network of several continuously operated reference stations
which transmit raw data to a central server which in turn creates a database is established. The surveyor
who wants to do RTK survey connects to the central server by phone or modem. The position of the rover is
sent to the central server which creates corrections for ionospheric, tropospheric and ephemeris errors for
the virtual reference station and transmits them to the rover. This facility is available in the SAPOS system
described above and on a number of other networks around the world, some of which are mentioned at
http://www.trimble.com/vrsinstallations.shtml. Position accuracy of 1–2 cm and height accuracy of 2–4 cm
is claimed.

In the UK an alternative approach is being launched in conjunction with the Ordnance Survey. Leica’s
SmartNet is a subscription service in which RTK and DGPS corrections are transmitted to the user through
GPRS or GSM phones. The user receives data from an augmented OS active network and through a
reference station network technique, refraction and orbit errors are significantly reduced.

9.13 GLONASS

Just as GPS was designed to replace the TRANSIT system, so the Russian GLObal NAvigation Satellite
System (GLONASS) replaced their earlier system, TSIKADA. The space segment of GLONASS was
originally planned to be 24 satellites, including three spares, in circular orbits. There were to be eight in each
of three orbital planes which were to be inclined at 64.8◦ and with relative right ascensions of ascending
nodes of 120◦. The system was designed so that there would always be at least six satellites in view.
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The semi-major axis of the orbits is approximately 25 400 km so that the orbital period is 11 h 16 m. This
means that the satellites repeat their ground tracks every 17th orbit, which is every eight days. Therefore,
unlike GPS, where the orbital period is 12 sidereal hours and the constellation repeats its position with
respect to a stationary observer at the same time every sidereal day, GLONASS does not repeat daily for a
stationary observer. The different pattern for GLONASS is presumed to avoid any small Earth gravitational
resonance effect that might affect GPS.

The functions of the Control Segment are similar to those of GPS. One major difference between GPS
and GLONASS is in the signal structure of GLONASS. Whereas all GPS satellites transmit on the same
two frequencies but have different C/A and P codes, the GLONASS satellites transmit the same codes but
on different frequencies for each satellite. The pair of frequencies for each satellite is 1246.0 MHz + 7/16
n MHz (L2) and 1602.0 MHz + 9/16 n MHz (L1) where n, the number of the satellite, has an integer
value from 1 to 24. A precise code with a bandwidth of 5.11 MHz is on both L1 and L2, whilst the coarser
code of 0.511 MHz is on L1 only. Thus, the satellites provide the signals for pseudo-range and carrier
phase measurement. Whereas the GPS uses the WGS84 datum and UTC time frame GLONASS uses the
PZ90 datum and UTC(Russia) time frame. The Broadcast Ephemeris for GPS is in terms of Keplerian
elements but for GLONASS it is in terms of position, velocity and acceleration in Earth-centred, Earth-
fixed coordinates. One advantage that GLONASS does have is that of much better protection against
cross-correlation interference between satellite signals.

The overall performance of GLONASS has been variable. At one stage the full constellation was in orbit
but because of technical failures only a handful of satellites were still working by the millennium. There is
now a programme of development with 15 satellites operational and the likelihood of further improvements
in the future. Receivers that can use the code and carrier signals from both GPS and GLONASS are therefore
able to work in more restricted sites because they have a greater choice of satellites above the horizon. The
most recent information can be found at http://www.glonass-ianc.rsa.ru.

9.14 GPS SYSTEM FUTURE

The GPS Block I satellites were only launched for system testing. The 24 operational or Block II satellites
were due for launch from October 1986 to December 1988 but the space shuttle Challenger accident
seriously delayed the programme. However, the launch programme came back on a new schedule and the
full constellation of 24 satellites was operational in 1996. As the Block II satellites reach the end of their
design life they are being replaced by Block IIR (replenishment) satellites. The Block IIR satellites have
the same signals in space as the Block II satellites. However, they autonomously navigate, that is they
create their own navigation message and maintain full accuracy for at least 180 days. They have improved
reliability and integrity of broadcast signal. There is additional radiation hardening of the satellite and
cross-link ranging between satellites. This allows much greater flexibility in control of the system and
some of the Control Segment’s functions have been transferred to the satellites themselves. There are two
atomic clocks on at all times. The satellite has a larger fuel capacity.

In 1996, a major policy statement from the White House was issued. In effect, it stated that at some
date between 2000 and 2006, Selective Availability (SA) would be removed and therefore there would be
full access to both frequencies. In May 2000, SA was removed.

In January 1999, the White House through the Office of the Vice President announced that a third
civilian signal would be located at 1176.45 MHz. This is the L5 signal proposed for future Block IIF
satellites. It was also announced that a second civilian signal would be located at 1227.6 MHz with the
current military signal and that would be implemented on satellites scheduled for launch from 2003. This
is the L2C signal on future IIR-M satellites.

In May/June 2001, the GPS Joint Programme Office (JPO) announced details of the proposed
developments. Details are at http://www.navcen.uscg.gov/gps/modernization/default.htm.
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In March 1997 Dr James Schlesinger, a former Secretary of Defense, summed up the situation with
respect to GPS. ‘The nation’s reliance on GPS has become an issue of national security in its broadest
sense that goes beyond merely national defense.’ Originally GPS was conceived as a Military Support
System for War, but President Reagan, in 1983, decided that there should be civil access to the system.
Therefore, it is now a critical dual-use US national asset. On the other hand, it has become more essential
to military forces than had ever been previously imagined but it has also become indispensable to civil
and commercial users as well. However, it is still funded, managed, and operated by the US Department
of Defense.

The civil and military communities have different needs for the twenty-first century’s upgraded GPS
system. The military require greater security of the system, a quicker fix from a cold start, more powerful
signals, their own signals for fast acquisition and better security codes. These will be achieved with a new
M code on the L1 and L2 frequencies. The civil market requires that the GPS signal is accurate, fully
available, has full coverage, measurable integrity, redundant signals, more power and that SA remains
switched off. A second civil signal is required for simpler ionospheric corrections and a third civil signal
for high accuracy, real-time applications. Those signals which are required for ‘safety of life’ applications
require spectrum protection. This will be achieved with the new L2C and L5 signals and codes.

The L2C code on the L2 signal and the M code on both the L1 and L2 frequencies will be implemented
on the Block IIR-M satellites and the L5 signal will be implemented on the Block IIF satellites.

The L2C code is not just to be a replica of the existing L1 C/A code. In 2002 there were estimated
to be about 50 000 dual-frequency receivers in use and to be worth about $1bn not counting spares,
software and associated communications. Unlike leisure industry receivers, these receivers are used to
add value to society, for example to monitor earthquakes, volcanoes, continental drift, and weather.
They add value for cadastral and land survey purposes, for guidance and control of mining, construction
and agricultural operations and are used in land and offshore oil and mineral exploration and marine
surveys.

A primary objective of the introduction of the new L2C code is to remove the need for (semi-) codeless
tracking now used for L2 measurements. A ‘C/A’ type code on the L2 signal would achieve this objective.
Nevertheless, the L2C code has no data on one of its two codes and gives a 3 dB better performance.
Therefore, there can be carrier phase measurements without the need for ambiguity resolution.

For single-frequency users, the objective is to make L2 valuable for single-frequency GPS applications.
On the L1 C/A code, a strong GPS signal interferes with weak GPS signals but on the L2C, the cross-
correlation will be more than 250 times better. Therefore it will be possible to read the message with a
signal that is barely detectable and so it is probable that this will be the signal of choice for emergency
phone applications, called E911 in the US, and for positioning inside buildings.

Receiver technology has improved since the 1970s when the simple L1 C/A code was developed.
Today’s technology can accept a more complex and therefore useful signal. The first Block IIR-M satellite
was launched in 2005 and it is expected that Block IIF satellite launches will start in 2008. By 2011–12
there should be 28 satellites broadcasting the L2C signal and 18 broadcasting the L5 signal.

It is expected that the benefits available from the civil signals will be many. The L1 frequency will still
have the lowest ionospheric refraction error. The L5 will have the highest power and will receive some
protection because it is in the Aeronautical Radio Navigation Service band. The L2C will give the best
cross-correlation, threshold tracking and data recovery performance. It will have a better message structure
than the L1 C/A code and will be fully available years before L5. With its lower code clock rate it will be
better than L5 for many consumer applications because power consumption relates to code clock rate and
so could present less power drain problems for wristwatch and cell telephone navigation applications. As
chip size relates to thermal dissipation a slower clock aids miniaturization.

GPS III is a GPS modernization programme that is designed to take GPS forward for the first third of the
twenty-first century. The programme is still very much at the definition stage. The Statement of Objectives
at http://www.navcen.uscg.gov/gps/modernization/SOO.doc states that the objective is to create a new
architecture for enhanced position, velocity, and timing signals, and related services to meet the needs of
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the next generation of GPS users. The system is to be a best value solution and the security infrastructure
is to provide user access to and protection of the entire system.

Additional mission capabilities may include the military application of ‘Blue Force Tracking’, i.e.
friendly force tracking and search and rescue missions.

9.15 WIDE AREA AUGMENTATION SYSTEM (WAAS)

The US Federal Aviation Authority (FAA) is developing the Wide Area Augmentation System (WAAS).
The WAAS is ‘safety-critical’ navigation system that improves the accuracy, integrity and availability of
GPS so that GPS can be a primary means of navigation for aircraft en route travel and non-precision
approaches. The WAAS improves real time civil accuracy of GPS to about 7 metres in three dimensions
and improves system availability and provides integrity information for the GPS constellation.

GPS signals are received by about 25 Wide area ground Reference Stations (WRSs). They determine the
errors in the GPS signals and relay the data to the Wide area Master Station (WMS). The WMS computes
correction information and assesses the integrity of the system. Correction messages are then uplinked
to the geostationary communication satellites. The aircraft listens to the GPS signals and the message
broadcast on the GPS L1 frequency by geostationary communication satellites. Benefits claimed for the
WAAS are that it enables GPS to be the primary means of navigation including take-off, approach and
landing. Aircraft routes are more direct and there will not be the need for aircraft to be routed according to
the constraints of existing ground-based navigation systems. There will be increased capacity in airspace
without increased risk and there will be reduced and simplified navigation equipment on aircraft.

As far as the engineering surveyor is concerned WAAS satellites may be useful as additional satellites
for pseudo-range measurements.

9.16 EUROPEAN GEOSTATIONARY NAVIGATION OVERLAY

SERVICE (EGNOS)

EGNOS is the European counterpart of the US WAAS. It is a joint project of the European Space Agency
(ESA), the European Commission (EC) and Eurocontrol, the European Organization for the Safety of
Air Navigation. EGNOS will augment the GPS and GLONASS systems to make them suitable for safety
critical applications.

The EGNOS space segment is the set of navigation transponders on three geostationary satellites as
well as the signals from the GPS and GLONASS constellation. There are transponders on the satellites
but they have no signal generators on board. Instead, each transponder uses a ‘bent pipe’ system where the
satellite transmits signals uplinked from the ground, which is where all signal processing takes place.

On the ground there are about 34 Ranging and Integrity Monitoring Stations (RIMS), four master
control centres, including three reserves, and six uplink stations also including three reserves. The RIMS
measure the positions of the EGNOS satellites and compare their own positions from positions calculated
from the GPS and GLONASS satellite signals. The RIMS then send this data to the master control centres.
The master control centres determine the accuracy of the GPS and GLONASS signals and determine the
position inaccuracies due to the ionosphere. They send signals to the uplink stations that send them to the
EGNOS satellites. The EGNOS satellites then transmit the correction signals to GPS/GLONASS users
who are equipped with an EGNOS enabled receiver. To enable a receiver the EGNOS PRN numbers are
PRN 120, 124 and 126. Operational stability for the system is expected in late 2006. The latest position
may be checked at http://esamultimedia.esa.int/docs/egnos/estb/newsletter.htm.
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In Japan, they are developing a similar Multi-Functional Transport Satellite (MTSAT) system and China
is understood to be testing its own two satellites, Satellite Navigation Augmentation System (SNAS). India
too has proposals for their own system.

9.17 GALILEO

Galileo is a joint initiative of the European Commission (EC) and the European Space Agency (ESA).
When fully operational the system will have 30 satellites, in three planes, placed equally around the equator
with semi-major axes of 30 000 km and an inclination of 56◦. The satellites are to be for ‘search and rescue’
as well as navigation. The reason for this European initiative is that satellite navigation users in Europe can
only get positions from US GPS or Russian GLONASS satellites. The military operators of both systems
will give no guarantee that they will maintain an uninterrupted service.

The first experimental Galileo satellite has been launched and the remaining satellites should be in orbit
by 2008.

With GPS, GLONASS and Galileo it will be possible to get high accuracy positions in the urban
canyons of high-rise cities because there could be as many as 90 satellites available. But the strongest
argument, the one most likely to get the system ‘off the ground’, is the business case for Galileo namely
the European aerospace, manufacturing and service provider business opportunities. The system cost
is currently estimated to be 3200 million euros with a total expected return to Europe over 20 years of
90 000 million euros.

The European strategy appears to be that we recognize our reliance on satellite systems for safety-
critical and commercial applications and that EGNOS will compensate for the shortcomings of GPS and
GLONASS for civil access to the necessary accuracy and integrity but Europe’s civil satellite infrastructure
is not under Europe’s control.

There will be two Galileo Control Centres (GCC) in Europe controlling the satellites and carrying
out the navigation mission management. Twenty Galileo Sensor Stations (GSS) in a global network will
send data to the GCCs through a communications network where integrity information and time signal
synchronization of all satellite and ground station clocks will be computed. Data exchange between the
GCCs and satellites will be through 15 uplink stations.

The services to be delivered have been identified as Open Access for most non-specialist users, a Safety-
of-Life capability with appropriate accuracy and integrity, Commercial services and a more secure Public
Regulated Navigation service. Galileo will be interoperable with GPS, GLONASS and EGNOS and this
has influenced the design of the satellite signals and reference standards. The Open, Commercial and
Safety-of-Life services will have two open navigation signals with separate frequencies for ionospheric
correction. Data is to be added to one ranging code and the other ranging code is to be used for more precise
and robust navigation measurements. In principle, no ranging code is to be encrypted so that the signals
may support Open and Safety-of-Life services. Service providers may encrypt one of the data-less ranging
codes for commercial applications, such as for a Universal Mobile Telecommunications System–GSM.
However, whether this will be compatible with a Safety-of-Life service is questionable.

There will be a third navigation signal that will enable three carrier phase ambiguity resolution which
might be an encrypted ranging code for commercial service exploitation. There will be integrity data for
safety of life applications and there may be encrypted data for commercial service exploitation. Commercial
data might include GPS signal corrections or location maps.

The Public Regulated Navigation service will also have two navigation signals with encrypted codes and
data. The signals will be on separate frequencies for ionospheric correction and on separate frequencies
from Open services so that there may be local jamming of Open signals without affecting the Public
Regulated Navigation Services.
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The applications for the Public Regulated Navigation Services are seen as those for national security,
police, emergency services, critical energy, transport and telecommunications applications and economic
and industrial activities of European strategic interest such as banking services. It is likely there will be a
restricted distribution of receivers managed by national governments.

A ‘Local component’, driven by user and market needs, public regulation, and finance may have
differential corrections for single frequency users leading to an accuracy of better than one metre. Three
carrier phase ambiguity resolution will improve that to better than 0.1 metre. The Local component may
report integrity with a time to alarm of one second. Such a system would enhance mobile phone networks,
e.g. E911 in urban canyons and have indoor applications. Pseudolites, local ground-based transmitters that
broadcast a Galileo type signal, could be included for increasing the availability of the Galileo service in
a defined local area.

The search and rescue transponder on each Galileo satellite will be coordinated by the Cospas-Sarsat
International Satellite System for search and rescue operations. It will have to be compatible with the
Global Maritime Distress and Safety System (GMDSS) and be able to respond to signals from Emergency
Position Indicating Radio Beacons (EPIRB). An added facility may be for an acknowledgement signal to
be received by the vessel or aircraft in distress through the broadcast Galileo signals.

The table below shows the planned signals and frequencies.

Signal Central frequency (MHz) Service

E5a/GPS L5 1176.45 Open, Safety-of-Life
E5b 1196.91–1207.14 Open, Safety-of-Life, Commercial
GPS L2 1227.60
E6 1278.75 Commercial, Public Regulated
E2 1561 Open, Safety-of-Life, Public Regulated
GPS L1 1575.42
E1 1590 Open, Safety-of-Life, Public Regulated

The satellite launch programme has similar time scales to that of EGNOS. Further information and
updates may be found at http://www.esa.int/esaNA/galileo.html.

9.18 THE FUTURE FOR SURVEYORS AND ENGINEERS

The future for GPS, WAAS and EGNOS and Galileo looks promising. The future for GLONASS is harder
to assess but could also match expectations. In the worst case, if only the GPS modernization programme
and Galileo go ahead, then there will still be many more Galileo and GPS satellites and all of those GPS
satellites launched after 2005 will have significantly enhanced capabilities. However, it will take some
time before there are sufficient satellites with enhanced capabilities for the new signals and codes to be
universally useful. How the equipment manufacturers will exploit the new resources is also hard to assess,
but it is certain that they will and we should expect our speed of survey production and capability in difficult
environments to improve significantly. It is less likely that prices for geodetic survey receivers will fall
significantly because of the overall limited volume of the market.

When Galileo is operational then the possibilities for combined GPS, GLONASS and Galileo receivers
mean that the enhanced coverage will permit satellite survey in some previously very difficult environments.
However, geodetic survey receivers using GPS, Galileo and GLONASS will most likely command a high
premium.
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Undoubtedly there will be many different and varied applications of satellite technology and the survey
market will only have a very small share of the total applications market. It seems likely that equipment
manufacturers select signals based on:

• Purpose of product
• Chipset availability
• Satellites and signals currently available and their limitations
• Satellites and signals expected to be available in the next 2–4 years
• Manufacturing cost
• Expected market
• Competitor activity

However, it is likely that manufacturers will also be making their current products more attractive by future
proofing them, i.e. making existing products capable of using new signals and codes when they become
available.

9.19 APPLICATIONS

The previous pages have already indicated the basic application of GPS in engineering surveying such as
in control surveys, topographic surveys and setting-out on site. Indeed, much three-dimensional spatial
data normally captured using conventional surveying techniques with a total station can be captured by
GPS, even during the night, provided sufficient satellites are visible. However, GPS is not the solution for
all survey data capture problems. Where GPS works, i.e. in an open skies environment, it works very well.
However, once the skies become obstructed as they often are on the construction site, then conventional
survey techniques may be more appropriate. GPS does not, at present, work well or at all close to buildings,
indoors, underground or underwater.

On a national scale, horizontal and, to a certain extent, vertical control, used for mapping purposes
and previously established by classical triangulation with all its built-in scale error, are being replaced by
three-dimensional GPS networks. In relation to Great Britain and the Ordnance Survey, this has been dealt
with in previous pages. The great advantage of this to the engineering surveyor is that, when using GPS
at the local level, there is no requirement for coordinate transformations. Kinematic methods can be used
for rapid detailing, and Real-Time Kinematic (RTK) for setting-out.

Whilst the above constitutes the main area of interest for the engineering surveyor, other applications
will be briefly mentioned to illustrate the power and versatility of GPS.

9.19.1 Machine guidance and control

Earth moving is required to shape the ground prior to construction taking place. In this context machine
guidance is concerned with guiding the operator to move the blade or dozer, scraper, excavator or grader
using GPS as the reference. On the other hand, machine control is when this information is used directly
to control the machine’s hydraulics to automate the blade.

Initially a GPS base station is established on site. The base station collects the code and phase data and
this is broadcast by radio throughout the whole site. Rover units working in RTK mode get corrections
from the base station. Shortly after, position at the machine is determined with 20–30 mm precision at a
data rate of at least 0.1 second with an even smaller latency. Usually there are two GPS antennae attached
to each end of the blade so that the grade profile may be determined precisely.

The machine operator needs to be guided in terms of what to do with his/her machine, therefore the
GPS derived coordinates and site design components need to be transparent to the operator in the cab. The
site DTM and project design are loaded into the control unit aboard the machine. As the task progresses
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and changes are made to the plan, these can be added either with updated physical media or by transferring
the data by radio link. The operator may be guided on the task by light bars telling him/her whether to
raise, lower or angle the machine’s blade or there may be a visual display of the task so that the ground
ahead can be compared with a design visualization.

With machine guidance there is no need for conventional setting-out because no profile or batter boards
need to be established. The role of the surveyor is now more concerned with setting up the GPS system
and ensuring that the correct coordinate systems are in use, that the GPS is functioning correctly as well
as ensuring the design data is correctly formatted for the task in hand. As well as using the system to make
the process of cut, fill and grading more efficient the GPS can be used to do a survey of the work achieved
so far on a daily basis. This can be used to calculate payment for the task and to determine whether the
specification for the work has been achieved.

The same design file can be used for the initial rough cuts and moves of mass of dirt as well as the
finished grades. Where there is automatic control of the blade this helps with more accurate grading with
fewer passes. When the GPS is interfaced to the machines’ hydraulic valves there can be automatic control
of elevation and cross-slope.

For large sites where parts are beyond the range of the base station radio repeater radios may extend
operations up to about 20 km. GPS has its limitations in terms of the precision that can be achieved in real
time. If the system is augmented by lasers then final profiles can be achieved down to a few millimetres.

Cut and fill to planes defined by conventional profiles and batter boards can easily be achieved. What is
more difficult is to create a smooth surface defined by vertical profiles in more than one direction such as in
landscaping, especially golf courses. With a DTM and GPS machine control this is more easily achieved.

GPS antennae mounted on masts attached to plant blades are subject to harsh shocks and vibrations so
the antennae need to be firmly attached and robust. Antennae are expensive and therefore vulnerable to
theft and damage when the site is not active or guarded. Using GPS means there will be fewer personnel
such as surveyors on site and therefore the site becomes safer. Where there are areas of danger on the site
which are invisible to the operator, such as pipelines or contaminated ground, they can be included in the
data for the control unit and an audible warning given to the operator if the machine gets too close. See
Figures 9.27 and 9.28.

9.19.2 Plate tectonics

Plate tectonics is centred on the theories of continental drift and is the most widely accepted model describ-
ing crustal movement. GPS is being used on a local and regional basis to measure three-dimensional
movement. Locally, inter-station vectors across faults are being continually monitored to millimetre accu-
racy, whilst regionally, GPS networks have been established across continental plate boundaries. The
information obtained adds greatly to the study of earthquake prediction, volcanoes and plate motion.

9.19.3 Precision farming

The concepts are similar to those used in machine guidance and control; however, DGPS levels of accuracy
are often sufficient. The unit steers the agricultural machine along parallel, curved, or circular evenly spaced
swaths taking account of the swath width.

Automated steering may be used to free the operator from steering the equipment until he/she comes to
the end or the corner of the field. Yield monitoring may also be incorporated into the system. The system
may also be used to vary the levels of seed or fertilizer distribution across the field to ensure there is a
minimum of waste.
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Fig. 9.27 Site vision GPS’ machine guidance by Trimble, showing two GPS antennae and the in-cab control
system

9.19.4 Geographical information systems (GIS)

GPS is the ideal tool for the collection of spatially related data because the speed at which the position
element of the data may be captured and because the precision of the position element is likely to be
acceptable for almost all applications that the engineering surveyor will be involved with. GPS, in any
mode from stop-and-go to RTK, lends itself particularly well to the process of recording vector data such
as pipeline routes, property boundaries and pavement edges. Because the data is in electronic form it is
easily compiled into files for use within a GIS.

9.19.5 Navigation

GPS is now used in all aspects of navigation. GPS voice navigation systems are standard with many models
of car. Simply typing the required destination into the unit results in a graphical display of the route, along
with voiced directions. Similar systems are used by private boats as digital charts and by aeroplanes, whilst
handheld receivers are now standard equipment for many walkers, and cyclists. GPS has many applications
for sports monitoring and provides the spatial and time element of the data for sports performance analysis.
GPS enabled wristwatches and mobile phones have been available for several years now.
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Fig. 9.28 GPS guided plant – courtesy of AGTEK Development

GPS is used in fleet management for determining the vehicles’ positions and status so that they can
be transmitted to a central control, thereby permitting better management of the assets. At the individual
vehicle level the driver can use GPS as an aid to destination and route location.

GPS is used by surveying ships for major offshore hydrographic surveys. Ocean-going liners use it
for navigation purposes, whilst most harbours have a DGPS system to enable precise docking. Even
recreational craft rely on it almost to the exclusion of traditional methods of navigation and pilotage.

At the present time, aircraft landing and navigation are controlled by a variety of disparate systems.
GPS is well used and may eventually provide a single system for all aircraft operations. The uses to which
GPS can be put are limited only by the imagination of the user. They can range from the complexities of
measuring tectonic movement to the simplicity of spreading fertilizer in precision farming, and include
many areas of scientific study, such as meteorology, oceanography, and geophysics. As satellite systems
continue to develop the applications will continue to grow.

9.19.6 Deformation monitoring

The advantage of using GPS is that it enables near real-time monitoring for deformation if data is recorded
and processed online. There are a number of such projects currently operational and are described at
their respective websites. Examples include monitoring by Nottingham University of the Humber Bridge
and a bridge in Nottingham for movement, http://www.gmat.unsw.edu.au/wang/jgps/v3n12/v3n12p28.pdf.
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Fig. 9.29 GOCA – GPS-based online Control and Alarm Systems

Although GPS can give three-dimensional time-tagged positions at the rate of 10–20 Hz this means that
oscillations of more than half this value cannot be easily detected. Since information about actual vibration
is of use to engineers the output of other technologies such as accelerometers may be incorporated with that
of GPS through mathematical techniques like Kalman filtering. Kalman filtering is a ‘predictor–corrector’
process that enables solutions of position and velocity of greater precision than those obtainable with either
GPS or the accelerometers alone.

The GPS-based online Control and Alarm System (GOCA) developed at Fachhochschule Karlsruhe-
University of Applied Sciences, Germany, can be used for the online monitoring of movements associated
with, and preceding, natural disasters such as landslides, volcanoes and earthquakes. The system may be
entirely GPS based or use total stations as well, as in Figure 9.29. The system can also be used to monitor
safety-critical movement of buildings or dams. The online modelling of a classical deformation network
leads to the computation and visualization of time series data of individual receivers. With filtering and
analysis of the data it is possible to detect movements that are significant, but much smaller than the
precision of individual GPS measurements. These movements may trigger an automatic alarm and give
warning of an impending disaster. Details are at http://www.goca.info/.
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Curves

In the geometric design of motorways, railways, pipelines, etc., the design and setting out of curves is an
important aspect of the engineer’s work.

The initial design is usually based on a series of straight sections whose positions are defined largely by
the topography of the area. The intersections of pairs of straights are then connected by horizontal curves
(see Section 10.2). In the vertical design, intersecting gradients are connected by curves in the vertical
plane.

Curves can be listed under three main headings, as follows:

(1) Circular curves of constant radius.
(2) Transition curves of varying radius (spirals).
(3) Vertical curves of parabolic form.

10.1 CIRCULAR CURVES

Two straights, D1T1 and D2T2 in Figure 10.1, are connected by a circular curve of radius R:

(1) The straights when projected forward, meet at I: the intersection point.
(2) The angle � at I is called the angle of intersection or the deflection angle, and equals the angle T10T2

subtended at the centre of the curve 0.
(3) The angle φ at I is called the apex angle, but is little used in curve computations.
(4) The curve commences from T1 and ends at T2; these points are called the tangent points.
(5) Distances T1I and T2I are the tangent lengths and are equal to R tan �/2.
(6) The length of curve T1AT2 is obtained from:

Curve length = R� where � is expressed in radians, or

Curve length = �◦ · 100

D◦ where degree of curve (D) is used (see Section 10.1.1)

(7) Distance T1T2 is called the main chord (C), and from Figure 10.1:

sin
�

2
= T1B

T1O
=

1
2 chord(C)

R
∴ C = 2R sin

�

2

(8) IA is called the apex distance and equals

IO − R = R sec �/2 − R = R(sec �/2 − 1)

(9) AB is the rise and equals R − OB = R − R cos �/2

∴ AB = R(1 − cos �/2)

These equations should be deduced using a curve diagram (Figure 10.1).
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Fig. 10.1 Circular curve

10.1.1 Curve designation

Curves are designated either by their radius (R) or their degree of curvature (D◦). The degree of curvature
is defined as the angle subtended at the centre of a circle by an arc of 100 m (Figure 10.2).

Thus R = 100 m

D rad
= 100 × 180◦

D◦ × π

∴ R = 5729.578

D◦ m (10.1)

Thus a 10◦ curve has a radius of 572.9578 m.

10.1.2 Through chainage

Through chainage is the horizontal distance from the start of a scheme for route construction.
Consider Figure 10.3. If the distance from the start of the route (Chn 0.00 m) to the tangent point T1 is

2115.50 m, then it is said that the chainage of T1 is 2115.50 m, written as (Chn 2115.50 m).
If the route centre-line is being staked out at 20-m chord intervals, then the peg immediately prior to

T1 must have a chainage of 2100 m (an integer number of 20 m intervals). The next peg on the centre-line
must therefore have a chainage of 2120 m. It follows that the length of the first sub-chord on the curve
from T1 must be (2120 − 2115.50) = 4.50 m.

Similarly, if the chord interval had been 30 m, the peg chainage prior to T1 must be 2100 m and the
next peg (on the curve) 2130 m, thus the first sub-chord will be (2130 − 2115.50) = 14.50 m.

Fig. 10.2 Radius and chainage
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Fig. 10.3 Through chainage

A further point to note in regard to chainage is that if the chainage at I1 is known, then the chainage at
T1 = Chn I1 − distance I1T1, the tangent length. However the chainage at T2 = Chn T1 + curve length,
as chainage is measured along the route under construction.

10.2 SETTING OUT CURVES

This is the process of establishing the centre-line of the curve on the ground by means of pegs at 10 m to
30 m intervals. In order to do this the tangent and intersection points must first be fixed in the ground, in
their correct positions.

Consider Figure 10.3. The straights OI1, I1I2, I2I3, etc., will have been designed on the plan in the
first instance. Using railway curves, appropriate curves will now be designed to connect the straights.
The tangent points of these curves will then be fixed, making sure that the tangent lengths are equal, i.e.
T1I1 = T2I1 and T3I2 = T4I2. The coordinates of the origin, point O, and all the intersection points
only will now be carefully scaled from the plan. Using these coordinates, the bearings of the straights are
computed and, using the tangent lengths on these bearings, the coordinates of the tangent points are also
computed. The difference of the bearings of the straights provides the deflection angles (�) of the curves
which, combined with the tangent length, enables computation of the curve radius, through chainage and
all setting-out data. Now the tangent and intersection points are set out from existing control survey stations
and the curves ranged between them using the methods detailed below.

10.2.1 Setting out with theodolite and tape

The following method of setting out curves is the most popular and it is called Rankine’s deflection or
tangential angle method, the latter term being more definitive.

In Figure 10.4 the curve is established by a series of chords T1X, XY, etc. Thus, peg 1 at X is fixed by
sighting to I with the theodolite reading zero, turning off the angle δ1 and measuring out the chord length
T1X along this line. Setting the instrument to read the second deflection angle gives the direction T1Y ,
and peg 2 is fixed by measuring the chord length XY from X until it intersects at Y . The procedure is now
continued, the angles being set out from T1I , and the chords measured from the previous station.

It is thus necessary to be able to calculate the setting-out angles δ as follows:

Assume 0A bisects the chord T1X at right angles; then

AT̂1O = 90◦ − δ1, but IT̂1O = 90◦

∴ IT̂1A = δ1
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Fig. 10.4 Setting out with thedolite and tape

By radians, arc length T1X = R2δ1

∴ δ1 rad = arc T1X

2R
≈ chord T1X

2R

∴ δ◦
1 = chord T1X × 180◦

2R · π
= 28.6479

chord

R
= 28.6479

C

R
(10.2a)

or δ◦ = D◦ × chord

200
where degree of curve is used (10.2b)

(Using equation (10.2a) the angle is obtained in degree and decimals of a degree; a single key operation
converts it to degrees, minutes, seconds.)

An example will now be worked to illustrate these principles.
The centre-line of two straights is projected forward to meet at I , the deflection angle being 30◦. If the

straights are to be connected by a circular curve of radius 200 m, tabulate all the setting-out data, assuming
20-m chords on a through chainage basis, the chainage of I being 2259.59 m.

Tangent length = R tan �/2 = 200 tan 15◦ = 53.59 m

∴ Chainage of T1 = 2259.59 − 53.59 = 2206 m

∴ 1st sub-chord = 14m

Length of circular arc = R� = 200(30◦ · π /180) m = 104.72 m
From which the number of chords may now be deduced i.e.,

1st sub-chord = 14 m

2nd, 3rd, 4th, 5th chords = 20 m each

Final sub-chord = 10.72 m

Total = 104.72 m (Check)

∴ Chainage of T2 = 2206 m + 104.72 m = 2310.72 m
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Deflection angles:

For 1st sub-chord = 28.6479 · 14

200
= 2◦ 00′ 19′′

Standard chord = 28.6479 · 20

200
= 2◦ 51′ 53′′

Final sub-chord = 28.6479 · 10.72

200
= 1◦ 32′ 08′′

Check: The sum of the deflection angles = �/2 = 14◦ 59′ 59′′ ≈ 15◦

Chord number Chord length Chainage Deflection angle Setting-out angle Remarks

(m) (m) ◦ ′ ′′ ◦ ′ ′′

1 14 2220.00 2 00 19 2 00 19 peg 1
2 20 2240.00 2 51 53 4 52 12 peg 2
3 20 2260.00 2 51 53 7 44 05 peg 3
4 20 2280.00 2 51 53 10 35 58 peg 4
5 20 2300.00 2 51 53 13 27 51 peg 5
6 10.72 2310.72 1 32 08 14 59 59 peg 6

The error of 1′′ is, in this case, due to the rounding-off of the angles to the nearest second and is
negligible.

10.2.2 Setting out with two theodolites

Where chord taping is impossible, the curve may be set out using two theodolites at T1 and T2 respectively,
the intersection of the lines of sight giving the position of the curve pegs.

The method is explained by reference to Figure 10.5. Set out the deflection angles from T1I in the usual
way. From T2, set out the same angles from the main chord T2T1. The intersection of the corresponding
angles gives the peg position.

Fig. 10.5 Setting out with two thedolites
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If T1 cannot be seen from T2, sight to I and turn off the corresponding angles �/2 − δ1,
�/2 − δ2, etc.

10.2.3 Setting-out using EDM

When setting-out by EDM, the total distance from T1 to the peg is set out, i.e. distances T1A, T1B and T1C,
etc., in Figure 10.6. However, the chord and sub-chord distances are still required in the usual way, plus
the setting-out angles for those chords. Thus all the data and setting-out computation as shown the table
above must first be carried out prior to computing the distances to the pegs direct from T1. These distances
are computed using the equation point 7, in Section 10.1, i.e.

T1A = 2R sin δ1 = 2R sin 2◦ 00′ 19′′ = 14.00 m.

T1B = 2R sin δ2 = 2R sin 4◦ 52′ 12′′ = 33.96 m.

T1C = 2R sin δ3 = 2R sin 7◦ 44′ 05′′ = 53.83 m.

T1T2 = 2R sin(�/2) = 2R sin 15◦ 00′ 00′′ = 103.53 m.

In this way the curve is set-out by measuring the distances directly from T1 and turning off the necessary
direction in the manner already described.

10.2.4 Setting-out using coordinates

In this procedure the coordinates along the centre-line of the curve are computed relative to the existing
control points. Consider Figure 10.7:

(1) From the design process, the coordinates of the tangent and intersection point are obtained.
(2) The chord intervals are decided in the usual way and the setting-out angles δ1, δ2, . . . , δn, computed in

the usual way (Section 10.2.1).
(3) From the known coordinates of T1 and I , the bearing T1I is computed.

Fig. 10.6 Setting out by EDM
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Fig. 10.7 Setting out using coordinates

(4) Using the setting-out angles, the bearings of the rays T1A, T1B, T1C, etc., are computed relative to
T1I . The distances are obtained as in Section 10.2.3.

(5) Using the bearings and distances in (4) the coordinates of the curve points A, B, C, etc., are obtained.
(6) These points can now be set out from the nearest control points either by ‘polars’ or by ‘intersection’,

as follows:
(7) Using the coordinates, compute the bearing and distance from, say, station Y to T1, A and B.
(8) Set up theodolite at Y and backsight to X; set the horizontal circle to the known bearing YX.
(9) Now turn the instrument until it reads the computed bearing YT1 and set out the computed distance in

that direction to fix the position of T1. Repeat the process for A and B. The ideal instrument for this is
a total station, many of which will have onboard software to carry out the computation in real time.
However, provided that the ground conditions are suitable and the distances within, say, a 50 m tape
length, a theodolite and steel tape would suffice.

Other points around the curve are set out in the same way from appropriate control points.
Intersection may be used, thereby precluding distance measurement, by computing the bearings to the

curve points from two control stations. For instance, the theodolites are set up at Y and Z respectively.
Instrument Y is orientated to Z and the bearing YZ set on the horizontal circle. Repeat from Z to Y . The
instruments are set to bearingsYB and ZB respectively, intersecting at peg B. The process is repeated around
the curve.

Using coordinates eliminates many of the problems encountered in curve ranging and does not require
the initial establishment of tangent and intersection points.

10.2.5 Setting out with two tapes (method of offsets)

Theoretically this method is exact, but in practice errors of measurement propagate round the curve. It is
therefore generally used for minor curves.

In Figure 10.8, line OE bisects chord T1A at right-angles, then ET1O = 90◦ − δ, ∴ CT1A = δ, and
triangles CT1A and ET1O are similar, thus:

CA

T1A
= T1E

T1O
∴ CA = T1E

T1O
× T1A

i.e. offset CA =
1
2 chord × chord

radius
= chord2

2R
(10.3)

From Figure 10.8, assuming lengths T1A = AB = AD

then angle DAB = 2δ, and so offset DB = 2CA = chord2

R
(10.4)



Curves 377

Fig. 10.8 Setting out with two tapes

The remaining offsets round the curve to T2 are all equal to DB whilst, if required, the offset HJ to fix
the line of the straight from T2, equals CA.

The method of setting out is as follows:
It is sufficient to approximate distance T1C to the chord length T1A and measure this distance along

the tangent to fix C. From C a right-angled offset CA fixes the first peg at A. Extend T1A to D so that AD
equals a chord length; peg B is then fixed by pulling out offset length from D and chord length from A,
and where they meet is the position B. This process is continued to T2.

The above assumes equal chords. When the first or last chords are sub-chords, the following
(Section 10.2.6) should be noted.

10.2.6 Setting out by offsets with sub-chords

In Figure 10.9 assume T1A is a sub-chord of length x; from equation (10.3) the offset CA = O1 = x2/2R.
As the normal chord AB differs in length from T1A, the angle subtended at the centre will be 2θ not 2δ.

Thus, as shown in Figure 10.8, the offset DB will not in this case equal 2CA.

Fig. 10.9 Setting out by offsets with sub-chords
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Construct a tangent through point A, then from the figure it is obvious that angle EAB = θ , and if chord
AB = y, then offset EB = y2/2R.

Angle DAE = δ, therefore offset DE will be directly proportional to the chord length, thus:

DE = O1

x
y = x2

2R

y

x
= xy

2R

Thus the total offset DB = DE + EB

= y

2R
(x + y)

i.e. = chord

2R
(sub-chord + chord)

(10.5)

Thus having fixed B, the remaining offsets to T2 are calculated as y2/R and set out in the usual way.
If the final chord is a sub-chord of length x1, however, then the offset will be:

x1

2R
(x1 + y) (10.6)

Note the difference between equations (10.5) and (10.6).
A more practical approach to this problem is actually to establish the tangent through A in the field.

This is done by swinging an arc of radius equal to CA, i.e. x2/2R from T1. A line tangential to the arc and
passing through peg A will then be the required tangent from which offset EB, i.e. y2/2R, may be set off.

10.2.7 Setting out with inaccessible intersection point

In Figure 10.10 it is required to fix T1 and T2, and obtain the angle �, when I is inaccessible.
Project the straights forward as far as possible and establish two points A and B on them. Measure

distance AB and angles BAC and DBA then:

angle IAB = 180◦ − BÂC and angle IBA = 180◦ − DB̂A, from which angle BIA is deduced and angle
�. The triangle AIB can now be solved for lengths IA and IB. These lengths, when subtracted from the
computed tangent lengths (R tan �/2), give AT1 and BT2, which are set off along the straight to give
positions T1 and T2 respectively.

Fig. 10.10 Setting out with inaccessible intersection point
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10.2.8 Setting out with theodolite at an intermediate point on the curve

Due to an obstruction on the line of sight (Figure 10.11) or difficult communications and visibility on long
curves, it may be necessary to continue the curve by ranging from a point on the curve. Assume that the
setting-out angle to fix peg 4 is obstructed. The theodolite is moved to peg 3, backsighted to T1 with the
instrument reading 180◦, and then turned to read 0◦, thus giving the direction 3 − T . The setting-out angle
for peg 4, δ4, is turned off and the chord distance measured from 3. The remainder of the curve is now set
off in the usual way, that is, δ5 is set on the theodolite and the chord distance measured from 4 to 5.

The proof of this method is easily seen by constructing a tangent through peg 3, then angle A3T1 =
AT13 = δ3 = T3B. If peg 4 was fixed by turning off δ from this tangent, then the required angle from 3T
would be δ3 + δ = δ4.

10.2.9 Setting out with an obstruction on the curve

In this case (Figure 10.12) an obstruction on the curve prevents the chaining of the chord from 3 to 4. One
may either:

(1) Set out the curve from T2 to the obstacle.
(2) Set out the chord length T14 = 2R sin δ4 (EDM).
(3) Set out using intersection from theodolites at T1 and T2.
(4) Use coordinate method.

10.2.10 Passing a curve through a given point

In Figure 10.13, it is required to find the radius of a curve which will pass through a point P, the position
of which is defined by the distance IP at an angle of φ to the tangent.

Consider triangle IPO:

angle β = 90◦ − �/2 − φ (right-angled triangle IT2O)

by sine rule: sin α = IO

PO
sin β but IO = R sec

�

2

Fig. 10.11 Setting out from an intermediate point
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Fig. 10.12 Obstruction on the curve

Fig. 10.13 Curve passing through a given point

∴ sin α − sin β
R sec �/2

R
= sin β sec

�

2

then θ = 180◦ − α − β, and by the sine rule: R = IP
sin β

sin θ

10.3 COMPOUND AND REVERSE CURVES

Although equations are available which solve compound curves (Figure 10.14) and reverse curves
(Figure 10.15), they are difficult to remember so it is best to treat the problem as two simple curves
with a common tangent point t.
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Fig. 10.14 Compound curve

Fig. 10.15 Reverse curve

In the case of the compound curve, the total tangent lengths T1I and T2I are found as follows:

R1 tan �1/2 = T1t1 = t1t and R2 tan �2/2 = T2t2 = t2t, as t1t2 = t1t + t2t

then triangle t1It2 may be solved for lengths t1I and t2I which, if added to the known lengths T1t1 and T2t2
respectively, give the total tangent lengths.

In setting out this curve, the first curve R1 is set out in the usual way to point t. The theodolite is moved
to t and backsighted to T1, with the horizontal circle reading (180◦ −�1/2). Set the instrument to read zero
and it will then be pointing to t2. Thus the instrument is now oriented and reading zero, prior to setting out
curve R2.

In the case of the reverse curve, both arcs can be set out from the common point t.
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10.4 SHORT AND/OR SMALL-RADIUS CURVES

Short and/or small-radius curves such as for kerb lines, bay windows or for the construction of large
templates may be set out by the following methods.

10.4.1 Offsets from the tangent

The position of the curve (in Figure 10.16) is located by right-angled offsets Y set out from distances X,
measured along each tangent, thereby fixing half the curve from each side.

The offsets may be calculated as follows for a given distance X. Consider offset Y3, for example.

In �ABO, AO2 = OB2 − AB2 ∴ (R − Y3)2 = R2 − X2
3 and Y3 = R − (R2 − X2

3 )
1
2

Thus for any offset Yi at distance Xi along the tangent:

Yi = R − (R2 − X2
i )

1
2 (10.7)

10.4.2 Offsets from the long chord

In this case (Figure 10.17) the right-angled offsets Y are set off from the long chord C, at distances X to
each side of the centre offset Y0.

An examination of Figure 10.17, shows the central offset Y0 equivalent to the distance T1A on
Figure 10.16; thus:

Y0 − R − [R2 − (C/2)2] 1
2

Fig. 10.16 Offsets from the tangent
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Fig. 10.17 Offsets from the long chord

Similarly, DB is equivalent to DB on Figure 10.16, thus: DB = R − (R2 − X2
1 )

1
2 and offset Y1 =

Y0 − DB ∴ Y1 = Y0 − [R − (R2 − X2
1 )

1
2 ] and for any offset Yi at distance Xi each side of the mid-point

of T1T2:

mid-point of T1T2 : Yi = Y0 − [R − (R2 − X2)
1
2 ] (10.8)

Therefore, after computation of the central offset, further offsets at distances Xi, each side of Y0, can be
found.

10.4.3 Halving and quartering

Referring to Figure 10.18:

(1) Join T1 and T2 to form the long chord. Compute and set out the central offset Y0 to A from B (assume
Y0 = 20 m), as in Section 10.4.2.

(2) Join T1 and A, and now halve this chord and quarter the offset. That is, from mid-point E set out offset
Y1 = 20/4 = 5 m to D.

(3) Repeat to give chords T1D and DA; the mid-offsets FG will be equal to Y1/4 = 1.25 m.

Repeat as often as necessary on both sides of the long chord.

Fig. 10.18 Halving and quartering
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Worked examples

Example 10.1 The tangent length of a simple curve was 202.12 m and the deflection angle for a 30-m
chord 2◦ 18′.

Calculate the radius, the total deflection angle, the length of curve and the final deflection angle. (LU)

2◦ 18′ = 2.3◦ = 28.6479 · 30

R
∴ R = 373.67 m

202.12 = R tan �/2 = 373.67 tan �/2 ∴ � = 56◦ 49′ 06′′

Length of curve = R� rad = 373.67 × 0.991 667 rad = 370.56 m
Using 30-m chords, the final sub-chord = 10.56 m

∴ final deflection angle = 138′ × 10.56

30
= 48.58′ = 0◦ 48′ 35′′

Example 10.2 The straight lines ABI and CDI are tangents to a proposed circular curve of radius 1600 m.
The lengths AB and CD are each 1200 m. The intersection point is inaccessible so that it is not possible
directly to measure the deflection angle; but the angles at B and D are measured as:

AB̂D = 123◦ 48′, BD̂C = 126◦ 12′ and the length BD is 1485 m

Calculate the distances from A and C of the tangent points on their respective straights and calculate
the deflection angles for setting out 30-m chords from one of the tangent points. (LU)

Referring to Figure 10.19:

�1 = 180◦ − 123◦ 48′ = 56◦ 12′, �2 = 180◦ − 126◦ 12′ = 53◦ 48′

∴ � = �1 + �2 = 110◦

φ = 180◦ − � = 70◦

Tangent lengths IT1 and IT2 = R tan �/2 = 1600 tan 55◦ = 2285 m

Fig. 10.19 Inaccessible intersection point
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By sine rule in triangle BID:

BI = BD sin �2

sin φ
= 1484 sin 53◦ 48′

sin 70◦ = 1275.2 m

ID = BD sin �1

sin φ
= 1485 sin 56◦ 15′

sin 70◦ = 1314 m

Thus: AI = AB + BI = 1200 + 1275.2 = 2475.2 m

CI = CD + ID = 1200 + 1314 = 2514 m

∴ AT1 = AI − IT1 = 2475.2 − 2285 = 190.2 m

CT2 = CI − IT2 = 2514 − 2285 = 229 m

Deflection angle for 30-m chord = 28.6479 × 30/1600 = 0.537148◦

= 0◦ 32′ 14′′

Example 10.3 A circular curve of 800 m radius has been set out connecting two straights with a deflection
angle of 42◦. It is decided, for construction reasons, that the mid-point of the curve must be moved 4 m
towards the centre, i.e. away from the intersection point. The alignment of the straights is to remain
unaltered.

Calculate:

(1) The radius of the new curve.
(2) The distances from the intersection point to the new tangent points.
(3) The deflection angles required for setting out 30-m chords of the new curve.
(4) The length of the final sub-chord. (LU)

Referring to Figure 10.20:

IA = R1(sec �/2 − 1) = 800(sec 21◦ − 1) = 56.92 m

∴ IB = IA + 4 m = 60.92 m

(1) Thus, 60.92 = R2(sec 21◦ − 1), from which R2 = 856 m
(2) Tangent length = IT1 = R2 tan �/2 = 856 tan 21◦ = 328.6 m

Fig. 10.20 A realigned road
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(3) Deflection angle for 30-m chord = 28.6479 · C/R = 28.6479 · 30

856
= 1◦ 00′ 14′′

(4) Curve length = R� rad = 856 × 42◦ × 3600

206 265
= 627.5 m

∴ Length of final sub-chord = 27.5 m

Example 10.4 The centre-line of a new railway is to be set out along a valley. The first straight AI bears 75◦,
whilst the connecting straight IB bears 120◦. Due to site conditions it has been decided to join the straights
with a compound curve.

The first curve of 500 m radius commences at T1, situated 300 m from I on straight AI, and deflects
through an angle of 25◦ before joining the second curve.

Calculate the radius of the second curve and the distance of the tangent point T2 from I on the
straight IB. (KU)

Referring to Figure 10.14:

� = 45◦, �1 = 25◦ ∴ �2 = 20◦

Tangent length T1t1 = R1 tan �1/2 = 500 tan 12◦ 30′ = 110.8 m. In triangle t1It2:

Angle t2It1 = 180◦ − � = 135◦

Length It1 = T1I − T1t1 = 300 − 110.8 = 189.2 m

By sine rule:

t1t2 = It1 sin t2It1
sin �2

= 189.2 sin 135◦

sin 20◦ = 391.2 m

It2 = It1 sin �1

sin �2
= 189.2 sin 25◦

sin 20◦ = 233.8 m

∴ tt2 = t1t2 − T1t1 = 391.2 − 110.8 = 280.4 m

∴ 280.4 = R2 tan �2/2 = R2 tan 10◦; ∴ R2 = 1590 m

Distance IT2 = It2 = t2T2 = 233.8 + 280.4

= 514.2 m

Example 10.5 Two straights intersecting at a point B have the following bearings, BA 270◦, BC 110◦. They
are to be joined by a circular curve which must pass through a point D which is 150 m from B and the
bearing of BD is 260◦.

Find the required radius, tangent lengths, length of curve and setting-out angle for a 30-m chord. (LU)

Referring to Figure 10.21:
From the bearings, the apex angle = (270◦ − 110◦) = 160◦

∴ � = 20◦

and angle DBA = 10◦ (from bearings)

∴ OBD = β = 70◦
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Fig. 10.21 Curve passing through a given point

In triangle BDO by sine rule:

sin θ = OB

OD
sin β = R sec �/2

R
sin β = sec

�

2
sin β

∴ sin θ = sec 10◦ × sin 70◦

θ = sin−1 0.954 190 = 72◦ 35′ 25′′ or

(180◦ − 72◦ 35′ 25′′) = 107◦ 24′ 35′′

An examination of the figure shows that δ must be less than 10◦,

∴ θ = 170◦ 24′ 35′′

δ = 180◦ − (θ + β) = 2◦ 35′ 25′′

By sine rule DO = R = DB sin β

sin δ
= 150 sin 70◦

sin 2◦ 35′ 25′′

∴ R = 3119 m

Tangent length = R tan �/2 = 3119 tan 10◦ = 550 m

Length of curve = R� rad = 3119 × 20◦ × 3600

206 265
= 1089 m

Deflection angle for 30-m chord = 28.6479 × 30

3119
= 0◦ 16′ 32′′

Example 10.6 Two straights AEI and CFI, whose bearings are respectively 35◦ and 335◦, are connected
by a straight from E to F. The coordinates of E and F in metres are:

E E 600.36 N 341.45

F E 850.06 N 466.85

Calculate the radius of a connecting curve which shall be tangential to each of the lines AE, EF and CF.
Determine also the coordinates of I , T1, and T2, the intersection and tangent points respectively. (KU)
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Fig. 10.22 Curve fit to two straight lines defined by coordinates and bearings

Referring to Figure 10.22:

Bearing AI = 35◦, bearing IC = (335◦ − 180◦) = 155◦

∴ � = 155◦ − 35◦ = 120◦

By coordinates

Bearing EF = tan−1 +249.70 N

+125.40 N
= 63◦ 20′

Length EF = 249.7/ sin 63◦ 20′ = 279.42 m

From bearings AI and EF, angle IEF = �1 = (63◦ 20′ − 35◦)

= 28◦ 20′

From bearings CI and EF, angle IFE = �2 = (155◦ − 63◦ 20′)
= 91◦ 40′, check (�1 + �2) = � = 120◦

In triangle EFO

Angle FEO = (90◦ − �1/2) = θ = 75◦ 50′

Angle EFO = (90◦ − �2/2) = φ = 44◦ 10′

EG = GO cot θ = R cot θ

GF = GO cot φ = R cot φ

∴ EG + GF = EF = R(cos θ + cos φ)

∴ R = EF

(cot θ + cot φ)
= 279.42

cot 75◦ 50′ + cot 44◦ 10′

= 217.97 m

ET1 = R tan �1/2 = 217.97 tan 14◦ 10′ = 55.02 m

FT2 = R tan �2/2 = 217.97 tan 45◦ 50′ = 224.4 m

bearing ET1 = 215◦

bearing FT2 = 155◦
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∴ Coordinates of T1 = 55.02 sin 215◦ = −31.56 E

55.02 cos 215◦ = −45.07 N

∴ Total coordinates of T1 = E 600.36 − 31.56 = E 568.80 m

= N 341.45 − 45.07 = N 296.38 m

Similarly:

Coordinates of T2 = 224.4 sin 155◦ = +98.84 E

224.4 cos 155◦ = −203.38 N

∴ Total coordinates of T2 = E 850.06 + 94.84 = E 944.90 m

= N 466.85 − 203.38 = N 263.47 m

T1I = R tan �/2 = 217.97 tan 60◦ = 377.54 m

Bearing of T1I = 35◦

∴ Coordinates of I = 377.54 sin 35◦ = +216.55 E

377.54 cos 35◦ = +309.26 N

∴ Total coordinates of I = E 586.20 + 216.55 = E 802.75

= N 321.23 + 309.26 = N 630.49

The coordinates of I can be checked via T2I .

Example 10.7 The coordinates in metres of two points B and C with respect to A are:

B 470 E 500 N

C 770 E 550 N

Calculate the radius of a circular curve passing through the three points, and the coordinates of the
intersection point I , assuming that A and C are tangent points. (KU)

Referring to Figure 10.23:

∆ = 2(q + f)

C

O

R

E

A

I

D

B

R

q f 2q
2f

f

Fig. 10.23 Curve defined by three points
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By coordinates

Bearing AB = tan−1 +470 E

+500 N
= 43◦ 14′

Bearing AC = tan−1 +770 E

550 N
= 54◦ 28′

Bearing BC = tan−1 +330 E

+50 N
= 80◦ 32′

Distance AB = 500/cos 43◦ 14′ = 686 m

From bearings of AB and AC, angle BAC = θ = 11◦ 14′

From bearings of CA and CB, angle BCA = φ = 26◦ 04′

As a check, the remaining angle, calculated from the bearings of BA and BC = 142◦ 42′, summing to 180◦.
In right-angled triangle DOB:

OB = R = DB

sin φ
= 343

sin 26◦ 04′ = 781 m

This result could now be checked through triangle OEC.

� = 2(φ + θ ) = 74◦ 36′

∴ AI = R tan �/2 = 781 tan 37◦ 18′ = 595 m

Bearing AI = bearing AC − �/2 = 54◦ 82′ − 37◦ 18′

= 17◦10′

∴ Coordinates of I equal:

595 sin 17◦ 10′ = +176 E

595 cos 17◦ 10′ = +569 N

Exercises

(10.1) In a town planning scheme, a road 9 m wide is to intersect another road 12 m wide at 60◦, both
being straight. The kerbs forming the acute angle are to be joined by a circular curve of 30 m radius and
those forming the obtuse angle by one of 120 m radius.

Calculate the distances required for setting out the four tangent points.
Describe how to set out the larger curve by the deflection angle method and tabulate the angles for 15-m

chords. (LU)

(Answer: 75, 62, 72, 62 m. δ = 3◦ 35′)

(10.2) A straight BC deflects 24◦ right from a straight AB. These are to be joined by a circular curve which
passes through a point P, 200 m from B and 50 m from AB.

Calculate the tangent length, length of curve and deflection angle for a 30-m chord. (LU)

(Answer: R = 3754 m, IT = 798 m, curve length = 1572 m, 0◦ 14′)

(10.3) A reverse curve is to start at a point A and end at C with a change of curvature at B. The chord
lengths AB and BC are respectively 661.54 m and 725.76 m and the radii likewise 1200 and 1500 m.
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Due to irregular ground the curves are to be set out using two theodolites and no tape or chain.
Calculate the data for setting out and describe the procedure in the field. (LU)

(Answer: Tangent lengths: 344.09, 373.99; curve length: 670.2, 733, per 30-m chords: δ1 = 0◦ 42′ 54′′,
δ2 = 0◦ 34′′ 30′′)

(10.4) Two straights intersect making a deflection angle of 59◦ 24′, the chainage at the intersection point
being 880 m. The straights are to be joined by a simple curve commencing from chainage 708 m.

If the curve is to be set out using 30-m chords on a through chainage basis, by the method of offsets
from the chord produced, determine the first three offsets.

Find also the chainage of the second tangent point, and with the aid of sketches, describe the method
of setting out. (KU)

(Answer: 0.066, 1.806, 2.985 m, 864.3 m)

(10.5) A circular curve of radius 250 m is to connect two straights, but in the initial setting out it soon
becomes apparent that the intersection point is in an inaccessible position. Describe how it is possible in
this case to determine by what angle one straight deflects from the other, and how the two tangent points
may be accurately located and their through chainages calculated.

On the assumption that the chainages of the two tangent points are 502.2 m and 728.4 m, describe the
procedure to be adopted in setting out the first three pegs on the curve by a theodolite (reading to 20′′)
and a steel tape from the first tangent point at 30-m intervals of through chainage, and show the necessary
calculations.

If it is found to be impossible to set out any more pegs on the curve from the first tangent point because
of an obstruction between it and the pegs, describe a procedure (without using the second tangent point)
for accurately locating the fourth and succeeding pegs. No further calculations are required. (ICE)

(Answer: 03◦ 11′ 10′′, 06◦ 37′ 20′′, 10◦ 03′ 40′′)

10.5 TRANSITION CURVES

The transition curve is a curve of constantly changing radius. If used to connect a straight to a curve of
radius R, then the commencing radius of the transition will be the same as the straight (∞), and the final
radius will be that of the curve R (see Figure 10.28).

Consider a vehicle travelling at speed (V ) along a straight. The forces acting on the vehicle will be its
weight W , acting vertically down, and an equal and opposite force acting vertically up through the wheels.
When the vehicle enters the curve of radius R at tangent point T1, an additional centrifugal force (P) acts
on the vehicle, as shown in Figures 10.24 and 10.25. If P is large the vehicle will be forced to the outside
of the curve and may skid or overturn. In Figure 10.25 the resultant of the two forces is shown as N , and if
the road is super-elevated normal to this force, there will be no tendency for the vehicle to skid. It should
be noted that as

P = WV2/Rg (10.9)

super-elevation will be maximum at minimum radius R.
It therefore requires a length of spiral curve to permit the gradual introduction of super-elevation,

from zero at the start of the transition to maximum at the end, where the radius is the minimum safe
radius R.
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Fig. 10.24 Centrifugal force Fig. 10.25 Super-elevation

10.5.1 Principle of the transition

The purpose then of a transition curve is to:

(1) Achieve a gradual change of direction from the straight (radius ∞) to the curve (radius R).
(2) Permit the gradual application of super-elevation to counteract centrifugal force and minimize

passenger discomfort.

Since P cannot be eliminated, it is allowed for by permitting it to increase uniformly along the curve.
From equation (10.9), as P is inversely proportional to R, the basic requirement of the ideal transition
curve is that its radius should decrease uniformly with distance along it. This requirement also permits
the uniform application of super-elevation; thus at distance l along the transition the radius is r and
rl = c (constant):

∴ l/c = l/r

From Figure 10.26, tt1 is an infinitely small portion of a transition δl of radius r; thus:

δl = rδφ

∴ l/r = δφ/δl which on substitution above gives

l/c = δφ/δl

integrating: φ = l2/2c ∴ l = (2cφ)
1
2

putting a = (2c)
1
2

l = a(φ)
1
2 (10.10)

when c = RL, a = (2RI)
1
2 and equation (10.10) may be written:

l = (2RLφ)
1
2 (10.11)
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Fig. 10.26 The transition curve

The above expressions are for the clothoid curve, sometimes called the Euler spiral, which is the one
most used in road design.

10.5.2 Curve design

The basic requirements in the design of transition curves are:

(1) The value of the minimum safe radius (R), and
(2) The length (L) of the transition curve. Sections 10.5.5 or 10.5.6

The value R may be found using either of the approaches Sections 10.5.3 or 10.5.4.

10.5.3 Centrifugal ratio

Centrifugal force is defined as P = WV2/Rg; however, this ‘overturning force’ is counteracted by the
mass (W ) of the vehicle, and may be expressed as P/W , termed the centrifugal ratio. Thus, centrifugal
ratio:

P/W = V2/Rg (10.12)

where V is the design speed in m/s, g is acceleration due to gravity in m/s2 and R is the minimum safe
radius in metres.

When V is expressed in km/h, the expression becomes:

P/W = V2/127R (10.13)

Commonly used values for centrifugal ratio are:

0.21 to 0.25 on roads, 0.125 on railways

Thus, if a value of P/W = 0.25 is adopted for a design speed of V = 50 km/h, then

R = 502

127 × 0.25
= 79 m

The minimum safe radius R may be set either equal to or greater than this value.
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10.5.4 Coefficient of friction

The alternative approach to find R is based on Transport Research Laboratory (TRL) values for the
coefficient of friction between the car tyres and the road surface.

Figure 10.27(a) illustrates a vehicle passing around a correctly super-elevated curve. The resultant of
the two forces is N . The force F acting towards the centre of the curve is the friction applied by the car
tyres to the road surface. These forces are shown in greater detail in Figure 10.27(b) from which it can be
seen that:

F2 = WV2

Rg
cos θ and F1 = W cos (90 − θ ) = W sin θ

∴ F = F2 − F1 = WV2

Rg
cos θ − W sin θ

Similarly N2 = WV2

Rg
sin θ and N1 = W cos θ

∴ N = N2 + N1 = WV2

Rg
sin θ + W cos θ

Then
F

N
=

WV2

Rg
cos θ − W sin θ

WV2

Rg
sin θ + W cos θ

=
V2

Rg
− tan θ

V2

Rg
tan θ + 1

For Highways Agency requirements, the maximum value for tan θ = 0.07 = 7%, and as V2/Rg cannot
exceed 0.25 the term in the denominator can be ignored and

F

N
= V2

Rg
− tan θ = V2

127R
− tan θ (10.14)

Fig. 10.27 Forces on a super-elevated road
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To prevent vehicles slipping sideways, F/N must be greater than the coefficient of friction µ

between tyre and road. The TRL quote value for µ of 0.15, whilst 0.18 may be used up to
50 km/h, thus:

V2/127R ≯ tan θ + µ (10.15)

For example, if the design speed is to be 100 km/h, super-elevation limited to 7% and µ = 0.15, then:

1002

127R
= 0.07 + 0.15

∴ R = 360 m

In the UK, the geometric parameters used in design are normally related to design speed.
Table 10.3 shows typical desirable and absolute minimum values for horizontal and vertical cur-
vature; there is also an additional lower level designated ‘limiting radius’, specific of horizontal
curvature.

Designs for new roads should aim to achieve the desirable values for each design parameter. However,
absolute minimum values can be used wherever substantial saving in construction or environmental costs
can be achieved.

The Highways Agency Technical Standard TD9/93 advises that in the design of new roads, the use of
radii tighter than the limiting value is undesirable and not recommended.

10.5.5 Rate of application of super-elevation

It is recommended that on motorways super-elevation should be applied at a rate of 0.5%, on all-
purpose roads at 1%, and on railways at 0.2%. Thus, if on a motorway the super-elevation were
computed as 0.5 m, then 100 m of transition curve would be required to accommodate 0.5 m at
the required rate of 0.5%, i.e. 0.5 m in 100 m = 0.5%. In this way the length L of the transition
is found.

The amount of super-elevation is obtained as follows:

From the triangle of forces in Figure 10.27(a)

tan θ = V2/Rg = 1/H = 1 in H

thus H = Rg/V2 = 127R/V2, where V is in km/h

The percentage super-elevation (or crossfall), S may be found from:

S = V2/2.828R (10.16)

The Highways Agency recommend the crossfall should never be greater than 7%, or less than 2.5%, to
allow rainwater to run off the road surface.

It is further recommended that adverse camber should be replaced by a favourable crossfall of 2.5%
when the value of V2/R is greater than 5 and less than 7 (see Table 10.3).

Driver studies have shown that whilst super-elevation is instrumental to driver comfort and safety, it
need not be applied too rigidly. Thus for sharp curves in urban areas with at-grade junctions and side
access, super-elevation should be limited to 5%.
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The rate of crossfall, combined with the road width, allows the amount of super-elevation to be
calculated. Its application at the given rate produces the length L of transition required.

10.5.6 Rate of change of radial acceleration

An alternative approach to finding the length of the transition is to use values for ‘rate of change of radial
acceleration’ which would be unnoticeable to passengers when travelling by train. The appropriate values
were obtained empirically by W.H. Shortt, an engineer working for the railways; hence it is usually referred
to as Shortt’s Factor.

Radial acceleration = V2/R

Thus, as radial acceleration is inversely proportional to R it will change at a rate proportional to the rate
of change in R. The transition curve must therefore be long enough to ensure that the rate of change of
radius, and hence radial acceleration, is unnoticeable to passengers.

Acceptable values for rate of change of radial acceleration (q) are 0.3 m/s3, 0.45 m/s3 and 0.6 m/s3.
Now, as radial acceleration is V2/R and the time taken to travel the length L of the transition curve

is L/V , then:

Rate of change of radial acceleration = q = V2

R
÷ L

V
= V3

RL

∴ L = V3

Rq
= V3

3 · 63 · R · q
(10.17)

where the design speed (V ) is expressed in km/h.
Although this method was originally devised for railway practice, it is also applied to road design.

q should normally not be less than 0.3 m/s3 for unrestricted design, although in urban areas it may be
necessary to increase it to 0.6 m/s3 or even higher, for sharp curves in tight locations.

10.6 SETTING-OUT DATA

Figure 10.28 indicates the usual situation of two straights projected forward to intersect at I with a clothoid
transition curve commencing from tangent point T1 and joining the circular arc at t1. The second equal
transition commences at t2 and joins at T2. Thus the composite curve from T1 to T2 consists of a circular
arc with transitions at entry and exit.

(1) Fixing the tangent points T1 and T2

In order to fix T1 and T2 the tangent lengths T1I and T2I are measured from I back down the straights, or
they are set out direct by coordinates.

T1I = T2I = (R + S) tan �/2 + C (10.18)

where S = shift = L2/24R − L4/(3! × 7 × 8 × 23R3) + L6/(5! × 11 × 12 × 25R5)

− L8/(7! × 15 × 16 × 27R7) . . .

and C = L/2 − L3/(2! × 5 × 6 × 22R2) + L5/(4! × 9 × 10 × 24R4)

− L7/(6! × 13 × 14 × 26R6) . . .
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Fig. 10.28 Transition and circular curves

The values of S and C are abstracted from the Highway Transition Curve Tables (Metric) (see
Table 10.2).

(2) Setting out the transitions

Referring to Figure 10.29:
The theodolite is set at T1 and oriented to I with the horizontal circle reading zero. The transition is

then pegged out using deflection angles (θ ) and chords (Rankine’s method) in exactly the same way as for
a simple curve.

The data are calculated as follows:

(a) The length of transition L is calculated (see design factors in Section 10.5.5 and 10.5.6), assume
L = 100 m.

(b) It is then split into, say, 10 arcs, each 10 m in length (ignoring through chainage), the equivalent chord
lengths being obtained from:

A − A3

24R2
+ A5

1920R4
, where A is the arc length

Fig. 10.29 Setting out the transitions
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(c) The setting-out angles θ1, θ2, . . . , θn are obtained as follows:

Basic formula for clothoid: l = (2RLφ)
1
2

∴ � = l2

2RL
= L

2R
when l = L (10.19)

(l is any distance along the transition other than total distance L)

then θ = �/3 − 8�3/2835 − 32�5/467 775 . . . (10.20)

= �/3 − N , where N may be taken from tables and ranges in value from 0.1′′

when � = 3◦, to 34′ 41.3′′ when � = 86◦ (see Table 10.1).

Now
φ1

�
= l2

1

L2
(10.21)

∴ φ1 = �
l2
1

L2
where l1 = chord length = 10 m, say

and θ1 = φ1/3 − N1 (where N1 is the value relative to φ1 in Table 10.1)

Similarly φ2 = �
l2
2

L2
where l2 = 20 m

and θ2 = φ2/3 − N2 and so on.

Table 10.1 Interpolated deflection angles

For any point on a spiral where angle consumed = φ, the true deflection is φ/3 minus the correction tabled below.
The back angle is 2φ/3 plus the same correction.

Angle
consumed

φ/3 Deduct
N

Deflection
angle

Angle
consumed

φ/3 Deduct
N

Deflection
angle

φ φ

◦ ◦ ′ ′ ′′ ◦ ′ ′′ ◦ ◦ ′ ′ ′′ ◦ ′ ′′

NIL
2 0 40 0.0 40 0 45 15 00 4 46.2 14 55 13.8
3 1 00 0.1 59 59.9 46 15 20 5 6.0 15 14 54.0
4 1 20 0.2 1 19 59.8 47 15 40 5 26.6 15 34 33.4

5 1 40 0.4 1 39 59.6 48 16 00 15 48.1 15 54 11.9
6 2 00 0.7 1 59 59.3 49 16 20 15 10.6 15 13 49.4
7 2 20 1.0 2 19 59.0 50 16 40 16 34.1 16 33 25.9

Continued at 1◦ intervals of φ

41 13 40 3 35.9 13 36 24.1 84 28 00 32 14.4 27 27 45.6
42 14 00 3 52.1 13 56 7.7 85 28 20 33 26.9 27 46 33.1
43 14 20 4 9.4 14 15 50.6 86 28 40 34 41.3 28 5 18.7

44 14 40 4 27.4 14 35 32.6

Reproduced with permission of the Country Surveyor’s Society
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Note that:

(a) The values for l1, l2, etc., are accumulative.
(b) Thus the values obtained for θ1, θ2, etc., are the final setting-out angles and are obviously not to be

summed.
(c) Although the chord length used is accumulative, the method of setting out is still the same as for the

simple curve.

(3) Setting-out circular arc t1t2

In order to set out the circular arc it is first necessary to establish the direction of the tangent t1B
(Figure 10.28). The theodolite is set at t1 and backsighted to T1 with the horizontal circle reading
[180◦ − (� − θ )], setting the instrument to zero will now orient it in the direction t1B with the circle
reading zero, prior to setting-out the simple circular arc. The angle (� − θ ) is called the back-angle to the
origin and may be expressed as follows:

θ = �/3 − N

∴ (� − θ ) = � − (�/3 − N) = 2/3� + N (10.22)

and is calculated using equation (10.22) or obtained from Table 10.1.
The remaining setting-out data are obtained as follows:

(a) As each transition absorbs an angle �, then the angle subtending the circular arc = (� − 2�).
(b) Length of circular arc = R(� − 2�), which is then split into the required chord lengths C.
(c) The deflection angles δ◦ = 28.6479 · C/R are then set out from the tangent t1B in the usual way.

The second transition is best set out from T2 to t2. Setting-out from t2 to T2 involves the ‘osculating-circle’
technique (see Section 10.9).

The preceding formulae for clothoid transitions are specified in accordance with the Highway Transition
Curve Tables (Metric) compiled by the County Surveyors’ Society. As the equations involved in the
setting-out data are complex, the information may be taken straight from tables. However, approximation
of the formulae produces two further transition curves, the cubic spiral and the cubic parabola (see
Section 10.7).

In the case of the clothoid, Figure 10.28 indicates an offset Y at the end of the transition, distance X
along the straight, where

X = L − L3/(5 × 4 × 2!R2) + L5/(9 × 42 × 4!R4) − L7/(13 × 43 × 6!R6) + . . . (10.23)

Y = L2/(3 × 2R) − L4/(7 × 3! × 23R3) + L6/(11 × 5! × 25R5) − L8/(15 × 7! × 27R7) + . . .
(10.24)

The clothoid is always set out by deflection angles, but the values for X and Y are useful in the large-scale
plotting of such curves, and are taken from tables.

Refer to the end of the chapter for derivation of clothoid formulae.

10.6.1 Highway transition curve tables (metric)

Highway transition curve tables have now largely been superseded by the use of software for design
purposes. However, this section and its associated table, Table 10.2, have been retained from previous
editions of this book because the numerical data give a useful insight into the values involved in the design
of transition curves.

An examination of the complex equations defining the clothoid transition spiral indicates the obvious
need for tables of prepared data to facilitate the design and setting out of such curves. These tables have
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been produced by the County Surveyors’Society under the title Highway Transition Curve Tables (Metric),
and contain a great deal of valuable information relating to the geometric design of highways. A very brief
sample of the tables is given here simply to convey some idea of the format and information contained
therein (Table 10.2).

As shown in Section 10.6(3), θ = φ/3 − N and the ‘back-angle’ is 2φ/3 + N , all this information for
various values of φ is supplied in Table 10.1 and clearly shows that for large values of φ, N cannot be
ignored.

Part only of Table 10.2 is shown and it is the many tables like this that provide the bulk of the design
data. Much of the information and its application to setting out should be easily understood by the reader,
so only a brief description of its use will be given here.

Use of tables

(1) Check the angle of intersection of the straights (�) by direct measurement in the field.
(2) Compare � with 2�, if � ≤ 2�, then the curve is wholly transitional.
(3) Abstract (R + S) and C in order to calculate the tangent lengths = (R + S) tan �/2 + C.
(4) Take � from tables and calculate length of circular arc using R(� − 2�), or, if working in ‘degree

of curvature’ D, use

100(� − 2�)

D

(5) Derive chainages at the beginning and end of both transitions.
(6) Compute the setting-out angles for the transition θ1 . . . θ from φ1/� = l2

1/L2 from which θ1 =
φ1/3 − N1, and so on, for accumulative values of l.

(7) As control for the setting out, the end point of the transition can be fixed first by turning off from T1
(the start of the transition) the ‘deflection angle from the origin’ θ and laying out the ‘long chord’
as given in the tables. Alternatively, the right-angled offset Y distance X along the tangent may
be used.

(8) When the first transition is set out, set up the theodolite at the end point and with the theodolite
reading (180◦ − ( 2

3�+N)), backsight to T1. Turn the theodolite to read 0◦ when it will be pointing in
a direction tangential to the start of the circular curve prior to its setting out. This process has already
been described.

(9) As a check on the setting out of the circular curve take (R + S) and S from the tables to calculate the
apex distance = (R + S) (sec �/2 − 1) + S, from the intersection point I of the straights to the centre
of the circular curve.

(10) The constants RL and D/L are given at the head of the tables and can be used as follows:

(a) Radius at any point P on the transition = rp = RL/lp
(b) Degree of curve at P = Dp = (D/L) × lp, where lp is the distance to P measured along the curve

from T1
Similarly:

(c) Angle consumed at P = φp = l2
p

2RL
or

l2
p

200
× D

L

(d) Setting-out angle from T1 to P = θp = φp

3
− Np or

l2

600
× D

L
− Np
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Worked examples

Example 10.8 It is required to connect two straights (� = 50◦) with a composite curve, comprising entry
transition, circular arc and exit transition. The initial design parameters are V = 105 km/h, q = 0.6 m/s3,
µ = 0.15 and crossfall 1 in 14.5 (tan θ = 0.07).

(1) V2/127R = tan θ + µ

1052/127R = 0.07 + 0.15 = 0.22

R = 1052/127 × 0.22 = 394.596 m

The nearest greater value is 409.2556 m for a value of V = 106.3 km/h (Table 10.2).
(2) From Table 10.2, the length L of transition is given as 105 m. Purely to illustrate the application of

formulae:

(L = V3/3.63 × R × q = 106.33/3.63 × 409.2556 × 0.6 = 104.8 m)

(3) From Table 10.2, � = 7◦ 21′ 00′′

Check � = L/2R = 105/2 × 409.2556 = 0.12828169 rads = 7◦ 21′ 00′′

Now as 2� < �, there is obviously a portion of circular arc subtended by angle of (� − 2�).

(4) From Table 10.2, find the tangent length:

(R + S) tan �/2 + C

where (R + S) = 410.3374
C = 52.4721

}
see Table 10.2

T1I = T2I = 410.3774 tan 25◦ + 52.4712 = 243.8333 m

(5) The chainage of the intersection point I = 5468.39 m (see Figure 10.28)

Chn T1 = 5468.399 − 243.833 = 5224.566 m

Chn t1 = 5224.566 + 105 = 5329.566 m

Length of circular arc = R(� − 2�) = 252.1429 m

or using ‘degree of curve’ (D) = 100(� − 2�)/D = 252.1429 m (check)

Chn t2 = 5329.566 + 252.143 = 5581.709 m

Chn T2 = 5581.709 + 105 = 5686.709 m

(6) As a check, the ends of the transition could be established using the offset Y = 4.485 m at distance
X = 104.827 m along the tangent (see Table 10.2) or by the ‘long chord’ = 104.923 m at an angle θ

to the tangent of 2◦ 26′ 58.8′′. This procedure will establish t1 and t2 relative to T1 and T2 respectively.
Now the setting-out angles (θ1, θ2, . . . , θ ) are computed. If the curve was to be set out by 10-m chords
and there was no through chainage, their values could simply be abstracted from Table 10.2 as shown:

10 m = 0◦ 01′ 20.0′′

20 m = 0◦ 05′ 20.0′′, and so on

These values would be subtracted from 360◦, for use in setting-out the 2nd transition from T2 back
to t2.

However, the usual way is to set out on a through chainage basis.
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Hence using 10-m standard chords, as the chainage at T1 = 5224.566, the first sub-chord = 10 −
4.566 = 5.434 m. The setting-out angles are computed from equations (10.20) and (10.21), i.e.

(a) � = 7◦ 21′ 00′′ from Table 10.2

and θ = 2◦ 26′ 58.8′′

as θ1/θ = (l1/L)2

then θ1 = 2◦ 26′ 58.8′′ (5.434/105)2 = 0◦ 00′ 23.6′′ − N1

(b) Alternatively using ‘degree of curve’ D:

θ1 = l2
1

600
− D

L
− N1

D/L is given in Table 10.2 = 0◦ 08′ 00′′

∴ D

600 · L
= 0.8′′ (a constant)

and θ1 = 0.8′′ (5.434)2 = 0◦ 00′ 23.6′′ − N1

(It can be seen from Table 10.1 that the deduction N1 is negligible and will have a maximum value for
the formal setting-out angle θ of just over 1′′.)

Using either of the above approaches and remembering that the chord lengths are accumulative in
the computation, the setting-out angles are:

Entry Transition

Chord m Chainage m Setting-out Angle (θ ) Deduction N Remarks

0 5224.566 – – T1 − Start of spiral
5.434 5230 0◦ 00′ 23.6′′ – Peg. 1
10 5240 0◦ 03′ 10.6′′ – Peg. 2
10 5250 0◦ 08′ 37.6′′ – Peg. 3

etc.

When computing the setting-out angles for the exit transition from T2 back to t2 one starts with the
length of the final sub-chord at T2.

(7) When the entry transition is set out to t1, the theodolite is moved to t1 and backsighted to T1, with the
horizontal circle reading:

180◦ − (back-angle to the origin)

= 180◦ − (� − θ )

= 180◦ − 4◦ 54′ 01.2′′ (taken from final column of Table 10.2)

= 175◦ 05′ 58.8

Rotating the upper circle to read 0◦ 00′ 00′′ will establish the line of sight tangential to the route of the
circular arc, ready for setting out.



404 Engineering Surveying

(8) As the chainage of t1 = 5329.566, the first sub-chord = 0.434 m, thereby putting Peg 1 on chainage
5330 m.

The setting out angles are now calculated in the usual way as shown in Section 10.2.1.
If it is decided to set out the exit transition from the end of the circular arc, then the theory of the

osculating circle is used (see Section 10.9.2).

10.7 CUBIC SPIRAL AND CUBIC PARABOLA

Approximation of the clothoid formula produces the cubic spiral and cubic parabola, the latter being used
on railway and tunnelling work because of the ease in setting out by offsets. The cubic spiral can be
used for minor roads, as guide for excavation prior to the clothoid being set out, or as check on clothoid
computation.

Y = L2/6R, which when L = l, Y = y, becomes

y = l3/6RL (10.25)

Approximating equation (10.23) gives

X = L, thus x = l

∴ y = x3/6RL (the equation for a cubic parabola) (10.26)

In both cases:

Tangent length T1I = (R + S) tan �/2 + C

where S = L2/24R (10.27)

and C = L/2 (10.28)

� = L/2R = l2/2RL (10.29)

and θ = �/3 (10.30)

The deflection angles for these curves may be obtained as follows (the value of N being ignored):

θ1/θ = l2
1/L2, where l is the chord/arc length (10.31)

When the value of � ≈ 24◦, the radius of these curves starts to increase again, which makes them useless
as transitions.

Refer to worked examples for application of the above equations, and note ‘back-angle to origin’ would
be (� − θ ) or 2

3�.

10.8 CURVE TRANSITIONAL THROUGHOUT

A curve transitional throughout (Figure 10.30) comprises two transitions meeting at a common tangent
point t.

Tangent length T1I = X + Y tan � (10.32)

where X and Y are obtained from equations (10.23) and (10.24) and � = �/2 = L/2R.

∴ � = L/R (10.33)
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Fig. 10.30 Transitional curve throughout

10.9 THE OSCULATING CIRCLE

Figure 10.31 illustrates a transition curve T1PE. Through P; where the transition radius is r, a simple curve
of the same radius is drawn and called the osculating circle.

At T1 the transition has the same radius as the straight T1I , that is, ∞, but diverges from it at a constant
rate. Exactly the same condition exists at P with the osculating circle, that is, the transition has the same
radius as the osculating circle, r, but diverges from it at a constant rate. Thus if chords T1t = Pa = Pb = l,
then:

angle IT1t = aPb = θ1

This is the theory of the osculating circle, and its application is described in the following sections.

10.9.1 Setting out with the theodolite at an intermediate point along the

transition curve

Figure 10.32 illustrates the situation where the transition has been set out from T1 to P3 in the normal way.
The sight T1P4 is obstructed and the theodolite must be moved to P3 where the remainder of the transition
will be set out. The direction of the tangent P3E is first required from the back-angle (φ3 − θ3).

From the figure it can be seen that the angle from the tangent to the chord P3P′
4 on the osculating circle

is δ◦
1 = 28.6479 × l/r3. The angle between the chord on the osculating circle and that on the transition

Fig. 10.31 Osculating circle
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Fig. 10.32 Setting out the transition from an intermediate point

is P′
4P3P4 = θ1, thus the setting-out angle from the tangent to P4 = (δ1 + θ1), to P5 = (δ2 + θ2) and to

P6 = (δ3 + θ3), etc.
For example, assuming � = 60◦, L = 60 m, l = chord = 10 m, R = 100 m and T1P3 = 30 m,

calculate the setting-out angles for the remainder of the transition from P3.
From basic formula:

φ3 = l2
3

2RL
= 302

2 × 100 × 60
= 4◦ 17′ 50′′ (−N3, if clothoid)

or, if curve is defined by its ‘degree of curvature’ = D, then

φ3 = l2
3

200
· D

L
(−N3, if clothoid)

Thus the back-angle to the origin is found 2
3 φ3, and the tangent established as already shown.

Now from � = L/2R, and θ = �/3, the angles θ1, θ2, and θ3 are found as normal. In practice these
angles would already be available, having been used to set out the first 30 m of the transition.

Before the angles to the osculating circle can be found, the value of r3 must be known, thus, from
rl = RL:

r3 = RL/l3 = 100 × 60/30 = 200 m

or ‘degree of curvature’ at P3, 30 m from T1 = D

L
× l3

∴ δ◦
1 = 28.6479

(
10

200

)
= 1◦ 25′ 57′′

δ2 = 2δ1 and δ3 = 3δ1 as for a simple curve

The setting-out angles are then (δ1 + θ1), (δ2 + θ2), (δ3 + θ3).

10.9.2 Setting out transition from the circular arc

Figure 10.33 indicates the second transition in Figure 10.28 to be set out from t2 to T2. The tangent t2D
would be established by backsighting to t1 with the instrument reading [180◦ − (� − 2�)/2], setting to
zero to fix direction t2D. It can now be seen that the setting-out angles here would be (δ1 − θ1), (δ2 − θ2),
etc., computed in the usual way.
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Fig. 10.33 Setting out the transition from the end of the circular curve

Consider the previous example, where the chainage at the end of the circular arc (t2) was 5581.709 m,
then the first sub-chord = 8.291 m.

The setting-out angles for the transition are computed in the usual way. Use, say, D/600L = 0.8′′, then:

θ1 = 0.8′′(8.291)2 = 0◦ 00′ 55.0′′

θ2 = 0.8′′(18.291)2 = 0◦ 04′ 27.6′′

θ3 = 0.8′′(28.291)2 = 0◦ 10′ 40.3′′

and so on to the end of the transition.
Now compute the setting-out angles for a circular curve in the usual way:

δ◦ = 28.6479 × (C/R)

= 28.6479 × (8.291/409.2556) = 0◦ 34′ 49.3′′

Also δ◦
10 = 28.6479(10/409.2556) = 0◦ 42′ 00.0′′

Remembering that the angles (δ) for a circular arc are accumulative, the setting-out angles for the
transition are:

Chord (m) Chainage (m) δ θ Setting-out angle
δ − θ

Remarks

◦ ′ ′′ ◦ ′ ′′ ◦ ′ ′′

8.291 5990 0 34 49.3 0 00 55.0 0 33 54.3 Peg 1
10 5600 01 16 49.3 0 04 27.6 01 12 22.3 Peg 2
10 5610 01 58 49.3 0 10 40.3 01 48 09.0 Peg 3
etc. etc. etc. etc. etc. etc.

10.9.3 Transitions joining arcs of different radii (compound curves)

Figure 10.14 indicates a compound curve requiring transitions at T1, t and T2. To permit the entry of the
transitions the circular arcs must be shifted forward as indicated in Figure 10.34 where

S1 = L2
1/24R1 and S2 = L2

2/24R2
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Fig. 10.34 Compound curve construction

The lengths of transition at entry (L1) and exit (L2) are found in the normal way, whilst the transition
connecting the compound arcs is:

bc = L = (L1 − L2)

The distance P1P2 = (S1 − S2) is bisected by the transition curve at P3. The curve itself is bisected and
length bP3 = P3c. As the curves at entry and exit are set out in the normal way, only the fixing of their
tangent points T ′

1 and T ′
2 will be considered. In triangle t1It2:

t1t2 = t1t + tt2 = (R1 + S1) tan �1/2 + (R2 + S2) tan �2/2

from which the triangle may be solved for t1I and t2I .

Tangent length T ′
1I = T ′

1t1 + t1I = (R1 + S1) tan �1/2 + L1/2 + t1I

and T ′
2I = T ′

2t2 + t2I = (R2 + S2) tan �2/2 + L2/2 + t2I

The curve bc is drawn enlarged in Figure 10.35 from which the method of setting out, using the osculating
circle, may be seen.

Setting-out from b, the tangent is established from which the setting-out angles would be (δ1 − θ1),
(δ2 − θ2), etc., as before, where δ1, the angle to the osculating circle, is calculated using R1.

If setting out from C, the angles are obviously (δ1 + θ1), etc., where δ1 is calculated using R2.
Alternatively, the curve may be established by right-angled offsets from chords on the osculating circle,

using the following equation:

y = x3

6RL
= x3

L3

L2

6R
where

L2

6R
= 4S

∴ y = 4x3

L3
(S1 − S2) (10.34)
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Fig. 10.35 Transition between arcs of different radii

Fig. 10.36 Reverse compound curve

It should be noted that the osculating circle provides only an approximate solution, but as the transition is
usually short, it may be satisfactory in practice. In the case of a reverse compound curve (Figure 10.36):

S = (S1 + S2), L = (L1 + L2) and y = 4x3

L3
(S1 + S2) (10.35)

otherwise it may be regarded as two separate curves.

10.9.4 Coordinates on the transition spiral (Figure 10.37)

The setting-out of curves by traditional methods of angles and chords has been dealt with. However, these
methods are frequently superseded by the use of coordinates (as indicated in Section 10.2.4) of circular
curves. The method of calculating coordinates along the centre-line of a transition curve is probably best
illustrated with a worked example.

Consider Worked example 10.8 dealing with the traditional computation of a clothoid spiral using
Highway Transition Curve Tables. As with circular curves, it is necessary to calculate the traditional
setting-out data first, as an aid to calculating coordinates.
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Fig. 10.37 Coordinates along a transition curve

In Example 10.8 the first three setting-out angles are:

θ1 = 0◦ 00′ 23.6′′, sub-chord = 5.434 m (x)

θ2 = 0◦ 03′ 10.6′′, standard chord = 10 m (y)

θ3 = 0◦ 08′ 37.6′′, standard chord = 10 m (y)

If working in coordinates, the coordinates of T1, the tangent point and I , the intersection point, would be
known, say.

T1 = E 500.000, N 800.000

And calculated using the coordinates of I , the WCB of T1I − 10◦ 25′ 35.0′′.

Now WCBT1a = WCB T1I + θ1 = 10◦ 25′ 58.6′′

and a sub-chord length T1a = x = 5.434 m.
Using the P and R keys, or the traditional formula the coordinates of the line T1a are calculated, thus:

�E = 0.9840 m, �N = 5.3442 m

Ea = 500.000 + 0.9840 = 500.9840 m

Na = 800.000 + 5.3442 = 805.3442 m

In triangle T1ab:

aT1b = (θ2 − θ1) = 0◦ 02′ 47.0′′
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Using the sine rule, the angle at b can be calculated:

T1a

sin T1ba
= ab

sin aT1b

sin T1ba = T1a sin aT1b

ab
= 5.434 sin 0◦ 02′ 47.0′′

10

T1ba = 00◦ 01′ 30.8′′, and

α = aT1b + T1ba = 00◦ 04′ 17.8′′

and WCB ab = WCB T1a + α = 10◦ 30′ 16.4′′

dist. ab = 10 m

∴ �Eab = 1.8231, �Nab = 9.8324

and

Eb = Ea + �Eab = 500.9840 + 1.8231 = 502.8071 m

Nb = Na + �Nab = 805.3442 + 9.8324 = 815.1766 m

This procedure is now repeated to the end of the spiral, as follows:

In triangle T1bt1,

(1) calculate distance T1b from the coordinates of T1 and b
(2) calculate angle T1t1b by sine rule, i.e.

T1b

sin T1t1b
= bt1

sin bT1t1

where bt1 is a known chord or sub-chord length and angle bT1t1 = (θ − θ2) in this instance
(3) calculate α1 = bT1t1 + T1t1b
(4) WCB T1b = WCB T1l + θ2
(5) WCB bt1 = WCB T1b + α1 and length is known
(6) computed �E, �N of the line bt1 and add then algebraically to the Eb and Nb respectively, to give

Et1 , Nt1

Using the ‘back angle to the origin’ (� − θ ) at the end of the spiral (t1), the WCB of the tangent to the
circular arc can be found and the coordinates along the centre-line calculated as shown in Section 10.2.4.

Worked examples

Example 10.9 Consider Figure 10.35 in which R1 = 700 m, R2 = 1500 m, q = 0.3 m/s3 and
V = 100 km/h:

L1 = V3/3.63R1q = 102 m

L2 = V3/3.63R2q = 48 m

L = (L1 − L2) = 54 m
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Setting-out from b:

� = L/2R1 = 54/2 × 700 = 2◦ 12′ 36′′

Check: � = R1L/2R2
1 = 2◦ 12′ 36′′

as θ = �/3 = 0◦ 44′ 12′′

Then, assuming 10 m chords and no through chainage:

θ1 = 0◦ 44′ 12′′ (10/54)2 = 0◦ 01′ 31′′

θ2 = 0◦ 44′ 12′′ (20/54)2 = 0◦ 06′ 04′′, etc.

For the osculating circle (R1):

δ◦
10 = 28.6479(10/700) = 0◦ 24′ 33′′

Thus the setting-out angles for the ‘suspended’ transition are

Chord δ θ δ − θ Remarks

(m) ◦ ′ ′′ ◦ ′ ′′ ◦ ′ ′′

10 0 24 33 0 01 31 0 23 02 Peg 1
10 0 49 06 0 06 04 0 43 02 Peg 2
etc. etc. etc. etc. etc.

Example 10.10 Part of a motorway scheme involves the design and setting out of a simple curve with
cubic spiral transitions at each end. The transitions are to be designed such that the centrifugal ratio is
0.197, whilst the rate of change of centripetal acceleration is 0.45 m/s3 at a design speed of 100 km/h.

If the chainage of the intersection to the straights is 2154.22 m and the angle of deflection 50◦, calculate:

(a) The length of transition to the nearest 10 m.
(b) The chainage at the beginning and the end of the total composite curve.
(c) The setting-out angles for the first three 10-m chords on a through chainage basis.

Briefly state where and how you would orient the theodolite in order to set out the circular arc. (KU)

Referring to Figure 10.28:

Centrifugal ratio P/W = V2/127R

∴ R = 1002

127 × 0.197
= 400 m

Rate of change of centripetal acceleration = q = V3

3.63RL

(a) ∴ L = 1003

3.63 × 400 × 0.45
= 120 m
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(b) To calculate chainage:

S = L2

24R
= 1202

24 × 400
= 1.5 m

Tangent length = (R + S) tan �/2 + L/2

= (400 + 1.5) tan 25◦ + 60 = 247.22 m

∴ Chainage at T1 = 2154.22 − 247.22 = 1907 m

To find length of circular arc:

length of circular arc = R(� − 2�) where � = L/2R

thus 2� = L

R
= 120

400
= 0.3 rad

and � = 50◦ = 0.872 665 rad

∴ R(� − 2�) = 400(0.872 655 − 0.3) = 229.07 m

Chainage at T2 = 1907.00 + 2 × 120 + 229.07 = 2376.07 m

(c) To find setting-out angles from equation (10.31):

θ1/θ = l2
1/L2

θ = �

3
= L

6R
= 120

6 × 400
rad

θ ′′ = 120 × 206 265

6 × 400
= 10 313′′

As the chainage of T1 = 1907, then the first chord will be 3 m long to give a round chainage of 1910 m.

∴ θ1 = θ
l2
1

L2
= 10 313′′ × 32

1202
= 0◦ 00′ 06.5′′

θ2 = 10 313′′ × 132

1202
= 0◦ 02′ 01′′

θ3 = 10 313′′ × 232

1202
= 0◦ 06′ 19′′

For final part of answer refer to Sections 10.6(3) and 10.7.

Example 10.11 A transition curve of the cubic parabola type is to be set out from a straight centre-line.
It must pass through a point which is 6 m away from the straight, measured at right angles from a point on
the straight produced 60 m from the start of the curve.

Tabulate the data for setting out a 120-m length of curve at 15-m intervals.
Calculate the rate of change of radial acceleration for a speed of 50 km/h. (LU)

The above question may be read to assume that 120 m is only a part of the total transition length and
thus L is unknown.

From expression for a cubic parabola:

y = x3/6RL = cx3 y = 6 m, x = 60 m ∴ c = 1

36 000
= 1

6 RL
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The offsets are now calculated using this constant:

y1 = 153

36 00
= 0.094 m

y2 = 303

36 000
= 0.750 m

y3 = 453

36 000
= 2.531 m and so on

Rate of change of radial acceleration = q = V3/3.63RL:

now
1

6RL
= 1

36 000
∴ 1

RL
= 1

6000

∴ q = 503

3.63 × 6000
× 0.45 m/s3

Example 10.12 Two straights of a railway track of gauge 1.435 m have a deflection angle of 24◦ to the
right. The straights are to be joined by a circular curve having cubic parabola transition spirals at entry
and exit. The ratio of super-elevation to track gauge is not to exceed 1 in 12 on the combined curve, and
the rate of increase/decrease of super-elevation on the spirals is not to exceed 1 cm in 6 m. If the through
chainage of the intersection point of the two straights is 1488.8 m and the maximum allowable speed on
the combined curve is to be 80 km/h, determine:

(a) The chainages of the four tangent points.
(b) The necessary deflection angles (to the nearest 20′′) for setting out the first four pegs past the first

tangent point, given that pegs are to be set out at the 30-m points of the through chainage.
(c) The rate of change of radial acceleration on the curve when trains are travelling at the maximum

permissible speed. (ICE)

(a) Referring to Figure 10.28, the four tangent points are T1, t1, t2, T2.
Referring to Figure 10.27(a), as the super-elevation on railways is limited to 0.152 m, then AB =
1.435 m ≈ CB.

∴ Super-elevation = AC = 1.435

12
= 0.12 m = 12 cm

Rate of application = 1 cm in 6 m

∴ Length of transition = L = 6 × 12 = 72 m

From Section 10.5.5, tan θ = V2

127R
= 1

12

∴ 802

127R
= 1

12
∴ R = 604.72 m

Shift = S = L2

24R
= 722

24 × 604.72
= 0.357 m

Tangent length = (R + S) tan �/2 + L/2 = 605.077 tan 12◦ + 36

= 164.6 m

∴ Chainage T1 = 1488.8 − 164.6 = 1324.2 m

Chainage t1 = 1324.2 + 72 = 1396.2 m (end of transition)
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To find length of circular curve:

2� = L

R
= 72

604.72
= 0.119 063 rad

� = 24◦ = 0.418 879 rad

∴ Length of curve = R(� − 2�) = 604.72(0.418 879 − 0.119 063)

= 181.3 m

∴ Chainage t2 = 1396.2 + 181.3 = 1577.5 m

Chainage T2 = 1577.5 + 72 = 1649.5 m

(b) From chainage of T1 the first chord = 5.8 m

θ = L

6R
× 206 265 = 72 × 206 265

6 × 604.72
= 4093′′

∴ θ1 = θ
l2
1

L2
= 4093′′ × 5.82

722
= 27′′ = 0◦ 00′ 27′′ peg 1

θ2 = 4093 × 35.82

722
= 1012′′ = 0◦ 16′ 52′′ peg 2

θ3 = 4093 × 65.82

722
= 3418′′ = 0◦ 56′ 58′′ peg 3

θ4 = 4093′′ = θ (end of transition) = 1◦ 08′ 10′′ peg 4

(c) q = V3

3.63RL
= 803

3.63 × 604.72 × 72
= 0.25 m/s3

Example 10.13 A compound curve AB, BC is to be replaced by a single arc with transition curves 100 m
long at each end. The chord lengths AB and BC are respectively 661.54 and 725.76 m and radii 1200 m
and 1500 m. Calculate the single arc radius:

(a) If A is used as the first tangent point.
(b) If C is used as the last tangent point. (LU)

Referring to Figure 10.14 assume T1 = A, t = B, T2 = C, R1 = 1200 m and R2 = 1500 m. The
requirements in this question are the tangent lengths AI and CI.

Chord AB = 2R1 sin
�1

2

∴ sin
�1

2
= 661.54

2 × 1200

∴ �1 = 32◦

Similarly,

sin
�2

2
= 725.76

3000

∴ �2 = 28◦
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Distance At1 = t1B = R1 tan
�1

2
= 1200 tan 16◦ = 344 m

and Bt2 = t2C = R2 tan
�2

2
= 1500 tan 14◦ = 374 m

∴ t1t2 = 718 m

By sine rule in triangle t1It2:

t1I = 718 sin 28◦

sin 120◦ = 389 m

and t2I = 718 sin 32◦

sin 120◦ = 439 m

∴ AI = At1 + t1I = 733 m

CI = Ct2 + t2I = 813 m

To find single arc radius:

(a) From tangent point A:

AI = (R + S) tan �/2 + L/2

where S = L2/24R and � = �1 + �2 = 60◦, L = 100 m

then 733 =
(

R + L2

24R

)
tan 30◦ + 50 from which

R = 1182 m

(b) From tangent point C:

CI = (R + S) tan �/2 + L/2

813 = (R + L2/24R) tan 30◦ + 50 from which

R = 1321 m

Example 10.14 Two straights with a deviation angle of 32◦ are to be joined by two transition curves of

the form λ = a(�)
1
2 where λ is the distance along the curve, � the angle made by the tangent with the

original straight and a is a constant.
The curves are to allow for a final 150 mm cant on a 1.435 m track, the straights being horizontal and

the gradient from straight to full cant being 1 in 500.
Tabulate the data for setting out the curve at 15-m intervals if the ratio of chord to curve for 16◦ is

0.9872. Find the design for this curve. (LU)

Referring to Figure 10.30:

Cant = 0.15 m, rate of application = 1 in 500

∴ L = 500 × 0.15 = 75 m

As the curve is wholly transitional � = �/2 = 16◦

∴ from � = L

2R
, R = 134.3 m
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From ratio of chord to curve:

Chord T1t = 75 × 0.9872 = 74 m

∴ X = T1t cos θ = 73.7 m (θ = �/3)

Y = T1t sin θ = 6.9 m

∴ Tangent length = X + Y tan � = 73.7 + 6.9 tan 16◦ = 75.7 m

Setting-out angles:

θ1 = (5◦ 20′) 152

752
= 12′ 48′′

θ2 = (5◦ 20′) 302

752
= 51′ 12′′

and so on to θ5.

Design speed:

From Figure 10.27(a) tan θ ≈ AC

CB
= 0.15

1.435
= V2

Rg

from which V = 11.8 m/s = 42 km/h

Exercises

(10.6) The centre-line of a new road is being set out through a built-up area. The two straights of the
road T1I and T2I meet giving a deflection angle of 45◦, and are to be joined by a circular arc with spiral
transitions 100 m long at each end. The spiral from T1 must pass between two buildings, the position of
the pass point being 70 m along the spiral from T1 and 1 m from the straight measured at right angles.

Calculate all the necessary data for setting out the first spiral at 30-m intervals; thereafter find:

(a) The first three angles for setting out the circular arc, if it is to be set out by 10 equal chords.
(b) The design speed and rate of change of centripetal acceleration, given a centrifugal ratio of 0.1.
(c) The maximum super-elevation for a road width of 10 m. (KU)

(Answer: data R = 572 m, T1I = 237.23 m, θ1 = 9′ 01′′, θ2 = 36′ 37′′, θ3 = 1◦ 40′ 10′′)

(Answer: (a) 1◦ 44′ 53′′, 3◦ 29′ 46′′, 5◦ 14′ 39′′, (b) 85 km/h, 0.23 m/s3, (c) 1 m)

(10.7) A circular curve of 1800 m radius leaves a straight at through chainage 2468 m, joins a second
circular curve of 1500 m radius at chainage 3976.5 m, and terminates on a second straight at chainage
4553 m. The compound curve is to be replaced by one of 2200 m radius with transition curves 100 m long
at each end.

Calculate the chainages of the two new tangent points and the quarter point offsets of the transition
curves. (LU)

(Answer: 2114.3 m, 4803.54 m; 0.012, 0.095, 0.32, 0.758 m)

(10.8) A circular curve must pass through a point P which is 70.23 m from I , the intersection point and on
the bisector of the internal angle of the two straights AI, IB. Transition curves 200 m long are to be applied
at each end and one of these must pass through a point whose coordinates are 167 m from the first tangent
point along AI and 3.2 m at right angles from this straight. IB deflects 37◦ 54′ right from AI produced.
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Calculate the radius and tabulate the data for setting out a complete curve. (LU)

(Answer: R = 1200 m, AI = IB = 512.5 m, setting-out angles or offsets calculated in usual way)

(10.9) The limiting speed around a circular curve of 667 m radius calls for a super-elevation of 1/24 across
the 10-m carriageway. Adopting the Department of Transport recommendations of a rate of 1 in 200 for
the application of super-elevation along the transition curve leading from the straight to the circular curve,
calculate the tangential angles for setting out the transition curve with pegs at 15-m intervals from the
tangent point with the straight. (ICE)

(Answer: L = 83 m, 2′ 20′′, 9′ 19′′, 20′ 58′′, 37′ 16′′, 58′ 13′′, 1◦ 11′ 18′′)

(10.10) A circular curve of 610 m radius deflects through an angle of 40◦ 30′. This curve is to be replaced
by one of smaller radius so as to admit transitions 107 m long at each end. The deviation of the new curve
from the old at their mid-points is 0.46 m towards the intersection point.

Determine the amended radius assuming that the shift can be calculated with sufficient accuracy on the
old radius. Calculate the lengths of track to be lifted and of new track to be laid. (LU)

(Answer: R = 590 m, new track = 521 m, old track = 524 m)

(10.11) The curve connecting two straights is to be wholly transitional without intermediate circular arc,
and the junction of the two transitions is to be 5 m from the intersection point of the straights which deflects
through an angle of 18◦.

Calculate the tangent distances and the minimum radius of curvature. If the super-elevation is limited
to 1 vertical to 16 horizontal, determine the correct velocity for the curve and the rate of gain of radial
acceleration. (LU)

(Answer: 95 m, 602 m, 68 km/h, 0.06 m/s3)

10.10 VERTICAL CURVES

Vertical curves (VC) are used to connect intersecting gradients in the vertical plane. Thus, in route design
they are provided at all changes of gradient. They should be of sufficiently large curvature to provide
comfort to the driver, that is, they should have a low ‘rate of change of grade’. In addition, they should
afford adequate ‘sight distances’ for safe stopping at a given design speed.

The type of curve generally used to connect the intersecting gradients g1 and g2 is the simple parabola.
Its use as a sag or crest curve is illustrated in Figure 10.38.

10.10.1 Gradients

In vertical curve design the gradients are expressed as percentages, with a negative for a downgrade and
a positive for an upgrade,

e.g. A downgrade of 1 in 20 = 5 in 100 = −5% = −g1%

An upgrade of 1 in 25 = 4 in 100 = +4% = +g2%

The angle of deflection of the two intersecting gradients is called the grade angle and equals A in
Figure 10.38. The grade angle simply represents the change of grade through which the vertical curve
deflects and is the algebraic difference of the two gradients:

A% = (g1% − g2%)

In the above example A% = (−5% − 4%) = −9% (negative indicates a sag curve).



Curves 419

Fig. 10.38 Sag and crest curves

10.10.2 Permissible approximations in vertical curve computation

In the UK, civil engineering road design is carried out in a accordance with the Highways Agency’s Design
Manual for Roads and Bridges, Volume 6.

However, practically all the geometric design is in the Highways Agency’s TD 9/93, hereafter referred
to simply as TD 9/93 and can be found at http://www.standardsforhighways.co.uk/dmrb/index.htm.

In TD 9/93 the desirable maximum gradients for vertical curve design are:

Motorways 3%
Dual carriageways 4%
Single carriageways 6%

Due to the shallowness of these gradients, the following VC approximations are permissible, thereby
resulting in simplified computation (Figure 10.39).

(1) Distance T1D = T1BT2 = T1CT2 = (T1I + IT2), without sensible error. This is very important and
means that all distances may be regarded as horizontal in both the computation and setting out of
vertical curves.

(2) The curve is of equal length each side of I . Thus T1C = CT2 = T1I = IT2 = L/2, without sensible
error.

(3) The curve bisects BI at C, thus BC = CI = Y (the mid-offset).
(4) From similar triangles T1BI and T1T2J , if BI = 2Y , then T2J = 4Y . 4Y represents the vertical

divergence of the two gradients over half the curve length (L/2) and therefore equals AL/200.
(5) The basic equation for a simple parabola is

y = C · l2
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Fig. 10.39 Vertical curve approximations

where y is the vertical offset from gradient to curve, distance l from the start of the curve, and C is a
constant. Thus, as the offsets are proportional to distance squared, the following equation is used to
compute them:

y1

Y
= l2

1

(L/2)2
(10.36)

where Y = the mid-offset = AL/800 (see Section 10.10.7).

10.10.3 Vertical curve design

In order to set out a vertical curve in the field, one requires levels along the curve at given chainage
intervals. Before the levels can be computed, one must know the length L of the curve. The value of L
is obtained from parameters supplied in Table 3 of TD 9/93 (reproduced below as Table 10.3) and the
appropriate parameters are K-values for specific design speeds and sight distances; then

L = KA (10.37)

where A = the difference between the two gradients (grade angle)
K = the design speed related coefficient (Table 10.3)

e.g. A + 4% gradient is linked to a − 3% gradient by a crest curve. What length of curve
is required for a design speed of 100 km/h?

A = (4% − (−3%)) = +7% (positive for crest)

From Table 10.3:

C1 Desirable minimum crest K-value = 100
C2 One step below desirable minimum crest K-value = 55

∴ from L = KA
Desirable minimum length = L = 100 × 7 = 700 m
One step below desirable minimum length = L = 55 × 7 = 385 m

Wherever possible the vertical and horizontal curves in the design process should be coordinated so
that the sight distances are correlated and a more efficient overtaking provision is ensured.

The various design factors will now be dealt with in more detail.
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Table 10.3

Design speed (kph) 120 100 85 70 60 50 V2/R

A Stopping sight distance, m
Desirable minimum 295 215 160 120 90 70
One step below desirable minimum 215 160 120 90 70 50

B Horizontal curvature, m
Minimum R∗ without elimination of adverse

camber and transitions
2880 2040 1440 1020 720 510 5

Minimum R∗ with super-elevation of 2.5% 2040 1440 1020 720 510 360 7.07
Minimum R∗ with super-elevation of 3.5% 1440 1020 720 510 360 255 10
Desirable minimum R with super-elevation of 5% 1020 720 510 360 255 180 14.14
One step below desirable minimum R with

super-elevation of 7%
720 510 360 255 180 127 20

Two steps below desirable minimum radius with
super-elevation of 7%

510 360 255 180 127 90 28.28

C Vertical curvature
Desirable minimum* crest K-value 182 100 55 30 17 10
One step below desirable minimum crest K-value 100 55 30 17 10 6.5
Absolute minimum sag K-value 37 26 20 20 13 9

Overtaking sight distances
Full overtaking sight distance FOSD, m * 580 490 410 345 290
FOSD overtaking crest K-value * 400 285 200 142 100

∗Not recommended for use in the design of single carriageways.
The V2/R values shown above simply represent a convenient means of identifying the relative levels of design parameters,

irrespective of design speed.
(Reproduced with permission of the Controller of Her Majesty’s Stationery Office)

10.10.3.1 K-value

Rate of change of gradient (r) is the rate at which the curve passes from one gradient (g1%) to the next
(g2%) and is similar in concept to rate of change of radial acceleration in horizontal transitions. When
linked to design speed it is termed rate of vertical acceleration and should never exceed 0.3 m/s2.

A typical example of a badly designed vertical curve with a high rate of change of grade is a hump-
backed bridge where usually the two approaching gradients are quite steep and connected by a very short
length of vertical curve. Thus one passes through a large grade angle A in a very short time, with the result
that often a vehicle will leave the ground and/or cause great discomfort to its passengers. Fortunately, in
the UK, few of these still exist.

Commonly-used design values for r are:

3%/100 m on crest curves

1.5%/100 m on sag curves

thereby affording much larger curves to prevent rapid change of grade and provide adequate sight distances.
Working from first principles if g1 = −2% and g2 = +4% (sag curve), then the change of grade

from −2% to +4% = 6% (A), the grade angle. Thus, to provide for a rate of change of grade of 1.5%,
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one would require 400 m (L) of curve. If the curve was a crest curve, then using 3% gives 200 m (L)
of curve:

∴ L = 100A/r (10.38)

Now, expressing rate of change of grade as a single number we have

K = 100/r (10.39)

and as shown previously, L = KA.

10.10.3.2 Sight distances

Sight distance is a safety design factor which is intrinsically linked to rate of change of grade, and hence
to K-values.

Consider once again the hump-backed bridge. Drivers approaching from each side of this particular
vertical curve cannot see each other until they arrive, simultaneously, almost on the crest; by which time it
may be too late to prevent an accident. Had the curve been longer and flatter, thus resulting in a low rate of
change of grade, the drivers would have had a longer sight distance and consequently more time in which
to take avoiding action.

Thus, sight distance, i.e. the length of road ahead that is visible to the driver, is a safety factor, and it
is obvious that the sight distance must be greater than the stopping distance in which the vehicle can be
brought to rest.

Stopping distance is dependent upon:

(1) Speed of the vehicle.
(2) Braking efficiency.
(3) Gradient.
(4) Coefficient of friction between tyre and road.
(5) Road conditions.
(6) Driver’s reaction time.

In order to cater for all the above variables, the height of the driver’s eye above the road surface is
taken as being only 1.05 m; a height applicable to sports cars whose braking efficiency is usually very
high. Thus, other vehicles, such as lorries, with a much greater eye height, would have a much longer sight
distance in which to stop.

10.10.3.3 Sight distances on crests

Sight distances are defined as follows:

(1) Stopping sight distance (SSD) (Figure 10.40)

The SSD is the sight distance required by a driver to stop a vehicle when faced with an unexpected
obstruction on the carriageway. It comprises two elements:

(a) The perception-reaction distance, which is the distance travelled from the time the driver sees the
obstruction to the time it is realized that the vehicle must stop; and

(b) The braking distance, which is the distance travelled before the vehicle halts short of the obstruction.

The above are a function of driver age and fatigue, road conditions, etc., and thus the design parameters are
based on average driver behaviour in wet conditions. Table 10.3 provides values for desirable and absolute
minimum SSD.
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Fig. 10.40 Visibility on a vertical curve

It has been shown that 95% of drivers’ eye height is 1.05 m or above; the upper limit of 2 m represents
large vehicles.

The height of the obstruction is between 0.26 m and 2.0 m. Forward visibility should be provided in
both horizontal and vertical planes between points in the centre of the lane nearest the inside of the curve.

(2) Full overtaking sight distance (FOSD) (Figure 10.41)

On single carriageways, overtaking in the lane of the opposing traffic occurs. To do so in safety requires
an adequate sight distance which will permit the driver to complete the normal overtaking procedure.

The FOSD consists of four elements:

(a) The perception/reaction distance travelled by the vehicle whilst the decision to overtake or not is made.
(b) The overtaking distance travelled by the vehicle to complete the overtaking manoeuvre.
(c) The closing distance travelled by the oncoming vehicle whilst overtaking is occurring.
(d) The safety distance required for clearance between the overtaking and oncoming vehicles at the instant

the overtaking vehicle has returned to its own lane.

It has been shown that 85% of overtaking takes place in 10 seconds and Table 10.3 gives appropriate FOSD
values relative to design speed.

It should be obvious from the concept of FOSD that it is used in the design of single carriageways only,
where safety when overtaking is the prime consideration.

For instance, consider the design of a crest curve on a dual carriageway with a design speed of 100 km/h.

Fig. 10.41 Overtaking visibility
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From Table 10.3:

Desirable minimum K-value = 100
One step below desirable minimum K-value = 55
FOSD K-value = 400

As overtaking is not a safety hazard on a dual carriageway, FOSD is not necessary and one would use:

L = 100 A (desirable minimum)
or L = 55 A (one step below desirable minimum)

Had the above road been a single carriageway then FOSD would be required and:

L = 400 A

If this resulted in too long a curve, with excessive earthworks, then it might be decided to prohibit
overtaking entirely, in which case:

L = 55 A

would be used.
Although equations are unnecessary when using design tables, they can be developed to calculate curve

lengths L for given sight distances S, as follows:

(a) When S < L (Figure 10.42)

From basic equation y = Cl2

Y = C(L/2)2, h1 = C(l1)2 and h2 = C(l2)2

then
h1

Y
= l2

1

(L/2)2
= 4l2

1

L2
and

h2

Y
= 4l2

2

L2

thus l2
1 = h1L2

4Y
but since 4Y = AL

200

l2
1 = 200h1L

A

and l1 = (l1)
1
2

(
200L

A

) 1
2

Fig. 10.42 Calculation of curve lengths
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Similarly l2 = (h2)
1
2

(
200L

A

) 1
2

∴ S = (l1 + l2) = [(h1)
1
2 + (h2)

1
2 ]

(
200L

A

) 1
2

(10.40)

and L = S2A

200[(h1)
1
2 + (h2)

1
2 ]2

(10.41)

when h1 = h2 = h

L = S2A

800h
(10.42)

(b) When S > L it can similarly be shown that

L = 2S − 200

A
[(h1)

1
2 + (h2)

1
2 ]2 (10.43)

and when h1 = h2 = h

L = 2S − 800h

A
(10.44)

When S = L, substituting in either of equations (10.42) or (10.44) will give the correct solution,

e.g. (10.42) L = S2A

800h
= L2A

800h
= 800h

A

and (10.44) L = 2S − 800h

A
= 2L − 800h

A
= 800h

A

N .B. If the relationship of S to L is not known then both cases must be considered; one of them will
not fulfil the appropriate argument S < L or S > L and is therefore wrong.

10.10.3.4 Sight distances on sags

Visibility on sag curves is not obstructed as it is in the case of crests; thus sag curves are designed for at
least absolute minimum comfort criteria of 0.3 m/sec2. However, for design speeds of 70 km/h and below
in unlit areas, sag curves are designed to ensure that headlamps illuminate the road surface for at least
absolute minimum SSD. The relevant K values are given in ‘Absolute minimum saq K-value’, Table 10.3.

The headlight is generally considered as being 0.6 m above the road surface with its beam tilted up at 1◦
to the horizontal. As in the case of crests, equations can be developed if required.

Consider Figure 10.43 where L is greater than S. From the equation for offsets:

BC

T2D
= S2

L2
∴ BC = S2(T2D)

L2



426 Engineering Surveying

Fig. 10.43 Clearance on a vertical curve where S < L

but T2D is the vertical divergence of the gradients and equals

A · L

100 · 2
∴ BC = A · S2

200L
(a)

also BC = h + S tan x (b)

Equating (a) and (b) : L = S2A(200h + 200S tan x)−1 (10.45)

putting x = 1◦ and h = 0.6 m

L = S2A

120 + 3.5S
(10.46)

Similarly, when S is greater than L (Figure 10.44):

BC = A

100

(
S − L

2

)
= h + S tan x

equating: L = 2S − (200h + 200S tan x)/A (10.47)

when x = 1◦ and h = 0.6 m

L = 2S − (120 + 3.5S)/A (10.48)

Fig. 10.44 Clearance on a vertical curve where S > L
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10.10.4 Passing a curve through a point of known level

In order to ensure sufficient clearance at a specific point along the curve it may be necessary to pass the
curve through a point of known level. For example, if a bridge parapet or road furniture were likely to
intrude into the envelope of visibility, it would be necessary to design the curve to prevent this.

This technique will be illustrated by the following example. A downgrade of 4% meets a rising grade
of 5% in a sag curve. At the start of the curve the level is 123.06 m at chainage 3420 m, whilst at chainage
3620 m there is an overpass with an underside level of 127.06 m. If the designed curve is to afford a
clearance of 5 m at this point, calculate the required length (Figure 10.45).

To find the offset distance CE:
From chainage horizontal distance T1E = 200 m at −4%

∴ Level at E = 123.06 − 8 = 115.06 m
Level at C = 127.06 − 5 = 122.06 m

∴ Offset CE = 7 m

From offset equation
CE

T2B
= (T1E)2

(T1B)2

but T2B = the vertical divergence = A

100

L

2
, where A = 9

∴ CE = AL

200

2002

L2
= 1800

L

L = 257 m

10.10.5 To find the chainage of highest or lowest point on the curve

The position and level of the highest or lowest point on the curve is frequently required for drainage design.
With reference to Figure 10.45, if one considers the curve as a series of straight lines, then at T1 the

grade of the line is −4% gradually changing throughout the length of the curve until at T2 it is +5%. There
has thus been a change of grade of 9% in distance L. At the lowest point the grade will be horizontal,
having just passed through −4% from T1. Therefore, the chainage of the lowest point from the start of the
curve is, by simple proportion,

D = L

9%
× 4% = L

A
× g1 (10.49)

which in the previous example is
257

9%
× 4% = 114.24 m from T1.

Fig. 10.45 Clearance at a given point
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Knowing the chainage, the offset and the curve level at that point may be found.
This simple approach suffices as the rate of change of grade is constant for a parabola, i.e. y = Cl2,

∴ d2y/dl2 = 2C.

10.10.6 Vertical curve radius

Due to the very shallow gradients involved in vertical curve (VC) design, the parabola may be approximated
to a circular curve. In this way vertical accelerations (V2/R) may be easily assessed.

In circular curves (Section 10.1) the main chord from T1 to T2 = 2R sin �/2, where � is the deflection
angle of the two straights. In vertical curves, the main chord may be approximated to the length (L) of the
VC and the angle � to the grade angle A, i.e.

� ≈ A%

∴ sin �/2 ≈ �/2 rads ≈ A/200

∴ L ≈ 2RA/200 = AR/100 (10.50)

and as

K = L/A = R/100, then:
R = 100L/A = 100K (10.51)

It is important to note that the reduced levels of vertical curve must always be computed. Scaling levels
from a longitudinal section, usually having a vertical scale different from the horizontal, will produce a
curve that is neither parabolic nor circular.

10.10.7 Vertical curve computation

The computation of a vertical curve will now be demonstrated using an example.
A ‘2nd difference’ (δ2y/δl2) arithmetical check on the offset computation should automatically be

applied. The check works on the principle that the change of grade of a parabola (y = C · l2) is constant,
i.e. δ2y/δl2 = 2C. Thus, if the first and last chords are sub-chords of lengths different from the remaining
standard chords, then the change of grade will be constant only for the equal-length chords.

For example, a 100-m curve is to connect a downgrade of 0.75% to an upgrade of 0.25%. If the level
of the intersection point of the two grades is 150 m, calculate:

(1) Curve levels at 20-m intervals, showing the second difference (d2y/dl2), check on the computations.
(2) The position and level of the lowest point on the curve.

Method

(a) Find the value of the central offset Y .
(b) Calculate offsets.
(c) Calculate levels along the gradients.
(d) Add/subtract (b) from (c) to get curve levels.

(a) Referring to Figure 10.39:
Grade angle A = (−0.75 − 0.25) = −1% (this is seen automatically).

L/2 = 50 m, thus as the grades IT2, and IJ are diverging at the rate of 1% (1 m per 100 m) in 50 m,
then

T2J = 0.5 m = 4Y and Y = 0.125 m
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The computation can be quickly worked mentally by the student. Putting the above thinking into
equation form gives:

4Y = A

100

L

2
∴ Y = AL

800
= 1 × 100

800
= 0.125 (10.52)

(b) Offsets from equation (10.36):

There are two methods of approach.

(1) The offsets may be calculated from one gradient throughout; i.e. y1, y2, EK, GM, T2J , from the
grade T1J .

(2) Calculate the offsets from one grade, say, T1I , the offsets being equal on the other side from the
other grade IT2.

Method (1) is preferred due to the smaller risk of error when calculating curve levels at a constant
interval and grade down T1J .

From equation (10.36): y1 = Y × l2
1

(L/2)2

1st diff. 2nd diff.

T1 = 0 m

________0.02

y1 = 0.125
202

502
= 0.02 m ________0.04

________0.06

y2 = 0.125
402

502
= 0.08 m ________0.04

________0.10

y3 = 0.125
602

502
= 0.18 m ________0.04

________0.14

y4 = 0.125
802

502
= 0.32 m ________0.04

________0.18

y2 = T2J = 4Y = 0.50 m

The second difference arithmetical check, which works only for equal chords, should be applied before
any further computation.

(c) First find level at T1 from known level at I:

Distance from I to T1 = 50 m, grade = 0.75% (0.75 m per 100 m)

∴ Rise in level from I to T1 = 0.75

2
= 0.375 m

Level at T1 = 150.000 + 0.375 = 150.375 m
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Levels are now calculated at 20-m intervals along T1J , the fall being 0.15 m in 20 m. Thus, the
following table may be made.

Chainage (m) Gradient levels Offsets Curve levels Remarks

0 150.375 0 150.375 Start of curve T1
20 150.225 0.02 150.245
40 150.075 0.08 150.155
60 149.925 0.18 150.105
80 149.775 0.32 150.095
100 149.625 0.50 150.125 End of curve T2

Position of lowest point on curve = 100 m

1%
× 0.75% = 75 m from T1

∴ Offset at this point = y2 = 0.125 × 752/502 = 0.281 m

Tangent level 75 m from T1 = 150.375 − 0.563 = 149.812 m

∴ Curve level = 149.812 + 0.281 = 150.093 m

10.10.8 Computer-aided drawing and design (CADD)

The majority of survey packages now available contain a road design module and many examples can be
found on the internet.

Basically all the systems work from a digital ground model (DGM), established by ground survey
methods or aerial photogrammetry. Thus not only is the road designed, but earthwork volumes, setting out
data and costs are generated.

In addition to road design using straights and standard curves, polynomial alignment procedures are
available if required. The engineer is not eliminated from the CAD process; he/she must still specify
such parameters as minimum permissible radius of curvature, maximum slope, minimum sight distances,
coordination of horizontal and vertical alignment, along with any political, economic or aesthetic decisions.
A series of gradients and curves can be input, until earthwork is minimized and balanced out. This is clearly
illustrated by the generation of resultant mass-haul diagrams.

When a satisfactory road design has been arrived at, plans, longitudinal sections, cross-sections and
mass-haul diagrams can be quickly produced. Three-dimensional views with colour shading are also
available for environmental impact studies. Bills of quantity, total costs and all setting-out data is provided
as necessary.

Thus the computer provides a fast, flexible and highly economic method of road design, capable of
generating contract drawings and schedules on request.

Worked examples

Example 10.15 An existing length of road consists of a rising gradient of 1 in 20, followed by a vertical
parabolic crest curve 100 m long, and then a falling gradient of 1 in 40. The curve joins both gradients
tangentially and the reduced level of the highest point on the curve is 173.07 m above datum.

Visibility is to be improved over this stretch of road by replacing this curve with another parabolic
curve 200 m long.

Find the depth of excavation required at the mid-point of the curve. Tabulate the reduced levels of points
at 30-m intervals on the new curve.

What will be the minimum visibility on the new curve for a driver whose eyes are 1.05 m above the
road surface? (ICE)
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The first step here is to find the level of the start of the new curve; this can only be done from the
information on the highest point P (Figure 10.45).

Old curve A = 7.5%, L = 100 m

Chainage of highest point P from T1 = 100

7.5%
× 5% = 67 m

Distance T2C is the divergence of the grades (7.5 m per 100 m) over half the length of curve (50) =
7.5 × 0.5 = 3.75 m = 4Y .

∴ Central offset Y = 3.75/4 = 0.938 m

Thus offset PB = 0.938 · 672

502
= 1.684 m

Therefore the level of B on the tangent = 173.07 + 1.684 = 174.754 m. This point is 17 m from I , and as
the new curve is 200 m in length, it will be 177 m from the start of the new curve T3.

∴ Fall from B to T3 of new curve = 5 × 1.17 = 5.85 m
∴ Level of T3 = 174.754 − 5.85 = 168.904 m

It can be seen that as the value of A is constant, when L is doubled, the value of Y , the central offset to the
new curve, is doubled, giving 1.876 m.

∴ Amount of excavation at mid-point = 0.938 m

New curve offsets 1st diff. 2nd diff.

________0.169

y1 = 1.876 × 302

1002
= 0.169 ________0.337

________0.506

y2 = 1.876 × 602

1002
= 0.675 ________0.339

________0.845

y3 = 1.876 × 902

1002
= 1.520 ________0.336

________1.181

y4 = 1.876 × 1202

1002
= 2.701 ________0.339

________1.520

y5 = 1.876 × 1502

1002
= 4.221 ________0.337

________1.857

y6 = 1.876 × 1802

1002
= 6.078 ________0.431*

________1.426

y7 = 4y = 7.504

*Note change due to change in chord length from 30 m to 20 m.



432 Engineering Surveying

Levels along the tangent T3C are now obtained at 30-m intervals.

Chainage (m) Tangent levels Offsets Curve levels Remarks

0 168.904 0 168.904 T3 of new curve
30 170.404 0.169 170.235
60 171.904 0.675 171.229
90 173.404 1.520 171.884

120 174.904 2.701 172.203
150 176.404 4.221 172.183
180 177.904 6.078 171.826
200 178.904 7.504 171.400 T4 of new curve

From Figure 10.46 it can be seen that the minimum visibility is half the sight distance and could thus be
calculated from the necessary equation. However, if the driver’s eye height of h = 1.05 m is taken as an
offset then

h

Y
= D2

(L/2)2
, thus

1.05

1.876
= D2

1002

∴ D = 75 m

Example 10.16 Arising gradient g1 is followed by another rising gradient g2 (g2 less than g1). The gradients
are connected by a vertical curve having a constant rate of change of gradient. Show that at any point on
the curve the height y above the first tangent point A is given by

y = g1x = − (g1 − g2)x2

2L

where x is the horizontal distance of the point from A, and L is the horizontal distance between the two
tangent points.

Draw up a table of heights above A for 100-m pegs from A when g1 = +5%, g2 = +2% and L = 1000 m.
At what horizontal distance from A is the gradient +3%? (ICE)

Figure 10.47 from equation for offsets.

BC

Y
= x2

(L/2)2

∴ BC = Y · 4x2

L2
but Y = AL

8
stations = (g1 − g2)L

8

Fig. 10.46 Minimum visibility
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Fig. 10.47 Curve of decreasing gradient

∴ BC = (g1 − g2)L4x2

8L2
= (g1 − g2)x2

2L

Now BC = g1x

Thus, as y = BD − BC = g1x − (g1 − g2)x2

2L
Using the above formula (which is correct only if horizontal distances x and L are expressed in stations,
i.e. a station = 100 m)

y1 = 5 − 3 × 12

20
= 4.85 m

y2 = 10 − 3 × 22

20
= 9.4 m

y3 = 15 − 3 × 32

20
= 13.65 m and so on

Grade angle = 3% in 1000 m

Change of grade from 5% to 3% = 2%

∴ Distance = 1000

3%
× 2% = 667 m

Example 10.17 A falling gradient of 4% meets a rising gradient of 5% at chainage 2450 m and level
216.42 m. At chainage 2350 m the underside of a bridge has a level of 235.54 m. The two grades are to
be joined by a vertical parabolic curve giving 14 m clearance under the bridge. List the levels at 50-m
intervals along the curve. (KU)

To find the offset to the curve at the bridge (Figure 10.48)

Fig. 10.48 Offset on a curve, at a given point
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Level on gradient at chainage 2350 = 216.42+4 = 220.42 m
Level on curve at chainage 2350 = 235.54−14 = 221.54 m

∴ Offset at chainage 2350 = y2 = 1.12 m

From equation for offsets
y2

Y
= (L/2 − 100)2

(L/2)2

where Y = AL

800
and A = 9%

1.12 × 800

9 × L
=

(
1 − 200

L

)2

, and putting x = 200

L

1.12 × 4x = 9(1 − x)2

from which x2 − 2.5x + 1 = 0, giving

x = 2 or 0.5 ∴ L = 400 m (as x = 2 is not possible)

Now Y = 9 × 400

800
= 4.5 m from which the remaining offsets are found as follows:

at chainage 50 m offset y1 = 4.5
502

2002
= 0.28 m

at chainage 100 m offset y2 = 4.5
1002

2002
= 1.12 m

at chainage 150 m offset y3 = 4.5
1502

2002
= 2.52 m

at chainage 200 m offset Y = 4.50 m

To illustrate the alternative method, these offsets may be repeated on the other gradient at 250 m = y3,
300 m = y2, 350 m = y1. The levels are now computed along each gradient from I to T1and T2 respectively.

Chainage (m) Gradient levels Offsets Curve levels Remarks

0 224.42 224.42 Start of curve T
50 222.42 0.28 222.70

100 220.42 1.12 221.54
150 218.42 2.52 220.94
200 216.42 4.50 220.92 Centre of Curve I
250 218.92 2.52 221.44
300 221.42 1.12 222.54
350 223.92 0.28 224.20
400 226.42 226.42 End of curve T2

Example 10.18 A vertical parabolic curve 150 m in length connects an upward gradient of 1 in 100 to a
downward gradient of 1 in 50. If the tangent point T1 between the first gradient and the curve is taken as
datum, calculate the levels of points at intervals of 25 m along the curve until it meets the second gradient
at T2. Calculate also the level of the summit giving the horizontal distance of this point from T1.
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If an object 75 mm high is lying on the road between T1 and T2 at 3 m from T2, and a car is approaching
from the direction of T1, calculate the position of the car when the driver first sees the object if his eye is
1.05 m above the road surface. (LU)

To find offsets:

A = 3% ∴ 4Y = L

200
× 3% = 2.25 m

and Y = 0.562 m

∴ y1 = 0.562 × 252

752
= 0.062 y4 = 0.562 × 1002

752
= 1.000

y2 = 0.562 × 502

752
= 0.250 y5 = 0.562 × 1252

752
= 1.562

y3 = 0.562 × 752

752
= 0.562 y6 = 4y = 2.250

Second difference checks will verify these values.
With T1 at datum, levels are now calculated at 25-m intervals for 150 m along the 1 in 100 (1%) gradient.

Chainage (m) Gradient levels Offsets Curve levels Remarks

0 100.0 0 100.000 Start of curve T1
25 100.25 0.062 100.188
50 100.75 0.250 100.250
75 101.00 0.562 100.188

100 101.25 1.000 100.000
125 101.50 1.562 99.688
150 2.250 99.250 End of curve T2

Distance to highest point from T1 = 150

3%
× 1% = 50 m

Sight distance (S < L)
From equation (10.40)

S =
[
(h1)

1
2 + (h2)

1
2

] (
200L

A

) 1
2

when h1 = 1.05 m, h2 = 0.075 m

∴ S = 130 m, and the car is 17 m and T1 and between T1 and T2

Example 10.19 A road gradient of 1 in 60 down is followed by an up-gradient of 1 in 30, the valley thus
formed being smoothed by a circular curve of radius 1000 m in the vertical plane. The grades, if produced,
would intersect at a point having a reduced level of 299.65 m and a chainage of 4020 m.

It is proposed to improve the road by introducing a longer curve, parabolic in form, and in order to limit
the amount of filling it is decided that the level of the new road at chainage 4020 m shall be 3 m above the
existing surface.

Determine:

(a) The length of new curve.
(b) The levels of the tangent points.
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Fig. 10.49 Central offset to a curve

(c) The levels of the quarter points.
(d) The chainage of the lowest point on the new curve. (LU)

To find central offset Y to new curve (Figure 10.49):
From simple curve data � = cot 60 + cot 30 = 2◦ 51′ 51′′

Now BI = R(sec �/2 − 1) = 0.312 m

∴ Central offset AI = Y = 3.312 m and T2C = 4Y = 13.248 m

To find length of new curve:
Grade 1 in 60 = 1.67%, 1 in 30 = 3.33%

∴ Grade angle � = 5%

(1) Then from T2IC, L/2 = 13.248

5
× 100

∴ L = 530 m

(2) Rise from I to T1 = 1.67 × 2.65 = 4.426 m

∴ Level at T1 = 299.65 + 4.426 = 304.076 m

Rise from I to T2 = 3.33 × 2.65 = 8.824 m

∴ Level at T2 = 299.65 + 8.824 = 308.474 m

(3) Levels at quarter points:
1st quarter point is 132.5 m from T1

∴ Level on gradient = 304.076 − (1.67 × 1.325) = 301.863 m

Offset = 3.312 × 12

22
= 0.828 m

∴ Curve level = 301.863 + 0.828 = 302.691 m
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2nd quarter point is 397.5 m

∴ Level on gradient = 304.076 − (167 × 3.975) = 310.714 m

Offset = 3.312 × 32

22
= 7.452 m

∴ Curve level = 310.714 + 7.452 = 318.166 m

(4) Position of lowest point on curve from T1 = 530

5%
× 1.67% = 177 m

Chainage at T1 = 4020 − 265 = 3755 m
Chainage of lowest point 3755 + 177 = 3932 m

Exercises

(10.12) A vertical curve 120 m long of the parabola type is to join a falling gradient of 1 in 200 to a rising
gradient of 1 in 300. If the level of the intersection of the two gradients is 30.36 m give the levels at 15-m
intervals along the curve.

If the headlamp of a car was 0.375 m above the road surface, at what distance will the beam strike the
road surface when the car is at the start of the curve? Assume the beam is horizontal when the car is on a
level surface. (LU)

(Answer: 30.660, 30.594, 30.541, 30.504, 30.486, 30.477, 30.489, 30.516, 30.588; 103.8 m)

(10.13) A road having an up-gradient of 1 in 15 is connected to a down-gradient of 1 in 20 by a vertical
parabolic curve 120 m in length. Determine the visibility distance afforded by this curve for two approaching
drivers whose eyes are 1.05 m above the road surface.

As part of a road improvement scheme a new vertical parabolic curve is to be set out to replace the
original one so that the visibility distance is increased to 210 m for the same height of driver’s eye.

Determine:

(a) The length of new curve.
(b) The horizontal distance between the old and new tangent points on the 1 in 5 gradient.
(c) The horizontal distance between the summits of the two curves. (ICE)

(Answer: 92.94 m, (a) 612 m, (b) 246 m, (c) 35.7 m)

(10.14) A vertical parabolic sag curve is to be designed to connect a down-gradient of 1 in 20 with an
up-gradient of 1 in 15, the chainage and reduced level of the intersection point of the two gradients being
797.7 m and 83.544 m respectively.

In order to allow for necessary headroom, the reduced level of the curve at chainage 788.7 m on the
down-gradient side of the intersection point is to be 85.044 m.

Calculate:

(a) The reduced levels and chainages of the tangent points and the lowest point on the curve.
(b) The reduced levels of the first two pegs on the curve, the pegs being set at the 30-m points of through

chainage. (ICE)

(Answer: (a)T1 = 745.24 m, 86.166 m, T2 = 850.16 m, 87.042 m, lowest pt = 790.21 m, 85.041 m,
(b) 85.941 m, 85.104 m)
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(10.15) The surface of a length of a proposed road consists of a rising gradient of 2% followed by a falling
gradient of 4% with the two gradients joined by a vertical parabolic summit curve 120 m in length. The
two gradients produced meet a reduced level of 28.5 m OD.

Compute the reduced levels of the curve at the ends, at 30-m intervals and at the highest point.
What is the minimum distance at which a driver, whose eyes are 1.125 m above the road surface, would

be unable to see an obstruction 100 mm high? (ICE)

(Answer: 27.300, 27.675, 27.600, 27.075, 26.100 m; highest pt, 27.699 m, 87 m)



Derivation of clothoid spiral formulae

AB is an infinitely small portion (δl) of the transition curve T1t1. (Figure 10.50)

δx/δl = cos φ = (1 − φ2/2! + φ4/4! − φ6/6! . . .)

The basic equation for a clothoid curve is: φ = l2/2RL

∴ δx/δl =
(

1 − (l2/2RL)2

2! + (l2/2RL)4

4! − (l2/2RL)6

6! · · ·
)

Integrating: x = l

(
1 − l4

40(RL)2
+ l8

3456(RL)4
− l12

599 040(RL)6

)

= l − l5

40(RL)2
+ l9

3456(RL)4
− l13

599 040(RL)6
+ · · ·

when x = X , l = L and:

X = L − L3

5 · 4 · 2!R2
+ L5

9 · 42 · 4!R4
− L7

13 · 43 · 6!R6
+ · · · (10.53)

Similarly, δy/δl = sin φ = (φ − φ3/3! + φ5/5! . . .).
Substituting for φ as previously:

δy/δl = l2

2RL
− (l2/2RL)3

6
+ (l2/2RL)5

120
· · ·

Integrating: y = l

(
l2

6RL
− l6

336(RL)3
+ l10

42 240(RL)5 · · ·
)

= l3

6RL
− l7

336(RL)3
+ l11

42 240(RL)5 · · ·

Fig. 10.50 Clothoid spiral
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when y = Y , l = L, and

Y = L2

3 · 2R
− L4

7 · 3!23R3
+ L6

11 · 5!25R5 · · · (10.54)

The basic equation for a clothoid is l = a(φ)
1
2 , where l = L, φ = � and L = a(�)

1
2 , then squaring and

dividing gives:

L2/l2 = �/φ (10.55)

From Figure 10.50:

tan θ = y

x
= l(l2/6RL − l6/336(RL)3 + l10/42 240 (RL)5)

l(1 − l4/40(RL)2 + l8/3456(RL)4)

However, l = (2RLφ)
1
2 :

∴ tan θ = (2RLφ)
1
2 (φ/3 − φ3/42 + φ5/1320)

(2RLφ)
1
2 (1 − φ2/10 + φ4/216)

=
(

φ

3
− φ3

42
+ φ5

1320

) (
1 − φ2

10
+ φ4

216

)−1

Let x = −(φ2/10 − φ4/216) and expanding the second bracket binomially,

i.e. (1 + x)−1 = 1 − nx + n(n − 1)x2

2! · · ·

= 1 + φ2

10
− φ4

216
+ 2

2!
(

φ2

10
− φ4

216

)2

= 1 + φ2

10
− φ4

216
+ φ4

100
+ φ8

81 · 4!4! − 2φ6

45 · 2!4!

= 1 + φ2

10
− φ4

216
+ φ4

100

∴ tan θ =
(

φ

3
− φ3

42
+ φ5

11.5!
) (

1 + φ2

10
− φ4

216
+ φ4

100

)

= φ

3
+ φ3

105
+ 26φ5

155 925

However, as θ = tan θ − 1

3
tan3 θ + 1

5
tan5 θ

then θ = φ

3
− 8φ3

2835
− 32φ5

467 775
· · · (10.56)

= φ

3
− N

When θ = maximum, φ = � and

θ = �

3
− N
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Fig. 10.51 Transition and circular arcs

From Figure 10.51:

BD = BO − DO = R − R cos � = R(1 − cos �)

= R

(
�2

2! + �4

4! + �6

6! · · ·
)

but � = L/2R,

∴ BD = L2

2!22R
+ L4

4!24R3
+ L6

6!26R5

and Y = L2

3 · 2R
− L4

7 · 3!23R3
+ L6

11 · 5!25R5

∴ Shift = S = (Y − BD) = L2

24R
− L4

3!7 · 8 · 23R3
+ L6

5!11 · 12 · 25R5

From Figure 10.51:

Dt1 = R sin φ = R

(
� − �3

3! + �5

5! · · ·
)

but � = L/2R

∴ Dt1 = L

2
− L3

3!23R2
+ L5

5!25R4
· · ·
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also X = L − L3

5 · 4 · 2!R2
+ L5

9 · 42 · 4!R4
· · ·

Tangent length = T1I = (R + S) tan
�

2
+ AT1 = (R + S) tan

�

2
+ (X − Dt1)

= (R + S) tan
�

2
+

(
L

2
− L3

2!5 · 6 · 22R2
+ L5

4!9 · 10 · 24R4

)

= (R + S) tan
�

2
+ C (10.57)



11

Earthworks

Estimation of areas and volumes is basic to most engineering schemes such as route alignment, reservoirs,
tunnels, etc. The excavation and hauling of material on such schemes is the most significant and costly
aspect of the work, on which profit or loss may depend.

Areas may be required in connection with the purchase or sale of land, with the subdivision of land or
with the grading of land.

Earthwork volumes must be estimated to enable route alignment to be located at such lines and levels
that cut and fill are balanced as far as practicable; and to enable contract estimates of time and cost to be
made for proposed work; and to form the basis of payment for work carried out.

The tedium of earthwork computation has now been removed by the use of computers. Digital ground
models (DGM), in which the ground surface is defined mathematically in terms of x, y and z coordinates,
are stored in the computer memory. This data bank may now be used with several alternative design
schemes to produce the optimum route in both the horizontal and vertical planes. In addition to all the
setting-out data, cross-sections are produced, earthwork volumes supplied and mass-haul diagrams drawn.
Quantities may be readily produced for tender calculations and project planning. The data banks may be
updated with new survey information at any time and further facilitate the planning and management not
only of the existing project but of future ones.

To understand how software does each stage of the earthwork computations, one requires a knowledge
of the fundamentals of areas and volumes, not only to produce the software necessary, but to understand
the input data required and to be able to interpret and utilize the resultant output properly.

11.1 AREAS

The computation of areas may be based on data scaled from plans or drawings, or data gained directly
from survey field data.

11.1.1 Plotted areas

(1) It may be possible to sub-divide the plotted area into a series of triangles, measures the sides a, b, c,
and compute the areas using:

Area = [s(s − a)(s − b)(s − c)] 1
2 where s = (a + b + c)/2

The accuracy achieved will be dependent upon the scale error of the plan and the accuracy to which
the sides are measured.

(2) Where the area is irregular, a sheet of gridded tracing material may be superimposed over it and the
number of squares counted. Knowing the scale of the plan and the size of the squares, an estimate of
the area can be obtained. Portions of squares cut by the irregular boundaries can be estimated.
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Fig. 11.1 Areas of give and take

(3) Alternatively, irregular boundaries may be reduced to straight lines using give-and-take lines, in which
the areas ‘taken’ from the total area balance out with extra areas ‘given’ (Figure 11.1).

(4) If the area is a polygon with straight sides it may be reduced to a triangle of equal area. Consider the
polygon ABCDE shown in Figure 11.2

Take AE as the base and extend it as shown, Join CE and from D draw a line parallel to CE on to
the base at F. Similarly, join CA and draw a line parallel from B on to the base at G. Triangle GCF
has the same area as the polygon ABCDE.

(5) The most common mechanical method of measuring areas from paper plans is to use an instrument
called a planimeter (Figure 11.3(a)). This comprises two arms, JF and JP, which are free to move
relative to each other through the hinged point at J but fixed to the plan by a weighted needle at F.
M is the graduated measuring wheel and P the tracing point. As P is moved around the perimeter of
the area, the measuring wheel partly rotates and partly slides over the plan with the varying movement
of the tracing point (Figure 11.3(b)). The measuring wheel is graduated around the circumference
into 10 divisions, each of which is further sub-divided by 10 into one-hundredths of a revolution,
whilst a vernier enables readings to one thousandths of a revolution. The wheel is connected to a
dial that records the numbered revolutions up to 10. On a fixed-arm planimeter one revolution of
the wheel may represent 100 mm2 on a 1:1 basis; thus, knowing the number of revolutions and
the scale of the plan, the area is easily computed. In the case of a sliding-arm planimeter the slid-
ing arm JP may be set to the scale of the plan, thereby facilitating more direct measurement of
the area.

Fig. 11.2 Reduction of a polygon to a triangle
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(a) (b)

Fig. 11.3 A polar planimeter

In the normal way, needle point F is fixed outside the area to be measured, the initial reading
noted, the tracing point traversed around the area and the final reading noted. The difference of the
two readings gives the number of revolutions of the measuring wheel, which is a direct measure of the
area. If the area is too large to enable the whole of its boundary to be traversed by the tracing point
P when the needle point F is outside the area, then the area may be sub-divided into smaller more
manageable areas, or the needle point can be transposed inside the area.

As the latter procedure requires the application of the zero circle of the instrument, the former
approach is preferred.

The zero circle of a planimeter is that circle described by the tracing point P, when the nee-
dle point F is at the centre of the circle, and the two arms JF and JP are at right angles to each
other. In this situation the measuring wheel is normal to its path of movement and so slides without
rotation, thus producing a zero change in reading. The value of the zero circle is supplied with the
instrument.

If the area to be measured is greater than the zero circle (Figure 11.4(a)) then only the tinted area
is measured, and the zero circle value must be added to the difference between the initial and final
wheel readings. In such a case the final reading will always be greater than the initial reading. If the
final reading is smaller than the initial reading, then the situation is as shown in Figure 11.4(b) and the
measured area, shown tinted, must be subtracted from the zero circle value.

Fig. 11.4 Measured areas and the zero circle
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Fig. 11.5 Trapezoidal and Simpson’s rule

Worked example

Example 11.1

(a) Forward movement (b) Backward movement

Initial reading 2.497 Initial reading 2.886
Final reading 6.282 Final reading 1.224

Difference 3.785 revs Difference 1.662 revs
Add zero circle 18.546 Subtract from zero circle 18.546

Area = 22.331 revs Area = 16.884 revs

If one revolution corresponds to an area of (A), then on a plan of scale 1 in M, the actual area in (a) above
is 22.331 × A × M2. If the area can be divided into strips then the area can be found using either the
trapezoidal rule or Simpson’s rule, as follows (Figure 11.5).

11.1.2 Calculated areas

(a) Trapezoidal rule
In Figure 11.5:

Area of 1st trapezoid ABCD = h1 + h2

2
× w

Area of 2nd trapezoid BEFC = h2 + h3

2
× w and so on.

Total area = sum of trapezoids

= A = w

(
h1 + h7

2
+ h2 + h3 + h4 + h5 + h6

)
(11.1)

N .B. (i) If the first or last ordinate is zero, it must still be included in the equation.
(ii) The formula represents the area bounded by the broken line under the curving boundary;

thus, if the boundary curves outside then the computed area is too small, and vice versa.
(b) Simpson’s rule

A = w[(h1 + h7) + 4(h2 + h4 + h6) + 2(h3 + h5)]/3 (11.2)

i.e. one-third the distance between ordinates, multiplied by the sum of the first and last ordinates,
plus four times the sum of the even ordinates, plus twice the sum of the odd ordinates.
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N .B. (i) This rule assumes a boundary modelled as a parabola across pairs of areas and is therefore
more accurate than the trapezoidal rule. If the boundary were a parabola the formula would
be exact.

(ii) The equation requires an odd number of ordinates and consequently an even number of
areas.

11.1.3 Areas by coordinates

Using appropriate field data it may be possible to define the area by its rectangular coordinates. For example:

The area enclosed by the traverse ABCDA in Figure 11.6 can be found by taking the area of the rectangle
a′cDd and subtracting the surrounding triangles, etc., as follows:

Area of rectangle a′cDd = a′c × a′d
= 263 × 173 = 45 499 m2

Area of rectangle a′bBa = 77 × 71 = 5 467 m2

Area of triangle AaB = 71 × 35.5 = 2 520.5 m2

Area of triangle BBC = 77 × 46 = 3 542 m2

Area of triangle Ccd = 173 × 50 = 8 650 m2

Area of triangle DdA = 263 × 12.5 = 3 287.5 m2

Total = 23 467 m2

∴ Area ABCDA = 45 499 − 23 467 = 22 032 m2 ≈ 22 000 m2

The following rule may be used when the total coordinates only are given. Multiply the algebraic sum
of the northing of each station and the one following by the algebraic difference of the easting of each
station and the one following. The area is half the algebraic sum of the products. Thus, from Table 11.1
and Figure 11.6

Area ABCDA ≈ 22 032 m2 ≈ 22 000 m2

The value of 22 000 m2 is more realistic considering the number of significant figures involved in the
computations.

Table 11.1

Stns E N Difference of E Sum of N Double area
+ −

A 0.0 0.0 −71 71 5 041
B 71 71 −92 219 20 148
C 163 148 −100 123 12 300
D 263 −25 263 −25 6 575
A 0.0 0.0 —

∑
44 064

Area ABCDA = 22 032 m2 ≈ 22 000 m2
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Fig. 11.6 Area by coordinates

This latter rule is the one most commonly used and is easily remembered if written as follows:

NA NB NC ND

EA EB EC ED EAED (11.3)

Thus A = 0.5[NA(EB − ED) + NB(EC − EA) + NC(ED − EB) + ND(EA − EC)]
= 0.5[0 + 71(163) + 148(263 − 71) − 25(0 − 163)]
= 0.5[11 573 + 28 416 + 4075] = 22 032 m2

The stations must be lettered clockwise around the figure. If anticlockwise the result will be the same
but has a negative sign.

11.2 PARTITION OF LAND

This task may be carried out by an engineer when sub-dividing land either for large building plots or for
sale purposes.

11.2.1 To cut off a required area by a line through a given point

With reference to Figure 11.7, it is required to find the length and bearing of the line GH which divides
the area ABCDEFA into the given values.

Method

(1) Calculate the total area ABCDEFA.
(2) Given point G, draw a line GH dividing the area approximately into the required portions.
(3) Draw a line from G to the station nearest to H, namely F.
(4) From coordinates of G and F, calculate the length and bearing of the line GF.
(5) Find the area of GDEFG and subtract this area from the required area to get the area of triangle GFH.
(6) Now area GFH = 0.5HF × FG sin θ , difference FG is known from (4) above, and θ is the difference

of the known bearings FA and FG and thus length HF is calculated.
(7) As the bearing FH = bearing FA (known), then the coordinates of H may be calculated.
(8) From coordinates of G and H, the length and bearing of GH are computed.
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Fig. 11.7 Divide an area by a line through a given point

11.2.2 To cut off a required area by a line of given bearing

With reference to Figure 11.8(a), it is required to fix line HJ of a given bearing, which divides the area
ABCDEFGA into the required portions.

Method

(1) From any station set off on the given bearing a trial line that cuts off approximately the required area,
say AX.

(2) Compute the length and bearing of AD from the traverse coordinates.
(3) In triangle ADX, length and bearing AD are known, bearing AX is given and bearing DX = bearing

DE; thus the three angles may be calculated and the area of the triangle found.
(4) From coordinates calculate the area ABCDA; thus total area ABCDXA is known.

Fig. 11.8 Divide an area by a line with a given bearing
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(5) The difference between the above area and the area required to be cut off, is the area to be added or
subtracted by a line parallel to the trial line AX. Assume this to be the trapezium AXJHA whose area
is known together with the length and bearing of one side (AX) and the bearings of the other sides.

(6) With reference to Figure 11.8(b), as the bearings of all the sides are known, the angles θ and φ are
known. From this YH = x tan θ and JZ = x tan φ; now:

Area of AXJHA = area of rectangle AXZYA − (area of triangle AHY + area of triangle XZJ)

= AX × x −
(x

2
× x tan θ + x

2
× x tan φ

)

= AX × x −
[

x2

2
(tan θ + tan φ)

]
(11.4)

from which the value of x may be found.
(7) Thus, knowing x, the distances AH and XJ can easily be calculated and used to set out the required

line HJ.

11.3 CROSS-SECTIONS

Finding the areas of cross-sections is the first step in obtaining the volume of earthwork to be handled in
route alignment projects (road or railway), or reservoir construction, for example.

In order to illustrate more clearly what the above statement means, let us consider a road construction
project. In the first instance an accurate plan is produced on which to design the proposed route. The centre-
line of the route, defined in terms of rectangular coordinates at 10- to 30-m intervals, is then set out in the
field. Ground levels are obtained along the centre-line and also at right angles to the line (Figure 11.9(a)).
The levels at right angles to the centre-line depict the ground profile, as shown in Figure 11.9(b), and if
the design template, depicting the formation level, road width, camber, side slopes, etc., is added, then
a cross-section is produced whose area can be obtained by planimeter or computation. The shape of the
cross-section is defined in terms of vertical heights (levels) at horizontal distances each side of the centre-
line; thus no matter how complex the shape, these parameters can be treated as rectangular coordinates
and the area computed using the rules given in Section 11.1.2. The areas may now be used in various rules
(see later) to produce an estimate of the volumes. Levels along, and normal to, the centre-line may be
obtained by standard levelling procedures, with a total station, or by aerial photogrammetry. The whole
computational procedure, including the road design and optimization, would then be carried out on the
computer to produce volumes of cut and fill, accumulated volumes, areas and volumes of top-soil strip,

Fig. 11.9(a) Cross-sections
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Fig. 11.9(b) Cross-sectional area of a cutting

side widths, etc. Where plotting facilities are available the program would no doubt include routines to
plot the cross-sections for visual inspection.

Cross-sections may be approximated to the ground profile to afford easy computation. The particular
cross-section adopted would be dependent upon the general shape of the ground. Typical examples are
illustrated in Figure 11.10.

Whilst equations are available for computing the areas and side widths they tend to be over-complicated
and the following method using ‘rate of approach’ is recommended (Figure 11.11).

Given: height x and grades AB and CB in triangle ABC.
Required: to find distance y1.
Method: Add the two grades, using their absolute values, invert them and multiply by x.

I.e. (1/2 + 1/5)−1x = 10x/7 = y1 or (0.5 − 0.2)−1x = 10x/7 = y1

Fig. 11.10 (a) Cutting, (b) embankment, (c) cutting and (d) hillside section
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Fig. 11.11 Rate of approach

Similarly, to find distance y2 in triangle ADC, subtract the two grades, invert them and multiply by x.

E.g. (1/2 − 1/5)−1x = 10x/3 = y2 or (0.5 − 0.2)−1x = 10x/3 = y2

The rule, therefore is:

(1) When the two grades are running in opposing directions (as in ABC), add (signs opposite + −).
(2) When the two grades are running in the same direction (as in ADC), subtract (signs same).

N .B. Height x must be vertical relative to the grades (see Worked example 11.2).

Proof

From Figure 11.12 it is seen that 1 in 5 = 2 in 10 and 1 in 2 = 5 in 10, and thus the two grades diverge
from B at the rate of 7 in 10. Thus, if AC = 7 m then EB = 10 m, i.e. x × 10/7 = 7 × 10/7 = 10 m.

Two examples will now be worked to illustrate the use of the above technique.

Worked examples

Example 11.2 Calculate the side widths and cross-sectional area of an embankment (Figure 11.13) having
the following dimensions:

Road width = 20 m existing ground slope = 1 in 10 (10%)

Side slopes = 1 in 2 (50%) centre height = 10 m

As horizontal distance from centre-line to AE is 10 m and the ground slope is 10%, then AE will
be 1 m greater than the centre height and BD 1 m less. Thus, AE = 11 m and BD = 9 m, area of
ABDE = 20 × 10 = 200 m2. Now, to find the areas of the remaining triangles AEF and BDC one needs

Fig. 11.12 Rate of approach calculation
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Fig. 11.13 Rate of approach calculation

the perpendicular heights y1 and y2, as follows:

(1) 1/2 − 1/10 = 4/10, then y1 = (4/10)−1 × AE = 11 × 10/4 = 27.5 m
(2) 1/2 + 1/10 = 6/10, then y2 = (6/10)−1 × BD = 9 × 10/6 = 15.0 m

∴ Area of triangle AEF = AE

2
× y1 = 11

2
× 27.5 = 151.25 m2

Area of triangle BDC = BD

2
× y2 = 9

2
× 15.0 = 67.50 m2

Total area = (200 + 151.25 + 67.5) = 418.75 m2

Side width w1 = 10 m + y1 = 37.5 m

Side width w2 = 10 m + y2 = 25.0 m

Example 11.3 Calculate the side widths and cross-sectional areas of cut and fill on a hillside section
(Figure 11.14) having the following dimensions:

Road width = 20 m existing ground slope = 1 in 5 (20%)

Side slope in cut = 1 in 1 (100%) centre height in cut = 1 m

Side slope in fill = 1 in 2 (50%)

As ground slope is 20% and centre height 1 m, it follows that the horizontal distance from centre-line
to B is 5 m; therefore, AB = 5 m, BC = 15 m. From these latter distances it is obvious that AF = 1 m and
GC = 3 m.

Now, y1 = (1/2 − 1/5)−1 × AF = 10

3
× 1 = 3.3 m

y2 = (1 − 1/5)−1 × GC = 5

4
× 3 = 3.75 m

Fig. 11.14 Cross-sectional area calculation
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Fig. 11.15 Cross-sectional area by coordinates

∴ Side width w1 = 10 m + y1 = 13.3 m

Side width w2 = 10 m + y2 = 13.75 m

Now, as side slope AE is 1 in 2, then h1 = y1/2 = 1.65 m and as side slope CD is 1 in 1, then
h2 = y2 = 3.75 m.

∴ Area of cut (BCD) = BC

2
× h2 = 15

2
× 3.75 = 28.1 m2

Area of fill (ABE) = AB

2
× h1 = 5

2
× 1.65 = 4.1 m2

Example 11.4 Calculate the area and side-widths of the cross-section (Figure 11.15):

y1 =
(

1

2
− 1

20

)−1

× 10.5 = 20

9
× 10.5 = 23.33 m

∴ W1 = 10 + y1 = 33.33 m

y2 =
(

1

2
+ 1

10

)−1

× 9 = 10

6
× 9 = 15.00 m

∴ W1 = 10 + y2 = 25.00 m

Area I = [(10 + 10.5)/2]10 = 102.50 m2

Area II = [(10 + 9)/2]10 = 95.00 m2

Area III = (10.5/2)23.33 = 122.50 m2

Area IV = (9/2)15.00 = 67.50 m2

Total area = 387.50 m2

11.3.1 Cross-sectional areas by coordinates

Where the cross-section is complex and the ground profile has been defined by reduced levels at known
horizontal distances from the centre-line, the area may be found by coordinates. The horizontal distances
may be regarded as Eastings (E) and the elevations (at 90◦ to the distances) as Northings (N).
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Consider the previous example (Figure 11.15). Taking X on the centre-line as the origin, XB as the
N-axis (reduced levels) and ED as the E-axis, the coordinates of A, B, C, D and E are:

{
A = 11.67

−33.33
B = 10.00

0
C = 7.50

25.00

}
Ground levels

{
E = 0

−10.00
D = 0

10.00

}
Formation levels

(In the above format the denominator is the E-value.)

Point E N

A −33.33 11.67
B 0 10.00
C 25.00 7.50
D 10.00 0
E −10.00 0

From equation (11.3):

NA NB NC ND

EA EB EC ED

NE

EE EAEE

Area = 1
2 [NA(EB − EE) + NB(EC − EA) + NC(ED − EB) + ND(EE − EC) + NE(EA − ED)]

= 1
2 [11.67{0 − (−10)} + 10{25 − (−33.33)} + 7.5(10 − 0)]

(As the ND and NE are zero, the terms are ignored.)

= 1
2 [116.70 + 583.30 + 75] = 387.50 m2

11.4 DIP AND STRIKE

On a tilted plane there is a direction of maximum tilt, such direction being called the line of full dip.
Any line at right angles to full dip will be a level line and is called a strike line (Figure 11.16(a)). Any
grade between full dip and strike is called apparent dip. An understanding of dip and strike is occasionally
necessary for some earthwork problems. From Figure 11.16(a):

tan θ1 = ac

bc
= de

bc
=

(
de

be
× be

bc

)
= tan θ cos φ

i.e. tan (apparent dip) = tan (full dip) × cos (included angle) (11.5)

Worked example

Example 11.5 On a stratum plane, an apparent dip of 1 in 16 bears 170◦, whilst the apparent dip in the
direction 194◦ is 1 in 11; calculate the direction and rate of full dip.
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Fig. 11.16 Dip and strike

Draw a sketch of the situation (Figure 11.16(b)) and assume any position for full dip. Now, using
equation (11.5):

tan θ1 = tan θ cos φ

1

16
= tan θ cos (24◦ − δ)

tan θ = 1

16 cos (24◦ − δ)

Similarly,
1

11
= tan θ cos δ

tan θ = 1

11 cos δ

Equating (a) and (b):

16 cos (24◦ − δ) = 11 cos δ

16(cos 24◦ cos δ + sin 24◦ sin δ) = 11 cos δ

16(0.912 cos δ + 0.406 sin δ) = 11 cos δ

14.6 cos δ + 6.5 sin δ = 11 cos δ

3.6 cos δ = −6.5 sin δ
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Cross multiply
sinδ

cos δ
= tan δ = −3.6

6.5

∴ δ = −29◦

N .B. The minus sign indicates that the initial position for full dip in Figure 11.16(b) is incorrect, and that
it lies outside the apparent dip. As the grade is increasing from 1 in 16 to 1 in 11, the full dip must
be as in Figure 11.16(c).

∴ Direction of full dip = 223◦

Now, a second application of the formula will give the rate of full dip. That is

1

11
= 1

x
cos 29◦

∴ x = 11 cos 29◦ = 9.6

∴ Rate of full dip = 1 in 9.6

11.5 VOLUMES

The importance of volume assessment has already been outlined. Many volumes encountered in civil
engineering appear, at first glance, to be rather complex in shape. Generally speaking, however, they can
be divided into prisms, wedges or pyramids, each of which will now be dealt with in turn.

(1) Prism

The two ends of the prism (Figure 11.17) are equal and parallel, the resulting sides thus being
parallelograms.

Vol = AL (11.6)

(2) Wedge

Volume of wedge (Figure 11.18) = L

6
(sum of parallel edges × vertical height of base)

= L

6
[(a + b + c) × h] (11.7a)

when a = b = c : V = AL/2 (11.7b)

Fig. 11.17 Prism
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Fig. 11.18 Wedge

Fig. 11.19 Pyramid

(3) Pyramid

Volume of pyramid (Figure 11.19) = AL

3
(11.8)

Equations (11.6) to (11.8) can all be expressed as the common equation:

V = L

6
(A1 + 4Am + A2) (11.9)

where A1 and A2 are the end areas and Am is the area of the section situated mid-way between the end
areas. It is important to note that Am is not the arithmetic mean of the end areas, except in the case of a
wedge.

To prove the above statement consider:

(1) Prism

In this case A1 = Am = A2:

V = L

6
(A + 4A + A) = L × 6A

6
= AL

(2) Wedge

In this case Am is the mean of A1 and A2, but A2 = 0. Thus Am = A/2:

V = L

6

(
A + 4 × A

2
+ 0

)
= L × 3A

6
= AL

2

(3) Pyramid

In this case Am = A

4
and A2 = 0:

V = L

6

(
A + 4 × A

4
+ 0

)
= L × 2A

6
= AL

3
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Fig. 11.20 Prismoid

Thus, any solid which is a combination of the above three forms and having a common value for L,
may be solved using equation (11.9). Such a volume is called a prismoid and the formula is called the
prismoidal equation. It is easily deduced by simply substituting areas for ordinates in Simpson’s rule. The
prismoid differs from the prism in that its parallel ends are not necessarily equal in area; the sides are
generated by straight lines from the edges of the end areas (Figure 11.20).

The prismoidal equation is correct when the figure is a true prismoid. In practice it is applied by taking
three successive cross-sections. If the mid-section is different from that of a true prismoid, then errors will
arise. Thus, in practice, sections should be chosen in order to avoid this fault. Generally, the engineer elects
to observe cross-sections at regular intervals assuming compensating errors over a long route distance.

11.5.1 End-area method

Consider Figure 11.21, then

V = A1 + A2

2
× L (11.10)

i.e. the mean of the two end areas multiplied by the length between them. The equation is correct only
when the mid-area of the prismoid is the mean of the two end areas. It is correct for wedges but in the case
of a pyramid it gives a result which is 50% too great:

Vol. of pyramid = A + 0

2
× L = AL

2
instead of

AL

3

Although this method generally over-estimates, it is widely used in practice. The main reasons for this
are its simplicity and the fact that the assumptions required for a good result using the prismoidal method
are rarely fulfilled in practice. Strictly, however, it should be applied to prismoids comprising prisms and
wedges only; such is the case where the height or width of the consecutive sections is approximately equal.
It is interesting to note that with consecutive sections, where the height increases as the width decreases,
or vice versa, the end-area method gives too small a value.

The difference between the prismoidal and end-area equations is called prismoidal excess and may be
applied as a correction to the end-area value. It is rarely used in practice.

Summing a series of end areas gives:

V = L

(
A1 + An

2
+ A2 + A3 + · · · + An−1

)
(11.11)

This formula is called the trapezoidal rule for volumes.
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Fig. 11.21 End-area calculation

11.5.2 Comparison of end-area and prismoidal equations

In order to compare the methods, the volume of Figure 11.21, will be computed as follows:

Dimensions of Figure 11.21.

Centre heights: h1 = 10 m, h2 = 20 m, hm = 18 m

Road widths: b1 = b2 = bm = 20 m

Side slopes: 1 in 2 (50%)

Horizontal distance between sections: l = 30 m, L = 60 m

N .B. For a true prismoid hm would have been the mean of h1 and h2, equal to 15 m. The broken line
indicates the true prismoid, the excess area of the mid-section is shown tinted.

The true volume is thus a true prismoid plus two wedges, as follows:

(1) A1 = 60 + 20

2
× 10 = 400 m2

A2 = 100 + 20

2
× 20 = 1200 m2

Am = 80 + 20

2
× 15 = 750 m2

Vol. of prismoid = V1 = 60

6
(400 + 4 × 750 + 1200) = 46 000 m3

Vol. of wedge 1 = L

6
[(a + b + c) × h] = 30

6
[(92 + 80 + 60) × 3] = 3480 m3
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Vol. of wedge 2 = 30

6
[(92 + 80 + 100) × 3] = 4080 m3

Total true volume = 53 560 m3

(2) Volume by prismoidal equation (Am will now have a centre height of 18 m)

Am = 92 + 20

2
× 18 = 1008 m2

Vol. = 60

6
(400 + 4032 + 1200) = 56 320 m3

Error = 56 320 − 53 560 = +2760 m2

This error is approximately equal to the area of the excess mid-section multiplied by L/6, i.e.
(Area abcd × L)/6, and is so for all such circumstances; it would be negative if the mid-area had
been smaller.

(3) Volume by end area

V1 = 400 + 1008

2
× 30 = 21 120 m3

V2 = 1008 + 1200

2
× 30 = 33 120 m3

Total volume = 54 240 m3

Error = 54 240 − 53 560 = +680 m3

Thus, in this case the end-area method gives a better result than the prismoidal equation. However, if
we consider only the true prismoid, the volume by end areas is 46 500 m3 compared with the volume by
prismoidal equation of 46 000 m3, which, in this case, is the true volume.

Therefore, in practice, it can be seen that neither of these two methods is satisfactory. Unless the ideal
geometric conditions exist, which is rare, both methods will give errors. To achieve greater accuracy, the
cross-sections should be located in the field, with due regard to the formula to be used. If the cross-sections
are approximately equal in size and shape, and the intervening surface roughly a plane, then end areas will
give an acceptable result. Should the sections be vastly different in size and shape, with the mid-section
contained approximately by straight lines generated between the end sections, then the prismoidal equation
will give the better result.

11.5.3 Contours

Volumes may be found from contours using either the end-area or prismoidal method. The areas of the
sections are the areas encompassed by the contours. The distance between the sections is the contour
interval. This method is commonly used for finding the volume of a reservoir, lake or spoil heap (see
Exercise (11.3)).

11.5.4 Spot heights

This method is generally used for calculating the volumes of excavations for basements or tanks, i.e.
any volume where the sides and base are planes, whilst the surface is broken naturally (Figure 11.22(a)).
Figure 11.22(b) shows the limits of the excavation with surface levels in metres at A, B, C and D. The sides
are vertical to a formation level of 20 m. If the area ABCD was a plane, then the volume of excavation
would be:

V = plan area ABCD × mean height (11.12)
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Fig. 11.22 (a) Section, and (b) plan

However, as the illustration shows, the surface is very broken and so must be covered with a grid such
that the area within each 10-m grid square is approximately a plane. It is therefore the ruggedness of the
ground that controls the grid size. If, for instance, the surface Aaed was not a plane, it could be split into
two triangles by a diagonal (Ae) if this would produce better surface planes.

Considering square Aaed only:

V = plan area × mean height

= 100 × 1

4
(12 + 11 + 8 + 11) = 1050 m3

If the grid squares are all equal in area, then the data is easily tabulated and worked as follows:
Considering AEFG only, instead of taking each grid square separately, one can treat it as a whole.

∴ V = 100

4
[hA + hE + hF + hG + 2(ha + hb + hc + hd) + 4he]

If one took each grid separately it would be seen that the heights of AEFG occur only once, whilst the
heights of abcd occur twice and he occurs four times; one still divides by four to get the mean height.

This approach is adopted by computer packages and by splitting the area into very small triangles or
squares (Figure 11.23), an extremely accurate assessment of the volume is obtained.

The above formula is also very useful for any difficult shape consisting entirely of planes, as the
following example illustrates (Figure 11.24).

Vertical height at A and D is 10 m.
As AB = 40 m and surface slopes at 1 in 10, then vertical heights at B and C must be 4 m greater, i.e. 14 m.

Consider splitting the shape into two wedges by a plane connecting AD to HE.
In �ABB′ (Figure 11.24(a)):

By rate of approach: y =
(

1 − 1

10

)−1

× 14 = 15.56 m = B′H = C′E

∴ HE = 20 + 15.56 + 15.56 = 51.12 m
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Fig. 11.23 Ground model

Fig. 11.24 Calculate volume of shape definded by planes
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Area of �ABB′ normal to AD, BC, HE

= 40

2
× 15.56 = 311.20 m2

∴ Vol = area × mean height = 311.20

3
(AD + BC + HE)

= 103.73(20 + 20 + 51.12) = 9452 m3

Similarly in �AA′B′:

x =
(

1 + 1

10

)−1

× 10 = 9.09 m = A′G = D′F

∴ GF = 20 + 9.09 + 9.09 × 38.18 m

Area of �AA′B′ normal to AD, GF, HE

= (x + AB + y)

2
× 10 = 64.65

2
× 10 = 323.25 m3

∴ Vol = 323.25

2
(20 + 38.18 + 51.12) = 11 777 m3

Total vol = 21 229 m3

Check

Wedge ABB′ = 40

6
[(20 + 20 + 51.12) × 15.56] = 9452 m3

Wedge AA′B′ = 64.65

6
[(20 + 38.18 + 51.12) × 10] = 11 777 m3

11.5.5 Effect of curvature on volumes

The application of the prismoidal and end-area formulae has assumed, up to this point, that the cross-
sections are parallel. When the excavation is curved (Figure 11.25), the sections are radial and a curvature
correction must be applied to the formulae.

Pappus’s theorem states that the correct volume is where the distance between the cross-sections is
taken along the path of the centre of mass.

Consider the volume between the first two sections of area A1 and A2

Distance between sections measured along centre-line = X ′Y ′ = D

Angle δ subtended at the centre = D/R radians

Now, length along path of centre of mass = XY = δ × mean radius to path of centre of mass where mean
radius

= R − (d1 + d2)/2 = (R − d)

∴ XY = δ(R − d) = D(R − d)/R

Vol. by end areas = 1

2
(A1 + A2)XY = 1

2
(A1 + A2)D(R − d)R

= 1

2
(A1 + A2)D(1 − d/R)
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Fig. 11.25 Curved excavation

In other words, one corrects for curvature by multiplying the area A1 by (1−d1/R), and area A2 by (1−d2/R),
the corrected areas then being used in either the end-area or prismoidal formulae, in the normal way, with
D being the distance measured along the centre-line. If the centre of mass lies beyond the centre-line, as
in section A3, then the correction is (1 + d3/R).

This correction for curvature is, again, never applied to earthworks in practice. Indeed, it can be shown
that the effect is very largely cancelled out on long earthwork projects. However, it may be significant on
small projects or single curved excavations. (Refer to Worked example 11.10)

Worked examples

Example 11.6 Figure 11.26 illustrates a section of road construction to a level road width of 20 m, which
includes a change from fill to cut. From the data supplied in the following field book extract, calculate the
volumes of cut and fill using the end-area method and correcting for prismoidal excess. (KU)

Chainage Left Centre Right

7500 −10.0

36.0
−20.0

0
− 8.8

22.0

7600
0

10
−6.0

0
−14.0

24.6

7650
16.0

22.0

4.0

0

0

10

7750
13.5

24.0

22.0

0

8.6

26.0

N .B. (1) The method of booking and compare it with the cross-sections in Figure 11.27.
(2) The method of splitting the sections into triangles for easy computation.
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Fig. 11.26 Road excavation with cut and fill

Fig. 11.27 Cross-sections

Area of cross-section 75 + 00

area �1 = 10 × 10

2
= 50 m2

area �2 = 36 × 20

2
= 360 m2

area �3 = 22 × 20

2
= 220 m2
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area �4 = 8.8 × 10

2
= 44 m2

Total area = 674 m2

Similarly, area of cross-section 76 + 00 = 173.8 m2

Vol. by end area = 674 + 173.8

2
× 100 = 42 390 m3

The equation for prismoidal excess varies with the shape of the cross-section. In this particular instance
it equals

L

12
(H1 − H2)(W1 − W2)

where L = horizontal distance between the two end areas
H = centre height
W = the sum of the side widths per section, i.e. (w1 + w2)

Thus, prismoidal excess = 100

12
(20 − 6)(58 − 34.6) = 2730 m3

Corrected volume = 39 660 m3

Vol. between 76 + 00 and 76 + 50

Line XY in Figure 11.26 shows clearly that the volume of fill in this section forms a pyramid with the
cross-section 76 + 00 as its base and 50 m high. It is thus more accurate and quicker to use the equation
for a pyramid.

Vol = AL

3
= 173.8 × 50

3
= 2897 m3

∴ Total vol. of fill = (39 660 + 2897) = 42 557 m3

Now calculate the volume of cut for yourself.
(Answer: 39 925 m3)

Example 11.7 The access to a tunnel has a level formation width of 10 m and runs into a plane hillside,
whose natural ground slope is 1 in 10 (10%). The intersection line of this formation and the natural ground
is perpendicular to the centre-line of the tunnel. The level formation is to run a distance of 360 m into the
hillside, terminating at the base of a cutting of slope 1 vertical to 1 horizontal (100%). The side slopes are
to be 1 vertical to 1.5 horizontal (67%).

Calculate the amount of excavation in cubic metres. (LU)

Figure 11.28 illustrates the question, which is solved by the methods previously advocated.

By rate of approach

x = (1 − 0.1)−1 × AB = 36/0.9 = 40 m = DD′

As the side slopes are 67% and D′ is 40 m high, then D′G = 40/0.67 = 60 m = E′H. Therefore
GH = 130 m.

Area of �BCD′ (in section above) normal to GH, DE, CF

= 360

2
× 40 = 7200 m2

∴ Vol = 7200

3
(130 + 10 + 10) = 360 000 m3
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Fig. 11.28 (a) Section, and (b) plan

Check

Wedge BCD′ = 360

6
[(130 + 10 + 10) × 40] = 360 000 m3

Example 11.8 A solid pier is to have a level top surface 20 m wide. The sides are to have a batter of 2
vertical in 1 horizontal and the seaward end is to be vertical and perpendicular to the pier axis. It is to be
built on a rock stratum with a uniform slope of 1 in 24, the direction of this maximum slope making an
angle whose tangent is 0.75 with the direction of the pier. If the maximum height of the pier is to be 20 m
above the rock, diminishing to zero at the landward end, calculate the volume of material required. (LU)

Figure 11.29 illustrates the question. Note that not only is the slope in the direction of the pier required
but also the slope at right angles to the pier.

Fig. 11.29 Sections of a pier
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By dip and strike:

tan apparent slope = tan max slope × cos included angle

1

x
= 1

24
cos 36◦ 52′ where tan−1 0.75 = 36◦ 52′

x = 30

∴ Grade in direction of pier = 1 in 30, ∴ AB = 20 × 30 = 600 m

Grade at right angles:
1

y
= 1

24
cos 53◦ 08′

y = 40. Grade = 1 in 40 as shown on Figure 11.29(a)

∴ DD′ = 19.5 m and DC = 19.5 × 30 = 585 m

From Figure 11.29(b):

x1 =
(

2 − 1

40

)−1

× 20 = 10.1 m

x2 =
(

2 + 1

40

)−1

× 19.5 = 9.6 m

∴ Area �EAA′ = 20 × 10.1

2
= 101 m2

Area �DFD′ = 19.5 × 9.6

2
= 93.6 m2

Now, Vol. ABCD = plan area × mean height

=
(

600 + 585

2
× 20

)
× 1

4
(20 + 19.5 + 0 + 0) = 117 315 m3

Vol. of pyramid EAB = area EAA′ × AB

3
= 101 × 600

3

= 20 200 m3

Vol. of pyramid DFC = area DFD′ × DC

3
= 93.6 × 585

3

= 18 252 m3

Total vol = (117 315 + 20 200 + 18 252) = 155 767 m3

Alternatively, finding the area of cross-sections at chainages 0, 585/2 and 585 and applying the
prismoidal rule plus treating the volume from chainage 585 to 600 as a pyramid, gives an answer of
155 525 m3.

Example 11.9 A 100-m length of earthwork volume for a proposed road has a constant cross-section of
cut and fill, in which the cut area equals the fill area. The level formation is 30 m wide, transverse ground
slope is 20◦ and the side slopes in cut-and-fill are 1

2 horizontal to 1 vertical and 1 horizontal to 1 vertical,
respectively. Calculate the volume of excavation in the 100-m length. (LU)
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Fig. 11.30 Road cross-section

Imagine turning Figure 11.30 through 90◦, then the 1-in-2.75 grade (36◦) becomes 2.75 in 1 and the
2-in-1 grade becomes 1 in 2, then by rate of approach:

h1 = (2.75 − 1)−1(30 − x) = 30 − x

1.75

h2 =
(

2.75 − 1

2

)−1

x = x

2.25

Now, area �A1 = 30 − x

2
× h1 = (30 − x)2

3.5

area �A2 = x

2
× h2 = x2

4.5
But area A1 = area A2

(30 − x)2

3.5
= x2

4.5

(30 − x)2 = 3.5

4.5
x2 = 7

9
x2 from which x = 16 m

∴ Area A2 = 162

4.5
= 56.5 m2 = area A1

∴ Vol in 100 m length = 56.5 × 100 = 5650 m3

Example 11.10 A length of existing road of formation width 20 m lies in a cutting having side slopes of
1 vertical to 2 horizontal. The centre-line of the road forms part of a circular curve having a radius of
750 m. For any cross-section along this part of the road the ground surface and formation are horizontal. At
chainage 5400 m the depth to formation at the centre-line is 10 m, and at chainage 5500 m the corresponding
depth is 18 m.

The formation width is to be increased by 20 m to allow for widening the carriageway and for constructing
a parking area. The whole of the widening is to take place on the side of the cross-section remote from the
centre of the arc, the new side slope being 1 vertical to 2 horizontal. Using the prismoidal rule, calculate
the volume of excavation between the chainages 5400 m and 5500 m. Assume that the depth to formation
changes uniformly with distance along the road. (ICE)

From Figure 11.31, it can be seen that the centre of mass of the increased excavation lies (20 + x) m
from the centre-line of the curve. The distance x will vary from section to section but as the side slope is
1 in 2, then:

x = 2 × h

2
= h
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Fig. 11.31 Road cross-section

horizontal distance of centre of mass from centre-line = (20 + h).

At chainage 5400 m, h1 = 10 m ∴ (20 + h) = 30 m = d1

At chainage 5450 m, h2 = 14 m ∴ (20 + h) = 34 m = d2

At chainage 5500 m, h3 = 18 m ∴ (20 + h) = 38 m = d3

Area of extra excavation at 5400 m = 10 × 20 = 200 m2 = A1

Area of extra excavation at 5450 m = 14 × 20 = 280 m2 = A2

Area of extra excavation at 5500 m = 18 × 20 = 360 m2 = A3

The above areas are now corrected for curvature: A

(
1 + d

R

)
.

At chainage 5400 m = 200

(
1 + 30

750

)
= 208 m2

At chainage 5450 m = 280

(
1 + 34

750

)
= 292.6 m2

At chainage 5500 m = 360

(
1 + 38

750

)
= 378 m2

∴ Vol = 100

6
(208 + 4 × 292.6 + 378) = 29 273 m3

Exercises

(11.1) An access road to a quarry is being cut in a plane surface in the direction of strike, the full dip of 1 in
12.86 being to the left of the direction of drive. The road is to be constructed throughout on a formation
grade of 1 in 50 dipping, formation width 20 m and level, side slopes 1 in 2 and a zero depth on the
centre-line at chainage 0 m.

At chainage 400 m the direction of the road turns abruptly through a clockwise angle of 40◦; calculate
the volume of excavation between chainages 400 m and 600 m. (KU)

(Answer: 169 587 m3)

(11.2) A road is to be constructed on the side of a hill having a cross fall of 1 in 50 at right angles to the
centre-line of the road; the side slopes are to be 1 in 2 in cut and 1 in 3 in fill; the formation is 20 m wide
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and level. Find the position of the centre-line of the road with respect to the point of intersection of the
formation and the natural ground.

(a) To give equality of cut and fill.
(b) So that the area of cut shall be 0.8 of the area of fill, in order to allow for bulking. (LU)

(Answer: (a) 0.3 m in cut, (b) 0.2 m in fill)

(11.3) A reservoir is to be formed in a river valley by building a dam across it. The entire area that will
be covered by the reservoir has been contoured and contours drawn at 1.5-m intervals. The lowest point
in the reservoir is at a reduced level of 249 m above datum, whilst the top water level will not be above a
reduced level of 264.5 m. The area enclosed by each contour and the upstream face of the dam is shown
in the table below.

Contour (m) Area enclosed (m2)

250.0 1 874
251.5 6 355
253.0 11 070
254.5 14 152
256.0 19 310
257.5 22 605
259.0 24 781
260.5 26 349
262.0 29 830
263.5 33 728
265.0 37 800

Estimate by the use of the trapezoidal rule the capacity of the reservoir when full. What will be the reduced
level of the water surface if, in a time of drought, this volume is reduced by 25%? (ICE)

(Answer: 294 211 m3; 262.3 m)

(11.4) The central heights of the ground above formation at three sections 100 m apart are 10 m, 12 m,
15 m, and the cross-falls at these sections are respectively 1 in 30, 1 in 40 and 1 in 20. If the formation
width is 40 m and sides slope 1 vertical to 2 horizontal, calculate the volume of excavation in the 200-m
length:

(a) If the centre-line is straight.
(b) If the centre-line is an arc of 400 m radius. (LU)

(Answer: (a) 158 367 m3, (b) 158 367 ± 1070 m3)

11.6 MASS-HAUL DIAGRAMS

Mass-haul diagrams (MHD) are used to compare the economy of various methods of earthwork distribution
on road or railway construction schemes. By the combined use of the MHD plotted directly below the
longitudinal section of the survey centre-line, one can find:
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(1) The distances over which cut and fill will balance.
(2) Quantities of materials to be moved and the direction of movement.
(3) Areas where earth may have to be borrowed or wasted and the amounts involved.
(4) The best policy to adopt to obtain the most economic use of plant.
(5) The best use of plant for the distances over which the volumes of cut and fill are to be moved.

11.6.1 Definitions

(1) Haul refers to the volume of material multiplied by the distance moved, expressed in ‘station metres’.
(2) Station metre (stn m) is 1 m3 of material moved 100 m

Thus, 20 m3 moved 1500 m is a haul of 20 × 1500/100 = 300 stn m.
(3) Waste is the material excavated from cuts but not used for embankment fills.
(4) Borrow is the material needed for the formation of embankments, secured not from roadway excavation

but from elsewhere. It is said to be obtained from a ‘borrow pit’.
(5) Limit of economical haul is the maximum haul distance. When this limit is reached it is more economical

to waste and borrow material.

11.6.2 Bulking and shrinkage

Excavation of material causes it to loosen, and thus its excavated volume will be greater than its in situ
volume. However, when filled and compacted, it may occupy a less volume than when originally in situ.
For example, light sandy soil is less by about 11% after filling, whilst large rocks may bulk by up to 40%.
To allow for this, a correction factor is generally applied to the cut or fill volumes.

11.6.3 Construction of the MHD

A MHD is a continuous curve, whose vertical ordinates, plotted on the same distance scale as the
longitudinal section, represent the algebraic sum of the corrected volumes (cut +, fill −).

11.6.4 Properties of the MHD

Consider Figure 11.32(a) in which the ground XYZ is to be levelled off to the grade line A′B′. Assuming that
the fill volumes, after correction, equal the cut volumes, the MHD would plot as shown in Figure 11.32(b).
Thus:

(1) Since the curve of the MHD represents the algebraic sums of the volumes, then any horizontal line
drawn parallel to the base AB will indicate the volumes that balance. Such a line is called a balancing
line and may even be represented by AB itself, indicating that the total cut equals the total fill.

(2) The rising curve, shown broken, indicates cut (positive), the falling curve indicates fill (negative).
(3) The maximum and minimum points of a MHD occur directly beneath the intersection of the natural

ground and the formation grade; such intersections are called grade points.
(4) As the curve of the MHD rises above the balance line AB, the haul is from left to right. When the curve

lies below the balance line, the haul is from right to left.
(5) The total cut volume is represented by the maximum ordinate CD.
(6) In moving earth from cut to fill, assume that the first load would be from the cut at X to the fill at Y ,

and the last load from the cut at Y to the fill at Z . Thus the haul distance would appear to be from a
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Fig. 11.32 Mass haul diagram

point mid-way between X and Y , to a point mid-way between Y and Z . However, as the section is
representative of volume, not area, the haul distance is from the centre of mass of the cut volume to
the centre of mass of the fill volume. The horizontal positions of these centres of mass may be found
by bisecting the total volume ordinate CD with the horizontal line EF.

Now, since haul is volume × distance, the total haul in the section is total vol × total haul distance =
CD × EF/100 stn m.

Most if not all muckshifting contractors have long abandoned the traditional concepts of freehaul and
overhaul. The muckshifter takes the haul length into account when pricing the job but does not measure
or value the freehaul or overhaul as such any more. The price is per m3 and depends upon the type of
material being excavated. The Civil Engineering Method of Measurement Edition 3 (CESMM3) specifies
five excavation material types but in the Method of Measurement of Highway Works which forms volume 4
of the Manual of Contract Documents for Highway Works there are over 40 classes of soil plus hard material
which is measured and paid for ‘extra over’ the soft muck price elsewhere in the Bill of Quantities. Today,
the volumes in the different cuttings and embankments come from a CAD program and in the case of
MMHW these are then split into different soil classifications by the designer and shown in a schedule
for the contractors pricing the work at tender stage. Figure 11.33 shows a simplified time-chainage/time-
location programme; such documents are often used as the major working document on site. There are
also computer-based time-chainage/time-location programs that do all the hard work, especially when the
programme of works needs to be revised, as it often has to be where the New Engineering Contract Edition
3 (NEC3) is used.

Worked examples

Example 11.11 The following notes refer to a 1200-m section of a proposed railway, and the earthwork
distribution in this section is to be planned without regard to the adjoining sections. The table below shows
the stations and the surface levels along the centre-line, the formation level being at an elevation above
datum of 43.5 m at chainage 70 and thence rising uniformly on a gradient of 1.2%. The volumes are
recorded in m3, the cuts are plus and fills minus.

(1) Plot the longitudinal section using a horizontal scale of 1 : 1200 and a vertical scale of 1 : 240.
(2) Assuming a correction factor of 0.8 applicable to fills, plot the MHD to a vertical scale of 1000 m3 to

20 mm.
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Topsoil

Pre-earthworks drainage

River Aye B1234

171014201110800
570

Dump trucks

Dump trucks
Scrapers

Scrapers

Chainage

Topsoil 4130
23450

2450

2150

4560
540

50

2760
19650

5590
34980

7890

980

5170
620

260

16450
390

Excavate suitable
Excavate rock

Suitable fill
Excavate unsuitable

Week
number

Start of
week

570 800 1110 1420 1710

River Aye
Bridge

B1234
Bridge

1 Jun 5

2
3

Jun 12
Jun 19

4 Jun 26
5 Jul 3

6 Jul 10
7 Jul 17

8 Jul 24

9 Jul 31

10 Aug 7
11 Aug 14

12 Aug 21

13 Aug 28

14 Sep 4

Topsoil

Pre-earthworks drainage

Excavate unsuitable  Excavate unsuitable

Excavate suitable

Excavate rock
Fill

suitable
Fill

suitable Excavate unsuitable

Excavate suitable

Excavate unsuitable

Fill suitable

Fencing and clearance

Fig. 11.33 Simplified time-chainage time-location programme
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(3) Calculate total haul in stn m and indicate the haul limits on the curve and section. (LU)

Chn Surface level Vol Chn Surface level Vol Chn Surface level Vol

70 52.8 74 44.7 78 49.5
+1860 −1080 −237

71 57.3 75 39.7 79 54.3
+1525 −2025 +362

72 53.4 76 37.5 80 60.9
+547 −2110 +724

73 47.1 77 41.5 81 62.1
−238 −1120 +430

74 44.7 78 49.5 82 78.5

For answers to parts (1) and (2) see Figure 11.34 and the values in Table 11.2.

N .B. (1) The volume at chainage 70 is zero.
(2) The mass ordinates are always plotted at the station and not between them.
(3) The mass ordinates are now plotted to the same horizontal scale as the longitudinal section and

directly below it.
(4) Check that maximum and minimum points on the MHD are directly below grade points on the

section.

Fig. 11.34 Mass haul diagram
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Table 11.2

Chainage Volume Mass ordinate (algebraic sum)

70 0 0
71 +1860 +1860
72 +1525 +3385
73 +547 +3932
74 −238 × 0.8 = −190.4 +3741.6
75 −1080 × 0.8 = −864 +2877.6
76 −2025 × 0.8 = −1620 +1257.6
77 −2110 × 0.8 = −1688 −430.4
78 −1120 × 0.8 = −896 −1326.4
79 −237 × 0.8 = −189.6 −1516
80 +362 −1154
81 +724 −430
82 +430 0

(5) Using the datum line as a balancing line indicates a balancing out of the volumes from chainage
70 to XY and from XY to chainage 82.

(6) The designation of chainage uses the convention that the chainage stated is in 100s of metres.
Thus chainage 82 means 8200 m.

Total haul (taking each loop separately) = total vol × total haul distance. The total haul distance is from
the centre of mass of the total cut to that of the total fill and is found by bisecting AB and A′B′, to give the
distances CD and C′D′.

Total haul = AB × CD

100
+ A′B′ × C′D′

100

= 3932 × 450

100
+ 1516 × 320

100
= 22 545 stn m

N .B. All the dimensions in the above solution are scaled from the MHD.

Example 11.12 The volumes between sections along a 1200-m length of proposed road are shown below,
positive volumes denoting cut, and negative volumes denoting fill:

Chainage (m) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Vol. between
sections
(m3 × 103)

+2.1 +2.8 +1.6 −0.9 −2.0 −4.6 −4.7 −2.4 +1.1 +3.9 +43.5 +2.8

Plot a MHD for this length of road to a suitable scale and determine suitable positions of balancing
lines so that there is

(1) A surplus at chainage 1200 but none at chainage 0.
(2) A surplus at chainage 0 but none at chainage 1200.
(3) An equal surplus at chainage 0 and chainage 1200. (ICE)
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Fig. 11.35 Mass haul diagram

For plot of MHD see Figure 11.35.
Mass ordinates = 0, +2.1, +4.9, +6.5, +5.6, +3.6, −1.0, −5.7, −8.1, −7.0, −3.1, +0.4, +3.2 (obtained

by algebraic summation of volumes)

(1) Balance line AB gives a surplus at chainage 1200 but none at 0.
(2) Balance line CD gives a surplus at chainage 0 but none at 1200.
(3) Balance line EF situated mid-way between AB and CD will give equal surpluses at the ends.

Example 11.13 Volumes in m3 of excavation (+) and fill (−) between successive sections 100 m apart on
a 1300-m length of a proposed railway are given.

Section 0 1 2 3 4 5 6 7

Volume (m3) −1000 −2200 −1600 −500 +200 +1300 +2100

Section 7 8 9 10 11 12 13

Volume (m3) +1800 +1100 +300 −400 −1200 −1900

Draw a MHD for this length. If earth may be borrowed at either end, which alternative would give the
least haul? (LU)

Adding the volumes algebraically gives the following mass ordinates

Section 0 1 2 3 4 5 6 7

Volume (m3) −1000 −3200 −4800 −5300 −5100 −3800 −1700

Section 7 8 9 10 11 12 13

Volume (m3) +100 +1200 +1500 +1100 −100 −2000
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Fig. 11.36 Mass haul diagram

These are now plotted to produce the MHD of Figure 11.36. Balancing out from the zero end permits
borrowing at the 1300 end.

(1)
Total haul = (AB × CD)

100
+ (A′B′ × C′D′)

100
stn m

= (5300 × 475)

100
+ (1500 × 282)

100
= 29 405 stn m

Note: CD bisects AB and C′D′ bisects A′B′.

(2) Balancing out from the 1300 end (EF) permits borrowing at the zero end.

Total haul = (GB × HJ)

100
+ (G′B′ × H ′J ′)

100

= (3300 × 385)

100
+ (3500 × 430)

100
= 27 755 stn m

Thus, borrowing at the zero end requires the least haul.

11.6.5 Auxiliary balancing lines

A study of the material on MHD plus the worked examples should have given the reader an understanding
of the basics. It is now appropriate to illustrate the application of auxiliary balancing lines.

Consider in the first instance a MHD as in Worked examples 11.11. In Figure 11.37, the balance line is
ABC and the following data are easily extrapolated:

Cut AD balances fill DB Vol moved = DE
Cut CJ balances fill BJ Vol moved = HJ

Consider now Figure 11.38; the balance line is AB, but in order to extrapolate the above data one
requires an auxiliary balancing line CDE parallel to AB and touching the MHD at D:

Cut AC balances fill EB Vol moved = GH
Cut CF balances fill FD Vol moved = FG
Cut DJ balances fill JE Vol moved = JK
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Fig. 11.37 Mass haul diagram

Fig. 11.38 Mass haul diagram with auxiliary balancing lines

Thus the total volume moved between A and B is FH + JK
Finally, Figure 11.39 has a balance from A to B with auxiliaries at CDE and FGH, then:

Fill AC balances cut BE Vol moved = JK
Fill CF balances cut DH Vol moved = KL
Fill FM balances cut GM Vol moved = LM
Fill GO balances cut HO Vol moved = NO
Fill DQ balances cut EQ Vol moved = PQ

The total volume moved between A and B is JM + NO + PQ.
The above data become apparent only when one introduces the auxiliary balancing lines.

Fig. 11.39 Mass haul diagram with auxiliary balancing lines
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Exercise

(11.5) The volumes in m3 between successive sections 100 m apart on a 900-m length of a proposed road
are given below (excavation is positive and fill negative):

Section 0 1 2 3 4 5 6 7

Volume (m3) +1700 −100 −3200 −3400 −1400 +100 +2600

Section 7 8 9

Volume (m3) +4600 +1100

Determine the maximum haul distance when earth may be wasted only at the 900-m end. (LU)

(Answer: 558 m)
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Setting out (dimensional control)

In engineering the production of an accurate large-scale plan is usually the first step in the planning and
design of a construction project. Thereafter the project, as designed on the plan, must be set out on the
ground in the correct absolute and relative position and to its correct dimensions. Thus, surveys made in
connection with a specific project should be planned with the setting-out process in mind and a system
of three-dimensional control stations conveniently sited and adequate in number should be provided to
facilitate easy, economical setting out.

It is of prime importance that the establishment and referencing of survey control stations should be
carried out at such places and in such a manner that they will survive the construction processes. This entails
careful choice of the locations of the control stations and their construction relative to their importance and
long- or short-term requirements. For instance, those stations required for the total duration of the project
may be established in concrete or masonry pillars with metal plates or bolts set in on which is punched
the station position. Less durable are stout wooden pegs set in concrete or driven directly into the ground.
A system of numbering the stations is essential, and frequently pegs are painted different colours to denote
the particular functions for which they are to be used.

In the UK it is the Institution of Civil Engineers (ICE) Conditions of contract that are generally used. At
the time of writing the ICE7th is the current edition but the New Engineering Contract Edition 3 (NEC3)
has just been published and is rapidly replacing the ICE7th on many of the larger types of project.

12.1 RESPONSIBILITY ON SITE

Responsibility with regard to setting out is defined in Clause 17 of the 5th, 6th and 7th editions of the ICE
Conditions of Contract:

The contractor shall be responsible for the true and proper setting out of the works, and for the correctness
of the position, levels, dimensions, and alignment of all parts of the works, and for the provision of all
necessary instruments, appliances, and labour in connection therewith. If, at any time during the progress
of the works, any error shall appear or arise in the position, levels, dimensions, or alignment of any part
of the works, the contractor, on being required so to do by the engineer, shall, at his own cost, rectify
such error to the satisfaction of the engineer, unless such error is based on incorrect data supplied in
writing by the engineer or the engineer’s representative, in which case the cost of rectifying the same
shall be borne by the employer. The checking of any setting out, or of any line or level, by the engineer
or the engineer’s representative, shall not, in any way, relieve the contractor of his responsibility for the
correctness thereof, and the contractor shall carefully protect and preserve all bench-marks, sight rails,
pegs, and other things used in setting out the works.

The clause specifies three persons involved in the process, namely, the employer, the engineer and the
agent, whose roles are as follows:

The employer, who may be a government department, local authority or private individual, requires
to carry out and finance a particular project. To this end, he/she commissions an engineer to investigate
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and design the project, and to take responsibility for the initial site investigation, surveys, plans, designs,
working drawings, and setting-out data. On satisfactory completion of the engineer’s work the employer
lets the contract to a contractor whose duty it is to carry out the work.

On site the employer is represented by the engineer or their representative, referred to as the resident
engineer (RE), and the contractor’s representative is called the agent.

The engineer has overall responsibility for the project and must protect the employer’s interest without
bias to the contractor; however the engineer is not a party to the contract which is between the client and
the contractor. The agent is responsible for the actual construction of the project.

12.2 RESPONSIBILITY OF THE SETTING-OUT ENGINEER

The setting-out engineer should establish such a system of work on site that will ensure the accurate setting
out of the works well in advance of the commencement of construction. To achieve this, the following
factors should be considered.

(1) A complete and thorough understanding of the plans, working drawings, setting-out data, toler-
ances involved and the time scale of operations. Checks on the setting-out data supplied should
be immediately implemented.

(2) Acomplete and thorough knowledge of the site, plant and relevant personnel. Communications between
all individuals is vitally important. Field checks on the survey control already established on site,
possibly by contract surveyors, should be carried out at the first opportunity.

(3) A complete and thorough knowledge of the survey instrumentation available on site, including the
effect of instrumental errors on setting-out observations. At the first opportunity, a base should be
established for the calibration of tapes, EDM equipment, levels and theodolites.

(4) A complete and thorough knowledge of the stores available, to ensure an adequate and continuing
supply of pegs, pins, chalk, string, paint, timber, etc.

(5) Office procedure should be so organized as to ensure easy access to all necessary information. Plans
should be stored flat in plan drawers, and those amended or superseded should be withdrawn from
use and stored elsewhere. Field and level books should be carefully referenced and properly filed.
All setting-out computations and procedures used should be clearly presented, referenced and filed.

(6) Wherever possible, independent checks of the computation, abstraction and extrapolation of setting-out
data and of the actual setting-out procedures should be made.

It can be seen from this brief list of the requirements of a setting-out engineer, that such work should
never be allocated, without complete supervision, to junior, inexperienced members of the site team.
Consider the cost implications of getting it right or getting it wrong. If the most junior and therefore the
cheapest surveyor is used a few £/$/E may be saved on the setting-out work, but if he/she gets it wrong
the cost of putting the error right is likely to be many times the money ‘saved’.

All site engineers should also make a careful study of the following British Standards, which were
prepared under the direction of the Basic Data and Performance Criteria for Civil Engineering and Building
Structures Standards Policy Committee:

(1) BS 5964-1:1990 (ISO 4463–1, 1989) Building setting out and measurement. Part 1. Methods of
measuring, planning and organization and acceptance criteria.

(2) BS 5964-3:1996 (ISO 4463–3, 1995) Building setting out and measurement. Part 3. Checklists for the
procurement of surveys and measurement services.

(3) BS 5606:1990 Guide to Accuracy in Building.
(4) BS 7307:1990 (ISO 7976:1989) Building tolerances. Measurement of buildings and building products.

Part 1. Methods and instruments. Part 2. Position of measuring points.
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(5) BS 7308:1990 (ISO 7737:1986) Method for presentation of dimensional accuracy data in building
construction.

(6) BS 7334:1990 (ISO 8322:1989) Measuring instruments for building construction. Methods for deter-
mining accuracy in use: Part 1 theory, Part 2 measuring tapes, Part 3 optical levelling instruments,
Part 4 theodolites, Part 5 optical plumbing instruments, Part 6 laser instruments, Part 7 instruments
when used for setting out, Part 8 electronic distance-measuring instruments up to 150 m.

These documents supply important information coupled with a wealth of excellent, explanatory diagrams
of various setting-out procedures.

For instance BS 5964 provides acceptance criteria for the field data measured. The acceptance criteria is
termed permitted deviation (PD), where PD = 2.5 (SD) (Standard Deviation). It is based on the assumption
that a theodolite which reads directly to 10′′ is used and that if tapes are used then no more than two tape
lengths are employed.

If a primary system of control points has been established as stage one of the surveying and setting-
out process, its acceptability (or otherwise) is based on the difference between the measured distance and
its equivalent, computed from the adjusted coordinates, that is the residual as described in Chapter 7;

this difference should not exceed ±0.75(L)
1
2 mm, with a minimum of 4 mm, where L is the distance in

metres. For angles it is ±0.045(L)− 1
2 degrees.

For a secondary system of control points the acceptance criteria is:

For distance, ±1.5(L)
1
2 mm, with a minimum of 8 mm.

For angles, ±0.09(L)− 1
2 degrees. No minimum value is stated. However, if the line length is 1000 m

then the tolerance is 10′′ which would be hard to achieve with a 10′′ theodolite, therefore this criteria
should only be applied to shorter lines.

For levelling between benchmarks the general acceptance criterion is ±5 mm, with slight variations for
different situations.

This small sample of the information available in these standards indicates their importance to all
concerned with the surveying and setting-out on site.

12.3 PROTECTION AND REFERENCING

Most site operatives have little concept of the time, effort and expertise involved in establishing setting-out
pegs. For this reason the pegs are frequently treated with disdain and casually destroyed in the construction
process. A typical example of this is the centre-line pegs for route location which are the first to be
destroyed when earth-moving commences. It is important, therefore, that control stations and BMs should
be protected in some way (usually as shown in Figure 12.1) and site operatives, particularly earthwork
personnel, impressed with the importance of maintaining this protection.

Where destruction of the pegs is inevitable, then referencing procedures should be adopted to relocate
their positions to the original accuracy of fixation. Various configurations of reference pegs are used and
the one thing that they have in common is that they must be set well outside the area of construction and
have some form of protection, as in Figure 12.1.

A commonly-used method of referencing is from four pegs (A, B,C, D) established such that two strings
stretched between them intersect to locate the required position (Figure 12.2). Distances AB, BC, CD, AD,
AC, BD should all be measured as checks on the possible movement of the reference pegs, whilst distances
from the reference pegs to the setting-out peg will afford a check on positioning. Ideally TP1 should be
in line with DB and AC. Intersecting lines of sight from theodolites at, say, A and B may be used where
ground conditions make string lining difficult.
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Fig. 12.1 Control point protection

Fig. 12.2 Control point reference pegs

Although easy to construct, wooden pegs are easily damaged. A more stable and precise control station
mark that is easily constructed on site is shown in Figure 12.3. A steel or brass plate with fine but deeply
engraved lines crossing at right angles is set with Hilti nails into a cube of concrete cast into a freshly dug
hole. To avoid any possible movement of the plate there should be a layer of epoxy resin between it and
the concrete.

Fig. 12.3 Control point
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All information relating to the referencing of a point should be recorded on a diagram of the layout
involved.

12.4 BASIC SETTING-OUT PROCEDURES USING COORDINATES

Plans are generally produced on a plane rectangular coordinate system, and hence salient points of the
design may also be defined in terms of rectangular coordinates on the same system. For instance, the centre-
line of a proposed road may be defined in terms of coordinates at, say, 30-m intervals, or alternatively,
only the tangent and intersection points may be so defined. The basic methods of locating position when
using coordinates are either by polar coordinates or by intersection.

12.4.1 By polar coordinates

In Figure 12.4, A, B and C are control stations whose coordinates are known. It is required to locate point
IP whose design coordinates are also known. The computation involved is as follows:

(1) From coordinates compute the bearing BA (this bearing may already be known from the initial control
survey computations).

(2) From coordinates compute the horizontal length and bearing of B − IP.
(3) From the two bearings compute the setting-out angle AB(IP), i.e. β.
(4) Before proceeding into the field, draw a neat sketch of the situation showing all the setting-out data.

Check the data from the plan or by independent computation.

Alternatively the coordinate geometry functions in a total station can be used to avoid most of the
computations. The field work involved is as follows:

(1) Set up theodolite at B and backsight to A, note the horizontal circle reading.
(2) Add the angle β to the circle reading BA to obtain the circle reading B − IP. Set this reading on the

theodolite to establish direction B − IP and measure out the horizontal distance L.

If this distance is set out by steel tape, careful consideration must be given to all the error sources
such as standardization, slope, tension and possibly temperature if the setting-out tolerances are very
small. It should also be carefully noted that the sign of the correction is reversed from that applied when
measuring a distance. For example, if a 30-m tape was in fact 30.01 m long, when measuring a distance
the recorded length would be 30 m for a single tape length, although the actual distance is 30.01 m; hence
a positive correction of 10 mm is applied to the recorded measurement. However, if it is required to set
out 30 m, the actual distance set out would be 30.01 m; thus this length would need to be reduced by
10 mm, i.e. a negative correction.

Fig. 12.4 Setting out from control points
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Fig. 12.5 Setting out with a steel tape

The best field technique when using a steel tape is carefully to align pegs at X and Y each side of the
expected position of IP (Figure 12.5). Now carefully measure the distance BX and subtract it from the
known distance to obtain distance X − IP, which will be very small, possibly less than one metre. Stretch
a fine cord between X and Y and measure X − IP along this direction to fix point IP.

A total station may be used to display horizontal distance, so the length B − IP may be ranged direct to
a reflector fixed to a setting-out pole.

12.4.2 By intersection

This technique, illustrated in Figure 12.6, does not require linear measurement; hence, adverse ground
conditions are immaterial and one does not have to consider tape corrections. The technique is applicable
if a total station is not available or if its batteries are flat.

The computation involved is as follows:

(1) From the coordinates of A, B and IP compute the bearings AB, A − IP and B − IP.
(2) From the bearings compute the angles α and β.

The relevant field work, assuming two theodolites are available, is as follows:

(1) Set up a theodolite at A, backsight to B and turn off the angle α.
(2) Set up a theodolite at B, backsight to A and turn off the angle β.

The intersection of the sight lines A − IP and B − IP locates the position of IP. The angle δ is measured
as a check on the setting out.

If only one theodolite is available then two pegs per sight line are established, as in Figure 12.5, and
then string lines connecting each opposite pair of pegs locate position IP, as in Figure 12.2.

Fig. 12.6 Setting out by intersection
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12.5 USE OF GRIDS

Many structures in civil engineering consist of steel or reinforced concrete columns supporting floor slabs.
As the disposition of these columns is inevitably that they are at right angles to each other, the use of a
grid, where the grid intersections define the position of the columns, greatly facilitates setting out. It is
possible to define several grids as follows:

(1) Survey grid: the rectangular coordinate system on which the original topographic survey is carried out
and plotted (Figure 12.7).

(2) Site grid: defines the position and direction of the main building lines of the project, as shown in
Figure 12.7. The best position for such a grid can be determined by simply moving a tracing of the
site grid over the original plan so that its best position can be located in relation to the orientation of
the major units designed thereon.

In order to set out the site grid, it may be convenient to translate the coordinates of the site grid to
those of the survey grid using the well-known transformation formula:

E = �E + E1 cos θ − N1 sin θ

N = �N + N1 cos θ + E1 sin θ

where �E, �N = difference in easting and northing of the respective grid origins
E1, N1 = the coordinates of the point on the site grid

θ = relative rotation of the two grids
E, N = the coordinates of the point transformed to the survey grid

Fig. 12.7 Survey, site and structural grids
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Thus, selected points, say X and Y (Figure 12.7) may have their site-grid coordinate values trans-
formed to that of the survey grid and so set-out by polars or intersection from the survey control. Now,
using XY as a baseline, the site grid may be set out using theodolite and steel tape, all angles being
turned off on both faces and grid intervals carefully fixed using the steel tape under standard tension.

When the site grid has been established, each line of the grid should be carefully referenced to
marks fixed clear of the area of work. As an added precaution, these marks could be further referenced
to existing control or permanent, stable, on-site detail.

(3) Structural grid: used to locate the position of the structural elements within the structure and is
physically established usually on the concrete floor slab (Figure 12.7). It may be used where the
relative positions of points are much more important than the absolute positions, such as for the
holding down bolts of a steel frame structure. The advantages of such a grid are that the lines of sight
are set out in a regular pattern and so can be checked by eye even for small errors and that there is
more check on points set out from the grid than if those points were set out individually by bearing
and distance or by coordinates from a total station.

12.6 SETTING OUT BUILDINGS

For buildings with normal strip foundations the corners of the external walls are established by pegs located
directly from the survey control or by measurement from the site grid. As these pegs would be disturbed
in the initial excavations their positions are transferred by total station on to profile boards set well clear
of the area of disturbance (Figure 12.8). Prior to this their positions must be checked by measuring the
diagonals as shown in Figure 12.9.

Fig. 12.8 Profile boards
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Fig. 12.9 Check measurements

The profile boards must be set horizontal with their top edge at some predetermined level such as damp
proof course (DPC) or finished floor level (FFL). Wall widths, foundation widths, etc., can be set out along
the board with the aid of a steel tape and their positions defined by saw-cuts. They are arranged around the
building as shown in Figure 12.9. Strings stretched between the appropriate marks clearly define the line
of construction.

In the case of buildings constructed with steel or concrete columns, a structural grid must be established
to an accuracy of about ±2 to 3 mm or the prefabricated beams and steelwork will not fit together without
some distortion.

The position of the concrete floor slab may be established in a manner already described. Thereafter the
structural grid is physically established by Hilti nails or small steel plates set into the concrete. Due to the
accuracy required a 1′′ theodolite and standardized steel tape corrected for temperature and tension may
be preferable to a total station.

Once the bases for the steel columns have been established, the axes defining the centre of each column
should be marked on and, using a template orientated to these axes, the positions of the holding-down bolts
defined (Figure 12.10). A height mark should be established, using a level, at a set distance (say, 75 mm)
below the underside of the base-plate, and this should be constant throughout the structure. It is important
that the base-plate starts from a horizontal base to ensure verticality of the column.

Fig. 12.10 Holding down bolt positions



Setting out (dimensional control) 491

12.7 CONTROLLING VERTICALITY

12.7.1 Using a plumb-bob

In low-rise construction a heavy plumb-bob (5 to 10 kg) may be used as shown in Figure 12.11. If the
external wall were perfectly vertical then, when the plumb-bob coincides with the centre of the peg,
distance d at the top level would equal the offset distance of the peg at the base. This concept can be used
internally as well as externally, provided that holes and openings are available. The plumb-bob should
be large, say 5 kg, and both plumb-bob and wire need to be protected from wind. The motion of the
plumb-bob may need to be damped by immersing the plumb-bob in a drum of water. The considerations
are similar to those of determining verticality in a mine shaft (Chapter 13) but less critical. To ensure a
direct transfer of position from the bottom to the top floor, holes of about 0.2 m diameter will need to be
left in all intermediate floors. This may need the agreement of the building’s designer.

12.7.2 Using a theodolite

If two centre-lines at right angles to each other are carried vertically up a structure as it is being built,
accurate measurement can be taken off these lines and the structure as a whole will remain vertical. Where
site conditions permit, the stations defining the ‘base figure’ (four per line) are placed in concrete well clear
of construction (Figure 12.12(a)). Lines stretched between marks fixed from the pegs will allow offset
measurements to locate the base of the structure. As the structure rises the marks can be transferred up onto
the walls by theodolite, as shown in Figure 12.12(b), and lines stretched between them. It is important that
the transfer is carried out on both faces of the instrument.

Where the structure is circular in plan the centre may be established as in Figure 12.12(a) and the radius
swung out from a pipe fixed vertically at the centre. As the structure rises, the central pipe is extended by
adding more lengths. Its verticality is checked by two theodolites (as in Figure 12.12(b)) and its rigidity
ensured by supports fixed to scaffolding.

The vertical pipe may be replaced by laser beam or autoplumb, but the laser would still need to be
checked for verticality by theodolites.

Steel and concrete columns may also be checked for verticality using the theodolite. By string lining
through the columns, positions A–A and B–B may be established for the theodolite (Figure 12.13); alter-
natively, appropriate offsets from the structural grid lines may be used. With instrument set up at A, the
outside face of all the uprights should be visible. Now cut the outside edge of the upright at ground level
with the vertical hair of the theodolite. Repeat at the top of the column. Now depress the telescope back to
ground level and make a fine mark; the difference between the mark and the outside edge of the column is

Fig. 12.11 Plumb-bob for verticality



492 Engineering Surveying

Fig. 12.12 (a) Plan, and (b) section

Fig. 12.13 String lines

the amount by which the column is out of plumb. Repeat on the opposite face of the theodolite. The whole
procedure is now carried out at B. If the difference exceeds the specified tolerances the column will need
to be corrected.

12.7.3 Using optical plumbing

For high-rise building the instrument most commonly used is an autoplumb (Figure 12.14). This instrument
provides a vertical line of sight to an accuracy of ±1 second of arc (1 mm in 200 m). Any deviation from
the vertical can be quantified and corrected by rotating the instrument through 90◦ and observing in all
four quadrants; the four marks obtained would give a square, the diagonals of which would intersect at the
correct centre point.
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Fig. 12.14 The optical system of the autoplumb

A base figure is established at ground level from which fixing measurements may be taken. If this figure
is carried vertically up the structure as work proceeds, then identical fixing measurements from the figure
at all levels will ensure verticality of the structure (Figure 12.15).

To fix any point of the base figure on an upper floor, a Perspex target is set over the opening and the
centre point fixed as above. Sometimes these targets have a grid etched on them to facilitate positioning
of the marks.

The base figure can be projected as high as the eighth floor, at which stage the finishing trades enter
and the openings are closed. In this case the uppermost figure is carefully referenced, the openings filled,
and then the base figure re-established and projected upwards as before.

The shape of the base figure will depend upon the plan shape of the building. In the case of a long
rectangular structure a simple base line may suffice but T shapes and Y shapes are also used.

12.8 CONTROLLING GRADING EXCAVATION

This type of setting out generally occurs in drainage schemes where the trench, bedding material and pipes
have to be laid to a specified design gradient. Manholes (MH) will need to be set out at every change of
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Fig. 12.15 (a) Elevation, and (b) plan

Fig. 12.16 Setting out a manhole

direction or at least every 100 m on straight runs. The MH (or inspection chambers) are generally set out
first and the drainage courses set out to connect into them.

The centre peg of the MH is established in the usual way and referenced to four pegs, as in Figure 12.2.
Alternatively, profile boards may be set around the MH and its dimensions marked on them. If the boards
are set out at a known height above formation level the depth of excavation can be controlled, as in
Figure 12.16.

12.8.1 Use of sight rails

Sight rails (SRs) are basically horizontal rails set a specific distance apart and to a specific level such that
a line of sight between them is at the required gradient. Thus they are used to control trench excavation
and pipe gradient without the need for constant professional supervision.

Figure 12.17 illustrates SRs being used in conjunction with a boning rod (or traveller) to control trench
excavation to a design gradient of 0.5% (rising). Pegs A and B are offset a known distance from the
centre-line of the trench and levelled from a nearby TBM.

Assume that peg A has a level of 40 m and the formation level of the trench at this point is to be 38 m.
It is decided that a reasonable height for the SR above ground would be 1.5 m, i.e. at a level of 41.5;
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Fig. 12.17 Trench excavation

thus the boning rod must be made (41.5 − 38) = 3.5 m long, as its cross-head must be on level with the
SR when its toe is at formation level.

Consider now peg B, with a level of 40.8 m at a horizontal distance of 50 m from A. The proposed
gradient is 0.5%, which is 0.25 m in 50 m, and thus the formation level at B is 38.25 m. If the boning rod
is 3.5 m, the SR level at B is (38.25 + 3.5) = 41.75 m and is set (41.75 − 40.8) = 0.95 m above peg B.
The remaining SRs are established in this way and a line of sight or string stretched between them will
establish the trench gradient 3.5 m above the required level. Thus, holding the boning rod vertically in the
trench will indicate, relative to the sight rails, whether the trench is too high or too low.

Where machine excavation is used, the SRs are as in Figure 12.18, and offset to the side of the trench
opposite to where the excavated soil is deposited. Before setting out the SRs it is important to liaise with
the plant foreman to discover the type of plant to be used, i.e. will the plant straddle the trench as in
Figure 12.18 or will it work from the side of the trench and where the spoil will be placed to ensure the
SRs will be useful.

Knowing the bedding thickness, the invert pipe level, the level of the inside of the bottom of the pipe,
may be calculated and a second cross-head added to the boning rod to control the pipe laying, as shown in
Figure 12.19.

Due to excessive ground slopes it may be necessary to use double sight rails with various lengths of
boning rod as shown in Figure 12.20.

12.8.2 Use of lasers

The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation and is the
name applied to an intense beam of highly monochromatic, coherent light. Because of its coherence the
light can be concentrated into a narrow beam and will not scatter and become diffused like ordinary light.

In controlling trench excavation the laser beam simply replaces the line of sight or string in the SR
situation. It can be set up on the centre-line of the trench, over a peg of known level, and its height above
the peg measured to obtain the reduced level of the beam. The instrument is then set to the required
gradient and used in conjunction with an extendable traveller set to the same height as that of the laser
above formation level. When the trench is at the correct level, the laser spot will be picked up on the centre
of the traveller target, as shown in Figure 12.21. A levelling staff could just as easily replace the traveller;
the laser spot being picked up on the appropriate staff reading.
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Fig. 12.18 Use of offset sight rails (SR)

Fig. 12.19 Pipe laying
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Fig. 12.20 Double sight rails

Fig. 12.21 Laser level

Where machine excavation is used the beam can be picked up on a photo-electric cell fixed at the
appropriate height on the machine. The information can be relayed to a console within the cabin, which
informs the operator whether he/she is too high or too low (Figure 12.22).

At the pipe-laying stage, a target may be fixed in the pipe and the laser installed on the centre-line in
the trench. The laser is then orientated in the correct direction (by bringing it on to a centre-line peg, as in
Figures 12.23(a, b)) and depressed to the correct gradient of the pipe. A graduated rod, or appropriately-
marked ranging pole, can also be used to control formation and sub-grade level (Figure 12.23(a)). For large-
diameter pipes the laser is mounted inside the pipe using horizontal compression bars (Figure 12.23(c)).
If the laser is knocked off line or off level it may cease to function, or work intermittently, so indicating
that it can no longer be relied on.

Where the MH is constructed, the laser can be orientated from within using the system illustrated in
Figure 12.24. The centre-line direction is transferred down to peg B from peg A and used to orientate the
direction of the laser beam.

12.9 ROTATING LASERS

Rotating lasers (Figure 12.25(a)) are instruments which are capable of being rotated in both the horizontal
and vertical planes, thereby generating reference planes or datum lines.

When the laser is established in the centre of a site over a peg of known level, and at a known height
above the peg, a datum of known reduced level is permanently available throughout the site.
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(b) (c)

Fig. 12.22 Machine excavation

Using a vertical staff fitted with a photo-electric detector, levels at any point on the site may be instantly
obtained and set out, both above and below ground, as illustrated in Figure 12.25(b).

Since the laser reference plane covers the whole working area, photo-electric sensors fitted at an appro-
priate height on earthmoving machinery enable whole areas to be excavated and graded to requirements
by the machine operator alone.

Other uses of the rotating laser are illustrated in Figure 12.26.
From the above applications it can be seen that basically the laser supplies a reference line at a given

height and gradient, and a reference plane similarly disposed. Realizing this, the user may be able to utilize
these properties in a wide variety of setting-out situations such as off-shore channel dredging, tunnel
guidance, shaft sinking, etc.

12.10 LASER HAZARDS

The potential hazard in the use of lasers is eye damage. There is nothing unique about this form of
radiation damage; it can also occur from other, non-coherent light emitted, for example, by the sun,



(b) (c)

Fig. 12.23 (a) Pipe work, (b) pipe laser, (c) laser alignment in large-diameter pipe

Fig. 12.24 Pipe laser in a manhole
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(a)

(b)

Fig. 12.25 (a) Rotating laser, (b) 1 – Rotating laser; 2 – Laying sub-grade to laser control; 3 – Checking formation
level; 4 – Fixing wall levels; 5 – Taking ground levels; 6 – Staff with detector used for fixing foundation levels;
7 – Laser plane of reference

arc lamps, projector lamps and other high-intensity sources. If one uses a magnifying lens to focus the
sun’s rays onto a piece of paper, the heat generated by such concentration will cause the paper to burst
into flames. Similarly, a laser produces a concentrated, powerful beam of light which the eye’s lens will
further concentrate by focusing it on the retina, thus causing an almost microscopic burn or blister which
can cause temporary or permanent blindness. When the beam is focused on the macula (critical area of the
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Fig. 12.26 A – Height control; B – Setting out dividing walls; C – Use of the vertical beam for control of elevator
guide rails, and slip-forming structures; D – Setting out and control of suspended ceiling

retina) serious damage can result. Since there is no pain or discomfort with a laser burn, the injury may
occur several times before vision is impaired. A further complication in engineering surveying is that the
beam may be acutely focused through the lens system of a theodolite or other instrument, or may be viewed
off a reflecting or refracting surface. It is thus imperative that a safety code be adopted by all personnel
involved with the use of lasers.

Formerly the British Standards Institution published a guide to the safe use of lasers (BS 4803:Part 3:
1983) in which there were classified five types of laser, but only three of these were relevant to on-
site working:

Class 2 A visible radiant power of 1 mW. Eye protection is afforded by the blink-reflex mechanism.
Class 3A Has a maximum radiant power of 1 to 5 mW, with eye protection afforded by the

blink-reflex action
Class 3B Has a maximum power of 1 to 500 mW. Eye protection is not afforded by blink-reflex.

Direct viewing, or viewing of specular reflections, is highly dangerous.

For surveying and setting-out purposes the BSI recommended the use of Classes 2 and 3A only.
Class 3B may be used outdoors, if the more stringent safety precautions recommended are observed.

The most significant recommendation of the BSI document was that on sites where lasers are in use
there should be a laser safety officer (LSO), who the document defined as ‘one who is knowledgeable in
the evaluation and control of laser hazards, and had the responsibility for supervision of the control of laser
hazards’. Whilst such an individual was not specifically mentioned in conjunction with the Class 2 laser,
the legal implications of eye damage might render it advisable to have an LSO present. Such an individual
would not only require training in laser safety and law, but would have needed to be fully conversant with
the RICS’ Laser Safety Code produced by a working party of the Royal Institution of Chartered Surveyors.
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The RICS code was produced in conjunction with BS 4803 and dealt specifically with the helium–neon
gas laser (He−Ne) as used on site. Whilst the manufacturers of lasers would no doubt have complied
with the classification laid down, the modifications to a laser by mirrors or telescopes may completely
alter such specifications and further increase the hazard potential. The RICS code presented methods
and computations for assessing the possible hazards which the user could easily apply to their working
laser system, in both its unmodified and modified states. Recommendations were also made about safety
procedures relevant to a particular system from both the legal and technical aspects. The information within
the RICS code enabled the user to compute such important parameters as:

(1) The safe viewing time at given distances.
(2) The minimum safe distance at which the laser source may be viewed directly, for a given period of time.

Such information is vital to the organization and administration of a ‘laser site’ from both the health
and legal aspects, and should be combined with the following precautions.

(1) Ensure that all personnel, visitors to the site, and where necessary members of the public, are aware
of the presence of lasers and the potential eye damage involved.

(2) Erect safety barriers around the laser with a radius greater than the minimum safe viewing distance.
(3) Issue laser safety goggles where appropriate.
(4) Avoid, wherever possible, the need to view the laser through theodolites, levels or binoculars.
(5) Where possible, position the laser either well above or well below head height.

At the time of writing the ‘BS 4803:Part 3:1983 Radiation safety of laser products and systems. Guidance
for users’has been withdrawn. However, the European Union’s Council of Ministers has recently approved
a ‘Physical Agents (Optical Radiation)’ directive aimed at protecting workers from dangerous levels of
optical radiation.

Guidelines have been drawn up by the International Commission on Non-Ionizing Radiation Protection
(ICNIRP) which recommends limits for exposure to non-ionizing radiation in ‘Revision of the Guidelines
on Limits of Exposure to Laser radiation of wavelengths between 400 nm and 1.4 µm, Health Physics,
Vol. 79, No. 4, pp. 431–440, 2000, and available at http://www.icnirp.de/documents/laser400nm+.pdf.
Employers will be required to assess the risks posed by lasers and introduce measures to control exposure
and provide employees with information and training as well as carry out health surveillance.

As yet there is no UK legislation that deals specifically with occupational exposure to optical radiation,
but it is reported that the Health and Safety Executive (HSE) does not believe that the directive will place
additional burdens on industry.

It is anticipated that the directive may soon become law but Member States will have several years to
implement it.

12.11 ROUTE LOCATION

Figure 12.27 shows a stretch of route location for a road or railway. In order to control the construction
involved, the pegs and profile boards shown must be set out at intervals of 10 to 30 m along the whole
stretch of construction.

The first pegs located would be those defining the centre-line of the route (peg E), and the methods
of locating these on curves have been dealt with in Chapter 10. The straights would be aligned between
adjacent tangent points.

The shoulder pegs C and D, defining the road/railway width, can be set out by appropriate offsets at
right angles to the centre-line chords.

Pegs A and B, which define the toe of the embankment (fill) or top edge of the cutting, are called slope
stakes. The side widths from the centre-line are frequently calculated and shown on the design drawings or
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Fig. 12.27 Pegging out a route

computer print-outs of setting-out data. This information should be used only as a rough check or guide;
the actual location of the slope stake pegs should always be carried out in the field, due to the probable
change in ground levels since the information was initially compiled. These pegs are established along
with the centre-line pegs and are necessary to define the area of top-soil strip.

12.11.1 Setting-out slopes stakes

In Figure 12.28(a) and (b), points A and B denote the positions of pegs known as slope stakes which define
the points of intersection of the actual ground and the proposed side slopes of an embankment or cutting.
The method of establishing the positions of the stakes is as follows:

(1) Set up the level in a convenient position which will facilitate the setting out of the maximum number
of points therefrom.

(2) Obtain the height of the plane of collimation (HPC) of the instrument by backsighting on to the
nearest TBM.

(3) Foresight onto the staff held where it is thought point A may be and obtain the ground level there.
(4) Subtract ‘ground level’ from ‘formation level’ and multiply the difference by N to give horizontal

distance x.
(5) Now tape the horizontal distance (x + b) from the centre-line to the staff. If the measured distance to

the staff equals the calculated distance (x + b), then the staff position is the slope stake position. If not
move the staff to the calculated distance (x + b), level again and re-compute the calculated distance.
Repeat as necessary.

The above ‘trial-and-error’approach should always be used on site to avoid errors of scaling the positions
from a plan, or accepting, without checking, a computer print-out of the dimensions.

For example, if the side slopes of the proposed embankment are to be 1 vertical to 2 horizontal, the
formation level 100 m OD and the ground level at A, say, 90.5 m OD, then x = 2(100 − 90.5) = 19 m,
and if the formation width = 20 m, then b = 10 m and (x + b) = 29 m. Had the staff been held at A1
(which had exactly the same ground level as A) then obviously the calculated distance (x + b) would not
agree with the measured distance from centre-line to A1. They would agree only when the staff arrived at
the slope stake position A, as x is dependent upon the level at the toe of the embankment, or top of the
cutting.

If the ground is nearly level then it should only take one or two iterations to find the correct point for
the slope stake. If the ground slope is steep then unless the first trial point is close to the correct point it
may take many attempts to find the correct point. In this case one could use the ‘rate of approach’ concept
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Fig. 12.28 Setting out slope stakes

developed in Section 11.3 to get a better first estimate for the slope stake. For example, in Figure 12.29, if
the embankment is to have a slope of 20% (= 0.2 = 1 in 5) and the ground slopes downwards from the
slope stake towards the road centre-line at 10% (= 0.1 = 1 in 10) and the height of the top of the side
slope (from the road design) is 5 m above the ground height of the centre-line (from survey) then:

calculated distance (x + b) to the left of the centre-line is found as follows

Estimated height of ground below top of slope = 5 m − 10% of b = 5 − 0.1b

b of course is known from the design of the road

x + b = (0.2 + 0.1)−1(5 − 0.1b) + b
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bx b y
CL

Fig. 12.29 Setting out slope stakes by rate of approach

and calculated distance (y + b) to the right of the centre-line is

Estimated height of ground below top of slope = 5 m + 10% of b = 5 + 0.1b

y + b = (0.2 − 0.1)−1(5 + 0.1b) + b

If b is 10 m then the values of the calculated distance are x + b = 23.33 m and y + b = 70.00 m; very
different values.

12.11.2 Controlling earthworks

Batter boards, or slope rails as they are sometimes called, are used to control the construction of the side
slopes of a cutting or embankment (see Figure 12.28(c) and (d), and Figure 12.27).

Consider Figure 12.28(c). If the stake adjacent to the slope stake is set 0.5 m away, then, for a grade of
1 vertical to 2 horizontal, the level of point X will be 0.25 m higher than the ground level at A. From X,
a batter board is fixed at a gradient of 1 in 2 (50%), using a 1 in 2 template and a spirit level. Stakes X and
Y are usually no more than 1 m apart. Information such as chainage, slope and depth of cut are marked on
the batter board.

In the case of an embankment (Figure 12.28(d)), a boning rod is used in the control of the slope.
Assuming that a boning rod 1 m high is to be used, then as the near stake is, say, 0.5 m from the slope
stake, point x1 will be 0.25 m lower than the ground level at A, and hence point x will be 0.75 m above the
ground level of A. The batter board is then fixed from x in a similar manner to that already described.

The formation and sub-base, which usually have setting-out tolerances in the region of ±25 mm, can be
located with sufficient accuracy using profiles and travellers. Figure 12.30 shows the use of triple profiles
for controlling camber, whilst different lengths of traveller will control the thickness required.

Laying of the base course (60 mm) and wearing course (40 mm) calls for much smaller tolerances, and
profiles are not sufficiently accurate; the following approach may be used.

Pins or pegs are established at right angles to the centre-line at about 0.5 m beyond the kerb face
(Figure 12.31). The pins or pegs are accurately levelled from the nearest TBM and a coloured tape placed

Fig. 12.30 Controlling camber with triple profiles
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Fig. 12.31 Pins used to control setting out of base and wearing courses

around them at 100 mm above finished road level; this will be at the same level as the top of the kerb.
A cord stretched between the pins will give kerb level, and with a tape the distances to the top of the
sub-base, top of the base course and top of the wearing course can be accurately fixed (or dipped).

The distance to the kerb face can also be carefully measured in from the pin in order to establish the
kerb line. This line is sometimes defined with further pins and the level of the kerb top marked on.
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Underground surveying

Underground surveying is quite different from surveying on the surface. In tunnelling or mining operations
it may be hot, wet, dark, cramped, dusty, dirty and dangerous, and usually most of these.

The essential problem in underground surveying is that of orientating the underground surveys to the
surface surveys, the procedure involved being termed a correlation.

In an underground transport system, for instance, the tunnels are driven to connect inclined or vertical
shafts (points of surface entry to the transport system) whose relative locations are established by surface
surveys. Thus the underground control networks must be connected and orientated into the same coordinate
system as the surface networks. To do this, one must obtain the coordinates of at least one underground
control station and the bearing of at least one line of the underground network, relative to the surface
network.

If entry to the underground tunnel system is via an inclined shaft, then the surface survey may simply be
extended and continued down that shaft and into the tunnel, usually by the method of traversing. Extra care
would be required in the measurement of the horizontal angles due to the steeply inclined sights involved
(see Chapter 5) and in the temperature corrections to the taped distances due to the thermal gradients
encountered.

If entry is via a vertical shaft, then optical, mechanical or gyroscopic methods of orientation are used.

13.1 OPTICAL METHODS

Where the shaft is shallow and of relatively large diameter the bearing of a surface line may be transferred
to the shaft bottom by theodolite (Figure 13.1).

The surface stations A and B are part of the control system and represent the direction in which the
tunnel must proceed. They would usually be established clear of ground movement caused by shaft sinking
or other factors. Auxiliary stations c and d are very carefully aligned with A and B using the theodolite on
both faces and with due regard to all error sources. The relative bearing of A and B is then transferred to
A′B′ at the shaft bottom by direct observations. Once again these observations must be carried out on both
faces with the extra precautions advocated for steep sights.

If the coordinates of d are known then the coordinates of B′ could be fixed by measuring the vertical
angle and distance to a reflector at B′.

It is important to understand that the accurate orientation bearing of the tunnel is infinitely more critical
than the coordinate position. For instance, a standard error of 1′ in transferring the bearing down the shaft
to A′B′ would result in a positional error at the end of 1 km of tunnel drivage of 300 mm and would increase
to 600 mm after 2 km of drivage.
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Fig. 13.1 Transfer alignment to bottom of a wide shaft

13.2 MECHANICAL METHODS

Although these methods, which involve the use of wires hanging vertically in a shaft, are rapidly being
superseded by gyroscopic methods, they are still widely used and are described herewith.

The basic concept is that wires hanging freely in a shaft will occupy the same position underground
that they do at the surface, and hence the bearing of the wire plane will remain constant throughout
the shaft.

13.2.1 Weisbach triangle method

This appears to be the most popular method in civil engineering. Two wires, W1 and W2, are suspended
vertically in a shaft forming a very small base line (Figure 13.2). The principle is to obtain the bearing
and coordinates of the wire base relative to the surface base. These values can then be transferred to the
underground base.

In order to establish the bearing of the wire base at the surface, it is necessary to compute the angle
WsW2W1 in the triangle as follows:

sin Ŵ2 = w2

ws
sin Ŵs (13.1)

As the Weisbach triangle is formed by approximately aligning the Weisbach station Ws with the wires,
the angles at Ws and W2 are very small and equation (13.1) may be written:

Ŵ ′′
2 = w2

ws
Ŵ ′′

s (13.2)

(The expression is accurate to seven figures when Ŵs < 18′ and to six figures when Ŵs < 45′.)
From equation (13.2), it can be seen that the observational error in angle Ws will be multiplied by the

fraction w2/ws.
Its effect will therefore be reduced if w2/ws is less than unity. Thus the theodolite at Ws should be as near

the front wire W1 as focusing will permit and preferably at a distance smaller than the wire base W1W2.
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Fig. 13.2 (a) Section, and (b) plan

The following example, using simplified data, will now be worked to illustrate the procedure. With
reference to Figure 13.2(b), the following field data are obtained:

(1) Surface observations

Angle BAWs = 90◦ 00′ 00′′ Distance W1W2 = ws = 10.000 m
Angle AWsW2 = 260◦ 00′ 00′′ Distance W1Ws = w2 = 5.000 m
Angle W1WsW2 = 0◦ 01′ 20′′ Distance W2Ws = w1 = 15.000 m

(2) Underground observations

Angle W2WuW1 = 0◦ 01′ 50′′ Distance W2Wu = y = 4.000 m

Angle W1WuX = 200◦ 00′ 00′′ Distance WuW1 = x = 14.000 m

WuXY = 240◦ 00′ 00′′

Solution of the surface Weisbach triangle:

Angle WsW2W1 = 5

10
× 80′′ = 40′′

Similarly, underground

Angle W2W1Wu = 4

10
× 110′′ = 44′′
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Fig. 13.3 Part of Weisbach triangle

The bearing of the underground base XY, relative to the surface base AB is now computed in a manner
similar to a traverse:

Assuming WCB of AB = 89◦ 00′ 00′′
then, WCB of AWs = 179◦ 00′ 00′′ (using angle BAWs)

Angle AWsW2 = 260◦ 00′ 00′′

Sum = 439◦ 00′ 00′′
−180◦

WCB of WsW2 = 259◦ 00′ 00′′ 


Angle WsW2W1 = +0◦ 00′ 40′ see Figure 13.3(a)

WCB W1W2 = 259◦ 00′ 40′′
Angle W2W1Wu = −0◦ 00′ 44′′ 




see Figure 13.3(b)

WCB W1Wu = 258◦ 59′ 56′′
Angle W1WuX = 200◦ 00′ 00′′

Sum = 458◦ 59′ 56′′
−180◦

WCB WuX = 278◦ 59′ 56′′
Angle WuXY = 240◦ 00′ 00′′

Sum = 518◦ 59′ 56′′
−180◦

WCB XY = 338◦ 59′ 56′′ (underground base)

The transfer of bearing is of prime importance; the coordinates can be obtained in the usual way by
incorporating all the measured lengths AB, AWs, WuX, XY .

13.2.2 Shape of the Weisbach triangle

As already indicated, the angles W2 and Ws in the triangle are as small as possible. The reason for this can
be illustrated by considering the effect of accidental observation errors on the computed angle W2.
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From the basic equation: sin Ŵ2 = w2

ws
sin Ŵs

Differentiate W2 with respect to each of the measured quantities in turn:

(1) with respect to Ws

dW2

dWs
= w2 cos Ws

ws cos W2

(2) with respect to w2

dW2

dw2
= sin Ws

ws cos W2

(3) with respect to ws

dW2

dws
= −w2 sin Ws

w2
s cos W2

then:

σW2 =
[

w2
2 cos2 Ws

w2
s cos2 W2

σ 2
Ws

+ sin2 Ws

w2
s cos2 W2

σ 2
w2

+ w2
s sin2 Ws

w4
s cos2 W2

σ 2
ws

] 1
2

= ws

ws cos W2

[
cos2 Wsσ

2
Ws

+ sin2 Ws
σ 2

w2

w2
2

+ sin2 Ws
σ 2

ws

w2
s

] 1
2

but cos Ws = sin Ws cos Ws

sin Ws
= sin Ws cot Ws, which on substitution gives:

σW2 = w2

ws cos W2

[
sin2 Ws cot2 Wsσ

2
Ws

+ sin2 Ws
σ 2

w2

w2
2

+ sin2 Ws
σ 2

ws

w2
s

] 1
2

= w2 sin Ws

ws cos W2

[
cot2 Wsσ

2
Ws

+ σ 2
w2

w2
2

+ σ 2
ws

w2
s

] 1
2

by sine rule
w2 sin Ws

ws
= sin W2, therefore substituing

σW2 = tan W2

[
cot2 Wsσ

2
Ws

+
(

σw2

w2

)2

+
(

σws

ws

)2
] 1

2

(13.3)

Thus to reduce the standard error (σW2 ) to a minimum:

(1) tan W2 must be a minimum; therefore the angle W2 should approach 0◦ .
(2) As W2 is very small, Ws will be very small and so cot Ws will be very large. Its effect will be greatly

reduced if σWs is very small; the angle Ws must therefore be measured with maximum precision.

13.2.3 Sources of error

The standard error of the transferred bearing σB, is made up from the effects of:

(1) Uncertainty in connecting the surface base to the wire base, σs.
(2) Uncertainty in connecting the wire base to the underground base, σu.
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(3) Uncertainty in the verticality of the wire plane, σp giving:

σB = (σ 2
s + σ 2

u + σ 2
p )

1
2 (13.4)

The uncertainties σs and σu can be obtained in the usual way from an examination of the method and the
types of instrument used. The uncertainty in the verticality of the wire plane σp is vitally important in view
of the extremely short length of the wire base.

Assuming that the relative uncertainty of wire W1 with respect to wire W2, at right angles to the line
W1W2, is 1 mm and that the wires are 2 m apart, then σp = 100′′ (σ 2

p = 10 000). If σB is required to be
less than 2′ (=120′′), then from equation (13.4), and assuming σs = σu:

120 = (2σ 2
s + 10 000)

1
2

∴ σs = σu = 47′′

If, therefore, the uncertainty in the connection to the wire base is to be 47′′ and to be achieved over a
baseline of 2 m then each wire must be sighted with a precision, σw, of

σw = 2 sin 47′′(2)−
1
2 m = 0.0003 m = 0.3 mm

These figures serve to indicate the great precision and care needed in plumbing a shaft and sighting onto
each wire, in order to minimize orientation errors.

13.2.4 Verticality of the wire plane

The factors affecting the verticality of the wires are:

(1) Ventilation air currents in the shaft
All forced ventilation should be shut off and the plumb-bob protected from natural ventilation.

(2) Pendulous motion of the shaft plumb
The motion of the plumb-bob about its suspension point can be reduced by immersing it in a barrel of
water or fine oil. When the shaft is deep, complete elimination of motion is impossible and clamping
of the wires in their mean swing position may be necessary.

The amplitude of wire vibrations, which induce additional motion to the swing, may be reduced by
using a heavy plumb-bob, with its point of suspension close to the centre of its mass, and fitted with
large fins.

(3) Spiral deformation of the wire
Storage of the plumb wire on small-diameter reels gives a spiral deformation to the wire. Its effect is
reduced by using a plumb-bob of maximum weight. This should be calculated for the particular wire
using a reasonable safety factor.

These sources of error are applicable to all wire surveys.

13.2.5 Co-planing

The principles of this alternative method are shown in Figure 13.4. The triangle of the previous method
is eliminated by aligning the theodolite at Ws exactly with the wires W1 and W2. This alignment is easily
achieved by trial and error, focusing first on the front wire and then on the back. Both wires can still be
seen through the telescope even when in line. The instrument should be set up within 3 to 4 m of the nearer
wire. Special equipment is available to prevent lateral movement of the theodolite affecting its level, but
if this is not used, special care should be taken to ensure that the tripod head is level.

The movement of the focusing lens in this method is quite long. Thus for alignment to be exact, the
optical axis of the object lens should coincide exactly with that of the focusing lens in all focusing positions.
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Fig. 13.4 Co-planing

If any large deviation exists, the instrument should be returned to the manufacturer. The chief feature of
this method is its simplicity with little chance of gross errors.

13.2.6 Weiss quadrilateral

This method may be adopted when it is impossible to set up the theodolite, even approximately, on the line
of the wire base W1W2 (Figure 13.5). Theodolites are set up at C and D forming a quadrilateral CDW1W2.
The bearing and coordinates of CD are obtained relative to the surface base, the orientation of the wire
base being obtained through the quadrilateral. Angles 1, 2, 3 and 8 are measured directly, and angles 4 and
7 are obtained as follows:

Angle 4 =
[
180◦ −

(
1̂ + 2̂ + 3̂

)]

Angle 7 =
[
180◦ −

(
1̂ + 2̂ + 8̂

)]

The remaining angles 6 and 5 are then computed from

sin 1̂ sin 3̂ sin 5̂ sin 7̂ = sin 2̂ sin 4̂ sin 6̂ sin 8̂

thus
sin 5̂

sin 6̂
= sin 2̂ sin 4̂ sin 8̂

sin 1̂ sin 3̂ sin 7̂
= x (a)

Fig. 13.5 Weiss quadrilateral



514 Engineering Surveying

and
(

5̂ + 6̂
)

=
(

1̂ + 2̂
)

= ŷ

∴ 5̂ =
(

ŷ − 6̂
)

(b)

from (a) sin 5̂ = x sin 6̂ ∴ sin
(

ŷ − 6̂
)

= x sin 6̂

and sin ŷ cos 6̂ − cos ŷ sin 6̂ = x sin 6̂

from which sin y cot 6̂ − cos ŷ = x

and cot 6̂ = x + cos ŷ

sin ŷ
(13.5)

Having found angle 6 from equation (13.5), angle 5 is found by substitution in (b).
Error analysis of the observed figure indicates

(1) The best shape for the quadrilateral is square.
(2) Increasing the ratio of the length CD to the wire base increases the standard error of orientation.

13.2.7 Single wires in two shafts

The above methods have dealt with orientation through a single shaft, which is the general case in civil
engineering. Where two shafts are available, orientation can be achieved via a single wire in each shaft.
This method gives a longer wire base, and wire deflection errors are much less critical.

The principles of the method are outlined in Figure 13.6. Single wires are suspended in each shaft at A
and B and coordinated from the surface control network, most probably by multiple intersections from as
many surface stations as possible. From the coordinates of A and B, the bearing AB is obtained.

A traverse is now carried out from A to B via an underground connecting tunnel (Figure 13.6(a)).
However, as the angles at A and B cannot be measured it becomes an open traverse on an assumed bearing

Fig. 13.6 Alignment using single wires in two shafts
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for AX. Thus, if the assumed bearing for AX differed from the ‘true’ (but unknown) bearing by α, then the
whole traverse would swing to apparent positions X ′, Y ′, Z ′ and B′ (Figure 13.6(b)).

The value of α is the difference of the bearings AB and AB′ computed from surface and underground
coordinates respectively. Thus if the underground bearings are rotated by the amount α, this will swing
the traverse almost back to B. There will still be a small misclosure due to linear error and this can be
corrected by multiplying each length by a scale factor equal to length AB/length AB′. Now, using the
corrected bearings and lengths the corrected coordinates of the traverse fitted to AB can be calculated.
These coordinates will be relative to the surface coordinate system.

Alternatively, the corrected coordinates can be obtained directly by mathematical rotation and translation
of AB/AB′; the corrected coordinates are obtained from

Ei = E0 + K(E′
i cos α − N ′

i sin α) (13.6a)

Ni = N0 + K(N ′
i cos α + E′

i sin α) (13.6b)

where E0, N0 = coordinates of the origin (in this case A)
E′

i , N ′
i = coordinates of the traverse points computed on the assumed bearing

Ei, Ni = transformed coordinates of the underground traverse points
K = scale factor (length AB/length AB′)

There is no doubt that this is the most accurate and reliable method of surface-to-underground orientation.
The accuracy of the method is dependent upon:

(1) The accuracy of fixing the position of the wires at the surface.
(2) The accuracy of the underground connecting traverse.

The influence of errors in the verticality of the wires, so critical in single-shaft work, is practically
negligible owing to the long distance separating the two shafts. Provided that the legs of the underground
traverse are long enough, then a total station could be used to achieve highly accurate surface and under-
ground surveys, resulting in final orientation accuracies of a few seconds. As the whole procedure is under
strict control there is no reason why the final accuracy cannot be closely predicted.

13.2.8 Alternatives

In all the above methods the wires could be replaced by autoplumbs or lasers.
In the case of the autoplumb, stations at the shaft bottom could be projected vertically up to specially

arranged targets at the surface and appropriate observations taken directly to these points.
Similarly, lasers could be arranged at the surface to project the beam vertically down the shaft to be

picked up on optical or electronic targets. The laser spots then become the shaft stations correlated in the
normal way.

The major problems encountered by using the above alternatives are:

(1) Ensuring the laser beam is vertical.
(2) Ensuring correct detection of the centre of the beam.
(3) Refraction in the shaft (applies also to autoplumb).

In the first instance a highly sensitive spirit level or automatic compensator could be used; excellent
results have been achieved using arrangements involving mercury pools, or photo-electric sensors.

Detecting the centre of the laser is more difficult. Lasers having a divergence of 10′′ to 20′′ would
give a spot of 10 mm and 20 mm diameter respectively at 200 m. This spot also tends to move about due
to variations in air density. It may therefore require an arrangement of photocell detectors to solve the
problem.

Turbulence of air currents in shafts makes the problem of refraction less important.
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Worked examples

Example 13.1 The national grid (NG) bearing of an underground base line, CD (Figure 13.7), is established
by co-planning at the surface onto two wires, W1 and W2, hanging in a vertical shaft, and then using a
Weisbach triangle underground.

The measured field data is as follows:

NG bearing AB 74◦ 28′ 34′′
NG coords of A E 304 625 m, N 511 612 m

Horizontal angles:
BAWs 284◦ 32′ 12′′
AWsW2 102◦ 16′ 18′′
W2WuW1 0◦ 03′ 54′′
W1WuC 187◦ 51′ 50′′
WuCD 291◦ 27′ 48′′

Horizontal distances:
W1W2 3.625 m
WuW2 2.014 m

Compute the bearing of the underground base. (KU)

The first step is to calculate the bearing of the wire base using the measured angles at the surface:

Grid bearing of AB = 74◦ 28′ 34′′ (given)
Angle BAWs = 284◦ 32′ 12′′

Grid bearing of AWs = 359◦ 00′ 46′′
Angle AWsW2 = 102◦ 16′ 18′′

Sum = 461◦ 17′ 04′′
−180◦

Grid bearing W1W2 = 281◦ 17′ 04′′

Fig. 13.7 Transfer alignment from surface to underground
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Fig. 13.8 Tunnel, shaft and adit

Now, using the Weisbach triangle calculate the bearing of the underground base from the wire base:

From a solution of the Weisbach triangle

Angle W2W1Wu = 234′′ × 2.014

3.625
= 130′′ = 0◦ 02′ 10′′

Grid bearing W1W2 = 281◦ 17′ 04′′
Angle W2W1Wu = 0◦ 02′ 10′′

Grid bearing W1Wu = 281◦ 14′ 54′′
Angle W1WuC = 187◦ 51′ 50′′

Sum = 469◦ 06′ 44′′
−180◦

Grid bearing WuC = 289◦ 06′ 44′′
Angle WuCD = 291◦ 27′ 48′′

Sum = 580◦ 34′ 32′′
−540◦

Grid bearing CD = 40◦ 34′ 32′′ (underground base)

Example 13.2 The centre-line of the tunnel AB shown in Figure 13.8 is to be set out to a given bearing.
A short section of the main tunnel has been constructed along the approximate line and access is gained to
it by means of an adit connected to a shaft. Two wires C and D are plumbed down the shaft, and readings
are taken onto them by a theodolite set up at station E slightly off the line CD produced. A point F is
located in the tunnel, and a sighting is taken on to this from station E. Finally a further point G is located
in the tunnel and the angle EFG measured.

From the survey initially carried out, the coordinates of C and D have been calculated and found to be
E 375.78 m and N 1119.32 m, and E 375.37 m and N 1115.7 m respectively.

Calculate the coordinates of F and G. Without making any further calculations describe how the required
centre-line could then be set out. (ICE)
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Given data: CD = 3.64 m DE = 4.46 m
EF = 13.12 m FG = 57.5 m
Angle DEC = 38′′
Angle CEF = 167◦ 10′ 20′′
Angle EFG = 87◦ 23′ 41′′

Solve Weisbach triangle for angle ECD

Ĉ = ED

DC
Ê = 4.46

3.64
× 38′′ = 47′′

By coordinates

Bearing of wire base CD = tan−1 −0.41

−3.62
= 186◦ 27′ 19′′

∴WCB of CE = 186◦ 27′ 42′′ − 47′′ = 186◦ 26′ 55′′
WCB of CE = 186◦ 26′ 55′′
Angle CEF = 167◦ 10′ 20′′

WCB of EF = 173◦ 37′ 15′′
Angle EFG = 87◦ 23′ 41′′

WCB of FG = 81◦ 00′ 56′′

Line Length (m) WCB Coordinates Total coordinates

�E �N E N Station

375.78 1119.32 C
CE 8.10 186◦ 26′ 55′′ −0.91 −8.05 374.87 1111.27 E
EF 13.12 173◦ 37′ 15′′ 1.46 −13.04 376.33 1098.23 F
FG 57.50 81◦ 00′ 56′′ 56.79 8.99 433.12 1107.22 G

Several methods could be employed to set out the centre-line; however, since bearing rather than
coordinate position is critical, the following approach would probably give the best results.

Set up at G, the bearing of GF being known, the necessary angle can be turned off from GF to give the
centre-line. This is obviously not on centre but is the correct line; centre positions can now be fixed at any
position by offsets.

Example 13.3 Two vertical wires A and B hang in a shaft, the bearing of AB being 55◦ 10′ 30′′
(Figure 13.9). A theodolite at C, to the right of the line AB produced, measured the angle ACB as 20′ 25′′.
The distances AC and BC were 6.4782 m and 3.2998 m respectively.

Calculate the perpendicular distance from C to AB produced, the bearing of CA and the angle to set off
from BC to establish CP parallel to AB produced.

Fig. 13.9 Wires in a shaft
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Describe how you would transfer a line AB above ground to the bottom of a shaft. (LU)

AB ≈ AC − BC = 3.1784 m

Angle BAC = 3.2998

3.1784
× 1225′′ = 1272′′ = 21′ 12′′ = θ

By radians CD = AC × θ rad = 6.4782 × 1272

206 265
= 0.0399 m

Bearing AB = 55◦ 10′ 30′′

Angle BAC = 21′ 12′′

Bearing AC = 55◦ 31′ 42′′

∴ Bearing CA = 235◦ 31′ 42′′

Angle to be set off from BC = ABC = 180◦ − (21′ 12′′ + 20′ 25′′)

= 179◦ 18′ 23′′

13.3 GYRO-THEODOLITE

An alternative to the use of wire methods is the gyro-theodolite. This is a north-seeking gyroscope integrated
with a theodolite, and can be used to orientate underground base lines relative to true north.

There are two main types of suspended gyroscope currently available, the older Wild GAK1 developed
in the 1960s–70s, which requires careful manual handling and observing to obtain orientation and the more
modern Gyromat 3000 which is very much more automated. There are still many GAK1s available on the
second-hand market. The gyroscope will be explained with respect to the Wild GAK1 and at the end of
this section the Gyromat 3000 will be described. The essential elements of the suspended gyro-theodolite
are shown in Figure 13.10.

A theodolite is an instrument that enables the user to observe the difference in bearing, i.e. the angle,
between two distant stations. Although angles are observed, it is often a bearing (relative to grid north) or
azimuth (relative to true north) which is actually required. The suspended gyroscope is a device that may
be attached to a theodolite to allow observations of azimuth rather than angle, to be taken, for example, to
check an unclosed traverse in mining or tunnelling work.

A gyroscopic azimuth is the azimuth determined with a gyrotheodolite. If the gyrotheodolite has been
calibrated on a line of known astronomic azimuth then the gyroscopic azimuth is effectively the same as
the astronomic azimuth because astronomic and gyroscopic north are both defined in terms of the local
vertical and the instantaneous Earth rotation axis.

13.3.1 GAK1 gyro attachment

Before the GAK1 can be used, a special mount or bridge must be fixed by the manufacturer to the top of
the theodolite. The gyro attachment fits into the bridge so that three studs on the base of the gyro fit into
the three grooves in the bridge with the gyro scale viewed from the same position as the theodolite on
face left. Figure 13.11.

The GAK1 consists of a spinner that is mounted in a mast, which in turn is suspended by a fine wire, or
tape, from a fixed point near the top of the gyro frame. The spinner is simply a cylinder of metal mounted
on an axle which, in turn, is held by the mast. The mast is merely a carriage for the spinner. The spinner
is driven by a small electric motor at a design angular rate of 22 000 rpm. To avoid damage during transit
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Fig. 13.10 Suspended gyro attachment

and during running up and slowing down of the spinner, the mast is held against the body of the gyro
housing by a clamp at the gyro base. When the gyro is operating the clamp is released and the mast and
spinner as a complete unit hang suspended. This system then oscillates slowly about its vertical axis. The
amount of movement is detected by observing the shadow of a mark in a part of the optical train in the
mast. The shadow is projected onto a ground glass scale that may be read directly. Figure 13.11 shows a
GAK1 mounted on a Wild T2 theodolite.

The scale is viewed through a detachable eyepiece. The scale is centred at zero with divisions extending
from +15 on the left to −15 on the right (Figure 13.12(b)). The position of the moving mark may only be
estimated to the nearest 0.1 of a division at best. Alternatively the scale may be viewed from the side of
the eyepiece. This allows an instructor to monitor the observations of a student or two observers to work
with the same gyro and observations.

When the observer uses the side viewing eyepiece the image is reversed. The precision of reading may
be improved with the aid of a parallel plate micrometer attachment that allows coincidence between the
image of the moving mark and a scale division to be achieved.

The position of the moving mark is found as the algebraic sum of the integer number of scale divisions,
plus the micrometer scale reading, e.g. if the scale reading is −5 divisions and the micrometer reading
+0.50 divisions, the result is −4.5 divisions.

The gyro motor is powered through a converter that contains a battery. The gyro may be powered by
the converter’s internal battery or by an external battery. The converter ensures that there is a stable power
supply even when the external power supply or internal battery voltage starts to run down.

To run up the gyro, first make sure that the gyro is clamped up to ensure that no damage is done to the
gyro mechanism during acceleration of the spinner. Next, see that the external power supply is correctly
connected. Turn the switch to ‘run’. The ‘measure’ display turns from green to white and the ‘wait’ display
turns from white to red. When the spinner is running at full speed the displays on the converter change and
the gyro is ready for use.
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Fig. 13.11 GAK1 mounted on Wild T2
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Fig. 13.12 (a) Gyro precession, (b) gyro scale

Now very carefully unclamp the mast so that the gyro hangs suspended only by the tape. This is a
tricky operation requiring a steady controlled hand and a little bit of luck, to get a satisfactory drop without
wobble or excessive swing. The clamp should be rotated until it meets the stop. A red line is now visible
on the clamp. Pause for a few seconds to allow any unwanted movement to die down and then lower the
clamp. The gyro is now supported only by the tape and is free to oscillate about its own vertical axis.
Observations may now be made of the gyro scale.

If the gyro is badly dropped then there may be an excessive 2 Hz wobble which will make observations
difficult and inaccurate. If this happens then clamp up and try again. Alternatively, wait a little while and
the wobble will decay exponentially.

Also, with a bad drop, the moving mark may go off the scale; if this happens re-clamp the gyro and
try again. Do not allow the moving mark to go off the scale as this may damage the tape, and anyway, no
observations can be made.

When observations with the spinning gyro are complete the gyro must be clamped up and the spinner
brought to rest.

13.3.2 Basic equations

There are two basic equations that govern the behaviour of the gyrotheodolite. The first is concerned
with the motion of the moving mark as it appears on the gyro scale and in particular the midpoint of that
motion. The second is concerned with the determination of north from the observed midpoints of swing
of the moving mark on the gyro scale and other terms. The equations will be stated here, justified below
and then applied.

The midpoint of motion of the moving shadow mark may be found from the equation of motion of the
moving mark. This is an equation of damped harmonic motion:

Me−Dt cos(ω(t − p)) + K − y = 0 (13.7)
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where: M = magnitude of the oscillation
e = the base of natural logarithms = 2.718 281 8
D = damping coefficient
t = time
ω = frequency of the oscillation
p = time at a ‘positive turning point’, see below
K = midpoint of swing as measured on the scale
y = scale reading of the moving mark

The second equation, or north finding equation, finds the reading on the horizontal circle of the theodolite
that is equivalent to north. It relates the K of equation (13.7), determined when the spinner is spinning and
also, separately, when the spinner is not spinning. The equation is:

N = H + sB(1 + C) − sCd + A (13.8)

where: N = the horizontal circle reading of the theodolite equivalent to north
H = the fixed horizontal circle reading when the theodolite is clamped

up ready for observations of the gyro
s = the value of one scale unit in angular measure
B = the centre of swing in scale units when the spinner is spinning
C = the ‘torque ratio constant’
d = the centre of swing in scale units when the spinner is not spinning
A = the additive constant

Like astronomical north, the north determined by a gyro is also defined by gravity and by the Earth’s
rotation.

13.3.3 The equation of motion

The equation of motion will first be established rigorously and in fairly advanced mathematical terms. The
effect will then be described again but in a rather looser and more physical sense.

Figure 13.13(a) shows the axis of the gyro spinner placed with respect to the surface of the Earth. A set
of orthogonal axes is established with the origin at O, the i direction in the direction of gravity, the j and
k directions are in the local horizontal plane with the k direction making a small angle, α, with the local
direction of north. j is at right angles to i and k such that the axes form a right-handed orthogonal set. φ is
the latitude of O. i, j and k are unit vectors in the directions i, j and k. Ω is the rotational velocity vector
of the Earth.

The velocity vector of the earth may be broken into its component parts in the i, j and k directions so:

Ω = �(i sin φ − j cos φ sin α + k cos φ cos α) (13.9)

If this triad of vectors is now rotated about the i axis with an angular velocity −α̇ then the angular velocity
of the axes may be described in vector terms by

ωa = −α̇i (13.10)

Substituting equation (13.9) into equation (13.10) gives

ωa = i(� sin φ − α̇) − j� cos φ sin α + k cos φ cos α (13.11)

If the spinner is now placed so that it rotates about the k axis with an angular velocity of n, then the total
angular velocity of the spinner is

ω = i(� sin φ − α̇) − j� cos φ sin α + k(� cos φ cos α + n)
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Fig. 13.13 (a) Meridian section through the earth, (b) Plan view at 0

If A is the moment of inertia of the spinner about the i or j axis (they will be the same because of rotational
symmetry) and B is the moment of inertia of the spinner about the k axis then the total angular momentum
of the spinner L is

L = iA(� sin φ − α̇) − j A(� cos φ sin α) + kB(� cos φ cos α + n) (13.12)

A couple (a twisting force) is now applied about the j axis to stop the spinner axis from wandering out of
the horizontal plane. The magnitude of the couple is M so the couple is fully described by Mj, where

Mj = L̇ (13.13)

But from the theory of rotating axes L̇ = L̇ + ωa × L (13.14)

where: L̇ = rate of change of momentum of the spinner in the ijk coordinate system
L̇ = absolute rate of change of angular momentum

ωa = absolute angular velocity of the ijk coordinate system
× = the vector cross product symbol
L = the absolute angular momentum of the spinner

If values from equations (13.11), (13.12) and (13.13) are now substituted into equation (13.14) then

Mj = −iAα̈ + i[(−� cos φ sin α)B(� cos φ cos α + n) + (� cos φ cos α)A(� cos φ sin α)]
+ j (other terms) + k (other terms) (13.15)

Only the terms in i in equation (13.15) are now considered

Aα̈ = −� cos φ sin αBn + �2(A − B) cos2 φ cos α sin α (13.16)

The Earth rotates once every day so � = 0.000 0729 radians/sec and the spinner in the GAK1 is kept at a
nominal angular velocity of 22 000 rpm so n ≈ 2300 radians/sec therefore � ≈ 3.210−8 n so the second
half of the right hand side of equation (13.16) is negligible compared with the first and so the equation
may be simplified to

α̈ = −BA−1n� cos φ sin α (13.17)
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Fig. 13.14 Damped sinusoidal oscillation of the moving mark

If α is small, then, to a first approximation, α = sin α so that equation (13.17) becomes

α̈ = −αBA−1n� cos φ (13.18)

which is simple harmonic motion of period = 2πA
1
2 (Bn� cos φ)− 1

2 and the solution of equation (13.18),
a second order differential equation is

α = M cos(ω(t − p)) (13.19)

where ω2 = BA−1n� cos φ and M and p are constants of integration. For those unfamiliar with differential
equations the solution may be verified by differentiating equation (13.19) twice with respect to time.
In practice friction and air resistance lightly damps the oscillation so a damping factor e−Dt is introduced.
Also, the actual centre of oscillation is offset from the scale zero by an amount K so that the final equation
of motion is equation (13.7).

The terms in the above equation are shown graphically in Figure 13.14. Notice that the moving mark
oscillates about the centre of its swing K by an amount M when time equals 0. As time increases the
magnitude of the swing reduces to Me−Dt at time t. If the system were allowed to swing for ever, the
magnitude of the oscillation would eventually decay to 0 and the moving mark would come to rest at K .
The practical problem is to find the observations that can be made of the moving mark such that the value
of K may be computed without having to wait, literally, for ever. This problem will be addressed later.

The behaviour of the spinner may also be considered in more descriptive terms. See Figure 13.15. If a
spinner is set in motion, then, provided that there are no forces applied to the axle, the spinner will continue
to rotate with the spinner axis maintaining the same direction in inertial space, that is, with respect to the
stars. The spinner of a gyro, however, is suspended from a point which in turn is rotating with respect
to the rotation axis of the Earth. In other words the direction of gravity, in inertial terms, changes as the
earth completes one revolution on its own axis every 24 hours. If at the same time the mast has a rotation
about the local vertical, the spinner axis continues to point to north. If, also, the spinner axis is not pointing
to north when the mast is released then, as the earth turns, the apparent direction of gravity, as viewed
from the spinner, will vary. This will have a component in the plane containing the axis of the spinner and
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the point of suspension. There is, therefore, a twisting force about the ends of the spinner axis, which is
mutually at right angles to the spinner axis and the direction of gravity.

If a couple is applied to the axis of the spinner then the result is a precessional torque about the axis which
is at right angles to the plane containing the couple and spin axis. That is, the direction of the precessional
torque rotation vector is defined by the vector cross product of the spin and the couple rotation vectors. It is
possible to verify this by removing a wheel from a bicycle and holding it between outstretched hands. Get
someone to spin the wheel as fast as possible and then try to turn around and face the opposite direction.
By turning round you are applying a couple about the ends of the axle. The result is that the wheel tips over
because of the precessional torque. Care must be taken to avoid personal injury. In this situation consider
the axes of spin, couple and precessional torque and see that they are mutually at right angles. Similar
effects may be seen with a child’s toy gyroscope.

As the system of the mast and spinner are in precession the couple changes direction when the axis of
the spinner passes through north and the precessional torque becomes applied in the opposite direction.
The overall result is that the mast and spinner axis is always accelerating towards the local direction of
north.

13.3.4 North finding equation

In Figure 13.16 points of interest on the scale of the GAK1 Gyroscope are described. Scale zero is the
centre of the scale. The moving shadow mark, as seen on the gyro scale, is at position y as measured on
the gyro scale. In Figure 13.16 it is shown as a double line because that is how it appears on the gyro scale.
d is the position that the shadow mark would take if the mast with the spinner, not spinning, was allowed
to hang until the mast had stopped moving. Ideally this would be at the scale zero position, but because
the system cannot be adjusted that precisely it is unlikely to be so. B is the position that the shadow mark
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Fig. 13.16 Points of interest on the gyro scale

would take if the mast with the spinner, spinning, was allowed to hang until the mast had stopped moving.
Finally n is the position of true north on the gyro scale. All these terms, y, d, B, and n, are referenced to
the visible scale in the gyro and therefore are in scale units.

In equation (13.8), H was the fixed horizontal circle reading when the theodolite was clamped up ready
for observations of the gyro and s was the value of one scale unit in angular measure, then:

N = H + sn (13.20)

At any one time the torque on the gyro is the sum of the torque due to precession and the torque due to the
twisting of the suspending tape.
The torque due to precession = k(n − y)s where k = torque per arc second of rotation due to precession.
The torque due to twisting = k1(d − y)s where k1 = torque per arc second of rotation due to twisting.
The total torque is the sum of these two separate torques so that:

Total torque = k(n − y)s + k1(d − y)s

and on rearranging becomes:

Total torque = s(k + k1)

[
kn + k1d

(k + k1)
− y

]
(13.21)

At the centre of the oscillation, i.e. when y = B, the total torque is zero, so, from equation (13.21):

kn + k1d

(k + k1)
− B = 0

so B = kn + k1d

(k + k1)
= n + Cd

1 + C
(13.22)

where C = k1/k is the ratio of the torque due to precession and the torque due to the twisting of the tape.
C is usually referred to as the ‘torque ratio constant’. Equation (13.22) may be rearranged to get

n = B(1 + C) − Cd

and this may be substituted into equation (13.20) to get

N = H + sB(1 + C) − sCd

A further term, A, is added to the equation to allow for the fact that the interface between the gyro and the
theodolite is not perfectly matched. See equation (13.8) This may be thought of as a calibration constant
or scale zero error.



528 Engineering Surveying

13.3.5 The practical solution of the equation of motion

The equation of motion, equation (13.7), is exactly the same whether the spinner is spinning or not. The
only difference is in the values of the terms in the equation. When the spinner is spinning then the term K
is the same as B in equation (13.8). When the spinner is not spinning then the term K is the same as d
in equation (13.8). Observations may be made, either of time as the moving shadow mark passes scale
divisions, or of the extent of the swing of the moving mark on the gyro scale. This is known as a turning
point as it is the point at which the moving mark changes direction. In this latter case precise observations
can only be made if the GAK1 is fitted with a parallel plate micrometer that allows the image of the moving
shadow mark to be made coincident with a scale division. The reading on the parallel plate micrometer
is then algebraically added to the value of the observed scale division. There are a number of methods
available for finding K (i.e. B or d). Two are presented below.

13.3.5.1 Amplitude method

The scale value is observed at three or four successive turning points. With the motion of the moving mark
slightly damped by hysteresis in the tape and air resistance, the damped harmonic motion of the moving
mark is of the form described by equation (13.7) which can be rearranged as:

y = K + Me−Dt cos(ω(t − p)) (13.23)

In Figure 13.17 the times t0, t1, t2 and t3 are successively half the period of the oscillation apart
so that:

t1 = t0 + π

ω
t2 = t0 + 2π

ω
t3 = t0 + 3π

ω

Gyro
scale
divisions

y0

y2

K
P

t0 t1 t2 t3

Time

y3

y1

Fig. 13.17 Amplitude method
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and so at successive turning points the scale readings will be:

y0 =K + Me−Dt0 cos(ωt0 − ωp) y1 =K +Me−D(t0+π /ω) cos(ωt0 + π −ωp) (13.24)

y2 =K + Me−D(t0 +2π /ω) cos(ωt0 + 2π −ωp) y3 =K +Me−D(t0+3π /ω) cos(ωt0 + 3π −ωp)

If cos(ωt0−ωp)=k then cos(ωt0+π −ωp)=−k

cos(ωt0+2π −ωp)=k cos(ωt0+3π −ωp)=−k

and if e−Dt0 = g then equation (13.34) may be rewritten as

y0 = K + Mgk y1 = K + Me−Dπ /ωgk (13.25)

y2 = K + Me−2Dπ /ωgk y3 = K + Me−3Dπ /ωgk

In practice D is in the region of 0.000 004 so the term Dπ /ω is about 10−3 sec−1 because, at UK latitudes
the period is about 460 seconds when the spinner is spinning. Also ex = 1 + x + x2/2! + x3/3! + · · · . If
the weighted mean of the scale readings is computed as follows:

‘Mean’ = y0 + 2y1 + y2

4

then in terms of equation (13.35):

‘Mean’ = y0 + 2y1 + y2

4
= K + 3Mgk(Dπ )2

4 ω
+ · · · (13.26)

but since, in practice, g and k are approximately 1, and in practice M will not be more than 9000′′, then
the error in the determination of K , as the midpoint of swing, using equation (13.26), will be in error by

3Mgk(Dπ )2

4 ω
which is approximately 0.006′′

This is far less than the observational error. This simple weighted mean is perfectly acceptable for the
determination of K when the spinner is spinning (K = B), but is not precise enough when the spinner is
not spinning (K = d). This is because the damping coefficient is much larger. In this case the ‘mean’ is
determined from four turning points as follows:

‘Mean’ = y0 + 3y1 + 3y2 + y3

8
(13.27)

To be successful the amplitude method requires an element of skill and experience. The observer must have
light and nimble fingers to make the observations with the micrometer while not disturbing the smooth
motion of the suspended gyroscope. The slightest pressure on the gyro casing may set up a 2 Hz wobble
on the shadow mark making reading difficult and inaccurate. For ease of reading, at the next turning point,
the micrometer should be returned to zero. This is easily forgotten especially in the nonspin mode when
there will be at most 25 seconds before the next reading.

13.3.5.2 Transit method

In the transit method the observations are of time. The effect of the damping term is assumed to be
negligible. Four observations of time are made as the moving shadow mark crosses specific divisions on
the gyro scale. The parallel plate micrometer must of course be set to zero throughout these observations.
Three of the times, t0, t1 and t2, are when the moving shadow mark passes a scale division, y0, near the
midpoint of swing and the other, tr , is when the moving shadow mark passes a scale division, yr , near a
turning point.
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To do this in practice, first drop the mast, and see the approximate extent of the swing in both the
positive and negative directions. Find the scale division nearest the centre of swing and a scale division
close to the turning point. This division must not be so close to the turning point that there is a chance that
the moving mark’s swing might decay, so that the moving mark does not go far enough on subsequent
swings. The first part of the swing may be to either side of the 0 scale division.

Having chosen the scale divisions which are to be y0 and yr , wait until the moving mark approaches the
y0 scale division in the direction of yr . Take the time t0. Next, time the moving mark as it crosses the yr

scale division, tr . It does not matter whether the moving mark is on its way out, or on the return towards
y0 for this time. The formulae, to be seen later, are valid for both cases. The final two times, t1 and t2, are
as the moving mark successively crosses y0. See Figure 13.18.

Without damping, the equation of motion is:

y = K + M cos(ω(t − p))

where, from inspection of the diagram, it can be seen that:

ω = 2π

t2 − t0
and (13.28)

p = t0 + t1
2

(13.29)

so that at times t0 and tr the equations become:

y0 = K + M cos(ω(t0 − p)) (13.30)

yr = K + M cos(ω(tr − p)) (13.31)

Now subtract equation (13.31) from (13.30) and making M the subject of the equation leads to:

M = y0 − yr

cos(ω(t0 − p)) − cos(ω(tr − p))

Substituting this back into equation (30) leads to:

K = y0 − (y0 − yr) cos(ω(t0 − p))

cos(ω(t0 − p)) − cos(ω(tr − p))
(13.32)
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scale
divisions

y0

yr
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t0 t1
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Time

Fig. 13.18 Transit method
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Substituting for ω and p from equations (13.28) and (13.29) into equation (13.32) leads to:

K = y0 −





(y0 − yr) cos

(
π (t0 − t1)

t2 − t0

)

cos

(
π (t0 − t1)

t2 − t0

)
− cos

(
π (2tr − t0 − t1)

t2 − t0

)





Although the above formula may look complicated it may be broken down into a computing routine as
follows:

tx = (t0 − t1)

ty = (t2 − t0)

tz = (2tr − t0 − t1)

c1 = cos

(
180tx

ty

)
(13.33)

c2 = cos

(
180tz

ty

)

K = y0 − (y0 − yr)c1

c1 − c2

Note that the 180 in the c1 and c2 terms is to allow the operating mode of the calculator to be in degrees
rather than radians.

The advantage of this method is that the observer does not need to touch the instrument during obser-
vations as all observations are of time. This is a considerable advantage as the gyro is a very sensitive
instrument and the motion of the moving shadow mark will easily be upset by the slightest disturbance.

A further improvement of this method is to take the time at every scale division and use all the data in a
least squares solution. Clearly taking each time with a stopwatch every few seconds is not practical but if
the swing is recorded on video tape and played back to identify the frames where the moving mark passes
each scale division then, at 25 frames per second, each time can be recorded to the nearest 0.02 seconds.

13.3.6 The practical solution of the north finding equation

To solve the north finding equation, equation (13.8), each of the terms must be solved for.
In the above section, on the practical solution of the equation of motion, two methods were presented

for the solution of B and d, the scale readings for the centres of swing in the spin and nonspin modes
respectively. In practice d will be determined twice, before and after the determinations of B. The two
solutions might vary a little because of heating effects in the gyro and stretching and twisting of the tape.
If the two determinations of the midpoint of swing in the nonspin mode are d1 and d2 then the value of d
is taken as:

d = d1 + 3d2

4
(13.34)

The weighting in equation (13.34) is purely arbitrary but reflects best experience.
To find the torque ratio constant, C, two sets of observations are made with the theodolite pointing a

little either side of north. Equation (13.8) may be applied to each set of observations as follows:

N = H1 + sB1(1 + C) − sCd + A one side of north (13.35)

N = H2 + sB2(1 + C) − sCd + A the other side of north (13.36)
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If equation (13.36) is taken from equation (13.35) then:

0 = (H1 − H2) + s(B1 − B2)(1 + C)

and so, on making C the subject of the equation:

C = (H1 − H2)

s(B2 − B1)
− 1 (13.37)

Therefore, to determine the torque ratio constant for the instrument, the horizontal circle reading of the
theodolite is taken for each pointing of the theodolite, a little east and a little west of north, when the
observations for the determination of the midpoint of swing in the spin mode are made. Once the torque
ratio constant C has been found then the value will hold for all observations over a limited latitude range of
about 10′ of arc, or about 20 km in a north–south direction. Alternatively if C is observed and computed,
C1 at latitude φ1, its value, C2 at latitude φ2, may be found from:

C2 = C1
cos φ1

cos φ2

There is no means of determining s, the value of one division of the gyro scale in angular measure. The
GAK1 handbook states that it is 10′ or 0.19g(=615.6′′). 600′′/div is therefore taken as a working, though
approximate value.

The additive constant, A, is found by calibrating the gyro on a line of known bearing. The bearing
should be an astronomical azimuth, and if the gyro is subsequently to be used on stations where projection
coordinates are known or are to be found then corrections for convergence and ‘t − T ’ must also be
applied.

13.3.7 Practical observations

Firstly, an approximate direction of north is required. This may be obtained from known approximate
coordinates of the instrument and another position, from a good magnetic compass provided that the local
magnetic deviation and individual compass error are well known, an astronomic determination of north,
or most easily from the use of the gyro in the ‘unclamped method’.

In the unclamped method the mast is dropped in the spin mode. Instead of the theodolite remaining
clamped and the moving mark being observed, the theodolite is unclamped and the observer attempts to
keep the moving mark on the 0 division by slowly rotating the theodolite to follow the moving mark. At the
full extremities of this motion the theodolite is quickly clamped up and the horizontal circle is read. The
mean of two successive readings gives a provisional estimate of north.

If the difference between the two readings is greater than a few degrees it is best to repeat the process
starting with the theodolite at the previous best estimate of north before dropping the mast. The precision
of this as a method of finding north is, at best, a few minutes of arc. That is provided that a steady hand
is used, the moving mark is kept strictly on the 0 division and that the value of d, the centre of swing
on the gyro scale when the spinner is not spinning, is strictly 0. The whole process takes about 10 to
15 minutes.

Having achieved pre-orientation, the user is then ready to make sufficient observations to find the
horizontal circle reading equivalent to north, or more likely, the azimuth of a Reference Object (RO).
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The suggested order of observations, irrespective of the method of finding K (amplitude or transit), is as
follows:

Point to RO. Horizontal circle reading (RO) HRO
Point the theodolite about half a degree to the west of north
Horizontal circle reading (fix) H1
Observations for centre of swing, non-spin mode K = d1
Observations for centre of swing, spin mode K = B1
Point the theodolite about half a degree to the east of north
Observations for centre of swing, spin mode K = B2
Observations for centre of swing, non-spin mode K = d2
Horizontal circle reading (fix) H2
Point to RO. Horizontal circle reading (RO) HRO

The solution is then found from equations (13.44) or (13.45), and (13.46).
The first and last observations are to the RO. This gives two independent estimates of the same horizontal

circle reading and ensures that the theodolite has not been disturbed during the lengthy observational
process. This may occur if the instrument is mounted on a tripod in damp or sunny conditions in which a
wooden tripod may twist. A tripod may easily be knocked during operations.

The two determinations of K = d are, time wise, either side of both the determinations of K = B. This
means that the spinner only needs to be run up once for the two separate determinations of K = B. However,
it is good practice to allow the spinner to hang spinning for about 20 minutes before any observations of
either K = d or K = B. This will allow the internal temperature of the instrument to stabilize and to remove
any residual twisting of the tape that may have occurred while travelling. Between the determinations of
K = B, east and west of north, the spinner must be clamped up when the theodolite is turned.

If pre-computed values of C and d already exist and can be relied upon at the level of precision that the
operator is working to, then the observational process may be reduced to:

Point to RO. Horizontal circle reading (RO) HRO
Point the theodolite as close to north as possible
Horizontal circle reading (fix) H
Observations for centre of swing, spin mode K = B
Point to RO. Horizontal circle reading (RO) HRO

The solution is then found from equation (13.8).

Worked examples

Example 13.4 Amplitude method
From the following set of observations and data find the azimuth of the Reference Object (RO).

Observations
Horizontal circle reading (RO) 333◦ 45′ 16′′ HRO
Observations with the theodolite pointing about half a degree to the west of north:
Horizontal circle reading (fix) 338◦ 34′ 41′′ H1
Non-spin mode K = d1 Successive turning points at −8.16, +10.35, −8.00 and +10.27 scale

divisions
Spin mode K = B1 Successive turning points at −0.30, +6.61 and −0.26 scale divisions
Observations with the theodolite pointing about half a degree to the east of north
Spin mode K = B2 Successive turning points at −6.74, +4.24 and −6.72
Non-spin mode K = d2 Successive turning points at +11.24, −8.88, +11.20 and −8.76
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Horizontal circle reading (fix) 339◦ 34′ 52′′ H2
Horizontal Circle Reading (RO) 333◦ 45′ 16′′ HRO

Data A = +01′ 23′′ s = 600′′/div
Computations

Compute midpoints of swing using equations (13.36) for B and (13.37) for d
d1 = 1.145 B1 = 3.165 B2 = −1.245 d2 = 1.180

Find the ‘mean’ value of d from equation (13.33) d = 1.171
Find the torque ratio constant, C, from equation (13.36) C = 0.3647

Use the north finding equation, equation (13.8), to find N , the horizontal circle reading of the theodolite
equivalent to north. Either the values observed to the east or to the west of north may be used. Both sets of
data will produce exactly the same answer. Both computations may be done as a check upon the arithmetic
of this computation and that of finding C. N = 339◦ 15′ 00′′

Azimuth of RO = HRO − 339◦ 15′ 00′′ = 354◦ 30′ 16′′

Example 13.5 Transit method
From the following set of observations and data find the bearing of the Reference Object (RO).

Observations
Horizontal circle reading (RO) 333◦ 45′ 16′′ HRO
Observations with the theodolite pointing about half a degree to the west of north
Horizontal circle reading (fix) 338◦ 31′ 05′′ H1

Non-spin mode K =d1 y0 =0 yr =+5 t0 =0.00s tr =23.32s t1 =33.45s t2 =58.34s

Spin mode K =B1 y0 =+2 yr =+8 t0 =0m 0.00s tr =1m 2.32s t1 =4m 3.47s t2 =7m 11.06s

Observations with the theodolite pointing about half a degree to the east of north

Spin mode K =B2 y0 =−2 yr =+3 t0 =0m 0.00s tr =1m 41.99s t1 =3m 43.41s t2 =7m 12.59s

Non-spin mode K =d2 y0 =0 yr =+5 t0 =0.00s tr =21.48s t1 =33.90s t2 =58.01s

Horizontal circle reading (fix) 339◦ 41′ 39′′ H2
Horizontal circle reading (RO) 333◦ 45′ 16′′ HRO

Data A = 01′ 23′′ s = 600′′/div
Computations

Compute midpoints of swing using equation (13.33)

d1 tx = −33.45 ty = 58.34 tz = 13.19 c1 = −0.2284 c2 = 0.7582 d1 = 1.158

B1 tx = −243.47 ty = 431.06 tz = −118.83 c1 = −0.2022 c2 = 0.6478 B1 = 3.427

B2 tx = −223.41 ty = 432.59 tz = −19.43 c1 = −0.0516 c2 = 0.9901 B2 = −1.752

d2 tx = −33.90 ty = 58.01 tz = 9.06 c1 = −0.2620 c2 = 0.8820 d2 = 1.145

Find the ‘mean’ value of d from equation (13.33) d = 1.148
Find the torque ratio constant, C, from equation (13.36) C = 0.3624

Use the north finding equation, equation (13.8), to find N , the horizontal circle reading of the theodolite
equivalent to north. Either the values observed to the east or to the west of north may be used. Both sets of
data will produce exactly the same answer. Both computations may be done as a check upon the arithmetic
of this computation and that of finding C. N = 339◦ 15′ 00′′

Azimuth of RO = HRO − 339◦ 15′ 00′′ = 354◦ 30′ 34′′
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13.3.8 Sources of error

The main sources of error associated with the gyro, other than those errors that apply just to the theodolite
observations, are:

(1) The assumed value of 1 scale unit in angular measure

There is uncertainty in the value of s of about 5% of its true value. The term s appears twice in
equation (13.8) and once in equation (13.37). When the value of C has been determined with
equation (13.37) it may be substituted into equation (13.8) and rearranged to give:

N = H1 + (B1 − d)(H1 − H2)

(B2 − B1)
+ sd + A

The effect of an error in s may therefore be minimized by minimizing the size of d. This may be achieved
with very careful use of a screwdriver by adjusting the point of suspension of the tape. The resulting value
of d can then be found by the amplitude or a transit method. The effect of the error in s upon the computed
value of N will be δN = dδs. If δs is assumed to be 20′′, and this can be no more than an assumption,
then its effect will be reduced to 2′′ if d is reduced to 0.1 of a scale division. This is not easily achieved,
but it can be done.

(2) Other oscillations

So far it has been assumed that the suspended gyroscope is a single degree of freedom system. That is,
the only way the mast can move is a simple rotation about its own axis. It can be shown that there are in
fact five degrees of freedom. The top of the mast may swing like a pendulum both in a north–south and
an east–west direction. The bottom of the mast may also swing like a pendulum both in a north–south
direction and an east–west one with respect to the top of the mast. In practice, with a well set up gyro
these swings should be very small, but when the spinner is spinning the effect upon the moving shadow
mark is to add four further damped harmonic motion terms to the equation of motion. Equation (13.7) now
becomes:

i=5∑

i=1

[
Mie

−Dit cos(ωi(t − pi))
] + K − y = 0

This equation is of course quite unmanageable, there are 21 unknowns that need to be solved for. Fortunately
the magnitudes of all the oscillations are quite small, and provided the gyro is allowed to settle down
before the readings start the effects of the oscillations become negligible. This is because the damping
terms associated with the other oscillations are larger than that of the main oscillation. One oscillation has
a period of half a second. This oscillation is often seen on the scale as a 2 Hz wobble when the mast is
released. It takes a steady hand to be able to release the mast so that this movement is not significant. If a
small 2 Hz wobble is present then it is best to let the gyro oscillate until the 2 Hz wobble has decayed and
is not visible to the naked eye.

(3) Tape zero drift

When the GAK1 is in transit, with the clamp tightened, the mast is held in position so that there is no
tension in the tape. When the instrument is in operation, in either the spin or nonspin mode, the tape
supports the full weight of the mast. The tape is a very fine piece of metal, designed so that the torsion in
it is a practical minimum. The result must be that the tension in the tape is approaching the point where
the tape may pass its elastic limit when in use. During operation, therefore, the tape may experience some
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plastic or permanent deformation. Although the main effect will be in the direction of gravity there may
also be some rotational distortion.

The mast contains an electric motor to drive the spinner. As the instrument warms up during operation
there may be temperature effects upon the tape. Although the instrument is designed so that local magnetic
fields do not have a significant effect, there will be some residual effect, especially if the instrument is
operated near electrical or magnetic sources.

(4) Change in the spin rate

The period of an oscillation depends, among other things, on the angular velocity of the spinner. The
spinner is kept at a constant angular velocity by a power/control unit. As the battery in the power/control
unit runs down during a set of observations there must be an effect upon the velocity of the spinner. It has
been shown that a 0.1 volt change in the power produces a 0.1 second change in the period. It will not matter
if the voltage is not the same for every set of observations, but changes in voltage during observations may
upset the results. It has also been shown that changes in temperature will also affect the spin rate.

(5) Irregularities in the engraving of the gyro scale

The effect of errors in the engraving of a glass theodolite circle is reduced by comparing opposite sides of
the circle in a single observation and by using different parts of the circle in different observations. This
is not possible with the gyro and so errors must be assumed to be negligible. There is no practical test that
the user can perform to determine the standard error of a scale division. In this respect the only quality
assessment that can be made is in terms of the manufacturer’s reputation.

(6) Dislevelment in the prime vertical

When the theodolite is perfectly levelled, the mast in its rest position would hang vertically from its point
of suspension. If the theodolite was now dislevelled the mast would still hang vertically but would be
in a different spatial position with respect to the body of the gyro housing and thus to the gyro scale.
If the dislevelment is in the prime vertical then all subsequent readings on the gyro scale will be displaced
left or right. This will be a constant error for each setup of the instrument. One second of dislevelment
produces about one second of error in the computed azimuth. As the plate bubble on the theodolite may
have a nominal scale value of 20′′/division then dislevelment in the prime vertical would appear to be a
significant source of error. The only practical solution to the problem is to level the instrument as precisely
as possible. If further determinations are to be made so that a mean result is taken then the instrument
should be dislevelled and re-levelled between determinations.

(7) Additive constant drift

The additive constant A is a function of the alignment of the axis of the spinner and the system of projection
of the moving mark. The additive constant will be affected by rough handling of the gyro and scratches
or knocks to the interfacing surfaces of gyro and theodolite. It will also be affected by overtightening
the ring clamp. Even with good handling the additive constant can change slowly over a period of time,
presumably because of wear, especially on the bearings of the spinner axle. For accurate work the gyro
should be calibrated frequently on lines of known azimuth to monitor the drift of the additive constant.

13.3.9 Error analysis

There is little in the published literature that gives a definitive statement of the precision that may be
achieved with a gyrotheodolite. The manufacturers’ literature states that an azimuth good to 20′′ may be
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achieved in 20 minutes of time with the amplitude method. This assumes that the torque ratio constant, C,
and the midpoint of swing in the nonspin mode, d, are already known.

A formal error analysis of the amplitude method, equations (13.36) and (13.37), using the realistic
standard error of 0.04 scale divisions for an observation leads to uncertainties for d and B as σB = 0.024
and σd = 0.019 scale divisions respectively. For the transit method with a standard error of time of
0.2 seconds the values are σB = 0.011 and σd = 0.038. These values are for guidance only as the errors
will vary with the size of the swings in the transit methods and with any disturbance of the instrument when
the micrometer is moved in the amplitude method. In computing N from equation (13.8) using realistic
values of σN around 22′′ may be obtained for the amplitude method and 31′′ for the transit method.

B is best determined by the transit method because it gives a marginally better result and the observer
does not have to disturb the instrument by touching it. d is best determined by the amplitude method. In all
cases the size of the swing should be minimized. In practical terms, if the swing appears to be large then
the gyro should be clamped up and the spinner released again so that the swing does not exceed a few
divisions.

The value of d should be adjusted to be less than 0.1 of a scale division, any larger and the standard
errors described above will be significantly increased.

13.3.10 The gyroscopic azimuth

A gyroscopic azimuth is essentially an astronomical azimuth and therefore to find the instrumental con-
stant A the gyrotheodolite must be calibrated on a line of known astronomical azimuth. To find the
astronomical azimuth of a line:

(1) Astronomical observations to sun or stars must be made (outside the scope of this book).
(2) Or the deviation of the vertical must be calculated from the slope of the geoid which in turn must be

derived from a geoid model related to the ellipsoid used in the determination of geodetic position and
the values put into the Laplace equation:

AA = AG + (λA − λG) sin φ

where AA = astronomic azimuth
AG = geodetic azimuth
λG = geodetic longitude
λA = astronomic longitude. Apply the east–west deviation of the vertical (geoid slope) to λG
φ = latitude

(3) Or ignore the difference between astronomic and geodetic azimuth. The difference is not likely to be
more than a few tens of seconds of arc at most.

13.3.11 Gyromat 3000

The Gyromat 3000 from Deutsche Montan Technologie GmbH is a fully automated gyrotheodolite which
requires very little interaction with the observer once it is set up correctly (Figure 13.19). It takes about
10 minutes for the instrument to give a readout which is claimed to be accurate to 3′′, or to 30′′ in
2 minutes. The solution quality may be given as part on the data output. The measuring sequence of
determining the reversal points is fully automatic. The instrument works at an optimum temperature and
although there is internal software that corrects for variations in temperature it is usually a good idea to let
the instrument stabilize in temperature before use. For precise work this is always good practice with any
survey instrument. The operating temperature range of −20◦C to +50◦C should accommodate most work.
For tunnelling work in winter, where the outside temperatures are low but the underground temperatures are
high, a substantial portion of this range may be used. Like the GAK1 and any other suspended gyroscope,
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Fig. 13.19 Gyromat 3000 – courtesy of Deutsche Montan Technologie GmbH

the Gryomat 3000 becomes less sensitive at higher latitudes and is effectively inoperative within 10◦ of
latitude of the poles. There is a serial interface to connect to a data storage device or to an electronic
theodolite and wireless remote control and data transmission via Bluetooth. The instrument is quite heavy
at 11.5 kg plus theodolite, tripod and case. More details at http://www.gyromat.de.

13.4 LINE AND LEVEL

13.4.1 Line

The line of the tunnel, having been established by wire survey or gyro observations, must be fixed in
physical form in the tunnel. For instance, in the case of a Weisbach triangle (Figure 13.20) the bearing
WuW1 can be computed; then, knowing the design bearing of the tunnel, the angle θ can be computed and

Fig. 13.20 Plan view
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Fig. 13.21 (a) Section, and (b) plan

turned off to give the design bearing, offset from the true by the distance XWu. This latter distance is easily
obtained from right-angled triangle W1XWu.

The line may then be physically established by carefully lining in three plugs in the roof from which
weighted strings may be suspended as shown in Figure 13.21(a). The third string serves to check the other
two. These strings may be advanced by eye for short distances but must always be checked by theodolite
as soon as possible.

The gradient of the tunnel may be controlled by inverted boning rods suspended from the roof and
established by normal levelling techniques.

In addition to the above, ‘square marks’ are fixed in the tunnel by taping equilateral triangles from the
centre-line or, where dimensions of the tunnel permit, turning off 90◦ with a theodolite (Figure 13.21(b)).
Measurements from these marks enable the amount of lead in the rings to be detected. For instance, if
D1 > D2 then the difference is the amount of left-hand lead of the rings. The gap between the rings is
termed creep. In the vertical plane, if the top of the ring is ahead of the bottom this is termed overhang, and
the reverse is look-up. All this information is necessary to reduce to a minimum the amount of ‘wriggle’
in the tunnel alignment.

With a total station using conventional survey instrument and target mounts may be permanently attached
to the wall of the tunnel to ensure forced centring. If that is the case then if all the mounts are on the same
side of the tunnel then either it will not be possible to see round the bend if the curvature is to the same side
as the mounts or there may be systematic horizontal refraction effects. Therefore where possible target and
instrument mounts should be on alternate sides of the tunnel.

Where tunnel shields are used for the drivage, laser guidance systems may be used for controlling the
position and attitude of the shield. A laser beam is established parallel to the axis of the tunnel (i.e. on
bearing and gradient) whilst a position-sensing system is mounted on the shield. This latter device contains
the electro-optical elements which sense the position and attitude of the shield relative to the laser datum.
Immunity to vibrations is achieved by taking 300 readings per second and displaying the average. Near
the sensing unit is a monitor which displays the displacements in mm automatically corrected for roll.
Additionally, roll, lead and look-up (Figure 13.22) are displayed on push-button command along with
details of the shield’s position projected 5 m ahead. When the shield is precisely on line a green light glows
in the centre of the screen. All the above data can be relayed to an engineers’ unit several hundred metres
away. Automatic print-out of all the data at a given shield position is also available to the engineers.

When a total station with automatic target recognition is used then it can lock on to and track a reflector
on the tunnel boring machine (TBM). A steering control unit may be used to interface electronically
between the guidance system, the push ram extensiometers and the TBM steering controls. The system
briefly described here is the one designed and manufactured by ZED Instruments Ltd, London, England.

In general the power output of commercial lasers is of the order of 5 mW and the intensity at the centre
of a 2-cm diameter beam approximately 13 mW/cm2. This may be compared with the intensity of sunlight
received in the tropics at noon on a clear day, i.e. 100 mW/cm2. Thus, as with the sun, special precautions
should be taken when viewing the laser (see Section 12.9).
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Fig. 13.22 Roll, lead and look-up

Practically all the lasers used in tunnelling work are wall- or roof-mounted, and hence their setting is
very critical. This is achieved by drilling a circular hole in each of two pieces of plate material, which are
then fixed precisely on the tunnel line by conventional theodolite alignment. The laser is then mounted a
few metres behind the first hole and adjusted so that the beam passes through the two holes and thereby
establishes the tunnel line. Adjustment of the holes relative to each other in the vertical plane would then
serve to establish the grade line.

An advantage of the above system is that the beam will be obscured should either the plates or laser
move. In this event the surveyor/engineer will need to ‘repair’ the line, and to facilitate this, check marks
should be established in the tunnel from which appropriate measurements can be taken.

In order to avoid excessive refraction when installing the laser, the beam should not graze the wall.
Earth curvature and refraction limit the laser line to a maximum of 300 m, after which it needs to be moved
forward. To minimize alignment errors, the hole furthest from the laser should be about one-third of the
maximum beam distance of the laser.

13.4.2 Level

In addition to transferring bearing down the shaft, height must also be transferred.
One particular method is to measure down the shaft using a 30-m standardized steel band. The zero of

the tape is correlated to the surface BM as shown in Figure 13.23, and the other end of the tape is precisely
located using a bracket fixed to the side of the shaft. This process is continued down the shaft until a level
reading can be obtained on the last tape length at B. The standard tension is applied to the bottom of the
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Fig. 13.23 Transfer height down a shaft

tape and tape temperature recorded for each bay. A further correction is made for elongation of the tape
under its own weight using:

Elongation (m) = WL/2AE

where E = modulus of elasticity of steel (N/mm2)
L = length of tape (m)
A = cross-sectional area of tape (mm2)

W = mass of tape (N)

Then the corrected distance AB is used to establish the value of the underground BM relative to the
surface BM.

If a special shaft tape (1000 m long) is available the operation may be carried out in one step. The
operation should be carried out at least twice and the mean value accepted. Using the 30-m band, accuracies
of 1 in 5000 are possible; the shaft tape gives accuracies of 1 in 10 000.

Total stations have also been used to measure shaft depths. A special reflecting mirror at the top of the
shaft is aligned with the EDM instrument and then rotated in the vertical plane until the measuring beam
strikes a corner-cube prism at the shaft bottom. In this way the distance from the instrument to the reflector
is obtained and subsequently adjusted to give the distance from mirror to prism. By connecting the mirror
and prism to surface and underground BMs respectively, their values can be correlated.

Exercises

(13.1) (a) Describe fully the surveying operations which have to be undertaken in transferring a given
surface alignment down a shaft in order to align the construction work of a new tunnel.

(b) A method involving the use of the three-point resection is often employed in fixing the position of
the boat during offshore sounding work.

Describe in detail the survey work involved when this method is used and discuss any precautions
which should be observed in order to ensure that the required positions are accurately fixed. (ICE)

(13.2) Describe how you would transfer a surface bearing down a shaft and set out a line underground in
the same direction.

Two plumb lines A and B in a shaft are 8.24 m apart and it is required to extend the bearing AB along a
tunnel. A theodolite can only be set up at C 19.75 m from B and a few millimetres off the line AB produced.
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If the angle BCA is 09′ 54′′ what is the offset distance of C from AB produced? (ICE)

(Answer: 195 mm)

(13.3) The following observations were taken with a gyrotheodolite. Find the horizontal circle reading
equivalent to north. The observations in the spin mode are by the transit method and the observations in
the non-spin mode are by the amplitude method.

Horizontal circle reading (RO) 33◦ 5′ 6′′ HRO
Observations with the theodolite pointing about half a degree to the west of north
Horizontal circle reading (fix) 227◦ 23′ 30′′ H1
Non-spin mode K = d1 Turning points: −3.19, +3.46, −3.03, +3.38
Spin mode K = B1, y0 =0, yr =+7, t0 =0m 0.00s, tr =1m 3.02s, t1 =4m, 3.24s, t2 =7m 10.90s

Observations with the theodolite pointing about half a degree to the east of north
Spin mode K = B2, y0 =−3, yr =+2, t0 =0m 0.00s, tr =1m 41.69s, t1 =3m 43.34s, t2 =7m 11.65s

Non-spin mode K = d2 Turning points: +4.14, −3.88, +4.06, −3.76
Horizontal circle reading (fix) 228◦ 23′ 58′′ H2
Horizontal circle reading (RO) 33◦ 5′ 6′′ HRO

A = +02′ 12′′ s = 600′′/div

(Answer: d = 0.1325 B1 = 1.6418 B2 = −2.7382 C = 0.3804 N = 227◦ 47′ 52′′ Azimuth
of RO = 165◦ 17′ 14′′)

(13.4) The following set of observations, using the transit method has been made. Find the horizontal
circle reading of the theodolite that is equivalent to north.

Horizontal circle reading (RO) 47◦ 34′ 29′′ HRO
Observations with the theodolite pointing about half a degree to the west of north
Horizontal circle reading (fix) 9◦ 30′ 23′′ H1
Non-spin mode K =d1, y0 =0, yr =−3, t0 =2m 36.21s, tr =2m 44.50s, t1 =3m 3.50s, t2 =3m 31.64s,
Spinmode K =B1, y0 =+3, yr =−7, t0 =10m 43.46s, tr =12m 2.60s, t1 =14m 20.83s, t2 =17m 56.99s

Observations with the theodolite pointing about half a degree to the east of north
Spin mode K =B2, y0 =−1, yr =+8, t0 =9m 57.60s, tr =11m 10.48s, t1 =13m 27.77s, t2 =17m 10.64s

Non-spin mode K =d2, y0 =0, yr =+2, t0 =6m 15.51s, tr =6m 23.49s, t1 =6m 43.77s, t2 =7m 10.93s

Horizontal circle reading (fix) 10◦ 30′ 19′′ H2
Horizontal circle reading (RO) 47◦ 34′ 31′′ HRO
A = +2′ 31′′ s = 600′′/div

(Answer: d1 = +0.091 B1 = +2.952 B2 = −1.489 d2 = +0.078 d = 0.081 C = 0.3494
N = 10◦ 12′ 27′′ Azimuth of RO = 37◦ 22′ 3′′)
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Mass data methods

14.1 INTRODUCTION

Almost all the survey methods mentioned in this book so far relate to individual survey observations and
their subsequent use in survey computations. For example, in a conventional resection, observations are
taken at one point to three other points and those observations along with the coordinates of the targets are
used to find the coordinates of the instrument point. If a number of points were required the productivity
rate would be only a few points per day at best and so to find the coordinates of many points by such a
method would be slow and tedious in the extreme. Finding a series of control points with a traverse, or by
using the least squares adjustment of a network, would be more productive.

The surveyor could then use a total station and data logger to collect a series of detail points more
rapidly. Even so the data capture rate would depend upon the speed at which the surveyor could travel
from point to point and even in the most favourable environment the data capture rate would not exceed a
few hundred points per day. If it is not necessary for the surveyor to physically identify each point on the
ground and/or it is not necessary to remain static at each point during data capture then the productivity
rate can be improved.

Reflectorless EDM makes it possible to measure to a point without that point being visited, though
details of the point still need to be recorded to make the measurement useful. If stringlines of features or
ground profiles are followed then data may be captured on the fly, for example with GPS. With ground
profiles, such as for DTMs, the data rate may be limited by the speed with which the vehicle mounted
GPS receiver can travel over the ground. The density of such data is therefore likely to be variable and
will depend on the ability of the vehicle to maintain a constant speed, to cover the area without large
or irregular gaps between runs and the ability of the GPS to maintain lock onto the satellites. Although
relatively large amounts of data may be collected by a vehicle mounted GPS the overall quality of the data
may be variable. With such a method several thousands of points a day could easily be captured. However,
higher data capture rates are not really possible where it is necessary for instruments, whether GPS or
corner cube prisms, to visit every point of detail.

This chapter is concerned with some of those data capture methods that allow the surveyor to identify
points and collect their coordinates in a remote way and do so at data capture rates that far exceed those
possible by the techniques described in the last paragraph.

14.2 PHOTOGRAMMETRY

As the word ‘photogrammetry’ implies, it means measurements from photographs, and in the case of aerial
photogrammetry it is measurements from aerial photographs.

The major use of aerial photogrammetry is in the preparation of contoured plans from the aerial
photographs. With the aerial camera in the body of the aircraft, photographs are taken along prearranged
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Fig. 14.1 Distortion; an oblique photograph of a rectangular door

flight paths, with the optical axis of the camera pointing vertically down. Such photographs are termed
vertical photographs.

A single photograph contains a lot of detailed information about the subject. However, a photograph
cannot be a map of the ground or a plan of a building. At best, a photograph shows the view through the
camera with distortions due to the optics of the camera, the atmosphere and the position and orientation
of the camera. Consider Figure 14.1 which shows a picture of a garage door. The door is rectangular but
because of the position of the camera, the left and right edges appear with different heights, likewise the
top and the bottom have different lengths. Therefore even if one of the dimensions had been measured
with a tape, say, it would not be possible to take scaled measurements of the other dimensions from the
photograph. Essentially there is insufficient information available.

Photogrammetry enables the user to derive metric information about a building façade, the terrain, or
any three-dimensional object by making measurements on photographs of that object. Photogrammetry
may be used with many forms of imagery taken within the visible electromagnetic spectrum and beyond.
The mathematics involved in photogrammetry is relatively simple, but does involve many simultaneous
calculations. Detail within a photograph may be given two-dimensional XY coordinates within the plane of
the image and by the conformal transformations of shift, scale and rotation these may be turned into object
XY coordinates in a plane parallel to the image. Figure 14.2 shows the relationship between an object,
the ground, the negative in the camera and an equivalent positive image. In conventional photography the
positive image could be made by contact printing. In a digital camera the positive image may be derived
with software.

The third dimension of the object, i.e. in the Z plane, can be found from the relative displacement of
elements of the image from pairs of photographs. A point’s depth within the object field will affect its
displacement from its true orthogonal position. The image scale will dictate the magnitude of the linear
and radial displacements in the image. The change in the position of an object from one photograph to
the next is known as stereoscopic parallax or x-parallax. The amount of parallax depends on the object’s
height. Higher points have greater parallax. See Figure 14.3.

Given any two overlapping images, a stereo pair, it is possible to view both images simultaneously to
replicate a stereo binocular view. Look at the top pair of photographs in Figure 14.4. The photographs
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Fig. 14.4 Stereo images
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were taken from two positions close to each other. In the second pair the photographs were taken from
positions further away from each other. Hold the page up, focus on a distant object over the top of the
page and quickly bring your gaze down so that you are looking at the left image with your left eye and the
right image with your right eye. You should now see three images, with the central one appearing to be a
three-dimensional image. Of the other images, the left one is now seen with the right eye and the right one
with the left eye. Now look down to the lower set of images. Notice how the apparent depth of the second
pair of images is greater than that of the first pair.

If you can form the three-dimensional image with the top pair comfortably you may have difficulty
with the bottom pair because the depth exaggeration is much greater. When you look at any object you
get a three-dimensional image because your two eyes see slightly different images; your eyes are a few
centimetres apart. With the photographs in Figure 14.4 the top pair of photographs were taken with the
camera positions about a metre apart and the bottom pair much more than that.

The simplest practical viewing aid is a stereoscope, although this does not necessarily allow for accurate
measurement. The two images can be brought into a clear three-dimensional stereo view at any point by
bringing them closer together or further apart in the X direction, i.e. parallel to the human eye base.
A displacement in the X direction is proportional to the magnitude of the relief, i.e. the Z dimension in the
stereo model and so the third dimension of the object may be measured.

Developing the technology of stereoscopic viewing and measurement has presented manufacturers
with many challenges over the last century. The major photogrammetric equipment manufacturers were
those that could combine the high quality mechanical engineering needed for analogue stereo restitution
instruments with high precision optics.

For many years photogrammetry was used almost exclusively for mapping using aerial photographs
because of the opto-mechanical limitations of the instrumentation. Photogrammetry was the only practical
way of mapping large areas and for producing digital elevation models (DEM). It has been used for mapping
Mars and the Moon.

Photogrammetry has a number of advantages over conventional ground survey techniques using total
stations or GPS. It is more cost effective over large areas. There is a much shorter time on site although
much more work is later required in the office. Most of the data capture can be done without access to the
site. The photographs form a permanent record of the site at the instant that the photographs were taken
and this source data can be revisited and further information extracted if required.

Although photographs were taken for terrestrial measurements long before the invention of aircraft it
was the military application of aerial survey in World War One that created the environment for aerial
imaging and mapping by government agencies for decades after and terrestrial applications did not come
to the fore until relatively recently. There are now available software systems that run on desktop PCs, the
websites of the major manufacturers such as Leica, Zeiss and Rollei indicate the current level of equipment
and software sophistication.

Prior to the other techniques described later in this chapter digital photogrammetry was the only way of
capturing mass data at successive epochs to enable monitoring of change in a relatively short time frame.
With digital output, direct comparisons are possible with statistical rigour, in days rather than in the weeks
or months necessary to capture and process large projects with many points observed by conventional
means. All the data in the photograph is captured instantaneously so no change can take place during
the period of data capture. The photograph literally gives a snap shot in time. As all the information is
contained with the photograph then it is possible to revisit the source data and verify that measurements
taken from the photographs are correct. This is not possible with other survey techniques.

In monitoring, it is likely that coordinates from each epoch will be compared. Distances, areas or
volumes may be determined from the coordinates if required. Absolute and relative displacement vectors
with their associated confidence levels may be determined. In such systems, control may be arbitrary or
fixed. If the control is arbitrary then the target itself provides unambiguous features that can be measured.
If the target has no distinct features then stick on targets may be used. With arbitrary control there will be
unique coordinate systems for each epoch and for each set of images. Lengths, areas and volumes may be
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derived for each epoch and these derived quantities compared. It may be necessary to include a scale bar
in the images to give consistent scale to the derived quantities of each epoch. With fixed control there is a
reference framework of control targets outside the object to be measured.

14.2.1 Basic principles

The essential processes involved in the production of a contoured plan or digital ground model from aerial
photographs are:

(a) Photography
(b) Control
(c) Restitution

In the following sections some important relationships are stated. In a number of sections the proofs
have been omitted for the sake of brevity. Those who wish to examine these proofs are directed to the
second edition of this book.

14.2.2 Photography

Conventional photographs may be taken using dimensionally-stable film in precision-built cameras
(Figure 14.5). However, increasingly, the photographs are taken with digital cameras. It is important

Lens assembly
Fliter

Cone

Between-lens shutter

Vacuum-backed platen

Magazine

Focal plane

Fig. 14.5 Aerial camera
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that all topographic detail must be clearly reproduced and therefore recognizable on the photograph, and
that the geometric relationships between the ground objects and the photo images are rigorously main-
tained. These conditions are governed largely by the atmospheric conditions prevailing at the time of
photography, aircraft movement, the characteristics of the camera and the scale used. If conventional film
is used then it and its processing will also affect the quality of the final product.

Cameras used for air survey, as with all other survey equipment, are precision-built, and their lenses are
of such high quality that aberrations are practically negligible. Lenses used in air survey cameras may be
classified broadly as wide-angle (90◦) with a principal distance (f ) of 152.4 mm used for standard mapping
or super-wide-angle (125◦) with a principal distance of 305.0 mm used for small-scale mapping. From the
engineering point of view the most popular lens is the wide-angle combined with a photograph format size
of 230 mm×230 mm (see Figure 14.6). The air photo has a central perspective projection with the lens as
origin.

After the lens system is a shutter which should be capable of exposing the whole film format for the
required interval at the same instant of time. In addition, image movement, caused largely by the apparent
movement of the ground relative to the aircraft, must also be reduced to negligible proportions, possibly
by a forward compensation mechanism which moves the film slightly during exposure to compensate for
the movement of the aircraft. The film may be kept flat by a low-pressure vacuum system or by pressure
pads acting against the film.

The so-called camera constants obtained from the calibration process are:

(a) The position of the principal point
(b) The focal length of the lens
(c) The pattern and magnitude of distortion over the effective photographic field.

f = 305 mm

f = 152.4 mm

Normal angle

Wide angle

Super-wide angle

f = 82.5 mm

60°

90°

125°

Fig. 14.6 Aerial camera lenses
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14.3 GEOMETRY OF THE AERIAL PHOTOGRAPH

First we need to consider the errors in an air photograph. These are largely caused by tilt in the plane of the
film at the instant of exposure and also displacement of object position due to ground relief. A photograph
is not a plan, except where the terrain is absolutely flat and level and the photograph axis is truly vertical.
This of course never happens in practice.

14.3.1 Definitions

Because of the pitch and roll of the aircraft in flight it is rare for a truly vertical photograph to be taken.
Figure 14.7 shows a near vertical photograph with the optical axis tilted at θ to the vertical. In practice θ

is usually less than 3◦. The definitions of some commonly used terms are as follows.

Photo axis: the right-angled x–y-axis formed by joining the opposite fiducial marks of the photograph.
This is the axis from which photo coordinates are measured. The x-axis approximates to the direction
of flight.

Optical axis: the line LpP from the lens centre at 90◦ to the plane of the photograph.

Principal distance: the distance Lp = f , from the lens to the plane of the photograph. The principal
distance may be referred to as the focal length.

Vertical axis: the line LvV in the direction of gravity, so 90◦ to a level datum plane.

Tilt: the angle θ between the vertical and optical axes (see also principal line).

Principal point (PP): the point p where the optical axis cuts the photograph, and coincides with the
origin of the photo axes.
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Plumb point: the point v where the vertical axis cuts the photograph.

Isocentre: the point i, where the bisector of the angle of tilt cuts the photograph.

Principal line: the line vip in the plane of the photograph giving the direction of maximum tilt of the
photograph. It is therefore at the angle θ to the horizontal.

Plate parallels: the lines at 90◦ to the principal line; they are level lines.

Isometric parallel: the plate parallel passing through the isocentre and forming the axis of tilt of the
photograph.

Flying height: the vertical height of the lens above ground at exposure. It is the height of the lens above
datum (e.g. MSL) minus the mean height of the terrain.

Swing: the angle s measured in the plane of the photograph, clockwise from the +y axis to the plumb
point. It defines the direction of tilt relative to the photo axes.

The main sources of error in the air photo will now be outlined.

14.3.2 Scale and its variation due to ground relief

In Figure 14.8 the scale of a photograph is the ratio of the distance on the ground to its imaged distance
on the photograph. Hence, by similar triangles:

Scale = ab/AB = f /H

At point C, it is obvious that the scale Sc = f /(H − hc). Thus scale S varies with relief throughout the
photograph and for any elevation (h) is given by:

S = f /(H − h) (14.1)
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14.3.3 Scale and its variation due to tilt

Figure 14.9 assumes flat terrain and indicates the axis of tilt through i; thus the scale at the isocentre is
common to both a tilted and a truly vertical photograph

(a) Scale at isocentre SI = Li/LI = Lv1/LV = f /H
(b) Scale at principal point Sp = Lp/LP = f /(H sec θ )
(c) Scale at plumb point Sv = Lv/LV = (f sec θ )/H
(d) Scale at random point a Sa = La/LA = Lv2/LV = (Lv1 + id2)/LV

= (f + ai sin θ )/H = (f + ya sin θ )H
where ya = ai, the distance from the isocentre

(e) Scale at random point b Sb = (f − yb sin θ )/H
b is on the opposite side of i from a

Thus it can be seen that the scale continually varies along the principal line with distance from the
isocentre. By definition, however, the scale along a plate parallel at a particular point will be constant
providing the ground is level. The basic equation considering ground relief h is therefore

S = ( f ± yb sin θ )/(H − h) (14.2)

and
dS

dy
= ± sin θ /H

14.3.4 Image displacement due to ground relief

Figure 14.10 shows an un-tilted photograph of undulating terrain. Point A, if projected orthogonally onto
a plan, would appear at B. Its true position on the photograph is therefore at b, and distance ab is the
displacement resulting from the height of A above the datum. By a consideration of similar triangles it can
be shown that

ab = va�h/H (14.3)

From equation (14.3) it can be seen that any increase in flying height would reduce the amount of dis-
placement ab, which in turn is directly proportional to the height �h of the object. It can also be seen that
if �h and H remain constant, displacement will increase with distance va from the plumb point.
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From Figure 14.10 it can be clearly seen that LV is parallel to AB and both are vertical. Thus LABV
forms a plane containing v, b and a, showing the displacement ba as being radial from the vertical LV at
v, which in a vertical photograph is the plumb point.

14.3.5 Image displacement due to tilt

Considering point a in Figure 14.11, whose distance from the isocentre on the tilted photograph is ia, and
on the un-tilted photograph is ia1, then the displacement �t due to tilt is given by

�t = ia − ia1

From consideration of the geometry of Figure 14.11 it can be shown that

�t = y2 sin θ /(f + y sin θ )

where y is the distance from the isocentre measured along the principal line in the direction of downward
slope. For any point off the principal line, the situation is as shown in Figure 14.12.

It can be seen that ia = id cos ϕ and ia1 = id1 cos ϕ. Therefore the displacement dd1 = �t1, projected
on to the principal line gives

�t = �t1 cos ϕ = (y cos ϕ)2 sin θ /(f + y cos ϕ sin θ )

so the general equation becomes

�t1 = y2 cos ϕ sin θ /(f + y cos ϕ sin θ ) (14.4)
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and if θ is small then y cos φ sin θ is negligible, compared with f , so

�t1 = y2 cos ϕ sin θ /f (14.5)

The equation shows that displacement is proportional to the distance from the isocentre squared, and will
therefore be greatest at the edges of the photograph. It shows also that increasing the focal length of the
camera will help to reduce the displacement. It can be shown that image displacement due to tilt must be
radial from the isocentre.

In addition to the complications already outlined, further displacements may result due to variation
in flying height, refraction of the rays of light (particularly near the body of the aircraft), camera and
photographic errors, etc. It can now be clearly seen that a photograph is not a plan, except where the axis
of the photograph is truly vertical and the ground is flat and level.
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14.3.6 Combined effect of tilt and relief

As already shown, displacement due to tilt and relief are not radial from any one point on the photograph.
Figure 14.13 shows ab as the top and bottom of a tall structure. The height displacement ab is radial from
the plumb point v, whilst the tilt displacements aa1 and bb1 are radial from the isocentre. Note the reverse
direction of displacement on the upper side of the photograph.

The treatment of such effects is to: (i) eliminate tilt displacement by a mathematical or optical rectifi-
cation of the photograph, i.e. reduce the tilted photograph to its horizontal equivalent; (ii) consider height
displacement on the rectified photograph – for instance, after rectification the equivalent position of the
plumb point v is at v1 (see also Figure 14.11) from which the height displacement a1b1 is radial.

14.3.7 To find the x and y tilts of a photograph

Knowing the focal length of the camera and the coordinates of the plumb point, the x and y tilts are given by

sin θy = yv cos θ /f sin θx = xv cos θ /f (14.6)

where θ is the tilt of the photograph and θy and θx are the component parts of the tilt in the y and x directions
respectively. Similarly yv and xv are the component parts of the vector pv in the y and x directions. Therefore,
all lines parallel to the principal line have the same maximum tilt and all lines at 90◦ to the principal line
(i.e. plate parallels) are horizontal.

14.3.8 Ground coordinates from a tilted photograph of flat terrain

In Figure 14.14 consider point a whose photo coordinates xa and ya are measured about the fiducial axes.
The flying height is H, the focal length is f , the tilt is θ and the swing is S. It is first necessary to obtain
the coordinates of a relative to the principal line axes, with the isocentre as origin (tilt displacement radial
from isocentre), i.e. x′

a, y′
a. Figure 14.14(b) illustrates the rotational effects where the angle between the

respective axes is α = 180◦ + S. The amount of translation necessary is pi = f tan(½θ ). Assuming a
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parallel through p, an examination of Figure 14.14(a) shows that the angle between the x-axes is a. Then
from Figure 14.14(b):

x′
a = pr − qr = xa cos α − ya sin α and y′

a = an + mr = ya cos α + xa sin α

To obtain the general form for these equations, substitute (180◦+S) for α and add the translation amount
pi = f tan( 1

2θ ) to obtain the new origin at i, then

x′ = −x cos S + y sin S (14.7)

y′ = −x sin S − y cos S + f tan
( 1

2θ
)

(14.8)

where x and y are the photo coordinates measured about the fiducial axes.
Equation (14.1), for scale on a tilted photograph, can now be applied to the reduced coordinates to give

the ground coordinates X and Y as follows:

X = Kx′ and Y = Ky′ where K = H/( f − y sin θ )

14.3.9 Ground coordinates from a tilted photograph of rugged terrain

The data in this case are exactly the same as in Section 14.4, plus the elevations h (heights above/below
MSL) of the points in question.

As the effect of ground relief is radial from the plumb point, then the rotation and translation is this
time relative to v, where pv = f tan θ , then

x′ = −x cos S + y sin S (14.9)

y′ = −x sin S − y cos S + f tan θ (14.10)

Thus, from Figure 14.15, the new coordinates of a are

y′
a = vr and x′

a = ra
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Mathematical rectification for each point is now carried out by considering horizontal planes passing
through the plate parallels of the points in question. For example, in the case of point a, the horizontal
plane through it is qra, and the rectified coordinates are therefore

y′′
a = qr = y′

a cos θ and x′′
a = ra = x′

a

The new focal length appropriate to the plane of rectification is now

f1 = Lq = Lv − qv = f sec θ − y′
a sin θ

We now have an un-tilted photograph of ground point A with a new focal length f1. It now only remains
to multiply the photo coordinates by their appropriate scale as in Section 14.3.2, giving

XA = x′′
a (H − ha)/f and YA = y′′

a(H − ha)/f

Worked example

Example 14.1 Two points A and B situated 10 and 40 m, respectively, above datum, are imaged on a
near-vertical aerial photograph, taken from an altitude of 2000 m with a camera of focal length 152 mm.
The photo coordinates of the points about the fiducial axes are measured by as follows:

x (mm) y (mm)

a +50.00 +100.00
b −100.00 +80.00
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If the tilt and swing of the photograph are 2◦ and 20◦, respectively, calculate the horizontal ground
distance AB.

x′
a = −50 cos 20◦ + 100 sin 20◦ = −12.78 mm

y′
a = −50 sin 20◦ − 100 cos 20◦ + 152 tan 2◦ = −105.76 mm

x′
b = 100 cos 20◦ + 80 sin 20◦ = +121.33 mm

y′
b = 100 sin 20◦ − 80 cos 20◦ + 152 tan 2◦ = −35.66 mm

Rectified coordinates:

x′′
a = x′

a = −12.78 mm

y′′
a = y′

a cos 2◦ = −105.70 mm

x′′
b = x′

b = +121.33 mm

y′′
b = y′

b cos 2◦ = −35.64 mm

New focal length per point:

f1a = f sec θ − y′
a sin θ = 152 sec 2◦ + 105.76 sin 2◦ = 155.78 mm

f1b = f sec θ − y′
b sin θ = 152 sec 2◦ + 35.66 sin 2◦ = 153.33 mm

Ground coordinates:

XA = x′′
a (H − ha)/fia = −12.78(2000 − 10.00)/155.78 = −163.26 m

YA = y′′
a(H − ha)/fia = −105.70 × 1990/155.78 = −1350.26 m

XB = x′′
b (H − hb)/fib = 121.33(2000 − 40.00)/153.33 = +1550.95 m

YB = y′′
b(H − hb)/fib = −35.64 × 1960/153.33 = −455.58 m

Ground distance:

D = (�X2 + �Y2)
1
2 = (1714.212 + 849.682)

1
2 = 1933.64 m

The above example serves to illustrate the need for a restitution system to correct photo measurements for
the effects of tilt and relief displacement but would never be used for any purpose in practice.

14.4 GROUND CONTROL

The establishment of ground control points, which are clearly distinguishable on the air photographs, is
very important to the photogrammetric process.

The minimum number of points required per photograph comprises two plan points to control position,
scale and orientation and three height points to control level in the spatial model. Ground control, fixed by
normal survey methods, should be more accurate than that attainable by the photogrammetric restitution
system used.

Control points must consist of detail already clearly and sharply visible on the photographs and which
can be well defined on the ground. Similarly, for height control the points chosen should lie in flat, horizontal
ground free from vegetation. Steep slopes or peaks should be avoided to reduce the large height errors that
would result from bad positioning within the photogrammetric process. The amount of control required
depends largely on the scale and accuracy of the finished plan.
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14.4.1 Pre-marked control

In the production of large scale engineering plans the control points are generally pre-marked targets. Their
locations are indicated from initial photography and then, when established, the area is re-flown. A popular
type of target used consists of a large white cross of durable material with arms in the region of 2 m long
and 0.25 m wide. The size, however, is very much a function of photo scale, as already shown, and must
be large enough to be clearly visible on the photographs but small for the centre to be precisely defined.
Although pre-marking is more expensive than the use of existing detail, pre-marks may be so constructed
as to be used for the control of setting-out, at a later stage.

14.4.2 Accuracy requirements

General rules quoted for the accuracy of fixing ground control are:

(a) for large-scale engineering plans ±0.0002 H
(b) for medium-scale engineering plans ±0.0003 H
(c) for small-scale topographic plans ±0.0005 H

where H is the flying height.
The specifications apply to both plan position and height control. Thus for 1:10 000 photography using

a wide-angle camera ( f = 150 mm), H would be 1500 m and ground control fixed to an accuracy of
±0.3 m in case (a) above. Based on this, an appropriate survey procedure could be instituted.

Normal survey procedures would be used for field completion of the final product to complete detail
on the plan which may have been obscured on the photographs by cloud, glare, shadow, trees or other
obstructions.

14.4.3 Aerial triangulation

For mapping at smaller scales and lower accuracies, the process of aerial triangulation may be used. This
procedure provides control directly from the photographs, thereby reducing the amount, and thus cost,
of ground control fixed by normal survey techniques. Aerial triangulation may be used to establish two-
or three-dimensional control points, formerly by analogue methods in precision plotters, or by purely
analytical processes.

In the analogue process, each stereo model is connected to the next, thus forming a strip of model
coordinates. Each strip is then connected to the next; ultimately forming a set of block coordinates. Due to
error propagation in the process, strip and block adjustments of the coordinates are necessary before they
are transformed to fit the ground control.

Aerial triangulation forms a very important aspect of photogrammetry but is mentioned here only very
briefly as it is beyond the scope of this book. Interested readers will find more detail in Elements of
Photogrammetry by Paul Wolf and Bon de Witt (McGraw-Hill Publishing Co, 2000), Introduction to
Modern Photogrammetry by Edward Mikhail et al (John Wiley & Sons, 2001) or Digital Photogrammetry
by Yves Egels and Michel Kasser (Taylor & Francis, 2001).

14.4.4 Flight planning

The flight specifications for a particular project will vary with the type of project. For instance, photography
required for interpretation purposes will not require the same detailed planning as that required for large-
scale mapping.
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The main factors to consider are the directions of the flight lines, the overlaps, scale and flying height.
Some of the factors cannot be obtained until the flight has commenced. For instance, the heading direction
and the time interval between exposures can only be calculated when the wind velocity at the time of
flight is known. One also needs some idea of the number of photographs required in order to decide on
the number of magazines or films to take or the storage requirement for digital photographs. The flying
height of the aircraft is dependent on many factors ranging from aircraft capabilities, terrain conditions,
and survey requirements. Flight planning is thus a skilled procedure requiring careful planning at all its
various stages.

14.4.5 Direction of flight lines

Generally the area is flown parallel to the longest side to give the minimum number of strips. In this way
the number of turns and run-ins, which are non-productive, are reduced to a minimum.

If large areas having different levels exist, such as mountain ranges or plateaus, the area may be flown
parallel to these in order to avoid rapid variation in scale.

Each photograph in a strip normally overlaps the previous one by 60%, thus the new ground covered
on each photograph is 40%. The purpose of the overlap is to permit stereoscopic viewing of the area.
Each strip overlaps the previous one by 20 to 30% (Figure 14.16), thus complete coverage of the area is
obtained.

The overlapping, which is automatically controlled on the air camera, is illustrated more clearly in
Figure 14.17. The distance B between each photograph in the air is called the air base, while its equivalent
on the photograph, b, is called the photo base. Due to the overlap, both of the principal points of the
adjacent photographs will appear on the central photograph. The photo bases are in fact the direction of
flight of the aircraft.

Care must be exercised when flying over steadily-rising ground, as failure to do so may result in the
complete loss of the overlap required in both forward and lateral directions (Figure 14.18). The loss of
forward overlap may be overcome by decreasing the exposure interval, whilst to ensure lateral overlap the
flight lines must be based on the minimum lateral overlap over the highest ground.

The flight may also be affected by cross-winds (Figure 14.19) causing the aircraft to drift off the planned
course. The triangle ABC may be solved to give the value of θ , and the craft is corrected on to course AD
at a specific air speed, the wind velocity causing it to ‘crab’ the planned course AC at a different speed
called the ground speed. Thus if the camera is not squared to the direction of flight the photographs will
be crabbed, as shown, with resultant gaps in the coverage. This adjustment is carried out by the ‘drift-ring

1st Photograph

Start

Flight lines

Finish

Boundary of area flown

2nd  Photograph 1st strip

2nd strip

20–30% Overlap

60% 40%

Fig. 14.16 Flight lines
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Fig. 14.19 The effect of crab

setting’, which rotates the camera through θ about the vertical axis of the camera mount. Modern viewers
and air cameras have largely eliminated this problem.

14.4.6 Scale and flying height

The scale of the photography will depend upon the map compilation techniques used. For example,
1 : 12 500 photography is frequently used to produce 1 : 2500 plans. As already shown, the flying height H
is a function of the scale, thus using a normal wide-angle camera ( f = 152 mm) for 1 : 12 500 photography
gives:

f /H = 1/12 500 = 0.152/H ∴ H = 1900 m

Where there is great variation in ground relief or the area contains many tall buildings, the flying height
may need to be increased.

Image movement, caused by the camera being in motion at the instant of exposure, can greatly affect the
quality of the photograph. It can be reduced by flying higher, at slower speeds, by using faster shutter speeds
or by forward motion compensation described earlier. As there is a limit to acceptable image movement,
it will have an effect on the value of the flying height.

Where very hilly ground is encountered (Figure 14.20), or high urban construction with narrow streets,
the use of a wide-angle lens at flying height H may result in much ground detail being obscured, i.e. dead
ground at B and C. It may also be difficult to handle this photography stereoscopically. However, the use
of a narrow-angle lens (2f ) at twice the flying height (2H) would produce equivalent photography at the
same scale. Also, all three points A, B and C are imaged on the normal-angle photography, whereas B and
C are not imaged on the wide-angle.

14.4.7 Costing the project

The number of photographs needed to cover the project area will be required in order to cost the work and
to estimate the amount of film required if a digital camera is not used. With conventional film, the points
at which the film magazines should be changed can also be calculated. If possible, the magazines should
be changed in the turns.

Consider an area 200 km by 100 km to be flown at an average scale of 1:10 000. At this scale the area
covered by the photographs would be is 20 m by 10 m. If the photography has the standard format size
of 230 mm × 230 mm, of which 60% is overlapped, so the new ground covered at this scale by each
photograph is 40% of 230 mm = 92 mm.

Therefore the number of photographs per strip = 20 000÷92 mm = 218, plus say 2 each end to ensure
complete coverage, i.e. a total of 222. In the same way the number of strips, assuming a 30% lateral overlap
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= 10 000 ÷ (70% of 230 mm) = 63 strips.

∴ Total number of photographs = 222 × 63 = 13 986

The coordinates of the ends of the flight lines can be put into the GPS as waypoints to enable the aircraft
to be flown along each flight line. In all, it can be seen that careful planning is needed to minimize the cost
of a project. Look at Figure 14.4 again.

14.5 STEREOSCOPY

So far, only the production of plan detail has been dealt with; stereoscopy, the process of seeing in three
dimensions, enables the vertical dimension to be obtained. The application of stereoscopy to air survey will
now be illustrated by relating the human sight processes to that of the air camera producing overlapping
pairs of photographs.

14.5.1 Stereoscopy in air survey

Consider first a simplified explanation of the visualization processes when looking down at a survey arrow
sticking in the ground (Figure 14.21). The arrow is viewed simultaneously from two different positions,
the two images fusing together to form a three-dimensional image in the mind. The angles α1 and α2 are
termed the angles of convergence, and exist because of the ability of the eyes to rotate simultaneously in
their sockets. The ability to focus for varying distances is called accommodation, while the aperture control
variation of the pupil of the eye is called adaptation. The angles β1 and β2 are called the parallactic angles
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Fig. 14.21 Eye base view

and are a function of the stereoscopic perception of height, i.e.

h = f (β1 − β2) = H2(α1 − α2)/e

where e is the eye base, about 62 mm for most adults
Commonsense tells us that if a person was taken to a height of, say, 2000 m, the parallactic angles

would be so small as to render height perception impossible. The ‘horizontal parallaxes’ of the survey
arrow are shown on the retina of the eye. That these are a function of the parallactic angles is obvious from
the diagram.

In the determination of height there is a definite relationship of the eye or air base to the flying height. Thus
when flying, the camera separation must be greatly increased as shown in Figure 14.22. The comparison
between human viewing and air survey can now be clearly seen.

If the negatives are now printed as photographs (positives), and viewed simultaneously, so that the left
eye sees only the left photograph and the right eye only the right photograph, then a three-dimensional
image will form in the mind. The above condition can be most easily obtained by viewing the photographs
under a stereoscope, as in Figure 14.23. The three-dimensional image formed is termed a stereo model,
and the two photographs used are termed a stereo pair. The stereo model is usually exaggerated and this
can be useful in the heighting process, particularly where the terrain is relatively flat. This effect can be
increased or reduced when planning the photography. If the value of f is fixed, then from the base/height
ratio, it can be seen that to halve the flying height would double the impression of height. It can also be
shown that increasing the viewing distance of the stereoscope produces a proportionate increase in the
impression of height.

14.5.2 Parallax

As already shown, stereoscopic height is a function of the parallactic angles, which are in turn a function of
the horizontal parallaxes. As the angles occur in space, they cannot be measured on an aerial photograph.
However, the horizontal parallaxes can be used to ascertain vertical heights.

Figure 14.24 illustrates a stereo pair of photographs in plan and elevation, on which it is intended to
measure the parallax of A (PA). By definition the parallax of a point is its apparent movement, parallel to
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Fig. 14.24 Photo parallax

the eye base, when viewed from two different positions. Thus A appears at a1 when viewed from L1; and
at a2 when viewed from L2. By overlapping the two photographs, the apparent movement of A is shown
as a1a′

2, i.e. L1a′
2 is parallel to L2a2. It is thus shown that the parallax of A is the algebraic difference of

the x-ordinates.

∴ PA = a1a′
2 = [x1 − (−x2)] = (x1 + x2)

The x-ordinates are always measured parallel to the photo base and not the fiducial axes. Whilst this
indicates that the parallax of a point could easily be measured on the photograph using a simple ruler,
in fact it is the difference in parallax between points which is measured, as will be shown later.

14.5.3 Basic parallax equation

The basic parallax equation is easily deduced from Figure 14.24 in which triangles L1L2A and a′
2L1a1

are similar:

a′
2a1/L1p1 = L1L2/(H − hA)

but a′
2a1 = PA L1p1 = f and L1L2 = B

∴ PA = fB/(H − hA) (14.11)

As shown in Figure 14.24, equation (14.11) assumes absolutely vertical photographs taken at exactly
the same flying height. This rarely occurs, so heights obtained using this formula are approximate.
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The principal point on one photograph of a stereo pair may be plotted on the other, and vice versa.
The distance between the principal point of a photograph and the plotted principal point of the other
photograph is called the photo base. The photo base may be plotted on each of the pair of the photographs.
For a variety of reasons, including imperfections in the plotting process, the two bases may be slightly
different. From the scale of the photograph it is known that:

Scale = b/B = f /(H − h)

where b is the mean photo base 1
2 (b1 + b2), and h is the mean height of the terrain.

∴ B = b(H − h)/f

On substitution into equation (14.11) this gives

PA = b(H − h)/(H − hA)

As (H − h) is the mean flying height, the equation is frequently written as

PA = bH0/(H − hA) (14.12)

However, as previously stated, it is normal practice to measure the difference in parallax (�P) between
two points. This can be done using an instrument called a parallax bar (Figure 14.25). Consider two points
A and C:

PA = fB/(H − hA) and PC = fB/(H − hC)

∴ (H − hA) = fB/PA and (H − hC) = fB/PC

∴ (H − hC) − (H − hA) = hA − hC = �hAC = fB/(P−1
C − P−1

A ) = fB/(PA − PC)P−1
A P−1

C

but PA − PC = �PAC = difference in parallax between A and C.

∴ �hAC = fBP−1
A × �PACP−1

C

But since PC = PA + �PAC

�hAC = fBP−1
A × �PAC(PA + �PAC)−1

so �hAC = (H − hA)�PAC(PA + �PAC)−1 (14.13)

Fig. 14.25 Parallax bar
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In relatively flat terrain �PAC is negligible compared with PA so

�hAC = (H − hA)�PACP−1
A (14.14)

An inspection of the basic equation (14.11) shows that as hA increases, then PA must also increase: thus
an important rule of parallax heighting is: the higher the point, the greater its parallax.

14.5.4 Measurement of parallax

Heighting may be carried out with the aid of a parallax bar (see Figure 14.27). This instrument is essentially
a rod, carrying two glass plates with fine dots etched on them. The smaller pair of dots is used when the
stereo model is viewed under magnification. The left plate can be moved anywhere along the bar and
clamped in position; the right plate can be moved only by manipulation of the micrometer. Parallax
measurements may be made to an accuracy of 0.01 mm.

In the heighting procedure the photographs are set with their bases co-planar for viewing under the
stereoscope (Figure 14.26). It is important therefore that the bar is kept parallel to the base (p1p2) when
measuring. Consider now the measurement of height AC in Figure 14.27. The bar is set to the mid-run of
the micrometer and the right-hand dot (RHD) is placed over the image a2, the left-hand plate is unclamped
and the left-hand dot (LHD) placed over a1. When viewed through the stereoscope the two dots will have
fused into one, and appear to be resting on the point A in the stereo model. The parallax bar reading is
MA. This is not a measure of the distance a1a2, for the micrometer could have been set to any reading
prior to the operation. The LHD now remains clamped in this position on the bar for all future heighting
operations on this pair of photographs. It is now moved to c1, and as the separation has not yet been altered,
the RHD will be at d, causing the fused image to appear floating in space at D. While looking through the
stereoscope the RHD is moved by manipulating the micrometer until the floating dot appears resting on
the ground at C, in which case the RHD will, as Figure 14.27 shows, be over c2 on the photograph; the
reading MC is noted. As parallax has already been defined it should be obvious that the individual readings
are meaningless. However, as L1a′

2 and L1c′
2 are parallel to L2a2 and L2c2, respectively, it can be seen that

the ‘difference’ in the bar readings (MC – MA) is equal to the ‘difference’ in parallax (PC – PA = �PAC),

Fig. 14.26 Stereoscope with air photographs and parallax bar
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which in turn is a function of the ‘difference’ in height of A and C (�hAC) and can be computed using
equation (14.13).

14.5.5 Basic procedure

Assuming that it is required to find the levels of a grid of points in the stereoscopic overlap of a pair of
photographs, one must commence from a ground control point of known level, as follows:

(a) Using the basic parallax formula, PA = fB/(H − hA), calculate the parallax PA of ground control
point A whose level hA is known. f , B and H will also be known. (Refer to Section 14.5.3.)

(b) Obtain a parallax bar reading on the image points a1 and a2 of ground control point A.
(c) Now obtain a bar reading on point C. The difference between the readings on A and C will be equal

to �PAC .
(d) As PA is known, then PC = PA + �PAC (�PAC will be positive if C is higher than A and negative

if lower). Whether or not C is higher than A, may be detected from an examination of the stereo model
and/or the bar readings.

(e) Now calculate the level of point C, i.e. hC , from the basic formula PC = fB/(H − hC). Alterna-
tively, one may calculate �hAC from equation (14.13) and knowing the level of A thereby obtain the
level of C.

(f) This process is now continued. For example, a bar reading on point D will give �PAD, from which hD

or �hAD can be obtained as shown in (d) and (e) above.

14.5.6 Parallax height corrections

So far it has been assumed that when taking each photograph the aircraft is flying straight and level. Only
by coincidence would this ever be the case. Therefore in practice it would be necessary to correct for the
tilts of the aircraft and hence the camera.
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Fig. 14.28 Coordinate axes of the camera showing 6 degrees of freedom

The convention adopted for tilts is to denote rotation of each camera about three perpendicular axes,
X, Y and Z , as ω, φ and κ , respectively, as shown in Figure 14.28. Translations along each axis are bx , by

and bz, respectively.
Pitching of the aircraft from nose to tail would cause rotation about the y-axis (δφ) as shown in

Figure 14.29. The result of this tilt is to image points 3 and 4 at 3′ and 4′ with resultant error in the
parallax measurement of 3b and 4a. As shown, parabolic deformation of the stereo model takes place and
the error in ground heights of any point can be shown to be equal to (X2 + Z2)δϕ/B.

Rolling the aircraft about its longitudinal axis would cause rotation about the x-axis (δω), as shown in
Figure 14.30. The result of this roll is to displace points 2 and 3 radially from PP1. The displacement of
point 2 is in the y-direction, hence its parallax measurement is unaffected. The parallax measurement of
point 3 will be in error by distance 3b which will distort the height by an amount equal to XYδω/B.

Yaw error is eliminated by careful baselining of the photographs. Error in this process will result in a
raising and lowering of each half of the stereo model, as shown in Figure 14.31.

Variation in the heights of the camera at adjacent exposures tilts the air base and so tilts the stereo model
about the y-axis, as shown in Figure 14.32.

The combined effect of all the above errors in each photograph comprising a stereo pair is to transform
the stereo model. It may be shown to first order, that if the tilts are small and ground relief not excessive,
the error in parallax heights may be expressed in terms of the photo coordinates (x, y) of the image point
of the left-hand photograph as

δh = a0 + a1x + a2y + a3xy + a4x2 (14.15)
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To correct crude heights requires five ground control points whose levels (hi) are known, distributed
throughout the overlap area, as shown in Figure 14.33. The parallax heights (h′

i) of the five points are
found taking, say, point 1 as datum and hi − h′

i = δhi. The centre of the photo base p1p2 is taken as
the origin for the x, y coordinate system and the coordinates of all five points scaled from the left-hand
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photograph and inserted in the five equations, i.e.

h1 − h′
1 = δh1 = a0 + a1x1 + a2y1 + a3x1y1 + a4x2

1

...
...

...

h5 − h′
5 = δh5 = a0 + a1x5 + a2y5 + a3x5y5 + a4x2

5

The equations are then solved for the coefficients a0, a1, . . ., a4. Thereafter, the crude height (h′) of
any point in the overlap may be corrected by δh, using the above coefficients and its photo coordinates in
equation (14.15).
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14.6 RESTITUTION SYSTEMS

Restitution is the fundamental problem in photogrammetry and involves establishing the positions and
orientations the photographs had at the time of flight, and thereafter relating the correctly-formed stereo
model to ground control.

In the past, restitution methods were either analogue, using universal or precision plotters, or analytical.
With modern digital photogrammetry, they are now entirely analytical.

The problem may be illustrated as follows. Figure 14.34 shows two photographs in a horizontal plane
projecting images of a single point, A, onto a parallel plane. Because the projection system has not been

Z
Y

X

O2O1

p1a1
p2 a2

δx

δy

δy

A1

A2

A1′
A2′

Projection plane

Fig. 14.34 Projected images
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properly oriented, a1 and a2 intersect at A1 and A2 instead of coinciding at A. The discrepancy between A1
and A2 may be expressed in coordinate terms as δx and δy, and are called the x and y parallax.

The δx value is eliminated by lowering the projection plane in the Z direction (bz) until the two points
are imaged at A′

1 and A′
2, separated only by δy.

y-parallax is eliminated by orienting and moving the photographs through by bz, by, φ, ω and κ as
shown in Figure 14.28. This procedure, known as relative orientation, is carried out over six standard
points distributed throughout the stereo model, and when complete it establishes the photographs in their
correct relative positions. Failure to achieve correct relative orientation will result in a distorted model
and may have a significant effect on the accuracy of height measurements.

The above model must now be correctly scaled and oriented to the ground coordinate system. This
process is called absolute orientation and can only be achieved by the use of ground control.

First scale the model based, in its simplest form, on the known distance between two ground control
points. This is achieved by altering the separation of the photographs in the x-direction, i.e. bx translation.

Next level the spatial model by rotating it about its X- and Y -axis, i.e. φ and ω, until it conforms to the
height data of at least three ground control points.

When this process is completed, detail, spot heights and contours may be plotted. Alternatively, the
three-dimensional coordinates of points can be measured to produce a digital ground model (DGM).

The accuracy of restitution and thus the final plan is dependent on the accuracy of the ground control
and its correct identification.

14.6.1 Orthophotomaps

Although the principal end product of photogrammetry, as far as the engineer is concerned, is a plan or
DGM, other types of plans are available in the form of mosaics or orthophotomaps.

Mosaics are formed by matching up the photographs to get the best possible fit. No account is taken
of displacements due to tilt and relief, and the assembly may or may not be fitted to any form of ground
control.

An orthophoto is one that has been corrected for tilt and relief displacements. In this way the correctly
oriented stereo model is plotted at true map position and correct scale (Figure 14.35). The end product may
be a contoured photograph to correct scale containing very small errors of position and height. Although
not quite as accurate as the line drawn plan, it can be produced much more quickly and will contain all
the land form detail not usually shown on a plan and is the reason why a mosaic or orthophoto may be
preferred, in some instances, to a plan. For example, in flood control, geological investigation or irrigation
works the ability to see the areas involved could be extremely useful.

14.6.2 Commissioning vertical air photography and derived products

Air photography and products derived from it, although expensive, on a large project may be cheaper than
ground based survey methods. Before commissioning such work it may be wise to consult the RICS’s
excellent guidance on the subject Vertical Aerial Photography and Derived Digital Imagery – Client
Specification Guidelines written by the RICS’s Mapping and Positioning Panel and available from RICS
Books.

14.6.3 Applications of photogrammetry in engineering

Apart from its many applications in civil engineering, photogrammetry is widely used in forestry, town
planning, architecture and even dentistry and medicine. Only some applications to civil engineering will
be considered here.
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Fig. 14.35 Orthophotomap – courtesy of Delta Aerial Surveys Ltd

14.6.3.1 Highway optimization

UK is well-mapped so it is possible to reduce the area to be investigated for a new route into a relatively
small band. Aerial photographic interpretation will serve as a very useful aid in this initial decision. The
examination of even stereo pairs of photographs can supply an enormous amount of information to the
trained eye, such as the geology of the area, main soil types, faults, land-slip areas, areas presenting
drainage problems, location of borrow and quarry sites, major obstacles, expensive land, best grades, etc.

With restitution a digital terrain model may be formed and from this data software may be used to select
the best route with earthwork quantities, plots of cross-sections and longitudinal sections along the centre
line of the proposed route and produce mass-haul diagrams. The DTM may be used to generate flythrough
models for visualization purposes.

14.6.3.2 Traffic engineering

Photographs may be used in land use studies to enable travel patterns to be estimated and predicted.
Time-lapse photography of a traffic route can provide information such as traffic speeds and density,

concentration of traffic for selected time periods, en route travel time and the relative productivity of the
various route segments. In this sky-count technique the tedium of counting the cars on the photographs has
been eliminated by software applications using infra-red photography.

Traffic management, broadly aimed at improving traffic flow, can be aided in many ways by air pho-
tographs. The photographs provide a visual inspection of a large area at a glance and can be taken to show
on- and off-peak flows, normal and congested routes, non-utilization of streets, parking characteristics,
junction studies, effect of public transport on traffic flows, etc. They may also be used to produce traffic
density contour maps and to provide a permanent inventory of roads, streets and car parks.
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14.6.3.3 False colour imagery

A photograph, whether taken on the ground, from the air, or from space such as Landsat imagery
(http://www.landsat.org/index.html) are able to detect the nature of an object without actually touching it.
All photographs portray detail by a comparison of the visible light reflected from various objects. This light
comprises electromagnetic energy with wavelengths from 0.4 µm to 0.7 µm. Energy whose wavelength
is less than 0.4 µm is called ultra-violet, and above 0.7 µm infra-red. The camera is capable of recording
energy within the 0.3 µm to 1.2 µm range, but above this upper value special equipment is required.

In colour photography, each distinctive colour is a function of the light reflected by objects, which
in turn is a function of the energy absorption and reflection characteristics. Thus, as blue has different
reflection characteristics to red, it is possible to distinguish between them. However, by sensing in the
infra-red spectrum it is possible to distinguish different objects having the same colour, due to the variable
energy reflection characteristics. This is particularly impressive in the field of ecology, where healthy and
diseased vegetation will appear as different colours on infra-red colour film (false colour), even though to
the human eye apparently identical.

To record energy in the 1–20 µm band, thermal infra-red devices are used. These devices record
variation in energy due to variation in temperature. The terrain is sensed from the air and a thermal image
built up. A typical example of its use is in the detection of river pollution where pollutants having different
temperatures and may be recorded as shades varying from white through to black. Correlation with the
various origins of these pollutants enables a more detailed analysis of the river to be made. This form of
sensing can operate day or night, but cannot penetrate atmospheric cloud conditions. Other prospective
uses of this technique are the detection of various rock and soil types, and assessment of the moisture
content of soils.

14.7 TERRESTRIAL PHOTOGRAMMETRY

This form of photogrammetry utilizes photographs taken from a ground station. Acamera may be combined
with a theodolite which allows the position and orientation of the camera to be defined. The theodolite
enables the direction of the principal axis of the camera to be found, relative to a base line.

14.7.1 Principle

At each station the camera is carefully centred and levelled such that the principal axis of the camera is
horizontal and the plane of the photograph vertical. The plan position of a ground point can then be fixed
from the terrestrial photograph. Figure 14.36 indicates the position of a point A relative to the fiducial axes
of the photograph. The horizontal axis x is called the horizon line, while the vertical axis y is called the
principal line.

The horizontal and vertical angles, θ and φ, respectively, may be defined as follows:

tan θ = xa/f

tan φ = −ya/La′ but La′ = xa/ sin θ or La′ = f / cos θ

∴ tan φ = −ya sin θ /xa = −ya cos θ /f

Figure 14.37 shows a terrestrial photogrammetric camera mounted on a theodolite.
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Fig. 14.37 Terrestrial photogrammetric camera

14.7.2 Intersection

In this method (Figure 14.38) the camera axis is oriented at any angle to the base line L1L2 and the
photographs are taken from both ends of the base line. The position of a point A may be fixed by intersection
as in Figure 14.38(a). The level of the point relative to the principal plane can be found by similar triangles
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(Figure 14.3(b))

YA/L1A = ya/L1a1

but from Figure 14.38(a) L1a1 = (x2
1 + f 2)

1
2

∴ YA = L1A × ya/(x2
1 + f 2)

1
2

These simple techniques have largely been replaced by stereoscopic methods.

14.7.3 Stereoscopic methods

To facilitate stereoscopic viewing the photographs are taken from each end of a base line with the principal
axis at 90◦ to the base (Figure 14.39). The base should be of such length as to give a well-conditioned
intersection of rays, and accurately measured to reduce the propagation of errors from this source. From
Figure 14.39, triangles L1AL2 and a′

2L1a1 are similar:

∴ ZA/L1L2 = L1p1/a1a′
2

∴ ZA = fB/PA (14.16)
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where PA is the parallax of A. Similarly:

XA/ZA = x1/f ∴ XA = ZAx1/f

From Figure 14.38(b) YA/ya = L1A/L1a1 = ZA/f (from Figure 14.39)

∴ YA = ZAya/f

Note that in equation (14.16), PA = [x1−(−x2)] = (x1+x2); if A was to the right of P2 then PA = (x1−x2),
whilst if it was to the left of P1, then PA = (x2 − x1).

14.7.4 Application

The method was originally devised for topographic surveys of very rugged terrain, and, as such, was widely
utilized in Switzerland. The following instances of its use will serve to indicate present-day applications:

(a) Survey of sheer rugged faces in quarries, dam sites, etc.
(b) Short-base methods are used to make road-accident plans.
(c) Wriggle surveys in tunnels
(d) Recording architectural details for the restoration of ancient buildings.
(e) Scientific projects, such as stereoscopic photographs of intensely hot or other hazardous objects.

14.8 DIGITAL ‘SOFTCOPY’ PHOTOGRAMMETRY

In the application of photogrammetry, analogue and digital data is derived from traditional analogue
photographs. The processing of that data involves manual applications from developing archiving and
cataloguing the photographs to setting them up in photogrammetric machines and plotting features and
extracting height information from the stereo model. Although much faster than detail capture by traditional
ground survey methods, even by GPS, the process is still slow and labour intensive. The overall cost of
the process is largely related to the man-hours necessary to complete the survey task rather than the cost
of the equipment concerned, even the aircraft used to fly the photography.

The development of digital or softcopy photogrammetry has been largely driven by advances in the
technology of data capture and of computing. Digital photogrammetry obviously needs digital data. Initially
this was derived from traditional analogue photographs which were placed in a scanner to convert them into
a digital product. If a 23 centimetre square standard photograph is scanned at 1200 dpi then approximately
120 mega-pixels are created. If these are stored using a greyscale of 256 levels, i.e. as an 8-bit byte, then
each photo takes 120 Mb of storage. If scanning is at a greater level of dpi or colour images are used or
a finer graduation of greyscale, such as 12-bit, then the storage for each image increases proportionately.
However, the cost of storing an image in this digital form is less than the cost of storing its analogue
equivalent. The resolution at which an image needs to be scanned is ultimately dictated by the resolution
or scale of the final product.

Scanning traditional photographs is merely the intermediate stage in the development of digital pho-
togrammetry. The ideal situation is for all data to be in digital form from start to finish of the process. This
requires that digital air cameras are used so that, after data capture, all processes can be carried out by
computer.

The digital air camera shown in Figure 14.40 has three lenses so image data is captured looking forwards,
downwards and backwards. The camera which has forward motion compensation also contains an inertial
measuring unit (IMU) so that digital imagery, captured in the air can be rectified using GPS/IMU data.
The camera may be placed on a stabilized mount, interfaced to IMU, for which the orientation may be
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Fig. 14.40 Wehrli/Geosystem 3-DAS-1 Digital Aerial Camera – courtesy of Wehrli & Associates Inc.

determined to 0.02◦. Output can be in various image formats with the continuous image strip cut into
image frames.

Digital data capture has implications for flight planning. With traditional photogrammetry part of the
usual criteria is to minimize the number of photographs taken because the overall costs of a large mapping
project are largely proportional to the number of photographs used and hence the number of man-hours of
work. With the traditional fore and aft overlap of 60% and sideways overlap of 20% most of the ground is
only covered by one stereo model which in turn means that each point is defined by the intersection of a
minimum of two rays. If digital images can be processed by computer in a completely automated manner
then the number of images captured would be entirely immaterial as far as the cost of data processing was
concerned.

If a point is defined by the intersection of two rays there can be no independent quality assessment of
that point. With much greater fore and aft overlap of say 80% each point on the ground would appear on
five images and so the point could be defined by the intersection of up to five rays. This leads to much
greater redundancy and therefore greater precision in the determination of the three-dimensional position
of a given point. It could also enable the selection of only those images that show the point clearly. With
only two photographs a given ground point may be obscured by trees or buildings. With more images this
problem will occur significantly less often.

If the lateral overlap is increased from 20% to 60% then the redundancy also increases, however this
would involve flying double the number of flight lines and hence a significant increase in the cost of data
acquisition.

Just as with traditional photogrammetry there is still the need for flight planning and the collection of
other data such as ground control and camera information. Digital imagery may also be obtained from
satellites such as ASTER, ENVISAT, EROS, ERS, IKONOS, IRS, Landsat, OrbView, QuickBird, SPOT
and TopSat. The resolution varies with the product but sub-metre pixel sizes are now available. Commercial
imagery is available from a number of sources such as http://www.infoterra-global.com which gives details
of most of the aforementioned satellites and their products.

Stereo imaging of digital images may be achieved in a number of ways. Anaglyph systems with red
and green images viewed through red and green glasses have been around for decades and in the modern
application the images are viewed on one computer screen. Alternatively polarized images viewed through
polarized glasses can be used. If special glasses are used in which the lenses are rapidly but alternately
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obscured using liquid crystal shutters in synchronization with alternating images on the screen the same
effect can be achieved.

The products of digital photogrammetry are similar to those of conventional photogrammetry, i.e.
orthophotos, DEMs and line or block features used to create maps, usually in vector format. Contours
can then be derived from a DEM and orthophotomaps made by overlaying the orthophoto with the vector
product. DEMs can be ‘draped’ with selected resampled elements of the original images to produce
three-dimensional models.

In the ideal digital photogrammetric process all elements are automated. One area where this has
been less successful is with matching images. Modern processes are semi-automated but an operator is
still required to confirm acceptance and resolve problems. The main difficulties arise with highly three-
dimensional environments such as steep valleys and urban canyons. Bodies of water present difficulties
because of the variability of the surface due to waves and reflections being mistaken for hard features.
Undoubtedly software associated with feature extraction will get better.

Although orthophotos are a major product of digital photogrammetry practical problems still exist with
the depiction of sharply three-dimensional features such as buildings. Without very detailed manual work
or sophisticated software it is not possible to show the outline of the roof to be coincident with the outline
of the footprint of the building and so wall façades still appear.

Details of current systems may be found on manufacturers’ websites such as those at:

DVP Complete W/S from DVP-GS, http://www.dvp-gs.com

Geomatica® from PCI Geomatics, http://www.pcigeomatics.com

Leica Photogrammetry Suite™ from Leica Geosystems, http://gis.leica-geosystems.com

SoftPlotter® from Boeing, http://sismissionsystems.boeing.com

Summit Evolution from Datem Systems International, http://www.datem.com

UltraMap™ Worksuite from Vexcel, http://www.askism.com

VirtuoZo from Supersoft Inc, http://www.supresoft.com

Z/I Imaging from Intergraph, http://www.intergraph.com/earthimaging/

If photogrammetry is fully digital then the technology lends itself to direct online solutions, i.e. where
the images from the camera are processed in near real time. Such a system allows video images to be
processed to find near real time change in a structure and has application for near real time deformation
monitoring. Photogrammetry now extends to become videogrammetry. If the object to be measured does
not have easily identifiable points then points can be artificially created using a laser spot.

14.9 LASER SCANNERS

Alaser scanner combines a laser distance measuring device, two dimensional orientation measuring devices
with a scanning mechanism. In its airborne application it is often called LiDAR (Light Detection and
Ranging). The laser may work as a pulsed laser, which measures the time for the signal to travel from the
laser to the target and back again, or as a continuous signal in which case it will use the phase difference
method where the difference in phase between the outgoing and returning signals is measured in a manner
similar to EDM. The phase difference method, which is preferred for surveying equipment that measures
single points, leads to solutions that have high accuracy, but the range is usually limited and the instrument
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is slow. Pulsed lasers however are of lower accuracy but have ranges up to several kilometres and so are
more suitable for laser scanners.

The advantages of laser scanning over conventional satellite survey are claimed to be that, point for
point, it is close to the accuracy of conventional survey but very much quicker. It is a non-contact process so
can be used for some of the more difficult and dangerous projects. Everything visible from the instrument
can be observed at one go and large areas can be covered quickly. As with a total station three-dimensional
coordinates may be generated directly.

On the other hand the equipment is expensive to buy or hire and since operators must be skilled there will
also be an investment in training required. Only the points that can be directly seen from the instrument can
be measured. In the case of ground based laser scanners it will probably be necessary to take measurements
from several different positions, but even so it is likely that there will be pockets of detail that are missed and
this will not become apparent until after the data is processed. In the case of airborne data capture (LiDAR)
it may be necessary to make more than one pass over the area of interest. The data processing of the large
volumes of data captured is quite complex and relies upon control data derived by other survey techniques
and it is difficult to detect errors in the data caused by errors in the sensors. Measurement through water to
river or sea bed is difficult and limited, and for longer ranges the accuracy may be affected by unmodelled
meteorological conditions.

The range of a scanner will depend upon the quality of the return signal which in turn depends on the
nature of the reflecting surface. For example the reflectivity of snow is 80–90%, white masonry about
85%, limestone and clay up to 75%, deciduous and coniferous trees typically 60% and 30% respectively,
beach sand and bare desert about 50%, smooth concrete about 24%, asphalt about 17% and lava 8%.

As well as measurements for position the intensity of the return signal may also be recorded. The
intensity may be used to interpret the type of surface that is being measured. An individual intensity value
is unlikely to give much information but rapid changes in value may indicate changes in surface texture,
such as the edge between wood and brickwork in a building.

What makes laser scanners particularly useful are their high rates of data capture; in the order of 10 000
points per second.

14.9.1 Terrestrial static laser scanner

A laser scanner has pan and tilt mechanisms that allow the scanner to be pointed in the desired direction.
A rotating or oscillating mirror enables the scanning process to take place between the desired range of tilt
and the pan mechanism allows the scanner to be reoriented for a new line of scan. If the mirror oscillates,
the scan moves up and down with respect to the Z-axis and the data recording is near continuous. If the
mirror rotates then each scan is always in the same direction, up or down, with the next scan starting afresh.
The oscillating mirror has a very flexible adjustment of the viewing angle but there may additional errors
caused by the mechanics wearing out due to accelerations of the moving parts and so regular calibration
may be required. With the rotating mirror there is flexible adjustment of the viewing angle but misalignment
of the mirrors may also occur due to wear. This way the moving parts are kept light and to the minimum.
See Figure 14.41.

The simplest configuration for a laser scanner is when it is placed on a tripod. In this case the X-, Y -
and Z-axes are defined by the initial orientation of the scanner and the three measurements of α, θ and s.
See Figures 14.42 and 14.43.

The slope distance is s and if the instrument has been properly levelled then α is a vertical angle and θ a
horizontal angle. From Figure 14.44 the coordinates of any point, P, in the instrument reference frame are:

x = s sin θ cos α

y = s cos θ cos α

z = s sin α
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(a) (b)

Fig. 14.41 Laser scanner mirrors. (a) Oscillating. (b) Rotating

Fig. 14.42 Laser scanner – courtesy of Riegl UK Ltd

Fig. 14.43 Laser scanner on railway trolley and point cloud – courtesy of ABA Surveying
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Fig. 14.44 Laser scanner coordinates

This simple arrangement is complicated by the fact that the scan and pan axes (vertical and horizontal axes
in Figure 14.44) do not intersect; there is an offset between them. If the instrument axis origin is taken
as the point where the plane defined by α = 0 intersects with the pan axis, αd is the error in α, i.e. αd is
the recorded value of α when it should be 0, and the scan axis is offset from the pan axis by r, then the
coordinates of P relative to the instrument’s XiYiZi-axes are:

xi = s sin θ cos (α − αd) + r sin θ

yi = s cos θ cos (α − αd) + r cos θ

zi = s sin (α − αd)

If the instrument is static during the collection of data then the relationship between coordinates in the
instrument’s XiYiZi frame may be related to the local mapping reference frame XmYmZm by the application
of an appropriate translation vector xT yT zT and a rotation matrix, Mm

i .



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zm



 =



xT
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

 + Mm
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


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yi
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



If Mm
i is defined by rotations about the three axes in order Xi, Yi and Zi by amounts χ , ψ and ω respectively

then it can be shown that:

Mm
i =




cos ω cos ψ (sin ω cos χ + cos ω sin ψ sin χ ) (sin ω sin χ − cos ω sin ψ cos χ )

− sin ω cos ψ (cos ω cos χ − sin ω sin ψ sin χ ) (cos ω sin χ + sin ω sin ψ cos χ )
sin ψ − cos ψ sin χ cos ψ cos χ





To find the six parameters xT , yT , zT , χ , ψ and ω needed to calculate the coordinates of all points in the
mapping frame from the instrument coordinates, several well spaced, coordinated points common to both
frames are required. This will lead to a least squares solution for the parameters and so their quality, and
the quality of all computed points can be assessed.

Although the technology has now matured, it is anticipated that many advances may still be made.
However as a benchmark, at the time of writing in 2006, the Riegl LMS-Z420i has a class 1 laser with
a measurement range to natural targets, with 80% reflectivity of up to 800 m and 10% reflectivity up
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to 250 m with a minimum range of 2 m. The measurement accuracy is ±10 mm for a single shot and
±5 mm averaged with a measurement resolution 5 mm. With an oscillating mirror the scan rate is up to
12 000 points/second and 8000 points/second with a rotating mirror. The laser wavelength is in the near
infrared region and the beam divergence is 50′′. The vertical scanning range is 0◦ to 80◦ and the scanning
rate can vary from 1 to 20 scans/second. The minimum angle of step width is 30′′ with an angular resolution
7′′. The horizontal scan (pan) is through a full circle at a scanning rate of 35′′/second to 15◦/second with a
minimum angle of step width of 35′′. The angular resolution is 9′′.

The output of laser scanning is often referred to as a point cloud. The term comes from the visualization
of the output coordinate list where the density of points appears as a rendering of the project scene. The
points are often coloured according to the intensity of the laser return signal and as the resultant image on
the computer screen appears as many unconnected but closely spaced dots it is often referred to as a point
cloud; Figure 14.45.

The above describes how a laser scanner may be used in a static environment. The concept may be
extended to a stop and go mode where the laser scanner is mounted on a vehicle and moved from point
to point around a project so that the whole project is observed and no, or at least few, holes are left in
the observed data. The data is then most easily patched together if there are sufficient control points also
observed by the scanner. As with photogrammetry, it is best if control targets are placed around the project
to be picked up by the laser scanning, rather than after scanning trying to identify points to observe by
conventional means from within the data point cloud.

14.9.2 Terrestrial mobile laser scanner

If the scanner is mounted on a vehicle and the pan fixed then with the Z-axis near vertical and the scan
plane to the side of the vehicle, a continuous set of data profiling buildings, street furniture or power cables
along the route may be recorded. Alternatively it could be mounted on top of the vehicle with the Z-axis
near horizontal and the scan plane pointing forward covering the ground ahead of the vehicle or pointing
upward to scan overhead power lines. In this configuration a profile of the route in front of the vehicle may
be recorded and the technique is often referred to as push broom. In either configuration the axes of the
laser scanner are continuously changing in orientation as the vehicle moves and therefore, the relatively
simple method of finding the coordinates in the mapping frame from the coordinates in the instrument
frame, by using a single translation vector and rotation matrix, is not possible.

It is therefore necessary to track the changing position and orientation of the laser scanner and this
may be done using GPS in conjunction with an inertial measuring unit (IMU). Precise synchronization
of timing between the GPS, IMU and laser scanner data is essential. GPS/IMU systems are described in
Section 14.11.

14.9.3 Airborne laser scanner

When the laser scanner is mounted in an aircraft or helicopter the push broom technique, using GPS/IMU
must be used, as shown in Figure 14.46. Given the technical parameters of the laser scanner, the desired
density of measured points on the ground will dictate the flying altitude, swath width, and speed of the
aircraft.

The size of the footprint will depend on the divergence of the beam, the flying height and the off-nadir
angle. The greater the off-nadir angle, the more eccentric the footprint ellipse. In practice footprints may be
from 0.1 m to several metres, depending on the application therefore there may be a number of distances to
more than one object that could be measured. Early laser scanners could only record the first return pulse,
off the nearest object, but modern scanners may record several pulses. Usually the first and last pulses are
the most useful. When flying over a forest the first pulse is returned by the top of the canopy and the last
may be returned by the ground providing there is at least a small hole through the trees. If the divergence
of the beam is small there is less chance of getting a return from both canopy and ground.
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Fig. 14.45 3D point cloud of an excavation (above) and a building (below) – courtesy of terra international
surveys ltd

The quality of the final product of aerial laser scanning depends on the quality of all the instruments
and processes that have been used. These include the errors in the hardware, i.e. GPS, IMU and the laser;
errors in the data caused by the density of the ground points, flying height, the scan and off-nadir angles;
errors caused by the target such as ground irregularities in the footprint, roughness of the terrain, multiple
return signals from trees and vegetation; errors of filtering out blunders and unwanted objects, smoothing
and interpolation created in the data processing.
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Fig. 14.46 Airborne laser scanning

The errors due to the GPS/IMU can be largely removed in a way similar to the concepts of strip and
block adjustment in photogrammetry where the model derived from the data is fitted to sparse ground
control.

Limited hydrographic survey is possible with a laser scanner. If signals of two different frequencies are
used, one that penetrates water and one that does not, then the depth can be assessed by measuring the
difference in time between the two return pulses. The refractive index of the water will alter the path of
the signal as well as slowing it down and both these effects must be taken into account. See Figure 14.47.

A conventional near infra-red of pulse 1.06 µm is reflected by the surface but a green pulse of 0.53 µm
may penetrate the water. However the depth to which the pulse may travel and return with a measurable
signal is limited by the turbidity of the water. In clear water depths down to 70 metres may be measured,
where there is mud in suspension, such as the River Humber, it may be only a few metres. The roughness
of the water surface may reduce the quality of results. On land with a highly reflective flat surface the

Laser signal from  aircraft

Water surface

True position and depth

Apparent position and depth

Fig. 14.47 Refraction effects in water
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distance may be measured to a few centimetres; through water to the bottom and back the resolution is of
the order of worse than 0.2 m.

14.9.4 Data processing

Processing laser scanning data can be complex and therefore it is essential to have suitable software
for handling the raw scanning data and presenting the results. Apart from the scan data it will also be
necessary to have the project data including coordinates of control and tie points, and hence the computed
transformation matrices required to transform the data from individual scans into the common project
coordinate system. If at least four, and preferably more, reflective targets for which the coordinates have
been established by conventional survey, e.g. with a total station, are included in the scan then it may be
possible for the processing software to compute and apply the translation vector and transformation matrix
automatically. Alternatively, and at a lower precision, the position of the scanner may be found with GPS.
If the scanner is levelled then only the orientation, in azimuth, of the scanner is required. The project
coordinate system may be arbitrary or may be in the national or a global system such as WGS84.

A project point cloud is merely a collection of points in a common system. This data may be used
to create meshes which can then be used to construct objects which in turn may be rendered with high-
resolution elements of digital photography. However, prior to processing, the raw data may be visualized
in two or three dimensions by colour coding according to the strength of the laser’s return signal or the
height or range of the point.

The large quantity of scanned data will inevitably contain some errors and inconsistencies. The software
should have automatic anomaly detection systems to aid cleaning the data. The massive data files may
need to be reduced by removing redundant data. For example if a wall is a plane surface it could be fully
defined by the series of points joining the straight lines that delineate its edge.

With the aid of camera images it may be possible to construct orthophotos which in turn could be
exported to render objects created within CAD software. If photographs have been taken from different
positions it will be necessary to select the best one for each surface element taking account of brightness,
contrast, texture, colour and shadows. Some processing of the selected image elements to ensure consistent
overall images will be necessary.

14.10 COMPARISON OF PHOTOGRAMMETRY AND LASER SCANNING

Aerial photographs require the subject to be illuminated by the sun; lasers do not, so are not affected by
cloud shadow or shadows from nearby trees or buildings. Laser scanning may be undertaken by night,
which might be the best time to work in the vicinity of a busy airport.

Both systems see all that is in view. A traditional photograph is an analogue product and the resolution
of detail is limited only by the quality of the camera, film and processing. Therefore, there is continuous
information across the format and individual high contrast features, such as the intersection of white lines
on a tarmac road can be identified and measured. A digital photograph has similar properties except that
each pixel only has the average return signal over a small area. The information from a laser scanner is more
discrete in that three-dimensional coordinates are derived for a small point or footprint but no information
is available for the gap between one point and the next. A series of neighbouring points may be used to
define a surface, such as a wall in terrestrial laser scanning. The intersection of two surfaces may define a
line such as the join of two walls and the intersection of three surfaces, a point. So if the aim of the project
is to detect movement from one epoch to another, such as in deformation monitoring then the movement
could only be detected if perpendicular to a surface or in three dimensions with respect to a point.

A colour photograph will have information in a range of colours. A laser scanned point cloud only has
coordinates of the point and the return signal intensity.
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Detection and modelling of buildings from aerial or terrestrial laser scanning data present a number of
challenges. The existence of buildings in aerial laser scanning data may be identified by sudden changes
in height. The planes defining the building need to be established and the intersection of the planes then
defines their limits and hence the outlines of the building.

The processing of the outputs of both systems is relatively complex but is most complex for laser
scanning when the scanner is mobile during data capture, such as with aerial or motorized laser scanning.

The main advantage of photogrammetry is in the blanket nature of the data and the main advantage of
laser scanning is in the precision of the data. Hybrid systems that take the best of both systems, for example
to render a point cloud with photographic imagery, will give the most useful products but will also be the
most costly. In this case, to be most effective, the image date should also be digital.

14.11 INERTIAL SYSTEMS

Inertial systems have been developed for surveying but their main limitations were those of reliability
and cost. Today inertial measuring units used in conjunction with GPS are highly necessary and effective
devices for giving position and orientation for aerial laser scanning and aerial photogrammetry.

The early inertial systems were developed for military use, in particular the German V2 rockets, but
after World War II the principles were applied to aircraft and military vehicle navigation. It was not until
the 1960s and 1970s that research was applied for geodetic and survey use.

An inertial system consists of a set of three accelerometers, mounted with their axes at right angles
to each other, and two or three gyroscopes. The accelerometers detect acceleration in any direction and
the gyroscopes, rotation or rate of rotation of the inertial unit. By doubly integrating the output of the
accelerometers, change in position in the direction of each axis may be determined.

If a vehicle starts with zero velocity, i.e. it is standing still, and then accelerates at a constant rate in
a straight line on level ground, its velocity and distance from the start point may be determined from the
following simple well known formulae:

v = at and d = 1

2
at2

where a = acceleration
v = velocity
d = distance
t = time

When the start position is not at the coordinate origin, the start velocity is not zero and the acceleration
is variable, then the position and velocity of the vehicle at the end of a period of time may be more fully
given by:

v2 = v1 +
∫ t2

t1
a dt and d2 = d1 +

∫ t2

t1

(
v1+

∫ t2

t1
a dt

)
dt

Thus by continuously monitoring the output of an accelerometer aligned to the direction that a vehicle is
moving it is possible, by doubly integrating that output, to find how far the vehicle has moved. This is fine in
one dimension. For real movement in a three-dimensional world three mutually orthogonal accelerometers
are required.

Inertial systems for navigation need real time processing because the navigator needs to know where
he/she is at any time, now. For surveying purposes it is usually more appropriate to sacrifice the timeliness
of a real time solution for the higher accuracy of a post-processed solution. This will allow better use
of the information recorded when the platform is at rest, i.e. during a zero velocity update (ZUPT).
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The continuously recorded data that is used for post-processed solutions should be the raw data and not
that which may have been (Kalman) filtered for the optimum navigation solution.

Calibration surveys will need to be completed along north–south and east–west lines to scale the
accelerometers. There is a practical time limit for an inertial survey before the un-modelled errors, i.e. non-
linear drifts of the accelerometers, become excessive.

14.11.1 Coordinate transformations

When using inertial systems there are a number of coordinate systems that may be involved and it is
necessary to be able to express coordinates in any systems that are linked. The most common coordinate
systems that are used are Celestial Coordinates, Satellite Coordinates, Earth Centred Inertial Coordinates,
Cartesian and Geographical Coordinates, Vehicle coordinates, Local Tangent plane coordinates. Some of
these coordinate systems have already been covered in earlier chapters. The others will be explained here.

The notation for coordinate transformations used here is that CA
B is a coordinate transformation

matrix to transform coordinates in system A to system B. For example, CECI
NED is a coordinate trans-

formation matrix to transform coordinates in an Earth Centred Inertial (ECI) coordinate system to an
earth fixed North-East-Down (NED) coordinate system. CRPY

ENU is a coordinate transformation matrix to
transform coordinates in a Roll-Pitch-Yaw (RPY) of vehicle body coordinate system to an earth fixed
East-North-Up (ENU). These coordinate frames will be described below.

Successive transformations may be achieved by successive pre-multiplication of individual transfor-
mation matrices, for example:

CNED
ECI CRPY

NED = CRPY
ECI

If CRPY
ENU converts coordinates in the RPY frame to the ENU frame then



vE

vN

vU



 = CRPY
ENU




vR

vP

vY





where vR is the component of velocity in the direction of the R coordinate axis, etc.
It can be shown that:

CRPY
ENU =




cos θER cos θEP cos θEY

cos θNR cos θNP cos θNY

cos θUR cos θUP cos θUY





where θER is the angle between the E- and the R-axes, etc.

14.11.2 Coordinate systems

In inertial space a non-rotating coordinate frame may be defined by two orthogonal directions.

• The direction of the earth’s polar axis and the direction defined by the intersection of the equatorial plane
with the plane of the ecliptic, the plane of the earth’s rotation about the sun, define an earth centred
inertial (ECI) frame. This last direction is called the Gamma or the first point of Aries. Actually such a
frame is not strictly inertial but rotates every 26 000 years, a factor that is unlikely to concern a surveyor
working over a period of hours at most. The direction of the earth’s polar axis and the direction defined
by the intersection of the Greenwich meridian with the equatorial plane define an earth centred terrestrial
(ECT) coordinate system.

• Celestial coordinates are expressed in an ECI frame in terms of right ascension and declination. Right
ascension is the arc measured on the celestial equator from Gamma, positive eastward in units of time,
to the declination circle of the celestial body. Declination is the arc of the declination circle measured
positive north, negative south, from the equator to the celestial body.
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• Satellite coordinates when expressed in Keplerian elements are in an ECI but can be converted to
ECT coordinates using Greenwich Apparent Sidereal Time.

• Cartesian and Geographical Coordinates have already been covered in Chapter 8.
• Vehicle coordinates are expressed in Roll Pitch Yaw (RPY) coordinates with respect to the axes of the

vehicle where the roll axis is in the normal direction of forward motion, the pitch axis is from right to
left across the vehicle and the yaw axis points upwards to make up the orthogonal set. The yaw axis on
a yacht is about the mast.

• Local Tangent plane coordinates are the directions of East North Up (ENU) or North East Down (NED)
at the vehicle’s position.

To convert from RPY to NED can be achieved with three specific rotations defined in order (Figure 14.48).
This may be achieved, for example, by rotation through Euler angles of Y about yaw axis, until P is parallel
to the DE plane, then P about pitch axis, until R is parallel to the N-axis, then R about roll axis, until the
RPY and the NED axes are parallel.

In this case the transformation matrix can be shown to be:



vR

vP

vY



 = CNED
RPY




vN

vE

vD





where

CNED
RPY =




cos P cos Y cos P sin Y − sin P

sin R sin P cos Y − cos R sin Y cos R cos Y + sin R sin P sin Y sin R cos P
sin R sin Y + cos R sin P cos Y cos R sin P sin Y − sin R cos Y cos R cos P





The reverse transformation is:



vN

vE

vD



 = CRPY
NED




vR

vP

vY





where

CRPY
NED =




cos P cos Y sin R sin P cos Y − cos R sin Y sin R sin Y + cos R sin P cos Y
cos P sin Y cos R cos Y + sin R sin P sin Y cos R sin P sin Y − sin R cos Y

− sin P sin R cos P cos R cos P




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Because CRPY
NED = CNED−1

RPY = CNEDT
RPY

If angles R, P and Y are small then CRPY
NED reduces to

CRPY
NED =




1 −δY δP
δY 1 −δR

−δP δR 1





To convert form NED to ENU coordinates



vE

vN

vU



 = CNED
ENU




vN

vE

vD





where

CNED
ENU =




0 1 0
1 0 0
0 0 −1





14.11.3 Methods for coordinate transformation

There are several ways in which coordinates in a Cartesian frame may be converted. They include Euler
angles, rotation vectors and direction cosines. Each method has its own application.

14.11.3.1 Euler angles

These have already been covered above, where, for example:

CNED
RPY =




cos θRN cos θRE cos θRD

cos θPN cos θPE cos θPD

cos θYN cos θYE cos θYD





=



cos P cos Y cos P sin Y − sin P

sin R sin P cos Y − cos R sin Y cos R cos Y + sin R sin P sin Y sin R cos P
sin R sin Y + cos R sin P cos Y cos R sin P sin Y − sin R cos Y cos R cos P





And therefore cos θRN = cos P cos Y , etc.
Euler angles give a good representation of vehicle attitude and may be used for driving ship and aircraft

cockpit displays including compass cards, which are about the yaw axis, and for aircraft artificial horizons,
which are about the pitch and roll axes.

Euler angles are not good for vehicle dynamics. For example if the vehicle points up as in the case of a
rocket a small change in pitch would give a very big change in orientation, perhaps of the order of ±180◦.
Sensed vehicle body rates are a complicated function of Euler angle rates.

14.11.3.2 Rotation vectors

Any three-dimensional orthogonal coordinate system can be converted to any other three-dimensional
orthogonal coordinate system with the same origin by a single rotation about a defined axis.

The rotation vector is defined by the magnitude of the rotation angle and the direction of the rotation
axis. For example, to rotate from the NED system to the ENU system as Figure 14.49 it is necessary to
rotate by π about the north-east direction.
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The rotation vector may be expressed as:

ρNED
ENU =




π /

√
2

π /
√

2
0





The 1/
√

2 component in the above vector is because the vector lies half way between the east and the north
directions. The magnitude of the vector is π . Note that ρNED

ENU = ρENU
NED .

The difficulty with rotation vectors is that there is no change to a rotation vector if you add 2π to its
magnitude and that there is a non-linear representation. For example, two successive rotations a and b may
be represented by rotation c but c is a complicated function of a and b.

14.11.3.3 Direction cosines

Direction cosines are concerned with the angles between axes of the two systems. We have already seen that

CNED
RPY =




cos θRN cos θRE cos θRD

cos θPN cos θPE cos θPD

cos θYN cos θYE cos θYD





where θRN is the angle between the R- and the N- axes, etc. The inverse transformation is

CRPY
NED =




cos θNR cos θNP cos θNY

cos θER cos θEP cos θEY

cos θDR cos θDP cos θDY





but since cos θRN = cos θNR, etc., then CNED
RPY = CRPYT

NED .

14.11.4 Inertial technology

Inert means without power to move or act and so inertia is the property of matter by which it remains in
a state of rest, or if in motion, continues moving in a straight line, unless acted upon by an external force.
The main components of inertial technology are accelerometers, gyroscopes, the platform on which they
are mounted and the software that controls them.

14.11.4.1 Inertial platforms

There are three possible types of inertial platform, space stable, local level and strap-down.
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The space stable system uses the gyroscopes to keep the inertial platform oriented in inertial space. This
requires very high quality mechanical gyroscopes and is expensive. Its application is particularly for long
distance flight and spacecraft applications.

The local level systems use the gyroscopes to keep the platform oriented with respect to the local
gravity vector (down) and North. This system usually also uses mechanical gyroscopes and torque motors
to maintain the desired orientation of the inertial platform. The controlling and measuring software is more
complex.

Strap-down systems are literally strapped down to the body of the host vehicle and use the gyroscopes to
measure change of orientation. The continuously monitored output of the accelerometers and gyroscopes
is processed through complex formulae to find the changes in position of the vehicle. Typically, they
are integrated with other navigation systems such as GPS. The gyroscopes are usually non-mechanical,
less precise and much cheaper. They measure and integrate over much shorter periods, sometimes at the
sub-second level, but the software requirements are much more complex.

The function of the gyroscopes is to monitor the changes in the orientation of the inertial platform, i.e.
the equipment frame.

14.11.4.2 Inertial sensors

All sensors are imperfect and have greater or lesser errors of bias, scale factor error, asymmetry, non-
linearity, a dead zone where no response is detected and in digital systems there is quantization when
continuous data is turned into discrete data.

For a cluster of three gyroscopes or accelerometers individual scale errors and input axis misalignments
can be modelled by:

xout = S{I + M}xin + b (14.17)

where xout are sensor outputs
xin are sensed accelerations or gyro rates
S is a nominal sensor scale factor
M is a matrix of scale factor errors and input axis misalignments
b is a vector of sensor output biases.

14.11.4.3 Accelerometers

The accelerometer works by detecting a force along the axis of the accelerometer. Unfortunately, from
the concepts of relativity, it is impossible to distinguish between acceleration and a displacing force and
therefore any accelerometer’s output will be a function of the effects of the local gravity field and the
accelerating force on the vehicle. In other words if an accelerometer’s axis is assumed to be horizontal,
but in fact is not, then the accelerometer’s output will be corrupted by small errors due to the accelerating
force of the component of the gravity vector in the direction of the accelerometer’s axis.

Accelerometers may sense acceleration from a strain under load, an electromagnetic force or a gyro-
scopic precession using measurement of angular displacement, torque rebalance, drag cups, a piezoelectric
or piezoresistive effect or an electromagnetic effect.

All accelerometers work on the principle of Newton’s second law of motion, F = ma, which connects
force, mass and acceleration and measure the force to find the desired acceleration. Of particular recent
interest are the new Micro-Electro-Mechanical Systems (MEMS) in which mechanical elements, sensors,
actuators, and electronics are integrated on a common silicon substrate. See Figure 14.50.
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Fig. 14.50 Two-axis accelerometers

14.11.4.4 Gyroscopes

The gyroscopes may be mechanical or laser. The mechanical gyro works on the principle of conservation
of angular momentum. If a twisting force (a torque) is applied that attempts to change the orientation of
the spin axis (axis of rotation) of a spinner then there is a precession (a rotation) of the gyroscope about
an axis which is defined by the vector cross product of the inertial vector of the spinner and the applied
torque vector.

This last sentence is a little wordy but it is possible to verify the gyroscopic effect by removing a wheel
from a bicycle and holding it between outstretched arms and spinning the wheel as fast as possible. On
trying to turn around and face the opposite direction a couple is applied to the end of the axle. The result
is that the wheel seems to try to tip over, because of the precessional torque. Care must be taken to avoid
personal injury. In this situation, the axes of spin, applied couple and precessional torque are all mutually
at right angles. Similar effects can be seen with a child’s toy gyroscope.

Gyroscopes may sense rotation or rotation rate from the Coriolis effect, angular momentum or light
path properties using measurements of angular displacement, torque rebalance, vibration, rotation, ring
lasers or fibre optic lasers.

Mechanical gyroscopes work on the principle of undisturbed momentum wheels that maintain orien-
tation in inertial space. They measure either rotation of the platform relative to a gimballed gyro as in
local-level and space-stable systems or the torque required to force a gyroscope to new orientation as in
strap-down systems.

With a practical gyroscope, it is easier to calibrate than to calculate the scale factor that relates torque
input to precession output (local-level) or precession input to torque output (strap-down).

Torque and precession have two dimensions so a momentum wheel gyroscope is a two-axis gyroscope.
The rotating Coriolis effect gyroscope, named after Gaspard Gustave de Coriolis 1792–1843, who

discovered the effect for which he is named, uses an accelerometer mounted off the gyro rotational axis
but with its sensitive axis parallel to rotation axis. When the system is rotated about an axis normal to
the gyroscope Z-axis, such as the Y -axis in Figure 14.51, the accelerometer senses a sinusoidal Coriolis
acceleration.

One tine of a tuning fork acts like a rotating Coriolis effect gyroscope when the tuning fork is rotated
along its longitudinal axis. Very small vibrating gyroscopes act on the same principle.

The ring laser gyroscope (RLG) works on very different principles. Light from a single source is made to
travel in opposite directions around a triangle with a mirror at each corner. If the triangle is stationary, i.e. not
rotating about its own centre then the relative phase of the light waves from each path remains unchanged.
However, if the triangle rotates, then because the light takes a finite amount of time to travel around the
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Fig. 14.51 Coriolis effect gyroscope

Fig. 14.52 Ring laser gyroscope

triangle, it will take different times depending upon which way it is going around the rotating triangle.
The result is that there will be a relative phase change compared with the stationary case. The amount of
phase change gives a measure of the rate of rotation. The advantage of the laser gyro over the mechanical
gyro is that the laser gyro has no moving parts. The disadvantage is that it is less precise. RLGs are rate
integrating gyroscopes and measure rotation not rotation rate. See Figure 14.52.

Fibre optic gyroscopes (FOG) use the same principle but instead of using a simple square or triangular
path, the light is carried in a fibre optic coil of many turns. The main problem with this approach is strain
distribution in the optical fibre caused by temperature changes and accelerations of the platform. See
Figure 14.53.

14.11.5 Inertial navigation systems

Figure 14.54 illustrates a simple one-dimensional navigation system and so only applies in an ideal flat, non-
rotating, linear world. The limitation of such a model is that accelerometers cannot measure gravitational
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Fig. 14.54 One-dimensional navigation system

acceleration unless vehicle acceleration is zero. In practice, this is most easily achieved by stopping the
vehicle so that the only sensed acceleration is that of gravity. Accelerometers have scale factor errors such as
linear, bias and non-linearity errors and electronic and quantization noise errors. A model for gravitational
accelerations will be required. Initial values of velocity and position are required for integration.

Three-dimensional navigation requires three accelerometers and two gyroscopes. Therefore there will
be much more data processing. With local-level and space stable systems, sensors will need to be isolated
from rotations.

Three-dimensional navigation systems may be gimballed, as in the space stable and local-level systems
or may be strap-down. The gimbals isolate the platform from the vehicle. Gimballed systems are more
precise but also more expensive than strap-down systems. A local-level system also has torque motors to
realign the platform.

Although gimballed systems are high precision systems they are difficult to manufacture and therefore
expensive. However, there are fewer error sources because the inertial platform is isolated from the
vehicle. The main applications of gimballed systems are where updating is not possible by GPS such as in
submarines, in space, underground, and in pipelines.

Strap-down systems, such as those used in IMUs for laser scanning, have higher rotation rates for all
the sensors and therefore sensors that are subject to large rotation errors cannot be used, e.g. gyroscopic
accelerometers. Strap-down systems may need error compensation for attitude rate. In strap-down systems,
the gyroscopes maintain coordinate transformations from RPY to ENU or NED.
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Initialization is the process of finding starting values for position, velocity and orientation and needs
external sources of data such as GPS, transfer of motion information from a host vehicle or a zero velocity
update (ZUPT).

Alignment is the name for attitude initialization and its purpose for gimballed systems is to align the
platform axes (RPY) with the local tangent plane coordinate axes (NED). For strap-down systems, the
purpose is to find initial values of coordinate transformation parameters.

The use of a gyrocompass for alignment is the only method that does not require external input and may
be used for finding the attitude of a stationary vehicle as part of a ZUPT. Gravity defines the local vertical
and so aligns the platform Y -axis with the local tangent plane D-axis. The process takes some time in a
static location.

For an aircraft in the air GPS gives precise position but poor alignment and so the system will take
several minutes before error models can correct for errors in alignment.

Alignment of a gimballed INS gyrocompass may take place on a stationary platform. The process is to
tilt the platform until two accelerometers read zero. The platform Y -axis is now aligned with U-axis of
navigation coordinates because the platform is now horizontal. Then the system rotates about the Y -axis
until one horizontal gyroscope has zero input because the gyroscope axis is pointing East–West. In practice,
there needs to be a filter to reduce the effects of disturbance to the vehicle due to wind, refuelling and
loading.

14.11.6 Kalman filtering

The Kalman Filter (KF) is a way of using noisy sensor data to estimate a system’s state where there
are uncertain dynamics. In short, it is a process that can be used to get information from a disparate set
of sensors so that the solution for position, for example, is significantly better than that which could be
obtained from any one or subset of the sensors.

On a moving platform, data may come from GPS, accelerometers, gyroscopes, clocks, and air speed
sensors. The KF process can be used to compute useful parameters such as position, velocity, acceleration,
attitude and attitude rate but may also have to compute nuisance parameters such as sensor scale factor
and bias. The KF process may also have to accommodate disturbances to the vehicle such as that due to
wind buffeting, the vehicle being driven on bumpy road or aircraft crab.

14.11.6.1 Kalman filter equations

The Kalman Filter computes the terms of an estimated state vector and its associated covariance matrix.
The estimated state vector may have useful parameters of position and velocity but will also have

nuisance parameters which are anything else that has to be estimated but is not ultimately required. The
KF state variables are all the system variables that can be measured by the sensors, e.g. acceleration for
accelerometers, angular rate for rate gyroscopes. State variables do not need to be aligned with body
coordinate axes.

The KF is a predictor-corrector process in two steps. Prediction estimates the state vector and its
covariance from one time epoch to the next and correction makes corrections to an estimated state using
data from sensors.

In a simple navigation solution, at some point you will know your position, e.g. by GPS, and you may
also know the uncertainty of that position. Sensors on your vehicle, such as compass and odometer give
the bearing and distance travelled over the next short leg of the journey, again with uncertainty. On arrival,
you can predict your new position using the information available so far, and its uncertainty. You can then
correct that position by the addition of a new GPS fix and, in combination with the predicted position,
compute a corrected position that is better than a position obtained from a single GPS fix. The process
is repeated for each successive new position with each new position better than the last, but only up to a
practical limit. See Figure 14.55.
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Fig. 14.55 Kalman filter as a predictor-corrector process

14.11.6.2 Correction equation

The correction equation corrects an estimate of the state vector using new measurements from sensors.
The correction equation (without proof) is:

x(+) = x(−) + K[z − Hx(−)]

where x(+) is the state vector after correction
x(−) is the state vector before correction
K is the Kalman gain matrix
z is the measurement vector
H is the measurement sensitivity matrix

The product Hx(−) is the predicted measurement based on the known behaviour of the system. The
Kalman gain matrix applies a correction based on the difference between the actual measurements and
the predicted measurements to update the state vector. The measurement z = Hx + noise. Therefore, the
measurement vector z is a linear function of state vector x and noise with statistical properties that are
known.

The Kalman gain matrix, K is given by:

K = P(−)HT(R + HP(−)HT)
−1

where P(−) is the covariance of the state matrix before measurements
H is the measurement sensitivity matrix
R is the covariance matrix of the measurements

and P(+) = (I − KH)P(−)

where P(+) is the covariance of the state matrix after measurements

14.11.6.3 Prediction equation

The process is most easily seen through a simple navigation example. A vehicle moves with constant
velocity so that:

Ė = vE Ṅ = vN v̇E = 0 v̇N = 0
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In matrix terms this is





Ė
Ṅ
v̇E

v̇N



 =





0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









E
N
vE

vN





With the addition of noise on the data this becomes:

dx
dt

= Fx + w

where x is the state vector
F is the dynamic coefficient matrix
w is the dynamic disturbance vector

The above is a continuous process, but real navigation processes are more usually discrete processes
and so can be represented by:





E
N
vE

vN





k

=





0 0 �t 0
0 0 0 �t
0 0 0 0
0 0 0 0









E
N
vE

vN





k−1

which, with the addition of noise, becomes:

xk = �k−1xk−1 + wk−1

where x is the state vector
� is the state transition matrix
w is the zero mean white Gaussian noise vector

In the zero mean white Gaussian noise process, w has an associated covariance matrix Q which is
a diagonal matrix and models the unknown random disturbances. In the above formula � models the
system’s known dynamic behaviour.

One source of noise may affect more than one component of the state vector. For example an applied
force may affect a gyroscope as well as the accelerometers.

The discrete process variables can be computed from � and Q where µ is the expected value of x which
is the mean vector of the distribution and P is the expected value of [x − µ][x − µ]T which is the n × n
covariance matrix of the distribution.

The KF equations and process may be represented as in Figure 14.56.
In Figure 14.56 the terms are:

x̂ is the state vector
� is the state transition matrix
P is the state vector covariance matrix
Q is the matrix of unknown random disturbances to the state vector – the dynamic disturbance matrix
K is the Kalman Gain matrix
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Fig. 14.56 Kalman filter equations and process

H is the measurement or observation sensitivity matrix
R is the measurement covariance matrix
z is the measurement or observation vector
(−) is predicted
(+) is corrected
Hk x̂k(−) is the predicted measurement
[zk − Hk x̂k(−)] is the innovations vector, the difference between the measurement vector and
predicted measurement vector

The inputs to the process are �k , Qk−1, Hk , Rk and zk . The outputs from the process are x̂k(+) the
corrected state vector and Pk(+) the state vector covariance matrix.

14.12 INTEGRATION OF GPS AND INERTIAL SYSTEMS

GPS and INS have complementary characteristics. GPS has low sample rates of pseudo-range measure-
ments, typically less than 20 Hz. GPS gives position and velocity with bounded estimation error so the
errors are reasonably easy to determine. There will be a short-term loss of signal if the lines of sight to the
satellites are blocked.

INSs have high output rates, typically greater than 100 Hz. However, the computational method and the
hardware limit the useable output rate. The state estimates are calculated from inertial sensor outputs but
the sensor outputs do not depend on any external sources such as satellites. However, the major limitation
is that position and velocity errors are unbounded in time.
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GPS cannot respond suddenly to changing dynamics. If the vehicle accelerates, a GPS-only solution
cannot recognize acceleration until the next GPS measurement. The KF uses the current state of the
filter to weight the next GPS measurement and so the filter state slowly converges to true GPS state.
The convergence rate depends on the accuracy of P, the state covariance, relative to R, the measurement
covariance. A fast convergence implies noisy estimates.

A better performance could be achieved by adding inertial sensors. One solution would be to put inertial
and GPS measurements into a KF. The state vector in the KF model then contains position, velocity,
acceleration, attitude, angular rates and accelerometer and gyroscope errors. KF then uses inertial sensor
measurements at high rates and GPS measurements at low rates.

There are three problems with this simple solution.

• The KF would have to be iterated at the high rate of the inertial measurements but the covariance
equations are computationally intensive. This in turn would reduce the rate that inertial measurements
could be incorporated into the process.

• Arbitrary models may have to be used in �, the state transition matrix. For example in GPS High
Dynamic Receivers there are terms that describe the vehicle acceleration correlation time, that is the
dependence of acceleration at one epoch with acceleration at the previous epoch. These parameters are
generally unknown and vary with time.

• The filter is estimating the whole navigation state, which may change rapidly.

14.12.1 The complementary filter

The principle here is that the GPS is aiding the INS. Inertial measurements are processed separately and
the inertial solution provides a reference trajectory to the KF.

At the GPS measurement epoch, the INS state vector is saved. The INS state vector is compared with
the GPS data. A KF is used to estimate the navigation error state using the error between the GPS and the
INS data.

Covariance update equations are used at the low rate of GPS updates. This reduces the computations
and so the INS rate is not limited by the need for covariance propagation.

Filter design is now based on an error model so that all the model parameters are now properly defined.
How the navigation system behaves now depends mainly on the update rate of the INS system and the KF
reduces the errors on the GPS aiding signal because it is estimating slowly varying error quantities.

14.12.2 Coupling between GPS and INS

The flow of information in the integrated system depends upon whether the coupling between the systems
is loose or tight.

If the GPS and INS are uncoupled the GPS and INS give position separately. If the time of interest
is at a GPS epoch then the GPS position is accepted and the INS position is reset to that of the GPS. If
the time of interest is after the last GPS epoch, then the INS position is accepted. However, no attempt is
made to estimate the errors in the IMU of the INS. In this case, the INS errors are bounded at each GPS
epoch but the rates of INS errors are unbounded. Therefore, the form of the navigation error will be as in
Figure 14.57.

If the GPS and INS are loosely coupled, the GPS state vector will aid the INS. Both the INS and the
GPS systems provide estimated vehicle position and these positions are used to estimate the errors in each
navigation or calibration variable. The main advantage of this is that it gives a relatively simple integration
approach. There is no need to process basic GPS observables and so this solution can use off the shelf GPS
and INS systems’ outputs, processed and combined in a single computational step. The disadvantage of
such a system is that it will not give optimum performance.
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Fig. 14.57 INS errors in an uncoupled system

If the GPS and INS are tightly coupled, both the INS and GPS systems provide estimated vehicle-to-
satellite pseudo-ranges. To do this it is necessary to use basic GPS observables (pseudo-ranges) and data
from GPS navigation messages. A higher system performance may be possible with this. The GPS receiver
carrier tracking loops are aided by acceleration data from the integrated navigation solution. However tight
coupling is not easy to use because it becomes necessary to have access to the GPS hardware and variables
used to implement the carrier tracking loops.



Appendix A

An introduction to matrix algebra

Matrix algebra is the only realistic and practical way to deal with the subject of least squares as applied
to the solution of survey control networks. This appendix aims to be a primer for those new to the subject
and presents the minimum necessary information to make good sense of the material in Chapter 7. For
others it will be a handy reminder or reference.

A.1 THE MATRIX AND ITS ALGEBRA

A matrix is nothing more than an array of numbers set in a regular rectangular grid. To be useful the array
must have some mathematical meaning, reflecting in survey, a physical purpose. The algebra that defines
the properties of matrices must be one for which the rules of matrix manipulation lead to useful results.
This appendix presents a summary of the rules. It is not written to be an authoritative mathematical text
but more as a useful aide mémoire of the collected rules of matrix algebra as they apply to survey.

Matrix methods lend themselves to the solution of large sets of simultaneous equations. Solutions
by matrix methods involve repetitive numerical processes that, in turn, lend themselves to computer
manipulation. It is this that makes matrix methods particularly useful to the surveyor.

An element of a matrix may be referred to by its position in the matrix in terms of row and column
numbers. The matrix as a whole is represented in upper case in bold type whereas the elements are
represented in lower-case in ordinary type, sometimes with subscripts to represent the row and column
numbers. In the example matrix A has three rows and two columns. Element a12 is in the first row and
second column and has the value 6.

A =



a11 a12
a21 a22
a31 a32



 =



2 6
5 4
3 7





Sometimes, to make a point about the dimensions of a matrix the matrix may be written with its dimensions
with row subscript before and column subscript after. The above example is 3A2.

When a matrix has only one row or only one column it is referred to as a row or column vector. In this
case the vector is written in bold lower-case and the elements have only one subscript to indicate their
column or row respectively. b is a row vector and c is a column vector.

b = [
b1 b2 b3

]
c =





c1
c2
c3
c4





If a matrix has only one row and one column then the matrix contains a single element and may be treated
as a single number or scalar.

Matrices may be added, subtracted and multiplied but not divided. Matrices may be inverted and this
allows for an equivalent process to conventional division to take place.
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A.2 ADDITION AND SUBTRACTION

For two matrices to be added or subtracted their dimensions must be the same, that is they must both have
the same number of rows and the same number of columns. The result of the addition or subtraction of
the matrices has the same dimensions as both the original matrices. The individual elements in the result
are formed from the addition or subtraction of the respective elements from the two original matrices.
In the following example:

A =



a11 a12
a21 a22
a31 a32



 =



2 6
5 4
3 7



 B =



b11 b12
b21 b22
b31 b32



 =



1 8
6 3
2 7





If C = A + B and D = A − B

then C =



c11 c12
c21 c22
c31 c32



 =



a11 + b11 a12 + b12
a21 + b21 a22 + b22
a31 + b31 a32 + b32



 =



3 14

11 7
5 14





and D =



d11 d12
d21 d22
d31 d32



 =



a11 − b11 a12 − b12
a21 − b21 a22 − b22
a31 − b31 a32 − b32



 =



1 −2

−1 1
1 0





It follows from this that for any dimensionally compatible matrices:

X + Y = Y + X

X + (Y + Z) = (X + Y) + Z

A.3 MULTIPLICATION

The rules for matrix multiplication are a little more complex. For it to be possible to multiply two matrices
the number of columns of the first matrix must equal the number of rows of the second matrix. The
dimensions of the product are from the rows of the first matrix and columns of the second matrix.
For example:

4F2 = 4E3 3A2

Note that AE � �= EA. That fact that EA may be possible does not mean that AE will also be possible. The
order of multiplication is all important. In this example A is pre-multiplied by E, which is the same as
saying that E is post-multiplied by A. The element fij is computed as:

fij =
x=n∑

x=1

(eixaxj)

where n is the number of columns in the first matrix and the number of rows in the second matrix.
In this case:

fij = ei1a1j + ei2a2j + ei3a3j

If E =





e11 e12 e13
e21 e22 e23
e31 e32 e33
e41 e42 e43



 =





1 4 6
5 6 0
3 7 2
3 4 2




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then, for example:

f32 = e31a12 + e32a22 + e33a32 = 3 × 6 + 7 × 4 + 2 × 7 = 60

and so:

F =





f11 f12
f21 f22
f31 f32
f41 f42



 =





1 4 6
5 6 0
3 7 2
3 4 2








2 6
5 4
3 7



 =





40 64
40 54
47 60
32 48





If two vectors are multiplied then the result is either a full matrix or a scalar. For example, if:

a =



a1
a2
a3



 and b = [
b1 b2 b3

]

then: ab =



a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



 and ba = [b1a1 + b2a2 + b2a3]

It can be shown that for any dimensionally compatible matrices:

X(YZ) = (XY)Z

X(Y + Z) = XY + XZ

(W + X)(Y + Z) = WY + WZ + XY + XZ

A.4 NULL MATRIX

The null matrix is a matrix or vector that contains only zeros. It may be added, subtracted or multiplied in
the normal way. The product of any matrix and a null matrix is always a null matrix. A null matrix may be
formed as the product of other non-null matrices. For example:

[
1 −2

−1 2

] [
1 1
0.5 0.5

]
=

[
0 0
0 0

]

A.5 TRANSPOSE OF A MATRIX

The transpose of a matrix is one in which the rows and columns of the original matrix have been
interchanged. Therefore if G is the transpose of A then:

G = AT and gij = aji

In matrix notation:

G = AT =



a11 a12
a21 a22
a31 a32




T

=
[

a11 a21 a31
a12 a22 a32

]
=

[
g11 g12 g13
g21 g22 g23

]

It can be shown that for any dimensionally compatible matrices:

Transpose of sum of matrices equals the sum of the transposes (X + Y)T = XT + YT

Transpose of product of matrices equals the product of the transposes in reversed order (XY)T = YT XT
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A.6 IDENTITY MATRIX

An identity matrix is a square matrix where all the elements are zero except for the elements on the
leading diagonal which are 1. The leading diagonal is the line from top left to bottom right. Pre- or
post-multiplication by an identity matrix does not change the matrix being multiplied. For example:

I =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





For multiplication to take place the dimensions of the identity matrix must be correct. The notation for an
identity matrix is a bold upper case I. The following relationships follow from this definition.

AI = IA Note that the dimensions of these Is are not the same unless A is square.

I = I−1 = IT = II = I2. See below for an explanation of the inverse (−1) of a matrix.

A.7 DIAGONAL MATRIX

A diagonal matrix is a square matrix for which all the elements are 0 except those on the leading diagonal.
The identity matrix is an example of a diagonal matrix. If A and B are diagonal matrices where:

A =



a11 0 0
0 a22 0
0 0 a33



 and B =



b11 0 0
0 b22 0
0 0 b33



 and C =



c11 c12
c21 c22
c31 c32





then:

AB =



a11b11 0 0

0 a22b22 0
0 0 a33b33



 = BA

AC =



a11c11 a11c12
a22c21 a22c22
a33c31 a33c32





A.8 THE DETERMINANT OF A MATRIX

The determinant of a matrix is a scalar, a single number, no matter what the size of the matrix. The matrix
must be square. In notation, the determinant of A is written |A|. The easiest way to show the rules for the
calculation of the determinant of a matrix is by example.

For a 1 × 1 matrix:

|1A1| = |a11| = a11

For a 2 × 2 matrix:

|2A2| =
∣∣∣∣

a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21
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This is the fundamental building block for computation of all determinants. Note the order of multiplication;
top left times bottom right minus top right times bottom left.

For a 3 × 3 matrix:

|3A3| =
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Write out the elements of the first row of 3A3 with alternate changed signs starting with a11 taking its
correct sign, a12 opposite and a13 correct. Multiply each element by the determinant of what is left of
the original 3 × 3 matrix once the complete row and column containing the subject element have been
removed. The pattern is the same for larger matrices.

|3A3| = a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

Now form the 2 × 2 determinants as above.

|3A3| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

For a 4 × 4 matrix:

|4A4| =

∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣

Write out the elements of the first row of 4A4 with alternate changed signs starting with a11 taking its
correct sign, a12 opposite, a13 correct and a14 opposite. Multiply each element by the determinant of what
is left of the original 4 × 4 matrix once the complete row and column containing the subject element have
been removed.

|4A4| = a11

∣∣∣∣∣∣

a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣

a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣

a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣

− a14

∣∣∣∣∣∣

a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣

Now form the 3 × 3 determinants as above.
By now the pattern for finding the determinant of larger matrices should be clear.
The determinants above were developed from the first row of the matrix. They could just as well have

been developed using the first column. Since changing the order of the rows or columns in the matrix
only affects the sign but not the absolute value of the determinant then the determinant could have been
developed using any row or column. An even number of exchanges of rows or columns does not affect the
sign of the determinant.

If all the elements of a row or column are 0 then the determinant is 0. If the elements in one row are a
combination of multiples of the elements of other rows the determinant is 0. The same applies to columns.
For example, in the following matrix, the elements of row 3 equal the elements of row 1 plus 2 times the
elements of row 2.

∣∣∣∣∣∣

1 2 3
2 3 1
5 8 5

∣∣∣∣∣∣
= 1(3 × 5 − 1 × 8) − 2(2 × 5 − 1 × 5) + 3(2 × 8 − 3 × 5) = 0
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It can be shown that:

|A||B| = |B||A| because determinants are scalars

|A||B| = |AB| = |BA| if A and B are dimensionally correct

|AT | = |A|

A.9 THE INVERSE OF A MATRIX

The inverse of a 2 × 2 matrix may easily be expressed as follows.

If : A =
[

a11 a12
a21 a22

]

then A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

This may be verified by forming the product A−1A and showing that is an identity matrix.
The inverse of a larger matrix is not so easily expressed. The computational process is as follows.

Form the determinant |A| as described above.
Form the adjoint of the matrix.
Divide the terms of the adjoint by the determinant.

The adjoint of the matrix has the same dimensions as the original matrix but its cofactor or ‘signed minor’
replaces each term of the original matrix. The whole is then transposed. The minor is the value of the
determinant of the original matrix with the row and the column of the subject element removed. To
become a signed minor, the minor is multiplied by −1 to the power of the sum of the row and column
numbers of the subject element. When the element is in the ith row and the jth column (−1)(i+j) is +1 if
(i + j) is even and −1 if (i + j) is odd. When i and j are both 1, i.e. in the top left-hand corner of the matrix,
(−1)(i+j) is +1. On moving through the matrix, therefore, the value of (−1)(i+j) takes up the following
pattern.





+1 −1 +1 −1 +1 . . .
−1 +1 −1 +1 −1 . . .
+1 −1 +1 −1 +1 . . .
−1 +1 −1 +1 −1 . . .
+1 −1 +1 −1 +1 . . .
. . . . . . . . . . . . . . . . . .





The inverse of the matrix is then found as the adjoint scaled by the inverse of the determinant. The derivation
is illustrated for a 3 × 3 matrix.

If: A =



a11 a12 a13
a21 a22 a23
a31 a32 a33





the determinant of A, from above, is:

|A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
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The matrix of minors is:



(a22a33 − a23a32) (a21a33 − a23a31) (a21a32 − a22a31)
(a12a33 − a13a32) (a11a33 − a13a31) (a11a32 − a12a31)
(a12a23 − a13a22) (a11a23 − a13a21) (a11a22 − a12a21)





The adjoint or the transpose of the matrix of signed minors is:

Adj A =



(a22a33 − a23a32) −(a12a33 − a13a32) (a12a23 − a13a22)

−(a21a33 − a23a31) (a11a33 − a13a31) −(a11a23 − a13a21)
(a21a32 − a22a31) −(a11a32 − a12a31) (a11a22 − a12a21)





and therefore the inverse of A is:

A−1 = Adj A
|A|

Worked example

Example A.1 Find the inverse of matrix A where:

A =



1 2 3
2 1 4
3 2 5





The determinant of A is:

|A| = 1(1 × 5 − 4 × 2) − 2(2 × 5 − 4 × 3) + 3(2 × 2 − 1 × 3)
= −3 − (−4) + 3
= 4

The matrix of minors is:



−3 −2 1

4 −4 −4
5 −2 −3





The adjoint or the transpose of the matrix of signed minors is:

Adj A =



−3 −4 5

2 −4 2
1 4 −3





and upon dividing throughout by the determinant the inverse of A is:

A−1 =



−0.75 −1 1.25

0.5 −1 0.5
0.25 1 −0.75





Finally check to ensure that there are arithmetic errors by confirming that AA−1 = I:

AA−1 =



1 2 3
2 1 4
3 2 5








−0.75 −1 1.25

0.5 −1 0.5
0.25 1 −0.75



 =



1 0 0
0 1 0
0 0 1





The inverse of a diagonal matrix is easily found because its inverse is also a diagonal matrix and the
elements on the leading diagonal of the inverse are the inverse of the elements on the leading diagonal of
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the original matrix. Therefore if:

A =



a11 0 0
0 a22 0
0 0 a33



 then A−1 =



a−1

11 0 0
0 a−1

22 0
0 0 a−1

33





It can be shown that for any dimensionally compatible matrices:

Inverse of the transpose equals the transpose of the inverse (XT )−1 = (X−1)T

The product of a matrix and its inverse is an identity matrix XX−1 = X−1X = I
The inverse of a product is the product of inverses but in the reverse order (XYZ)−1 = Z−1Y−1X−1

The inverse of a sum is the sum of the inverses (X + Y)−1 = X−1 + Y−1

The determinant of the inverse is the inverse of the determinant |X−1| = |X|−1

A.10 SINGULARITY, ORDER, RANK AND DEGENERACY

A singular matrix is one for which the determinant equals 0. A singular matrix cannot have an inverse
because the process for the determination of the inverse involves dividing by the determinant.

If a singular matrix is of the order n, i.e. it is an n×n matrix, and there is at least one sub-matrix of order
n − 1 which is not singular then the matrix is said to have a degeneracy of 1. If the largest non-singular
sub-matrix that can be formed is of order n−m then the degeneracy is of order m. Order minus degeneracy
equals rank.

If the matrix is not square then the row-rank degeneracy is the number of rows that are not independent.
Similarly, column-rank degeneracy is the number of columns that are not independent.

A.11 ORTHOGONAL MATRICES

A square matrix is defined to be orthogonal only if its inverse equals its transpose, that is A−1 = AT .
Orthogonal matrices have particular application in surveying as rotation matrices which transform the
coordinates of a point in one system to the coordinates of the same point in another system which is rotated
with respect to the first.

In an orthogonal matrix the sum of the products of corresponding elements in any two rows and any
two columns is zero. The sum of the squares of the elements in every row and in every column is 1.
An orthogonal matrix is non-singular. If a matrix is orthogonal, so is its transpose. The product of any
number of orthogonal matrices is another orthogonal matrix.

The rotation matrix below is an example of an orthogonal matrix and meets all the criteria of the
preceding paragraph.

[
cos x sin x

− sin x cos x

]

It can be shown that for orthogonal matrices:

XXT = XT X = I
XT = X−1

|XT | = |X| = ±1
|XXT | = 1
(XY)−1 = Y−1X−1 = YT XT = (XY)T
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A.12 ROTATION MATRICES

Rotation matrices are most often used for coordinate transformations. If two coordinate systems A and B
have the same origin and are rotated with respect to each other by an angle α, as in Figure A.1 and a single
point has coordinates in the two systems of:




xA

yA

zA



 in system A and




xB

yB

zB



 in system B

then the coordinates of the point in system B are related to the coordinates in system A by:



xB

yB

zB



 =



1 0 0
0 cos α sin α

0 − sin α cos α








xA

yA

zA





this can be seen from Figure A.1.
xB = xA because the rotation is about the x-axis. The equivalent rotations of β about y and γ about

z are:



xB

yB

zB



 =



cos β 0 − sin β

0 1 0
sin β 0 cos β








xA

yA

zA








xB

yB

zB



 =



cos γ sin γ 0

− sin γ cos γ 0
0 0 1








xA

yA

zA





yA sin α

zA cos α

α

α zA sin α

yA cos α

yB

zB

zA

yA

Fig. A.1 Rotated axes
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A.13 EIGENVALUES AND EIGENVECTORS

If N is a square, non-singular matrix of order n, then in the equation

(N − λI)x =





n11 − λ n12 . . . n1n

n21 n22 − λ . . . n2n

. . . . . . . . . . . .
nn1 nn2 . . . nnn − λ









x1
x2
. . .
xn



 = 0

there will be n values of λ for which the matrix (N − λI) is singular. That is, there are n values of λ which
make the determinant of (N − λI) zero. If the determinant of (N − λI) is formed and equated to zero it can
be expressed in the form of its characteristic equation or characteristic polynomial.

anλ
n + an−1λ

n−1 + · · · + a1λ + a0 = 0

All values of λ may not be distinct. These values are called characteristic roots, latent roots or eigenvalues.
With solutions for λ, the equation

(N − λiI)x = 0

rewritten as Nx = λix will have as a solution

x = c





e1
e2
e3
. . .
en





where c can take any value. The vector is then the characteristic vector, latent vector or eigenvector
associated with the eigenvalue λi. If c is chosen such that:

∑
(cei) = 1

then x is said to be normalized. If N is singular then at least one of the eigenvalues is zero.

Worked example

Example A.2 Find the eigenvalues and eigenvectors of the 2 × 2 matrix A where:

A =
[

3 2
4 5

]

then the eigenvalues are derived from the characteristic equation as follows:

|A − λI| =
∣∣∣∣

3 − λ 2
4 5 − λ

∣∣∣∣ = (3 − λ)(5 − λ) − 8 = 0

So: λ2 − 8λ + 7 = 0
for which the solutions are λ1 = 1 and λ2 = 7.
If the eigenvalues are used in the expressions Ax1 = λ1x1 and Ax2 = λ2x2 then the solutions of:

(A−λ1I)x1 =
[

3−λ1 2
4 5−λ1

][
x1
x2

]
=

[
0
0

]
(A−λ2I)x2 =

[
3−λ2 2

4 5−λ2

][
x1
x2

]
=

[
0
0

]
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are :
[

x1
x2

]
=

[
k

−k

] [
x1
x2

]
=

[
k

2k

]

where k is any number.
Eigenvalues and eigenvectors are particularly useful in the determination of error ellipses, figures of

positional uncertainty as described in Chapter 7 and are the only practical solution for the determination
of the three-dimensional equivalent, error ellipsoids.



Index

Absolute:
error ellipse, 255
orientation, 574

Absorption, 48
Accelerometer, 594
Accommodation, 563
Accuracy, 18
Active network, 358
Adaptation, 563
Additive constant drift, 536
Adjoint of the matrix, 609
Adjustment, 54, 227
Aerial:

camera, 543
photographs, 543
triangulation, 559

Agent, 482
Air speed, 560
Airborne laser scanner, 585
Airy, 299, 306
Alidade, 165
Altitude:

bubble, 162
correction, 142

Ambiguity, 332
Amplitude method, gyro, 528
Anaglyph, 580
Angle:

equation, 239
of intersection, 370
measuring, 184

Angles of convergence, 563
Angular:

adjustment, traverse, 211
misclosure, traverse, 205
momentum, 595

Antenna swap, 340
Anti-spoofing (A-S), 324, 338
Apex angle, distance, 370
Apparent dip, 455
Areas by coordinates, 447
Argument of perigee, 326
Ascending node, 326
ASTER, 580

Astronomical coordinates, 288
Atmospheric:

pressure, 138
refraction, 343

Automatic:
compensator, 162
level, 52, 56
target recognition (ATR), 154

Autoplumb, 491, 515
Auxiliary balancing lines, 479
Azimuth:

astronomic, 537
geodetic, 537

Backsight, 60
Balancing line, 473
Barrel and Sears, 138
Batter board, 505
Bearing equation, 239
Bench mark, 44, 67
Bent pipe, 362
Bessel correction, 31
Bill of quantities, 474
Block I/II/IIR-M, 360
Blunder, 22, 213, 265
Boning rod, 494
Booking, precise levelling, 80
Borrow, 473
Bowditch, 213
Braking distance, 422
British standards, 483, 501
Broadcast ephemeris, 323
Bulking, 472

C/A code, 324
Calibration, 146
Camera constants, 549
Carrier waves, 129
Cartesian coordinates, 290
Catenary, 111
Centesimal, 20
Central meridian, 303
Centrifugal:

force, 391
ratio, 393
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Centring errors, 182
Chaining arrow, 107
Change plate, precise levelling, 74
Characteristic equation, polynomial,

roots, 277, 613
Charge couple device, 82
Checking, 146
Chipping rate, 322
Circle:

eccentricity, 164
graduation error, 175

Circular:
bubble, 57
curves, 370

Civil Engineering Method of Measurement
Edition, 3 (CESMM3), 474

Clothoid, 393, 398, 439
Code:

correlation, 323
method, 165

Coefficient of:
correlation, 254
friction, 394
refraction, 96
thermal expansion, 114

Coincidence microscope, 164
Collimation:

in azimuth, 169, 171, 179
digital levelling, 84

Column vector, 604
Column-rank degeneracy, 611
Compensator, 53
Complementary filter, 602
Compound curve, 380, 407
Computation on ellipsoid, 297
Computer aided design (CAD), 15
Computing the join, 194
Consistency, 3
Constant error, 23
Contouring, 68, 100
Contours, volume by, 461
Control, 2

network, 6
segment, GPS, 323
survey, 189

Convergence, 274, 563
Coordinate:

adjustment, 211
system, 590

Co-planing, 512
Coriolis, 595
Corner cube prism, 135
Correction equation, 599
Correlation, surface to underground, 507

Cospas-Sarsat, 364
Coupling between GPS & INS, 601
Crest, 422
Crossfall, 395
Cross-hairs, 51, 575
Cross-sectional area, 451, 454
Cubic spiral or parabola, 399, 404
Curvature, 47, 95
Curve:

designation, 371
through a given point, 379

Cycle slip, 332
Cyclic error, EDM, 148

Damp proof course (DPC), 490
Datum, 43, 357

dependant, 259, 286
Deflection angle, 372
Deformation monitoring, 368
Degeneracy of a matrix, 610
Degree of curve, 370, 373
Degrees of freedom, 28, 252
Department of Trade and Industry (DTI), 113
Derived quantities, 264
Design matrix, 235
Determinant of a matrix, 606
Deviation of the vertical, 295
Diagonal matrix, 606
Differential GPS, 338
Digital:

elevation model (DEM), 547
ground model, 12, 443
levelling, 81
photogrammetry, 579

Dilution of precision, 344
Dip, 455
Direct contouring, 69
Direction, 160

cosines, 592
equation, 239

Directions, measuring, 184
Dislevelment, gyro, 536
Distance:

equation, 238
reductions, 141

Distribution of angular error, 205
Doppler, 332
Double difference, 336
Dry bulb temperature, 138
Dual axis compensator, 153
Dynamic:

coefficient matrix, 600
disturbance vector, 600
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E911, 361
Earth centred inertial (ECI), 590
Earth centred terrestrial (ECT), 590
Earth’s:

curvature, 283
gravitational constant, 325
surface, 283

Earthworks, controlling, 505
East-north-up (ENU), 590
Eccentric anomaly, 327
Eccentricity, 152, 164, 287
Economy of accuracy, 2
EDM error, 146
Eigenvalues and eigenvectors, 262, 613
Electromagnetic distance measurement

(EDM), 127
Electro-optical scanning, 165
Elevation, 4
Ellipsoid, 4, 283
Ellipsoidal height, 293
Emission, 48
Employer, 482
End-area method, 459
Endless drive, 154
Engineer, 482
ENVISAT, 580
Ephemeris error, 343
Equation of motion, gyrotheodolite, 522
Equilibrium, 48
Equipotential 4, 285
EROS, 580
Error, 18

analysis, gyro, 536
ellipse, 251
ellipsoids, 276

ERS, 580
Estimation, 227
Euler:

angles, 591
spiral, 393

European Geostationary Navigation Overlay
Service (EGNOS), 362

European Space Agency (ESA), 362
European Terrestrial Reference System,

1989 (ETRS89), 358

F test, 270
False:

colour imagery, 576
origin, 306

Fibre optic gyroscopes (FOG), 596
Finished floor level (FFL), 490
First point of Aries, 590
Flattening, 286

Flight:
lines, 560
planning, 559

Flush bracket, 44
Flying height, 545
Focal length, 545
Footprint, 585
Formation level, 503
Forward compensation mechanism, 549
Free traverse, 199
Frequency modulation, 130
Friction clutch, 154
Full overtaking sight distance (FOSD), 423
Fundamental bench mark (FBM), 44

Galileo, 363
Gamma, 590
Gauss, 253
Geodesic, 302
Geodetic:

coordinates, 289
Reference System, 1980, 286

Geographical information systems (GIS), 367
Geoid, 4, 286

height, 293
Give-and-take lines, 444
Glass fibre tape, 107
GLONASS, 359
GOCA, 369
GPS heighting, 355

III, 361
Grade angle, 428
Gradients, 419
Gravity, 285
Greenwich meridian, 288, 590
Grid:

convergence, 302, 311
layout for contouring, 70

Gross error, 22, 269
Ground:

control, for photogrammetry, 559
level, 503
relief, 550
speed, 560

Group velocity, 135
Guide light, 154
Gyromat 3000, 537
Gyroscope equations, 522
Gyroscopes, 595
Gyroscopic azimuth, 537
Gyrotheodolite, 519

Halving and quartering, 383
Hand over word (HOW), 323



618 Index

Haul, 473
Hazards, laser, 498
Heat shimmer, 65, 84
Height, 292

network, least squares, 235
of plane of collimation (HPC), 58, 61

Helmert transformation, 301, 358
Highway:

optimization, 575
transition curves, 400

Highways Agency, 394
Hilti nails, 485
Horizon line, 576
Horizontal:

angle, circle, 160
circle-setting screw, 162
line, 43

ICE7th, 482
Identity matrix, 607
IKONOS, 580
Image displacement, 552
Impulse modulation, 129
Inaccessible intersection point, 378
Inclination of the orbital plane, 326
Incremental method, 165
Independent check, 3, 228, 348
Indirect contouring, 70
Inertial:

measuring unit (IMU), 579
navigation system (INS), 596
platforms, 596
sensors, 594
systems, 589
technology, 593

Infra-red radiation, 129
Innovations vector, 601
Institution of Civil Engineers (ICE), 482
Instrument specifications, 153
Integer ambiguities, 340
Interface control document, 330
Intermediate sight, 60
International Commission on Non-Ionising Radiation

Protection (ICNIRP), 502
International Earth Rotation Service (IERS), 288, 357
International Reference Meridian, 357
International Reference Pole, 288, 357
International Terrestrial Reference Frame (ITRF), 357
Intersection, 215, 577

point, 372
Invar, 74

tape, 107
Inverse of a matrix, 609
Invert pipe level, 495

Inverted sights, 62
Irregular boundaries, 443
IRS, 580
Isocentre, 551
Isometric parallel, 551

K-value, 421
Kalman Filter (KF), 598
Kalman gain matrix, 599
Kepler, 327
Kepler’s equation, 328
Kinematic, 333

positioning, 340

L Band, 322
L2C, 361
L5, 361
Landsat, 580
Laser, 495

plummet, 154
safety code, 501
safety officer, 501
scanner, 581

Latent roots, 613
Lateral overlap, 560
Least squares, 227
Level:

booking methods, 60
line, 43
surface, 43
tunnel, 540

Levelling, 42
plate, 64
staff, 49

Light detection and ranging (LiDAR), 582
Limit of economical haul, 473
Limiting radius, 395
Line:

of apsides, 326
of full dip, 455
tunnel, 537

Linearization, 229
Linen tape, 107
Link traverse, 197, 210
Local scale factor, 151
Local-level, 595
Locus line, 228
Look-up, 539

M code, 366
Machine guidance, 157, 365
Magnification, 52
Manhole, 493
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Manual of Contract Documents for
Highway Works, 474

Mass-haul diagrams (MHD), 472
Master control station, GPS, 322
Mean anomaly, 327
Mean sea level (MSL), 4, 42, 284
Mercury pool, 515
Meridian section, 294
Method of offsets, 376
Micro-electro-mechanical systems (MEMS), 594
Mid-latitude formulae, 297
Minor of a matrix, 607
Misalignment, tape, 119
Misclosure, levelling, 65
Mistake, 22
Moiré pattern, 167
Molodenskii transform, 301
Monitor station, GPS, 322
Mosaics, 574
Most probable value (MPV), 25
Multi-Functional Transport Satellite (MTSAT), 363
Multipath, 344
Multi-pillar base line, 149

National grid, 306
National Physical Laboratory (NPL), 113
Natural errors, angles, 188
Navigation, 367

message, 324
Navy Navigation Satellite System (NNSS), 319
Network analysis, 273
Networks, 224
New Engineering Contract Edition, 3 (NEC3), 474, 482
Newlyn, 43, 286, 354
Non-verticality, instrument, 172
Normal:

distribution, 26
equations, 255
probability curve, 26

North American Datum, 1983 (NAD83), 358
North finding equation, 526, 531
North-east-down (NED), 590
Null matrix, 606

Observation equation, 229
Observations vector, 235
Observed minus computed, 235
Obstruction on the curve, 379
Off nadir angle, 585
Offset:

from long chord, 382
from tangent, 382

Offsets, 377
On-the-fly, 338

Open traverse, 199
Operational control segment (OCS), 323
Optical:

axis, 550
level, 49
micrometer error, 175
micrometer reading, 163
plumb-bob, 182
plumbing, 492
plummet, 163, 179
scale reading, 163

OrbView, 580
Order of a matrix, 610
Ordnance Survey (OS), 43
Orthogonal matrix, 611
Orthometric height, 285
Orthomorphic projection, 302
Orthophoto, 574
Oscillations error, gyro, 535
Osculating circle, 399, 405
OSGB36, 352
OSTN02, 306
Outlier, 32
Overhang, 539
Overtaking distance, 423

P code, 324
Pan and tilt mechanism, 582
Pappus’s theorem, 464
Parallactic angles, 563
Parallax, 51, 564

bar, 567
equation, 566
height correction, 569
measurement, 568

Parallel plate, 163
micrometer, 75

Parameter vector, 234
Partial water vapour pressure, 138
Passive network, 358
Pedal curve, 259
Pendulous motion, 512
Perception-reaction distance, 422
Perigee, 325
Personal error, 22, 187
Phase:

angle, 132
difference method, 131
velocity, 135

Photo axis, 550
Photography, 548
Pipe laser, 499
Pitch, 570, 591
Plan network, 237
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Plane:
angle, 4
of collimation (HPC), 58, 61
rectangular coordinates, 189, 208, 291

Planimeter, 444
Plate, 160

bubble, 160
clamp, 162
level test, 176
parallels, 551
tectonics, 366

Plotted areas, 443
Plotting, contouring, 100
Plumb point, 551
Plumb-bob, 180, 491
Plumbing, 119
Point cloud, 585
Polar coordinates, 192
Pole, 288
Polygonal traverse, 198
Post-multiply, 604
Precession, 594

torque due to, 526
Precise:

ephemeris, 330
levelling, 73
levelling staff, 74

Precision, 2, 18
farming, 366

Prediction equation, 599
Predictor-corrector, 598
Pre-marked control, 559
Pre-multiply, 604
Principal:

distance, 549
line, 551, 576
point, 549

Principles of survey, 2
Prism, volume, 457
Prismoid, 459
Prismoidal equation, 460
Probability, 25
Project cost, 562
Pseudo random noise, 322
Pseudolite, 364
Pseudo-range, 320
Public regulated navigation, 363
Pulse method, 129
Push broom, 585
Pyramid, volume, 458

Quadratic form, 233
Quality assurance, 3
QuickBird, 580

Radial acceleration, 396
Radian, 20
Radiation method, contouring, 101
Random error, 23
Ranging rod, 107
Rank of a matrix, 611
Rankine’s deflection method, 397
Rapid static, 339
Real-time kinematic, 340
Receiver clock error, 342
Reciprocal:

levelling, 71
observations, 97

Reconnaissance, 7, 200
Reconstructed carrier wave, 334
Reduced level, 45, 58
Reduction:

from slope to horizontal, 150
of levels, 60
to the plane of projection, 151

Reference variance, 240
Reflective target, 136
Reflectorless measurement, 155
Refraction, 47, 95
Refractive index, 135
Refractivity, 138
Relative:

error, 24
error ellipse, 260
orientation, 574

Reliability, 2, 269, 271
Reoccupation, 339
Repeatability, 19
Resection, 215
Resident engineer (RE), 483
Residual, 19, 227, 251
Residuals vector, 234
Restitution, 548, 573
Reticule, 51
Reverse curve, 380
Right ascension, 326
Rigorous control, 227
Rinex, 358
Ring laser gyroscope (RLG), 595
Rise and fall, 60
Rocking staff, 64
Roll, 570, 591
Roll-pitch-yaw (RPY), 590
Rotating laser, 497
Rotation:

matrix, 611
vectors, 592

Rounding, 22
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Row vector, 604
Row-rank degeneracy, 611

Safeguarding, 3
Safety-of-life, 363
Sag correction, tape, 115, 118
SAPOS, 358
Satellite:

clock error, 342
laser ranging, 357

Saturation water vapour pressure, 138
Scale, 551, 562

engraving, gyro, 536
error, EDM, 149
factor, 303, 306
unit error, gyro, 535

Scatter, 24
Sectional levelling, 67
Selective availability (SA), 338
Sensitivity matrix, 599
Separation, 287
Servo motors, 155
Setting out:

by intersection, 487
by offsets with sub-chords, 377
by polar coordinates, 486
curves, 372
engineer, 483
slopes stakes, 503
transitions, 397
with an obstruction, 379
with coordinates, 375
with EDM, 375
with inaccessible intersection

point, 378
with theodolite and tape, 372
with theodolite at intermediate

point, 379
with two tapes, 376
with two theodolites, 374

Setting up, 180
Settlement, 65
Sexagesimal, 20
Shift, 396
Shrinkage, 473
Sight:

distance, 63
rails, 494

Signal squaring, 323
Signed minor, 609
Significant figures, 21
Simpson’s rule, 446
Single difference, 335
Singular matrix, 611

Site grid, 488
Sky plot, 349
Slope, 110

correction, 119, 121
rail, 505
stakes, 502

Snell’s Law, 77
Softcopy photogrammetry, 579
Space segment, GPS, 321
Space-stable, 595
Spherical angle, 4
Spin rate change, gyro, 536
Spiral deformation, 512
Spire test, 177, 179
Spot heights, volume by, 461
SPOT, 580
Spring balance, 109
Sputnik, 319
Staff:

bubble, 64
graduation error, 63

Standard error, 28, 31
of an observation of unit weight, 251

Standardization, tape, 117
State:

transition matrix, 600
vector, 598

Static positioning, 338
Station metre, 473
Steel tape, 107
Step measurement, 112
Stereo model, 564
Stereoscopic:

methods, 578
parallax, 544

Stereoscopy, 563
Stop and go, 340, 585
Stopping sight distance (SSD), 422
Strap-down, 597
Strike line, 455
String, 14
Structural grid, 488
Sub-chords, 377
Super-elevation, 392, 396
Survey grid, 488
Swing, 551
Systematic error, 23
Systéme Internationale (SI), 20

t − T correction, 303, 312
t distribution, 32
Tangent:

plane coordinates, 590
point, 370
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Tape zero drift, gyro, 535
Tapes, 107
Taylor expansion, 230
TD9/93, 395
Temperature correction, tape, 114
Temporary bench mark (TBM), 44
Tension, 110

correction, tape, 114, 118
Terrestrial mobile laser scanner, 585
Tertiary levelling, 48
Theodolite, 160
Thermometer, 109
Through chainage, 371
Tienstra, 219
Tilt, 550, 551, 554
Tilting level, 49
Toe of embankment, 502
TopSat, 580
Torque, 594

ratio constant, gyro, 527, 531
gyro, 526

Total station, 127
Traffic engineering, 575
Transformation between reference

systems, 352
Transit:

axis, 162
axis error, 170
axis test, 177
method, gyro, 529

TRANSIT, 357, 359
Transition:

curve, 391, 399
spiral, 409

Transport Research Laboratory (TRL), 394
Transpose of a matrix, 606
Transverse Mercator projection, 306
Trapezoidal rule, 446
Traveller, 494
Traversing, 196
Triangulated irregular network (TIN), 14
Triangulation, 214
Tribrach, 160
Trigonometrical levelling, 93
Triple difference, 337
Trivet, 160
True:

anomaly, 326
error, 24

Tubular bubble, 51
Tuning fork, 595
Tunnel boring machine (TBM), 539
Turbulence, 515
Twisting, torque due to, 527
Two-peg test, 55, 57

Uncertainty, 18, 34
Universal Transverse Mercator (UTM), 306
User segment, GPS, 321

V2 rocket, 589
Variance, 30

factor, 251
Variance-covariance matrix of:

estimated observations, 269
estimated residuals, 266
parameters, 234

Variation of coordinates, 234
Vehicle coordinates, 590
Velocity of light, 131
Ventilation air currents, 512
Vernal equinox, 326
Vertical:

angle, 186
angle reduction, 143
axis, 550
circle index error, 175
circle index test, 178, 179
circle, 160
curve, 418
curve computation, 428
curve radius, 428

Very long baseline interferometry, 357
Videogrammetry, 581

Waste, 473
Wedge, volume, 457
Weight matrix, 234, 240
Weighted mean, 31
Weisbach triangle, 508
Weiss quadrilateral, 513
Whole circle bearing, 190, 208
Wide Area Augmentation System

(WAAS), 362
Wide Area Differential GPS, 338
Wild GAK1, 519
Wireless communication, 155
World Geodetic System 1984 (WGS84), 105

X-parallax, 544

Y code, 324
Yaw, 570, 591

Zero:
circle, 445
error, 63, 146
velocity update (ZUPT), 589

Zone, projection, 306


