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Preface

This book is intended to appeal to any practicing engineer and/or student who
is concerned with the operation and service of cellular radio, including personal,
local, fixed, and mobile wireless communication systems. It examines the
different situations of wireless communication in an urban scene and various
propagation phenomena that influence the transmission of radio signals through
urban communication channels, both in line-of-sight (LOS) and obstructive
(no line-of-sight (NLOS)) propagation conditions for the transmitter and
receiver antennas. The phenomena treated include free-space propagation above
regular and irregular terrain, reflection and diffraction by various obstacles
(e.g., hills, buildings, trees) regularly or randomly distributed on the terrain
(smooth or rough), effects of scattering from such obstacles and from the
ground surface. In view of wireless-communications practice, behavior of waves
in the UHF/L-frequency band is emphasized throughout.

In recent decades, the personal communication network was developed
to satisfy continually increasing demands for personal, local, and mobile com-
munications. The wireless local-loop system is now used in local networks,
serving as an alternative to conventional loop-distribution networks. To design
such systems successfully, it is important to predict the propagation characteris-
tics of urban radio channels, to define optimal locations simultaneously for
the base station (radio port) and for each local stationary and/or moving
receiver, and to make performance prediction for the individual subscribers
(stationary or moving).

This book presents the reader with the full picture of propagation mecha-
nisms in cellular propagation channels, aspects that do not yet have a complete
and finished form. Propagation phenomena are presented in many excellent
books separately from other subjects, such as cellular map construction, signal

Xi
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processing, and so forth. The main goal of this book is to show the reader
how to use specific propagation models for each situation in an urban scene,
how to obtain from such models the propagation channel characteristics, how
to obtain from these characteristics the coverage effects, and, finally, how to
construct the radio maps and the cellular maps of investigated terrain areas
using the propagation characteristics for different cellular urban environments
(macrocell and microcell).

The book does not consider practical recommendations for wireless com-
munication systems design; it principally addresses the radio propagation aspects
of personal and mobile communication, and supposes that the reader is already
tamiliar with the basic aspects of higher mathematics, electrodynamics, and
wave propagation. Nevertheless, it briefly summarizes some applied aspects of
electromagnetism to describe land and urban radio wave propagation problems.

The material and chapter sequence in the book’s text follow the courses
mentioned below. It is composed of four parts. Part I consists of two chapters.
Chapter 1 introduces the subject of the book, that is, it describes how I
differentiate between various urban environments by using different kinds of
terrain surfaces and antenna positions, both for the transmitter and the recciver,
relative to the obstructions surrounding them. I discuss how I see the concept
of “propagation channel” and its main characteristics, and explain my view
by introducing different kinds of cellular environments. Chapter 2 discusses
the applied aspects of electromagnetism and wave propagation using the unified
approach of the time harmonic form of the wave equation to describe wave
propagation in free space.

Part 11 consists of two chapters that describe the propagation phenomena
in gpen and rural areas. Chapter 3 deals with the radio wave propagation over
flat and curved smooth terrain. Here the “two-ray” model which is well-known
from the related literature is briefly described for LOS conditions between
antennas. Chapter 4 describes the propagation effects from rough and hilly
terrain for LOS and obstructive NLOS conditions, respectively. The criterion
of roughness of the ground surface is introduced. For LOS conditions, the
scattered field characteristics are obtained by using the perturbation theory and
the Kirchhoff’s approximation. For NLOS conditions between antennas, the
deterministic and empirical models are used.

Part 111 consists of four chapters which describe the propagation phenom-
ena in built-up areas. In Chapter 5, the evaluation by means of my “multislit
street waveguide” model is introduced to describe the propagation characteris-
tics along straight rectangular streets in cases where both antennas, receiver
and transmitter, are placed in direct visibility (LOS conditions) at lower than
rooftop level. In Chapter 6, the conditions of regular terrain are considered
further, but here the obstructive conditions (NLOS) for antennas are described
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in the case of urban environments with a rectangular crossing-street plan for
different positions of both antennas relative to the rooftops. In this case, the
“crossing-waveguides” model I constructed and the “two-dimensional mulridif-
fraction” model Bertoni and his co-authors constructed (references are given
in Chapter 6) are presented for describing the propagation characteristics and
the coverage effects.

In Chapter 7, I consider irregular built-up terrain, and present existing
empirical and semi-empirical models for describing propagation characteristics
above rough terrain with many obstacles randomly distributed around the
transmitter and receiver antennas. Chapter 8 continues this subject by introduc-
ing the “multiparametric” model, which is based on the combination of a
deterministic and a probabilistic approach first introduced by Ponomarev and
his colleagues (references are given in Chapter 8). This model describes the
field characteristics above irregular terrain with randomly distributed obstacles.
I added some modifications in the model by introducing a more realistic
description of the diffraction phenomena and a more general description of
the built-up terrain. The method of obtaining the coverage effects by using
propagation characteristics is described for the more general case of built-up
terrain.

Part IV considers the special aspects of cellular maps’ construction. In
Chapter 9, I introduce the main characteristics of cellular areas and give the
reader a useful technique for predicting the dimensions and the geometry of
contours of cellular maps by using the propagation characteristics for each
cellular propagation channel. Here, the concept of cellular map construction
using the loss characteristic prediction based on previously developed propaga-
tion models is discussed. The special algorithm for constructing radio and
cellular maps is fully described in the final section of this book and is recom-
mended to the reader for practical use.
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Introduction to the Wireless
Propagation Environment

1.1 Background

Wireless communication links include several channels having different physical
principles and processes, with their own independent or correlated working
characteristics and operating elements. A simple scheme of such a link consists
of the transmitter (T), the receiver (R), and the propagation channel, the main
output characteristics of which depend on the conditions of radio propagation
in different kinds of environments (see Figure 1.1).

As follows from the simple scheme, depicted in Figure 1.1, there are
three main independent electronic and electromagnetic design tasks related to
these communication channels. The first task is the specification of the elec-
tronic equipment that controls all operations within the transmiteer, including
the transmitter antenna operation. The third task concerns the same operations
and signals, but for the receiver, with its own peculiarities. For both of these
channels an important problem is the influence of different kinds of obstacles
placed around the antennas, and of the environmental conditions. Another
important question for a personal receiver (hand-held) antenna is also the
influence of the human body on the operating characteristics of the working
antenna. The radio propagation channel, denoted as a second channel in the
scheme presented in Figure 1.1, plays a separate independent role. Its main
output characteristics depend on the conditions of radiowave propagation in
the various operational environments of such wireless communication links.

In the literature dedicated to wireless communication, fixed and/or
mobile, most of the attention is given to descriptions of the electronic equipment

3
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Influence of local obstacles

Transmitter antenna | Electronic communication channel Transmitter
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@3 Receiver Electronic communication channel | Receiving antenna K=

Influence of local obstacles
and human body

Figure 1.1 The simple scheme of three main independent electronic and electromagnetic
design tasks related to the communication channels.
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and the signal processing within it; less attention is given to propagation aspects
[1-8]. We think that only the wave propagation phenomena and its explanation
as presented, for example, in [4], satisfy the increasing interest of designers of
wireless communication systems in this subject.

In this book we have also pointed out some aspects of propagation
phenomena presented in [4]. But in our opinion, there is a deep “gap” in all
the reference books in the description of propagation phenomena in urban
communication environments. There is no clear explanation of questions such
as how to obtain the output propagation characteristics for predicting the
efficiency of wireless links (as a completed communication system), how to
correlate the output propagation characteristics with those used for the construc-
tions of radio maps for operating and servicing areas, and so on. Moreover,
in numerous practical cases of operation with the “cell” splitting concept for
built-up areas, and the design of wireless communication systems, the questions
of how to obtain the real output propagation characteristics for predicting the
cell characteristics, how to develop the algorithms for constructing cellular
maps and, finally, how to plan for an effective quality of service for each
subscriber within each cell in various cellular propagation environments are
very important,

This is why we examine all the propagation phenomena that can be
observed in urban propagation channels in detail for the effective prediction
of their output parameters in order to increase the efficiency of control of the
operation characteristics of wireless communication systems.

On the other hand, the conditions of EM-wave propagation in a built-
up urban environment are the most problematic of all the types found in
ground-radio communication. In city areas with regularly and/or irregularly
planned buildings, rays reflected, scattered, and diffracted from buildings and
other obstructions lead to significant amplitude and phase variations of the
received signals [1-30].

Many experimental and theoretical investigations carried out in city areas
show that most of the buildings in built-up regions are practically nontranspar-
ent. The total field for ground objects at heights lower than roof level is formed
mainly by radio waves reflected from walls and diffracted from corners [9-14,
20-22, 27-30}. In this case, wide shadow regions with sharp transitions to
illuminated zones with laminated interference pictures are observed [20-22,
27-30]. In general, the main influence on field formation in city areas with
dense building arises from the local building plan [9-12, 16-19].

This is why the processes of radio wave propagation in city areas cannot
be described by general statistical [9, 20-21, 30] or empirical (see bibliography
in [2]) models. Acceptable results can be obtained only for specific circumstances
and for particular features of the city regional planning [1-4, 9-12, 16-19].
These effects are more apparent in the case of the connection between the
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base station (radio port) and a stationary or moving object. Either both are
located on the flat- or rough-ground surface at the street level below the rooftops
of buildings, or one of them is above the roof level.

In other words, the use of each model must relate to a specific situation
in an urban propagation channel. Therefore, in Section 1.5, we classify the
situations into various special cases which exist in practice in wireless communi-
cation systems’ construction and servicing. We will then describe the respective
propagation conditions for any communication link that has some practical
interest.

1.2 Historical Perspective of Wireless
Communication Developments

First we present some important aspects of the development of radio communi-
cation channels.

In 1873, Clerk James Maxwell united all the well-known laws of electro-
statics and magnetostatics, and electrodynamics and magnetodynamics, as a
result of the work of Poisson (in electrostatics), Gauss (in magnetostatics),
Ampere (in electrodynamics), and Faraday (in magnetodynamics), in a unified
theory of electromagnetism. He described these laws in the completed form
of four coupling equations (see Section 2.1).

Fifteen years later, in 1888, Heinrich Rudolf Hertz demonstrated practi-
cally the phenomena which Maxwell had obtained mathematically. In 1901,
Gugliemo Marconi showed the possibility of constructing radio communication
links between two stations at a range of 3,000 km. As an example of information
transmission, he used the Morse signal “S.”

During the mid-1930s, two-way radio communication links were
designed at frequencies of 30-40 MHz. A decade later, broadcasting systems
using mobile communication channels were operated at frequencies of
100-200 MHz. At the beginning of the 1960s, in developing land wireless
communication links, designers of communication systems started to employ
the frequency band up to 450 MHz.

Today one can observe the fast growth of various types of wireless commu-
nication systems, such as personal fixed and mobile, land and satellite, that
use a wide frequency band from 500 MHz up to 3-10 GHz (see Section 1.3
for explanations of how to use each frequency band in practical wireless systems).

1.3 Frequency Band for Wireless Communication Systems

The frequency band is a main characteristic for predicting the effectiveness
of wireless communication systems that we consider separately. The optimal
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frequency band for each propagation channel is determined and limited by
the technical requirements of each communication system and by the conditions
of radio propagation through each channel.

First of all, we consider the spectrum of radio frequencies and their
practical use in various communication channels.

Extremely low (ELF) and very low frequencies (VLF) are frequencies
below 3 kHz and from 3 to 30 kHz, respectively. The VLF-band corresponds
to waves which propagate through the waveguide formed by the earth’s surface
and ionosphere at long distances with a low degree of attenuation [0.1-0.5
decibel (dB) per 1000 km]. Frequencies lower than 3 kHz (ELF-band) are
effective for underwater communication channels and for mines and subterra-
nean communication.

Low frequencies (LF) are frequencies from 30 kHz up to 3 MHz. In the
1950s and 1960s, they were used for radio communication with ships and
aircraft, but since the 1960s they are used by broadcasting stations. Such radio
waves propagate along the ground surface, and in the literature are called
“surface” waves.

High frequencies (HF) are those which are located in the band from 3
to 30 MHz. Signals in this spectrum propagate by means of reflections caused
by the ionospheric layers and are used for communications with aircrafts and
satellites, and for long-distance land communications by use of broadcasting
stations.

Very high frequencies (VHF) are located in the band from 30 to
300 MHz. They are usually used for television communications, in long-range
radar systems, and in radio-navigation systems.

Ultra high frequencies (UHF) are those that are located in the band from
300 MHz up to 3 GHz (in some literature its upper part from 0.5 GHz to
3 GHz is also divided into P, L, S bands). This frequency band is very
effective for wireless microwave links for cellular systems (fixed and mobile)
constructions, for mobile-satellite communication channels, and medium-range
radars.

In recent decades radio waves with frequencies higher than 3 GHz (C,
X, and K bands up to several hundred GHz, which are called microwaves in
the literature) have begun to be used for constructing new kinds of wireless
communication channels. However, waves in this frequency band propagating
through the atmosphere suffer great attenuation caused by absorption by differ-
ent air components, such as (Figure 1.2):

® Water (H,O), at frequencies of about 22 GHz;

* Oxygen molecules (O3), at frequencies of about 60 GHz.
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Figure 1.2 The wave propagation through the atmosphere with absorption by H,0 at
frequencies of about 22 MHz and by molecules of 0; at frequencies of about
60 MHz.

We now consider the question of how to determine the most effective
operating frequencies in various communication systems. The effectiveness of
each complete communication system depends on such parameters, as:

® Losses in the transmitter and in the receiver antennas;

® Noise within the electronic equipment that communicate with both
antennas;

® Background and ambient noise (e.g., galactic, atmospheric, artificial
man-made).

Now let us consider each type of noise which exists in a complete commu-
nication system. The simple explanation of noise is that noise is generated
within each element of electronic communication channel due to random
motion of the electrons within the various components of the equipment.
According to the theory of thermodynamics, the energy generated is determined
by the average background temperature, 7, as:

En=FkpT) (1.1)
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where kg = 1.38 - 10023 wW-s-K'is Boltzman’s constant, 7 = 290°K =
17°C. This energy is uniformly distributed in the frequency band and, hence,
it is called “white noise.” If so, the power of a signal inside the transmitter-
receiver electronic channel at a given system bandwidth B, shall be given by:

Ng = k3TyB, (1.2)

At the same time, there are other sources of noise which we can describe
as uniform over the system bandwidth. We can present their energy by their
own effective temperature. The basic ambient noise is the galactic noise which
is described by its temperature, denoted as 7', and is equal to 4K. This is the
effective temperature of the galaxy that characterizes the spreading process of
the universe after the “Big Bang.” In fact, the discovery of this noise was one
of the evidences supporting the Big Bang theory.

Another noise source 1s manmade noise of which the temperature is
measured to be ~7.0 - 10 /f (4, 8], and atmospheric pollution (smoke, ice,
water, clouds, air streams, and so forth) of which the noise temperature is
~f 313 + 10%. The total effective noise temperature at the receiver input is:

26 3

.0-10 :
Tt,szro—-———’] 3 + Tb"’ f
f 310

= (1.3)

Then the total effective noise power at the receiver input is given by the
following expression:

NT=kBTOBwF (1.4)

where Fis the noise figure of the receiver representing the additional noise
(Chapter 9 in [4] gives a detailed description of man-made noise). In (8], the
other form of the total effective noise presentation in decibels (dB) is done

by:

Nr=-10 log{L + 10701CT [0V 1]} (1.5)
Ty

Here, G 7 is the average gain of the transmitter/recciver antenna (in
decibels), N is the noise within the electronic equipment according to (1.2),
T, is the full noise temperature for the sources in the propagation medium
with its own temperature 7 in Kelvin (according to (1.3)).

All noise characteristics, including artificial man-made noise, are shown
in Figure 1.3(a,b) as a function of operating frequencies. As seen from the
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Figure 1.3 The noise characteristics, including artificial man-made noise, as a function of
operating frequencies.

curves in Figure 1.3, with the growth of operating frequencies in communication
channels all artificial man-made noises, as well as the Galactic noise, have a
decreased effect. At the same time, typical noises in the transmitter-receiver
communication channel are slightly increased as frequencies increase from 200

MHz up to 3 GHz,

1.4 Main Propagation Characteristics

Let us now consider the main propagation characteristics of a wireless communi-
cation channel. The principal characteristic that determines the effectiveness
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of the propagation channel in various kinds of environment is the path loss. It
defines variations of the signal amplitude or field intensity along the propagation
trajectory (path) from point to point within the communication channel.

For its quantitative evaluation we will assume that the signal/wave ampli-
tude in the point 1 along the propagation path is A(r;), or the signal/wave
intensity is J(r;) = A 3(ry). In the process of propagation along the path at any
next point r; the signal/wave amplitude is A;(r;) or intensity /(r;) = A%(rz)
In the literature the path loss is defined as a logarithmic difference between
the amplitude or the intensity (sometimes called power) at any two different
points r} and r; along the propagation path in the medium. Actually, these
points describe the position of both terminals at the ends of the propagation
channel, the transmitter and the receiver.

In other words, path loss, which is denoted by L and is measured in
decibels (dB), can be evaluated for signal/wave amplitude A(r ) at two points
r; and r; along the propagation path as:

Ax(ry) 2 2
L=10" log/12 =10 - logA*(r;) — 10 - logA™(r))

(ry) (1.6)
= 20 - logA(rp) — 20 - log A(r;) [dB]

for signal/wave intensity /(r;} at two points r; and r; along the propagation

path

J(r3)
Jry)

=10 - log =10 - log J(r;) — 10 - log J(r;) [dB] (1.7)

[f we take point r| as the origin of the radiopath (the transmitter location)
and assume A(r;) = 1, then

L =20 - logA(r) [dB] (1.8a)
and
L =10 - log J(r) [dB] (1.8b)

So, according to the above-presented definitions, if one refers to signal/
wave amplitude, the value of path loss is determined by formulas (1.6), (1.8a)
with “20” before the sign “log,” if one speaks about signal/wave intensity or
power, the value of path loss is determined by (1.7), (1.8b) with “10” before
the sign “log.”
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The next question is: What are the units by which the losses are measured
at the receiver? Let us assume that the signal/wave amplitude is measured in
millivolts (mV) per meter and the signal/wave power in milliwatt (mW). In
this case, the resulting output value must be presented in decibels above
ImV/m for measured amplitude and in decibels above 1mW for measured
power,

[L]4 = dB/(mV) (1.9)
[L]; = dB/(mW) = dBm

Finally, the resulting output value is denoted in dB/(V/m), dB(mV/m),
and dB(u V/m), if the signal/wave amplitude was measured in decibels regarding
V/m, mV/m, and uV/m, respectively. In the same way, the resulting output
value is denoted in dB, dBm, and dBy, if the signal/wave power was measured
in decibels regarding W (wartt), mW, and uW, respectively.

Example: In some measurements the signal power of Pgp=—6.0 dBm
was obrained.

The question is: What is the rea!/ power (in power units) that we have
measured at the input of the receiver?

Solution: Using the definition (1.8b), one can write:

—-6.0 = 10 - log Py [dBm]
or
Pr=10"%-0251 mW = 251 uW

Hence, one can see that the power Pz = —6.0 dBm corresponds to the
real measured power Pp =251 uW.

Since any signal passing through the propagation channel first passes
through the transmitter electronic channel and antenna, and, secondly, has to
reach the receiving antenna before coming to the receiver input (see Figure
1.1), both electronic channels together with the environment introduce some
noise into the wireless communication system. Therefore, the second main
characteristic of communication channels is the signal-to-noise ratio (SNR or
S/N). In decibels this characteristic can be presented as follows: For the receiver
(output) channel where noise (artificial and natural) is significant

SNR = Py — Ng [dB] (1.10)
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For special cases of urban wireless communication in clutter conditions
other propagation characteristics are usually used. We consider these characteris-

tics in Chapter 9.

1.5 Characterization of Terrain Configurations

The process of classification of terrain configurations is an important stage in
the construction of propagation models above the ground surface and, finally,
in predicting the signal/wave attenuation (or path loss) within each specific
propagation channel. The simple classification of terrain configuration follows
from practical research and experience of designers of such communication
systems. It can be presented as:

® Open area;

¢ Flat-ground surface;

¢ Curved, but smooth terrain;
¢ Hilly terrain;

® Mountains.

The built-up areas can also be simply classified as:

e Rural areas;
e Suburban areas;

® Urban areas.

Many experiments carried out in different built-up areas have shown that
there are many specific factors which must be taken into account to describe
specific propagation phenomena in built-up areas, such as:

® Buildings’ density or terrain coverage by buildings (in percents);

® Buildings’ contours or their individual dimensions;

® Buildings’ average height;

¢ Positions of buildings with respect to the base station and fixed or
mobile receivers;

¢ Positions of both antennas, receiver and transmitter, with respect to
the rooftop level;
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¢ Density of vegetation, presence of gardens, parks, lakes, and so on;

o Degree of “roughness” or “hilliness” of a terrain surface.

Based on these factors and parameters of terrain, British Telecom (BT)
has constructed ten categories of terrain configuration (4], that are presented
in Table 1.1.

According to Table 1.1, one can classify the terrain surface using specific
notations:

Sign 0 denotes the category that describes the water surface; signs 2 to
4 are the categories that describe open rural areas, with some specifications of
ground-surface configurations. Signs 5 to 6 denote the categories that describe
suburban areas; signs 7 to 9 describe the urban areas with growth of buildings’
density and urban area dimensions. A compromise variant (the use of seven
categories of the terrain) has been introduced after comparison with the stan-
dards of some other countries, such as Germany, Denmark, and Japan, which
are presented in Table 1.2.

Moreover, a new standard of terrain classification has been introduced
for the analysis of urban topographic maps. This standard was based on the
following characteristics of terrain:

1. Position and distribution of buildings regarding the observer;
2. Dimensions of buildings or useful built-up area;

3. Number of buildings at the tested area;

Table 1.1
Terrain Configuration

Category Description of the Terrain

Rivers, lakes, and seas

Open rural areas (e.g., fields and heathland with few trees)

Rural areas, similar to the above, but with some wooded areas
Wooded or forested rural areas

Hilly or mountainous rural areas

Suburban areas, low-density dwellings, and modern industrial estates
Suburban areas, higher density dwellings (e.g., council estates)
Urban areas with buildings of up to four stories with gaps in-between
Higher density urban areas in which some buildings have more than
four stories

9 Dense urban areas in which most of the buildings have more than four
staries and some can be classed as “skyscrapers”

WO~ DU BN - O
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Table 1.2
Compromise Variant

lBT (UK.) Germany BBC (UK.) Denmark Okumura (Japan)

h O
0 4 — — Land/sea
lh 2 1 0-2 —

2 3 1 1-2 —

i3 2 1 4 —

4 2-3 1 — Undulating
5 1 2 3 Suburban
6 1 2 6 Suburban
7 1 3 7 Urban

I8 1 3 8 Urban

9 1 4 9 Urban

4. Height of ground surface and its degree of “roughness”;

5. Presence of vegetation.

Using these five characteristics as basic ones, the following parameters
have been introduced to describe the terrain configuration [4]:

Buildings’” dimensions (sizes) distribution (BSD);

Built-up area index (BAI) due to buildings’ coverage effects;
Buildings™ height distribution (BHD);

Buildings’ position distribution (BPD) regarding receiver and trans-
mitter;

bl

Vegetation index (V1) due to vegetation coverage effects;

o W

. Degree of roughness of the ground surface (A4).

To simplify the problem of terrain surface modeling, the modern classifica-
tion of terrain was introduced recently by splitting all characteristics of terrain
configurations into three classes with their subclasses.

Class I: For rural areas

Subclasses: A4 is a flat terrain; B is a hilly terrain; C is a mountainous
terrain.

Class 2: For suburban areas

Subclasses: A is a homogeneous and uniform terrain; B is a uniform
terrain with closed zones; Cis a uniform terrain with strong “shadow zones.”

Class 3. For urban/city areas
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Subclasses: A is a trading part of city; B is a commercial part of city; €
is an industrial part of ciry.

Classes 2 and 3 with all specific parameters are presented in Table 1.3.

Here, u is the mean value of parameters BSD and BHD; o is their
standard deviations around the mean values of BSD and BHD, that is, the
deviations from w.

Using these classes, their specific characteristics, and parameters, one can
easily classify various kinds of terrain by examinating topographic maps for
cach deployment of a wireless communication system.

1.6 Various Propagation Situations in Urban Areas

As remarked earlier, an important characteristic of the propagation channel is
the location and position of both antennas with respect to the obstacles placed
around them. Usually there are three possible situations:

1. Both ancennas, receiver and transmitter, are placed above the tops of

obstacles (in a built-up area this means that they are above the rooftop
level. See Figure 1.4(a)).

2. One of the antennas is higher than the tops of the obstacles (namely,
the roofs), but the second one is lower (Figure 1.4(b)).

3. Both antennas are below the tops of the obstacles (Figure 1.4(c)).

In the first situation they are in direct visibility or LOS conditions. In
the last two situations, one or both antennas are in c/utter or obstructive
conditions. In all these cases the profile of terrain surface is important and
may vary from flat and smooth, with curvature, up to rough and hilly terrain.

Table 1.3
Classification Parameters

BSD (m) BHD
Class BAI (%) Hs o MH oy VI (%)
2A 12-20 95-115 55-70 2 1 >25
28 20-30 100-120 70-90 2-3 1 <5
2C 212 >500 >90 >4 1 <2
3A 245 200-250 =180 24 1 0
3B 30-40 150-200 >160 3 1 0
1 <

3C 3545 2250 =200 2-3
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Figure 1.4 Three possible situations with receiving and transmitting antennas.

In Figure 1.5 a full classification of terrain surface for all three variants of
antenna locations is presented. Using the simple scheme presented in Figure
1.5, one can describe the specific propagation phenomena for various ambient
conditions of the radio propagation over the terrain and, finally, obtain the
appropriate propagation model for each specific communication channel.
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Figure 1.5 The classification of terrain surface.
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1.7 Cellular Environments Concept

The terms macrocell, microcell, and picocell have been introduced in the literature
[1-8] to differentiate among various kinds of cell areas. The term macrocell is
usually used in land communication channels for describing radio-propagation
phenomena at ranges more than 10-20 km (i.e., it is mostly related to radio
propagation over open or rural areas). The term microcell is usually used for
describing radio-propagation phenomena in built-up environments at ranges
from 200m up to 3-5 km. The term picocell is usually used for describing
radio propagation channels within buildings at ranges less than 200m. As the
subject of the book is urban communication channels, indoor propagation, or
picocells, will not be described here.
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Radio Wave Propagation in Free Space

2.1 Electromagnetic Aspects of EM-Wave Propagation

Maxwell’s unified theory (see Section 1.2) postulates that an electromagnetic
field could be represented as a wave. The coupled wave components, the electric
and magnetic fields, are depicted in Figure 2.1, from which it follows that the
electromagnetic (EM) wave travels in a direction perpendicular to both EM
field components. In Figure 2.1, this direction is denoted as the z-axis in the
Cartesian coordinate system. In their orthogonal space-planes, the magnetic
and electric oscillatory components repeat their waveform after a distance of

X
y - I
Electric field
’ component
i
Direction of
\radio wave
Magnetic field component
- z

Figure 2.1 Presentation of an electromagnetic wave moving through free space.

2
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one wavelength along the j-axis and x-axis, respectively (see Figure 2.1). Both
components of the EM wave are in phase in the time domain, but not in the
space domain. Moreover, the magnetic component value of the EM field is
closely related to the electric component value, from which one can obtain
the radiated power of the EM wave propagating along the z-axis. Let us now
assess these phenomena theoretically using Maxwell’s unified theory.

2.1.1 Differential Representation of Maxwell's Equations

The theoretical analysis of EM wave propagation is based on Maxwell’s equa-
tions. In vector notation and in Sl-units system, their representations in the
uniform macroscopic form are:

VXE(r, ) = —g}B(r, t) (2.1a)
d
V x H(r, ) = D(r, 1) + j(r, 2) (2.1b)
V- B, =0 (2.1¢)
V- D, ) = p(e, 1) (2.1d)

Here, E(r, ¢) is the electric field strength vector, in volts per meter (V/m);
H(r, 7) is the magnetic field strength vector, in amperes per meter (A/m);
D(r, ¢) is the electric flux induced in the medium by the electric field, in
coulombs/m3 (this is why, in the literature, it is sometimes called an “induction”
of an elcctnc field); B(r, #) is the magnetlc flux induced by the magnetic field,
in webers/m’ (it is also called an “induction” of a magnetic field); j(r, ¢) is
the vector of electric curtent density, in amperes/mz' pl(r, ¢) is the charge
density in coulombs/m”. The curl operator, V X, is a measure of field rotation,
and the divergence operator, V -, is a measure of the total flux radiated from
a point.

[t should be noted that for a time-varying EM-wave field, (2.1c—d) can
be derived from (2.1a) and (2.1b), respectively. In fact, taking the divergence
of (2.1a) (by use of the divergence operator V -) one can immediately obtain
(2.1¢). Similarly, taking the divergence of (2.1b) and using the well-known
continuity equation [1-3)

dpl(r, )
ot

Vo + =0 (2.2)
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one can arrive at (2.1d). Hence, only two equations, (2.1a-b) are independent.
, . J .
In electrostatics and magnetostatics, where 3" 0, the electric and mag-

netic fields are decoupled. For static problems (2.1d) limits to the Coulomb
law [1, 2], which implies that the electric flux D is produced by a charge
density p in the medium. The same result is obtained with (2.1c), which
assumes the absence of free magnetic charges in the medium. This magnetostatic
law is the consequence of Gauss’s law [1, 2], which is a statement of the
conservation of magnetic flux in the medium. Equation (2.1a) is the Faraday
law and indicates that a time-varying magnetic flux generates an electric field

with rotation; (2.1b) without the term 3 (displacement current term [1, 2])

limits to the Ampere law and indicates that a current or a time-varying electric
flux (displacement current [1, 2]) generates a magnetic field with rotation.

Because one now has only two independent equations, (2.1a-b), which
describe the four unknown vectors: E, D, H, B, two more equations relating
these vectors are needed. To do this, we introduce relations between E and
D, H and B, j, and E which are well-known in electrodynamics. In fact,
for isotropic media, which are usually considered in problems of land-radio
propagation, the electric and magnetic fluxes are related to the electric and
magnetic fields, and the electric current is related to the electric field, via the
constitutive relations [1-3]:

D = ¢(n)E (2.3a)
B = u(r)H (2.3b)
j = o(E (2.3¢)

It is important to note that relations (2.3a—c) are valid only for propagation
processes in linear isotropic media, which are characterized by the three scalar
functions of any point r in the medium: permittivity €(r), permeability u(r),
and conductivity o(r). In anisotropic media such functions transform into
tensors (matrixes), but this case is not important for terrestrial radio propagation,
and we will not deal with this case here. In relations (2.3a—c), we have assumed
that the medium is inhomogeneous. In a homogeneous medium the functions
€(r), u(r), and o(r) transform to simple scalar values €, u and o If, in this
case, they are also functions of frequency, @:

€=¢€lw), p=pw), o=o0w (2.4)
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the medium is frequency dispersive. Below we will talk about a nondispersive,

isotropic, linear, and inhomogeneous medium. In free space, these functions
. ) 12 .

are simple constants (i.e., € = €y =8.854 - 107 ° Farad/meter, while

€oMo
of light, which has been measured very accurately and is close to
8 . . . . \
3 - 10" m/s. In many practical cases of wireless communication environments,

_7 1 .
M = g = 4m - 107" Henry/meter). The constant ¢ = \/: is the velocity

the value w is close to unity, and we can assume B = H in (2.3b) with great
accuracy.

The system (2.1) can be further simplified if we assume thar the fields
are time harmonic. If the fields time-dependence is not harmonic, then, using
the fact that (2.1) are linear, we may treat these fields as sums of harmonic
components and consider each component separately. In this case, the time
harmonic field is a complex vector and can be expressed via its real part as

Alr, ) = Re[A(n)e ) (2.5)

where / = =1, w is the angular frequency in radians per second, w = 27f, f

is the radiated frequency in Hz = s_]. and A(r, ¢) is the complex vector (E,
quency p

. . .
s commonly used in the literature

D, H. B, or j). The time dependence ~ ¢~

~ . . lwt .
of electrodynamics and wave propagation. If —¢™" is used, then one must
substitute —7 for / and 7 for —4 in all equivalent formulations of Maxwell’s
equations.

In (2.5), & presents the harmonic time dependence of any complex
vector A(r, 1) which satisfies the relationship:

a%A(r, 1) = Re[-iwA(r)e ] (2.6)

Using this transformation, one can easily obtain from the system (2.1)

V x E(r) = iwB(r) (2.7a)
V x H(r) = —iwD(r) + j(r) (2.7b)
V- B{r)=0 (2.7¢)

VD) = p( (2.7d)
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It can be observed that system (2.7) was obtained from system (2.1) by
replacing 0/0¢ with —iw. Alternatively, the same transformation can be obtained
by the use of the Fourier transform of (2.1) with respect to time [4]. In (2.7a—d)
all vectors and functions are actually the Fourier transforms with respect to
the time domain, and the fields E, D, H, and B are functions of frequency as
well. Hence, they are also known as the frequency domain solutions of the EM
field according to system (2.7). Conversely, the solutions of system (2.1) are
the time domain solutions of the EM field. It is more convenient to work with
system (2.7) instead of system (2.1) because of the absence of the time depen-
dence and time derivatives in it. This is why, in this chapter and the next we
use Maxwell’s equations in the form (2.7a-d) and their frequency domain
solutions to describe various electromagnetic phenomena related to land-radio
propagation.

2.1.2 Integral Presentation of Maxwell’s Equations

We now present Maxwell’s equations in their integral representations. To derive
the integral forms of (2.1a) and (2.1b), we integrate them over a cross-sectional
area S and use Stokes’s theorem [1-3, 5],

fa’s - VxElr,¢t) = %dl - E(r, 1) (2.8)

5 C

In (2.8), Cis the contour that forms the perimeter of the area § (see
Figure 2.2). This expression states that the sum of all the rotations due to field
E over the area §Sis equal to the “torque” produced by these rotations on the
perimeter of S with C. Here the left-hand side is the summation over all the
rotations, while the right-hand side of (2.8) is the evaluation of the net “torque”
on the perimeter C. The neighboring rotations within the area S cancel each
other, leaving a net rotation on the perimeter.

Using Stokes’s theorem [1-3, 5], one can convert (2.1a) and (2.1b) to:

Figure 22 The geometry for the derivation of Stokes's theorem.
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%dl - Elr, ¢) = —aﬂt ds - B(r, t) (2.9)

C

3
d .
%dl - H(r, ¢) = a—tfds - Df(r, 2) + fds S jle, ) (2.10)
C N S

To convert (2.1¢) and (2.1d) into integral form, one can integrate them
over a volume V and use Gauss’s theorem [1-3, 5], which states that

fduV - B(r, #) = fds - B(r, #) (2.11)

v s

This states that the sum of all divergences of a flux B in a volume Vis
equal to the net flux which is leaving the volume V through the surface S. In
other words, neighboring divergences tend to cancel each other within the
volume V (see Figure 2.3). Consequently, (2.1¢) and (2.1d) become
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Figure 2.3 The geometry for the derivation of Gauss's theorem.
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fds “B(r, ) = 0 (2.12)
S
fds D, 1) = fdv-p(r, 7= Q (2.13)
S Vv

where Q is the total charge in volume V.

Equation (2.9) implies that a time-varying magnetic flux through an area
S generates an electromotive force (the left-hand side in (2.9)) around a loop
C. In the same way, (2.10) implies that a time-varying electric flux (displacement
current) or a conductivity current will generate a magnetomotive force (the
left-hand side in (2.10)) that loops around the currents.

Equations (2.12) and (2.13) are statements of the conservation of fluxes.
In fact, (2.13) implies that the net flux through a surface § equals the total
charge Q inside S (see Figure 2.3).

2.1.3 Vector and Scalar Potentials

Maxwell’s equations can be directly solved only for simple configurations [1-3],
but in common cases it is convenient to introduce so-called potentials, with
the purpose of decreasing the number of equations. In this case, some of
Maxwell’s equations are satisfied automatically. In electrostatics and magnetism,
two potentials, the scalar, ®, and the vector, A, have been introduced [1-3].
In fact, because V - B(r, #) = 0, one can express through vector potential as:

B-VxA (2.14)

Introducing this relation in (2.1a), we finally obtain

Vx(E+aa—é) =0 (2.15)

From vector algebra (5, 6] it is well known that any value for which the
curl is equal to zero can be presented as a gradient of any scalar function.
Therefore we can present the value in brackets as a gradient of scalar potential

b,

oA
E+E=—Vd) (2.16)
E--2_vo

ot
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Hence, the fields E and H that can be determined through the potentials
A and ® according to (2.14) and (2.16) satisfy the inhomogeneous Maxwell’s
equations (2.1b) and (2.1d). Using relations (2.14) to (2.16), one can rewrite
these equations as:

Vi + a%V A =—p (2.17)
2
VZA—aa—;:—V(V-A+%?) - - (2.18)

Thus we reduced the total number of equations to two. Moreover, these
potentials are not independent [1-3]; the relation between them can be pre-
sented as follows:

d

]

|

V- A+ =0 (2.19)

o5

1

Equations (2.17) and (2.18) can be converted into two separate inhomoge-
neous equations for @ and A, respectively:

PR
Vi — _atz =—p (2.20a)
VA - a—zé - —j (2.20b)
r .

Equations (2.20a-b) together with relation (2.19) create a system which
is fully equivalent to Maxwell’s system (2.1). The form of such equations is
called a wave equation, a term which will be obvious later in this chapter.
Often, the so-called Hertzian electric (I1z) and magnetic (I1y) vectors are
introduced instead of the above-mentioned electrodynamic potentials. The
electric and magnetic fields in free space can be presented by use of these
vectors as:

E-VxVxIlgs+ Vg+ £l g= V(V - ) + B0,
H = -V x n[;

(2.21a)

and
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E = —ikV x [y
E-VxVxTy+ Vg + k0, = YV - Ty + £°T1,

(2.21b)

Hence, the Maxwell equations reduce to two wave equations for Hertzian
electric and magnetic vectors, which we present here for free space, respectively:

Vg - g = j
Vil - £y = M

(2.22)

Here, M is the vector of the magnetic current density [1-3, 5];
k = w~J€u is a wavenumber.

214 Poynting Theorem

This theorem is the simple law of EM-wave energy conservation. It is known
from electrostatics and magnetostatics that the work of the electric field to
move a single charge g is equal to g + v - E, where v is the vector of the charge
velocity. The same work of the magnetic field for this charge is equal to zero,
because the magnetic field direction is perpendicular to the velocity vector
[1-3]. For a continuous distribution of charges and currents in a medium, the
total work of the EM field in the volume Vin unit time is equal [1-3]:

f j - Edv (2.23a)
14

This expression determines the velocity of the decrease in the field energy
within the volume V.

Let us now obtain the law of energy conservation, using Maxwell's equa-
tions (2.1). We shall substitute the current density j in (2.23a) using (2.10)
and (2.11)

fj-Edu:f[E-VxH—E~aa—?]dv (2.23b)

%4 14

Taking into account the vector equality [5]
V- ExH =H-VXxE-E-VxH

and (2.1), one can easily rewrite (2.23) as:
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fj-Edv=—f[V-(ExH)+E-aa—l?+H-%}dv (2.24)
v Vv

If we now present the density of total field energy according to [1-3] as

W=(E-D+B-H), (2.25)

then (2.24) will be rewritten in the following form:

—fj-Edu=Haa—‘f/+V-(ExH)]du (2.26)

4 1%

Because (2.26) is written for any volume V, it can be presented in
differential form:

oW
5, +V-S--jE (2.27)

Equation (2.27) is the equation of EM-field energy conservation, or the
equation of continuity. It can be shown that the vector § = E x H in the
brackets on the right-hand side of (2.20) has the dimension of watt/m?, which
is that of power density. From (2.27) is clear that it may be associated with
the direction of power flow.

The vector that determines the power flow of EM field is called the
Poynting vector. Equation (2.26) is the integral Poynting theorem and (2.27) is
its vector presentation.

Using the time harmonic presentation of Maxwell’s equations, one can
convert (2.26) to the time-harmonic form. If we now introduce, instead of

the derivation 3 the term jw, and present the operation of averaging
<E x H>, as ERC{E x H*}, waking into account Gauss’s theorem for the term

V - (E x H*), we finally obtain from (2.26) the Poynting theorem presented
in time harmonic forn:

fds-(E><H‘)=Jdv(H‘~B—E-D*)—fdvE-j (2.28)

S v 4
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2.1.5 Wave Equations

Physically, EM-wave propagation phenomena can be described by use of both
the scalar and vector wave equation presentations. In the case of an isotropic
inhomogeneous medium, one can present Maxwell’s equations in the following
form, using their time-harmonic presentations (2.7):

V x 1 ()V x E(r) - w’e(®E() = iwj(r) - V x u” ()M(r)

2.29
V x €'V x H(r) — 0*w(®H() = iwM(r) - V x € (0)j(r) =2
Because most problems of wave propagation above the terrain, including

built-up environments, reduce to propagation in a homogeneous, source-free

isotropic medium, this system can be easily simplified from system (2.7) by

taking into account the relations (2.3a—) with €(r) =€, u(r) = 4,

o(r) = o, that is,

V x V x E(r) - 0 euE(r) = 0

(2.30)
V x V x H(r) - w’euH(r) = 0

Because both equations are symmetric, one can use one of them,
namely that for E, and by introducing the vector relation
VxVXE=V(V-E)- V2E and taking into account that V - E = 0, finally
obtain

V2E(r) + £2E(® = 0, (2.31)

where #* = w”ep. It can be shown that all other electromagnetic vectors satisfy
as well the same wave equation as (2.31) (see, particularly, (2.22) for Hertzian
vectors in a source-free medium).

In special cases of a homogeneous, source-free, isotropic medium, the
three-dimensional wave equation reduces to a set of scalar wave equation. This
is because in Cartesian coordinates, E(r) = £ xy + E)yo + E,z0, where xq,
Yo, Zo are unit vectors in the directions of the x, y, z coordinates, respectively.
Hence, (2.31) consists of three scalar equations such as

V() + B () = 0, (2.32)
where W(r) can be either £, Ey, or £,. This statement is not true in cylindrical

or spherical coordinate systems. The problems of independent solution of each
scalar wave equation, such as (2.32), are the subject of Section 2.2.
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2.1.6 Boundary Conditions

Equation (2.29) describes all the propagation phenomena within an infinite
inhomogeneous isotropic medium. But if we consider two inhomogeneous
finite or semifinite regions, we need to introduce boundary conditions at the
interface between these two regions in order to solve one of the two equations
in (2.29). In this case, the procedure to solve the vector wave equation is as
tollows.

As a first step, this equation is solved separately for each region. Then,
in the second step, by patching the solution together via boundary conditions,
we obtain the solution for two neighboring regions. It can be shown thar the
boundary conditions follow from one of the two vector wave equations in
(2.29). To do so, we integrate the first equation of (2.29) within a small region
in the interface of the two inhomogeneous semifinite or finite regions, as
presented in Figure 2.4. Then using Stokes’s theorem for the surface integral
of a curl, and using the same integration over surface § for both equations in
(2.29), we finally obtain after straightforward derivations and taking the limit
8 — 0 (see Figure 2.4) respectively for the magnetic-field component

nx Hy —nxHj=jg {2.33)
and for electric-field component

nXE —nxE;=-Mg (2.34)
where Mg and jg is a magnetic and electric current sheet at the interface,
respectively. Equation (2.33) states that the discontinuity in the tangential

component of the magnetic field is proportional to the electric current sheet
js. This is the first boundary condition for solving any one vector electromagnetic

Js Mg

E1,Hi

K- €
np€2 Ez,.Hp

Figure 24 The geometry for the derivation of the boundary conditions.
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equation from (2.29). Equation (2.34) states that the discontinuity in the
tangential component of the electric field is proportional to the magneric
current sheet M. This is the second boundary condition for (2.29).

Both boundary conditions (2.33) and (2.34) can be simplified for the
case of radio wave propagation above a flat terrain. In this case, there are two
semi-infinite neighboring regions (air-ground) separated by the boundary, as
shown in Figure 2.5.

In the case considered, the first boundary condition (2.33) for an isotropic
nonmagnetized (u = 1) source-free (Mg =0, jg = 0) subsoil medium reduces
to

Hln = HZn
HIT=H2’T

(2.35)

Both conditions are valid in the case of finite conductivity of each medium,
which is satisfied within the air-ground surface. The first condition in (2.35)
states that the normal components of the magnetic field of an EM wave is
continuous at the interface of air-ground surface. The second condition in
(2.35) states that the tangential component of magnetic field is also continuous
at the interface of the air-ground surface.

As for the second boundary condition (2.34), it also can be simplified
for the interface of the air-ground surface as

E2n2>0 E2

-

E1n1< 0

Figure 25 Presentation of air-ground surface boundary conditions.
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nxE =nxE
Ey, = E3;

(2.36)

Condition (2.36) states that the tangential components of the electric
field of an EM wave are continuous at the interface of the air-ground surface.
One may notice that conditions (2.33) and (2.34) are more general than
those described by (2.35) and (2.306), and satisfy various kinds of isotropic

inhomogeneous media that consist of both electric and magnetic sources.

2.2 Propagation in Free Space

In free space, an infinite isotropic homogeneous source-free medium, the vector-
wave equation can be presented in a simple form (2.30) to (2.31) for one of
the components of the EM field, or by use of the Hertzian vector II(r):

V() + £211) = 0 (2.37)

where, once more, the wavenumber # = w~ju€e (in many practical cases of
terrain propagation u =1 with great accuracy, and one can rewrite it as
k= we).

221 Plane Waves in Free Space

For plane waves in a Cartesian coordinate system each of (2.31) or (2.37) can
be rewritten in scalar form (2.32) for any Cartesian component of vectors E(r),
H(r), or Il(r). Usually, the literature presents another form of (2.32) by

introducing  wave  number 4 instead, the phase  velocity
w ¢ , .
vph = v = 7 = —==. In this case (2.32) can be rewrittten as:

2
V() + W) - 0 (2.38)
v

Wave equations (2.32) or (2.38) have the well-known solution {1-3]
W(r) = exp(ik - 1) (2.39)

The waves that satisfy scalar (2.38) and are determined by (2.39) are
called plane waves. Wave vector k denotes the direction of propagation of the
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plane wave in free space (see Figure 2.1). If one considers the plane wave that
propagates in any direction, say along the x-axis, then the fundamental solution
of (2.38) is

W(x) = Aexp(ikx) + Bexp(—ikx) (2.40)

This solution describes the waves, propagating in the positive direction
(with the sign “+” in the exponent) and in the negative direction (with the
sign “=” in the exponent), respectively, along the x-axis with phase velocity

¢ . . .
Vpp = T which equals ¢ in an ideal free space.
HE

But one can note that EM fields have a vector character and satisfy
Maxwell’s equations in (2.7) or wave equations such as (2.31) and (2.37).
Thus one can find the field vectors in the following form:

E(r) = egEgexp(ik - 1)
H(r) = eyHpexp(ik - 1)

(2.41)

where ez and ey are the constant unit vectors (i.e., |eg] = |ey]| = 1; £y and
Hy are the complex amplitudes), which are constant in space and time. From
conditions in free space without sources

V-E=0 and V-H=0
it follows that

er k=0 and ey-k=0 (2.42)
which denote that E and H are perpendicular to direction of wave propagation

k. Moreover, because in free space the first Maxwell equation (2.1a) or (2.7a)
reduces to

VXE-iwB=0, B=pyH=H (2.43)

we can finally obtain from (2.43) for a plane wave (2.41) in free space (with
m=1)

i[(k < eg)Ey — keyBplexp(tk - 1) = 0 (2.44)

Equation (2.44) has solutions:
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k x e
€y = keé, Bo =%EO (245)

Hence, vectors eg, ey, and k form the system of orthogonal vectors,
where vectors E and B oscillate in phase and their ratio is constant (see Figure
2.6). The wave which is described by relations (2.41) and (2.45) is a transverse
waye propagating in the k-direction.

2.2.2 Wave Polarization

The vector of electric field in the plane wave as described by formula (2.41)
is directed along unit vector egz. To obtain the more general case of wave
polarization we need an additional linear-polarized wave independent of the
first one. It can be easily shown that two linear-independent solutions which
satisfy wave (2.30) or (2.31) can be presented in the following form:

E) = e Ejexplik ' 1)

(2.46)
E; = eEyexplik - 1)

The magnetic field components of the EM wave satisfy, according to
(2.41) in free space (u = 1), the following relations:

k

X

Figure 26 The transverse wave components presentation in free space.



Radio Wave Propagation in Free Space 37

k x E; .
Bj=\/2——k—1, B,-H, ;=12 (2.47)

Here, amplitudes E)(H)) and E,(H;) are the complex values, which
enable us to introduce the phase difference between the two components of
the EM wave. Thus the common solution for the plane EM wave propagated
along vector k can be presented as a linear combination of E; and E;:

E(r) = le; Ey + exExlexp(ik « 1) (2.48)

If E) and E; have the same phase, then solution (2.48) describes the /inear
polarized wave with polarization vector directed to the e axis at angle

a(E
f = tan (El) (2.492a)
and with amplitude
E= (E} + EDHI? (2.49b)

as presented in Figure 2.7,

If E| and E; have different phases, then the EM wave (2.48) is elliptically
polarized. If E| = E; and phase difference equal 7/2, then the elliptically
polarized wave becomes a circularly polarized wave. In this case solution (2.48)
can be rewritten as

E(r) = Eple; * ey}exp(ik - 1) (2.50)
The sign “+” corresponds to anticlockwise rotation (sometimes called
the wave with lefé-hand circular polarization). The sign “~" corresponds to the
Ez‘“ ______________ E

|

|

i

]

|

A
€y } ) :
|

- >
5>
1

ey

Figure 27 The linear polarized wave geometrical presentation.
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wave with right-hand circular polarization (see Figure 2.8). Then two waves
with circular polarization can be considered as a basic system for describing
the common case of polarized waves. Let us introduce in the common case
the orthogonal complex unit vectors

= L(C] us iez) (251)

Rz

Then, the common presentation of a polarized wave (2.48) by the use
of linearly polarized waves, and two circularly polarized waves (2.50) and (2.51),
can be rewritten as

E(r) = {e, £, + e_E_ Jexp(ik - 1) (2.52)

where £, and £_ are the complex amplitudes of two circularly polarized waves
with opposite directions of rotation. If their modulii are different, but their
phases are equal, then (2.52) describes, as above, an elliptically polarized wave
with main elliptical axes directed along e; and e;. The ratio of these semi-axes

E_
equals (1 — g)/(1 + g), where g = R If the complex amplitudes have different

<+
phases, so that

= g - explia) (2.53)

]

then the ellipses’ axes for E-vector are rotated by angle a/2. In Figure 2.9 the
common case of an elliptical polarized EM wave is presented. At each spatial
point the vector (the same applies to the vectors H or B) describes ellipses, as

Right-handed Left-handed

Figure 28 Schematical presentation of two kinds of waves with circular polarization.
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R

Figure 2.9 Presentation of two ellipses for the E-component and the H-component of
EM-field.

shown in Figure 2.9. For the case g = £1, we once more return to the case of
linearly polarized wave.

2.2.3 Cylindrical and Spherical Waves in Free Space

As mentioned in the literature [1—4, 7-8], to obrain the common vector
presentation of cylindrical and spherical waves is a very complicated problem,
which can be reduced for the case of an isotropic homogeneous source-free
medium (with properties which limit to those in free space, but with
4 # 1) to the simple scalar form, as was done above for the plane wave in the
Cartesian coordinate system.

The scalar wave equation in the cylindrical coordinate system
{p, @, z} can be written as:

5+ T3+ kz) W(r) =0 (2.54)

The above partial differential equation can be solved by separation of
variables, and its one-dimensional (along the z-axis) solution can be presented
in the following form (5]

Y(r) = ¥, (p)expling + ik, z} (2.55)

where # is an integer since the wave field has to be 27 periodic in ¢. Then,
by substituting (2.55) in (2.54), we reduce it to an ordinary differential equation
with the full derivative (d/dx, x is variable) presentation [5):
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. le;)\lf,,(p) _ 0 (2.56)

where £, = (kz - ki)m. One may notice that (2.56) is the Bessel equation
(6] with two linear independent solutions. Its general solution is a linear
superposition of any two of the following four spectral functions [5]: Bessel
tunction, /,(%,p), Neumann function, N, (k,p), Hankel functions of first
order, H(,,”(k,p), and second order, H(,,z)(/e,p), respectively. Full information
about the properties of these special functions can be obtained from reference
books (5, 6] which describe all mathematical functions. For our purposes the
exponential approximation of those functions is very important. For example,
the general representation of a cylindrical wave (2.55) can be approximated
by a simple exponential form:

2 T , . ‘
W(r) ~ \j;r/?_,p exp{—z% - zz} exp{z(g(pw) + ik, + zk,p)}

(2.57)

Here, pg is the arc length in the ¢ direction, and #/p can be thought
of as the component of vector k, if one compares the ¢ylindrical wave presenta-
tion (2.57) with that for a plane wave (2.39). Consequently, (2.57) looks like
a plane wave propagating mainly in the direction k = k,z + k,p, when
p — oo

We now consider a spherical wave presentation in free space. In the
spherical coordinate system {r, 6, ¢}, the scalar wave equation is [5):

10,9 1 9 9 1 3
S5 et ssinfs— + 5 —5 + £ )W) =0
( 96 " rzsin“ﬁa(p2 i )
(2.58)
Following [3], we present the solution of this equation in the form:

Y(r) = W(r 0)explimep} (2.59)

The general (2.58) can be further simplified by the separation of variables
by letting

(7, 6) = b,(kr) P} (cosb) (2.60)
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where P} (cos#) is the associate Legendre polynomial satisfying the equation

L 4ol o lntnen - m” P™(cosf) =0 (2.61)
sm&a’ﬂsm dﬁ nin + Sinza n COS = .

Analogously, &,(kr) satisfies the equation

1 4 ,d 2 nln+ 1)
(_zz 2k ——>b (kr) = 0 (2.62)

r

Equation (2.62) is just the spherical Bessel equation, and &,,(kr) is either
the spherical Bessel function, j,(#7), spherical Neumann function, »,(ér), or

the spherical Hankel functions, hs,ll(/er) and h(,,z)(kr) [5, 6].
As shown in [5, 6], the spherical special functions can be approximated

explikr}
r

by the spherical functions proportional to ~ . If so, one can represent

the spherical wave as a plane one when p — oo,

In fact, we can easily obtain relations between spherical and plane waves.
Following [8-10], we will consider the plane wave propagating in an infinite
homogeneous source-free space, and will present it in the same form as in (2.31),
but by using the Hertzian vector instead of the field component presentation,

VI(r) + £T0(r) = 0 (2.63)

The solution of (2.63) is the same as with (2.39), but for the Hertzian
vector:

() = Moexplilkyx + kyy + k,2)} (2.64)

where the complex wavenumbers of the plane wave, £,, k], and &, satisfy

the condition 4% = ki + /ei + kﬁ. Let us split all wavenumbers at the real and
imaginary parts, that is:

k = k] + Z.kz; (2653)
kx = klx + ik2x’ k}, = kl] + l'kz},, kz = k]z + ikzz

and present the components (£, k1y, ki;) by introducing real vector q, and
those of (k2. £2,, k2;) by introducing real vector p, such that



42 Radio Propagation in Cellular Networks

kiy = gsinBcosp, ky, = psinacosf
ki,
k), = g cosb, ky, = pcosfB

= gsinfsing, k3, = psinasinf {2.65b)

xp{ikR}
R

presented by introducing the three-dimensional Fourier integral

e
If so, any spherical function of three variables , R =]r|, can be

o0
ﬂ’{—:ﬂ - J' A(q)expliq’ - Ridq’ (2.66)

in which each of the plane waves from superposition (2.66) is a solution of
the homogeneous equation

(V2 - ¢ expliq - RE =0, 47 = g2 + 4]0 + ¢ (2.67)

The amplitude A(q) can be easily obtained by multiplying both sides
of (2.66) by expi{iq’ - R} and integrating both sides over the whole infinite
space. After some straightforward derivations one can obtain the expression
for wave amplitude

1 1

AlQ) = —— 5
q 1 - A

(2.68)

Hence, the representation of a spherical wave by plane waves can be
given, finally, as

+o0

ex 1 exp{t(qxx t gyt qz
P L f . dqxdqydqz (2.69)
qx + ‘iy -

The expression in the right-hand side of (2.69) describes plane waves
with different wavenumbers g = (4% + qi + qﬁ)”z. This is an important result,

because if this is not so, that is, if all plane waves propagate with the same
2
wavelength A = ler, then all of them satisfy the homogeneous (2.63). But, at

the same time, the spherical wave in the left-hand side of (2.69), having a
singularity for R = 0, is the solution of a particular inhomogeneous equation
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with the point source in the right-hand side of (2.63). Hence, the spherical
wave with the wavelength A = 7” can be represented as a superposition (2.69)
of simple plane waves (with real wavenumber g), but with various wavelengths,
2 . .
each different from 777 At the same time, as was shown in [8], the spherical
wave can be presented as a superposition of complex plane waves (with complex
vector of propagation q), but where each wave corresponds to a definite
wavelength (q2 = q,z( + qi + qz = kz). In this case we have the expansion of
spherical waves into plane waves with complex wave vector q. In fact, if we
integrate the spherical wave representation (2.69) with complex wavenumber
g along the zdirection as the direction of wave propagation, we have

2
explikR} lkR} 1 fexp {i(g.x + q,y) NG
" 27

dq.dq
N 4 "qx_qy ’

(2.70)

It follows from additional examination of (2.70), according to [8], that
the above integral consists of two parts. The first summand has the image
expression before the root in the exponential function for the z-coordinate

z\/lez - qi - q),i, because 4% > (q,zf + qi) and the term iz\[k” - 9 - qi in
the exponent is imaginary and describes a superposition of simple plane waves
which propagate with complex vector q and with the same wavelength

T
A = ——, as that for the spherical wave. The second summand, inversely, has

k
the real term of iz\f/ez - q,zc = g, in the exponent of the integrand in (2.70),

because here #% < (q,zr + qi). Thus this summand describes real plane waves
that lie in the (x, y) plane (their wavelengths in this plane are different from

the wavelength of the spherical wave ~T?T) and propagate along the z-axis

with exponential attenuation for z — eo.

Of course, one could integrate (2.70) not only along the z-axis, each
direction can be used for integration of (2.70). In any case we obtain an
exponential attenuation of plane waves along the selected axis. Thus we have
two general possibilities for expanding a spherical wave as the superposition
of plane waves: with different, but real, wavenumbers g # 4, and with a
complex, but the same wavenumber g = 4, with respect to the spherical wave.
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The above results allow us to present in the future all propagation phenom-
ena through the prism of spherical and plane waves’ propagation and by use
of the spherical-wave expansion into the superposition of plane waves.

224 Green's Function Presentation

In an unbounded homogeneous medium using any kind of source, it is a
difficult problem to obtain a strict solution of the wave equation, which describes
EM-wave propagation in such a medium. Usually, to obtain a particular solution
of a wave equation one can assume that the source is a point with respect to
volume metric dimensions around this source. In the literature [1-3, 7-10]
to determine the criterion of a point source requires that the linear dimensions
of the source, 1, must be smaller than the wavelength in the considered medium,

. A , . : .
thatis, I << —. In this case Green’s function, as a solution of the wave equation
T

for a point source, can be introduced. Moreover, if any real antenna can be
represented as a general real source by a linear superposition of point sources,
one can obtain a general solution for the wave equation with such a source
by using the solution of the wave equation for a point source, in other words,
by use of Green’s function as a point-source function. This result is also
connected with the topic of linearity of the wave equation in the considered
medium. Below, we will examine the boundary-value problems both for scalar
and vector waves by employing Green’s function presentation.

Green's function presentation in electrodynamics. First of all, we examine
the Green’s function presentation for the scalar wave equation. In this case let
us construct the solution of a scalar wave equation in any volume V of free
space having an arbitrary source s(r) (see Figure 2.10). Such a solution can be
written in the same form, as (2.32), but with a source in its right-hand side:

VA(r) + £2W(r) = s(r) 2.71)

First, we will introduce the same equation for Green’s function, but with
a point source in its right-hand side:

VZG(r,r') + sz(r,r') ==6(r—r) (2.72)

The given functions G(r,r) and W(r) can be easily found from the
principle of linear superposition, since G(r,r’), as was mentioned above, is the
solution of (2.71) with a point source in the right-hand side. In fact, one can
notice that an arbitrary source s(r) is just
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S

The radiation of a source S(r) in a volume V

Figure 210 The geometry of a source s(r} in a volume V.
s(r) = fdr';(r') 8(r-r) (2.73)

which is actually a linear superposition of point sources in mathematical terms.
Consequently, the solution of (2.71) is

Y(r) = —fdr’ G(r,r)s(r) (2.74)

v
which is the linear superposition of the solution of (2.72).
To find the solution of (2.72) for free space, or more correctly, for an

unbounded, homogeneous medium, one can solve it in spherical coordinates
with the origin at vector r’. In this case (2.72) reduces to

V2G(r) + B Gr) = —8(p) (2.75)

But due to the spherical symmetry of a point source, G(r) must also be
spherically symmetric. Then, for r # 0, the homogeneous, spherically symmetric
solution of (2.75) is given by

exp{—ikr}

G(r) = A B

oxp {r’/”} N (2.763)

r

Since sources are absent at infinity, a physically correct solution of (2.76)
can be presented as
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exp{ikr}
r

G(r) = A (2.76b)

To determine the unknown constant A, we substitute (2.76b) into (2.75)
and integrate it over a small volume about the origin to yield

fdv-V-VﬁM+fdv~k2M:~l (2.77)

r r
AV AV

Note that the second integral in (2.77) vanishes when AV — 0, because
dv = dmrt - dr

The first integral in (2.77) can be converted into a surface integral using
Gauss’s theorem to obtain

[41”25 Ae"—p{ﬁ] - - (2.78)
r r -0

|
or A= 4
As was mentioned above, the solution of (2.72) must depend only on
Jr = 1'|.
Therefore, Green’s function must be presented, as a solution of (2.72),
in the following form:

Gle,r) = Glr - 1) = explikle — '} (2.79)

Ir — |

Moreover, it can be seen that G(r, r') = G(r, r) from reciprociry, irre-
spective of the shape of volume V' [3]. This fact and formula (2.79) imply that
Green's function is translationally invariant for unbounded, homogeneous
media. Consequently, a general solution of inhomogeneous (2.71) by using
(2.74) can be finally presented as

V(o) - - f dr'?%f"_i;%”s(r') (2.80)

|4

Green’s function for the scalar wave (2.79) could be used to find the
dyadic Green’s function for the vector wave equation in a unbounded homoge-
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neous isotropic medium. For this case we return to (2.30), taking into account
the electric source in such a medium:

V x V x E(r) - £°E(r) = iwuj(r) (2.81)

Using the fact that VX VXE=-VE+V(V-E), and that
V-j
V-E =§ = —ic:el' which follows from the continuity (2.2) in the time-har-

monic presentation, we can rewrite (2.81) as
\'AY%
V x V x E(r) + #2E(r) = —z'w,u[l + —/;—2—] « j(r) (2.82)

where I is an identity operator.

In the Cartesian coordinate system, as was shown earlier, there are three
scalar-wave equations embedded in the above vector (2.82), each of which can
be easily solved in the manner of (2.74). Consequently,

E@r) = iwufa’r'G(r - r')[l + !;;] - j(r) (2.83)

%

where G(r - r') is the scalar Green’s function in an unbounded homogeneous
isotropic medium.

Then, by wusing the vector identities Vfg=gVf+ fVg,
V. gF =gV - F+ (Vg - F, after some straightforward derivations, one can
rewrite (2.83) as

E(r) = iwufdr'j(r) - G,(r,r) (2.84)
4
where
G,(t.¢) = G(r - r’)[l + !g] (2.85)

is a dyad known as the dyadic Green’s function for the electric component of
the EM field in an unbounded homogeneous medium. This function for an
unbounded homogeneous medium can also be rewritten as [3]:
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- ) -

G e, t) = kz[V x VxIG{r-r)-18(r-1r))] (2.86)

By substituting (2.84) in the initial (2.81) and writing
j(r) = Ja'r'lé(r —-r) - j(r) (2.87)

we can show quite easily that the equation for the dyadic Green's function for
a vector wave equation can be presented in the following form:

VxVxGr) - kG 1) = 18k — 1) (2.88)

We can note that if the simple Green's function obtained for a scalar
wave equation and the source J(r) distribution are known for the case of
unbounded homogeneous media, one can, using relation (2.85), obtain the
dyadic Green'’s function which satisfies (2.88). In any case, for wave propagation
above the terrain, including built-up areas, propagation phenomena in an
isotropic medium for different kinds of the EM-field source can be examined
using the scalar presentation of Green’s function (2.79) and the EM-field
presentation (2.80), taking into account the principle of linear superposition
(2.73) for any real source of radiation.

225 Huygens's Principle

Huygens's principle, which comes from the Danish researcher Christian Huy-
gens, shows how a wave field on the surface § determines the wave field off
the surface S (Figure 2.11(a)) or, inversely, inside the area bounded by the
surface S (Figure 2.11(b)). In other words, each point on the surface S can be
interpreted as a source of a spherical wave, which can be observed at any point
A, either in the outside space with volume V, if a source O is inside it (Figure
2.11(a)), or inside the bounded area S, if a source O is outside the surface §
(Figure 2.11(b)).

This concept can be examined for both scalar and vector waves. Because
both concepts are the same physically, and the vector representation needs to
present completed mathematical expressions, we shall discuss the scalar case
only. The reader who is also interested in examining the electromagnetic case
should refer to [1-3].

We indicated above that any scalar wave in an unbounded source-free
homogeneous isotropic medium can be described by the homogeneous (2.32)
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Figure 211 The geometry of Huygens's principle in bounded space in two cases of
observed point A: (a) presentation outside, and (b} inside the surface S.

(or (2.71) without the right-hand side). If one wishes to take into account the
radiated source in such a medium, then one must introduce and derive (2.72)
for a point source Green’s function.

If we now multiply (2.32) by G(r, ') and (2.72) by W(r), subtracting
the resulting equations and integrating over a volume V containing vector
(see Figure 2.12), we have
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Figure 212 The geometry for the derivation of Huygens's principle.

J dr[G(r,0)V (r) — V()Y G(r,r)] = V(r) (2.89)

Vv

Taking into account the following relations [5]

GV - WVIG -V - [GVY - WV (]

we can rewrite (2.73) by use of Green’s theorem.
Green’s theorem or, as it is sometimes called, the second Green formula
(2] states the equivalence of volume integral (2.89) with the surface one, that

1S,

f e Gl )V () — VOV Glrr)] - fﬁds[(;(r, {)%X IR )}
n on

v S
(2.90)

d
Here S is the surface bounding volume V, 3n is the normal derivative

at the surface S, n is the unit vector directed outside to V normally to the
surface § bounding the volume V] as is shown in Figure 2.12. It is well known
[5) that for any two scalar functions fand g there is some relation between
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) .
them: fg* n :fa—g Taking into account this relation and Green’s theorem,
n

based on Gauss’s divergence law, one can rewrite the left-hand side of (2.89)
as:

Y(r) = %dm - [Gle, YV () — V() VG(r, 1)) (2.91a)
N

Equation (2.91a) is the mathematical expression of the statement that
once W(r) and n - V¥(r) are known on surface S, then ¥(r') away from §
can be found. If the volume V'is bounded by S and S, (surface on infinity
Sinf together with S, are shown in Figure 2.12), then the surface integral in
(2.91a) should include an integral over S;r. But when Sjr — oo, all fields
look like plane wave, and V — rik on surface Sjyr. Moreover, in this case

1
G(r,r') is of the order of magnitude of~—r, when r — oo; W(r) is of the order

. 1 . ) )
of magnitude of ~—, when r — oo, if W(r) is due to a source of finite extent
Y

(less than a wavelength). Then, the integral in (2.91) over surface S;;¢ vanishes,
and (2.91a) is valid for the case shown in Figure 2.12 as well. Hence, the field
outside S at 1" is expressed in terms of the field on S.

From (2.91a) one can obtain two different situations at the bounded
surface S. In fact, if G(r, t') satisfies (2.32) or (2.71) (without its right-hand
side) with the boundary conditions n * VG(r, ') = 0 for r € S, then (2.91a)

becomes
V() = %dsG(r, in - V¥ (r) (2.91b)

N

On the other hand, if now G(r, ') has only to satisfy (2.32) or (2.71)
(without its right-hand side) for both r and ¢ in volume V, and no boundary

condition has yet been imposed on G(r, t), then, in the case of
G(r, ) =0 forre S, (2.91a) becomes

W(r') = —§df‘l’(r)n - VG(r, 1) (2.91¢)
S

Equations (2.91a), (2.91b), and (2.91c¢) are various forms of Huygens’s
principle depending on the definition of Green’s function, G(r, r), on the
bounded surface S. For example, (2.91b) and (2.91c) state that only
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n - VW¥(r) or W(r) need be known, respectively, on the surface S in order to
determine wave function ¥(r").

Let us now formulate Huygens’s principle for free space without obstacles
or discontinuities (i.e., for an unbounded homogeneous medium). This case
was an early description of what actually happens with wave energy when it
travels in free space in a straight manner. Here, in simple terms, the principle
suggests that the energy from each point propagates in all forward directions
to form many elementary spherical wavefronts, which Huygens called wavelets.
The envelope of these wavelets forms the new wavefront. In other words, each
point on a wavefront acts as the source of secondary elementary spherical waves
described by Green’s function, G(t, t'). These waves combine to produce a
new wavefront in the direction of wave propagation. With great accuracy each
wavefront can be represented by the plane which is normal to wave vector k
(see Figure 2.13, line AA’, as a starting wave position). Spherical elementary
waves originate from every point on AA” to form a new wavefront BB which
is drawn tangential to all elementary waves with equal radii. As can be seen
from the illustration of Huygens’s principle in Figure 2.13, the secondary waves
originating from points along AA” do not have a uniform amplitude in all
directions. If « represents the angle between the direction to any point Con
the elementary sphere (see Figure 2.13) and the normal to the wavefront (or
parallel to k), then the amplitude of the secondary wave in a given direction
is proportional to (1 + cosa). If so, the amplitude in the k-direction is propor-
tional to ~(1 + cos0) = 2. In any other direction the amplitude is less than
wo. In particular, the amplitude of any elementary wave in the backward
direction is —(1 + cos7) = 0, that is, the waves do not propagate backward.
The waves propagate forward along straight lines normal to their wavefronts.
Moreover, the consideration of elementary waves originating from all points
on AA’ leads to the expressions for the field at any point on BB’ in the same
integral form as (2.11a-b), but presented for unbounded space, the solution
of which shows that the field at any point on BB’ is exactly the same as that
at the nearest point on AA’. The phase difference between the oscillations at
these neighboring points of lines A4” and BB’ depends on the distance between
them, 4, and is therefore proportional to ~kd = 27d/A. If 4 = A, all points
at AA” and BB’ oscillate in phase; if 4 = A/2, all points oscillate in antiphase,
and so on. Hence, from Huygens’s principle in the particular case of unbounded
free space follows the phenomenon of straight-line wave propagation, as light
rays in optics. As we will see later, this principle also states some limits and
violations for the straight-line propagation of light, related to diffraction phe-
nomena.

2.26 Fresnel-Zone Concept for Free Space

The existence of Fresnel zones also follows from Huygens’s principle not only
in obstructive conditions for both terminals, transmitter and receiver, when
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Figure 213 The geometry of Huygens's principle presentation in unbounded free space.

any obstacles are placed around them and diffraction phenomenon is predomi-
nant. As will be seen in Chapter 4, based on the Fresnel-zone concept, diffraction
phenomenon can be understood by means of its qualitative presentation through
the prism of Fresnel-zone space distribution. Nevertheless, because Huygens'’s
principle successfully describes propagation phenomena for both unbounded
free space and bounded finite areas, as well as with sharp boundaries, it is
useful to show mathematically and physically the meaning of the Fresnel-zone
concept for describing any radio link for which a clear line-of-sight over terrain
exists.

In the case of free unbounded space, let us once more return to the
integral form (2.91) of EM-field presentation at any point r between the
observer and the source of radiation, using Green’s function source presentation.
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In the case of free space, instead of the virtual sources at any boundary limit
of the space volume V, within which the real source exists, we will introduce
virtual sources to describe the EM field in each point of the wavefront in space
along the wave propagation path (see, for example, wavefront BB’ in Figure
2.13). A main result which follows from Huygens’s principle is that at any
point of a source-free unbounded medium, the total field is a superposition
of elementary spherical waves, which are radiated by virtual sources in space
and reach to the observation point along straight paths.

Thus, let us consider that the radiation source is placed in free space at
point A and the receiver is at point B, as shown in Figure 2.14. We also
consider an imaginary plane with area $ normal to the line-of-sight path at
any point between A and B, which passes across the point O at the line AB
(see Figure 2.14). Now, if we “work’ with infinite volume V, Green's theorem
(2.90) can be represented for any vector of the EM wave, namely, the Hertzian
vector, as

ds (2.92)

olI(R") exp{ik|R — R’|}
mm:J.an IR - R|
where |R = R’| = ris the distance from any point in the imaginary plane §
and observer at point B. If the initial radiation source can be assumed to be
thr

a point source with Green'’s function G ~ —, then for any point in the plane
n

d
S, because o —r—o, we finally obtain:

all n

1 ] 13 ¢
[I(R) ~ — tm—ﬂﬂgﬂﬁ%ﬂﬂm (2.93)
2 1 r ryry
- “~
//,- N .

A T 1]/ | M\ ————___ B
: o ) ) ) .
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Figure 2.14 Presentation of Fresnel-zone concept in line-of-sight conditions.
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All the mentioned distances are presented schematically in Figure 2.14.
We will talk about the wave zone or far zone between the plane § and
two terminals A and B, that is, when

kry>> 1, fr >> 1 (2.94)

In this case, the first term in brackets within integral (2.93) is less than
the second one, and can be neglected. Moreover, in the process of integration
the variables 75 and r| are changed. Therefore, because the inequality (2.94)
is valid for line-of-sight propagation links in free space, relatively small changes
of variable r cause fast oscillations of the product ~exp{ik(r| + r{)}. On the
other hand, this fact leads to fast changes of sign both for real and imaginary
parts of integrand in (2.93). At the same time, other products in the integrand
of (2.93) have a weak change with relatively small deviations of | and 7. In
this case, the well known method of stationary phase is usually used to derive
such an integral, containing both slow and fast terms inside the integrand
[5, 6, 8]. We will not present here all the complicated analyses and derivations
of the integral in (2.93), only its final form for the observed point B, as

I(B) ~ - d explik(rg + ro')}jfhdyexp{ié?(i + i)xz} (2.95)

2mrgrg ro rg
070 0 0

exp 12 r0+r(),_y

For each integral in the two-dimensional integral of (2.95) one can use
the integral presentation [4, 6]

+o0

jcxp(iafz)df - \[ig (2.96)
Therefore,
ik , , i exp{ikd}
II(B) ~ ————zﬂroro,exp{zk(ro + ro)} f 11 = 7 (2.97)
2(7‘0 * ro,)

where 4 = r( + r( is the distance between the source (point A) and the observer
(point B). Hence, as is shown from (2.97), if at the plane § the source A
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thr,
creates a field ~ — then at the observed point B, the virtual dipoles, uniformly
Filzd
distributed at S, will create a field - the same as for the direct wave from

Ato B. This is the main content of Huygens’s principle.
Additional analysis of integral (2.93), extended above S for the farthest
wave zones

I(B) ~ - ds (2.98)

ik (rg explik(r; + r)}
27 f ’_1 rory

shows that the plane S can be split into the concentric circles (hoops) of arbitrary
radius. It is apparent that any wave which has propagated from A to B via
point C,, i =1,2,...onany of these hoops has traversed a longer path than
AOB (namely, AC;B > AOB at Figure 2.14). While passing from one hoop
to another, the real and imaginary part of the integrand in (2.98) changes its
sign. The boundaries of these hoops are determined by the condition:

ki(ry + ) = (rg + o)} = n%T, n=1,2,... (2.99)

The physical meaning of these hoops for wave propagation is that if the
virtual sources of the elementary waves lie within the first hoop, they send
observer radiation with the same phase for each elementary wave. Sources from
two neighboring hoops send respective radiation which extinguish each other.
Some elementary, notstrict, analysis of integral (2.98) shows that a no-vanishing
result exists only from the first, central hoop. The hoops are usually called the
Eresnel zones [1—4, 8~10]. Ler us derive the width of these zones Aé. For the
first Fresnel zone, assuming X’ +y2 = bz, and using (2.95) and (2.99) for
n =1, we have:

(i . i) =3 (2.100)

and

(r0+r)

N \/ \/'\"’r" ~ AR (2.101)
rO rO

where R is the minimal range from each ry and rg.
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Hence, the width of the first Fresnel zone is larger than wavelength (i.e.,
by ~ \/ﬁ >> A). For greater zones (with number > 1), in which the width
A& is smaller than the distance to each zone center (simply, the radius of each
circle # = 4,), one can easily obtain after differentiation of (2.101) the following

equation:

/ebAb(rlO . %) - %’ (2.102)
and

Ab~2—72§~b—j<< by (2.103)

Here R is, once more, the minimal range from each rj and rg.

Thus, the width of the hoops with » > 1 decreases with an increase of
radius in each zone &,. At the same time it can be shown that the radius of
each Fresnel zone of any specific number of the family of zones can be expressed
in terms of zone numbers 7 and the distance between both points A and B
and the imaginary plane §as [1-3, 8-10]

b= b, = 4| TATOTO (2.104)
(rO + ro)

from which, introducing in (2.104) » = 1, one can immediately obtain (2.101)
for the radius of the first Fresnel zone. As follows from (2.103) and (2.104),
the width of the Fresnel zones A& decreases with increasing zone number 7.
At the same time, the area of these zones is not dependent on zone number
n, that is,

2mbAb ~ ;AR (2.105)

It is clear that the radii of the individual hoops depend on the location
of the imaginary plane with respect to points 4 and B. The radii are largest
midway between points 4 and B and become smaller as the points are
approached. Moreover, as follows from (2.99), the family of hoops have a

A
specific property: the path length from A4 and B via each circle is s longer
A
than the direct path AOB (i.e., for n = 1 (first zone) ACB— AOB = 5)' so the



58 Radio Propagation in Cellular Networks

. A .
excess path length for the innermost circle is > Other zones will have an excess

A
proportional to 5 with a parameter of proportionality n = 2, 3, 4, .. . . The

loci of the points for which the excess AC;B— AOB = n% define a family of

ellipsoids, the radii of which are described by (2.104). But in free space without
any obstacles, as we showed mathematically, only the first ellipsoid is valid
and presents the first Fresnel zone which passes through both points, transmitter
(T) and receiver (R), as illustrated in Figure 2.15. This is why, despite the
fact that in free space the diffraction phenomenon is not observed, and no
effect of interference between neighboring zones exists (see Chapter 4), to
describe the loss-less phenomenon of wave propagation, the concept of Fresnel
zones is also used. This approach allows us to obtain the first hoop’s width in
line-of-sight propagation conditions and then to estimate through formula
(2.101), by use of the “working” frequency for the respective radio link, the
range R of wave propagation in conditions of direct visibility between any
receiver and transmitter.

2.3 Free-Space Transmission Loss

Let us consider a nonisotropic source placed in free unbounded space as a
transmitter antenna of P watts and with a directivity gain G 7. At an arbitrary
large distance r (r>> A) from the source, the radiated power is uniformly
distributed over the surface area of a sphere of that radius. If so, the power

density at distance r can be represented by the modulus of Poynting vector
S=|8] as

Figure 215 The geometry of first Fresnel zone which passes through receiver R and
transmitter T in free space.



Radio Wave Propagation in Free Space 59

PTGT
471t

S = [W/m?] (2.106)

On the other hand, as was presented in Section 2.1.4, the Poynting vector
relates to the field components of the EM wave E and H as

S=H- E[W/m? (2.107)

where the H-component relates to the £~component of the EM field though
the impedance of free space Zy = 120 - 7, as

E
H = 207 [A/m] (2.108)

From (2.106) to (2.108) one can easily obtain the expression of the
maximum E’ = \/2 -E of the E-field component:

= \J60G 7Pr/r [Vim] (2.109)

But this is the maximum value of the electric component of the total
EM field. Generally, the amplitude of the electric field is a function of time
and of distance r.

\60G 7P

7 cos(wtr — kd) [V/m] (2.110)

E(z) =

In free space the path loss can be obtained by use of the following
procedure. If P is the power at the observed point, as a receiving antenna,
which is located at distance r from the transmitter antenna, then

2

EO Ag [W] @2.111)

Pr=173

2
GRrA™. . . .
where Ap = 4R7r is the effective aperture of the receiving antenna according

to (4, 7-10); Gpis its antenna gain. By substitution one obtains

E- A
(5)e

120 (W] (2.112)

Pp =
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At the same time, from (2.109), we obtain

E‘?}‘r2
T 60G

Py (W] (2.113)

As was defined in Chapter 1, the path loss in decibels is the logarithm
of the ratio between the transmitted and the received power,

. Amr |
L= 10[ogp—}]e: 10 log A =Ly + lOlog(m>
GrGp

(2.114)

Here Ly is the path loss for an isotropic point source (with
Gy = Ggr=1) in free space, which in decibels, using the simple relation
A = ¢T = ¢/f, can be presented as:

[

2
Ly=10 log(/*%ﬁ) =20 log(4ﬂﬁ> = 34.44 + 20 log r + 20 log f
(2.115)

where the value 34.44 is obtained by the use of simple calculations, taking
into account that the speed of light ¢ = 3 - 108 (m/s):

3 6
T . l T
32.44 = 20 log(4 10" (m) - 107 € /I)> =20 108(40 )

3- 108 (m/fs) —3—

In (2.115) the distance r is in kilometers (km), and frequency f is in
megahertz (MHz).

As the result, the path loss of both directive antennas, receiver and
transmitter, finally can be given as:

Lp=34.44 + 20 log d|fp) + 20 log fimuz — 10 log Gr— 10 log Gg
(2.116)

This is a general formulation of path loss for two directive antennas,
receiver and transmitter, in free unbounded space.
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EM-Wave Propagation Over
Smooth Terrain

In this chapter we consider wave propagation over smooth terrain, based on
phenomena described earlier in Chapter 2.

3.1 Reflection From Flat Terrain

The simplest case of radio wave propagation over terrain is that where the
ground surface is assumed to be a flat and perfectly conductive medium. The
first assumption of “flat terrain” is valid for radio links between subscribers
10-20 km apart [1-7]. The second condition of a “perfectly conductive” soil
medium can be satisfied only for some special cases, because the combination
of conductivity o and frequency w, such as 470/ w, that appears in the total
formula of permittivity € = €,, — i47o/w plays an important role for high
frequencies (VHF/L-band, usually used for terrain communication channel
design) and finite subsoil conductivity, as well as for small grazing angles of
incident waves {1-7). We will later discuss almost all of these features, consider-
ing the reflection coefficients from flat terrain. However, to introduce the
subject of the main problem of reflection from the terrain, we start with the
simplest case of perfectly conductive flat-ground surface.

For a perfectly conductive ground surface the total electric field vector
is equal to zero (i.e., E = 0), as shown in Section 2.1.6, the tangential component
of the electric field vanishes at the perfectly conductive flat-ground surface,
thar is,

E,-0 (3.1)

65
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Consequently, as follows from Maxwell’s equation V x E(r) = iwH(r)
(see tormulas (2.7a—d} in Section 2.1.1 for the case of # = 1 and B = H), at
such a flac perfectly conductive ground surface the normal component of the
magnetic field also vanishes,

H,=0 (3.2)

As also follows from Maxwell’s equations (2.7a—d), the tangential compo-
nent of the magnetic field does not vanish because of its compensation by the
surface electric current. At the same time, the normal component of the electric
ficld is also compensated by pulsing electrical charge at the ground surface.
Hencee, by introducing the Cartesian coordinate system (see Figure 3.1), one
can present the boundary conditions (3.1) to (3.2) at the flat perfectly conductive
ground surface as follows:

E(xy2=0)=E(6y2=0)=H/(xyz2=0=0 (3.3)

3.1.1 The Strict Reflection Theorem

To obtain a solution of the wave equation which describes radio wave propaga-
tion over flat perfectly conductive terrain, let us, first of all, describe the problem
by introducing the physically simply explained qualitative picture presented in
Figure 3.2. Because each antenna, as a source of electromagnetic waves, can
be presented as a superposition of point sources—dipoles [1-4], we can replace
such an antenna by two elementary dipoles, the vertical (2) and the horizontal

z

Atmosphere

Sub-soil Medium |

Figure 3.1 Ray reflection from the flat terrain.
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Figure 3.2 The source presentation as a superposition of the vertical and horizontal
elementary dipoles.

(%), with their own current densities, j, and j,, respectively, as shown in Figure
3.2. If we now add to a vertical current element its image vector jél) relative
to the plane z = 0 with the same current direction (as presented in Figure 3.2),
then each vertical dipole j, and j j a nges at the plane z = 0 only the horizontal
component of the magnetic field, that is, satisfies the boundary condition (3.3).

In the same way, the horizontal dipole with current density j, can also
be addcd to its image source having the opposite sign of current density, (i.e.,
]x = —j,). Then the vertical component of the magnetic ﬁcld wnll be com-
pletely compensated by the field of the additional dipole ]x Hence, by
introducing the real and imaginary sources j and ]( ), one can describe the
total field above the flat perfectly conductive plane z = 0 which at this plane
satisfies the boundary conditions for the magnetic field described by (3.2).
Moreover, such a combination of sources, real and imaginary, satisfies the
boundary conditions for electric field (3.1). In fact, at any point of the plane
z = 0, the tangential components of electric field of both sources, jx and ;,E )
as well as the normal components of both sources, j, and j, (), are compensated
by each other, as seen from the simple qualitative picture presented in Figure
3.2. If one will continue the same construction for each element of a real
antenna, one can obtain the total field solution above the flat-ground surface,
because the total field of such a combination of antenna elements satisfies the
wave equation and respective boundary conditions (3.1) to (3.3).

The result presented in Figure 3.2 can be obtained by strictly using the
following mathematical formalism and the results described in Section 2.1.6.
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In this section we have introduced common wave equations (2.29) for electric
and magnetic components of a wave field. Now we will rewrite them for the
case of two semi-infinite homogeneous planes without taking into account the
virtual magnetic source M(r):

VIE(r) - £°E(r) = iwj(r)

(3.4)
V2H(r) - #°H(r) = V x j(r)

where, as was introduced earlier, &° = wze,u.. Because both fields, E and H,
can be obrained by the simple operation of divergence from each other, for
us it is enough to determine one of them, say the H-field, assuming that the
current density distribution j(r) of the electric source is known. According to
(2.7b), which we will rewrite in the following form

VxH(r)=—i- k- E(r) (3.9)

the boundary conditions (2.33) can be rewritten as

[V x H]X=aai—a—Hz——1kE—0 for z=0 {3.6)
y  dz
dH, OH,

[V H]y-'g——a—)C———lkE—O forz=10

But, because H,(x, y, 0) = 0, we obtain two additional boundary condi-
tions:

AH, 9

—_— -0 forz=0 (3.7)
dz z

If we now use the integral presentation of Green’s theorem [1-4] and
the scalar Green’s function according to (2.79), we may present the H-field
components in the following integral form:

H () = J[V x H], - Gd’>r (3.8a)
v

H(r) = f [V x H], - G (3.8b)
v

H(r) = f (VxH], Gdr (3.8¢)

v
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where Green’s functions can be presented as [5]):

exp{s - £ |R - R'[} + exp{i - k- |R; - R’|}
IR - R’| B IR} — R'|

G; - (3.9)

Here, r = |[R = R’| is the distance between the source point O and
observed point 4, r| = |[R; — R'| is the distance between the source point O
and the image source (because of reflection from the plane z = 0, see Figure
3.3(a)). The distance ry = |R| — R’| equals the distance |R; — R{'| between
the observer at point A and the reflection at point O(R/) for the real source
O(R’)(see Figure 3.3(b)). Therefore, each integral in (3.8) can be written, for
example, for component H, as

O(R’)

(2)

O;RY (b)

Figure 3.3 Geometrical presentation of the imaginary source effect due to reflection from
the flat terrain.
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foﬂ ﬁ foﬂ
1%

This equation describes the physical result, that is, the first term gives the
field which satisfies the solution of wave equation for an infinite homogeneous
atmosphere without the earth-surface bound. The second term describes the
effect of the earth surface’s influence. It gives the same effect if, in the nondis-
turbed field for an infinite atmosphere, the effect of an additional reflecred
source is introduced. This result follows from the sketch in Figure 3.3(b), where,
except for the real source placed at the point O(x’, y’, '), the image source
O(x’, y’, =) is due to reflection from plane z = 0, the field of which together
with the field of the real source, as we will show later, creates a complicated
interference picture.

The same results, as above, can be obtained for the components of the
total H-field, Hy(r) and H,(r), but for H,(r) one must put in the integrals
(3.10) the funcrion G_ instead of the function G, from (3.9), with the inverse
sign for the “reflected” source (second term in (3.9)). Hence, if at any point
(x’, ¥, 2’) above the earth’s surface there exists some source with the current
densnry j(r), then due to the reflection from plane z = 0 the current density
( (r) must be introduced at the image point (x’, ¥, —z"), and thus

eikr|
d>r (3.10)
r1

[V xjl, = [V x 1,
IV xjl, = (V xj", (3.11)
(V xjl, = -V x ",

Using mathematical formalism [4], one can obtain that for relations
(3.11) it is enough to put:

Jx ="Jx

j;l) = —Jy (3.12)
(1)

Jz =]z

Therefore, the effect of a flat-earth surface leads to existence of, in addition
to the direct field, the field reflected from the ground. This reflected field can
be thus constructed: to each source at the point (x’, y', z) with current density
jlx’, ¥, 2) there corresponds an image source at the point (x, y’, —2) with
the current density j Wiy, y’, =2"). The field of this source is derived in the
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same manner as if it is located in free space. If one now replaces the element
of current j(r) by its components, the reflection sketched in Figure 3.2 appears.
This principal result is usually called the strict theorem of reflection.

3.1.2 Areas Significant for Reflection

We will now explain the zones which are significant for reflection from the
flat terrain for three typical positions of transmitter and receiver according to
the variants presented in Section 1.4. Let us consider the total field at the
observed point A(x 4, y4, 24) above the perfectly conductive flat and homoge-
neous earth surface. We will discuss the influence of inhomogeneities and
roughness of the ground in Chapter 7.

In the first case, the source is also placed above the ground surface at
the point O(xy, yo, zg). Without any limitation for the general situation within
the above-terrain propagation channel, we can assume and choose the coordinate
system so that xg = 0 yg = y4 = 0 (see Figure 3.4). Using the main integral
presentation of total field (2.90) to (2.91) from Section 2.2.5, rewritten for
the atmosphere-earth boundary surface and for the vector Hertz presentation
of total field [3-5] (i.e., for ¥(r) = I1(r)), one obtains the following result.
According to this formula and the discussion presented above in Section 3.1.1,
in the situation over the flat terrain, the total field [1(r) = |I1(r)} at the observed
point A is the superposition of the nondisturbed field I1y(A), which describes
the wave field in the unbounded homogeneous atmosphere, and the disturbed
field 11, (A4), which describes the reflection phenomenon caused by the virtual
sources placed at the ground surface § (the area of integration in (2.91)). The
integral on the surface Sin (2.90) to (2.91) will always consist of products of

ikr
the order of ~—rH(r) for any selected Green’s function in the form of (3.9).

Consequently, the field I1(r) at the ground surface can also be considered as
tkp
a product of the nondisturbed field Ig(p) = |p| - ip— and some slowly chang-
ing attenuation function W{(p). In this case we can once more return, as in
Section 2.2.5, to the integral (2.93) from the product of a quickly oscillating
function and a slowly changing function. We use the method of stationary phase
for the description of zones at the surface § which give minor contributions in
reflection phenomena from the flat-ground surface. We consider the integral
(2.93), for which the argument of oscillations for exponential function inside
this integral is 7- ¢ =i- 4 (r+p), on the surface of integration
S {x, , 2z = 0} and will find the point (xg, yq) at which this integral has some
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Figure 3.4 The area significant for reflection when both antennas are above the ground surface.
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. . 2 2
extremum. From Figure 3.4 it follows that r= /(x4 - 0%+ y~ +z” and
p= ‘\/xz + yz + z(z). Then the conditions of extremum can be written as:

[aqﬁ:l ( X xq- x)

_— = . -_— = = 0

dx Po 40

X=X0, Y=Yy (3‘]3)

9¢ 3 .(1-1) 0
oy| po 7o
X=Xg:Y=¥p

Hence, the point of extremum is placed on the x-axis (yy = 0), and
Snell’s law is valid ac this point: the incident angle 8y equals the reflected
angle @ (see Figure 3.8), that is,

Xg XA~ X0

= cos (3.14)
Po ro ¢

where ¢ = %r_ 6o is the grazing angle. We will talk later about Snell’s law.

Results obtained from (3.14) show that the essential effect for reflection
phenomenon arises from the area that lies near the point of specular reflection
(x0, 70- 0). Let us examine the behavior of the exponential function within
integral (2.95); ¢ = & - (r + p) near this point. For this purpose let us also
introduce new variables:

S=x—X0N=y= Yo (3.15)

assuming s, 1 << r, p, and expand r and p into series, raking into account
only the second order summands in such series (other terms are vanishingly
small),

2.2 2
- . Ssn ¢+ M
r=rp+§ COS¢+———2’70
2.2 2 (3.16)
S sin ¢ + 1
pP=pPgp+S COSY + —
2‘7‘0

Thus the phase function ¢ = £ (r + p) in the exponent of integrand
within (2.95) is
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2.2 z
o
cbk.(r+p)=k‘{(’(Hpo)*ﬂ[%il(r—fﬂlo)}

(3.17)

where we denoted ry from integrand within (2.95) as pg according to the
geometry presented in Figure 3.4. The lines of equal phase ¢(s, 1) = const
have the torm of ellipses placed around the point of specular reflection (Figure
3.4). The factor of oscillations changes the sign of the real and imaginary part
of the exponent while passing through the ellipses. In fact, the equarion

£ (] ‘)(2~2 L 0. 1,2 (3.184)
- — 3 — § sin + = m=, m=U,1, 2, ... J.106a
2 \ro po e 2

or its strict mathematical presentation

h 2

i N Ui -1 (3.18h)
m - m wom

1 1 ) 1 1 5
k| —+—] sin” E-{—+—)| - sin”
(’() P(J) ¢ (’0 Po) v

is an equation of ellipses with semi-axes, respectively,
along the x-axis:

LN LNy T (
Ay = sin(p\/ ) 4 (r() + p(J) (3.19a)
along the y-axis:
mTm org po
bm = — 3.19b
\} k (r() + po) ( )

These ellipses are the real boundaries of zones of specular reflection from
the flat-ground surface. For small grazing angles where ¢ — 0°, that is,
a,, >> b, all ellipses are elongated along the x-axis (i.e., along the direction
of wave propagation). As in Section 2.2.6, these ellipses describe the Fresnel
zones, bur for the case of the existence of the ground surface along the propaga-
tion path and the reflection phenomenon from such a surface. As will be shown
later in the explanation of diffraction phenomenon from various obstacles
placed on the flat terrain, the total field after the reflection phenomenon, as also
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in free space (Section 2.2.6), can be obtained as an integral effect from the
area which embraces several first Fresnel zones by use of the Fresnel integral
presentation:

v

F(o) = f exp{—i%rvz}dv - —F(-v) (3.20)
0

We will use this integral for describing diffraction phenomena in propaga-
tion over terrain with various obstacles. We only note that if we first consider
m = 8 Fresnel zones around the specular reflected point as significant zones
for reflection phenomenon, we obtain the error from the strict solution by use
of integral (3.20) with infinite limits, which equals =15%. In this case, the
approximate scales of the reflecting area can be estimated by using simple
formulas, such as,

along the x-axis:

ap = 4 \f/\R (3.213)
sing
along the y-axis:
2bp = 4+JAR (3.21b)

where R is the lesser of the two distances, ry and py.

We previously talk about the situation when both points, transmitter
and receiver, are above the earth’s surface. What will happen if one of the
points, for example point 4, lies close to the ground plane z = 0?

In the second case, z4 = 0, as shown in Figure 3.5, and the term
(r + p) in the exponent of exp{i - @} = exp{s - £ (r + p)} in integral (2.95)
has a minimum at the point A4 (i.e., when x = x4, y = y4).

Let us, as above, also assume that y4= 0 and introduce the polar coordinate
system (r, a) with the center at point A4 (see Figure 3.5). Then

X=Xx4+7rcosx, y=r-sina (3.22)

If we now repeat the same expansion of rand p into the series and take
into account only terms that are linear with respect to r and p, we obutain:

= pg + 7 COSQ * COS
pEpoTT i (3.23)
ip=ikpg =i-k-r-(l+cosa- cosg)
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Zy

0(0,0,2p)

(x,y,0)

~A(x4,0,0)

Figure 3.5 The area significant for reflection when one of the antenna is near the ground
surface.

Using these expressions, one can again obtain for the fast-oscillating term
in integral (2.93) the significant area, the boundaries of which are described
by the following equation:

Eeoore (1 +cosa'cos<p)=mg, m=0,1,2,... (3.24a)
or
m- T
2k
. (3.24b)

(1 + cosa - cosg)

Equation (3.24b) is the equation of ellipses with their focus at the point
r = 0 (point A). Their big semi-axis is elongated along the x-axis and is described

by

T
ay = —— T (3.252)
2k sin“¢
and their small semi-axis is elongated along the y-axis and equals
bm = m T (3251))

2 k-sing
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These ellipses are strongly elongated in the direction of the source, as
shown in Figure 3.5. In this case, the distance from point A to each successive
ellipse is

m T

(d)a=n = 2 k- (1 —cose) (3.26)
The same value, but in the direction opposite to the source is
(Dazo = 3o (3.27)

2 k(1 +cosep)

In the case of a wave incident with a small grazing angle ¢ (¢ = 0), the
several initial Fresnel zones will embrace most of the radio path between points
O and A (the source and observer, respectively).

If, as above, we consider that the significant reflected area embraces the
initial m = 8 Fresnel zones, we will obtain for ¢ = 15° the scale of this reflected
area (d)g=7= 64 - A in the direction of source O, and (d),-0 = A in the
direction of the observed point A. For ¢ = 30° we obtain (d)y4-, = 16 - A
and (d)4=0 = A, respectively. These estimations show that the area in front
of an observer placed at point A with its location near the earth’s surface, is
very important for propagation. At the same time, the area behind the observer
is not significant. The conditions of propagation and, hence, of communication
between points O and A become more effective with an increase of grazing
angle @, or, of course, with a decrease of radio range between the source and
the observed point.

The third possible variant of source and observer location is when both
of them are placed near the earth’s surface (let us say, in the plane z = 0, as
is shown in Figure 3.6). In this case the position and the configuration of the
Fresnel zones are determined by the condition of equality of the phase of field
oscillations, introduced earlier, that is, # - (r + p) = const.

From this condition we once more obtain the equation of ellipses with
their focus at points O (source) and A (observer). Because the minimum value
of such a constant can be achieved for (» + p) = x4, then the boundaries of
the Fresnel zones are determined by the following conditions:

B-(rep)=k -xqeme, m=012 ... (3.28)

Ev

The large semi-axis of each ellipse is
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A(x ,,0,0)

Figure 3.6 The area significant for reflection when both antennas are near the ground
surface z = 0.

m - T

4 k

rep
2

. % N (3.29)

dy =

Behind points O and A these ellipses are close to each other, and they
are very clongated along the x-axis, because the small semi-axis is

r+p. m T m- T m
by =~ sina - \fT("A Tz) = \/§‘ txa (3.30)

for moderate values of m.

Therefore we conclude that the ellipses depicted in Figure 3.6 are not
real, because &,, << a,,. If we now assume that x4 >> A (for real radio paths
above a flat terrain), then x4 >> 4,,, that is, the specular reflection area is
narrow enough. As above, only a few ellipses (for example, for m < 9), which
embrace the source (O) and observer (A), determine the significant area of
specular reflection. The distances between neighboring ellipses behind points
O and A are very small. They can be determined by the following condition:

]
E(r +p-x4) = me that is, these distances are equal to one eighth of a

wavelength. Thus, we have found the significant area of specular reflection
from a flat terrain for various combinations of transmitter and receiver location
above the earth’s surface. One can combine all these cases by use of a more
general situation for various positions of points O and A, introducing a system
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of rotating ellipsoids in space, which have focuses at these points. These
ellipsoids can be described by the following equation:

be(rep)-k-dens, n-0,1,2 ... (3.31)

>
where d is the range between points O and A, while r and p are the distances
from A and O to the current spatial point, respectively. Beginning from any
number 7 = n| these ellipsoids are crossed by the earth’s surface. The first

point, where the first contact with the ground’s surface takes place, is the point
of specular reflection:

k'(r0+p0)=k-d+n|g (3.32)

The following values of # = n) + m, m=0, 1, 2, . . ., will give at the
ground plane the contours of the Fresnel reflection zones. If the heights of
points O and A are large (the first case described above), we obuain for small
m (m < 9) a family of ellipses (Figure 3.7a). If one of these points, or both
of them, are located near the earth’s surface, then the cross-sections ar the
plane z = 0 have the form of ellipses with one focus (Figure 3.7b) or with two
common focuses (Figure 3.7c), respectively.

3.1.3 Main Reflection and Refraction Formulas

As was shown above, the influence of a flat terrain on wave propagation leads
to phenomena such as reflection. Because all kinds of waves can be represented
by the concept of the plane waves (see Section 2.3), let us obtain the main
reflection and refraction formulas for a plane wave incident on a plane surface
between two media, the atmosphere and the earth, as shown in Figure 3.8.
The media have different dielectric properties which are described above and
below the boundary plane z = 0 by the permittivities and permeabilities €,
w1 and €, p, respectively. Then the indexes of refraction for both media
can be defined as: ) = /€] - 1 and 1y = /€3 * uy.

Without reducing the general problem, let us consider a plane wave with
wave vector k and frequency w = 27 f incident from a medium described by
parameters €| and . The reflected and refracted waves are described by wave
vectors ki and kj, respectively. Vector n is a unit normal vector directed from
medium (€3, @7) into medium (€, p). According to (2.41), and (2.43) to
(2.45) the incident wave can be represented as follows:



80 Radio Propagation in Celiular Netwarks

t
18481
Y 17
T
TITE
1T
T

1y
140

(a)

..... T
gRt

Wy

®)

T
In”xnumlmmmmm"""mu""

T
,.q',.un"'.||m|pl|||mllpl lmummhlli!

| || I‘II | ||Il| ll'IIIINIHIhI“IIH

)

Figure 3.7 Three-dimensional presentation of areas significant for reflection: the case (a)
corresponds to Figure 3.4; the case (b) to Figure 3.5; the case (c) to Figure 3.6.

E = Egexplitk - x—w- 8}, H-= % klilE (3.33)
The same can be done for the reflected wave
3 e e x— w _a|f ki XE
E, = Egexpiitk; ' x~-w-#)}, H-= o ™ (3.34)
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air
€1.11,0) 1z

Figure 3.8 Schematical presentation of Snell's law.

and for the refracted wave

k, x E,
E; - Epexplitky - x—w- 0}, H = \fﬂ LRXE (535
mr kol

The values of the wave vectors are related by the following expressions:

w w
[kl = kil = £ = —~Nepy, kol =k = —eu, (3.36)

c

From the boundary conditions that were described earlier in Section
3.1.1, one can obtain the condition of the equality of phase for each wave at
the plane z = 0:

(k : X)z:() = (kl : x)z:O = (k2 : x)z:O (337)
which is independent of the nature of the boundary condition. Equation (3.37)

describes the condition that all three wave vectors must lie in a same plane.
From this equation it also follows that

ksin@y = k) sinf| = by sinf, (3.38)

which is the analogue of Snell’s law:



82 Radio Propagation in Cellular Netwaorks

ny sinfly = ny sinf {3.39)

Moreover, because [kg| = [k, we find 6y = ¢); the angle of incidence
equals the angle of reflection.

It also follows from the boundary conditions that the normal components
of vectors D and B are continuous. In terms of the field presentation (3.33)
to (3.35), these boundary conditions at the plane z = 0 can be written as

[€1(Ep + E)) — €2E3) - n =0
(kxEp+k xE —kyxEs] "n=0 (3.40)
[E()+E|—E2]Xn:0

] 1
[/L—](kXE()+klXEI)_,U,_Z(kZXEZ):IX“:O

Usually, in applying these boundary conditions for estimating the influ-
ence of the flat-ground surface on wave propagation over terrain, it is convenient
to consider two separate situations. The first one is when the vector of the
wave's electric field E component is perpendicular to the plane of incidence
(the plane defined by vectors k and n), but the vector of the wave's magnetic
field component H lies in this plane. The other one is when the vector of the
wave's electric field component E is parallel to the plane of incidence, but the
vector of the wave's magnetic field component H is perpendicular to this plane.
In the literature which describes wave propagation aspects, they are usually
called the TE wave (transverse electric) and the 7M wave (transverse magnetic),
or waves with vertical and horizontal polarization, respectively. We will derive
the reflection and refraction coefficients for the case of an incident plane wave
with linear polarization; the general case of arbitrary elliptic polarization can
be obtained by use of the appropriate linear combinations of the two results,
following the approach presented in Section 2.2.2.

First of all, we consider the incident plane linearly polarized wave with
its electric field perpendicular to the plane of incidence (7F wave), as shown
in Figure 3.9. The orientations of the magnetic field components of the incident,
reflected, and refracted waves, H;, 7= 0, 1, 2, are chosen to give a positive
flow of energy in the direction of wave vectors k, ki, and k;, respectively.
Since the electric fields are all parallel to the boundary surface, the first boundary
condition in (3.40) yields nothing. The third and fourth conditions in (3.40)

give
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Figure 3.9 TE-plane wave reflection and refraction from the boundary of two media.
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[’1'0 + E] - [Z‘)‘ = 0 (341)

€ R €y .
—(Ey — E)cosb —‘\}‘_1‘11(3()597 =0
m 4] 1 0 Mo 2 2

while the second condition in (3.40), using Snell’s law (3.39), duplicates the
third condition. Now, from (3.41), we can obtain the amplitudes of the reflected
and refracted waves respectively:

2.2
nycosfy — &\{ng — nysin” gy

|E;| = |Eql A2 — (3.422)
nycos@y + %\/n% — nysin” @y
2
2 g
|E2| = |Eq) 210 (3.42b)

1 2 2.2
nycosfly + Z—\fnz — nysin” g

The same results can be obtained from (3.40) for the case of the TM
wave, when the electric field vectors are parallel to the plane of incidence, as
is shown in Figure 3.10. The boundary conditions for the normal component
of vector D and for the tangential components of vectors E and H lead to the
first, chird and fourth equations in (3.40), from which follow:

(Eog —~ E))cosly — Frcosf, = (3.43)

w E()+Pl)— \{67

The continuity of the normal components of the vector D, plus Snell’s
law (3.39), merely duplicates the second of equations (3.40). Therefore the
amplitudes of the reflected and refracted waves can be written as:

2 2.2
ﬂnacosl‘)o - ny\[n3 — nisin” 6y

|E) = |E0| (3.44a)
7 7 ]
— njcosBy — n\Jn3 = nysin” 6y
2nynycosb
|E,| = |Egl et (3.44b)
M1 o2 2 172
;—njcosb’u — n\n; — nysin” Gy
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Ep 0y

Figure 3.10 The same, as in Figure 3.9, but for TM-plane wave.
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For the real situation of radio wave propagation over terrain, it is usually

. M . . .
permitted to put P 1. Also taking into account the relations between the
2

refractive index and the permittivity of the medium, that is, #5 = u,€; and
n3 = #2€, and introducing the relative permitrivity (with respect to the air),
€, = €/€}, we obuain, by use of (3.42) and (3.44), the expressions for the
complex coefficients of reflection (I') and refraction (7) for waves with vertical
(denoted by index V) and horizontal (denoted by index H) polarization,
respectively.

For vertical polarization:

. 2
€,cosfy — '\/6, ~sin” 6

Fy=|Tyle = =
€,cosfy + \J€, —sin"f

(3.45)
iov 2~/€, cos b
Ty =|Tyle -
€,cosfly + ‘\/e, - sin290
For horizontal polarization:
e cosfy — \/e, - sinZBO
Uy =|Tyles <
cosfy + €, — sin200 (3.46)

2cos g

cosfy + ‘\fé, - sin200

Here, [Ty, Iy, [ Ty, | Tyland @y, @4, ¢V, @4 are the modulus
and phase of the coefficients of reflection and refraction for vertical and hori-
zontal polarization, respectively. It is important to note that for normal inci-
dences of a radio wave on a flat-ground surface there is no difference berween
vertical and horizontal wave polarization. In fact, for 6= 0, cosfy = 1,
sinfy = 0, all the formulas above reduce to:

Ty =|Tyle =

(3.47)
2

[E;| = lEOIVe_Tl
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Ve -1
‘\/;r‘fl

\/;,+l

It should be noted that the results presented by (3.47) are correct only
for w1 = u3 [6]. Moreover, for the reflected wave E; the sign convention is
that for vertical polarization (3.45). This means that if €; > €; there is a phase
reversal of the reflected wave. In the case of vertical polarization there is a
special angle of incidence, called the Brewster angle, for which there is no
reflected wave. For simplicity we will assume that the condition py = w; is
valid. Then from (3.45) it follows that the reflected wave E; limits to zero
when the angle of incidence is equal to Brewster’s angle

| g

(3.48)
Ty=Ty-=

6g=0Op = tan_l(i—?) (3.49)

Another interesting phenomenon that follows from the presented formulas
is called rotal reflection. It takes place when the condition of €; >> € (or
ny >> ny) is valid. In this case, from Snell’s law (3.39) it follows that, if
ny >> ny,then 8 >> 6. Consequently, when 8y >> 8, the reflection angle

m
6, = 7 where

Oy = sin_l(?) (3.50)

1

For waves incident at the surface (this case is realistic for the wall surfaces
of ferro-concrete buildings) under the critical angle 8y = 6y, there is no
refracted wave within the second medium; the refracted wave is propagated
along the boundary between the first and second media and there is no energy
flow across the boundary of these two media.

3.1.4 Analysis of Reflection Coefficient for Various
Propagation Conditions

The knowledge of reflection coefficient amplitude and phase variations is an
important factor in the prediction of propagation characteristics for different
situations in the over—terrain propagation channels. As follows from expressions
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(3.45) to (3.46), the amplitude and phase variations of the reflected wave from
a flat-ground surface depend on the reflection coefficient’s amplitude and phase
changes at the point of reflection (i.e., on the ground’s properties) and on the
initial polarization of the incident wave. In practice, for wave propagation over
terrain, the ground properties are determined by the conductivity and the
absolute dielectric permittivity (dielectric constant) of the subsoil medium,
€ = €(€,, where €; is the dielectric constant of vacuum, €, is the relative
permittivity of the ground surface, €, = €ge — 7€|, = €g. — j600. Here €g,
and €, are the real and imaginary parts of the relative permittivity of the
subsoil medium, respectively. In practice, instead of the incident angle 8, the

grazing angle ¢ = %T— 6 is used. Then introducing ¢ in formulas (3.45) to
(3.46) instead of @y yields:

for horizontal polarization:

. 2 1/2
siny — (€, — cos (//)]/2 (3.51)

T = ITyle™n =
n=1lnle sin¢/1+(6,—coszt//)

for vertical polarization:

€,singy — (€, — cos? 1//)”2

Ty=Tyle =
€,sinyr + (€, — coszt,l/)”2

(3.52)

Because both the coefficients presented by (3.51) to (3.52) are the complex
values, the reflected wave will therefore differ both in magnitude and phase
from the incident wave. Moreover, both coefficients in (3.51)-(3.52) differ
from each other. In fact, for horizontal polarization, for €, = oo and
o — o (i.e., for very conductive ground surface), the relative phase of the
incident and reflected waves is nearly 180 degrees for all angles of incidence.
On the other hand, for very small grazing angles, as follows from (3.51), the
reflected and incident waves are equal in magnitude, but differ by 180 degrees
in phase for all ground permittivities and conductivities. In other words,
[y =—1,and ¢ = 180° (0 < ¢ < 180°). Moreover, with an increase of angle
i the magnitude and phase of the reflected wave change, but only by a relatively
small amount. With a decrease in conductivity of the ground surface and with
an increase of frequency f = /—i of wave radiation, the changes of I'y; and ¢y
become greater. In the case of a real conductive ground surface (€, > 1 and
o > 0) for small grazing angles (¢ = 0°), the reflection coefficient for a wave
with vertical polarization does not change its properties with respect to
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that for horizontal polarization, as follows from (3.52), that is, for
Y=0<< ;Fv: —1, and @ = 180°. At the same time, for €, — e and for

0 < < 180° I'y = 1. However, with increase of angle ¢, substantial differ-
ences appear, that is, both a rapid decrease of magnitude and phase of the
reflected wave takes place. For ¢y — 90° (85 — 0°, 6y is the Brewster angle)
the magnitude | I" /| becomes a minimum and the phase ¢y reaches —90 degrees.
At values of ¢ greater than the Brewster angle, |I'y/| increases again and the
phase ¢y tends towards zero, that is, 'y — 1. These sharp changes of [T'y]|
and ¢y are shown in Figure 3.11 (according to our estimations) versus
grazing angle ¢ for various frequencies from 1 to 1,000 MHz. Here the
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Figure 3.11 The value and phase of reflection coefficient presentation versus to the
angle above horizon.
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parameter €; denotes the imaginary part of the relative permittivity, €, and
varies from 216 (f=1 MHz) to 0.216 (f= 1000 MHz), €, = 15, and
o =12 - 107 (Sm/m). The Brewster angle is about 15 degrees at higher
frequencies (when eg. >> X = €[,), (i.e., in cases which are very important
for wireless over-terrain communication). At lower frequencies and higher
conductivities (X increases and €g, << X = €y,), the Brewster angle becomes
smaller, approaching zero.

Because the reflection phenomenon depends on the parameters of ground
surface, let us now present typical values of ground permittivity and conductiv-
ity. Table 3.1 shows how these parameters affect the value of the reflection
coefficient.

The conductivity of flat perfectly conductive ground is higher than that
of higher impedance ground, namely, that found in hilly terrain, whilst the
relative permittivity can differ from 4 to 30 with a typical average value of 15.

3.2 Two-Ray Model

The two-ray model was first proposed for describing the process of radiowave
propagation over flat terrain. Using this model in [6, 7] the basic formulas for
field intensity attenuation and path loss were evaluated. Let us consider the
two-ray model using the approach proposed in [0, 7], which is based on the
superposition of a direct ray from the source, and a ray reflected from the flat-
ground surface, as shown in Figure 3.12. Earlier, in Section 2.3, the field
intensity of the direct wave (from the transmitter) in free space was presented.
We will rewrite it in the following form:

£= \[3OGTGRPT/7‘1 (353)

Table 3.1
Parameters Affecting the Value of the Reflection Coefficient

Conductivity, o

Surface (Siemens) Relative Permittivity, ¢,
Dry ground 107 47

Average ground 5. 107 15

Wet ground 2-107? 25-30

Sea water 5 81

Fresh water 1072 81
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| r

_y

Figure 3.12 The geometry of the two-ray model.

where 7y is the radiopath of direct wave as presented in Figure 3.12, Ggand
G 7 are the antenna gains for receiver and transmirter, respectively and Pris
the transmitted power.

As was shown above, the total field at the receiver is the sum of direct
and received waves, that is,

r

Eg - ET(I ‘ r(,/;)e‘f“') (3.54)

r2+r3

Here, TI'(y) is the reflection coefficient described by formulas
(3.51)-(3.52) for horizontal and vertical polarization, respectively;
Ar = (ry + r3) — ry (see Figure 3.12) is the difference in the radio paths of
the two waves, Ap = £ - Aris the phase difference between the reflected and
direct waves which can be presented as

2.1/2 2.1/2

A¢=k-Ar=2§T-r'[<1+(M)> ”(“(M» ]

(3.55)



92 Radio Propagation in Cellular Networks

where A and Ay are the receiver and transmitter antenna heights, respectively
and r is the distance between them. For r{>> (hr% hp) and
r>> (hr* hg), as was shown in [6,7], using the assumption that
ry = ry + r3 =r, (3.55) can be rewritten as:

_ 47T/JR/JT

T (3.56)

Ay

Furthermore, if we now assume that Gp= Gy =1 (omnidirectional
antennas) and that ['(¢) = —1 for the farthest ranges from transmitter (when
the grazing angle is small), we will finally obtain the power at the receiver as:

2 2
A ; A
P = Pr(m) |1 - e_JkA'|2 = PT(E) X |1 + coskAr +jsin;€'Ar|2
(3.57a)

or in absolute values:

2
A
| Pgl = lPTI(E‘r) i1+ cos kAr — 2coskAr + sinzkArl (3.57b)

/\ )2 , zkAr

= |P7|<4—; sin -

As follows from (3.57b), the largest distance from transmitter, for which
there is some maximum of received power, occurs when

kar
2

7 kAr
=3, sin—— = 1 (3.58)

This distance is called the critical range, denoted by r; and approximately
determined according to (3.58) by the following formula (6, 7]:

4hph
ry = %T (3.59)

Then, according to the definition of the parameter path loss introduced
in Chapter 1, and using the following formula (instead of formula (3.54))
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A

L=20log|E7| + 20 log|l + T(yg)e 57

r +r3

and taking into account all the assumptions presented above, one can easily
obtain the path loss over flat terrain by use of the critical range presentation
[6]:

L=17L4+20 log(r—rb), r<rg (3.60)
L=17L,+40 log(é), r>ry

where L, is the path loss in free space at the distance that equals the critical
range, (i.e., r = rp), which can be calculated from the following formula:

Ly = 32.44 + 20 logryem) + 20 logfimHy) (3.61)

As follows from formulas (3.60), there are two modes of field intensity
decay at distances r less than the break point r = r4, and beyond this point,
thatis, ~r™%, g = 2for r< ry,and ~ "%, g = 4 for r > r,. Such decay of signal
above flat terrain can be seen from the results of path loss calculations according
to the two-ray model [6, 7], which are shown in Figure 3.13. As follows from
the two-ray model, there is a break point at the range 74 = 150m-300m from
the source at which the transformation of field intensity attenuation from the
mode ~ 7 with essential intensity oscillations to the smooth mode ~r s
observed up to 1-2 km from the source; the effect depends, according to
(3.59), on both antennas’ heights and the wavelength.

3.3 Effects of the Earth’s Curvature

Let us now consider the case when terrain is smooth, but curved. In this case
the degree of curvature must be taken into account for field characteristics’
evaluation,

3.3.1 Based Parameters

As follows from the illustration (Figure 3.14), the real heights of two antennas,
transmitting, A7, and receiving, hg, must be turned into “image” heights A7
and Ay, respectively, taking into account the radius of the earth, R,. If so,



94 Radio Propagation in Cellular Networks

Path loss in dB

180 | i 1 J
10' 102 T 10° 10*
b

Distance from transmitter in meters

Figure 3.13 A field intensity decay (in decibels) versus the distance r from the transmitter
(in meters) obtained by Milshtein et al. according to the two-ray model [6].

now A7 and Ag are the heights of two antennas placed on the flat earth’s
surface, but A7 and bp are those for the curved earth’s surface. From simple
geometrical constructions that follow from Figure 3.14, one can obtain the
distances 4, and 4, from both antennas to the center of the radio path:

4i = (Res (b= b1V = RE= (br= h)* 4 2RAbT = )
d3 = (R, + Uhg= W) = RE = (g = hR)" + 2R (b = bf)

Because R, = 6480 km and, therefore, R, >> d|, d, hp, b7, (3.62)

reduces to the simple relations:
dt = 2R (b - b{) (3.63)
d3 = 2R.\hg = i)

and one can immediately obrtain from the real antenna heights their “image”

values:

Lil

2R,

4
hi = br- bk = bR~ 5% (3.64)
4
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Figure 3.14 The geometry of reflection fram the curved smooth ground surface.
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Because at the points of the wave’s specular reflection from a curved

I4

surface Snell’s law is also valid, that is ¢, = ¢, where ¢ = ?, and
1
h/
¥, = ;f- (see Figure 3.14), then we obtain
2
hr 4
W (3.65)

Moreover, because d = d| + &3, one can exclude one of the variables,
for example, d) = d — 4, and obrtain the equation for only one variable, 4,
that is:

243 = 3dds + [d* = 2R.(hy + hR)ld, + 2R b7d =0  (3.66)

Using the standard mathematical approach to solve the cubic (3.66), one
can obtain its solution in the following form:

d

d=1 hrlhp

(3.672)

from which, and from equality d; = 4 — 4|, it follows that the second variable
equals

bhrihg

dy = di, hrlhg

(3.67b)

Now let us derive the radio path for the direct wave from transmitter
(T) to receiver (R) denoted as Ry in Figure 3.14. From geometry it follows
that

1/2

’ _ ? 2
R, - d[l . %—f—"’)—] (3.684)

The same radio path, but for the reflected wave denoted R; in Figure
3.14, it follows from simple geometry, from the picture presented there, that:

2,172

1+ M] (3.68b)

oo U



EM-Wave Propagation Over Smooth Terrain 97

Then the difference between radio paths for the direct and reflected waves
equals

1/2 2,172

(bt + hR)* (bt ~ hg)
{2 e R

(3.69)

AR:Rz—R1=d{[1

Because in practical wave propagation over the terrain d >> h7, hg,

{3.69) reduces to:

_ 2h1hj

AR p

(3.70)

Hence, the phase difference between the reflected and direct waves equals:

2o hmhihg
Ag - —TAR- ,\;R

(3.71)
These parameters describe the total wave variations at the observed point.

332 Spread Factor

Increase of degree of curvature of terrain leads to diffusion and spreading of
reflected rays, as is sketched in Figure 3.15. The area denoted by Sy is the
illuminated area if the wave is reflected from the flaz earth’s surface. This area
spreads and diffuses when the reflection is from curved terrain. Usually, to take
into account the degree of curvature of the terrain, the parameter SF is intro-
duced in the main equation that describes propagation phenomena over flat
terrain, that is:

2d,d ]_1/2

+ m (3.72)

SF=[1

If so, the main equation for path loss prediction above the curved terrain
is obtained from that for flat terrain (3.54a) by introducing the spread factor
SF into it:

L =20log| E7| + 20 log[1 + SF - |T(yh)|e 73¢-¢)) (3.73)



98 Radio Propagation in Cellular Networks

Figure 3.15 Spreading effect due to reflection from the curved smooth ground surface.

Here, A¢ is the phase difference defined by (3.71); ['(¢) = [T'(y)|e/¥
is the complex coefficient of reflection from flat terrain presented above in
Section 3.1.4 for both vertical and horizontal polarization; |I'(¢)}| and ¢ is its
magnitude and phase.

The maximum value SF, as it follows from (3.72), is SFp. ~ 1. When
0.5 < SF < 1, there is no influence of curvature of the terrain on wave propaga-
tion; the reflection is specular and the surface can be considered to be smooth.
When 0 < $F< 0.5, the terrain surface is regarded as curved. For the first
case of 0.5 < SF< 1 from (3.72) it follows that

2d,\4,
0< Rt s ) <1 (3.74)
From the second case of 0 < SF< 0.5 it follows that
2d,d.
122 1 (3.75)

Rhf+ b~
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For the practice of land communication it is important to note that it

is only for radio paths longer than 20-30 km that the influence of the curvature
of the earth’s surface must be taken into account.

(1]
2]
(3]
(4]

[5]
(6]

(7}
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Radio Wave Propagation Over
Irregular Terrain

In this chapter we consider EM-wave propagation above rough terrain where
both antennas are placed above the rough ground surface in LOS and NLOS
conditions. In the first case there is no obstruction between the two antennas
and they are placed at the rough earth surface in conditions of direct visibility.
In the second case one or many obstacles lie berween the two antennas, receiver
and transmitter, and there is no line-of-sight between them.

4.1 Propagation Over Rough Terrain in LOS Conditions
Between Antennas

In conditions of direct visibility between transmitter and receiver (case one
presented in Section 1.6), which are placed on the rough-ground surface above
all obstacles surrounding them, the total field is the superposition of the direct
wave, the wave specularly reflected from the surface (which was presented for
flat terrain in Section 3.1), and the waves scartered in all directions from the
irregularities of the terrain (as shown in Figure 4.1(a)). In order to predict the
propagation loss characteristics over the irregular terrain, and to estimate the
role of each kind of wave in the total field, one needs to obtain some criterion
about the surface roughness and, then, to find the influence of each wave in
the total field ar the receiver.

4.1.1 Criterion of Surface Roughness

Rayleigh proposed a rough-surface criterion and introduced the degree of
roughness of terrain. Moreover, using this criterion, one can estimate the

101
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Diffuse reflection

@

Figure 4.1 Reflection from a rough-ground surface: (a) realistic terrain situation, (b) idealized terrain model.
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influence of scattering effects with respect to the effect of specular reflection
which takes place for the case of flat terrain (see Chapter 3). To obtain this
criterion, Rayleigh introduced the ideal model of quasi-periodical surface relief,
as shown in Figure 4.1(b), instead of the real rough terrain, presented in Figure
4.1(a). Let us follow his analysis and consider two rays, “A” and “B,” which
are specularly reflected from the top side and the bottom side of the ideal
rough surface, respectively, as is shown in Figure 4.1(b). From the geometry
presented, one can obtain the path difference between these two rays when
they reach the points C and C’ at the wavefront CC” after their reflection
from points B and B’, respectively:

Al = (AB + BC) - (A’B’ = B'C’) = i(l — 0s26) = 2b sin 4.1)

Then, the phase difference between these two rays in points C and C’

47rsin 6
A

AD = kAl = 2T7TA] = (4.2)

As follows from (4.2), the phase difference A® is small if the height 4;
of irregularities placed at the rough surface is small with respect to wavelength
A (i.e., h;< A). In this case, the ground surface is defined as a smooth flat
surface. For the real terrain the phase difference runs from 0 up to 7 over the
whole angle range. But, for A® = 77, the total field from two reflected rays
equals zero. If the reflection coefficients from two points B and B’ are the
same (i.e., 'g = 'gr = I'), then the total field, as a superposition of two reflected
fields, equals:

[gexp(jP) + Upexp(j(P + AD)) = gexp(jP) + I'p exp(jP)exp(jm)
= Lexp(j®) — Iexp(jP) =

because exp(jm) = ~ 1.

This case is not realistic in over-the-terrain propagation. A more practical
case is when ) S A® < 7. Substituting into (4.2) the bottom limit of the
phase difference AD = =, ylelds the expression of critical height, hp, of the

irregularicies:
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4mhpsind w
A i

or

A

by = 8sinf (4.3)

This height determines the degree of any earth surface roughness. The
rough-surface Rayleigh criterion can then be presented as

A

hi2 by = 8sind

(4.4)

In other words, the ground surface is rough if the height of an arbitrary
irregularity placed on this surface is greater than the critical height described
by (4.3). At the same time, the critical height is determined by the wavelength
and the grazing angle @ with respect to the rough surface (see Figure 4.1(b)).

In practice of over-the-terrain communications, the grazing angle is suffi-
ciently small (i.e., 0.5° < 6 < 3° — 5°). In this case, taking into account that
sin@ = 6 for # — 0°, the Rayleigh criterion (4.4) reduces to

A

b,»zg.g

(4.5)

where the grazing angle @ is measured in radians from the horizontal plane.
For instance, for grazing angle #=1° at frequency f= 900 MHz
(A = 0.333m), the computed value for critical height according to (4.4) to
(4.5) is g = 2.38m; so the Rayleigh criterion is 4; 2 2.4m. Thus, if the irregular-
ity in heights exceeds, in our case, sg = 2.38m, the surface is regarded as rough.
We must note, however, that the above criterion of surface roughness was
obtained for the ideal quasi-periodic model of terrain. In the real case, as shown
in Figure 4.1(a), to obtain the rough-surface criterion the probabilistic approach
is usually used [1-3]. Following this approach, one can consider the array of
irregularities placed on a real rough surface and randomly distributed according
to Gauss’s law [1-3]. The terrain in this case can be described by a “relief
function” z = 5(x), as shown in Figure 4.2. If the irregularities, with the
arbitrary helght z, are normally dlstrlbuted according to Gauss’s law with a
mean value z and a variance of az, then the probability density of surface
irregularity distribution is given by the following formula:
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Figure 4.2 The rough surface presentation by the relief function z = S(x).

» ! ( (z—2)2> “6)
= ————exp|l-———— .
Comial? P 202

where the standard deviation of surface is o, = \/<(z - 2)2>.

In Figure 4.3, the criterion of roughness of terrain is presented schemati-
cally for various values of &, for understanding, at the qualitative level, the
role of reflected and scattered rays in the total field pattern. Thus, the case
0, =0 or 0, << A describes the pure reflection from flat terrain where the
reflected wave is predominant in creating the total field pattern resulting from
the terrain. In the cases o, > A and o, >> A, one can consider the surface as
rough and irregular with an increased role of the scattered wave in the total
field pattern. In the last case, the scattered component of the total field is
predominant and forms the isotropic field distribution above the terrain around
arbitrary irregularities, as is shown in the last illustration in Figure 4.3.

Using the probabilistic approach, we will rewrite the Rayleigh rough-
surface criterion by introducing, according to [1-3], the parameter of roughness:

&

Figure 4.3 The schematical presentation of the criterion of rough terrain.
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C=4mo,0/A (4.7)

For the case 0.1 < C < 10, the ground surface is slightly rough. For
C > 10, the surface is regarded as rough. In the last case the scattered component
is once more predominant. We must note here that the criterion (4.7) is
stronger than that obtained above and described by formulas (4.4) to (4.5).
For the same conditions as presented above in the example, that is, for grazing
angle 6= 1° and at frequency f= 900 MHz (A = 0.333m), the computed
value for critical height according to (4.7) is ', = 15m. Moreover, this approach
requires us to introduce a statistical description of the height distribution above
the terrain.

4.1.2 Field Characteristics in LOS Conditions Above the Rough Surface

As follows from the illustrations in Figure 4.3, the roughness affects the wave
propagation characteristics and, as a result of its influence, these characteristics
differ from those for a smooth surface. For the case of smooth terrain, only
the specular reflected component, together with the line-of-sight component,
forms the total field at the observed point. If the surface is slightly rough, as
follows from the middle sketch in Figure 4.3, the specular reflected ray gets
attenuated slightly due to the scattering phenomenon. In other words, the total
field also contains the scattered component (which is also called the diffuse
component) together with direct and specular reflected fields. The diffuse
component in this case is weaker than the latter components. The specular
field component corresponds to the coherent part of total field intensity and
is equal to the square of the average field which is the result of the direct and
reflected fields. The diffuse component corresponds to the incoberent part of
the total field intensity which is caused by the rough surface (i.e., by the
scattering phenomenon). If the surface becomes very rough (third case sketched
in Figure 4.3), the specular (coherent) component of total field almost disap-
pears and the diffuse (incoherent) component of total field dominates.

At present, there are two general approaches to solving the wave-scattering
problems which arise from rough terrain:

1. The perturbation technigue, that applies to a surface which is slightly
rough and whose surface slope is smaller than unity [4-15];

2. The Kirchhoff approximation, which is applicable to a surface whose
radius of curvature is much greater than a wavelength [16-25].

We will not go into a detailed mathematical analysis of these two tech-
niques which are described further in [4—6]. We will present the main propaga-
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tion characteristics, such as the components of toral field intensity, which
successfully describe the scattering phenomenon for radio wave propagation
over rough terrain in LOS conditions of transmitter and receiver.

The first-order perturbation solution. In this section we present a derivation
of the scattered field components for a vertically and horizontally polarized
incident wave using the perturbation method. This method is applicable to a
slightly rough surface that can be described as follows. Let us consider the
height of a rough surface to be given by some function (see Figure 4.4)

z = s(x, y) (4.8)

We choose z = 0 so that (4.8) represents the deviation from the average
height: {(s(x, y)) = 0. Moreover, the perturbation method is valid when the
phase difference due to the height variation is small, that is, when [4]

& s(x, y) - cosf;| << 1 (4.9)
% << 1 8_ < 1
dx | 9y <

The boundary condition for the electric field at this surface (according
to (2.42) from Section 2.1.6), requires that the tangential components of E
vanish at the surface z = s(x, y), that is,

Exn=0 (4.10)

where n is the vector normal to the surface z = s at the considered point
(x, y). The normal vector n has the components:

9
ox

\NEHC

n, = > (4.11)

\NERE

ds

dz

- )

n, =
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z=§ (x,y)

Figure 4.4 The simple presentation of rough terrain.
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ds 9
Ignoring all values with a second order of the derivatives a—i, ;:, and

ds

3.0 We obtain, according to (4.10), at the surface 2z = s,

89

23y (4.12)

ds
E, Ea—OE+E

The third condition according to (4.10) follows from those two presented
above by (4.12). Such conditions are for the surface z = ¢(x, y). As to boundary
conditions for the flat surface z = 0, using (4.12), let us rewrite them by
splitting the field components £, E,, and £, on small orders of height
deviation s and its gradient, V¢:

E ’ ) :0
Ex(x.y,z:O):—Ez(x,y,z:o).g_‘?_a_x(x_az__>,g
X 5 z (4.13)
ds Ey(x, v, 2=0)
E](x,y,Z=0):—Ez(x’y,z:0).a_y_ J .ayz — -

Thus, if the surface profile (4.8) and the position of sources are known,
the problem is to determine the field in semispace z > 0, when their boundary
conditions (4.13) are known. Let us consider the influence of roughness as a
small perturbation, such that the total field is

E-Eg?, gD (4.14)

where E® is the field that could be derived for the condition s = 0, which is
well known from the strict theorem of reflections discussed in Section 3.1.
The second term E'V, that describes the field perturbations, can be obtained

from wave equations by use of the boundary conditions, which lead from
(4.13) by substituting (4.14) into i,

0)
W) __p0), 95 _9Ec
E £ ox 09z ° 4.15)
(0) ’
d¢ OF
gD __pO@ 28 "7y o

To present this perturbation term, let us consider two special cases which
are practical with regard to over-the-terrain propagation channels.
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The vertical dipole is located at point O as shown in Figure 4.5. Its
reflection from flat surface z = 0 at the point O according to the strict reflection
theorem must also be directed vertically. By introducing the spherical coordinate
systems {R, ¥, ¢} and {Ry, &), ¢| = ¢} for each dipole and taking into
account the relations between the field components, and the Hertz vector
introduced in Section 2.1.3, we can present the components of nonperturbed
field E¥ as:

ei(wt—kOR) . (wt-kyR,)
ES{O) = {—k%psinﬂcosﬁT - k(z)psin 19]c0519]—R——}cosg0
1
Jilws=k,R) ok R)
Eﬁo) = {—k(?jpsin Pcos 19——R— - k%psim?lcos 1.91——R——}sinqo(4.163)
1
i(wl—knR) i(a)l—/zoRl)
ELO) = {k%psinzﬁeT + k%psinzﬁle ? }
1

Then, in the plane 2= 0 (R = R|, & = w— 8,):

(wik R
FO _ g0 o g0 52 2 06'(’”' o
x =£y =0, z = 2KRppsin QR (4.16b)

Figure 45 The geometry of vertical dipole field reflection from the ground.
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Here p is the modulus of the momentum of the point vertical dipole,
which is well known from the literature (sce, for example, [4-6]).

Because in practical terrain propagation the source and the observed point
are far from the surface z = 0, we can, following to [5], present simple formulas
for the perturbed part of the tortal field due to roughness of the terrain in the
case when the incident wave lies in the xpplane (i.e., when ¢ =0,

- ié“ R )
€ —tk x'sin

el , where g is constant):
k(Z) ag J e p+A/Slnl9) L
ELU - ﬁ(2q)f{zk0cos J+ sml?a } az———p——dx dy
- —ik (p+¥sin &)
m _() ds) d e Mo ’ g,
E'y =7 2q)f{sm J=— } 3 ——p dx’dy (4.17)

ki ds( s o
ED X )H'k —,( 29— s Za)+( ) 9
529 | ko3| cos sin 3 ay'z sin

—tk (p+xsin )
2 24 e v ‘g
+ k{cos 19smz9} —p—dx dy

Here p = \/ir — % (y—y ) + (z— z')z, where x, y, zare the coor-

dinates of the observed point.
For small grazing angles (19 - %T), (i.e., in the case of slipped incident

waves), which is very realistic for mobile and personal communication, these
formulas can be significantly simplified,

E,(\-l) - _zk(?jqe—ikoxsin 198_9

dx
2 ik, lnn?ag
Ey = —2kigeF0" (4.18)
2 ~ik (p+x'sin )
EW - s ds\ e ™ ‘s
<q>faz o )

The horizontal dipole is located at the point O and oriented along the
y-axis. [ts reflection from flat surface z = 0 at the point O} according to the
strict reflection theorem is oriented in the opposite direction. In this case, at
the plane z = 0, we have
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EO - EO g
(wt—k R)

E
(aa; ) = 21/eope——sm2 PcosFcosesing (4.19)
z=0
aE(O) ((ut—k R)
< 3z ) =2 kope——cosﬁ(sinzﬁsinzw— 1)

The same approach, as above, allows us to present, according to [5], the
perturbation part of the total field due to the roughness of terrain for a horizontal
dipole oriented along the y-axis:

EY -0

d e pw/sm )

E;,l) ko (Zq)f tkgscos 3} ax’dy’ (4.20)

dz p

k —iko(p+x’sin ?)
EY -5 2(2q) f {i/eoﬁ,cosa} efdx’dy'

Then, in the same case of slipped waves (i.e., for small grazing angles
(¥ — 7/2)) one can obtain from (4.20) simple formulas for the perturbed
part of the total field:

EV <o
Eﬁl) = —Zi/e?)s‘qcos Je~Hoxsind _ g (4.21)
3 —ik (ph\/sin 3)
(48] _ ﬁ . aq 4 0 r g
E, = 2W(2tq)ja}l,cosﬁ—p dx’dy

Comparison berween formulas (4.18) to (4.19) and (4.20) 1o (4.21), for
both kinds of wave field polarizations, shows that the field of the horizontal
dipole is weaker and affected by the roughness of terrain than that of the
vertical dipole.

The formulas presented above can predict the propagation characteristics
over rough terrain in conditions of direct visibility between the source and the
observer, if the profile s(x, y) of the ground surface is known for each concrete
situation.

Moreover, these formulas allow us to obtain the coherent and noncoherent
parts of the total field energy. The coherent power predominates for the case
of a smooth surface and is determined by the use of the nonperturbed field
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E(O), the components of which are described by (4.16). The incoherent power
is determined by use of the perturbed field E(D) described by (4.17) to (4.18)
and (4.20) to (4.21) for both kinds of field polarization.

The limitation of the perturbation method is connected with the require-
ment of smallness not only for Vg, but also for the earth’s surface deviations
s(x, y). The last condition can be ignored, however, because, if we derive the
second perturbation term E? in (4.14), we obrain for the case of vertical dipole
the following condition:

(ko - s Vs)? << 1 (4.22)

from which, assuming that |Vs| = ¢//, where /is the characteristic length of
roughness, we obtain that

5 << \/A </ (4.23)

Therefore, for sufficiently small slope angles, the described perturbation
technique is valid even for deviations ¢, similar or larger than the wavelength
A

The Kirchhoff approximation solution. Now we consider the other limiting
case, when the characteristic scales of roughness of the earth’s surface signifi-
cantly exceed a wavelength of the radiated field from the source. In this case,
the Kirchhoff approximation may be used to obtain a simple solution. What
is important to note is that this method requires the absence of shadow zones
between all roughnesses and/or multireflection and multiscattering between
each roughness placed on the flat surface z = 0. In the other words, we suppose
that the surface S is slowly varying so that the radius of curvature is much
greater than a wavelength (Figure 4.6). If so, we assume, following [5-9], that
at each point r on the quasi-smooth surface § the wave field is a superposition
of the incident field Ey (i.e., the field resulting from sources placed at an
infinite distance) and the field E reflected from the plane G, according to the
geometric optics’ law. This plane is tangential to the surface $ at the point r,
as is shown in Figure 4.0.

The scattered electromagnetic wave at the observed point R can be
represented by means of the values of E and H on the surface S by use of
Green’s theorem (see Section 2.2.5), the simple presentation of the source

fields

explikR}
R,

exp{ikR,}

R, (4.24)

E(re )= E Hire §) = Hy
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Figure 4.6 The presentation of smooth terrain described by the Kirchhoff approximation.

and the Green’s function representation of the point source according to Section
exp{ikR}

224 G= —R—:

{ln x (H-Hp)] + [n - (E - Eg) - V,R)] (4.25)

. k(R +R)

th (575

E(R) - ET[ R1R2
S

— [V,R; x n x (E - Eg))}ds

Here, as follows from Figure 4.7, R| and R, are the distances from the
current point r(x, y, z = 0) at the flat surface z = 0 to the source point O and
the observed point R; R} and R are the distances from the current point
r(x, y, z) at the surface S over which the integration in (4.25) takes place;
s(r) is the height of the surface § at the arbitrary point r(x, y, z). If the source
and the observed point are located in the far wave zone relative to surface S,
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Figure 4.7 The geometry of reflection from the quasi-smooth surface S({r).



Radio Wave Propagation Over Irregular Terrain "

that is, R >> 1 and kR, >> 1, the integral in (4.25) for the scattered field

in direction k, can be rewritten as
ik . zk(R +R o)

(k ks) 477' RIORO

f{[nx(H Ho)l + [n - (E - Eg) - V,R))
. (4.26)

d
- [V,R; x n X (E — Eg)l}explil(k — kr + (£, — £)s(r)]} =

9z

Here Rjg and Ry are the distances between the arbitrary point
t(x, y, 2 = 0) on the surface Sy, which is the projection of the rough surface
S at the plane z = 0, and the source O and observed point R, respectively.

For future analysis of the integral in (4.26), it is convenient to present
the distances R and R, through the vector r(x, ¥, z = 0) that lies on the flat
surface z = 0 and the value of surface height s(r) at this current point (see
Figure 4.7)

7 2 2
Ry =~r +(zpg— ) =R +a,s

RZ =\/(a’— 7’)2+(z"§)2=R2 +Bzg

where Ry = ‘\[r + 2 ,R2 —r + ,az= andﬂz= are
2

the z-components of vectorsa = V,Rjand b = -V,R; (l e, thc projections of
these vectors at the z-axis).

We analyze (4.26) that describes the scattered field for two cases that are
useful in practice for over-the-terrain propagation by introducing some new
variables according t [6-8]: q=k, -k, k =+ka=4V,R|, and
k, = kb = -4V, R;.

In the case of a perfectly conductive earth surface, when according
to results presented in Chapter 3, n-E=2-(n-Ej) and
nx H =2 " (nx Hyp), for the scattered component of total field, (4.26) can
be simplified taking into account that electric and magnetic components of
the electromagnetic field are mutually perpendicular, Hy = k x Eg/4, that is,

(4.27)

ik e Ry
4W—RWJ{[HX(3XE0)]—[H'EO'M

o

Ek, k,) -
(4.28)

d
+ [b x n X Egllexp{—i[q - r + g,s(n)]} =

z
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Because we investigate here only the case of short-wavelength propagation

(high-frequency band), the short-wave approximation (g,5 >> 1) of integral
in (4.28) is [6-8]:

ik e (R +Ry) (b x (Eg X q)] .
R T P B expi=ilq - r + g,5(0)]}dr
S

(4.29)

Hence, we have finally obtained that the vector multiplyer
[b x (Ep X q)] is outside the integral and determines the polarization character-
istics of the scattered field. We will investigate the polarization phenomenon
later. Now we must note that all statistical characteristics of the scattered field
caused by the rough surface are determined by the following integral:

fexp{—i[q -+ q.5(0)]}dr (4.30)
S

Additional investigations of integral (4.30) after its statistical averaging
have shown that the average value of exponent {(exp{—ig,s(r)}) in (4.30) is
the one-dimensional characteristic function that describes the effect of rough
terrain and does not depend on coordinate r. Moreover, the reflection coefficient
of the average (coherent) field coincides with this one-dimensional characteristic
function. In fact, because the average scattered field can be presented through
this function as

<E(k, k,)> = E9%k, k,)x(q,) (4.31)

where the field

E(O)(k, k) _ itér e Rl:’RZO [b X EO X <I)] ICXP - ndr (4.32)

0

is the field reflected from the area Sy of plane z = 0; the effective reflection
coefficient from rough terrain, as follows from relauonshlp (4.31) and the strict
reflection theorem, according which (E(k, k,)) = E¥(k, k)Rs w) (Section
3.2), is described by this characteristic function, that is, Rf(z//) (g.). Here
¢ is the slip angle (for the geometry of the problem presented in Flgure 4.7
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k; = k- cosi, k,=0and k; = —k - sing). As an example, for the surface §
with Gaussian-coordinate distribution, we find thar the effective coefficient of
reflection

RA() = exp{-247s7sin’ ¢} (4.33)

exponentially decreases with increase of characteristic height of roughness s(r).

As follows also from (4.29), the polarization characteristic of the reflected
wave E is different from that for incident wave E;. The unit normal vector
ny to the surface S is related to vectors q, a and b through the simple formulas:

b=a-2n;-(ng-a),q=4kb-a)=2kny- (nyg-b), (4.34a)

substitution of which in the polarized multiplyer in (4.29) gives:

[b X (Eg X q)] = 2k(ng - a)>{Ey — 2ng - (ng - Eg)}, g =§1 (4.34b)

Hence, the depolarization of scattered field from rough terrain is the
same as that for the specular reflection from a perfectly conducrive flar surface
with unit normal vector equal ny. This result can be easily understood if one
takes into account that for £ — oo (short-wave approximation) the contribution
in the scartered field gives only specular reflected points with n = ng = q/g,
and reflection from each of them at the surface S takes place in the same way
as from the tangential plate G, (see Figure 4.6).

Substituting (4.34a) in (4.29) and introducing the tensor coefficient of

reflections Rﬁ, = =8, + 2njn,, where the double repeated index ¢ indicates
the summation from I to 3, and 5ﬁ. is the unit tensor, which equal 1, if
j =¢ and 0, if j # ¢, one can finally obtain from (4.29) the solution for the
E;-component of the scartered field:

'k(R +R ) 2

E;(k k) = mz Eoefexp —ilq - £+ g,5(0)]}dr (4.35)

So

The same result can be obtained for the H;-component of the scattered
field by introducing in (4.35) the following terms: H,, Hy,, and
RH E

= ],, respectively.

Let us now generalize the above obtained results for the case of scattering

from the impedance rough surface with arbitrary conductivity and dielectric
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permittivity. Here we also use the short-wave approximation (£ — <o), which
is usually used in the practice of over-the-terrain propagation. This approxima-
tion allows us to carry from integral (4.26) the vector multiplyers for
n = ny, which describe the polarization phenomena. Let us also introduce
the vector amplitudes of the reflected wave E,=E - Ej and
H, = H - Hp = b x E, on the plane G, tangential to the surface § at the
points of specular reflection. Then the vector multiplyers that are carried out
from the integral can be presented as:

[ng x (H — Hyg)] — [ng - (E - Eg)] - b+ [bx [ng x (E - Eg)]]
= [[ng x (b x E;)] — [(mg - E;)] * b+ b x [(ng x E,)] (4.36)
= —2((ng - b) - E,]

On the other hand, from (4.34) it follows that

2

ng-b q)'
=5 (4.37)
ne k.

Substituting these expressions into (4.26), we have for £ — oo

k(R +Ry) 2

e .
Ek, k,) = 4_7”R—10R—20 %z— E,fexp{—z[q “r+ q,5(0lldr  (4.38)
S

where the reflected field E, can be expressed through the incident field Eg by
help of tensor reflection coefficients from the surface with n = ng:
E, = R}(no)Ej..

Hence, we come to the same formula, as expressed by (4.35) for the
perfectly conductive ground surface, but with more complicated formula for the
components of the reflection tensor:

: 1
Rj[i, = Rv6j,— m{(RH + vaosﬁ)njn, +cosH Ry + Rv)a]-n,}

g I (4.39a)
Rje = Ryé;. - ;i_n_é{(Rv + Rycos®)njn, + cosH Ry + Ry)a;n,}

which are significantly simplified for the case of the perfectly conductive surface
and can be presented in the invariant form:
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Rj[t-’[ - _R]E; - 6][ — 2;1]-,1( (439[))

Let us note that the invariant form of record presented in (4.35) and
(4.38) allows us to use these formulas for scattering phenomena from the
surface with arbitrary dielectric permittivity not only for a linearly polarized
wave, but also for an elliptically polarized wave. Moreover, because this per-
mittivity has a nonzero imaginary part, the components of reflection tensors
are also complex values that lead to conversion of the wave’s polarization. For
example, the linearly polarized wave, after scattering from the impedance rough
surface, becomes elliptically polarized. But what is more interesting, the depolar-
ization phenomenon is not connected with the statistical properties of rough
terrain; it is completely determined by the inclination of tangential plane G,
to the surface S at the points of specular reflection. The direction of normal
vector n to this plane (and, hence, the polarization of reflected field) connects
with the direction of wave vector k of the incident wave and with the direction

k- k
to the observed point k, through the relation: ng = h Therefore, to
-
determine the type of polarization of the scattered wave, one can directly use
the tensor presentation of the Fresnel reflection coefficients with n = ng and

9 =9y =cos '(n-b).

4.2 Propagation Over Rough Terrain in NLOS Conditions
Between Antennas

In the case where both antennas, receiver and transmitter, are in obstructive
conditions (i.e., there is no line-of-sight, denoted in the literature as NLOS,
see also cases 2 and 3 in Section 1.6) between the source and the observer, a
new effect of diffraction phenomena arises from various kinds of obstacles,
such as trees and hills, placed in the rural environment around both antennas.
The diffraction phenomenon is also based on the Huygens’s principle, intro-
duced in Sections 2.2.5 and 2.2.6, and used for the description of reflection
phenomenon from flat terrain in Section 3.1.2. Let us briefly describe the
diffraction from obstacles which form a hilly terrain (i.e., from different kinds
of hills), using the Huygens’s principle and the deterministic approach in a
qualitative manner, replacing each hill by a knife edge.

4.2.1 Propagation Over a Single Knife Edge

The analysis described in Section 2.2.5 for propagation in free space applies
if the wavefront AA” (Figure 4.8) of an arbitrary electromagnetic wave is infinite
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Figure 4.8 Diffraction at the edge of an abstruction.

(more strictly, much greater than the wavelength). If there is now some obstacle
that we may model as the simple knife edge which lies between the receiver
and the transmitter, only a semi-infinite wavefront CC” exists (Figure 4.8).
The classical optical ray theory states that no field exists in the shadow region
below the dotted line BC. However, according to Huygens'’s principle, the
wavelets originating from all points on line BB’, (e.g., point P), propagate
into a shadow region. This will tend to fill in the shadow behind an obstruction,
as shown in Figure 4.8. When the wavefront encounters an obstruction and
penetrates from the illuminated (light) zone to nonilluminated (shadow) zone
due to the existence of a second source of wavelets at the edges, tips, wedges,
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and so on of arbitrary obstructions, the effect is known as the diffraction
phenomenon.

Fresnel-Kirchhoff parameter and Fresnel-zone concept. With the help of this
concept, which also appeared in Chapters 2 and 3 to explain the free-space
propagation and the reflection phenomena, one can determine and describe
the meaning of the main parameter of diffraction, which in the literature is called
the Fresnel-Kirchhoff diffraction parameter. As follows from the illustration in
Figure 4.9, the phase difference A® between the direct ray from the source
(at point O) denoted TOR, and thart diffracted from the point O’, denoted
TO’R, can be obtained in the standard manner by use of the path difference
Adbetween these rays, assuming that the height of the obstacle is much smaller
than the characteristic ranges between the antennas and the obstacle

(h << dy, dy):

Ad~ B (dy + dy)
2 didy (4.40)
20 2w b4 + dy)

A=A =T TG

If we now introduce the Fresnel-Kirchhoff diffraction parameter, v,
according to [1-3], as a simple function of the path difference, Ad, expressed

in wavelengths
2(d) + dy) ’Ad
Add, =24~ (4.41)

the phase difference may be rewritten in terms of this parameter,

-~
”~
o_-~X TOR >TOR
«
T
/// | \\\
_- |h ~
-~ \\
- ( ~
// \\
/, :_] \\
TTé jo ~s0OR
4y d; .

Figure 49 The geometry of knife-edge diffraction.
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AD - %’ o2 (4.42)

Usually, the additional parameter, @, is introduced together with the
Fresnel-Kirchhoff parameter v:

2 2Ald) + d)
=v 24,4, (4.43)

If so, the phase difference between the diffracted and the direct rays can
be rewritten as:

7 didy;

A(sz(a,l +d2)a

(4.44)

Before going into the details of the problem we must note that the
Fresnel-Kirchhoff parameter is presented in (4.41) with the two signs, “~ and
“+,” before the square root, as are usually used for estimating it in the literacure.
Below, following in [1], we will use the diffraction parameter presentation
(4.41) with the “+” sign before the square root. The results of estimating this
parameter by using the “~” sign in (4.41) may be found in [3] (we will only
present some results relative to this case).

Now, as was mentioned in Section 2.2.6, it is necessary to keep the region
known as the first Fresnel zone substantially free of obstructions in order to
obtain wave transmission under free-space conditions. To now estimate the
effect of diffraction around obstructions we need a quantitative measure of the
required clearance over any terrain obstruction. As was shown in Section 2.2.6,
this may be obtained analytically in terms of Fresnel-zone ellipsoids drawn
around both ends of the radio link, receiver and transmitter (Figure 4.10).

Figure 4.10 The Fresnel-zone ellipsoids around the transmitter and the receiver.
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The reader can find Fresnel ellipsoids discussed in detail in Chapters 2 and 3.
Here we will only repeat that the radius of any ellipsoid with number 7 from
the family of ellipsoids can be presented as a function of parameter » and the
distances between both antennas and the obstruction, 4 and 45, respectively:

1/2
_ n/\dl a’2
rn= /]n = |:(d] + dz)] (445)

Then from (4.41) one can obtain the physical meaning of the Fresnel-
Kirchhoff diffraction parameter:

- b 2(d] +d2) 12 _ Z(d] +d2) n/\dldz
Yn = Pn Ad,d; S\ T Adid; (d) + 4

1/2
)] - 2mY?r (4.46)

Thus the diffraction parameter v increases with the number 7 of ellipsoids.
All the above formulas are corrected for 4, << d, 45, (i.e., far from both
antennas). The volume enclosed by the ellipsoid defined by n = 1 is known
as a first Fresnel zone. The volume between this ellipsoid and that defined by
n = 2 is the second Fresnel zone. As a result, the contributions to the toral field
at the receiving point from successive Fresnel zones tend to be in phase opposi-
tion and therefore interfere destructively rather than constructively. If an
obstruction OO’ is placed at the middle of radio path TO'R (ie,
TO’" = O'R) then if the height of obstruction 4 increases from 4 = r| (corre-
sponding to the first Fresnel zone) to 4 = r; (defining the limit of the second
Fresnel zone), then to 4 = r3 (to the third Fresnel zone) and so on, then the
field at the receiver R would oscillate. The amplitude of oscillations would
essentially decrease since a smaller amount of wave energy penetrates into the
outer zone.

Fresnel clearance. As follows from the material discussed in detail in
Chapters 2 and 3 and mentioned above, any radio path in obstructive conditions
(as illustrated in Figure 4.10) requires a certain amount of clearance around
the central ray if the signal expected from free-space propagation is to be
received. This phenomenon can be understood by use of the principle of
Fresnel clearance, which is important in design of point-to-point radio links,
where communication is required along a single radio path. Fresnel clearance
is quoted in terms of Fresnel zones. In fact, the first Fresnel zone (for
n = 1) encloses all radio paths for which the additional path length Ad,
according to (4.40), does not exceed A/2, that is, a phase change of
A®| = 7. The second Fresnel zone (for n = 2) encloses all paths for which
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B | >

the additional path length Ad does not exceed 2 -+ - = A (A®; = 277), and so

on.

The radius of a Fresnel zone at any point along the radio path can be
obtained by replacing Ad, in (4.40), by the required number 7 of wavelengths,
changing the obstruction height 4, to the Fresnel radius r, according to (4.45).
Thus the radius of the first Fresnel zone r) is given by setting Ad = A/2 in
(4.45). As a result, 7| = (Ad) - dy/(dy + d))"'? = (300 - dy - dy)I( f+ )2,
where fis measured in GHz and 4 = 4| + 4, in km. The shape of the first
Fresnel zone (a Fresnel ellipsoid) is shown in Figure 4.10. For a given Fresnel
clearance no obstructions should exist inside the volume of this ellipsoid, that
is, the volume produced by rotating the ellipse around the direct ray 7R. As seen
below from calculations of diffraction losses from any obstruction (presented in
Figure 4.14), in practice a clearance of 60% of the first Fresnel zone is normally
considered adequate for the land point-to-point radio links, corresponding to
the diffraction parameter ¥ = —1.1. We must also note that the approximate
formula (4.45) and, hence, the principle of Fresnel clearance was obtained for
the case of 4}, d; >> r,, which is correct for most practical cases of land-
radio links construction.

Diffraction losses. 1f between the transmitter and receiver there is any
single obstacle which can be modeled by a single “knife edge,” losses of the
wave energy take place. Such losses in the literature are called diffraction losses.
These losses can be strictly obtained analytically by use of the Fresnel-complex
integrals presented earlier in Chapter 2 in the use of Huygens’s principle. In
fact, from the classical theory of plane-wave propagation [1-3], the total wave
field E,,,; after diffraction at the tip or edge of some arbitrary obstruction
(such a hill, tree, etc.) can be presented in the following form:

Epat = £ D - CXP{]'A‘D}, (4.47)

where E; is the incident wave from the transmitter located in free space; D is
the diffraction coefficient (see Chapter 5); A® is the phase difference between
the diffracted and direct waves mentioned above. Then the path loss (the reader
can find the definition of such a wave characteristic in Chapter 1) due to
diffraction can be determined in the standard manner:

Lp=20"-logD (4.48)

The main goal of strict diffraction theory by the use of the analytical
deterministic approach is to obtain parameters D and A® by use of Fresnel
integrals. Let us obtain the relationships between these parameters and the
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Fresnel integral. As is well known, the total diffracted field at the observed
point can be presented in the following integral form by using the Fresnel
integral:

E=EJ1;ﬁfap{jgg}h (4.49)

The integral in the right side of (4.49) is the complex integral with
parameter of integration » defined by (4.41) for the height of the obstruction
under consideration. We note that if the path 7R, between the transmitter
and receiver (line-of-sight path), is actually obstructed by some obstacle modeled
by a knife edge, as is shown in Figure 4.11(a), then the height 4 and the
diffraction parameter v are positive (it follows from (4.41) with the “+” sign).
If the knife edge lies below the line-of-sight path (line 7R in Figure 4.11(b)),

so that there is no interruption between 7 and R, then 4, and hence v, are
negative (because we “work™ by use of (4.41) with the “+” sign).

///
- h>0
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P v>0
-
-
/// \\\\
— h ~~
- ~~
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Figure 4.11 Knife-edge diffraction: {a) h> 0 and v>0; (b) h< 0 and v < 0.



128 Radio Propagation in Cellular Networks

The field at point R will then be the free-space value E;. It will begin
to oscillate as the height of the knife edge is increased. The oscillations are
stronger when more of the Fresnel zones below the TR-line are blocked by
this knife edge. The amplitude of oscillations increases until the tip of the
knife edge is just at the 7R-line, at which point the field strength is exactly
half the incident field (i.e., £,/2). The same two situations along the radio
link are shown, but for the Fresnel-Kirchhoff parameter description by (4.41)
with the “=" sign. These two situations are shown in Figure 4.12, where the
top figure presents the nonobstructive condition between 7 and R with knife-
edge height negative, # < 0 and v > 0. The bottom figure presents the inverse
situation with # > 0 and » < 0. Because both variants of the formula (4.41),
with "+” and “-" signs are usually used in the literature, we will briefly
summarize results of the calculation for the last case and present all useful
formulas for both of the cases mentioned above. In all the graphs below,
however, we will present the results of calculation by use of (4.41) with a “+”
sign according to [1]. In both cases, when the knife-edge height is higher than
the 7R-line, we must obtain the essential decay of field strength (i.e., increase
of path loss relative to free-space value £;) without oscillations of wave ampli-
tude. Let us show this by using the analytical approach. The Fresnel integral
in (4.49) can be presented in the standard manner as

jexp{—jgtz}dt = fcos{—gtz}dt—]'fsin{—gtz}dt (4.50)

But
_mal, 1y _m by
jcos{ 5 }d’t =31 fcos{ 2! }dt -5t C(v) (4.51a)
v 0
Similarly
o ) ] P
fsm{— 5! }dt =3 + jsm{ > t }dt -7 % S(v) (4.51b)
U 0
Here the "~ sign in all the formulas above corresponds to the case

presented by Figure 4.11, and the “+” sign corresponds to the case presented
by Figure 4.12. Then the total field according to (4.49) can be rewritten as:
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i v<(0

Figure 412 Knife-edge diffraction: (a) h>0and v< 0; (b) h< 0 and v> 0.
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Figure 4.12 (continusd).
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E - 150%{(% + C(v)) —j(% + S(U))} (4.52)

By introducing the sin-integral $(») and the cosin-integral C(») in (4.51)

we finally can construct such an integral:

v

Clv) - jS(v) = j exp{—jg zz}d: (4.53)

0

Plotting this integral in the complex plane with C(v) as the abscissa and
S(v) as the ordinate results in the curve shown in Figure 4.13 which is known
as Cornu’s Spiral [1-3]. Positive values of v appear in the first quadrant and
negative values in the third quadrant. Let us briefly describe the main properties
of this spiral.

Equation (4.52) shows that v equals the length of the arc along the
Cornu’s spiral, measured from the origin at » = 0 (at the top of the knife edge
Pin Figure 4.8, determined as the optical cutoff point), with the curve turning
around the point (%, %) or (—% —%) an infinite number of times. If one
draws a vector from the origin to any point on the curve, this vector will

represent the magnitude A and phase ® of (4.53), that is, A = ‘\/52 v C?

1 1
od - tan_l%. Moreover, the measures (5 + S (v)) and (E +C (v)) represent

11
the real and imaginary parts of a vector drawn from the point (5, 5) or

1 1
(—-?:, —5) to a point on the spiral. Therefore the magnitude of total field | E|
for any considered value v = vy is proportional to the length of the vector
11 11

joining point (E’ 5) or (—-2-, _E) to the point on the spiral corresponding
to vg. Thus Cornu’s spiral gives a visual indication of the amplitude and phase
variations of total diffracted field E versus the Fresnel parameter ».

Diffraction losses calculated for the case when in (4.52) both summands
are written with the “—" sign before the Fresnel-integral functions (the case
which corresponds to Figure 4.11) relative to the free-space loss versus parameter
v are shown in Figure 4.14. Above the line-of-sight line 7R the loss oscillates
about its free-space value (here relative path loss is equal to 0 dB), the amplitude
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Figure .13 Fresnel integral versus the diffraction parameter v (Cornu’s spiral).
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Figure 4.14 Diffraction loss over a single knife edge versus the parameter v.

of oscillations decreasing as knife-edge height 4 and, hence v, becomes more
negative (according to (4.41) and Figure 4.11(b)). When wave is incident
below the grazing angle at the optical cutoff point (when v~ 0), there is a
6 dB loss (i.e., the field strength is half Ej). At the same time, as follows from
Figure 4.14, if v = 0.8, which corresponds to about 56% of the first Fresnel
zone being clear of obstructions, this loss is avoided. Therefore, in the practice
of radio link construction, designers try to make the heights of antenna masts
such that the majority of the first Fresnel zone is not obstructed. To obrain
a strict solution by use of an integral equation such as (4.49) or (4.52), which
connected with the complex Fresnel integral is a very complicated problem to
obtain a strict analytical presentation of, diffraction losses from any obstruction
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are considered. In this case, empirical and semi-empirical models that are based
on, and lead from, numerous experimental data are used. As an example of a
more effective empirical model 1o obtain the knife-edge diffraction losses, we
will employ Lee’s approximate model [2], from which it follows that:

1. For the case of parameter v given by formula (4.41) with the “+” sign
(presented in Figure 4.14) the diffraction losses are:

L) =LY~ 0(dB), v<-1 (4.54a)

L(v) = L1V = 20 log(0.5 - 0.62 - v) (dB), 0.8 < v< 0 (4.54b)

L(v) = L1 = 20 1og{0.5 - exp(~0.95 - )} (dB), O < v< 1 (4.54¢)

L(») = LY = 20 log[0.4 — (0.1184 (4.54d)
- 038-0.1- )" (dB), 1<v<24

Lv) = LP = 20 m(@) (dB), v>2.4 (4.54¢)

>

2. For the case of parameter » given by formula (4.41) with the “~” sign,
one must introduce in formulas (4.54) —v instead of v, which finally gives for
diffraction losses:

L) =LY =0 (dB), »21 (4.552)

L(v) = L1V = 20 10g(0.5 + 0.62 - v) (4B), 12 >0 (4.55b)

L(v) = LP = 20 1og{0.5 - exp(0.95 - v)} (dB), 02 vz -] (4.55¢)

L(v) = LY = 20 log[0.4 - (0.1184 (4.55d)
— (0.1 v+ 038" @B), -120v>-24

L) - LY = 20 1og(—0—25—5> (dB), v<-24 (4.55€)

All Léf ) that correspond to (4.54) are presented in Figure 4.14. As shown
in [1], che approximation (4.54¢) used for v > 2.4 arises from the fact that as
v becomes larger and positive then (4.49) limits to:

21/2

- m (4.56)

E

Ey

This asymptotic result holds with an accuracy better than 1 dB for
v > 1, but breaks down rapidly as v — 0. Lee’s approximate model can be
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modified to take into account the ground reflections, as shown in Figure 4.15.
Here, the four rays are depicted with their own paths; the first is after pure
diffraction from the top of the knife edge, the second and third are after a
single diffraction and a single reflection from the ground surface, and the
fourth is after single diffraction and double reflection. Because all the rays have
traveled different paths, they have different phases at the receiver R. For each
ray the Fresnel-Kirchhoff parameter v is different and the total field at the
receiver must be computed according to the following formula:

4

E = Ey Y, L(vg) - exp[jAD,] (4.57)
k=1

In any particular situation a ground reflection may exist only on the
transmitter or the receiver side of the obstruction (the case when one of the
antennas is high enough). In this situation only three rays must be taken into
account.

In a real situation in hilly terrain, hills cannot be physically represented
by knife edges, because their tips have dimensions which are bigger than the
wavelength of the transmitted wave. This problem was investigated by Hacking
[24] who showed that the loss due to rounded obstacles exceeds the knife-
edge losses. In his derivations he replaced a rounded hilltop by a cylinder of
radius 7 equal to that of the crest (Figure 4.16). Then the cylinder supports
reflections on either side of the hypothetical knife edge that coincides with the
top, and the Huygens wavefront above that point is therefore modified. The
excess loss which can be added to the knife-edge diffraction can be given,
according to [24], by

|

Figure 4.15 Knife-edge diffraction with ground refiection {“four-ray” model).



136 Radio Propagation in Cellular Networks

Figure 4.16 Diffraction over a rounded abstacle.
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112 112

. a-r . _ . A(dl +d2)
L,=117 (A ) a, a=v [—Z-dl-dz] (4.58)

Then the radius of a hill crest may be estimated as

;2 Dd b (4.59)
a- (d +d3)

All parameters presented in formulas (4.58) to (4.59) are shown in Figure
4.16.
An alternative solution is available through a dimensionless parameter

defined as [25]:
1/

()

In [1] the special function A(v, p), expressed in decibels, was introduced
to describe the diffraction loss from a rounded obstruction. Its relation with
the ideal knife-edge loss A(v, 0) is as follows:

6 172
dy +d
1/3( 21 2
r (—dl' dz) (4.60)

A(w, p) = A(v, 0) + A0, p) + Ulwp) (4.61)

Here, {Xv, p) is the correction factor given at the top of Figure 4.17,
and A(0, p) is shown at the bottom of Figure 4.17. The losses of an ideal
knife edge A(v, 0) are given in Figure 4.14. In [26], there are approximations
for A(0, p) and v, p), which were derived as follows:

A0, p) = 6.0 + 7.19 - p— 2.02

cpri363-p2-075-p% p<i4, (4.62a)
Ulv- p) = (43.6 + 23.5 - v - p)

“log(l+v-p)-60-67-v-p, v:p<2, (4.62b)
Uv-p)=22-v

~p—201log(v- p) —14.13, v-p<2, {4.62¢)

As follows from some measurements [24] for UHF-band radiowave propa-
gation, both methods, described in [25] and [26], are valid for both types of
field polarization.



138 Radio Propagation in Cellular Networks

8 @)
£
-
3 o
e
«

p
02 04 06 08 10 12 14

A U b 1 1

Figure 417 (a) the correction factor U{up); (b) the rounded-obstacle loss A{0, p).

422 Propagation Over Multiple Obstructions Placed on Rough Terrain

The extension of the single knife-edge diffraction theory to two or more
obstructions (see Figure 4.18) is not an easy matter. The problem is complicated
both mathematically and physically, but it can be reduced to multiple Fresnel’s
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Figure 4.18 The hilly terrain schematical presentation.
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form integrals over a plane above each obstruction that is modeled by a single

knife edge.

Deterministic Madels

Expressions for an n-times diffracted field were obtained in [27-30] by use of
strict analytical approaches. Below we briefly describe the main steps and results
of these analytical investigations.

Vogler’s multiple knife-edge diffraction. To compute the diffraction effects
by arbitrary obstacles, such as hills, they were replaced by several knife edges
or wedges [28, 29]. This knife-edge approximation was derived by replacing
each obstruction either by an absorbing screen, in which case the absorbing-
screen diffraction coefficient was used to compute the diffracrion over obstruc-
tions [28, 29]. The effect of knife-edge diffraction on wave propagation over the
hilly terrain was examined in [28, 29] by introducing a diffraction attenuation
function. This function was presented in a multiple integral form which was
then transformed into a series representation.

Figure 4.19 presents the geometry associated with the multiple knife-
edge diffraction problem. Here each obstructive is replaced by a perfectly
absorbing knife edge. The geometrical quantities needed to calculate the param-
eters used in the solution for N knife edges are:

the N + 1 separation distances between obstructions: r| TN
the heights of the knife edges above the ground surface: 4y, . . ., Ay; (4.63)
the heights of the transmitter and receiver: A= by, and b= hy.

As for the diffraction angles, #), . . ., 6y, they can be successfully
obtained from the knife-edge heights and separation distances (see Figure 4.19).
The above geometrical quantities together with radio frequency f = ¢/A, intro-
duced through the wave number £ = 27/A, are used to define two sets of
parameters, & and f3:

1/2

a,, = I Tme2 , m=1,2,..., N—1 (4.64a)
(rm + rm+l)(rm+l + T pe2)
b 1/2
N
Bngm'[‘%.—(‘r*’yﬁ:l 5 m=1,2,...,N (464‘))
m m+

Using these relations, one can present the total field strength attenuation
relative to free space, A, over a path of total distance, r,,, and consisting of

N knife edges
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N+1

1 2 TN+t

Figure 419 Geometry of multipie knife-edge diffraction.
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N N

1 2\ T
A= (5) Cy exp(aN)(Wz—> J .. fcxp(z - F)

B] ﬁN (465)
X fexpl~(x + x5 + ..+ xi)dxy - dxs ... dxy

where

F=0for N=1 (4.66a)

N-1
F= apxm— Bm)&mi = Bma) for N22 (4.66b)

m=1
o =BT+ BT+ B (4.67)
Cy=1for N=1 (4.68a)

, 1/2
ry " ry .. L rNC Ty

Cn = for N> 2 (4.68b
N [(r] sy +ry) ... Un+ rN,l)] or (4.68b)
Tit =T 4T T3 .4 PN (4.69)

As an example, we obtain the attenuation for diffraction from two knife
edges:

AN=2) - ziﬂ[%’ . tan—l(%l;)], 8y, 6, = 0) (4.70)

where @} and C; can be obtained from (4.64) and (4.68b), respectively, for
N=1, 2.

The attenuation over a triple knife-edge path for all 8,, = 0 (small grazing
angles) can be presented as:

gy L7, i@ i@
AN=3) = 477[2 + tan (C3) + tan (Ca) + tan ( G ):l (4.71)

All the above parameters can be obtained from (4.64) and (4.68b) for
N =1, 2, 3. Obuaining the strict analytical solution of (4.65) is a very compli-
cated computational problem. In [28, 29] regression analysis was used to obtain
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some series of integrals of error functions /(n, B) to present the N-time

diffracted field:

1 1 I
Hn, B) = i (j”m) : f(x— B)"e"‘zdx (4.72)
B

In terms of the function /(n, B), for which a number of computational
algorithms are available, the attenuation function after N-time diffraction from
N edges becomes

N
1
A= ( ) Cnexp( a'N)< 1/2) Z 1, (4.73)

where /,, can be presented in the following form:

m=2"2 ™™ Img - my, By) -+ CQ2, my, mo) (4.74)

by introducing the recursive relationship

C(/j\"— 2, J ')/6;) = 4.75)
S{G= ) et i v

and using the notations

iL=myp,]=myNp-1, k=my |2
2<L<EN-2,N=24 (4.76)

ay=1,my=m, mp=0, k2 N-1

Equations (4.73), (4.75), and (4.76) can be implemented in a computer
program which evaluates the attenuation A for propagation paths consisting
of N obstructions, as N knife edges, where 0 < NV < 50-100. In other words,
this method cannot represent a full multidiffraction solution from knife-edge
tops in any convenient analytical form. Only some complicated numerical
computation of (4.72) with (4.74) and (4.75) mighr give such a result.

Slope-diffraction approach. The heuristic extension of the UTD has been

used to compute the diffraction by the wedges forming the profile of an
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obstruction (30], taking into account the profile that results from the intersec-
tion of the obstruction with the vertical plane. The theoretical approach pro-
posed by Andersen [30] includes the analytical application of slope diffraction,
which is a first-order effect in the transition zone. This approach is based
on a strict ray-tracing tool that allows an approximate yet accurate and fast
determination of the field diffracted around a multiplicity of obstacles, such
as hills and columns. The key point of the heuristic theory presented in [30]
is to include slope diffraction, which is usually neglected as a higher order
term in UTD using an asymprotic expansion. However, in transition-zone
diffraction this term is of the same order of magnitude as the ordinary amplitude
diffraction terms. Because the distances between obstacles are not large, slope
diffraction becomes important for the diffraction process in the transition
zones berween them. Schematically, a scenario of three obstructions as screens
distinguishing between ordinary amplitude diffraction and slope diffraction,
is shown in Figure 4.20. Two different ray tracings must be performed for
such a scenario: the upper one with screen ““1” absent leading to a slope wave
after the third screen and a lower one via screen “1” with slope diffraction
after the second screen, as shown in Figure 4.20. The slope diffraction describes
the field attenuarion in the transition zones between obstacles. The basic UTD
theory gives the following equation for the total diffracted field for a simple
absorbing half-screen:

dE;(0)
on

Eyg = [E,-(O) - D+

Dj:| -« A(s) - expl—jks} (4.77)

or

Figure 4.20 Slope-diffraction over three-obstacle radio path.
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Eg=1Ez + Egl - A(s) - expi—jks} (4.78)
where
Dla) - —2T™H F(zu sin’= 4.79)
242k - sin(a/2) 2

A distance factor L will be determined later; a is the angle above the
shadow boundary (see Figure 4.20) and A(s) is the so-called spreading factor

112

A(;):[ 0 ] (4.80)

s(s + 5p)

where s¢ is the distance to the first obstacle as shown in Figure 4.20. The
slope diffraction coefficient D is related to the diffraction coefficient D of

(4.79) as

1
D, = ——

T (4.81)

[wB] 5]
Q|b

The transition function F(X) is, as usual, given by the Fresnel integral:

oo

F(X) = \/)—(eij’ e du (4.82)
x

Because we need derivatives of the function F in the following expressions,
we will use the relation (given here without proof)

K

F(X) =) [FOO - 11+ 75

(4.83)

The slope diffraction coefficient may now be determined from (4.81) as

b . e_j("M)

a
s _\/m L- COS(E) - [1 = F(X)] (4.84)

As examples, let us examine the diffraction over two and three obstruc-
tions, modeled as absorbing screens.
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Diffraction over two screens. For simplicity, assume the antennas and the
obstacle edges have the same height. The slope of the incident field is zero.
The incident wave on the second edge consists now of two components: an
ordinary amplitude wave and a slope wave, where the amplitude wave is the
combined incident and amplitude diffracted waves. With this assumption the
total incident field on the second edge is:

Ez = E,‘ + E] M D] - Al("l) (485)

where the suffix “1” refers to the first edge; E; is the incident field at edge
“2” without the first screen present if line-of-sight; £} is the incident wave
from the source evaluated at edge “1;” D) is given by (4.79) for edge “1.”
The parameter L must be found from continuity of field across the shadow
line. Along the shadow line the coefficient of amplitude diffraction D simplifies
to

D=~ -0.5+JL - sign(a) (4.86)

To have continuity, the discontinuity of the diffracted field should cancel
the discontinuity of the incident field (i.e., the diffracted field £, should be

one-half of the incident field for all values of distance s from the edge),

~jks, \/Z ) —jk(s+5,)
S S S S I Wt
Eq= 50 2 s+ (s + s5p) ¢ =05 (s + sp) (4.87)
from which the value L may be found as
L= (4.88)
(s + 50)

Finally, the total incident field on the edge “2” can be written as

0.5 S0 " 1 ‘J 50 0.5
E - — = — 4.8
2 50 A\j(sl +50) V51 (51 + 50) (s; + s0) (4.89)

We obtained the trivial result, that the firsz edge halves the incident field.
In the last formulas, the phase terms have been suppressed since they are trivial.
The phase progresses uniformly with distance. To find the slope wave it is
necessary to find the slope of the incident field as a function of distance from

the first edge:
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ok,
on

19D, ,
s oa

_\/Z . ej(?r/4) AJ_:O
N2 - (s + 50)3/2 s
The value at the second edge is found by setting 5 = 5. For the value
of L,, the L for the slope wave is found by forcing L in the slope wave after

the second edge to have a value that exactly balances the discontinuity of the
slope of the E; wave:

= E|- Aqs) = E‘ ] k- DL Ay(s) (4.90)

1 0E;(s; + 52) OE;(s)) aD P 1
e N (X 54
2 on on 2(52) N2 Y01 +52) (55 4 51 + 59) )
e , f L3/2 , f (so + s1)
(S+S)3/2 252 so(sg + §1 + 59)
4.91)
which leads to
(s0 + 1) 2/3 s 1/3
~ 0 * 51 1 )
Li= [(50 +s) o+ 52)] [(fl + 52)] 2 (492

It is now a simple matter to find the field after the second edge:

Ey=E;+ E;- Dy Ay + aaEzp!Z - A,
0.25 PR P LS (4.93)
“ (o + 51 +52) \/Er " ;0)3/2 ” W Aiy(sy)
where
(50 + 51) 12
Ay(sy) = [Q oo + 51 * 52)] (4.94)

By normalizing the field with the free-space field the result can be expressed
as a combined diffraction coefficient D:
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~ (50 + 5 + 52) &h
D.=0.25+ _(50 R 51)3/2 51 277_/12(52) (4.95)

This expression in all its simplicity is remarkably accurate. For .the case
where all the distances are equal, 5o = 5; = 59, the result is 0.3335, while the
exact result that follows from the path integrals approach [31], is 1/3.

Diffraction over several screens. The previous result can be generalized to
the case of N screens by applying the following procedure. The diffracted
field after each screen has an ordinary amplitude and slope component, each
determined by its own length parameter Land L ,, which are found by enforcing
amplitude and slope continuity over the shadow boundary. This process
becomes complicated analytically, but it is easily treated by use of a numerical
recursive algorithm. It may best be understood by following an example for
three screens, as presented by Figure 4.20. The incident wave on edge “2” has
contributions from the source and from edge “1.” Thus, there are two shadow
lines and, after edge “2,” two ordinary amplitude waves and one slope wave.
After edge “3,” there are then two amplitude waves and two slope waves for this
particular configuration of edges. At each point the values L must be found
along the shadow lines all the way back to the original source. Then, in the
case of three screens, the value of the total field at the receiver after triple
diffractions can be found by use of the basic UTD formula:

J0E3(0
Eé(f) = E,'4 + [Eg(O) * D3(5) + —E;%D;_;(j)] * A3(S) (496)

for each set of waves coming from edge “2,” where E;4 is the incident wave
at the receiver point with screen “3” absent. To find this value, we need the
incident field £;3 when screen “2” is absent, and to find the last value, we
finally need the incident field £,y when screen “17" is absent, which is presented
in formula (4.85). Thus we follow all the way back to the original source. The
field at the given point after V screens needs information from all previous
screens for that point. Transition zone diffraction has “memory” in contrast
to the usual geometrical theory of diffraction (GTD) multiplication of indepen-
dent factors. In Figure 4.21 the diffraction over NV = 10 screens of equal heights
and equal spacing is presented by the points according to the UTD solution
using slope diffraction presentation and by the continuous curve according to
the exact solution [31-33]. The slope diffraction gives an error of about 1 dB
after ten screens.

As shown in [30] both analytically and numerically the agreement between
strict multidiffraction solution (31-33] and approximate slope diffraction solu-
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Figure 4.21 Diffraction over ten-obstacle radio path.

tion [30] is very good, except for short distances between two neighboring
screens.

Approximate Models of Multiple Knife-Edge Diffraction

Together with the strict analytical models, there are some approximate models
which were constructed to model the problem of multiple knife-edge diffraction.
And, as mentioned above, because of the length and computation problems
of the exact solutions, the use of approximate models has become widespread.
Below we will briefly describe some of the more effective ones.

Bullington’s equivalent knife edge [34]. In this approach, the real hilly
terrain is replaced by a single “equivalent” knife edge at the point of intersection
of the horizonal ray from each of the antennas, transmitting and receiving,
that passes through the peaks A and B, respectively, as shown in Figure 4.22.
The diffraction loss is determined by using formulas (4.54) or (4.55) presented
in Section 4.2.1, and describing the diffraction losses L = f(d}, d,, b) for two
cases of diffraction parameter ». Bullington’s method has a primary limiration
related to the fact that important obstacles along the radio path can be ignored
which can cause large errors. In fact, as shown in Figure 4.23, the obstruction
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Figure 422 The Bullington “equivalent” knife-edge construction.
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Figure 423 Accuracy of the Bullington predicting model.
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Bis completely ignored, as the intersecting line from 7 to R is above the peak
of the obstruction B.

The Epstein-Peterson method [35]. In their approximate model, the overall
loss was presented as a superposition of attenuation due to each knife edge.
The two losses were calculated in decibels. A two-obstruction path is presented
in Figure 4.24(a) and the method used is as follows. The loss due to knife
edge A is first calculated by considering the height of the obstruction 44 above
the line 7B joining point 7 with the top of second obstruction B. Then the
diffraction loss due to the second knife edge B is computed by considering
the height /g above line AR, as shown in Figure 4.24(a). The total diffraction
loss is the sum of these two losses.

Comparison of these results with those obtained in [35] have shown that
the Epstein-Peterson method produces large errors when obstructions are close
to each other, as shown in Figure 4.24(b). This solution was corrected in [35]
for the case when the diffraction parameter v is much greater than unity and
for a three-obstacle path (see Figure 4.25). This correction is added to the loss
obtained by the Epstein-Peterson technique and is expressed through a spacing
parameter y; as

L . = 20 log(cosecy;) (4.97)
where, for edges 01 and 02,

(dy + d))(dy + d3)
d’z(dl + dz + dg,)

(4.98)

cosecy; =

The Japanese method. In this technique, proposed by Japanese Atlas [36],
the diffraction loss for obstruction A is computed by the same technique as
in the Epstein-Peterson method, that is, the path 7AB is considered according
to the illustration in Figure 4.25, and the height of the obstruction 44 is taken
into account to calculate the diffraction loss by use of the above formulas
(4.54) or (4.55) (depending on the sign before the square root in (4.41)). The
loss due to obstruction B is calculated by extending the ray AB to the left
until it intersects the transmicter 7 axis at point 7. The diffraction loss due
to this obstacle is now calculated by finding the height of the obstruction Ap
above line 7'R. Once again, the sum of these two losses gives the total loss.
For the three-path case illustrated in Figure 4.26, the total path loss is computed
as the sum of the losses over paths 7-01-02, T'-02-03 and T”-03-R. Then
the correction (4.97), according to [35], must be added, as an excess loss.
Thus, the use of this technique is exactly equivalent to the Epstein-Peterson
method.
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(a)

()

Figure 4.24 (a) The Epstein-Peterson diffraction over two knife-edge construction. (b) Accuracy of the Epstein-Peterson predicting model.
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Figure 4.25 The Epstein-Peterson diffraction over three knife-edge construction.
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Figure 4.26 The “Japanese Atlas” diffraction over three knife-edge construction.
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The Deygout method [37]. This method is closer to the rigorous approach
than those mentioned above. As illustrated in Figure 4.27 for the three-paths
case, the diffraction parameter v is calculated according to (4.41) for each knife
edge alone, as if all other edges were absent, for paths 7-01-R, T-02-R, and
7-03-R. The edge having the biggest value of the parameter is termed the
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Figure 427 The Deygout diffraction over three knife-edge construction.

main edge and its loss is calculated in the standard manner by use of (4.54)
or (4.55). If, as shown in Figure 4.27, edge 02 is the main edge, then the
diffraction losses for edges 01 and 03 are found with respect to a line joining
the main edge to points 7 and R and then added to the main edge loss to
obrtain a total diffraction loss. This result can be extended for the case of several
obstacles, taking into account the contribution of each individual loss in the
total loss. This method produces good results only when the obstructions are
not too close to each other. Therefore, according to [37], for the case of more
than two obstacles (N> 2) the additional corrections must be taken into
account using the spacing parameter y; described above by (4.98). In fact,
when, for example, v| 2 vy and vy, vy, (vycosecy; — vicoty;) > 1, the
required correction is

L' =20 log(coseczy,- - Z—Tcoswyi * cot y,-) (4.99)
where angles y; are described by (4.98) according to geometry shown in Figure
4.27.

Comparison between all methods presented above shows that Bullington’s
technique is simpler than others, but gives a greater error than the strict
solutions obtained by Vogler [28, 29]. The Epstein-Peterson model as well as
the Japanese scheme are better but can also provide diffraction loss predictions
that are too low. At the same time, the Deygout technique shows good
agreement with the rigorous diffraction theory [28-31] for two edges. However,
it has an increasing error with increase of the number of obstructions. This is
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why calculations by use of this method are often terminated after consideration

of three edges.

Empirical and Semi-Empirical Models

As was mentioned in Chapter 1, the initial step of each wireless communication
system planning is to predict the loss characteristics. To do this for over-the-
terrain communication channels, one must first determine the correlation
between parameters of terrain and those of the radio systems, which then allow
designers of such systems to find the influence of all factors, those dependent
on environment and those intrinsic to the communication system, on signal
strength variation, and on the effects of shadowing and scattering from arbitrary
land obstructions that finally decrease signal-to-noise ratio inside the propaga-
tion channel. In other words, the accuracy of prediction models plays an
important role in the provision of efficient and reliable coverage of areas of
service for the specific purposes of each subscriber.

Existing prediction models of radio wave propagation over irregular terrain
in open and rural environments are based mostly on experimentally obtained
data and, therefore, are usually called empirical and semi-empirical models in
the literature [1-4]. These models differ in their applicability for different
over-the-terrain propagation channels and for different ambient conditions. As
mentioned in Chapter 1, until now there is no general model that predicts all
specific propagation phenomena in such wireless channels and can be ideally
adjusted to suit all environments. Each model describes some specific situation
in the over-the-terrain scene. Most empirical models predict the average loss
Lsg, that is, the path loss not exceeded at 50% of locations and for 50% of
the time, and then by use of signal statistics, allow estimation of deviation of
the signal so that the percentage of the investigated area with adequate signal-
strength variations can be determined.

We will now consider models that are based on experimental data obtained
in numerous measurements of loss characteristics in conditions of open and
rural environments for rough and hilly terrain. Below we present a brief survey
of some of the better-known empirical models adapted to the description of
wave propagation over rough and hilly terrain in obstructive (clutter) conditions.
For more details the reader can refer to the reference section in this chapter.

The Egli model. This model is based on the flat-terrain propagation model
presented in Chapter 3 which gives an inverse fourth-power law of signal decay
with range r from the source. This tendency of signal-strength attenuation is
also found for rough terrain and follows from a series of measurements carried
out over irregular terrain at frequencies of 90 MHz-1,0 GHz in a micro-
cellular environment (r < 2 km) [38].
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It was therefore natural for Egli to use a well-known model by introducing
into it some excess loss that depends upon the frequency and the terrain profile:

Lso = GTGR(/)TbR> ‘B (4.100)

r

We must note that here and in the following text we put notations A7
and Ap for the transmitting and receiving antenna heights, respectively. But
actually these notations are relative, because in wireless communication systems
each vehicle can simultaneously operate as the transmitter and the receiver. In
(4.100) B is the factor which takes into account the excess loss and was
presented by Egli as a function of frequency in the following form:

B = (4f0) f in MHz (4.101)

from which it follows that 40 MHz is the reference frequency at which the
average path loss reduces to those obtained for the flat-terrain model, regardless
of any undulations of the terrain. However, Egli found from numerous experi-
mental data that parameter B described by (4.101) is an average value. He
obtained the standard deviation of B as a function of terrain undulations by
assuming that terrain height is log-normal distributed about its average value.
If so, a family of curves can be obtained (see Figure 4.28) that shows how
parameter 3 varies from its average value at 40 MHz, as a function of terrain
undulation factor (in dB), and the radiated frequency. Egli suggested that in
rural areas the standard deviation of received signal level is related to the
radiated frequency by

o=5log fo +2dB (4.102)

where fj is the frequency in MHz.

A,s follows from this empirical model, one can use it to take into account
the »™* law of signal decay and the log-normal variations of signal strength
inside one microcell.

The JRC method. This method was proposed in the United Kingdom by
the Joint Radio Committee (JRC) and is based on the technique developed
in [39, 40]. The main principle of this method is to use a computer-based
topographic map data to reconstruct the terrain profile between two terminals,
transmitter and receiver (the location of the latter is chosen), by introducing
some special interpolations of obtained data. Using information about the
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Figure 4.28 Variations of the terrain factor B versus the terrain undulation and the
radiated frequency.

heights and position of each obstruction placed on the rough terrain, the
program tests for the existence of line-of-sight paths and whether adequate
Fresnel-zone clearance exists over searching paths. Then the bigger path loss
from free-space (L gg, obtained in Section 2.3) and flat-terrain (L g7, obtained
in Section 3.2) is declared as a real path loss:

L = max(Lgs, Lpp) (4.103)

If there are no line-of-sight conditions or if there is inadequate Fresnel-
zone clearance, the program estimates the diffraction loss L p along the radio
path by using the Epstein-Peterson model for up to three knife edges (see
Section 4.2.2), and computes the total path loss as

L=max(Lgs, Lep) + Lp (4.104)

If more than three obstructions exist along the radio path, an equivalent
knife-edge model is taken into account to obtain the diffraction losses by use
of the Bullington technique (see Section 4.2.2).

The Blomquist-Ladell model. This method considers the same type of

losses as obtained in (41, 42], but combines them in a different way to obrain
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a smooth transition between points where the prediction is based on L g5 and
those where L g7 is used [43]. The basic formula for path loss is:

L=Lgs+ (Lpr—Lg)*+ LH)? (4.105)

Here L7 is a modified flat-terrain path loss which takes into account
factors such as the effects of the troposphere and the earth’s curvature, when
one considers a long path between antennas. An approximate expression for
(L pr — LEs) is given by Delisle [44]. Diffraction losses can be obtained follow-
ing the Epstein-Peterson technique. As follows from (4.105), for the highly
obstructed radio path, for which (Lpr— Lgg) << Lp, the toral field can be
approximated by

L=Lg+1Lp (4.106)
Conversely, for unobstructed paths, when L p — 0, the total losses become
L=1Lpr (4.107)

As follows from (4.105) to (4.107), the total loss will never be less than L zs.

Longley-Rice models. These methods were introduced for computation of
the average path loss over irregular terrain by the use of point-to-point transitions
in the frequency range 40 MHz o 100 GHz over all type of terrain (see
classification of terrain in Chapter 1). The technique [45] is based on experimen-
tal data obtained for a wide range between terminals of 1 to 2,000 km, for
wide variations of antenna heights of 0.5m to 3000m, and for both types of
field polarization. They also account for the ground curvature, the subsoil
media properties, and the climate. Some specific parameters that are important
for path loss prediction were also introduced, such as the horizon distances of
both antennas, 4;7 and 45, the horizon elevation angles, 8,7 and 8,5, the
angular distance for a horizon path 8., and the terrain irregularity parameter
Ah. The definition of some parameters are illustrated in Figure 4.29.

If a terrain topographic map is available, then for any particular path
these parameters can be determined, and the prediction technique operates in
a point-to-point model. However, if the terrain profile is not available, this
technique gives other methods to estimate the above parameters. In fact, to
estimate the roughness indicator, another parameter AA(d), instead of parame-
ter Ah, is evaluated at fixed distances along the path:

Ah(d) = Ah[1 — 0.8 - exp(=0.002 - 4)] (4.108)
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Figure 429 Geometry of a trans-horizon radio path.

Estimations of A4 for different types of terrain are presented in Table

4.1.

We will not present here the algorithm to estimate the other parameters
mentioned above. However, we will show the reader how to obtain diffraction
loss by use of this empirical approach. For this purpose let us express the
distance 4| and 4; to two knife edges that model real obstructions in terms
of the total horizon distance d; = d;1 + d g (see Figure 4.29). The expression

used for the first obstruction (knife edge) is

dy=d;, d/ <d;
d] = dll, dll > dL
where
6. 1/3
, 1 72.16 - 10
d| :dL+§'<T—) , [km]

and the same for the second knife edge:

Table 4.1
Estimations for Different Types of Terrain

Type of Terrain Ah{m)

:Very smooth plains 0-5

| Plains ~30
Hills 80-150
iMountains 150-300

'Rugged mountains 300-700

(4.109)

(4.110)
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/:
1 /7216 - 105\

dz = dl +§ . (T) , [km] (4.111)

Here the radiation frequency fj is in Hz.
Then the Fresnel-Kirchhoff diffraction parameter v to obstructions at
distances 4| and &, can be obtained from following expressions:

1/2
vy = 1.2915 - am[fMi_ﬂ]

(di—dp)
1 (4.112)
o o [fodirldi—d))
vgi= 1.2915 aeR,[ R
with 7 = 1, 2. Here angles 6,7; and @,g; are given by
O,.7- (13 (BT 1\Ap— Ay
d1s7i d;r;
4 g (4.113)
. 1 — .
0. |13 (ﬂ - I)Ab ~ Ahg
dskii drgi

where d;s7;and dg; are the horizon distances for flat terrain; d; 7; and d; p;
are the horizon distances for rough terrain, that are related with each other
thus:

Ab
dip; =dist; cxp{—0.07 heTi}’

fAly
dLRi = dLSRi ‘ cxp{—0.07 ZR;’}’

Here once more, 7 = 1, 2, corresponding to the first and second obstruc-
tions, respectively. The angle depicted in Figure 4.29 is given by:

(dir- due)] . d,
8.495 - 10° |  8.495 - 10°

(4.114)

6, = mu[ﬂ,r, 0.5 - (4.115)

where transmission path 4, is in kilometers.
Finally, the diffraction losses for two knife edges A, and A; can be
estimated using the approximation for A(v) given by (4.61) to (4.63):
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Ay = A(vy) + A(vgy)

(4.116)
Ay = Alvra) + Alvgy)

The total diffraction loss L pin dB for the vehicle (moving or stationary)
located at the distance “d” from the base station is

A - A
LD:dz—a'l d— Ay (dB) (4.117)

where

A, —
Ag =Aﬁ,+A2—d;_/:,lz-d(dB) (4.118)

Equation (4.118) includes an empirical clutter factor Aﬁ,, estimated as
Ap = min[Aj'Q,, 15] (4.119)

where

Af=5 - logll + by« bp+ fo - oldys) - 107°) (dB)  (4.120)

and the standard deviation from the mean terrain profile at the horizon distance
d ;¢ between the receiver and transmitter is

o(dys) = 0.78 - Ab(d) - exp{—=0.5 - [Ab(d))"} (dB)  (4.121)

Delisle et al. [44] state that the Longley-Rice model gives reasonably
accurate prediction and is not restricted to short radio paths. To now predict
the total transmission loss we must add to (4.117) the free-space loss at each
distance considered according to Section 2.3. Longley has shown [45, 46] chat

the standard deviation of the receiving signal is related to the radiated frequency
by

o=3"-log fo+ 3.6 (dB) (4.122)

and to the terrain irregularity factor by
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1/2
A
o =6+55-107" - (ﬂ’> —4-107. (ﬂ’> dB,Th<4.7 - 10°

A A
(4.123)
Y ;
oy =249 dB, T >4.7-10

So, in the context of terrain irregularity, Longley has combined the
irregularity factor A/ with wavelength A to obtain the dimensionless parameter
%, which increases if A4 and/or f = i increase.

CCIR methods [47)]. Using a statistical analysis of a considerable amount of
experimental data collected in many countries, the CCIR committee proposed
constructing a family of signal-strength prediction curves (see Figure 4.30).
These curves are applicable over hilly and mountain terrain found in many
parts of Europe and America for which the terrain irregularity factor Ab was
typically Ah 2> 50m. Values are given for 50% of the locations and 50% of
the time. The reference curves are given for a moving vehicle with antenna
height of /7= 1.5m and for base station antenna height /g variations from
30m to 1,000m. As follows from illustrations presented in Figure 4.30, the
value of field strength measured in a small area are log-normally distributed
around the predicted average value, that is, the field strength in dB follows a
Gaussian (normal) distribution. However, despite the recommendation of the
CCIR committee to use it, this technique gives a prediction error of about
10 dB [47].

Therefore, as an improvement of CCIR recommendations, a new method
called the clearance-angle method was proposed by the European Broadcasting
Union (EBU) which has now been adopted by the CCIR committee. The
principle of the new technique was to retain the CCIR reference field-strength
curves, and hence, the simplicity of application. Also, to improve the prediction
accuracy by taking into account the terrain variations in a small area surrounding
the receiver (base station), and, instead of the global parameter of terrain
undulation A4, to account for the local effects of terrain by introducing a
terrain clearance angle as a correction to the CCIR method [48]. This angle
is meant to be representative of those angles in the receiving area which are
measured between the horizontal through the receiver and a line that clears
all obstructions within the path in a direction towards the transmitter. The
geometry of the problem and the sign of the corresponding clearance angle
for the path of 16 km is shown in Figure 4.31(a). The two curves in Figure
4.31(b) give values for the required correction factor in dB in terms of clearance
angle. This factor must added to the field strength obtained from the CCIR
reference curves (Figure 4.30). As follows from Figure 4.31(b), the difference
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Figure 4.30 CCIR field-strength prediction curves for urban areas at 900 MHz (50% of the

time, 50% of locations) for 1kW ERP and h7 = 1.5m.

between VHF- and UHF-band propagation is not essential. Depending on
the clearance angles, this correction factor can improve the CCIR results by
adding measures from —30 to 30 dB to the field strength obtained from the
CCIR prediction curves.

Carey model. This model was derived from the CCIR curves giving field

strength E, as a function of distance 4 and base station antenna height Ap
variations for propagation under average terrain conditions [49]. In his model
Carey proposed to derive E(50, 50) and E(50, 10), that is the field strength
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Figure 4.31 The clearance angle method: (a} sign convention; {b} correction factors; the
curve A corresponds to VHF, the curve B to UHF,
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for 50% of the locations and 50% or 10% of the time. In his derivations he
took the height of the moving vehicle as 1.8m, the base station antenna heights
varying from 30m to 1500m above the terrain, and for radio paths up to 130
km (for £(50, 50)) and up to 240 km (for £(50, 10)). The frequency band
investigated was 450-1,000 MHz. According to the predicting curves, Carey
gives the average transmission loss in dB at 900 MHz as

L=110.7 - 19.1 - loghg + 55 - logd, 8 < d < 48 km

(4.124)
L=91.8-18 - loghg+ 66 - logd, 48 < 4 < 96 km

where b is in meters.

4.3 Propagation Over Vegetation

Vegetation is a significant feature which affects radio wave propagation in
suburban and rural areas, but usually it can be neglected in most built-up
areas. In rural areas, shadowing, scattering, and absorption by trees and other
vegetation can cause substantial path losses, mostly at the UHF/X-band. Predic-
tions of signal decay in the case of irregular terrain at frequencies less than
500 MHz have been made by a number of authors [50-53} during the initial
period (end of the 1950s to the beginning of the 1960s). Usually their estima-
tions are fairly involved and aimed at calculating the loss of point-to-point
paths. Later, during the 1970s, vegetation and foliage losses have been reported
[54-56] at frequencies up to 3 GHz but for relatively few paths.

As follows from the literature, trees have both absorbing and scattering
effects, mainly for propagation over the trees {50-70]. We summarize below
the most important published works [59-70], treating the effects of vegetation,
namely trees, foliage, and leaves.

4.3.1 Deterministic Model of Lateral Wave Propagation

In the 1960s and the beginning of the 1970s the deterministic model of wave
propagation over forest areas was introduced and discussed to describe the
absorption and diffraction effects of vegetation [59-61]. Here the trees were
modeled as a homogeneous dielectric slab-layer. As was shown, this model is
a good approximation for a forest up to frequencies of 200-500 MHz. Neverthe-
less, as was shown experimentally by [54-58], the model of homogeneous
dielectric layer might be a good approximation for higher frequencies, up to
900 MHz, for calculating the reflections of rays incident with a grazing angle
over the tree layer. In fact, the grazing incidence makes the cross-section of
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the irregularities of the trees “look” smaller and therefore the tree layer “appears”
to be smooth. Let us briefly describe the dielectric layer model.

“Forest” model. A forest is modeled as a dielectric layer dividing two
layers—air and ground. The geometry of the “forest” model is shown in Figure
4.32. The forest layer having an effective tree height 4 is shown to the left of
the x = & plane, with the space to the right of that plane being a bare-ground
region. Within the frequency band of 20-200 MHz, the tree layer can be
assumed to be a homogeneous refractive medium with a relative permitivicy
€1 = n, where nis the complex refractive index of the forest layer. Similarly,
the relative permittivity of the ground surface is denoted by €; = N 2, where
N is the complex refractive index of the ground surface.

To arrive at simple field considerations, it has been assumed in [59-61]
that a dipole antenna is placed at the point 710, 0, zp), where its height z
can be considered either inside or outside the forest layer (these two situations
are described below by formulas (4.125) and (4.128), respectively). Both vertical
and horizontal polarization have been examined in [59-61] but, for simplicity,
only the field detected at the receiving point R(x, 0, z) by a dipole oriented
for maximum reception of the transmitting signal was considered. Thus, for
vertical polarization, both dipoles at 7 and R were oriented parallel to the
z-axis; for horizontal polarization, both dipoles were oriented parallel to the
yaxis (see Figure 4.32). The electromagnetic field along any direction at any
point y # 0 can be deduced if the electric field detected by the dipole at Ris
known. As shown in [59-61], the foliage fills only a small portion of the
volume occupied by the forest slab, the remainder is filled by air. In this case,
it was verified by measurements in [59-61] that the magnitude of the complex
equivalent refractive index of the forest slab, #n = 7, + j - n,, is close to unity,
such that #,=1 and n; = 600A << 1, where o is the conductivity of the

A

] 1}

Ground 0

Figure 4.32 Geometry of the Tamir forest model.
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forest slab and A is the wavelength of radiated wave field. Hence the forest
dielectric slab represents a weak discontinuity relative to the air because a wave
impinging on the forest-air boundary undergoes only a negligible reflection,
most of its energy being transmitted across that boundary. In other words, the
dominant wave is the surface or lateral wave that propagates along the forest-
air boundary. This property will be discussed below for different mixed paths.

Another important feature of the forest-layer geometry is that, depending
on the particular location of the transmitting (77) and observation (R) points,
four different actual situations of wave propagation exist, each of which is
characterized by a different type of wave mechanism and therefore by a different
expression of the wave field. As indicated in Figure 4.32 by the Roman numerals,
these various regimes correspond to the receiving point K being located as
follows: I—inside the vegetation; II—in the air region above the forest layer;
[II—art the relatively high altitude in the air above the bare ground region;
IV—at the relatively low heighc above the bare ground region.

Loss characteristics prediction. We present below formulas describing propa-
gation phenomena within the forest layer (i.e., in region I). The reader can
successfully find results of calculations for other regions in [59-01]. In region
I, there are two variants of transmitting point 7. Location exists in this case:
outside the forest layer, as presented by Figure 4.33(a), and inside the forest
layer, as is shown in Figure 4.33(b).

In the first case, the field strength at point B is evaluated from the path
loss of the lateral wave (depicted by the line AB in Figure 4.33(a)) within the
forest dielectric layer, based on the incident wave at point A. The surface
(lateral) wave AB represents a whole class of rays. The path loss downward
due to the foliage along the BR path must also be added. In this case, using
a time dependence ~exp(—jw ), one can obtain according to [59-61] for region
I the following expression for relative signal strenght £/ (relative to the dipole
momentum ~ [z, where # is the effective length of the receiving dipole, 7 is
its current):

E 60  explj- (k- b+ky-(h- hpl}
1= 2 2
(n“=1) d

F(90°, hg) - F(90°, h)
(4.125)

where £ = TW = 27Tf(/1.0€0)”2 is the plane-wave propagation factor in air, f

is the radiated frequency, ¢ is the constant permeability of air, and € is the
constant permittivity of air; k; = &+ (n° - D2, all geometrical parameters
of the problem are depicted in Figure 4.33(a). Other functions in (4.125) are

as follows:
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Lateral ray path

X
(b)
Figure 4.33 The forest model: (a) the transmitter T is outside the forest iayer; (b} the
transmitter T is inside the forest layer.
1+ B(8, z) 1+ B(6, kg)
F(0, z) = 1= B0, h) F(0, hg) = 1= B0, h) (4.126)

The factors as F(90°, z) from (4.126) describe the effects of reflections
from the ground plane, which affects the surface-wave amplitude by reflecting
some energy back towards the forest-air boundary [59]. This ground proximity
effect becomes negligible for large values of zj, Ap, and A, in which case
F(90°, z) approaches unity. Here,
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B8, 2) = Tyypu(0) - efz’%z
B(8, hp) = Tyy(B) - /i, (4.127)

B(8, h) = Ty u(6) - ef“’r-",

where I'/(#) and T'y(8) are the reflection coefficients for reflection at the
forest-layer-soil interface for vertical and horizontal polarization, respectively,
@ is the angle of incidence (Figure 4.33(a)), which was introduced in
Chapter 3.

The same results can be obrained for the second case presented in Figure
4.33(b) for region [, when the transmitting point T is also located within the
forest layer (using Tamir’s approach [59, 61]). In this case, because the wave
reflections are negligible at the forest-air interface, the effects of the forest
boundary x = & may be neglected for the receiving point R located inside the
vegetation layer. In this case, the forest may be assumed to extend over the
entire region x > b, as shown in Figure 4.33(b), where 0 < z < 4. For large
distances | x| = 4 berween T and R, one can obtain from [59-61] that the
relative field strength in region [ is

260 explj - [k-|x]+ /?ZL' (2h - z - z)l} F(90°, z) - F(90°, zq)
(n"=1) X

£ -
(4.128)

where all the terms in_(4.128)d were described earlier by (4.126) to (4.127).
Fields given by £;and E7 are those of lateral waves, which follow the
paths 7ABR depicted both in Figure 4.33(a) and 4.33(b). For example, as can

be verified from Figure 4.33(b), an electrical length can be written as

(| TA| + | BR|) “|AB| = k(n - s secl, + x— s - tanf,)
= k(] x| —\/nz— 1-5)

where s = (h— 2) + (h— zg) = 2h— z— zg, 0 is shown in Flgure 4.33(b),
as the critical angle of total reflection: 6, = sin” (1/n) Of couse, 6. is generally
complex because 7 is a complex quantity. However, for small losses
n; << n,, the real part of @, is predominant and it then yields the physical
interpretation of the ray-paths 74 and BR in Figure 4.33(b).

From (4.125) or (4.128) one can obtain the initial loss Lg in the case
of absence of the ground plane and the additional losses L, taking into account
the situation when both antennas are located within the forest layer. The total
loss for this case can be presented as a sum of such path losses (i.c.,
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L7pat = Lo + L;). The first term can be obtained by use of a half-space
propagation model, taking into account the radiation resistance of a small

dipole in unbounded free space Ry = 80 - (ﬂ—/\f> , where 4 is a dipole size,
and that sp = 2/ — z— zg = 0 [59-01]:

2
Ly =20 log[G) cmt et -1 (%‘)] [dB] (4.129a)

Expression (4.129a) shows that the loss Ly is strongly dependent on the
wavelength and dielectric properties of the forest which are characterized by
the refractive index 7.

The additional losses follow from (4.128) when two antennas, 7 and R,
are located below the forest-atr interface (Figures 4.33(a) and 4.33(b)) by use

of the exponent ~exp{—jk s}, k; = £ n* — 1. Hence, it follows that the loss

incurred due to lowering the antennas to a combined depth s below the treetops

can be described according to [59, 60] by

L,~87- (27”) Im[\/n? = 1] - 5 (dB] (4.129b)

It should be noted that the surface (lateral) wave is a diffracted-nature
field component, which varies with distance according to (4.125) and (4.128)
as ~x 2, decreasing more rapidly than spherical waves, which vary as ~x"In
the present case, spherical waves also occur and they correspond to direct wave
or to waves that would arrive at point R by reflectors at the ground plane and/
or at the forest-air boundary [59-61]. These spherical waves have to travel a
long distance inside a lossy forest layer, so that their amplitudes decay to
exponentially small values. In contrast, the surface (lateral) wave decays only
over the relatively smaller distances 74 and BR, the large path AB being
through the lossless air region. Hence, this wave remains as the only significant
contribution to the field E;in the region (I).

Comparison with experimental data. As was obtained experimentally by
[62, 63], there exists a good agreement between a decrease in the measured
field £; with the distance squared, and the theoretical predictions according
to (4 125) and (4.128) that give us the same law of total field attenuation
~x~2. Also, the field was found to generally increase with the height z of the
observation point R. This gain as a function of height is also predicted correctly
by formulas (4.125) and (4.128).
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An experimental study in Texas at frequencies in the range of 500-3,000
MHz have shown that there is a good correlation with the theoretically predicted
field decay based on diffraction effects of lateral wave from the forest tops
according to formula (4.129) for the observer point position both above and
below the treetop level [64].

They also have obtained that the path loss increases as the fourth power
of the frequency for distances ~1 km and for both transmitter and receiver at
the treetop level. Moreover, the signal loss for vertical polarization was higher
than that for horizontal polarization. But the phenomenon that cannot be
explained by the theorertical prediction based on the works of Tamir and others
[59-61], is that vegetation produces a constant loss independent of distance
as long as the 7'and R distance exceeds 1 km for radio paths within the forest.

432 Empirical Model Approach

Weissberger model. Based on numerous published works covering the results of
measurement data and empirical and theoretical predictions carried out at
frequencies from 230 MHz to 95 GHz, Weissberger summarized their results
and also considered several specific exponential models based on different
attenuation phenomena in terms of dB per meter of path length [65]. His
modified exponential decay which applies in areas with vegetation, where a
ray path is obstructed by dense, dry, and leafy trees, can be presented as
additional loss (excess) to free space attenuation

L=133F0%. 4% 14 <4, <400m

0284 (4.130)
L=045F0%- 4% 0<4d,<14m

where L is the loss in dB, fj is the radiated frequency in GHz, and 4, is the

distance between the antennas within the vegetation. The difference in path

loss for trees with and without leaves is 3-5 dB.

4.3.3 Stochastic Model of Scattering From the Canopy

A theoretical approach based on random media scattering theory was proposed
by Lang et al. [69, 70], based upon the earlier developed stochastic models of
scattering from discrete scatters [71-74] in order to calculate the absorption
effects of trees. Expressions have been derived by modeling of the crown (top)
of the tree as an ellipsoidal region containing branches and leaves all having
prescribed location and orientation statistics. The leaves were modeled as flar,
circular, lossy-dielectric discs and the branches as finitely long, circular, lossy-
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dielectric cylinders. The bistatic scattering of the tree for different incident
and scattering angles were calculated using the Born approximation, as a single
scattering approximation, where the scatters are assumed to be embedded in
the equivalent medium of the canopy of the tree to account for the attenuation
of the incident and the scattered fields in the scartering region.

The studies in [69, 70] have justified the exponential decay of the signal
intensity of scartered rays crossing a short distance of trees. To apply this
approach, the physical parameters of a tree, such as permittivity, conductivity,
and geometrical distribution of the branches and leaves, must be taken into
account. The electrical parameters of the leaves, such as permittivity and
conductivity, can be obtained from [75]. As was shown in [75], the permittivity
of leaves strongly differs from unity (i.e., |€;| >> 1). But the Born approxima-
tion is valid if the permittivity of the scatterers is close to unity, that is, when
|€;| = 1. Therefore, we will not consider this sophisticated approach because
of the complexity of the computations and because of the existing limitations
of this method based on the assumption that the fractional volume of the
scatterers should be small with respect to the wavelength, and that the permittiv-
ity of leaves differs from unity. These features are in contradiction with real
geometrical structure of trees and their own dielectrical parameters. Moreover,
due to uncertainty on the dielectrical parameters of the trees, it is expected
that the accuracy of this approach is within the same range of accuracy as the
simple empirical models available. Furthermore no validation with measure-
ments is available using this approach.

Summary

A number of propagation models of radio wave propagation above the rough
terrain that consists of different obstructions, such as hills and canopy, have
been described in this chapter to predict loss characteristics in quasi-open and
rural environments. They all aim to predict path loss at the receiver or in an
immediate vicinity around it. All methods, as follows from discussions above,
differ widely in approach, mathematical complexity and accuracy. Nevertheless,
what is quite clear is that there is no one method that covers all the various
conditions of propagation over terrain.

In general, most models described are a mixture of empirical and determin-
istic approaches that follow from strict propagation theory. The empirical
methods are based on fitting curves or analytical expressions, such as the free-
space model, the plane-earth model, and the two-ray model (see Sections 2.3
and 3.2), to sets of measured data.
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The use of diffraction calculation for obstructive conditions over the
terrain, based on knife-edge theory by use of Fresnel’s integral (4.49) and on
corresponding empirical formulas (4.54) to (4.55) to account for the diffraction
losses caused by real obstruction, as well as of diffraction loss estimation over
radio paths with multiple obstructions by use of Andersen’s deterministic
approach [30], provides reasonably accurate, simple and efficient solutions. In
this context, in all presented diffraction models the diffraction losses are added
either to the free-space path loss L gg, or to the flat-terrain (plane-earth model)
path loss, Lpr, if Lpr> Lgs.

Moreover, comparison between all empirical methods presented above
has shown that Bullington’s technique is simpler than others, but gives a greater
error relative to the strict numerical solutions obtained by Vogler (28, 29]
than do other methods. The Epstein-Peterson technique as well as a Japanese
scheme are better but can also provide diffraction loss predictions that are too
low. At the same time, the Deygout technique shows good agreement with
the rigorous diffraction theory [28-30] for two-three obstructions but has an
increasing error and becomes pessimistic with increase of their number. This
is why estimations by use of this method are often terminated after consideration
of three edges.

As for propagation models over vegetation, the deterministic approach of
lateral waves propagation is presented in [59-61]. To summarize the discussion
above, in order to model a real forest as a homogeneous dielectric slab, one
must postulate that the wavelength should be larger than the separation of the
trees. Based on such consideration and on average gaps between trees in the
range of Im to 5m, Tamir and others [59-61] have derived the frequency
range of validity from 2 to 200 MHz. This postulate is in conflict with many
experiments (see, for example, [53-55, 62—-64]), which have shown that even
for frequencies up to 1 GHz , there is a good agreement with the lateral wave
approach [59-61]. Other limits also exist, particularly, the minimum distance
between points 7 and R (the length of the communication channel) for the
lateral-wave propagation must be at least 300m long. All these facts limit the
application of the slab-forest model to predict various situations in rural and
suburban areas with vegetation, for operating frequencies higher than 1 GHz
and for distances less than 300m and longer than 1 km. In any other case one
can use the dielectric-slab “forest” model with a great accuracy, including for
VHF/UHF-band propagation.

As for the empirical approach, based on numerous experiments, one can
summarize that the Weissberger model is sufficiently good and predicts the
exponential excess decay of signal strength at frequencies from 230 MHz to
95 GHz in areas with vegetation, where a ray path is obstructed by dense, dry,
and leafy trees. Moreover, because this model gives the same exponential signal
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decay within the forest as the stochastic model presented in [69, 70] by use
of more complicated computation formulas, and because of some principal
limitation of later model, which deals with scatters smaller than wavelength
and with permittivity of the leaves close to unity, it is simpler to use the
empirical model of Weissberger [65] to describe the real situation in areas with
vegetation.
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Propagation in LOS Conditions Along
Straight Streets

In this chapter we consider several urban propagation environments. We will
start with the simplest case of EM-wave propagation in the urban scene, when
both antennas are placed above the flat-ground surface with conditions of
direct visibility between them, below the rooftop level. Such conditions of
direct visibility are usually called line-of-sight conditions (see Chapter 1) and
all propagation characteristics, namely, path loss, signal decay, and coverage
parameters, are determined by using the two-ray model (see Chapter 3). As
mentioned in [1-15], the conditions of LOS propagation along a straight
street, on which the base station is located, will be of grear importance in
defining the coverage area for low antennas because of the low path loss as
compared to propagation over the rooftops.

On the other hand, a new model, the multislit waveguide model, was
recently introduced for describing the propagation of EM-waves in a city scene
with regularly planned streets (i.e., a model of a straight streets with buildings
lining their sides) [16-19].

The street is considered a planar multislit waveguide with a Poisson
distribution of screens (building walls) and slits (intervals between buildings).
The electrical properties of the buildings” walls are taken into account by
introducing the electrical impedance, a function of their surface permittivity
and conductivity. As was shown in [16-19], this model can be used for
predicting wave propagation in street-planned urban and suburban microcells
having a radius less than 2-3 km in LOS conditions.

In Section 3.2 we presented the two-ray model for the case of radio
propagation over the flat-ground surface. Below, we will focus on the multislic
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waveguide model, which was found to be in agreement with experimental data
of wave propagation in urban areas with a regular crossing-street plan. Section
5.1 presents the initial conditions of a nonregular multislit waveguide model.
In Section 5.3, the total field construction in a continuous impedance waveguide
is described. Section 5.3 presents the method of construction wave fields which
are reflected and diffracted 7-times from the broken waveguide screens, taking
into account their nonideal electrical impedance properties.

In Section 5.4, the procedure of averaging the total field in a muldislit
impedance waveguide, using the direct and inverse Fourier transforms for the
average total field are examined. The discrete and continuous spectra of the
total field are investigated. In Section 5.5, we will evaluate the total field
intensity decay and path loss distribution along the street multislit waveguide.
Comparison of theoretical predictions based on the multislit waveguide model
with numerous experimental data obtained in LOS conditions in various urban
environments is presented in Section 5.6.

5.1 The Street Multislit Waveguide Model

In Figure 5.1, a three-dimensional waveguide model of a city region with
regular planned building, and with receiver and transmitter at street level below
the rooftops, is presented. The reflection from the ground surface is also
considered using an imaginary source (Figure 5.1). The projection of such
waveguide on the zy-plane presents the impedance parallel multislit waveguide
with randomly distributed screens and can be considered as a two-dimensional
model of a city street (see Figure 5.2). One waveguide plane is placed at the
waveguide (street) side z = 0, and the second one at z = « (Figure 5.2). The
screen L, and slit /, lengths are distributed according to the Poisson law with
the average values of (L) = L and {/) =/, respectively:

AL, = L_lexp{—%'},f(ln) = l_]exp{—l—;} (5.1)

Let us assume cthat a horizontal electric dipole as a source of EM-waves
is placed at the point (H, 0, 4), where 0 < b < 4,0 < H < by, by is the average
height of buildings lining the street. Its projection on the zy-plane is presented
in Figure 5.2, the top view of Figure 5.1. The resulting reflected field is
considered a sum of mirror reflecting imaginary sources.

The propagation of EM-waves is observed at a point inside the waveguide
at the image surface (dotted line in Figure 5.2). The real electrical properties
of screens (walls) are determined by the surface impedance:
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Figure 5.2 A two-dimensional diagram of the street waveguide in the zy-plane. The coordinates of source are y =0 and z = d, a is the street
width,
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4o
ZEM'“ 6-1/2, € = €y — t—w_ (52)

where € is the relative dielectric permittivity of the wall’s surface, € is the
dielectric constant of vacuum, o is the electric conductivity, w is the angular
frequency of the radiated wave. Using the harmonic time-dependence
~exp(—iwt) and the definition of the dipole field using the Hertzian potential
vector I1,(x, y, 2), we obtain the well-known equation (see also Section 2.4):

4

VL, - K0, = ==, 8(x)3(3)5(z ~ #) (5.3)

the solution of which can be presented using Green’s function (as also follows
from Section 2.2.5):

kR

i i 2y
II;(x, y, 2) = w R (5.4)

Here p, is the electric momentum of a point horizontal electric dipole,
R = |r|, where r is the distance from the source. In real city built-up conditions,
the screen and slit lengths are much greater than the radiation wavelength A
(e, L,>> A, [, >> A). In this case, we can use the approximations of the
GTD first introduced by Keller for the problems of diffraction at the half-
plane and wedge [20]. According to the GTD, the reflected and diffracted waves
have the same nature, and the total field can be presented as a superposition of
direct (incident) wave fields from the source and reflected and diffracted fields
from the screens.

Moreover, following the previously constructed model {16-19], we con-
sider the resulting reflected and diffracted fields as a sum of the fields reaching
the observer from the virtual image sources I1,; (for the reflections from plate
z = a) and I1,; (for the reflections from plate z = 0) (see Figure 5.2).

52 Total Field in an Impedance Unbroken Waveguide
As is well known [21, 22], the secondary (reflected) field in an unbroken

waveguide can be determined from the wave equation for the Hertzian potential
vector:

VZH;(x, ¥, 2) + /eZH;(x, ¥, 2) =0 (5.5)
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Multiplying (5.5) by the factor exp{—iax — i8y} and using the Fourier
transform of [1 (@, B, z), we obtain the equation for the Fourier-transformant
(a, B, 2)

aZ
[F v (- a?- ﬂz)]n;(a, B.z) =0 (5.6)
Z

the solution of which can be presented as:

M(a, B, 2) = Ala, B)exp{~iKz} (5.7)

where K2 = #2 - a® - ﬁz, # is the wave number £ = —;—T Using the inverse

Fourier transform we can obtain the reflected field as

H;(x, y, 2) = Ala, B) - 1Kz~ iax~ xﬂydadB (5.8)

The first incident from the source field can be calculated using the direct
Fourier transform of the free-space Green’s function (5.4)

m 4ori e
z(a! ,B’ ')’) = _szkz _ 0'2 _ BQ _ 72 (59)

and the inverse Fourier transform with variable 7, after which we finally obtain
the following expression:

+o0 . .
) bari ~ivz-h) D ~ifz—h)
Mi(a, B, 2) - - ”""f‘ d j; sdy  (5.10)

27w | g2 _ 77-7 27
C

Here, an integral along the semicircular contour C, around the pole
branch points y; = +K, ¥, = ~K is introduced in Figure 5.3. Using Cauchy’s
theorem [23] for the branch points, we obtain the expression for the Hertzian
source potential vector

D ixz-b)
ZiKe ,z2>h

Mi(a, B. 2) - | (5.11)
D e KR ey

2iK ’
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Figure 5.3 A scheme of integration paths for (5.10) in the complex K-plane.

. 41ri

where D is a constant vector, D = 0 Pz Now the field from the source

(first field) can be presented as:

+o0
I (x, y, 2) = f f (e, B)e*Ke-P-tx=ifryngs  (5.12)

Qm)?

where sign “+” corresponds to z> 4, sign “~" to z < A.
The total field in the unbroken waveguide can be rewritten in the following
form:

I,(x, y, 2) = F jA(a, ﬂ)e"l(z"ax"ﬂydadﬂ
T (5.13)
1

Q)

+

Jn(a, B)eil'l((z—;))—iax—fﬂ]dadﬂ

D
Here, as can be seen from (5.13), [l{e, B) = e A(a, B) is determined
from boundary conditions, D = |D]|.
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Let us now evaluate the boundary conditions in the impedance unbroken
waveguide. [t is well known that the electric and magnetic fields of an EM-
wave relate to the Hertzian vector by formulas presented in Section 2.3:

E-V(V-II,) + #1,, H-=--iVxIl,

from which we obrain:

3, oll,
E"zéx—az’ H, =—it 3
9’11, , oI,
E), B dydz’ Hy = ik ox
2
E,- aan; + kT, H,-=0
zZ

Using the boundary condition

E_y =ZemHy Ey = —ZEMHy

we finally obtain at the boundaries z = 0 and z = a, respectively

all,
dz

oIl,
T 0z

= —ikZ gp 1,

Then, from (5.11) and (5.17) one can obtain:
for plane z= 0

aaizz + tkZ g1, = 0

or

(—ik + kZ ) Al, B) + GK + ikZepTl(a. B) = 0

from which

= —ikZ eyl

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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for plane z = a

—aaiz + szEMH = 0
or
K ik (a, B) - ikZ pyTl(a, B)]
e K- iKA(a, B) - ikZyAla, B)] =
from which

2iIK (K + kZgyy)  2iK

Ala, B) = (5.19)

Finally, the total field in the impedance unbroken waveguide can be
presented as:

forz=10
I, (x, Vs z) = Ril{a, lB)g_iKz—i"x"ﬂ)’dadﬁ
(5.20)
_:Kz b)-tax— zﬂyd dﬂ
= f Jmee
for z = a
z(X; Y. 2 fJ‘RZH(a B)e iK(z+2a)-iax— ’Bydadﬁ
) (5.21)

N 5 ffn(a’ ﬂ)eil((z—b)—iax—iﬂ_ydadﬂ
(2m)

We shall use (5.8), (5.20), and (5.21) for the construction of the average
field in the discrete multislit waveguide.

53 EM-Waves n-Times Reflected From the Screens
in a Two-Dimensional Broken Waveguide

Here we consider a two-dimensional case without taking into account the
effect of reflection from the road, which will be done in Section 5.5. We
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assume that screens (walls) and slits (gaps between buildings) are distributed
according to the Poisson law (see (5.3)). Reflection and diffraction from screens
and their corners is taken into account by introducing the special telegraph
signal functions f(y) and f3(y) defined for the first and the second waveguide

walls, respectively, as [16-19]

fialy (5.22)

1, on the screen
0, on the slit

Next, we introduce the image sources as presented in Figure 5.2 and
denote them for the reflections from surface z = 4 by the symbol “+” and
for the reflections from surface z = 0 the symbol “-." In the first stage we
construct the reflected wave fields when the first reflection takes place from
the waveguide wall z = 4. From geometrical construction we define

ry = [(a— /J)2 + y%]”z; y1 = ymla— h)(2a — h — z), from which we have a
new calculated argument y; for the function fj. Thus, the first wave field
reflected from the plate z = a4 at the point M on the image surface inside the
waveguide and along the z-axis is:

[ﬂ-_b)m] (5.23)

2a-h—z

Using the same geometrical considerations for the second reflection from
the wall, z = 0 (the corresponding image source is I15) in the derivation of
ry = {(2a - h)z + y%]m, y2 =yNRa— WI(2a~- b + z), we obtain for the
twice-reflected field at the point N inside the waveguide along the z-axis:

thr
e (a 2a~ h)yn
sy fl[2a b+ z]fz[2a - b+ z] (5.24)

After the third reflection from the upper plate z = 4 we obtain at point

P for the function f; a new argument y3 = yp(3a— h)/(4a— b - z),

) ]%11/

r3 = [(3a - (Figure 5.2), and the contribution from the third

image source Il is:

ikr

+ - 2 b)
sz~8r3 f[;:_ _z]fz[i; N]fn[4a_ yp] (5.25)
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Following the same procedure by the induction method, we obtain for
the n-time reflected wave field, when the first reflection takes place from the
plate z = 4, the following expressions:
foreven n=2m, m=1,2,3...

%"ﬁ[ a—My]ﬁ[Qa—bU]x

na— b+ z na—h+ z
((n = Va— h)y] [ (na—h) 0262
n—1Na—h)y na — h)y
fl[ na—h+ z ]fz[na—/}+z]
forodd n=2m+1,m=1,2,3,...
e h)y (2a - h)y
fl(n+1)a— —zf2 (n+ Da—h—=z X
{(5.26b)

n—1a-— h)y na—hy
fz[(n + Da—h- z]fl[(n + Da—-bh- z]

The same procedure can be used for the first reflection taking place from
the second waveguide wall z = 0 (i.e., for the image sources IT, (see Figure
5.2)). After similar geometric consideration we obtain the following expressions:
foreven n=2m, m=1,2,3,...

thr’
_ e hy (@a + h)y
- Y fz[na+h—z]ﬁ[na+h—z]x

(n-2) by N 5 (5.27a)
a+ n—1a + by
fz[ na+ h-z ]f][ na+ h-z ]
forodd n=2m+ 1, m=1,2,3,...
o ~e'h"' hy (a + h)y
Zn r,,'fz(n—l)a+/)+zﬁ(n—1)a+/7+z X
(5.27b)

n—1)a+h+2z n-Da+h+z

ﬁ[((n—-Z)a+/J)y]f2[ ((n - 1)a+/J)y]
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5.4 The Average Field in the Impedance Two-Dimensional
Multislit Wavequide

As is shown in [16=19], the statistical moments of the reflected field inside
the multislit waveguide relate to the statistical moments of telegraph signal

Sfunctions f1(y) and f5(y) defined by (5.22) using the procedure

L

i =x=7pi=12 (5.28a)

FOVFGDY = XK = 32) (5.28b)

(FONLODFG) = XK = 3K (52 = y3) (5.28¢)
n-1

(FO0fid) - - filyD) = )("1'[1 K(yuor = ya) (5.284)

where K(w) is the correlation function of the telegraph signal functions with
any variable w (the detailed description of #-order moments of such functions
are presented in [16-18])

K(w) = ,\/2{1 + {exp[—(% + ll)lwl]} (5.29)

Taking into account the fact that the slit and screen distributions in the
street waveguide are statistically independent,

(ADAG = AWK AG) = x° (5.30)

and using the relationships (5.28a) to (5.28¢), one can derive for the 7-times
reflected fields the expression as a sum of two terms. The first one describes
the average reflected field inside the waveguide when the first reflection was
from the wall z = a:

ikr, '
() - ir—,y"R”[I(a, B)e KlneDa-z-h)
" (5.31a)

2
L (rre vy S EE LR R R
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ikr, .
(M) - <= "R (e, B
; : (5.31b)
x K"_2<m+—azy—h), n=2m, m=112,3,...

The second term describes the average reflected field inside the waveguide
when the first reflection was from the wall z = 0:

ik, .
<H;n> = er, "R (a, ,B)elf(((n—l)aﬂwb)
” (5.32a)

n-2 Zay _ _
x K ((n—l)a+z+b)’n_2m+l’m_1’2"”

ikr, .
(H;n> = %C”R"H(a’ B)ell((mz—z+/7)
n (5.32b)

_ 2
x K7 2(-—ay——),n=2m,m=1,2,...

na—z+ h

K- k7
Here R = — =M i< the coefficient of reflections from the impedance
K + kZEM

walls. Next we estimate the values of [("_Z(Z) in (5.31) to (5.32). For example:
n-2

n-2 Zay _ _[ 2‘1}’ l l
K (mz + a/) - {1 * Lexp[— na + a'(L * 1) (5.33)

For the moderate or small values of 7, and for y >> (L + /), we obtain

2
2 (l . 1) > 1, K""Z(z—ny) -1 (5.34)

na+a\lL [/

In the opposite case, when 2y/(yn/) << 1 (large values of n), we obtain

24y 11 n—22_}’ 1 2_]
na+a<L+l><<1’K (”)~X”"ZCXP_L << 1 (5.39)

2\X’/e finally note that in (5.31) to (5.32) with great accuracy
K'42) = 1.
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Using this fact and after some straightforward calculations, we can present
the spatial spectrum of an average n-time reflected field in the following form:

2 i2Ka

D {I:X?_RZeiK(Za—h) +XR€iKh:| i
e
1 - XZR e

(5.36)

2,2 ikh _ikh
[X R7e™ + XRe ' eiK(Za—z)}
XZRZFIZKa

Using the inverse Fourier transform for the second (reflected) field (5.36)
and the direct field transformation:
forz< b

i(a, B, 2) = [l(a, B)e K=" (5.37a)
forz> 4
Ni(a, B, z) = N(a, B)eX=H (5.37b)

one can obrain the same integrals as in (4.21), which now describe the total
field in the broken multislit waveguide:
forz< 4

D ..
I,(x, y, 2) = ( dadﬂﬁe’_l”x—tﬂy (5.384a)

y XR(XRei/\'(Za—/J) + eiK/J) ex'Kz . [XReiK(Za—/J) + e,-]('/? e—iKz
1 — XZRZetZKa 1 - XZRZeIZKa

forz> 4

o0
1 D vl i
o Y —tax-iBy
[,(x, y, 2) = (2p)2 ffdadﬂZiKe (5.38b)

{ XR(XR IK(2a+/1 iK(Za—/l)) eq[@ . [XReiK/J + e‘—iK/J e
- ¥ R 121\11 | - Xszt’IZKa

To evaluate these integrals, one can introduce the polar coordinate system:
a = pcosg; B = psing; x = rcosy; and y = rsing, take into account the
following form of the Bessel function /¢(z) representation [23]:
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2r+y
1 ' ]
Jolpr) = 5= J oSy, (5.39)

0+y

Finally, we can rewrite the integrals (5.38a) to (5.38b) as follows:

D [pF
Hz(xl ¥ z) = Tmf%dp (5403)
k°=p
0
D F
I,(x, y, z) = mf%jo(zr)dp (5.40b)
0 K-

Here, Fi(p) and F5{p) are the functions in brackets in (5.38a) and
. . 2 2 .
(5.38b), respectively, where value X is replaced by \/#° — p~. Now, taking
into account the relationship berween the Bessel function, /¢(z), and the first
order, H(gl](z), and the second order, Héz)(z), Hankel functions, where
Ho(l)(z) = —Héz)(—z), that is, /5(z) = [Hél)(z) + H(SZ) (2)]/2, we can rewrite
the integrals in (5.40a) to (5.40b) in the simplified form:

pF1a2(p) H  (pr)

I ) ———DI

20V 2= i ) 2
N
o P

dp (5.41)

The integrals (5.41) can be separated into two parts: the integral along
the deformed contour C, on which the subintegrand function is analytic, and
the integral along a branch cut contour ¥ near the poles, depicted in Figure
5.4. Here taking into account the requirement for the integrals (5.41) to be
finite, the condition Im X'> 0 must be applied (i.e., the contour C must be
closed in the upper-half plane as presented in Figure 5.4).

The discrete spectrum of total field. The integral along the closed contour
Cin the upper-half plane presents the discrete spectrum of the total field inside
the multislic waveguide and can be calculated using Cauchy’s theorem:

S = 2mi Y, Res[HY (pr) pFio(p)s p (5.42)
n=0
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K=Vk2 '32
JmK >0

Figure 5.4 A scheme of integration paths for {5.41) in the complex K-plane.
The pole points are determined from the equation
1 - 2R g

from which the pole coordinates are determined:

1
p, - B~ KOV K, - 1%‘ v i “'aX' - %’ - Rek, + ImK,, (5.43)

n=1,2,3,...

K,— kZpm
T K, + gy
in the impedance (Zgp # 0) multislic waveguide, where @, is the phase, | R, |
is the modulus:

Here, R, is the coefficient of reflection of normal modes

VIReK,)* + ImK,)* - (kZgap)') + 40mK,) ZEw

|R,| = 3 3 (5.44)
(ReK, + &Zgp)° + (ImK,)

1 ZImK,,kZEM
(ReK,)* + (ImK,)* — (kZgp)*

@, =tan

Using formulas (5.42) to (5.44), one finally can obuain for the discrete
spectrum for the case z> A
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D H (p, )
Hz(x’ },’ Z) = Zz I:R _ 2 kZEM ] (5453)

(Kn + kZEM)z

X {ZRnCOS[K"(z_ h + [e—ik'"(z+h) + eiKﬂ(z+h—2a)]}

1
X

and for the case z< A

D Hy(p,
x5, 2) = 5 0 (’ZZ’;M (5.45b)
[R,,— 2__—-2]
(K, + kZgp)

< { R, eHehoa) | K (wthra) K (2h-3a) %e—ikn(z—hﬁa)}

n

Each index 7 in the poles (5.43) corresponds to a waveguide mode of
an average reflected field. It is easy to show that for 7/a >> 1, this discrere
waveguide mode spectrum can be significantly simplified. Thus, for the case
z> b we obtain:

C X InyR,| f7n— ¢,
n= —exp(tps,o)r)exp _ n,::]) l(mr= @ r (5.40)
\r Pn 4 4

2
where p(,,o) N <%r)’ C = constant.

For the case of a perfectly conductive multislit waveguide model (i.e., in
the case when Zgy = 0 and |R,| = 1, ¢, = 0), one can obtain from (5.45a)
and (5.46) for z > b, respectively:

I, (x, y, 2) = gHS”(\//ez Ky (5.47)

1 : .
X {2COS[Kn(z — h)];[e—xl(n(&h) N ean(z+b—Za)]}

a

C | T
n‘ = $exp(i,oﬁ,‘”r) exp[—% (JH (5.48)
n

These formulas are the same as those obtained for the case of a perfectly
conductive multislit waveguide and are presented for the case z> 4 in [17].
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In both waveguides the modes of the discrete spectrum attenuate exponentially
inside the broken multislit waveguide according to (5.46) and (5.48) and their
extinction lengths can be obtained from (5.46) using the assumption that it
is a length on which the field decay level is ~exp(-1), or:

InyR - @,
exp[—l I;;(‘(/));l (ﬂn P L4 ){”] = exp(~1) (5.49a)

from which we have

p(o)a
{n = - (549b)

™"~ Py
(5l

The extinction lengths depend on the number of reflections 7, on the
waveguide (street) width 4, on the parameter of brokenness x, and on the
parameters of the wall’s surface electric properties R,. For the case of an
unbroken perfectly conductive waveguide (y — 1, R, — 1) it follows from
(5.49) that {,, = eoand normal modes propagate as waves in an ideal waveguide
without attenuation (21, 22]:

2wP r : mnh T
I, ~ ZI:Hg)I)(kr) + H&l)( K- <_r_z) r) cos( 2 )cos(—nz>]
aw a a a

(5.50)

In the case of the impedance waveguide (| R, # 1), the character of
reflected mode attenuation depends on the real values of the electrical impedance
Z gy With increasing Z gy (Zgps > 0) the extinction length becomes smaller
and the normal waves in the impedance multislit waveguide attenuate faster
than in the case of the perfectly conductive multislit waveguide. Results of
calculations of the extinction length {,, as a function of the number of
reflections, 7, and the parameter of brokenness, ), are presented in Figure
5.5. The same decrease of ¢, is observed with an increase in the number of
reflections n: the normal reflected modes in a multislit waveguide with numbers
n 2 5 attenuate very quickly (the corresponding extinction length ¢, decreases).
On the other hand, increasing the value of )y (decreasing the distances between
buildings) leads to a decrease of the reflected wave attenuation factor (see
Figure 5.5). In the limit of an unbroken waveguide (x = 1) the normal waves
with numbers 7 < 5 (the main reflected modes) also propagate without appre-
ciable (independent of parameter Zgyy) attenuation at large distances.



Propagation in LOS Conditions Along Straight Streets 201

L i 1 L —

150 200 250 300 350 400 450
Ey/a

Figure 55 The extinction length s, as a function of the number of reflections, n, and the

parameter of brokenness, y, in the case of the perfectly conductive
waveguide.

The continuous spectrum of total field. A continuous spectrum has been
evaluated from integration along the contour ¥ around the branch points (see
Figure 5.4). We will examine this integral for the case z > 4, adding it to the
source field (5.37b), which is also found from the contour integral with branch-
cut point p = k:

(f J)HO pr) “kl_”z(z_”)pa'p (5.51)

ylefp  yright

Then, the continuous part of the total field can be presented as

HY ) NP e
I, 8w,(f D Holpn) | =i Py P)pdp  (5.52)

kz—p



202 Radio Propagation in Cellular Networks

Here,
Pl ,\’Zth’iK(Za—h) . eil\'b ; X RZ iK(2a+h) iK(Za-/y) i
z) = . e ¢
| = R K _ 2R2 12161
(5.53)
Transforming the sum of two integrals in (5.52) to one integral, we
obtain:
HP(pr
f \/{TL (5.54)
where
(XREiKh + e"iK}’)(XReiK(Z“_Z) + eiKz)
Qz) = | = v2R2,i2Ka
- X Re
(5.55)

(XRe—iKh + c,i[(h)(/‘/Re—il((la—z) . e—iKz)

1 - 2R K

This formula describes the continuous radiation (i.e., average continuous
spectrtum inside the multslic waveguide). We now transform the
integration variables by including new arguments (see Figure 5.6):

p=k+ is%; dp = 2isds; s = ex —13 (k- p)l/z. For these argu-
p g

ments we have a branch-cut point 5= exp{ ig}(Zk) 172

and poles & skt (R lilny R a + (nm— @ la)])Y

Im[exp{ﬁg}(lk + isz)m] > 0.

Using Cauchy’s formula for the poles, we transform the integral (5.54)
into the Fresnel integral [23]:

e
) j ) (1 - X*RY)?
0 s 4+

(5.56)
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Figure 5.6 The transform of the integration variable p = k + is? by introducing a new
argument s = exp{~i3=/AHk - p)”z.

From this integral for the case r/a >> 1 using the asymptotic approxima-
tion Ho(pr) ~ (—21/7Tpr) exp{zpr} one can easily derive the continuous
spectrum of the total field

"’1 1 - xlR,| e
‘=~ 2D¢'% TR 47 (5.57a)

For the case of a perfectly conductive multislit waveguide when
|R,| = 1,and Zgps = 0, we can obrain from (5.57a) the same formula presented
in [17]:

thr

I ~ \2De' T x/:m (5.57b)
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As can be seen from formulas (5.57a) to (5.57b) in the broken waveguide,
ihr

the continuous part of the total field propagates as a spherical wave ~—, and

reduces to the unbroken waveguide case in the limit y = 1. Bug, if in the
perfectly conductive unbroken waveguide for large distances (r >> 2 T1° = 0
(see (5.57b)), in the impedance unbroken waveguide the continuous part [1°
of total field does not vanish because for the case y = 1 and |R,| # 1, the
function IT, as can be seen from formula (5.57), differs from zero. This is a
new principal result which is absent in the case of a perfectly conductive
waveguide with continuous walls.

5.5 The Total Field-Intensity Attenuation Along the Street
{Three-Dimensional Model)

Let us consider that the term H,,M is the field reflected from the wall with
coordinate z = 4, and the term ﬂ,,(—) is the field reflected from the wall
with coordinate z = 0 (see Figure 5.2); then the average total field intensity
inside the waveguide can be presented in the following form:

) - {z 0+ 1100 3, (T ﬂzn(n_)*]}(anl 1D )’
n=1 m=1
(5.58)

where 17 and 77, are wave impedances; the sign (*) denotes the inverse complex
field values. Using the differential distribution (5.3), the results of the procedure
of averaging for the one- and two-order moments of telegraph functions £ ()
presented above, as well as the reflection from the road (Figure 5.1) with the
coefticient R, [18], we finally obtain for the total intensity inside the multislit
waveguide:

<J>= 3, M a)T; (na)(| Ry 1) il Ry 11 = (IR, 1 0™

o Y mm Y (R, + 1Dy )? (5.59)
n=—o0 m=0

x 2 Re{ll,(na)[1% (na)[(=1)"2m + DJ(| R, | ) 2™ D17
X R 1 = (IR, L™
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Using the Fourier representation of the field
II(y) = (D/27Ti)J'a',B exp{—iBy + ip|z|l/2p

and introducing it in (5.59), we can calculate the average field intensity

” expl— " yl4
(J) - Rel (D/27r>”‘iﬂ ap’c Pﬁza"’ﬂ BN 1 Lot - o)

+ 2001 R, 1™ P11 — (x| R, e *P) (5.60)
+ IR IR,D(L + x| R,
1R = (IR, DDA = (X IR, DIBUAR + | D)’

Here the polar coordinates B8 = pcosd) B” = p”cosd”, and new
parameters @ = i(p" = pMa and B =-2iap” were introduced, where
P = (kz ,8'2)1/2 ” = (b ,8"2) 2, i Ry is the coefficient of reflection from
the road surface whlch is also consndered for the impedance surface (in [17]
it was assumed that the ground surface is perfectly conductive (i.e.,
| Rg| = 1)); all other parameters were introduced above. After integrating expres-
sion (5.60) and taking into account the intensity /y from a vertical electrical
dipole in free space, we finally obtain the normalized average intensity for the
numerical calculations

(8]) = (J1]o) = {@mx| R, |/ ka)sin(m,a)[cor(q 14)sh(kp}")
— cot(q{V14)sh(£p{)]
s [67 (x| R, 1 kalsin(l, a)[cot(q L 14)sh(kpP) (5.61)
—cot(ql /4)sh(/ep1 )]
+ cos(a, )R (X1 R + xR, 1)1y
+ cos(BupReI(1 = (xR + (X IR,V R + 1 Do)’

Here,
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q(]l) = —|lny|R, || + 1270 + ika, q(lz) = —|lnxl Rl + 27w + tka
gV = —llnx|R, I + 27y — ika, g = —|lny|R,|| + i2mu — ika
AV = —illny|R|1a+ 2mvia + b, pP = illny Rl a+ 2mula + k
P = —ilIny R, llla + 2mvla—k, p% = iliny|R,||/a + 2mula— k
a, = Gm + 465172 B, = BL + 4kH"?

my, = ilIny|R,||/a + 27v/a, ly=illny|R,\/a+ 2mula, v,

m=1,2,3 ...
(5.62)

In formula (5.61) the first two terms describe the multiray reflection
from the walls and diffraction from the walls’ edges. They present normal
modes generated in the multislic waveguide, which transform into normal
waves in the unbroken waveguide (when x = 1) and propagate along the
waveguide with exponential attenuation at large distances. The third term
describes the reflection from the ground and then the reflection from the
buildings’ walls. The last term describes the direct wave and then reflections
from the road surface and from the walls. In the case of the real impedance
unbroken waveguide, when y = 1, but 0 < |R,;| < 1, this term does not vanish
(as was obtained in [17] for a perfectly conductive waveguide). Thus, in the
case of an impedance waveguide, we must take into account all waves, direct
from the source, reflected from the ground and then both reflected from the
walls (as schematically presented in Figure 5.2). On the other hand, for
X << 1 we tend to the case of free-space propagation above the perfectly
conductive flat surface. In this case, the last term is much larger than other
terms and describes the interference between the direct waves and those reflected
from the road, which is described by the term ~cosfB,,y. The field intensity
attenuates as a spherical wave — y_z. This case is close to the two-rays model
presented, for example, in [4-6], where the plane wave propagates above the
flat perfectly conductive surface. Moreover, because earlier in [16, 17] it was
shown that both the two-dimensional and three-dimensional waveguide models
give sufficiently accurate resules of field intensity attenuation, it is very important
for the prediction of experimental data to obtain the approximate expression
of average field intensity inside the impedance multislic waveguide.

Taking into account that the average intensity can be approximately
presented as </> ~ <IIII} >, and after integrating formula (5.38) for field
[1, in the limits of x = [0, 4], y = [0, =], and z = [0, 2] using the same
procedure as in [17], we finally obtain the approximate expression for the
average field intensity at a large range from the source (r >> a):
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(1) = CRGUR | + 1Dy 1) expl=Iny | Ry | (77 - son)/a]r/pﬁf”a}(s

63)
+ DRI = (xR, + (x| R, DI

Here,
D = D[ = 4im|p,llw; C= (DNAI2NhrhR) hrhpla® + hyla + 117

The expression of the reflection coefficient R, is presented in Section 3.2
for different kinds of radiated field polarization. The approximate waveguide
model (5.63) can be successfully used to describe the field-intensity attenuation
along the street in LOS conditions (see Figure 5.7, curve 2). In fact, Figure
5.7 depicts the field intensity attenuation relative to the intensity in free space
at the distance 100m from the source, using the approximate model according
o (5.63) (curve 2), and the strict model according to (5.61) (curve 1) for
X =05, |R,] =08 and |R,| = 0.8 for the case of a wide street (# = 50m,
by = 10m, b = 8m, g = 3m). As seen from the illustration presented in Figure
5.7, both models (strict (5.61) and approximate (5.63)) predict two modes of
field-intensity attenuation, from polynomial, 7™ to exponential, and the exis-
tence of a break point at the range r; = 160m-180m (according to (5.65)
presented below) for fy = 900-950 MHz. Because the approximate waveguide
model gives closed results with the strict waveguide model (see Figure 5.7),
one can use the simple formula (5.63) to obtain the path loss in LOS conditions
along straight streets with great accuracy. Therefore let us now examine (5.63)
for various actual experimental situations in the urban street scene.

Wide avenues. Let us assume that the street width is larger than the average
building heights and both antenna heights, that is, 2> A, b7, bg. In this
case, at distances less than the break point in the approximate formula (5.63),
the second term, which describes the direct wave and the waves reflected from
the ground and which attenuates as a spherical wave ~r s larger than the
first term, which describes the attenuation of the normal reflecting modes
along the multislit street waveguide. Beyond the break point, conversely, the
first term in (5.63) is larger, and field intensity attenuates exponentially. This
law of attenuation is close to that obtained experimentally in most measure-
ments, where the attenuation mode of field intensity beyond the break point
was ~7 7, g = 5-7. According to the two-ray model [4-6], one can obtain
only two modes of field-intensity decay: ~772 before and ~r~* beyond the
break point. Moreover, no clear physical explanation of such a rapid polynomial
(with g = 5-7) field-intensity attenuation in the farthest zones from the trans-
mitter existed until now. This effect can be clearly understood using the
waveguide street model and following from it the exponential attenuation of
field intensity (which is close to mode ~r7%, g = 5-7) at distances beyond the
break point. As was shown in [17], the waveguide model continuously tends
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Figure 5.7 The normalized field-intensity attenuation {relative to the intensity in free
space at the distance 100m from the source)}, using the approximate model
{curve 2), and the strict model {curve 1), for y = 0.5, |R,| = 0.8 and |R,| = 0.8,
for a wide street {a = 50m, h, = 10m, hr = 8Bm, hg = 3m).

to the two-ray model in the case of wide streets. We can also show that the
break-point range presented in [4~6], r, = 4h7hg/A, can be used to estimate
the break-point range only for urban areas with wide streets (avenues). More-
over, the three-dimensional waveguide model allows us to obtain a stricter
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expression for break-point range estimation, which continuously limits to the
approximate formula, r; = 4h7hg/A, only for the case of a> Ay, b7, hg. In
fact, let us define the break-point range as the range at which the first term
in (5.63) is equal to the second one,

C*R3(IR,| + 1 D)2 expl=ilng | R I (0 = @,)a)rlp D al

5.64
= DRI = (xR, DI + (xR, DIV .
After the expansion of the ex%onent in the righe-hand of (5.64) into the
series expi—w} =1 —w+ (1/12%w" — ... =1 for w<< 1 ({Iny|R,| << 1
and [(7n — w")/a]r/p,go) a < 1), and taking into account the fact that because
0<x<1l,0<|R,|<1and 0 <|D,,| <1 all terms with their product are
smaller than one, we finally obtain the approximate formula of break-point
range for the waveguide street model

- 4R [0 XIRGDICL = XIRG DI + hyla + byl
A (IRl + 1Dl

(5.65)

which continuously (with constant (| R, + | D,,, I)z = 1for0<|R,| < land
0<|D,,l < 1) tends to ry = 4h7hgp/A presented, for example, in [4-6] for
the case when 2> 4; and 4 > hrhp, (ie., for the case of wide streets). So,
in the case of a wide street, the approximate model (5.63) tends to the two-
ray model [4-6], and formula (4.65) transforms into that with break-point
range 7, = 4h1hgl/ A, presented in [4-6]. We have a good transition from the
waveguide model to the two-ray model in the particular case of wide avenues
or canyons with building heights less than the street width.

Narrow streets. In the inverse case in an urban scene with narrow streets
(@ < hy) the approximate waveguide model (5.63) can also be successfully used
to describe the field-intensity attenuation along the street in LOS conditions
(see Figure 5.7, curve 2). Additional estimations have showed that for the case
of narrow streets the break point is farther from the transmitter than in
the case of wide streets. For example, for the case of a narrow street
with @ = 10m, A7 =8m, hg=3m, fy=900-950 MHz, the break point
has been observed at the range r;,= 320m-330m for 4y = 10m and
7, = 430m—440m for A; = 20m according to (5.65).

Thus, as follows from formula (5.65) for 4 << A4 and a’< hrhg, the
range of the break point tends to infinity for the observed wavelength band,
A = 0.01m—-0.3m with a decreasing street width or with an increasing building
height. So, in the case of narrow streets the two-ray model cannot describe
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the absence of break point and of two-mode field-intensity decay. In the case
of narrow streets the multislit waveguide model predicts exponential attenuation
of total field at the street level in microcellular propagation channels up to
2-3 km from the transmitter.

Contribution to path loss. In the impedance unbroken waveguide
(x = 1) the existence of additional term (5.57) in the case of Zgy# 0
(1R,] # 1) leads to the additional losses of EM-waves propagated inside it.
This is clearly seen from investigations of path loss. Thus taking into account
the characteristics of a vertical electrical dipole field in free space and formulas
(5.63), one can approximately obtain the path loss of radio wave intensity
~(IT - IT*) in an impedance multislit waveguide

1 - xR, ?
L=321-20 loglo[(—'ﬂ'%]
(1 + xR, D)
+ 17.8 logior — 20 logo[I R, | + | Dy l] (5.66a)
Tn— ¢, r
+ 20 log| R l—8.6{lln IR,,H[———} }
gl g X p 20,

which for the case Zgpy= 0, |R,| =1, | Dyl = 1, @, =0, |Rg| =1 is the
same with path loss estimated for the case of perfectly conductive broken
waveguide:

2

1 —
L=321-20 logw[( X)Z] + 17.8 logigr — 8.6{”@”[.@] _(;_)}
1+ x) a | p,a

(5.66b)

Formulas (5.66a) to (5.60b) are more general than the approximate
formula obtained in [17] for the case of the two-dimensional waveguide model
without taking into account the reflection from the road and actual dielectric
properties of building walls.

5.6 Prediction of Loss Characteristics in LOS Conditions

Let us compare, first of all, the theoretically obtained results from formulas
(5.61) to (5.63) according to the street multislit waveguide model with those
obtained experimentally by the scientific group of Tadiran Telecommunications
(Israel), in which the authors have taken a part as leaders both in the theoretical
and experimental prediction of loss characteristics along straight streets in urban
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and suburban areas. The first series of measurements were taken in the small
town of Kefar-Yona, Israel, where the multigain wireless (MGW) local-loop
system of Tadiran Telecommunications was under trial in conditions of direct
visibility along the street (LOS conditions, see Figure 5.8). The tested environ-
ment is a typical small urban or suburban region of two- and three-story brick
buildings with approximate uniform heights 4 = 8m—10m and with a right-
angle crossing straight street plan (as schematically presented in Figure 5.8).
The omnidirectional base-station antenna was located art a lower level than the
buildings’ roofs, at a distance of 4m-5m from the corner building surface, as
depicted schematically in Figure 5.8.

The mobile omnidirectional radio-port antenna changed its position along
the street in the middle of the road in LOS conditions (Figure 5.8). The tested
MGW system was operated in the frequency band f= 902-928 MHz and
utilized spread-spectrum (frequency hopping) digital radio communication.
The base-station transmitter antenna was installed at the height A7 = 7m;
the moving radio-port antenna was also lower than rooftop level
(#g = 2m-3m). The tested cell radius of such an area estimated from measure-
ments was approximately 1-2 km. Field intensity measurements in decibels

AL

Movmg radno port

33

Figure 58 The simplified scheme of Kfar-Yona houses built on a retangular street grid
and of the first experiments in LOS conditions along the street.
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relative to intensity in free space at the range r = 100m (to compare with the
three-dimensional waveguide model) and at the range r = 1 km (1o compare
with experiments carried out by Hughes [24]) were obtained to estimate the
path loss and the field intensity attenuation in LOS conditions along the street.

In these estimations we take into account the actual dielectric properties
of the brick walls of buildings and the real distribution of buildings along the
street level. As mentioned above, the first experiments were carried out in LOS
conditions where the transmitter and receiver antennas were placed at the street
level with direct visibility below the roof tops, and the moving radio-port
changed its distance from the stationary base station in the range 10m-300m
(see Figure 5.7). In Figure 5.9, the normalized average field intensity decay in
decibels (relative to the intensity in free space at the range of 100m) is presented
versus the distance r from the transmitter along the street waveguide for the
same conditions as presented in Figure 5.7 by curve 1 only for the strict model
(5.61). The solid points correspond to experimental measurements at 920
MHz. As can be seen, the three-dimensional waveguide model (strict and
approximate, because there is not sufficient difference between them, as follows
from Figure 5.7) gives results which are close to experimental data and can be
used for predicting the path-loss distribution and the range of the break point
along the street in LOS conditions.

Now we will compare the results of theoretical prediction in LOS condi-
tions estimated from the evaluated formulas (5.61) and (5.63) according to
the street waveguide model with experimental data presented in [12] for condi-
tions of direct visibility along the streets in the Manhattan grid-plan-street
scene (New York, see [12]). Results of numerical calculations according to the
strict waveguide model (5.61) (presented by a thin continuous curve in Figure
5.10) and the approximate model (5.63) (presented by a dotted curve in Figure
5.10) were compared with published experimental data [12] along Lexington
Avenue in Manhattan (presented by a thick continuous curve in Figure 5.10).
In our calculations we used the same conditions of measurements presented
in [12] (i.e., the working frequency fy = 900 MHz (close to our experiment,
see above)), hr=9.15m, hg= 1.85m, |R,| = 0.75, |Ry| = 1Dyl = 0.8
(€ = 15, o = 7); the avenue width 2 = 30m; the average building height along
the avenue A5 = 40m-50m. As can be seen from the illustration presented in
Figure 5.10, both models, the strict (5.61) and the approximate (5.63), with
agreat accuracy (of 3-5 dB) predict the signal intensity decay in LOS conditions
along the avenue at the distances up to the break point, located, as follows
from (5.65), at the range r;, = 500m from the transmitter. Beyond the break
point a sharp signal decay is observed. This is why we can propose this range
as an effective scale of a microcell in LOS conditions along the street level (see
also Chapter 9).
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Figure 5.9 The field intensity {in decibels) versus the distance 7 from the transmitter (in
meters). The solid curve represents the numerical calculations according the
strict model (5.61) for the same conditions, as for Figure 5.7; the solid circles
represent the experimental data of signal attenuation (its maximum and
minimum values).
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Figure 510 The field intensity {in decibels) versus the distance r from the transmitter
(in meters). A thin continuocus curve represents the strict model {5.61), a
dotted curve the approximate model {5.63), a thick continuous curve is the
experimental data [12]. Both calculated and measured data are presented for
the same experimental conditions according to [12): working frequency
fy = 900 MHz, hy = 9.15m, hg = 1.85m, | Ryl = 0.75, |R,| = 0.8 (e = 15, o = 7),
a = 30m and hp = 40m-50m.
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The influence of real electrical properties of building walls can be seen
in more detail from numerical calculations of the two-dimensional waveguide
model according to [16, 17] presented as a family of curves in Figure 5.11 for
parameters | R, | = 0.1, 0.2, 0.4, 0.6 and 0.8, respectively, and y = 0.8, where
I is the field intensity normalized to the wave intensity in free space at the
distance r = 1 km from the transmitter, at a frequency fy = 930 MHz, versus
the normalized distance r/a (2 = 20m) along the street. In Figure 5.11 signs
“+” and “0” correspond to experimental measurements carried out in [24] ar
a frequency of 936 MHz, using two mobile stations moving in two different
areas of the city center. As seen from illustrations in Figure 4.11, the curves
with | R, | > 0.5 are closer to experimental data measured in a city area with
multistory ferro-concrete buildings (depicted as “+” in Figure 5.11). The curves
with 0.1 < [R,| < 0.5 are closer to the experimental data measured in an area
with buildings of moderate height, usually constructed from bricks (depicted
as “o” in Figure 5.11).

Now let us compare the results of numerical calculations obtained for
the case of the two-dimensional and three-dimensional waveguide models with

=
o
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Figure 5.11 The normalized field intensity versus the normalized distance, y/a, from the
base station for y = 0.8, a = 20m, and |R,| = 0.1, 0.2, 0.4, 0.6, 0.8. Signs "+"
represent measured data in a city region with multistoried ferro-concrete
buildings; signs “o” represent measured data in a city region with moderate-
storied brick buildings.
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perfectly conductive walls (|R,[ = 1, ¢, = 0) with measurements carried out
in the center of London in LOS conditions along straight streets [25]. Experi-
mental data was collected using two mobile stations with antennas below the
rooftops in the crossing-street center of the city [25]. This measured data is
presented in Figures 5.12(a,b) as circles and crests. The circles correspond to
measurements carried out in city areas with a higher density of buildings in
the streets near the transmitter than the crests. Here, too, the results of the
wwo-dimensional model are presented by the dashed curves. Those according
o the three-dimensional model are presented by the continuous curves. In
Figures 5.12(a,b) all curves are presented as linear functions in the logarithmic
coordinate system for the both cases y = 0.2 and y = 0.8. The point where
the field intensity attenuation law changes (break point) is approximately
250m-300m from the source. These results are also close to those obtained
in [24], in which the position of the break point was about 250m-350m from
the source. Moreover, from the results presented in Figure 5.12(a) for
X = 0.2 and in Figure 5.12(b) for y = 0.8, it follows that with decreasing
brokenness parameter y the effect of transformation from the law ~y_2 to the
exponential law becomes weaker. This fact is easily understood because with
increasing parameter Y the guiding effects of waveguide are more essential and
only normal waves propagate along the waveguide at large distances. At small
distances the effect of interference between the direct source wave and that
reflected from the ground, as in the case of wave propagation in free space
above a plane surface, takes place. This result is also observed from the numerical
calculations presented in Figures 5.12(a,b) at distances before the break point
¥4 = 250m-300m. So, using the above three-dimensional waveguide model,
we obtain both the critical cases y << 1 and y = 1 and in the general case the
experimentally observed break point at which the character of field intensity
attenuation inside the waveguide is changed from a polynomial law with power
g = 2 10 an exponential one. We also must notice that the proposed model is
correct only for distances up to 2-3 km, and only for cases y > 0, because
from formula (5.63) for n-time reflected and diffracted fields from perfectly
conductive buildings’ walls and the road surface (|R,| = | Dl = |R,| = 1,
¢, = 0) at distances y > y,

2ny|(mnla’)r

In/=InC-Ilnr- (5.67)

(% = (mnla + illny|/a)’)"?

In the limit y = 0 formula (5.67) is not valid and a continuous transforma-
tion from the waveguide model to the free-space model does not exist. At the
same time our model gives good agreement with propagation effects in the
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Figure 512 (a) The total field intensity attenuation along the street waveguide for
x =02 and a = 10m. The circles and crests represent the experimental data
obtained in [25] for a city with high and low density of building, respectively.
(b) The same as in Figure 5.12(a}, but for y = 0.8.
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ideal unbroken plate waveguide for the case y = 1, where 7~ r', and the
cylindrical normal waves propagate along the ideal unbroken waveguide (21,
22). As seen from illustrations in Figures 5.12(a,b), the curves for the cases
X > 0.5 (in particular y = 0.8) are closer to the experimental data obrained
for a high building density (circles). The curves for the cases y < 0.5 (in
particular y = 0.2) are closer to the experimental data measured in the regions
with a lower building density (crests). At the same time, as seen from the
comparison between the theoretical prediction models and results of measure-
ments, the two-dimensional waveguide model obtained in [16, 17] does not
explain the two different laws of field intensity attenuation before and after
the break point observed experimentally [4-6, 24-28], because it does not
take into account the reflection from the ground, and, hence, has no continuous
limit (as has the three-dimensional model for the case y << 1) to the two-ray
model, which is usually used for understanding much experimental data in
L.OS conditions in urban and suburban environments [4-6].

Both theoretically and experimentally obtained results give exponential
attenuation of radio waves in the farthest zones from the source in LOS
conditions along straight streets in regular straight street plan urban areas up
to 2-3 km. Moreover, for experimentally observed ranges in the conditions of
direct visibility, when both receiver and transmitter antennas are placed at the
street below the rooftop level, we can use the nonregular multislit waveguide
model and with great accuracy approximate formulas (5.63), (5.65) to (5.66)
to estimate the propagation loss and break-point range at street level.

Summary

In this chapter we described the conditions of direct visibility between transmit-
ter and receiver, or LOS conditions, along the straight streets in situations
when both antennas, receiver and transmitter, are placed below the rooftop
level above the flat terrain. The conclusions which follow from the above-
presented multislit waveguide model can be described using a qualitative picture
of wave propagation along the street multislit waveguide. Figures 5.13(a,b) are
simple sketches that indicate the way in which the field strength of a vertical
electric dipole (with pattern angle ¢ = 7) may vary because of channeling
street orientation. For the simplest classical case of an unbroken perfectly
conductive waveguide {21, 22], the antenna pattern is not changed when the
wave travels along the waveguide (see Figure 5.13(a)). In the case of a real
street with randomly distributed walls (screens) and gaps (slits) the angle ¢ is
smaller than 7, because there exists losses of wave energy through the slits
(see Figure 5.13(b)). In the case of a multislit street waveguide, the angle ¢
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Figure 5.13 The simplified scheme of a continuous street waveguide {a); and of a broken
street waveguide (b).

can be obtained from results presented in [16-19]. According to the wwo-
dimensional waveguide model constructed in these works, the angle ¢ inside
the multislit waveguide at the half level of field intensity can be presented for
yla>>1 as:

@ =tan \(a - log2/yllogx|R,11) (5.68)

Here, as above, yis the distance from the transmitter along the waveguide;
a is the street width; x = (L) ((L) + (/)) is the parameter of brokenness, (L)
and (/) are the average values of screen length (L) and slit length (/;), respec-
tively; £ =1, 2, 3, . . . From (5.68) it follows that in the case of y/4 >> 1 and
X = 0 (propagation in free space) ¢ = 0. For the case y = 1 ¢ = ; that is,
we limit ourselves in this case to an ideal unbroken waveguide depicted in
Figure 5.13(a).

In the cases of radio communication along wide avenues or canyons with
building heights less than the street width in line-of-sight conditions between
receiver and transmitter, we obtained a good transition from the waveguide
model to the two-ray model, when both of them predict two-law decay of
field intensity before and beyond the break point. In the case of narrow streets
the two-ray model is not valid and only the multislit waveguide model predicts
an exponential attenuation of total field at street level in LOS conditions at
ranges up t 2-3 km from the transmitter. That is why, in various situations
along straight streets in LOS conditions the multislit waveguide model, more
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generally than the two-ray model, predicts the propagation characteristics in
an urban scene with different geometry of streets and for various street widths.

Moreover, because according to formula (5.65) the break-point range

depends on the geometry of the street, the buildings’ geometry, and their
distribution along the street, the scale of a microcell in LOS conditions is also
varied in different conditions along the street. Therefore, using the three-
dimensional multislit impedance waveguide model, one can predict the signal
loss and the effective scale of a microcell for various real situations in a straight
street scene in conditions of direct visibility (see Chapter 9).

(1]

(2]
(3]

(5]

[6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

References

Jacks, W. C., Jr., Microwave Mobile Communications, New York: John Wiley and Son,
1974, pp. 81-83.

Parsons, L. D., The Mobile Radio Propagation Channels, New York: Pentech Press, 1992,

Feuerstein, M. L., and T. S. Rappaport, Wireless Personal Communication, Norwood,
MA: Artech House, 1992.

Milstein, L. B., et al., “On the feasibility of a CDMA overlay for personal communications
networks,” [EEE Select. Areas in Commun., Vol. 10, No. 4, 1992, pp. 665-668.

Xia, H. H., et al., “Radio propagation characteristics for line-of-sight microcellular and
personal communications,” IEEE Trans. Anten. and Propag., Vol. 41, No. 10, 1993,
pp. 1439-1447.

Berroni, H. L., W. Honcharenko, L. R. Maciel, and H. H. Xia, "UHF propagation
prediction for wireless personal communications,” Proc. /EFE, Vol. 82, No. 9, 1994,

pp- 1333-1359.

Fumio, J., and J. Susumi, “Analysis of multipath propagation structure in urban mobile
radio environments,” JEEE Trans. Anten. Propagar., Vol. 28, No. 4, 1980, pp. 531-538.

Harta, M., “Empirical formula for propagation loss in land mobile radio services,” /EEE
Trans. Veh. Technol, Vol. 29, No. 3, 1980, pp. 317-325.

Ikegami, F., S. Yoshida, and M. Takahar, “Analysis of multipath propagation structure
in urban mobile radio environments,” [EEE Trans. Anten. Propagat., Vol. 20, No. 4,
1980, pp. 531-537.

Ikegami, F., T. Takeuch, and S. Yoshida, “Theoretical prediction of mean field strength
for urban mobile radio,” JEEE Trans. Anten. Propagas., Vol. 39, No. 3, 1991,
pp- 299-302.

Lee, W. Y. C., Mobile Communication Design Fundamental, New York: McGraw-Hill
Publications, 1993.

Rustako, A. }., Jr., et al., "Radio propagation at microwave frequencies for line-of-sight

microcellular mobile and personal communications,” JEEE Trans. Veh. Technol,

Vol. 40, No. 2, 1991, pp. 203-210.

Levy, A. J., “Fine structure of the urban mobile propagation channel,” Proc. Commsphere
91, Herzlia, Israel, Dec. 1991, pp. 5.1.1-5.1.6.



Propagation in LOS Conditions Along Straight Streets 22

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

[25]

(26]

(27]

(28]

(29]

Tan, S. Y., and H. S. Tan, “UTD propagation model in an urban street scene for
microcellular communications,” JEEE Trans. Electromag. Compat., Vol. 35, No. 4, 1993,
pp- 423-428.

Tan, S. Y., and H. S. Tan, “A theory of propagation path loss characteristics in a city
street-grid scene,” IEEE Trans. Electromagn. Compat., Vol. 37, No. 3, 1995, pp. 333-342.
Blaunstein, N., and M. Levin, “VHF/UHF wave attenuation in a city with regularly
spaced buildings,” Radio Sci., Vol. 31, No. 2, 1996, pp. 313-323.

Blaunstein, N., and M. Levin, “Propagation loss prediction in the urban environment
with rectangular grid-plan streets,” Radio Sci., Vol. 32, No. 2, 1997, pp. 453—4G7.
Blaunstein, N., R. Giladi, and M. Levin, “LOS characteristics’ prediction in urban and
suburban environments,” [EEE Trans. on Vehic. Technol, Vol. 47, No. 1, 1998,
pp. 11-21.

Blaunstein, N., “Average field attenuation in the nonregular impedance street waveguide,”
IEEE Trans. on Anten. Propagat., Vol. 46, No. 12, 1998, pp. 1782-1789.

Keller, J. B., “Geometrical theory of diffraction,” J. Opt. Sec. America, Vol. 52, No. 2,
1962, pp. 116-130.

Felsen, L. B., and N. Marcuvitz, Radiation and Scattering of Waves, Englewood Cliffs,
NJ: Prentice-Hall, 1973.

Balanis, C. A, Advanced Engineering Electromagnetics. New York: Wiley, 1989.

Handbook of Mathematical Functions, edited by Abramowitz, M., and [. A Stegun, New
York: Dover Publications, Inc., 1972.

Hughes, K. A., “Mobile propagation in London at 936 MHz,” Electron. Lesters,
Vol. 18, No. 3, 1982, pp. 141-143.

Stewart, K., and D. Schaeffer, “The microcellular propagation environment,” Proc. Symp.
on Microcellular Technology, Chicago, March 12-17, 1992.

Samuel, R. Y., “Mobile radio communications at 920 MHz,” Proc. of 2nd Int. Conf
Anten. and Propag., Heslington, April 13-16, 1981, Pt. 2, pp. 143-147.

Whitteker, J. H., “Measurements of path loss at 910 MHz for proposed microcell urban
mobile systems,” JEEE Trans. Veb. Technal, Vol. 37, No. 3, 1988, pp. 376-381.
Harley, P., “Short distance attenuation measurements at 900 MHz and 1.86 MHz using
low antenna heights for microcells,” JEEE Sel. Areas Comm., Vol. 10, No. 1, 1989,
pp. 7-16.

Turin, G. L., et al., “A sratistic model of urban multipath propagation,” /EEE Trans.,
Veh. Technol, Vol. 26, No. 4, 1977, pp. 358-362.



This page intentionally left blank



Propagation in NLOS Conditions
In Built-Up Areas With Regularly
Distributed Straight-Crossing Streets

We will now continue the subject of propagation characteristic prediction in
an urban scene in obstructive conditions over the flat-ground surface, returning
to the case of an array of buildings placed on a regular terrain. As is well
known [1-18], personal, local, and mobile communication service systems are
usually expected to employ base-station antennas and radio ports at street level
heights below the rooftops (i.e., in shadow zones for one or both working
antennas, receiver and transmitter). That is why, in this chapter, we consider
radio propagation loss prediction in the urban environment with rectangular
grid-plan streets.

In an urban scene with regularly distributed intersecting streets, it has
been observed that the buildings lining the streets work as waveguides, affecting
the propagation direction of the radio waves [1]. Tests described in [1, 2]
carried out in New York City indicate that the subscribers at the street level,
moving radially from the base station, or on the streets parallel to these, may
receive a signal 10-20 dB higher than that received when moving on the
perpendicular streets. This effect is more significant in the microcell area (up
to 1-2 km away from the base station), becoming negligible at distances above
10 km, that is, in the macrocell area [2].

As pointed out in [3-13], it is very difficult to obtain a strict theoretical
treatment of this channeling phenomenon. At the same time, the simple
approach of representing the relative field strength by the density of arrows
along the various streets indicates only the way in which field strength may
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vary in an urban area because of street orientation, but not the real field strength
distribution between streets and their intersections [4, 9]. Using this approach,
the total path loss at the crossing-street level is a simple arithmetic summation
of path loss at the radial street where the base station is located, and of path
loss from the intersection to the side street, that is, L7 = Lz + Lside (6]
Experiments carried out in [11, 13] in the crossing-street area of Central
London at 900 MHz and 1.7 GHz have shown a complicated two-dimensional
shape of microcell coverage, similar to a Christmas tree with the base station
near the foot of the tree (see Figures 6.1(a,b)). This complicated redistribution
of field energy among the rectangular crossing streets cannot be understood
using a simple geometric optic model, even taking into account diffraction
from the building corners [7, 8].

In Section 6.1, when both antennas are below the rooftop level, we
describe a two-dimensional crossing-waveguides model which is based on the
preliminary results obtained from the two-dimensional multislit waveguide
model presented in Chapter 5. This does not take into account reflection from
the road to describe the radio wave propagation along the street in LOS
conditions, or the results of detailed examinations of clutter conditions in an
urban scene with a grid-streets plan, presented in [12]. The average intensity
of signal decay in the intersections between streets and along the crossing streets
is examined. The theoretical predictions were verified by path loss measurements
obrained both by the communication group of Tadiran Telecommunication
[12] and by other investigators (see {11, 13]). Section 6.2 describes the two-
dimensional multidiffraction-deterministic model evaluated in [18-21] for the
prediction of radio propagation loss characteristics in the urban environment
with regularly distributed rows of buildings. In Section 6.3, comparisons
between the two-dimensional waveguide model and the two-dimensional multi-
diffraction model—as well as with experimental data—are presented for pre-
dicting coverage effects. The construction of radio maps in urban areas with
clutter conditions for both antennas placed above the flat-ground surface is
also presented.

6.1 Two-Dimensional Crossing-Streets Waveguide Model

6.1.1 Modeling of Urban Areas With Rectangular Crossing Streets

Let us consider, as in Chapter 5, that the buildings on the street are replaced
by randomly distributed nontransparent screens with scales L,; the gaps
between the buildings (slits) are defined as /,,, n = 1, 2, 3 . . . (see Figure 6.2,
the radial waveguide /). The laws of their differential distribution are postulated
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Figure 6.1 (a} The coverage effect in Central London obtained experimentally in [11]; (b} The coverage effect in Central London obtained
experimentally in [13].
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Figure 6.2 A two-dimensional model of the crossing-street waveguides; the coordinates
of source are y=0and z = h; a and b are the radial and side street widths,
respectively.

according to (5.1) (see Chapter 5) as independent and exponential with mean
values (L) and (/) respectively.

Such a broken impedance radial waveguide with randomly distributed
buildings along the street models a city streer with receiver and transmitter at
street level below the rooftops. One radial waveguide plane is placed at the
waveguide side z = 0, and the second one at z = 2 (4 is the street width, see
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Figure 6.2). We also assume that a vertical electric dipole, the active transmitter,
is placed in the yz-plane with coordinates z = 4; y = 0, where 4 is the transmitter
location at the road. The same conditions are assumed for the crossing (side)
waveguide (which is noted in Figure 6.2 by sign /I) with screen and slit lengths
L, and [, respectively, m = 1, 2, 3, . . . One side waveguide plane is placed
at the waveguide side y = 4, and the second one at y = d + & (6 is the side
street width, see Figure 6.2).

Taking into account that all dimensions are much greater than the radia-
tion wavelength, A, we use the approximation of the GTD for rays reflected
from the walls and building corners. We also present the resulting field as a
superposition of a direct wave field from the source, fields reflected from the
walls, and fields diffracted from the building edges [12]. As mentioned in
Chapter 5, for most measurements in the UHF/L-band, the conditions of
GTD are true for distances 4 < 2-3 km [7, 8, 16, 18, 19, 22].

In order to calculate the total field from the source, as in Section 5.1,
we substitute for each reflection from the walls an image source I1; (for the
first reflection from the left-hand walls of the street waveguide) and I1,, (for
the first reflection from the right-hand walls), where # is the number of the
reflections (as schematically presented in Figure 6.2). According to the approach
proposed in [12] and presented in Section 5.3, we also introduce the zelegraph
signal functions, f1;(y) and f13(y) for the radial waveguide, and f;;(2z) and
f22(2) for the side waveguide. These equal one when reflection from the walls
(screens) takes place, and zero when rays pass through the spaces berween the
buildings, that is, fall into the slits of the waveguides. Thus segments with
A:i(») = 1and f3,(z) = 1 represent screens, including cheir edges, but segments
with f1;(y) = 0 and f3,(2) = O represent slits, 7 = 1, 2 (see Figure 6.2).

The real electric properties of building walls (screens) are defined by the
surface electric impedance Z gy ~ e 2 € = €y - idmolw where:

€ is the dielectric permittivity of the wall surface,
€¢ is the dielectric constant of vacuum,

o is the electric conductivity of the wall surface,
w is the angular frequency of the radiated wave,
w = 27f,

fo is the frequency of the radiated wave.

6.1.2 Average Field Strength in the Crossing-Street Waveguide Model

Field strength inside the primary radial street. To calculate the average total field
along the radial street multislit waveguide we, as in Chapter 5, rake into account
the exponential walls (screens) and slits distributions (6.3), the harmonic time-
dependence of the electromagnetic field, and the definition of the horizontal
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electric dipole field using the Hertzian potential vector I (x, ¥, 2) according
to formulas (5.3) to (5.4).

To now obrain the total field inside the primary broken multislit wave-
guide, we must use the procedure of field averaging by means of the properties
of “telegraph signal” functions f1;(y) and f3;(2) introduced in Chaprer 5.
According to some straightforward calculations presented there, we can finally
rewrite the formula (5.36) (Chapter 5) for the spectrum of the 7-times reflected
and diffracted field for the case of two-dimensional multislit waveguide model:
for z < A

0,8 2) = H(ZB )fo GK) (R ypexpliKs) + expliKa))
I — x"Rypexp(2iaK) (6.12)
x [Ryexp(iK(a— h) + exp(—iK(a— MR TE] + | Dpunl)
for z> b:
(B, 2) - —BLXPUKD) b o (ike) + expl(—ike)]

1 - XZR%"ECXP(ZI}Z]() (6”))
X [Rrgexp(iK(a — b)) + exp(=iK(a — MBI Rl + 1D pn]

Here, as in Chapter 5, we assume that the formulations of diffracted
waves are similar with those obtained for reflected waves and in which the
reflection coefficient R 1x of each reflected ray from the screen (wall) is simply
replaced with a diffraction coefficient D, (m =1, 2, 3, .. .) for each dif-
fracted ray from the wall’s edge [14, 17, 23-25]. The coefficient of reflection
for each reflected waveguide mode, R 7, is presented in Chapter 5 by formula
(5.44). As for the diffraction coefficient, D,,, its expressions are very compli-
cated and are mostly presented in the literature (for example, referenced in
[14, 17, 23-25]). All other parameters in formulas (6.1a) and (6.1b) are
described in Chapter 5; x = (L)/({L) + {/}) is the parameter of brokenness.

In (6.1a,b) we combined the reflected and diffracted waves with the direct
wave (LOS component) from the source. To obtain the total average field
along the radial street we will use for (6.1a,b) the inverse Fourier transform
on coordinate y. Let us consider, for example, the case z > A, for which we
obtain the total field inside the radial waveguide:

H[(y, z) = (D/W)fdﬂ[exp(—iﬂy)/[(] cos[K(a— z) — (i/2)In|Rrex|]

(6.2)
cos[Kh = (i12)In| Ryex ]
sin[Ka — iln|R1gx|]

[IRTEI + |Dmn”
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As shown in Chapter 5 for a broken-impedance multislit waveguide,
formula (6.2) contains two terms. The first term in (6.2) represents the con-
tinuous part of the total field spectrum, I, which can be presented by for-
mulas (5.57a) and (5.57b) in Chapter 5. The second term in (6.2) repre-
sents the discrete part of the total field spectrum, Il,. It can be presented
by formulas (5.46) to (5.48) in Chapter 5. As an example, in Figure 6.3, for
parameters x = 0.5, |R7g|=0.75, the total average field intensity
J =My = ((I1, + TL){I1, + I1,)*)/; (continuous curve), relative to the
intensity in free space /g, the intensity of each normal mode of discrete spectrum
Jn (dotted curves), and the continuous spectrum of total field intensity /,
(continuous curve), are presented versus the relative distance y/a along the
main radial waveguide for » =1, ..., 20. As can be seen, the continuous

M =05 a=20m; |R |=0.75

Figure 6.3 The total average intensity / loss relative to the intensity in free space /g
inside the radial waveguide versus the relative distance y/a; J, is the
discrete spectrum, J, is the continuous spectrum of total intensity J; y = 0.5,
a=20m, (Ryg( = 0.75.
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part of the total intensity is attenuated more quickly (as a spherical wave) than
that of discrete modes (which propagate as normal cylindrical waves) with
increase of distance y along the street waveguide, and their superposition gives
the total field intensity J along the radial waveguide, which is attenuated at
long distances y >> 4 as a cylindrical wave inside the main waveguide.

In the case of a perfectly conductive continuous radial waveguide
(x =1, |R7g| = 1), the process of wave propagation inside it is continuously
limited to the classical case, when normal modes propagate without attenuation
(23, 25].

Average field strength in the side waveguide. Let us now assume that the
second (side) waveguide crosses the radial waveguide at a distance y = 4 from
the source and has width & (see Figure 6.2). We will consider the excitation
of electromagnetic waves from the radial waveguide inside the crossing wave-
guide. The process of wave propagation is described by the following wave
equation:

ATy, 2) - 17y, 2) = £y, 2) (6.3)

or, using the Fourier transformation on coordinate z, by:

o ]
4 4 Z=d _ .
———(—l(g 27) v (B = P, Yien = s @explival (6.4)
y

Nz -
where f(y, a) = a_ziazy_a) + (2 = ) is the radiated “source” created by

the electromagnetic field inside the main radial waveguide I at the plane
z=a.

Taking into account (6.2) describing the average field scrength inside the
radial waveguide I, we can obtain

My, 2 - a) - (iDI2m(x R j dBlexpl-iByl/K]
—o0 (6.5)

cos(Kh — (/2)In| xR ¢l]
sin(Ka— inlyRopl)  R7EN+ 1Dwll
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Miz-a) . T |
T ek | dpespl-igy)
—oo (6.0)
cos[Kh — (i12)In| x R7z1]
sn[ka — dnlxRppl] LRTEL+1Dm]
Finally, (6.4) can be presented as follows:
'y,
0. v ' ) = E(a ) (6.7)

8y2
where 1]2 - ‘y2 and

cos[Kh ~ (1/2)In| ¥ R1¢]]
sin[Ka — in| Y R7£l)

F(y, y) = (DI2@(R7e X)) f dBexpl-By}
g (6.8)

X URTel + 1Dy |1(1 = ¥/K)

Let us now construct Green’s function for (6.7) which satisfies the equa-
tion

Iy, v

Syt 7T (y, ¥) = 8(y - y0) (6.9)
Y

with the following boundary conditions:

2 i

0P s zn, (6.10)
dy

Here, signs “+” and “-" satisfy boundaries y = 4and y = 4 + 4, respec-
tively (see Figure 6.2). The coefficient Z; is the wave impedance inside the
crossing waveguide, which characterizes the wave properties of the broken
multislic waveguide. Its expression can be easily evaluated using the same
procedure as for wave impedance Z; inside the radial waveguide (see [12)).

Thus for z = a
Zy = ~qcot{(:/2)In| ¥ R1x]] (6.11a)

forz=10
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Zy = —ncot[na — (i/12)In| xR y£|] (6.11b)

The solution of (6.9) can be found as follows:

1_[”()/, y) = Aexp(iny) + Bexp(=iny) (6.12)
Then
al—[l[ ,
—% = in{Aexp(iny) + Bexp(-iny)] (6.13)

If the coordinate y = yq is the coordinate of some image line of observation
inside the crossing waveguide Il, as in Figure 6.2, Green’s function can be
constructed using the following expression [23, 25]

for y < yo:
G(y, y0) = (UDI(»5(50) (6.14a)

for y > yg:
G(y, yo) = DI (315 () (6.14b)
Here is the second-order determinant I = TTY agz ny agly‘ The com-

ponents and their derivatives can be obtained using expressions (6.11) to (6.13)
for theranges 4 < y < ygand y < yp < d + b, respectively, and from the bound-
ary conditions (6.10). Thus for y = 4, thatis, d< y < yg < 4 + b, from (6.10)
and (6.12) and taking into account (6.11), one can easily obtain the field
component in the region 4 < y < yg:

N7 = —Bysin[n(y - d) — (#/2)In| xRz (6.15a)
where B = Bexp(—imd)exp[—i(i/2)In| xRyl

In the same way, for the range yo < y = d + b, that is, for y = 4 + b,
the field component Hz has the following form:

¥ = Aysin[n(d + 6 - y) = (i2)In| xRz (6.15b)

where A| = 2idexplin(d + b expli[=(i/2)In| ¥ R7£l]}.



234 Radio Propagation in Cellular Networks

Using (6.15a) to (6.15b) and their derivatives, we can obtain the second-
order determinant as

=—A]B]7]Sin[ﬂb— ilanRTE” (6.16)

Finally, Green’s function can be presented in the following form:
ford< y< y

- nsin[néb — iln| yRyx) sin((d + &~ yo) = (i12)In| Y Ry¢|)

(6.172)

foryo<y<d+ b

i —d) - () InlxRrel] . _
_ S‘"“’;Zi“n[nb)_ l.fr’”;;l;l] e Gnld + b- ) - (il2)InlyRrel]

(6.17b)

Gy

Using (6.17a) to (6.17b), we can now obtain the Fourier transform of
the total average field inside the crossing waveguide as follows:

d+b

'y, ) - f &y Gy, VIE, ) 6.18)
d

where 3" and ¥” are the current variables of integration. Using Cauchy’s
theorem for F(y', y) in integral (6.18) for the pole points
K, = nmla + (ila)In| x R,7r| we can derive F(y’, ) as follows:

F(y', y) = Dexplivall(xR1e)"* Y, Ruri(Ky — ¥)
n=0 (6.19)

x cos[Kyh ~ (i12)In| R, 7ex 1)/ (=1)"af3, Q,

Here B2 = k% — K% Q, = {Ry7e — 2ikZ pp /LK% = (RZ 7)1} Intro-
ducing (6.19) into integral (6.18) and using Cauchy’s theorem once more for
the pole points hm = mw/b + (i/6)In| xR ,,7¢|, and the inverse Fourier trans-
form on the coordinate z, we finally obtain the expression for the total field
spectrum inside the crossing waveguide for the case < y < y:
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expliy,(z — @)} < exp{iB,d}
- 1/ Rn ( 71 m)
(xR 20 T Y )b,y m Qs

X cos(Kyh = (i/2)In| x Ry7el]sin(n n(y — d) = (i12)In| x R,y 7£|]

 [eliCn, + B -
i(Mm + Ba)

ﬂ],i(y, z) =—-Di

(6.20)

exp[(1/2)In| xR, 7]

expl=ilm + B -

s CXP[—(I/Z)lnIXRnTEIJ}
Here:

Y= (B = 92)% = YO0 + imm - InlyRrel16° YD

+ (1) [(ml6) + (in| Y Ryy7e ) /6)]} 6on
21
B =kt — KDY = B 4 imn - In| xR, 7lla* B

+ (U2 [(wnla)* + (In|yR,7l/2) )

where y(o) (k k- (17'771/17)2)”2 are the wave values of the principal normal

modes which are propagated inside the crossing waveguide II;

ﬂ(,,o) = (kz - (77'71/:1)2)”2 are the wave values of the principal normal modes
which are propagated inside the radial waveguide I. From (6.20) one can obtain
the expression for the average field spectrum inside the perfectly conductive
waveguide, that is, for the case Zgpr = 0 and Ryg = 1.

The relative average total field intensity, J (relative to the intensity
in free space /g at the distance y = 4 from the source) can be approxi-
mately presented as a sum of each normal mode II,,, in (6.20):
Jum ~ <, Il >, according to the approach proposed in [12]. Numerical

calculations of /and of the principal modes /,,,,, n =1, 2, .., 5 for various
m=5,.., 20, formed inside the main radial waveguide (continuous curves),
and high-order modes /,,,, n=5, .., 10, for various m = 1, . ., 5, formed

inside the crossing waveguide (dotted curves), are presented in Figure 6.4.
The principal normal modes (with numbers # < 5) of the radial waveguide
generate high-order modes into the crossing waveguide. At the same time, the
high-order modes of the radial waveguide (with number » > 5) generate the
principal modes inside the crossing waveguide (with number m < 5) which
are attenuated more slowly (see dotted curves in Figure 6.4) than high-order
modes (with m > 5), which were created by the principal modes of the main
waveguide (with # < 5) (see continuous curves in Figure 6.4). This is why at
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Figure 6.4 The total average intensity / loss relative to the intensity in free space /g into
the crossing-side waveguide versus the relative distance z/b; J,p is the
discrete spectrum of total intensity J; n, m=1,2, . .; y =05, a = 20m,

b =10m, | Ryl = 0.75.

large distances from the source, the additional effect of modes with numbers
n>5 and m< 5 is more significant than those with numbers » <5 and
m>5.

In Figures 6.5(a,b) both additional effects from the two kinds of mode
are presented relative to the total field intensity versus the range z along the



Propagation in NLOS Conditions in Built-Up Areas 237

A 10 5
2. fu@
10—1 B |=5j=1
7 o
5
3l
1=
-2 1 1 11 1 1 { 1 -

9 1L 1 L >
00 4 8 12 16 20 24 28 32 36 40 44 7
b

4 2, &
PRNACY

s i=1j=6

1 1 1 1 1 1 1 [ 1 1 1
0 4 8 12 18 20 24 28 32 36 40 44 }7
b

oy

Figure 6.5 (a) The normalized principal modes (f < 5} of the total intensity spectrum J(z}
inside the crossing waveguide versus the normalized distance, z/b from the
intersection for y = 0.5, @ = 20m, b = 10m, |R7g| = 0.75; (b) the same, as in (a),
but for high-order modes {j > 5).

crossing waveguide at a distance y > 4. As follows from Figure 6.5(a,b),
the influence of the principal modes inside the crossing waveguide, created
by the high-order waves from the radial waveguide, grows with increasing z,
but the influence of high-order modes inside the crossing waveguide, created
by the principal waves from the radial waveguide, falls. In the other words,
there is not a simple bisection of the total field intensity at the intersection of
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two crossing waveguides; a complicated redistribution of field energy berween
the normal modes is observed. More than half the total field energy penetrates
from the radial to the crossing waveguide. The amount of field energy which
penetrates depends on the width of both street waveguides and on the parameter
of brokenness (i.e., on the gaps between buildings), and on the electric properties
of building walls.

6.1.3 Comparison With Experimental Data

Let us now compare the theoretically obtained predictions with Tadiran’s
experimentally measured path loss along rectangular-crossing straight streets
in the investigated urban area.

The measurements were taken in the same small town of Kefar-Yona
(the conditions of experiments are described in detail in Chapter 5), where
the MGW system of Tadiran Telecommunications was under trial in the
conditions of rectangular grid-plan streets (see Figure 6.6). The omnidirectional
base-station antenna was located at a lower level than the buildings’ roofs, at
a distance of 4m—5m from the corner building surface, as depicted schematically
in Figure 6.6. The mobile omnidirectional radio-port antenna moved along
the streets in the middle of the road (positions II, III, IV, . . ., as depicted
schematically in Figure 6.6). The tested MGW system was operated in the
frequency band fy = 902-928 MH:.

The tested environment is a typical small urban region of three- to five-
story brick buildings with approximately uniform heights 4 = 8m—10m and
with a right-angle crossing-straight street plan (as schematically presented in
Figure 6.6). The base-station transmitter antenna was installed at the height
h7 = 6m-7m (i.e., lower than rooftop level). The moving radio-port antenna
was lower than rooftop level (4g = 2m~3m) and changed its distance from the
stationary base station in the range 10m—500m. The tested cell radius of such
an area estimated from measurements was approximately 1 km. Field intensity
measurements in dB relative to intensity in free space at the range
r = 100m were obtained to estimate the field intensity attenuation along
the crossing streets, taking into account actual dielectric properties of the
brick walls of buildings (with €g=15-17, o = 0.05-0.08 mho/m,
| R7e] = 0.73-0.81) and the real distribution of buildings (x = 0.5-0.6) along
the street level for the radial and crossing-street widths 2 = 20m and
& = 10m, respectively.

The measured relative intensity of received field in dB is presented as a
set of points near each curve in Figure 6.7 for the different cases: measurements
are at the main and first radial streets A} and A3, respectively, and at the first,
second, and third crossing streets B;, 7 = 1, 2, 3, respectively (which are noted
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Figure 6.6 The simplified scheme of a Kefar-Yona area as a rectangular-crossing street
grid. The main radial street, where the base station is located, is noted by A;;
other streets are noted by A; and B;, i=1, 2,. .. the positions of moving
radio port are noted by Roman numerals |, Il i, . . ..

in Figure 6.6). The main continuous curve in Figure 6.7 represents numerical
calculations of relative field intensity inside the main waveguide A according
to formulas (5.46) and (5.57) (Chapter 5). The dotted curves represent the
relative field intensity for crossing-street waveguides B; using formula (6.20)
and the side continuous curve represents the field intensity inside the first
radial street A;. Calculations were carried out for the following parameters:
a=20m,a; = b; = 10m; y = 0.5;| R7g| = 0.75. As seen from the comparison
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Figure 6.7 Field intensity loss along the crossing-street grid measured in dB in a Kefar-
Yona area using the notation depicted in Figure 6.6.

between theoretical and experimental results, the waveguide model, which
describes wave propagation along the radial waveguides using formulas (5.46)
to (5.57), gives an intensity loss (with accuracy of 2-3 dB) close to that obtained
experimentally in line-of-sight conditions, when both the base station and the
moving radio port are in conditions of direct visibility. At the same time the
two-dimensional waveguide model of rectangular crossing streets, proposed
above, gives results comparable to experimentally obtained data with a lower
accuracy of 3-5 dB. This also satisfies the real experimental conditions and
accuracy of measurements (with error of 1-2 dB). From comparison between
theoretical prediction and experimentally obtained data we notice that, with
an accuracy of 3-5 dB, we can use two-dimensional waveguide models for
microcell coverage and range predictions in urban and suburban areas with
rectangular grid-plan streets for distances of up to 1-2 km from the base
station.

6.2 Two-Dimensional Multidiffraction Model for Straight
Rows of Buildings

In obstrucrive {clucter) conditions the receiver or transmitter antennas (or both)
are placed in the shadow zones, when there are many nontransparent buildings
surrounding them, and placed as straight rows on the flat-ground surface. In
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this case the role of diffraction from the roofs and corners of buildings increases
and the total field depends not only on the reflected, but also on the diffracted
waves.

Let us consider, according to [18-21], that an elevated antenna (base
station) radiates a field that propagates in an environment with regular distrib-
uted nontransparent buildings with various heights 4; and different separation
distances &, (i = 1, 2, 3 .. .) between them. The height of the base-station
antenna, H, can be greater or smaller than the height of the first (near the
antenna) building, #; (see Figures 6.8(a,b)).

In the case where the base antenna is higher than the first building
(H > b, see Figure 6.8(a)), the radiating field propagates over the rooftops
by a process of multiple diffraction past rows of buildings. As all buildings are
nontransparent, the majority of the propagation paths cannot lie through the
buildings (according to Bertoni et al. [18-21]; path 4 in Figure 6.8(a)). More-
over, when there is propagation between buildings the rays reflected from the
ground after a second diffraction from the roofs (path 3 in Figure 6.8(a)) are
quickly attenuated (according to the estimation obrained by Bertoni et al.
[18-21]). As a result, the majority of the paths cannot be associated with
propagation between the buildings. The propagation over the rooftops involves
diffraction past a series of buildings with dimensions larger than wavelength
A, (i.e., h;, d;>> A). At each building a portion of the field will be diffracted
toward the ground. These fields can also be neglected [18-21} (rays in path
3 in Figure 6.8(a)). We therefore conclude, according to [18-21], that the
primary propagation path lies over the tops of the buildings, as indicated by
path 1 in Figure 6.8(a). The field reaching street level results from diffraction
of the fields incident on the rooftops in the vicinity of the receiving antenna.

Contributions to path loss. Treating the base station as a transmitter and
assuming that the receiver is at street level, we can obtain the path loss in dB
as the sum of the free-space path loss (see Section 2.3)

2
Ly=10 log(@> (6.22)

and excess loss L,,. The last can be presented as the sum of two parts [18-21]:
Part A: The diffraction of the fields at the rooftops before the receiver
down to the street level is

Lo =10 - log{(G1(On)/ Tk (1105 — 12T + 00} (6.23)

where /|(fp) is the gain of the receiving antenna pattern in the direction 8y
as represented in Figure 6.8(a), # = 27/A. Expression (6.23) was obtained in
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Figure 6.8 A scheme of a two-dimensional model of the urban region with regularly distributed rows of buildings in the case where the
transmitter antenna is higher (a) and lower (b} than the first building in the vicinity of its position (i.e., H> h and H < ).
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[18-21] for the case ay << #y. From the simple geometrical constructions
according to Figure 0.8(a) one can obtain: Oy = tan_l[(/)N— h,)/x] and
r={(hy— /J,)2 + x*]1"2. Here x is the distance between the receiver and the
last building, which is close to the receiver; 4, is the receiver antenna height.

Part B: The reduction of the field at the rooftop before the receiver as
a result of propagation past the previous rows of buildings

L. =10 - log{G, W? (6.24)

where (G, is the gain in the direction of the highest building edge visible
from the base-station antenna. As the result, the total loss is:
L= —(Ly + L, + L,;). In the case when the base antenna is Aigher than
the first building (H > Ay, see Figure 6.8(a)), parameter W can be presented
for small angle a = tan~![(H — Ap)/R] and for x << Raccording to [18-21]
as (see Figure 6.8(a)):

) (dy— w(R—dy + w)
2wkl - HY + (dy - w)]'2

(6.25)

1 1
. {mn-’[(/w— HYl(dy— w)] - 27+ tan [(hy — H)(dy - w)]}

In the case when the base antenna is lower than the first building
(H < by, see Figure 6.8(b)), one can use the same formulas (6.22) to (6.24),
but instead use (6.25) for parameter W to introduce for the same geometrical
conditions (see Figure 6.8(b)) the following expression for W:

W = 2.35{tan  (HI(dy = w)][(dy - w)/A)H%0 (6.26)

Formulas (6.22) to (6.20) present the unified two-dimensional diffraction
model constructed in [18-21] for prediction of radio propagation over and
below regularly distributed rows of buildings for various situations regarding
base-station antenna height (as is presented in Figures 6.8(a,b)).

Let us now present the formulas above in the form of an eguation of
straight line, as was done in Chapters 3 and 4. For this case we will simplify
the problem so that the rows of buildings are regularly distributed at flat terrain
with uniform building height 4 as a median value of rooftops, and with uniform
gaps between buildings x as a median value of this parameter. In general, in
a case using the formulas above, one can obtain the same equation of straight
line.

In this assumption, we present the free-space path loss formula as
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Lo=324+20log fy+20log R (6.27)

and excess due to the propagation over the rows of building excluding effects
of terrain curvature (that is, for actual radio traces with ranges less than 10-20

km) according to (6.23)
L, =689—-9logx—9logfy+ 18 log R— 18 log(H - 4,) (6.28)
and due to rooftop to street diffraction according to (6.24)
L, =-11.7 + 10 log r+ 10 log f5 + 20 log 6 (6.29)

where 6 = tan_l[Z(b—- h){x] is the angle presented in Figure 6.8, but for
uniform  distribution of buildings’ height, that is, 6y =6, and
r=[h- b)Y+ (12}

If so, one can present the formulas above in the straight-line form:
Liai=~(Lo + Ly + L) = Ly + 10y log R (6.30)
where the intercept:

L,=-89.6-121 log fo + 9 log x— 10 log r + 18 log(H — 4,) — ZO(léog 0)
3la

the attenuation slope:
y=38 (6.31)

So, as in Chapters 3 and 4, according to Bertoni, Walfisch, et al. [18-21]
one can obtain using formulas (6.27) to (6.30) that the signal decay due to
rooftop multidiffraction with the range between both antennas, transmitter
and receiver, for the equal conditions in the urban scene of consideration (for
L, = const), is ~R-38, (i.e., the same as was obtained earlier for rural and
residence areas by use of the empirical approaches (see Chapter 4)).

6.3 Prediction of Coverage Effects in an Urban Crossing-
Street Scene

Let us now compare the theoretically obtained formulas for clutter conditions
with Tadiran’s experimentally measured received signal power spatial distribu-
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tion (which in the literature is usually called coverage effects) in the urban area.
For the LOS conditions in our first estimations of path loss we used formula
(5.61) in Chapter 5. For clutter conditions for the moving radio port at the
street level, including intersections between streets, we used both formula (6.20)
obtained in (12}, formulas (6.22) to (6.24), and (6.26) obtained in [18-21].
We took into account that the base station antenna is lower than the top of
buildings surrounding it (see Figure 6.8(b)) in the real conditions of our
experiments. This was done to compare the crossing-waveguides model (CW)
for evaluation of field intensity attenuation inside the intersections berween
streets, using formula (6.20), with the two-dimensional multidiffraction model
(two-dimensional MD), using formulas (6.22) to (6.24), and (6.20), to estimate
loss characteristics in obstructive conditions for base-station and radio-port
antennas between straight rows of buildings (see Figure 6.8(b)). The comparison
between theoretical prediction according to the CW-model and the two-
dimensional MD-model and measurements, schematically sketched in Figure
0.6, is presented in Figure 6.9, as a diagram of difference, A, in dB, between
experimental data and theory for frequency fj = 930 MHz inside the radial
street A; and three crossing streets B, 7 = 1, 2, 3, relative to the main road
A, in which the base station is located (see Figure 6.6).

As can be seen, the CW model (the segments on the left side of each
column) is closest to the experimental results, with an accuracy of 2-3 dB,
compared with the two-dimensional MD model (the segments on the right
side of each column), with an accuracy of 3-5 dB, only for the crossing streets
which lie close to the main road. As for the radial streets and the crossing
streets which lie far away relative to the main road, the two-dimensional MD
model is more accurate: it is close to experimental data with an accuracy of
2-3 dB, but the CW model has an accuracy of 3-5 dB. This is why, for further
comparison with the experimental data, we used the formula (5.63) or (5.61),
because they are closer (see Chapter 5) to describing LOS conditions between
both antennas, the formula (6.20) for loss prediction inside the closed junctions
with the main radial street, and formulas (6.22) to (6.24), and (6.26) to describe
clutter conditions along the streets farthest from the base station, which is
lower than buildings’ roofs.

From the net of measurements the diamond-shape of coverage curves
(called radio map) of field intensity attenuation in the Kefar-Yona area was
obtained. The curves obtained experimentally and those from theoretical predic-
tions according to formulas (5.61) to (5.63), (6.20) and (6.22) to (6.24) and
(6.26) have shown that the coverage curves are elongated along the main road,
where the base station is located.

We also notice from comparison between experimentally and theoretically
obtained values of signal-power loss that for urban areas with a sufficient
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Figure 6.9 The comparison between theoretical prediction of path loss in dB according to the crossing-waveguide model described by
formula (6.20) and the two-dimensional muttidiffraction model [18-21] (described by formulas (6.22) to (6.24), and {6.26)) and the
experimental data.
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shadowing between receiver and transmitter when the transmitter antenna is
lower than the rooftop level, we can use formulas (6.22) to (6.24), and (6.26)
with great accuracy (of ~3-5 dB) at ranges from 500m to 2 km from the base
station (micro-cellular propagation conditions, see Chapter 1).

Summary

In the propagation of radio waves in urban and suburban areas with regularly
distributed rows of buildings placed in a regular layout, and with the transmitter
and receiver antennas elow the rooftops’ level, the unified theoretical approach
developed by Bertoni et al. [18-21] can be successfully used for estimations
of field-intensity attenuation and coverage effects in obstructive (clutter) condi-
tions taking into account the real distribution of their heights and the gaps
between them.

At junctions between the straight streets the crossing-waveguides model
[12] predicts (with the accuracy of 3-5 dB) the signal loss along the crossing
streets near the intersections at ranges of 100m-200m from junctions for both
antennas below the rooftops’ level. By using the two-dimensional crossing-
waveguides model one can obtain a good explanation of experimentally observed
wave loss characteristics with the distance from the base station, the real
redistribution of field energy at the intersections of crossing waveguides, and
the cell coverage in such urban and suburban areas.

Using the two-dimensional crossing-waveguides model we, as in Chapter
S, present below a qualitative picture of wave propagation along the street
multislit waveguide. Figure 6.10 is a simple sketch that indicates the way in
which the field strength of a vertical electric dipole (with pattern angle
@ = ) may vary because of channeling street orientation. The simplest cases
of an unbroken waveguide and of a real street with randomly distributed
buildings along it were discussed in Chapter 5 (see Figures 5.13(a,b)). Now
we will consider two rectangular-crossed broken waveguides (as sketched in
Figure 6.10). In this case the redistribution of field intensity from the source
depends on the relation between the antenna pattern angle ¢ and angle ¢
which defines the area of observation from the source as the intersection of
waveguides (see in Figure 6.10). For yo >> 4, we can estimate this angle as
wo = alyy. If @ < @q, the effect of the street brokenness is not significant and
only a small part of the source energy penetrates the side waveguide (noted
by II in Figure 6.10). That is, the intensity loss is small and at the same
distance y from the source inside the radial waveguide (noted by I in Figure
6.10) with the intensity /= /. In the case when ¢ = ¢, some energy of the
source penetrates into the side waveguide Il from the main radial waveguide
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Figure 6.10 The simplified scheme of the rectangular crossing-street waveguides.

[. The amount of energy loss depends on the parameter of brokenness in the
main radial waveguide and on the distance from the source (i.e.,
J =Joe{x;> y0) < Jo, where (), yo) is presented by (5.68) (see Chapter 5)).
For the case ¢ > ¢y, the waveguide modes, propagating along radial waveguide
I, easily penetrate into the side waveguide II. The field intensity loss now
depends on the gap distribution between buildings into both waveguides (i.c.,
J =Joelx yo)elxa, 2) << Jy, where ¢(x2, 2)) is presented by (5.68) in
Chapter 5, but for the side waveguide. Moreover, as we have shown in Section
6.1.2, the low-order wave modes in the radial waveguide I generate high-order
wave modes in the side waveguide II and, conversely, high-order wave modes
in a radial waveguide generate low-order wave modes in a side waveguide. This
is why the total field intensity of the main waveguide cannot be simply divided
into two equal parts at the intersection of two crossing waveguides, as was
done in [6, 9). The redistribution of wave energy near each intersection inside
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the rectangular grid-pattern of crossing streets depends on the processes inside
each waveguide and on the parameters of brokenness, that is, on building
distribution in each radial and perpendicular street waveguide inside the grid.

In the inverse case, when antennas are placed at the rooftops level or
higher, only the multidiffraction model [18-21] can be used for predicting
field intensity attenuation in clutter conditions, including intersections between
the straight streets.

The above observations enable us to conclude that both approaches
presented in Chapter 6 can be successfully used for the prediction of personal
and mobile communication channels in obstructive urban and suburban envi-
ronments which have a grid-plan of crossing-straight streets for microcells with
effective sizes of not more than 2-3 km, using the real distribution of building
heights and the gaps between them.
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Propagation Over Built-Up
Irregular Terrain

In Chapter 4 we dealt with propagation models that describe how irregular
terrain, which characterizes the rural environments containing obstructions
such as hills and trees, affects VHF/L-band propagation. Some of these models
adequately describe the situation in the urban scene, mostly in the suburban
areas, where effects of foliage, usually negligible in city centers, can be quite
important. At the same time, the effects of trees are similar to those of buildings,
introducing additional path losses and producing spatial signal variations.

This chapter deals principally with propagation in built-up areas, when
both terminals, transmitter and receiver, are located at the street level and one
or both of the terminal antennas are lower than the buildings surrounding
them. Earlier, in Chapters 5 and 6, we considered the same situation when
both antennas were located in LOS and NLOS conditions at the street level,
but assumed that streets and building rows were regularly distributed on the
flat terrain. Now we will consider the situation where buildings are randomly
distributed over irregular terrain, as a main case of city topography. We also
present more actual and specific models that describe the propagation phenom-
ena within the urban communication channel and predict the loss characteristics
within it.

Before starting to describe these models it is important once more to
point out that there is no general method or algorithm that is universally
accepted as being the best prediction model. Each model can be useful for
some specific cases in the urban scene and the accuracy of any particular
technique or algorithm in some specific situation depends on the fit berween

253



254 Radio Propagation in Cellular Networks

the parameters available for the area concerned and the parameters required
by the model.

We shall begin with simple empirical and semi-empirical models, which
are based on numerous experimental data and are concerned mostly with
predicting average field strength or path loss in cellular urban and suburban
environments for radio paths less than 5-10 km. Some of the models presented
below can be successfully used for the description of propagation phenomena
over rural and mixed environments for radio paths exceeding 10 km.

1.1 Empirical Models

7.1.1 Young's Propagation Prediction

Young did not develop a specific model or prediction technique; he carried
out a series of measurements in New York City at frequencies from
150-3700 MHz [1]. Analysis of experimental data obtained by a moving
vehicle in the city streets showed that the path loss was much greater than
that predicted by the flat-terrain model (see Section 3.2). The tendency of
path loss to increase with frequency was observed experimentally. In fact, as
follows from some of his results shown in Figure 7.1, there is a good correlation

60
70
80
90
100
110
120
130
140
150
160
170

0.1 02 03 0507 1.0 2 3 45 7 10 20 30
d, miles

Loss, dB

U S N W WY A

Figure 7.1 Measured path loss at 150 MHz in Manhattan and the Bronx.
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between measurements and the flat-terrain model that gives an inverse fourth-
power law of signal-strength decay. If so, the dependence of path loss versus
range between transmitter and receiver, taking into account the obstructive
conditions in built-up areas, can be presented in terms of the Egli empirical
model (see Section 4.3) as

2
hrh
Lsg = GTGR< TZR) "B (7.1)

r

We must note once more that here and in the following text we put
notations A7 and hp for description of transmitting and receiving antenna
heights, respectively. But actually these notations are relative, because in wireless
communication systems each vehicle can simultaneously operate as the transmit-
ter and the receiver. In (7.1) B is the factor which is called a “clutter factor”
and which represents losses due to buildings. It can be obtained from lines
presented in Figure 7.1. In fact, for the 50% line and for 150 MHz, as follows
from Figure 7.1, the parameter B is approximately 25 dB. The same path loss
is plotted in this picture that was not exceeded at 1%, 10%, 50%, 90%
and 99% of locations within the tested area. It was obtained from Young's
measurements. However, Young did not state, and which follows from the
depicted curves, that the variability of the signal strength can be described by
a log-normal distribution.

71.1.2 Allsebrook’s Model

In 2], a series of measurements in British cities at frequencies between
75—450 MHz were reported to produce a propagation prediction model. One
of the cities had a hilly terrain and the other two had a smooth terrain. Figure
7.2 presents results of measurements at 167 MHz plotted as points. Here, too,
the fourth-power range law of signal decay is shown. It provides a good fir to
the experimental data. Where the terrain irregularity effects are negligible, the
flat-city model can be used:

Leg=Lpr+Lp+y (7.2)

where as in Section 4.2, L pris the flat-terrain pach loss, L g is the diffraction
losses due to buildings and 7 is the additional UHF-correction factor intended
for use if fy > 200 MHz. Comparison with (7.1) gives for this model
ﬂ = LB + Y.

For hilly and mountainous terrain the additional terrain losses must be
taken into account by introducing the diffraction losses L p, obtained using
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Figure 7.2 Average path loss between half-wave dipoles at 167.2 MHz.

the Japanese method (see Section 4.2), and combining them with other loss
components from (7.2). Then the “hilly-city” model, which reduces to the
“flat-city” model (7.2) if Lp — 0, is

Lo =Lps + (Ler—Le)* + LB v Lg+ y (7.3)

Here, as in Section 4.2, L g is free-space losses and L p is the losses due
to diffraction from natural obstructions such as hills, mountains, etc. The
diffraction losses from buildings L g were estimated in (2] using the geometry
presented in Figure 7.3, where the receiver is assumed to be located exactly at
the center of the street with effective width 2’ = ﬁ, where 4 is the real
width of the street. Figure 7.4 represents computations based on knife-edge
diffraction (Section 4.2) in an average street, compared with measurements of
clutter facror, 3. As follows from the picture, there is good agreement between
calculations and measurements only for lower frequencies, up to 200 MHz.
As follows from (7.3), the correction factor -y must be accounted at frequencies
greater than 200 MHz. Delisle et al. [3] have shown how to ignore this factor
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Figure 7.3 The street geometry for Alisebrook’s model.

v in (7.3) for UHF/L-band by introducing a new approximation for the
parameter L g that accounts for the effects of buildings:

(hg = hR)
548~/(a’ - 107) - fy

Lg=20 log[ ] + 16 dB (7.4)

where fj is the radiated frequency measured in MHz, Ay is the receiver antenna
height, and /A is the average height of buildings in the immediate vicinity of
the vehicle as a transmitter, and " is the effective street width in km (see
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Figure 7.4 Comparison between Allsebraok’s model and the experimental data for hy = 10m, hg = 2m, W’ = 30m.
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Figure 7.4). As was shown in [3], the diffraction losses L g are very sensitive
to the value of 4.

713 Okumura Technique

Based on numerous measurements carried out in and around Tokyo, Okumura
(4] proposed an empirical method of predicting the average power within the
communication channel “mobile-base station.” The method is based on a
series of curves describing the average attenuation A p,( £ d) relative to free
space for quasi-smooth terrain in an urban environment. We present the total
losses according to [4]:

Lso = Lps + Ag,(f, d) + Hyy(hr, d) + Hiy(hg, d) (7.5)

Here, as above, L £y is the losses in free space. The first correction factor
in (7.5), Ap,( f, 4), is expressed in Figure 7.5 as a function of frequency in
the range 100 MHz to 1 GHz and distance from base station (denoted by T)
in the range 1-100 km. The reference base station antenna height is
by = 200m, and the reference moving vehicle antenna (denoted by R) height

ARu(tvd)s dB d, km
70, 100
Urban area
ht =200 m 80
60t hr=3m
60
50
50
/ 40
/ 30
40 20
10
30 / 5
L / 2
/ 1
10 Y v v — T W U I VR |
100 200 300 500 700 1000 2000 3000

f, MHz

Figure 7.5 The basic average attenuation factor Apylf, d) versus the frequency and the
range between antennas.
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is g = 3m. The second correction factor in (7.5), H (b7, 4), is the base
station antenna gain factor presented in Figure 7.6 for the same reference
heights of both antennas, 47 = 200m and 4z = 3m. The third correction factor
in (7.5), Hp,(hg, d), is the moving vehicle antenna height gain that is
shown in Figure 7.7. Here once more, the reference antenna heights are
h1 = 200m and Ag = 3m. All corrections in Figures 7.6 and 7.7 are changed
in the positive and negative directions if the antenna heights differ more than
b1 = 200m and Ag = 3m.

For more complicated urban environments consisting of rough terrain,
such as: hills, mountains, vegetation, a general sloping terrain, mixed land-sea
terrain, etc., the following adjustments were introduced by Okumura [4] on
Lsp from (7.5):

LSIO =L50 +[‘SO+LTER+L5P+LLS (76)

Here, Lgg is the correction factor for suburban and open areas shown

in Figure 7.8. As shown in Figure 7.9, L r£p is the rolling-hill terrain correction
factor. As was mentioned in Section 4.2, the terrain undulation factor Ab, as

a terrain irregularity parameter, is defined as the specific height taken over a

Hy (hr,d), dB

30 .
d, km
Urban area 70 ~ 100
20} hy=200m 60
40
20
101} 1-10
]
d, km
10}
100—
20} 80 272=
70
60
.3050 N A e a2 b a2 2y
10 20 30 50 70 100 200 300 500 700 1000

by, m

Figure 7.6 The height gain factor Hr,(h7, d) versus the transmitter antenna height and
the range between antennas.
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Figure 7.7 The height-gain factor Hg,(hg, d) versus the receiver antenna height and the
frequency and type of area urbanization.

distance of 10 km from the receiver in the direction towards the transmitter
(see Figure 7.9). The correction factor for sloping terrain, Lgp, is shown in
Figure 7.10. It follows from the presented illustration that the average slope
parameter, angle @, can be positive or negative and is measured for generally
sloping terrain over 60 km, less than 10 km and about 30 km. The mixed
land-sea correction factor, Ly, is presented in Figure 7.11. It is determined
by the percentage of total radio-path length covered with water.

The Okumura approach is probably the most widely quoted of the
available models. It takes into account not only urban, suburban, and rural
environments, but also describes the effects of different kinds of terrain. All
phenomena and effects can be computed well in practice. However, it is rather
cumbersome to implement this model with all correction factors in a computer
because the data is available in graphical form. Thus, for computer implementa-
tion, data has to be entered in the computer memory in point-to-point form
and interpolation routines have to be written for intermediate computations.

7.1.4 Hata Model

In an attempt to make the Okumura technique suitable for computer implemen-
tation and easy to apply, Hata [5, 6] developed an empirical model to describe
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the graphical information given by Okumura. It is presented in Figures 7.5
to 7.11. His analytical expressions for average path loss, L5, for urban, subur-
ban, and rural areas are applicable only over quasi-smooth terrain and are
limited by certain limitations of input parameters and are in dB

Lsg = 69.55 + 26.16 log fy — 13.82 log A1 — a(hg) 7)
+ (44.9 = 6.55 log hr)log d '

where 150 < f; < 1500 MHz, 30 < /7 < 200m, 1 < hg < 10m, and
1 € 4< 20km. All parameters in (7.7) are the same as above in Section 7.1.3;
the function a(hg) is the correlation factor for mobile antenna height that is
computed as follows [5, 6]

for medium-size cities:

a(hg) = (1.1 log fy — 0.7)hg - (1.56 f; — 0.8) (7.8a)

for large cities:
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Figure 7.9 The rolling-hill terrain correction factor versus terrain undulation height.

a(hg) = 829 - (log 1.54 hp)* — 1.1,  f5 <200 MHz

(7.8b)
=32 - (log 11.75 hp)* — 4.97, f, > 400 MHz

For suburban areas:

2
Lsg = Lsg(urban) — 2[log(%)] - 5.4 (dB)

For open and rural areas:

(7.9)

Lso = Lsp(urban) — 4.78[log f5]* — 18.33 log fo — 40.94 (dB)  (7.10)
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Figure 7.10 The siope-terrain correction factor obtained from measurements and from
theoretical prediction.

As follows from the analytical relationships presented by Harta between
parameters of consideration, the corrections have been made for both suburban
and rural areas, where in (7.9) and (7.10), Lsg (urban) denotes the path loss
in an urban area according to (7.7) and (7.8). The last formulas also account
for the difference in correction function for small, medium, and large ciries.
The difference between such cities can be found in Chaprer 1, where these
definitions were made in the context of general-terrain classification. The path
loss difference for different built-up areas is presented in Figure 7.12, where
the average path loss at 900 MHz for /7 = 200m and /g = 3m has been plotted
versus the distance between two terminals in kilometers. The difference in
path loss is negligible for a small or large city, not exceeding 1-2 dB.

We must note that the Hata model does not include all specific corrections
available in the original Okumura method. Nevertheless, a comparison between
results given by Hata’s formulations and data obtained from Okumura’s original
curves for urban areas and for reference antenna heights 47 = 200m and
hp = 3m reveals negligible differences that, as follows from Figure 7.13, rarely
exceed 1-2 dB. Moreover, Hata’s analytical expressions are, of course, very
easily entered into a computer for computation.

7.1.5 Akeyama's Madifications

To use the Okumura method with Hata's expressions for prediction of commu-
nication channels in urban areas, one might ask if their approaches have been
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Figure 7.12 Average path loss versus distance from the transmitter.

adopted for different countries with various built-up profiles of terrain. In many
countries, the urban situation is far different from that in Tokyo. Okumura’s
definition of urban, based only on the architecture and building type in Tokyo,
may not be directly transferable to cities in North America or Europe. In
fact, the typical United States suburban environment lies bertween Okumura’s
definition of suburban and open areas.

One other problem that must be taken into account is that the correction
factor a(4g), which accounts for suburban, quasi-open, and open environments,
is a function only of the buildings in the immediate vicinity of the vehicle.
This factor is often more than 20 dB and cannot be objectively related to the
real heights and density of buildings. There also exists a principal question of
how Okumura’s factors can be applied direct to cities which differ from
Tokyo in their architectural style, construction, materials, and so on. Moreover,
comparison of Hata expressions for a built-up area with the deterministic
models described by Walfisch, Bertoni et al. in [7-9] (which is briefly presented
in Section 6.2) and in [9] (which is denoted in Figure 7.14 as the “flat edge”
model), shows that both in UHF/L-band propagation (955 and 1845 MHz)
the deterministic approach gives a better fit with experimental data than the
Hata model. The mean error from measurements for the deterministic approach
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Figure 7.13 Comparison between the Okumura measurements (points} and the Hata
prediction.

does not exceed 3-5 dB, whereas the Hata empirical approach based on
Okumura’s curves gives an error that exceeds 10-12 dB. To correct Okumura’s
curves, a new ground-cover factor that accounts for the degree of urbanization
was introduced by Akeyama et al. [10]). To produce the best fit between
experimental data depicted in Figure 7.15, a regression line was drawn according
to an additional factor S, introduced by Akeyama as a deviation from Okumura’s
reference median curve at 450 MHz:

S=30-20log a, 5% < a < 50%,
=20+ 0.19 log @ — 15.6 - (log a)z, 1% € a < 5%, (7.11)
= 20, a< 1%

Here, a is the percentage of the area covered by buildings in the built-
up area.
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Figure 7.14 Comparison between the Hata empirical model, the deterministic two-
dimensional diffraction model [7], the two-dimensional flat model {9], and
experimental data.

1.2 Specific Models Based on Special Semi-Empirical
Algorithms

Let us now discuss specific semi-empirical models that are based on the equation
of a straight line presented in the same manner as for the plane-terrain model
or the two-ray model, and on regression analysis to obtain the best fit between
prediction empirical technique and experimental data.

7.21 Walfisch-lkegami Model

This model gives a good path loss prediction for dense built-up areas such as
medium and large cities [11]. It is based on important urban parameters such
as building density, average building height, and street width. In this model
antenna height is generally lower than the average buildings’ height, so that
the waves are guided along the street.
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For LOS conditions, the path loss formula has the same form as the free-
space formula changing only constants before a well-known parameter, the
distance between terminals 4:

Lsg(LOS) = 42.6 + 20 log fy + 26 log d (7.12)
which can be rewritten by means of the familiar equation of a straight line as
Lsg(LOS) = Ly + 10y log 4 (7.13)

where L is the intercept and ¥ is the attenuation slope (see Section 3.2) that
can be defined as

Lo = 42.6 + 20 log f (7.14)
v=20

As follows from the free-space model in Section 2.3, ¥ = 2. Such a low
attenuation slope y = 2.6 (the distance dependence for receiving signal, d*°,
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obtained in [11] for the urban environment) was explained by the authors as
a result of the low antenna heights at the street level below the rooftops. But
this conclusion is in conflict with numerous experimental data obtained from
the straight measurements and two-ray model, all of which gives the slope
attenuation along the street beyond the break point as y = 4 ~ 7 that limits
the exponential attenuation obtained by use of the waveguide model (see
Chapter 5 for discussions).
As for NLOS conditions, the semi-empirical path loss formula is [11]:

Lso(NLOS) =324 + 20 log fo + 20 log d + Lpp + Lyp  (7-19)

where L gp represents rooftop diffraction loss, and L sp represents multiple
diffraction loss due to surrounding buildings. The rooftop diffraction loss is
characterized as

Lpp=-16.9 — 10 log Aa + 10 log fo + 20 log Ahg + L(0) (7.16)

where

Aa is the distance berween the vehicle and the building,
hg is the mobile vehicle antenna height,
L(0) is the loss due to elevation angle,

A/JR = bmof_ bR-

The multiple-diffraction component is characterized by the following
equation:

Lyp =Ko+ Ky + Ky logd + Kp-log fo—9loga  (7.17a)
where

Ky =~18 log(1l + Ahy)
K,=54 - 08Ahy, d20.5km
= 54 ~ 1.3Ah7, 4<0.5km (7.17b)
Ky =18 ~ 15(Ah1! hysep)
Ky = —4 + 0.7[( fo/925) — 1], for suburban
= —4 + 0.7[( fo/925) — 1], for urban

Where 4 is the street width, A7 is the base-station antenna height, 4, is the
average height of small buildings (b, < h7), b7 = hr— hrep. In the
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Walfisch-Tkegama model it was initially assumed that the base-station antenna
height is lower than a tall building but higher than the small buildings sur-

rounding it.

Combining (7.15), (7.16) and (7.17), one obtains
Lso(NLOS) = Lo + (20 + Kz) - logd= Ly + 10ylog d (7.18a)
where

Lo=32.4+ (30 + Kf) - log fo + 20 log Abg + L(0) — 16.9 — 10 log a
(7.18b)

¥ =(20 + K»/10 (7.18¢)

So, once again, the NLOS characteristics shown by (7.18a—c) exhibirt a
straight line with Lg as the intercept and ¥ as the attenuation slope. The
diffraction constant, K, depends on the surrounding buildings’ heights, which
vary from a few meters to tens of meters. Therefore, according to (7.17a), the
typical attenuation slopes in these built-up areas deviate from y =2 for
Abrl hroop = (b1 = hroof) hrogp= 1.2 to y = 3.8 for Dbl hyep= 0. Hence, with
an increase of base-station antenna height with respect to the surrounding
buildings’ average height, the field attenuation’s low limit is that in free space,
when vy = 2. Then we can present path loss (because L is constant for area
for consideration) as:

L(dB) < 10y log 4 (7.19a)

or in the linear case, as:

L(W)e<d?, y=2-38 (7.19b)

Because in a real situation in the urban scene, A/Jr/bm,,f< 1, the slope
attenuation parameter varies within the range y = 2.7 - 3.8.

[t is interesting now to compare both empirical models, the Hata model
and the Walfisch-Tkegama model for a dense urban area. Let us rewrite formula
(7.7) of the Hata model in the form of an equation for a straight line

Lso(LOS) = Lo+ 10y log 4

and raking into account (7.7b), we have that the intercept Ly and the path-
loss slope 7y are:
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Lo =09.55 + 26.16 log fo — 13.82 log hr— a(hp)

7.20

¥ = (44.9 — 6.55 log A7)/10 (7:20

For the typical base-station antenna height /7 = 6m-30m, the slope

parameter is changed from 4 to 3.5. Hence, we can once more present the
path loss and the signal power in dense urban area as

L(dB) e 10y log 4 (7.21a)

or, in the linear case, as

L(W)= d™, y=35-40 (7.21b)

We obtain from both empirical approaches approximately the same poly-
nomial signal-power decay with 2.5 < ¥ < 4 versus the distance from both
terminals in the case of dense urban areas.

7.2.2 The Ibrahim-Parsons Method

Using numerous measurements carried out in London at three operating fre-
quencies of 168, 445, and 900 MHz with a base-stanon antenna height of
46m above the ground, in [12], the equation of the straight line which gives
a best fit with the experimental data was empirically obtained for each operating
frequency. These equations were compared with the classical fourth-power
signal decay according to the “plane-earth” model (see Section 3.2). The result
of this comparison is presented in Table 7.1.

As follows from the results presented, the empirically obtained law of
signal-power decay varies from 473 up to 4+, To model the results obtained
from the measurements, two approaches were proposed in [12]. The first is

Table 7.1
Comparison of the Plane-Earth Model and the Best Fit From [12]

Prediction
Frequency Average Path Loss (dB) Error (dB)
168 MHz Best fit: 1, 6 + 36.2 - logd 53
Fourth law: —12.5 + 40 - logd 55
455 MHz Best fit: ~15.0 + 43.1 - logd 6.18

Fourth law: —4.0 + 40 - logd 55
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based on multiple-regression analysis to derive an empirical expression for the
path loss. The second one is based on the well-known plane-earth (or two-
ray) model. We will not present here all the details of the authors’ analysis.
The reader can read the original reference [12] for more details.

Empirical approach. Using multiple-regression analysis, called empirical
by the authors, the following empirical formula was obtained to describe the

path loss:

Lsg = =20 log(0.7h7) — 8 log hp + i:—?) + 26 log{—oo - 86 log(

f+ 100
156

)(7.22)

f+ 100
156

+ [40 + 14.15 log( )]log d+0265L—-037H + K

Here, factor K = 0.087U — 5.5 for highly urbanized areas, otherwise K = 0,
and parameters L, K, and U must be obtained for the concrete situation in
the urban scene from the corresponding topographic maps (the algorithm is
presented in [12]). The base-station antenna height is /7 = 46m, the moving
vehicle antenna height is A < 3m, and the distance between terminals varies
in the range 0 < 4 < 10km.

The semi-empirical model. This approach is based on the plane-earth
model with an added excess clutter loss, B. For each operating frequency, 168,
455, and 900 MHz, this value was computed and, then, related to the urban
environment factors, a best-fit equation for 8 was found. Finally, the following
model was proposed (which is different from that obtained in Section 3.2):

Lsy = 40 log 4 — 20 log(hrhg) + B (7.23)
where
,B=20+£—g+0.18L—0.34H+1( (7.24)

and K'= 0.094U - 5.9.

Here again, K is applicable only for dense urbanized areas, otherwise
K = 0. Comparisons with experimental data have allowed the authors to obtain
the prediction error by the use of each proposed approach, which they summa-
rize in Table 7.2.

As an illustration of B variations with an urban situation (with changes
of parameters L, U, and H), let us present B for a flat terrain (H = 0) at
frequency 900 MHz according to [12]:
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Table 7.2
Prediction Error for Two Models (in dB):

Frequency (MHz)

Model 168 455 900

Empirical 2.1 3.2 419

Semi-empirical 20 3.3 58 |
B=425+0.18L (7.25)

Here, if parameter L lies in the range 0%-80%, then 3 lies between
42.5-57 dB. This result agrees well with those obrained independently through
measurements, as seen in illustrations in Figure 7.16. Here, the best fit is
obtained for B = 49 dB. The two approaches have been compared with inde-
pendent measurements collected by Allsebrook [12] at 85, 167, and
441 MHz, and with the empirical model proposed by Atefi and Parsons [13]
which in completed form was presented by Parsons [14]:

170 Best fit

160}

150

140

130

120

Loss, dB

Flat terrain

110
100}
90
80 e ry 2 2 2 A e b
1 2 3 4 5 6 7 8 910
d, km

Figure 7.16 Comparison between measured and theoretically predicted path loss.
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Lsg = 82 + 26.16 log fy + 30 log 4 — 21.8 log 7~ 0.15 log hp + L4 (dB)
(7.26)

where L, represents the diffraction loss that can be obrained by use of the
Epstein-Peterson construction (see Section 4.2). The results of this comparison
between the different approaches are summarized in Table 7.3.

The proposed empirical models are quite successful and give the same
accuracy over a wide range of transmitted frequencies.

123 Lee's Model

This model was constructed to obtain UHF-band propagation characteristics
over irregular terrain by use of two approaches: an area-to-area algorithm and
a point-to-point algorithm [14, Chapter 3].

The area-to-area method. This approach is also based on the equation of
straight line presentation of path loss by use of the following parameters: (a)
average transmission loss at the range of 1 km, (b) slope of the path-loss curve
according to plane-earth model (see Section 3.2), (c) adjustment factor. In this
case, the average path loss in dB at distance 4 from the transmitter is given
by the following expression:

L50 = LO + lO‘ylog d+ FO (727)

Parameters Ly and 7 that were derived from experimental data are listed
in Table 7.4.

It follows from Table 7.4 that with the exception of Tokyo, the value
of y for urban and suburban areas is always close to y=4
(3.68 < y < 4.31), that is, the field intensity attenuates with distance as d
The experimental results on which Table 7.4 is based were obtained using a
transmission system with the following parameters.

Table 7.3
Comparison of Different Approaches
Frequency  According to Allsebrook’s Best Fit Ibrahim’s Best Fit
{MHz) (1.26) Straight Line Straight Line
85.87 97.4 + 38 - logd 98.0 + 38 - logd
167.2 105.0 + 38 - logd 101.0 + 38 - logd 106.0 + 38 - logd
a0 116.0 + 38 - logd 117.0 + 38 - logd 115.0 + 38 - logd
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Table 7.4

Path Loss Parameters for Different Areas:
j‘Area of Interest Ly ¥
j ;
Newark -940 431 |
Tokyo -1140 3.05
Philadelphia:

Urban -100.0 3.68

Free space -75.0 20

Open -790 435 |

The reference base station antenna 47 = 30.5m,

the operating frequency is fo = 900 MHz,

the transmitter power is 2 = 10W,

the base-station antenna gain with respect to a A/2 dipole is 6 dB (or in
linear scale, (4),

the mobile antenna height is 4z = 3m.

The adjustment facror Fy is introduced to compensate for the use of
different values of these parameters and is expressed as

FO = F] F2F3F4 (7.283)
The values of these various factors are given by

[Actual base station antenna height (m)]2

| =
(30.5m)’
[Actual transmitter power (W)]
F = o (7.28b)
[Actual gain of base station antenna)
F3 =
4
F [Actual vehicle antenna height (m)]2
4 =

(3m)*

Lee also suggests that the propagation effects of changes in transmission
frequency is ~( f/fy)", where according to Young [1] and Okumura [4] the
parameter n#is 2 < n< 3.

Point-to-point method. In this more refined approach, Lee takes into
account the terrain profile. In fact, according to [14], there are two possible
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reflection points as shown in Figure 7.17. As seen, the effective one is the one
closer to the mobile vehicle. From the geometry presented in Figure 7.17 one
can easily obtain the effective height 4, that can be greater (case (a)) or less
(case (b)) than the actual height above the local ground. Using the effective
ground height, Lee corrected (7.27) to

Ly = Lsg + 20 log(h,/30) (7.29)

where Lgg is described by (7.27) and 4, is in meters.

As the mobile moves from point A to point /, the effective height of the
base-station antenna, as follows from Figure 7.18(a), is also changed. The
separate evaluation of (7.29) has to be made at each of these points and hence
the term “point-to-point” has been used. Figure 7.18(b) shows the difference
between the point-to-point prediction algorithm and predictions for flat-subur-
ban terrain with y = 38.6 dB/decade (or in linear scale y = 3.86). For positions
of the vehicle from point Cto point G the value of 4, is greater that the actual
height above local ground surface, so here the predicted loss (according to Lee)
is smaller than follows from the plane-earth terrain model. Conversely, for
positions of vehicle at A and /, the value of 4, is less than the actual height
of terrain, and the predicted loss is higher. As was shown from additional
estimations obtained by Lee, the second approach, point-to-point, better pre-
dicts the variations of the terrain surface. In fact, the standard deviation to
predict the average path loss of the first algorithm (area-to-area) is 8 dB, but
in the point-to-point model it falls to less than 3 dB.

Type A Type B

Figure 7.17 Geometry of reflection from the hill surface for two variants of base station
and vehicular antennas location.
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Figure 7.18 (a) Hilly terrain contour and various positions of moving vehicle relative to base-station antenna. (b) Point-to-point prediction
compared with path loss slope.
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Figure 7.18 (continued).
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7.3 Deterministic Models

We will now discuss deterministic approaches that more effectively predict loss
characteristics in built-up areas sprawling over irregular terrain.

1.3.1 Parabolic Equation Method

This method was used by Janaswamy and Andersen [15, 16] to predict the
path loss in two-dimensional urban areas with buildings spread over rough
terrain, as shown in Figure 7.19. Here, the position of the transmitter (7,)
and the receiver (R,), as well as the terrain and building profile, are presented
assuming that the vertical walls of the buildings are absorbing nontransparant
screens and the roofs are flat and reflective. The ground parameters, €,, and
0, are different with respect to those for the walls and rooftops, €, and o.
Let us briefly discuss the subject of the computational technique proposed in
[15, 16].

The model description. This proposed technique is based on the standard
parabolic equation, which assumes a time dependence ~ ¢ *** according to [15,
16] and can be presented as:

QU(x, 2) i 3*U(x, 2)
o0x —Zko azz

(7.30)

where

Tx

Rx

(ergSg)

X

Figure 7.19 Geometry of propagation over irregular built-up terrain.
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Ulx, z) = \Jr * sin + exp{—ikox} E (r, 6), horizontal polarization (7.31)

-\ ':mg - exp{—tkox} - H(r, ), vertical polarization
0

is the reduced field variable in a spherical coordinate system {r, 8, ¢} with an
origin at the center of the earth. For the flat-terrain approximation the relations
between Cartesian coordinates {x, z} and spherical coordinates in a two-
dimensional plane are [15, 16]: x = R, * 8, and z = r— R,, where R, is the
radius of the earth introduced in Chapter 3. The transmitter is located
along @ = 0° as shown in Figure 7.19. In (7.31) the quantities £, and H
are the ¢-components of the electric and magnetic fields, respectively;
kg = w - \J€gug is the free-space wavenumber which is introduced in
Chapter 2.

The boundary conditions on the ground can be presented for the smoothly
varying terrain profile, for which the radius of curvature is much greater with
respect to wavelength, in the terms of the U variable for either polarization in

the form [16]:

ouU
35, ¢ tkgZsU = 0, at the terrain profile (7.32)

where Zs is the normalized surface impedance which depends on the ground
parameters and the angle of incidence of the wave with respect to the normal
r on the ground (see Figure 7.19). Equation (7.30) with boundary conditions
(7.32) was solved numerically by use of a split-step Fourier algorithm and
presenting the computational coordinates in the following form {15, 16]:

{=x, m=z-f(x) (7.33)

where f(x) is the terrain-profile function.
In the split-step algorithm, the field at the new range, x + Ax, was
obtained in terms of the field at the old range, x, as [15, 16]:

eim(rp%Ax) oo _& 1-
Ulx+ Ax, ) = & f e 2 Py (7.34)

2

—o0

x [ [+ T(p)e? e ™ Ulx, T)dr
0
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where m is the slope of the terrain between the two ranges. In (7.34) all spatial
variables are normalized with the wavenumber £g. The quantity I'(p) may be
interpreted as a complex reflection coefficient for a plane-wave incident on
sloping terrain and equals:

p-T
p+ T,

I'(p) = (7.35)

Here, I', = [ycos v + m(1 + cos »)/2 and I'y is equal to \/e_,( for horizontal
polarization and 1/\/?,: for vertical polarization, where the complex dielectric
constant €, is presented in Chapter 3.

The function within the square brackets in (7.34) is the eigenfunction
of the operator appearing on the right-hand side of the standard parabolic
equation (7.30). If the field variable goes to zero on the terrain (the first order
boundary conditions, see Chapter 2), we set I'(») = —1 and the eigenfunctions
reduce to sine functions. If the normal derivative of the field vanishes on the
terrain (the second order boundary conditions, see Chapter 2), we set
['(p) = +1 and the eigenfunctions reduce to cosine functions. In the inverse

ip*Ax
transform integral in (7.34) the exponential function e_'%_ is the free-space
propagator for the standard equation (7.30). A wide-angle parabolic equation
may be obtained by replacing the right-hand side in (7.30) with the pseudo
differential operator:

2
i/eo( 1+ —13 é)—izj— ]) (7.36)
ko z

As was shown in {15, 16], although the eigenfunctions of the wide-angle
parabolic equation remain the same as those of the narrow-angle parabolic
equation over flat terrain, a similar statement cannot be made over a sloping
terrain. It has not been possible to find the eigenmodes for the wide-angle
parabolic equation over a sloping terrain. In the split-step algorithm (7.34), it

s

is possible to replace the narrow-angle free-space propagator ¢” 2 with the
wide-angle free-space propagator e N1=2""D_ This replacement is rigorous
for the case of flat terrain, but at the same time, it is at best an approximation
over sloping terrain. This new propagator for the wide-angle parabolic equation
was used in [15, 16] to obtain the path loss over sloping terrain.

Numerical results. In all results of computation the actual field was normal-

ized to the field which would exist under free-space conditions. The first
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example shown in Figure 7.20 describes the situation in the urban scene when
a series of nontransparent screens (knife edges) are placed on a curved hill.
The shape of the hill is parabolic with a peak height of Sm and width of
203m. Other parameters about screens and frequency of operating are shown
in Figure 7.20. Results are given for the normalized field at the top of the
screens and are compared with the sloped-diffraction results described in [17].

29 29

203 m

PE (DBC)

f = 900 MHz

Normalized field, dB

1 2 3 4 5
Screen number

mh
~

Figure 7.20 The normalized path loss over screens placed on a parabolic hill.
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They are presented briefly in Section 4.2 for a similar screen profile, but,
without the ground.

As follows from Figure 7.20, good agreement between two theoretical
approaches with a maximum deviation of around 0.2 dB near the peak of the
hill is observed. Figure 7.21 shows another comparison obtained in {15, 16]
of a wide-angle approxiation according to (7.34) to (7.36) with a sloped-

Rx
|
|

Tx |
° 50 50 50 sol |
|
|
a8 |
|
|
|
100 50 50 50 25
0.,
10l PE (DBC)
g PE (NBC)
g -20} ° uTD
L%
g a0
|
E
[«]
Z 401
50}
-60
20 10

Distance, m

Figure 7.21 The normalized path loss over multiple knife edges by use of the wide-angle
numerical technique.
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diffraction approximation obtained by Andersen [17] (see also Section 4.2) for
propagation over multiple screens placed on flat terrain. A good agreement for
both approaches is also seen. It is interesting to note that all the presented
curves obtained for various boundary conditions (BC) are rather insensitive to
the exact nature of subsoil media. The terrain medium situations considered
in Figure 7.21 correspond to zero field on the terrain (first, called Dirichlet,
boundary conditions (DBC)), zero normal derivative (second, called Neumann,
boundary conditions (NBC)), or a mixture of the wwo (for € = 10,
o4 = 20mS/m). To compare both techniques used in [15, 16], the narrow-
angle and the wide-angle approximation, the normalized field calculated for
both of them satisfying the DBC on the terrain is shown in Figure 7.22. As
shown, there is good agreement between the two techniques except for the
deep shadow zone from the screens.

The wide-angle parabolic equation approximation was also compared
with results obtained with WISE which is a ray-tracing tool developed at Bell
Laboratories [18]. As follows from Figure 7.23, a transmitter of height 30m
is located at zero range where the terrain has zero elevation. In a test profile
two screens of heights 40m and 50m are located on a terrain with variable
topography, the numbers indicated in the picture for the terrain are its height
in meters; the maximum slope angle of the terrain is about 7.5 degrees, the
receiver height is 1.5m above the local terrain. The ground medium is assumed
to be perfectly reflecting, having a reflection coefficient of —1. In comparison
the authors have excluded regions close to the screens where propagation angles
are in excess of 45 degrees. Figure 7.23 shows good agreement between the
analytical and the ray-tracing models for propagation angles within 45 degrees.

The authors have also compared their approach with the four-ray approxi-
mation [10] (see also Section 4.1) for one screen placed on flat terrain and
with the UTD approach [19] for the case of a single rectangular building, and
have obtained good agreement between the different approaches. Also, for the
more realistic case presented in Figure 7.24, when instead of thin screens there
are rectangular buildings placed on flat terrain, the authors [15, 16] obtained
good agreement with the model that takes into account reflections from rooftops
(20, 21].

Here, in Figure 7.24, comparison between results obtained in [15, 16]
for two different boundary conditions on the terrain and rooftops is presented
together with results of computations for one knife edge. We see thar there is
a significant difference (of about 45 dB) berween two different boundary
conditions in the deep shadow zone. The field attenuation depends on the
dielectric properties of rooftops, and can vary within a wide range depending
on the construction materials of the buildings. As for the one knife-edge model,
its results lie between the two other limit cases.
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Figure 7.22 Comparison between narrow-angle and wide-angle techniques for
propagation over multiple knife edges.

The model presented here may be used in a real scenario in the urban
scene by generating two-dimensional results in several vertical planes about
the transmitter. The results of wide-angle approximation are accurate within
about * 45 degrees and are rigorous for flat terrain but approximate for
irregular terrain. Also, the results are good when the contribution by the lateral
propagating waves can be ignored. Furthermore, this technique allows us to
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Figure 7.23 The path loss versus distance from transmitter by use of the parabolic
equation {PE) technique and the ray-tracing tool (WISE).

obrain the total field in the situation when a receiver lies between two buildings
along the propagation path, namely, taking into account the first-order back
reflection by the building at the far end and summing it with forward-propagat-
ing waves (the reader can find more details in {15, 16]).

1.3.2 Multiple Knife-Edges Diffraction Method

This method can be considered as an extension of a two-dimensional model
of multiple forward diffraction over rows of buildings placed on flat terrain
(7-9, 22-25] in the case of rough (hilly) terrain (26] by use of a numerical
technique based on a Kirchhoff-Huygens integrals presentation of the diffracted
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Figure 7.24 The normalized path loss over rectangular buildings.

field (see all definitions in Section 4.1) for description of forward diffraction
past many absorbing half screens (knife edges).

Effects of the terrain profile. Figure 7.25 illustrates in cross-section rows
of houses that are equally spaced along parallel streets, with the streets running
perpendicular to the slope of the hills. It also describes the situation in an
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urban scene with the transmitting antenna at the same level as the maximum
height of terrain plus the building height. For area 1 in Figure 7.25, the path
loss can be estimated by use of the Walfisch-Bertoni model [7] (presented also
in Section 6.2), accounting for the terrain slope. Instead of the angle a, it
introduces in incidence on the rooftops the angle a; to the local tangent plane,
as indicated in Figure 7.25. In this case the path-loss ratio between isotropic
antennas, in watts at the receiver to watts at the transmitter, is given by

2
Prig = (ﬁ) PplQ(a)? (7.37)

The factor Pp is the diffraction loss from the last rooftop before the
moving vehicle is down the street (see Formula (6.61) as a first excess term),
and Q(a;) is the multiple-screen diffraction loss (see Formula (6.62) as a

second excess term) which can be presented as a polynomial function [7-9,
22-24]:

2 3
w w
Qlary) = 3502 - a7 - 3.327(a1\j;) + 0.962<a1\/%)

(7.38)

Here, w is separation between rows of buildings. By introducing the
dimensionless parameter g, = al\/; , one can show that the working range

of g,is 0.01 < g, < 1.00, because for g, > 1.0, the previous rows of buildings
have almost no effect on wave propagation and Q(a;) = 1. In region three
in Figure 7.25, one must account for the blocking effect of the terrain between
the receiver (vehicle) and the transmitter (base station) and must multiply the
loss (7.37) by an appropriate loss factor Pp to account for the intervening hill
losses. Figure 7.26 shows one possibility, to replace the real hill by an absorbing
knife edge or dielectric wedge [27, 28] (see also Section 4.1). In the case of
an absence of buildings on top of the hill, the blockage effect can be modeled

Tx

*
.

T Oy, e

Figure 7.25 The schematic presentation of rows of buildings on rolling terrain.

B
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Tx

Figure 726 The schematic presentation of diffraction by an isolated hill.

by a circular diffracting cylinder, as shown in Figure 7.27, whose radius best
fits the hill’s curvature. In this case, according to [26, 29, 30], Pp is the
diffraction loss for a cylinder, which is typically a function of the cylinder
radius R and the angle & between two tangent lines to the cylinder, one from
the transmitter and the other from the rooftop before the vehicle (see Figure
7.27). The value of Pp when buildings are present on the hill does not appear
to have been previously considered. Similarly, the field reduction in region
two of Figure 7.25 has not been previously considered and is even more
complex than the other regions due to the curvature of the ground surface.
The calculations were carried out for an isolated cylindrical hill with the
geometry presented in Figure 7.28 and with the transmitter as a line source
by using two techniques: (a) the Kirchhoff-Huygens approximation, as was

Tx

Figure 7.28 The schematic presentation of buildings on an isolated cylindrical hill.
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done in [22] by use of formula (7.37) numerical integration, and (b) the
creeping ray representation by a circular cylinder (ray-optics technique
(31, 32]).

In (26] the general formulas were obtained for a line source by accounting
for the spreading of rays in the directions perpendicular to the plane of incidence
for different locations of the vehicle. At points on the shadow side of a hill,
such as location two in Figure 7.25, the path-loss ratio between receiving and
transmitting power was obtained in the following form:

2
AN expl-2¢6
Pp,. = (E) —L, DuPp (7.39)

where R is the range between the base station (transmirtter) and the vehicle
(receiver), L is the distance from the transmitter to the hill along the ray that
is just tangent to the hill (Figure 7.25). The diffraction loss down to the vehicle
from the preceding building is given by Pp according to {7, 8, 22] (see Section
6.2). The excitation coefficient D g is determined from the multiple numerical
integration and can be analytically found from the fit to the numerical result.
Its variations with the screen separation 4, hill radius Ry, and wavelength A,
can be approximated according to computations in [26]

In Dy = 3.75 + [-0.648 + 0.072 In(4/A)] - In(Ry/A) — 0.259 In(d/A)
(7.40)

The values of Dy obtained from this expression are indicated by the
continuous curves in Figure 7.29 for the case of 4 = 50m. The various points
for frequencies 900 MHz and 1.8 GHz present the numerical integration using
the ray-optics technique. The approximate expression for the exponent loss
factor in (7.39) was also obtained by fitting the numerical results based on
the ray-optics technique, as a function of hill radius R, frequency, and screen

spacing 4, such as
1/3
Ry d
¢ = 2.02 (T) - 14 \fX (7.41)

which reduces to the theoretical diffraction result over a smooth hill for 7E
(vertical) polarization [32] when \/m = 0. The variations of attenuation
coefficient predicted by (7.41) are indicated by the continuous curves in Figure
7.30 for 900 MHz and for 4= 50m and 100m. From Figure 7.30, this
approximation gives a good fit to the value ¢ obtained from the numerical
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Figure 7.29 The coefficient Dy versus hill radius at 900 and 1800 MHz.

results by use of the ray-optics technique according to [32]. For other vehicle
locations, such as three in Figure 7.25, that are shadowed by a previous hill,
the path-loss ratio is

2
A\ exp{=2¢46} o >
P]’/'/R = <ﬁ> _RL—;Z,z— Dl Q (a)PD (742)

where Rand L are the previously defined geometric parameters of the radio
path, L; is the distance from the launch point on the hill to the building just
before the vehicle, Q(a) is the multiple diffraction loss due to the rows of
buildings before the vehicle defined by (7.38), and finally, D, is the ray-optics
coefficient used in the creeping ray formulation according to [31, 32] and is
described by the following function of hill radius Ry, frequency, and screen
spacing d [26]:

InDj = 2.22 + [0.19 + 0.031 In(d/A)] - In(R,/A) — 0.79 In(d/A)
(7.43)

The approximate fit given by (7.42) is plotted in Figure 7.31 as the
continuous curves for 900 and 1800 MHz and for & = 50m passing through
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Figure 7.30 The exponent loss factor ¢ versus hill radius at 300 MHz for d = 50, 100m
and the theory for a smooth cylinder from [32].

the numerically computed points obtained by the ray-optics technique. Once
more, we obtain good agreement between the ray-optics approach and approxi-
mate prediction by means of numerical integration.

Summary

From models presented in this chapter we reach the same conclusion that
we repeat through each chapter devoted to descriptions of different types of
propagation: There is no general approach or model which completely describes
the process of wave propagation in various situations over the terrain. Each
model can only deal with some specific propagation situations in an over-
terrain communication channel.

Of the empirical models presented above, the Okumura method with
Hata formulations is more general, because it describes quite well the situation
in urban and suburban areas with buildings placed on smooth terrain. But
this technique cannot be used for describing propagation effects over irregular
terrain, and, as was shown by Akeyama et al. [6, 10] and Delisle et al. [3],
neither for description of wave propagation over rural terrain. All modifications
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Figure 7.31 The coefficient Dy versus hill radius for d = 50m.

to take into account for the terrain profile and specific building structure, such
as introduced by Lee’s effective antenna height (Section 7.2.3), the degree of
urbanization introduced by Akeyama (Section 7.1.5) and Ibrahim and Parsons
(Section 7.2.2), or the hilly terrain factor introduced by Allsebrook (Section
7.1.2), cannot in general predict loss propagation characteristics in actual built-
up areas with different architecture and type of building construction, buildings
distribution on the ground surface, and specific variations of terrain profile.
The deterministic models described in Section 7.3 which are based on
the numerical solution of a parabolic equation [16] and on ray optics for
diffraction over obstacles [26], are also limited to predicting real situations in the
urban scene because they do not describe the multireflection and multiscattering
phenomena observed experimentally in actual built-up areas, where multiray
effects form an interference picture of the received signal, the effect that is
mostly observed for mobile communication channels when both antennas are
below the rooftops. This is because both models presented above in Section
7.3 are two-dimensional models. They describe propagation over buildings
placed on hilly terrain in the vertical plane of wave propagation and do not
take into account the side effects that take place in the horizontal plane after
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multiscattering and multireflection from side obstructions such as buildings,
trees, hills, and so on.

This is why, in Chapter 8, we will continue to consider the situation in

the urban scene where buildings are randomly distributed and placed on rough
terrain. We will also present a model which describes new phenomena that
follow from “side reflections and scattering” from buildings (also a two-dimen-
sional model, but in the horizontal plane). Then we will introduce a three-
dimensional model, taking into account both the diffraction effects over the
buildings and the side effects due to multiscattering and multireflection from
the buildings which surround both antennas, transmitter and receiver.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10}

(11]
(12]

[13]
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Propagation in an Urban Environment
With Nonregularly Distributed
Buildings Placed on Rough Terrain

8.1 Introduction

As discussed in Chapters 1 and 7, modern cities, from the point of view of
radio wave propagation, are complicated areas and the analytical description
of this process cannot be presented without some simplifications for the practical
radio-link situation {1-9]. For UHF/L-band radio waves, most of the larger
city buildings, in practice, are opaque and their dimensions are larger than the
wavelength, A. In such a situation, a wide spectrum of shadow zones is observed
inside the street level and very sharp boundaries between light and shadow
zones are created [10—13]. Moreover, in the cases in which buildings are
randomly distributed on a rough-ground surface, all specific properties of city
topography form the particular conditions of wave propagation at the streer
level [14-26].

In such situations we have only some simplifications, namely the two-
dimensional deterministic models, as shown in Chapter 7. Or, we might
introduce the statistical description of the real building pattern inside the ciry
[27-32] and determine the field strength on its base, as was done by [1-3].
To obrain the statistical description of the city based on its topography map,
we need detailed information about the spatial distribution of city buildings
and natural obstacles, the sizes and ranges of reflective and diffractive surface
sections of the ground relief, and the spatial distribution of the scattering
features of each building placed in areas surrounding the receiver and transmitter
antennas.
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In [1, 2] an array of randomly distributed buildings and obstacles placed
on the rough-ground surface was considered. The heights of the ground relief
were described in the coordinate system (x, y, z) placed at the plane z=0
of ground surface by the generalized function Z(x, y) according to Shwartz
[33]. This function describes the nonregular rough-ground surface relief
z = Z(x, y) (see Figure 8.1).

But as was mentioned above, both approaches, the deterministic based
on the over-the-roofs diffraction model and the parabolic-equation model
(presented in Chapter 7), and the statistics based on two-dimensional side effects
due to multireflection and multiscattering from buildings’ walls [1], are two-
dimensional models. To describe a more general case in the urban scene,
which corresponds both to communication between two mobile vehicles and
to communication between a base station located above the rooftops and the
mobile vehicle, we need to combine these two approaches and construct a
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three-dimensional model that takes into account both the vertical diffraction
effect and the “side” single- and multi-scattering effect (1, 2].

In Section 8.2, following the approach presented in [1, 2], we introduce
a parametric model that combines both deterministic and statistical approaches.
Here, the average intensity of the total wave field in the layer of city building
with randomly distributed obstacles above the rough terrain is presented by
using the single- and multi-scattering effects. The propagation channel for
UHF/X-band waves in the city is modeled by the array of randomly distributed
buildings placed on rough terrain. The law of buildings distribution is assumed
to be Poissonian [1]. Then, in Section 8.3, we describe the statistical characteris-
tics of the terrain and the loss characteristics by taking into account the
diffraction from the rooftops (three-dimensional model) [1, 2]. In Section 8.4,
we present a comparison between the theoretical predictions based on this
statistical parametric three-dimensional model and the results of numerous
experiments carried out in various urban areas with nonregularly distributed
buildings for different positions of transmitter and receiver antennas [3]. The
possibility of using this parametric model for predicting loss characteristics in
cluttered (NLOS) urban conditions is examined.

8.2 Statistical Model for the Description of Loss
Characteristics in the City Layer with Randomly
Distributed Buildings

Below we model the city by the array of randomly distributed buildings placed
on rough terrain.

8.2.1 Statistical Description of City Relief

Spatial distribution of city buildings. Following (1, 2], let us consider the charac-
teristic function &(r) = £(x, y, z) as a relief of some boundary surface between
two semispaces: £(r) = 0 for z> Z(x, y) and £(r) = 1 for z < Z(x, y) (see
Figure 8.1). For the case 2> 0, one can present such a function according to
(1, 2] as

N
£y, 2) = 3, alx, 9)E02) (8.1)

n=1

where N is the number of buildings randomly distributed at the surface plane
z = 0; function £,(x, y) = 1 if the projection of point (x, y, z) at the plane
z = 0 hits inside or at the boundary of building contour and £, (x, y) 0 in
the opposite case; & = 4, is the height of building with number »; §a(z) is
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the characteristic function which is equal to 1 inside the range < z< 4
(parameter a can be equal zero) and is equal to 0 outside this interval.

After some straightforward calculations, according to [1, 2], one can
present the average value of £(r) for the ensemble of its possible realizations
in the following form:

N
(€M) = XPy(2), <Zf,,<x, y)) (8.2)

oo

Pya) - f wiby)db, - (£2) (8.3)

z

Here, w(h,) is the density of building height distribution and determines
the probability of the event that z < 4,,. The multiplier X'in (8.2) determines
the probability of the event when the projection of the point r on the plane
z = 0 hits inside any building.

The statistical functions constructed above allow us to calculate the proba-
bility of the direct visibility between two observed points, r| and r;, within
the layer of city buildings. For the statistical quasi-homogeneous building area,
this probability can be presented as [1]:

Z,

eXP{—YQIqlquI j (P - XP;,<z)r‘dz} (8.4)

2

Py

exp{~vovizrizh 22> 2

This formula was obtained for the case of zz > z) and the arbitrary space

orientation of the unit vector q, |ql=1; /=|r; 11|, 5 -1y =ql; 7|
and qL are the projection of correspondmg vectors on the plane z = 0;
qz ‘]L’ ¥o is the density of buildings in the plane of q, = (4., 4,).

From (8.4) one can obtain the average distance of direct visibility p1;
from point r) to point ry, which equals

P12 = Yoy (8.5)

where
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Z,

Yo o= ) [N - X e 22> (89

2
These formulas allow us to obrtain the probability of direct visibility
between arbitrary observers inside the layer of city buildings. If L is the average
length of screens (buildings) surrounding the points A(r)) and B(r;) (see Figure

8.2), then the probability of intersections of the line AB with the building
screens is equal to

Py = exp{=2Lryy/ 7} (8.7)
from here we can easily define the parameter vy as
yo = 2Lvim (8.8)

Here » is the density of buildings in the investigated area of 1 km?. The
parameter yq determines the average horizontal distance of the line-of-sight

— — —1
pandp = 7g .

<L|> = I

Figure 8.2 The buildings’ distribution between points Alry) and Bir,).
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The dimensions of reflected surface sections. Let us consider the case when
the direct visibility exists between two points r) and r;. The point r; belongs
to the vertical screen (see Figure 8.3(a)). If a horizontal segment with length
{ could be seen from the point ry, a vertical segment with width /can be seen
from this point as well (see Figure 8.3(a)). Let us now determine the probability
that from the point A(r)) the horizontal segment which includes the point
B(r;) inside it can be observed. The vertical screen forms an angle ¥ with the
line AB (see Figure 8.3(b)). After some straightforward calculations we can
obtain the probability of direct visibility of the segment ¢4 with the length /
from point A at range ry3:

Py = exp(=yoy127r12 — V€127 2|sin V| (8.9)

%

€17 = (27 — zl)_]be(z)(z— z21 )z — zl)'ldz, z> 2z, 23 X=1 (8.10)

2

Figure 8.3 (a) Observation from point ry, the vertical screen with the horizontal segment
of length / and the vertical segment of width / (b} Geometry of single screen
observation from point r;.
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Figure 8.3 (continued).

where [ = [vri2€3]sin P17 is an average value of the segment cd; v is the
density of buildings on the surface z = 0; 7,3 is the parameter determined in
(8.6). From formula (8.9) it follows that the probability density of visibility
of the segment / from point A is

w(l) = vris€qzlsin Wlexp{—ve | r 2/ |sin W]} (8.11)

We have to note that the results obtained above are correct and, for the
case of X, not equal to one. However, for this more general case, instead of
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the formula (8.10) we have to introduce into (8.9) the following expression
for the parameter €);:

K4

€2 = (z; - z])_)j(z— 2023 = 21) ' P[] = XPy(2)]"" 4z (8.12)

2

The spatial distribution of scattering points. As was shown in {1, 2], the
role of the one-time scattering is important when one of the antennas (mostly,
the base-station antenna) is above the roofs’ level, but another is below the
building roofs. This case is presented in Figure 8.4, where the reflected point
C is inside the building contour with the height 4. The building orientation
is determined by the angle W to the vector (r; — r)). The receiver (or transmitter)
is placed at the point B(r;), the transmitter (or receiver) is placed at the point
A(ry). The density of the scattering points distribution can be presented as
follows:

u(r,) = yorsini(al2)(r €, + r2 €1 P, H.Po (8.13)

B(0,0,zp)

A(d,0,z)

Figure 8.4 Three-dimensional geometry of single scattering from the screen.
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Here, €, and €, are described by (8.12) and P, and P, are described
by (8.9). The function H, describes the height profile of the urban-building
layer. If we can divide all buildings on the surface into N groups with the
height 4; and with frequency p;, 7= 1,2,..., N, the function H, can be
presented as:

e piHb - 2)

H, 7
!

(8.14)

/=1

where H(w) is the Heaviside function [1]. If we now introduce the polar
coordinate system (r, ¢) with point B as a base point on the plane z =0
(Figure 8.4), then for discrete distributed sources the density of scattered point
distribution can be presented as follows:

a) for z1, z3< A

mlr, @) = 0.5y rsinz(a/Z)(r + Fexpl=yo(r + 7)} (8.15a)

b)forzy < h 2> h
p(r, @) = (vyori2h) sin®(al2) exp{—yo(r + A}

h
f (7 + 7) = rl(z2 - h)l(zz = 2)) (8.15b)
0

- expiyor(z, — M)/ (z) — 2)}dz

or for yor>> 1

p(r, @) = 0.5usin®(a/2)yghr(r + Mexpl—yo(7 + hrizy)llzy)
+ 0.5wsin*(a/2){(z — h)7expl—yo7l/h} (8.15¢)
= #’](r’ ‘P) + /"2(r= w)

where 7 = (4> + r* — 2rdcos@)"'%; b is the average buildings’ height. From
comparison between (8.15a) and (8.15c), the first summand in (8.15¢),
w1(r, @), is the same as that described by (8.15a) for the case z; = 4. Both
of them describe rare scatterers which are distributed over a large area of city
far from the receiver. Additional significant changes in the scatterers distribution
for the case z; > 4 gives the second summand, p(r, @). For z, = b, its value
is zero, but even a small increase of z, above 4 (i.e., when z; > 4) gives an
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essential influence on the total scatterers’ distribution according to (8.15¢). It
describes the “illumination” of a small area near the upper boundary of a
building layer in the p-region of a moving transmitter, which can be determined
by the buildings” density (~ v) around the receiver.

The distribution of reflected points. From numerous points of single scatter-
ing in built-up areas, the more interesting ones are those of specular reflections,
which are described by the geometrical optics laws. Thus we can present the
density of points of specular reflections within the building layer as [1]:

2 -1
M(T,¢)=V72 (z )

(1 —cosg) DPEIP=YOYLTd) (816)

where Pj(z,) is described by formula (8.3) (see Section 8.1) with variable

(=) (- zy)
2{7 — cosg) T

zZ, = 2) (8.17)

Here, we changed the variable r at the relative time 7(7 = (r + 7)/d) of
one-scattered waves propagating from the transmitter to the receiver through
the built-up using the function presentation (8.15¢). We also assume that the
height of point B (receiver) is higher than that of point A (transmitter) (i.e.,
z3 > z)), and is higher than the average buildings’ height 4 (i.e., 25 > 4). The
contribution of each level in the building layer described by (8.16) is different
from zero only for those values of 7 and ¢, for which, for fixed heights z,
and z;, the coordinate z, lies inside the building layer (i.e., 0 < z, < 4). To
obtain the average number of points in the specular reflection, we integrate
initially (8.16) over 7 and, then, over ¢. In other words, we analyze the
reflection points’ distribution u(7, ¢) in the arrival-angle domain and in the
arrival-time domain considering that the building layer is uniform. This also
assumes that within this layer the building heights’ distribution is uniform
(i.e., h; = b = constany), and introducing the nondimensional parameter

(2= h)

(a2 - z)
points’ distribution is changed at the plane (x, y) (at the real terrain surface).
For this purpose let us construct the region G at which approximately 90%
of specular reflected points are located. The boundaries of such a region will
consist of arcs of ellipses with 7 = 749, for which 7y ¢ is determined from the
relation

Let us now examine qualitatively how the specular reflection
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Tog 27 w 27
jd‘rjdcpp T, cp)-09deJ'dgop, T, @) (8.18)
1 0

and from the arcs of circles, the equations are:

1= 2¢7(T — cosg) (8.19)

Equation (8.19) can be presented by using nondimensional coordinates
¢ = x/dand 1 = y/d in the following form:

¢\ s(1-9)
(f— T 1) vt = [29__1] 22 h> 2 (8.20)

From the illustrations in Figure 8.5, one can see how the region G and
its boundaries are changed with changes of height factor ¢ from 0 to 1. In
Figure 8.5, the region G and its boundaries (arcs of ellipses) are presented by
the dotted curves, and the arcs of circles are presented by the continuous curves.
These curves were constructed for the ranges between terminals
d = 500m—600m, which is close to the conditions of the experiments carried
out by Tadiran Telecommunications (see below).

Estimations show that the region G is limited by a single ellipse with
two focuses in the points A and B for z; = 4, (i.e., s = 0), that is, for the
receiving antenna (at the point B) located near the rooftops level of neighbor-
hood buildings. The density of specular points distribution has a maximum
height located near these points (Figure 8.5).

Moreover, the specular points’ distribution does not equal zero at the
segment (A4B), because there are some intersections of the segment (AB) with
one of the arbitrary buildings (screens) which crosses the path AB (see Figure
8.2, Section 8.1). With increase of the height of point B above the rooftops
(when 2z, > /) the region G, where these specular reflections are observed, is
concentrated mostly around the transmitting point A. In other words, there
is no specular reflection in the neighborhood of the receiving point B. Thus
for ¢ = 0.2 (5 = 20m, 2, = 25m), the region which is “prohibited” for specular
reflections has the shape of a circle, the center and the boundary of which are
determined by (8.19). Moreover, this region with increase of height factor
s(zy > h) spreads (for s = 0.4, # = 20m, z; = 33m) and occupies all of the
left half-plane (for s = 0.5, 5 = 20m, 23 = 40m). With further increasing of
height factor ¢(¢ — 1), the specular reflections can be obtained only in the
neighborhood of point A. Hence, with an increase in height of observing point
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7

Figure 8.5 The region G and its boundaries change with changes in height factor < from
0 to 1. Here the region G and its boundaries (arcs of ellipses) are presented
by the dotted curves, and the arcs of circles are presented by the continuous
curves.

B relative to the average height of buildings surrounding it (with an increase
sfrom 0 to 1) the built-up area, where the specular reflected points are observed,
limits the neighborhood of point A (see cases ¢=0.6, z; = 50m and
=08, z, = 100m).

Multiscattering effects. The same analysis as above can be carried out for
the multiscattering phenomenon from the buildings (screens). Using the above-
mentioned Poison distribution, we can finally calculate the probability of the
event of at least one ray being received after #-time scattering from the randomly
distributed screens:

P,=1—expl—(N,(»)} (8.21)

Here, the average amount of n-time scattered rays from the screens can
be obtained from the probability of the scattered points’ distribution

Mop(rgley, e, oL ony):
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(N,,(r, r0)> = J- e fﬂl(rolrl, 0, .. 2 Ty) ...

wmy(rgley, 2y oL r)de,de, L. L dry
where
n n
milrgley, e, 0oL, 1y) = exp{—y02|ri+1 - nO.Syov{lrm -l
i=0 i=0
+11;= iy Isin®(@/2)) (8.22)

The angle a; is an angle between vectors (r;,| — r;) and (r; - ;1) for
all i=1,2,...,n; (rg, t1, 12, ..., 1r,) are the radius-vectors of points
A, C1, Cy, ..., Cy, B, respectively (see Figure 8.6). The examples of average
values of one-, two- and three-times-scattered rays from the randomly distrib-
uted buildings can be presented by using the Macdonald functions K, (w) of
the order » = 1; 2; 3, respectively:

(N1(1) = 0.2570r% Kx(yo7) (8.23a)
(N (7)) = 9 a2 Ky (vor)I8Y + (0.5myor) VKo a(yor)I 7N} (8.23b)
(N3(r)) = 8(rv ) {Ks(yor) 101 + (0.57yer) 2K 1a(yor) 111 (8.23¢)

The probability that a single scattered wave (curve 1), a double scattered
wave (curve 2), and a three-times scattered wave, calculated according to (8.21)
to (8.23), can be observed at the range of 1-2 km from the source is presented
in Figure 8.7. In microcellular conditions (r < 1-2 km), the probability of
observing at the receiver single-to-three-times scattered waves is equal to the
unity. At the same time, at short ranges from the transmitter only one-time
scattered waves can be observed. At the far zone the effect of the multiscattering
becomes stronger compared to the single-scattering effect.

8.2.2 Field Intensity Attenuation in the Building Layer With Randomly
Distributed Buildings

The problem of single scattering. Let us consider the city building layer described
by the random surface S, which was introduced earlier as a superposition of
a flat-perfect reflecting surface S and of a random built-up relief S, (see Figure
8.1). Taking into account the approach presented in 1, 28-32], we can present
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a) b)

Figure 86 Geometry of multiscattering from n randomiy distributed screens.

the field over the rough terrain using Green’s theorem in its integral form (see
Chapter 2):

Ute) = Uen) + [{ Vte) W 8) _ Gy, vy %}ds 8.24

S
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Figure 8.7 Probability to observe single-, double-, and three-times-scattered waves in the
microcell (d < 2-3 km) environment.

where U,(r;) is the incident wave field, G(r;, r,) is Green’s function of the
semispace (Section 2.2)

1 (expléik|ey — ril] | explik|r; — r{]]
= - +
Gle, ) 4”{ fry =l h Iry — ri] } (8.25)

and n, is the vector normal to the terrain surface S at the scattering point ;.
Here " is the point symmetrical to r| relative to the earth’s surface S;;
k=2m/A, Ais the wavelength. We consider in integral (8.24) the random
surface S (relief of the terrain with obstructions) as the superposition of ideal
flat-ground surface S| (z = 0) and the rough surface S that is created by the
tops of the obstructions. We construct Green’s function in such a form (8.25)
to satisfy a general electrodynamic approach. That is, to describe both verrical
(sign “+” in (8.25)) and horizontal (sign “~"" in (8.25)) polarization with the
corresponding boundary conditions. In fact, by introducing Green'’s function
(8.25) with sign “+” in integral (8.24) we satisfy the Dirihlet boundary condi-
tions at the flat (nondisturbed) earth’s surface S (z = 0), that is, G,_o = 2

and5— = 0. At the same time, using sign “—" we satisfy the Neumann boundary
on,
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conditions at the plane z = 0, that is, G,_¢ = 0 and « = 0. We must notice
here that the authors in [1] used only Green’s function with sign “~” and,
hence, despite the fact that they have declared the possibility of using their
approach in a general electrodynamic case, their analysis presented is correct
only for the scalar case or for the electrodynamic case of wave propagation
with horizontal polarization.

Hence, if the source is described by formula (8.25), assuming the surface
Sy as perfectly reflecting, we can exclude the integration over nondisturbed
surface S| using the approach presented in [32, 33] (e.g., using the integration
only over disturbed surface §;, and immediately reduce the scattered field
presentation (8.24) in the following form):

Ulry) = G(ry, 1) + 2f{U,(r,) “(n, - V)G(ry, 1)} (8.26)

N
d d O
where V, = (é:s’ a—y}, a_z:)

Using the Kirchhoff approximation [28-33], let us determine the scattered
field U,(r,) from the building layer as a superposition of an incident wave
U(r,), the reflection coefficient I'(¢, r,), and the shadow function
Z(r3, 11), which equal 1, if the scattered point r, inside the city layer can be
observed from both points r; and r; of the transmitter and receiver locations
(see Figure 8.8), and equals zero in all other cases. Taking into account what
ts mentioned above, the last formula (8.26) can be rewritten in the case of
single scattering as

U(l‘z) = Z(l‘z, r])G(l‘z, l‘l) (827)
+ 2J{Z(r2, r,, i)l{(g,, 1,)Glr,, 1)) - (n, - V)G, £,)}dS
S
where sing, = n, - l:i: ol (see Figure 8.8).

Assuming now that A << p, #;, 2z}, z3 << |ry — 11|, where p is deter-
mined by (8.8), z|, z; are the height of source and receiver, respectively, and
h; is the height of a local obstacle placed on flat terrain, we can present the
term (n, - V) G(r; r,) in integral (8.27) approximately as zksiny G(r,, 1)
(this follows from the geometry presented in Figures 8.5 and 8.8). Using this
approximation we finally obtain from (8.27)
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A(ry)

B(rp)

Figure 8.8 Two-dimensional geometry of single scattering from the screen.

Ulry) = Z(ry, 11)G(rp, 1) (8.28)
+ 2ik| {Z(r, 1, ) (@, £,) - sinW, - G(r,, ry) - Gy, 1)}dS
SZ
According to [1], we assume in (8.28) that the coefficient of reflection

from the building surface, I'(¢;, r,), is a random but independently distributed
function at the building surface, that is, {I'(¢;, r,)) = 0. If so, one can obrain,
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after averaging (8.28) over the phase interval (0, 27] with equal probability
of the phase distribution for the coefficient of reflection and over the position
of all buildings, the following expression for average field strength:

(Ulry) = (Z(ry, 1)) - Gleg, 1) = Pry - Gl 1y) (8.29)

As seen from (8.29), the average field at the receiving point can be
determined by the probability of signal reception P, according to (8.4).

The knowlege of average field strength allows us to present the correlation
function of wave field K(r;, £3) = (U(ry) - U*(r3)) in the following form:

K(ry, r7) = 4k2<jd\92J’dS§ < Z(ry, 1y, 11)
s, S,
- Z(r3, &, 1) - Ty, 1) - Tl 1) (8.30)

xsinW¥, - sinW¥] - Glr,, r)) - Glry, ;) + G*(r3, 1) - G*(, r1)>

As stated above for mean field strength, we must use the procedure of
averaging over the buildings’ number, their reflection properties, and their
spatial distribution to derive the correlation function presented by (8.30). We
will do this procedure step-by-step, first by averaging (8.30) over the phase
interval [0, 277] with equal probability of the phase distribution for the coeffi-
cient of reflection (the result we denote as Kj-(r7, r3)). The result is

Kp(ra, 13) = 4/?24[4'5214'52' C Z(ey, £y 1) - Z(e3, €y 1) < sin® W,
s, S,
x ([, 1,) - T(@}, ) - Glr,, 1) - Glra, 1,) (8.31)

L G5, 1) - GME 1)

Here, both points r; and r; are located at the same building screen. If we now
introduce at each building screen a local coordinate system {£, 5} with the
origin at the point r; and with the axis 0¢ oriented vertically and the axis 07
oriented horizontally with respect to the ground surface, we can determine in
this coordinate system the following correlation function for the reflection
coefficient:

(T, 1) - Tigl, 1)) = T(g,) exp{—§ - '—’Z'} (8.32)
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and obtain from (8.31) after integration over ¢ and 7 that

Kyi(ry, 13) = 4k2f¢§22(r2, r, r) - Z(rz, r;, rp)
SZ
< sin? W, ()| Glra, £) | | Glr,, 1) | (8.33)
4kl
1+ (/el;,)z(cos v, - c:osgo,)2

x explikl cos(@ — @)}

. 44,
1 + (kl,)*(cos 6, — cos 6;)*

where
l=|r2_r2'|’
n—n r—r
COS = . N
Y\ -nl Trn-xl

cosyy = (

n-1 n-n
le; =l Irp=—13l)
sin 01 = (zx_ zl)/lrs_ rll,

sin 02 = (ZZ - Zs)/|f2 - rsl

(see Figure 8.8). Here the typical correlation scales, /; and /,, describe the
correlation distances in horizontal and vertical directions for each invidual
screen, as an obstruction (i.e., a typical distance between balconies, windows,
a typical height of a floor in a building, and so on).

After averaging over the buildings’ spatial distribution and their numbers
for kl, >> 1, kl, >> 1, we obtain the following expression for the correlation
function of total field in built-up areas:

K(r;, r3) = 1677'fdr - P(ry, r) - <0'(r2, r, r1)> « Py(z) - Pgp (8.34)
%4
X 1G(ry, £)* | Gle, 1)) - explikl cos( = o)}
where P(ry, 1) is the probability of direct visibility between two points r; and

raccording to (8.4). The relief function P4(2) is defined by (8.3); Pgpaccording
to (8.9) determines the probability of the event that the wave, after scattering
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from point r and after arriving at point ry under the angle ¢, will illuminate
the horizontal segment /oriented to (r; — r;) under the angle ¢g (see Figure
8.8); (o (ry, 1, 1)) is the differential cross-section of scattering from buildings:

vol(a2)  a 44,
ey W) (8.35)
(o(ry, v 1) 4 " 20 (k) (cos By — cos 6))

where a is the angle between vectors (r; — r}) and (r; — r,) (see Figure 8.8).

The integration in (8.34) is over the volume V of the urban building
layer, where dr is the element of volume Vin three-dimensional space.

We must note that formula (8.34) fully determines the correlation func-
tion in the short-wave (VHEF/X-band) single-scattering approximation. From
this formula, according to the relation between the correlation function and
the average intensity of the total field, one can determine the latter function
as:

(I(r))) = K(r3, 1)
- 1677J'dr - P(r, 1y) - {o(ry, £, 1)) - Pylz) - Pgp  (8.36)
%4

X | Glry, 02 | Glr, 1) - explikl cos(e — o)}

The average intensity of scattered field at the observed point r; can be
obtained from (8.36) according the approach presented in [1], taking into
account (8.4) and (8.25):

rAl (
ya
87IAL + Qarlyyolh— 2 ) Ad>

(I(rp)) = - b (8.37)

where there is the absolute value of the average reflection coefficient introduced
earlier in (8.32) and (8.35).

As is well known [1, 2, 28-33], the total wave field intensity from
the transmitter is a superposition of a scattered (incoherent) spectrum (/)
described by (8.37) and a coherent spectrum (/) of total field energy which
can be presented as {1]:

8.38
41°d? (8.38)

22— %)

<1m> = CXP[_YO d(b — zl)] [Sin(kzlzZ)/d]Z
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For the case z; = A, the single-scattered wave intensity (/,,) = 0
(i.e., is equal to zero), the physically incorrect result, which follows from
[1]. To correct formula (8.37) we must consider the process of diffraction
from buildings according to (2], which will be done in the next section.
Nevertheless, (8.37) correctly describes the frequency dependence of the
propagation process inside the layer of city buildings: ~f~" with n < 0 for
frequencies in the VHF-band and lower part of UHF-band ( f << 1 GHz),
and ~f" with n>0 for UHF-band and higher (f> 0.5 GHz). This
complicated frequency dcpcndence is seen from (8.37) for the opposnte
cascs of A% >> [277/,,70(/7— zl)] (in thls case we have ~f } and
[/\ << 27!, yolh - zl)] (here we have ~f~ ), respectively. As was shown
from additional estimations, the frequency dependence below 100 MHz is

~f°.

The multi-scattering problem. In the case when both antennas are below
the rooftop level (0 < z|, z; < 4), the effect of multiscattering from the build-
ings becomes stronger than the effect of single-scattering. The evaluation of
statistical field characteristics is a very complicated problem, because in this
case many randomly distributed nontransparent screens (buildings) are placed
between receiver and transmitter and form the complicated multi-ray field at
the observation point. However, in certain cases the problem is analogous to
the one described above. According to the approach presented in [1], let us
calculate the average intensity of the scalar field from the point source. As
above, the two-dimensional nontransparent screens with average length Z and
average height #are randomly distributed along the earth’s surface. Their spatial
distributions are independent on the plane z = 0 and their average density
is v,

For the case 0 < 21, 23 < A, the probability of direct visibility between
two points ri{(xy, y1, 21) and ry(x;, ¥, 23) is determined by the expression:

P(ry, 1)) = expl=yolp1 — p2lt, pi=(xi 9, i=1,2  (8.39)

where as above, yo = 2vL/m, y§ I P is an average horizontal range of the
direct visibility within the layer 0 < z < 4. We assume as well that the reflection
coefficient I' is distributed randomly (but independently) on the building
surface. Thus, {I') = 0. The inhomogeneity of the screen surface is described
by the scales of correlation of the coefficient I' in the horizontal, /,, and the
vertical, /,, directions. We also assume that /,, /, << b, 5, L. As above, we
present the source field G(r), r3) at the point r; above the surface z = 0 through
the conventional Green’s function of free space:
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Glry, 1) = Gle; — ry) + Gle; — 1)) (8.40)
. exp(ik|r])
Gl = =l

where 1’ is the point symmetrical to the point r relative to the plane z = 0.
Obviously, G(ry, ry) is Green’s function of the semispace. Using Green'’s
theorem and the expansion of Green’s function into the set (see Section 2.1)
and assuming that £/;, £/, >> 1 and kz| >> 1, but z; < 4, we obtain the
coherent part (/) of average intensity of the total field:

{1,(r)) = Pry, £))| G(rz, 1)) (8.41)

For the incoherent part (/,,.) of the total field intensity, we can use the
Laplace method [1] to obtain a simple formula for the case yop >> 1 and
a = yol'/8 as well:

{Lne(p)) = 22 expl=vop) 2/ vop + am X 1yg2yep)'?  (8.42)
+ (alyo)Wam)p

As seen from (8.42), the first term in brackets is the average intensity of
the single-scattered wave:

(Line1 (p)) = @' expl=-yopli@m)* yop0°

Other terms do not essentlally change the value of the total intensity at
the distances pg < 8'y0/77'a This is correct for the real condition of closed
communication channels between moving responders in a city area with ran-
domly distributed buildings. We can also present the coherent part in a more
accurate form than in (8.38):

(2 sin(kzlzz)/p]2

(1e(p)) = expl=70p] 5 (8.43)
167 p
so that the total field intensity is:
(o)) = (e} + {Linc(p)) (8.442)

or the path loss in dB is given by (see definition of path loss in Chapter 1):
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Lyoat = =10 log(( 1(p))) (8.44b)

Additional investigations have shown that we have to take into account
the effect of diffraction from the building rooftops. This is important for the
upper part of UHF- and L-frequency-band and for urban channels longer than
1 km, an effect that will be analyzed in the next section.

8.3 Effects of Diffraction From the Building Layer

Let us now examine the influence of diffraction phenomena on the field
intensity attenuation. Here we consider the field diffraction phenomenon due
to buildings’ rooftops. As follows from formula (8.37), for the case of a receiving
antenna located at the rooftop level (2; = 4), the physically incorrect result
that the average intensity of the received signal is equal to zero can be obrained.
Evidently, to exclude this result, one must take into account the effect of
diffraction of the scattered field above the building layer. To account for this
effect we use the Huygens-Kirchhoff approximation. For the derivation of the
diffraction field we introduce the surface Sg of virtual sources that is normal
to the building layer Sand the surface of infinite semisphere Sp that contains
the source of radiation inside it, as shown in Figure 8.9a. The effect of all
virtual sources placed at the semisphere Sg is negligible, because it is limited
to zero when the radius of this semisphere is limited to infinity. Then the field
Ulr,) at the receiver can be rewritten as

Ulry) = 2ikf{U(r35) " Gy, 15,) - costps,}dSp (8.45)

Sp

where Ulrg,) is the field at the surface Sp obrtained by use of approximation
(8.27) for single scattering; cos¢s, = (ng, * (ry — rs ) |ry —rg |), ng, is the
unit vector normal to surface Sg (Figure 8.9a). If so, the average intensity of
received field (](l’)_)) = (U(rz) . U*(r2)> can be presented according (8.27) as:

(e} = 48" [ sy [ s - Ktes, €5) - Glen ) 1846)
SB SB

© G(ry, rg,) cos g, cos qb:gﬁ
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Figure 8.9 (a) Geometry of single scattering and single diffraction over the built-up layer.
(b) Geometry of double scattering and double diffraction over the built-up
layer.
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where K(rg,, r§,) is the correlation function of total field at points rg, and
r§, located at the surface Sp in conditions when the source is located at the

point ry:

K(rs,, ry) = 4k2<JdSBdeB' - Z(ry, 15, ) - Z(ry, rfgﬂ, )
SB SB
- Tps, r5,) X (@5, r5,) - singg, - sin (/133 (8.47)

 Glry, 15,) - Glrs,, 1)+ G*(rg, 15,) + G*(r§,, r1)>

Here the reflection coefficient I'(¢s, rg) and the shadow function
Z(r;, r1), as well as other parameters are introduced in Section 8.2. By averaging
(8.47) over the nontransparent screens spatial distribution, over their number
and over the reflection properties of screens [1], after straightforward derivations
we finally obtain the following formula for the single-scattered field rtaking
into account the diffraction from the building layer:

TAZ,
87[A° + Qmrl,yo(h — 2))1d>

(1(r)) = [(AdI4T) + (25 — B

(8.48)

For the case where the base-station antenna, as a receiver, is higher than
the average building height, that is (A d/47T3) << (29 — /1)2 (8.48) is limited
to the incoherent spectrum (8.37) obtained above without taking into account
processes of diffraction. Moreover, with increase of z;, the process of diffraction
becomes more im;laortant and for z; = 4 the single-scattered wave intensity
(1) ~ (AdI4 ) 2 (i.e., is not equal to zero, as follows from results obtained
in [1]). In both cases the distance dependence is only the same ~d™? when
(Adl47°) << (z3 — h)%. In the inverse case, when (Ad/47°) >> (25 — 5)?
this dependence is ~4 . In this case as well, the frequency dependence is
changed from -fl and ~f_1, when there is no diffraction, to ~f0'5 and
~f705, when diffraction is predominant. The coherent spectrum (/) of the
total field energy can be presented by (8.38).

The same result can be obtained for double scattering with double diffrac-
tion, as presented in Figure 8.9b. Here the wave propagates from source point
r). After scattering at any point r inside the building layer and diffraction on
the tops of obstacles surrounding the transmitter and receiver (double diffraction
that we account for by introducing two virtual sources rs, and ry, at surface
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Sg. as follows from Figure 8.9b) it finally scatters from any point r" and comes
to the receiver placed at point r;. Using the same presentation of average
intensity of total field, as (8.46):

{I(ry)) = 44* f dSg j dS§ - Klrs,, £ |r, 1)) (8.49)
SH SB

* Klrs,, t5, |, r{)cos g, cos s,

where K(rs,, £ |r, 1) and K(rs,, r5 11", 1)) are the correlation functions of
the total field art the surface of virtual sources of diffraction which is determined
by (8.47). After averaging of (8.49) over the nontransparent screens spatial
distribution, over their number, and over the reflection properties of screens,
we obtain the following formula for the double-scattered field taking into
account double diffraction from the building layer:

2z
247 Qul,ylh— 2) (A + @l yolh - 22)Hd
(8.50)

(lmc(l'z)) =

ln this more general case, the average intensity attenuates proportionate
to ~d~> with the increase of distance between subscrlbers, which is closer to
measurements than that obtained proportionate to ~d~ 2 from (8.42) without
considering diffraction. Moreover, (8.50) correctly describes the frequency
dependence of the propagation process inside the layer of city buildings: ~f ™"
with 7 < 0 for frequencies in the VHF-band and lower part of the UHF-band
(f<<1GHz), and ~f" with #>0 for the UHF-band and higher
(f> 0.5 GHz). This complicated frequency dependence can be clearly
seen from (8.50) for the opposite cases of AL >> 27l yo(h - zl)] and
A% << 27, yo(h - zl)]z, respectively.

8.4 Influence of the City Building Profile

Let us now consider the influence of the city building profile on the average
field intensity for the case of single-scattered waves. Taking into account that
the real areas of the urban environment are distributed inhomogeneously, we
must present the probability of direct visibility between two points, 1| and r,,
according to (8.4) as
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b4

Ple1, 1) - CXP{—70712(22 — ) f Pk(z)dz} (8.51)

%

where 73 = [(x; — xl)2 +(y2 —)'1)2] 2 Bunction P, (z) was introduced earlier
in Section 8.2.1 as the probability that point z is located below the building
roof s level. According to (8.3), this function is related to density of building
heights’ distribution w(#4). The average height of buildings in the investigated

urban area also related to the function w(4) as

b
h = jh'w(b’)dh’ (8.52)
0

Taking into account (8.3) and assuming the height profile of buildings
inside the city layer in the following form:

b _ n
Py(z) = H(b — 2) + H(z— b)) H(by — 2) [ﬁ] . (8.53)

n>0,0<z< My

we can obtain for the case of yor >> 1 the following expression for the
incoherent part of the total field intensity:

yol'/yAz) ” 12
7 = -2/
e~ T Grlyyo @y, syt 2 ) expl Sl
(8.54)
Here
Q(z,, z3) = jP;,(z)dz (8.55)
function f(x) equals:
h

flx) = yod(1 - x)_]be(zzx')dx' + InPy(zyx) (8.56)
0
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but x,, is determined from df(x)/dx = 0. The function H(x) is the Heaviside
“step function,” equal to 1, if x> 0, and equal to 0, if x < 0.

The coherent part of total field intensity can also be obrained more
generally taking into account the function’s P4(z) distribution:

4

(1.0) = CXP{—Yoa'(zz — )" f Pb(z)dz}

2

sinz(/ezl z7/d)

i (8.57)

As can be seen from (8.54) to (8.57), the character of field intensity
attenuation depends on the function’s P4 (z) distribution, which we presented
in a more general form than in [1]. Thus, for n >> 1 P;(z) describes the case,
when above the city layer with height 4, buildings with 4; > A very rarely
exist. For n << | we obtain the case, when all buildings inside the city layer
have heights close to 4. For n > 0, all buildings have the same level equal to
/, for n < o= all buildings have the same level with 4;. Hence, the height
distribution (8.53) describes a wide spectrum of city building models: from
one-level up to various levels with heights 4, of buildings distributed with equal
probability from 4| up to 4, (the minimum and maximum heights of a city
layer), when n = 1. For the case z3 > # and (23 — A)/d << 1 for n> 0.2
(quasi-homogeneous distribution of building heights), one can obtain from
(8.53) and (8.54) the intensity of single-scattered waves:

i Al
" 87(A? ¢ @7l yofz)) 4

{I(rp)) (27— h) (8.58a)

without diffraction phenomena, and

TAl
8w(A + Qml,yof(z1)) )4

(I(ry) = (AdI4T) + (25 — BYH?

(8.58b)

taking into account diffraction from buildings’ corners and roofs. One can
obtain the same result according to (8.50) for double-scattered and double-
diffracted waves:

a3
2467 + Qalyyoflz) A + Qal,yof(z2) )d°
(8.59)

(Line(r2)) =
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Here,
fe) = Hib = 21)(h = 21) + Hzy = h)Hby = 21) — 2)"!
z1] 1~ 2] 2] 1 ! 2 ! (n+ 1)(h - /71)”
(8.60a)
and
(;]— ZZ)’”]
Flz2) (hy — z)(h— z3) + H(zg — h))H (b — z2) (r+ Dby — b
(8.60b)

where the average building’s height /4 is determined by the following expression
;J = /72— n(bz—/yl)/(n+ 1) (861)

Comparison between formulas (8.58), (8.37), and (8.48) allow us to
conclude that the existence of a building distribution profile (8.56) does not
change the dependence of field attenuation with distance 4 and with changes
of height z;, but it gives an additional effect for the frequency dependence of
field intensity. Moreover, the profile (8.56) limits to (8.60) for the case of
quasi-homogeneous distribution of buildings™ heights. What also follows from
(8.60) is that this building heights’ distribution is more general and realistic
then that obtained in [1]. Hence we can with great accuracy approximate the
city layer with an inhomogeneous building heights’ distribution (8.56) by the
quasi-homogeneous one according to (8.60) with some average height 4 from

(8.61).

8.5 Numerical Simulation of Scattering and
Diffraction Phenomena

To examine the influence of different propagation phenomena, such as multire-
flection, multiscattering, and multidiffraction, as well as of the parameters of
city building and the situation regarding both antennas on field intensity
attenuation, we separately calculated and investigated the coherent and incoher-
ent parts of the total field for two variants of scattered field obtained above:
single and double scattering with diffraction. We also examined the case of
inhomogeneous distribution of the building layer, taking into account its profile
described by formulas (8.60a) and (8.60b) for different parameters of the
polynomial function f{(z).
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In the first case of single-scattering with diffraction, we numerically
examined the terms —10log(/,,) and -10log(/,), according to for-
mulas (8.58b) and (8.57), respectively, and the total loss by formula
—10log{/ ) = =10log[{/ine) + (1 ,)]. We present this case at the top side
of all figures. For the case of double-scattering with diffraction we derived
formulas (8.59) and (8.57) by using the same form: —10log{ /), —10log{ /),
respectively, and the total field as —10log( / ,,,/). In our simulations we changed
the parameter 7 of the polynomial height profile 4,(z) to be close to the tall
buildings’ height 4, (7 = 0.1, n << 1), for the case where 4;(z) is uniformly
distributed between 4| and 4; (n = 1) with the mean value 4 = (5 + 5)/2,
and for #;(z) close to low buildings’ height 4 (n =5, n>>1).

Results of numerical calculations for all the above-mentioned variants
are presented in Figures 8.10 to 8.12 for various situations in the city scene:

(a) z3 = 50m, 2z} = 2m, Ay = 25m, A = 5m (Figure 8.10);

(b) z3 = 10m, 2; = 2m, & = 25m, A = Sm (Figure 8.11);

(¢) 2y = 4m, z| = 2m, A = 25m, b = Sm (Figure 8.12). In these cases
we obtain from (8.61): A = 23m, for n = 0.1; A= 15m, for n = 1; b = 8m,
for n = 5.

In the case (a), when z| < A < h << z;, results of numerical simulations
according to the model of single-scattering (MSS) (top-side of Figure 8.10)
and the model of double-scattering (MDS) (bottom-side of Figure 8.10), take
into account the diffraction from buildings surrounding both antennas. The
coherent part (dotted curves) of the total field exponentially attenuates with
sharp oscillations up to ~500m-700m from the source. Beyond this range the
smooth decay of (/,,) is observed. As for the incoherent part (/;,.) of the
total field (dashed curves), the stronger attenuation according to the polynomial
law ~d™> is observed at the whole range from the transmitter up to 3-5 km
(for “microcell” ranges). At the same time, as follows from the top-side graph,
the coherent component of the total field exceeds the incoherent one at ranges
up to 3—4 km (denoted by points at the curve’s intersection), that is, the effects
of scattering from buildings is important only for far zones from the transmitter.
In areas near the transmitter (less than 1 km) only direct waves and waves
reflected from the building layer, which form the coherent component of total
wave field, reach the point of observation.

With decrease of the height of the transmitter (z; = 10m, case (b)), when
21 < h <z3,2;< h(n=0.1, 1) and z; > h(n = 5), as follows from illustra-
tions in Figure 8.11, both models, MSS and MDS, predict the same effects
that were presented earlier in Figure 8.10. In fact, at the ranges 3—4 km from
the transmitter, the direct component (coherent part) of the total field exceeds
the scattered component (incoherent part).
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Single scattering: 72=50m
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Figure B.10 Incoherent and coherent parts of total field intensity versus distance from the
transmitter for single (top side} and double scattering (bottom side) with
diffraction for zy = 2m, z; = 50m, hy = 5m, hy = 26m, n =01, 1, 5.
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Single scattering: z2=10m
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Figure 8.1 Incoherent and coherent parts of total field intensity versus distance from the
transmitter for single (top side) and double scattering (bottom side) with
diffraction for z; = 10m.
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Single scattering: zZ2=4m
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Figure 8.12 Incoherent and coherent parts of total field intensity versus distance from the
transmitter for single {top side) and double scattering (bottom side) with
diffraction for z; = 4m.
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In the case when both antennas are below the building’s height profile
(i.e., 21 < b < 23 < b < by, case (c) mentioned above), which is presented in
Figure 8.12, two models, MSS and MDS, predict the existence of break points
at the ranges of 1-2 km (for MSS) and at the ranges 3-4.5 km (for MDS),
the effect that depends on buildings” height distribution (on the parameter »
in (8.60)). Moreover, using MDS we obrtain the increase of the scattered
component (incoherent part) and, finally, of the total field beyond the break
point r4 ~ 3-5 km from the transmitter.

8.6 Prediction of Path Loss in Various Urban Environments

We compare the results of theoretical prediction of the total field intensity
attenuation according to the proposed parametric model with results of the
experiment carried out in Israel and Jamaica [3]. Using the proprietary wireless
local loop system, measurements of the radio signal strength indication (RSSI)
were produced in the various urban and rural environments. We present below
some experimentally obtained results and their comparison with the above
theoretical model.

In the measurement system the stand-alone radio port unit (RPU) played
the role of the transmitter. The fixed access unit (FAU) was used as the receiver
which during the experiment was moved from point to point. The RPU and
the FAU communicate using frequency hopping in one of the specified fre-
quency bands. According to the FAU specification, its measurement accuracy
is equal to 2 dB. The measurements have been produced in three cities: Kingston
(Jamaica), Holon and Jerusalem (Israel). The terrain in Kingston as well as in
Holon is relatively flat while the terrain of Jerusalem is hilly. The urban
condition in Kingston is rural. The notion of the small and medium urban
area is more relevant to the Holon and Jerusalem propagation conditions,
respectively. Two or three samples were taken at each point and the average
values based on these measurements were found. To determine RSSI values
from the above expressions of average intensity of the field, we have to multiply
these expressions by the effective antenna aperture that is equal to A4 [34].

Let us consider the two cases with the quasi-flat terrain, Holon and
Kingston. In both cases the frcquenc?r band is 1.9 GHz. In the former case
the building density is » = 258 km™, the average building length L = 30m
and the average building height 4= 13m. The RPU installation height
was 23 = 30m and the FAU height z; = 6m. In the latter case (Kingston),
the urban conditions can be described by the following parameters:
v=213 km %, I = 32mand 4 = 10m. The installation heights of the receiving
and transmitting antennas were also different from the previous case:
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z3 = 26m and z; = 11.2m. Additionally, in this and all the following cases,
we assumed two things. First, the vertical correlation scale is significantly larger
than the wavelength and is equal to /, = 1.85m. Secondly, almost all the
buildings are made of concrete (this is a rough assessment) with parameters
found in [14]. Based on these results we shall take the relative permittivity of
concrete € = 6.49 and its conductivity o= 1.37 mho/m. The comparison
between measurement and simulated results of the total field intensicy
—10log(r) = —10log{/;,.(x) + I,,(r)] according to the MSS with diffraction
(8.58b) and (8.57), and to the MDS with diffraction (8.59) and (8.57), pre-
sented in Figures 8.13(a,b), respectively, for the Holon case (for quasi-uniform
distribution of buildings’ height with n = 1). Here, the samples of measurement
are indicated by circles. The theoretical function of RSSI and the straight line
that is close to it in the mean square metric are shown by the solid and dashed
lines, respectively. The indicated number pair is the standard deviation value
(StDiv) and the following distance (in the /;-space metric) between two point
sets:

Holon: Single scattering.
& L} L L] v L LJ
80 4
|
-70 n=1: SDVe930d8 SqEr=1146d8 L

0 500 1000 1500 2000 2500 3000 3500
Distance from tranemitter, m

Figure 8.13 (a) Comparison between the measured (circles) and calculated (continuous
curve) average total field intensity according to single-scattering model
obtained for conditions of the Holon area. (b) The same, as in Figure 8.13{a),
but by use of double-scattering model.
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Holon: Double scattering.
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Figure 8.13 (b) {continued).

(8.62)

Here, NV is the set dimension, R; and 7; are respectively the measured
and theoretically obtained RSSI value. The indicated deviations have been
computed as deviations between the measured RSSI values and the correspond-
ing points on the above-mentioned straight line.

In Figures 8.14(a—d) we present results of the comparison between the
measurement results obtained in Kingston and the theoretical prediction results
obtained according to the parametric model with the same uniform (with
n = 1) distribution of buildings’ height. After selection, the measurement results
have been divided into two groups relating to the availability of the LOS for
the chosen FAU location. The results for LOS conditions have been shown
with theoretical results in Figures 8.14(a,b) according to the single- and double-
scattering parametric models taking diffraction into account, respectively. The
NLOS results are presented in Figures 8.14(c,d). In Figure 8.14(c) these results
are compared with the predicted ones according to the MSS and in Figure
8.14(d), they are compared with the prediction of the MDS.
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20 Kingston: Single scattering.
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Figure 8.14 (a) The same, as in Figure 8.13(a), but obtained for the LOS conditions in the
Kingston area by use of single-scattering model. (b) The same, as in Figure
8.14(a), but obtained for the LOS conditions by use of double-scattering
model. (c) The same, as in Figure 8.14(a), but obtained for the NLOS
conditions in the Kingston area. (d) The same, as in Figure 8.14(b), but
obtained for the NLOS conditions.

The results presented in Figures 8.13 and 8.14 show that in small urban
and rural environments the proposed parametric model gives a good explanation
of the signal intensity decay both in LOS conditions, by use of the single-
scattering model with diffraction, and in NLOS conditions by use of the
double-scattering model with diffraction.

A greater challenge than in the previous cases was to apply the above
assumption of quasi-smooth built-up terrain with 7 = 1 to the Jerusalem condi-
tions. The major problem is the nonflat terrain profile of Jerusalem and the
existence of substantial height differences between relatively close points in the
area. In this situation, in the urban scene the accuracy of the theoretical
prediction is reduced. Additionally, the complex terrain can affect the distance
of direct visibility and this influence, that is the diffraction phenomena, has
to be taken into consideration. To overcome these difficulties, we took into
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2 Kingston: Double scatiering.
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Figure 8.14 (b) (continued).

account the ground height for determining the actual FAU height as a function
of its location. We added the ground heights to the building heights as well
and then determined the average building height. Moreover, we obtained from
the topographic map that we can approximate the built-up layer profile by the
polynomial functions (8.60) with the parameter » that lies from 4 to 6. From
the topographic map of Jerusalem, we obtained the following parameters of
the built-up terrain: the building density is » = 1039 km™?, the average building
length is L = 18m, and the average building height (not including the local
ground height) is 4 = 8.3m. All the local ground heights were determined by
using the GPS system. The measurements were made at 930 MHz bandwidth
using the transmitting antenna with a height z; = 42m. The results are pre-
sented in Figures 8.15(a,b). In Figure 8.15(a) the measurement results are
compared with the single-scattering model with diffraction according to formu-
las (8.58b) and (8.57). In Figure 8.15(b) we show the prediction according to
the double-scattering model, taking into account diffraction from the buildings’
roofs according to formulas (8.59) and (8.57). Results of calculations presented
both for » = 1 (uniform terrain) and 7 = 5 (nonuniform terrain).
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Kingston: Single scattering.
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Figure 814 (c) (continued).

As follows from presented illustrations, the poor convergence between
the theoretical prediction and experimental data in the last case that was
obtained in Holon and Kingston, can be improved at least on 3-7 dB by
taking into account the real built-up layer relief. In any case the proposed
parametric model still gives more accurate predictions than the Hata small-
medium model [15]. The comparison between experimental results obtained
in Jerusalem and the calculations according to the Hata small-medium model
is presented in Figure 8.16. In this case, the value of the standard deviation
is abourt twice as large as that obtained by using the parametric model. Addition-
ally, we have to note that one of the substantial advantages of the presented
method is its relative simplicity and that it does not need to be calibrated.

Summary

In this chapter we presented the three-dimensional model of wave scattering
and diffraction from randomly distributed buildings and other kind of obstacles
placed in rough terrain. Using such a model we can accurately predict the loss
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0 Kingston: Double scattering.
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Figure 8.14 (d) (continued).

of characteristics in built-up areas for various kinds of terrain profile and
for different positions of transmitting and receiving antennas with respect to
rooftops. Using this multiparametric model and its input parameters, such as
the buildings’ spatial distribution, their density over the terrain, as well as each
building’s characteristic dimensions and reflection properties, one can describe
the coverage effects and construct a “radio map™ of the built-up area under
consideration.

Furthermore, as shown in Chapter 9, this probabilistic approach allows
us to obtain the characteristic scale of cellular maps of built-up areas for various
situations of receiver and transmitter (stationary or moving, higher or lower
with respect to building heights) in the urban scene.
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Jerusalem: Single scattering.
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Figure 8.15 (a) The same, as in Figure 8.14{c), but obtained for the Jerusalem area by
use of single-scattering model. (b} The same, as in Figure 8.14{d), but
obtained for the Jerusalem area by use of double-scattering model.
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Jerusalem: Double scattering.
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Figure 8.15 (b) {continued).
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Jorusalem: Hata model
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Figure 8.16 The same, as in Figure 8.15(a) but obtained by use of Hata model.
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Propagation Aspects of Cell Planning
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Cellular Systems Concept

Usually, in the literature for designing wireless systems, the cellular concept of
wireless communication in built-up areas is introduced [1-9], which allows
the designers of such systems to assume decreased natural background noises
within the propagation channels, and to exclude deep interference phenomena
from affecting the signal at the input of receiver.

These phenomena are mostly manifested for moving subscribers, that is,
for mobile communication systems, so the cellular concept is presented here
mostly for the purposes of mobile communications. Let us ask a question:
What is the cellular principle and how may we construct each cell in a completed
cellular system?

The simplest radio cell one can construct uses a base station (radio port)
at the center of a cell and predicts the coverage area from this station’s antenna.
This coverage area is defined by the range where a stable signal from this
station can be received. Figure 9.1 illustrates the distribution of such cells. As
seen, there exist regions of overlap with neighboring radio cells, where stable
reception from neighboring base stations can be obtined. From this scheme
it also follows that different frequencies should be used in these cells which
surround the tested central cell. On the other hand, the same frequencies can
be used for the cells farthest from the central one. This is the cells repeating
or reuse of operating frequencies principle. At the same time, the reuse of the
same radio channels and frequencies within the neighboring cells is limited by
preplanned cochannel interference. Moreover, in the process of cellular systems
design in various built-up areas, it is important to predict the influence of
propagation phenomena within the corresponding communication channels
on variations of the main parameters of the cellular system, and on the construc-
tion and splitting of cellular maps. All these questions will be discussed below.
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Figure 9.1 The concept of cell distribution and cellular map pattern.

9.1 Main Characteristics of a Cell

Now we will describe the main characteristics of a cell The real distance from
the center of a cell, where the base station is located (based cell), to the center
of the repeat cell (which is denoted in Figure 9.6 (see below) by the same letter)
is called the reuse distance, D. The cell size is determined by its radius, R.
Relationships between these main parameters will be presented later.

Now let us consider the radio coverage of a single cell, which is presented
in Figure 9.2 according to [5]. Here, the base station antenna radiates a power
Pr; the antenna gain is G 7. Together they can give a sufficient transmitted
power, for example, in excess of 10W. A sensitive low-noise receiver, a portable
transmitter, and an elementary antenna (for example, a telephone antenna),
are assembled within the car, as in Figure 9.2, Because the signal decay is
stronger when increasing the range between the base station and a car, it is
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Figure 9.2 The fundamental radio cell and associated parameters.

important to obtain the law of signal decay versus this range. Using this law
of signal attenuation, one can evaluate the range of stable reception of signals
from both sources. Hence, to characterize the single cell, one can use the
following characteristics (as presented in Figure 9.2):

* operating range, d;
* maximal radio range, that is, the cell size limited by noise, by propaga-

tion factor of wave field decay within the cell, by transmitter power,
and so on, R,,,.;

* planned size of the cell, R, which is less than R,,,, and depends on
the conditions of cell design, its radio coverage by the base station
antenna, etc.

For a flat terrain, R can be defined as the radius of a circle surrounding
the base station on the topographical map of a selected area. The area thar is
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covered by the base-station antenna is approximately ~ ~mR? (in km?). For
example, if the radius is R =2 km, the single cell coverage area is
S = 6.28 km?, which provides a service to about 200 subscribers of a wnrcless
personal communication channel [5]. For R = 20 km, then § = 628 km? and
the number of subscribers grows to 20,000. But to service 120,000 subscribers,
the cell should be designed with a radius of R=25km, and an area
S = 1,960 km* [5).

As follows from the above estimations, to use only a single cell for stable
wireless communication in urban conditions with their complicated multipath
propagation phenomena (caused by the multireflections, multidiffraction,
multiscattering, etc.), is in practice quite unrealistic.

9.2 Cells’ Design Strategy

The concept of cellular wireless communication has been introduced with
numerous cells of a small radius, which provide a sufficient signal-to-noise ratio
and a low level of interference with received signals within the communication
channel. As an example, a characteristic cell-layout plan for London, UK, is
presented in Figure 9.3 according to [5], at an early stage of its implementation.
As follows from this figure, the early strategy of cell communications design
is based on the following principles:

® With an increase of the number of subscribers, the dimensions of the
cells become smaller {usually this was done for centers of cities, where
the number of cars is larger and building density is higher).

* Cells are arranged in clusters. Only clusters with a hexagonal shape are
possible. The designed cluster sizes of 4, 7, and 12 cells are shown in
Figure 9.3.

® Cells are split. The installation of additional base stations within each
cell depends on the degree of cell density in each cluster and on the
coverage effect of each base-station antenna.

The same strategy of cell design has been proposed for use in the European
Terrestrial Cellular Telephone System [5], where each base-station antenna,
with an effective power of 100 mW, covers a cell with radius R = 1 mile
(~1.6 km). At the same time, to cover the area of one cell with radius
R = 10 miles (~16 km), the transmitting antenna requires a power of 100 W
(i.e., 1000 times higher).

Thus, the antenna power problem has been successfully solved by using
a cell-splitting strategy. However, the question regarding the regions of overlap
of coverage between neighboring cells is not solved yet (as seen from Figure
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Figure 9.3 A typical city cellular map, where cluster sizes of 4, 7, and 12 are also
indicated.

9.1). The circle-shaped cell was therefore replaced by a regular hexagon-shaped
cell. As seen in Figure 9.4, where both circle-shaped and regular hexagon-shaped
cells are presented, the hexagon-shaped cell is more geometrically attractive than
the circle-shaped cell.

Moreover, in the hexagon-shaped multiple cells structure (plan), the
hexagonal cells are closely covered by each other. Thus, each hexagonal cell
can be packed into clusters “side-to-side” with neighboring cells. The size of
such hexagonal cell can be defined by using its radius R and a 120-degree
angle (see Figure 9.4).

The cluster size is designated by the letter /V and is determined by the
equation [2-5]:

N=i®sijs+j? (9.1)

where /,7=0,1,2,...., et
As follows from (9.1), only the cluster sizes 3, 4, 7, 9, 12, etc., are
possible. However, each cluster can be divided into three clusters, each consisting



350 Radio Propagation in Cellular Networks

T~

Radius R

120°

Figure 9.4 Circle-shaped and regular hexagon-shaped cells presentation.

of three cells. It is called a 3/9-cell cluster (see Figure 9.5). Other variants of
sectored clusters are presented in Figure 9.5. Each sector has one base-station
antenna (or radio port).

One can ask the reasonable question: Why is it necessary to divide clusters
into subclusters? It is necessary to use the same repeating frequencies in different
cells. Therefore, earlier concepts of reuse distance, D, and reuse frequencies were
introduced. How can one use these concepts? If we focus on the popular 7-cell
cluster arrangement, which is depicted in Figure 9.6, we first notice that the
allocation of frequencies into seven sets is required. In Figure 9.6, the mean
reuse distance is explained, in which the cells (say, denoted by G & G) use
the same frequency set. This is a simple way to use the repeat frequency set in
the other clusters.

Between D and the cell radius R (see Figure 9.7) there exists a relationship
which is called the reuse ratio. This parameter for a hexagonal cell is a function
of cluster size, that is [2-5]

2 \BN 9.2)

Thus for a 7-cell cluster of 2-mile-radius cells, the repeat cell centers
which operate with the same frequency set would be separated by:

D = R\BN = 24/21 = 9.2 miles (9.3)
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Figure 9.5 Different variants of sectored clusters.
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Figure 9.6 The popular seven-cell cluster arrangement: D is the reuse distance, R is the
radius of cell.
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Figure 9.7 Directional frequency reuse plan.

Within other cells in a cluster, interference inside the communication
channel can be expected at the same frequencies. Hence, for a seven-cell cluster
there could be up to six immediate intetferers, as it is shown in Figure 9.7.

Now we will discuss the question of how to predict the optimal cell size
and the cluster splitting using the law of signal decay, described by many
independent models constructed to predict the propagation phenomena within
various wireless communication channels. Let us start with the description of
special parameters characterizing the concrete situation in cellular environments.

While passing from cell to cell, the subscriber in the moving vehicle can
be interrupted while talking to any other subscriber (stationary or moving).
Because this is caused by a large signal attenuation due to obstructions sur-
rounding them, the hand-off parameter is usually introduced. Hand-off is a
process that allows a cellular mobile vehicle to move from cell to cell without
service interruptions (Figure 9.8). Once the hand-off is complete, a ping-pong
effect is unlikely, since the difference in the receiving signal level (RSL) between
the old and the new cell increases rapidly. This will also reduce hand-off
requests, thus enhancing the capacity.
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Figure 9.8 LOS hand-off scenario.

Now we will consider another major problem of moving subscriber
servicing using the cellular concept which is connected with cochannel interfer-
ence caused by frequent reuse of channels within the cellular communication
system. To illustrate the concept of cochannel interference, let us consider a
pair of cells with radius R, separated by a reuse distance D, as shown in Figure
9.9. Since the cochannel site is located far from the transmitter (D >> R),
which is located within the initial cell, its signal at the servicing site will suffer
multipath attenuation. We consider here the situation in the urban scene where
both antennas are lower than the surrounding buildings’ rooftops.

To predict the degree of cochannel interference in such a situation with
moving subscribers within the cellular system, a new parameter, carrier-to-
interference ratio, C/1, is introduced in the literature [5-9]. This parameter in
turn depends on frequency planning and antenna engineering. As pointed out
in [9], a cochannel interferer has the same nominal frequency as the desired
frequency. It arises from multiple use of the same frequency. Thus, referring
to the part of cellular map depicted in Figure 9.10, we find that cochannel
sites are located in the second cluster. For omnidirectional antennas located
inside each site, the theoretical cochannel interference in dB is given by [9]:

C 1/DY
< =10 log[;(—R> ] (9.4)
Serving cell Cochannel cell
Y=2 Y=2
1>2 Y>2
RSL RSL
™ R ne D »

Figure 8.9 LOS cochannel interference.
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7 Cell cluster

Serving site
Figure 9.10 Cochannel interference evaluation scheme.

where j is the number of cochannel interferers (j=1,2,...,6), and 7y is
the path-loss slope constant, which determines the signal decay in various
propagation environments. For a typical seven-cell cluster (V = 7) with one
cell as basic (with the transmitter inside it) and with six other interferers
(f = 6) as the cochannel sites, this parameter depends on conditions of wave
propagation within the urban communication channel. To understand this
fact, let us present, according to [5], a simple propagation model for the regular
urban environment with y = 4 (see Chapters 5 and 6). In this case one can
rewrite (9.4) as:

4
C 1/D
7= 10 log[g(-ﬁ)] (9.5)

Then, according to (9.2), D/R = \/3N = 4.58, and C// = 18.6 dB. In
the general case, by introducing (9.2) in (9.5) we have that

? =10 1og[é(3 . N)Z] = 10 log(1.5 - N?) (9.6)

The carrier-to-interference ratio is also a function of cluster size N and
is increased with the increase of cell numbers in each cluster; or with the
decrease of cell radius R. Let us now introduce the important cellular parameters
and present them in Table 9.1.



Cellular Systems Concept 355

Table 9.1
Cellular Parameters
Cluster Size {a) (b} (c) (d)
(N) (D/R) (279/N) (L‘, L‘/I) dB (N)
3 30 93 1 2583
4 35 69 14 1840
7 46 39 18 937
9 5.2 K| 21 107
12 6.0 23 23 483
‘21 79 14 28 245

In column (a) the reuse ratio D/R is presented; number of channels
per cell is presented in column (b). The data presented in column (¢) is
obtained by use of the standard presentation of formula (9.6), that is,
C,=ClI=15" N2 To obtain the number of subscribers in the urban area
considered, described by column (d) in Table 9.1, we need additional informa-
tion about the urban area and additional formulations, such as:

. .. 2
® the urban area of operation and servicing - A, km®;
® the number of citizens in the operating urban area - P (per thousands);
o the mean radius of the cell - R, km;

¢ the number of channels in one cell - »,.

Thus, in Figure 9.11, the dependence of #, versus cells’ number N for
various C//-ratios is shown. If, for example, 30 subscribers use the same channel
in the considered cell, then the number of subscribers in this cell equals

7=30-n.=10- 7 n, (9.7)

For regularly distributed cells over the built-up terrain, the number of
cells in the urban area concerned equals

K=— 9.8)

9.9
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Figure 9.11 Number of channels per cell n; versus cells number N for various C/f-ratios.

The parameter Vcalculated by use of this formula is presented in column
(d) in Table 9.1. From (9.9) we can estimate as a percentage the number of
subscribers from the population located in the urban area. Thus,

10 - n,- A
R - P 1000

A n,

N(%) = $100% = 75 (%) (9.10)

FExample: Number of city citizens is 600,000 located within an area with
a radius of R, = 8 km. The cell size is R = 2 km, the number of channels in
each cell is 7, = 40. We need to determine the number of subscribers (in
percentage) for effective servicing by a wireless communication system.

Solution:

First step: We calculate a city area: 4 = pR2 ~ 200 km”.

Second step: We calculate the number of citizens per thousands:

600,000
= 000 - 600.
. 200 -
Third step: We calculate using (9.10), that: V(%) = H =~ 3.3%.

The resule of this example shows that for cities with a high-density
population (A/P is small), it is very hard to plan the wireless service by use of
a simple propagation model. If we try to increase (up to the maximum) the
number of channels by splitting the operating radio-frequency band, the cell
size (radius R) remains critically limited by the conditions of radio wave
propagartion in the urban area. Moreover, as follows from (9.4) to (9.6), the
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law of signal decay (determined by parameter j) affects cochannel interference
parameter C//. This question is discussed in detail later. Now we will note
that Formula (9.10) can be rewritten by introducing into it new parameters
as the frequency band of the total cellular service system, AF, and the frequency
band of each channel, Af;. In this case the number of radio channels in each
cell equals

__AF
"<=Af. N

(9.11)

Then the number of subscribers which can effectively communicate by
using the existing cellular servicing system equals, as a percentage,

A- AF
Af.-P- N- R?

N(%) = (9.12)

Formulas (9.10) and (9.12) show that to increase the efficiency of the
cellular communication system in various urban environments, an effective
frequency splitting strategy over the channels within each cell is required.
Moreover, by decreasing the cell size and the cluster size (or number N) one
can also increase the efficiency of the cellular system. The latter depends on
the strategy of cellular map construction and splitting. We show how to do
this below.

The experience of cellular systems designers shows that it is very dificult
to decrease the number N of cells in each cluster (see Figure 9.11). Apparently,
as follows from this picture, number N =7 is the smallest size of cluster
constructed, because for N < 7 the acceptable C/7 level of 16 dB cannot be
reached. Initially the parameter N was selected as N = 12 by the TACS cellular
system constructed in England. However, while analyzing the C//-ratio and
its optimization, the optimal number NV = 7 was found. In fact, as follows
from Figure 9.11, for 300-working radio channels with 21 channels required
to control the total cellular system, we obtain for N= 7 and N = 12, respec-
tively, n, = 39 and 7, = 23 communication channels in each cell. This result
follows from Table 9.1 and Figure 9.11, where value 23 from first column in
the table lies berween 20 and 30 (the level corresponding to NV = 12) and value
39 from this column lies between 30 and 40 (the level corresponding to

N=7).
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9.3 The Method of Cellular Map Construction

As mentioned above, the strategy of topographical maps splitting at cells,
the cellular maps’ construction, and the cellular characteristics optimization
(namely, improving the clearance between subscribers within the cell, increasing
cochannel interference parameter C/1, etc.) is based on knowlege of propagation
phenomena inside the cellular communication channels. More strictly, it is
based on the law of signal-power decay for the concrete situation in the urban
scene.

First we will discuss the question of clearance between arbitrary subscribers
within the cell and introduce the recipe for predicting the cell radius (size) for
the concrete propagation situation.

The recipe of topographical map splitting ar cells. As follows from all the
previous chapters, a better clearance between two arbitrary subscribers in clutter
conditions may be reached in LOS conditions (or direct visibility between
them). In this case, as follows from the two-ray model (see Chapter 3) and
the waveguide-street model (Chapter 5), that cell size, R, cannot be larger than
the break-point range, rg. If so, the law of signal-power decay within each
cell with radius R< 75 is ~R™% Beyond the break point the law of signal
decay, described by path-loss slope parameter ¥, depends on the concrete
situation in the urban scene, and ~ R for propagation in open built-up areas
(see Chapters 3, 4) or ~R7 (i.e., close to exponential decay), observed in
LOS conditions along straight streets (see Chapter 5). This situation regarding
signal-decay law is shown in Figure 9.12 (top graph).

The wave-propagation phenomena in urban environments with both
antennas in NLOS (clutter) conditions were described in Chapters 6 to 8. As
follows from models described there, in rural and residental areas with a
separated building distribution the path-loss slope parameter y describing the
received signal decay is changed from ¥ = 2.4 to ¥ = 4.8 (see empirical and
deterministic models decribed there). In other words, in such areas field attenua-
tion is faster than that in LOS conditions over flat terrain and in free space.
At the same time, as follows from numerical calculations of the multiparametric
model described in Chapter 8, for various situations when both antennas are
placed in a built-up area with a high density of irregularly distributed buildings,
the law of signal power decay is changed with distance & between antennas
from ~d”7 (7y = 2) before the break point g (where the coherent part of total
field is predominant) to ~4~ 7 (7 = 3) beyond the break point rg (where the
incoherent part of total field is predominant). That is why it is logical now
to ask the question of how to obtain the cell size R, which can be defined
by the break point rp in different propagation situations in built-up areas.
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Built-up area/ ,\Buih-up area

Street

Sstreet

Built-up area Built-up area

Figure 9.12 A cell in an urban area with grid-plan streets.
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A city with regularly planned streets. Let us consider the situation in urban
areas with a rectangular grid plan of straight-crossing streets. In this case, as
follows from the multislit street waveguide model described in Chapter 5, the
cell size can be described by formula (5.65), which we repeat once more as

4hrhp (1 + x) (1 + byla + hrhgla®)
A (L=X) (|R,) +1Dpl)?

R“[[E rg = (913)

where all parameters in (9.13) are described in Chapter 5. As follows from
(9.13), using information about street geometry (street width ), height of
buildings 4;, and mean gaps between buildings lining the street (i.e., the
parameter of brokenness x), about both antennas’ height, A7 and Ay, as well
as the building walls’ material (which determines the absolute values of reflection
coefficient R, and diffraction coefficient D,,,), one can obtain the cell radius
along the street in LOS conditions. An example of cell coverage which corre-
sponds to one special case of perfectly conductive walls (|R,| and
| Dpp| = 1) and a > b7, hg, a < hy, is shown in Figure 9.12 (bottom graph).

The city with nonregularly planned streets. In the case of built-up areas
with nonregularly distributed buildings placed on rough terrain, consisting of
hills, trees, and other obstructions located in residental zones, the cell size can
be obtained by using the probabilistic approach presented in Chapter 8
according to the multiparametric model.

As follows from this approach, the average distance of the direct visibility
p between two arbitrary points, the source and the observer, is described by
formula (8.5) which we will rewrite here in the following form:

P = (Yoy12)™" (km) (9.14)

where

z

yi2 = (22— 2! f Pyl = Xy do, 23> 2 (9.15)

)
yo = 2Lviw (9.16)

Formula (9.14) is general and describes the situation when the buildings’
height is nonuniformly distributed above the terrain profile z = Z(x, y) (see
Section 8.1). For uniform distribution of buildings’ height, this formula can
be simplified as:
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— -1 T
= = — k 1
P = (yo) 2LV( m) (9.17)

If one now obtains the information about servicing area, that is, the
terrain profile, the average buildings’ height 4 and length L, as well as the
density of buildings per square kilometer, it is easy to estimate the cell radius
within the tested area by use of formulas (9.14) or (9.17).

Hence, by use of two new models, as the combinations of deterministic
and statistical approaches, presented in this book in Chapters 5 and 8, respec-
tively, the reader can easily obrain the optimal cell radius for different built-
up areas with various situations of the terminals, transmitter and receiver. A
new concept of cellular map constructions based on these two models (and
recommended for the reader) is more general than that based on two-ray model
and described in [5, 9] both for LOS and NLOS conditions, without any
detailization of the terrain profile.

The frequency planning concept. The same detailed frequency planning
strategy for cellular systems design, based on the models described in Chapters
5 and 8, can be done to optimize the cochannel interference parameter C11 (see
Section 9.2).

According to the propagation situation in the urban scene, the servicing
and cochannel sites can lie both inside and outside the break-point range rp.
If both of them are within this range, as follows from Figure 9.10, the cochannel
interference parameter can be described instead of (9.4) by the C//-ratio
prediction equation (in dB) as

E 10 1 122 8
ofilgl] o

For cell sites located beyond the break-point range, this equation can be
modified, taking into account the multipath phenomenon and obstructions
which change the signal-decay law from D?w D7, vy=2+Ay, Ay2 1.
Hence, we finally have instead of (9.18):

C 1/ DY
77 10 log[g(T)] (9.19)

According to the concepts of cellular map construction presented above,
the signal strength decay is weaker within each cell (with path-loss slope
parameter ¥ = 2) and corresponds to that in free space. At the same time, due
to obstructions, the signal strength decay is stronger in regions outside the
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servicing cell and within the cochannel site (with path-loss slope parameter
vy=2+Ay, Ay>1).

We can now rewrite (9.19) versus number of cells in cluster N, and of
radius of the individual cell, R, by use of (9.2):

C N
<= 10 log[5(3N)A7/2RA7] (9.20)

Let us examine this equation for two typical cases described above.

The city with regularly planned streets. In this case for a typical straight,
wide avenue, for which according to multislit street waveguide model
Ay =2 (y = 4) (see Chapter 5) and

C 3
S=10 log[E(N)sz] (9.21)

For the case of narrow streets (a more realistic case in an urban scene)
onecanputin (9.20) Ay =3 - 7(y = 5 — 9), which is close to the exponential
signal decay that follows from the street waveguide model.

The city with nonregularly planned streets. For the case of propagation over
irregular built-up terrain, as follows from the probabilistic approach, presented
in Chapter 8, Ay = 1 and the C//[ratio prediction equation is:

—f = 10 log[l—zv(3N)”2R] (9.22)

As follows from (9.20) to (9.22), the C/[ratio strongly depends on
conditions of wave propagation within the urban communication channels (on
path-loss slope parameter ¥ = 2 + Ay, Ay 2 1) and on the cellular-map split-
ting strategy (on parameters /V and R). In fact, as follows from formulas
presented above, the C/[ performance is enhanced if the cell radius R is within
the break-point range and the reuse distance D is beyond this range. At the
same time, stated differently for a given C//[-ratio, a channel can be reused
more often, enhancing the cellular system capacity. This pure engineering
subject, as well as the same engineering questions of cellular system performance,
lie outside the purpose and main goal of this book. All these questions the
reader can find described in detail in [5-9].
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Summary

To summarize the principal results described in this chapter, as well as those
lying in most chapters of this book, we present a general technique for predicting
radio coverage and constructing the respective radio map and cellular map for
the concrete built-up area considered. We present this prediction concept in
the form of a prediction algorithm (Figure 9.13).

Algorithm

Initial Data. The initial data, which are the input parameters of cellular map
construction, are as follows:

1. Terrain elevation data, that is, the digital terrain map consisting of
ground heights as grid points /4,(x, y).

2. Clutter map, that is, the ground cover by artificial and natural obstruc-
tions as a distribution of grid points Ay(x, y); the average length of

the obstructions, L; the average height of obstructions in the tested

area, b, and the obstructions density per km®, ».

3. Contour map of obstructions, that is, the list of contour height for
each obstruction.

4. Effective antenna height, that is, the antenna height plus a ground or
obstrucrion height, if antenna is assembled on the concrete obstruction,
zy and z; for transmitter and receiver, respectively.

5. Antenna parttern or directivity and its effective radiated power (ERP);
frequency of operating, f.

6. Traffic distribution pattern (mostly for mobile wireless communica-
tion).

First step of the algorithm. To introduce the built-up terrain elevation data
for three-dimensional radio-path profile construction. As the result, there is a
digital map (cover) with actual heights of obstructions present in the computer
memory.

Second step of the algorithm. Using all parameters of built-up terrain and
of both antennas, transmitter and receiver (according to above initial data), the
three-dimensional digital map is analyzed to theoretically predict the clearance
conditions between antennas and the localization of the obstructions, as reflec-
tors, surrounding both antennas.

Case One: In this case, where the tested area is built as a street grid,
(e.g., blocks), the additional parameters presented in Chapters 5 and 6 are
needed:
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Figure 9.13 The block-scheme of the algerithm of cellular map construction.
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For LOS conditions along the street: the average street width 4; the
average length of buildings (screens) and gaps between them (slits), (L)=1L
and (/) = /, respectively; the average height of buildings, 4, lining the street;
the type of building material dominant in the tested area (brick, wood,
concrete, etc.). All these parameters allow us to obtain the parameter of
“breakness” y = L/(L + [), which indicates the density of buildings lining
the street in the block, the characteristic impedance of the building mater-
ials Zpy = (e,— j20'/f)_”2, the normal wave propagation constant
K, = (mrn + j|ln x|)/4, and finally, the modules | R, | and phase ¢, of reflection
coefficient R, of normal modes that propagate along the street waveguide
according to formula (5.44). All these parameters allow us to obtain the break
range according to (9.13), as a distance of clearance between two subscribers,
that is, the cell radius.

For NLOS conditions: all additional parameters about the height of neigh-
boring buildings with respect to both antennas and the distances berween them,
as shown in Figures 6.8(a,b) for two types of transmitter antenna location.

Case Two: In the case of rough terrain with randomly distributed buildings
in NLOS conditions between both antennas, the follow parameters must be
taken into account: the density of buildings in the investigated area of
1 kmz, v; the average buildings’ length, L; the typical correlation scales of the
obstructions, /, and /j, (see Sections 8.1 and 8.2); the type of building material
dominant in the tested area.

Finally, all these parameters allow us to obtain the density of building
contours in the horizontal plane z = 0 (the ground level), y¢ = 2L v/, and
then the clearance conditions between antennas, receiver and transmitter, (e.g.,
the average horizontal distance of the line-of-sight p) as a cell radius
P =7

Third step of the algorithm. The various factors obtained earlier are then
used for the computer program based on the three-dimensional multislit wave-
guide model in LOS conditions, and the Bertoni et al. model in NLOS
conditions for urban areas with regularly distributed rectangular crossing streets
(according to Section 5.5 and Section 6.2) which we denoted here as the first
case. For the case of the irregular built-up terrain (which we denoted as the
second case), the three-dimensional multiparametric model according to Section
8.2.2 must be used.

In the first case, the following formula is used to describe the field intensity
decay along the straight streets in LOS conditions (see Section 5.5):

(1) = CPR2RAN + 1D pu )2 expi=lIny | R, || (72 — @,)]alrlpl a} 023
¢ DPRE((L = (YR, DI + (xIR, DA |
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and formulas (6.22) to (6.26) are used to describe the situation in urban scene
with rectangular crossing-streets plan in NLOS conditions. All parameters in
(9.23) are described in Section 5.5.

In the second case of irregular built-up terrain with uniform building
heighes distribution, the single-scattering with diffraction formula

TAl,
87A% + 27, yoh - 2))d°

(Tine(r2)) = (AdI4T) + (25 - B2

(9.24)

for the incoherent part of total field is taken into account, if one of the antennas is
higher than building rooftops, and the multiscattering with diffraction formula

a2
247N+ Qalyyolh - 2)2A + Qal,yolh — 22)2)d°
(9.25)

(]int (l'z)) =

for the incoherent part of total field is taken into account, if both antennas
are lower than the rooftops.

In the case of irregular built-up terrain with nonuniform building heights
distribution, the corresponding formulas, instead of those described by (9.24)
and (9.25), for single-scattering with diffraction

TAl

Line(22)) = (A4 + (z — H)"?
inele2) 8a(A + @7l yof () )d> + (o2 =AY
(9.26)
and for double-scattering with diffraction
a3
(Tine(r)) = 7.2 2,2 2, 3
247 (A7 + Qal,yof(m) VAT + Qul,yof(22))d
(9.27)

must be taken into account.
Here the functions f(z;) and f(z;) describe the built-up terrain profile

(/]__ zl)ﬂ+1

(n + 1)(/]2 - /71)"
(9.28a)

flz)) = Hh - 2))(h = z1) + H(z) = h))H(hy — 21)
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and

(/7 _ Zz)’“l

(n + 1)(/]2 - /71)”
(9.28b)

f(z3) = H(by — 230(h— 2z3) + H(zy — h)H(h) — 2))

where the average buildings’ height 4 is determined by the following expression
h=hy~nlhy— h)l(n+1) (9.29)

As a result, the signal power distribution over the terrain is obtained. All
presented formulas are derivated for the case of isotropic antenna pattern. To
take into account the directivity of transmitting and receiving antennas, one
must take into account formulas (9.23) to (9.27), the EPR of both antennas.
These data must be constructed on the computer display as a two-dimensional
regular or color radio map, a contour map, which describes a ground cover
by radio signal for a tested built-up area and for given positions of both
antennas.

Fourth step of the algorithm. At this last step, the reader can split the
coverage map on a set of cells to obtain the cellular map of the tested urban
area. Because the shape and size of each cell depends on the propagation
phenomena, we recommend the reader use the technique described above in
Section 9.3 by using formulas (9.13) and (9.14) to (9.17) for a corresponding
concrete situation in an utban scene.

And, finally, the technique of cellular map construction described above
is sufficiently accurate and more general than that presented in [5-9]. It is
also simple to use and recommended as a basic technique for cellular system
planning.

References

(1] Jakes, W. C., Jr., Microwave Mobile Communications, New York: John Wiley and Sons,
1974.

[2] Lee, W. C., Mobile Communication Engineering, New York: Nill Book Co., 1985.
(3] Rappaport, T. S., Wireless Communications, New York: Prentice-Hall PTR, 1996.

[4]) Feuerstein, M. L., and T. S. Rappaport, Wireless Personal Communication, Norwood, MA:
Artech House, 1992.

(5] Mehrotra, A., Cellular Radio Performance Engineering, Norwood, MA: Artech House,
1994,



368 Radio Propagation in Cellular Networks

[6) Lee, W. Y. C., Mobile Cellular Telecommunications Systems, New York: McGraw-Hill
Publications, 1989.

[7] Linnarez, ], P., Narrowband Land-Mobile Radio Networks, Norwood, MA: Artech House,
1993.

(8] Parsons, L. D., The Mobile Radio Propagation Channels, New York-Toronto: Pentech
Press, 1992.

(9]  Faruque, S., Celtular Mobile Systems Engineering, Notwood, MA: Artech House, 1995.



Acronyms

2DMD
C/
CwW
EBU
ELF
EM
FAU
GTD
HF

LF
LOS
MDS
MGW
MSS
NLOS
RPU
RSL
RSSI
(S/N)
UHF
VHF
VLF

two-dimensional multidiffraction
carrier-to-interference level
crossing-waveguide model
European Broadcasting Union
extremely low frequency
electromagnetic

fixed access unit

geometrical theory of diffraction
high frequency

low frequency

line-of-sight

model of double scattering
multigain wireless

model of single scattering

no line-of-sight

radio port unit

receiving signal level

radio signal strength indication
signal-to-noise ratio

ultra high frequency

very high frequency

very low frequency
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Blomquist-Ladell model, 158-59 total field, 315
defined, 158-59 Built-up irregular terrain, 253-95
path loss formula, 159 Allsebrook’s model, 255-59
toral losses, 159 defined, 253
See also Empirical/semi-empirical deterministic models, 280-93
models (irregular terrain) empirical models, 25468
Boundary conditions, 32-34, 51, 68, 81, Hata model, 261-64
189, 285 Ibrahim-Parsons method, 272-75
air-ground surface, 33 Lee’s model, 275-79
in deep shadow zone, 285 multiple knife-edge diffraction method,
derivation geometry, 32 287-93
Dirichlet (DBC), 285, 311 with nonuniform building heights
electric field, 108 distribution, 366
first, 32, 33, 282 Okumura technique, 259-61
Fresnel zone, 77 parabolic equation method, 280-87
Neumann (NBC), 285, 311 propagation geometry, 280
for normal component, 84 semi-empirical models, 268-79
parabolic equation method, 281 summary, 293-95
second, 33-34, 282 with uniform building heights
Brewster angle, 87, 89, 90 distribution, 366
Broken multislit waveguides, 196 Walfisch-Tkegami model, 268-72
Buildings Young’s propagation prediction,
average height of, 257, 270, 323, 325 254-55

base antenna height and, 241 Bullington’s equivalent knife edge, 149-52

city, statistical distribution of, 299-301
density, 301 construction, 150

diffraction loss determination, 149

accuracy, 151

differential cross-section of scattering,

316 limitation, 149-52
dimensions distribution (BSD), 15, 16 See also Approximate models
distribution between points, 301 Carey model, 164—66
height distribution (BHD), 15, 16 Carrier-to-interference (C/I) ratio, 353
height distribution density, 300 as function of cluster size, 354
on isolated cylindrical hill, 290 number of channels per cell vs. cells’
position distribution (BPD), 15 number for, 355, 356
propagation between, 241 optimization, 357
roofs/corners, diffraction from, 324 performance, 362
rows of, on rolling terrain, 289 predication equation, 361, 362
spatial distribution, 315 signal decay and, 357
straight rows of, model for, 24045 See also Cell clusters; Cellular maps
walls, electric properties, 228 Cartesian coordinate system, 31, 34, 47,
See also Roofrops 66
Built-up area index (BAI), 15 Cauchy’s theorem, 197, 202, 234
Built-up areas CCIR methods, 16364
defined, 13 clearance-angle method, 163

ground cover by radio signal for, 367 defined, 163
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field-strength predication curves, 164
See also Empirical/semi-empirical
models (irregular terrain)
Cell clusters
379, 351
4/12, 351
7721, 351
7-cell arrangement, 351
defined, 348
division, 349-50
illustrated, 351
sizes, 348, 349
three-site, 351
Cells
based, 346
characreristics of, 346—48
circular, 350
design strategy, 348-57
hexagonal, 349, 350
operating range, 347
parameters, 347
radio channels in, 357
radio range, 347
radius of, 346G, 347
repear, 346
repeating principle, 345
reuse distance of, 346
split, 348
in urban area with grid-plan streets,
359
See also Cell clusters
Cellular maps
in city with nonregularly planned
streets, 360-61, 362
in city with regularly planned streets,
360, 362
construction method, 358-62
frequency planning concept and,
361-62
illustrated, 349
pattern, 346
signal decay and, 361
splitting strategy, 362, 367
See also Prediction algorithm
Cellular systems
concept, 345-67
design, 345
handoft, 352

parameters, 355

Channels, 3, 4
in cells, 357
effectiveness of, 10-11
tasks related to, 4
Circular wave polarization, 37-38
defined, 37
illustrated, 38
left-hand, 37
right-hand, 38
See also Wave polarization
City loss characteristics model, 299-319
city building profile and, 322-25
diffraction effects from building layer,
319-22
dimensions of reflected surface sections,
3024
distribution of reflected points, 306-8
field intensity attenuation, 309-19
multiscattering effects, 308-9
multiscattering problem, 317-19
scattering/diffraction simulation,
325-30
single scattering problem, 309-17
spatial distribution of buildings,
299-301
spatial distribution of scattering points,
3046
statistical description, 299-309
Clearance-angle method, 163, 165
Clurter factor, 256
Cochannel interference, 345
evaluation scheme, 354
illustrated, 353
LOS, 353
See also Cellular systems
Continuous spectrum, 201, 202, 203
Cornu’s Spiral, 131
Coverage effects
CW model, 24648
diamond-shape, 246
MD model, 24648
obrained experimentally, 225, 226
predication in urban cross-street scene,
245-48
Ciritical height, 104
Critical range
defined, 92

presentation, 93
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Crossing streets
rectangular, modeling, 224-28
urban, coverage effects prediction,
245-48
See also Streets
Crossing-streets waveguide, 224-40
average field strength, 231-38
comparison with experimental data,
238-40
coverage effects, 24648
path loss, 247
principle modes, 237
screen and slic lengths, 228
total field intensity and, 236-37
total field spectrum inside, 234-35
wo-dimensional, illustrated, 227
wave impedance, 232
wave loss characteristics and, 248
Crossing-waveguides (CW) model, 246
Cylindrical waves
in free space, 3944

presentation, 40

Depolarization phenomenon, 120, 121
Deterministic approach (irregular terrain),
166-72, 174
Deterministic models (built-up irregular
terrain), 280-93, 294-95
muliiple knife-edge diffraction method,
287-83
parabolic equation method, 280-87
Deygout method, 154-56
comparison with other models, 155-56
construction, 155
defined, 154-55
See also Approximate models
Diffraction
amplitude, 146
angles, 140
building roof/corner, 324
by isolated hill, 290
by isolated hill as cylinder, 290
calculation, 174
double, 320, 321, 322, 324-25
effects, from building layer, 319-22
of fields ac rooftops, 241
Fresnel-Kirchoff parameter, 123
geometrical theory of (GTD), 148
GTD and, 187

knife edge, 122

knife-edge, with ground reflection, 135
knife-edge, illustrated, 127, 129-30
knife-edge geomerry, 123
multidiffraction model and, 24045
numerical simulation of, 325-30
over rounded obstacle, 136

over two screens, 14648

path loss and, 126

phenomenon, 123

rooftop to street, 245

over several screens, 148

single, 320

single scarttering with, 326

slope, 14345

over ten-obstacle radio path, 149
theory, 126

vertical, effect, 299
virtual sources, 322
Diffraction losses, 134
in Allsebrook’s model, 256
from Bullington technique, 158
calculared, 131
defined, 126
knife-edge, 134
from last rooftop before moving,
vehicle, 289
obtaining, 126
from rows of buildings before vehicle,
292
single knife edge vs. parameter v, 133
rtotal, 155
two knife edges, 161
Dimensionless parameter, 289
Direct Fourier transform, 188
Direct waves
field intensity, 90
reflected wave phase difference, 91-92,
97
Dirichlet boundary conditions (DBC),
285, 311
Double diffraction, 321, 322, 324-25
Double scattering, 320, 321, 324-25
LOS conditions and, 334
model of (MDS), 326, 330
NLOS conditions and, 336, 338
See also Scattering

Dyadic Green’s function, 46, 47, 48
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Earth’s curvature effects, 93-99
based parameters, 93-97
spread factor, 97-99
Egli model, 156-57
defined, 156
signal decay and, 157
See also Empirical/semi-empirical
models (irregular terrain)
Electric field, boundary condition, 108
Electric vectors, 28-29
Elliptically polarized wave, 9, 37
EM fields
power flow, 30
time-varying, 22
Empirical models (built-up irregular
terrain), 25468
Allsebrook’s model, 255-59
Hata model, 261-64
Okumura technique, 259-61
Young's propagation predication,
254-55
Empirical/semi-empirical models (irregular
terrain), 15666
Blomquist-Ladell model, 158-59
Carey model, 164-66
CCIR methods, 163-64
clearance-angle method, 163, 165
defined, 156
Egli model, 156-57
JRC model, 157-58
Longley-Rice models, 159-63
EM-wave propagation, 5
in free space, 21-60
in multislic waveguide model, 184
over smooth terrain, 65-99
in two-dimensional braken waveguide,
191-93
Epstein-Peterson method, 152
accuracy, 153
construction, 153, 154
defined, 152
See also Approximate models
Equation of straight line, 24445
Equipment noise, 8
Excitation coefficient, 291
Exponent loss factor, 291, 292
Extinction length, 201
Extremely low frequencies (ELF), 7

Field intensity, 90
average, 94
distance from transmitter vs. (Kefar-
Yona), 213
distance from transmircrer vs.
(Manhattan), 214
distance from transmirter vs. decay, 94
frequency dependence, 325
loss, 249
normalized, vs. normalized distance,
215
redistribution, 248
total, 204-10, 217
Field intensity attenuation, 238
characteristics, 324
laws, 218
with randomly distributed buildings,
309-19
Field vectors, 35
First Fresnel zone, 75, 124, 125
defined, 126
radius, 126
shape of, 125
See also Fresnel zones
First summand, 305
Fixed access unit (FAU), 330, 334
Flat terrain
ray reflection from, GG
reflection from, 65-90
total field, 71
Forest model, 167-72
comparison with experimental data,
171-72
defined, 167
geometry, 67
illustrated, 169
loss characteristics predication, 168-71
propagation situations, 168
transmitter inside/outside forest layer,
169
Fourier transforms, 188, 231
direct, 188
inverse, 188, 196, 234
of total average field, 234
Free space
cylindrical waves in, 39-44
Fresnel-zone concept for, 52-58
Green’s function of, 317-18
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Huygens’ principle for, 52
Maxwell’s equations in, 35
path loss formula, 24445
path loss in, 59, 93
plane waves in, 34-36
propagation in, 34-58
spherical waves in, 3944
total average field loss and, 230
transmission loss, 58-60
transverse wave components in, 36
unbounded, 52, 53
wave polarization, 36-39
Frequency
dispersive media, 24
domain solutions, 25
reuse, 350, 352
Frequency bands, 6-10
defined, 6
ELF, 7
HEF, 7
LF, 7
micro wave, 7
optimal, 6-7, 8
UHEF, 7, 322
VHF, 7, 322
VLE, 7
Fresnel clearance, 125-26
defined, 125
inadequate, 158
obstructions and, 126

Fresnel integrals, 127, 128, 131, 145, 174,

202
diffraction parameter vs., 132
multiple, 138-39
presentation, 75
Fresnel-Kirchoff diffraction parameter,
123, 124, 128, 161
+/- and, 124
physical meaning, 125
Fresnel-zone ellipsoids, 124-25
illustrated, 125
second, 125
Fresnel zones

around particular reflected point, 75

boundary conditions, 77
defined, 56

ficst, 75, 124, 125

free space and, 52-58

geometry, 58
location/configuration of, 77
radius, 126

reflection contours, 79
width, 57

zone number, 57

Gauss’s law, 23, 51, 105
Gauss’s theorem, 26-27
for converting into surface integral, 46
geometry, 26
Geometrical theory of diffraction (GTD),
148, 187
Grazing angles, 105, 112
Green’s function, 115, 187, 232, 234, 311
dyadic, 46, 47, 48
of free space, 317-18
integral presentation, 68
point source, 49
presentation for scalar wave equation,
44
scalar, 68
for vector wave equation, 4647
Green’s theorem, 50, 114, 310
Ground
permittivity/conductivity, 90
proximity effect, 169
surface, perfectly conductive, 120

Hand-off
defined, 352
LOS scenario, 353
See alsa Cellular systems
Hankel function, 40, 41, 197
Hata model, 261-64
average path loss, 262
average path loss vs. distance from
transmitter, 266
corrections, 264
correlation factor for mobile antenna
height, 262-63
defined, 261-62
in form of equation for straight line,
271-72
Okumura measurement comparison,
267
Walfisch-lkegami model vs., 271
See also Empirical models (built-up
irregular rerrain)
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Heaviside function, 305
Hertz, Heinrich Rudolf, 6
High frequencies (HF), 7
Hill crest radius, 137
Hilly terrain, 121
Allsebrook’s model and, 255
Lee’s model and, 278
Okumura technique and, 260
schematical presentation, 139
Hoops, 56
defined, 56
width, 57
Horizontal dipoles, 112-13
oriented along y-axis, 113
source presentation as, 67
Horizontal polarization, 86, 88, 167
dipoles, 167
reflection coefficient and, 89
Huygens-Kirchoff approximation, 319
Huygens’ principle, 48-52
defined, 48
derivation geometry, 50
for free space withour obstacles/
discontinuities, 52
geometry, 49
for scalar and vector waves, 48
unbounded free space geometry, 53
wavelets and, 52, 122

Ibrahim-Parsons method, 272-73, 272-75
empirical approach, 273
measure vs. theoretical path loss, 274
predication error, 274
semi-empirical model, 273-75
See also Semi-empirical models (built-
up irregular terrain)
Inverse Fourier transform, 188, 196, 234
Irregularity formula, 105-6
Irregular terrain, 101-75, 253-95, 366

Japanese method, 152-54
construction, 154
defined, 152
See also Approximate models
JRC model, 157-58
defined, 157
diffraction loss estimation, 158
See also Empirical/semi-empirical
models (irregular rerrain)

Kefar-Yona test, 211-12, 238—40
base-station transmitter antenna, 238
environment, 238
estimations, 212
field intensity loss, 240
field intensity measurements, 238
house scheme, 211
normalized average field intensity

decay, 212, 213
rectangular-crossing street scheme, 239

Kirchoff approximation, 114-21
defined, 107
for scattered field determinarion, 312
shadow zones and, 114
smooth terrain presentation, 115
See also Perturbation technique

Knife edge, 121
loss, ideal, 137
perfectly absorbing, 140
propagation over, 121-38

Knife-edge diffraction, 122
effect, on wave propagation, 140
geometry, 123
with ground reflection, 135
llustration, 127, 129-30
losses, 133, 134
Volgr’s multiple, 140-43

Lateral waves, 170
deterministic approach, 166-72, 174
diffracted-nature field component, 171
Lee’s model, 275-79
area-to-area method, 275-76
hill surface reflection geamertry, 277
point-to-point method, 276-79
See also Semi-empirical models (built-
up irregular terrain)
Light zone, 122
Linear polarized wave, 37, 82
Line-of-sight (LOS) conditions
cochannel interference, 353
with double-scattering maodel, 334
Fresnel-zone concept and, 54
hand-off scenario, 353
in Kingston area, 333
loss characteristics prediction in,
210-18
predication algorithm and, 365
rough rerrain propagation and, 101-21
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signal intensity decay in, 333
Walfisch-lkegami path loss formula,
269
See also No line-of-sight (NLOS)
conditions
Longley-Rice models, 15963
defined, 159
irregularity factor and. 163
point-to-point, 159
predication accuracy, 162
receiving signal standard deviation, 162
See also Empirical/semi-empirical
models (irregular terrain)
Loss characteristics predication, 168-71,
210-18
Low frequencies (LF), 7

Macdonald functions, 309
Macrocells, 19
Magnetic fields
tangential component of, 66
vertical component of, 67
Magnetic flux, 22
Magnetic vectors, 28-29
Magnetostatic law, 23
Maxwell, Clerk James, 6
Maxwell’s equations, 22-27
differential representation of, 22-25
in free space, 35
frequency domain solutions, 25
inhomogencous, 28
integral presentation of, 25-27
reduction, 29
time-harmonic presentations, 31
Maxwell's unified theory, 21

Microcells
coverage, 240
defined, 19

range predictions, 240
Microwaves, 7
Mobile antenna height correlation factor,
262-63
rural areas, 263
suburban areas, 263
urban areas, 262-63
Model of double-scattering (MDS), 326
break point prediction, 330
with diffraction, 331
predication of, 332

scattered component increase, 330
See also Double scattering
Maoadel of single-scattering (MSS), 326
break point predication, 330
with diffraction, 331
predication of, 332
See also Single scattering
Mulrtidiffraction model, 240-45
for antennas at/or above rooftop level
and, 250
contribution to path loss, 24144
coverage effects, 24648
equation of straight line and, 24445
formulas, 241, 244
path loss, 247
of urban region, 242-43
See also Diffraction
Multigrain wireless (MGW) local-loop
system, 211, 238
Multiparametric model, 336
Multiple knife-edge diffraction, 140-56,
287-93
approximate-models of, 149-56
attenuation, 142
defined, 287-88
effects of terrain profile, 288-93
geometry, 141
See also Knife-edge diffraction
Multiscattering
effects, 308-9
geometry of, 310
problem, 317-19
See also Scattering
Multislit waveguide, 184-87
angle, 218-19
attenuation, 200
defined, 183
narrow streets and, 219
nonregular, 184
perfectly conductive, 199
three-dimensional, 185, 220
total intensity inside, 204-5
two-dimensional, 186, 229

Narrow streets, 209-10
multislit waveguide model and, 219
regularly planned, 362
See also Streets
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Neumann boundary conditions (NBC),
285, 311
Neumann function, 40, 41
Noise, 8-10
ambient, 8, 9
background, 8
characteristics, 9-10
electronic equipment, 8
Galacric, 9, 10
manmade, 9, 10
white, 9
No line-of-sight (NLOS) conditions
in built-up areas, 223-50
with double scattering model, 336, 338
in Jerusalem area, 337
in Kingston area, 335
predication algorithm and, 365
rough terrain propagation and, 121-66
signal intensity decay in, 333
urban, 299
Walfisch-Tkegami path loss formula,
270
See also Line-of-sight (LOS) conditions

Okumura technique, 259-61

advantages/disadvantages of, 261

for complicated urban environments,
260

correction factor, 262

defined, 259

factor application, 266

with Harta formulations, 293

Hata measurement comparison, 267

height gain factor vs. receiver antenna
height, 261

height gain factor vs. transmitter
antenna height, 260

implementation of, 261

land-sea correction facror, 261, 265

losses in free space, 259

reference median curve, 267

rolling-hill terrain correction factor,

261, 263
slope-terrain correction factor, 261,
264

See also Empirical models (built-up
irregular terrain)
Optical ray theory, 122
Organization, this book, xii—xiii

Over-the-roofs diffraction model, 298

Parabolic equation method, 280-87
boundary conditions, 281
defined, 280
model description, 280-82
normalized path loss over multiple
knife edges, 284
normalized path loss over rectangular
buildings, 288
normalized path loss over screens, 283
numerical results, 282-87
path loss vs. distance from transmitter,
287
split-step algorithm, 281-82
wide-angle, 282, 285
See also Deterministic models (built-up
irregular terrain)
Pach loss
average, 275
Blomquist-Ladell model, 159
CW model, 247
defined, 11
diffraction and, 126
evaluation, 11
formulas, 11
in free space, 59, 93
free space formula, 244-45
for isotropic point source, 60
MD model, 247
measurement units, 12
mulrtidiffraction model and, 241-44
parabolic equation method and, 283,
284, 288
parameter, 92
ratio between isotropic antennas, 289
ratio between receiving/transmitting
power, 291
receiver/transmitter antennas, 60
total, at crossing-street level, 224
in urban environments, 330-35
vegetation and, 166
Walfisch-Tkegami model and, 268,
269, 270
Perfectly conductive surface, 120
Perturbation technique, 108-14
defined, 107
field perturbartions, 110
horizoneal dipole and, 112-13
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phase difference and, 108
roughness influence, 110
vertical dipole and, 111
See also Kirchoff approximation
Phase difference, 98, 104
berween diffracted/direct rays, 124
Fresnel-Kirchoff diffraction parameter
and, 123
perturbation method and, 108
between reflected/direct waves, 91-92,
97
Phase function, 73-74
Picocells, 19
Plane waves
defined, 34
in free space, 34-36
Point-to-point method, 159, 276-79
defined, 277
path loss slope compared to, 279
See also Lee’s model
Polar coordinate system, 75
Polarization. See Wave polarization
Poynting theorem, 29-30
integral, 30
in time harmonic form, 30-31
Poynting vector, 30, 58, 59
Prediction algorithm, 36367
block scheme, 364
first step, 363
fourth step, 367
initial dara, 363
for LOS conditions, 365
for NOS conditions, 365
second step, 363-65
third step, 365-67
Propagation
between buildings, 241
over built-up irregular terrain, 253-95
channels, 3, 10-11
in free space, 34-58
over irregular terrain, 101-75
lateral wave, 166-72
in LOS conditions along straight
streets, 183-220
over multiple obstructions, 138-66
in NLOS conditions in built-up areas,
223-50

over rooftops, 241

over rough terrain (LOS conditions),
101-7
over rough terrain (NLOS conditions),
121-66
over single knife edge, 121-38
over smooth terrain, 65-99
in urban areas (buildings on rough
terrain), 297-338
in urban areas, 16-18
over vegetation, 166-73
VHEF/UHF-band, 174
Propagation characteristics, 10-13
path loss, 11
real power, 12
SNR, 12
Pseudo differential operator, 282

Quasi-periodical surface relief model, 104

Radial waveguides, 230-31
higher-order modes, 235
lower-order modes, 249
principle normal modes, 235
principle waves from, 237
wave impedance inside, 232

Radiation frequency, 161

Radio map, 246

Radio port unic (RPU), 330

Radio Propagation in Cellular Networks
goal of, xii
organization, xii—xiii

Radio strength indication (RSSI), 330
measured value, 332
theoretical function of, 331
theoretical value, 332
values, determining, 330

Rare scatters, 305

Rayleigh rough-surface criterion, 101-7
probabilistic approach, 106-7
schematic presentation, 106

Real power, 12

Receiver antenna
average gain, 9
below rooftop level, 248
in clutter conditions, 16
direct visibility, 16
effective aperture of, 59
gain, 59
path loss, 60
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placement, 16

situations, 17

See also Antennas; Transmitter antenna
Receivers, 3

base station antenna as, 321

street level, 241

See also Receiver antenna; Transmitters
Receiving signal level (RSL), 352
Recrangular-crossed broken waveguides,

24849

Reflected point distribution, 306-8
Reflected source, 70
Reflected surface section dimensions,

3024
Reflected waves, 80
amplitude, 84

attenuation factor, 200

direct wave phase difference, 91-92, 97

GTD and, 187

polarization characteristic of, 119

Reflection

area for, when both antennas near
ground, 78

area for, when one antenna near
ground, 76

areas for, three-dimensional
presentation, 80

areas significant for, 71-79

essential effect for, 73

from flat cerrain, 65-90

formula, 79-87

geometry, from curved smooth ground
service, 95

quasi-smooth surface geomerry, 116

from rough ground surface, 102-3

specular, 78, 79, 96

spreading effect due to, 98

strict, algorithm, 66-71

TE-plane wave, 83

TM-plane wave, 85

total, 87

Reflection coefficient

amplitude, 87-88

analysis for various propagation
conditions, 87-90

of average (coherent) field, 118

average, 316

from building surface, 313

correlation function, 314
for each reflected waveguide mode, 229
Fresnel, 121
horizontal wave polarization, 89
parameters affecting, 90
phase distribution, 314
phase variations, 8788
for radiated field polarization, 207
value/phase vs. angle above horizon, 89
vertical wave polarization, 88-89
Refracted waves, 81, 84
Refraction
formula, 79-87
TE-plane wave, 83
TM-plane wave, 85
Relief function, 315
Repeat cells, 346
Reuse distance
defined, 346
mean, 351
Reuse ratio, 350
Rooftops
antennas at/or above, 250
diffracrion of fields at, 241
median value of, 244
propagation over, 241
reduction of field at, 244
to street diffraction, 245
transmitter/receiver antennas below, 248
See also Buildings
Rotating elliptoids, 79
Rough surface field components, 107-21
diffuse, 107
specular reflected, 107
Rough terrain, 101-66
criterion, schematical presentation of,
106
critical height, 104
multiple obstructions placed on,
13866
propagation, in LOS conditions, 101-7
propagation, in NLOS conditions,

121-66

with randomly distributed buildings,
365

relief, 298

surface criterion, 101-7
urban environment with buildings on,

297-338
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Rural areas, 13
correlation factor for mobile antenna
height, 263

See also Built-up areas

Scalar potentials, 27
Scalar wave equation, 39, 44
Scattered fields
average, 118
defined, 107
depolarization of, 119
Scattering
bistaric, 173
double, 320, 324-25
multiscattering, 308-9, 310, 317-19
numerical simulation of, 325-30
points discribution, 304-6
single, 309-17, 320
Second summand, 305
Semi-empirical models (built-up irregular
terrain), 268-69
Ibrahim-Parsons method, 272-75
Lee's model. 275-79
Shadow zones, 122
boundary conditions and, 285
Kirchoff approximation and, 114
Short-wave approximation, 120
Signal-to-noise ratio (SNR), 12
Single diffraction, 320
Single scattering
approximation, 316
with diffraction, 326
geometry, 320
model of (MSS), 326, 330, 331
problem, 309-17
two-dimensional geometry, 313
Slipped waves, 113
Slope-diffraction
approach, 143—45
coefficient, 145
defined, 14344
over three-obstacle radio path, 144
See alse Diffraction
Smooth terrain, 65-99, 115
Snell’s law, 84, 87
curved surface, 96
schematic presentation of, 81
Spatial distribution, 299-301
Spatial spectrum, 196

Specular reflection, 78, 79
from curved surface, 96
points, 306, 307, 308
Spherical waves
in free space, 39—44
presentation, 40
Split-step algorithm, 281-82
Spreading effect, 98
Spreading factor, 97-99, 145
Stationary phase, 55
Statistical quasi-homogencous building
area, 300
Stochastic model of scattering, 172-73
Stokes” theorem, 25-26
geometry, 25
for surface integral of a curl, 32
Streets
brokenness effect, 248
crossing, 224-28, 245-48
field strength inside, 228-31
multislit waveguide model, 184-87
narrow, 209-10
nonregularly planned, 360-61, 362
as planar multislit waveguide, 183
regularly planned, 360, 362
straight, LOS conditions, 183-220
wide avenues, 207-9
Strict theorem of reflection, 66~71
Suburban areas, 13
correlation factor for mobile antenna
height, 263
See also Built-up areas
Surface electric impedance, 228
Surface roughness criterion, 101-7

Tadiran Telecommunications, 210, 211,
238

Tamir’s approach, 170

Telegraph signal function, 192, 228

Terrain
facror, 158
flat, 65~-90

hilly, 121, 139, 255, 260, 278
irregularity factor, 162-63
rough, 65-90

smooth, 65-99, 115

surface classification, 17, 18
types, 160
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Terrain configurations, 13-16
categories, 14
characteristics of, 14~15
classes, 15-16
classification standard, 14
compromise variant, 15
parameters, 15
types of, 13
Terrain-profile funcrion, 281
TE waves
defined, 82
reflection and refraction, 83
Three-dimensional waveguide model. See
Waveguide street model
Time domain solutions, 25
Time-varying EM-wave field, 22
TM waves
defined, 82
reflection and refraction, 85
Total average intensity, 230
along radial waveguide, 231
Fourier transform, 234
loss relative to intensity in free space,
230, 236
measured vs. calculated comparison,
331-32
range along crossing waveguide vs.,
236-37
relative, 235
in side waveguide, 231-38
See also Field intensity
Total effective noise power, 9
Total field
average, calculation, 228-29
average intensity of, 316
bisection, 237-38
in broken multislir waveguide, 229
in broken waveguide, 196
calculation, 228
continuous spectrum of, 201, 203
discrete spectrum, 197
flat terrain, 71
in impedance unbroken waveguide,
187-91
Total field intensity, 318, 323
artenuation along streer, 204-10
coherent part, 327, 328, 329
incoherent part, 323, 327, 328, 329

Total reflection, 87
Transhorizon radio path, 160
Transition function, 145
Transmission loss, free-space, 58-60
Transmitter antenna

average gain, 9

below rooftop level, 248

in clutter conditions, 16

direct visibility, 16

path loss, 60

placement, 16

situations, 17

See also Antennas; Receiver antenna
Transmitrers, 3

base station as, 241

distance from, intensity decay vs., 94

See also Receivers
Transverse waves, 36
Trees

bistatic scattering of, 173

branches, 173

effects of, 166

leaves, 173
Two-dimensional broken waveguides

EM waves, 191-93

reflection from plate, 192, 193

reflection from wall, 192, 193
Two-dimensional crossing-streets

waveguide, 22440
Two-dimensional multidiffraction model,
24045

Two-dimensional multislit waveguide

average field, 194-204

impedance walls, 195

numerical calculations, 215-16
Two-dimensional side effects, 298
Two-ray model, 90-93, 183

defined, 90

geometry, 91

narrow streets and, 219

Ultra high frequencies (UHF), 7, 322
Unbroken waveguides, 204
reflected field in, 187
total field in, 187-91
Urban areas, 13
cells in, with grid-plan screets, 359
correlation facror for mobile antenna

height, 26263
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modeling, with rectangular crossing
streets, 22428

path loss prediction, 330-35

propagation situations in, 16-18

total number of subscribers in, 355

two-dimensional multidiffraction
model, 24243

See also Built-up areas

Vector

amplitudes, 120

multiplyers, 120

potendials, 27, 28-29

wave equation, 46—47
Vegetation

index (VI), 15

path loss and, 166

propagation over, 166-73
Vertical dipoles, 111

field reflection geometry, 111

field strength, 218

source presentation as, 67
Vertical polarization, 86, 87, 88, 167

dipoles, 167

reflection coefficient and, 88-89
Very high frequencies (VHF), 7, 322
Virtual magnetic source, 68
Virtual sources, 54

Walfisch-Bertoni model, 289
Walfisch-Tkegami model, 268-72
base station antenna height in, 271
defined, 268
Hata model vs., 271
multiple-diffraction component, 270
path loss formula for LOS conditions,
269
path loss formula for NLOS
conditions, 270
path loss prediction, 268

See also Semi-empirical models (built-
up irregular terrain)
Wave equations, 28, 31
Waveguide street model, 204-10
average field intensity, 2056
break-point range, 208, 209
continuous, 219
contribution to path loss, 210
narrow streets, 209-10
normalized field-intensity attenuation,
208
numerical calculations, 215-16
reflection coefficient, 207
total field intensity attenuation, 217
total intensity, 204-5
wide avenues, 207-9
Wave impedance, 232
Wavelets, 52, 122
Wave polarization, 36-39
circular, 37-38
elliptical, 37, 39
horizontal, 86, 88
linear, 37
vertical, 86, 87, 88
Wave-scattering problems, approaches to,
107
Weissberger model, 172
White noise, 9
Wide-angle free space propagator, 282
Wide-angle parabolic equation, 282
approximation, 285, 286
narrow-angle vs., 286
Wireless communication
frequency band for, 6-10
historical developments, 6
links, 3
WISE, 285

Young’s propagation prediction, 254-55



