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Preface 

This book is intended to appeal to any practicing engineer and/or student who 
is concerned with the operation and service of cellular radio, including personal, 
local, fixed, and mobile wireless communication systems. I t  examines the 
different situations of wireless communication in an urban scene and various 
propagation phenomena that influence the transmission of radio signals through 
urban communication channels, both in line-of-sight (LOS) and obstructive 
(no line-of-sight (NLOS)) propagation conditions for the transmitter and 
receiver antennas. The phenomena treated include free-space propagation above 
regular and irregular terrain, reflection and diffraction by various obstacles 
(e.g., hills, buildings, trees) regularly or randomly distributed on the terrain 
(smooth or rough), effects of scattering from such obstacles and from the 
ground surface. In view of wireless-communications practice, behavior of waves 
in the UHF/L-frequency band is emphasized throughout. 

In recent decades, the personal communication network was developed 
to satisfy continually increasing demands for personal, local, and mobile com- 
munications. The wireless local-loop system is now used in local networks, 
serving as an alternative to conventional loop-distribution networks. T o  design 
such systems successfully, it is important to predict the propagation characteris- 
tics of urban radio channels, to define optimal locations simultaneously for 
the base station (radio port) and for each local stationary and/or moving 
receiver, and to make performance prediction for the individual subscribers 
(stationary or moving). 

This book presents the reader with the full picture of propagation mecha- 
nisms in cellular propagation channels, aspects that do not yet have a complete 
and finished form. Propagation phenomena are presented in many excellent 
books separately from other subjects, such as cellular map construction, signal 

xi 
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processing, and so forth. The main goal of this book is to show the reader 

how to use specific propagation models for each situation in an urban scene, 

how to obtain from such models the propagation channel characteristics, how 

to obtain from these characteristics the coverage effects, and, finally, how to 

construct the radio maps and the cellular maps of investigated terrain areas 

using the propagation characteristics for different cellular urban environments 

(macrocell and microcell). 

The book does not consider practical recommendations for wireless com- 

munication systems design; it principally addresses the radio propagation aspects 

of personal and mobile communication, and supposes that the reader is already 

familiar with the basic aspects of higher mathematics, electrodynamics, and 

wave propagation. Nevertheless, it briefly summarizes some applied aspects of 

electromagnetism to describe land and urban radio wave propagation problems. 

The material and chapter sequence in the book’s text follow the courses 

mentioned below. It is composed of four parts. Part I consists of two chapters. 

Chapter 1 introduces the subject of the book, that is, it describes how I 
differentiate between various urban environments by using different kinds of 

terrain surfaces and antenna positions, both for the transmitter and the receiver, 

relative to the obstructions surrounding them. I discuss how I see the concept 

of “propagation channel” and its main characteristics, and explain my view 

by introducing different kinds of cellular environments. Chapter 2 discusses 

the applied aspects of electromagnetism and wave propagation using the unified 

approach of the time harmonic form of the wave equation to describe wave 

propagation in free space. 

Part I1 consists of two chapters that describe the propagation phenomena 

in open and ruralareas. Chapter 3 deals with the radio wave propagation over 

flat and curved smooth terrain. Here the “two-ray” model which is well-known 

from the related literature is briefly described for LOS conditions between 

antennas. Chapter 4 describes the propagation effects from rough and hilly 

terrain for LOS and obstructive NLOS conditions, respectively. The criterion 

of roughness of the ground surface is introduced. For LOS conditions, the 

scattered field characteristics are obtained by using the perturbation theory and 

the Kirchhoffs approximation. For NLOS conditions between antennas, the 

deterministic and empirical models are used. 

Part I11 consists of four chapters which describe the propagation phenom- 

ena in built-up areas. In Chapter 5 ,  the evaluation by means of my “multislit 

street waveguide” model is introduced to describe the propagation characteris- 

tics along straight rectangular streets in cases where both antennas, receiver 

and transmitter, are placed in direct visibility (LOS conditions) at lower than 

rooftop level. In Chapter 6, the conditions of regular terrain are considered 

further, but here the obstructive conditions (NLOS) for antennas are described 
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in the case of urban environments with a rectangular crossing-street plan for 

different positions of both antennas relative to the rooftops. In this case, the 

“crossing-waveguides” model I constructed and the “two-dimensional multidif- 

fraction” model Bertoni and his co-authors constructed (references are given 

in Chapter 6) are presented for describing the propagation characteristics and 

the coverage effects. 

In Chapter 7, I consider irregular built-up terrain, and present existing 

empirical and semi-empirical models for describing propagation characteristics 

above rough terrain with many obstacles randomly distributed around the 

transmitter and receiver antennas. Chapter 8 continues this subject by introduc- 

ing the “multiparametric” model, which is based on the combination of a 

deterministic and a probabilistic approach first introduced by Ponomarev and 

his colleagues (references are given in Chapter 8). This model describes the 

field characteristics above irregular terrain with randomly distributed obstacles. 

I added some modifications in the model by introducing a more realistic 

description of the diffraction phenomena and a more general description of 

the built-up terrain. The method of obtaining the coverage effects by using 

propagation characteristics is described for the more general case of built-up 

terrain. 

Part IV considers the special aspects of cellular maps’ construction. In 

Chapter 9, I introduce the main characteristics of cellular areas and give the 

reader a useful technique for predicting the dimensions and the geometry of 

contours of cellular maps by using the propagation characteristics for each 

cellular propagation channel. Here, the concept of cellular map construction 

using the loss characteristic prediction based on previously developed propaga- 

tion models is discussed. The special algorithm for constructing radio and 

cellular maps is fully described in the final section of this book and is recom- 

mended to the reader for practical use. 
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Introduction to the Wireless 
Propagation Environment 

1.1 Background 

Wireless communication links include several channels having different physical 

principles and processes, with their own independent or correlated working 

characteristics and operating elements. A simple scheme of such a link consists 

of the transmitter (T), the receiver (R), and the propagation channel, the main 

output characteristics of which depend on the conditions of radio propagation 

in different kinds of environments (see Figure 1.1). 

As follows from the simple scheme, depicted in Figure 1.1, there are 

three main independent electronic and electromagnetic design tasks related to 

these communication channels. The first task is the specification of the elec- 

tronic equipment that controls all operations within the transmitter, including 

the transmitter antenna operation. The third task concerns the same operations 

and signals, but for the receiver, with its own peculiarities. For both of these 

channels an important problem is the influence of different kinds of obstacles 

placed around the antennas, and of the environmental conditions. Another 

important question for a personal receiver (hand-held) antenna is also the 

influence of the human body on the operating characteristics of the working 

antenna. The radio propagation channel, denoted as a second channel in the 

scheme presented in Figure 1.1, plays a separate independent role. Its main 

output characteristics depend on the conditions of radiowave propagation in 

the various operational environments of such wireless communication links. 

In the literature dedicated to wireless communication, fixed and/or 

mobile, most of the attention is given to descriptions of the electronic equipment 

3 
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Figure 1.1 The simple scheme of three main independent electronic and electromagnetic 

design tasks related to the communication channels. 
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and the signal processing within it; less attention is given to propagation aspects 

[ 1-81. We think that only the wave propagation phenomena and its explanation 

as presented, for example, in [4], satisfy the increasing interest of designers of 

wireless communication systems in this subject. 

In this book we have also pointed out some aspects of propagation 

phenomena presented in [4]. But in our opinion, there is a deep “gap” in all 

the reference books in the description of propagation phenomena in urban 

communication environments. There is no clear explanation of questions such 

as how to obtain the output propagation characteristics for predicting the 

efficiency of wireless links (as a completed communication system), how to 

correlate the output propagation characteristics with those used for the construc- 

tions of radio maps for operating and servicing areas, and so on. Moreover, 

in numerous practical cases of operation with the “cell” splitting concept for 

built-up areas, and the design of wireless communication systems, the questions 

of how to obtain the real output propagation characteristics for predicting the 

cell characteristics, how to develop the algorithms for constructing cellular 

maps and, finally, how to plan for an effective quality of service for each 

subscriber within each cell in various cellular propagation environments are 

very important. 

This is why we examine all the propagation phenomena that can be 

observed in urban propagation channels in detail for the effective prediction 

of their output parameters in order to increase the efficiency of control of the 

operation characteristics of wireless communication systems. 

O n  the other hand, the conditions of EM-wave propagation in a built- 

up urban environment are the most problematic of all the types found in 

ground-radio communication. In city areas with regularly and/or irregularly 

planned buildings, rays reflected, scattered, and diffracted from buildings and 

other obstructions lead to significant amplitude and phase variations of the 

received signals [ 1-30]. 

Many experimental and theoretical investigations carried out in city areas 

show that most of the buildings in built-up regions are practically nontranspar- 

ent. The total field for ground objects at heights lower than roof level is formed 

mainly by radio waves reflected from walls and diffracted from corners [9-14, 

20-22, 27-30]. In this case, wide shadow regions with sharp transitions to 

illuminated zones with laminated interference pictures are observed [ 20-22, 

27-30]. In general, the main influence on field formation in city areas with 

dense building arises from the local building plan [9-12, 16-19]. 

This is why the processes of radio wave propagation in city areas cannot 

be described by general statistical [9, 20-2 1, 301 or empirical (see bibliography 

in [2]) models. Acceptable results can be obtained only for specific circumstances 

and for particular features of the city regional planning [1-4, 9-12, 16-19]. 

These effects are more apparent in the case of the connection between the 
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base station (radio port) and a stationary or moving object. Either both are 

located on the flat- or rough-ground surface at the street level below the roofiops 

of buildings, or one of them is above the roof level. 

In other words, the use of each model must relate to a specific situation 

in an urban propagation channel. Therefore, in Section 1.5, we classify the 

situations into various special cases which exist in practice in wireless communi- 

cation systems’ construction and servicing. We will then describe the respective 

propagation conditions for any communication link that has some practical 

interest . 

1.2 Historical Perspective of Wireless 
Communication Developments 

First we present some important aspects of the development of radio communi- 

cation channels. 

In 1873, Clerk James Maxwell united all the well-known laws of electro- 

statics and magnetostatics, and electrodynamics and magnetodynamics, as a 

result of the work of Poisson (in electrostatics), Gauss (in magnetostatics), 

Ampere (in electrodynamics), and Faraday (in magnetodynamics), in a unified 

theory of electromagnetism. He described these laws in the completed form 

of four coupling equations (see Section 2.1). 

Fifteen years later, in 1888, Heinrich Rudolf Hertz demonstrated practi- 

cally the phenomena which Maxwell had obtained mathematically. In 190 1 ,  

Gugliemo Marconi showed the possibility of constructing radio communication 

links between two stations at a range of 3,000 km. As an example of information 

transmission, he used the Morse signal “S.” 
During the mid- I BOs, two-way radio communication links were 

designed at frequencies of 30-40 MHz. A decade later, broadcasting systems 

using mobile communication channels were operated at frequencies of 

100-200 MHz. At the beginning of the 1960s, in developing land wireless 

communication links, designers of communication systems started to employ 

the frequency band up to 450 MHz. 

Today one can observe the fast growth of various types of wireless commu- 

nication systems, such as personal fixed and mobile, land and satellite, that 

use a wide frequency band from 500 MHz up to 3-1 0 GHz (see Section 1.3 
for explanations of how to use each frequency band in practical wireless systems). 

1.3 Frequency Band for Wireless Communication Systems 

The frequency band is a main characteristic for predicting the effectiveness 

of wireless communication systems that we consider separately. The optimal 
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frequency band for each propagation channel is determined and limited by 

the technical requirements of each communication system and by the conditions 

of radio propagation through each channel. 

First of all, we consider the spectrum of radio frequencies and their 

practical use in various communication channels. 

Extremely low (ELF) and very low frequencies (VLF) are frequencies 

below 3 kHz and from 3 to 30 kHz, respectively. The VLF-band corresponds 

to waves which propagate through the waveguide formed by the earth’s surface 

and ionosphere at long distances with a low degree of attenuation [0.1-0.5 

decibel (dB) per 1000 km]. Frequencies lower than 3 kHz (ELF-band) are 

effective for underwater communication channels and for mines and subterra- 

nean communication. 

Low frequencies (LF) are frequencies from 30 kHz up to 3 MHz. In the 

1950s and 1960s, they were used for radio communication with ships and 

aircraft, but since the 1960s they are used by broadcasting stations. Such radio 

waves propagate along the ground surface, and in the literature are called 

“surface” waves. 

High frequencies (HF) are those which are located in the band from 3 

to 30 MHz. Signals in this spectrum propagate by means of reflections caused 

by the ionospheric layers and are used for communications with aircrafts and 

satellites, and for long-distance land communications by use of broadcasting 

stations. 

Very high frequencies (VHF) are located in the band from 30 to 

300 MHz. They are usually used for television communications, in long-range 

radar systems, and in radio-navigation systems. 

Ultra high frequencies (UHF) are those that are located in the band from 

300 M H z  up to 3 GHz (in some literature its upper part from 0.5 GHz to 

3 GHz is also divided into P, L, S bands). This frequency band is very 

effective for wireless microwave links for cellular systems (fixed and mobile) 

constructions, for mobile-satellite communication channels, and medium-range 

radars. 

In recent decades radio waves with frequencies higher than 3 GHz (C, 
X, and K bands up to several hundred GHz, which are called microwaves in 

the literature) have begun to be used for constructing new kinds of wireless 

communication channels. However, waves in this frequency band propagating 

through the atmosphere suffer great attenuation caused by absorption by differ- 

ent air components, such as (Figure 1.2): 

Water (H20),  at frequencies of about 22 GHz; 

Oxygen molecules ( 0 2 ) ,  at frequencies of about 60 GHz. 
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Figure1.2 The wave propagation through the atmosphere with absorption by H20 a t  

frequencies of about 22 MHz and by molecules of 02 at  frequencies of about 

60 MHz. 

We now consider the question of how to determine the most effective 

operating frequencies in various communication systems. The effectiveness of 

each complete communication system depends on such parameters, as: 

Losses in the transmitter and in the receiver antennas; 

Noise within the electronic equipment that communicate with both 

antennas; 

Background and ambient noise (e.g., galactic, atmospheric, artificial 

man- made). 

Now let us consider each type of noise which exists in a complete commu- 

nication system. The simple explanation of noise is that noise is generated 

within each element of electronic communication channel due to random 

motion of the electrons within the various components of the equipment. 

According to the theory of thermodynamics, the energy generated is determined 

by the average background temperature, To, as: 
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where kB = 1.38 * 10-23 W * s * K-’ is Boltzman’s constant, TO = 290°K = 

17°C. This energy is uniformly distributed in the frequency band and, hence, 

it is called “white noise.” If so, the power of a signal inside the transmitter- 

receiver electronic channel at a given system bandwidth B ,  shall be given by: 

At the same time, there are other sources of noise which we can describe 

as uniform over the system bandwidth. We can present their energy by their 

own effective temperature. The basic ambient noise is the galactic noise which 

is described by its temperature, denoted as Tb, and is equal to 4K. This is the 

effective temperature of the galaxy that characterizes the spreading process of 

the universe after the “Big Bang.” In fact, the discovery of this noise was one 

of the evidences supporting the Big Bang theory. 

Another noise source is manmade noise of which the temperature is 
26 3 

measured to be -7.0 * 10 /f [4, 81, and atmospheric pollution (smoke, ice, 

water, clouds, air streams, and so forth) of which the noise temperature is 
26 - f 3/3 * 10 . The total effective noise temperature at the receiver input is: 

T, = kBTo - 7.0 1026 + Tb+- f 3  
f3  3 * 1026 

Then the total effective noise power at the receiver input is given by the 

following expression: 

where F is the noise figure of the receiver representing the additional noise 

(Chapter 9 in [4] gives a detailed description of man-made noise). In [8], the 

other form of the total effective noise presentation in decibels (dB) is done 

by: 

Here, GT is the average gain of the transmitterlreceiver antenna (in 

decibels), NF is the noise within the electronic equipment according to (1.2), 

T, is the full noise temperature for the sources in the propagation medium 

with its own temperature TO in Kelvin (according to (1.3)). 

All noise characteristics, including artificial man-made noise, are shown 

in Figure 1.3(a,b) as a function of operating frequencies. As seen from the 
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Figure 1.3 The noise characteristics, including artificial man-made noise, as a function of 

operating frequencies. 

curves in Figure 1.3, with the growth ofoperating frequencies in communication 

channels all artificial man-made noises, as well as the Galactic noise, have a 

decreased effect. At the same time, typical noises in the transmitter-receiver 

communication channel are slightly increased as frequencies increase from 300 

MHz up to 3 GHz. 

1.4 Main Propagation Characteristics 

Let us now consider the main propagation characteristics of a wireless communi- 

cation channel. The principal characteristic that determines the effectiveness 
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of the propagation channel in various kinds of environment is the path loss. It 
defines variations of the signal amplitude or field intensity along the propagation 

trajectory (path) from point to point within the communication channel. 

For its quantitative evaluation we will assume that the signal/wave ampli- 

tude in the point r1 along the propagation path is Al(rl) ,  or the signal/wave 

intensity is J(r1) = A 1 (cl). In the process of propagation along the path at any 

next point r2 the signal/wave amplitude is A2(r2) or intensityJ(r2) = A2(r2). 

In the literature the path loss is defined as a logarithmic difference between 

the amplitude or the intensity (sometimes called power) at any two different 

points rl and r2 along the propagation path in the medium. Actually, these 

points describe the position of both terminals at the ends of the propagation 

channel, the transmitter and the receiver. 

In other words, path loss, which is denoted by L and is measured in 

decibels (dB), can be evaluated for signal/wave amplitude A(rj) at two points 

rl and r2 along the propagation path as: 

2 

2 

L = 10 - l o g 9  = 10 logA2(r2) - 10 logA2(r1) 

A (rd (1.6) 
= 20 * logA(r2) - 20 logA(r1) [dB] 

for signal/wave intensityJ(rj) at two points rl and r2 along the propagation 

path 

If we take point rl as the origin of the radiopath (the transmitter location) 

and assume A(r1) = 1, then 

L = 20 logA(r) [dB] (1.8a) 

and 

L = 10 logJ(r) [dB] (1.8b) 

So, according to the above-presented definitions, if one refers to signal/ 

wave amplitude, the value of path loss is determined by formulas (1.6), (1.8a) 

with “20” before the sign “log,” if one speaks about signallwave intensity or 

power, the value of path loss is determined by (1.7), (1.8b) with “ 10” before 

the sign “log.” 
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The next question is: What are the units by which the losses are measured 

at the receiver? Let us assume that the signal/wave amplitude is measured in 

millivolts (mV) per meter and the signal/wave power in milliwatt (mW). In 

this case, the resulting output value must be presented in decibels above 

ImV/m for measured amplitude and in decibels above I m W  for measured 

power, 

[ L ] A  = dB/(mV) 

[ L I j =  dB/(mW) = dBm 

(1.9) 

Finally, the resulting output value is denoted in dB/(V/m), dB(mV/m), 

and dB(pV/m), if the signallwave amplitude was measured in decibels regarding 

V/m, mV/m, and p V / m ,  respectively. In the same way, the resulting output 

value is denoted in dB, dBm, and d B p ,  if the signallwave power was measured 

in decibels regarding W (watt), mW, and pW, respectively. 

Example: In some measurements the signal power of PR = -6.0 dBm 

was obtained. 

The question is: What is the realpower (in power units) that we have 

measured at the input of the receiver? 

Solution: Using the definition (1.8b), one can write: 

-6.0 = 10 0 logPR [dBm] 

or 

-0.6 P R =  10 = 0.251 m W  = 251 p W  

Hence, one can see that the power PR = -6.0 dBm corresponds to the 

real measured power PR = 251 pW. 

Since any signal passing through the propagation channel first passes 

through the transmitter electronic channel and antenna, and, secondly, has to 

reach the receiving antenna before coming to the receiver input (see Figure 

1. I), both electronic channels together with the environment introduce some 

noise into the wireless communication system. Therefore, the second main 

characteristic of communication channels is the signal-to-noise ratio (SNR or 

S/N). In decibels this characteristic can be presented as follows: For the receiver 

(output) channel where noise (artificial and natural) is significant 

SNR = PR- NR [dB] (1.10) 
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For special cases of urban wireless communication in clutter conditions 

other propagation characteristics are usually used. We consider these characteris- 

tics in Chapter 9. 

1.5 Characterization of Terrain Configurations 

The process of classification of terrain configurations is an important stage in 

the construction of propagation models above the ground surface and, finally, 

in predicting the signal/wave attenuation (or path loss) within each specific 

propagation channel. The simple classification of terrain configuration follows 

from practical research and experience of designers of such communication 

systems. It can be presented as: 

Open area; 

Flat-ground surface; 

Curved, but smooth terrain; 

Hilly terrain; 

Mountains. 

The built-up areas can also be simply classified as: 

Rural areas; 

Suburban areas; 

Urban areas. 

Many experiments carried out in different built-up areas have shown that 

there are many specific factors which must be taken into account to describe 

specific propagation phenomena in built-up areas, such as: 

Buildings’ density or terrain coverage by buildings (in percents); 

Buildings’ contours or their individual dimensions; 

Buildings’ average height; 

Positions of buildings with respect to the base station and fixed or 

mobile receivers; 

Positions of both antennas, receiver and transmitter, with respect to 

the rooftop level; 
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Density of vegetation, presence of gardens, parks, lakes, and so on; 

Degree of “roughness” or “hilliness” of a terrain surface. 

Based on these factors and parameters of terrain, British Telecom (BT) 
has constructed ten categories of terrain configuration [ 4 ] ,  that are presented 

in Table 1.1. 

According to Table 1.1, one can classify the terrain surface using specific 

notations: 

Sign 0 denotes the category that describes the water surface; signs 2 to 

4 are the categories that describe open rural areas, with some specifications of 

ground-surface configurations. Signs 5 to 6 denote the categories that describe 

suburban areas; signs 7 to 9 describe the urban areas with growth of buildings’ 

density and urban area dimensions. A compromise variant (the use of seven 

categories of the terrain) has been introduced after comparison with the stan- 

dards of some other countries, such as Germany, Denmark, and Japan, which 

are presented in Table 1.2. 

Moreover, a new standard of terrain classification has been introduced 

for the analysis of urban topographic maps. This standard was based on the 

following characteristics of terrain: 

I .  Position and distribution of buildings regarding the observer; 

2. Dimensions of buildings or useful built-up area; 

3. Number of buildings at the tested area; 

Table 1.1 
Terrain Configuration 

Description of the Terrain 

Rivers, lakes, and seas 
Open rural areas (e.g., fields and heathland with few trees) 
Rural areas, similar to the above, but with some wooded areas 
Wooded or forested rural areas 
Hilly or mountainous rural areas 
Suburban areas, low-density dwellings, and modern industrial estates 
Suburban areas, higher density dwellings (e.g., council estates) 
Urban areas with buildings of up to four stories with gaps in-between 
Higher density urban areas in which some buildings have more than 
four stories 

~ -~ - ~ - - _ _ _ _ _  - - ~ _ _  

‘ 9  1 

I I 

Dense urban areas in which most of the buildings have more than four 
stories and some can be classed as ”skyscrapers” 
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Table 1.2 
Compromise Variant 

BT (U.K.) Germany BBC (U.K.) Denmark Okumura (Japan) 

4 - - Landlsea 0 
1 2 1 &2 
2 3 1 1-2 
3 2 1 4 
4 2-3 1 
5 1 2 3 Suburban 

- 

- 
- 

- Undulating 

6 1 

7 1 

a 1 
9 1 

2 6 
3 7 
3 8 
4 9 

Suburban 
Urban 
Urban 
Urban 

4. Height of ground surface and its degree of “roughness”; 

5.  Presence of vegetation. 

Using these five characteristics as basic ones, the following parameters 

have been introduced to describe the terrain configuration [4]: 

1. Buildings’ dimensions (sizes) distribution (BSD); 

2. Built-up area index (BAI) due to buildings’ coverage effects; 

3. Buildings’ height distribution (BHD); 

4. Buildings’ position distribution (BPD) regarding receiver and trans- 

5. Vegetation index (VI) due to vegetation coverage effects; 

6. Degree of roughness of the ground surface (Ah) .  

mitter; 

To simplify the problem of terrain surface modeling, the modern classifica- 

tion of terrain was introduced recently by splitting all characteristics of terrain 

configurations into three classes with their subclasses. 

Class I :  For rural areas 

Subclasses: A is a flat terrain; B is a hilly terrain; C is a mountainous 

terrain. 

Class 2 For suburban areas 

Subclasses: A is a homogeneous and uniform terrain; B is a uniform 

terrain with closed zones; C is a uniform terrain with strong “shadow zones.” 

Class 3 For urban/city areas 
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Subclasses: A is a trading part of city; B is a commercial part of city; C 

Classes 2 and 3 with all specific parameters are presented in Table 1.3. 

Here, p is the mean value of parameters BSD and BHD; CT is their 

standard deviations around the mean values of BSD and BHD, that is, the 

deviations from p.  

Using these classes, their specific characteristics, and parameters, one can 

easily classify various kinds of terrain by examinating topographic maps for 

each deployment of a wireless communication system. 

is an industrial part of city. 

1.6 Various Propagation Situations in Urban Areas 

As remarked earlier, an important characteristic of the propagation channel is 

the location and position of both antennas with respect to the obstacles placed 

around them. Usually there are three possible situations: 

1. Both antennas, receiver and transmitter, are placed above the tops of 

obstacles (in a built-up area this means that they are above the rooftop 

level. See Figure 1.4(a)). 

2. One of the antennas is higher than the tops of the obstacles (namely, 

the roofs), but the second one is lower (Figure 1.4(b)). 

3. Both antennas are below the tops of the obstacles (Figure 1.4(c)). 

In the first situation they are in direct uisibilizy or LOS conditions. In 

the last two situations, one or both antennas are in clutter or obstructive 

conditions. In all these cases the profile of terrain surface is important and 

may vary from flat and smooth, with curvature, up to rough and hilly terrain. 

Table 1.3 
Classification Parameters 

- _ _  ~ _____. _______________ ____ 

BSD (m) BHD 

PS *S PH U H  VI (%) ' Class BA1 (%) 

2A 12-20 95-115 55-70 2 1 > 2.5 

2c 

3B 

1 

20-30 100-120 70-90 2-3 1 <5 

212 2 500 > 90 2 4  1 1 2  
2 45 200-250 2180 2 4  1 0 

30-40 150-200 2160 3 1 0 
3545  2 250 2 200 2-3 1 1 1  

)2B 

I 3~ 
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T R 

T d R 

Figure 1.4 Three possible situations with receiving and transmitting antennas. 

In Figure 1.5 a full classification of terrain surface for all three variants of 

antenna locations is presented. Using the simple scheme presented in Figure 

1.5, one can describe the specific propagation phenomena for various ambient 

conditions of the radio propagation over the terrain and, finally, obtain the 

appropriate propagation model for each specific communication channel. 
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Radio Wave Propagation 

Figure 1.5 The classification of terrain surface. 
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1.7 Cellular Environments Concept 

The terms macrocell, microcell, and picocell have been introduced in the iterature 

[l-81 to differentiate among various kinds of cell areas. The term macrocell is 
usually used in land communication channels for describing radio-propagation 

phenomena at ranges more than 10-20 km (i.e., it is mostly related to radio 

propagation over open or rural areas). The term microcell is usually used for 

describing radio-propagation phenomena in built-up environments at ranges 

from 2OOm up to 3-5 km. The term picocell is usually used for describing 

radio propagation channels within buildings at ranges less than 200m. As the 

subject of the book is urban communication channels, indoor propagation, or 

picocells, will not be described here. 
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Radio Wave Propagation in Free Space 

2.1 Electromagnetic Aspects of EM-Wave Propagation 

Maxwell’s unified theory (see Section 1.2) postulates that an electromagnetic 

field could be represented as a wave. The coupled wave components, the electric 

and magnetic fields, are depicted in Figure 2. I ,  from which it follows that the 

electromagnetic (EM) wave travels in a direction perpendicular to both EM 
field components. In Figure 2.1, this direction is denoted as the z-axis in the 

Cartesian coordinate system. In their orthogonal space-planes, the magnetic 

and electric oscillatory components repeat their waveform after a distance of 

I 

Electric field 
component 

Direction of 
radio wave 

11111 

7 

Magnetic field component - 
Figure 2.1 Presentation of an electromagnetic wave moving through free space. 

21 
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one wavelength along the yaxis and x-axis, respectively (see Figure 2.1). Both 

components of the EM wave are in phase in the time domain, but not in the 

space domain. Moreover, the magnetic component value of the EM field is 

closely related to the electric component value, from which one can obtain 

the radiated power of the EM wave propagating along the zaxis. Let us now 

assess these phenomena theoretically using Maxwell’s unified theory. 

2.1.1 Differential Representation of Maxwell’s Equations 

The theoretical analysis of EM wave propagation is based on Maxwell’s equa- 

tions. In vector notation and in SI-units system, their representations in the 

uniform macroscopic form are: 

a 
V x E(r, t)  = -atB(r,  

a 
V x H(r, t )  = -D(r, t )  + 

a t  

V B(r,  t )  = 0 

t )  (2.1 a) 

j(r7 t )  (2.1 b) 

(2. lc) 

V * D(r, t )  = p(r, t)  (2. Id) 

Here, E(r, t )  is the electric field strength vector, in volts per meter (V/m); 

H(r, t )  is the magnetic field strength vector, in amperes per meter (Nm);  

D(r, t )  is the electric flux induced in the medium by the electric field, in 

coulombs/m~ (this is why, in the literature, it is sometimes called an “induction” 

of an electric field); B(r,  t )  is the magnetic flux induced by the magnetic field, 

in webers/m (it is also called an “induction” of a magnetic field); j(r, t )  is 
2 

the vector of electric current density, in ampereslm’; p(r, t) is the charge 

density in coulombs/m2. The curl operator, V X, is a measure of field rotation, 

and the divergence operator, V *, is a measure of the total flux radiated from 

a point. 

It should be noted that for a time-varying EM-wave field, (2.lc-d) can 

be derived from (2.la) and (2.1b), respectively. In fact, talung the divergence 

of (2.la) (by use of the divergence operator V .) one can immediately obtain 

(2.14. Similarly, taking the divergence of (2.lb) and using the well-known 

continuity equation [ 1-31 
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one can arrive at (2. Id). Hence, only two equations, (2. la-b) are independent. 

In electrostatics and magnetostatics, where - = 0, the electric and mag- 

netic fields are decoupled. For static problems (2.ld) limits to the Coulomb 

law [ l ,  21, which implies that the electric flux D is produced by a charge 

density p in the medium. The same result is obtained with (2.lc), which 

assumes the absence of free magnetic charges in the medium. This magnetostatic 

law is the consequence of Gauss’s law [ l ,  21, which is a statement of the 

conservation of magnetic flux in the medium. Equation (2. la) is the Faraday 

law and indicates that a time-varying magnetic flux generates an electric field 

with rotation; (2. lb) without the term - (displacement current term [ 1, 21) 

limits to the Ampere law and indicates that a current or a time-varying electric 

flux (displacement current [ 1, 21) generates a magnetic field with rotation. 

Because one now has only two independent equations, (2.1a-b), which 

describe the four unknown vectors: E, D, H, B, two more equations relating 

these vectors are needed. T o  do this, we introduce relations between E and 

D, H and B, j, and E which are well-known in electrodynamics. In fact, 

for isotropic media, which are usually considered in problems of land-radio 

propagation, the electric and magnetic fluxes are related to the electric and 

magnetic fields, and the electric current is related to the electric field, via the 

constitutive relations [ 1-31: 

a 
at 

aD 

at 

D = E(r)E (2.3a) 

B = p(r)H (2.3b) 

j = &)E ( 2 . 3 ~ )  

It is important to note that relations (2.3a-c) are valid only for propagation 

processes in linear isotropic media, which are characterized by the three scalar 

functions of any point r in the medium: permittivity E(r), permeability p ( r ) ,  

and conductivity cr(r). In anisutropic media such functions transform into 

tensors (matrixes), but this case is not important for terrestrial radio propagation, 

and we will not deal with this case here. In relations (2.3a-c), we have assumed 

that the medium is inhomogeneous. In a homogeneous medium the functions 

E(r), p ( r ) ,  and u(r) transform to simple scalar values E ,  p and U. If, in this 

case, they are also functions of frequency, w :  
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the medium is frequency dispersive. Below we will talk about a nondispersive, 

isotropic, linear, and inhomogeneous medium. In free space, these functions 

are simple constants (i.e., E = €0 = 8.854 * 10-l2 Farad/meter, while 

,U = ,uO = 4 7 ~  * 10- 7 Henry/meter). The constant c = dG - is the velocity 

of light, which has been measured very accurately and is close to 

3 - 10' m/s. In many practical cases of wireless communication environments, 

the value ,U is close to unity, and we can assume B = H in (2.3b) with great 

accuracy. 

The system (2.1) can be further simplified if we assume that the fields 

are time harmonic. If the fields time-dependence is not harmonic, then, using 

the fact that (2.1) are linear, we may treat these fields as sums of harmonic 

components and consider each component separately. In this case, the time 

harmonic field is a complex vector and can be expressed via its real part as 

1 

A(r, t)  = Re[A(r)e-'W'] (2.5) 

where i = e, U is the angular frequency in radians per second, U = 27~J  f 

is the radiated frequency in Hz = s-', and A(r, t )  is the complex vector (E, 

D, H, B, or j). The time dependence - c-'"' is commonly used in the literature 

of electrodynamics and wave propagation. If - eiW' is used, then one must 

substitute - i  for i and i for -i, in all equivalent formulations of Maxwell's 

equations. 

In (2.5), P" presents the harmonic time dependence of any complex 

vector A(r, t )  which satisfies the relationship: 

d 
-A(r, t )  = R e [ - i ~ A ( r ) F ' ~ ' l  
a t  

Using this transformation, one can easily obtain from the system (2.1) 

V x E(r) = iwB(r) (2.7a) 

V x H(r) = -iwD(r) + j(r) (2.7b) 

V B(r) = 0 ( 2 . 7 ~ )  

V * D(r) = p(r) (2.7d) 
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It  can be observed that system (2.7) was obtained from system (2.1) by 

replacing alat with -iw. Alternatively, the same transformation can be obtained 

by the use of the Fourier transform of (2.1) with respect to time [4].  In (2.7a-d) 

all vectors and functions are actually the Fourier transforms with respect to 

the time domain, and the fields E, D, H, and B are functions of frequency as 

well. Hence, they are also known as the fiequenLy domain solutions of the EM 
field according to system (2.7). Conversely, the solutions of system (2.1) are 

the time domain solutions of the EM field. It  is more convenient to work with 

system (2.7) instead of system (2.1) because of the absence of the time depen- 

dence and time derivatives in it. This is why, in this chapter and the next we 

use Maxwell’s equations in the form (2.7a-d) and their frequency domain 
solutions to describe various electromagnetic phenomena related to land-radio 

propagation. 

2.1.2 Integral Presentation of Maxwell’s Equations 

W e  now present Maxwell’s equations in their integral representations. To derive 

the integral forms of (2. la) and (2.1 b), we integrate them over a cross-sectional 

area S and use Stokes’s theorem [ 1-3, 51, 

S C 

In (2.8), C is the contour that forms the perimeter of the area S (see 

Figure 2.2). This expression states that the sum of all the rotations due to field 

E over the area S i s  equal to the “torque” produced by these rotations on the 

perimeter of S with C. Here the left-hand side is the summation over all the 

rotations, while the right-hand side of (2.8) is the evaluation of the net “torque” 

on the perimeter C. The neighboring rotations within the area S cancel each 

other, leaving a net rotation on the perimeter. 

Using Stokes’s theorem [l-3, 51, one can convert (2.la) 

n s 
and (2.lb) to: 

Figure 2.2 The geometry for the derivation of Stokes’s theorem. 
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(2.3) 

C S 

ds D(r, t )  + ds * j(r, t )  (2.10) 
at I 

C S S 

To convert (2. lc) and (2. Id) into integral form, one can integrate them 

over a volume Vand use Gauss’s theorem [ 1-3, 51, which states that 

(2.1 1) 

V S 

This states that the sum of all divergences of a flux B in a volume Vis 

equal to the net flux which is leaving the volume Vthrough the surface S. In 

other words, neighboring divergences tend to cancel each other within the 

volume V (see Figure 2.3). Consequently, ( 2 . 1 ~ )  and (2.1d) become 

V a 

Figure 2.3 The geometry for the derivation of Gauss’s theorem. 
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[ d s  B(r, t) = 0 
J 

S 

ds * D(r, t )  = dv * p(r, t)  = Q J J 

(2.12) 

(2.13) 

S V 

where Q is the total charge in volume V 

Equation (2.9) implies that a time-varying magnetic flux through an area 

Sgenerates an electromotive force (the left-hand side in (2.9)) around a loop 

C. In the same way, (2.10) implies that a time-varying electric flux (displacement 

current) or a conductivity current will generate a magnetomotive force (the 

left-hand side in (2.10)) that loops around the currents. 

Equations (2.12) and (2.13) are statements of the conservation of fluxes. 

In fact, (2.13) implies that the net flux through a surface S equals the total 

charge Q inside S (see Figure 2.3). 

2.1.3 Vector and Scalar Potentials 

Maxwell’s equations can be directly solved only for simple configurations [ 1-31, 

but in common cases it is convenient to introduce so-called potentials, with 

the purpose of decreasing the number of equations. In this case, some of 

Maxwell’s equations are satisfied automatically. In electrostatics and magnetism, 

two potentials, the scalar, @, and the vector, A, have been introduced [l-31. 

In fact, because V - B(r, t )  = 0, one can express through vector potential as: 

B = V X A  (2.14) 

Introducing this relation in (2.la), we finally obtain 

V X ( E + ? ) = O  (2.15) 

From vector algebra [ 5 ,  61 it is well known that any value for which the 

curl is equal to zero can be presented as a gradient of any scalar function. 

Therefore we can present the value in brackets as a gradient of scalar potential 

@, 

aA 
E + - = -V@ a t  (2.16) 
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Hence, the fields E and H that can be determined through the potentials 

A and @ according to (2.14) and (2.16) satisfy the inhomogeneous Maxwell’s 

equations (2.lb) and (2.1d). Using relations (2.14) to (2.16), one can rewrite 

these equations as: 

a 
a t  

V 2 @  + -V * A = -p (2.17) 

(2.18) 

Thus we reduced the total number of equations to two. Moreover, these 

potentials are not independent [l-31; the relation between them can be pre- 

sented as follows: 

a@ 
at  

V * A + - = O  (2.19) 

Equations (2.17) and (2.18) can be converted into two separate inhomoge- 

neous equations for @ and A, respectively: 

= -p 
a2a v2a - - 
a t2 

a t2 

2 d’A 
v A - - = - j  

(2.2 Oa) 

(2.20 b) 

Equations (2.2Oa-b) together with relation (2.19) create a system which 

is fully equivalent to Maxwell’s system (2.1). The form of such equations is 

called a wave equation, a term which will be obvious later in this chapter. 

Often, the so-called Hertzian electric (HE) and magnetic (n,) vectors are 

introduced instead of the above-mentioned electrodynamic potentials. The 

electric and magnetic fields in free space can be presented by use of these 

vectors as: 

E = V x V x ~ I E  + V211,rj + k 2 1 1 ~  = V(V * HE) + k 2 H E  (2.2 1 a) 
H = -ikV x IIE 

and 
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(2.2 1 b) 
E = -ikV x IIH 

E = V x V x IIH + V211H + k211H = V(V IT,) + k 2 n H  

Hence, the Maxwell equations reduce to two wave equations for Hertzian 

electric and magnetic vectors, which we present here for free space, respectively: 

(2.22) 

Here, M is the vector of the magnetic current density [l-3, 51; 
k = is a wavenumber. 

2.1.4 Poynting Theorem 

This theorem is the simple law of EM-wave energy conservation. It  is known 

from electrostatics and magnetostatics that the work of the electric field to 

move a single charge q is equal to q v E, where v is the vector of the charge 

velocity. The same work of the magnetic field for this charge is equal to zero, 

because the magnetic field direction is perpendicular to the velocity vector 

[ 1-31. For a continuous distribution of charges and currents in a medium, the 

total work of the EM field in the volume Vin unit time is equal [l-31: 

j * Edu f (2.23a) 

V 

This expression determines the velocity of the decrease in the field energy 

within the volume V: 
Let us now obtain the law of energy conservation, using Maxwell's equa- 

tions (2.1). We shall substitute the current density j in (2.23a) using (2.10) 

and (2.1 1) 

/ j  Edv = [E V x H - E "]du a t  

V V 

Taking into account the vector equality [5] 

V ( E X  H) = H V x E - E  V x H 

(2.23 b) 

and (2.1), one can easily rewrite (2.23) as: 
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l j  - Edv = -I[ V - (E x H) + E - aD + H * "]dv at  (2.24) 
at  

V V 

If we now present the density of total field energy according to [l-31 as 

W =  (E * D + B * H), (2.25) 

then (2.24) will be rewritten in the following form: 

(2.26) 

V V 

Because (2.26) is written for any volume V,  it can be presented in 

differential form: 

aw 
a t  - + v -  (2.27) 

Equation (2.27) is the equation of EM-field energy conservation, or the 

equation of continuity. It  can be shown that the vector S = E x H in the 

brackets on the right-hand side of (2.26) has the dimension of watt/m , which 

is that of power density. From (2.27) is clear that it may be associated with 

the direction of power flow. 

The vector that determines the power flow of EM field is called the 

Poynting vector. Equation (2.26) is the integral Poynting theorem and (2.27) is 

its vector presentation. 

Using the time harmonic presentation of Maxwell's equations, one can 

convert (2.26) to the time-harmonic form. If we now introduce, instead of 

the derivation -, the term iw, and present the operation of averaging 

<E x H>, as -Re{E x H*), taking into account Gauss's theorem for the term 

C - (E x H*), we finally obtain from (2.26) the Poynting theorem presented 

in time hamonic form: 

2 

a 
1 at 

2 

ds * (E x H*) = dv(H* * B - E * D*) - dvE - j (2.28) I I I 
S V V 
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2.1.5 Wave Equations 

Physically, EM-wave propagation phenomena can be described by use of both 

the scalar and vector wave equation presentations. In the case of an isotropic 

inhomogeneous medium, one can present Maxwell's equations in the following 

form, using their time-harmonic presentations (2.7): 

V x p-'(r)V x E(r) - 02E(r)E(r) = ioj(r) - V x ,u-'(r)M(r) 
(2.29) 

V x E-'(r)V x H(r) - wLp(r)H(r)  = ioM(r) - V x E-'(r)j(r) 

Because most problems of wave propagation above the terrain, including 

built-up environments, reduce to propagation in a homogeneous, source-free 

isotropic medium, this system can be easily simplified from system (2.7) by 

taking into account the relations (2.3a-c) with E(r) = E ,  p(r)  = ,u, 

u(r) u, that is, 

V x V x E(r) - 02EpE(r) = 0 

V x V x H(r) - 02epH(r) = 0 
(2.30) 

Because both equations are symmetric, one can use one of them, 

namely that for E, and by introducing the vector relation 

V x V x E = V(V * E) - V2E and taking into account that V - E = 0, finally 

obtain 

V2E(r) + k2E(r) = 0, (2.3 1) 

2 2  
where k = w ep.  It can be shown that all other electromagnetic vectors satisfy 

as well the same wave equatiun as (2.31) (see, particularly, (2.22) for Hertzian 

vectors in a source-free medium). 

In special cases of a homogeneous, source-free, isotropic medium, the 

three-dimensional wave equation reduces to a set of scalar wave equation. This 

is because in Cartesian coordinates, E(r) = E x q  + Eyyo + E,zo, where xo, 

yo, zo are unit vectors in the directions of the x, y, z coordinates, respectively. 

Hence, (2.31) consists of three scalar equations such as 

where q(r )  can be either E,, Ev, or E,. This statement is not true in cylindrical 

or spherical coordinate systems. The problems of independent solution of each 

scalar wave equation, such as (2.32), are the subject of Section 2.2. 
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2.1.6 Boundary Conditions 

Equation (2.29) describes all the propagation phenomena within an infinite 

inhomogeneous isotropic medium. But if we consider two inhomogeneous 

finite or semifinite regions, we need to introduce boundary conditions at the 

interface between these two regions in order to solve one of the two equations 

in (2.29). In this case, the procedure to solve the vector wave equation is as 

fo 1 1 0 ws . 
As a first step, this equation is solved separately for each region. Then, 

in the second step, by patching the solution together via boundary conditions, 

we obtain the solution for two neighboring regions. I t  can be shown that the 

boundary conditions follow from one of the two vector wave equations in 

(2.29). To do so, we integrate the first equation of (2.29) within a small region 

in the interface of the two inhomogeneous semifinite or finite regions, as 

presented in Figure 2.4. Then using Stokes’s theorem for the surface integral 

of a curl, and using the same integration over surface S for both equations in 

(2.29), we finally obtain after straightforward derivations and taking the limit 

S -+ 0 (see Figure 2.4) respectively for the magnetic-field component 

n x H l - n x H z = j s  (2.33) 

and for electric-field component 

n x El - n x E2 = -Ms (2.34) 

where Ms and js  is a magnetic and electric current sheet at the interface, 

respectively. Equation (2.33) states that the discontinuity in the tangential 

component of the magnetic field is proportional to the electric current sheet 

js. This is thefirst bound2 y condition for solving any one vector electromagnetic 

Figure 2.4 The geometry for the derivation of the boundary conditions. 
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equation from (2.29). Equation (2.34) states that the discontinuity in the 

tangential component of the electric field is proportional to the magnetic 

current sheet Ms. This is the second boundary condition for (2.29). 
Both boundary conditions (2.33) and (2.34) can be simplified for the 

case of radio wave propagation above a flat terrain. In this case, there are two 

semi-infinite neighboring regions (air-ground) separated by the boundary, as 

shown in Figure 2.5. 

In the case considered, the first boundary condition (2.33) for an isotropic 

nonmagnetized (p  = 1) source-free (Ms = 0, js = 0) subsoil medium reduces 

to 

(2.35) 

Both conditions are valid in the case of finite conductivity of each medium, 

which is satisfied within the air-ground surface. The first condition in (2.35) 
states that the normal components of the magnetic field of an EM wave is 

continuous at the interface of air-ground surface. The second condition in 

(2.35) states that the tangential component of magnetic field is also continuous 

at the interface of the air-ground surface. 

As for the second boundary condition (2.34), it also can be simplified 

for the interface of the air-ground surface as 

I 

Figure 2.5 Presentation of air-ground surface boundary conditions. 
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n ~ E l = n x E 2  

El,  = E27 

(2.36) 

Condition (2.36) states that the tangential components of the electric 

field of an EM wave are continuous at the interface of the air-ground surface. 

One  may notice that conditions (2.33) and (2.34) are more general than 

those described by (2.35) and (2.36), and satisfy various kinds of isotropic 

inhomogeneous media that consist of both electric and magnetic sources. 

2.2 Propagation in Free Space 

In free space, an infinite isotropic homogeneous source-free medium, the vector- 

wave equation can be presented in a simple form (2.30) to (2.31) for one of 

the components of the EM field, or by use of the Hertzian vector n(r):  

V211(r) + k211(r) = 0 

where, once more, the wavenumber k = u4,ue 

terrain propagation ,u = I with great accuracy, 

k = u G ) .  

(2.37) 

(in many practical cases of 

and one can rewrite it as 

2.2.1 Plane Waves in Free Space 

For plane waves in a Cartesian coordinate system each of (2.31) or (2.37) can 

be rewritten in scalar form (2.32) for any Cartesian component of vectors E(r), 

H(r), or II(r). Usually, the literature presents another form of (2.32) by 

introducing wave number k instead, the phase velocity 

w C 
"Iph v = - = - . In this case (2.32) can be rewrittten as: 

k l l z  

(2.38) 

Wave equations (2.32) or (2.38) have the well-known solution [l-31 

q ( r )  = exp(ik * r) (2.39) 

The waves that satisfy scalar (2.38) and are determined by (2.39) are 

called plane waves. Wave vector k denotes the direction of propagation of the 
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plane wave in free space (see Figure 2.1). If one considers the plane wave that 

propagates in any direction, say along the x-axis, then the fundamental solution 

of (2.38) is 

q ( x )  = Aexp(ikx) + Bexp(-ikx) (2.40) 

This solution describes the waves, propagating in the positive direction 

(with the sign “+” in the exponent) and in the negative direction (with the 

sign “-” in the exponent), respectively, along the x-axis with phase velocity 

vph = - which equals c in an ideal free space. 
C 

G 
But one can note that EM fields have a vector character and satisQ 

Maxwell’s equations in (2.7) or wave equations such as (2.31) and (2.37). 

Thus one can find the field vectors in the following form: 

E(r) = eEEoexp(ik * r) 

H(r) = eHHoexp(ik * r) 
(2.4 1) 

where eE and eH are the constant unit vectors (i.e., l e ~ l  = leHl = 1; E0 and 

Ho are the complex amplitudes), which are constant in space and time. From 

conditions in free space without sources 

V * E = O  and V . H = O  

it follows that 

e E - k = O  and e H - k = O  (2.42) 

which denote that E and H are perpendicular to direction of wave propagation 

k. Moreover, because in free space the first Maxwell equation (2.la) or (2.7a) 

reduces to 

V x E - i w B = O ,  B = p H = H  (2.43) 

we can finally obtain from (2.43) for a plane wave (2.41) in free space (with 

p = 1): 

i[(k x eE)Eo - k e ~ B o ] e x p ( i k  r) = 0 (2.44) 

Equation (2.44) has solutions: 
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A 

(2.45) 

Hence, vectors e E ,  e H ,  and k form the system of orthogonal vectors, 

where vectors E and B oscillate in phase and their ratio is constant (see Figure 

2.6). The wave which is described by relations (2.41) and (2.45) is a transverse 

wave propagating in the k-direction. 

2.2.2 Wave Polarization 

The vector of electric field in the plane wave as described by formula (2.41) 

is directed along unit vector e E .  To obtain the more general case of wave 

polarization we need an additional linear-polarized wave independent of the 

first one. It  can be easily shown that two linear-independent solutions which 

satis+ wave (2.30) or (2.31) can be presented in the following form: 

(2.46) 

The magnetic field components of the EM wave satisfy, according to 

(2.41) in free space (p = l) ,  the following relations: 

Figure 2.6 The transverse wave components presentation in free space. 
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k x E .  
B ~ =  ++, B ~ =  H ~ ,  j =  i , 2  (2.47) 

Here, amplitudes EI(H1) and Ez(H2) are the complex values, which 

enable us to introduce the phase difference between the two components of 

the EM wave. Thus the common solution for the plane EM wave propagated 

along vector k can be presented as a linear combination of El and E2: 

E(r) = {elEl + e2E2}exp(ik r) (2.48) 

If El and E2 have the samepbase, then solution (2.48) describes the linear 

polarized wave with polarization vector directed to the el axis at angle 

e = tan-’ (2) (2.49a) 

and with amplitude 

(2.4 9 b) 
2 112 

E =  (ET + E2) 

as presented in Figure 2.7. 

If El and E2 have different phases, then the EM wave (2.48) is elliptically 

polarized If El = E2 and phase difference equal ~ / 2 ,  then the elliptically 

polarized wave becomes a circukzrlypokzrized wave. In this case solution (2.48) 

can be rewritten as 

E(r) = &{el k e2)exp(ik * r) (2.50) 

The sign “+” corresponds to anticlockwise rotation (sometimes called 

the wave with left-handcircular polarization). The sign “-” corresponds to the 

Figure 2.7 The linear polarized wave geometrical presentation. 
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wave with right-hand circular polarization (see Figure 2.8). Then two waves 

with circular polarization can be considered as a basic system for describing 

the common case of polarized waves. Let us introduce in the common case 

the orthogonal complex unit vectors 

(2.51) 

Then, the common presentation of a polarized wave (2.48) by the use 

of linearly polarized waves, and two circularly polarized waves (2.50) and (2.5 I ) ,  

can be rewritten as 

E(r) = {e+E+ + e-E-}exp(ik * r) (2.52) 

where E+ and E- are the complex amplitudes of two circularly polarized waves 

with opposite directions of rotation. If their modulii are different, but their 

phases are equal, then (2.52) describes, as above, an elliptically polarized wave 

with main elliptical axes directed along el and e2. The ratio of these semi-axes 

equals (1  - q ) / (  1 + q ) ,  where q = -. If the complex amplitudes have different 

phases, so that 

E- 

E+ 

E- 
- = q * exp(ia) 
E+ 

(2.53) 

then the ellipses’ axes for E-vector are rotated by angle a12. In Figure 2.9 the 

common case of an elliptical polarized EM wave is presented. At each spatial 

point the vector (the same applies to the vectors H or B) describes ellipses, as 

Right- handed Left-handed 

Figure 2.8 Schematical presentation of two kinds of waves with circular polarization. 
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Y 
l E 

X 

Y 

Figure 2.9 Presentation of two ellipses for the E-component and the H-component of 

EM-field. 

shown in Figure 2.9. For the case q = f l ,  we once more return to the case of 

linearly polarized wave. 

2.2.3 Cylindrical and Spherical Waves in Free Space 

As mentioned in the literature [1-4, 7-81, to obtain the common vector 

presentation of cylindrical and spherical waves is a very complicated problem, 

which can be reduced for the case of an isotropic homogeneous source-free 

medium (with properties which limit to those in free space, but with 

p + 1) to the simple scalar form, as was done above for the plane wave in the 

Cartesian coordinate system. 

The scalar wave equation in the cylindrical coordinate system 

{ p ,  q ,  z }  can be written as: 

(2.54) 

The above partial differential equation can be solved by separation of 

variables, and its one-dimensional (along the z-axis) solution can be presented 

in the following form [5]  

(2.55) 

where n is an integer since the wave field has to be 27;r periodic in p. Then, 

by substituting (2.55) in (2.54), we reduce it to an ordinary differential equation 

with the full derivative (&A, x is variable) presentation [ 5 ] :  
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(2.56) 

’ 2 1/2  
where k, = . One may notice that (2.56) is the Bessel equation 

[G] with two linear independent solutions. Its general solution is a linear 

superposition of any two of the following four spectral functions [5]: Bessel 

function, J , z ( k r p ) ,  Neumann function, N,(k, .p) ,  Hankel functions of first 

about the properties of these special functions can be obtained from reference 

books [5, 61 which describe all mathematical functions. For our purposes the 

exponential approximation of those functions is very important. For example, 

the general representation of a cylindrical wave (2.55) can be approximated 

by a simple exponential form: 

- k , )  

order, H,z (1) (k ,p) ,  and second order, H, (2) (k,p),  respectively. Full information 

(2.57) 

Here, pp is the arc length in the sp direction, and nlp  can be thought 

of as the component of vector k, if one compares the cylindrical wave presenta- 

tion (2.57) with that for a plane wave (2.37). Consequently, (2.57) looks like 

a plane wave propagating mainly in the direction k = k,z + k,p, when 

p + W. 

We now consider a spherical wave presentation in free space. In the 

spherical coordinate system { r ,  8 ,  p}, the scalar wave equation is [5]: 

(2.58) 

Following [3], we present the solution of this equation in the form: 

V(r) = *( r, 8) exp(imcp} (2.59) 

The general (2.58) can be further simplified by the separation of variables 

by letting 

V(r, 8)  = b , (kr )  P ~ ( c o s ~ )  (2.60) 
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where P;(cos 0) is the associate Legendre polynomial satisfying the equation 

2 -  rn 
n(n  + 1) - - 

sin2 e- 

Analogously, 6, (kr )  satisfies the equation 

P;(COSO) = 0 (2.61) I 
n(n  + 1) 

r 
(2.62) 

Equation (2.62) is just the spherical Bessel equation, and 6 , (kr )  is either 

the spherical Bessel function, j ,  (kr ) ,  spherical Neumann function, n , (kr ) ,  or 

the spherical Hankel functions, bL1)(kr) and bL2'(kr) [5 ,  61. 
As shown in [5 ,  61, the spherical special functions can be approximated 

by the spherical functions proportional to -- . If so, one can represent 

the spherical wave as a plane one when p + -. 
In fact, we can easily obtain relations between spherical and plane waves. 

Following [8-101, we will consider the plane wave propagating in an infinite 

homogeneous source-free space, and will present it in the same form as in (2.3 l ) ,  

but by using the Hertzian vector instead of the field component presentation, 

exp { ikr) 

r 

V211(r) + k211(r) = 0 (2.63) 

The solution of (2.63) is the same as with (2.39), but for the Hertzian 

vector: 

n(r) = Iloexp{i(k,x + kyy + k,z)) (2.64) 

where the complex wavenumbers of the plane wave, k,, ky ,  and k,,  satisfy 

the condition k = k ,  + k, + k , .  Let us split all wavenumbers at the real and 

imaginary parts, that is: 

2 2 2 2  

k = kl +- ik2; 

k ,  = k l ,  + ik2,, ky = k ly  + ik2y, k ,  = k l ,  + ik2, 

(2.6 5 a) 

and present the components ( k l x ,  k l y ,  k l , )  by introducing real vector q, and 

those of (k2,, k2y, k2,) by introducing real vector p, such that 
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k l ,  = q sinBcosV, 

k l y  

k2x = p sincucosp 

= q sinBsinV, k2y = p sincusinp 

k l ,  = qcos8 ,  k2, = p  COS^ 

exp { ikR} 

R 
, R  

presented by introducing the three-dimensional Fourier integral 

If so, any spherical function of three variables 

exp { ikR} = /A(q’)exp{iq’ * R}dq’ 

R 

in which each of the plane waves from superposition (2.66) is 

the homogeneous equation 

12 12 12 12 (v2 - qt2)exp{iq1 RI = 0, = q x  + qv + qz 

(2.65b) 

= Id, can be 

(2.66) 

a solution of 

(2.67) 

The amplitude A(q’) can be easily obtained by multiplying both sides 

of (2.66) by exp{iq’ * R} and integrating both sides over the whole infinite 

space. After some straightforward derivations one can obtain the expression 

for wave amplitude 

(2.68) 

Hence, the representation of a spherical wave by plane waves can be 

given, finally, as 

--m 

The expression in the right-hand side of (2.69) describes plane waves 

with dfirent wavenumbers q = ( q x  + qv + q:)1’2. This is an important result, 

because if this is not so, that is, if all plane waves propagate with the same 

wavelength A = -, then all of them satis+ the homogeneous (2.63). But, at 

2 2  

27r 

k 
the same time, the spherical wave in the left-hand side of (2.69), having a 

singularity for R = 0, is the solution of a particular inhomogeneous equation 
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with the point source in the right-hand side of (2.63). Hence, the spherical 

wave with the wavelength A = - can be represented as a superposition (2.69) 
27T 

k 
of simple plane waves (with real wavenumber q), but with various wavelengths, 

27T 

k each different from -. At the same time, as was shown in [8], the spherical 

wave can be presented as a superposition of complex plane waves (with complex 

vector of propagation q), but where each wave corresponds to a definite 

wavelength ( q  k2) .  In this case we have the expansion of 

spherical waves into plane waves with complex wave vector q. In fact, if we 

integrate the spherical wave representation (2.69) with complex wavenumber 

q along the *direction as the direction of wave propagation, we have 

2 2 2 2  
= qx + qy + qz 

(2.70) 

It  follows from additional examination of (2.70), according to [8], that 

the above integral consists of two parts. The first summand has the image 

expression before the root in the exponential function for the z-coordinate 
z d q ,  because k 2 2 2  > (qx + g y )  and the term i z d q  in 

the exponent is imaginary and describes a superposition of simple plane waves 

which propagate with complex vector q and with the same wavelength 

27T 

k 
A = -, as that for the spherical wave. The second summand, inversely, has 

the real term of iz4- in the exponent of the integrand in (2.70), 

because here k < (g,  + gy). Thus this summand describes real plane waves 

that lie in the ( x ,  y )  plane (their wavelengths in this plane are different from 

2 2 2  

277 
the wavelength of the spherical wave -k) and propagate along the z-axis 

with exponential attenuation for z + h. 
Of course, one could integrate (2.70) not only along the z-axis, each 

direction can be used for integration of (2.70). In any case we obtain an 

exponential attenuation of plane waves along the selected axis. Thus we have 

WO general possibilities for expanding a spherical wave as the superposition 

of plane waves: with different, but real, wavenumbers q +  k ,  and with a 

complex, but the same wavenumber q = k ,  with respect to the spherical wave. 
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The above results allow us to present in the future all propagation phenom- 

ena through the prism of spherical and plane waves’ propagation and by use 

of the spherical-wave expansion into the superposition of plane waves. 

2.2.4 Green‘s Function Presentation 

In an unbounded homogeneous medium using any kind of source, it is a 

difficult problem to obtain a strict solution of the wave equation, which describes 

EM-wave propagation in such a medium. Usually, to obtain a particular solution 

of a wave equation one can assume that the source is a point with respect to 

volume metric dimensions around this source. In the literature [l-3, 7-10] 
to determine the criterion of a point source requires that the linear dimensions 

of the source, 1, must be smaller than the wavelength in the considered medium, 

A 
that is, 1 << -. In this case 

7T 
Green’s fu .nction ,, as a solution of the wave equation 

for a point source, can be introduced. Moreover, if any real antenna can be 

represented as a general real source by a linear superposition of point sources, 

one can obtain a general solution for the wave equation with such a source 

by using the solution of the wave equation for a point source, in other words, 

by use of Green’s function as a point-source function. This result is also 

connected with the topic of linearity of the wave equation in the considered 

medium. Below, we will examine the boundary-value problems both for scalar 

and vector waves by employing Green’s function presentation. 

Green j finction presentation in electrodynamics. First of all, we examine 

the Green’s function presentation for the scalar wave equation. In this case let 

us construct the solution of a scalar wave equation in any volume Vof free 

space having an arbitrary source s(r) (see Figure 2.10). Such a solution can be 

written in the same form, as (2.32), but with a source in its right-hand side: 

First, we will introduce the same equation for Green’s function, but with 

a point source in its right-hand side: 

V2G(r,r’) + k2G(r,r’) = -S(r - r’) (2.72) 

The given functions G(r,r’) and q ( r )  can be easily found from the 

principle of linear superposition, since G(r,r’), as was mentioned above, is the 

solution of (2.71) with a point source in the right-hand side. In fact, one can 

notice that an arbitrary source s(r) is just 
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The radiation of a source S(r) in a volume V 

Figure2.10 The geometry of a source s(r) in a volume V. 

s(r) = dr’s(r’) S(r - r’) I (2.73) 

which is actually a linear superposition of point sources in mathematical terms. 

Consequently, the solution of (2.71) is 

V(r) = - dr’ G(r,r’) s(r’) I V 

(2.74) 

which is the linear superposition of the solution of (2.72). 

To find the solution of (2.72) for free space, or more correctly, for an 

unbounded, homogeneous medium, one can solve it in spherical coordinates 

with the origin at vector r’. In this case (2.72) reduces to 

V2G(r) + k2G(r) = -S(r) (2.75) 

But due to the spherical symmetry of a point source, G(r) must also be 

spherically symmetric. Then, for r + 0, the homogeneous, spherically symmetric 

solution of (2.75) is given by 

exp { ikr } exp { - ikr } 
G(r) = A- + B  (2.76a) 

r r 

Since sources are absent at infinity, a physically correct solution of (2.76) 

can be presented as 
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exp { ikr} 
G(r) = A------- 

r 
(2.76 b) 

T o  determine the unknown constant A ,  we substitute (2.76b) into (2.75) 

and integrate it over a small volume about the origin to yield 

2 Aexp { ikr}  
= -1 (2.77) 

+ I d v .  k r 

A exp { ikr} 

r 

A V  A V  

Note that the second integral in (2.77) vanishes when A I/ -i+ 0, because 

The first integral in (2.77) can be converted into a surface integral using 

dv = 47Tr2 * dr. 

Gauss’s theorem to obtain 

or 

[ 4 r i r  2 %A- d exp{ikr} I?.+() = -I 

1 

47T 
A = -  

(2.78) 

As was mentioned above, the solution of (2.72) must depend only on 

Therefore, Green’s function must be presented, as a solution of (2.72),  

Ir - r’l. 

in the following form: 

exp(ik1r - r’i] 

Ir - r’I 
G(r,r’) = G(r - r’) = (2.79) 

Moreover, it can be seen that G(r, r’) = G(r’, r) from reciprocity, irre- 

spective of the shape of volume V [ 3 ] .  This fact and formula (2.79) imply that 

Green’s function is translationally invariant for unbounded, homogeneous 

media. Consequently, a general solution of inhomogeneous (2.7 1) by using 

(2.74) can be finally presented as 

,exp{ik)r - r’i} 
V(r) = - dr 5 (r’) I Ir - r’I 

V 

(2.80) 

Green’s function for the scalar wave (2.79) could be used to find the 

dyadzc Green’s function for the vector wave equation in a unbounded homoge- 
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neous isotropic medium. For this case we return to (2.30), taking into account 

the electric source in such a medium: 

V x V x E(r) - k2E(r) = iopj(r) (2.8 1) 

Using the fact that V x V x E = -V2E + V(V E), and that 

j ,  which follows from the continuity (2.2) in the time-har- 
P v .  V . E = - = -  
E iwc 

monk presentation, we can rewrite (2.81) as 

2 
V x V x E(r) + k E(r) = -iop (2.82) 

where I is an identity operator. 

In the Cartesian coordinate system, as was shown earlier, there are three 

scalar-wave equations embedded in the above vector (2.82), each of which can 

be easily solved in the manner of (2.74). Consequently, 

E(r) = iop/dr’G(r - r’)[ I + 71 vv j(r) 

V 

(2.83) 

where G(r - r’) is the scalar Green’s function in an unbounded homogeneous 

isotropic medium. 

Then, by using the vector identities V h  = gVf+ fVg,  
V g F  = gV F, after some straightforward derivations, one can 

rewrite (2.83) as 
F + (Vg) 

where 

Ge(r,r’) = G(r - r’) I + - [ 71 

(2.84) 

I (2.85) 

is a dyad known as the dyadic Green 1 finetion for the electric component of 

the EM field in an unbounded homogeneous medium. This function for an 

unbounded homogeneous medium can also be rewritten as [ 3 ] :  
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1 

k 2  
Ge(r,r’) = -[V x V x IG(r - r’) - IS(r - r’)] (2.86) 

By substituting (2.84) in the initial (2.81) and writing 

j(r) = dr’IS(r - r’) - j(r’) I (2.87) 

we can show quite easily that the equation for the dyadic Green’s function for 

a vector wave equation can be presented in the following form: 

We can note that if the simple Green’s function obtained for a scalar 

wave equation and the source j ( r )  distribution are known for the case of 

unbounded homogeneous media, one can, using relation (2.85), obtain the 

dyadic Green’s function which satisfies (2.88). In any case, for wave propagation 

above the terrain, including built-up areas, propagation phenomena in an 

isotropic medium for different kinds of the EM-field source can be examined 

using the scalar presentation of Green’s function (2.79) and the EM-field 

presentation (2.80), taking into account the principle of linear superposition 

(2.73) for any real source of radiation. 

2.2.5 Huygens’s Principle 

Huygens’s principle, which comes from the Danish researcher Christian Huy- 

gens, shows how a wave field on the surface S determines the wave field off 

the surface S (Figure 2.11 (a)) or, inversely, inside the area bounded by the 

surface S (Figure 2.1 1 (b)). In other words, each point on the surface S can be 

interpreted as a source of a spherical wave, which can be observed at any point 

A,  either in the outside space with volume V ,  if a source 0 is inside it (Figure 

2.11 (a)), or inside the bounded area S, if a source 0 is outside the surface S 
(Figure 2.1 1 (b)). 

This concept can be examined for both scalar and vector waves. Because 

both concepts are the same physically, and the vector representation needs to 

present completed mathematical expressions, we shall discuss the scalar case 

only. The reader who is also interested in examining the electromagnetic case 

should refer to [ 1-31. 

We indicated above that any scalar wave in an unbounded source-free 

homogeneous isotropic medium can be described by the homogeneous (2.32) 
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S 

A. 

n 

n 

Figure 2.11 The geometry of Huygens’s principle in bounded space in two cases of 

observed point A: (a) presentation outside, and (b) inside the surface S. 

(or (2.71) without the right-hand side). If one wishes to take into account the 

radiated source in such a medium, then one must introduce and derive (2.72) 

for a point source Green’s function. 

If we now multiply (2.32) by G(t, r’) and (2.72) by q(t), subtracting 

the resulting equations and integrating over a volume Vcontaining vector r’ 

(see Figure 2.12), we have 
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Figure 2.12 The geometry for the derivation of Huygens‘s principle. 

dr[ G(r, r’)V2!P(r) - ‘u(r)V2 G(r, r’)] = q(r’) 

V 

(2.89) 

Taking into account the following relations [5] 

G V 2 9  - *V2G = V [ G V q  - W G ]  

we can rewrite (2.73) by use of Green’s theorem. 

Green’s theorem or, as it is sometimes called, the second Green formula 

[2] states the equivalence of volume integral (2.89) with the su6ace one, that 

is, 

aur 
dr[G(r,r’)V2*(r) - W(r)V2G(r,r’)] = I 

S 

(2.90) 

a 
Here S is the surface bounding volume Vl - is the normal derivative 

at the surface S, n is the unit vector directed outside to Vnormally to the 

surface S bounding the volume V,  as is shown in Figure 2.12. I t  is well known 

[ 5 ]  that for any two scalar functions fand  g, there is some relation between 

an 
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ag them: & * n = f-. Taking into account this relation and Green’s theorem, 
an 

based on Gauss’s divergence law, one can rewrite the left-hand side of (2.89) 

as: 

*(r’) = dsn [G(r,r’)Vq(r) - V(r)VG(r,r’)] !) S 
(2.9 1 a) 

Equation (2.9 1 a) is the mathematical expression of the statement that 

once *(r) and n W ( r )  are known on surface S, then *(r’) away from S 

can be found. If the volume Vis bounded by S and Sinf (surface on infinity 

Sinf together with S, are shown in Figure 2.12), then the surface integral in 

(2.91a) should include an integral over Sinf. But when Sinf  + -, all fields 

look like plane wave, and V + rik on surface Sinf. Moreover, in this case 

G(r,r’) is of the order of magnitude of --, when r -+ 00; “(r) is of the order 

of magnitude of --, when r -+ 00, if *(r) is due to a source of finite extent 

(less than a wavelength). Then, the integral in (2.91) over surface S;,fvanishes, 

and (2.91a) is valid for the case shown in Figure 2.12 as well. Hence, the field 

outside S at r’ is expressed in terms of the field on S. 
From (2.91a) one can obtain two different situations at the bounded 

surface S. In fact, if G(r, r’) satisfies (2.32) or (2.71) (without its right-hand 

side) with the boundary conditions n * VG(r, r’) = 0 for r E S, then (2.91a) 

becomes 

1 

r 

1 

r 

*(r’) = dsG(r, r’)n * W ( r )  !) (2.9 1 b) 

3 

O n  the other hand, if now G(r, r’) has only to satis@ (2.32) or (2.71) 

(without its right-hand side) for both r and r’ in volume V; and no boundary 

condition has yet been imposed on G(r, r’), then, in the case of 

G(r, r’) = 0 for r E S, (2.91a) becomes 

q(r’) = - dcq(r)n * VG(r, r’) f 
S 

(2 .91~)  

Equations (2.9 la), (2.9 1 b), and (2.9 lc) are various forms of Huygens’s 

principle depending on the definition of Green’s function, G(r, r’), on the 

bounded surface S. For example, (2.91b) and (2 .91~)  state that only 
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n * VT(r) or q ( r )  need be known, respectively, on the surface S i n  order to 

determine wave function !P(r’). 

Let us now formulate Huygens’s principle for free space without obstacles 

or discontinuities (i.e., for an unbounded homogeneous medium). This case 

was an early description of what actually happens with wave energy when it 

travels in free space in a straight manner. Here, in simple terms, the principle 

suggests that the energy from each point propagates in all forward directions 

to form many elementary spherical wavefronts, which Huygens called wavelets. 

The envelope of these wavelets forms the new wavefront. In other words, each 

point on a wavefront acts as the source of secondary elementary spherical waves 

described by Green’s function, G(r, r’). These waves combine to produce a 

new wavefront in the direction of wave propagation. With great accuracy each 

wavefront can be represented by the plane which is normal to wave vector k 
(see Figure 2.13, line AA’, as a starting wave position). Spherical elementary 

waves originate from every point on AA’ to form a new wavefront BB’ which 

is drawn tangential to all elementary waves with equal radii. As can be seen 

from the illustration of Huygens’s principle in Figure 2.13, the secondary waves 

originating from points along AA’ do not have a uniform amplitude in all 

directions. If CY represents the angle between the direction to any point C o n  

the elementary sphere (see Figure 2.13) and the normal to the wavefront (or 

parallel to k), then the amplitude of the secondary wave in a given direction 

is proportional to (1 + cosa).  If so, the amplitude in the k-direction is propor- 

tional to - ( I  + COSO) = 2. In any other direction the amplitude is less than 

two. In particular, the amplitude of any elementary wave in the backward 

direction is - (1  + COST) = 0, that is, the waves do not propagate backward. 

The waves propagate forward along straight lines normal to their wavefronts. 

Moreover, the consideration of elementary waves originating from all points 

on AA’ leads to the expressions for the field at any point on BB’ in the same 

integral form as (2.1 1a-b), but presented for unbounded space, the solution 

of which shows that the field at any point on BB’ is exactly the same as that 

at the nearest point on AA’. The phase difference between the oscillations at 

these neighboring points of lines AA’ and BB’ depends on the distance between 

them, and is therefore proportional to -kd = 2vd/A.  If d = A ,  all points 

at AA’ and BB’ oscillate in phase; if d = h/2,  all points oscillate in antiphase, 

and so on. Hence, from Huygens’s principle in the particular case of unbounded 

free space follows the phenomenon of straight-line wave propagation, as light 

rays in optics. As we will see later, this principle also states some limits and 

violations for the straight-line propagation of light, related to diffraction phe- 

nomena. 

2.2.6 Fresnel-Zone Concept for Free Space 

The existence of Fresnel zones also follows from Huygens’s principle not only 

in obstructive conditions for both terminals, transmitter and receiver, when 
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Figure 2.13 The geometry of Huygens's principle presentation in unbounded free space. 

any obstacles are placed around them and diffraction phenomenon is predomi- 

nant. As will be seen in Chapter 4, based on the Fresnel-zone concept, diffraction 

phenomenon can be understood by means of its qualitative presentation through 

the prism of Fresnel-zone space distribution. Nevertheless, because Huygens's 

principle successfully describes propagation phenomena for both unbounded 

free space and bounded finite areas, as well as with sharp boundaries, it is 

useful to show mathematically and physically the meaning of the Fresnel-zone 

concept for describing any radio link for which a clear line-of-sight over terrain 

exists. 

In the case of free unbounded space, let us once more return to the 

integral form (2.91) of EM-field presentation at any point r between the 

observer and the source of radiation, using Green's function source presentation. 
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In the case of free space, instead of the virtuulsources at any boundary limit 

of the space volume V ,  within which the real source exists, we will introduce 

virtualsources to describe the EM field in each point of the wavefront in space 

along the wave propagation path (see, for example, wavefront BB’ in Figure 

2.13). A main result which follows from Huygens’s principle is that at any 

point of a source-free unbounded medium, the total field is a superposition 

of elementary spherical waves, which are radiated by virtual sources in space 

and reach to the observation point along straight paths. 

Thus, let us consider that the radiation source is placed in free space at 

point A and the receiver is at point B, as shown in Figure 2.14. We also 

consider an imaginary plane with area S normal to the line-of-sight path at 

any point between A and B, which passes across the point 0 at the line AB 

(see Figure 2.14). Now, if we “work” with infinite volume V,  Green’s theorem 

(2.90) can be represented for any vector of the EM wave, namely, the Hertzian 

vector, as 

dII(R’) exp{iklR - R’l} 
dS 

( R  - R’) 
(2.92) 

where ) R  - R’I = r is the distance from any point in the imaginary plane S 

and observer at point B. If the initial radiation source can be assumed to be 

a point source with Green’s function G - -, then for any point in the plane 

ikq 

rl 

e 

dr l  ro 

a n  r l  
S, because - = --, we finally obtain: 

(2.93) 

I -  I I 

Figure 2.14 Presentation of Fresnel-zone concept in line-of-sight conditions. 
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All the mentioned distances are presented schematically in Figure 2.14. 

two terminals A and B, that is, when 

We will talk about the wave zone or far zone between the plane S and 

krl >> 1, kr; >> 1 (2.94) 

In this case, the first term in brackets within integral (2.93) is less than 

the second one, and can be neglected. Moreover, in the process of integration 

the variables r; and rl are changed. Therefore, because the inequality (2.94) 

is valid for line-of-sight propagation links in free space, relatively small changes 

of variable r cause fast oscillations of the product -exp{ik(rl + r ; ) } .  O n  the 

other hand, this fact leads to fast changes of sign both for real and imaginary 

parts of integrand in (2.93). At the same time, other products in the integrand 

of (2.93) have a weak change with relatively small deviations of r ;  and r l .  In 

this case, the well known method of stationary phase is usually used to derive 

such an integral, containing both slow and fast terms inside the integrand 

[5 ,  6, 81. We will not present here all the complicated analyses and derivations 

of the integral in (2.93), only its final form for the observed point B, as 

rI(B) - -- ik ,exp{ik(ro + rd) ) l ld .dyexp{ ik(L + $ x 2 }  (2.95) 
27rrg7-0 2 ro 

For each integral in the two-dimensional integral of (2.95) one can use 

the integral presentation [4, 61 

Therefore, 

(2.96) 

where d = ro + rd is the distance between the source (point A )  and the observer 

(point B).  Hence, as is shown from (2.97), if at the plane S the source A 
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ikr, 

rl 

e 
creates a field -- , then at the observed point B, the virtual dipoles, uniformly 

distributed at S, will create a field -- , the same as for the direct wave from 
d 

A to B. This is the main content of Huygens's principle. 

wave zones 

ikd 
e 

Additional analysis of integral (2.93), extended above S for the farthest 

(2.98) 

shows that the plane Scan be split into the concentric circles (hoops) of arbitrary 

radius. I t  is apparent that any wave which has propagated from A to B via 

point C;,  i = 1, 2, . . . on any of these hoops has traversed a longer path than 

AOB (namely, ACiB > AOB at Figure 2.14). While passing from one hoop 

to another, the real and imaginary part of the integrand in (2.98) changes its 

sign. The boundaries of these hoops are determined by the condition: 

(2.99) 
7T 

k { ( r l  + r { )  - ( ro  + r d ) }  = n-, n = 1, 2, . . . 
2 

The physical meaning of these hoops for wave propagation is that if the 

virtual sources of the elementary waves lie within the first hoop, they send 

observer radiation with the same phase for each elementary wave. Sources from 

two neighboring hoops send respective radiation which extinguish each other. 

Some elementary, not strict, analysis of integral (2.98) shows that a no-vanishing 

result exists only from the first, central hoop. The hoops are usually called the 

Fresnel zones [ 1 4 ,  8-10]. Let us derive the width of these zones A b .  For the 

first Fresnel zone, assuming x2 +y2 = b', and using (2.95) and (2.99) for 

n = 1, we have: 

(2.100) 

and 

where R is the minimal range from each rg and r i .  
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Hence, the width of the first Fresnel zone is larger than wavelength (i.e., 

61 - fl >> A ) .  For greater zones (with number n > l ) ,  in which the width 

A6 is smaller than the distance to each zone center (simply, the radius of each 

circle 6 E 6n),  one can easily obtain after differentiation of (2.101) the following 

equation: 

k6A6(+ + $) = 5 7T 

and 

7~ R 6: 

2 k  6 6 
A6 - - - - - << 

Here R is, once more, the minimal range 

Thus, the width of the hoops with n > 1 

61 

(2.102) 

(2.103) 

from each ro and rd. 

decreases with an increase of 

radius in each zone 6 , .  At the same time it can be shown that the radius of 

each Fresnel zone of any specific number of the family of zones can be expressed 

in terms of zone numbers n and the distance between both points A and B 
and the imaginary plane S as [ 1-3, 8-10] 

(2.104) 

from which, introducing in (2.104) n = 1, one can immediately obtain (2.10 1) 

for the radius of the first Fresnel zone. As follows from (2.103) and (2.104), 

the width of the Fresnel zones A6 decreases with increasing zone number n. 
At the same time, the area of these zones is not dependent on zone number 

n, that is, 

7T 
2 ~ 6 A b  - T A R  (2.1 O S )  

It is clear that the radii of the individual hoops depend on the location 

of the imaginary plane with respect to points A and B. The radii are largest 

midway between points A and B and become smaller as the points are 

approached. Moreover, as follows from (2.99), the family of hoops have a 

specific property: the path length from A and B via each circle is n- longer 

than the direct path AOB (i.e., for n = 1 (first zone) ACB - AOB = -), so the 

A 

A2 

2 
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A 
2’ 

excess path length for the innermost circle is - Other zones will have an excess 

A 
2 

proportional to - with a parameter of proportionality n = 2, 3, 4, . . . . The 

A 
2 

loci of the points for which the excess ACiB - AOB = n- define a family of 

ellipsoids, the radii of which are described by (2.104). But in free space without 

any obstacles, as we showed mathematically, only the first ellipsoid is valid 

and presents the first Fresnel zone which passes through both points, transmitter 

( T )  and receiver (R), as illustrated in Figure 2.15. This is why, despite the 

fact that in free space the diffraction phenomenon is not obsewed, and no 

effect of interference between neighboring zones exists (see Chapter 4), to 

describe the loss-less phenomenon of wave propagation, the concept of Fresnel 

zones is also used. This approach allows us to obtain the first hoop’s width in 

line-of-sight propagation conditions and then to estimate through formula 

(2.101), by use of the “working” frequency for the respective radio link, the 

range R of wave propagation in conditions of direct visibility between any 
receiver and transmitter. 

2.3 Free-Space Transmission loss 

Let us consider a nonisotropic source placed in free unbounded space as a 

transmitter antenna of PT watts and with a directivity gain GT. At an arbitrary 
large distance r ( r  >> A) from the source, the radiated power is uniformly 

distributed over the surface area of a sphere of that radius. If so, the power 

density at distance r can be represented by the modulus of Poynting vector 

s= is1 as 

Figure 215 The geometry of first Fresnel zone which passes through receiver R and 

transmitter Tin free space. 
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O n  the other hand, as was presented in Section 2.1.4, the Poynting vector 

relates to the field components of the EM wave E and H a s  

S =  H *  E[W/m2] (2.107) 

where the H-component relates to the E-component of the EM field though 

the impedance of free space 20 = 120 7r, as 

E 

12012 
H=- “ml (2.108) 

From (2.106) to (2.108) one can easily obtain the expression of the 

maximum E‘ = 4 .Eo f  the E-field component: 

But this is the maximum value of the electric component of the total 

EM field. Generally, the amplitude of the electric field is a function of time 

and of distance r.  

cos(wt - kd) W/m] (2.110) 
46- 

E(4 = d 

In free space the path loss can be obtained by use of the following 

procedure. If P is the power at the observed point, as a receiving antenna, 

which is located at distance r from the transmitter antenna, then 

(2.1 11) 

is the effective aperture of the receiving antenna according where AR = - 
G ~ A ~  

47r 

to [4, 7-10]; GR is its antenna gain. By substitution one obtains 

2 (g) GR 

120 
(2.112) 
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At the same time, from (2.109), we obtain 

(2.1 13) 

As was defined in Chapter 1, the path loss in decibels is the logarithm 

of the ratio between the transmitted and the received power, 

L = 10 log- P T  = 10 log [ i*:'i] = LO + 10 log((;) 1 

J)R T G R  
GTGR 

(2.114) 

Here Lo is the path loss for an isotropic point source (with 

G I .  = GR = 1) in free space, which in decibels, using the simple relation 

A = cT = c/J can be presented as: 

where the value 34.44 is obtained by the use of simple calculations, taking 

into account that the speed of light c = 3 * 108 (mls): 

In (2.1 15) the distance r is in kilometers (km), and frequency f is in 

As the result, the path loss of both directive antennas, receiver and 

megahertz (MHz). 

transmitter, finally can be given as: 

LF = 34.44 + 20 log d[krnl + 20 logfIMHzl - 10 log G T -  10 log GR 
(2.1 16) 

This is a general formulation of path loss for two directive antennas, 

receiver and transmitter, in free unbounded space. 
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EM-Wave Propagation Over 
Smooth Terrain 

In this chapter we consider wave propagation over smooth terrain, based on 

phenomena described earlier in Chapter 2. 

3.1 Reflection From Flat Terrain 

The simplest case of radio wave propagation over terrain is that where the 

ground surface is assumed to be a flat and perfectly conductive medium. The 

first assumption of “flat terrain” is valid for radio links between subscribers 

10-20 km apart [ 1-71. The second condition of a “perfectly conductive” soil 

medium can be satisfied only for some special cases, because the combination 

of conductivity o a n d  frequency w ,  such as 4 7 ~ o / w ,  that appears in the total 

formula of permittivity E = E ,  - i47rolw plays an important role for high 

frequencies (VHF/L-band, usually used for terrain communication channel 

design) and finite subsoil conductivity, as well as for small grazing angles of 

incident waves [ 1-71. We will later discuss almost all of these features, consider- 

ing the reflection coefficients from flat terrain. However, to introduce the 

subject of the main problem of reflection from the terrain, we start with the 

simplest case of perfectly conductive flat-ground surface. 

For a perfectly conductive ground surface the total electric field vector 

is equal to zero (i.e., E = 0), as shown in Section 2.1.6, the tangential component 

of the electric field vanishes at the perfectly conductive flat-ground surface, 

that is, 

E,= 0 (3.1) 

65 
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Consequently, as follows from Maxwell’s equation V x E(r) = iwH(r) 

(see formulas (2.7a-d) in Section 2.1.1 for the case of p = 1 and B = H),  at 

such a flat perfectly conductive ground surface the normal component of the 

magnetic field also vanishes, 

As also follows from Maxwell’s equations (2.7a-d), the tangential compo- 

nent of the magnetic field does not vanish because of its compensation by the 

surface electric current. At the same time, the normal component of the electric 

field is also compensated by pulsing electrical charge at the ground surface. 

Hence, by introducing the Cartesian coordinate system (see Figure 3.1)’ one 

can present the boundary conditions (3.1) to (3.2) at the flat perfectly conductive 

ground surface as follows: 

3.1.1 The Strict Reflection Theorem 

To obtain a solution of the wave equation which describes radio wave propaga- 

tion over flat perfectly conductive terrain, let us, first of all, describe the problem 

by introducing the physically simply explained qualitative picture presented in 

Figure 3.2. Because each antenna, as a source of electromagnetic waves, can 

be presented as a superposition of point sources-dipoles [ 1-41, we can replace 

such an antenna by two elementary dipoles, the vertical ( z )  and the horizontal 

I Z  

Atmosphere \ I /  
Subsoil Medium 

Figure 3.1 Ray reflection from the flat terrain. 
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Figure3.2 The source presentation as a superposition of the vertical and horizontal 

elementary dipoles. 

(x ) ,  with their own current densities, jz and jx, respectively, as shown in Figure 

3.2. If we now add to a vertical current element its image vector jL1) relative 

to the plane z = 0 with the same current direction (as presented in Figure 3.2), 

component of the magnetic field, that is, satisfies the boundary condition (3.3). 

In the same way, the horizontal dipole with current density jx can also 

be added to its image source having the opposite sign of current density, (i.e., 

jil) = -jx). Then the vertical component of the magnetic field will be com- 

pletely compensated by the field of the additional dipole ji*). Hence, by 

introducing the real and imaginary sources j and j"), one can describe the 

total field above the flat perfectly conductive plane z = O which at this plane 

satisfies the boundary conditions for the magnetic field described by (3.2). 

Moreover, such a combination of sources, real and imaginary, satisfies the 

boundary conditions for electric field (3.1). In fact, at any point of the plane 

then each vertical dipole jz and jz (1) gives at the plane z = 0 only the horizontal 

z = 0, the tangential components of electric field of both sources, jx and jx (1) , 
as well as the normal components of both sources, jz and jz (1) , are compensated 

by each other, as seen from the simple qualitative picture presented in Figure 

3.2. If one will continue the same construction for each element of a real 

antenna, one can obtain the total field solution above the flat-ground surface, 

because the total field of such a combination of antenna elements satisfies the 

wave equation and respective boundary conditions (3.1) to (3.3). 

The result presented in Figure 3.2 can be obtained by strictly using the 

following mathematical formalism and the results described in Section 2.1.6. 
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In this section we have introduced common wave equations (2.29) for electric 

and magnetic components of a wave field. Now we will rewrite them for the 

case of two semi-infinite homogeneous planes without taking into account the 

virtual magnetic source M(r): 

V*E(r) - k2E(r) = io j ( r )  

V2H(r) - k2H(r) = V x j (r)  
(3.4) 

2 2  
where, as was introduced earlier, k = o €,U. Because both fields, E and H, 

can be obtained by the simple operation of divergence from each other, for 

us it is enough to determine one of them, say the H-field, assuming that the 

current density distribution j(r) of the electric source is known. According to 

(2.7b), which we will rewrite in the following form 

V x H(r) = - 2  * k - E(r) (3.5) 

the boundary conditions (2.33) can be rewritten as 

J H  aH’ 

aHx aH, 

[V x HI, = -’- - = -ik,E, = 0 for z = 0 ay aZ 

y -  a Z  a x  [V x H ]  - - - - = -ikyEv = 0 for z = 0 

(3.6) 

But, because H,(x, y, 0) = 0, we obtain two additional boundary condi- 

tions: 

d z  d z  
(3.7) 

the 

con 

If we now use the integral presentation of Green’s theorem [1-4] and 

scalar Green’s function according to (2.79), we may present the H-field 

iponents in the following integral form: 

Hv(r) = J [V x HIv * G+d3r’ 

V 

HJr)  = \[V x HI, - G-d3r’ 

V 

(3.8a) 

(3.8b) 

(3.8~) 
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where Green’s functions can be presented as [ 5 ] :  

Here, r = IR - R’I is the distance between the source point 0 and 

observed point A, rl = JR1 - R’I is the distance between the source point 0 

and the image source (because of reflection from the plane z = 0,  see Figure 

3.3(a)). The distance rl = IR1 - R’I equals the distance IR1 - R{I between 

the observer at point A and the reflection at point 01(R{) for the real source 

O(R’)(see Figure 3.3(b)). Therefore, each integral in (3.8) can be written, for 

example, for component H, as 

Figure 3.3 Geometrical presentation of the imaginary source effect due to reflection from 

the flat terrain. 
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V V 

This equation describes the physical result, that is, the first term gives the 

field which satisfies the solution of wave equation for an infinite homogeneous 

atmosphere without the earth-surface bound. The second term describes the 

effect of the earth surface’s influence. It gives the same effect if, in the nondis- 

turbed field for an infinite atmosphere, the effect of an additional reflected 

source is introduced. This result follows from the sketch in Figure 3.3(b), where, 

except for the real source placed at the point O(x’, y’, z’), the image source 

O(x’, y’, -2‘) is due to reflection from plane z = 0, the field of which together 

with the field of the real source, as we will show later, creates a complicated 

interference picture. 

The same results, as above, can be obtained for the components of the 

total H-field, Hy(r) and Hz(r), but for H,(r) one must put in the integrals 

(3.10) the function G- instead of the function G+ from (3.9), with the inverse 

sign for the “reflected” source (second term in (3.9)). Hence, if at any point 

(x’, y’, z’) above the earth’s surface there exists some source with the current 

density j(r), then due to the reflection from plane z = O the current density 
j ( 1 )  (r) must be introduced at the image point (x’, y’, -z’), and thus 

(3.1 1) 

Using mathematical formalism [4] ,  one can obtain that for relations 

(3.1 1) it is enough to put: 

(3.12) 

Therefore, the effect of a flat-earth surface leads to existence of, in addition 

to the direct field, the field reflected from the ground. This reflected field can 

be thus constructed: to each source at the point (x’, y’, z’) with current density 

j(x’, y’, z’) there corresponds an image source at the point (x’, y’, -z’) with 

the current density j (x ’ ,  y’, -2’). The field of this source is derived in the ( 1 )  
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same manner as if it is located in free space. If one now replaces the element 

of current j(r) by its components, the reflection sketched in Figure 3.2 appears. 

This principal result is usually called the strict theorem of refiction. 

3.1.2 Areas Significant for Reflection 

We will now explain the zones which are significant for reflection from the 

flat terrain for three typical positions of transmitter and receiver according to 

the variants presented in Section 1.4. Let us consider the total field at the 

observed point A ( x ~ ,  y ~ ,  z ~ )  above the perfectly conductive flat and homoge- 

neous earth surface. We will discuss the influence of inhomogeneities and 

roughness of the ground in Chapter 7. 
In the first case, the source is also placed above the ground surface at 

the point O ( x 0 ,  yo, 20).  Without any limitation for the general situation within 

the above-terrain propagation channel, we can assume and choose the coordinate 

system so that xo = 0 yo = y~ = 0 (see Figure 3.4). Using the main integral 

presentation of total field (2.90) to (2.91) from Section 2.2.5, rewritten for 

the atmosphere-earth boundary surface and for the vector Hertz presentation 

of total field [3-51 (i.e., for @(r) n(r)), one obtains the following result. 

According to this formula and the discussion presented above in Section 3.1.1, 

in the situation over the flat terrain, the total field n(r) = I n(r) I at the observed 

point A is the superposition of the nondisturbed field nO(A), which describes 

the wave field in the unbounded homogeneous atmosphere, and the disturbed 

field n, ( A ) ,  which describes the reflection phenomenon caused by the virtual 

sources placed at the ground surface S (the area of integration in (2.91)). The 

integral on the surface S in (2.90) to (2.91) will always consist of products of 

the order of --I'I(r) for any selected Green's function in the form of (3.9). 

Consequently, the field n(r) at the ground surface can also be considered as 

e 
a product of the nondisturbed field no( p )  = I p I - and some slowly chang- 

ing attenuation function W(p).  In this case we can once more return, as in 

Section 2.2.5, to the integral (2.93) from the product of a quickly oscillating 

function and a slowly changing function. W e  use the method of stationary phase 

for the description of zones at the surface S which give minor contributions in 

reflection phenomena from the flat-ground surface. We consider the integral 

(2.93), for which the argument of oscillations for exponential function inside 

this integral is i * 4 = i * k * ( r  + p ) ,  on the surface of integration 

S { x ,  y, z = 0) and will find the point (xo, yo) at which this integral has some 

ikr 
e 

r 

ikp 

P 
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Figure3.4 The area significant for reflection when both antennas are above the ground surface. 
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2 2  
extremum. From Figure 3.4 it follows that r = $(XA - x) + y + z2 and 

p = 4-i. Then the conditions of extremum can be written as: 

(3.13) 

Hence, the point of extremum is placed on the x-axis (yo = 0), and 

Snell's law is valid at this point: the incident angle 00 equals the reflected 

angle 01 (see Figure 3.8), that is, 

(3.14) 

T 
where = - - 00 is the grazing angle. W e  will talk later about Snell's law. 

2 
Results obtained from (3.14) show that the essential effect for reflection 

phenomenon arises from the area that lies near the point of specular reflection 

(xo, yo, 0). Let us examine the behavior of the exponential function within 

integral (2.95); 4 = k ( r  + p )  near this point. For this purpose let us also 

introduce new variables: 

f ? = x - x o ,  'I = y - y o  (3.15) 

assuming 9, 'I << r ,  p,  and expand r and p into series, taking into account 

only the second order summands in such series (other terms are vanishingly 

small), 

2 . 2  2 
G sin p + 'I 

2 ro 

s sin p + 'I 

2 ' ro 

r =  ro + 5 .  cosp + 

2 .  2 2 
p = p o  + f ? * c o s p  + 

(3.16) 

Thus the phase function 4 = k * ( r  + p )  in the exponent of integrand 

within (2.95) is 
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(3.17) 

where we denoted r( from integrand within (2.35) as po according to the 

geometry presented in Figure 3.4. The  lines of equal phase + ( g ,  7) = const 

have the form of ellipses placed around the point of specular reflection (Figure 

3.4). The  factor of oscillations changes the sign of the real and imaginary part 

of the exponent while passing through the ellipses. In fact, the equation 

k 2 72 
2 - (k + -!-)(g2sin2p + 7 ) = m--, 2 rn = 0, 1, 2, . . . (3.18a) 

or its strict mathematical presentation 

+ = 1 (3.18b) 
c2 v2 

7T' m 7' rn 

is an equation of ellipses with semi-axes, respectively, 

along the x-axis: 

along the y-axis: 

I 

(3.13a) 

(3.13b) 

These ellipses are the real boundaries of zones of specular reflection from 

the flat-ground surface. For small grazing angles where q -+ Oo,  that is, 

nrrl >> b,, all ellipses are elongated along the x-axis (i.e., along the direction 

of wave propagation). As in Section 2.2.6, these ellipses describe the Fresnel 

zones, but for the case of the existence of the ground surface along the propaga- 

tion path and the reflection phenomenon from such a surface. As will be shown 

later in the explanation of diffraction phenomenon from various obstacles 

placed on the flat terrain, the total field after the reJlectionphenomenon, as also 
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in free space (Section 2.2.6), can be obtained as an integral effect from the 

area which embraces several first Fresnel zones by use of the Fresnel integral 

presentation: 

V 

(3.20) 

0 

W e  will use this integral for describing diffraction phenomena in propaga- 

tion over terrain with various obstacles. We only note that if we first consider 

rn = 8 Fresnel zones around the specular reflected point as significant zones 

for reflection phenomenon, we obtain the error from the strict solution by use 

of integral (3.20) with infinite limits, which equals =: 15%. In this case, the 

approximate scales of 

formulas, such as, 

along the x-axis: 

the reflecting area can be estimated by using simple 

4 

sin p 
2aR = -1/AR (3.2 1 a) 

along the y-axis: 

2 6 ~  = 4- (3.2 1 b) 

where R is the lesser of the two distances, ro and po. 

We previously talk about the situation when both points, transmitter 

and receiver, are above the earth’s surface. What will happen if one of the 

points, for example point A, lies close to the ground plane z = O? 

In the second case, z~ =: 0, as shown in Figure 3.5, and the term 

( r  + p )  in the exponent of exp{i 4}  = exp{i k ( r  + p ) }  in integral (2.95) 

has a minimum at the point A (i.e., when x = xA, y = yA). 

Let us, as above, also assume thatyA = 0 and introduce the polar coordinate 

system ( r ,  a )  with the center at point A (see Figure 3.5). Then 

x = x~ + r *  cosa,  y = r -  s i n a  (3.22) 

If we now repeat the same expansion of r and p into the series and take 

into account only terms that are linear with respect to r a n d  p,  we obtain: 

p = po + r cosa cosp 

i+z ikpo = i .  k *  r *  (1 +  COS^ cosp) 
(3.23) 
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Figure3.5 The area significant for reflection when one of the antenna is near the ground 

surface. 

Using these expressions, one can again obtain for the fast-oscillating term 

in integral (2.93) the significant area, the boundaries of which are described 

by the following equation: 

7T 
k - r * ( I  + cosa  * cosp )  = m-, m = 0, I ,  2, . . . (3.24a) 

2 

or 

2 - k  
r =  

(1 + cosa  * cosp) 
( 3.24 b) 

Equation (3.24b) is the equation of ellipses with their focus at the point 

r = 0 (point A ) .  Their big semi-axis is elongated along the x-axis and is described 

by 

m .  7T 
a ,  = 

2 * k .  s in2p  

and their small semi-axis is elongated along the y-axis and equals 

(3.25a) 

(3.2 5 b) 
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These ellipses are strongly elongated in the direction of the source, as 

shown in Figure 3.5. In this case, the distance from point A to each successive 

ellipse is 

The same value, but in the direction opposite to the source is 

(3.26) 

(3.27) 

In the case of a wave incident with a small grazing angle p (9 =: 0), the 

several initial Fresnel zones will embrace most of the radio path between points 

0 and A (the source and observer, respectively). 

If, as above, we consider that the significant reflected area embraces the 

initial rn = 8 Fresnel zones, we will obtain for q = 15" the scale of this reflected 

area (d),=,= 64 * A in the direction of source 0, and (d),=o =: A in the 

direction of the observed point A. For p = 30" we obtain (d),=, = 16 - A 

and (d),=o =: A ,  respectively. These estimations show that the area in front 

of an observer placed at point A with its location near the earth's surface, is 

very important for propagation. At the same time, the area behind the observer 

is not significant. The conditions of propagation and, hence, of communication 

between points 0 and A become more effective with an increase of grazing 

angle 40, or, of course, with a decrease of radio range between the source and 

the observed point. 

The third possible variant of source and observer location is when both 

of them are placed near the earth's surface (let us say, in the plane z = 0, as 

is shown in Figure 3.6). In this case the position and the configuration of the 

Fresnel zones are determined by the condition of equality of the phase of field 

oscillations, introduced earlier, that is, k 
From this condition we once more obtain the equation of ellipses with 

their focus at points 0 (source) and A (observer). Because the minimum value 

of such a constant can be achieved for ( Y  + p )  = x A ,  then the boundaries of 

the Fresnel zones are determined by the following conditions: 

( Y  + p )  = cunst. 

7T 
k - ( r + p ) = k * x A + m - ,  m = O , 1 , 2  , . . .  

2 
(3.28) 

The large semi-axis of each ellipse is 
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Figure 3.6 The area significant for reflection when both antennas are near the ground 

surface z = 0. 

r + p  X A  m..;rr 
a ,= -= -+ -  

2 2 4 . k  
(3.29) 

Behind points 0 and A these ellipses are close to each other, and they 

are very elongated along the x-axis, because the small semi-axis is 

6 ,  =- r + p .  2 s i n a  = 4- 4 . k  =: 4s (3.30) 

for moderate values of m. 
Therefore we conclude that the ellipses depicted in Figure 3.6 are not 

real, because 6, << a,. If we now assume that xA >> A (for real radio paths 

above a flat terrain), then x~ >> 6,, that is, the specular reflection area is 

narrow enough. As above, only a few ellipses (for example, for m < 9), which 

embrace the source (0) and observer ( A ) ,  determine the significant area of 

specular reflection. The distances between neighboring ellipses behind points 

0 and A are very small. They can be determined by the following condition: 

1 A 
- ( r  + p - XA) = m - ,  that is, these distances are equal to one eighth of a 
2 8 
wavelength. Thus, we have found the significant area of specular reflection 

from a flat terrain for various combinations of transmitter and receiver location 

above the earth’s surface. One can combine all these cases by use of a more 

general situation for various positions of points 0 and A ,  introducing a system 
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of rotating ellipsoids in space, which have focuses at these points. These 

ellipsoids can be described by the following equation: 

7T 
k .  ( Y  + p )  = k .  d +  n- 

2 ’  
n =  0, 1 , 2 , .  . . (3.3 1) 

where d is the range between points 0 and A ,  while Y and p are the distances 

from A and 0 to the current spatial point, respectively. Beginning from any 

number n = nl these ellipsoids are crossed by the earth’s surface. The first 

point, where the first contact with the ground’s surface takes place, is the point 

of specular reflection: 

The following values of n = nl + m,  m = 0, 1, 2, . . . , will give at the 

ground plane the contours of the Fresnel reflection zones. If the heights of 

points 0 and A are large (the first case described above), we obtain for small 

m ( m  < 9) a family of ellipses (Figure 3.7a). If one of these points, or both 

of them, are located near the earth’s surface, then the cross-sections at the 

plane z = 0 have the form of ellipses with one focus (Figure 3.7b) or with two 

common focuses (Figure 3.7c), respectively. 

3.1.3 Main Reflection and Refraction Formulas 

As was shown above, the influence of a flat terrain on wave propagation leads 

to phenomena such as reflection. Because all kinds of waves can be represented 

by the concept of the plane waves (see Section 2.3), let us obtain the main 

reflection and refraction formulas for a plane wave incident on a plane surface 

between two media, the atmosphere and the earth, as shown in Figure 3.8. 

The media have different dielectric properties which are described above and 

below the boundary plane z = 0 by the permittivities and permeabilities € 1 ,  

p 1 and €2, p2, respective1 Then the indexes of refraction for both media 

can be defined as: nl = d? ,u l  and n2 =I,/=>. 

Without reducing the general problem, let us consider a plane wave with 

wave vector k and frequency w = 27~fincident from a medium described by 

parameters €1 and ,u 1. The reflected and refracted waves are described by wave 

vectors kl and k2, respectively. Vector n is a unit normal vector directed from 

medium (€2, ,u2) into medium (€1, P I ) .  According to (2.41), and (2.43) to 

(2.45) the incident wave can be represented as follows: 
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Figure 3.7 Three-di~ensional presentation of areas significant for reflection: the case (a) 

corresponds to Figure 3.4; the case (b) to Figure 3.5; the case (c) to Figure 3.6. 

k x E  
E = &exp{i(k - x - w t ) ) ,  €I = 4% ~ (3.33) 

P1 lkl 

The same can be done for the reflected wave 

El = qlexp(i(kl x - w t ) ) ,  H[ = i z  - k1 (3.34) 
Ikl I 
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air 

El. C11.a 1 t" 

Figure 3.8 Schematical presentation of Snell's law. 

and for the refracted wave 

E2 = Eo2exp{i(k2 x - o t )} ,  H 

The values of the wave vectors are related by the following expressions: 

From the boundary conditions that were described earlier in Section 

3.1.1, one can obtain the condition of the equality of phase for each wave at 

the plane z = 0: 

which is independent of the nature of the boundary condition. Equation (3.37) 
describes the condition that all three wave vectors must lie in a same plane. 

From this equation it also follows that 

k sin80 = k l  sin 81 = k2 sin 8 2  (3.38) 

which is the analogue of Snell's law: 
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nl sin80 = n2 sin82 (3.39) 

Moreover, because lkol = (kll, we find 80  = 81; the angle of incidence 

equals the angle of reflection. 

I t  also follows from the boundary conditions that the normal components 

of vectors D and B are continuous. In terms of the field presentation (3.33) 

to (3.35)’ these boundary conditions at the plane z = 0 can be written as 

(3.40) 

1 
1 

P2 
-(k x E0 + kl x El) - -(kz x E2) x n = O 

Usually, in applying these boundary conditions for estimating the influ- 

ence of the flat-ground surface on wave propagation over terrain, it is convenient 

to consider two separate situations. The  first one is when the vector of the 

wave’s electric field E component is perpendicular to the plane of incidence 

(the plane defined by vectors k and n), but the vector of the wave’s magnetic 

field component H lies in this plane. The  other one is when the vector of the 

wave’s electric field component E is parallel to the plane of incidence, but the 

vector of the wave’s magnetic field component H is perpendicular to this plane. 

In the literature which describes wave propagation aspects, they are usually 

called the TEwave (transverse electric) and the TMwave (transverse magnetic), 

or waves with vertical and horizontal polarization, respectively. W e  will derive 

the reflection and refraction coefficients for the case of an incident plane wave 

with linear polarization; the general case of arbitrary elliptic polarization can 

be obtained by use of the appropriate linear combinations of the two results, 

following the approach presented in Section 2.2.2. 

First of all, we consider the incident plane linearly polarized wave with 

its electric field perpendicular to the plane of incidence (TE wave), as shown 

in Figure 3.9. The  orientations of the magnetic field components of the incident, 

reflected, and refracted waves, Hi, i = 0, 1, 2, are chosen to give a positive 

flow of energy in the direction of wave vectors k, kl , and k2, respectively. 

Since the electric fields are all parallel to the boundary surface, the first boundary 

condition in (3.40) yields nothing. The  third and fourth conditions in (3.40) 

give 
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Figure 3.9 TE-plane wave reflection and refraction from the boundary of two media. 
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E0 + E ]  - (E2 = 0 (3.4 1) 

-((E() - E])COSB() - -EE2cos& = 0 d:: 4;: 
while the second condition in (3.40), using Snell's law (3.39), duplicates the 

third condition. Now, from (3.4 l ) ,  we can obtain the amplitudes of the reflected 

and refracted waves respectively: 

(3.42a) 

(3.42b) 

T h e  same results can be obtained from (3.40) for the case of the TM 

wave, when the electric field vectors are parallel to the plane of incidence, as 

is shown in Figure 3.10. The  boundary conditions for the normal component 

of vector D and for the tangential components of vectors E and H lead to the 

first, third and fourth equations in (3.40), from which 

The  continuity of the normal components of the 

law (3.39), merely duplicates the second of equations 

amplitudes of the reflected and refracted waves can be 

fol I0 w : 

(3.43) 

vector D, plus Snell's 

(3.40). Therefore the 

written as: 

(3.44b) 
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S 

S 

Figure3.10 The same, as in Figure 3.9, but for TM-plane wave. 
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For the real situation of radio wave propagation over terrain, it is usually 

permitted to put - = 1 .  Also taking into account the relations between the 

refractive index and the permittivity of the medium, that is, nl = ple1 and 

n2 = ~ 2 ~ 2 ,  and introducing the relative permittivity (with respect to the air), 

er = e2/e1, we obtain, by use of (3.42) and (3.44), the expressions for the 

complex coefficients of reflection (r) and refraction ( T )  for waves with vertical 

(denoted by index V )  and horizontal (denoted by index H )  polarization, 

respectively . 

Pl 
P2 

2 

2 

For vertical polarization: 

For horizontal polarization : 

(3.45) 

(3.46) 

Here, lrvl ,  IrHI, I TvI, I THI and p v ,  p ~ ,  p i ,  ph are the modulus 

and phase of the coefficients of reflection and refraction for vertical and hori- 

zontal polarization, respectively. It  is important to note that for normal inci- 

dences of a radio wave on a flat-ground surface there is no difference between 

vertical and horizontal wave polarization. In fact, for 80 = 0, cos80 = 1, 

sin80 = 0, all the formulas above reduce to: 

(3.47) 
3 
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(3.48) 
2 

T v =  T H = -  
+r+ 1 

It  should be noted that the results presented by (3.47) are correct only 

for , u l  = , u 2  [6]. Moreover, for the reflected wave El the sign convention is 

that for vertical polarization (3.45). This means that if €2 > € 1  there is a phase 

reversal of the reflected wave. In the case of vertical polarization there is a 

special angle of incidence, called the Brewster angLe, for which there is no 

reflected wave. For simplicity we will assume that the condition = p2 is 
valid. Then from (3.45) it follows that the reflected wave El limits to zero 

when the angle of incidence is equal to Brewster's angle 

(3.49) 

Another interesting phenomenon that follows from the presented formulas 

is called total reflection. It takes place when the condition of €2 >> € 1  (or 

n2 >> n l )  is valid. In this case, from Snell's law (3.39) it follows that, if 
722 >> n 1 , then 81 >> 80. Consequently, when 80 >> O0kr the reflection angle 

-7T 
81 = -, where 

2 

(3.50) 

For waves incident at the surface (this case is realistic for the wall surfaces 

of ferro-concrete buildings) under the critical angle 00 = OOkr there is no 

refracted wave within the second medium; the refracted wave is propagated 

along the boundary between the first and second media and there is no energy 

flow across the boundary of these two media. 

3.1.4 Analysis of Reflection Coefficient for Various 
Propagation Conditions 

The knowledge of reflection coefficient amplitude and phase variations is an 

important factor in the prediction of propagation characteristics for different 

situations in the over-terrain propagation channels. As follows from expressions 
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(3.45) to (3.46), the amplitude and phase variations of the reflected wave from 

a flat-ground surface depend on the reflection coefficient's amplitude and phase 

changes at the point of reflection (i.e., on the ground's properties) and on the 

initial polarization of the incident wave. In practice, for wave propagation over 

terrain, the ground properties are determined by the conductivity and the 

absolute dielectric permittivity (dielectric constant) of the subsoil medium, 

E = E ~ E , ,  where €0 is the dielectric constant of vacuum, E, is the relative 

permittivity of the ground surface, 6, =  ER^ - ~ E I ~  =  ER^ - j60a .  Here  ER^ 
and E I ~  are the real and imaginary parts of the relative permittivity of the 

subsoil medium, respectively. In practice, instead of the incident angle 80, the 

grazing angle @ = - - 80 is used. Then introducing @ in formulas (3.45) to 

(3.46) instead of 80 yields: 

7T 

2 

for horizontal polarization: 

(3.5 1) 

for vertical polarization: 

2 1/2 . €,sin@ - (E, - cos @) rv=  IrVle-Jpr/ = 2 1/2 (3.52) 
€,sin@ + ( E ,  - cos @) 

Because both the coefficients presented by (3.5 1) to (3.52) are the complex 

values, the reflected wave will therefore differ both in magnitude and phase 

from the incident wave. Moreover, both coefficients in (3.5 1)-(3.52) differ 

from each other. In fact, for horizontal polarization, for E, + 00 and 

a + 00 (i.e., for very conductive ground surface), the relative phase of the 

incident and reflected waves is nearly 180 degrees for all angles of incidence. 

O n  the other hand, for very small grazing angles, as follows from (3.51), the 

reflected and incident waves are equal in magnitude, but differ by 180 degrees 

in phase for all ground permittivities and conductivities. In other words, 

r H  = -1, and 9~ = 180" (0 < @ < 180"). Moreover, with an increase of angle 

@the magnitude and phase of the reflected wave change, but only by a relatively 

small amount. With a decrease in conductivity of the ground surface and with 

an increase of frequency f = of wave radiation, the changes of r H  and 9~ 
A 

become greater. In the case of a real conductive ground surface ( E ,  > 1 and 

a > 0) for small grazing angles (@ = 0"), the reflection coefficient for a wave 

with vertical polarization does not change its properties with respect to 



EM- Wave Propagation Over Smooth Terrain 89 

that for horizontal polarization, as follows from (3.52), that is, for 

t + b =  0 << - T v =  -1, and p v =  180". At the same time, for E ,  -+ - and for 

0 < t+b < 1 80°, I'v = 1. However, with increase of angle t+b, substantial differ- 

ences appear, that is, both a rapid decrease of magnitude and phase of the 

reflected wave takes place. For t+b + 90" (80 .j Oo, 80 is the Brewster angle) 

the magnitude I r vl becomes a minimum and the phase 4~ vreaches -90 degrees. 

At values of @ greater than the Brewster angle, ITV( increases again and the 

phase p v tends towards zero, that is, T v  + 1. These sharp changes of I rvl 
and p v are shown in Figure 3.11 (according to our estimations) versus 

grazing angle t+b for various frequencies from 1 to 1,000 MHz. Here the 

7T 

2 

1 .or 1 

4MHz E i =  54 

100MHz E i =  2.16 

12MHz & i t  18 

I I I I I I 

0 10 20 30 40 50 60 70 80 90 

1MHz Ei =216 

4MHz Ei=s 

12MHz Ei =18 

100MHz 4 =2.16 

Figure 3.11 The value and phase of reflection coefficient presentation versus to the 

angle above horizon. 
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parameter ci denotes the imaginary part of the relative permittivity, €Im, and 

varies from 216 (f= 1 MHz) to 0.216 (f= 1000 MHz), er = 15, and 

= 12 - lOW3 (Smlm). The Brewster angle is about 15 degrees at higher 

frequencies (when €Re >> X E  €Im), (i.e., in cases which are very important 

for wireless over-terrain communication). At lower frequencies and higher 

conductivities (Xincreases and €Re << Xs E I ~ ) ,  the Brewster angle becomes 

smaller, approaching zero. 

Because the reflection phenomenon depends on the parameters of ground 

surface, let us now present typical values of ground permittivity and conductiv- 

ity. Table 3.1 shows how these parameters affect the value of the reflection 

coeacient. 

The conductivity of flat perfectly conductive ground is higher than that 

of higher impedance ground, namely, that found in hilly terrain, whilst the 

relative permittivity can differ from 4 to 30 with a typical average value of 15. 

3.2 Two-Ray Model 

The two-ray model was first proposed for describing the process of radiowave 

propagation over flat terrain. Using this model in [6, 71 the basic formulas for 

field intensity attenuation and path loss were evaluated. Let us consider the 

two-ray model using the approach proposed in [6, 71, which is based on the 

superposition of a direct ray from the source, and a ray reflected from the flat- 

ground surface, as shown in Figure 3.12. Earlier, in Section 2.3, the field 

intensity of the direct wave (from the transmitter) in free space was presented. 

W e  will rewrite it in the following form: 

Table 3.1 
Parameters Affecting the Value of the Reflection Coefficient ' 

Conductivity, U 

~ Surface (Siemens) Relative Permittivity, E ,  

(3.53) 

Dry ground 1 0-J 
Average ground 5 - 1 0 - ~  

Wet ground 2 - 10-* 

Fresh water 10-* 
Sea water 5 

4-7 

15 
25-30 
81 
81 
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I 

I -  I 

Figure 3.12 The geometry of the two-ray model. 

where rl is the radiopath of direct wave as presented in Figure 3.12, GR and 

GT are the antenna gains for receiver and transmitter, respectively and PT is 
the transmitted power. 

As was shown above, the total field at the receiver is the sum of direct 

and received waves, that is, 

(3.54) 

Here, r(+) is the reflection coefficient described by formulas 

(3.5 1)-(3.52) for horizontal and vertical polarization, respectively; 

A r  = (r2 + ~ 3 )  - rl (see Figure 3.12) is the difference in the radio paths of 

the two waves, Ap = k A r  is the phase difference between the reflected and 

direct waves which can be presented as 

(3.55) 
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where h~ and hT are the receiver and transmitter antenna heights, respectively 

and r is the distance between them. For rl >> (hT+ hR) and 

r > >  ( h ~ f  h ~ ) ,  as was shown in [6, 71, using the assumption that 

rl =: r2 + r3 = r )  (3.55) can be rewritten as: 

(3.56) 

Furthermore, if we now assume that GR =: G T  = 1 (omnidirectional 

antennas) and that T(@) =: -1 for the farthest ranges from transmitter (when 

the grazing angle is small), we will finally obtain the power at the receiver as: 

2 
A 

2 

PR = ..(-!!-)I1 477r - e-jkArI2 = PT(-) 477r x 11 + coskAr +js inkArI2  

or in absolute values: 

2 

IPRI = lPr1(kr)  11 + cos2kAr- 2coskAr + sin2kArl (3.57b) 

As follows from (3.57b), the largest distance from transmitter, for which 

there is some maximum of received power, occurs when 

kAr 77 kA r 
- = -  sin- =: I 

2 2 ’  2 
(3.58) 

This distance is called the critical range, denoted by rb and approximately 

determined according to (3.58) by the following formula [6, 71: 

(3.59) 

Then, according to the definition of the parameter path loss introduced 

in Chapter 1, and using the following formula (instead of formula (3.54)) 
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and taking into account all the assumptions presented above, one can easily 

obtain the path loss over flat terrain by use of the critical range presentation 

bl: 

(3.60) 

where Lb  is the path loss in free space at the distance that equals the critical 

range, (i.e., r = r b ) ,  which can be calculated from the following formula: 

As follows from formulas (3.60), there are two modes of field intensity 

decay at distances r less than the break point r = r6,  and beyond this point, 

that is, - r-4, q = 2 for r 5 r6, and - r-4, q = 4 for r > r6. Such decay of signal 

above flat terrain can be seen from the results of path loss calculations according 

to the two-ray model [6, 71, which are shown in Figure 3.13. As follows from 

the two-ray model, there is a break point at the range r6 = 150m-300m from 

the source at which the transformation of field intensity attenuation from the 

mode -r2 with essential intensity oscillations to the smooth mode -r-4 is 

observed up to 1-2 km from the source; the effect depends, according to 

(3.59), on both antennas’ heights and the wavelength. 

3.3 Effects of the Earth’s Curvature 

Let us now consider the case when terrain is smooth, but curved. In this case 

the degree of curvature must be taken into account for field characteristics’ 

evaluation. 

3.3.1 Based Parameters 

As follows from the illustration (Figure 3.14), the real heights of two antennas, 

transmitting, bT,  and receiving, bR, must be turned into “image” heights b+ 
and bi ,  respectively, taking into account the radius of the earth, R,. If so, 
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-160 

-60 

- 

I I I I 

-120 

Figure 3.13 A field intensity decay (in decibels) versus the distance r from the transmitter 

(in meters) obtained by Milshtein et al. according to the two-ray model [61. 

now h+ and h i  are the heights of two antennas placed on the flat earth’s 

surface, but hT and hR are those for the curved earth’s surface. From simple 

geometrical constructions that follow from Figure 3.14, one can obtain the 

distances dl and d2 from both antennas to the center of the radio path: 

Because Re =: 6480 km and, therefore, Re >> d l ,  d2, hR, hr, (3.62) 
reduces to the simple relations: 

(3.63) 

and one can immediately obtain from the real antenna heights their “image” 

values: 

(3.64) 
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I 

Figure 3.14 The geometry of reflection from the curved smooth ground surface. 
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Because at the points of the wave’s specular reflection from a curved 
, I  

surface Snell’s law is also valid, that is @ I  = @2, where @ 1 =2,  and 

$2 = 2 (see Figure 3.14), then we obtain 

(3.65) 

Moreover, because d = dl + d2, one can exclude one of the variables, 

for example, d2 = d - d l ,  and obtain the equation for only one variable, d l ,  
that is: 

2d: - 3dd: + [d2 - 2 R , ( h ~  + h ~ ) ] d l  + 2R,hrd = 0 (3.66) 

Using the standard mathematical approach to solve the cubic (3.66), one 

can obtain its solution in the following form: 

(3.67a) 

from which, and from equality dz = d - dl , it follows that the second variable 

equals 

(3-67 b) 

Now let us derive the radio path for the direct wave from transmitter 

( T )  to receiver ( R )  denoted as R I  in Figure 3.14. From geometry it follows 

that 

(3.68a) 

The same radio path, but for the reflected wave denoted R2 in Figure 

3.14, it follows from simple geometry, from the picture presented there, that: 

(3.68b) 
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Then the difference between radio paths for the direct and reflected waves 

equals 

Because in practical wave propagation over the terrain d >> 
(3.69) reduces to: 

(3.69) 

hj., h i ,  

(3.70) 

Hence, the phase difference between the reflected and direct waves equals: 

27T 4 7 ~ h + b i  
A$ = P A R  = 

A Ad 
(3.71) 

These parameters describe the total wave variations at the observed point. 

3.3.2 Spread Factor 

Increase of degree of curvature of terrain leads to diffusion and spreading of 

reflected rays, as is sketched in Figure 3.15. The area denoted by So is the 

illuminated area if the wave is reflected from the &t earth’s surface. This area 

spreads and diffuses when the reflection is from curvedterrain. Usually, to take 

into account the degree of curvature of the terrain, the parameter SFis  intro- 

duced in the main equation that describes propagation phenomena over flat 

terrain, that is: 

(3.72) 

If so, the main equation for path loss prediction above the curved terrain 

is obtained from that for flat terrain (3.54a) by introducing the spread factor 

SFinto it: 
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Figure 3.15 Spreading effect due to reflection from the curved smooth ground surface. 

Here, A# is the phase difference defined by (3.71); r(@) = II'(rCl)leip 

is the complex coefficient of reflection from flat terrain presented above in 

Section 3.1.4 for both vertical and horizontal polarization; I r(+) I and 4p is its 

magnitude and phase. 

The maximum value SF, as it follows from (3.72), is SF,, =: 1. When 

0.5 < SF < 1, there is no influence of curvature of the terrain on wave propaga- 

tion; the reflection is specular and the surface can be considered to be smooth. 

When O < SF< 0.5, the terrain surface is regarded as curved. For the first 

case of 0.5 < SF< 1 from (3.72) it follows that 

From the second case of 0 < SF< 0.5 it follows that 

(3.74) 

(3.75) 
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For the practice of land communication it is important to note that it 

is only for radio paths longer than 20-30 km that the influence of the curvature 

of the earth’s surface must be taken into account. 
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Radio Wave Propagation Over 
Irregular Terrain 

In this chapter we consider EM-wave propagation above rough terrain where 

both antennas are placed above the rough ground surface in LOS and NLOS 
conditions. In the first case there is no obstruction between the two antennas 

and they are placed at the rough earth surface in conditions of direct visibility. 

In the second case one or many obstacles lie between the two antennas, receiver 

and transmitter, and there is no line-of-sight between them. 

4.1 Propagation Over Rough Terrain in LOS Conditions 
Between Antennas 

In conditions of direct visibility between transmitter and receiver (case one 

presented in Section 1.6), which are placed on the rough-ground surface above 

all obstacles surrounding them, the total field is the superposition of the direct 

wave, the wave specularly reflected from the surface (which was presented for 

flat terrain in Section 3.1), and the waves scattered in all directions from the 

irregularities of the terrain (as shown in Figure 4.1(a)). In order to predict the 

propagation loss characteristics over the irregular terrain, and to estimate the 

role of each kind of wave in the total field, one needs to obtain some criterion 

about the surface roughness and, then, to find the influence of each wave in 

the total field at the receiver. 

4.1.1 Criterion of Surface Roughness 

Rayleigh proposed a rough-surface criterion and introduced the degree of 

roughness of terrain. Moreover, using this criterion, one can estimate the 

101 



102 Radio Propagation in Cellular Networks 

/ J 
Diffusereflection 

Figure 4.1 Reflection from a rough-ground surface: (a) realistic terrain situation, (b) idealized terrain model. 
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Radio Wave Propagation Over Irregular Terrain 
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Wave h n t  1 Wave front 2 

B 

Figure 4.1 (continued). 
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influence of scattering effects with respect to the effect of specular reflection 

which takes place for the case of flat terrain (see Chapter 3) .  T o  obtain this 

criterion, Rayleigh introduced the ideal model of quasi-periodical surface relief, 

as shown in Figure 4.1 (b), instead of the real rough terrain, presented in Figure 

4,l(a). Let us follow his analysis and consider two rays, “A” and “B,” which 

are specularly reflected from the top side and the bottom side of the ideal 

rough surface, respectively, as is shown in Figure 4.l(b). From the geometry 

presented, one can obtain the path difference between these two rays when 

they reach the points C and C’ at the wavefront CC’ after their reflection 

from points B and B’, respectively: 

h 

sin 0 
A1 = (AB + BC) - (A’B’ - B’C’) = -(1 - cos28) = 2h s in8 (4.1) 

Then, the phase difference between these two rays in points C a n d  C’ 

is: 

2 r  4 r s i n O  

A A 
A@ = kAl = -A1 = - (4.2) 

As follows from (4.2), the phase difference A@ is small if the height hi 

of irregularities placed at the rough surface is small with respect to wavelength 

A (i.e., hi < A ) .  In this case, the ground surface is defined as a smooth flat 

surface. For the real terrain the phase difference runs from 0 up to r o v e r  the 

whole angle range. But, for A@ = r, the total field from two reflected rays 

equals zero. If the reflection coefficients from two points B and B’ are the 

same (i.e., r B  = r B t  = r), then the total field, as a superposition of two reflected 

fields, equals: 

This case is not realistic in over-the-terrain propagation. A more practical 

case is when - < A@ < r .  Substituting into (4.2) the bottom limit of the 

phase difference A@ = -, yields the expression of critical height, hR, of the 

irregularities: 

72 

2 -  

r 

2 
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or 

A 

8 sin 8 
hR = - (4.3) 

This height determines the degree of any earth surface roughness. The 

rough-surface Rayleigh criterion can then be presented as 

A 

8 sin 8 
hi 2 hR E - (4.4) 

In other words, the ground surface is rough if the height of an arbitrary 

irregularity placed on this surface is greater than the critical height described 

by (4.3). At the same time, the critical height is determined by the wavelength 

and the grazing angle 8 with respect to the rough surface (see Figure 4.1 (b)). 

In practice of over-the-terrain communications, the grazing angle is suffi- 

ciently small (i.e., 0.5" I 8 53" - 5"). In this case, taking into account that 

sin 8 =: 8 for 8 + Oo, the Rayleigh criterion (4.4) 

where the grazing angle 8 is measured in radians 

For instance, for grazing angle 8 = 1' at 

reduces to 

(4.5) 

from the horizontal plane. 

frequency f= 900 MHz 

( A  = 0.333m), the computed value for critical height according to (4.4) to 

(4.5) is hR = 2.38m; so the Rayleigh criterion is hi 2 2.4m. Thus, if the irregular- 

ity in heights exceeds, in our case, hR = 2.38m, the surface is regarded as rough. 

We must note, however, that the above criterion of surface roughness was 

obtained for the ideal quasi-periodic model of terrain. In the real case, as shown 

in Figure 4.1 (a), to obtain the rough-surface criterion the probabilistic approach 

is usually used [l-31. Following this approach, one can consider the array of 

irregularities placed on a real rough surface and randomly distributed according 

to Gauss's law [l-31. The terrain in this case can be described by a "relief 

function" z = S ( x ) ,  as shown in Figure 4.2. If the irregularities, with the 

arbitrary height z ,  are normally distributed according to Gauss's law with a 

mean value Z and a variance of U,, then the probability density of surface 

irregularity distribution is given by the following formula: 

2 
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Figure 4.2 The rough surface presentation by the relief function z = S(x) .  

where the standard deviation of surface is a, = d w .  
In Figure 4.3, the criterion of roughness of terrain is presented schemati- 

cally for various values of c ~ ,  for understanding, at the qualitative level, the 

role of reflected and scattered rays in the total field pattern. Thus, the case 

(T, = 0 or U, << A describes the pure reflection from flat terrain where the 

reflected wave is predominant in creating the total field pattern resulting from 

the terrain. In the cases (T, > A and c ~ ,  >> A ,  one can consider the surface as 

rough and irregular with an increased role of the scattered wave in the total 

field pattern. In the last case, the scattered component of the total field is 

predominant and forms the isotropic field distribution above the terrain around 

arbitrary irregularities, as is shown in the last illustration in Figure 4.3. 
Using the probabilistic approach, we will rewrite the Rayleigh rough- 

surface criterion by introducing, according to [ 1-31, the parameter of roughness: 

Figure 4.3 The schematical presentation of the criterion of rough terrain. 
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For the case 0.1 < C < 10, the ground surface is slightly rough. For 

C > 10, the surface is regarded as rough. In the last case the scattered component 

is once more predominant. We must note here that the criterion (4.7) is 
stronger than that obtained above and described by formulas (4.4) to (4.5). 
For the same conditions as presented above in the example, that is, for grazing 

angle 6 = 1' and at frequency f = 900 MHz ( A  = 0.333m), the computed 

value for critical height according to (4.7) is uz 2 15m. Moreover, this approach 

requires us to introduce a statistical description of the height distribution above 

the terrain. 

4.1.2 Field Characteristics in LOS Conditions Above the Rough Surface 

As follows from the illustrations in Figure 4.3, the roughness affects the wave 

propagation characteristics and, as a result of its influence, these characteristics 

differ from those for a smooth surface. For the case of smooth terrain, only 

the specular rejected component, together with the line-of-sight component, 

forms the total field at the observed point. If the surface is slightly rough, as 

follows from the middle sketch in Figure 4.3, the specular reflected ray gets 

attenuated slightly due to the scattering phenomenon. In other words, the total 

field also contains the scattered component (which is also called the dzfise 
component) together with direct and specular reflected fields. The diffuse 

component in this case is weaker than the latter components. The specular 

field component corresponds to the coherent part of total field intensity and 

is equal to the square of the average field which is the result of the direct and 

reflected fields. The diffuse component corresponds to the incoherent part of 

the total field intensity which is caused by the rough surface (i.e., by the - 

scattering phenomenon). If the surface becomes very rough (third case sketched 

in Figure 4.3), the specular (coherent) component of total field almost disap- 

pears and the diffuse (incoherent) component of total field dominates. 

At present, there are two general approaches to solving the wave-scattering 

problems which arise from rough terrain: 

1. The perturbation tecbnique, that applies to a surface which is slightly 

2. The Kircbboffapproximation, which is applicable to a surface whose 

rough and whose surface slope is smaller than unity [4-151; 

radius of curvature is much greater than a wavelength [ 16-25]. 

We will not go into a detailed mathematical analysis of these two tech- 

niques which are described further in [4-61. W e  will present the main propaga- 
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tion characteristics, such as the components of total field intensity, which 

successfully describe the scattering phenomenon for radio wave propagation 

over rough terrain in LOS conditions of transmitter and receiver. 

Thefirst-orderperturbation solution. In this section we present a derivation 

of the scattered field components for a vertically and horizontally polarized 

incident wave using the perturbation method. This method is applicable to a 

slightly rough surface that can be described as follows. Let us consider the 

height of a rough surface to be given by some function (see Figure 4.4) 

2 = s(x ,  y )  (4.8) 

We choose z = 0 so that (4.8) represents the deviation from the average 

height: ( ~ ( x ,  y)) = 0. Moreover, the perturbation method is valid when the 

phase difference due to the height variation is small, that is, when [4] 

I k * s ( x ,  y )  cosO;( << 1 (4.9) 

The boundary condition for the electric field at this surface (according 

to (2.42) from Section 2.1.6), requires that the tangential components of E 

vanish at the surface z = s ( x ,  y), that is, 

E x n = O  (4.10) 

where n is the vector normal to the surface z = s at the considered point 

( x ,  y). The normal vector n has the components: 

as 
ax 

-- 

n, = , 

aG 
ay 

-- 

(4.1 1) 

n, = 
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Figure 4.4 The simple presentation of rough terrain. 
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as as 
ax, ay' Ignoring all values with a second order of the derivatives - - and 

as 
aZ -, we obtain, according to (4.10), at the surface z = 9,  

a9 a9 
aY ax Ev + E,- = 0, Ex + E,- = 0 (4.12) 

The third condition according to (4.10) follows from those two presented 

above by (4.12). Such conditions are for the surface z = ~ ( x ,  y). As to boundary 

conditions for the flat surface z = 0, using (4.12), let us rewrite them by 

splitting the field components E,, E,,, and E,  on small orders of height 

deviation 9 and its gradient, Vg: 

. .  r 

Thus, if the surface profile (4.8) and the position of- sources are known, 

the problem is to determine the field in semispace z > 0, when their boundary 

conditions (4.13) are known. Let us consider the influence of roughness as a 

small perturbation, such that the total field is 

(4.14) 

where E") is the field that could be derived for the condition 9 = 0, which is 

well known from the strict theorem 

The second term E"), that describes 

from wave equations by use of the 

(4.13) by substituting (4.14) into it, 

of reflections discussed in Section 3.1. 
the field perturbations, can be obtained 

boundary conditions, which lead from 

(4.15) 

T o  present this perturbation term, let us consider two special cases which 

are practical with regard to over-the-terrain propagation channels. 
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The vertical dipole is located at point 0 as shown in Figure 4.5. Its 

reflection from flat surface z = 0 at the point 01 according to the strict reflection 

theorem must also be directed vertically. By introducing the spherical coordinate 

systems { R ,  6, p} and { R I ,  61, pp1 3 9) for each dipole and taking into 

account the relations between the field components, and the Hertz vector 

introduced in Section 2.1.3, we can present the components of nonperturbed 

field E") as: 

i( W t- ko R)  i( wt- k, R, ) e 
- kipsin 61 cos 61 

R RI 

sin p (4.16a) 

i(wt-k,R) i(wt-k,RJ 

R RI 
- kipsin 81 cos 61 E r )  = -k ips indcos6  i 

i( wt- ko R)  i (wt-k,R,)  e + kipsin261 

R R1 

Then, in the plane z = 0 ( R  = RI,  6 = 7~ - 6,): 

(4.16b) 

Figure4.5 The geometry of vertical dipole field reflection from the ground. 
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Here p is the modulus of the momentum of the point vertical dipole, 

which is well known from the literature (see, for example, [4-61). 
Because in practical terrain propagation the source and the observed point 

are far from the surface z = 0, we can, following to [ 51, present simple formulas 

for the perturbed part of the total field due to roughness of the terrain in the 

case when the incident wave lies in the xy-plane (i.e., when p = 0, 

3 

- ik, R 
e - ik,, x’si n i? 

P-jj- = 4e , where q is constant): 

a - iko ( p  +x’sin 6) 

dX’dy‘ 
ax ag} az P 

= 4(2q)/{ikOcos 2 6 + s i n 6 7  - 

27T 

(4.17) 

- iko ( p  +x/sin 9) 

+ kicos2 6s in  6 dX’dy‘ 

Here p = d(x - x ’ ) ~  + ( y  - Y ’ ) ~  + ( z  - z ’ ) ~ ,  where x, y ,  zare the coor- 

dinates of the observed point. 

For small grazing angles 6 -+ - , (i.e., in the case of slipped incident 

waves), which is very realistic for mobile and personal communication, these 

formulas can be significantly simplified, 

( ? 

(4.18) 

The horizontal dipole is located at the point 0 and oriented along the 

Taxis. Its reflection from flat surface z = 0 at the point 01 according to the 

strict reflection theorem is oriented in the opposite direction. In this case, at 

the plane z = 0, we have 
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i( wt- k, R)  
aEko’ 2 (x)z=o = 2ik’p R sin 6cos 6cos cpsin cp (4.19) 

i( wt- ko R)  
e 

cos 8(sin2 6sin2 cp - 1) rs)z=o = 2ik’p R 

The same approach, as above, allows us to present, according to [ 5 ] ,  the 

perturbation part of the total field due to the roughness of terrain for a horizontal 

dipole oriented along the Taxis: 

A’dy’ (4.20) 
P 

-iko(p+dsin 0 )  

P 
A’dy ’ (1) k i  

Then, in the same case of dipped waves (i.e., for small grazing angles 

(6 + 7~/2))  one can obtain from (4.20) simple formulas for the perturbed 

part of the total field: 

(1) E ,  = O  

- ikoxsin6 - 
- 0  Eu (1) = -2ikoqcos 3 fie (4.2 1) 

-iko(p+x/sin 8) 
e 

A’dy ‘ E ,  (1) = k: - ( 2 z ’ q ) / ~ c o s 6  a g  
27T P 

Comparison between formulas (4.18) to (4.19) and (4.20) to (4.21), for 

both kinds of wave field polarizations, shows that the field of the horizontal 

dipole is weaker and affected by the roughness of terrain than that of the 

vertical dipole. 

The formulas presented above can predict the propagation characteristics 

over rough terrain in conditions of direct visibility between the source and the 

observer, if the profile ~ ( x ,  y )  of the ground surface is known for each concrete 

situation. 

Moreover, these formulas allow us to obtain the coherent and noncoherent 

parts of the total field energy. The coherent power predominates for the case 

of a smooth surface and is determined by the use of the nonperturbed field 
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E''), the components of which are described by (4.16). The incoherent power 

is determined by use of the perturbed field E(') described by (4.17) to (4.18) 
and (4.20) to (4.21) for both kinds of field polarization. 

The limitation of the perturbation method is connected with the require- 

ment of smallness not only for Vg,  but also for the earth's surface deviations 

g(x, y). The last condition can be ignored, however, because, if we derive the 

second perturbation term in (4.14), we obtain for the case of vertical dipole 

the following condition: 

( I k o  - g ' vg1)''2 << 1 (4.22) 

from which, assuming that I V g  I =. g/l, where l is the characteristic length of 

roughness, we obtain that 

g<< 4A * I (4.23) 

Therefore, for sufficiently small slope angles, the described perturbation 

technique is valid even for deviations 9, similar or larger than the wavelength 

A .  

The Kirchhoffapproximation solution. Now we consider the other limiting 

case, when the characteristic scales of roughness of the earth's surface signifi- 

cantly exceed a wavelength of the radiated field from the source. In this case, 

the IGrchhoff approximation may be used to obtain a simple solution. What 

is important to note is that this method requires the absence of shadow zones 

between all roughnesses and/or multireflection and multiscattering between 

each roughness placed on the flat surface z = 0. In the other words, we suppose 

that the surface S is slowly varying so that the radius of curvature is much 

greater than a wavelength (Figure 4.6). If so, we assume, following [5-91, that 

at each point r on the quasi-smooth surface S the wave field is a superposition 

of the incident field E0 (i.e., the field resulting from sources placed at an 

infinite distance) and the field E reflected from the plane G, according to the 

geometric optics' law. This plane is tangential to the surface S a t  the point r, 

as is shown in Figure 4.6. 
The scattered electromagnetic wave at the observed point R can be 

represented by means of the values of E and H on the surface S by use of 

Green's theorem (see Section 2.2.5), the simple presentation of the source 

fields 

(4.24) 
exp{ ikRl} exp(ikR,} 

R1 
, H;(r E S)  = Ho 

R1 
Ei(r E S) = 
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Figure 4.6 The presentation of smooth terrain described by the Kirchhoff approximation. 

and the Green's function representation of the point source according to Section 

exp { ikR} 

R '  
2.2.4 G = 

S 

- [V,k, x n x (E - E o ) ] } ~  

Here, as follows from Figure 4.7, R1 and R2 are the distances from the 

current point r(x, y ,  z = 0) at the flat surface z = 0 to the source point 0 and 

the observed point R; f i 1  and f i 2  are the distances from the current point 

r(x, y ,  z) at the surface S over which the integration in (4.25) takes place; 

g(r) is the height of the surface S a t  the arbitrary point r(x, y ,  z). If the source 

and the observed point are located in the far wave zone relative to surface S, 
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d 

Figure 4.7 The geometry of reflection from the quasi-smooth surface S(r). 
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that is, kR1 >> 1 and kR2 >> 1, the integral in (4.25) for the scattered field 

in direction k, can be rewritten as 

SO 

Here Rlo and R2o are the distances between the arbitrary point 

r(x, y, z = 0) on the surface SO, which is the projection of the rough surface 

S at the plane z = 0, and the source 0 and observed point R, respectively. 

For future analysis of the integral in (4.26), it is convenient to present 

the distances RI and R 2  through the vector r(x, y, z = 0) that lies on the flat 

surface z = 0 and the value of surface height s(r) at this current point (see 

Figure 4.7) 

R 2  = d ( d -  r )  2 + (2- s ) ~  = R2 +pzg 
(4.27) 

the z-components of vectors a = V,Rl and b = -V,Rz (i.e., the projections of 

these vectors at the z-axis). 

We analyze (4.26) that describes the scattered field for two cases that are 

useful in practice for over-the-terrain propagation by introducing some new 

variables according to [6-8]: q = k, - k, k = ka = kV,Rl ,  and 

In the case of a pefectly conductive earth surface, when according 

to results presented in Chapter 3, n * E = 2 * (n * EO) and 

n x H = 2 (n x Ho), for the scattered component of total field, (4.26) can 

be simplified taking into account that electric and magnetic components of 

the electromagnetic field are mutually perpendicular, Ho = k x b l k ,  that is, 

k, = k b  = -kV,R2. 

SO 
(4.28) 
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Because we investigate here only the case of short-wavelength propagation 

(high-frequency band), the short-wave approximation (q2  e >> I )  of integral 

in (4.28) is [6-81: 

SO 

(4.27) 

Hence, we have finally obtained that the vector multiplyer 

[b x (E0 x q)] is outside the integral and determines the polarization character- 

istics of the scattered field. W e  will investigate the polarization phenomenon 

later. Now we must note that all statistical characteristics of the scattered field 

caused by the rough surface are determined by the following integral: 

exp{-i[q r + g2e(r)]}dr I 
SO 

(4.30) 

Additional investigations of integral (4.30) after its statistical averaging 

have shown that the average value of exponent (exp{-iq,$(r)}) in (4.30) is 
the one-dimensional characteristic function that describes the effect of rough 

terrain and does not depend on coordinate r. Moreover, the reflection coefficient 

of the average (coherent) field coincides with this one-dimensional characteristic 

function. In fact, because the average scattered field can be presented through 

this function as 

where the field 

is the field reflected from the area So of plane z = 0; the efiective reflection 

coefficient from rough terrain, as follows from relationship (4.31) and the strict 

reflection theorem, according which (E(k, kJ)) = E(O)(k, k,)Rf( +) (Section 

3.2), is described by this characteristic function, that is, Rf(+) 3 X ( q z ) .  Here 

+ is the slip angle (for the geometry of the problem presented in Figure 4.7 
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k, = k * cos+, ku = 0 and k, = -k * sin+). As an example, for the surface S 
with Gaussian-coordinate distribution, we find that the effective coefficient of 

reflection 

(4.33) 
2 2 .  2 ~f($) exp{-2k s sln $1 

exponentially decreases with increase of characteristic height of roughness g(r). 

As follows also from (4.29), the polarization characteristic of the reflected 

wave E is different from that for incident wave Ei. The unit normal vector 

no to the surface S is related to vectors q,  a and b through the simple formulas: 

b = a - 2n0 (no a), q = k(b - a) = 2kno * (no * b), (4.34a) 

substitution of which in the polarized multiplyer in (4.29) gives: 

(4.34 b) [b x (E0 x q)] = 2k(no a)2{Eo - 2n0 - (no * %>I, no = - q 
4 

Hence, the depolarization of scattered field from rough terrain is the 

same as that for the specular reflection from a perfectly conductive flat surface 

with unit normal vector equal no. This result can be easily understood if one 

takes into account that for k 4 00 (short-wave approximation) the contribution 

in the scattered field gives only specular reflected points with n = no = qlg,  

and reflection from each of them at the surface S takes place in the same way 

as from the tangential plate G, (see Figure 4.6). 
Substituting (4.34a) in (4.27) and introducing the tensor coefficient of 

reflections Rj, = + 2njn,, where the double repeated index e indicates 

the summation from 1 to 3, and 8fi is the unit tensor, which equal 1, if 

j = e ,  and 0, if j + e ,  one can finally obtain from (4.29) the solution for the 

Ej-component of the scattered field: 

E 

SO 

The same result can be obtained for the Hi-component of the scattered 

field by introducing in (4.35) the following terms: Hi,, Ho,, and 

R / e  = -Rip, respectively. 

Let us now generalize the above obtained results for the case of scattering 

from the impedance rough surface with arbitrary conductivity and dielectric 

H E 
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permittivity. Here we also use the short-wave approximation (k  + m), which 

is usually used in the practice of over-the-terrain propagation. This approxima- 

tion allows us to carry from integral (4.26) the vector multiplyers for 

n = no, which describe the polarization phenomena. Let us also introduce 

the vector amplitudes of the reflected wave E, = E - E0 and 

H, = H - Ho = b x E, on the plane G, tangential to the surface S at the 

points of specular reflection. Then the vector multiplyers that are carried out 

from the integral can be presented as: 

O n  the other hand, from (4.34) it follows that 

(4.37) 

Substituting these expressions into (4.26), we have for k + 00: 

where the reflected field E, can be expressed through the incident field & by 

help of tensor reflection coeffkients from the surface with n = no: 

Hence, we come to the same formula, as expressed by (4.35) for the 

pefectly conductive ground surface, but with more complicated formula for the 

components of the reflection tensor: 

E 
Eje = Rje(no)&e. 

which are significantly simplified for the case of the perfectly conductive surface 

and can be presented in the invariant form: 
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(4.39 b) 

Let us note that the invariant form of record presented in (4.35) and 

(4.38) allows us to use these formulas for scattering phenomena from the 

surface with arbitrary dielectric permittivity not only for a linearly polarized 

wave, but also for an elliptically polarized wave. Moreover, because this per- 

mittivity has a nonzero imaginary part, the components of reflection tensors 

are also complex values that lead to conversion of the wave's polarization. For 

example, the linearly polarized wave, after scattering from the impedance rough 

surface, becomes elliptically polarized. But what is more interesting, the depolar- 

ization phenomenon is not connected with the statistical properties of rough 

terrain; it is completely determined by the inclination of tangential plane G, 

to the surface S at the points of specular reflection. The direction of normal 

vector no to this plane (and, hence, the polarization of reflected field) connects 

with the direction of wave vector k of the incident wave and with the direction 

k - k  
to the observed point k, through the relation: no = Therefore, to 

Ik, - kl' 
determine the type of polarization of the scattered wave, one can directly use 

the tensor presentation of the Fresnel reflection coefficients with n = no and 

i+ = 6 0  = cos-'(n b). 

4.2 Propagation Over Rough Terrain in NLOS Conditions 
Between Antennas 

In the case where both antennas, receiver and transmitter, are in obstructive 

conditions (i.e., there is no line-of-sight, denoted in the literature as NLOS, 
see also cases 2 and 3 in Section 1.6) between the source and the observer, a 

new effect of diffraction phenomena arises from various kinds of obstacles, 

such as trees and hills, placed in the rural environment around both antennas. 

The diffraction phenomenon is also based on the Huygens's principle, intro- 

duced in Sections 2.2.5 and 2.2.6, and used for the description of reflection 

phenomenon from flat terrain in Section 3.1.2. Let us briefly describe the 

diffraction from obstacles which form a hilly terrain (i.e., from different kinds 

of hills), using the Huygens's principle and the deterministic approach in a 

qualitative manner, replacing each hill by a kn+ edge. 

4.2.1 Propagation Over a Single Knife Edge 

The analysis described in Section 2.2.5 for propagation in free space applies 

if the wavefront AA' (Figure 4.8) of an arbitrary electromagnetic wave is infinite 
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A' 8' 

Figure4.8 Diffraction at the edge of an obstruction. 

(more strictly, much greater than the wavelength). If there is now some obstacle 

that we may model as the simple knife edge which lies between the receiver 

and the transmitter, only a semi-infinite wavefront CC' exists (Figure 4.8). 

The classical optical ray theory states that no field exists in the shadow region 

below the dotted line BC. However, according to Huygens's principle, the 

wavelets originating from all points on line BB', (e.g., point P), propagate 

into a shadow region. This will tend to fill in the shadow behind an obstruction, 

as shown in Figure 4.8. When the wavefront encounters an obstruction and 

penetrates from the illuminated (light) zone to nonilluminated (shadow) zone 

due to the existence of a second source of wavelets at the edges, tips, wedges, 
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and so on of arbitrary obstructions, the effect is known as the dzfiaction 

phenomenon. 

FresneL-Kirchhoffparameter a n d  Fresnel-zone concept. With the help of this 

concept, which also appeared in Chapters 2 and 3 to explain the free-space 

propagation and the reflection phenomena, one can determine and describe 

the meaning of the main parameter of diffraction, which in the literature is called 

the Fresnel-Kirchhoff diffraction parameter. As follows from the illustration in 

Figure 4.7, the phase difference A@ between the direct ray from the source 

(at point 0) denoted TOR, and that diffracted from the point 0’, denoted 

TO’R, can be obtained in the standard manner by use of the path difference 

Adbetween these rays, assuming that the height of the obstacle is much smaller 

than the characteristic ranges between the antennas and the obstacle 

(h  << d l ,  d2): 

(4.40) 

If we now introduce the Fresnel-Kirchhoff diffraction parameter, v, 

according to [ 1-31, as a simple function of the path difference, Ad, expressed 

in wavelengths 

the phase difference may be rewritten in terms of this parameter, 

(4.4 1) 

Figure 4.9 The geometry of knife-edge diffraction. 
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A@ = :v2 (4.42) 

Usually, the additional parameter, a!, is introduced together with the 

Fresnel-Kirchhoff parameter U: 

(4.43) 

If so, the phase difference between the diffracted and the direct rays can 

be rewritten as: 

(4.44) 

Before going into the details of the problem we must note that the 

Fresnel-Lrchhoff parameter is presented in (4.41) with the two signs, “-” and 

“+,” before the square root, as are usually used for estimating it in the literature. 

Below, following in [ l ] ,  we will use the diffraction parameter presentation 

(4.41) with the “+” sign before the square root. The results of estimating this 

parameter by using the “-” sign in (4.41) may be found in [3] (we will only 

present some results relative to this case). 

Now, as was mentioned in Section 2.2.6, it is necessary to keep the region 

known as the first Fresnel zone substantially free of obstructions in order to 

obtain wave transmission under free-space conditions. To now estimate the 

effect of diffraction around obstructions we need a quantitative measure of the 

required clearance over any terrain obstruction. As was shown in Section 2.2.6, 
this may be obtained analytically in terms of Fresnel-zone ellipsoids drawn 

around both ends of the radio link, receiver and transmitter (Figure 4.10). 

Figure 4.10 The Fresnel-zone ellipsoids around the transmitter and the receiver 
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The reader can find Fresnel ellipsoids discussed in detail in Chapters 2 and 3. 
Here we will only repeat that the radius of any ellipsoid with number n from 

the family of ellipsoids can be presented as a function of parameter n and the 

distances between both antennas and the obstruction, dl and d2, respectively: 

(4.45) 

Then from (4.41) one can obtain the physical meaning of the Fresnel- 

Kirchhoff diffraction parameter: 

(4.46) 
112 

= (2n)  1 l J2  

2(dl + d2) + dz) nAdld2 

Thus the diffraction parameter v increases with the number n of ellipsoids. 

All the above formulas are corrected for h, << d l ,  d2, (i.e., far from both 

antennas). The volume enclosed by the ellipsoid defined by n = 1 is known 

as a j r s t  Fresnelzone. The volume between this ellipsoid and that defined by 

n = 2 is the second Fresnelzone. As a result, the contributions to the total field 

at the receiving point from successive Fresnel zones tend to be in phase opposi- 

tion and therefore interfere destructively rather than constructively. If an 

obstruction 00’ is placed at the middle of radio path TO’R (i.e., 

TO’ = O’R) then if the height of obstruction h increases from h = rl (corre- 

sponding to the j r s t  Fresnel zone) to h = 7-2 (defining the limit of the second 

Fresnel zone), then to h = r3 (to the thirdFresne1 zone) and so on, then the 

field at the receiver R would oscillate. The amplitude of oscillations would 

essentially decrease since a smaller amount of wave energy penetrates into the 

outer zone. 

Fresnel clearance. As follows from the material discussed in detail in 

Chapters 2 and 3 and mentioned above, any radio path in obstructive conditions 

(as illustrated in Figure 4.10) requires a certain amount of clearance around 

the central ray if the signal expected from free-space propagation is to be 

received. This phenomenon can be understood by use of the principle of 

Fresnel clearance, which is important in design of point-to-point radio links, 

where communication is required along a single radio path. Fresnel clearance 

is quoted in terms of Fresnel zones. In fact, the first Fresnel zone (for 

n = 1) encloses all radio paths for which the additional path length Ad, 
according to (4.40), does not exceed A/2 ,  that is, a phase change of 

A@1 = T.  The second Fresnel zone (for n = 2) encloses all paths for which 



126 Radio Propagation in Cellular Networks 

h 
the additional path length Addoes not exceed 2 - - 

2 

on. 

The radius of a Fresnel zone at any point along the radio path can be 

obtained by replacing Ad, in (4.40), by the required number n of wavelengths, 

changing the obstruction height h, to the Fresnel radius r ,  according to (4.45). 
Thus the radius of the first Fresnel zone rl is given by setting Ad = h/2  in 

where f is measured in GHz and d = dl + d2 in km. The shape of the first 

Fresnel zone (a Fresnel ellipsoid) is shown in Figure 4.10. For a given Fresnel 

clearance no obstructions should exist inside the volume of this ellipsoid, that 

is, the volume produced by rotating the ellipse around the direct ray TR. As seen 

below from calculations of diffraction losses from any obstruction (presented in 

Figure 4.14), in practice a clearance of 60% of the first Fresnel zone is normally 

considered adequate for the land point-to-point radio links, corresponding to 

the diffraction parameter Y = -1.1. We must also note that the approximate 

formula (4.45) and, hence, the principle of Fresnel clearance was obtained for 

the case of d l ,  d2 >> r n ,  which is correct for most practical cases of land- 

radio links construction. 

Dzfiaction losses. If between the transmitter and receiver there is any 

single obstacle which can be modeled by a single “knife edge,” losses of the 

wave energy take place. Such losses in the literature are called dzfiaction losses. 

These losses can be strictly obtained analytically by use of the Fresnel-complex 

integrals presented earlier in Chapter 2 in the use of Huygens’s principle. In 

fact, from the classical theory of plane-wave propagation [ 1-31, the total wave 

field Etotal after diffraction at the tip or edge of some arbitrary obstruction 

(such a hill, tree, etc.) can be presented in the following form: 

A (AB2 = Z r ) ,  and so 

(4.45). As a result, rl = (Ad1 * d2/(dl + d2)) 112 - - (300 * dl * &)/(fa d)’”, 

(4.47) 

where E; is the incident wave from the transmitter located in free space; D is 
the diffraction coefficient (see Chapter 5 ) ;  A@ is the phase difference between 

the diffracted and direct waves mentioned above. Then the path loss (the reader 

can find the definition of such a wave characteristic in Chapter 1) due to 

diffraction can be determined in the standard manner: 

LD = 20 * logD (4.48) 

The main goal of strict diffraction theory by the use of the analytical 

deterministic approach is to obtain parameters D and A@ by use of Fresnel 

integrals. Let us obtain the relationships between these parameters and the 
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Fresnel integral. As is well known, the total diffracted field at the observed 

point can be presented in the following integral form by using the Fresnel 

integral: 

(4.49) 

The integral in the right side of (4.49) is the complex integral with 

parameter of integration v defined by (4.41) for the height of the obstruction 

under consideration. We note that if the path TR, between the transmitter 

and receiver (line-of-sight path), is actually obstructed by some obstacle modeled 

by a knife edge, as is shown in Figure 4.1 1 (a), then the height h and the 

diffraction parameter v are positive (it follows from (4.41) with the “+” sign). 

If the knife edge lies below the line-of-sight path (line TR in Figure 4.1 1 (b)), 

so that there is no interruption between T a n d  R, then h, and hence v, are 

negative (because we “work” by use of (4.41) with the “+” sign). 

Figure 4.11 Knife-edge diffraction: (a)  h > 0 and v > 0; (b) h < 0 and v < 0. 
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The field at point R will then be the free-space value Ei. I t  will begin 

to oscillate as the height of the knife edge is increased. The oscillations are 

stronger when more of the Fresnel zones below the TR-line are blocked by 

this knife edge. The amplitude of oscillations increases until the tip of the 

knife edge is just at the TR-line, at which point the field strength is exactly 

half the incident field (i.e., E;/2). The same two situations along the radio 

link are shown, but for the Fresnel-Kirchhoff parameter description by (4.4 1) 

with the "-" sign. These two situations are shown in Figure 4.12, where the 

top figure presents the nonobstructive condition between Tand R with knife- 

edge height negative, h < 0 and v > 0. The bottom figure presents the inverse 

situation with h > 0 and v < 0. Because both variants of the formula (4.41), 

with "+" and "-" signs are usually used in the literature, we will briefly 

summarize results of the calculation for the last case and present all useful 

formulas for both of the cases mentioned above. In all the graphs below, 

however, we will present the results of calculation by use of (4.41) with a "+" 
sign according to [ 11. In both cases, when the knife-edge height is higher than 

the TR-line, we must obtain the essential decay of field strength (i.e., increase 

of path loss relative to free-space value Ei) without oscillations of wave ampli- 

tude. Let us show this by using the analytical approach. The Fresnel integral 

in (4.49) can be presented in the standard manner as 

00 00 00 

/exp{-j:t2}dt = /cos{-:t2}dt-j/sin{-:t2}dt (4.50) 

U U U 

But 

00 v 

/cos{-;t2}dt = k / cos{-~t2}dt  = 2 1 k C(v) (4.51a) 

U 0 

Similarly 

00 U 

/sin{ -Qt2}dt = k /sin{ -:t2}dt = 5 1 k S(v) (4.51b) 

v 0 

Here the "-" sign in all the formulas above corresponds to the case 

presented by Figure 4.1 1, and the "+" sign corresponds to the case presented 

by Figure 4.12. Then the total field according to (4.49) can be rewritten as: 
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Figure4.12 Knife-edge diffraction: (a) h > 0 and vc  0; (b) h c 0 and v >  0. 
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Figure 412 (continued). 
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E = Eo-{ ( 1  + j )  (i f C(v)) - j ( i  k S(v))) 
2 

1 (4.52) 

By introducing the sin-integral S(v) and the cosin-integral C(v) in (4.5 1 )  

we finally can construct such an integral: 

(4.53) 

0 

Plotting this integral in the complex plane with C(v) as the abscissa and 

S( v )  as the ordinate results in the curve shown in Figure 4.13 which is known 

as Cornu’s Spiral [l-31. Positive values of v appear in the first quadrant and 

negative values in the third quadrant. Let us briefly describe the main properties 

of this spiral. 

Equation (4.52) shows that v equals the length of the arc along the 

Cornu’s spiral, measured from the origin at v = 0 (at the top of the knife edge 

P in Figure 4.8, determined as the optical cutoff point), with the curve turning 

around the point (i, $) or (-I -:) an infinite number of times. If one 
2’ 2 

draws a vector from the origin to any point on the curve, this vector will 

represent the magnitude A and phase <P of (4.53), that is, A = d m ,  
Q, = tan-‘? Moreover, the measures 

C‘ 

the real and imaginary parts of a vector drawn from the point ($;) or 

(- i, -:) to a point on the spiral. Therefore the magnitude of total field I El 

for any considered value v = v o  is proportional to the length of the vector 

joining point (i, i) or (-! 2’ -I) 2 to the point on the spiral corresponding 

to vo. Thus Cornu’s spiral gives a visual indication of the amplitude and phase 

variations of total diffracted field E versus the Fresnel parameter v. 
Diffraction losses calculated for the case when in (4.52) both summands 

are written with the “-” sign before the Fresnel-integral functions (the case 

which corresponds to Figure 4.1 1 )  relative to the free-space loss versus parameter 

v are shown in Figure 4.14. Above the line-of-sight line TR the loss oscillates 

about its free-space value (here relative path loss is equal to 0 dB), the amplitude 
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Figure 4.13 Fresnel integral versus the diffraction parameter v (Cornu's spiral). 
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Figure4.14 Diffraction loss over a single knife edge versus the parameter v. 

of oscillations decreasing as knife-edge height h and, hence v ,  becomes more 

negative (according to (4.41) and Figure 4.1 l(b)). When wave is incident 

below the grazing angle at the optical cutoff point (when v = 0), there is a 

6 dB loss (i.e., the field strength is half Eo). At the same time, as follows from 

Figure 4.14, if v = 0.8, which corresponds to about 56% of the first Fresnel 

zone being clear of obstructions, this loss is avoided. Therefore, in the practice 

of radio link construction, designers try to make the heights of antenna masts 

such that the majority of the first Fresnel zone is not obstructed. T o  obtain 

a strict solution by use of an integral equation such as (4.49) or (4.52), which 

connected with the complex Fresnel integral is a very complicated problem to 

obtain a strict analytical presentation of, diffraction losses from any obstruction 
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are considered. In this case, empirical and semi-empirical models that are based 
on, and lead from, numerous experimental data are used. As an example of a 

more effective empirical model to obtain the knife-edge diffraction losses, we 

will employ Lee’s approximate model [2], from which it  follows that: 
1. For the case of parameter v given by formula (4.4 1) with the “+” sign 

(presented in Figure 4.14) the diffraction losses are: 

L ( v )  = L!) = 0 (dB), v 5-1  (4.54a) 

L ( v )  = L F )  = 20 log(0.5 - 0.62 * v )  (dB),  -0.8 < v < 0 (4.54b) 

(4.544 

L ( v )  = LF’ = 20 log[0.4 - (0.1184 (4.54d) 

L(v)  = LF)  = 20 log(0.5 - exp(-0.95 * U ) }  (dB), 0 < v <  1 

- (0.38 - 0.1 * v ) ~ ) * / ~ ]  (dB),  1 < v < 2.4 

0.225 
L ( v )  = L F )  = 20 log(-) (dB), V >  2.4 (4.54e) 

2. For the case of parameter vgiven by formula (4.41) with the “-” sign, 
one must introduce in formulas (4.54) -v instead of v ,  which finally gives for 
diffraction losses: 

L ( v )  = L!) = 0 (dB),  v 2  1 (4.55a) 

L ( v )  = L F )  = 20 log(0.5 + 0.62 * v )  (dB),  (4.5 5 b) 

(4.554 

1 2 v >  0 

L(v)  = Lf)  = 20 log(0.5 exp(0.95 v ) }  (dB),  0 2 v 2 -1 

L(v)  = L F )  = 20 log[0.4 - (0.1184 

- (0.1 - v + 0.38)2)1/2] (dB), -1 2 v > -2.4 

0.225 
L ( v )  = L r )  = 20 log(--) (dB), v < -2.4 

(4.55d) 

(4.5 5e) 

All L p )  that correspond to (4.54) are presented in Figure 4.14. As shown 
in [ 11, the approximation (4.54e) used for v > 2.4 arises from the fact that as 

v becomes 

This 
v >  1, but 

larger and positive then (4.49) limits to: 

(4.56) 

asymptotic result holds with an accuracy better than 1 dB for 
breaks down rapidly as v + 0. Lee’s approximate model can be 
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modified to take into account the ground reflections, as shown in Figure 4.15. 

Here, the four rays are depicted with their own paths; the first is after pure 

diffraction from the top of the knife edge, the second and third are after a 

single diffraction and a single reflection from the ground surface, and the 

fourth is after single diffraction and double reflection. Because all the rays have 

traveled different paths, they have different phases at the receiver I?. For each 

ray the Fresnel-Kirchhoff parameter zr is different and the total field at the 

receiver must be computed according to the following formula: 

4 

(4.57) 
&= 1 

In any particular situation a ground reflection may exist only on the 

transmitter or the receiver side of the obstruction (the case when one of the 

antennas is high enough). In this situation only three rays must be taken into 

account. 

In a real situation in hilly terrain, hills cannot be physically represented 

by knife edges, because their tips have dimensions which are bigger than the 

wavelength of the transmitted wave. This problem was investigated by Hacking 

[24] who showed that the loss due to rounded obstacles exceeds the knife- 

edge losses. In his derivations he replaced a rounded hilltop by a cylinder of 

radius r equal to that of the crest (Figure 4.16). Then the cylinder supports 

reflections on either side of the hypothetical knife edge that coincides with the 

top, and the Huygens wavefront above that point is therefore modified. The 

excess loss which can be added to the knife-edge diffraction can be given, 

according to [24], by 

Figure 4.15 Knife-edge diffraction with ground reflection ("four-ray" model). 
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Figure 4.16 Diffraction over a rounded obstacle. 
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Then the radius of a hill crest may be estimated as 

(4.59) 

All parameters presented in formulas (4.58) to (4.59) are shown in Figure 

An alternative solution is available through a dimensionless parameter 

4.16. 

defined as [25]: 

(4.60) 

In [ 13 the special function A( U, p) ,  expressed in decibels, was introduced 

to describe the diffraction loss from a rounded obstruction. Its relation with 

the ideal knife-edge loss A(u, 0) is as follows: 

Here, U(v, p )  is the correction factor given at the top of Figure 4.17, 
and A(0 ,  p )  is shown at the bottom of Figure 4.17. The losses of an ideal 

knife edge A ( v ,  0) are given in Figure 4.14. In [26],  there are approximations 

for A(0,  p )  and U(v, p) ,  which were derived as follows: 

A(0,  p )  = 6.0 + 7.19 a - 2.02 

(4.62a) 

(4.62 b) 

(4.62 c) 

* p 2  + 3.63 * p3 - 0.75 - p 4 , p < 1.4, 

U(V * p )  = (43.6 + 23.5 U * p )  

* log(1 + U * p )  - 6.0 - 6.7 * U p,  

* p - 20 log(v * p )  - 14.13, 

U .  p < 2, 

U(V'  p )  = 22 - 21 

U * p < 2, 

As follows from some measurements [24] for UHF-band radiowave propa- 

gation, both methods, described in [25] and [26], are valid for both types of 

field polarization. 
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Figure 4.17 (a) the correction factor U( vp); (b) the rounded-obstacle loss A(0, p). 

4.2.2 Propagation Over Multiple Obstructions Placed on Rough Terrain 

The extension of the single knife-edge diffraction theory to two or more 

obstructions (see Figure 4.18) is not an easy matter. The problem is complicated 

both mathematically and physically, but it can be reduced to multiple Fresnel’s 
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~~ 

Figure 4.18 The hilly terrain schematical presentation. 
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form integrals over a plane above each obstruction that is modeled by a single 

knife edge. 

Deterministic Models 

Expressions for an n-times diffracted field were obtained in [27-301 by use of 

strict analytical approaches. Below we briefly describe the main steps and results 

of these analytical investigations. 

Vogler ? multiple knife-edge dzfiaction. To compute the diffraction effects 

by arbitrary obstacles, such as hills, they were replaced by several knife edges 

or wedges [28, 291. This knife-edge approximation was derived by replacing 

each obstruction either by an absorbing screen, in which case the absorbing- 

screen diffraction coefficient was used to compute the diffraction over obstruc- 

tions [28,29]. The effect of knife-edge diffraction on wave propagation over the 

hilly terrain was examined in [28, 291 by introducing a diffraction attenuation 

function. This function was presented in a multiple integral form which was 

then transformed into a series representation. 

Figure 4.19 presents the geometry associated with the multiple knife- 

edge diffraction problem. Here each obstructive is replaced by a perfectly 

absorbing knife edge. The geometrical quantities needed to calculate the param- 

eters used in the solution for Nknife edges are: 

the N + 1 separation distances between obstructions: r l ,  . . . , r ~ +  1 ; 

the heights of the knife edges above the ground surface: hl, . . . , h N ;  (4.63) 

the heights of the transmitter and receiver: hr- h ~ + 1  and hR = ho. 

As for the diffraction angles, 81, . . . , ON, they can be successfully 

obtained from the knife-edge heights and separation distances (see Figure 4.19). 

The above geometrical quantities together with radio frequency f = c/A, intro- 

duced through the wave number k = 2 7 ~ / A ,  are used to define two sets of 

parameters, cy and p: 

, m = 1, 2, . . . , N- 1 (4.64a) 
r m '  rm+2 

Using these relations, one can present the total field strength attenuation 

relative to free space, A,  over a path of total distance, rtot, and consisting of 

Nknife  edges 
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‘1 ‘2 rN +1 

Figure 4.19 Geometry of multiple knife-edge diffraction. 
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PI P N  

2 2  2 x {exp[-(xl + x2 + . . . + X N ) ] } & ~  * &2 . . . &N 

(4.65) 

where 

(4.67) 

C N =  1 for N =  1 (4.6 8 a) 

As an example, we obtain the attenuation for diffraction from two knife 

edges: 

where a1 and C 2  can be obtained from (4.64) and (4.68b), respectively, for 

The attenuation over a triple knife-edge path for all 8, = O (small grazing 

N =  1, 2. , 

angles) can be presented as: 

(4.7 1) 
A ( N =  3)  = - [ + tan-’(:) + tan-’(:) + t a n - l ( q ) ]  a1 *2 

47T 2 

All the above parameters can be obtained from (4.64) and (4.68b) for 

N = 1, 2, 3 .  Obtaining the strict analytical solution of (4.65) is a very compli- 

cated computational problem. In [28, 231 regression analysis was used to obtain 
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some series of integrals of error functions I ( n ,  p) to present the N-time 

diffracted field: 

(4.72) 

P 

In terms of the function I ( n ,  p), for which a number of computational 

algorithms are available, the attenuation function afier N-time diffraction from 

N edges becomes 

(4.73) 

where I ,  can be presented in the following form: 

by introducing the recursive relationship 

C(N- L ,  j ,  k) = 

and using the notations 

(4.75) 

a’-’ N- L * I (k  - i, PN-L) C ( N -  L + 1, i, j )  

Equations (4.73), (4.75), and (4.76) can be implemented in a computer 

program which evaluates the attenuation A for propagation paths consisting 

of N obstructions, as N knife edges, where 0 < N < 50-100. In other words, 

this method cannot represent a full multidiffraction solution from knife-edge 

tops in any convenient analytical form. Only some complicated numerical 

computation of (4.72) with (4.74) and (4.75) might give such a result. 

Slape-dzfiuction approach. The heuristic extension of the UTD has been 

used to compute the diffraction by the wedges forming the profile of an 
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obstruction [30], taking into account the profile that results from the intersec- 

tion of the obstruction with the vertical plane. The theoretical approach pro- 

posed by Andersen [30] includes the analytical application of slope diffraction, 

which is a first-order effect in the transition zone. This approach is based 

on a strict ray-tracing tool that allows an approximate yet accurate and fast 

determination of the field diffracted around a multiplicity of obstacles, such 

as hills and columns. The key point of the heuristic theory presented in [30] 

is to include slope diffraction, which is usually neglected as a higher order 

term in U T D  using an asymptotic expansion. However, in transition-zone 

diffraction this term is of the same order of magnitude as the ordinary amplitude 

diffraction terms. Because the distances between obstacles are not large, slope 

diffraction becomes important for the diffraction process in the transition 

zones between them. Schematically, a scenario of three obstructions as screens 

distinguishing between ordinary amplitude diffraction and slope diffraction, 

is shown in Figure 4.20. Two different ray tracings must be performed for 

such a scenario: the upper one with screen “1” absent leading to a slope wave 

after the third screen and a lower one via screen “1” with slope diffraction 

after the second screen, as shown in Figure 4.20. The slope diffraction describes 

the field attenuation in the transition zones between obstacles. The basic UTD 
theory gives the following equation for the total diffracted field 

absorbing half-screen: 

for a simple 

(4.77) 

or 

Figure 4.20 Slope-diff raction over three-obstacle radio path. 
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Ed = [ E h  + Eh] A(s) . exp{-jks} (4.78) 

where 

exp (-j ~ / 4 )  

24% * sin(a/2) 
D ( a )  = (4.77) 

A distance factor L will be determined later; a is the angle above the 

shadow boundary (see Figure 4.20) 

A ( s )  = 

and A(s) is the so-called spreading factor 

(4.80) 

where SO is the distance to the first obstacle as shown in Figure 4.20. The 

slope diffraction coeffkient D ,  is related to the diffraction coefficient D of 

(4.77) as 

1 a D  

j *  k a a  
D ,=- -  (4.8 1) 

The transition function F ( X )  is, as usual, given by the Fresnel integral: 

(4.82) 

Because we need derivatives of the function F in the following expressions, 

we will use the relation (given here without proof) 

(4.83) 
F ( X )  

F'(X) = j - [ F ( X )  - 11 + - 
2 - x  

The slope diffraction coefficient may now be determined from (4.81) as 

(4.84) 

As examples, let us examine the diffraction over two and three obstruc- 

tions, modeled as absorbing screens. 
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Dzfiaction over two screens. For simplicity, assume the antennas and the 

obstacle edges have the same height. The slope of the incident field is zero. 

The incident wave on the second edge consists now of two components: an 

ordinary amplitude wave and a slope wave, where the amplitude wave is the 

combined incident and amplitude diffracted waves. With this assumption the 

total incident field on the second edge is: 

from the source evaluated 

The parameter L must be 

line. Along the shadow line 

to 

where the suffix “1” refers to the Jr5t edge; E ,  is the incident field at edge 

“2” without the first screen present if line-of-sight; El is the incident wave 

at edge “1;” D1 is given by (4.79) for edge “1.” 

found from continuity of field across the shadow 

the coefficient of amplitude diffraction D simplifies 

D =: - 0 . 5 4  - sign(cu) (4.86) 

T o  have continuity, the discontinuity of the diffracted field should cancel 

the discontinuity of the incident field (i.e., the diffracted field Ed should be 

one-half of the incident field for all values of distance s from the edge), 

from which the value L may be found as 

so s 
L =- (4.88) 

(5 + so) 

Finally, the total incident field on the edge “2” can be written as 

We obtained the trivial result, that the fir5t edge halves the incident field. 

In the last formulas, the phase terms have been suppressed since they are trivial. 

The phase progresses uniformly with distance. T o  find the slope wave it is 

necessary to find the slope of the incident field as a function of distance from 

the first edge: 
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The value at the second edge is found by setting 5 = sl . For the value 

of L,, the L for the slope wave is found by forcing L ,  in the slope wave after 

the second edge to have a value that exactly balances the discontinuity of the 

slope of the E2 wave: 

4 

(4.91) 

It is now a simple matter to find the field after the second edge: 

where 

(4.94) 

By normalizing the field with the free-space field the result can be expressed 

as a combined diffraction coeficient D,: 
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(4.95) 

This expression in all its simplicity is remarkably accurate. For ,the case 

where all the distances are equal, so = sl = s2, the result is 0.3335, while the 

exact result that follows from the path integrals approach [31], is 1/3. 

Dzfiaction over several screens. The previous result can be generalized to 

the case of N screens by applying the following procedure. The diffracted 

field after each screen has an ordinary amplitude and slope component, each 

determined by its own length parameter L and L,, which are found by enforcing 

amplitude and slope continuity over the shadow boundary. This process 

becomes complicated analytically, but it is easily treated by use of a numerical 

recursive algorithm. It may best be understood by following an example for 

three screens, as presented by Figure 4.20. The incident wave on edge “2” has 

contributions from the source and from edge “1.” Thus, there are two shadow 

lines and, after edge “2,” two ordinary amplitude waves and one slope wave. 

After edge “3,” there are then two amplitude waves and two slope waves for this 

particular configuration of edges. At each point the values L must be found 

along the shadow lines all the way back to the original source. Then, in the 

case of three screens, the value of the total field at the receiver after triple 

diffractions can be found by use of the basic UTD formula: 

E4(s) = Ei4 + [E3(O) . D ~ ( s )  + aE3(o) - Ds3(s)] - A ~ ( s )  (4.96) 
a n  

for each set of waves coming from edge “2,” where Ei4 is the incident wave 

at the receiver point with screen “3” absent. To find this value, we need the 

incident field Ei3 when screen “2” is absent, and to find the last value, we 

finally need the incident field Ei2 when screen “1” is absent, which is presented 

in formula (4.85). Thus we follow all the way back to the original source. The 

field at the given point after N screens needs information from all previous 

screens for that point. Transition zone diffraction has “memory” in contrast 

to the usual geometrical theory of diffraction (GTD) multiplication of indepen- 

dent factors. In Figure 4.21 the diffraction over N = 10 screens of equal heights 

and equal spacing is presented by the points according to the UTD solution 

using slope diffraction presentation and by the continuous curve according to 

the exact solution [31-331. The slope diffraction gives an error of about 1 dB 
after ten screens. 

As shown in [30] both analytically and numerically the agreement between 

strict multidiffraction solution [3 1-33] and approximate slope diffraction soh-  
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Figure 4.21 Diffraction over ten-obstacle radio path. 

. I .  . 
tion [30] is very good, except tor short distances between two neighboring 

screens. 

Approximate Models of Multiple Knife-Edge Diffraction 

Together with the strict analytical models, there are some approximate models 

which were constructed to model the problem of multiple knife-edge diffraction. 

And, as mentioned above, because of the length and computation problems 

of the exact solutions, the use of approximate models has become widespread. 

Below we will briefly describe some of the more effective ones. 

Bullingtoni equivalent knife edge [34]. In this approach, the real hilly 

terrain is replaced by a single “equivalent” knife edge at the point of intersection 

of the horizonal ray from each of the antennas, transmitting and receiving, 

that passes through the peaks A and B, respectively, as shown in Figure 4.22. 
The diffraction loss is determined by using formulas (4.54) or (4.55) presented 

in Section 4.2.1, and describing the diffraction losses L = f(d1, d2, h)  for two 

cases of diffraction parameter v. Bullington’s method has a primary limitation 

related to the fact that important obstacles along the radio path can be ignored 

which can cause large errors. In fact, as shown in Figure 4.23, the obstruction 
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"equivalent" 
knife- edge 

Figure 422 The B u I I i n g ton " e q u iva I e nt" kn if e -e dg e c on str u c tio n . 
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Figure 4.23 Accuracy of the Bullington predicting model. 
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B is completely ignored, as the intersecting line from T to R is above the peak 

of the obstruction B. 
The Epstein-Peterson method [35]. In their approximate model, the overall 

loss was presented as a superposition of attenuation due to each knife edge. 

The two losses were calculated in decibels. A two-obstruction path is presented 

in Figure 4.24(a) and the method used is as follows. The loss due to knife 

edge A is first calculated by considering the height of the obstruction hA above 

the line TB joining point Twith the top of second obstruction B. Then the 

diffraction loss due to the second knife edge B is computed by considering 

the height hB above line AR, as shown in Figure 4.24(a). The total diffraction 

loss is the sum of these two losses. 

Comparison of these results with those obtained in E351 have shown that 

the Epstein-Peterson method produces large errors when obstructions are close 

to each other, as shown in Figure 4.24(b). This solution was corrected in [35] 

for the case when the diffraction parameter ZI is much greater than unity and 

for a three-obstacle path (see Figure 4.25). This correction is added to the loss 

obtained by the Epstein-Peterson technique and is expressed through a spacing 

parameter y ;  as 

L a  = 

where, for edges 01 and 02, 

cosecyi = 

TheJapanese method. In this 

20 log(c0sec-y;) (4.97) 

(4.98) 

technique, proposed by Japanese Atlas [36], 

the diffraction loss for obstruction A is computed by the same technique as 

in the Epstein-Peterson method, that is, the path TAB is considered according 

to the illustration in Figure 4.25, and the height of the obstruction hA is taken 

into account to calculate the diffraction loss by use of the above formulas 

(4.54) or (4.55) (depending on the sign before the square root in (4.41)). The 

loss due to obstruction B is calculated by extending the ray AB to the left 

until it intersects the transmitter Taxis at point T’. The diffraction loss due 

to this obstacle is now calculated by finding the height of the obstruction hB 

above line T’R. Once again, the sum of these two losses gives the total loss. 

For the three-path case illustrated in Figure 4.26, the total path loss is computed 

as the sum of the losses over paths T-01-02, T’-02-03 and T”-03-R. Then 

the correction (4.97), according to [35], must be added, as an excess loss. 

Thus, the use of this technique is exactly equivalent to the Epstein-Peterson 

method. 
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(b) 

Figure 4.24 (a) The Epstein-Peterson diffraction over two knife-edge construction. (b) Accuracy of the Epstein-Peterson predicting model. 
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02 

T 

Figure 4.25 The Epstein-Peterson diffraction over three knife-edge construction. 

Figure 4.26 The "Japanese Atlas" diffraction over three knife-edge construction. 

The Deygout method [37]. This method is closer to the rigorous approach 

than those mentioned above. As illustrated in Figure 4.27 for the three-paths 

case, the diffraction parameter v is calculated according to (4.41) for each knife 

edge alone, as if all other edges were absent, for paths T-01-R, T-02-R, and 

T-03-R. The edge having the biggest value of the vparameter is termed the 
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Figure 4.27 The Deygout diffraction over three knife-edge construction. 

main edge and its loss is calculated in the standard manner by use of (4.54) 

or (4.55). If, as shown in Figure 4.27, edge 02 is the main edge, then the 

diffraction losses for edges 01 and 03 are found with respect to a line joining 

the main edge to points T and R and then added to the main edge loss to 

obtain a total diffraction loss. This result can be extended for the case of several 

obstacles, taking into account the contribution of each individual loss in the 

total loss. This method produces good results only when the obstructions are 

not too close to each other. Therefore, according to [37], for the case of more 

than two obstacles ( N >  2) the additional corrections must be taken into 

account using the spacing parameter yi described above by (4.98). In fact, 

when, for example, v l  2 v2 and v l  , v 2 ,  (v2 cosecy; - v l  cot y;) > 1, the 

required correction is 

(4.99) 

where angles yj are described by (4.98) according to geometry shown in Figure 

4.27. 
Comparison between all methods presented above shows that Bullington’s 

technique is simpler than others, but gives a greater error than the strict 

solutions obtained by Vogler [28, 291. The Epstein-Peterson model as well as 

the Japanese scheme are better but can also provide diffraction loss predictions 

that are too low. At the same time, the Deygout technique shows good 

agreement with the rigorous diffraction theory [28-3 I ]  for two edges. However, 

it has an increasing error with increase of the number of obstructions. This is 
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why calculations by use of this method are often terminated after consideration 

of three edges. 

Empirical and Semi-Empirical Models 

As was mentioned in Chapter 1, the initial step of each wireless communication 

system planning is to predict the loss characteristics. To do this for over-the- 

terrain communication channels, one must first determine the correlation 

between parameters of terrain and those of the radio systems, which then allow 

designers of such systems to find the influence of all factors, those dependent 

on environment and those intrinsic to the communication system, on signal 

strength variation, and on the effects of shadowing and scattering from arbitrary 

land obstructions that finally decrease signal-to-noise ratio inside the propaga- 

tion channel. In other words, the accuracy of prediction models plays an 

important role in the provision of efficient and reliable coverage of areas of 

service for the specific purposes of each subscriber. 

Existing prediction models of radio wave propagation over irregular terrain 

in open and rural environments are based mostly on experimentally obtained 

data and, therefore, are usually called empirical and semi-empirical models in 

the literature [l-41. These models differ in their applicability for different 

over-the-terrain propagation channels and for different ambient conditions. As 

mentioned in Chapter 1, until now there is no general model that predicts all 
specific propagation phenomena in such wireless channels and can be ideally 

adjusted to suit all environments. Each model describes some specific situation 

in the over-the-terrain scene. Most empirical models predict the average loss 

L50, that is, the path loss not exceeded at 50% of locations and for 50% of 

the time, and then by use of signal statistics, allow estimation of deviation of 

the signal so that the percentage of the investigated area with adequate signal- 

strength variations can be determined. 

We will now consider models that are based on experimental data obtained 

in numerous measurements of loss characteristics in conditions of open and 

rural environments for rough and hilly terrain. Below we present a brief survey 

of some of the better-known empirical models adapted to the description of 

wave propagation over rough and hilly terrain in obstructive (clutter) conditions. 

For more details the reader can refer to the reference section in this chapter. 

The Egli model. This model is based on the flat-terrain propagation model 

presented in Chapter 3 which gives an inverse fourth-power law of signal decay 

with range r from the source. This tendency of signal-strength attenuation is 

also found for rough terrain and follows from a series of measurements carried 

out over irregular terrain at frequencies of 90 MHz-1,O GHz in a micro- 

cellular environment ( r  < 2 km) [38]. 
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It  was therefore natural for Egli to use a well-known model by introducing 

into it some excess loss that depends upon the frequency and the terrain profile: 

(4.100) 

put notations hT 

respectively. But 
. .  

We must note that here and in the following text we 

and hR for the transmitting and receiving antenna heights, 

actually these notations are relative, because in wireless communication systems 

each vehicle can simultaneously operate as the transmitter and the receiver. In 

(4.100) /3 is the factor which takes into account the excess loss and was 

presented by Egli as a function of frequency in the following form: 

p =  - , f i n M H z  r;f (4.101) 

from which it follows that 40 MHz is the reference frequency at which the 

average path loss reduces to those obtained for the flat-terrain model, regardless 

of any undulations of the terrain. However, Egli found from numerous experi- 

mental data that parameter p described by (4.101) is an average value. H e  

obtained the standard deviation of p as a function of terrain undulations by 

assuming that terrain height is log-normal distributed about its average value. 

If so, a family of curves can be obtained (see Figure 4.28) that shows how 

parameter p varies from its average value at 40 MHz, as a function of terrain 

undulation factor (in dB), and the radiated frequency. Egli suggested that in 

rural areas the standard deviation of received signal level is related to the 

radiated frequency by 

o =  5 logfo + 2dB (4.102) 

wherefo is the frequency in MHz. 

As follows from this empirical model, one can use it to take into account 

the r-4 law of signal decay and the log-normal variations of signal strength 

inside one microcell. 

TheJRC method. This method was proposed in the United Kingdom by 

the Joint Radio Committee URC) and is based on the technique developed 

in [39, 401. The main principle of this method is to use a computer-based 

topographic map data to reconstruct the terrain profile between two terminals, 

transmitter and receiver (the location of the latter is chosen), by introducing 

some special interpolations of obtained data. Using information about the 
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Figure 4.28 Variations of the terrain factor p versus the terrain undulation and the 

radiated frequency. 

heights and position of each obstruction placed on the rough terrain, the 

program tests for the existence of line-of-sight paths and whether adequate 

Fresnel-zone clearance exists over searching paths. Then the bigger path loss 

from free-space (LFS, obtained in Section 2.3) and flat-terrain ( LFT, obtained 

in Section 3.2) is declared as a real path loss: 

If there are no line-of-sight conditions or if there is inadequate Fresnel- 

zone clearance, the program estimates the diffraction loss L D  along the radio 

path by using the Epstein-Peterson model for up to three knife edges (see 

Section 4.2.2), and computes the total path loss as 

If more than three obstructions exist along the radio path, an equivalent 

knife-edge model is taken into account to obtain the diffraction losses by use 

of the Bullington technique (see Section 4.2.2). 

The Blomquist-Ladell model. This method considers the same type of 

losses as obtained in [41, 421, but combines them in a different way to obtain 
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a smooth transition between points where the prediction is based on LFS and 

those where LFT is used [43]. The basic formula for path loss is: 

(4.105) 

Here L ~ T  is a modified flat-terrain path loss which takes into account 

factors such as the effects of the troposphere and the earth’s curvature, when 

one considers a long path between antennas. An approximate expression for 

(Lir - LFS) is given by Delisle [44]. Diffraction losses can be obtained follow- 

ing the Epstein-Peterson technique. As follows from (4.105), for the highly 

obstructed radio path, for which ( L ; r -  LFS) << L D ,  the total field can be 

approximated by 

L = LFS + L D  (4.106) 

Conversely, for unobstructed paths, when L D  + 0, the total losses become 

L = Li+- (4.107) 

As follows from (4.105) to (4.107), the total loss will never be less than LFS. 
LongLq-Rice mo&k These methods were introduced for computation of 

the average path loss over irregular terrain by the use of point-to-point transitions 

in the frequency range 40 MHz to 100 GHz over all type of terrain (see 

classification of terrain in Chapter 1). The technique [45] is based on experimen- 

tal data obtained for a wide range between terminals of 1 to 2,000 km, for 

wide variations of antenna heights of O.5m to 3000m, and for both types of 

field polarization. They also account for the ground curvature, the subsoil 

media properties, and the climate. Some specific parameters that are important 

for path loss prediction were also introduced, such as the horizon distances of 

both antennas, d ~ r  and dLR,  the horizon elevation angles, O e r  and O e ~ ,  the 

angular distance for a horizon path O,, and the terrain irregularity parameter 

Ab. The definition of some parameters are illustrated in Figure 4.27. 

If a terrain topographic map is available, then for any particular path 

these parameters can be determined, and the prediction technique operates in 

a point-to-point model. However, if the terrain profile is not available, this 

technique gives other methods to estimate the above parameters. In fact, to 

estimate the roughness indicator, another parameter Ah( d ) ,  instead of parame- 

ter Ab, is evaluated at fixed distances along the path: 

Ah(d)  = Ah[l  - 0.8 exp(-O.OO2 * d ) ]  (4.108) 
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Figure 4.29 Geometry of a trans-horizon radio path. 

Estimations of Ab for different types of terrain are presented in Table 

4.1. 

We will not present here the algorithm to estimate the other parameters 

mentioned above. However, we will show the reader how to obtain diffraction 

loss by use of this empirical approach. For this purpose let us express the 

distance dl and d2 to two knife edges that model real obstructions in terms 

of the total horizon distance dL = dLT + dLR (see Figure 4.29). The expression 

used for the first obstruction (knife edge) is 

where 

6 113 
1 72.16 * 10 

d l ’=  d~ + - ‘  2 ( fo ) , [km] 

and the same for the second knife edge: 

Table 4.1 
Estimations for Different Types of Terrain 

Type of Terrain 

(4.109) 

(4.1 10) 

Very smooth plains 0-5 

Hills 80-1 50 
Mountains 150-300 
Rugged mountains 300-700 

Plains -30 
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(4.1 11) 

Here the radiation frequencyfo is in Hz. 

Then the Fresnel-Kirchhoff diffraction parameter v to obstructions at 

distances dl and d2 can be obtained from following expressions: 

with i = 1, 2. Here angles OeTi and BeRi are given by 

(4.1 12) 

(4.1 13) 

where d ~ s ~ i  and duRj are the horizon distances for flat terrain; d ~ ~ i  and d ~ ~ i  
are the horizon distances for rough terrain, that are related with each other 

thus: 

(4.1 14) 

Here once more, i = 1, 2, corresponding to the first and second obstruc- 

tions, respectively. The angle depicted in Figure 4.29 is given by: 

where transmission path di is in kilometers. 

estimated using the approximation for A ( v )  given by (4.61) to (4.63): 

Finally, the diffraction losses for two knife edges A1 and A2 can be 
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The 

located at 

where 

(4.1 16) 

total diffraction loss L D  in dB for the vehicle (moving or stationary) 

the distance “d” from the base station is 

A0 = Afi + A2 - A1 - A 2  * d(dB) 
d2 - dl 

(4.1 17) 

(4.1 18) 

Equation (4.1 18) includes an empirical clutter factor A f i ,  estimated as 

Afo = min[Aj0, 151 (4.119) 

where 

and the standard deviation from the mean terrain profile at the horizon distance 

dts between the receiver and transmitter is 

Delisle et al. [44] state that the Longley-Rice model gives reasonably 

accurate prediction and is not restricted to short radio paths. To now predict 

the total transmission loss we must add to (4.1 17) the free-space loss at each 

distance considered according to Section 2.3. Longley has shown [45,46] that 

the standard deviation of the receiving signal is related to the radiated frequency 

by 

Q = 3 logfo + 3.6 (dB) (4.122) 

and to the terrain irregularity factor by 
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ol = (5 + 5.5 - 10-l (y)’2 - 4 . 10-3 ( y )  dB, - Ah < 4.7 * 103 

A 
(4.123) 

Ah 3 
~2 = 24.9 dB, - > 4.7 * 10 

A 

So, in the context of terrain irregularity, Longley has combined the 

irregularity factor A h with wavelength A to obtain the dimensionless parameter 

Ah C 
-, which increases if Ab and/or fo - - increase. 
A - A  

CCIR methods [47]. Using a statistical analysis of a considerable amount of 

experimental data collected in many countries, the CCIR committee proposed 

constructing a family of signal-strength prediction curves (see Figure 4.30). 

These curves are applicable over hilly and mountain terrain found in many 

parts of Europe and America for which the terrain irregularity factor Ah was 

typically Ah 2 50m. Values are given for 50% of the locations and 50% of 

the time. The reference curves are given for a moving vehicle with antenna 

height of hr = 1.5m and for base station antenna height hR variations from 

30m to 1,000m. As follows from illustrations presented in Figure 4.30, the 

value of field strength measured in a small area are log-normally distributed 

around the predicted average value, that is, the field strength in dB follows a 

Gaussian (normal) distribution. However, despite the recommendation of the 

CCIR committee to use it, this technique gives a prediction error of about 

10 dB [47]. 

Therefore, as an improvement of CCIR recommendations, a new method 

called the clearance-angle method was proposed by the European Broadcasting 

Union (EBU) which has now been adopted by the CCIR committee. The 

principle of the new technique was to retain the CCIR reference field-strength 

curves, and hence, the simplicity of application. Also, to improve the prediction 

accuracy by taking into account the terrain variations in a small area surrounding 

the receiver (base station), and, instead of the global parameter of terrain 

undulation Ah, to account for the local effects of terrain by introducing a 

terrain clearance angle as a correction to the CCIR method [48]. This angle 

is meant to be representative of those angles in the receiving area which are 

measured between the horizontal through the receiver and a line that clears 

all obstructions within the path in a direction towards the transmitter. The 

geometry of the problem and the sign of the corresponding clearance angle 

for the path of 16 km is shown in Figure 4.31(a). The two curves in Figure 

4.3 1 (b) give values for the required correction factor in dB in terms of clearance 

angle. This factor must added to the field strength obtained from the CCIR 
reference curves (Figure 4.30). As follows from Figure 4.31(b), the difference 
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Figure4.30 CCIR field-strength prediction curves for urban areas at 900 MHz (50% of the 

time, 50% of locations) for 1 k W  ERP and h~ = 1.5m. 

between VHF- and UHF-band propagation is not essential. Depending on 

the clearance angles, this correction factor can improve the CCIR results by 

adding measures from -30 to 30 dB to the field strength obtained from the 

CCIR prediction curves. 

Carey model. This model was derived from the CCIR curves giving field 

strength E, as a function of distance d and base station antenna height hR 

variations for propagation under average terrain conditions [49].  In his model 

Carey proposed to derive E(50, 50) and E(50, lO) ,  that is the field strength 
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Figure 4.31 The clearance angle method: (a) sign convention; (b) correction factors; the 

curve A corresponds to VHF, the curve B to UHF. 
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for 50% of the locations and 50% or 10% of the time. In his derivations he 

took the height of the moving vehicle as 1.8m, the base station antenna heights 

varying from 30m to 1500m above the terrain, and for radio paths up to 130 

km (for E(50, 50)) and up to 240 km (for E(50, 10)). The frequency band 

investigated was 450-1,000 MHz. According to the predicting curves, Carey 

gives the average transmission loss in dB at 900 MHz as 

L = 110.7 - 19.1 loghR+ 55 * logd, 8 I d I  48 km 
(4.124) 

L = 91.8 - 18 loghR + 66 * logd, 48 I d I  96 km 

where hR is in meters. 

4.3 Propagation Over Vegetation 

Vegetation is a significant feature which affects radio wave propagation in 

suburban and rural areas, but usually it can be neglected in most built-up 

areas. In rural areas, shadowing, scattering, and absorption by trees and other 

vegetation can cause substantial path losses, mostly at the UHF/X-band. Predic- 

tions of signal decay in the case of irregular terrain at frequencies less than 

500 MHz have been made by a number of authors [50-531 during the initial 

period (end of the 1950s to the beginning of the 1960s). Usually their estima- 

tions are fairly involved and aimed at calculating the loss of point-to-point 

paths. Later, during the 1970s) vegetation and foliage losses have been reported 

[54-561 at frequencies up to 3 GHz but for relatively few paths. 

As follows from the literature, trees have both absorbing and scattering 

effects, mainly for propagation over the trees [50-701. W e  summarize below 

the most important published works [59-701, treating the effects of vegetation, 

namely trees, foliage, and leaves. 

4.3.1 Deterministic Model of lateral Wave Propagation 

In the 1960s and the beginning of the 1970s the deterministic model of wave 

propagation over forest areas was introduced and discussed to describe the 

absorption and diffraction effects of vegetation [59-61]. Here the trees were 

modeled as a homogeneous dielectric slab-layer. As was shown, this model is 

a good approximation for a forest up to frequencies of 200-500 MHz. Neverthe- 

less, as was shown experimentally by [54-581, the model of homogeneous 

dielectric layer might be a good approximation for higher frequencies, up to 

900 MHz, for calculating the reflections of rays incident with a grazing angle 

over the tree layer. In fact, the grazing incidence makes the cross-section of 
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the irregularities of the trees “look” smaller and therefore the tree layer “appears” 

to be smooth. Let us briefly describe the dielectric layer model. 

‘Forest.” model. A forest is modeled as a dielectric layer dividing two 

layers-air and ground. The geometry of the “forest” model is shown in Figure 

4.32. The forest layer having an eEective tree height h is shown to the lefi of 

the x = b plane, with the space to the right of that plane being a bare-ground 

region. Within the frequency band of 20-200 MHz, the tree layer can be 

assumed to be a homogeneous refractive medium with a relative permittivity 

€1 = n , where n is the complex refractive index of the forest layer. Similarly, 

the relative permittivity of the ground surface is denoted by €2 = N2, where 

N i s  the complex refractive index of the ground surface. 

To arrive at simple field considerations, it has been assumed in [59-611 

that a dipole antenna is placed at the point T(0, 0, ZO), where its height zo 
can be considered either inside or outside the forest layer (these two situations 

are described below by formulas (4.125) and (4.128), respectively). Both vertical 

and horizontal polarization have been examined in [59-61] but, for simplicity, 

only the field detected at the receiving point R(x, 0, x) by a dipole oriented 

for maximum reception of the transmitting signal was considered. Thus, for 

vertical polarization, both dipoles at T and R were oriented parallel to the 

z-axis; for horizontal polarization, both dipoles were oriented parallel to the 

y-axis (see Figure 4.32). The electromagnetic field along any direction at any 

point y # 0 can be deduced if the electric field detected by the dipole at R is 
known. As shown in [59-61], the foliage fills only a small portion of the 

volume occupied by the forest slab, the remainder is filled by air. In this case, 

it was verified by measurements in E59-611 that the magnitude of the complex 

equivalent refractive index of the forest slab, n = n, + j 723,  is close to unity, 

such that n, = 1 and n;  = 60cTh CC 1, where U is the conductivity of the 

2 

Figure 4.32 Geometry of the Tamir forest model. 



168 Radio Propagation in Cellular Networks 

forest slab and A is the wavelength of radiated wave field. Hence the forest 

dielectric slab represents a weak discontinuity relative to the air because a wave 

impinging on the forest-air boundary undergoes only a negligible reflection, 

most of its energy being transmitted across that boundary. In other words, the 

dominant wave is the surface or lateral wave that propagates along the forest- 

air boundary. This property will be discussed below for different mixed paths. 

Another important feature of the forest-layer geometry is that, depending 

on the particular location of the transmitting ( T )  and observation ( R )  points, 

four different actual situations of wave propagation exist, each of which is 

characterized by a different type of wave mechanism and therefore by a different 

expression of the wave field. As indicated in Figure 4.32 by the Roman numerals, 

these various regimes correspond to the receiving point R being located as 

follows: I-inside the vegetation; 11-in the air region above the forest layer; 

111-at the relatively high altitude in the air above the bare ground region; 

IV-at the relatively low height above the bare ground region. 

Loss charactPristicrprediction. We present below formulas describing propa- 

gation phenomena within the forest layer (i.e., in region I). The reader can 

successfully find results of calculations for other regions in [59-611. In region 

I, there are two variants of transmitting point ir: Location exists in this case: 

outside the forest layer, as presented by Figure 4.33(a), and inside the forest 

layer, as is shown in Figure 4.33(b). 
In the first case, the field strength at point B is evaluated from the path 

loss of the lateral wave (depicted by the line AB in Figure 4.33(a)) within the 

forest dielectric layer, based on the incident wave at point A. The surface 

(lateral) wave A B  represents a whole class of rays. The path loss downward 

due to the foliage along the BR path must also be added. In this case, using 

a time dependence -exp(-Jut), one can obtain according to [59-611 for region 

I the following expression for relative signal strenght ,!?I (relative to the dipole 

momentum - /a ,  where a is the effective length of the receiving dipole, I is 

its current): 

(4.125) 

2.n 

A 
where k = - = 2 7 ~ f ( p O ~ O )  1'2 is the plane-wave propagation factor in air, f 

is the radiated frequency, po is the constant permeability of air, and €0 is the 

constant permittivity of air; kL = k - (n2  - 1)1'2, all geometrical parameters 

of the problem are depicted in Figure 4.33(a). Other functions in (4.125) are 

as follows: 
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Figure 4.33 The forest model: (a) the transmitter T is outside the forest layer; (b) the 

transmitter T is inside the forest layer. 

(4.126) 
1 + B(8, n) 1 i- B(87 hR) 
1 - B(8, h)’ ’(” hR) = 1 - B(8,  h)  

’ (8 ,  2) = 

The factors as F(90°, z) from (4.126) describe the effects of reflections 

from the ground plane, which affects the surface-wave amplitude by reflecting 

some energy back towards the forest-air boundary [59]. This ground proximity 

effect becomes negligible for large values of 20, hR, and h, in which case 

F(90°, n) approaches unity. Here, 
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(4.127) 

where r,(O) and TH(8) are the reflection coefficients for reflection at the 

forest-layer-soil interface for vertical and horizontal polarization, respectively, 

8 is the angle of incidence (Figure 4.33(a)), which was introduced in 

Chapter 3. 
The same results can be obtained for the second case presented in Figure 

4.33(b) for region I, when the transmitting point Tis  also located within the 

forest layer (using Tamir's approach [59, 611). In this case, because the wave 

reflections are negligible at the forest-air interface, the effects of the forest 

boundary x = 6 may be neglected for the receiving point R located inside the 

vegetation layer. In this case, the forest may be assumed to extend over the 

entire region x >  6, as shown in Figure 4.33(b), where 0 < z <  h. For large 

distances 1x1 = d between T and R, one can obtain from [59-611 that the 

relative field strength in region I is 

60 exp{j  [ k  * 1x1 + kL * (2h - z -  zo)]} 
E; = 2 F(90", Z) F(90", ZO) 

( n 2  - 1) X 

(4.128) 

where all the terms in (4.128) were described earlier by (4.126) to (4.127). 

Fields given by 21 and E; are those of lateral waves, which follow the 

paths TABR depicted both in Figure 4.33(a) and 4.33(b). For example, as can 

be verified from Figure 4.33(b), an electrical length can be written as 

k + n - (I TA1 + IBRI) + k - lABl = k ( n  * s * sec8, + x -  s - tan@,) 

= k(lx1 - -\I.L - 1 s) 

where s = ( h  - z )  + ( h  - ZO) = 2h - z -  ZO,  8, is shown in Figure 4.33(b), 

as the critical angle of total reflection: 8, = sin-'( l /n ) .  Of couse, 8, is generally 

complex because n is a complex quantity. However, for small losses 

n;  << n,, the real part of 8, is predominant and it then yields the physical 

interpretation of the ray-paths TA and BR in Figure 4.33(b). 

From (4.125) or (4.128) one can obtain the initial loss Lo in the case 

of absence of the ground plane and the additional losses L,, taking into account 

the situation when both antennas are located within the forest layer. The total 

loss for this case can be presented as a sum of such path losses (i.e., 
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L T ~ ~ ~ ~  = Lo + L,). The first term can be obtained by use of a half-space 

propagation model, taking into account the radiation resistance of a small 

dipole in unbounded free space Ro = 80 (“a - ‘7, where a is a dipole size, 

and that SO = 2h - z - zo = 0 [59-611: 

2 

Lo = 20 log[(:) * n2 * In2 - 11 (i)] [dB] (4.129a) 

Expression (4.129a) shows that the loss Lo is strongly dependent on the 

wavelength and dielectric properties of the forest which are characterized by 

the refractive index n. 
The additional losses follow from (4.128) when two antennas, Tand R,  

are located below the forest-air interface (Figures 4.33(a) and 4.33(b)) by use 

of the exponent -exp{-jkLs}, k L  = k d Z .  Hence, it follows that the loss 

incurred due to lowering the antennas to a combined depth s below the treetops 

can be described according to [59, 601 by 

(4.1 29 b) 

It should be noted that the surface (lateral) wave is a diffracted-nature 

field component, which varies with distance according to (4.125) and (4.128) 

as - x - ~ ,  decreasing more rapidly than spherical waves, which vary as - x-l .  In 

the present case, spherical waves also occur and they correspond to direct wave 

or to waves that would arrive at point R by reflectors at the ground plane and/ 

or at the forest-air boundary [59-611. These spherical waves have to travel a 

long distance inside a lossy forest layer, so that their amplitudes decay to 

exponentially small values. In contrast, the surface (lateral) wave decays only 

over the relatively smaller distances TA and BR, the large path AB being 

through the lossless air region. Hence, this wave remains as the only significant 

contribution to the field E ~ i n  the region (I). 
Comparison with experimental data. As was obtained experimentally by 

[62, 631, there exists a good agreement between a decrease in the measured 

field El with the distance squared, and the theoretical predictions according 

to (4.125) and (4.128) that give us the same law of total field attenuation 

- x  . Also, the field was found to generally increase with the height ZR of the 

observation point R. This gain as a function of height is also predicted correctly 

by formulas (4.125) and (4.128). 

-2 
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An experimental study in Texas at frequencies in the range of 500-3,000 

MHz have shown that there is a good correlation with the theoretically predicted 

field decay based on diffraction effects of lateral wave from the forest tops 

according to formula (4.123) for the observer point position both above and 

below the treetop level 1641. 
They also have obtained that the path loss increases as the fourth power 

of the frequency for distances - 1 km and for both transmitter and receiver at 

the treetop level. Moreover, the signal loss for vertical polarization was higher 

than that for horizontal polarization. But the phenomenon that cannot be 

explained by the theoretical prediction based on the works of Tamir and others 

[59-61], is that vegetation produces a constant loss independent of distance 

as long as the Tand Rdistance exceeds 1 km for radio paths within the forest. 

4.3.2 Empirical Model Approach 

Weissberger model. Based on numerous published works covering the results of 

measurement data and empirical and theoretical predictions carried out at 

frequencies from 230 MHz to 95 GHz, Weissberger summarized their results 

and also considered several specific exponential models based on different 

attenuation phenomena in terms of dB per meter of path length [65]. His 

modified exponential decay which applies in areas with vegetation, where a 

ray path is obstructed by dense, dry, and leafy trees, can be presented as 

additional loss (excess) to free space attenuation 

0.284 . d0.588 
L = 1.33f0 , , 14 I d , S  400m 

L = 0.45ft*284 * d;.', 
(4.130) 

0 S d, I 14m 

where L is the loss in dB, fo is the radiated frequency in GHz, and d ,  is the 

distance between the antennas within the vegetation. The difference in path 

loss for trees with and without leaves is 3-5 dB. 

4.3.3 Stochastic Model of Scattering From the Canopy 

A theoretical approach based on random media scattering theory was proposed 

by Lang et al. [69, 701, based upon the earlier developed stochastic models of 

scattering from discrete scatters [71-741 in order to calculate the absorption 

effects of trees. Expressions have been derived by modeling of the crown (top) 

of the tree as an ellipsoidal region containing branches and leaves all having 

prescribed location and orientation statistics. The leaves were modeled as flat, 

circular, lossy-dielectric discs and the branches as finitely long, circular, lossy- 
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dielectric cylinders. The bistatic scattering of the tree for different incident 

and scattering angles were calculated using the Born approximation, as a single 

scattering approximation, where the scatters are assumed to be embedded in 

the equivalent medium of the canopy of the tree to account for the attenuation 

of the incident and the scattered fields in the scattering region. 

The studies in [69, 701 have justified the exponential decay of the signal 

intensity of scattered rays crossing a short distance of trees. T o  apply this 

approach, the physical parameters of a tree, such as permittivity, conductivity, 

and geometrical distribution of the branches and leaves, must be taken into 

account. The electrical parameters of the leaves, such as permittivity and 

conductivity, can be obtained from [75]. As was shown in [75], the permittivity 

of leaves strongly differs from unity (i.e., I E L  I >> 1). But the Born approxima- 

tion is valid if the permittivity of the scatterers is close to unity, that is, when 

I E L  I =: 1. Therefore, we will not consider this sophisticated approach because 

of the complexity of the computations and because of the existing limitations 

of this method based on the assumption that the fractional volume of the 

scatterers should be small with respect to the wavelength, and that the permittiv- 

ity of leaves differs from unity. These features are in contradiction with real 

geometrical structure of trees and their own dielectrical parameters. Moreover, 

due to uncertainty on the dielectrical parameters of the trees, it is expected 

that the accuracy of this approach is within the same range of accuracy as the 

simple empirical models available. Furthermore no validation with measure- 

ments is available using this approach. 

Summary 

A number of propagation models of radio wave propagation above the rough 

terrain that consists of different obstructions, such as hills and canopy, have 

been described in this chapter to predict loss characteristics in quasi-open and 

rural environments. They all aim to predict path loss at the receiver or in an 

immediate vicinity around it. All methods, as follows from discussions above, 

differ widely in approach, mathematical complexity and accuracy. Nevertheless, 

what is quite clear is that there is no one method that covers all the various 

conditions of propagation over terrain. 

In general, most models described are a mixture of empirical and determin- 

istic approaches that follow from strict propagation theory. The empirical 

methods are based on fitting curves or analytical expressions, such as the free- 

space model, the plane-earth model, and the two-ray model (see Sections 2.3 

and 3.2), to sets of measured data. 
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The use of diffraction calculation for obstructive conditions over the 

terrain, based on knife-edge theory by use of Fresnel’s integral (4.49) and on 

corresponding empirical formulas (4.54) to (4.55) to account for the diffraction 

losses caused by real obstruction, as well as of diffraction loss estimation over 

radio paths with multiple obstructions by use of Andersen’s deterministic 

approach [30], provides reasonably accurate, simple and efficient solutions. In 

this context, in all presented diffraction models the diffraction losses are added 

either to the free-space path loss LFS,  or to the flat-terrain (plane-earth model) 

path loss, LFT,  if L F T >  LFS. 
Moreover, comparison between all empirical methods presented above 

has shown that Bullington’s technique is simpler than others, but gives a greater 

error relative to the strict numerical solutions obtained by Vogler [28, 291 

than do other methods. The Epstein-Peterson technique as well as a Japanese 

scheme are better but can also provide diffraction loss predictions that are too 

low. At the same time, the Deygout technique shows good agreement with 

the rigorous diffraction theory [28-301 for two-three obstructions but has an 

increasing error and becomes pessimistic with increase of their number. This 

is why estimations by use of this method are often terminated after consideration 

of three edges. 

As for propagation models over vegetation, the deterministic approach of 

lateral waves propagation is presented in [59-6 11. To summarize the discussion 

above, in order to model a real forest as a homogeneous dielectric slab, one 

must postulate that the wavelength should be larger than the separation of the 

trees. Based on such consideration and on average gaps between trees in the 

range of l m  to 5m, Tamir and others [59-61] have derived the frequency 

range of validity from 2 to 200 MHz. This postulate is in conflict with many 

experiments (see, for example, [53-55, 62-64]), which have shown that even 

for frequencies up to 1 GHz , there is a good agreement with the lateral wave 

approach [59-611. Other limits also exist, particularly, the minimum distance 

between points T a n d  R (the length of the communication channel) for the 

lateral-wave propagation must be at least 300m long. All these facts limit the 

application of the slab-forest model to predict various situations in rural and 

suburban areas with vegetation, for operating frequencies higher than 1 GHz 

and for distances less than 300m and longer than 1 km. In any other case one 

can use the dielectric-slab “forest” model with a great accuracy, including for 

VHF/UHF-band propagation. 

As for the empirical approach, based on numerous experiments, one can 

summarize that the Weissberger model is sufficiently good and predicts the 

exponential excess decay of signal strength at frequencies from 230 MHz to 

95 GHz in areas with vegetation, where a ray path is obstructed by dense, dry, 

and leafy trees. Moreover, because this model gives the same exponential signal 
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decay within the forest as the stochastic model presented in [67, 701 by use 

of more complicated computation formulas, and because of some principal 

limitation of later model, which deals with scatters smaller than wavelength 

and with permittivity of the leaves close to unity, it is simpler to use the 

empirical model of Weissberger [65] to describe the real situation in areas with 

vegetation. 
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Propagation in LOS Conditions Along 
Straight Streets 

In this chapter we consider several urban propagation environments. We will 

start with the simplest case of EM-wave propagation in the urban scene, when 

both antennas are placed above the flat-ground surface with conditions of 

direct visibility between them, below the rooftop level. Such conditions of 

direct visibility are usually called line-of-sight conditions (see Chapter 1) and 

all propagation characteristics, namely, path loss, signal decay, and coverage 

parameters, are determined by using the two-ray model (see Chapter 3). As 

mentioned in [l-151, the conditions of LOS propagation along a straight 

street, on which the base station is located, will be of great importance in 

defining the coverage area for low antennas because of the low path loss as 

compared to propagation over the rooftops. 

O n  the other hand, a new model, the multislit zuavquide model, was 

recently introduced for describing the propagation of EM-waves in a city scene 

with regularly planned streets (i.e., a model of a straight streets with buildings 

lining their sides) [ 16-1 91. 

The street is considered a planar multislit waveguide with a Poisson 

distribution of screens (building walls) and slits (intervals between buildings). 

The electrical properties of the buildings’ walls are taken into account by 

introducing the electrical impedance, a function of their surface permittivity 

and conductivity. As was shown in [16-191, this model can be used for 

predicting wave propagation in street-planned urban and suburban microcells 

having a radius less than 2-3 km in LOS conditions. 

In Section 3.2 we presented the two-ray model for the case of radio 

propagation over the flat-ground surface. Below, we will focus on the multislit 
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waveguide model, which was found to be in agreement with experimental data 

of wave propagation in urban areas with a regular crossing-street plan. Section 

5.1 presents the initial conditions of a nonregular multislit waveguide model. 

In Section 5.3, the total field construction in a continuous impedance waveguide 

is described. Section 5.3 presents the method of construction wave fields which 

are reflected and diffracted n-times from the broken waveguide screens, taking 

into account their nonideal electrical impedance properties. 

In Section 5.4, the procedure of averaging the total field in a multislit 

impedance waveguide, using the direct and inverse Fourier transforms for the 

average total field are examined. The discrete and continuous spectra of the 

total field are investigated. In Section 5.5, we will evaluate the total field 

intensity decay and path loss distribution along the street multislit waveguide. 

Comparison of theoretical predictions based on the multislit waveguide model 

with numerous experimental data obtained in LOS conditions in various urban 

environments is presented in Section 5.6. 

5.1 The Street Multislit Waveguide Model 

In Figure 5.1, a three-dimensional waveguide model of a city region with 

regular planned building, and with receiver and transmitter at street level below 

the rooftops, is presented. The reflection from the ground surface is also 

considered using an imaginary source (Figure 5.1). The projection of such 

waveguide on the zy-plane presents the impedance parallel multislit waveguide 

with randomly distributed screens and can be considered as a two-dimensional 

model of a city street (see Figure 5.2). One waveguide plane is placed at the 

waveguide (street) side z = 0, and the second one at z = a (Figure 5.2). The 

screen L ,  and slit I ,  lengths are distributed according to the Poisson law with 

the average values of ( L )  = L and ( I )  = I ,  respectively: 

Let us assume that a horizontal electric dipole as a source of EM-waves 

is placed at the point (H, 0, h) ,  where 0 < h < a, 0 < H < hb, hb is the average 

height of buildings lining the street. Its projection on the zy-plane is presented 

in Figure 5.2, the top view of Figure 5.1. The resulting reflected field is 

considered a sum of mirror reflecting imaginary sources. 

The propagation of EM-waves is observed at a point inside the waveguide 

at the image surface (dotted line in Figure 5.2). The real electrical properties 

of screens (walls) are determined by the surface impedance: 
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Figure 5.1 A three-dimensional model of the street waveguide. 
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Figure 5.2 A two-dimensional diagram of the street waveguide in the zy-plane. The coordinates of source are y = 0 and z = d, a is the street 
width. 
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-112 4 7TG 

ZEM- E , E = € 0 -  i- 
w 

(5.2) 

where E is the relative dielectric permittivity of the wall’s surface, €0 is the 

dielectric constant of vacuum, U is the electric conductivity, w is the angular 

frequency of the radiated wave. Using the harmonic time-dependence 

-exp(-iwt) and the definition of the dipole field using the Hertzian potential 

vector II , (x ,  y, z ) ,  we obtain the well-known equation (see also Section 2.4): 

4 n i  
v2n: - k2n: = - - p , S ( x ) S ( y ) S ( z  0 - h)  (5.3) 

the solution of which can be presented using Green’s function (as also follows 

from Section 2.2.5): 

(5.4) 

Here pz is the electric momentum of a point horizontal electric dipole, 

R = I r I, where r is the distance from the source. In real city built-up conditions, 

the screen and slit lengths are much greater than the radiation wavelength A 

(i.e., L ,  >> A ,  I ,  >> A ) .  In this case, we can use the approximations of the 

GTD first introduced by Keller for the problems of diffraction at the half- 

plane and wedge [20]. According to the GTD, the reflected and diffracted waves 

have the same nature, and the total field can be presented as a superposition of 

direct (incident) wave fields from the source and reflected and diffracted fields 

from the screens. 

Moreover, following the previously constructed model [ 16-1 91 , we con- 

sider the resulting reflected and diffracted fields as a sum of the fields reaching 

the observer from the virtual image sources ni (for the reflections from plate 

z = a )  and II, (for the reflections from plate z = 0) (see Figure 5.2). 

5.2 Total Field in an Impedance Unbroken Waveguide 

As is well known [21, 221, the secondary (reflected) field in an unbroken 

waveguide can be determined from the wave equation for the Hertzian potential 

vector: 

v2n;(x, y ,  2) + k2rIL(%, y ,  2) = 0 (5 .5)  
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Multiplying (5 .5)  by the factor exp{-iax - ipy} and using the Fourier 

transform of n,'(a, p, z), we obtain the equation for the Fourier-transformant 

fl,'(a, p, z> 

(5.6) 

the solution of which can be presented as: 

27T 

A 
2 2 2  

where K = k - a - p2, k is the wave number k = -. Using the inverse 

Fourier transform we can obtain the reflected field as 

The first incident from the source field can be calculated using the direct 

Fourier transform of the free-space Green's function (5 .4)  

and the inverse Fourier transform with variable y ,  after which we finally obtain 

the following expression: 

+oo 
- iy(z- h) 

27T K 2 - y  
I-IL(a, p, 2) = -- 2 d y  = -  I' 2 d y  (5 .10)  

Here, an integral along the semicircular contour C, around the pole 

branch points y1 = +K, y2 = -K is introduced in Figure 5.3. Using Cauchy's 

theorem [23] for the branch points, we obtain the expression for the Hertzian 

source potential vector 

(5.1 1) 



Propagation in LOS Conditions Along Straight Streets 189 

Figure5.3 A scheme of integration paths for (5.10) in the complex K-plane. 

4122' 
where D is a constant vector, D = --pz. Now the field from the source 

(first field) can be presented as: 

w 

where sign "+" corresponds to z > h, sign "-" to z < h. 

form: 

The total field in the unbroken waveguide can be rewritten in the following 

D 
2iK' 

Here, as can be seen from (5.13), H ( a ,  p) = - * A ( a ,  p) is determined 

from boundary conditions, D = 101. 
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Let us now evaluate the boundary conditions in the impedance unbroken 

waveguide. I t  is well known that the electric and magnetic fields of an EM- 
wave relate to the Hertzian vector by formulas presented in Section 2.3: 

E = V(V * U,) + k 2 n , ,  H = -ikV x n2 (5.14) 

from which we obtain: 

an, 
JY 

an, 
ax 

H ,  = -ik- 

H y  = ik- 

E, = - + k 2 n , ,  H ,  = 0 
az2 

Using the boundary condition 

Ev = ZEMH,,  E, = - Z E M H ~  

we finally obtain at the boundaries z = 0 and z = a ,  respectively 

Then, from (5.11) and (5.17) one can obtain: 

for plane z = 0 

or 

(-ik + i k z ~ ~ ) A ( c u ,  p) + ( i K +  ikZEM)n(a,  p) = 0 

from which 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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for plane z = a 

or 

from which 

2 iKa 
e ( K -  k z E M )  _-  R2e2iKa 

2iK ( K +  kzEM)- 2iK 
A ( &  p) = - (5.19) 

Finally, the total field in the impedance unbroken waveguide can be 

presented as: 

for z = 0 

for z = a 

We shall use (5.8),  (5.20), and (5.21) for the construction of the average 

field in the discrete multislit waveguide. 

5.3 EM-Waves n-Times Reflected From the Screens 
in a Two-Dimensional Broken Waveguide 

Here we consider a two-dimensional case without taking into account the 

effect of reflection from the road, which will be done in Section 5.5. We 
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assume that screens (walls) and slits (gaps between buildings) are distributed 

according to the Poisson law (see (5.3)). Reflection and diffraction from screens 

and their corners is taken into account by introducing the special telegraph 
signalfinctionsfi ( y )  and f i ( y )  defined for the first and the second waveguide 

walls, respectively, as [ 16- 131 

1, on the screen 

0, on the slit 
f i , 2 ( y )  = { (5.22) 

Next, we introduce the image sources as presented in Figure 5.2 and 

denote them for the reflections from surface z = a by the symbol "+" and 

for the reflections from surface z = 0 the symbol "-." In the first stage we 

construct the reflected wave fields when the first reflection takes place from 

the waveguide wall z = a. From geometrical construction we define 

rl = [ (a  - h)  + yy]1'2; y1 = y ~ ( a  - h) / (2a  - h - z) ,  from which we have a 

new calculated argument y1 for the function fl. Thus, the first wave field 

reflected from the plate z = a at the point M o n  the image surface inside the 

waveguide and along the z-axis is: 

2 

(5.23) 

Using the same geometrical considerations for the second reflection from 

the wall, z = 0 (the corresponding image source is IIS) in the derivation of 

r2 = [(2a - h)2 + J;]"' , y2 = y ~ ( 2 a -  h) / (2a  - h + z ) ,  we obtain for the 

twice-reflected field at the point Ninside the waveguide along the z-axis: 

(5.24) 

After the third reflection from the upper plate z = a we obtain at point 

P for the function fi a new argument y3 =yp(3a  - h)/(4a - h -  z ) ,  

r3 = [(3a - h)' + y i ]1 '2 ,  (Figure 5.2), and the contribution from the third 

image source IIi3 is: 
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Following the same procedure by the induction method, we obtain for 

the n-time reflected wave field, when the first reflection takes place from the 

plate z = a, the following expressions: 

for even n = 2m, m = 1 ,  2, 3 .  . . 

ikr, 

(5.26a) 

n a -  h + z  na- h ""I + z  

forodd n =  2 m +  1, m =  1, 2, 3 , .  . . 

ikr, 

rn 
"l, - - fi [ 

( 
(5.26b) 

The same procedure can be used for the first reflection taking place from 

the second waveguide wall z = 0 (i.e., for the image sources II, (see Figure 

5.2)). After similar geometric consideration we obtain the following expressions: 

for even n = 2772, m = 1, 2, 3, . . . 

hY (a + h " ]  x . .  . 
ikr,,' 

" ' . - ~ ' [ n a + h - z ] f l " a + h - z  

forodd n =  2 m +  1, m =  1 ,  2,  3 , .  . . 

(5.27a) 
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5.4 The Average Field in the Impedance Two-Dimensional 
Mu It is1 it Waveg u i de 

As is shown in [16-191, the statistical moments of the reflected field inside 

the multislit waveguide relate to the statistical moments of telegraph signal 

finctionsfi(y) and h ( y )  defined by (5.22) using the procedure 

where K ( w )  is the correlation function of the telegraph signal functions with 

any variable w (the detailed description of n-order moments of such functions 

are presented in [ 16-18]) 

(5.29) 

Taking into account the fact that the slit and screen distributions in the 

street waveguide are statistically independent, 

and using the relationships (5.28a) to (5.28c), one can derive for the n-times 

reflected fields the expression as a sum of two terms. The first one describes 

the average reflected field inside the waveguide when the first reflection was 

from the wall z = a: 

ikr, 

r n 

-xnRnII(a,  p)e iK((nt 1)a-z-h) 

(5.3 1 a) 

, n = 2 m + l , m =  1 , 2  , . . .  
x Knd2( ( n  + 1 ) a -  z -  h 
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(5.3 1 b) 

x Kn-2( 2 a ~  h) ,  n = 2m, m = 1 , 2 , 3 ,  . . . 
na + z -  

The second term describes the average reflected field inside the waveguide 

when the first reflection was from the wall z = 0: 

, n = 2 m +  1, m =  1 , 2 , .  . . 
x Kn-2( ( n  - 1)a + z + h 

ikr,' 

r n 

@in) = T c n ~ n ~ ( a ,  p ) e  iK( na- z t  h) 

x K'-'( 2 a ~  ), n = 2m, m = 1 , 2 ,  . . . 
na- z + h 

(5.32 b) 

K -  kZEM 

K + kZEM 
Here R = is the coefficient of reflections from the impedance 

walls. Next we estimate the values of Kn-2(Z) in (5.31) to (5.32). For example: 

n-2 
Kn-2(*) = { 1 + zexp[-*(-! I + f)]} (5.33) 

na + a n a + a  L 

For the moderate or small values of n ,  and for y >> ( L  + I ) ,  we obtain 

(5.34) 

In the opposite case, when 2 y l k n l )  << 1 (large values of n ) ,  we obtain 

We finally note that in (5.31) to (5.32) with great accuracy 

Kn-2(2)  = 1. 
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Using this fact and after some straightforward calculations, we can present 

the spatial spectrum of an average n-time reflected field in the following form: 

iK(2a-h) + xReiKhl iKz 

e 2 2 i2Ka 

(5.36) 
l - , y R e  

iK( 2a- z) 

1 - x R e  } 2 2 i2Ka 

Using the inverse Fourier transform for the second (reflected) field (5.36) 
and the direct field transformation: 

for z < h 

(5.37a) 

for z > h 

one can obtain the same integrals as in (4.21), which now describe the total 

field in the broken multislit waveguide: 

for z <  h 

(5.38a) 

2 2 i2Ka 

iK(2a- h)  { [xR(,yReiK(2a-h) 2 2 i2Ka + eiKb) 
+ [ X R ~  

1 - X R e  1 - x R e  

for z > h 

(5.38b) 

] e 1”) 

To evaluate these integrals, one can introduce the polar coordinate system: 

Q = pcoscp; p = psincp; x = rcos#; and y = rsin#, take into account the 

following form of the Bessel function Jo(z) representation [23]: 
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(5.39) 

Finally, we can rewrite the integrals (5.38a) to (5.38b) as follows: 

W 

(5.40b) 

Here, F l ( p )  and F2(p) are the functions in brackets in (5.38a) and 

(5.38b), respectively, where value K i s  replaced by d m .  Now, taking 

into account the relationship between the Bessel function, Jo(z),  and the first 
order, Ho (1) (z) ,  and the second order, Hi2’(z),  Hankel functions, where 

Ho (1) ( z )  = -Hd2’(-z), that is,Jo(z) = [Hd’’(z) + Hd2’(2)]/2, we can rewrite 

the integrals in (5.40a) to (5.40b) in the simplified form: 

(5.41) 

The integrals (5.41) can be separated into two parts: the integral along 

the deformed contour C, on which the subintegrand function is analytic, and 

the integral along a branch cut contour y near the poles, depicted in Figure 

5.4. Here taking into account the requirement for the integrals (5.41) to be 

finite, the condition Im K > 0 must be applied (i.e., the contour C must be 

closed in the upper-half plane as presented in Figure 5.4). 
The discrete spectrum of totalfield. The integral along the closed contour 

Cin  the upper-half plane presents the discrete spectrum of the total field inside 

the multislit waveguide and can be calculated using Cauchy’s theorem: 

(5.42) 
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i K i  

t 

JmK >O 

Figure5.4 A scheme of integration paths for (5.41) in the complex K-plane. 

The pole points are determined from the equation 

from which the 

p n  = ( k 2  - 

2 2 i 2 K a = 0  
l - , y R e  

pole coordinates are determined: 

n =  1, 2, 3 , .  . . 

Here, Rn = Kn -. kzEM is the coefficient of reflection of normal modes 

in the impedance (ZEM + 0) multislit waveguide, where p n  is the phase, I Rn I 
is the modulus: 

Kn + @'EM 

-1 2 Im K, &ZEM 
pPn = tan 

(ReKn)2 + (ImKn)2 - ( k . 2 ~ ~ ) ~  

Using formulas (5.42) to (5.44), one finally can obtain for the discrete 

spectrum for the case z > h 
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1 -iKn(z+h) + eiKn(z+h-2a) 
~ R ~ c o s [ K ~ ( z -  h) ]  + -[e 

X 

and for the case z < h 

Each index n in the poles (5.43) corresponds to a waveguide mode of 

an average reflected field. It is easy to show that for rla >> 1, this discrete 

waveguide mode spectrum can be significantly simplified. Thus, for the case 

z > h we obtain: 

(5.46) 

where pip' = dm, C = constant. 

For the case of a perfectly conductive multislit waveguide model (i.e., in 

the case when Z~n/r = 0 and I R, I = 1, qn = 0), one can obtain from (5.45a) 

and (5.46) for z > h,  respectively: 

(5.47) 

(5.48) 

These formulas are the same as those obtained for the case of a perfectly 

conductive multislit waveguide and are presented for the case z > h in [ 171. 
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In both waveguides the modes of the discrete spectrum attenuate exponentially 

inside the broken multislit waveguide according to (5.46) and (5.48) and their 

extinction lengths can be obtained from (5.46) using the assumption that it 

is a length on which the field decay level is -exp(-I), or: 

from which we have 

(5.49a) 

The extinction lengths depend on the number of reflections n ,  on the 

waveguide (street) width a, on the parameter of brokenness x, and on the 

parameters of the wall’s surface electric properties R,. For the case of an 

unbroken perfectly conductive waveguide + 1, R, + 1) it follows from 

(5.49) that in -+ 00 and normal modes propagate as waves in an ideal waveguide 

without attenuation [2 1, 221: 

(5.50) 

In the case of the impedance waveguide ( I  R, # 1 I), the character of 

reflected mode attenuation depends on the real values of the electrical impedance 

ZEM. With increasing ZEM (ZEM > 0) the extinction length becomes smaller 

and the normal waves in the impedance multislit waveguide attenuate faster 

than in the case of the perfectly conductive multislit waveguide. Results of 

calculations of the extinction length 4‘,, as a function of the number of 

reflections, n,  and the parameter of brokenness, x,  are presented in Figure 

5.5. The same decrease of I n  is observed with an increase in the number of 

reflections n: the normal reflected modes in a multislit waveguide with numbers 

n 2 5 attenuate very quickly (the corresponding extinction length 5, decreases). 

O n  the other hand, increasing the value of ,y (decreasing the distances between 

buildings) leads to a decrease of the reflected wave attenuation factor (see 

Figure 5.5). In the limit of an unbroken waveguide (x = 1) the normal waves 

with numbers n < 5 (the main reflected modes) also propagate without appre- 

ciable (independent of parameter ZEM) attenuation at large distances. 
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Figure53 The extinction length g,,, as a function of the number of reflections, n, and the 

parameter of brokenness, x, in the case of the perfectly conductive 

waveguide. 

The continuous spectrum o f  totalfield. A continuous spectrum has been 

evaluated from integration along the contour y around the branch points (see 

Figure 5.4). We will examine this integral for the case z > h, adding it to the 

source field (5.37b), which is also found from the contour integral with branch- 

cut point p = k: 

Then, the continuous part of the total field can be presented as 
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Here, 

2 2 iK(2a-h) + eiKh 2 2 iK(2a+h) + eiK(2a-h) 
X R e  i f i + X R e  -iKz 

2 2 i2Ka l - , y R e  2 2 i 2 ~ a  
P ( 2 )  = 

I - x R e  

(5.53) 

Transforming the sum of two integrals in (5.52) to one integral, we 

obtain: 

where 

(5.54) 

(5 .55)  

This formula describes the continuous radiation (i.e., average continuous 

spectrum inside the multislit waveguide). We now transform the 

integration variables by including new arguments (see Figure 5.6): 

p = k + is2; dp = 2isd.s; 5 = exp{ -i3 :}(& - p)II2. For these argu- 

ments we have a branch-cut point 5 = exp{ i:}(2b)1'2 

and poles 5 = ikk (-k + [ i l n , y ( R , ( / a +  ( n r -  p,la)]  ) , 2 2 2 112 

Using Cauchy's formula for the poles, we transform the integral (5.54) 
into the Fresnel integral [23]: 

(5.56) 
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Figure 5.6 The transform of the integration variable p = k + is2 by introducing a new 

argument s = exp{-i3r/4}(k - p ~ ’ ’ ~ .  

From this integral for the case rla >> 1 using the asymptotic approxima- 

tion Ho(pr)  - ( - 2 i / ~ p r ) ” ~ e x p { i p r } ,  one can easily derive the continuous 

spectrum of the total field 

For the case of a perfectly conductive multislit waveguide when 

I R, I = 1, and ZEM = 0, we can obtain from (5.57a) the same formula presented 

in [17]: 
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As can be seen from formulas (5.57a) to (5.57b) in the broken waveguide, 

the continuous part of the total field propagates as a spherical wave --, and 

reduces to the unbroken waveguide case in the limit ,y = 1. But, if in the 

perfectly conductive unbroken waveguide for large distances ( r  >> a) n' = O 

(see (5.57b)), in the impedance unbroken waveguide the continuous part II' 
of total field does not vanish because for the case ,y = 1 and I R, I + 1, the 

function n', as can be seen from formula (5.57), differs from zero. This is a 

new principal result which is absent in the case of a perfectly conductive 

waveguide with continuous walls. 

tkr 
e 

r 

5.5 The Total Field-Intensity Attenuation Along the Street 
(Three-Dimensional Model) 

Let us consider that the term n,,!.' is the field reflected from the wall with 

coordinate z = a ,  and the term ni-) is the field reflected from the wall 

with coordinate z = 0 (see Figure 5.2); then the average total field intensity 

inside the waveguide can be presented in the following form: 

m =  1 J 
(5.58) 

where 7 1 and 772 are wave impedances; the sign (*) denotes the inverse complex 

field values. Using the differential distribution (5.3), the results of the procedure 

of averaging for the one- and two-order moments of telegraph functions f1,2 ( y) 

presented above, as well as the reflection from the road (Figure 5.1) with the 

coefficient R, [ 181, we finally obtain for the total intensity inside the multislit 

waveguide: 

+ x 771772 (IRnI + 1 ~ , , 1 > 2  (5.59) 
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Using the Fourier representation of the field 

and introducing it in (5.59), we can calculate the average field intensity 

-ca -m 

Here the polar coordinates p’ = p’cos+’, p” = P”COS+”, and new 

parameters a = i(p’ - p”)a and p = -2iap” were introduced, where 

p’ = (k -p ) , p” = ( k 2  -p”2)’/2; Rg is the coefficient of reflection from 

the road surface which is also considered for the impedance surface (in [ 171 

it was assumed that the ground surface is perfectly conductive (i.e., 

I Rg I = 1)); all other parameters were introduced above. After integrating expres- 

sion (5.60) and taking into account the intensity 10 from a vertical electrical 

dipole in free space, we finally obtain the normalized average intensity for the 

numerical calculations 

2 ?2 1/2 

(5.61) 

Here, 
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I + i27ru + ika, 

I + i 2 ~ u  - ika, 

qi2) = - ( l n x ( R ,  

qi2’ = - (ln,y(R, 

I + i27rp + ika 

I + i27rp-  ika 

In formula (5.61) the first two terms describe the multiray reflection 

from the walls and diffraction from the walls’ edges. They present normal 

modes generated in the multislit waveguide, which transform into normal 

waves in the unbroken waveguide (when x = 1) and propagate along the 

waveguide with exponential attenuation at large distances. The third term 

describes the reflection from the ground and then the reflection from the 

buildings’ walls. The last term describes the direct wave and then reflections 

from the road surface and from the walls. In the case of the real impedance 

unbroken waveguide, when ,y = 1, but 0 < I R, I < 1, this term does not vanish 

(as was obtained in [17] for a perfectly conductive waveguide). Thus, in the 

case of an impedance waveguide, we must take into account all waves, direct 

from the source, reflected from the ground and then both reflected from the 

walls (as schematically presented in Figure 5.2). O n  the other hand, for 

,y<< 1 we tend to the case of free-space propagation above the perfectly 

conductive flat surface. In this case, the last term is much larger than other 

terms and describes the interference between the direct waves and those reflected 

from the road, which is described by the term -cosp,y. The field intensity 

attenuates as a spherical wave - Y - ~ .  This case is close to the two-rays model 

presented, for example, in [4-61, where the plane wave propagates above the 

flat perfectly conductive surface. Moreover, because earlier in [ 16, 171 it was 

shown that both the two-dimensional and three-dimensional waveguide models 

give sufficiently accurate results of field intensity attenuation, it is very important 

for the prediction of experimental data to obtain the approximate expression 

of average field intensity inside the impedance multislit waveguide. 

Taking into account that the average intensity can be approximately 

presented as < I >  - <llzllz>, and after integrating formula (5.38) for field 

ll, in the limits of x = [0, hb], y = [0, -1, and z = [0, a]  using the same 

procedure as in [17], we finally obtain the approximate expression for the 

average field intensity at a large range from the source ( r  >> a): 
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The expression of the reflection coefficient Rg is presented in Section 3.2 

for different kinds of radiated field polarization. The approximate waveguide 

model (5.63) can be successfully used to describe the field-intensity attenuation 

along the street in LOS conditions (see Figure 5.7, curve 2). In fact, Figure 

5.7 depicts the field intensity attenuation relative to the intensity in free space 

at the distance 1OOm from the source, using the approximate model according 

to (5.63) (curve 2), and the strict model according to (5.61) (curve 1 )  for 

x = 0.5, IR,I = 0.8 and IR, I = 0.8 for the case of a wide street ( a  = 5Om, 

hb = 10m, hT = 8m, hR = 3m). As seen from the illustration presented in Figure 

5.7, both models (strict (5.61) and approximate (5.63)) predict two modes of 

field-intensity attenuation, from polynomial, r-2 to exponential, and the exis- 

tence of a break point at the range rb =: 16Om-180m (according to (5.65) 
presented below) for fo = 900-950 MHz. Because the approximate waveguide 

model gives closed results with the strict waveguide model (see Figure 5.7), 

one can use the simple formula (5.63) to obtain the path loss in LOS conditions 

along straight streets with great accuracy. Therefore let us now examine (5.63) 

for various actual experimental situations in the urban street scene. 

Wide avenues. Let us assume that the street width is larger than the average 

building heights and both antenna heights, that is, a > hb, hT, hR. In this 

case, at distances less than the break point in the approximate formula (5.63), 

the second term, which describes the direct wave and the waves reflected from 

the ground and which attenuates as a spherical wave - - T - ~ ,  is larger than the 

first term, which describes the attenuation of the normal reflecting modes 

along the multislit street waveguide. Beyond the break point, conversely, the 

first term in (5.63) is larger, and field intensity attenuates exponentially. This 

law of attenuation is close to that obtained experimentally in most measure- 

ments, where the attenuation mode of field intensity beyond the break point 

was - rFq, q = 5-7. According to the two-ray model [4-61, one can obtain 

only two modes of field-intensity decay: - r  before and -r-4 beyond the 

break point. Moreover, no clear physical explanation of such a rapid polynomial 

(with q = 5-7) field-intensity attenuation in the farthest zones from the trans- 

mitter existed until now. This effect can be clearly understood using the 

waveguide street model and following from it the exponential attenuation of 

field intensity (which is close to mode - r-4, q = 5-7) at distances beyond the 

break point. As was shown in [ 171, the waveguide model continuously tends 

-2 
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Figure 5.7 The normalized field-intensity attenuation (relative to the intensity in free 

space at the distance lOOm from the source), using the approximate model 

(curve 2), and the strict model (curve 11, for ,y = 0.5, I R,I = 0.8 and I R,I = 0.8, 

for a wide street ( a  = 50m, hb = 10m, h~ = 8m, h~ = 3m). 

to the two-ray model in the case of wide streets. We can also show that the 

break-point range presented in [4-61, rb = 4 b ~ b ~ / A ,  can be used to estimate 

the break-point range only for urban areas with wide streets (avenues). More- 

over, the three-dimensional waveguide model allows us to obtain a stricter 
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expression for break-point range estimation, which continuously limits to the 

approximate formula, r b  = 4 h ~ h ~ / A ,  only for the case of a > hb, hT, hR. In 

fact, let us define the break-point range as the range at which the first term 

in (5.63) is equal to the second one, 

After the expansion of the ex onent in the right-hand of (5.64) into the 

series exp{-w} =: I - w +  (1/2!)w - .  . . =: 1 for w<< 1 (Iln,yIR,l << 1 

and [ ( ~ n  - ( ~ , ) / a ] r / p ; ~ )  a I l ) ,  and taking into account the fact that because 

0 < x <  1, 0 < IR,I < 1 and 0 < I Dm,l < 1 all terms with their product are 

smaller than one, we finally obtain the approximate formula of break-point 

range for the waveguide street model 

5 

(5.65) 

which continuously (with constant ( I  R, I + I D m ,  =: 1 for 0 < I R ,  I < 1 and 

0 < ID,, I < 1) tends to rb = 4 h r h ~ / A  presented, for example, in [4-6] for 

the case when a > hb and a > hThR, (i.e., for the case of wide streets). so, 
in the case of a wide street, the approximate model (5.63) tends to the two- 

ray model [4-61, and formula (4.65) transforms into that with break-point 

range r b  = 4 h ~ h ~ / A ,  presented in [4-61. w e  have a good transition from the 

waveguide model to the two-ray model in the particular case of wide avenues 

or canyons with building heights less than the street width. 

Narrow streets. In the inverse case in an urban scene with narrow streets 

( a  < hb) the approximate waveguide model (5.63) can also be successfully used 

to describe the field-intensity attenuation along the street in LOS conditions 

(see Figure 5.7, curve 2). Additional estimations have showed that for the case 

of narrow streets the break point is farther from the transmitter than in 

the case of wide streets. For example, for the case of a narrow street 

with a = 10m, hT = 8m, hR = 3m, fo = 900-950 MHz, the break point 

has been observed at the range r b  =: 320m-330m for hb = 1Om and 

rb =: 430m-440m for hb = 20m according to (5.65). 
Thus, as follows from formula (5.65) for a << hb and a2< hThR, the 

range of the break point tends to infinity for the observed wavelength band, 

A = 0.01m-0.3m with a decreasing street width or with an increasing building 

height. So, in the case of narrow streets the two-ray model cannot describe 

2 
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the absence of break point and of two-mode field-intensity decay. In the case 

of narrow streets the multislit waveguide model predicts exponential attenuation 

of total field at the street level in microcellular propagation channels up to 

2-3 km from the transmitter. 

Contribution to path loss. In the impedance unbroken waveguide 

( X  = 1) the existence of additional term (5.57) in the case of ZEM # 0 

(IRnI # 1) leads to the additional losses of EM-waves propagated inside it. 

This is clearly seen from investigations of path loss. Thus taking into account 

the characteristics of a vertical electrical dipole field in free space and formulas 

(5.63), one can approximately obtain the path loss of radio wave intensity 

-(n - n*) in an impedance multislit waveguide 

(5.66a) 

which for the case Z E M =  0, IR,I = 1, lDmnl = 1, pn = 0, IR,I = 1 is the 

same with path loss estimated for the case of perfectly conductive broken 

waveguide: 

(5.66b) 

Formulas (5.66a) to (5.66b) are more general than the approximate 

formula obtained in [ 171 for the case of the two-dimensional waveguide model 

without taking into account the reflection from the road and actual dielectric 

properties of building walls. 

5.6 Prediction of loss Characteristics in LOS Conditions 

Let us compare, first of all, the theoretically obtained results from formulas 

(5.61) to (5.63) according to the street multislit waveguide model with those 

obtained experimentally by the scientific group of Tadiran Telecommunications 

(Israel), in which the authors have taken a part as leaders both in the theoretical 

and experimental prediction of loss characteristics along straight streets in urban 
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and suburban areas. The first series of measurements were taken in the small 

town of Kefar-Yona, Israel, where the multigain wireless (MGW) local-loop 

system of Tadiran Telecommunications was under trial in conditions of direct 

visibility along the street (LOS conditions, see Figure 5.8). The tested environ- 

ment is a typical small urban or suburban region of two- and three-story brick 

buildings with approximate uniform heights h = 8m-10m and with a right- 

angle crossing straight street plan (as schematically presented in Figure 5.8). 

The omnidirectional base-station antenna was located at a lower level than the 

buildings’ roofs, at a distance of 4m-5m from the corner building surface, as 

depicted schematically in Figure 5.8. 

The mobile omnidirectional radio-port antenna changed its position along 

the street in the middle of the road in LOS conditions (Figure 5.8). The tested 

MGW system was operated in the frequency band f= 902-928 MHz and 

utilized spread-spectrum (frequency hopping) digital radio communication. 

The base-station transmitter antenna was installed at the height hr =: 7m; 

the moving radio-port antenna was also lower than rooftop level 

(hR =: 2m-3m). The tested cell radius of such an area estimated from measure- 

ments was approximately 1-2 km. Field intensity measurements in decibels 

- .. - .. - .. - .. - Base .. - station .. - .. - .. - .. - .. - .. - .. - .. Moving - .. - radio .. - .. port 

Llll rn 

Figure5.8 The simplified scheme of Kfar-Yona houses built on a retangular street grid 

and of the first experiments in LOS conditions along the street. 
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relative to intensity in free space at the range r = lOOm (to compare with the 

three-dimensional waveguide model) and at the range r = I km (to compare 

with experiments carried out by Hughes [24]) were obtained to estimate the 

path loss and the field intensity attenuation in LOS conditions along the street. 

In these estimations we take into account the actual dielectric properties 

of the brick walls of buildings and the real distribution of buildings along the 

street level. As mentioned above, the first experiments were carried out in LOS 
conditions where the transmitter and receiver antennas were placed at the street 

level with direct visibility below the roof tops, and the moving radio-port 

changed its distance from the stationary base station in the range 10m-300m 

(see Figure 5.7). In Figure 5.9, the normalized average field intensity decay in 

decibels (relative to the intensity in free space at the range of 100m) is presented 

versus the distance r from the transmitter along the street waveguide for the 

same conditions as presented in Figure 5.7 by curve 1 only for the strict model 

(5.6 1). The solid points correspond to experimental measurements at 920 

MHz. As can be seen, the three-dimensional waveguide model (strict and 

approximate, because there is not sufficient difference between them, as follows 

from Figure 5.7) gives results which are close to experimental data and can be 

used for predicting the path-loss distribution and the range of the break point 

along the street in LOS conditions. 

Now we will compare the results of theoretical prediction in LOS condi- 

tions estimated from the evaluated formulas (5.61) and (5.63) according to 

the street waveguide model with experimental data presented in [ 121 for condi- 

tions of direct visibility along the streets in the Manhattan grid-plan-street 

scene (New York, see [12]). Results of numerical calculations according to the 

strict waveguide model (5.61) (presented by a thin continuous curve in Figure 

5.10) and the approximate model (5.63) (presented by a dotted curve in Figure 

5.10) were compared with published experimental data [ 121 along Lexington 

Avenue in Manhattan (presented by a thick continuous curve in Figure 5.10). 

In our calculations we used the same conditions of measurements presented 

in [12] (i.e., the working frequencyfo = 900 MHz (close to our experiment, 

see above)), hT = 9.1 5m, hR = 1.85m, I Rgl = 0.75, I R, I = I D,, I = 0.8 

( E  = 15, a = 7);  the avenue width a = 30m; the average building height along 

the avenue h6 = 40m-50m. As can be seen from the illustration presented in 

Figure 5.10, both models, the strict (5.61) and the approximate (5.63), with 

a great accuracy (of 3-5 dB) predict the signal intensity decay in LOS conditions 

along the avenue at the distances up to the break point, located, as follows 

from (5.65), at the range rb = 500m from the transmitter. Beyond the break 

point a sharp signal decay is observed. This is why we can propose this range 

as an effective scale of a microcell in LOS conditions along the street level (see 

also Chapter 9). 
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Figure 5.9 The field intensity (in decibels) versus the distance r from the transmitter (in 

meters). The solid curve represents the numerical calculations according the 

strict model (5.61) for the same conditions, as for Figure 5.7; the solid circles 

represent the experimental data of signal attenuation (its maximum and 

minimum values). 
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Figure 5.10 The field intensity (in decibels) versus the distance r from the transmitter 

(in meters). A thin continuous curve represents the strict model (5.61), a 

dotted curve the approximate model (5.631, a thick continuous curve is the 

experimental data [12]. Both calculated and measured data are presented for 

the same experimental conditions according to [12]: working frequency 

fo  = 900 MHz, hr = 9.15m, h~ = 1.85m, lRgl = 0.75, lRnl  = 0.8 ( E  = 15, U = 7), 

a = 30m and hb = 40m-50m. 
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The influence of real electrical properties of building walls can be seen 

in more detail from numerical calculations of the two-dimensional waveguide 

model according to [ 16, 171 presented as a family of curves in Figure 5.1 1 for 

parameters I R, I = 0.1, 0.2, 0.4, 0.6 and 0.8, respectively, and x = 0.8, where 

I is the field intensity normalized to the wave intensity in free space at the 

distance r = 1 km from the transmitter, at a frequencyfo = 930 MHz, versus 

the normalized distance r l a  (a  = 20m) along the street. In Figure 5.1 1 signs 

“+” and “0” correspond to experimental measurements carried out in [24] at 

a frequency of 936 MHz, using two mobile stations moving in two different 

areas of the city center. As seen from illustrations in Figure 4.1 1, the curves 

with I R,  I > 0.5 are closer to experimental data measured in a city area with 

multistory ferro-concrete buildings (depicted as “+” in Figure 5.1 1). The curves 

with 0.1 < I R ,  I < 0.5 are closer to the experimental data measured in an area 

with buildings of moderate height, usually constructed from bricks (depicted 

as “0” in Figure 5.1 1). 

Now let us compare the results of numerical calculations obtained for 

the case of the two-dimensional and three-dimensional waveguide models with 

t 
10” ‘ I I 1 I 

0 50 100 1 50 

Figure 5.11 The normalized field intensity versus the normalized distance, yla, from the 

base station for x = 0.8, a = 20m, and I R, I = 0.1, 0.2, 0.4, 0.6, 0.8. Signs ”t” 

represent measured data in a city region with multistoried ferro-concrete 

buildings; signs ”0” represent measured data in a city region with moderate- 

storied brick buildings. 
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perfectly conductive walls (I R,  I = I ,  pn = 0) with measurements carried out 

in the center of London in LOS conditions along straight streets [25]. Experi- 

mental data was collected using two mobile stations with antennas below the 

rooftops in the crossing-street center of the city [25]. This measured data is 

presented in Figures 5.12(a,b) as circles and crests. The circles correspond to 

measurements carried out in city areas with a higher density of buildings in 

the streets near the transmitter than the crests. Here, too, the results of the 

two-dimensional model are presented by the dashed curves. Those according 

to the three-dimensional model are presented by the continuous curves. In 

Figures 5.12(a,b) all curves are presented as linear functions in the logarithmic 

coordinate system for the both cases ,y = 0.2 and ,y = 0.8. The point where 

the field intensity attenuation law changes (break point) is approximately 

250m-300m from the source. These results are also close to those obtained 

in [24],  in which the position of the break point was about 250m-350m from 

the source. Moreover, from the results presented in Figure 5.12(a) for 

,y = 0.2 and in Figure 5.12(b) for ,y = 0.8, it follows that with decreasing 

brokenness parameter ,y the effect of transformation from the law -y-2 to the 

exponential law becomes weaker. This fact is easily understood because with 

increasing parameter ,y the guiding effects of waveguide are more essential and 

only normal waves propagate along the waveguide at large distances. At small 

distances the effect of interference between the direct source wave and that 

reflected from the ground, as in the case of wave propagation in free space 

above a plane surface, takes place. This result is also observed from the numerical 

calculations presented in Figures 5.12(a,b) at distances before the break point 

yb = 250m-300m. So, using the above three-dimensional waveguide model, 

we obtain both the critical cases ,y << 1 and ,y = 1 and in the general case the 

experimentally observed break point at which the character of field intensity 

attenuation inside the waveguide is changed from a polynomial law with power 

q = 2 to an exponential one. We also must notice that the proposed model is 

correct only for distances up to 2-3 km, and only for cases x > 0, because 

from formula (5.63) for n-time reflected and diffracted fields from perfectly 

conductive buildings’ walls and the road surface ( I  R ,  I = I D,, I = I R ,  I = 1, 

p, = 0)  at distances y > yb 

In the limit ,y= 0 formula (5.67) is not valid and a continuous transforma- 

tion from the waveguide model to the free-space model does not exist. At the 

same time our model gives good agreement with propagation effects in the 
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Figure 5.12 (a)  The total field intensity attenuation along the street waveguide for 

x = 0.2 and a = 10m. The circles and crests represent the experimental data 

obtained in [25] for a city with high and low density of building, respectively. 

(b) The same as in Figure 5.12(a), but for ,y = 0.8. 



21 8 Radio Propagation in Cellular Networks 

ideal unbroken plate waveguide for the case x = 1, where I - r - ' ,  and the 

cylindrical normal waves propagate along the ideal unbroken waveguide [2 1,  

221. As seen from illustrations in Figures 5.12(a,b), the curves for the cases 

,y > 0.5 (in particular x = 0.8) are closer to the experimental data obtained 

for a high building density (circles). The curves for the cases ,y < 0.5 (in 

particular x = 0.2) are closer to the experimental data measured in the regions 

with a lower building density (crests). At the same time, as seen from the 

comparison between the theoretical prediction models and results of measure- 

ments, the two-dimensional waveguide model obtained in [ 16, 171 does not 

explain the two different laws of field intensity attenuation before and after 

the break point observed experimentally [4-6, 24-28], because it does not 

take into account the reflection from the ground, and, hence, has no continuous 

limit (as has the three-dimensional model for the case ,y << 1) to the two-ray 

model, which is usually used for understanding much experimental data in 

LOS conditions in urban and suburban environments [4-61. 

Both theoretically and experimentally obtained results give exponential 

attenuation of radio waves in the farthest zones from the source in LOS 

conditions along straight streets in regular straight street plan urban areas up 

to 2-3 km. Moreover, for experimentally observed ranges in the conditions of 

direct visibility, when both receiver and transmitter antennas are placed at the 

street below the rooftop level, we can use the nonregular multislit waveguide 

model and with great accuracy approximate formulas (5.63), (5.65) to (5.66) 
to estimate the propagation loss and break-point range at street level. 

Summary 

In this chapter we described the conditions of direct visibility between transmit- 

ter and receiver, or LOS conditions, along the straight streets in situations 

when both antennas, receiver and transmitter, are placed below the rooftop 

level above the flat terrain. The conclusions which follow from the above- 

presented multislit waveguide model can be described using a qualitative picture 

of wave propagation along the street multislit waveguide. Figures 5.13(a,b) are 

simple sketches that indicate the way in which the field strength of a vertical 

electric dipole (with pattern angle 9 = r) may vary because of channeling 

street orientation. For the simplest classical case of an unbroken perfectly 

conductive waveguide [21, 221, the antenna pattern is not changed when the 

wave travels along the waveguide (see Figure 5.13(a)). In the case of a real 

street with randomly distributed walls (screens) and gaps (slits) the angle 9 is 
smaller than 72, because there exists losses of wave energy through the slits 

(see Figure 5.13(b)). In the case of a multislit street waveguide, the angle p 
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Figure513 The simplified scheme of a continuous street waveguide (a); and of a broken 

street waveguide (b). 

can be obtained from results presented in [16-191. According to the two- 

dimensional waveguide model constructed in these works, the angle 40 inside 

the multislit waveguide at the half level of field intensity can be presented for 

y / a  >> 1 as: 

(5.68) 

Here, as above, y is the distance from the transmitter along the waveguide; 

a is the street width; x = ( L ) / ( ( L )  + ( I ) )  is the parameter of brokenness, ( L )  

and ( I )  are the average values of screen length ( L ; )  and slit length (Li), respec- 

tively; i = 1, 2, 3, . . . From (5.68) it follows that in the case o f y l a  >> 1 and 

x =: 0 (propagation in free space) 4p = 0. For the case x =: 1 cp = n; that is, 

we limit ourselves in this case to an ideal unbroken waveguide depicted in 

Figure 5.13(a). 

In the cases of radio communication along wide avenues or canyons with 

building heights less than the street width in line-of-sight conditions between 

receiver and transmitter, we obtained a good transition from the waveguide 

model to the two-ray model, when both of them predict two-law decay of 

field intensity before and beyond the break point. In the case of narrow streets 

the two-ray model is not valid and only the multislit waveguide model predicts 

an exponential attenuation of total field at street level in LOS conditions at 

ranges up to 2-3 km from the transmitter. That is why, in various situations 

along straight streets in LOS conditions the multislit waveguide model, more 
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generally than the two-ray model, predicts the propagation characteristics in 

an urban scene with different geometry of streets and for various street widths. 

Moreover, because according to formula (5.65) the break-point range 

depends on the geometry of the street, the buildings’ geometry, and their 

distribution along the street, the scale of a microcell in LOS conditions is also 

varied in different conditions along the street. Therefore, using the three- 

dimensional multislit impedance waveguide model, one can predict the signal 

loss and the effective scale of a microcell for various real situations in a straight 

street scene in conditions of direct visibility (see Chapter 9). 
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Propagation in NLOS Conditions 
in Built-Up Areas With Regularly 
Distributed Straight-Crossing Streets 

We will now continue the subject of propagation characteristic prediction in 

an urban scene in obstructive conditions over the flat-ground surface, returning 

to the case of an array of buildings placed on a regular terrain. As is well 

known [ 1-1 81, personal, local, and mobile communication service systems are 

usually expected to employ base-station antennas and radio ports at street level 

heights below the rooftops (i.e., in shadow zones for one or both working 

antennas, receiver and transmitter). That is why, in this chapter, we consider 

radio propagation loss prediction in the urban environment with rectangular 

grid-plan streets. 

In an urban scene with regularly distributed intersecting streets, it has 

been observed that the buildings lining the streets work as waveguides, affecting 

the propagation direction of the radio waves [l] .  Tests described in [ l ,  21 

carried out in New York City indicate that the subscribers at the street level, 

moving radially from the base station, or on the streets parallel to these, may 

receive a signal 10-20 dB higher than that received when moving on the 

perpendicular streets. This effect is more significant in the microcell area (up 

to 1-2 km away from the base station), becoming negligible at distances above 

10 km, that is, in the macrocell area [2]. 

As pointed out in [3-131, it is very dificult to obtain a strict theoretical 

treatment of this channeling phenomenon. At the same time, the simple 

approach of representing the relative field strength by the density of arrows 

along the various streets indicates only the way in which field strength may 

223 
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vary in an urban area because of street orientation, but not the real field strength 

distribution between streets and their intersections [4,  91. Using this approach, 

the total path loss at the crossing-street level is a simple arithmetic summation 

of path loss at the radial street where the base station is located, and of path 

loss from the intersection to the side street, that is, Lrota/ = Lradjal + Lsjdp [6]. 
Experiments carried out in [ 11, 131 in the crossing-street area of Central 

London at 900 MHz and 1.7 GHz have shown a complicated two-dimensional 

shape of microcell coverage, similar to a Christmas tree with the base station 

near the foot of the tree (see Figures 6.1 (a,b)). This complicated redistribution 

of field energy among the rectangular crossing streets cannot be understood 

using a simple geometric optic model, even taking into account diffraction 

from the building corners [7, 81. 

In Section 6.1, when both antennas are below the rooftop level, we 

describe a two-dimensional crossing-waveguides model which is based on the 

preliminary results obtained from the two-dimensional multislit waveguide 

model presented in Chapter 5 .  This does not take into account reflection from 

the road to describe the radio wave propagation along the street in LOS 

conditions, or the results of detailed examinations of clutter conditions in an 

urban scene with a grid-streets plan, presented in [ 121. The average intensity 

of signal decay in the intersections between streets and along the crossing streets 

is examined. The theoretical predictions were verified by path loss measurements 

obtained both by the communication group of Tadiran Telecommunication 

[ 121 and by other investigators (see [ 11, 131). Section 6.2 describes the two- 

dimensional multidiffraction-deterministic model evaluated in [ I 8-2 11 for the 

prediction of radio propagation loss characteristics in the urban environment 

with regularly distributed rows of buildings. In Section 6.3, comparisons 

between the two-dimensional waveguide model and the two-dimensional multi- 

diffraction model-as well as with experimental data-are presented for pre- 

dicting coverage effects. The construction of radio maps in urban areas with 

clutter conditions for both antennas placed above the flat-ground surface is 

also presented. 

6.1 Two-Dimensional Crossing-Streets Waveguide Model 

6.1.1 Modeling of Urban Areas With Rectangular Crossing Streets 

Let us consider, as in Chapter 5 ,  that the buildings on the street are replaced 

by randomly distributed nontransparent screens with scales L,; the gaps 

between the buildings (slits) are defined as I,, n = 1, 2, 3 . . . (see Figure 6.2, 

the radial waveguide I ) .  The laws of their differential distribution are postulated 
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Devonshire Street New Cavendish Street Wigmore Street 

>-100dBm 
0 1 0 0 2 0 0 3 0 0  

meters 

Figure6.1 (a) The coverage effect in Central London obtained experimentally in [ l l ] ;  (b) The coverage effect in Central London obtained 
experimentally in [13]. 
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Figure 6.1 (b) (continued). 
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Figure 6.2 A two-dimensional model of the crossing-street waveguides; the coordinates 

of source are y = 0 and z = h; a and b are the radial and side street widths, 

respectively. 

according to (5.1) (see Chapter 5) as independent and exponential with mean 

values ( L )  and ( I )  respectively. 

Such a broken impedance radial waveguide with randomly distributed 

buildings along the street models a city street with receiver and transmitter at 

street level below the roofiops. One  radial waveguide plane is placed at the 

waveguide side z = 0, and the second one at z = a ( a  is the street width, see 
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Figure 6.2). We also assume that a vertical electric dipole, the active transmitter, 

is placed in theyz-plane with coordinates z = h; y = 0, where h is the transmitter 

location at the road. The same conditions are assumed for the crossing (side) 

waveguide (which is noted in Figure 6.2 by sign U) with screen and slit lengths 

L and I,, respectively, m = 1, 2, 3 ,  . . . One side waveguide plane is placed 

at the waveguide side y = d, and the second one at y = d + 6 (6 is the side 

street width, see Figure 6.2). 

Taking into account that all dimensions are much greater than the radia- 

tion wavelength, A ,  we use the approximation of the GTD for rays reflected 

from the walls and building corners. We also present the resulting field as a 

superposition of a direct wave field from the source, fields reflected from the 

walls, and fields diffracted from the building edges [ 121. As mentioned in 

Chapter 5, for most measurements in the UHF/L-band, the conditions of 

GTD are true for distances d < 2-3 km 17, 8, 16, 18, 19, 221. 

In order to calculate the total field from the source, as in Section 5.1, 

we substitute for each reflection from the walls an image source I'I; (for the 

first reflection from the left-hand walls of the street waveguide) and IIi (for 

the first reflection from the right-hand walls), where n is the number of the 

reflections (as schematically presented in Figure 6.2). According to the approach 

proposed in [12] and presented in Section 5.3, we also introduce the tekgraph 
signal jiinctions, fi 1 ( y )  and fi2(y) for the radial waveguide, and f21(z) and 

&(z)  for the side waveguide. These equal one when reflection from the walls 

(screens) takes place, and zero when rays pass through the spaces between the 

buildings, that is, fall into the slits of the waveguides. Thus segments with 

fii(y) = 1 andf2i(z) = 1 represent screens, including their edges, but segments 

with fi i(y) = 0 and f2i(z) = 0 represent slits, i = 1, 2 (see Figure 6.2). 

The real electric properties of building walls (screens) are defined by the 

surface electric impedance ZEM - E - ~ ' ~ ,  E = €0 - i 47w/w  where: 

E is the dielectric permittivity of the wall surface, 

€0 is the dielectric constant of vacuum, 

U is the electric conductivity of the wall surface, 

w is the angular frequency of the radiated wave, 

fo is the frequency of the radiated wave. 

w =  27Tf0, 

6.1.2 Average Field Strength in the Crossing-Street Waveguide Model 

Field strength inside the primary radial street. To calculate the average total field 

along the radial street multislit waveguide we, as in Chapter 5 ,  take into account 

the exponential walls (screens) and slits distributions (6.3), the harmonic time- 

dependence of the electromagnetic field, and the definition of the horizontal 
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electric dipole field using the Hertzian potential vector l l f (x ,  y, z )  according 

to formulas (5.3) to (5.4). 

To now obtain the total field inside the primary broken multislit wave- 

guide, we must use the procedure of field averaging by means of the properties 

of “telegraph signal” functions f i i ( y )  and f2i(z) introduced in Chapter 5. 
According to some straightforward calculations presented there, we can finally 

rewrite the formula (5.36) (Chapter 5) for the spectrum of the n-times reflected 

and diffracted field for the case of two-dimensional multisli t waveguide model: 

for n <  h: 

for z > h: 

Here, as in Chapter 5, we assume that the formulations of diffracted 

waves are similar with those obtained for reflected waves and in which the 

reflection coefficient RTE of each reflected ray from the screen (wall) is simply 

replaced with a diffraction coefficient D,, ( m  = 1, 2, 3, . . . ) for each dif- 

fracted ray from the wall’s edge [14, 17, 23-25]. The coefficient of reflection 

for each reflected waveguide mode, RTE, is presented in Chapter 5 by formula 

(5.44). As for the diffraction coefficient, D,, its expressions are very compli- 

cated and are mostly presented in the literature (for example, referenced in 

[14, 17, 23-25]). All other parameters in formulas (6.la) and (6.lb) are 

described in Chapter 5 ;  ,y = ( L ) / ( ( L )  + ( I ) )  is the parameter of brokenness. 

In (6.la,b) we combined the reflected and diffracted waves with the direct 

wave (LOS component) from the source. To obtain the total average field 

along the radial street we will use for (b.la,b) the inverse Fourier transform 

on coordinate y. Let us consider, for example, the case z > h, for which we 

obtain the total field inside the radial waveguide: 

J 

--oo 
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As shown in Chapter 5 for a broken-impedance multislit waveguide, 

formula (6.2) contains two terms. The first term in (6.2) represents the con- 

tinuous part of the total field spectrum, IT,, which can be presented by for- 

mulas (5.57a) and (5.57b) in Chapter 5. The second term in (6.2) repre- 

sents the discrete part of the total field spectrum, II,. It can be presented 

by formulas (5.46) to (5.48) in Chapter 5. As an example, in Figure 6.3, for 

parameters ,y = 0.5, I RTE) = 0.75, the total average field intensity 

1 = ( I ) / Io  = ( (IIc + I'I,)(II, + II,)*)/Io (continuous curve), relative to the 

intensity in free space Zo, the intensity ofeach normal mode ofdiscrete spectrum 

In (dotted curves), and the continuous spectrum of total field intensity /, 
(continuous curve), are presented versus the relative distance y la  along the 

main radial waveguide for n = 1, . . . , 20. As can be seen, the continuous 

M = 0.5; a = 20m; IR,I= 0.75 

Jrl 

n =iB 

I I I 

0 16 24 

Figure 6.3 The total average intensity I loss relative to the intensity in free space I0 

inside the radial waveguide versus the relative distance yla; J, is the 

discrete spectrum, J, is the continuous spectrum of total intensity J;  x = 0.5, 

a = 20m, ~ R T E ~  = 0.75. 
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part of the total intensity is attenuated more quickly (as a spherical wave) than 

that of discrete modes (which propagate as normal cylindrical waves) with 

increase of distance y along the street waveguide, and their superposition gives 

the total field intensity J along the radial waveguide, which is attenuated at 

long distances y >> a as a cylindrical wave inside the main waveguide. 

In the case of a perfectly conductive continuous radial waveguide 

(,y = 1, I RTEI = l),  the process of wave propagation inside it is continuously 

limited to the classical case, when normal modes propagate without attenuation 

[23, 251. 

Average field strength in the side waveguide. Let us now assume that the 

second (side) waveguide crosses the radial waveguide at a distance y = d from 

the source and has width b (see Figure 6.2). We will consider the excitation 

of electromagnetic waves from the radial waveguide inside the crossing wave- 

guide. The process of wave propagation is described by the following wave 

equation: 

or, using the Fourier transformation on coordinate 2 ,  by: 

2 II 
a nz (” y)(z=a) + (k2 - y 2 )n, II (y, 

= f(y, a)exp{iya} (6.4) 
ay2 

= a)  
+ n L ( x  = a)  is the radiated “source” created by 

ay 
where f(y, a )  = 

the electromagnetic field inside the main radial waveguide I at the plane 

x = a. 

Taking into account (6.2) describing the average field strength inside the 

radial waveguide I, we can obtain 
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m 

Finally, (6.4) can be presented as follows: 

where q2 = k 2  - y2 and 

m 

Let us now construct Green's function for (6.7) which satisfies the equa- 

tion 

with the following boundary conditions: 

(6.10) 

Here, signs "+" and "-" satistjr boundaries y = d a n d  y = d + 6, respec- 

tively (see Figure 6.2). The coeficient 22 is the wave impedance inside the 

crossing waveguide, which characterizes the wave properties of the broken 

multislit waveguide. Its expression can be easily evaluated using the same 

procedure as for wave impedance 21 inside the radial waveguide (see [12]). 

Thus for z = a 

22 = -r)cot[(i /2)lnl ,yRr~l] (6.1 la) 

for z = 0 
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22 = -vcot [va  - ( i / 2 ) l n I , y R ~ ~ I ]  (6.1 1 b) 

The solution of (6.9) can be found as follows: 

Then 

(6.13) 

If the coordinate y = yo is the coordinate of some image line of observation 

inside the crossing waveguide 11, as in Figure 6.2, Green’s function can be 

constructed using the following expression [23, 251 

for y < yo: 

(6.14a) 

for y > yo: 

Here is the second-order determinant I = II e com- 

ponents and their derivatives can be obtained using expressions (61 1 1) to (6.13) 

for the ranges d < y < yo andy < yo < d + 6, respectively, and from the bound- 

ary conditions (6.10). Thus for y = d, that is, d < y < yo < d + 6, from (6.10) 

and (6.12) and taking into account (6.1 l ) ,  one can easily obtain the field 

component in the region d < y < yo: 

where B1 = Bexp(-iqd)exp[-i(i/2)lnI,yRrEI]. 

the field component II,” has the following form: 

In the same way, for the range yo < y = d + 6 ,  that is, for y = d + b,  

Hir  = Als in[v(d  + 6 - y )  - ( i /2 ) lnI ,yRr~I]  (6.15b) 

where AI = 2iAexp{iv(d + b)}exp{i[-(i/2)1nI,yR~~(]}. 
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Using (6.15a) to (6.15b) and their derivatives, we can obtain the second- 

order determinant as 

Finally, Green’s function can be presented in the following form: 

for d <  y < yo 

(6.17a) 

Using (6.17a) to (6.17b), we can now obtain the Fourier transform of 

the total average field inside the crossing waveguide as follows: 

(6.18) 

where y’ and y’ are the current variables of integration. Using Cauchy’s 

theorem for F(y’, y )  in integral (6.18) for the pole points 

Kn = n v / a  + ( i / a > l n l ~ R ~ ~ ~ I  we can derive F(y’, y )  as follows: 

(6.19) 

I .  ntro- 

ducing (6.19) into integral (6.18) and using Cauchy’s theorem once more for 

the pole points hm = m r / 6  + (2’16) lnI,yR,TE), and the inverse Fourier trans- 

form on the coordinate 2, we finally obtain the expression for the total field 

spectrum inside the crossing waveguide for the case d < y < yo: 
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(6.20) 

Here: 

where y!) = ( k 2  - ( ~ m / b ) ~ ) ' / ~  are the wave values of the principal normal 

modes which are propagated inside the crossing waveguide 11; 

which are propagated inside the radial waveguide I. From (6.20) one can obtain 

the expression for the average field spectrum inside the perfectly conductive 

waveguide, that is, for the case ZEM = 0 and RTE = 1 .  

The relative average total field intensity, 1 (relative to the intensity 

in free space I0 at the distance y = d from the source) can be approxi- 

mately presented as a sum of each normal mode lln,m in (6.20): 

- < lln,mllnf,m>, according to the approach proposed in [ 121. Numerical 

calculations of 1 and of the principal modes ]n,m, n = 1 ,  2, . . , 5 for various 

m = 5 ,  . . , 20, formed inside the main radial waveguide (continuous curves), 

and high-order modes n = 5, . . , 10, for various m = 1, . . , 5 ,  formed 

inside the crossing waveguide (dotted curves), are presented in Figure 6.4. 

The principal normal modes (with numbers n < 5 )  of the radial waveguide 

generate high-order modes into the crossing waveguide. At the same time, the 

high-order modes of the radial waveguide (with number n > 5 )  generate the 

principal modes inside the crossing waveguide (with number m < 5 )  which 

are attenuated more slowly (see dotted curves in Figure 6.4) than high-order 

modes (with m > 5 ) ,  which were created by the principal modes of the main 

waveguide (with n < 5 )  (see continuous curves in Figure 6.4). This is why at 

Pn (0) = (k  2 - ( rn/a)2)1 '2  are the wave values of the principal normal modes 
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M = 0.5; b=lOm; IR TEI = 0.75 
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Figure 6.4 The total average intensity I loss relative to the intensity in free space I0 into 

the crossing-side waveguide versus the relative distance zlb; J,, is the 

discrete spectrum of total intensity J;  n, m = 1, 2, . . ; ,y = 0.5, a = 20m, 

b = 10m, I RTEl = 0.75. 

large distances from the source, the additional effect of modes with numbers 

n > 5 and m < 5 is more significant than those with numbers n < 5 and 

m >  5. 
In Figures 6.5(a,b) both additional effects from the two kinds of mode 

are presented relative to the total field intensity versus the range z along the 



Propagation in NL OS Conditions in Built- Up Areas 237 

I I I I I I I I I I I 

0 4 8 12 16 20 24 28 32 36 40 44 
/b 

Figure 6.5 (a) The normalized principal modes ( j  < 5) of the total intensity spectrum J ( z )  

inside the crossing waveguide versus the normalized distance, zlb from the 

intersection for ,y = 0.5, a = 20m, b = 10m, l R r ~ l  = 0.75; (b) the same, as in (a), 

but for high-order modes ( j  > 5). 

crossing waveguide at a distance y > d.  As follows from Figure 6.5(a,b), 

the influence of the principal modes inside the crossing waveguide, created 

by the high-order waves from the radial waveguide, grows with increasing 2, 

but the influence of high-order modes inside the crossing waveguide, created 

by the principal waves from the radial waveguide, falls. In the other words, 

there is not a simple bisection of the total field intensity at the intersection of 
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two crossing waveguides; a complicated redistribution of field energy between 

the normal modes is observed. More than half the total field energy penetrates 

from the radial to the crossing waveguide. The amount of field energy which 

penetrates depends on the width of both street waveguides and on the parameter 

of brokenness (i.e., on the gaps between buildings), and on the electric properties 

of building walls. 

6.1.3 Comparison With Experimental Data 

Let us now compare the theoretically obtained predictions with Tadiran’s 

experimentally measured path loss along rectangular-crossing straight streets 

in the investigated urban area. 

The measurements were taken in the same small town of Kefar-Yona 

(the conditions of experiments are described in detail in Chapter 5 ) ,  where 

the MGW system of Tadiran Telecommunications was under trial in the 

conditions of rectangular grid-plan streets (see Figure 6.6). The omnidirectional 

base-station antenna was located at a lower level than the buildings’ roofs, at 

a distance of 4m-5m from the corner building surface, as depicted schematically 

in Figure 6.6. The mobile omnidirectional radio-port antenna moved along 

the streets in the middle of the road (positions 11, 111, IV, . . . , as depicted 

schematically in Figure 6.6). The tested MGW system was operated in the 

frequency bandfo = 902-928 MHz. 

The tested environment is a typical small urban region of three- to five- 

story brick buildings with approximately uniform heights h = 8m-1Om and 

with a right-angle crossing-straight street plan (as schematically presented in 

Figure 6.6). The base-station transmitter antenna was installed at the height 

hr = 6m-7m (i.e., lower than rooftop level). The moving radio-port antenna 

was lower than rooftop level (hR = 2m-3m) and changed its distance from the 

stationary base station in the range 10m-500m. The tested cell radius of such 

an area estimated from measurements was approximately 1 km. Field intensity 

measurements in dB relative to intensity in free space at the range 

r = lOOm were obtained to estimate the field intensity attenuation along 

the crossing streets, taking into account actual dielectric properties of the 

brick walls of buildings (with €0 = 15-17, CT = 0.05-0.08 mho/m, 

I R T E )  = 0.73-0.8 1) and the real distribution of buildings (x = 0.5-0.6) along 

the street level for the radial and crossing-street widths a = 20m and 

b = IOm, respectively. 

The measured relative intensity of received field in dB is presented as a 

set of points near each curve in Figure 6.7 for the different cases: measurements 

are at the main and first radial streets A1 and A2, respectively, and at the first, 

second, and third crossing streets Bi,  i = 1, 2, 3, respectively (which are noted 
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Figure 6.6 The simplified scheme of a Kefar-Yona area as a rectangular-crossing street 

grid. The main radial street, where the base station is located, is noted by A , ;  

other streets are noted by A2 and Bi, i = 1, 2, . . . ; the positions of moving 

radio port are noted by Roman numerals I, It, Ill, . . . . 

in Figure 6.6). The main continuous curve in Figure 6.7 represents numerical 

calculations of relative field intensity inside the main waveguide A according 

to formulas (5.46) and (5.57) (Chapter 5 ) .  The dotted curves represent the 

relative field intensity for crossing-street waveguides Bi using formula (6.20) 

and the side continuous curve represents the field intensity inside the first 

radial street A2. Calculations were carried out for the following parameters: 

a = 20m, a1 = 6i = 1Om; x = 0.5; I RT-I  = 0.75. As seen from the comparison 
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Figure6.7 Field intensity loss along the crossing-street grid measured in d8 in a Kefar- 

Yona area using the notation depicted in Figure 6.6. 

between theoretical and experimental results, the waveguide model, which 

describes wave propagation along the radial waveguides using formulas (5.46) 
to (5 .57) ,  gives an intensity loss (with accuracy of 2-3 dB) close to that obtained 

experimentally in line-of-sight conditions, when both the base station and the 

moving radio port are in conditions of direct visibility. At the same time the 

two-dimensional waveguide model of rectangular crossing streets, proposed 

above, gives results comparable to experimentally obtained data with a lower 

accuracy of 3-5 dB. This also satisfies the real experimental conditions and 

accuracy of measurements (with error of 1-2 dB). From comparison between 

theoretical prediction and experimentally obtained data we notice that, with 

an accuracy of 3-5 dB, we can use two-dimensional waveguide models for 

microcell coverage and range predictions in urban and suburban areas with 

rectangular grid-plan streets for distances of up to 1-2 km from the base 

station. 

6.2 Two-Dimensional Multidiffraction Model for Straight 
Rows of Buildings 

In obstructive (clutter) conditions the receiver or transmitter antennas (or both) 

are placed in the shadow zones, when there are many nontransparent buildings 

surrounding them, and placed as straight rows on the flat-ground surface. In 
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this case the role of diffraction from the roofs and corners of buildings increases 

and the total field depends not only on the reflected, but also on the diffracted 

waves. 

Let us consider, according to [l8-21], that an elevated antenna (base 

station) radiates a field that propagates in an environment with regular distrib- 

uted nontransparent buildings with various heights hi and different separation 

distances d; ( i  = 1, 2, 3 . . .) between them. The height of the base-station 

antenna, H ,  can be greater or smaller than the height of the first (near the 

antenna) building, hl (see Figures 6.8(a,b)). 

In the case where the base antenna is higher than the first building 

( H  > hl , see Figure 6.8(a)), the radiating field propagates over the rooftops 

by a process of multiple diffraction past rows of buildings. As all buildings are 

nontransparent, the majority of the propagation paths cannot lie through the 

buildings (according to Bertoni et al. [ 18-21]; path 4 in Figure 6.8(a)). More- 

over, when there is propagation between buildings the rays reflected from the 

ground after a second diffraction from the roofs (path 3 in Figure 6.8(a)) are 

quickly attenuated (according to the estimation obtained by Bertoni et al. 

[18-211). As a result, the majority of the paths cannot be associated with 

propagation between the buildings. The propagation over the rooftops involves 

diffraction past a series of buildings with dimensions larger than wavelength 

A ,  (i.e., hi, d; >> A ) .  At each building a portion of the field will be diffracted 

toward the ground. These fields can also be neglected [ 18-2 11 (rays in path 

3 in Figure 6.8(a)). W e  therefore conclude, according to [18-211, that the 

primary propagation path lies over the tops of the buildings, as indicated by 

path 1 in Figure 6.8(a). The field reaching street level results from diffraction 

of the fields incident on the rooftops in the vicinity of the receiving antenna. 

Contributions to path loss. Treating the base station as a transmitter and 

assuming that the receiver is at street level, we can obtain the path loss in dB 
as the sum of the free-space path loss (see Section 2.3) 

(6.22) 

and excess loss L,. The last can be presented as the sum of two parts [ 18-21]: 

Part A: The diffraction of the fields at the rooftops before the receiver 

down to the street level is 

where G1( 8,) is the gain of the receiving antenna pattern in the direction 8 N  

as represented in Figure 6.8(a), k = 27rlA. Expression (6.23) was obtained in 
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Figure6.8 A scheme of a two-dimensional model of the urban region with regularly distributed rows of buildings in the case where the 
transmitter antenna is higher (a) and lower (b) than the first building in the vicinity of its position (i.e., H > hl and H < hl). 
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Figure 6.8 (continued). 
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[ 18-2 11 for the case CUN << i9N. From the simple geometrical constructions 

according to Figure 6.8(a) one can obtain: ON = tan-*[(hN - hr) /x ]  and 

r = [ ( h ~  - h,)2 + x2]  1'2. Here x is the distance between the receiver and the 

last building, which is close to the receiver; hr is the receiver antenna height. 

Part B: The reduction of the field at the rooftop before the receiver as 

a result of propagation past the previous rows of buildings 

Le* = 10 * log{G2 W2} (6.24) 

where G2 is the gain in the direction of the highest building edge visible 

from the base-station antenna. As the result, the total loss is: 

L,,i = -(Lo + L e ]  + L,Z). In the case when the base antenna is higher than 

the first building ( H >  hl, see Figure 6.8(a)), parameter Wcan be presented 

for small angle a~ = tan-l [ ( H  - h ~ ) / R l  and for x << Raccording to [ 18-21] 

as (see Figure 6.8(a)): 

(6.25) 

In the case when the base antenna is Lower than the first building 

( H <  hl,  see Figure 6.8(b)), one can use the same formulas (6.22) to (6.24)) 

but instead use (6.25) for parameter Wto introduce for the same geometrical 

conditions (see Figure 6.8(b)) the following expression for W 

Formulas (6.22) to (6.26) present the unified two-dimensional diffraction 

model constructed in [18-211 for prediction of radio propagation over and 

below regularly distributed rows of buildings for various situations regarding 

base-station antenna height (as is presented in Figures 6.8(a,b)). 

Let us now present the formulas above in the form of an equation of  
straight Line, as was done in Chapters 3 and 4. For this case we will simplifi- 

the problem so that the rows of buildings are regularly distributed at flat terrain 

with uniform building height has a median value of rooftops, and with uniform 

gaps between buildings x as a median value of this parameter. In general, in 

a case using the formulas above, one can obtain the same equation of straight 

line. 

In this assumption, we present the free-space path loss formula as 
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Lo = 32.4 + 20 logfo + 20 log R (6.27) 

and excess due to the propagation over the rows of building excluding effects 

of terrain curvature (that is, for actual radio traces with ranges less than 10-20 
km) according to (6.23) 

and due to rooftop to street diffraction according to (6.24) 

Le2 = -11.7 + 10 log r +  10 logfo + 20 log 8 (6.29) 

where 8 = tan-l[2(h - h,) /x]  is the angle presented in Figure 6.8, but for 

uniform distribution of buildings’ height, that is, 8~ = 8, and 

If so, one can present the formulas above in the straight-line form: 

2 112 
r =  [ ( h -  h J 2  + (X/2) 3 . 

where the intercept: 

the attenuation slope: 

y = 3.8 (6.3 1 )  

So, as in Chapters 3 and 4, according to Bertoni, Walfisch, et al. [ 18-21] 
one can obtain using formulas (6.27) to (6.30) that the signal decay due to 

rooftop multidiffraction with the range between both antennas, transmitter 

and receiver, for the equal conditions in the urban scene of consideration (for 

L ,  = const), is -R-3.*, (i.e., the same as was obtained earlier for rural and 

residence areas by use of the empirical approaches (see Chapter 4)). 

6.3 Prediction of Coverage Effects in an Urban Crossing- 
Street Scene 

Let us now compare the theoretically obtained formulas for clutter conditions 

with Tadiran’s experimentally measured received signal power spatial distribu- 
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tion (which in the literature is usually called coverage efects) in the urban area. 

For the LOS conditions in our first estimations of path loss we used formula 

(5.61) in Chapter 5.  For clutter conditions for the moving radio port at the 

street level, including intersections between streets, we used both formula (6.20) 

obtained in [ 121, formulas (6.22) to (6.24), and (6.26) obtained in [ 18-21]. 

We took into account that the base station antenna is lower than the top of 

buildings surrounding it (see Figure 6.8(b)) in the real conditions of our 

experiments. This was done to compare the crossing-waveguides model (CW) 

for evaluation of field intensity attenuation inside the intersections between 

streets, using formula (6.20), with the two-dimensional multidiffraction model 

(two-dimensional MD),  using formulas (6.22) to (6.24)’ and (6.26)’ to estimate 

loss characteristics in obstructive conditions for base-station and radio-port 

antennas between straight rows of buildings (see Figure 6.8(b)). The comparison 

between theoretical prediction according to the CW-model and the two- 

dimensional MD-model and measurements, schematically sketched in Figure 

6.6, is presented in Figure 6.9, as a diagram of difference, A, in dB, between 

experimental data and theory for frequencyfo = 930 MHz inside the radial 

street A2 and three crossing streets B;, i = 1, 2, 3, relative to the main road 

A1 in which the base station is located (see Figure 6.6). 
As can be seen, the CW model (the segments on the left side of each 

column) is closest to the experimental results, with an accuracy of 2-3 dB, 
compared with the two-dimensional MD model (the segments on the right 
side of each column), with an accuracy of 3-5 dB, only for the crossing streets 

which lie close to the main road. As for the radial streets and the crossing 

streets which lie far away relative to the main road, the two-dimensional MD 
model is more accurate: it is close to experimental data with an accuracy of 

2-3 dB, but the CW model has an accuracy of 3-5 dB. This is why, for further 

comparison with the experimental data, we used the formula (5.63) or (5.61), 

because they are closer (see Chapter 5 )  to describing LOS conditions between 

both antennas, the formula (6.20) for loss prediction inside the closed junctions 

with the main radial street, and formulas (6.22) to (6.24), and (6.26) to describe 

clutter conditions along the streets farthest from the base station, which is 

lower than buildings’ roofs. 

From the net of measurements the diamond-shape of coverage curves 

(called radio map) of field intensity attenuation in the Kefar-Yona area was 

obtained. The curves obtained experimentally and those from theoretical predic- 

tions according to formulas (5.61) to (5.63)) (6.20) and (6.22) to (6.24) and 

(6.26) have shown that the coverage curves are elongated along the main road, 

where the base station is located. 

We also notice from comparison between experimentally and theoretically 

obtained values of signal-power loss that for urban areas with a sufficient 
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Figure 6.9 The comparison between theoretical prediction of path loss in dB according to the crossing-waveguide model described by 

formula (6.20) and the two-dimensional multidiffraction model [18-211 (described by formulas (6.22) to (6.241, and (6.26)) and the 
experimental data. 
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shadowing between receiver and transmitter when the transmitter antenna is 

lower than the rooftop level, we can use formulas (6.22) to (6.24), and (6.26) 

with great accuracy (of -3-5 dB) at ranges from 500m to 2 km from the base 

station (micro-cellular propagation conditions, see Chapter 1).  

Summary 

In the propagation of radio waves in urban and suburban areas with regularly 

distributed rows of buildings placed in a regular layout, and with the transmitter 

and receiver antennas below the rooftops’ level, the unified theoretical approach 

developed by Bertoni et al. [18-211 can be successfully used for estimations 

of field-intensity attenuation and coverage effects in obstructive (clutter) condi- 

tions taking into account the real distribution of their heights and the gaps 

between them. 

At junctions between the straight streets the crossing-waveguides model 

[ 121 predicts (with the accuracy of 3-5 dB) the signal loss along the crossing 

streets near the intersections at ranges of 100m-200m from junctions for both 

antennas below the rooftops’ level. By using the two-dimensional crossing- 

waveguides model one can obtain a good explanation of experimentally observed 

wave loss characteristics with the distance from the base station, the real 

redistribution of field energy at the intersections of crossing waveguides, and 

the cell coverage in such urban and suburban areas. 

Using the two-dimensional crossing-waveguides model we, as in Chapter 

5, present below a qualitative picture of wave propagation along the street 

multislit waveguide. Figure 6.10 is a simple sketch that indicates the way in 

which the field strength of a vertical electric dipole (with pattern angle 

4p = 7 ~ )  may vary because of channeling street orientation. The simplest cases 

of an unbroken waveguide and of a real street with randomly distributed 

buildings along it were discussed in Chapter 5 (see Figures 5.13(a,b)). Now 

we will consider two rectangular-crossed broken waveguides (as sketched in 

Figure 6.10). In this case the redistribution of field intensity from the source 

depends on the relation between the antenna pattern angle and angle cpo 
which defines the area of observation from the source as the intersection of 

waveguides (see in Figure 6.10). For yo >> a, we can estimate this angle as 

4po = a/yo. If 4p < PO, the effect of the street brokenness is not significant and 

only a small part of the source energy penetrates the side waveguide (noted 

by I1 in Figure 6.10). That is, the intensity loss is small and at the same 

distance y from the source inside the radial waveguide (noted by I in Figure 

6.10) with the intensity J =  Jo .  In the case when 4p =: 400, some energy of the 

source penetrates into the side waveguide I1 from the main radial waveguide 
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Figure 6.10 The simplified scheme of the rectangular crossing-street waveguides. 

I. The amount of energy loss depends on the parameter of brokenness in the 

main radial waveguide and on the distance from the source (i.e., 

j = jo'p(x, yo) < j o ,  where p(x, yo) is presented by (5.68) (see Chapter 5)). 
For the case 'p > PO, the waveguide modes, propagating along radial waveguide 

I, easily penetrate into the side waveguide 11. The field intensity loss now 

depends on the gap distribution between buildings into both waveguides (i.e., 

J = J o P ( x ~ ,  y 0 ) 4 0 ( ~ 2 ,  2) << j o ,  where sp(x2, z) )  is presented by (5.68) in 
Chapter 5, but for the side waveguide. Moreover, as we have shown in Section 

6.1.2, the low-order wave modes in the radial waveguide I generate high-order 

wave modes in the side waveguide I1 and, conversely, high-order wave modes 

in a radial waveguide generate low-order wave modes in a side waveguide. This 

is why the total field intensity of the main waveguide cannot be simply divided 

into two equal parts at the intersection of two crossing waveguides, as was 

done in [6, 31. The redistribution of wave energy near each intersection inside 
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the rectangular grid-pattern of crossing streets depends on the processes inside 

each waveguide and on the parameters of brokenness, that is, on building 

distribution in each radial and perpendicular street waveguide inside the grid. 

In the inverse case, when antennas are placed at the rooftops level or 

higher, only the multidiffraction model [ 18-21] can be used for predicting 

field intensity attenuation in clutter conditions, including intersections between 

the straight streets. 

The above observations enable us to conclude that both approaches 

presented in Chapter 6 can be successfully used for the prediction of personal 

and mobile communication channels in obstructive urban and suburban envi- 

ronments which have a grid-plan of crossing-straight streets for microcells with 

effective sizes of not more than 2-3 km, using the real distribution of building 

heights and the gaps between them. 

References 

Black, D. M., and D. 0. Reudink, “Some characteristics of radio propagation at 

800 MHz in the Philadelphia area,” IEEE Trans. Vehzc. Tech., Vol. 2 1, No. 1, 1972, 

Reudink, D. O., “Comparison of radio transmission at X-band frequencies in suburban 

and urban areas,” IEEE Trans. Anten. Propagat., Vol. 20, No. 4, 1972, pp. 400-405. 

Harley, P., “Short distances attenuation measurements at 900 MHz and 1.8 GHz using 

low antenna heights for microcells,” IEEE J. Select. Areas Commun., Vol. 7, No. 1, 1989, 

Chan, G. K., “Propagation and coverage prediction for cellular radio systems,” IEEE 

Trans. Vehic. Techn., Vol. 40, No. 5, Nov. 1991, pp. 665-670. 

Erceg, V., M. Taylor, D. Li, and D. L. Schilling, “Urbanlsuburban out-of-sight propaga- 

tion modeling,” IEEE Commun. Magazine, No. 2, 1992, pp. 56-61. 

Stewart K, and D. Schaeffer, “The microcellular propagation environment,” Proc. of 
Symp. on Microcellular Technology, IL, USA, March 1992, pp. 19-26. 

Tan, S .  Y., and H. S .  Tan, “UTD propagation model in an urban street scene for 

microcellular communications,” IEEE Trans. Ehctromag. Compat., Vol. 35, No. 5, 1993, 

pp. 423-428. 

Tan, S .  Y., and H. S .  Tan, “Propagation model for microcellular communications applied 

to path loss measurements in Ottawa City streets,” IEEE Trans. Vehir. Techn., Vol. 44, 

Crosskopf, R., “Prediction of urban propagation loss,” IEEE Trans. Anten. Propagar., 

Vol. 42, No. 5, 1994, pp. 658-665. 

Dersch, U., and E. Zollinger, “Propagation mechanisms in microcell and indoor environ- 

ments,” IEEE Trans. Veh. Technol., Vol. 43, No. 10, 1994, pp. 1058-1066. 

Chia, S. T. S . ,  “Radiowave propagation and handover criteria for microcells,” British 

Telecom Tech. J., Vol. 8, No. 1, 1990, pp. 50-61. 

pp. 45-51. 

pp. 5-1 1. 

NO. 3, 1995, pp. 313-317. 



Propagation in NLOS Conditions in Built-Up Areas 251 

Blaunstein, N., and M. Levin, “Propagation loss prediction in the urban environment 

with rectangular grid-plan streets,” Radio Sci., Vol. 32, No. 2, 1997, pp. 453-467. 

Steele, R, “The cellular environment of lightweight hand-held portables,” IEEE Communi- 

cation Magazine, No. 1, 1989, pp. 20-29. 

Lampard, G., and T. Vu-Dinh, “The effect of terrain on radio propagation in urban 

microcells,” IEEE Trans. Vehic. Techn., Vol. 42, No. 3, 1993, pp. 314-317. 

Lawton, M. C., and J. P. McGreehan, “The application of deterministic ray launching 

algorithm for the prediction of radio channel characteristics in small-cell environments,” 

IEEE Trans. Vehic. Tech.,  Vol. 43, No. 10, 1994, pp. 955-969. 

Rustako, A. J., N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at 

microwave frequencies for line-of-sight microcellular mobile and personal communica- 

tions,” IEEE Trans. Veh. TechnoL, Vol. 40, No. 1, 1991, pp. 203-210. 

Vogler, L. E., “An attenuation hnction for multiple knife-edge diffraction,” Radio Sr i ,  

Walfisch, J., and H. L. Bertoni, “A theoretical model of UHF propagation in urban 

environments,” IEEE Trans. Anten. Propagat., Vol. 36, No. 12, 1988, pp. 1788-1796. 

Maciel, L. R., H. L. Bertoni, and H. H. Xia, “Unified approach to prediction of 

propagation over buildings for all ranges of base station antenna height,” IEEE Trans. 

Vebic. Techn., Vol. 42, No. 1, 1993, pp. 41-45. 

Xia, H. H., and H. L. Bertoni, “Diffraction of cylindrical and plane waves by an array 

of absorbing half-screens,” IEEE Trans. Anten. Propagat., Vol. 40, No. 2, 1992, pp. 

Bertoni, H. L., et al., “UHF propagation prediction for wireless personal communica- 
tions,” Proc. IEEE, Vol. 82, No. 9, 1994, pp. 1333-1359. 

Green, E., “Radio link design for microcellular systems,” British TeLecom Tech. I., 
Vol. 8, No. 1, 1990, pp. 85-96. 

Balanis, C. A., Advanced Engineering Ekrtr.omagnetics, New York: Wiley, 1989. 

Kouyoumjian, R. G., and P. H. Pathak, “ A uniform theory of diffraction for an edge 

in a perfectly conducting surface,” in Proc. IEEE, Vol. 62, No. 10, 1974, pp. 1448-1 46 1. 

Felsen, L. B., and N. Marcuvitz, Radiation and Scattering of  Waves, Englewood Cliffs, 

NJ: Prentice-Hall, 1973. 

Vol. 17, NO. 9, 1382, pp. 1541-1546. 

170-177. 



This page intentionally left blank 



Propagation Over Built-Up 
Irregular Terrain 

In Chapter 4 we dealt with propagation models that describe how irregular 

terrain, which characterizes the rural environments containing obstructions 

such as hills and trees, affects VHF/L-band propagation. Some of these models 

adequately describe the situation in the urban scene, mostly in the suburban 

areas, where effects of foliage, usually negligible in city centers, can be quite 

important. At the same time, the effects of trees are similar to those of buildings, 

introducing additional path losses and producing spatial signal variations. 

This chapter deals principally with propagation in built-up areas, when 

both terminals, transmitter and receiver, are located at the street level and one 

or both of the terminal antennas are lower than the buildings surrounding 

them. Earlier, in Chapters 5 and 6, we considered the same situation when 

both antennas were located in LOS and NLOS conditions at the street level, 

but assumed that streets and building rows were regularly distributed on the 

flat terrain. Now we will consider the situation where buildings are randomly 

distributed over irregular terrain, as a main case of city topography. We also 

present more actual and specific models that describe the propagation phenom- 

ena within the urban communication channel and predict the loss characteristics 

within it. 

Before starting to describe these models it is important once more to 

point out that there is no general method or algorithm that is universally 

accepted as being the best prediction model. Each model can be useful for 

some specific cases in the urban scene and the accuracy of any particular 

technique or algorithm in some specific situation depends on the fit between 

253 
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the parameters available for the area concerned and the parameters required 

by the model. 

We shall begin with simple empirical and semi-empirical models, which 

are based on numerous experimental data and are concerned mostly with 

predicting average field strength or path loss in cellular urban and suburban 

environments for radio paths less than 5-10 km. Some of the models presented 

below can be successfully used for the description of propagation phenomena 

over rural and mixed environments for radio paths exceeding 10 km. 

7.1 Empirical Models 

7.1.1 Young's Propagation Prediction 

Young did not develop a specific model or prediction technique; he carried 

out a series of measurements in New York City at frequencies from 

150-3700 MHz [I]. Analysis of experimental data obtained by a moving 

vehicle in the city streets showed that the path loss was much greater than 

that predicted by the flat-terrain model (see Section 3.2). The tendency of 

path loss to increase with frequency was observed experimentally. In fact, as 

follows from some of his results shown in Figure 7.1, there is a good correlation 
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Figure7.1 Measured path loss a t  150 MHz in Manhattan and the Bronx. 
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between measurements and the flat-terrain model that gives an inverse fourth- 

power law of signal-strength decay. If so, the dependence of path loss versus 

range between transmitter and receiver, taking into account the obstructive 

conditions in built-up areas, can be presented in 

model (see Section 4.3) as 

terms of the Egli empirical 

P (7.1) 

We must note once more that here and in the following text we put 

notations bT and bR for description of transmitting and receiving antenna 

heights, respectively. But actually these notations are relative, because in wireless 

communication systems each vehicle can simultaneously operate as the transmit- 

ter and the receiver. In (7.1) p is the factor which is called a “clutter factor” 

and which represents losses due to buildings. It  can be obtained from lines 

presented in Figure 7.1. In fact, for the 50% line and for 150 MHz, as follows 

from Figure 7.1, the parameter P is approximately 25 dB. The same path loss 

is plotted in this picture that was not exceeded at 1%, 10%, 50%, 30% 

and 99% of locations within the tested area. It was obtained from Young’s 

measurements. However, Young did not state, and which follows from the 

depicted curves, that the variability of the signal strength can be described by 

a log-normal distribution. 

7.1.2 Allsebrook’s Model 

In [2], a series of measurements in British cities at frequencies between 

75-450 MHz were reported to produce a propagation prediction model. One  

of the cities had a hilly terrain and the other two had a smooth terrain. Figure 

7.2 presents results of measurements at 167 MHz plotted as points. Here, too, 

the fourth-power range law of signal decay is shown. I t  provides a good fit to 

the experimental data. Where the terrain irregularity effects are negligible, the 

flat-city model can be used: 

L5o = LFT + L B  + Y (7.2) 

where as in Section 4.2, LFT is the flat-terrain path loss, L B  is the diffraction 

losses due to buildings and y is the additional UHF-correction factor intended 

for use if fo > 200 MHz. Comparison with (7.1) gives for this model 

P = L B  + 7.  
For hilly and mountainous terrain the additional terrain losses must be 

taken into account by introducing the diffraction losses L D ,  obtained using 
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Figure7.2 Average path loss between half-wave dipoles at 167.2 MHz. 

the Japanese method (see Section 4.2), and combining them with other loss 

components from (7.2). Then the "hilly-city" model, which reduces to the 

"flat-city" model (7.2) if L D  + 0, is 

Here, as in Section 4.2, LFS is free-space losses and L D  is the losses due 

to diffraction from natural obstructions such as hills, mountains, etc. The 

diffraction losses from buildings L B  were estimated in [2] using the geometry 

presented in Figure 7.3, where the receiver is assumed to be located exactly at 

a 
the center of the street with effective width a' = - where U is the real 

2 sin a' 

width of the street. Figure 7.4 represents computations based on knife-edge 

diffraction (Section 4.2) in an average street, compared with measurements of 

clutterfactor, P.  As follows from the picture, there is good agreement between 

calculations and measurements only for lower frequencies, up to 200 MHz. 
As follows from (7.3), the correction factor y must be accounted at frequencies 

greater than 200 MHz. Delisle et al. [ 3 ]  have shown how to ignore this factor 
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Figure 7.3 The street geometry for Allsebrook's model. 

in (7.3) for UHF/L-band by introducing a new approximation for the 

parameter L B  that accounts for the effects of buildings: 

(7.4) 

wherefo is the radiated frequency measured in MHz, hR is the receiver antenna 

height, and is the average height of buildings in the immediate vicinity of 

the vehicle as a transmitter, and a' is the effective street width in km (see 
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Figure 7.4 Comparison between Allsebrook's model and the experimental data for = 10m, h~ = 2m, W' = 30m. 
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Figure 7.4). As was shown in [3], the diffraction losses L B  are very sensitive 

to the value of b. 

7.1.3 Okumura Technique 

Based on numerous measurements carried out in and around Tokyo, Okumura 

[4] proposed an empirical method of predicting the average power within the 

communication channel “mobile-base station.” The method is based on a 

series of curves describing the average attenuation A R ~ (  6 d )  relative to free 

space for quasi-smooth terrain in an urban environment. We present the total 

losses according to 141: 

Here, as above, LFS is the losses in free space. The first correction factor 

in (7.5), A R ~ ( ~ ;  d) ,  is expressed in Figure 7.5 as a function of frequency in 

the range 100 MHz to 1 GHz and distance from base station (denoted by T )  
in the range 1-100 km. The reference base station antenna height is 

hT = 200m, and the reference moving vehicle antenna (denoted by R)  height 

d, km 
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Figure 7.5 The basic average attenuation factor AflU( f ,  d )  versus the frequency and the 

range between antennas. 
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is bR = 3m. The second correction factor in (7.5), HT,(hT, d ) ,  is the base 

station antenna gain factor presented in Figure 7.6 for the same reference 

heights of both antennas, bT = 200m and hR = 3m. The third correction factor 

in (7.5)) HRu(bR, d ) ,  is the moving vehicle antenna height gain that is 

shown in Figure 7.7. Here once more, the reference antenna heights are 

hT = 200m and bR = 3m. All corrections in Figures 7.6 and 7.7 are changed 

in the positive and negative directions if the antenna heights differ more than 

bT = 200m and bR = 3m. 

For more complicated urban environments consisting of rough terrain, 

such as: hills, mountains, vegetation, a general sloping terrain, mixed land-sea 

terrain, etc., the following adjustments were introduced by Okumura [4] on 

Lso from (7.5): 

(7.6) 

Here, LSO is the correction factor for suburban and open areas shown 

in Figure 7.8. As shown in Figure 7.9, L TER is the rolling-hill terrain correction 

factor. As was mentioned in Section 4.2, the terrain undulation factor Ab, as 

a terrain irregularity parameter, is defined as the specific height taken over a 
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Figure 7.6 The height gain factor HTu(hT, d )  versus the transmitter antenna height and 

the range between antennas. 
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Figure 7.7 The height-gain factor H&R, d )  versus the receiver antenna height and the 

frequency and type of area urbanization. 

distance of 10 km from the receiver in the direction towards the transmitter 

(see Figure 7.9). The correction factor for sloping terrain, Lsp,  is shown in 

Figure 7.10. It follows from the presented illustration that the average slope 

parameter, angle 6, can be positive or negative and is measured for generally 

sloping terrain over 60 km, less than 10 km and about 30 km. The mixed 

land-sea correction factor, L a ,  is presented in Figure 7.1 1. It is determined 

by the percentage of total radio-path length covered with water. 

The Okumura approach is probably the most widely quoted of the 

available models. It takes into account not only urban, suburban, and rural 

environments, but also describes the effects of different kinds of terrain. All 
phenomena and effects can be computed well in practice. However, it is rather 

cumbersome to implement this model with all correction factors in a computer 

because the data is available in graphical form. Thus, for computer implementa- 

tion, data has to be entered in the computer memory in point-to-point form 

and interpolation routines have to be written for intermediate computations. 

7.1.4 Hata Model 

In an attempt to make the Okumura technique suitable for computer implemen- 

tation and easy to apply, Hata [ 5 ,  61 developed an empirical model to describe 
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Figure 7.8 The correction factor for the Okumura method. 

the graphical information given by Okumura. It is presented in Figures 7.5 
to 7.1 1. His analytical expressions for average path loss, ,550, for urban, subur- 

ban, and rural areas are applicable only over quasi-smooth terrain and are 

limited by certain limitations of input parameters and are in dB 

L50 = 69.55 + 26.16 logfo - 13.82 log hr - a(hR) 
(7.7) 

+ (44.9 - 6.55 log h7)log d 

where 150 5 fo I 1500 MHz, 30 I h7 I 200m, 1 I hR I ZOm, and 

1 I d l  2Okm. All parameters in (7.7) are the same as above in Section 7.1.3; 

the function a ( h ~ )  is the correlation factor for mobile antenna height that is 

computed as follows [5, 61 

for medium-size cities: 

a ( h ~ )  = (1.1 logfo - 0 . 7 ) h ~  - (1.56 fo - 0.8) (7.8a) 

for large cities: 
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Figure 7.9 The rolling-hill terrain correction factor versus terrain undulation height. 

a ( h ~ )  = 8.29 (log 1.54 h ~ ) ~  - 1.1, fo I 2 0 0  MHz 

= 3.2 * (log 11.75 h ~ ) ~  - 4.97, fo 2 400 MHz 
(7.8b) 

For suburban areas: 

For open and rural areas: 
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Figure 7.10 The slope-terrain correction factor obtained from measurements and from 

theoretical prediction. 

As follows from the analytical relationships presented by Hata between 

parameters of consideration, the corrections have been made for both suburban 

and rural areas, where in (7.9) and (7.10), L50 (urban) denotes the path loss 

in an urban area according to (7.7) and (7.8). The last formulas also account 

for the difference in correction function for small, medium, and large cities. 

The difference between such cities can be found in Chapter 1, where these 

definitions were made in the context of general-terrain classification. The path 

loss difference for different built-up areas is presented in Figure 7.12, where 

the average path loss at 900 MHz for hT = 200m and hR = 3m has been plotted 

versus the distance between two terminals in kilometers. The difference in 

path loss is negligible for a small or large city, not exceeding 1-2 dB. 
We must note that the Hata model does not include all specific corrections 

available in the original Okumura method. Nevertheless, a comparison between 

results given by Hata’s formulations and data obtained from Okumura’s original 

curves for urban areas and for reference antenna heights h T =  200m and 

bR = 3m reveals negligible differences that, as follows from Figure 7.13, rarely 

exceed 1-2 dB. Moreover, Hata’s analytical expressions are, of course, very 

easily entered into a computer for computation. 

7.1.5 Akeyama’s Modifications 

To use the Okumura method with Hata’s expressions for prediction of commu- 

nication channels in urban areas, one might ask if their approaches have been 
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Figure 7.11 The 
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Figure 7.12 Average path loss versus distance from the transmitter. 

adopted for different countries with various built-up profiles of terrain. In many 

countries, the urban situation is far different from that in Tokyo. Okumura’s 

definition of urban, based only on the architecture and building type in Tokyo, 
may not be directly transferable to cities in North America or Europe. In 

fact, the typical United States suburban environment lies between Okumura’s 

definition of suburban and open areas. 

One  other problem that must be taken into account is that the correction 

factor a(  hR), which accounts for suburban, quasi-open, and open environments, 

is a function only of the buildings in the immediate vicinity of the vehicle. 

This factor is often more than 20 dB and cannot be objectively related to the 

real heights and density of buildings. There also exists a principal question of 

how Okumura’s factors can be applied direct to cities which differ from 

Tokyo in their architectural style, construction, materials, and so on. Moreover, 

comparison of Hata expressions for a built-up area with the deterministic 

models described by Walfisch, Bertoni et al. in [7-91 (which is briefly presented 

in Section 6.2) and in [9] (which is denoted in Figure 7.14 as the “flat edge” 

model), shows that both in UHFIL-band propagation (955 and 1845 MHz) 

the deterministic approach gives a better fit with experimental data than the 

Hata model. The mean error from measurements for the deterministic approach 
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Figure 7.13 Comparison between the Okumura measurements (points) and the Hata 

prediction. 

does not exceed 3-5 dB, whereas the Hata empirical approach based on 

Okumura’s curves gives an error that exceeds 10-1 2 dB. To correct Okumura’s 

curves, a new ground-cover factor that accounts for the degree of urbanization 

was introduced by Akeyama et al. [ lO] .  To produce the best fit between 

experimental data depicted in Figure 7.15, a regression line was drawn according 

to an additional factor S, introduced by Akeyama as a deviation from Okumura’s 

reference median curve at 450 MHz: 

S =  30 - 20 log c ~ ,  5yo 5 CY < 50%, 

1% I LY < 5%, = 20 + 0.19 log c~ - 15.6 (log 

= 20, c Y <  1% 

(7.11) 

Here, cy is the percentage of the area covered by buildings in the built- 

up area. 
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Figure 7.14 Comparison between the Hata empirical model, the deterministic two- 

dimensional diffraction model 171, the two-dimensional flat model 191, and 

experimental data. 

7.2 Specific Models Based on Special Semi-Empirical 
Algorithms 

Let us now discuss specific semi-empirical models that are based on the equation 

of a straight line presented in the same manner as for the plane-terrain model 

or the two-ray model, and on regression analysis to obtain the best fit between 

prediction empirical technique and experimental data. 

7.2.1 Walfisch-lkegami Model 

This model gives a good path loss prediction for dense built-up areas such as 

medium and large cities [ 111. It is based on important urban parameters such 

as building density, average building height, and street width. In this model 

antenna height is generally lower than the average buildings’ height, so that 

the waves are guided along the street. 
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Figure 7.15 Deviation from reference average curve. 

For LOS conditions, the path loss formula has the same form as the free- 

space formula changing only constants before a well-known parameter, the 

distance between terminals d: 

Lso(LOS) = 42.6 + 20 log fo + 26 log d (7.12) 

which can be rewritten by means of the familiar equation of a straight line as 

LSO(L0S) = Lo + 10ylog d (7.13) 

where Lo is the intercept and y is the attenuation slope (see Section 3.2) that 

can be defined as 

LO = 42.6 + 20 logfo 

y = 2.6 

(7.14) 

As follows from the free-space model in Section 2.3, y = 2. Such a low 

attenuation slope y = 2.6 (the distance dependence for receiving signal, d-2.6, 
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obtained in [ 11 J for the urban environment) was explained by the authors as 

a result of the low antenna heights at the street level below the rooftops. But 

this conclusion is in conflict with numerous experimental data obtained from 

the straight measurements and two-ray model, all of which gives the slope 

attenuation along the street beyond the break point as y = 4 - 7 that limits 

the exponential attenuation obtained by use of the waveguide model (see 

Chapter 5 for discussions). 

As for NLOS conditions, the semi-empirical path loss formula is [ 111: 

where L m represents rooftop diffraction loss, and L M D  represents multiple 

diffraction loss due to surrounding buildings. The rooftop diffraction loss is 

characterized as 

L m  = -16.7 - 10 log Aa + 10 logfo + 20 log AhR + L ( 0 )  (7.16) 

where 

ha is the distance between the vehicle and the building, 

hR is the mobile vehicle antenna height, 

L ( 0 )  is the loss due to elevation angle, 

A ~ R  = hroof- hR. 

The multiple-diffraction component is characterized by the following 

equation: 

where 

KO = -18 lOg(1 + AbT) 

Ka = 54 - 0 . 8 A h ~ ,  

= 54 - 1 . 3 A h ~ ,  

d 2  0.5h 

d <  0 . 5 h  

Kd= 18 - 15(Ah~/h,of) 

Kf = -4 + 0.7[(fo/925) - 11, 

= -4 + 0.7[( fo/725) - 11, 

for suburban 

for urban 

(7.17b) 

Where a is the street width, hT is the base-station antenna height, hroof is the 

average height of small buildings (bro0f< hT), AhT = hT-  hroof In the 
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Walfisch-Ikegama model it was initially assumed that the base-station antenna 

height is lower than a tall building but higher than the small buildings sur- 

rounding it. 

Combining (7.15), (7.16) and (7.17), one obtains 

where 

So, once again, the NLOS characteristics shown by (7.18a-c) exhibit a 

straight line with Lo as the intercept and y as the attenuation slope. The 

diffraction constant, Kd, depends on the surrounding buildings’ heights, which 

vary from a few meters to tens of meters. Therefore, according to (7.17a), the 

typical attenuation slopes in these built-up areas deviate from y = 2 for 

AhT/hroof= (hr- h,,of)lhroof= 1.2 to y = 3.8 for AhT/hrouf= 0. Hence, with 

an increase of base-station antenna height with respect to the surrounding 

buildings’ average height, the field attenuation’s low limit is that in free space, 

when y = 2. Then we can present path loss (because Lo is constant for area 

for consideration) as: 

L(dB) = 1Oylog d (7.19a) 

or in the linear case, as: 

L (  W )  0~ d-’, y = 2 - 3.8 (7.19b) 

Because in a real situation in the urban scene, L\hT/bruof < 1, the slope 

attenuation parameter varies within the range y = 2.7 - 3.8. 

It is interesting now to compare both empirical models, the Hata model 

and the Walfisch-Ikegama model for a dense urban area. Let us rewrite formula 

(7.7) of the Hata model in the form of an equation for a straight line 

and taking into account (7.7b), we have that the intercept Lo and the path- 

loss slope y are: 
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Lo = 69.55 + 26.16 I O g f o  - 13.82 IOg h T -  a ( h ~ )  
(7.20) 

y = (44.7 - 6.55 log h ~ ) l l O  

For the typical base-station antenna height hr = 6m-30m, the slope 

parameter is changed from 4 to 3.5. Hence, we can once more present the 

path loss and the signal power in dense urban area as 

L(dB) = 1Oylog d (7.2 1 a) 

or, in the linear case, as 

L(W) = d-”, y = 3.5 - 4.0 (7.2 1 b) 

We obtain from both empirical approaches approximately the same poly- 

nomial signal-power decay with 2.5 I y I 4  versus the distance from both 

terminals in the case of dense urban areas. 

7.2.2 The Ibrahim-Parsons Method 

Using numerous measurements carried out in London at three operating fre- 

quencies of 168, 445, and 900 MHz with a base-station antenna height of 

46m above the ground, in [ 121, the equation of the straight line which gives 

a best fit with the experimental data was empirically obtained for each operating 

frequency. These equations were compared with the classical fourth-power 

signal decay according to the “plane-earth” model (see Section 3.2). The result 

of this comparison is presented in Table 7.1. 

As follows from the results presented, the empirically obtained law of 

signal-power decay varies from d-3.6 up to d-4.3. T o  model the results obtained 

from the measurements, two approaches were proposed in [ 121. The first is 

Table 7.1 

Comparison of the Plane-Earth Model and the Best Fit From (121 

Prediction 

Frequency Average Path loss (dB) Error (dB) 

168 MHz 

~ ~ ~ ~ ~ 

I ~~ 

~ - -~~ 

Best fit: 1, 6 t 36.2 . logd 
Fourth law: -12.5 t 40 . logd 
Best fit: -15.0 t 43.1 - logd 
Fourth law: -4.0 t 40 . logd 

5.3 
5.5 
6.18 
5.5 1 4 5 5  MHz ~ 
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based on multiple-regression analysis to derive an empirical expression for the 

path loss. The second one is based on the well-known plane-earth (or two- 

ray) model. We will not present here all the details of the authors' analysis. 

The reader can read the original reference [ 121 for more details. 

Empirical approach. Using multiple-regression analysis, called empirical 

by the authors, the following empirical formula was obtained to describe the 

path loss: 

f+ 100 
+ [ 40 + 14.15  log(^)] log d + 0.265 L - 0.37H + K 

Here, factor K = 0.087U - 5.5 for highly urbanized areas, otherwise K = 0, 

and parameters L ,  K, and U must be obtained for the concrete situation in 

the urban scene from the corresponding topographic maps (the algorithm is 

presented in [ 121). The base-station antenna height is h T  = 46m, the moving 

vehicle antenna height is bR I 3m, and the distance between terminals varies 

in the range 0 < d l  1Okm. 

The semi-empirical model. This approach is based on the plane-earth 

model with an added excess clutter loss, p. For each operating frequency, 168, 

455, and 900 MHz, this value was computed and, then, related to the urban 

environment factors, a best-fit equation for p was found. Finally, the following 

model was proposed (which is different from that obtained in Section 3.2): 

where 

fo p = 20 + - + 0.18L - 0.34H + K 
40 

(7.24) 

and K = 0.094U - 5.9. 
Here again, K is applicable only for dense urbanized areas, otherwise 

K = 0. Comparisons with experimental data have allowed the authors to obtain 

the prediction error by the use of each proposed approach, which they summa- 

rize in Table 7.2. 

As an illustration of p variations with an urban situation (with changes 

of parameters L ,  U, and H ) ,  let us present p for a flat terrain ( H  = 0) at 

frequency 900 MHz according to [ 121: 
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Table 7.2 
Prediction Error for Two Models (in dB): 

Frequency (MHz) 
Model 168 455 900 

~ Empirical 2.1 3.2 4.19 1 
Semi-empirical 2.0 3.3 5.8 

p = 42.5 + 0.18L (7.25) 

Here, if parameter L lies in the range O%-8O%, then p lies between 

42.5-57 dB. This result agrees well with those obtained independently through 

measurements, as seen in illustrations in Figure 7.16. Here, the best fit is 

obtained for p = 49 dB. The two approaches have been compared with inde- 

pendent measurements collected by Allsebrook [12] at 85, 167, and 

441 MHz, and with the empirical model proposed by Atefi and Parsons [ 131 

which in completed form was presented by Parsons [14]: 

170 

160 

1 50 

140 

130 

120 

i i a  

100 

90 

80 
1 

Best fit * !  
a \ - -  

** * *  4th law fi  t 

2 3 4 5 6 7 8 9 1 0  
d, km 

Figure 7.16 Comparison between measured and theoretically predicted path loss. 
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L50 = 82 + 26.16 logfo + 30 log d -  21.8 log hr -  0.15 log hR + Ld(dB) 

(7.26) 

where Ld represents the diffraction loss that can be obtained by use of the 

Epstein-Peterson construction (see Section 4.2). The results of this comparison 

between the different approaches are summarized in Table 7.3. 
The proposed empirical models are quite successful and give the same 

accuracy over a wide range of transmitted frequencies. 

7.2.3 lee's Model 

This model was constructed to obtain UHF-band propagation characteristics 

over irregular terrain by use of two approaches: an area-to-area algorithm and 

a point-to-point algorithm [ 14, Chapter 31. 
The area-to-area method. This approach is also based on the equation of 

straight line presentation of path loss by use of the following parameters: (a) 

average transmission loss at the range of 1 km, (b) slope of the path-loss curve 

according to plane-earth model (see Section 3.2), (c) adjustment factor. In this 

case, the average path loss in dB at distance d from the transmitter is given 

by the following expression: 

L50 = Lo + 1Oylog d + Fo (7.27) 

Parameters LO and y that were derived from experimental data are listed 

in Table 7.4. 
It follows from Table 7.4 that with the exception of Tokyo, the value 

of y for urban and suburban areas is always close to y = 4 
(3.68 I y I 4.31), that is, the field intensity attenuates with distance as d . 
The experimental results on which Table 7.4 is based were obtained using a 

transmission system with the following parameters. 

-4 

Table 7.3 
Comparison of Different Approaches 

Frequency According to Allsebrook's Best Fit Ibrahim's Best Fit 
(MHzI (7.26) Straight line Straight Line 

85.87 
167.2 
441 .o 

97.4 t 38 * logd 
105.0 t 38 * logd 
116.0 t 38 * logd 

98.0 t 38 * logd 
101.0 t 38 - logd 
117.0 t 38 * logd 

106.0 t 38 - logd 
115.0 t 38 - logd 
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Table 7.4 

Path Loss Parameters for Different Areas: 

Area of Interest 10 Y 

Newark -94.0 4.31 

Philadelphia: 
Tokyo -114.0 3.05 

Urban -100.0 3.68 
Free space -75.0 2.0 

Open -79.0 4.35 

The reference base station antenna h T =  30.5m, 

the operating frequency is fo = 900 MHz, 
the transmitter power is P = IOW, 

the base-station antenna gain with respect to a A / 2  dipole is 6 dB (or in 

linear scale, (4), 
the mobile antenna height is hR = 3m. 

The adjustment factor Fo is introduced to compensate for the use of 

different values of these parameters and is expressed as 

The values of these various factors are given by 

2 
[Actual base station antenna height (m)] 

(3 0.5 m) 
F1 = 

[Actual transmitter power (W)]  

1 ow F2 = 

[Actual gain of base station antenna] 

4 
F3 = 

2 
[Actual vehicle antenna height (m)] 

F4 = 

( 3 d 2  

(7.2 8 a) 

(7.28 b) 

Lee also suggests that the propagation effects of changes in transmission 

frequency is -(f/h)", where according to Young [I]  and Okumura [4] the 

parameter n is 2 I n I 3. 
Point-to-point method. In this more refined approach, Lee takes into 

account the terrain profile. In fact, according to [14], there are two possible 
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reflection points as shown in Figure 7.17. As seen, the effective one is the one 

closer to the mobile vehicle. From the geometry presented in Figure 7.17 one 

can easily obtain the effective height he that can be greater (case (a)) or less 

(case (b)) than the actual height above the local ground. Using the effective 

ground height, Lee corrected (7.27) to 

Ljo = L50 + 20 log(h,/30) (7.29) 

where L.50 is described by (7.27) and he is in meters. 

As the mobile moves from point A to point I ,  the effective height of the 

base-station antenna, as follows from Figure 7.18(a), is also changed. The 

separate evaluation of (7.29) has to be made at each of these points and hence 

the term “point-to-point” has been used. Figure 7.18(b) shows the difference 

between the point-to-point prediction algorithm and predictions for flat-subur- 

ban terrain with y = 38.6 dB/decade (or in linear scale y = 3.86). For positions 

of the vehicle from point C to point G the value of he is greater that the actual 

height above local ground surface, so here the predicted loss (according to Lee) 

is smaller than follows from the plane-earth terrain model. Conversely, for 

positions of vehicle at H a n d  I ,  the value of he is less than the actual height 

of terrain, and the predicted loss is higher. As was shown from additional 

estimations obtained by Lee, the second approach, point-to-point, better pre- 

dicts the variations of the terrain surface. In fact, the standard deviation to 

predict the average path loss of the first algorithm (area-to-area) is 8 dB, but 

in the point-to-point model it falls to less than 3 dB. 

Figure 7.17 Geometry of reflection from the hill surface for two variants of base station 

and vehicular antennas location. 
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Figure 7.18 (a) Hilly terrain contour and various positions of moving vehicle relative to base-station antenna. (b) Point-to-point prediction 
compared with path loss slope. 
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Figure 7.18 (continued). 
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7.3 Deterministic Models 

We will now discuss deterministic approaches that more effectively predict loss 

characteristics in built-up areas sprawling over irregular terrain. 

7.3.1 Parabolic Equation Method 

This method was used by Janaswamy and Andersen [15, 161 to predict the 

path loss in two-dimensional urban areas with buildings spread over rough 

terrain, as shown in Figure 7.19. Here, the position of the transmitter (T,) 
and the receiver ( R J ,  as well as the terrain and building profile, are presented 

assuming that the vertical walls of the buildings are absorbing nontransparant 

screens and the roofs are flat and reflective. The ground parameters, and 

ag, are different with respect to those for the walls and rooftops, eb and o-b. 
Let us briefly discuss the subject of the computational technique proposed in 

[IS, 161. 
The model&m.iption. This proposed technique is based on the standard 

parabolic equation, which assumes a time dependence - eViut according to [ 15, 
161 and can be presented as: 

where 

Figure 7.19 Geometry of propagation over irregular built-up terrain. 
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U(x, z )  = dsin8 * exp{-ikox} * E p ( r ,  e), horizontal polarization (7.31) 

sin 8 

€0 
= dL * exp{-ikox} * H p ( r ,  O), vertical polarization 

is the reduced field variable in a spherical coordinate system { r ,  8, c p }  with an 

origin at the center of the earth. For the flat-terrain approximation the relations 

between Cartesian coordinates {x, z }  and spherical coordinates in a two- 

dimensional plane are [ 15, 161: x = R,  * 8, and z = r - R,, where R, is the 

radius of the earth introduced in Chapter 3. The transmitter is located 

along 8 = 0" as shown in Figure 7.19. In (7.31) the quantities E,  and H ,  
are the p c o m  onents of the electric and magnetic fields, respectively; 

ko = w * lF € 0 ~ 0  is the free-space wavenumber which is introduced in 

Chapter 2. 

The boundary conditions on the ground can be presented for the smoothly 

varying terrain profile, for which the radius of curvature is much greater with 

respect to wavelength, in the terms of the U variable for either polarization in 

the form [16]: 

(7.32) 
au 
- + ikoZs U = 0, at the terrain profile 
a r  

where 2s is the normalized surface impedance which depends on the ground 

parameters and the angle of incidence of the wave with respect to the normal 

r on the ground (see Figure 7.19). Equation (7.30) with boundary conditions 

(7.32) was solved numerically by use of a split-step Fourier algorithm and 

presenting the computational coordinates in the following form [ 15, 161: 

5 = x, 'I = 2-f (x)  (7.33) 

where f(x) is the terrain-profile function. 

obtained in terms of the field at the old range, x, as [15, 161: 

In the split-step algorithm, the field at the new range, x + Ax, was 

(7.34) 
J 

- W  
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where m is the slope of the terrain between the two ranges. In (7.34) all spatial 

variables are normalized with the wavenumber ko. The quantity T ( p )  may be 

interpreted as a complex reflection coefficient for a plane-wave incident on 

sloping terrain and equals: 

(7.35) 

Here, rc = rocos v + m( 1 + cos v)/2 and ro is equal to ./.rc for horizontal 

polarization and 1 l& for vertical polarization, where the complex dielectric 

constant erC is presented in Chapter 3. 
The function within the square brackets in (7.34) is the eigenfunction 

of the operator appearing on the right-hand side of the standard parabolic 

equation (7.30). If the field variable goes to zero on the terrain (the first order 

boundary conditions, see Chapter 2), we set T ( p )  = -1 and the eigenfunctions 

reduce to sine functions. If the normal derivative of the field vanishes on the 

terrain (the second order boundary conditions, see Chapter 2), we set 

r ( p )  = +I  and the eigenfunctions reduce to cosine functions. In the inverse 

transform integral in (7.34) the exponential function e 2 is the free-space 

propagator for the standard equation (7.30). A wide-angle parabolic equation 

may be obtained by replacing the right-hand side in (7.30) with the pseudo 

differential operator: 

;p2Ax 

(7.36) 

As was shown in [ 15, 161, although the eigenfunctions of the wide-angle 

parabolic equation remain the same as those of the narrow-angle parabolic 

equation over flat terrain, a similar statement cannot be made over a sloping 

terrain. It has not been possible to find the eigenmodes for the wide-angle 

parabolic equation over a sloping terrain. In the split-step algorithm (7.34), it 

is possible to replace the narrow-angle free-space propagator e 2 with the 

wide-angle free-space propagator e JAx(-- I ) .  This replacement is rigorous 

for the case of flat terrain, but at the same time, it is at best an approximation 

over sloping terrain. This new propagator for the wide-angle parabolic equation 

was used in [ 15, 161 to obtain the path loss over sloping terrain. 

Numerical results. In all results of computation the actual field was normal- 

ized to the field which would exist under free-space conditions. The first 

$AX 



Propagation Over Built- Up Irregular Terrain 283 

example shown in Figure 7.20 describes the situation in the urban scene when 

a series of nontransparent screens (knife edges) are placed on a curved hill. 

The shape of the hill is parabolic with a peak height of 5m and width of 

203m. Other parameters about screens and frequency of operating are shown 

in Figure 7.20. Results are given for the normalized field at the top of the 

screens and are compared with the sloped-diffraction results described in [ 171. 

0 

-5 

-1 0 

-15 

-35 

-40 

-45 

n 

203 m 

Screen number 

Figure7.20 The normalized path loss over screens placed on a parabolic hill. 
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I 
I 

5 0 1  

I 
I 
I 
I 
I 

They are presented briefly in Section 4.2 for a similar screen profile, but, 

without the ground. 

As follows from Figure 7.20, good agreement between two theoretical 

approaches with a maximum deviation of around 0.2 dB near the peak of the 

hill is observed. Figure 7.2 1 shows another comparison obtained in [ 15, 161 

of a wide-angle approxiation according to (7.34) to (7.36) with a sloped- 

100 50 

Rx 

I 

50 25 

PE (DBC) 

PE (NBC) 

0 UTD 

Figure7.21 The normalized path loss over multiple knife edges by use of the wide-angle 

numerical technique. 
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diffraction approximation obtained by Andersen [ 171 (see also Section 4.2) for 

propagation over multiple screens placed on flat terrain. A good agreement for 

both approaches is also seen. It is interesting to note that all the presented 

curves obtained for various boundary conditions (BC) are rather insensitive to 

the exact nature of subsoil media. The terrain medium situations considered 

in Figure 7.21 correspond to zero field on the terrain (first, called Dirichlet, 

boundary conditions (DBC)), zero normal derivative (second, called Neumann, 

boundary conditions (NBC)), or a mixture of the two (for E,.. = 10, 

U. = 20mSlm). T o  compare both techniques used in [15, 161, the narrow- 

angle and the wide-angle approximation, the normalized field calculated for 

both of them satisfying the DBC on the terrain is shown in Figure 7.22. As 

shown, there is good agreement between the two techniques except for the 

deep shadow zone from the screens. 

The wide-angle parabolic equation approximation was also compared 

with results obtained with WISE which is a ray-tracing tool developed at Bell 

Laboratories [18]. As follows from Figure 7.23, a transmitter of height 30m 

is located at zero range where the terrain has zero elevation. In a test profile 

two screens of heights 40m and 50m are located on a terrain with variable 

topography, the numbers indicated in the picture for the terrain are its height 

in meters; the maximum slope angle of the terrain is about 7.5 degrees, the 

receiver height is 1.5m above the local terrain. The ground medium is assumed 

to be perfectly reflecting, having a reflection coeficient of - 1. In comparison 

the authors have excluded regions close to the screens where propagation angles 

are in excess of 45 degrees. Figure 7.23 shows good agreement between the 

analytical and the ray-tracing models for propagation angles within 45 degrees. 

The authors have also compared their approach with the four-ray approxi- 

mation [ 101 (see also Section 4.1) for one screen placed on flat terrain and 

with the UTD approach [ 191 for the case of a single rectangular building, and 

have obtained good agreement between the different approaches. Also, for the 

more realistic case presented in Figure 7.24, when instead of thin screens there 

are rectangular buildings placed on flat terrain, the authors [15, 161 obtained 

good agreement with the model that takes into account reflections from rooftops 

[20, 211. 

Here, in Figure 7.24, comparison between results obtained in [IS, 161 

for two different boundary conditions on the terrain and roofiops is presented 

together with results of computations for one knife edge. We see that there is 

a significant difference (of about 45 dB) between two different boundary 

conditions in the deep shadow zone. The field attenuation depends on the 

dielectric properties of rooftops, and can vary within a wide range depending 

on the construction materials of the buildings. As for the one knife-edge model, 

its results lie between the two other limit cases. 
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Figure 7.22 Comparison between narrow-angle and wide-angle techniques for 

propagation over multiple knife edges. 

The model presented here may be used in a real scenario in the urban 

scene by generating two-dimensional results in several vertical planes about 

the transmitter. The results of wide-angle approximation are accurate within 

about k 45 degrees and are rigorous for flat terrain but approximate for 

irregular terrain. Also, the results are good when the contribution by the lateral 

propagating waves can be ignored. Furthermore, this technique allows us to 
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Figure 7.23 The path loss versus distance from transmitter by use of the parabolic 

equation (PE) technique and the ray-tracing tool (WISE). 

obtain the total field in the situation when a receiver lies between two buildings 

along the propagation path, namely, taking into account the first-order back 

reflection by the building at the far end and summing it with forward-propagat- 

ing waves (the reader can find more details in [15, 161). 

7.3.2 Multiple Knife-Edges Diffraction Method 

This method can be considered as an extension of a two-dimensional model 

of multiple forward diffraction over rows of buildings placed on flat terrain 

[7-9, 22-25] in the case of rough (hilly) terrain [26] by use of a numerical 

technique based on a Kirchhoff-Huygens integrals presentation of the diffracted 
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f 

Distance, m 

Figure 7.24 The normalized path loss over rectangular buildings. 

field (see all definitions in Section 4.1) for description of forward diffraction 

past many absorbing half screens (knife edges). 

Effects of the terrain profib. Figure 7.25 illustrates in cross-section rows 

of houses that are equally spaced along parallel streets, with the streets running 

perpendicular to the slope of the hills. It also describes the situation in an 
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urban scene with the transmitting antenna at the same level as the maximum 

height of terrain plus the building height. For area 1 in Figure 7.25, the path 

loss can be estimated by use of the Walfisch-Bertoni model [7] (presented also 

in Section 6.2), accounting for the terrain slope. Instead of the angle a, it 

introduces in incidence on the rooftops the angle a1 to the local tangent plane, 

as indicated in Figure 7.25. In this case the path-loss ratio between isotropic 

antennas, in watts at the receiver to watts at the transmitter, is given by 

(7.37) 

The factor PD is the diffraction loss from the last rooftop before the 

moving vehicle is down the street (see Formula (6.61) as a first excess term), 

and Q(a1) is the multiple-screen diffraction loss (see Formula (6.62) as a 

second excess term) which can be presented as a polynomial function [7-9, 
22-24] : 

(7.38) 

Here, w is separation between rows of buildings. By introducing the 

dimensionless parameter gp = a1 $, one can show that the working range 

of gp is 0.01 c gp c 1 .OO, because for gp > 1 .O, the previous rows of buildings 

have almost no effect on wave propagation and Q(a1) = 1. In region three 

in Figure 7.25, one must account for the blocking effect of the terrain between 

the receiver (vehicle) and the transmitter (base station) and must multiply the 

loss (7.37) by an appropriate loss factor PO to account for the intervening hill 

losses. Figure 7.26 shows one possibility, to replace the real hill by an absorbing 

knife edge or dielectric wedge [27, 281 (see also Section 4.1). In the case of 

an absence of buildings on top of the hill, the blockage effect can be modeled 

Figure 7.25 The schematic presentation of rows of buildings on roiling terrain. 
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Figure 7.26 The schematic presentation of diffraction by an isolated hill. 

by a circular diffracting cylinder, as shown in Figure 7.27, whose radius best 

fits the hill’s curvature. In this case, according to [26, 29, 301, PD is the 

diffraction loss for a cylinder, which is typically a function of the cylinder 

radius Rh and the angle 6 between two tangent lines to the cylinder, one from 

the transmitter and the other from the roofiop before the vehicle (see Figure 

7.27). The value of PD when buildings are present on the hill does not appear 
to have been previously considered. Similarly, the field reduction in region 

two of Figure 7.25 has not been previously considered and is even more 

complex than the other regions due to the curvature of the ground surface. 
The calculations were carried out for an isolated cylindrical hill with the 

geometry presented in Figure 7.28 and with the transmitter as a line source 

by using two techniques: (a) the Kirchhoff-Huygens approximation, as was 

Figure7.27 The schematic presentation of diffraction by an isolated hill as a cylinder. 

Figure 7.28 The schematic presentation of buildings on an isolated cylindrical hill. 
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done in [22] by use of formula (7.37) numerical integration, and (b) the 

creeping ray representation by a circular cylinder (ray-optics technique 

[31, 321). 
In [26] the general formulas were obtained for a line source by accounting 

for the spreading of rays in the directions perpendicular to the plane of incidence 

for different locations of the vehicle. At points on the shadow side of a hill, 
such as location two in Figure 7.25, the path-loss ratio between receiving and 

transmitting power was obtained in the following form: 

(7.39) 

where R is the range between the base station (transmitter) and the vehicle 

(receiver), L1 is the distance from the transmitter to the hill along the ray that 

is just tangent to the hill (Figure 7.25). The diffraction loss down to the vehicle 

from the preceding building is given by PO according to [7, 8, 221 (see Section 

6.2). The excitation coefficient D H  is determined from the multiple numerical 

integration and can be analytically found from the fit to the numerical result. 

Its variations with the screen separation d, hill radius RA, and wavelength A ,  

can be approximated according to computations in [26] 

In D H  = 3.75 + [-0.648 + 0.072 In(d/A)] * In(Rh/h) - 0.259 ln (d /h)  

(7.40) 

The values of D H  obtained from this expression are indicated by the 

continuous curves in Figure 7.29 for the case of d = 50m. The various points 

for frequencies 900 MHz and 1.8 GHz present the numerical integration using 

the ray-optics technique. The approximate expression for the exponent loss 

factor in (7.39) was also obtained by fitting the numerical results based on 

the ray-optics technique, as a function of hill radius Rh, frequency, and screen 

spacing d, such as 

1 I3 
@ =  2.02 (T) ‘TRh - 1.4 $ 

(7.41) 

which reduces to the theoretical diffraction result over a smooth hill for TE 
(vertical) polarization [32] when @E = 0. The variations of attenuation 

coefficient predicted by (7.41) are indicated by the continuous curves in Figure 

7.30 for 900 MHz and for d =  50m and 100m. From Figure 7.30, this 

approximation gives a good fit to the value t+b obtained from the numerical 
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Figure 7.29 The coefficient D H  versus hill radius at 900 and 1800 MHz. 

results by use of the ray-optics technique according to [32]. For other vehicle 

locations, such as three in Figure 7.25, that are shadowed by a previous hill, 
the path-loss ratio is 

where R and L 1 are the previously defined geometric parameters of the radio 

path, L2 is the distance from the launch point on the hill to the building just 

before the vehicle, Q(a) is the multiple diffraction loss due to the rows of 

buildings before the vehicle defined by (7.38), and finally, D1 is the ray-optics 

coefficient used in the creeping ray formulation according to [31, 321 and is 

described by the following function of hill radius Rh, frequency, and screen 

spacing d [26]: 

lnD1 = 2.22 + [0.19 + 0.031 ln(d/A)] - h(Rh/A) - 0.79 In(d/A) 

(7.43) 

The approximate fit given by (7.42) is plotted in Figure 7.31 as the 

continuous curves for 900 and 1800 MHz and for d = 50m passing through 
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Figure 7.30 The exponent loss factor 9 versus hill radius at 900 MHz for d = 50, lOOm 

and the theory for a smooth cylinder from [32]. 

the numerically computed points obtained by the ray-optics technique. Once 

more, we obtain good agreement between the ray-optics approach and approxi- 

mate prediction by means of numerical integration. 

Summary 

From models presented in this chapter we reach the same conclusion that 

we repeat through each chapter devoted to descriptions of different types of 

propagation: There is no general approach or model which completely describes 

the process of wave propagation in various situations over the terrain. Each 

model can only deal with some specific propagation situations in an over- 

terrain communication channel. 

Of the empirical models presented above, the Okumura method with 

Hata formulations is more general, because it describes quite well the situation 

in urban and suburban areas with buildings placed on smooth terrain. But 

this technique cannot be used for describing propagation effects over irregular 

terrain, and, as was shown by Akeyama et al. [6, 101 and Delisle et al. [3], 

neither for description of wave propagation over rural terrain. All modifications 
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Figure 7.31 The coefficient D1 versus hill radius for d = 50m. 

to take into account for the terrain profile and specific building structure, such 

as introduced by Lee’s effective antenna height (Section 7.2.3), the degree of 

urbanization introduced by Akeyama (Section 7.1.5) and Ibrahim and Parsons 

(Section 7.2.2), or the hilly terrain factor introduced by Allsebrook (Section 

7.1.2), cannot in general predict loss propagation characteristics in actual built- 

up areas with different architecture and type of building construction, buildings 

distribution on the ground surface, and specific variations of terrain profile. 

The deterministic models described in Section 7.3 which are based on 

the numerical solution of a parabolic equation [16] and on ray optics for 

diffraction over obstacles [26], are also limited to predicting real situations in the 

urban scene because they do not describe the multireflection and multiscattering 

phenomena observed experimentally in actual built-up areas, where multiray 

effects form an interference picture of the received signal, the effect that is 

mostly observed for mobile communication channels when both antennas are 

below the rooftops. This is because both models presented above in Section 

7.3 are two-dimensional models. They describe propagation over buildings 

placed on hilly terrain in the vertical plane of wave propagation and do not 

take into account the side effects that take place in the horizontal plane after 
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multiscattering and multireflection from side obstructions such as buildings, 

trees, hills, and so on. 

This is why, in Chapter 8, we will continue to consider the situation in 

the urban scene where buildings are randomly distributed and placed on rough 

terrain. We will also present a model which describes new phenomena that 

follow from “side reflections and scattering” from buildings (also a two-dimen- 

sional model, but in the horizontal plane). Then we will introduce a three- 

dimensional model, taking into account both the diffraction effects over the 

buildings and the side effects due to multiscattering and multireflection from 

the buildings which surround both antennas, transmitter and receiver. 
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Propagation in an Urban Environment 
With Nonregularly Distributed 
Buildings Placed on Rough Terrain 

8.1 Introduction 

As discussed in Chapters 1 and 7, modern cities, from the point of view of 

radio wave propagation, are complicated areas and the analytical description 

of this process cannot be presented without some simplifications for the practical 

radio-link situation [l-91. For UHFIL-band radio waves, most of the larger 

city buildings, in practice, are opaque and their dimensions are larger than the 

wavelength, A .  In such a situation, a wide spectrum of shadow zones is observed 

inside the street level and very sharp boundaries between light and shadow 

zones are created [ 10-1 31. Moreover, in the cases in which buildings are 

randomly distributed on a rough-ground surface, all specific properties of city 

topography form the particular conditions of wave propagation at the street 

level [ 14-26]. 
In such situations we have only some simplifications, namely the two- 

dimensional deterministic models, as shown in Chapter 7. Or, we might 

introduce the statistical description of the real building pattern inside the city 

[27-321 and determine the field strength on its base, as was done by [l-31. 

To obtain the statistical description of the city based on its topography map, 

we need detailed information about the spatial distribution of city buildings 

and natural obstacles, the sizes and ranges of reflective and diffractive surface 

sections of the ground relief, and the spatial distribution of the scattering 

features of each building placed in areas surrounding the receiver and transmitter 

antennas. 

297 
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In [ 1,2] an array of randomly distributed buildings and obstacles placed 
on the rough-ground surface was considered. The heights of the ground relief 

were described in the coordinate system (x,  y, z) placed at the plane z = 0 
of ground surface by the generalized firnction Z ( x ,  y )  according to Shwanz 

[%I. This function describes the nonregular rough-ground surface relief 

z = Z ( x ,  y) (see Figure 8.1). 

But as was mentioned above, both approaches, the deterministic based 

on the over-the-roofs diffraction model and the parabolic-equation model 

(presented in Chapter 7), and the statistics based on two-dimensional side #m 
due to multireflection and multiscattering from buildings’ walls [ 11, are two- 

dimensional models. To describe a more general case in the urban scene, 
which corresponds both to communication between two mobile vehicles and 

to communication between a base station located above the roofiops and the 

mobile vehicle, we need to combine these two approaches and construct a 
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three-dimensional model that takes into account both the vertical diffraction 

effect and the “side” single- and multi-scattering effect [ 1, 21. 

In Section 8.2, following the approach presented in [ 1, 21, we introduce 

a parametric model that combines both deterministic and statistical approaches. 

Here, the average intensity of the total wave field in the layer of city building 

with randomly distributed obstacles above the rough terrain is presented by 

using the single- and multi-scattering effects. The propagation channel for 

UHF/X-band waves in the city is modeled by the array of randomly distributed 

buildings placed on rough terrain. The law of buildings distribution is assumed 

to be Poissonian [ 11. Then, in Section 8.3, we describe the statistical characteris- 

tics of the terrain and the loss characteristics by taking into account the 

diffraction from the rooftops (three-dimensional model) [ 1, 21. In Section 8.4, 

we present a comparison between the theoretical predictions based on this 

statistical parametric three-dimensional model and the results of numerous 

experiments carried out in various urban areas with nonregularly distributed 

buildings for different positions of transmitter and receiver antennas [3]. The 

possibility of using this parametric model for predicting loss characteristics in 

cluttered (NLOS) urban conditions is examined. 

8.2 Statistical Model for the Description of loss 
Characteristics in the City Layer with Randomly 
Distributed Buildings 

Below we model the city by the array of randomly distributed buildings placed 

on rough terrain. 

8.2.1 Statistical Description of City Relief 

Spatial distribution ofcity buildings. Following [ 1, 21, let us consider the charac- 

teristic function ((r) = ((x, y, z) as a relief of some boundary surface between 

two semispaces: ((r) = 0 for z > Z ( x ,  y) and ((r) = 1 for z < Z(x,  y) (see 

Figure 8.1). For the case z > 0, one can present such a function according to 

[ I ,  21 as 

where N i s  the number of buildings randomly distributed at the surface plane 

z = 0; function l n ( x ,  y )  = 1 if the projection of point (x, y, z )  at the plane 

z = O hits inside or at the boundary of building contour and ( n ( X ,  y) = 0 in 

the opposite case; 6 = hn is the height of building with number n;  ca(z )  b is 
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the characteristic function which is equal to 1 inside the range a < z < 6 
(parameter a can be equal zero) and is equal to 0 outside this interval. 

After some straightforward calculations, according to [I ,  21, one can 

present the average value of &r) for the ensemble of its possible realizations 

in the following form: 

(8.3) 
J 

z 

Here, w(h,) is the density of building height distribution and determines 

the probability of the event that z < h,. The multiplier X i n  (8.2) determines 

the probability of the event when the projection of the point r on the plane 

z = O hits inside any building. 

The statistical functions constructed above allow us to calculate the proba- 

bility of the direct visibility between two observed points, rl and r2, within 

the layer of city buildings. For the statistical quasi-homogeneous building area, 

this probability can be presented as [l]: 

This formula was obtained for the case of 2 2  > z1 and the arbitrary space 

orientation of the unit vector q, Iql = 1; I =  11-2 - rlI, 1-2 - rl = ql; r l  

and q1 are the projection of corresponding vectors on the plane z = 0; 

qz = 1 - 41; yo is the density of buildings in the plane of q l  = ( q x ,  qu). 

From (8.4) one can obtain the average distance of direct visibility p12 

from point rl to point r2, which equals 

2 2 

P12 = (YoY12)-l (8.5) 

where 
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These formulas allow us to obtain the probability of direct visibility 

between arbitrary observers inside the layer of city buildings. If Z is the average 

length of screens (buildings) surrounding the points A (rl) and B(r2) (see Figure 

8.2), then the probability of intersections of the line AB with the building 

screens is equal to 

from here we can easily define the parameter yo as 

Here U is the density of buildings in the investigated area of 1 km2. The 

parameter yo determines the average horizontal distance of the line-of-sight 

p and p = yo1. 

Figure 8.2 The buildings' distribution between points A(r1) and B(r2). 
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The dimensions of reflpcted suface sections. Let us consider the case when 

the direct visibility exists between two points rl and r2. The point r2 belongs 

to the vertical screen (see Figure 8.3(a)). If a horizontal segment with length 

lcould be seen from the point r l ,  a vertical segment with width /can be seen 

from this point as well (see Figure 8.3(a)). Let us now determine the probability 

that from the point A(r1) the horizontal segment which includes the point 

B(r2) inside it can be observed. The vertical screen forms an angle !P with the 

line AB (see Figure 8.3(b)). After some straightforward calculations we can 

obtain the probability of direct visibility of the segment cd with the length I 
from point A at range r12: 

Figure8.3 (a)  Observation from point r2, the vertical screen with the horizontal segment 

of length I and the vertical segment of width I. (b) Geometry of single screen 

observation from point r2. 
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Figure 8.3 (continued). 

where I = [vr l2~12(s in  *I]-* is an average value of the segment cd; v is the 

density of buildings on the surface z = 0; y12 is the parameter determined in 

(8.6). From formula (8.7) it follows that the probability density of visibility 

of the segment [from point A is 

W e  have to note that the results obtained above are correct and, for the 

case of X, not equal to one. However, for this more general case, instead of 
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the formula (8.10) we have to introduce into (8.9) the following expression 

for the parameter E 12 : 

(8.12) 

The spatial distribution o f  scattering points. As was shown in [ 1 ,  21, the 

role of the one-time scattering is important when one of the antennas (mostly, 

the base-station antenna) is above the roofs' level, but another is below the 

building roofs. This case is presented in Figure 8.4, where the reflected point 

C is inside the building contour with the height h. The building orientation 

is determined by the angle V, to the vector (r, - rl). The receiver (or transmitter) 

is placed at the point B(r2), the transmitter (or receiver) is placed at the point 

A(r1). The density of the scattering points distribution can be presented as 

follows: 

(8.13) 

Figure 8.4 Three-dimensional geometry of single scattering from the screen. 
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Here, €1, and ~ $ 2  are described by (8.12) and PI, and P,2 are described 

by (8.9). The function H ,  describes the height profile of the urban-building 

layer. If we can divide all buildings on the surface into N groups with the 

height hi and with frequency p i ,  i = I ,  2, . . . , N, the function H ,  can be 

presented as: 

(8.14) 

where H(w) is the Heaviside function [ I ] .  If we now introduce the polar 

coordinate system ( r ,  q) with point B as a base point on the plane z = 0 

(Figure 8.4), then for discrete distributed sources the density of scattered point 

distribution can be presented as follows: 

a) for zl ,  2 2  < h 

2 
p ( r ,  p) = 0 . 5 ~ 7 0  rsin ( a / 2 ) ( r  + F)exp{-yo(r + F)} (8.15a) 

b) for zl < h, 2 2  > h 

(8.15b) 

or for yor>> 1 

2 
p ( r ,  q)  = O.5vsin (a/2){yohr(r  + r’)exp[-yo(F+ hr /q)] l z2}  

+ 0.5vsin2(a/2){(z2 - h)Fexp[-yoF]/h} ( 8 . 1 5 ~ )  

= P l k ,  q)  + p2(r ,  q)  

2 
where F = (d + r2 - 2 r d c o s ~ ) ~ ’ ~ ;  h is the average buildings’ height. From 

comparison between (8.15a) and (8.15c), the j r s t  summand in (8.15c), 

pi(?-, q), is the same as that described by (8.15a) for the case z2 = h. Both 

of them describe rare scatterers which are distributed over a large area of city 

far from the receiver. Additional significant changes in the scatterers distribution 

for the case z2 > h gives the secondsummand p2(r ,  q). For z2 = h, its value 

is zero, but even a small increase of z2 above h (i.e., when z2 > h)  gives an 



306 Radio Propagation in Cellular Networks 

essential influence on the total scatterers’ distribution according to (8 .15~) .  I t  

describes the “illumination” of a small area near the upper boundary of a 

building layer in the p-region of a moving transmitter, which can be determined 

by the buildings’ density (- Y) around the receiver. 

The distribution of repectedpoints. From numerous points of single scatter- 

ing in built-up areas, the more interesting ones are those of specular reflections, 

which are described by the geometrical optics laws. Thus we can present the 

density of points of specular reflections within the building layer as [ I ] :  

where Ph(z,) is described by formula (8.3) (see Section 8.1) with variable 

2 
(7 - 1) (22 - 21) 

2, = 22 - 
2(r-  cosp) 7 

(8.17) 

Here, we changed the variable r at the relative time r ( r  = ( r  + ?)/d) of 

one-scattered waves propagating from the transmitter to the receiver through 

the built-up using the function presentation (8.1%). We also assume that the 

height of point B (receiver) is higher than that of point A (transmitter) (i.e., 

22 > zl), and is higher than the average buildings’ height h (i.e., 22 > h). The 

contribution of each level in the building layer described by (8.16) is different 

from zero only for those values of r and 40, for which, for fixed heights 21 

and z2, the coordinate 2, lies inside the building layer (i.e., 0 < 2, < h). T o  

obtain the average number of points in the specular reflection, we integrate 

initially (8.16) over r and, then, over p. In other words, we analyze the 

reflection points’ distribution p ( r ,  p) in the arrival-angle domain and in the 

arrival-time domain considering that the building layer is uniform. This also 

assumes that within this layer the building heights’ distribution is uniform 

(i.e., hi = h = constant), and introducing the nondimensional parameter 

Let us now examine qualitatively how the specular reflection 
(22  - h)  

( 2 2  - 21)’ 
$ =  

points’ distribution is changed at the plane ( x ,  y) (at the real terrain surface). 

For this purpose let us construct the region G at which approximately 90% 

of specular reflected points are located. The boundaries of such a region will 

consist of arcs of ellipses with r = 70.9, for which 70.9 is determined from the 

relation 
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‘0.9 2lT 00 2n- 

(8.18) 

1 0  1 0  

and from the arcs of circles, the equations are: 

2 
7 - 1 = 2 4 7 -  cosp) (8.19) 

Equation (8.19) can be presented by using nondimensional coordinates 

5 = x / d  and 7 = y /d  in the following form: 

2 2  

(8.20) 
2 9 -  1 

From the illustrations in Figure 8.5, one can see how the region Gand 

its boundaries are changed with changes of height factor G from 0 to 1. In 

Figure 8.5, the region G and its boundaries (arcs of ellipses) are presented by 

the dotted curves, and the arcs of circles are presented by the continuous curves. 

These curves were constructed for the ranges between terminals 

d =  500m-600m, which is close to the conditions of the experiments carried 

out by Tadiran Telecommunications (see below). 

Estimations show that the region G is limited by a single ellipse with 

two focuses in the points A and B for 2 2  = h, (i.e., 5 =: 0), that is, for the 

receiving antenna (at the point B) located near the rooftops level of neighbor- 

hood buildings. The density of specular points distribution has a maximum 

height located near these points (Figure 8.5). 

Moreover, the specular points’ distribution does not equal zero at the 

segment (AB),  because there are some intersections of the segment (AB) with 

one of the arbitrary buildings (screens) which crosses the path AB (see Figure 

8.2, Section 8.1). With increase of the height of point B above the rooftops 

(when 2 2  > h) the region G, where these specular reflections are observed, is 

concentrated mostly around the transmitting point A. In other words, there 

is no specular reflection in the neighborhood of the receiving point B. Thus 

for 9 = 0.2 ( h  = 20m, 22 = 25m), the region which is “prohibited” for specular 

reflections has the shape of a circle, the center and the boundary of which are 

determined by (8.19). Moreover, this region with increase of height factor 

4 2 2  > h)  spreads (for 9 = 0.4, h = 2Om, 2 2  = 33m) and occupies all of the 

left half-plane (for 9 = 0.5, h = 20m, 22 = 40m). With further increasing of 

height factor ~ ( s  + I), the specular reflections can be obtained only in the 

neighborhood of point A. Hence, with an increase in height of observing point 
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11 
t 

6 = 0.4 

B 

= 0.7 < = 0.5 6 =0.2 
B B 

< = 0.3 

Figure 8.5 The region G and its boundaries change with changes in height factor from 

0 to 1. Here the region G and its boundaries (arcs of ellipses) are presented 

by the dotted curves, and the arcs of circles are presented by the continuous 

curves. 

B relative to the average height of buildings surrounding it (with an increase 

gfrom 0 to 1) the built-up area, where the specular reflected points are observed, 

limits the neighborhood of point A (see cases 9 = 0.6, 2 2  = 50m and 

9 = 0.8, 2 2  = 1OOm). 

Muhiscattering effects. The same analysis as above can be carried out for 

the multiscattering phenomenon from the buildings (screens). Using the above- 

mentioned Poison distribution, we can finally calculate the probability of the 

event of at least one ray being received after n-time scattering from the randomly 

distributed screens: 

P,= 1 -  (8.2 1) 

Here, the average amount of n-time scattered rays from the screens can 

be obtained from the probability of the scattered points’ distribution 

p, (roIq ,  r2, - * * r,): 
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where 

The angle cri is an angle between vectors (ri+l - ri) and (r; - ri-1) for 

all i = 1 ,  2, . . . , n;  (ro, r l ,  1-2, . . . , r,) are the radius-vectors of points 

A ,  C1, C2, . . . , C,, B, respectively (see Figure 8.6). The examples of average 

values of one-, two- and three-times-scattered rays from the randomly distrib- 

uted buildings can be presented by using the Macdonald functions K,( w )  of 

the order n = 1 ;  2; 3 ,  respectively: 

The probability that a single scattered wave (curve l ) ,  a double scattered 

wave (curve 2) ,  and a three-times scattered wave, calculated according to (8.21) 

to (8.23), can be observed at the range of 1-2 km from the source is presented 

in Figure 8.7. In microcellular conditions ( r <  1-2 km), the probability of 

observing at the receiver single-to-three-times scattered waves is equal to the 

unity. At the same time, at short ranges from the transmitter only one-time 

scattered waves can be observed. At the far zone the effect of the multiscattering 

becomes stronger compared to the single-scattering effect. 

8.2.2 Field Intensity Attenuation in the Building layer With Randomly 
Distributed Buildings 

The problem o f  single scattering. Let us consider the city building layer described 

by the random surface S ,  which was introduced earlier as a superposition of 

a flat-perfect reflecting surface S1 and of a random built-up relief S2 (see Figure 

8.1). Taking into account the approach presented in [ 1,28-321, we can present 
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B B 

A 

Figure 8.6 Geometry of multiscattering from n randomly distributed screens. 

the field over the rough terrain using Green's theorem in its integral form (see 

Chapter 2) : 

(8.24) 
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0.2 . 

d, km 

Figure 8.7 Probability to observe single-, double-, and three-times-scattered waves in the 

microcell ( d  < 2-3 km) environment. 

where Ui(r2) is the incident wave field, G(r2, r,) is Green’s function of the 

semispace (Section 2.2) 

and n, is the vector normal to the terrain surface S a t  the scattering point rs. 

Here r[ is the point symmetrical to rl relative to the earth’s surface S1; 
k = 2 7 ~ / A ,  A is the wavelength. We consider in integral (8.24) the random 

surface S (relief of the terrain with obstructions) as the superposition of ideal 

flat-ground surface S1 ( z  = 0) and the rough surface S2 that is created by the 

tops of the obstructions. We construct Green’s function in such a form (8.25) 

to satisfy a general electrodynamic approach. That is, to describe both vertical 

(sign “+” in (8.25)) and horizontal (sign “-” in (8.25)) polarization with the 

corresponding boundary conditions. In fact, by introducing Green’s function 

(8.25) with sign “+” in integral (8.24) we satisfy the Dirihlet boundary condi- 

tions at the flat (nondisturbed) earth’s surface S1 ( z  = 0), that is, Gz,O = 2 

and - = 0. At the same time, using sign “-” we satisfi- the Neumann boundary 
au 
an, 
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conditions at the plane z = 0, that is, G z , ~  = 0 and U = 0. We must notice 

here that the authors in [ l ]  used only Green's function with sign "-" and, 

hence, despite the fact that they have declared the possibility of using their 

approach in a general electrodynamic case, their analysis presented is correct 

only for the scalar case or for the electrodynamic case of wave propagation 

with horizontal polarization. 

Hence, if the source is described by formula (8.25), assuming the surface 

S1 as perfectly reflecting, we can exclude the integration over nondisturbed 

surface S1 using the approach presented in [32, 331 (e.g., using the integration 

only over disturbed surface S2, and immediately reduce the scattered field 

presentation (8.24) in the following form): 

S 

a a a  

Using the Kirchhoff approximation [28-331, let us determine the scattered 

field U,(r,) from the building layer as a superposition of an incident wave 

Ui(r,), the reflection coefficient I'(p,, r,), and the shadow function 

Z(r2, rl) ,  which equal 1, if the scattered point rs inside the city layer can be 

observed from both points r1 and r2 of the transmitter and receiver locations 

(see Figure 8.8), and equals zero in all other cases. Taking into account what 

is mentioned above, the last formula (8.26) can be rewritten in the case of 

single scattering as 

r, - rl 
where sinp, = n, * ~ 

Ir, - t l  I 
Assuming now that A 

(see Figure 8.8). 

<< p, hi, zl , 2 2  << I r2 - rl I, where p is deter- 

mined by (8.8), z l ,  2 2  are the height of source and receiver, respectively, and 

hi is the height of a local obstacle placed on flat terrain, we can present the 

term (n, V,)G(r2 r,) in integral (8.27) approximately as iksin@,G(r2, r,) 

(this follows from the geometry presented in Figures 8.5 and 8.8). Using this 

approximation we finally obtain from (8.27) 
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Figure 8.8 Two-dimensional geometry of single scattering from the screen. 

According to [l],  we assume in (8.28) that the coefficient of reflection 

from the building surface, r(p,, rj), is a random but independently distributed 

function at the building surface, that is, (I'(p,, rj)) = 0. If so, one can obtain, 
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after averaging (8.28) over the phase interval [0, 2 7 ~ 1  with equal probability 

of the phase distribution for the coefficient of reflection and over the position 

of all buildings, the following expression for average field strength: 

As seen from (8.27), the average field at the receiving point can be 

The knowlege of average field strength allows us to present the correlation 

determined by the probability of signal reception PI2 according to (8.4). 

function of wave field K(r2, r;) = ( U(t.2) * cT*(ri)) in the following form: 

(8.30) 

As stated above for mean field strength, we must use the procedure of 

averaging over the buildings' number, their reflection properties, and their 

spatial distribution to derive the correlation function presented by (8.30). We 

will do this procedure step-by-step, first by averaging (8.30) over the phase 

interval [0, 27~1 with equal probability of the phase distribution for the coeffi- 

cient of reflection (the result we denote as Kr(r2, ri)). The result is 

(8.3 1) 

Here, both points r2 and ri are located at the same building screen. If we now 

introduce at each building screen a local coordinate system (6, rl}  with the 

origin at the point r: and with the axis Oeoriented vertically and the axis 0~ 

oriented horizontally with respect to the ground surface, we can determine in 

this coordinate system the following correlation function for the reflection 

coefficient: 
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and obtain from (8.3 1) after integration over 6 and that 

(8.33) 

4 klh 

1 + (kIh)2(cos@, - cospo,) 
2 x exp{ ikl cos(p - po) }  

4 kl, 
1 + (kl,)2(cos8z - cost91) 2 

where 

(see Figure 8.8). Here the typical correlation scales, Ih and I,, describe the 

correlation distances in horizontal and vertical directions for each invidual 

screen, as an obstruction (i.e., a typical distance between balconies, windows, 

a typical height of a floor in a building, and so on). 

After averaging over the buildings’ spatial distribution and their numbers 

for klh >> 1, kl, >> 1 we obtain the following expression for the correlation 

function of total field in built-up areas: 

J 

V 

where P(r1, r) is the probability of direct visibility between two points rl and 

r according to (8.4). The relieffunction Ph(z)  is defined by (8.3); PBDaccording 

to (8.9) determines the probability of the event that the wave, after scattering 
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from point r and after arriving at point r2 under the angle (9, will illuminate 

the horizontal segment Ioriented to (r2 - rl)  under the angle PO (see Figure 

8.8); ( u ( r 2 ,  r, r l ) )  is the differential cross-section of scattering from buildings: 

the angle between vectors (rS - rl)  and (r2 - rs) (see Figure 8.8). 

The integration in (8.34) is over the volume V o f  the urban building 

layer, where dr is the element of volume Vin three-dimensional space. 

We must note that formula (8.34) fully determines the correlation func- 

tion in the short-wave (VHFK-band) single-scattering approximation. From 

this formula, according to the relation between the correlation function and 

the average intensity of the total field, one can determine the latter function 

as: 

The average intensity of scattered field at the observed point r2 can be 

obtained from (8.36) according the approach presented in [ I ] ,  taking into 

account (8.4) and (8.25): 

where there is the absolute value of the average reflection coefficient introduced 

earlier in (8.32) and (8.35). 

As is well known [ l ,  2, 28-33], the total wave field intensity from 

the transmitter is a superposition of a scattered (incoherent) spectrum ( Iinr) 

described by (8.37) and a coherent spectrum (I,) of total field energy which 

can be presented as [ l ] :  

d ( h  - z l )  [sin(kzl z2)/dI2 

z2 - 2 1  ] 47.r2d2 
(8.38) 
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For the case 2 2  = h, the single-scattered wave intensity ( Z i n c )  = 0, 

(i.e., is equal to zero), the physically incorrect result, which follows from 

[l] .  T o  correct formula (8.37) we must consider the process of diffraction 

from buildings according to [2], which will be done in the next section. 

Nevertheless, (8.37) correctly describes the frequency dependence of the 

propagation process inside the layer of city buildings: - f -" with n < 0 for 

frequencies in the VHF-band and lower part of UHF-band (f<< 1 GHz), 

and - f-" with n > 0 for UHF-band and higher (f> 0.5 GHz). This 

complicated frequency dependence is seen from (8.37) for the opposite 

cases of h >> [27~I,yO(h- 21)12 (in this case we have - f l )  and 

[A << 27~I,yo(h - zl)]  (here we have - f - ), respectively. As was shown 

from additional estimations, the frequency dependence below 100 MHz is 

The multi-scatteringproblem. In the case when both antennas are below 

the rooftop level (0 < z l ,  z2 < h) ,  the effect of multiscattering from the build- 

ings becomes stronger than the effect of single-scattering. The evaluation of 

statistical field characteristics is a very complicated problem, because in this 

case many randomly distributed nontransparent screens (buildings) are placed 

between receiver and transmitter and form the complicated multi-ray field at 

the observation point. However, in certain cases the problem is analogous to 

the one described above. According to the approach presented in [I] ,  let us 

calculate the average intensity of the scalar field from the point source. As 

above, the two-dimensional nontransparent screens with average length L and 

average height h are randomly distributed along the earth's surface. Their spatial 

distributions are independent on the plane z = 0 and their average density 

2 

2 2 1 

-fO. 

is U .  

For the case 0 < z l ,  2 2  < h, the probability of direct visibility between 

two points rl(x1, y1, z l )  and rz(x2, y2, 2 2 )  is determined by the expression: 

where as above, yo = 2 y L / 7 ~ ,  ~ 0 '  = p is an average horizontal range of the 

direct visibility within the layer 0 < z < h. We assume as well that the reflection 

coefficient r is distributed randomly (but independently) on the building 

surface. Thus, (r) = 0. The inhomogeneity of the screen surface is described 

by the scales of correlation of the coefficient r in the horizontal, Ih, and the 

vertical, I,, directions. We also assume that I h ,  I ,  << h, p, L. As above, we 

present the source field G(r1, r;) at the point r1 above the surface z = 0 through 

the conventional Green's function of free space: 
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G(q,  r2) = G(r1 - 1-2) _+ G(r1 - r i )  (8.40) 

where r’ is the point symmetrical to the point r relative to the plane z = 0. 

Obviously, G(q ,  1-2) is Green’s function of the semispace. Using Green’s 

theorem and the expansion of Green’s function into the set (see Section 2.1) 

and assuming that klh, kl, >> 1 and kzl >> 1, but zl < b, we obtain the 

coherent part ( Zco) of average intensity of the total field: 

For the incoherent part ( lint) of the total field intensity, we can use the 

Laplace method [I]  to obtain a simple formula for the case yop >> 1 and 

a = yJ/8 as well: 

As seen from (8.42), the first term in brackets is the average intensity of 

the single-scattered wave: 

Other terms do not essentially change the value of the total intensity at 

the distances po < Sy0/ .ra2.  This is correct for the real condition of closed 

communication channels between moving responders in a city area with ran- 

domly distributed buildings. We can also present the coherent part in a more 

accurate form than in (8.38): 

(8.43) 

so that the total field intensity is: 

or the path loss in dB is given by (see definition of path loss in Chapter 1): 
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Additional investigations have shown that we have to take into account 

the effect of diffraction from the building rooftops. This is important for the 

upper part of UHF- and L-frequency-band and for urban channels longer than 

1 km, an effect that will be analyzed in the next section. 

8.3 Effects of Diffraction From the Building layer 

Let us now examine the influence of diffraction phenomena on the field 

intensity attenuation. Here we consider the field diffraction phenomenon due 

to buildings' rooftops. As follows from formula (8.37), for the case of a receiving 

antenna located at the roofiop level ( 2 2  = h) ,  the physically incorrect result 

that the average intensity of the received signal is equal to zero can be obtained. 

Evidently, to exclude this result, one must take into account the effect of 

diffraction of the scattered field above the building layer. To account for this 

effect we use the Huygens-Kirchhoff approximation. For the derivation of the 

diffraction field we introduce the surface SB of virtual sources that is normal 

to the building layer S a n d  the surface of infinite semisphere SR that contains 

the source of radiation inside it, as shown in Figure 8.9a. The effect of all 

virtual sources placed at the semisphere SR is negligible, because it is limited 

to zero when the radius of this semisphere is limited to infinity. Then the field 

U(r2) at the receiver can be rewritten as 

(8.45) 

where U(rsE) is the field at the surface SB obtained by use of approximation 

(8.27) for single scattering; cos #s, = (ns, (r2 - rsB)/ 11-2 - rs, I), ns, is the 

unit vector normal to surface SB (Figure 8.9a). If so, the average intensity of 

received field (Z(r2) )  = ( U(r2) U*(r,)) can be presented according (8.27) as: 

(8.46) 
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Figure 8.9 (a) Geometry of single scattering and single diffraction over the built-up layer. 

(b) Geometry of double scattering and double diffraction over the built-up 

layer. 
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where K(rS,, ri,) is the correlation function of total field at points rS, and 

ri,  located at the surface SB in conditions when the source is located at the 

point rl : 

Here the reflection coefficient r(ps, rS) and the shadow function 

Z(r2, rl) ,  as well as other parameters are introduced in Section 8.2. By averaging 

(8.47) over the nontransparent screens spatial distribution, over their number 

and over the reflection properties of screens [ I ] ,  after straightforward derivations 

we finally obtain the following formula for the single-scattered field taking 

into account 

(Z('2)) = 

For the 

the diffraction from the building layer: 

r h  I ,  
[ ( A d / 4 r 3 )  + (z2 - h)2]1'2 

8 r [ A 2  + (2rI,70(h - 2 1 ) ) ~ ] d ~  
(8.48) 

case where the base-station antenna, as a receiyer, is higher than 

the average building height, that is ( A d / 4 r S )  << ( 2 2  - h)L (8.48) is limited 

to the incoherent spectrum (8.37) obtained above without taking into account 

processes of diffraction. Moreover, with increase of z2, the process of diffraction 

becomes more im ortant and for 2 2  = h the single-scattered wave intensity 

(Zinc) - ( A d / 4 v 3 P 2  (i.e., is not equal to zero, as follows from results obtained 

in [l]). In both cases the distance dependence is only the same -J3 when 
3 2 ( A d / 4 r 3 )  << ( 2 2  - h)2. In the inverse case, when ( A d / 4 r  ) >> (z2 - h)  

this dependence is -d-2*5. In this case as well, the frequency dependence is 

changed from -f' and -f-', when there is no diffraction, to - f o S 5  and 

-f-O.5, when diffraction is predominant. The coherent spectrum (Zco) of the 

total field energy can be presented by (8.38). 
The same result can be obtained for double scattering with double diffrac- 

tion, as presented in Figure 8.9b. Here the wave propagates from source point 

rl.  After scattering at any point r inside the building layer and diffraction on 

the tops of obstacles surrounding the transmitter and receiver (double diffraction 

that we account for by introducing two virtual sources rs, and r i B  at surface 
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SB, as follows from Figure 8.9b) it finally scatters from any point r' and comes 

to the receiver placed at point r2. Using the same presentation of average 

intensity of total field, as (8.46): 

(8.49) 

where K(rs,, ri, j r, rl) and K(rs,, r i B  j r', rl) are the correlation functions of 

the total field at the surface of virtual sources of diffraction which is determined 

by (8.47). After averaging of (8.49) over the nontransparent screens spatial 

distribution, over their number, and over the reflection properties of screens, 

we obtain the following formula for the double-scattered field taking into 

account double diffraction from the building layer: 

(8.50) 

In this more general case, the average intensity attenuates proportionate 

to -J3 with the increase of distance between subscribers, which is closer to 

measurements than that obtained proportionate to - d- from (8.42) without 

considering diffraction. Moreover, (8.50) correctly describes the frequency 

dependence of the propagation process inside the layer of city buildings: -f-" 
with n < 0 for frequencies in the VHF-band and lower part of the UHF-band 

(f<< 1 GHz), and - f-" with n > 0 for the UHF-band and higher 

(f> 0.5 GHz). This complicated frequency dependence can be clearly 

seen from (8.50) for the opposite cases of A >> [2r l ,yo(h-  zl)]  and 

A << [2rl ,yO(h- z l ) ]  , respectively. 

2 

2 2 

2 2 

8.4 Influence of the City Building Profile 

Let us now consider the influence of the city building profile on the average 

field intensity for the case of single-scattered waves. Taking into account that 

the real areas of the urban environment are distributed inhomogeneously, we 

must present the probability of direct visibility between two points, rl and 1-2, 

according to (8.4) as 
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where r12 = [(x2 - ~ 1 ) ~  + (y2 - y1 )2 ]112 .  Function Ph(z) was introduced earlier 

in Section 8.2.1 as the probability that point z is located below the building 

roof's level. According to (8 .3) ,  this function is related to density of building 

heights' distribution w (  h). The average height of buildings in the investigated 

urban area also related to the function w ( h )  as 

h = h'w(h')dh' (8.52) i 0 

Taking into account (8 .3)  and assuming the height profile of buildings 

inside the city layer in the following form: 

n > 0,O < Z <  h2 

we can obtain for the case of yor >> 1 the following expression for the 

incoherent part of the total field intensity: 

(8.54) 

Here 

function f ( x )  equals: 

f ( x )  = yod(1 - x)-' Ph(z2x')h' + lnPh(z2x) i 0 

(8.55) 

(8.56) 
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but x, is determined from df(x)/du = 0. The function H ( x )  is the Heaviside 

“step function,’’ equal to 1, if x > 0, and equal to 0, if x < 0. 

The coherent part of total field intensity can also be obtained more 

generally taking into account the function’s Ph(z)  distribution: 

As can be seen from (8.54) to (8.57), the character of field intensity 

attenuation depends on the function’s Ph(z)  distribution, which we presented 

in a more general form than in [l] .  Thus, for n >> 1 Ph(z)  describes the case, 

when above the city layer with height hl, buildings with hi > hl very rarely 

exist. For n << 1 we obtain the case, when all buildings inside the city layer 

have heights close to b. For n > 0, all buildings have the same level equal to 

b, for n < 00 all buildings have the same level with hl. Hence, the height 

distribution (8.53) describes a wide spectrum of city building models: from 

one-level up to various levels with heights hi of buildings distributed with equal 

probability from hl up to h2 (the minimum and maximum heights of a city 

layer), when n = 1. For the case 2 2  > b and ( 2 2  - h)/d<< 1 for n > 0.2 

(quasi-homogeneous distribution of building heights), one can obtain from 

(8.53) and (8.54) the intensity of single-scattered waves: 

without diffraction phenomena, and 

taking into account diffraction from buildings’ corners and roofs. One  can 

obtain the same result according to (8.50) for double-scattered and double- 

diffracted waves: 

(8.59) 
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(8. 6Oa) 

and 

where the average building’s height h is determined by 

h = h2 - n(h2 - hl) / (n  + 1) 

Comparison between formulas (8.58), (8.37)’ 

(8.60 b) 

the following expression 

(8.61) 

and (8.48) allow us to 

conclude that the existence of a building distribution profile (8.56) does not 

change the dependence of field attenuation with distance d a n d  with changes 

of height 2 2 ,  but it gives an additional effect for the frequency dependence of 

field intensity. Moreover, the profile (8.56) limits to (8.60) for the case of 

quasi-homogeneous distribution of buildings’ heights. What also follows from 

(8.60) is that this building heights’ distribution is more general and realistic 

then that obtained in [ 11. Hence we can with great accuracy approximate the 

city layer with an inhomogeneous building heights’ distribution (8.56) by the 

quasi-homogeneous one according to (8.60) with some average height h from 

(8.61). 

8.5 Numerical Simulation of Scattering and 
Diffraction Phenomena 

To examine the influence of different propagation phenomena, such as multire- 

flection, multiscattering, and multidiffraction, as well as of the parameters of 

city building and the situation regarding both antennas on field intensity 

attenuation, we separately calculated and investigated the coherent and incoher- 

ent parts of the total field for two variants of scattered field obtained above: 

single and double scattering with diffraction. We also examined the case of 

inhomogeneous distribution of the building layer, taking into account its profile 

described by formulas (8.60a) and (8.60b) for different parameters of the 

polynomial function f’(z) .  
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In the first case of single-scattering with diffraction, we numerically 

examined the terms -1Olog( Iinc) and -IOlog( I,,), according to for- 

mulas (8.58b) and (8.57), respectively, and the total loss by formula 

-1Olog( Itoral) = -lOlog[( Iinc) + (I,,)]. W e  present this case at the top side 

of all figures. For the case of double-scattering with diffraction we derived 

formulas (8.59) and (8.57) by using the same form: -lOlog( Iinc), -1Olog( I,,), 

respectively, and the total field as - 10 log( Iroral). In our simulations we changed 

the parameter n of the polynomial height profile hi(z) to be close to the tall 

buildings’ height ( n  = 0.1, n << l ) ,  for the case where hi(z) is uniformly 

distributed between hl and h ( n  = 1) with the mean value h = (hl + h ) / 2 ,  

and for h;(z) close to low buildings’ height hl ( n  = 5, n >> 1). 

Results of numerical calculations for all the above-mentioned variants 

are presented in Figures 8.10 to 8.12 for various situations in the city scene: 

(a) 22 = 50m, zl = 2m, h = 25m, hl = 5m (Figure 8.10); 

(b) 22 = 10m, zl = 2m, h = 25m, hl = 5m (Figure 8.1 1); 

(c) 22 = 4m, 21 = 2m, h = 25m, hl = 5m (Figure 8.12). In these cases 

we obtain from (8.61): h =: 23m, for n = 0.1; h = 15m, for n = 1; h =: 8m, 

for n = 5. 
In the case (a), when z1 < hl < h << z2, results of numerical simulations 

according to the model of single-scattering (MSS) (top-side of Figure 8.10) 

and the model of double-scattering (MDS) (bottom-side of Figure 8. lO), take 

into account the diffraction from buildings surrounding both antennas. The 
coherent part (dotted curves) of the total field exponentially attenuates with 

sharp oscillations up to -500m-700m from the source. Beyond this range the 

smooth decay of (I,,) is observed. As for the incoherent part ( (in,) of the 

total field (dashed curves), the stronger attenuation according to the polynomial 

law is observed at the whole range from the transmitter up to 3-5 km 
(for “microcell” ranges). At the same time, as follows from the top-side graph, 

the coherent component of the total field exceeds the incoherent one at ranges 

up to 3-4 km (denoted by points at the curve’s intersection), that is, the effects 

of scattering from buildings is important only for far zones from the transmitter. 

In areas near the transmitter (less than 1 km) only direct waves and waves 

reflected from the building layer, which form the coherent component of total 

wave field, reach the point of observation. 

With decrease of the height of the transmitter (22 = 10m, case (b)), when 

zl < hl < 22, 22 < h ( n  = 0.1, 1) and 22 > h ( n  = 5), as follows from illustra- 

tions in Figure 8.1 1, both models, MSS and MDS, predict the same effects 

that were presented earlier in Figure 8.10. In fact, at the ranges 3-4 km from 

the transmitter, the direct component (coherent part) of the total field exceeds 

the scattered component (incoherent part). 
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Figure 8.10 Incoherent and coherent parts of total field intensity versus distance from the 

transmitter for single (top side) and double scattering (bottom side) with 

diffraction for zl = 2/77, z2 = 50m, hl = 5/77, h2 = 25/77, n = 0.1, 1, 5. 
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Figure 8.11 Incoherent and coherent parts of total field intensity versus distance from the 

transmitter for single (top side) and double scattering (bottom side) with 

diffraction for z2 = 10m. 
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Figure 8.12 Incoherent and coherent parts of total field intensity versus distance from the 

transmitter for single (top side) and double scattering (bottom side) with 

diffraction for z2 = 4m. 
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In the case when both antennas are below the building’s height profile 

(i.e., zl < hl < 22 < h < i ~ ,  case (c) mentioned above), which is presented in 

Figure 8.12, two models, MSS and MDS, predict the existence of break points 

at the ranges of 1-2 km (for MSS) and at the ranges 3-4.5 km (for MDS), 

the effect that depends on buildings’ height distribution (on the parameter n 
in (8.60)). Moreover, using MDS we obtain the increase of the scattered 

component (incoherent part) and, finally, of the total field beyond the break 

point r6 - 3-5 km from the transmitter. 

8.6 Prediction of Path loss in Various Urban Environments 

We compare the results of theoretical prediction of the total field intensity 

attenuation according to the proposed parametric model with results of the 

experiment carried out in Israel and Jamaica [3]. Using the proprietary wireless 

local loop system, measurements of the radio signal strength indication (RSSI) 

were produced in the various urban and rural environments. W e  present below 

some experimentally obtained results and their comparison with the above 

theoretical model. 

In the measurement system the stand-alone radio port unit (RPU) played 

the role of the transmitter. The fixed access unit (FAU) was used as the receiver 

which during the experiment was moved from point to point. The RPU and 

the FAU communicate using frequency hopping in one of the specified fre- 

quency bands. According to the FAU specification, its measurement accuracy 

is equal to 2 dB. The measurements have been produced in three cities: Kingston 

(Jamaica), Holon and Jerusalem (Israel). The terrain in Kingston as well as in 

Holon is relatively flat while the terrain of Jerusalem is hilly. The urban 

condition in Kingston is rural. The notion of the small and medium urban 

area is more relevant to the Holon and Jerusalem propagation conditions, 

respectively. Two or three samples were taken at each point and the average 

values based on these measurements were found. T o  determine RSSI values 

from the above expressions of average intensity of the field, we have to multiply 

these expressions by the effective antenna aperture that is equal to A / 4 7 ~  [34]. 
Let us consider the two cases with the quasi-flat terrain, Holon and 

Kingston. In both cases the frequenr  band is 1.9 GHz. In the former case 

the building density is U = 258 km- , the average building length L = 30m 

and the average building height h = 13m. The RPU installation height 

was 22 = 30m and the FAU height 21 = 6m. In the latter case (Kingston), 

the urban conditions can be described by the following parameters: 

U = 2 13 km , L = 32m and h = 1 Om. The installation heights of the receiving 

and transmitting antennas were also different from the previous case: 

2 

-2 - 
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22 = 26m and 2 1  = 11.2m. Additionally, in this and all the following cases, 

we assumed two things. First, the vertical correlation scale is significantly larger 

than the wavelength and is equal to I ,  = 1.85m. Secondly, almost all the 

buildings are made of concrete (this is a rough assessment) with parameters 

found in [14]. Based on these results we shall take the relative permittivity of 

concrete E = 6.49 and its conductivity CT =: I .37 mho/m. The comparison 

between measurement and simulated results of the total field intensity 

-lOlogZ(r) = -lOlog[Zinc(r) + I,(r)] according to the MSS with diffraction 

(8.58b) and (8.57), and to the MDS with diffraction (8.59) and (8.57), pre- 

sented in Figures 8.13(a,b), respectively, for the Holon case (for quasi-uniform 

distribution of buildings’ height with n = 1). Here, the samples of measurement 

are indicated by circles. The theoretical function of RSSI and the straight line 

that is close to it in the mean square metric are shown by the solid and dashed 

lines, respectively. The indicated number pair is the standard deviation value 

(StDiv) and the following distance (in the l2-space metric) between two point 

sets: 
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Figure 8.13 (a)  Comparison between the measured (circles) and calculated (continuous 

curve) average total field intensity according to single-scattering model 

obtained for conditions of the Holon area. (b) The same, as in Figure 8.13(a), 

but by use of double-scattering model. 
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Figure 8.13 (b) (continued). 

(8.62) 

Here, N is the set dimension, Rj and ri are respectively the measured 

and theoretically obtained RSSI value. The indicated deviations have been 

computed as deviations between the measured RSSI values and the correspond- 

ing points on the above-mentioned straight line. 

In Figures 8.14(a-d) we present results of the comparison between the 

measurement results obtained in Kingston and the theoretical prediction results 

obtained according to the parametric model with the same uniform (with 

n = 1) distribution of buildings' height. After selection, the measurement results 

have been divided into two groups relating to the availability of the LOS for 

the chosen FAU location. The results for LOS conditions have been shown 

with theoretical results in Figures 8.14(a,b) according to the single- and double- 

scattering parametric models taking diffraction into account, respectively. The 

NLOS results are presented in Figures 8.14(c,d). In Figure 8.14(c) these results 

are compared with the predicted ones according to the MSS and in Figure 

8.14(d), they are compared with the prediction of the MDS. 
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Figure8.14 (a) The same, as in Figure 8.13(a), but obtained for the LOS conditions in the 

Kingston area by use of single-scattering model. (b) The same, as in Figure 

8.14(a), but obtained for the LOS conditions by use of double-scattering 

model. (c) The same, as in Figure 8.14(a), but obtained for the NLOS 

conditions in the Kingston area. (d) The same, as in Figure 8.14(b), but 

obtained for the NLOS conditions. 

The results presented in Figures 8.13 and 8.14 show that in small urban 

and rural environments the proposed parametric model gives a good explanation 

of the signal intensity decay both in LOS conditions, by use of the single- 

scattering model with diffraction, and in NLOS conditions by use of the 

double-scattering model with diffraction. 

A greater challenge than in the previous cases was to apply the above 

assumption of quasi-smooth built-up terrain with n = 1 to the Jerusalem condi- 

tions. The major problem is the nonflat terrain profile of Jerusalem and the 

existence of substantial height differences between relatively close points in the 

area. In this situation, in the urban scene the accuracy of the theoretical 

prediction is reduced. Additionally, the complex terrain can affect the distance 

of direct visibility and this influence, that is the diffraction phenomena, has 

to be taken into consideration. T o  overcome these difficulties, we took into 
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Figure 8.14 (b) (continued). 

account the ground height for determining the actual FAU height as a function 

of its location. We added the ground heights to the building heights as well 

and then determined the average building height. Moreover, we obtained from 

the topographic map that we can approximate the built-up layer profile by the 

polynomial functions (8.60) with the parameter n that lies from 4 to 6. From 

the topographic map of Jerusalem, we obtained the following parameters of 

the built-up terrain: the building density is Y = 1039 ~uTI-~, the average building 

length is Z = 18m, and the average building height (not including the local 

ground height) is h = 8.3m. All the local ground heights were determined by 

using the GPS system. The measurements were made at 930 MHz bandwidth 

using the transmitting antenna with a height 2 2  = 42m. The results are pre- 

sented in Figures 8.15(a,b). In Figure 8.15(a) the measurement results are 

compared with the single-scattering model with diffraction according to formu- 

las (8.58b) and (8.57). In Figure 8.15(b) we show the prediction according to 

the double-scattering model, tahng into account diffraction from the buildings' 

roofs according to formulas (8.59) and (8.57). Results of calculations presented 

both for n = 1 (uniform terrain) and n = 5 (nonuniform terrain). 
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Figure 8.14 (c )  (continued). 

As follows from presented illustrations, the poor convergence between 

the theoretical prediction and experimental data in the last case that was 

obtained in Holon and Kingston, can be improved at least on 3-7 dB by 

taking into account the real built-up layer relief. In any case the proposed 

parametric model still gives more accurate predictions than the Hata small- 

medium model [ 151. The comparison between experimental results obtained 

in Jerusalem and the calculations according to the Hata small-medium model 

is presented in Figure 8.16. In this case, the value of the standard deviation 

is about twice as large as that obtained by using the parametric model. Addition- 

ally, we have to note that one of the substantial advantages of the presented 

method is its relative simplicity and that it does not need to be calibrated. 

Summary 

In this chapter we presented the three-dimensional model of wave scattering 

and diffraction from randomly distributed buildings and other kind of obstacles 

placed in rough terrain. Using such a model we can accurately predict the loss 
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Figure 8.14 (d) (continued). 

of characteristics in built-up areas for various kinds of terrain profile and 

for different positions of transmitting and receiving antennas with respect to 

roofiops. Using this multiparametric model and its input parameters, such as 

the buildings’ spatial distribution, their density over the terrain, as well as each 

building’s characteristic dimensions and reflection properties, one can describe 

the coverage effects and construct a “radio map” of the built-up area under 

consideration. 

Furthermore, as shown in Chapter 9, this probabilistic approach allows 

us to obtain the characteristic scale of cellular maps of built-up areas for various 

situations of receiver and transmitter (stationary or moving, higher or lower 

with respect to building heights) in the urban scene. 



Propagation in an Urban Environment With Nonregularly Distributed Buildings 337 

JeNsabm:~-r ing.  
I 1 i i i i 

0 1 

n m l :  StDhr=5.95dB SqEn=13.75dB 
0 O 0  

n = S :  StDhr15.84dB Sq€m=13.54dB 

0 o o 8  

OO 

O 0  0 

-- 
0 1 

-100 
0 

Figure 8.15 (a)  The same, as in Figure 8.14(c), but obtained for the Jerusalem area 

use of single-scattering model. (b) The same, as in Figure 8.14(d), but 

obtained for the Jerusalem area by use of double-scattering model. 
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Figure8.16 The same, as in Figure 8.15(a) but obtained by use of Hata model. 
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Cel I u la r Systems Concept 

Usually, in the literature for designing wireless systems, the cellular concept of 

wireless communication in built-up areas is introduced [ 1-93, which allows 

the designers of such systems to assume decreased natural background noises 

within the propagation channels, and to exclude deep interference phenomena 

from affecting the signal at the input of receiver. 

These phenomena are mostly manifested for moving subscribers, that is, 

for mobile communication systems, so the cellular concept is presented here 

mostly for the purposes of mobile communications. Let us ask a question: 

What is the cellular principle and how may we construct each cell in a completed 

cellular system? 

The simplest radio cellone can construct uses a base station (radio port) 

at the center of a cell and predicts the coverage area from this station’s antenna. 

This coverage area is defined by the range where a stable signal from this 

station can be received. Figure 9.1 illustrates the distribution of such cells. As 

seen, there exist regions of overlap with neighboring radio cells, where stable 

reception from neighboring base stations can be obtained. From this scheme 

it also follows that different frequencies should be used in these cells which 

surround the tested central cell. O n  the other hand, the same frequencies can 

be used for the cells farthest from the central one. This is the celh repeating 

or reuse ofo~eratingfi.equencies principle. At the same time, the reuse of the 

same radio channels and frequencies within the neighboring cells is limited by 
preplanned cocbannel inteference. Moreover, in the process of cellular systems 

design in various built-up areas, it is important to predict the influence of 

propagation phenomena within the corresponding communication channels 

on variations of the main parameters of the cellular system, and on the construc- 

tion and splitting of cellular maps. All these questions will be discussed below. 

345 



346 Radio Propagation in Cellular Networks 
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Figure9.1 The concept of cell distribution and cellular map pattern. 

9.1 Main Characteristics of a Cell 

Now we will describe the main characteristics of a cell. The real distance from 

the center of a cell, where the base station is located (based cell), to the center 

of the repeat cell(which is denoted in Figure 9.6 (see below) by the same letter) 

is called the reuse distance, D. The cell size is determined by its radius, R 
Relationships between these main parameters will be presented later. 

Now let us consider the radio coverage of a single cell, which is presented 

in Figure 9.2 according to [ 5 ] .  Here, the base station antenna radiates a power 

PT; the antenna gain is GT. Together they can give a suficient transmitted 

power, for example, in excess of 1OW. A sensitive low-noise receiver, a portable 

transmitter, and an elementary antenna (for example, a telephone antenna), 

are assembled within the car, as in Figure 9.2. Because the signal decay is 

stronger when increasing the range between the base station and a car, it is 
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Figure 9.2 The fundamental radio cell and associated parameters. 

important to obtain the law of signal decay versus this range. Using this law 

of signal attenuation, one can evaluate the range of stable reception of signals 

from both sources. Hence, to characterize the single cell, one can use the 

following characteristics (as presented in Figure 9.2): 

operating range, d;  

maximal radio range, that is, the cell size limited by noise, by propaga- 

tion factor of wave field decay within the cell, by transmitter power, 

and so on, Rmm; 

planned size of the cell, R,  which is less than Rm, and depends on 

the conditions of cell design, its radio coverage by the base station 

antenna, etc. 

For a flat terrain, R can be defined as the radius of a circle surrounding 

the base station on the topographical map of a selected area. The area that is 
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covered by the base-station antenna is approximately - r R 2  (in km2). For 

example, if the radius is R = 2 km, the single cell coverage area is 

S = 6.28 km2, which provides a service to about 200 subscribers of a wireless 

personal communication channel [5]. For R = 20 km, then S = 628 km2 and 

the number of subscribers grows to 20,000. But to service 120,000 subscribers, 

the cell should be designed with a radius of R = 25 km, and an area 

S = 1,960 km2 [5]. 

As follows from the above estimations, to use only a single cell for stable 

wireless communication in urban conditions with their complicated multipath 

propagation phenomena (caused by the multireflections, multidiffraction, 

multiscattering, etc.), is in practice quite unrealistic. 

9.2 Cells' Design Strategy 

The concept of cellular wireless communication has been introduced with 

numerous cells of a small radius, which provide a sufficient signal-to-noise ratio 

and a low level of interference with received signals within the communication 

channel. As an example, a characteristic cell-layout plan for London, UK, is 

presented in Figure 9.3 according to [5], at an early stage of its implementation. 

As follows from this figure, the early strategy of cell communications design 

is based on the following principles: 

With an increase of the number of subscribers, the dimensions of the 

cells become smaller (usually this was done for centers of cities, where 

the number of cars is larger and building density is higher). 

Cells are arranged in clusters. Only clusters with a hexagonal shape are 

possible. The designed cluster sizes of 4, 7, and 12 cells are shown in 

Figure 9.3. 

Cells are split. The installation of additional base stations within each 

cell depends on the degree of cell density in each cluster and on the 

coverage effect of each base-station antenna. 

The same strategy of cell design has been proposed for use in the European 

Terrestrial Cellular Telephone System [ 51, where each base-station antenna, 

with an effective power of 100 mW, covers a cell with radius R = 1 mile 

(- 1.6 km). At the same time, to cover the area of one cell with radius 

R = 10 miles (- 16 km), the transmitting antenna requires a power of 100 W 
(i.e., 1000 times higher). 

Thus, the antenna power problem has been successfully solved by using 

a cell-splitting strategy. However, the question regarding the regions of overlap 

of coverage between neighboring cells is not solved yet (as seen from Figure 
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n 

Figure9.3 A typical city cellular map, where cluster sizes of 4, 7, and 12 are also 

indicated. 

9.1). The circle-shaped cell was therefore replaced by a regular hexagon-shaped 

cell. As seen in Figure 9.4, where both circle-shaped and regular hexagon-shaped 

cells are presented, the hexagon-shaped cell is more geometrically attractive than 

the circle-shaped cell. 

Moreover, in the hexagon-shaped multiple cells structure (plan), the 

hexagonal cells are closely covered by each other. Thus, each hexagonal cell 

can be packed into clusters “side-to-side” with neighboring cells. The size of 

such hexagonal cell can be defined by using its radius R and a 120-degree 

angle (see Figure 9.4). 

The cluster size is designated by the letter N a n d  is determined by the 

equation [2-51: 

(9.1) 
. 2  .2 

N = t  + Y + J  

where i, j = 0, 1, 2, . . . . , etc. 

As follows from (9.1), only the cluster sizes 3, 4,  7, 9, 12, etc., are 

possible. However, each cluster can be divided into three clusters, each consisting 
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Figure 9.4 Circle-shaped and regular hexagon-shaped cells presentation. 

of three cells. It is called a 3/9-cell cluster (see Figure 9.5). Other variants of 

sectored clusters are presented in Figure 9.5. Each sector has one base-station 

antenna (or radio port). 

One  can ask the reasonable question: Why is it necessary to divide clusters 

into subclusters? It is necessary to use the same repeating frequencies in different 

cells. Therefore, earlier concepts of reuse distance, D, and reusefiequencies were 

introduced. How can one use these concepts? If we focus on the popular 7-cell 

cluster arrangement, which is depicted in Figure 9.6, we first notice that the 

allocation of frequencies into seven sets is required. In Figure 9.6, the mean 

reuse distance is explained, in which the cells (say, denoted by G tj G) use 

the samefiequency set. This is a simple way to use the repeat frequency set in 

the other clusters. 

Between D and the cell radius R (see Figure 9.7) there exists a relationship 

which is called the reuse ratio. This parameter for a hexagonal cell is a function 

of cluster size, that is [2-51 

D 
- = C N  
R (9.2) 

Thus for a 7-cell cluster of 2-mile-radius cells, the repeat cell centers 

which operate with the same frequency set would be separated by: 

D = R@ = 2 f i  =: 9.2 miles (9.3) 
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Figure 9.6 The popular seven-cell cluster arrangement: D is the reuse distance, R is the 

radius of cell. 
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Figure 9.7 Directional frequency reuse plan. 

Within other cells in a cluster, interference inside the communication 

channel can be expected at the same frequencies. Hence, for a seven-cell cluster 

there could be up to six immediate interferers, as it is shown in Figure 9.7. 
Now we will discuss the question of how to predict the optimal cell size 

and the cluster splitting using the law of signal decay, described by many 

independent models constructed to predict the propagation phenomena within 

various wireless communication channels. Let us start with the description of 

special parameters characterizing the concrete situation in cellular environments. 

While passing from cell to cell, the subscriber in the moving vehicle can 

be interrupted while talking to any other subscriber (stationary or moving). 

Because this is caused by a large signal attenuation due to obstructions sur- 

rounding them, the hand-of parameter is usually introduced. Hand-off is a 

process that allows a cellular mobile vehicle to move from cell to cell without 

service interruptions (Figure 9.8). Once the hand-off is complete, a ping-pong 

effect is unlikely, since the difference in the receiving signal level (RSL) between 

the old and the new cell increases rapidly. This will also reduce hand-off 

requests, thus enhancing the capacicv. 
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Sewing cell Candidate cell 

Figure 9.8 LOS hand-off scenario. 

Now we will consider another major problem of moving subscriber 

servicing using the cellular concept which is connected with cochannel interfer- 

ence caused by frequent reuse of channels within the cellular communication 

system. T o  illustrate the concept of cochannel interference, let us consider a 

pair of cells with radius R, separated by a reuse distance D ,  as shown in Figure 

9.9. Since the cochannel site is located far from the transmitter ( D  >> R),  
which is located within the initial cell, its signal at the servicing site will suffer 

multipath attenuation. We consider here the situation in the urban scene where 

both antennas are lower than the surrounding buildings' rooftops. 

T o  predict the degree of cochannel interference in such a situation with 

moving subscribers within the cellular system, a new parameter, cawier-to- 

inteference ratio, CII, is introduced in the literature [5-91. This parameter in 

turn depends on frequency planning and antenna engineering. As pointed out 

in [9], a cochannel interferer has the same nominal frequency as the desired 

frequency. It arises from multiple use of the same frequency. Thus, referring 

to the part of cellular map depicted in Figure 9.10, we find that cochannel 

sites are located in the second cluster. For omnidirectional antennas located 

inside each site, the theoretical cochannel interference in dB is given by [9]: 

Serving cell Cachannel cell 

+l ..... +p ............................................................. 
R D 

Figure 9.9 LOS cochannel interference. 
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Figure 9-10 Cochannel interference evaluation scheme. 

where j is the number of cochannel interferers (j  = 1, 2, . . . , 6) ,  and y is 

the path-loss slope constant, which determines the signal decay in various 

propagation environments. For a typical seven-cell cluster (N= 7) with one 

cell as basic (with the transmitter inside it) and with six other interferers 

( j  = 6)  as the cochannel sites, this parameter depends on conditions of wave 

propagation within the urban communication channel. To understand this 

fact, let us present, according to [5 ] ,  a simple propagation model for the regular 

urban environment with y = 4 (see Chapters 5 and 6). In this case one can 
rewrite (9.4) as: 

Then, according to (9.2), DIR = 4 3 N  = 4.58, and C/I  = 18.6 dB. In 

the general case, by introducing (9.2) in (9.5) we have that 

-7 C = 10 log[~(3 N ) 2 ]  = 10 log(1.5 N’) 
(9.6) 

The carrier-to-interference ratio is also a function of cluster size Nand 

is increased with the increase of cell numbers in each cluster; or with the 

decrease of cell radius R Let us now introduce the important cellular parameters 

and present them in Table 9.1. 
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Table 9.1 

Cellular Parameters 

3 
4 
7 
9 
12 
21 

3.0 93 11 
3.5 69 14 
4.6 39 18 
5.2 31 21 
6.0 23 23 
7.9 14 28 

2583 
1 840 
937 
707 
483 
245 

In column (a) the reuse ratio DIR is presented; number of channels 

per cell is presented in column (b). The data presented in column (c) is 

obtained by use of the standard presentation of formula (9.6), that is, 

C; = C/Z = 1.5 * N 2 .  T o  obtain the number of subscribers in the urban area 

considered, described by column (d) in Table 9.1, we need additional informa- 

tion about the urban area and additional formulations, such as: 

the urban area of operation and servicing - A, km2; 

the number of citizens in the operating urban area - P (per thousands); 

the mean radius of the cell - R, km; 

the number of channels in one cell - n,. 

Thus, in Figure 9.11, the dependence of n, versus cells' number N for 

various CIZ-ratios is shown. If, for example, 30 subscribers use the same channel 

in the considered cell, then the number of subscribers in this cell equals 

For regularly distributed cells over the built-up terrain, the number of 

cells in the urban area concerned equals 

A 
K = -  

7TR2 
(9.8) 

Then the total number of subscribers in the urban area considered equals: 
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I 
ch/cell c/l ratio - - -- 

80 24 
c / I  

Figure 9.11 Number of channels per cell n,  versus cells number N for various W r a t i o s .  

50 18 A 

The parameter ficalculated by use of this formula is presented in column 

(d) in Table 9.1. From (9.9) we can estimate as a percentage the number of 

subscribers from the population located in the urban area. Thus, 

40 16 / / / / U / / / / (  
30 14 

10 n ,  * A A .  n 

P .  R 
N(%) = 100% = - ; W O )  

R2 * P .  1000 

Acceptable W 
level in TACs 

(9.10) 

Example: Number of city citizens is 600,000 located within an area with 

a radius of R, = 8 km. The cell size is R = 2 km, the number of channels in 

each cell is n ,  = 40. We need to determine the number of subscribers (in 

percentage) for effective servicing by a wireless communication system. 

Soh tio n: 
First step: We calculate a city area: A = pRi = 200 km2. 

Second step: We calculate the number of citizens per thousands: 

600,000 

1,000 
P = ~ = 600. 

200 40 

600 * 4 
= 3.3%. Third step: We calculate using (9.10), that: m(%) = 

The result of this example shows that for cities with a high-density 

population (A/Pis small), it is very hard to plan the wireless service by use of 

a simple propagation model. If we try to increase (up to the maximum) the 

number of channels by splitting the operating radio-frequency band, the cell 

size (radius R) remains critically limited by the conditions of radio wave 

propagation in the urban area. Moreover, as follows from (9.4) to (9.6), the 
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law of signal decay (determined by parameter j )  affects cochannel interference 

parameter CII. This question is discussed in detail later. Now we will note 

that Formula (9.10) can be rewritten by introducing into it new parameters 

as the frequency band of the total cellular service system, A& and the frequency 

band of each channel, Afc. In this case the number of radio channels in each 

cell equals 

A F  
n ,  = - 

Aft. N 

Then the number of subscribers which can 

using the existing cellular servicing system equals, as a percentage, 

(9.1 1) 

effectively communicate by 

A *  A F  
N(%) = 

~ f c .  P. N.  R~ 
(9.12) 

Formulas (9.10) and (9.12) show that to increase the efficiency of the 

cellular communication system in various urban environments, an effective 

frequency splitting strategy over the channels within each cell is required. 

Moreover, by decreasing the cell size and the cluster size (or number N )  one 

can also increase the efficiency of the cellular system. The latter depends on 

the strategy of cellular map construction and splitting. We show how to do 

this below. 

The experience of cellular systems designers shows that it is very dificult 

to decrease the number N o f  cells in each cluster (see Figure 9.1 1). Apparently, 

as follows from this picture, number N = 7 is the smallest size of cluster 

constructed, because for N < 7 the acceptable CI I  level of 16 dB cannot be 

reached. Initially the parameter Nwas selected as N = 12 by the TACS cellular 

system constructed in England. However, while analyzing the CII-ratio and 

its optimization, the optimal number N =  7 was found. In fact, as follows 

from Figure 9.11, for 300-working radio channels with 21 channels required 

to control the total cellular system, we obtain for N = 7 and N = 12, respec- 

tively, n ,  = 39 and n,  = 23 communication channels in each cell. This result 

follows from Table 9.1 and Figure 9.1 1, where value 23 from first column in 

the table lies between 20 and 30 (the level corresponding to N = 12) and value 

39 from this column lies between 30 and 40 (the level corresponding to 

N =  7). 
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9.3 The Method of Cellular Map Construction 

As mentioned above, the strategy of topographical maps splitting at cells, 

the cellular maps' construction, and the cellular characteristics optimization 

(namely, improving the clearance between subscribers within the cell, increasing 

cochannel interference parameter Cl I, etc.) is based on knowlege of propagation 

phenomena inside the cellular communication channels. More strictly, it is 

based on the law of signal-power decay for the concrete situation in the urban 

scene. 

First we will discuss the question of clearance between arbitrary subscribers 

within the cell and introduce the recipe for predicting the cell radius (size) for 

the concrete propagation situation. 

The recipe of topographical map splitting at celh. As follows from all the 

previous chapters, a better clearance between two arbitrary subscribers in clutter 

conditions may be reached in LOS conditions (or direct visibility between 

them). In this case, as follows from the two-ray model (see Chapter 3) and 

the waveguide-street model (Chapter 5), that cell size, R, cannot be larger than 

the break-point range, rg. If so, the law of signal-power decay within each 

cell with radius R I rB is - R-*. Beyond the break point the law of signal 

decay, described by path-loss slope parameter y ,  depends on the concrete 

situation in the urban scene, and --K4 for propagation in open built-up areas 

(see Chapters 3, 4) or - R-5-7 (i.e., close to exponential decay), observed in 

LOS conditions along straight streets (see Chapter 5). This situation regarding 

signal-decay law is shown in Figure 9.12 (top graph). 

The wave-propagation phenomena in urban environments with both 

antennas in NLOS (clutter) conditions were described in Chapters 6 to 8. As 

follows from models described there, in rural and residental areas with a 

separated building distribution the path-loss slope parameter y describing the 

received signal decay is changed from y = 2.4 to y = 4.8 (see empirical and 

deterministic models decribed there). In other words, in such areas field attenua- 

tion is faster than that in LOS conditions over flat terrain and in free space. 

At the same time, as follows from numerical calculations of the multiparametric 

model described in Chapter 8,  for various situations when both antennas are 

placed in a built-up area with a high density of irregularly distributed buildings, 

the law of signal power decay is changed with distance d between antennas 

from - ( y  = 2) before the break point rg (where the coherent part of total 

field is predominant) to -LY ( y  = 3) beyond the break point r g  (where the 

incoherent part of total field is predominant). That is why it is logical now 

to ask the question of how to obtain the cell size RCe", which can be defined 

by the break point r g  in different propagation situations in built-up areas. 
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L 

L E  

Figure9.12 A cell in an urban area with grid-plan streets. 
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A cig with regularly planned streets. Let us consider the situation in urban 

areas with a rectangular grid plan of straight-crossing streets. In this case, as 

follows from the multislit street waveguide model described in Chapter 5, the 

cell size can be described by formula (5.65), which we repeat once more as 

where all parameters in (9.13) are described in Chapter 5.  As follows from 

(9.13), using information about street geometry (street width a) ,  height of 

buildings hb, and mean gaps between buildings lining the street (i.e., the 

parameter of brokenness x), about both antennas’ height, b rand  bR, as well 

as the building walls’ material (which determines the absolute values of reflection 

coefficient R, and diffraction coefficient D,,), one can obtain the cell radius 

along the street in LOS conditions. An example of cell coverage which corre- 

sponds to one special case of perfectly conductive walls (IR,I and 

ID,, I + 1) and a > b T ,  hR, a I bb, is shown in Figure 9.12 (bottom graph). 

The city with nonreplady planned streets. In the case of built-up areas 

with nonregularly distributed buildings placed on rough terrain, consisting of 

hills, trees, and other obstructions located in residental zones, the cell size can 

be obtained by using the probabilistic approach presented in Chapter 8 

according to the multiparametric model. 

As follows from this approach, the average distance of the direct visibility 

p between two arbitrary points, the source and the observer, is described by 

formula (8.5) which we will rewrite here in the following form: 

where 

(9.14) 

yo = 2LVl7.r (9.16) 

Formula (9.14) is general and describes the situation when the buildings’ 

height is nonuniformly distributed above the terrain profile z = Z ( x ,  y )  (see 

Section 8.1). For uniform distribution of buildings’ height, this formula can 

be simplified as: 
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(9.17) 

If one now obtains the information about servicing area, that is, the 

terrain profile, the average buildings’ height h and length I ,  as well as the 

density of buildings per square kilometer, it is easy to estimate the cell radius 

within the tested area by use of formulas (9.14) or (9.17). 

Hence, by use of two new models, as the combinations of deterministic 

and statistical approaches, presented in this book in Chapters 5 and 8, respec- 

tively, the reader can easily obtain the optimal cell radius for different built- 

up areas with various situations of the terminals, transmitter and receiver. A 

new concept of cellular map constructions based on these two models (and 

recommended for the reader) is more general than that based on two-ray model 

and described in [ 5 ,  91 both for LOS and NLOS conditions, without any 

detailization of the terrain profile. 

The frequency planning concept. The same detailed frequency planning 

strategy for cellular systems design, based on the models described in Chapters 

5 and 8, can be done to optimize the cochannel inteferencepararneter CII (see 

Section 9.2). 

According to the propagation situation in the urban scene, the servicing 

and cochannel sites can lie both inside and outside the break-point range r g .  

If both of them are within this range, as follows from Figure 9.10, the cochannel 

interference parameter can be described instead of (9.4) by the CII-ratio 

prediction equation (in dB) as 

(9.18) 

For cell sites located beyond the break-point range, this equation can be 

modified, taking into account the multipath phenomenon and obstructions 

which change the signal-decay law from D-2 to D-y, y = 2 + Ay, Ay 2 1. 

Hence, we finally have instead of (9.18): 

(9.19) 

According to the concepts of cellular map construction presented above, 

the signal strength decay is weaker within each cell (with path-loss slope 

parameter y = 2) and corresponds to that in free space. At the same time, due 

to obstructions, the signal strength decay is stronger in regions outside the 
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servicing cell and within the cochannel site (with path-loss slope parameter 

We can now rewrite (9.19) versus number of cells in cluster N, and of 

= 2 + Ay, Ay 2 1). 

radius of the individual cell, R, by use of (9.2): 

1 - I = 10 log Z(3N)Ay/2RAY “ (9.20) 

Let us examine this equation for two typical cases described above. 

The city with regularly planned streets. In this case for a typical straight, 

wide avenue, for which according to multislit street waveguide model 

Ay = 2 ( y  = 4) (see Chapter 5) and 

- C = 10 log[;(N)2R”] 

I 
(9.2 1) 

For the case of narrow streets (a more realistic case in an urban scene) 

one can put in (9.20) Ay = 3 - 7 ( y  = 5 - 9), which is close to the exponential 

signal decay that follows from the street waveguide model. 

The city with nonregularly planned streets. For the case of propagation over 

irregular built-up terrain, as follows from the probabilistic approach, presented 

in Chapter 8, Ay = I and the CII-ratio prediction equation is: 

- C = 10 log[;(3N)”’R] 

I 
(9.22) 

As follows from (9.20) to (9.22), the CII-ratio strongly depends on 

conditions of wave propagation within the urban communication channels (on 

path-loss slope parameter y = 2 + Ay, Ay 2 1) and on the cellular-map split- 

ting strategy (on parameters N and R). In fact, as follows from formulas 

presented above, the CI I  performance is enhanced if the cell radius R is within 

the break-point range and the reuse distance D is beyond this range. At the 

same time, stated differently for a given CII-ratio, a channel can be reused 

more often, enhancing the cellular system capacity. This pure engineering 

subject, as well as the same engineering questions of cellular system performance, 

lie outside the purpose and main goal of this book. All these questions the 

reader can find described in detail in [5-91. 
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Summary 

T o  summarize the principal results described in this chapter, as well as those 

lying in most chapters of this book, we present a general technique for predicting 

radio coverage and constructing the respective radio map and cellular map for 

the concrete built-up area considered. We present this prediction concept in 

the form of a prediction algorithm (Figure 9.13). 

Algorithm 

Initial Data. The initial data, which are the input parameters of cellular map 

construction, are as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

Terrain elevation data, that is, the digital terrain map consisting of 

ground heights as grid points h,(x, y).  

Clutter map, that is, the ground cover by artificial and natural obstruc- 

tions as a distribution of grid points b(x, y ) ;  the average length of 

the obstructions, I ;  the average height of obstructions in the tested 

area, T ,  and the obstructions density per km2, v. 

Contour map of obstructions, that is, the list of contour height for 

each obstruction. 

Effective antenna height, that is, the antenna height plus a ground or 

obstruction height, if antenna is assembled on the concrete obstruction, 

zl and 22 for transmitter and receiver, respectively. 

Antenna pattern or directivity and its effective radiated power (ERP); 
frequency of operating, f: 
Traffic distribution pattern (mostly for mobile wireless communica- 

tion). 

First step of the algorithm. T o  introduce the built-up terrain elevation data 

for three-dimensional radio-path profile construction. As the result, there is a 

digital map (cover) with actual heights of obstructions present in the computer 

memory. 

Second step of the algorithm. Using all parameters of built-up terrain and 

of both antennas, transmitter and receiver (according to above initial data), the 

three-dimensional digital map is analyzed to theoretically predict the clearance 

conditions between antennas and the localization of the obstructions, as reflec- 

tors, surrounding both antennas. 

Case One: In this case, where the tested area is built as a street grid, 

(e.g., blocks), the additional parameters presented in Chapters 5 and 6 are 

needed: 
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lnitiil data of Initial data of 

(Regular terrain) 

+ (IrrqXar terrain) (Irregular terrain) 

LOS NLOS k = l  W b Z l  

r * v 
Muttidit 20 Multi- Multi-scattering Single scattering 

waveguide diffraction and diffraction and diffraction 
model model model model 

I 

t 
Propagation kws 
(radio coverage) 

Cellular map construction 

R a l P  

Figure 9.13 The block-scheme of the algorithm of cellular map construction. 
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For LOS conditions along the street: the average street width a;  the 

average length of buildings (screens) and gaps between them (slits), ( L )  = L 

and ( I )  = I ,  respectively; the average height of buildings, h, lining the street; 

the type of building material dominant in the tested area (brick, wood, 

concrete, etc.). All these parameters allow us to obtain the parameter of 

“breakness” ,y = L / ( L  + I ) ,  which indicates the density of buildings lining 

the street in the block, the characteristic impedance of the building mater- 

ials ZEM = ( E ~  - j Z ~ / f ) - ” ~ ,  the normal wave propagation constant 

K, = ( r n  + j I lnXl)/a, and finally, the modules I R, I and phase 40, of reflection 

coefficient R ,  of normal modes that propagate along the street waveguide 

according to formula (5.44). All these parameters allow us to obtain the break 

range according to (9.13), as a distance of clearance between two subscribers, 

that is, the cell radius. 

For NLOS conditions: all additional parameters about the height of neigh- 

boring buildings with respect to both antennas and the distances between them, 

as shown in Figures 6.8(a,b) for two types of transmitter antenna location. 

Case Two: In the case of rough terrain with randomly distributed buildings 

in NLOS conditions between both antennas, the follow parameters must be 

taken into account: the density of buildings in the investigated area of 

1 km , U ;  the average buildings’ length, -L; the typical correlation scales of the 

obstructions, I ,  and Ih (see Sections 8.1 and 8.2); the type of building material 

dominant in the tested area. 

Finally, all these parameters allow us to obtain the density of building 

contours in the horizontal plane z = 0 (the ground level), yo = 2 L v / n ,  and 

then the clearance conditions between antennas, receiver and transmitter, (e.g., 

the average horizontal distance of the line-of-sight p) as a cell radius 

Third step of the algorithm. The various factors obtained earlier are then 

used for the computer program based on the three-dimensional multislit wave- 

guide model in LOS conditions, and the Bertoni et al. model in NLOS 
conditions for urban areas with regularly distributed rectangular crossing streets 

(according to Section 5.5 and Section 6.2) which we denoted here as the first 

case. For the case of the irregular built-up terrain (which we denoted as the 

second case), the three-dimensional multiparametric model according to Section 

8.2.2 must be used. 

In the first case, the following formula is used to describe the field intensity 

decay along the straight streets in LOS conditions (see Section 5.5): 

2 

p = yil. 
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and formulas (6.22) to (6.26) are used to describe the situation in urban scene 

with rectangular crossing-streets plan in NLOS conditions. All parameters in 

(9.23) are described in Section 5.5. 
In the second case of irregular built-up terrain with uniform building 

heights distribution, the single-scattering with diffraction formula 

(9.24) 

for the incoherent part of total field is taken into account, if one of the antennas is 

higher than building rooftops, and the multiscattering with diffraction formula 

(9.25) 

for the incoherent part of total field is taken into account, if both antennas 

are lower than the rooftops. 

In the case of irregular built-up terrain with nonunifOrm building heights 

distribution, the corresponding formulas, instead of those described by (9.24) 

and (9.25), for single-scattering with diffraction 

(9.26) 

and for double-scattering with diffraction 

must be taken into account. 

Here the functions f(z ) andf(z2) describe the built-up terrain profile 

(9.2 8a) 
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where the average buildings’ height h is determined by 

h = h2 - n(h2 - hl ) / (n  + 1 )  

(9.28 b) 

the following expression 

(9.29) 

As a result, the signal power distribution over the terrain is obtained. All 
presented formulas are derivated for the case of isotropic antenna pattern. To 
take into account the directivity of transmitting and receiving antennas, one 

must take into account formulas (9.23) to (9.27), the EPR of both antennas. 

These data must be constructed on the computer display as a two-dimensional 

regular or color radio map, a contour map, which describes a ground cover 

by radio signal for a tested built-up area and for given positions of both 

antennas. 

Fourth step ufthe algorithm. At this last step, the reader can split the 

coverage map on a set of cells to obtain the cellular map of the tested urban 

area. Because the shape and size of each cell depends on the propagation 

phenomena, we recommend the reader use the technique described above in 

Section 9.3 by using formulas (9.13) and (9.14) to (9.17) for a corresponding 

concrete situation in an urban scene. 

And, finally, the technique of cellular map construction described above 

is suficiently accurate and more general than that presented in [5-91. It  is 

also simple to use and recommended as a basic technique for cellular system 

planning. 
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signal-to-noise ratio 

ultra high frequency 
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average path loss, 256 

comparison, 258 

defined, 255 

diffraction losses, 256 

for hilly/mountainous terrain, 255 

street geometry, 257 

See aho Empirical models (built-up 

irregular terrain) 

Ambient noise, 8, 9 

Amplitude waves, 148 

Anisotropic media, 23 

An ten nas 

base station, 241, 244, 270, 272, 348 

isotropic, path loss between, 289 

located below forest-air interface, 17 1 

positions for, 16 

power problem, 348 

terrain surface classification and, 17, 18 

See aho Receiver antenna; Transmitter 

antenna 

Approximate models, 149-56 

Bullington’s equivalent knife edge, 

149-52 

comparison, 155-56 
defined, 149 

Deygout method, 154-56 

Epstein-Peterson method, 152, 153, 

154 

Japanese method, 152-54 

See aho Multiple knife-edge diffraction 

Area-to-area method, 275-76 

Atmosphere-Earth boundary surface, 7 1 

Attenuation 

coefficient variations, 29 1 

factor, average, 259 

field intensity, 218, 238, 309-19, 324 

multiple knife-edge, 142 

multislit waveguide, 200 

normalized field-intensity, 208 

reflected mode, 200 

slope, 245, 269, 271 

total field-intensity, 204-1 0 

Avenues, wide, 207-9 

Average background temperature, 8 

Average field 

strength, 314 

in two-dimensional multislit 

waveguide, 194-204 

Background noise, 8 

Based cells, 346 

Base station antenna, 24 1, 244 

cell area covered by, 348 

height, 270, 272 

higher than first building, 244 

lower than first building, 244 

as receiver, 321 

in Walfisch-Ikegami model, 271 

See aho Antennas 

373 
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Bessel function, 196-97 

spherical, 4 1 

with two independent solutions, 40 

defined, 158-59 

path loss formula, 159 

total losses, 159 

See alro Empirical/semi-empirical 

Blomquist-Ladell model, 158-59 

models (irregular terrain) 

189, 285 

air-ground surface, 33 
in deep shadow zone, 285 

derivation geometry, 32 

Dirichlet (DBC), 285, 311 

electric field, 108 

first, 32, 33, 282 

Fresnel zone, 77 

Neumann (NBC), 285, 31 1 

for normal component, 84 

parabolic equation method, 28 1 

second, 33-34, 282 

Brewster angle, 87, 89, 90 

Broken multislit waveguides, 196 

Buildings 

Boundary conditions, 32-34, 51, 68, 81, 

average height of, 257, 270, 323, 325 

base antenna height and, 241 

city, statistical distribution of, 299-301 

density, 301 

differential cross-section of scattering, 

dimensions distribution (BSD), 15, 16 

distribution between points, 301 

height distribution (BHD), 15, 16 

height distribution density, 300 

on isolated cylindrical hill, 290 

position distribution (BPD), 15 

propagation between, 24 1 

roofs/corners, diffraction from, 324 

rows of, on rolling terrain, 289 

spatial distribution, 3 15 

straight rows of, model for, 240-45 

walls, electric properties, 228 

See alro Rooftops 

316 

Built-up area index (BAI), 15 

Built-up areas 

defined, 13 

ground cover by radio signal for, 367 

NLOS conditions in, 223-50 

propagation factors, 13-1 4 

propagation in, 253-95 

total field, 3 15 

Built-up irregular terrain, 253-95 

Allsebrook’s model, 255-59 

defined, 253 

deterministic models, 280-93 

empirical models, 254-68 

Hata model, 261-64 

Ibrahim-Parsons method, 272-75 

Lee’s model, 275-79 

multiple knife-edge diffraction method, 

with nonuniform building heights 

distribution, 366 

Okumura technique, 259-61 

parabolic equation method, 280-87 

propagation geometry, 280 

semi-empirical models, 268-79 

summary, 293-95 

with uniform building heights 

distribution, 366 

Walfisch-Ikegami model, 268-72 

Young’s propagation prediction, 

287-93 

254-55 

Bullington’s equivalent knife edge, 149-52 

accuracy, 151 

construction, 150 

diffraction loss determination, 149 

limitation, 149-52 

See alro Approximate models 

Carey model, 1 6 4 4 6  

Carrier-to-interference (C/I) ratio, 353 

as function of cluster size, 354 

number of channels per cell vs. cells’ 

number for, 355, 356 

optimization, 357 
performance, 362 

predication equation, 361, 362 

signal decay and, 357 

See alfo Cell clusters; Cellular maps 

Cartesian coordinate system, 3 1, 34, 47, 
66 

Cauchy’s theorem, 197, 202, 234 

CCIR methods, 163-64 

clearance-angle method, 163 

defined, 163 
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field-strength predication curves, 164 

See also Empiricallsemi-empirical 

models (irregular terrain) 

Cell clusters 

319, 351 
4/12, 351 

7121, 351 
7-cell arrangement, 35 1 

defined, 348 

division, 349-50 

illustrated, 35 1 

sizes, 348, 349 

three-site, 35 1 

based, 346 
characteristics of, 346-48 

circular, 350 

design strategy, 348-57 

hexagonal, 349, 350 
operating range, 347 

parameters, 347 

radio channels in, 357 

radio range, 347 

radius of, 346, 347 

repeat, 346 

repeating principle, 345 
reuse distance of, 346 

split, 348 
in urban area with grid-plan streets, 

See also Cell clusters 

in city with nonregularly planned 

streets, 360-61, 362 

in city with regularly planned streets, 

360, 362 
construction method, 358-62 
frequency planning concept and, 

361-62 

illustrated, 349 
pattern, 346 
signal decay and, 361 

splitting strategy, 362, 367 

See also Prediction algorithm 

concept, 345-67 
design, 345 
handOK 352 

parameters, 355 

Cells 

359 

Cellular maps 

Cellular systems 

Channels, 3, 4 

in cells, 357 

effectiveness of, 10- 1 1 

tasks related to, 4 

defined, 37 

illustrated, 38 

lek-hand, 37 

right-hand, 38 

See alro Wave polarization 

City loss characteristics model, 299-3 19 

city building profile and, 322-25 

diffraction effects from building layer, 

dimensions of reflected surface sections, 

distribution of reflected points, 306-8 

field intensity attenuation, 309-19 

multiscattering effects, 308-9 

multiscattering problem, 3 17-1 9 

scattering/diffraction simulation, 

single scattering problem, 309-1 7 

spatial distribution of buildings, 

spatial distribution of scattering points, 

statistical description, 299-309 

Clearance-angle method, 163, 165 

Clutter factor, 256 

Cochannel interference, 345 

Circular wave polarization, 37-38 

3 19-22 

302-4 

325-30 

299-30 1 

304-6 

evaluation scheme, 354 

illustrated, 353 

LOS, 353 

See abo Cellular systems 

Continuous spectrum, 201, 202, 203 

Cornu’s Spiral, 131 

Coverage effects 

CW model, 246-48 

diamond-shape, 246 

MD model, 246-48 

obtained experimentally, 225, 226 

predication in urban cross-street scene, 

245-48 

Critical height, 104 

Critical range 

defined, 92 

presentation, 93 
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Crossing streets 

rectangular, modeling, 224-28 

urban, coverage effects prediction, 

245-48 

See aho Streets 

Crossing-streets waveguide, 224-40 

average field strength, 23 1-38 

comparison with experimental data, 

238-40 

coverage effects, 246-48 

path loss, 247 

principle modes, 237 

screen and slit lengths, 228 

total field intensity and, 236-37 

total field spectrum inside, 234-35 

two-dimensional, illustrated, 227 

wave impedance, 232 

wave loss characteristics and, 248 

Crossing-waveguides (CW) model, 246 

Cylindrical waves 

in free space, 39-44 

presentation, 40 

Depolarization phenomenon, 120, 12 1 

Deterministic approach (irregular terrain), 

Deterministic models (built-up irregular 

166-72, 174 

terrain), 280-93, 294-95 

multiple knife-edge diffraction method, 

parabolic equation method, 280-87 

comparison with other models, 155-56 

construction, 155 

defined, 154-55 

See alro Approximate models 

amplitude, 146 

angles, 140 

building roof/corner, 324 

by isolated hill, 290 

by isolated hill as cylinder, 290 

calculation, 174 

double, 320, 321, 322, 324-25 

effects, from building layer, 3 19-22 

of fields at rooftops, 241 

Fresnel-Kirchoff parameter, 123 

geometrical theory of (GTD), 148 

G T D  and, 187 

287-83 

Deygout method, 154-56 

Diffraction 

knife edge, 122 

knife-edge, with ground reflection, 135 

knife-edge, illustrated, 127, 129-30 

knife-edge geometry, 123 

multidiffraction model and, 240-45 

numerical simulation of, 325-30 

over rounded obstacle, 136 

over two screens, 146-48 

path loss and, 126 

phenomenon, 123 

rooftop to street, 245 

over several screens, 148 

single, 320 

single scattering with, 326 

slope, 143-45 

over ten-obstacle radio path, 149 

theory, 126 

vertical, effect, 299 

virtual sources, 322 

Diffraction losses, 134 

in Allsebrook’s model, 256 

from Bullington technique, 158 

calculated, 13  1 

defined, 126 

knife-edge, 134 

from last rooftop before moving 

obtaining, 126 

from rows of buildings before vehicle, 

single knife edge vs. parameter v, 133 

total, 155 

two knife edges, 161 

vehicle, 289 

292 

Dimensionless parameter, 289 

Direct Fourier transform, 188 

Direct waves 

field intensity, 90 

reflected wave phase difference, 91-92, 

97  

285, 311 

Dirichlet boundary conditions (DBC), 

Double diffraction, 32 1, 322, 324-25 

Double scattering, 320, 32 1, 324-25 

LOS conditions and, 334 

model of (MDS), 326, 330 

NLOS conditions and, 336, 338 

See alro Scattering 

Dyadic Green’s hnction, 46, 47, 48 
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Earth’s curvature effects, 93-99 

based parameters, 93-97 

spread factor, 97-99 

Egli model, 156-57 

defined, 156 

signal decay and, 157 

See alro EmpiricaUsemi-empirical 

Electric field, boundary condition, 108 

Electric vectors, 28-29 

Elliptically polarized wave, 9, 37 

EM fields 

models (irregular terrain) 

power flow, 30 

time-varying, 22 

Empirical models (built-up irregular 

terrain), 254-68 

Allsebrook’s model, 255-59 

Hata model, 261-64 

Okumura technique, 259-6 1 

Young’s propagation predication, 

254-55 

EmpiricaVsemi-empirical models (irregular 

terrain), 156-66 

Blomquist-Ladell model, 158-59 

Carey model, 164-66 

CCIR methods, 163-64 

clearance-angle method, 163, 165 

defined, 156 

Egli model, 156-57 

JRC model, 157-58 

Longley-Rice models, 159-63 

in free space, 21-60 

in multislit waveguide model, 184 

over smooth terrain, 65-99 

in two-dimensional broken waveguide, 

EM-wave propagation, 5 

191-93 

Epstein-Peterson method, 152 

accuracy, 153 

construction, 153, 154 
defined, 152 

See also Approximate models 

Equation of straight line, 244-45 

Equipment noise, 8 

Excitation coeficient, 291 

Exponent loss factor, 291, 292 

Extinction length, 20 1 

Extremely low frequencies (ELF), 7 

Field intensity, 90 

average, 94 

distance from transmitter vs. (Kefar- 

distance from transmitter vs. 

distance from transmitter vs. decay, 94 

frequency dependence, 325 

loss, 249 

normalized, vs. normalized distance, 

215 

redistribution, 248 

total, 204-10, 217 

characteristics, 324 

laws, 218 

with randomly distributed buildings, 

Yona), 213 

(Manhattan), 214 

Field intensity attenuation, 238 

309-1 9 

Field vectors, 35 

First Fresnel zone, 75, 124, 125 

defined, 126 

radius, 126 

shape of, 125 

See alro Fresnel zones 

First summand, 305 

Fixed access unit (FAU), 330, 334 

Flat terrain 

ray reflection from, 66 

reflection from, 65-90 

rota1 field, 71 

comparison with experimental data, 

defined, 167 

geometry, 67 

illustrated, 169 

loss characteristics predication, 168-7 1 

propagation situations, 168 

transmitter inside/outside forest layer, 

Forest model, 167-72 

171-72 

169 

Fourier transforms, 188, 23 1 

direct, 188 

inverse, 188, 196, 234 

of total average field, 234 

cylindrical waves in, 39-44 

Fresnel-zone concept for, 52-58 

Green’s function of, 317-18 , 

Free space 
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Huygens’ principle for, 52 

Maxwell’s equations in, 35 
path loss formula, 244-45 

path loss in, 59, 93 

plane waves in, 34-36 

propagation in, 34-58 

spherical waves in, 39-44 

total average field loss and, 230 

transmission loss, 58-60 

transverse wave components in, 36 

unbounded, 52, 53 

wave polarization, 36-39 

dispersive media, 24 

domain solutions, 25 

reuse, 350, 352 

Frequency bands, 6-10 

defined, 6 

ELF, 7 

HF, 7 

LF, 7 
micro wave, 7 

optimal, 6-7, 8 

UHF, 7, 322 

VHF, 7, 322 

VLF, 7 

defined, 125 

inadequate, 158 

obstructions and, 126 

Frequency 

Fresnel clearance, 125-26 

Fresnel integrals, 127, 128, 131, 145, 174, 

202 

diffraction parameter vs., 132 

multiple, 138-39 

presentation, 75 
Fresnel-Kirchoff diffraction parameter, 

123, 124, 128, 161 

+/- and, 124 

physical meaning, 125 

illustrated, 125 

second, 125 

around particular reflected point, 75 

boundary conditions, 77 

defined, 56 

first, 75, 124, 125 

free space and, 52-58 

Fresnel-zone ellipsoids, 124-25 

Fresnel zones 

geometry, 58 

locationlconfiguration of, 77 

radius, 126 

reflection contours, 79 

width, 57 

zone number, 57 

Gauss’s law, 23, 51, 105 

Gauss’s theorem, 26-27 

for converting into surface integral, 46 

geometry, 26 

Geometrical theory of diffraction (GTD), 

Grazing angles, 105, 112 

Green’s function, 115, 187, 232, 234, 31 1 

dyadic, 46, 47, 48 

of free space, 317-18 

integral presentation, 68 

point source, 49 

presentation for scalar wave equation, 

44 
scalar, 68 

for vector wave equation, 46-47 

148, 187 

Green’s theorem, 50, 114, 310 

Ground 

permittivitylconductivity, 90 

proximity effect, 169 

surface, perfectly conductive, 120 

Hand-off 

defined, 352 

LOS scenario, 353 
See alro Cellular systems 

Hankel function, 40, 41, 197 

Hata model, 261-64 

average path loss, 262 

average path loss vs. distance from 

corrections, 264 

correlation factor for mobile antenna 

defined, 26 1-62 

in form of equation for straight line, 

Okumura measurement comparison, 

Walfisch-Ikegami model vs., 271 

See alro Empirical models (built-up 

transmitter, 266 

height, 262-63 

271-72 

267 

irregular terrain) 
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Heaviside function, 305 

Hertz, Heinrich Rudolf, 6 

High frequencies (HF), 7 

Hill crest radius, 137 

Hilly terrain, 121 

Allsebrook’s model and, 255 

Lee’s model and, 278 

Okumura technique and, 260 

schematical presentation, 139 

defined, 56 

width, 57 

oriented along y-axis, 113 

source presentation as, 67 
Horizontal polarization, 86, 88, 167 

dipoles, 167 

reflection coefficient and, 89 

Hoops, 56 

Horizontal dipoles, 1 12-1 3 

Huygens-Kirchoff approximation, 3 19 

Huygens’ principle, 48-52 

defined, 48 

derivation geometry, 50 

for free space without obstacles/ 

discontinuities, 52 

geometry, 49 

for scalar and vector waves, 48 

unbounded free space geometry, 53 
wavelets and, 52, 122 

Ibrahim-Parsons method, 272-73, 272-75 

empirical approach, 273 

measure vs. theoretical path loss, 274 

predication error, 274 

semi-empirical model, 273-75 

See also Semi-empirical models (built- 

up irregular terrain) 

Inverse Fourier transform, 188, 196, 234 

Irregularity formula, 105-6 

Irregular terrain, 101-75, 253-95, 366 

Japanese method, 152-54 

construction, 154 

defined, 152 

See also Approximate models 

JRC model, 157-58 

defined, 157 

diffraction loss estimation, 158 

See also Empirical/semi-empirical 

models (irregular terrain) 

Kefar-Yona test, 21 1-12, 238-40 

base-station transmitter antenna, 238 

environment, 238 

estimations, 2 12 

field intensity loss, 240 

field intensity measurements, 238 

house scheme, 21 1 

normalized average field intensity 

rectangular-crossing street scheme, 239 

defined, 107 

for scattered field determination, 3 12 

shadow zones and, 114 

smooth terrain presentation, 1 15 

See also Perturbation technique 

loss, ideal, 137 

perfectly absorbing, 140 

propagation over, 12 1-38 

Knife-edge diffraction, 122 

effect, on wave propagation, 140 

geometry, 123 

with ground reflection, 135 

illustration, 127, 129-30 

losses, 133, 134 

Volgr’s multiple, 140-43 

decay, 212, 213 

Kirchoff approximation, 1 14-2 1 

Knife edge, 121 

Lateral waves, 170 

deterministic approach, 166-72, 174 

diffracted-nature field component, 171 

area-to-area method, 275-76 

hill surface reflection geometry, 277 

point-to-point method, 276-79 

See also Semi-empirical models (built- 

up irregular terrain) 

Light zone, 122 

Linear polarized wave, 37, 82 

Line-of-sight (LOS) conditions 

cochannel interference, 353 
with double-scattering model, 334 

Fresnel-zone concept and, 54 
hand-off scenario, 353 
in Kingston area, 333 
loss characteristics prediction in, 

predication algorithm and, 365 
rough terrain propagation and, 10 1-2 1 

Lee’s model, 275-79 

210-18 
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signal intensity decay in, 333 
Walfisch-Ikegami path loss formula, 

See alro No line-of-sight (NLOS) 

269 

conditions 

Longley-Rice models, 159-63 

defined, 159 

irregularity factor and, 163 

point-to-point, 159 

predication accuracy, 162 

receiving signal standard deviation, 162 

See alro Empirical/semi-empirical 

models (irregular terrain) 

Loss characteristics predication, 168-7 1 ,  

Low frequencies (LF), 7 

Macdonald functions, 309 

Macrocells, 19 

Magnetic fields 

210-18 

tangential component of, 66 

vertical component of, 67 

Magnetic flux, 22 

Magnetic vectors, 28-29 

Magnetostatic law, 23  

Maxwell, Clerk James, 6 

Maxwell’s equations, 22-27 

differential representation of, 22-25 

in free space, 35 

frequency domain solutions, 25 

inhomogeneous, 28 

integral presentation of, 25-27 

reduction, 29 

time-harmonic presentations, 3 1 

Maxwell’s unified theory, 2 1 

Microcells 

coverage, 240 

defined, 19 

range predictions, 240 

Microwaves, 7 

Mobile antenna height correlation factor, 

262-63 

rural areas, 263 

suburban areas, 263 

urban areas, 262-63 

break point prediction, 330 

with diffraction, 33 1 

predication of, 332 

Model of double-scattering (MDS), 326 

scattered component increase, 330 

See also Double scattering 

Model of single-scattering (MSS), 326 

break point predication, 330 

with diffraction, 33 1 

predication of, 332 

See also Single scattering 

M ul tidi ffraction model, 240-4 5 

for antennas ador above rooftop level 

contribution to path loss, 241-44 

coverage effects, 246-48 

equation of straight line and, 244-45 

formulas, 241, 244 

path loss, 247 

of urban region, 242-43 

See also Diffraction 

and, 250 

Multigrain wireless (MGW) local-loop 

system, 21 1, 238 

Multiparametric model, 336 

Multiple knife-edge diffraction, 140-56, 

287-93 

approximate-models of, 149-56 

attenuation, 142 

defined, 287-88 

effects of terrain profile, 288-93 

geometry, 141 

See also Knife-edge diffraction 

effects, 308-9 

geometry of, 3 10 

problem, 317-19 

See also Scattering 

angle, 2 1 8- 1 9 

attenuation, 200 

defined, 183 

narrow streets and, 219 

nonregular, 184 

perfectly conductive, 199 

three-dimensional, 185, 220 

total intensity inside, 204-5 

two-dimensional, 186, 229 

Multiscattering 

Multislit waveguide, 184-87 

Narrow streets, 209-10 

multislit waveguide model and, 2 19 

regularly planned, 362 

See alro Streets 
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Neumann boundary conditions (NBC), 

Neumann hnction, 40, 41 
Noise, 8-10 

285, 311 

ambient, 8,  9 

background, 8 

characteristics, 9-1 0 

electronic equipment, 8 

Galactic, 9, 10 

manmade, 9, 10 

white, 9 

in built-up areas, 223-50 

with double scattering model, 336, 338 

in Jerusalem area, 337 

in Kingston area, 335 
predication algorithm and, 365 

rough terrain propagation and, 12 1-66 

signal intensity decay in, 333 
urban, 299 

Walfisch-Ikegami path loss formula, 

270 

See also Line-of-sight (LOS) conditions 

No  line-of-sight (NLOS) conditions 

Okumura technique, 259-6 1 

advantageddisadvantages of, 26 1 

for complicated urban environments, 

correction factor, 262 

defined, 259 

factor application, 266 

with Hata formulations, 293 

Hata measurement comparison, 267 

height gain factor vs. receiver antenna 

height, 261 

height gain factor vs. transmitter 

antenna height, 260 

implementation of, 261 

land-sea correction factor, 26 1, 265 

losses in free space, 259 

reference median curve, 267 

rolling-hill terrain correction factor, 

slope-terrain correction factor, 261, 

See also Empirical models (built-up 

260 

261, 263 

264 

irregular terrain) 

Optical ray theory, 122 

Organization, this book, xii-xiii 

Over-the-roofs diffraction model, 298 

Parabolic equation method, 280-87 

boundary conditions, 28 1 

defined, 280 

model description, 280-82 

normalized path loss over multiple 

normalized path loss over rectangular 

normalized path loss over screens, 283 

numerical results, 282-87 

path loss vs. distance from transmitter, 

split-step algorithm, 28 1-82 

wide-angle, 282, 285 

See alro Deterministic models (built-up 

knife edges, 284 

buildings, 288 

287 

irregular terrain) 

Path loss 

average, 275 

Blomquist-Ladell model, 159 

CW model, 247 

defined, 11 

diffraction and, 126 

evaluation, 11 

formulas, 11 

in free space, 59, 93 

free space formula, 244-45 

for isotropic point source, 60 

MD model, 247 

measurement units, 12 

multidiffraction model and, 24 1-44 

parabolic equation method and, 283, 

parameter, 92 

ratio between isotropic antennas, 289 

ratio between receiving/transmitting 

receiver/transmitter antennas, 60 

total, at crossing-street level, 224 

in urban environments, 330-35 
vegetation and, 166 

Walfisch-Ikegami model and, 268, 

284, 288 

power, 291 

269, 270 

Perfectly conductive surface, 120 

Perturbation technique, 108-14 

defined, 107 

field perturbations, 1 10 

horizontal dipole and, 1 12-1 3 
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phase difference and, 108 

roughness influence, 1 10 

vertical dipole and, 11 1 

SPP alro Kirchoff approximation 

between diffracted/direct rays, 124 

Fresnel-Kirchoff diffraction parameter 

perturbation method and, 108 

between reflected/direct waves, 9 1-92, 

Phase difference, 98, 104 

and, 123 

97 

Phase function, 73-74 

Picocells, 19 

Plane waves 

defined, 34 
in free space, 34-36 

Point-to-point method, 159, 276-79 

defined, 277 

path loss slope compared to, 279 

See alro Lee’s model 

Polar coordinate system, 75 

Polarization. See Wave polarization 

Poynting theorem, 29-30 

integral, 30 

in time harmonic form, 30-31 

Poynting vector, 30, 58, 59 
Prediction algorithm, 363-67 

block scheme, 364 

first step, 363 
fourth step, 367 

initial data, 363 
for LOS conditions, 365 
for NOS conditions, 365 

second step, 363-65 

third step, 365-67 

between buildings, 24 1 

over built-up irregular terrain, 253-95 

channels, 3, 10-11 

in free space, 34-58 

over irregular terrain, 101-75 

lateral wave, 166-72 

in LOS conditions along straight 

over multiple obstructions, 138-66 

in NLOS conditions in built-up areas, 

over rooftops, 241 

Propagation 

streets, 183-220 

223-50 

over rough terrain (LOS conditions), 

over rough terrain (NLOS conditions), 

over single knife edge, 121-38 

over smooth terrain, 65-99 

in urban areas (buildings on rough 

terrain), 297-338 

in urban areas, 16-18 

over vegetation, 166-73 
VHFIUHF-band, 174 

path loss, 11 

real power, 12 

SNR, 12 

101-7 

121-66 

Propagation characteristics, 10-1 3 

Pseudo differential operator, 282 

Quasi-periodical surface relief model, 104 

Radial waveguides, 230-3 1 

higher-order modes, 235 

lower-order modes, 249 

principle normal modes, 235 

principle waves from, 237 

wave impedance inside, 232 

Radiation frequency, 16 1 

Radio map, 246 

Radio port unit (RPU), 330 

Radio Propagation in Cellular Networks 

goal of, xii 

organization, xii-xiii 

measured value, 332 

theoretical finction of, 33 1 

theoretical value, 332 

values, determining, 330 

Radio strength indication (RSSI), 330 

Rare scatters, 305 

Rayleigh rough-surface criterion, 10 1-7 

probabilistic approach, 106-7 

schematic presentation, 106 

Real power, 12 

Receiver antenna 

average gain, 9 

below rooftop level, 248 

in clutter conditions, 16 

direct visibility, 16 

effective aperture of, 59 

gain, 59 

path loss, 60 
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placement, 16 

situations, 17 

See also Antennas; Transmitter antenna 

base station antenna as, 321 

street level, 241 

See also Receiver antenna; Transmitters 

Receivers, 3 

Receiving signal level (RSL), 352 

Rectangular-crossed broken waveguides, 

Reflected point distribution, 306-8 

Reflected source, 70 

Reflected surface section dimensions, 

Reflected waves, 80 

amplitude, 84 

attenuation factor, 200 

direct wave phase difference, 91-92, 97 

G T D  and, 187 

polarization characteristic of, 1 19 

area for, when both antennas near 

area for, when one antenna near 

areas for, three-dimensional 

areas significant for, 71-79 

essential effect for, 73 

from flat terrain, 65-90 

formula, 79-87 

geometry, from curved smooth ground 

quasi-smooth surface geometry, 1 16 

from rough ground surface, 102-3 

specular, 78, 79, 96 

spreading effect due to, 98 

strict, algorithm, 66-71 

TE-plane wave, 83 

TM-plane wave, 85 

total, 87 

Reflection coefficient 

amplitude, 87-88 

analysis for various propagation 

conditions, 87-90 

of average (coherent) field, 118 

average, 316 

from building surface, 313 

248-49 

302-4 

Reflection 

ground, 78 

ground, 76 

presentation, 80 

service, 95 

correlation function, 3 14 

for each reflected waveguide mode, 229 

Fresnel, 121 

horizontal wave polarization, 89 

parameters affecting, 90 

phase distribution, 3 14 

phase variations, 87-88 

for radiated field polarization, 207 

valuelphase vs. angle above horizon, 89 

vertical wave polarization, 88-89 

Refracted waves, 81, 84 

Refraction 

formula, 79-87 

TE-plane wave, 83 
TM-plane wave, 85 

Relief function, 3 15 

Repeat cells, 346 
Reuse distance 

defined, 346 

mean, 351 

Reuse ratio, 350 

Rooftops 

antennas ador above, 250 

diffraction of fields at, 241 

median value of, 244 

propagation over, 24 1 

reduction of field at, 244 

to street diffraction, 245 

transmitter/receiver antennas below, 248 

See also Buildings 

Rotating elliptoids, 79 

Rough surface field components, 107-2 1 

diffuse, 107 

specular reflected, 107 

Rough terrain, 101-66 

criterion, schematical presentation of, 

106 

critical height, 104 

multiple obstructions placed on, 

propagation, in LOS conditions, 10 1-7 

propagation, in NLOS conditions, 

121-66 

with randomly distributed buildings, 

365 
relief, 298 

surface criterion, 10 1-7 

urban environment with buildings on, 

138-66 

297-3 38 
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Rural areas, 13 

correlation factor for mobile antenna 

See also Built-up areas 

height, 263 

Scalar potentials, 27 

Scalar wave equation, 39, 44 

Scattered fields 

average, 118 

defined, 107 

depolarization of, 1 19 

bistatic, 173 

double, 320, 324-25 

multiscattering, 308-9, 3 10, 3 17-1 9 

numerical simulation of, 325-30 

points distribution, 304-6 

single, 309-17, 320 

Second summand, 305 

Semi-empirical models (built-up irregular 

Ibrahim-Parsons method, 272-75 

Lee’s model, 275-79 

boundary conditions and, 285 

Kirchoff approximation and, 1 14 

Scattering 

terrain), 268-69 

Shadow zones, 122 

Short-wave approximation, 120 

Signal-to-noise ratio (SNR), 12 

Single diffraction, 320 

Single scattering 

approximation, 3 16 

with diffraction, 326 

geometry, 320 

model of (MSS), 326, 330, 331 

problem, 309-1 7 

two-dimensional geometry, 3 13 

Slipped waves, 113 

Slope-diffract ion 

approach, 143-45 

coefficient, 145 

defined, 143-44 

over three-obstacle radio path, 144 

See also Diffraction 

Smooth terrain, 65-99, 115 

Snell’s law, 84, 87 

curved surface, 96 

schematic presentation of, 8 1 

Spatial distribution, 299-301 

Spatial spectrum, 196 

Specular reflection, 78, 79 

from curved surface, 96 

points, 306, 307, 308 

in free space, 39-44 

presentation, 40 

Split-step algorithm, 28 1-82 

Spreading effect, 98 

Spreading factor, 97-99, 145 

Stationary phase, 55 
Statistical quasi-homogeneous building 

Stochastic model of scattering, 172-73 

Stokes’ theorem, 25-26 

Spherical waves 

area, 300 

geometry, 25 

for surface integral of a curl, 32 

brokenness effect, 248 

crossing, 224-28, 245-48 

field strength inside, 228-3 1 

multislit waveguide model, 184-87 

narrow, 209-10 

nonregularly planned, 360-6 1, 362 

as planar multislit waveguide, 183 

regularly planned, 360, 362 

straight, LOS conditions, 183-220 

wide avenues, 207-9 

Streets 

Strict theorem of reflection, 66-71 

Suburban areas, 13 

correlation factor for mobile antenna 

See alro Built-up areas 

height, 263 

Surface electric impedance, 228 

Surface roughness criterion, 101-7 

Tadiran Telecommunications, 2 10, 2 1 1, 

238 

Tamir’s approach, 170 

Telegraph signal function, 192, 228 

Terrain 

factor, 158 

flat, 65-90 

hilly, 121, 139, 255, 260, 278 

irregularity factor, 162-63 

rough, 65-90 

smooth, 65-99, 115 

surface classification, 17, 18 

types, 160 
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Terrain configurations, 13- 16 

categories, 14 

characteristics of, 14-1 5 
classes, 1 5- 16 

classification standard, 14 

compromise variant, 15 

parameters, 15 

types of, 13 

Terrain-profile function, 28 1 

T E  waves 

defined, 82 

reflection and refraction, 8 3  

Three-dimensional waveguide model. See 

Time domain solutions, 25 

Time-varying EM-wave field, 22 

T M  waves 

Waveguide street model 

defined, 82  

reflection and refraction, 85 

along radial waveguide, 23 1 

Fourier transform, 234 

loss relative to intensity in free space, 

230, 236 

measured vs. calculated comparison, 

range along crossing waveguide vs., 

relative, 235 

in side waveguide, 231-38 

See also Field intensity 

Total effective noise power, 9 

Total field 

Total average intensity, 230 

33 1-32 

236-37 

average, calculation, 228-29 

average intensity of, 3 16 

bisection, 237-38 

in broken multislit waveguide, 229 

in broken waveguide, 196 

calculation, 228 

continuous spectrum of, 201, 203 

discrete spectrum, 197 

flat terrain, 71 

in impedance unbroken wav’eguide, 

187-9 1 

Total field intensity, 318, 323 

attenuation along street, 204-1 O 

coherent part, 327, 328, 329 

incoherent part, 323, 327, 328, 329 

Total reflection, 87  

Transhorizon radio path, 160 

Transition function, 145 

Transmission loss, free-space, 58-60 

Transmitter antenna 

average gain, 9 

below rooftop level, 248 

in clutter conditions, 16 

direct visibility, 16 

path loss, 60  

placement, 16 

situations, 17 

See also Antennas; Receiver antenna 

base station as, 241 

distance from, intensity decay vs., 94 

See also Receivers 

Transverse waves, 36 

Trees 

Transmitters, 3 

bistatic scattering of, 173 

branches, 173 

effects of, 166 

leaves, 173 

Two-dimensional broken waveguides 

EM waves, 191-93 

reflection from plate, 192, 193 

reflection from wall, 192, 193 

Two-dimensional crossing-streets 

Two-dimensional multidiffraction model, 

Two-dimensional multislit waveguide 

waveguide, 22-4-40 

240-45 

average field, 194-204 

impedance walls, 195 

numerical calculations, 2 1 5- 16 

Two-dimensional side effects, 298 

Two-ray model, 90-93, 183 

defined, 90 

geometry, 91 

narrow streets and, 219 

Ultra high frequencies (UHF), 7, 322 

Unbroken waveguides, 204 

reflected field in, 187 

total field in, 187-91 

cells in, with grid-plan streets, 359 

correlation factor for mobile antenna 

Urban areas, 13 

height, 262-63 
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modeling, with rectangular crossing 

streets, 224-28 

path loss prediction, 330-35 

propagation situations in, 16-1 8 

total number of subscribers in, 355 

two-dimensional multidiffraction 

model, 242-43 

See alro Built-up areas 

Vector 

amplitudes, 120 

multiplyers, 120 

potentials, 27, 28-29 

wave equation, 46-47 

index (VI),  15 

path loss and, 166 

propagation over, 1 6 6 7 3  

field reflection geometry, 11 1 

field strength, 218 

source presentation as, 67 

dipoles, 167 

reflection coefficient and, 88-89 

Vegetation 

Vertical dipoles, 11 1 

Vertical polarization, 86, 87, 88, 167 

Very high frequencies (VHF), 7, 322 

Virtual magnetic source, 68 
Virtual sources, 54 

Walfisch-Bertoni model, 289 

Walfisch-Ikegami model, 268-72 

base station antenna height in, 271 

defined, 268 

Hata model vs., 271 

multiple-diffraction component, 270 

path loss formula for LOS conditions, 

269 

path loss formula for NLOS 

conditions, 270 

path loss prediction, 268 

See alro Semi-empirical models (built- 

up irregular terrain) 

Wave equations, 28, 31 

Waveguide street model, 204-10 

average field intensity, 205-6 

break-point range, 208, 209 

continuous, 2 19 

contribution to path loss, 210 

narrow streets, 209-1 0 

normalized field-intensity attenuation, 

numerical calculations, 21 5-16 

reflection coefficient, 207 

total field intensity attenuation, 217 

total intensity, 204-5 

wide avenues, 207-9 

208 

Wave impedance, 232 

Wavelets, 52, 122 

Wave polarization, 36-39 

circular, 37-38 

elliptical, 37, 39 

horizontal, 86, 88 

linear, 37 

vertical, 86, 87, 88 

Wave-scat teri ng problems, approaches to, 

107 

Weissberger model, 172 

White noise, 9 

Wide-angle free space propagator, 282 

Wide-angle parabolic equation, 282 

approximation, 285, 286 

narrow-angle vs., 286 

Wireless communication 

frequency band for, 6-10 

historical developments, 6 

links, 3 

WISE, 285 

Young’s propagation prediction, 254-55 


