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Preface

This book deals with a variety of radio propagation phenomena in various
environments and describes the most important characteristics of radio propagation
in wireless communication links. Today we observe a conversion of existing
wireless networks, labeled as the second generation (2G), third generation (3G), and
fourth generation (4G) of wireless networks. To design such networks successfully,
it is very important to predict the propagation characteristics of each radio channel
used, to define the optimal location of subscribers, whether stationary or mobile, as
well as the number of base stations, in order to provide high quality of service (QOS)
for each individual subscriber located in a given area of service. These functions can
be achieved by using smart antennas at one or both ends of a communication link.
Accurate information about the physical propagation processes that occur in each
specific link increases the performance of smart antennas and the efficiency of
service (called grade of service, GOS) for each subscriber.

This book is intended for any scientist, practicing engineer and designer who is
concerned with the operation and service of radio links, including personal, mobile,
aircraft and satellite links. It examines different situations in the over-the-terrain,
atmospheric, and ionospheric communication channels, including rural, mixed
residential, and built-up environments for terrestrial links, atmospheric turbulences,
and different kinds of hydrometeors (rain, clouds, snow, etc) for atmospheric links.
For each channel we discuss the role of all kinds of obstructions on the corresponding
propagation phenomena that influence the transmission of radio signals through such
communication channels, in both line-of-sight (LOS) and obstructive non-line-of-
sight (NLOS) propagation conditions along the radio path between the transmitter
and the receiver antennas. The book also emphasizes how adaptive antennas, at
the link terminals, can be utilized to minimize the deleterious effects of such
obstructions.

The book introduces the reader to relevant topics in radio propagation in
various media and their applications in smart communication networks. Multipath
phenomena, path loss, large-scale or slow fading, and short-scale or fast fading are

XV



Xvi PREFACE

thoroughly described. The phenomena treated include free-space propagation,
propagation above an irregular terrain, in an inhomogeneous and stratified
atmosphere and ionosphere, the reflection, and diffraction by various obstructions
(hills, buildings, trees, hydrometeors, turbulences, plasma inhomogeneous struc-
tures, etc.), regularly or randomly distributed in an area of communication. Finally,
the authors try to show how to create a unified approach for predicting the main
propagation characteristics for different wireless communication channels using
adaptive antenna systems. That means a full prediction of all propagation
characteristics not only in space but also in azimuth, elevation, and time delay
domains, without which adaptive antennas and their corresponding algorithms
cannot be used successfully.

The structure of the book is as follows. The main parameters and characteristics
of radio propagation links, as well as the challenges in using adaptive antennas, are
briefly described in Chapter 1. Chapter 2 introduces the figures of merit and
fundamentals of regular antennas. Chapter 3 introduces the physics of electro-
magnetic wave propagation in random media, based on the principles of statistical
mechanics and quantum field theory, for applications in radio propagation above
rough terrains, turbulent atmospheres, and ionospheric plasmas. In Chapter 4, we
present the electrodynamics of radio propagation in free space, over smooth and
rough terrains, based on Huygens principle and Fresnel-zone concept. All aspects of
terrestrial radio propagation are covered in Chapter 5. First, we start with the
description of the influence of a single building, its shape and roof or wall structures,
on the radio pattern surrounding an antenna. Then, a general stochastic approach
is used to perform a link budget for different kinds of outdoor communication
links: rural, suburban, and urban on the basis of the physical aspects of the terrain
features. In Chapter 6, the effects of the atmosphere and its features (clouds, fog,
hydrometeors, rain, turbulences, etc.) on loss characteristics of any radio signal are
described with examples on how to design a link budget for several specific land-
atmospheric communication links. In Chapter 7, we give the reader information on
how an inhomogeneous ionosphere, containing quasi-regular layers, large, average,
and small sporadic plasma irregularities, affect radio wave propagation, focusing
on path loss and fading. Indoor propagation is discussed in Chapter 8, where
some models for practical applications in indoor communications are presented
through numerous experimental data. Chapter 9 describes the main aspects of
adaptive (or smart) antenna system technologies, such as antenna array and digital
beamforming, focusing on their special applications in terrestrial, atmospheric, and
ionospheric radio propagation for wireless mobile, personal, aircraft, and satellite
communication links. In Chapter 10, a general, three-dimensional, stochastic
approach is given to predict the joint angle-of-arrival, elevation-of-arrival, and
time-of-arrival ray distribution and the corresponding power spectrum distribution
in the space, angle, time, and Doppler frequency domains for different urban
environments, using smart antenna technology. Here, we propose a new concept on
how to predict the main propagation characteristics of the signal for wireless systems
using smart antenna systems. In Chapter 11, the advantages and disadvantages of the
proposed stochastic approach are discussed via a series of experiments carried out in
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different built-up areas. Then, on the basis of a unified stochastic approach, a general
algorithm that can be used to develop a link budget and to predict GOS, and which
also has to optimize the capacity of the information data stream within different
propagation channels, is presented. Chapter 12 concentrates on the design of cellular
communication networks based on radio propagation phenomena. Several examples
are presented and discussed. In Chapter 13, we verify the theoretical results described
earlier by using more precisely arranged experiments carried out in different urban
sites around the world. We do that by focusing our attention on the adaptive antenna
operational characteristics in the space, angle, time, and frequency domains. Finally,
Chapter 14 describes the different approaches, statistical or physical-statistical
used today in land-satellite communication links, as well as for mega-cell map
performance.






CHAPTER ONE
|

Fundamentals of Radio
Communications

The purpose of this chapter is to familiarize the reader with the basic propagation
characteristics that describe various wireless communication channels, such as
terrestrial, atmospheric, and ionospheric for VHF to the X-band. Well-known
standards in wireless communication [1-10] are introduced for the prediction of path
losses and fading effects of any radio signal in various communication links, and
finally, new possibilities that can be obtained using smart antennas are discussed.

1.1. RADIO COMMUNICATION LINK

Different radio communication links (land, land-to-air, air-to-air) covering different
atmospheric and ionospheric conditions, include several components having a
plethora of physical principles and processes, with their own independent or
correlated working characteristics and operating elements. A simple scheme of such
a radio communication link consists of a transmitter (T), a receiver (R), and a
propagation channel. The main output characteristics of such a link depend on the
conditions of radio propagation in different kinds of environments, as shown in
Figure 1.1. According to Reference [6], there are three main independent electronic
and electromagnetic design tasks related to this wireless communication network.
The first task is the transmitter antenna operation including the specification of the
electronic equipment that controls all operations within the transmitter. The second
task is to understand, model, and analyze the propagation properties of the channel
that connects the transmitting and receiving antennas. The third task concerns the
study of all operations related to the receiver.

Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric
and Ionospheric, by Nathan Blaunstein and Christos Christodoulou
Copyright © 2007 John Wiley & Sons, Inc.



2 FUNDAMENTALS OF RADIO COMMUNICATIONS

Wireless Propagation Channel

Propagation Channel

Electronic Electronic
Channel Channel
Additive Absorotion Attenuation | | Multiplicative | | Additive
noise P (path loss) noise noise
(fading)
Transmitter Receiver

FIGURE 1.1. A wireless communication link scheme.

The propagation channel is influenced by the various obstructions surrounding
antennas and the existing environmental conditions. Another important question for
a personal receiver (or handheld) antenna is also the influence of the human body on
the operating characteristics of the working antenna. The various blocks that
comprise a propagation channel are shown in Figure 1.1.

Its main output characteristics depend on the conditions of radio wave
propagation in the various operational environments where such wireless
communication links are used. Next, we briefly describe the frequency spectrum,
used in terrestrial, atmospheric, and ionospheric communications, and we classify
some common parameters and characteristics of a radio signal, such as its path loss
and fading for various situations, which occur in practice.

1.2. FREQUENCY BAND FOR RADIO COMMUNICATIONS

The frequency band is a main characteristic for predicting the effectiveness of
radio communication links that we consider here. The optimal frequency band
for each propagation channel is determined and limited by the technical re-
quirements of each communication system and by the conditions of radio
propagation through each channel. First, consider the spectrum of radio frequencies
and their practical use in various communication channels [1-5].

Extremely low and very low frequencies (ELF and VLF) are frequencies below
3 kHz and from 3 kHz to 30 kHz, respectively. The VLF band corresponds to waves,
which propagate through the wave guide formed by the Earth’s surface and the
ionosphere at long distances with a low degree of attenuation (0.1-0.5 per 1000 km

[1-5D.



NOISE IN RADIO COMMUNICATION LINKS 3

Low frequencies (LF) are frequencies from 30 kHz up to 3 MHz. In the 1950s and
1960s they were used for radio communication with ships and aircraft, but since then
they are used mainly with broadcasting stations. Because such radio waves
propagate along the ground surface, they are called “‘surface” waves [1-5].

High frequencies (HF) are those that are located in the band from 3 MHz up to
30 MHz. Signals in this spectrum propagate by means of reflections caused by the
ionospheric layers and are used for communication with aircraft and satellites, and
for long-distance land communication using broadcasting stations.

Very high frequencies (VHF) are located in the band from 30 MHz up to
300 MHz. They are usually used for TV communication, in long-range radar
systems and radio navigation systems.

Ultra high frequencies (UHF) are those that are located in the band from
300 MHz up to 3 GHz. This frequency band is very effective for wireless microwave
links, constructions of cellular systems (fixed and mobile), mobile—satellite
communication channels, medium range radars, and other applications.

In recent decades, radio waves with frequencies higher than 3 GHz (C, X,
K-bands, up to several hundred gigahertz, which in the literature are referred to as
microwaves) have begun to be widely used for constructing and performing modern
wireless communication channels.

1.3. NOISE IN RADIO COMMUNICATION LINKS

The effectiveness of each radio communication link—Iand, atmospheric, or
ionospheric depends on such parameters, as [5]:

— noise in the transmitter and in the receiver antennas;
— noise within the electronic equipment that communicate with both antennas;

— background and ambient noise (cosmic, atmospheric, artificial man-made, and
so forth).

Now let us briefly consider each type of noise, which exists in a complete
communication system. In a wireless channel, specifically, the noise sources can be
subdivided into additive and multiplicative effects, as seen in Figure 1.1 [6,7,10].

The additive noise arises from noise generated within the receiver itself, such as
thermal noise in passive and active elements of the electronic devices, and also from
external sources such as atmospheric effects, cosmic radiation, and man-made noise.
The clear and simple explanation of the first component of additive noise is that
noise is generated within each element of the electronic communication channel due
to the random motion of the electrons within the various components of the
equipment [5]. According to the theory of thermodynamics, the noise energy can
be determined by the average background temperature, Ty, as [1-5]:

Ex = kT (1.1)



4 FUNDAMENTALS OF RADIO COMMUNICATIONS
where
kg =138 x 1002 W x s x K! (1.2)

is Boltzman’s constant, and T, =290K =17°C. This energy is uniformly
distributed in frequency band and hence it is called “white noise.” The total
effective noise power at the receiver input is given by the following expression:

Np = kgToBwF (1.3)

where F is the noise figure at the receiver. The noise figure represents any
additional noise effects related to the corresponding environment, and it is
expressed as:

T.
F=1+— 1.4
+r (14)

Here T, is the effective temperature, which accounts all ambient natural (weather,
cosmic noise, clouds, rain, and so forth) and man-made (industry, plants, power
engine, power stations, and so forth) effects.

The multiplicative noise arises from the various processes inside the propagation
channel and depends mostly on the directional characteristics of both terminal
antennas, on the reflection, absorption, scattering, and diffraction phenomena caused
by various natural and artificial obstructions placed between and around the
transmitter and the receiver (see Fig. 1.2). Usually, the multiplicative process in the
propagation channel is divided into three types: path loss, large-scale (or slow
fading), and short-scale (or fast fading) [7-10]. We describe these three
characteristics of the multiplicative noise separately in the following section.

1.4. MAIN PROPAGATION CHARACTERISTICS

In real communication channels, the field that forms the complicated interference
picture of received radio waves arrives via several paths simultaneously, forming a
multipath situation. Such waves combine vectorially to give an oscillating resultant
signal whose variations depend on the distribution of phases among the incoming
total signal components. The signal amplitude variations are known as the fading
effect [1-4,6—-10]. Fading is basically a spatial phenomenon, but spatial signal
variations are experienced, according to the ergodic theorem [11,12], as temporal
variations by a receiver/transmitter moving through the multipath field or due to the
motion of scatterers, such as a truck, aircraft, helicopter, satellite, and so on. Thus we
can talk here about space-domain and time-domain variations of EM field in
different radio environments, as well as in the frequency domain. Hence, if we
consider mobile, mobile—aircraft or mobile—satellite communication links, we may
observe the effects of random fading in the frequency domain, that is, the
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FIGURE 1.2. Multipath effects caused by various natural and artificial obstructions placed
between and around the transmitting and the receiving antennas.

complicated interference picture of the received signal caused by receiver/
transmitter movements, which is defined as the ‘“Doppler shift” effect [1-7,10].

Numerous theoretical and experimental investigations in such conditions have
shown that the spatial and temporal variations of signal level have a triple nature
[1-7,10]. The first one is the path loss, which can be defined as a large-scale smooth
decrease in signal strength with distance between two terminals, mainly the
transmitter and the receiver. The physical processes that cause these phenomena are
the spreading of electromagnetic waves radiated outward in space by the transmitter
antenna and the obstructing effects of any natural or man-made objects in the
vicinity of the antenna. The spatial and temporal variations of the signal path loss are
large and slow, respectively.

Large-scale (in the space domain) or slow (in the time domain) fading is the
second nature of signal variations and is caused by diffraction from the obstructions
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placed along the radio link surrounding the terminal antennas. Sometimes this
fading phenomenon is called the shadowing effect [6,7,10].

During shadow fading, the signal’s slow random variations follow either a
Gaussian distribution or a lognormal distribution if the signal fading is expressed in
decibels. The spatial scale of these slow variations depends on the dimensions of the
obstructions, that is, from several to several tens of meters. The variations of the total
EM field describe its structure within the shadow zones and are called slow-fading
signals.

The third nature of signal variations is the short-scale (in the space domain) or
fast (in the time domain) signal variations, which are caused by the mutual
interference of the wave components in the multiray field. The characteristic scale of
such waves in the space domain varies from half-wavelength to three-wavelength.
Therefore, these signals are usually called fast-fading signals.

1.4.1. Path Loss

The path loss is a figure of merit that determines the effectiveness of the propagation
channel in different environments. It defines variations of the signal amplitude or
field intensity along the propagation trajectory (path) from one point to another
within the communication channel. In general [1-3, 6-10], the path loss is defined as
a logarithmic difference between the amplitude or the intensity (called power) at any
two different points, r; (the transmitter point) and r, (the receiver point) along the
propagation path in the medium. The path loss, which is denoted by L and is
measured in decibels (dB), can be evaluated as follows as [5]:

— for a signal amplitude of A(r;) at two points r; and r, along the propagation

path
A*(r2) 2 2
L= 1010gm = 10logA“(r;) — 10log A*(r;)
=20logA(r;) —20logA(r;) [dB] (1.5)

— for a signal intensity J(r;) at two points r; and r, along the propagation path

jg?; = 10logJ(ry) — 10logJ(r;) [dB] (1.6)

If we assume now A(r;) = 1 at the transmitter, then

L =10log

L =20logA(r) [dB] (1.7a)
and

L=10logJ(r) [dB] (1.7b)
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For more details about how to measure the path loss, the reader is referred to
References [1-3,6—10]. As any signal passing through the propagation channel,
passes through the transmitter electronic channel and the electronic channel (see
Fig. 1.1), both electronic channels together with the environment introduce additive
or white noise into the wireless communication system. Therefore, the second main
figure of merit of radio communication channels is the signal-to-noise ratio (SNR or
S/N). In decibels this SNR can be written as:

SNR = Py — Ng  [dB] (1.8)

where Py is the signal power at the receiver and Ny is the noise power at the receiver.

1.4.2. Characteristics of Multipath Propagation

Here we start with the general description of slow and fast fading.

Slow Fading. As was mentioned earlier, the slow spatial signal variations
(expressed in decibels, dB) tend to have a lognormal distribution or a Gaussian dis-
tribution (expressed in watts, W) [1-4,6—10]. The probability density function
(PDF) of the signal variations with the corresponding standard deviation, averaged
within some individual small area or over some specific time period, depends on the
nature of the terrain, of the atmospheric and ionospheric conditions. This PDF is

given by:
1 (r—7)°
PDF(r) = expy ————— 1.9
")=—"7 p{ QUL} (19)

Here 7 = (r) is the mean value of the random signal level, r is the value of the
received signal strength or voltage envelope, and o, = (r> — 72) is the variance or
time-average power ((r) indicates the averaging operation of a variable r of the
received signal envelope).

Fast Fading. In the case of stationary receiver and transmitter (static multipath
channel), due to multiple reflections and scattering from various obstructions sur-
rounding the transmitter and receiver, the radio signals travel along different paths
of varying lengths, causing such fast deviations of the signal strength (in volts) or
power (in watts) at the receiver.

In the case of a dynamic multipath situation, either the subscribers’ antenna is in
movement or the objects surrounding the stationary antennas are moving, so the
spatial variations of the resultant signal at the receiver can be seen as temporal
variations [11,12]. The signal received by the mobile at any spatial point may consist
of a large number of signals having randomly distributed amplitudes, phases, and
angles-of-arrival, as well as different time delays. All these features change the
relative phase shifts as a function of the spatial location and, finally, cause the signal
to fade in the space domain. In a dynamic (mobile) multipath situation, the signal
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FIGURE 1.3. Geometry of the mobile link for Doppler effect estimation.

fading at the mobile receiver occurs in the time domain. This temporal fading is
associated with a shift of frequency radiated by the stationary transmitter. In fact, the
time variations, or dynamic changes of the propagation path lengths, are related to
the Doppler effect, which is due to relative movements between a stationary base
station (BS) and a moving subscriber (MS).

To illustrate the effects of phase change in the time domain due to the Doppler
frequency shift (called the Doppler effect [1-4,6—10]), let us consider a mobile
moving at a constant velocity v, along the path XY, as shown in Figure 1.3. The
difference in path lengths traveled by a signal from source S to the mobile at points X
and Y is Al = fcos = vAcos 0, where At is the time required for the moving
receiver to travel from point X to Y along the path, and 0 is the angle between the
mobile direction along XY and direction to the source at the current point ¥, that is,
YS. The phase change of the resultant received signal due to the difference in path
lengths is therefore

2 2nvAt
—HECOSO il

AP = kAl =
kat A A

cos 0 (1.10)

Hence the apparent change in frequency radiated, or Doppler shift, is given by fp,
where

fo==——=-cos¥ (1.11)

It is important to note from Figure 1.3 that the angles 6 for points X and Y are the
same only when the corresponding lines XS and YS are parallel. Hence, this figure is
correct only in the limit when the terminal S is far away from the moving antenna at
points X and Y. Many authors have ignored this fact during their geometrical
explanation of the Doppler effect [1-4,10]. Because the Doppler shift is related to
the mobile velocity and the spatial angle between the direction of mobile motion and
the direction of arrival of the signal, it can be positive or negative depending on
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whether the mobile receiver is moving toward or away from the transmitter. In fact,
from Equation (1.11), if the mobile moves foward the direction of arrival of the
signal with radiated frequency f;, then the received frequency is increased, that is the
apparent frequency is f, + fp. When the mobile moves away from the direction of
arrival of the signal then the received frequency is decreased, that is the apparent
frequency is f. — fp. The maximum Doppler shift is fpmx = v/A, which, in our
futher description will simply be denoted as fi,.

There are many probability distribution functions that can be used to describe the
fast fading effects, such as, Rayleigh, Suzuki, Rician, Gamma, Gamma—Gamma,
and so on. Because the Rician distribution is very general [1-4,10], as it includes
both line-of-sight (LOS) together with scattering and diffraction with non-LOS, we
briefly describe it in the following paragraph.

To estimate the contribution of each signal component, at the receiver, due to the
dominant (or LOS) and the secondary (or multipath), the Rician parameter K is
usually introduced, as a ratio between these components [1-4,10], that is,

_ LOS — Component power
~ Multipath — Component power

(1.12)

The Rician PDF distribution of the signal strength or voltage envelope r can be
defined as [1-4,10]:

r r? 4 A? Ar
PDF(r):Gzexp{—M} Io<02), for A>0,r>0 (1.13)

where A denotes the peak strength or voltage of the dominant component envelope,
o is the standard deviation of signal envelope, and Iy(-) is the modified Bessel
function of the first kind and zero-order. According to definition (1.12), we can now
rewrite the parameter K, which was defined above as the ratio between the dominant
and the multipath component power. It is given by

AZ

Using (1.14), we can rewrite (1.13) as a function of K only, [1-3,10]:
2

PDF(x) = ;exp{—r} exp(—K)lo (2 fzK) (1.15)

202

For K = 0, exp(—K) = 1 and [(0) = 1, that is, the worst case of the fading channel.
The Rayleigh PDF, when there is no LOS signal and is equal to:

r r2
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FIGURE 1.4. Rician PDF distribution versus ratio of signal to rms.

Conversely, in a situation of good clearance between two terminals with no
multipath components, that is, when K — oo, the Rician fading approaches a
Gaussian one yielding a ‘““Dirac-delta shaped” PDF described by formula (1.9)
(see Fig. 1.4). We will use these definitions in Chapter 5 for the link budget design
inside a terrestrial radio communication system.

1.4.3. Signal Presentation in Wireless Communication Channels

To understand how to describe mathematically multipath fading in communication
channels, we need to understand what kinds of signals we ‘“deal” with in each
channel.

Narrowband (CW) Signals. First of all, we consider a continuous wave CW or
narrowband signals. A voice-modulated CW signal occupies a very narrow band-
width surrounding the carrier frequency f. of the radio frequency (RF) signal
(e.g., the carrier), which can be expressed as:

x(r) = A(r) cos[2nf.t + ¢(1)] (1.17)

where A(t) is the signal envelope (i.e., slowly-varied amplitude) and ¢ () is its signal
phase. For example, for a modulated 1 GHz carrier signal by a wire signal of
bandwidth Af = 2f,, = 8 KHz, the fractional bandwidth is very narrow, that is,
8 x 103Hz/1 x 10°Hz = 8 x 107 or 8 x 107%%. Since all information in the
signal is contained within the phase and envelope-time variations, an alternative
form of a bandpass signal x(¢) is introduced [1,2,6-10]:

y(t) = A(t)exp{jop(1)} (1.18)
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FIGURE 1.5. The signal power presentation of the frequency domain. Bandpath (upper
figure) and baseband (lower figure).

which is also called the complex baseband representation of x(f). By comparing
(1.17) and (1.18), we can see that the relation between the bandpass (RF) and the
complex baseband signals are related by:

x(1) = Re[y(r)exp(j2nf.1)] (1.19)

The relations between these two representations of the narrowband signal in the
frequency domain are shown schematically in Figure 1.5. One can see that the
complex baseband signal is a frequency shifted version of the bandpass (RF) signal
with the same spectral shape, but centered around a zero-frequency instead of the
fe [7]. Here, X(f) and Y(f) are the Fourier transform of x(¢) and y(z), respectively
and can be presented in the following manner [1,2]:

Y(f) = j y(0)e P dr = Re[Y (f)] +j Im[Y (f) (120)

and

X(f) = J x(t)e ¥ dr = Re[X(f)] 4 Im[X(f)] (1.21)
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Substituting for x(¢) in integral (1.21) from (1.19) gives:
X(f) = J Re[y(1)e/*"|e > dt (1.22)

Taking into account that the real part of any arbitrary complex variable w can be
presented as:

1 N
—[w+ w'

Relw] =5

where w* is the complex conjugate, we can rewrite (1.22) in the following form:
X(f) == J ()& 4 y* (1)e 2™ [e 72T ds (1.23)
—00

After comparing expressions (1.20) and (1.23), we get

X() = 3 [V( ) + V(< £ (1.24)

In other words, the spectrum of the real bandpass signal x(¢) can be represented by
real part of that for the complex baseband signal y(r) with a shift of £f, along the
frequency axis. It is clear that the baseband signal has its frequency content centered
around the ‘“‘zero” frequency value.

Now we notice that the mean power of the baseband signal y(¢) gives the same
result as the mean-square value of the real bandpass (RF) signal x(7), that is,

<Py(t)> _ <|Y(t)|2> _ ()

Y (1))
2 2

= (P:(1)) (1.25)

The complex envelope y(#) of the received narrowband signal can be expressed
according to (1.18), within the multipath wireless channel, as a sum of phases of N
baseband individual multiray components arriving at the receiver with their
corresponding time delay, 7;,i = 0,1,2,...,N — 1 [6-10]

gul ZA, expljo;(t, 7)) (1.26)

i=0

If we assume that during the subscriber movements through the local area of service,
the amplitude A; time variations are small enough, whereas phases ¢; vary greatly
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due to changes in propagation distance between the base station and desired
subscriber, then there are great random oscillations of the total signal y(r) at the
receiver during its movement over a small distance. Since y(¢) is the phase sum in
(1.26) of the individual multipath components, the instantaneous phases of the
multipath components result in large fluctuations, that is, fast fading, in the CW
signal. The average received power for such a signal over a local area of service can
be presented according to References [1-3,6—10] as:

=z

Pew) = 3 (A2) +2 3 3 (A {cos o, — 0,]) (1.27)

i i=0 i,j#i

Il
o

Wideband (Pulse) Signals. The typical wideband or impulse signal passing
through the multipath communication channel is shown schematically in
Figure 1.6a according to [1-4]. If we divide the time-delay axis into equal segments,
usually called bins, then there will be a number of received signals, in the form
of vectors or delta functions. Each bin corresponds to a different path whose
time-of-arrival is within the bin duration, as depicted in Figure 1.6b. In this case

@

T, us

(b)

.

1 2 3 4 5 6 7 8 9 10 11 7, us

FIGURE 1.6. (a) A typical impulse signal passing through a multipath communication
channel according to [1-4]. (b) The use of binds, as vectors, for the impulse signal with
spreading.
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the time varying discrete-time impulse response can be expressed as:

N—1
h(t,7) = {ZA,-<z, )expl—j2mferi(1)]6(x — r,-<r>>} expl-jo(,7)]  (1.28)
i=0

If the channel impulse response is assumed to be time invariant, or is at least
stationary over a short-time interval or over a small-scale displacement of the
receiver/transmitter, then the impulse response (1.28) reduces to

N-1
A;i(t) exp[—jbi]o(t — 1;) (1.29)
i=0

where 0; = 2nf.t; + ¢(z). If so, the received power delay profile for a wideband or
pulsed signal averaged over a small area can be presented simply as a sum of the
powers of the individual multipath components, where each component has a
random amplitude and phase at any time, that is,

N— 1

Ppuise) = <Z{A | exp[—64]|} > (1.30)

1:0

The received power of the wideband or pulse signal does not fluctuate significantly
when the subscriber moves within a local area, because in practice, the amplitudes of
the individual multipath components do not change widely in a local area of service.

Comparison between small-scale presentations of the average power of the
narrowband (CW) and wideband (pulse) signals that is, (1.27) and (1.30), shows that
when (A;Aj) = 0 or/and (cos[p; — ¢,]) = 0, the average power for CW signal and
that for pulse are equivalent. This can occur when either the path amplitudes are
uncorrelated, that is, each multipath component is independent after multiple
reflections, diffractions, and scattering from obstructions surrounding both the
receiver and the transmitter or the base station and the subscriber antenna. It can also
occur when multipath phases are independently and uniformly distributed over the
range of |0, 2x]. This property is correct for UHF/X-waveband when the multipath
components traverse differential radio paths having hundreds of wavelengths
[6-10].

1.4.4. Parameters of the Multipath Communication Channel

So the question that is remains to be answered which kind of fading occurs in a given
wireless channel.

Time Dispersion Parameters. First some important parameters for a wideband
(pulse) signal passing through a wireless channel, can be determined, for a certain
threshold level X (in dB) of the channel under consideration, from the signal
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power delay profile, such as mean excess delay, rms delay spread and excess delay
spread.

The mean excess delay is the first moment of the power delay profile of the pulse
signal and is defined as:

N—1 N—1

ZA%‘L’[ ZP(T,’)T,‘
i=0 — i=0

N—1 N—1
ZA? ZP(Tt)
i=0

i=0

(x) = (1.31)

The rms delay spread is the square root of the second central moment of the power
delay profile and is defined as

0. =/ (12) — (z)? (1.32)

where

N—1 N—1
ZA?‘E? ZP(Ti)rf
i=0 =0
N—1 - ON-1
S 3P
i=0 i=0

(v*) =

(1.33)

These delays are measured relative to the first detectable signal arriving at the
receiver at 79 = 0. We must note that these parameters are defined from a single
power delay profile, which was obtained after temporal or local (small-scale) spatial
averaging of measured impulse response of the channel [1-3,7-10].

Coherence Bandwidth. The power delay profile in the time domain and the
power spectral response in the frequency domain are related through the Fourier
transform. Hence, to describe a multipath channel in full, both the delay spread
parameters in the time domain, and the coherence bandwidth in the frequency
domain are used. As mentioned earlier the coherence bandwidth is the statistical
measure of the frequency range over which the channel is considered ‘““flat.”” In
other words, this is a frequency range over which two frequency signals are
strongly amplitude correlated. This parameter, actually, describes the time disper-
sive nature of the channel in a small-scale (local) area. Depending on the degree
of amplitude correlation of two frequency separated signals, there are different
definitions for this parameter.

The first definition is the coherence bandwidth, B., which describes a band-
width over which the frequency correlation function is above 0.9 or 90%, and it is
given by:

B, ~ 0.020." (1.34)



16 FUNDAMENTALS OF RADIO COMMUNICATIONS

The second definition is the coherence bandwidth, B., which describes a
bandwidth over which the frequency correlation function is above 0.5 or 50%, or:

B. ~0.25" (1.35)

There is not any single exact relationship between coherence bandwidth and rms delay
spread, and equations (1.34) and (1.35) are only approximate equations [1-6,7-10].

Doppler Spread and Coherence Time. To obtain information about the time
varying nature of the channel caused by movements, from either the transmitter/
receiver or scatterers located around them, new parameters, such as the Doppler
spread and the coherence time, are usually introduced to describe the time variation
phenomena of the channel in a small-scale region. The Doppler spread By, is defined
as a range of frequencies over which the received Doppler spectrum is essentially
nonzero. It shows the spectral spreading caused by the time rate of change of the
mobile radio channel due to the relative motions of vehicles (and scatterers around
them) with respect to the base station. According to [1-4,7-10], the Doppler spread
Bp depends on the Doppler shift fp and on the angle o between the direction of
motion of any vehicle and the direction of arrival of the reflected and/or scattered
waves (see Fig. 1.3). If we deal with the complex baseband signal presentation,
then we can introduce the following criterion: If the baseband signal bandwidth is
greater than the Doppler spread Bp, the effects of Doppler shift are negligible at the
receiver.

Coherence time 7, is the time domain dual of Doppler spread, and it is used
to characterize the time varying nature of the frequency dispersiveness of the
channel in time coordinates. The relationship between these two-channel charac-
teristics is:

Tcm—:; (1.36)

We can also define the coherence time according to [1-4,7-10] as the time duration
over which two multipath components of receiving signal have a strong potential for
amplitude correlation. One can also define the coherence time as the time over
which the correlation function of two various signals in the time domain is above 0.5
(or 50%). Then according to [7,10] we get

9 94 A
0.

T, ~ = =0.18—- 1.37
16nf, 167y v ( )

This definition is approximate and can be improved for modern digital
communication channels by combining Equations (1.36) and (1.37) as the geometric
mean between the two, this yields

42 J
~ 2428 0.423° (1.38)

T,

m
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FIGURE 1.7. Comparison between signal and channel parameters.

The definition of coherence time implies that two signals arriving at the receiver
with a time separation greater than 7. are affected differently by the channel.

1.4.5. Types of Fading in Multipath Communication Channels

Let us now summarize the effects of fading, which may occur in static or dynamic
multipath communication channels.

Static Channel. In this case multipath fading is purely spatial and leads to con-
structive or destructive interference at various points in space, at any given instant
in time, depending on the relative phases of the arriving signals. Furthermore, fading
in the frequency domain does not change because the two antennas are stationary.
The signal parameters, such as the signal bandwidth, B, the time of duration, Ty,
with respect to the coherent time, B., and the coherent bandwidth, 7., of the
channel are shown in Figure 1.7. There are two types of fading that occur in the static
channels:

A. Flat slow fading (FSF) (see Fig. 1.8), where the following relations between
signal parameters of the signal and a channel are valid [7-10]:

0.02

T

T.>»>T; 0=2Bp<Bs; 0:<Ts; Ber~

> B, (1.39)

Here all harmonics of the total signal are coherent.
B. Flat fast fading (FFF) (see Fig. 1.9), where the following relations between
the parameters of a channel and the signal are valid [7-10]:

TC > TS7 (= BD < st argTS; Bc < Bs (140)
A
BS
T.0; > t < = > » f

c

FIGURE 1.8. Relations between parameters for flat slow fading.
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FIGURE 1.9. Relations between parameters for flat fast fading.

Dynamic Channel. There are two different types of fading also that occur in a
dynamic (mobile) channel:

A. Frequency selective fast fading (FSFF) (see Fig. 1.10), when fast fading
depends on the frequency. In this case following relations between the
parameters of a channel and the signal are valid [7-10]:

T.<Ts; Bp>»Bs; o, >T; B.<Bs (1.41)

B. Frequency selective slow fading (FSSF) (see Fig. 1.11), when slow fading
depends on the frequency. Therefore, the following relations between the
parameters of a channel and the signal are valid [7-10]:

T.>Ts; Bp<Bs; o0.<Ts; B.> B (1.42)

Using these relationships between the parameters of the signal and of a channel, we
can a priori define the type of fading which may occur in a wireless communication
link (see Fig. 1.12).
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FIGURE 1.10. Relations between parameters for frequency selective fast fading.
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FIGURE 1.11. Relations between parameters for frequency selective slow fading.
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FIGURE 1.12. Common picture of different kinds of fading, depending on the relations
between the signal and the channel main parameters.



20  FUNDAMENTALS OF RADIO COMMUNICATIONS
1.5. PROBLEMS IN ADAPTIVE ANTENNAS APPLICATION

The main problem with land communication links is estimating the ratio between the
coherent and multipath components of the total signal. That is, the Ricean parameter
K, to predict the effects of multiplicative noise in the channel of each subscriber
located in different conditions in the terrestrial environment. This is shown in
Figure 1.13 for various subscribers numbered by i =1, 2, 3,. ...

However, even a detailed prediction of the radio propagation situation for each
subscriber cannot completely resolve all issues of effective service and increase
quality of data stream sent to each user. For this purpose, in future generations of
wireless systems, adaptive or smart antenna systems are employed to reduce
interference and decrease bit error rate (BER). This topic will be covered in detail in
Chapter 8. We present schematically the concept of adaptive (smart) antennas in
Figure 1.14.

Building 1

K1 ildi
House Building 2 :

Park

House

Tree

Building 1
Tree Factory
Tree

FIGURE 1.13. Scheme of various scenarios in urban communication channel.
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FIGURE 1.14. A scheme for using adaptive antennas for each user located in different
conditions in a service area.

Even with smart antennas (see Chapter 8), we cannot totally cancel the effects of
the environment, especially in urban areas, due to the spread of the antenna beam
(see Fig. 1.14). Chapters 5 and 10 will focus on terrain effects where a thorough
analysis of these effects on the design of wireless system will be presented.
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CHAPTER TWO
I

Antenna Fundamentals

A radio antenna, transmitting or receiving, is an independent and yet integral
component of any wireless communication system. An antenna acts as a transducer
that converts the current or voltage generated by the feeding-based circuit, such as a
transmission line, a waveguide or coaxial cable, into electromagnetic field energy
propagating through space and vice versa. In free space, the fields propagate in the
form of spherical waves, whose amplitudes are inversely proportional to their distance
from the antenna. Each radio signal can be represented as an electromagnetic wave
[1], that propagates along a given direction. The wave field strength, its polarization,
and the direction of propagation determine the main characteristics of an antenna
operation.

Antennas can be divided in different categories, such as wire antennas, aperture
antennas, reflector antennas, frequency independent antennas, horn antennas,
printed and conformal antennas, and so forth [2-10]. When applications require
radiation characteristics that cannot be met by a single radiating antenna, multiple
elements are employed forming “‘array antennas.” Arrays can produce the desired
radiation characteristics by appropriately exciting each individual element with
certain amplitudes and phases. The very same antenna array configurations, when
combined with signal processing, lead to multiple-beam (switched beam) or
adaptive antennas that offer many more degrees of freedom in a wireless system
design than using a single antenna [11-14]. The subject antenna arrays, including
adaptive arrays, will be studied in detail in Chapter 9. In this chapter, we introduce
the basic concepts of antennas and some fundamental figures of merit, such as
radiation patterns, directivity, gain, polarization loss, and so on, that describe the
performance of any antenna.
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Elevation plane,

X Azimuth plane

FIGURE 2.1. Spherical coordinate system for antenna analysis purposes. A very short dipole
is shown with its no-zero field component directions.

2.1. RADIATION PATTERN

The radiation pattern of any antenna is defined as the relative distribution of
electromagnetic energy or power in space. Because antennas are an integral part of
all telecommunication systems, the radiation pattern is determined in the far-field
region where no change in pattern with distance occurs. Figure 2.1 shows that if we
place an antenna at the origin of a spherical coordinate system, the radiation
properties of the antenna will depend only on the angles ¢ and 0 along a path or
surface of constant radius. A trace of the radiated (or received) power at a fixed
radius is known as a power pattern, whereas the spatial variation of the electric field
along the same radius is called the amplitude field pattern.

Although a 3-D visualization of an antenna radiation pattern is helpful, usually, a
couple of plots of the pattern as a function of 6, for some particular values of ¢, plus
a couple of plots as a function of ¢, for some particular values of 6, give sufficient
information. For example, Figure 2.2(a) depicts the 3-D radiation pattern from an
ideal or very short dipole. Figure 2.2(b) shows the xy-plane (azimuthal plane,
0 =mn/2), called the principal E-plane cut, and Figure 2.2(c) is the xz-plane
(elevation plane, ¢p = 0) called the principal H-plane cut.

A typical antenna power pattern is shown in Figure 2.3. The upper part
depicts a normalized polar radiation pattern in linear, whereas the bottom figure
is actually the same pattern but in rectangular coordinates and in dB scale.
The radiation pattern of the antenna consists of various parts, which are known
as lobes. The main lobe (also known as main beam or major lobe) is the lobe
containing the direction of maximum radiation. In the case of Figure 2.3 the
main lobe is pointing in the 6§ =0 direction. Antennas can have more than
one major lobe.
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(a)

\ 4

(b) (©

FIGURE 2.2. Radiation field pattern of far field from an ideal or very short dipole. (a) Three-
dimensional pattern plot. (b) E-plane radiation pattern polar plot and (c) H-plane radiation
pattern polar plot.

In Chapter 9, we will see that one can create multiple lobes to track several
mobile users at the same time from a Base Station (BS). A minor lobe is any lobe
other than the main lobe. Minor lobes are usually divided into side lobes and back
lobes. The term side lobe refers to those minor lobes near the main lobe, and by a
back lobe we refer to a radiation lobe that is in the opposite direction to that of the
main lobe. Minor lobes usually represent radiation in undesired directions that can
cause interference in a mobile environment, and they should be minimized. The ratio
of levels of the largest side lobe over the major lobe is termed as the side lobe ratio or
side lobe level.

Another term that characterizes a radiation pattern is its half-power beamwidth
(HPBW) in the two principal planes. The HPBW is defined as the angular width of
the main lobe within which the radiation intensity is one-half the maximum value of
beam (see Fig. 2.3). Sometimes, we also use the beamwidth between the first nulls
(BWEN) around the main beam. The 3-dB beamwidth plays a major role in the
overall design of an antenna application. As the beamwidth of the radiation pattern
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FIGURE 2.3. Antenna power patterns. (a) A typical polar plot in linear scale and (b) a plot in
rectangular coordinates in decibel (logarithmic) scale. The associated lobes and beamwidths
are also shown.

increases, the side lobe level decreases, and vice versa. So there is a trade-off
between side lobe ratio and beamwidth of an antenna pattern.

Furthermore, the beamwidth of the antenna is also used to describe the resolution
capabilities of the antenna to distinguish between two adjacent radiating sources or
radar targets. That can play an important role when one uses an antenna to determine
the angle-of-arrival of a radio source.
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2.2. FIELD REGIONS OF AN ANTENNA

The space surrounding a transmitting antenna is divided into two main regions:
the near-field region and the far-field region. The near-field region can be fur-
ther subdivided into two regions: the reactive near-field and the radiating near-
field [1].

Figure 2.4 shows these regions. The first region, which is the closest to the
antenna, is called the reactive or induction near-field region. It derives its name from
the reactive field that lies close to every current-carrying conductor. The reactive
field, within that region, dominates all radiated fields.

For most antennas, the outermost boundary of this region is given by:

D3
r> 062/~ (2.1)

where 7 is the distance from the antenna, D is the largest dimension of the antenna,
and 4 is the wavelength.

Between this reactive near-field region and the far-field region, lies the radiating
near-field region. Although the radiation fields dominate within this region, the
angular field distribution still depends on the distance from the antenna. This region

62D*[A oDy

4

A\ 4

Radiating
region

Reactive [/
region [:
77 T

Near-field region Far-field region —

FIGURE 2.4. Field regions of an antenna and some common used boundaries.
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is also called the Fresnel region, a terminology borrowed from the field of optics.
The boundaries of this region are:

/D3 2D?

At the outer boundary of the near-field region, the reactive field intensity becomes
negligible with respect to the radiated field intensity. The far-field or radiation
region, also called the Fraunhofer region, begins at r = 21;3 and extends outward
indefinitely into free space. In this region the angular field distribution of the field of

the antenna is not dependent on the distance from the antenna.

2.3. RADIATION INTENSITY

Radiation intensity is a far-field parameter that is used to determine the antenna
power pattern as a function of angle:

1(0,¢) = Sy r?
2

_ 2
= 5, [E(0.9)

2
,?HE(,(r 0,)1° + [Ey(r,0,$)[]
inEe(e S)F + E4(0, )P

where 1(0, ¢) is the radiation intensity (W/unit solid angle); S,, is the Poynting
vector (W/m?); E(r, 0, ¢) is the total transverse electric field (V/m); H(r, 0, ¢) is the
total transverse magnetic field (A/m); r is the distance from antenna to point of
measurement (m); # is the intrinsic impedance of medium (€ per square).

The averaged Poynting vector S,, in equation (2.3) is derived from:

Sav = %Re(E x H') (W/m?) (2.4)

where the notation Re stands for the real part of the complex number and the *
denotes the complex conjugate. Note that E and H in Equation (2.4) are the
expressions for the radiated electric and magnetic fields.

Note that the radiation intensity is independent of distance since in the far field
the Poynting vector is entirely radial, that is, the fields are entirely transverse and E
and H vary as 1/r. As the radiation intensity is a function of angle, it is related to the
power radiated from an antenna per unit solid angle. The measure of a solid angle is
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Equivalent in  Area=r?
area

“ Area=r?

FIGURE 2.5. Definition of a solid angle and a steradian.

steradian, which is defined as the solid angle with its vertex at the center of a sphere
of radius r, subtended by a spherical surface area equivalent to that of a square of size
#* (see Fig. 2.5). But the area of a sphere of radius r is given by A = 4772, so in a
closed sphere there are 4mr? / r* = 4 steradian (sr). For a sphere of radius 7, an
infinitesimal surface area dA can be expressed as:

dA = r?sinfd0d¢ (m?) (2.5)

and hence the element of solid angle d©2 of a sphere is given by:

A .
dQ = —5 =sin 60dfd¢ (sr). (2.6)

The total power that can be radiated is given by:

Prag = 4}@1(0, $)dQ = | | 1(0, ¢) sin 0 d0 dp. (2.7)

Q

o%g{?
S —3

Let us consider an isotropic radiator as an example. An isotropic antenna refers to a
hypothetical antenna radiating equally in all directions and its power pattern is
uniformly distributed in all directions. That means the radiation intensity of an
isotropic antenna is independent of the angles 6 and ¢ and the total radiated power

will be:
2n 7w
Prad = @Ildg :Ii J Jsm@d@dqﬁ :I,@ dQ :47T1i (28)
Q 00 Q
orl; = }:(;f, which is the radiation intensity of an isotropic antenna.
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Dividing (0, ¢) by its maximum value I, leads to the normalized antenna
power pattern, that is,

L,(0,¢) = _10.9) (dimensionless). (2.9)

Imax(07 (tb)

2.4. DIRECTIVITY AND GAIN

An important parameter that indicates how well radiated power is concentrated
into a limited solid angle is directivity D. The directivity of an antenna is
defined as the ratio of the maximum radiation intensity to the radiation intensity
averaged over all directions (i.e., with reference to the isotropic radiator). Thus,
the average radiation intensity is found by dividing the total antenna radiated
power r by 4n sr, or

_ Imax(ev (,b) _ Imax(ea (IS) Imax(ea ¢) _ 47TImax(0a (]5)

= = dimensionless).
Loy I; Prad/475 Py ( )

D
(2.10)

The narrower the main lobe of the antenna radiation pattern, the larger the directivity
of the antenna. Obviously, the directivity of an isotropic antenna is unity. Any other
antenna will have a directivity larger than unity (i.e., larger than the isotropic), as
shown in Figure 2.6.

Let us consider the directivity of a very short dipole, as an example. The average
pointing vector for the dipole is given by [11]

_ 1 (lLp 2 2 2
S = 5 (47”) sin” 0 W/m (2.11)

Ii(isotropic)

/ I =D,

mmmm————
N

id . .
L ~ — (directive antenna)

~
[ TSNP

~ -
_______

FIGURE 2.6. Directive pattern versus an isotropic one.



30 ANTENNA FUNDAMENTALS

where L is the length of the short dipole, Iy is the current flowing through the dipole,
n is the wave impedance in free space, and § = 27/A. Using Equation (2.3) we can
solve for the radiation intensity, and then we can use Equation (2.10) to obtain a
directivity of 1.5. This occurs at the 0 = 90° direction (see Fig. 2.2). Thus, in this
direction, a very short dipole can radiate 1.5 times more power than the isotropic
radiator. This is often expressed in decibels such that

D =10log,y(d) dB = 10log,,(1.5) = 1.76 dB. (2.12)

The gain of an antenna is closely associated with directivity, and it is defined as the
ratio of the maximum radiation intensity in a given direction to the maximum
radiation intensity produced in the same direction from a reference antenna with the
same power input. Any convenient type of antenna can be taken as a reference
antenna. Usually, the type of reference antenna is determined by the specific
application, but the most commonly used one is the isotropic radiator, and thus we
can write:

_ Imax(ey d)) _ Imax(ga d))
G= I; ~ Py/4n

(dimensionless) (2.13)

where the radiation intensity of the isotropic radiator is equal to the input, Pj,, of the
antenna divided by 47. As the gain of an antenna depends on how efficient it is in
converting input power into radiated fields, we need to take into consideration its
efficiency before we determine the actual gain. In general, antenna efficiency (¢) is
defined as the ratio of the power radiated by the antenna to the input power at its
terminals:

Prad _ Rr
Pin Rr + Rloss

&= (dimensionless) (2.14)

where R, is the radiation resistance of the antenna; R, is an equivalent resistance in
which the same current flowing at the antenna terminals will produce power equal to
that radiated by the antenna. R is the loss resistance due to any conductive or
dielectric losses of the materials used to construct the antenna. So, if we include
these losses, a real antenna will have radiation intensity

where Iy(0, ¢) is the radiation intensity of the same antenna with no losses.
Using Equation (2.15) into (2.13) yields the definition of gain in terms of the
antenna directivity:

G = Imax(ey (,b) _ l(:Imaxo(gv ¢)
I; I;

=¢D. (2.16)
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The values of gain range between zero and infinity, whereas for directivity the values
range between unity and infinity. However, though directivity can be found either
theoretically or experimentally, the gain of an antenna is almost always determined
by a direct comparison of measurement against a reference, usually the standard gain
antenna. Gain is expressed also in decibels, that is

G = 10log,(g) dB. (2.17)

When we use the isotropic antenna as a reference then we use the dBi notation,
which means decibels over isotropic.

2.5. POLARIZATION

2.5.1. Wave and Antenna Polarization

Polarization refers to the direction of the electric field component of an
electromagnetic wave. The wave is called linearly or plane polarized, that is the
locus of oscillation of the electric field vector within a plane perpendicular to the
direction of propagation forms a straight line. On the contrary, when the locus of
the tip of an electric field vector forms an ellipse or a circle, the wave is called an
elliptically or circularly polarized wave, respectively. There is a tendency to refer to
antennas as vertically or horizontally polarized, though it is only their radiations that
are polarized. Next, we discuss the mechanics of various polarizations that we
encounter in antenna communication systems.

2.5.2. Linear, Circular, and Elliptical Polarization

Consider a plane wave traveling in the positive z direction, with the electric field
component along the x direction as shown in Figure 2.7(a). This wave is linearly
polarized, in the x direction, and its electric field can be expressed as:

E, = E,o sin(wt — 7). (2.18)

EX
A
Q—{y O z y z y .Z
\ 4

(@) (b) (©)

FIGURE 2.7. Polarization of a wave: (a) linear, (b) circular, and (c) elliptical.
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Major axis Minor axis

FIGURE 2.8. Polarization ellipse at z = 0 of an elliptically polarized electromagnetic wave.

In Figure 2.7(b) the wave has both a x and a y electric field component. If the two
components E, and E, have the same magnitude, then the total (vector) electric-field
rotates as a function of time with the tip of the vector forming a circular trace, and
the wave is thus called circular polarized. Generally, the wave consists of two
electric field components, E, and E,, of different amplitude ratios and relative phases
that can yield an elliptically polarized wave, as shown in Figure 2.7(c). The
polarization ellipse may have any orientation, which is determined by its tilt angle,
as depicted in Figure 2.8. The ratio of the major to minor axes of the polarization
ellipse is called the axial ratio (AR).

For any wave traveling in the positive z direction, the electric field components in
the x and y directions can be written as:

E, = Eysin(wt — fiz) (2.19)
E, = Eyysin(wt — fz+ 0) (2.20)

where Ey and E,g are the amplitudes in x and y direction, respectively, and ¢ is the
time-phase angle between them. By manipulating these two components we can
show that [1,11]

E? 2E.E,coss E} .
%_&4_7}2:511125, (2.21)
E3 E\E, £

Depending on the values of E, Ey, and J, this equation can be expressed as the
equation of an ellipse or of a circle.

The sense of rotation of a circularly or elliptically polarized wave plays an
important role in a communication link. It is defined by the direction of rotation of
the wave as it propagates towards or away from an observer along the direction of
propagation. If, for example, a wave is moving away and its rotation is clockwise
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then we say that the wave has a “clockwise” sense of rotation. The most common
notation used today is that of the IEEE by which the sense of rotation is always
determined observing the field rotation as the wave travels away from the observer.
If the rotation is clockwise, the wave is right-handed or clockwise circularly
polarized (RH or CW). If the rotation is counterclockwise, the wave is left-handed or
counterclockwise circularly polarized (LH or CCW). The same applies to ellipti-
cally polarized waves.

The polarization state of an antenna is defined as the polarization state of the
wave transmitted by the antenna. It is characterized by the sense of rotation and the
spatial orientation of the ellipse, if it is elliptically polarized. If the receiving antenna
has a polarization that is different from that of the incident wave, a polarization
mismatch will occur. A polarization mismatch causes the receiving antenna to
extract less power from the incident wave.

Polarization loss factor (PLF) is used as a figure of merit to measure the degree of
polarization mismatch. It is defined as the square power of the cosine angle between
the polarization states of the antenna in its transmitting mode and the incoming wave
(see Fig. 2.9).

PLF = |cos y|*

Generally, an antenna is designed for a desired polarization. The component of
the electric field in the direction of the desired polarization is called the co-polar
component, whereas the undesired polarization, usually taken in orthogonal
direction to the desired one, is known as cross-polar component. The latter can be
due to a change of polarization characteristics during the propagation of or scattering
of waves that is known as polarization rotation.

An actual antenna does not completely discriminate against a cross-polarized
wave due to structural abnormalities of the antenna. The directivity pattern obtained
over the entire direction on a representative plane for cross-polarization with respect
to the maximum directivity for the desired (co-polar) polarization is called antenna
cross-polarization discrimination and plays an important factor in determining the
antenna performance.

A
\J Incident
S N ¥ wave
\ polarization
N
N
\
N

Antenna / N N\
Polarization

FIGURE 2.9. Definition of PLF.
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Transmitter

N Receiver

- Py

FIGURE 2.10. Transmitter and receiver antennas separated by range r.

2.6. TERMINAL ANTENNAS IN FREE SPACE

The equations in the previous section allow us to obtain a relation between the power
at the transmitter and the power received at the receiver when both antennas are
located in free space. This relation is called the Friis transmission formula [15]. For
two antennas, shown in Figure 2.10, separated by a distance r, large enough so that
we are in the far field of both antennas, we get:

The receiving antenna received a portion of the incident radiation, that is

Pr = Aplt (2.22)

where It is the radiation intensity of the incident wave and Ay the effective area of
the receiving antenna given by:

A

Ag = Gy (42) (2.23)

. . .. 2\ .
Here, Gy is the gain of the receiving antenna, and (i—n) is called the free-space loss
factor. The received power can now be written as:

A\ Gr
Pr = — | —P 2.24
R =GR <4n) 42 T (2.24)

with G being the gain of the transmitting antenna. If we also include polarization
loss, then equation (2.24) becomes:

2\ 2
Pr = Gt - Gr () Py - PLF. (2.25)
dnr
This equation is called the Friis transmission formula, and it is very essential in
designing a communication link between two antennas. Although this particular one

is valid for free space only, we will later show how it can be adapted to take into
account propagation conditions, other than free space.

2.7. ANTENNA TYPES

There is a large variety of antennas that are used in different branches of wireless
communications. The simplest and most commonly used antennas are the wire
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antennas that are used as dipoles, loops, or helical antennas. Another major antenna
category is the aperture antennas that appear in the shape of horns or reflectors.
Finally, array antennas are used extensively in communication as switched beam
antennas or adaptive antennas. For more information on the design and analysis of
antennas we refer the reader to several references [1-15], where all types of
antennas, mentioned above, are fully described. Adaptive and multi-beam antennas
will be studied in Chapter 9.
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CHAPTER THREE
I

Fundamentals of Wave
Propagation in Random Media

The subject of wave propagation through random media, terrestrial, atmospheric and
ionospheric medium (e.g., plasma), has been investigated theoretically by many
authors [1-30]. The problem of wave propagation through a random medium could
be understood by using the statistical description of the wave field (electromagnetic
and scalar) and quantum theory [31]. Because the problems of random equations are
not tractable with standard mathematical tools, we must use some special methods
such as Feynman’s diagram method [1-4], the method of renormalization [5,7,22],
etc.

The main goal of this chapter is to summarize the existing theoretical methods
based on statistical and quantum theories and to explain how they can be applied
in wave propagation solutions for future applications of radio communication
problems.

In Section 3.1, we will briefly introduce the main equations and functions that
describe stochastic processes in the random medium. In Section 3.2, we introduce
the perturbation method [7,13,16-18,22] to describe the multi-scattering processes
that a wave goes through by using Feynman’s diagram procedure [1-4]. Here, we
extend this method to non-Gaussian functions by means of a cluster expansion of the
random refractive index. In Section 3.3, we introduce a one-dimensional random
propagation equation having an exact solution, and already containing most features
of the general theory. Section 3.4 describes a formal perturbation method and its
approximations for a scalar wave equation with random refractive index, with or
without time dependence. We also present several approximate procedures related to
the perturbation method, such as Born’s approximation [7,16—18,22], Keller’s
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expansion [14], Bourret’s closure assumption [13], and Kraichnan’s random
coupling model [23]. In Section 3.5, we use a Taylor expansion [7,22] of the
random refractive index, that is, we find the conditions under which it is possible to
replace the random index by a mere random variable or a linear function with
random coefficients. Section 3.6 describes the exact solution of the scalar wave
equation through functional integration, and in Section 3.7, we introduce the
vector electromagnetic wave equation with random index and harmonic time
dependence. It is shown that at long wavelengths the effective phase velocity of
electromagnetic waves increases because of the coupling between transverse and
longitudinal waves. Section 3.8 describes wave propagation in a statistically
inhomogeneous random medium. In Section 3.9, we describe more general
propagation equations of plane waves in anisotropic random medium (namely, the
ionospheric plasma, which is actually for problems of radiowave propagation in
the ionosphere, see Chapter 7), the coupling between different wave modes and the
subsequent energy transfer. It is shown that the energy transfer between different
wave modes, for example, in a turbulent plasma, may be important even for weak
random fluctuations of parameters, but it takes a very long time.

3.1. MAIN WAVE EQUATIONS AND RANDOM FUNCTIONS

A random medium is a medium whose parameters, such as pressure, density,
temperature, and so forth are random functions of positon and time. This means
that we are not describing the exact values of these parameters in the following
section, but only the probability to find them between a given range of values at
given intervals in space and time. A random medium can also be thought of as a
collection of inhomogeneous media, each of which may be either continuous
(turbulent medium) or discrete (medium with random inclusions). Next, we
introduce the main equations that describe stochastic processes in a random
medium.

3.1.1. Wave Equations

The propagation phenomena of linear waves in random medium is described by
a linear differential equation with random coefficients. Let us consider a few
examples.

A scalar wave equation can be presented in the following form:

n*(r,t) W (r,t)

AY(r,t) — 2 o

=0 (3.1)

where ¥(r,t) is the wave field amplitude in the space and time domains, n(r, ) is
the refractive index, which is a random function of space (r) and time (¢), and c is the
wave velocity in free space.
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A compact scalar wave equation with a source g(r) can be presented as
follows:

AY(r) — kznz(r)&”(r) =g(r). (3.2)

Here, (3.2) is deduced from (3.1) assuming a harmonic time dependence ~ exp{icks}=
exp{iwr} and a time independent refractive index n, where k = 27" is the wave
number and £ is the wavelength. The source term g(r) is assumed to be given and
not randomised (e.g., deterministic). For mathematical convenience the wave
number k is assumed to have a small positive imaginary part, which ensures that we
are looking for the outgoing wave. Moreover, this imaginary part does not
correspond to a decaying process and may be canceled after the correct solution
has been found.

An Electromagnetic vector wave equation can be presented by the following
form:

n?(r,t) OE(r,t)
c? or?

AE(r,1) — V(V -E(r,1)) — —0, (3.3)

where E(r, 1) is the vector presentation of electromagnetic field.

We shall always treat the refractive index as a time independent random
function, which is equivalent to the assumption that the characteristic time of
index fluctuations is much longer than the period of the propagating wave. The
medium in such conditions will be taken statistically as homogeneous. This
assumption excludes any medium where the turbulence is concentrated in a small
volume of space. This restriction will be partially dropped in Section 3.9, where
the scale of the inhomogeneity will be considered very large compared to the
wavelength.

To conclude this subsection, let us show that the scalar wave Equation (3.1) and
the reduced scalar wave Equation (3.2) may be treated simultaneously. Equation
(3.1) corresponds to an initial value problem that is well known as the Cauchy
problem and must be given as ¥(r,0) and W(g:’()) in order to find ¥(r, ). Equation
(3.2) corresponds to a radiation problem. Let us introduce the Laplace transform of
the wave function ¥(r, 1),

Y(r,q) = J Y(r,t)-exp{i-q-t}-de, Im(q) > 0. (3.4)
0

It satisfies the following equation, which is the Laplace transform of (3.1):

: ()

AV(r,q) = L) (0 0) = {i-q-‘l’(nt:O)_aqj("’t:O)

or

> . (3.5)
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Equations (3.5) and (3.2) are identical if one takes

g=c-k W(rt=0)=0, W(rgt =0 _ —n;(r) gr). (3.6

We shall always choose these initial conditions for Equation (3.1) and treat (3.1) and
(3.2) simultaneously, interchanging ¢ and c - k, whenever necessary.

3.1.2. Random Functions and Their Moments

A detailed treatment of stochastic processes may be found in [14-16]. By
introducing any finite number of points ry, r,, . . ., r,, we assume that the mean value
of random functions p(ry) - pu(r2) - ... - u(r,) always exists. A moment of order n for
a random function is given by:

(u(r) - w(ra) - p(ra)) = Ju(h) “(ra) e p(r)-P(dw). (3.7)
Q

A random function is often characterized by the infinite set of all its moments
[16,24,25]. The random function u(r) is centered if

(u(r)) =0 (3.8)

This function is stationary if the joint distribution of any finite number of random
variables u(ry) - p(rz) - ... u(r,) is invariant with respect to any simultaneous
transfer of its arguments. For a space-dependent random function, it would
perhaps be better to call it a stationary homogeneous random function (e.g.,
homogeneous turbulence [16]). If the random function is also real valued, the second
order moment

L(ri,r2) = (u(r) - u(r2)) (3.9)

is called the covariance function.
If the random function p(r) is stationary, the covariance function I'(r) is only a
function of r = (r; — ry), that is,

I(ri,r2) =T(ri — ). (3.10)

The function I'(r) has a Fourier transform, which is a positive measure I'(k), called
the spectral measure of the stationary random function, or spectral density function
if it reduces to an ordinary function of wave number k. It is sometimes necessary to
assume the existence of mean square derivatives of the random function u(r) up to a
given order; this subject will be discussed in Section 3.5.
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Gaussian Random Function. A random function u(r) is called Gaussian if the
joint distribution of any finite number of random variables u(ry) - u(r2) - ... - u(ry)
is Gaussian [25]. This function is of great theoretical interest and has many practical
applications, especially because of the following property:

Any scalar linear functional of a Gaussian random function is a Gaussian random
variable.

Furthermore, we note the important property of the moments of a centered
Gaussian random function

(u(r1) - p(r2) -+ p(rane)) = 0 (3.11a)
{u(ro) - u(r2) - plraa)) = Y () - p(r))plre) - plrm)) -+~ (3.11b)

p factors

. 2.0)! .. . .
Here the summation extends over all (2"'1), partitions of ry...rp, into pairs. For

example, for n = 2 one can easily obtain from (3.11b)

(u(ry) - w(r2) - p(rs) - u(ra)) = (u(rr) - w(r2)) - (u(rs) - u(rs))

() - () - (ule) - u(rg)) + () - u(ra)) - (u(r) - ulrs). (3.12)

Fourier Transform (FT) of Stationary Random Functions. Let us consider ran-
dom valued measures as the FT of stationary random functions. A stationary random
function on real line, u(x, w), with continuous covariance function has a spectral
representation of

Ui, w) = J dZ(k, w) exp{ikk}. (3.13)

Here Z(k,w) is a random function with orthogonal increments. This means that
whenever the parameter values satisfy the following conditions [31]

ki <ky <ks <ky
([Z(k2) — Z(k1)][Z(ks) — Z(k3)]) = 0.

The integral in (3.13) is a Stieltjes integral [1-4,7,16]. With this definition the
Fourier transform of a stationary random function does not appear as another
random function but as some derivative of a random function with orthogonal
increments. The integral presentation of (3.13) can be generalized for the case of a
three dimensional (3D) random function.

(3.14)

The Cluster Expansion of the Centered Random Function and Its FT. If the
random function u(r) is centered its covariance is also its two-point correlation
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function, but this is not true for higher moments. As was shown in [1-4], the n-point
correlation functions are not simultaneously correlated. We introduce therefore
the correlation functions h(ri, r2), h(ri,r2,73), ..., h(r1,r2,. .., r,) through the fol-
lowing cluster expansions:

(u(ri)p(r2)) = h(ri,r)
(u(ri)pu(r2)u(rs)) = h(ry,ra, 1)
() p(r) w(rs)u(ry)) = h(ri,r2)h(rs, ra) + h(ri,r3)h(ra, r4) (3.15)
+ h(ri,ra)h(r2, r3) + h(ri, ra, r3, ra)
(u(ry) - u(ra) - Zh Fipy oo os g )R(rj oo rp YR(ryy ooy )
where the summation is extended over all parameters of the set 1,2,...,p into

clusters of at least two points according to (3.11b). From (3.11) it follows that for a
centered Gaussian random function, all correlation functions except the second
order one vanish.

A graphic representation in terms of Mayer diagrams described in [1-4] may be
helpful. The correlation function h(ry, r», ..., r,) is represented by a set of p points
connected by p lines:

h(”ls”z):I S h(ri,75,13) =A ....... (3.16)

The cluster expansion is then written graphically. For example

(u(r)pu(ra)u( I +.':'i ><+ _ (3.17)

This definition of correlation functions ensures that they vanish if the points
1,72, ..., are not inside a common sphere of radius £ (see proof in [1-4]). We also
need the FT of the correlation function as mentioned below:

FS
IS
[
IS

1

h(k17k2,...7kp) :W

Jh(rl, ra, .. rp)exp{—i(kir + ...+ kprp)}d3r1 .- -d3rp

(3.18)

If the random function u(r) is stationary, this is not a function but a measure
concentrated in the hyperplane k; + k; + ...+ k, = 0. Hence we write

h(k],kz,...,kp) :g(kl,kz,...,kp)'é(kl +k2++kp) (319)
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and call the ordinary functions g(ki, k2, ..., k,) or simply the correlation functions
in k-space. Using these functions, we can write the cluster expansion of the moments
in k-space as

= g(k1,k2) - 0(k1 + k2)
(k) (ko) u(ks)) = gk, ko, ks) - O(ky + ko + k3) (3.20)
= g(kl,kz) ~g(k3,k4) . 5(](1 + kz) . 5(/{3 + k4) + ...

The moment (u(ky)u(kz) ... u(k,)) is thus not only concentrated in the hyperplane
ki +ky+...4+k, =0, but it appears as sums of products of terms that are
concentrated in a hyperplane of lower dimensions.

3.1.3. Random Equations

A random equation such as
AY(r) — kK (r)¥P(r) = g(r) (3.21)

describes linear waves and does not constitute a linear problem because the mean
solutions do not satisfy the mean equation. This is because

(n?(r) ¥ (r) # (0 () (P (r). (3.22)

In other words, the wave function and the refractive index are not statistically
independent. If we try to evaluate (n?(r)¥(r)), we must multiply (3.21) by n?(r) and
average afterwards; this will yield the form ~(n?(ry)n*(r)¥(r)), and so on.

Keller [14] has obtained an equation for a functional generating the entire set of
moments. This equation helps with new approximation procedures, but does not
solve the problem. The fact that even the lowest order moment of the wave function
(¥(r)) depends upon the infinite set of moments of the refractive index that seems to
make the problem hopelessly difficult. However, it happens that in certain limiting
cases, one may obtain solutions which do not depend upon the entire set of moments
of the refractive index.

Therefore, the perturbation method described in Section 3.2 gives the Bourret’s
equation, which depends only on the mean value and the covariance of the refractive
index. It is only valid for wavelengths that are longer compared to the range of index
correlations. Conversely, for the random Taylor expansion (see Section 3.5), we need
only the probability distribution of the refractive index and some of its derivatives at
one fixed point. It is valid for wavelengths that are very short compared to the range
of index correlations.

Another case of great interest is when n?(r) is a Gaussian random function. It is
then possible to get an exact solution of (3.21) through functional integration, which
gives all the moments of the wave functions in terms of a mean value and the
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covariance of n?(r) (see Section 3.6). Unfortunately, this method cannot be
generalized to other equations such as the electromagnetic wave equation of (3.3).
Finally, it must be noted that no rigorous mathematical treatment of (3.21) has been
presented till now. This is mainly because we are not able to solve linear partial
differential equations with non-constant (e.g., variable) coefficients.

3.2. THE PERTURBATION METHOD FOR MULTIPLE SCATTERING

The multiple scattering perturbation method is a general method for studying pro-
pagation equations with linear coefficients. It has been first introduced by Bourret [13]
and Furutsu [5,7,22], and studied later by Tatarskii et al. [16—18]. It is not a rigorous
method and cannot be made rigorous because it relies on the use of a divergent series
(see Section 3.4). Divergent series, however, have been used successfully, both in
quantum field theory and in nonequilibrium statistical mechanics. Our aim is to show
that the perturbation method and especially Bourret’s approximation can be used to
find uniform approximation of the mean wave function, when the wavelength is long
compared to the range of index correlation. In this section, this will be proved
rigorously for a one dimensional (1D) model that has an exact solution. It will also be
justified for the scalar wave equation, using the method of extraction of the most
divergent terms (terms which increase as some power ¢ or R), and n-dimensional
analysis of all perturbation terms. Such a method has been used previously by
Ishimaru [24] in radio propagation, and by Balescu [25] in non equilibrium statistical
mechanics. Here, to make things simple, we shall only consider the scalar wave
equation

n(r) ?¥(r,1)

AY(r,t) — o R 0 (3.23)
together with the initial conditions
vinoy—o0, S i (3.24)
r = = — r). .
’ o ()’

In Section 3.1, it was shown that this problem is equivalent to the random variable
problem described by formula (3.2). We shall make the assumption that the refractive
index n(r) is a stationary random function of position and is time independent. The
assumption of strict stationarity (i.e., not only for the two first moments) is essential.
We separate now the constant mean value of 7%(r) and its random part.

n?(r) = (?(r)[1 + e u(r)]
=0

(u(r)) (3.25)
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Here ¢ is a dimensionless small positive parameter characterizing the relative
strength of index fluctuations. Equation (3.23) can now be rewritten as

O (r,1)

AY(r,t) —61—2[1 +e-u(r)]

where (n(r)) has been incorporated into .
The stationary random function is written in terms of its FT and u(r), which is a
random valued measure

u(r) ::J‘exp{ik~ riu(k)d’k. (3.27)

The Laplace transformation (LT) of (3.23), taking into account the initial conditions
in (3.24) is:

AY(r,2) + 51+ eu(r)]¥(r,2) = (). (3.28)

The FT of this equation is

{—kz + Zj W(k,2) + iﬂu(k — k)P (K, )d’K = j(k). (3.29)

Equations (3.28) and (3.29) are both of the type

where Lo is a non random operator whose inverse G(*) = L', called the unperturbed
propagator (or unperturbed Green’s function), is known, and L, is a random operator.
In r-domain

2

2
Ly=A —&—%, GO(r, v 2) =

exp{iz|r — z
R T GIEED

—4z|r — ¥

acting as an integral convolution operator. In k-domain

2 2 2

< C <

acting as an integral convolution operator.
In r-domain L, is diagonal operator and Ly is not; it is the converse in k-domain.
The solution of (3.30) is now formally expanded in powers of ¢ yielding

W= (Lo+el) =Lyl —elg ' Lily Y + 2Ly LiLy ' LiLy '+ ... (3.33)
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(Lo + &Ly )71 = G is called the perturbed propagator (or perturbed Green’s
function).

Let us represent the perturbation series for G with the aid of diagrams, which will
be called bare diagrams to discriminate between them and other drossed diagrams to
be introduced afterwards. We make the following conventions:

a) The unperturbed propagator G)(r, ') is represented by a solid line 7/,
b) The random operator —e¢L; is represented by a dot e;
¢) Operators act to the right.

If so, we may write
G=—+—o—+}—0o—0¢6—|—0—0-0o—0o—|... (3.34)
Let us write down explicitly a few terms of the perturbation series in r-domain

2
G(r,r'iz)=G(r,r;z) - ‘”’%Jdo) (rori;2)u(r) GO (r1,152)dry
4

+82§4”G(0)(rvrz;Z)u(rz)Gm)(rz,rl;Z)u(rl)G“))(rl7r’;Z)d3r1d3rz (3.35)

and in k-domain

Z2

G(k,K;z) = GO (k;2)0(k — k') — 63

G (k; 2)u(k — k)G (K';2)

4
+ aZ%J GO (k; 2)pu(k — k)G (ky; 2)u(ky — KGO (K 2)dky (3.36)

where d(k — k') is Dirac’s measure.
In order to help the interpretation of bare diagrams, it is sometimes useful to
introduce subscripts under certain elements:

G(r,r';z) = 4+ —e— + —eo—o— | .....
r v r rn r r rn rn r
(3.37)
G(k,k’,z): + —— 4 —eo—o— 4 ... ...

+
k K k ki K k ko k K

If so, the dashed curve will connect the concrete points for which u(ry) and u(r;) (or
u(k — ky) and u(ky — k')) are inside the integrals, that is,

w(r)u(ra) ~ e——e (3.38)
|
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or
puk —k)ulky —K) ~ e———e. (3.39)

We now give the physical interpretation of the perturbation expansion. The r-space
diagrams correspond to multiple scattering of the wave at points ry, r, ..., ry. The
k-space diagrams correspond to multiple interactions between Fourier components
of the wave and of the random inhomogeneities; at each vortex of a diagram a
Fourier component k, of the wave function interacts with a Fourier component
(kp41 — kp) of the random inhomogeneities, giving, as a result, a Fourier component
kp+1 = kpy1 — kp + k, of the wave function. Both viewpoints are useful; the first
one, particularly for single or double scattering and the second one for multiple
scattering because of the wave vector conservation conditions.

In future description, we also need the expansion of the perturbed double
propagator G ® G*, that is, the tensor product of the perturbed propagator and its
complex conjugate. In r-space

GG =G(r,r';2)G* (r,r};2). (3.40a)
In k-space
G® G =G(k,k;2)G" (ki,k\;2). (3.40b)

This expansion can also be written in terms of diagrams:

— — E— — —e—o—
G®G = + + + + 4+ (3.41)

If we make the convention that operators of the lower line are the complex conjugate

of the usual ones, for example,

e

koK 2221,2 (0) N ~(0) (7.1 (0)* I INAO) (1.
=& — G (k)ulk — k)G (K';2)G™ (ki; 2 )" (ki — k)G (ky;2)

—— C

ki K
(3.42)

we can present the mean perturbed propagator as in [31].

The Mean Perturbed Propagator

Let us produce this propagator first in »-domain. We take the mean value of (3.34) in
the following manner [31]

<G(r,r’;z)>—< >+< . >+<—o—o—>+ (3.43)
r r ror r r r r r
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Higher order diagrams contain moments of u(r) such as (u(r)u(r2) - ... u(r)),
which must be calculated before integration over ry, 2, ..., rp, is performed.

To every partition we associate a dressed diagram constructed from the bare
perturbation diagrams (the full procedure is described in [31]).

We can write down all diagrams up to the fourth order of perturbation

., AN
- / - -
/

- AN \\ T N 7 7‘\\
/ \ 1 \ 4 \ 4 \
<G>=— 4 —¢—o— 4+ — o —
N RN // ~ \\\ s ﬁ IS
/ AN \ / I Y \ // \ \\\
—_— e —0—0— — e —0o0—0— —0—‘—0—0—
+ + +.....

(3.44)

Such diagrams are called Feynman diagrams [1-4,7]. For random equations, they
have been introduced by Bourret [13] in the case of Gaussian stochastic process,
where only two point clusters are needed. If we want to write down explicitly
the contribution of any diagram, we first write the multiple integral with
wu(ri) - p(ra) - ...~ pu(r,) for the corresponding bare diagram, then replace
(u(ri) - u(r2) - ... - u(ry)) by the product of the correlation functions corresponding
to the clusters that appear in the diagram, and finally perform the integration over

(,72,..., . For example in r-domain

4Z8 0 0 0
e =g gJG( ) (r, 14 1(r4) GO (g, 73) u(r3) GO (13, 12)
rory r3y rp rpr

< u(r2) GO (ry, ) u(r1) GO (r1, )& rid* rad’ rsdry
(3.45a)

which accordingly to the above, shows:

8
-~ -~ Z
e =560 mG ()G 13, 2) GO )

x G (r1, 7 )Yh(r1, r2)h(r3, r4)d3 ndrad®rd’ry (3.45b)

The same diagrams can be constructed in k-domain because the cluster expansion is
valid in both spaces. It is preferable to express the FT of a correlation function that is
singular, as a product of the original function and a §-measure:

]’l(kl,kz, e ,kp) = g(kl,kz, .. .,kp)é(kl + k2 + ...+ kp) (346)

If we want to calculate a diagram in k-domain we first write the multiple integral
with u(k — k,)u(k, — k,—1) - - - - for the corresponding bare diagram, then replace
(uk —ky) - ... u(ky — k")) by the product of k-domain correlation functions and
J-measures corresponding to the clusters which appear in the diagram, and finally
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perform in the integration over ki, ks, . . ., k,. For example

— oo oo 43

k k3 ky ki K =ée CT;JG(O) (k):u(k - k3)G(0> (k3):u(k3 - k2)G<O)(k2)

x pulky — k)G (k) u(ky — KGO (K)dPkyd*kyd ks (3.47a)
or

8
e Z
o O :s“c—sJGw)(k)G<°)(k3)G<°)(kz)G(O)(kl)G(°>(k’)g(k—k3,k3—kz)

x g(ky —kyi,ky — K)o (k—ky)d(ky — K P kydPkod k3. (3.47b)

The vector differences k| — k’, ko — ki, ... and so forth, that appear as arguments
of correlation functions, are called transition vectors. The wave vector conservation
condition ky + k + ...+ k, = O states that the sum of the transition vectors of a
given cluster is zero. An immediate consequence of this is that any diagram has the
same wave vector at both ends. In other words, the mean perturbed propagator is a
diagonal operator in k-domain. It will be noted as (G(k; z)).

The Mean Double Propagator

If we assume the random function to be real, then the extension of the diagram
technique to the mean double propagator is straightforward in r-space. To any bare
double diagram, we associate as many dressed double diagrams as there are
partitions of the whole set of upper and lower points into clusters, for example:

— + X
—o—o— —v— —5—6— —d—‘o— —H—

The explicit calculation of a diagram is performed exactly as for the mean
propagator, remembering that operators in the lower lines are complex conjugate of
the usual ones.

In k-space the situation is somewhat different, because the FT of a real function
is not real but enjoys the property f*(k) = f(—k). When we calculate a diagram in
k-domain, we must replace transition vectors appearing in the lower line by their
opposite in the correlation functions. For example,

——

' 2.2
k_‘,ﬁ :SZ%G(O)(]C/ ) (k Z)G* (k/17 /) *(0)(k1;zl)
kB k€

x gk — K K, —k)o(k — k' + &, — k). (3.48)
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A consequence of the wave vector conservation condition is that the difference of
the wave vectors appearing to the right and to the left of any double diagram is the
same. If we take them as equal we obtain the following result: The mean spectral
energy propagator (|G(k, k'; z)|*) satisfies a separate equation.

Mass Operator and Dyson Equation

Feynman diagram (single or double) is said to be unconnected if it can be cut into
two or more diagrams, without cutting any dotted lines. The following diagrams are
connected:

The strong lines at the end of a diagram are called its ferminals. We can write
any unconnected diagram as a product of connected diagrams without terminals and
strong lines. The decomposition is unique for the single propagator, for example:

7N N
Py Py Iy Py = — Xeo—eX Xo—oX—
—0\—‘—‘— X@®X—X —oéX
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We now define the mass operator M as the sum of all connected diagrams without the
terminals contributing to the single propagator:

LR P ARN
\,
\,

by

\
[N
\ +

(3.49)

In k-space M is a diagonal operator M (k; z); in r-space, it is an integral convolution
operator M(r, r'; z). It is useful to introduce two new symbols for the mean perturbed
propagator and the mass operator

Using the decomposition of unconnected diagrams into products of connected ones,
the following expansion is easily derived:

oMy, gD g, Wy gD AWy

This is formally equivalent to an equation called the Dyson equation in quantum
field theory:

If M (k; z) is known, then it is an ordinary equation for (G(k; z)) in k-space; solving it,
we get

GO (k;z)

(O:2) = TGO oM D)

(3.50)

In order to find the double propagator counter part of the Dyson equation, we define
the operator )| as the sum of all connected double diagrams without the terminals.
Using this operator the following expansion is derived for the mean double
propagator [7]:

(aec") = + + X +

1)
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Equation (3.51) is formally equivalent to an equation sometimes called the [Bethe—
Salpeter equation [22]:

<G®G*>: 4 <G®G*> . (3.52)

If the mean perturbed propagator and the operator X are known, then it is an integral
equation for the mean double propagator.

Before we show how to use all this perturbation formalism to get approximate
solutions for the mean propagator and double propagator, we first study the one-
dimensional (1D) random equation, which has an exact solution. It will help us
outline what types of approximations are acceptable and what are not.

3.3. AN EXACT SOLUTION OF 1D-EQUATION

In this section, we study the one-dimensional equation:

0¥ (x,1)
ox

+%[1 + ep(x)] W(g’;’ Dy (3.53)

where p(x) is a real, centered, and stationary Gaussian random function with
covariance function

Ix,x') = (ux)u')) (3.54)

and the associated radiation problem

81127)(;) — ko[l + eu(x)] ¥ (x) = 6(x) (3.55)

where J(x) is Dirac’s distribution at the origin. The wave number ky = 2n/1 =
27f /¢ is taken positive. Equations (3.53) and (3.55) can be treated simultaneously if
we take the initial conditions

o(x)

¥(x,0) :m.

(3.56)

The LT of (3.53) and (3.55) are then identical by introducing z and cky.

The underlying physical problem is the following: The monochromatic source
of frequency w = 2nf = cky is radiating into a semi-infinite one-dimensional
medium whose refractive index is n(x) = 1 + gu(x). Only propagation toward
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(x > 0) is considered; reflections are assumed to be negligible. Integration of (3.55)
gives

P(x) = ¥(x) explikox] exp {iko J 8u(y)dy} (3.57)
0

where Y(x) being Heaveside’s step function [12].

To calculate now the mean value of the (3.57), the only random term is the
second potential. For fixed x, fg ¢(y)dy being a linear functional of the centered
Gaussian random function u(x), is a centered Gaussian random variable ¢. If
s0, (¢*?) is the characteristic function of this random variable. As ¢ is Gaussian,
that is,

(eh09) = Ho(07) (3.58)
we can evaluate now
x 2 Xy
(9?) = <82 Ju(y)dy > =¢ J dyJF(y —Y)dy' (3.59)
0 0 0
and finaly obtain [31]
I
(P(x)) = Y(x) exp[ikox] exp fikggz de J I(y—y)dy 3. (3.60)
0 0

The mean wave function is thus expressed in terms of the covariance function of the
refractive index. Higher order moments such as (¥ (x)¥(x')) are easily obtained,
using the characteristic function of a multivariant Gaussian distribution [16]. We
now introduce the covariance function

x—x

14

[x—x)= exp{—

} (3.61)

where / is the range of index correlation. The mean wave function can now be
calculated as:

(P(x)) = Y (x) explikox] exp{—szkgzz (’Zf peio 1) } (3.62)
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The dimensionless parameter which determines the behavior of the solution is eko/.
There are two interesting limiting approximations:

a)

b)

ekol < 1. It is a long wavelength approximation (1 > £) and corresponds to
weak interactions in quantum field theory. A uniform approximation for
(¥(x)) is then

(P(x)) = Y(x) explikox] exp{—&’k3lx}. (3.63)

As follows from (3.63), the initial excitation is damped with an extinction
length

Xox = (£2K30) 7" (3.64)
Let us compare x., and the wavelength A ~ (ko)f1

e 11 1
Zex - — > 1. 3.65
A kol e ekol > (3.65)
The decaying is thus very slow; it is due to phase mixing and is not related
to any dissipative mechanism. The mean wave function (¥(x)) can also be
written as

(P(x)) = Y(x)exp{i(ko — ie*kil)x}. (3.66)

The effect of randomness on the mean wave function, as follows from (3.66),
is simply a renormalization of the wave number. The renormalized wave
number is now equal to k = ko — i¢*k3¢, which has a small imaginary part
(because kol < 1). In the next section, we shall obtain this wave approx-
imation as a sum of an infinite series extracted from the perturbation
expansion of the mean propagator.

ekol > 1. It is a short wavelength approximation (1 < ¢) corresponding to
strong interactions in quantum field theory. A uniform approximation for
(¥(x)) is then

(P(x)) = Y(x) exp[ikox] exp{ —;szk(z)xz}. (3.67)

The initial excitation is damped again, with an extinction length x¢, = (sko)*1 ~
A/e; the damping decay is more rapid than in the preceding case. This
approximation is equivalent to a renormalization of the wave number because
x* appears in the second exponent in (3.67).
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Next we need the FT of the exact mean function (3.62)

o3 é 3

(¥ (k) exp(—ikox) (¥ (x))dx

expli(ko — k)] exp(e*kg*x) exp(—&*k*£x) exp{ —&’kgl*e T bdx.

(3.68)

Expanding the last exponential term in a uniformly convergent series and
integrating (3.68), yields:

e 2k2£2) 1

¥(x)) = exp(e*k(?)
< ( )> eXP nz:; ! lko—|—82k2f—|—n/f

(3.69)

From (3.69), one can see that (¥(k)) has the poles k, = ko + ie’k3(+ in/L,
which correspond to more and more damped partial waves in r-space. If
¢kol < 1, we can approximate (¥ (k)) by the first partial wave (n = 0) that
gives again (3.66), apart from a factor exp(e2k3¢*) # 1.

3.4. APPROXIMATIONS OF THE PERTURBATION METHOD

In this section, we try to justify certain approximation procedures using the formal
perturbation series of Section 3.2. We recall, once more, that the random function
u(r) is strictly stationary with respect to space transfer. Our investigations are only
concerned with the mean propagator (G).

3.4.1. Low Order Approximations

In the section above, the mean wave function of the 1D-model was shown to be damped
through destructive phase mixing; the damping length associated with this phenomenon
is very large compared to the wavelength. It is therefore necessary to get approximate
solutions for the mean propagator that are valid at long distances compared to the
wavelength (radiation problem), and valid at long times compared to the period (initial
wave problem). We show below the lower-order perturbation approximations to satisfy
this condition, even the very small strength of random fluctuations .

The Born approximation for the mean propagator is the lowest order non
vanishing approximation of the corresponding perturbation series, that is,

<G>B0m: T + —k—‘—'—k— (370)
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and explicitly in k-space as

(G) &K (3.71)

o e274c? Ir'(k—k)
= Z2 — k2 (Z2 _ czkz)Z Z2 — c2k?

If so, G(k — k') = g(k — k', k' — k) is the FT of the covariance function. The squared
perturbed propagator appearing in the second term on the random homogeneous
space of (3.71) is the consequence of the wave vector conservation conditions. This
term has two double poles z = +cK = =+c|k|. It is well known that such double poles
will yield two contributions to the inverse Laplace transform (G(k, t)), proportional
to ¢ - explicKt] and 7 - exp[—icKt]. In other words, the first perturbation term has a
singular behavior, that is, it increases without any limit as # — +o0. As this prevents
any damping of the mean propagator, we conclude:

The Born approximation is only a short time (or short distance) approximation.

Next, it will be useful to have a better knowledge of the time dependence of the Born
approximation. Let us, for example, take the covariance function as

I'(r) = exp {_ ﬂ . R=Irl (3.72)

Here ¢, as above, is the range of refraction index correlations. To evaluate the
convolution integral

e [T (k—K)

_ |t KTK) 5
.'_‘.*J 2 — k2 d’k

we note that it is the FT of

exp { R} explizR/c] _exp{(i/c) - [z + (ic/l)|R}

4 —4gR —47R

and changing z into z + (ic/{), yields

2

ST c i (3.73)
— 74 (ic/0)]" — 2?2
and
o 2.2 4
N ez (3.74)

——— T 2+ (/O] — 2}

Besides the double poles z = +cK, two other poles have appeared in (3.74):
z==®cK —ic/¢. The corresponding contributions to LT and (G(k,t)) are
proportional to exp{+icKr} - exp{ic(¢/¢)}. They are thus damped with a damping
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time #; = £/c. This damping time is the time the wave takes to travel a distance ¢
equal to the size of the scattering blobs. We call it, as in quantum field theory, the
interaction time fi;. We turn back now to the perturbation series for the mean
propagator, and show that, as we take more and more perturbation terms we
get more and more divergent singular terms. The fourth order diagrams are (see
Section 3.2):

Because of the wave vector conservation condition, the same vector occurs in the
middle and at the terminals of the diagram

SYERNPYER T

The factor GO (k; 7) = 2~z occurs thus twice in this diagram, producing singular
terms proportional to #*-explicKt] and *-exp[—icKt]. More generally, any
unconnected diagram that is the product of p connected diagrams produces singular
terms proportional to # - exp[icKt] and # - exp[—icKt]. We call them the leading
terms of the diagram. Besides the leading terms, there are other singular terms with
lower power of ¢, and also damped terms, with a damping time found to be always of
the order of #,, = ¢/c. If the damping time of the mean propagator is much longer
than #;,, the asymptotic time dependence of the mean propagator will be governed
essentially by the leading terms.

Let us show that singular terms arise in the radiation problem too. We are now
looking for (G(r)), whose FT may be obtained by changing z into cky in (G(k;z)).
Taking again the covariance function exp(—R/{), we obtain

(Gh) =+ 2k ! + (3.75)
=k (k= k) (ko +i/0 =k '

This is only the function of K = |k|. Its inverse FT, (G(R)), can be obtained by a
single integration

(G(R)) = K*(G(k))dK. (3.76)

(2n

In (G(k)) the poles K = k( appear again with increasing frequency, as we take more
and more perturbation terms. As a consequence of this, we can write

(G(R)) = e™R.[1 + AR+ BR* +..] (3.77)
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where A, B, ... do not depend on R. As we take the limit Im(ko) — 0, we obtain
secular terms in R.

We conclude that no finite order approximation of the perturbation series can be
used because it would diverge as t — co or R — oco. However, an infinite sum of
singular terms may be non-singular; for example

exp(— zoc:

n=0

E

(3.78)

But any finite sum has a singular behavior. If we want to do something with the
formal perturbation series, we must thus use at least an infinite subseries. This result
is independent of &, the strength of refractive index fluctuations, because singular
terms do only disappear for ¢ = 0.

3.4.2. Convergence of the Perturbation Expansion

A fundamental question arises now: Does the perturbation series converge? It is
rather difficult to give a general answer to this question because we do not say what
kind of convergence we expect (or do not expect). Let us first indicate that there is a
proof [1-4] that the perturbation series for G(r) (radiation problem) is the mean
square convergent for Gaussian u(r).

Let us consider the 1D-model. For ¢kl < 1(£ < 1), we can write the mean
propagator

(G(x,x)) = Y(x — x') exp{iko(x — X') } exp{—e*k5l(x — X')}. (3.79)
The perturbation expansion, n of the mean propagator in power of ¢ is thus

212
(G(x,x")) = Y(x — x') exp{iko(x — x') }ZM (3.80)
If x and x’ are fixed, this is an analytic function of ¢. This is of no interest because
(G(x,x")) does not act as a multiplication but as an integral convolution operator.
The convolution product of a bounded source function with Y(x)exp{ikox}x
exp{—&*k3lx} is convergent, but the convolution product with Y (x) exp{ikox}x" is
generally not convergent because of the singular behavior of this term.

As a last example, let us consider the convergence of the FT (G(k)) for the 1D-
model. In Section 3.3, it was shown that

(G(x,x)) = exp(e?k3 %) i 2k3€2) !
ik — iko + e2k3l + n/{]

n=!

was a convergent, but this is not the perturbation series because ¢ appears in the
denominator; (G(k)) acts as a multiplication. We ask if this is an analytic function of
¢ in some neighborhood of ¢ = 0 and all values of k.
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Forn > 1, [ik — iko + &*k3{ + n /] is an analytic function of ¢ for |¢| < wpandall
values of k. But for n = 0, ¢kol < 1(£ < 1) is not an analytic function of ¢ in any
neighborhood of ¢ =0 because k —ky may vanish. We conclude that the
perturbation expansion does not converge. However, it may be easily shown that
for ekol < 1(¢ < A) one can write

(G(x,x)) = [ik — iko + e*k20 4+ n/0) {1 4+ k2R (k) } (3.81)
where R(k, ¢) is a bounded function of k and ¢. This means that we can approximate

(G(k)) uniformly by the first term of the series (3.69) for ko¢ < 1. This term, though
not analytic, can be formally expanded in powers of &:

1 1 = 2kl \"
= — . 3.82
[lk — ik + ?2]((2)6] (lk — lk()) pz:; < ik — lk0> ( )

In the next section we shall do exactly the reverse: given a formal divergent series, we
shall extract from it another divergent subseries whose formal sum is easy to calculate.

3.4.3. Bourret’s Bilocal and Kraichnan’s Random Coupling Models

We now describe two attempts to overcome the difficulty of divergent perturbation
series. Both methods use the fact that there is certain infinite subseries of the formal
perturbation series for the mean propagator, whose exact solution is possible. As it has
been pointed by Kraichnan [23] in a fundamental paper on the dynamics of non linear
stochastic systems, the use of subseries of the perturbation series is very dangerous
because they may give unphysical results without any physical meaning. It will therefore
be necessary to proceed very carefully. Let us now introduce briefly the first method.

Bourret’s Bilocal Approximation. We take all diagrams whose connected parts
have only two vertices; the resulting series is called the Bourret series and is denoted
by (G)g [131]:

<G>B: I G U b U s U i W Jl G Al G
(3.83)

This series has been introduced by Bourret [13] for a Gaussian random function and
also studied by Tatarskii et al. [16—18]. Recalling that the mass operator is the sum of
all connected diagrams without terminals, we find that the Bourret series corresponds
to the lowest order approximation of the mass operator. The corresponding Dyson’s
equation, which is immediately derived from (3.83) is

Oh=— + ——(o), O
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This equation has also been derived by Keller [14], but his derivation must be
considered incorrect because he treats the second term of the full perturbation
series (— e — e —) as a small perturbation. Before we discuss Bourret’s approxi-
mation for the single propagator, let us give the corresponding double propagator
approximation

<G®G >, = + + + (3.85)

Bourret’s equation (3.84) for the single propagator is easily solved in k-space; we
shall not derive the corresponding solution for the radiation problem, because this
may be found in [13,14,16-18]. It is also instructive to study the behavior of
(G(k,t))y for a given k, that is, the time dependence of an initial excitation
proportional to exp{ikr}. The main result is that the natural frequencies w = +cK
are renormalized. For an exp(—R/{) covariance function, the renormalized
frequencies are:

e2cK3(?

w, = +cK F

— i’ cK* . (3.86)

The damping time corresponding to the imaginary part of w, is g =
Bourret’s derivation is based upon the following assumption [13]:

.
g2cK4 03

(u(r)u(r2) P (r2)) = (u(r)p(r2)) (¥ (r2))- (3.87)

Such closure assumptions have been studied by Kraichnan [23]; he has shown that
they are generally not uniformly valid for + — oco. However, the examples considered
by him are rather strong perturbations (such as a random oscillator). As we show
below, the case K¢ < 1 corresponds to a weak perturbation. The damping time

associated with the solution of Bourret’s equation is tqg = m, and for K/ < 1

‘
fa >t = (3.88)

Bourret’s diagrams having p connected parts give a leading term proportional to
¢ - " - exp(LicKt). For t ~t4 this term becomes e-independent. Any other
diagram will give rise to uncompensated powers of ¢ and may thus be constructed
as small. This is rather a poor justification of the Bourret’s approximation, because
we did not make a dimensional analysis of the diagram with respect to the other
parameters c, K. Let us give the main lines of a more rigorous justification. The
leading term of

P times
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is easily found to be
() ki) Tim (&N ) tim (&%
()" [ortien (i, (£23)) = esatitn (i (& ))]

and

lim z=cK+in=limz=cK +i0.
n—0,n>0

The asymptotic time behavior of (3.89) depends thus only on

lim (&
z=+xcK+i0

and not on the whole z-dependence of ;™. This is immediately generalized to
any product of connected diagrams, whether it belongs to the Bourret series or
not. In order to show that the Bourret’s approximation is uniform, we only need
to prove that for z = +cK +1i0, ;7™ is a good approximation of the mass
operator M(k;z). Following [31], it is easily found that for z = +cK 4 i0, a
connected diagram L, with p vertices and without terminals has the dimensional
dependence

Ly(e,¢,K,0) ~ KPP DA ((K) (3.91)

where A, (¢K) being a non dimensional function of the non dimensional quantity /K.
For small values of /K we can write

L, ~ KPPV (140(K) + ...) (3.92)

for /(K < 1 and p > 2, L, is small compared to both L, ~ ¢*K*¢? and its first O(¢K)
correction. This first order correction is necessary, because it is found that K42
does not contribute to the damping time, but only to the real frequency shift of the
renormalized frequencies according to (3.86).

If the condition /K < 1 is violated, the contributions arising from the diagrams
not belonging to the Bourret series become more and more important, and for
¢K > 1 Tatarskii [16-18] has shown that all diagrams with the same number of
vertices are almost equal (this is only true for ¢ < t;, but as in this case tq4 < fine). If
all these dimensional considerations are not very convincing, it is still possible to
check the validity of Bourret’s approximation on the 1D-model (see Section 3.4).
The exact solution is described in Formula (3.62)

(¥(x)) = Y(x) explikox] exp{—32k§€2 (% et 1) } (3.93)
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The solution of Bourret’s equation, which is an ordinary equation in k-space is:

-1

e2k?
(P(k))g = |ik — iky + —>— (3.94)
ik — iko 4=
¢
Taking the inverse FT, we get
eikox 1
(P(k))g =Y(x) {(1 +VA)exp [_(1 - \/K)x}
2VA 1 2 (3.95)
— (1= VA)exp {—%(1 + \/Z)x} }
where
A =1—48K30°.
Expanding (3.94) for ekol < 1, we find
P (k))g = Y(x)e™ o exp{—e*kilx}, 3.96
B 0

which is the uniform approximation (3.63), already found for the exact solution. If
the condition &ko/ < 1 is not satisfied, Formulas (3.95) and (3.93) are not in
agreement. For example, if ekof > 1, the Bourret’s approximation gives

(P(k))g = Y(x)e™™ cos(ekox) exp{—x/2¢} (3.97)

whereas the exact solution (3.67) is

. 1
(P(x)) = Y(x)eor exp{ —Eszkgxz } . (3.98)
‘We conclude that:

The Bourret’s approximation is a long wavelength approximation, uniformly valid for
any random perturbation, whether Gaussian or not, and has a correlation range much
shorter than the wavelength (£ < 1)

This approximation can also be used for more general equations of random
variables than the scalar wave equation, because the dimensional analysis is easily
generalized. In Section 3.7 we apply it to the electromagnetic wave equation and in
Section 3.8 to the coupled wave equation.

Let us consider now the Bourret’s approximation for the double propa-
gator. We have seen in Section 3.2 that the mean spectral energy propagator
(|G(k;z)|*) and thus the mean spectral energy density (|¥(k;z)|?) satisfy a separate



62 FUNDAMENTALS OF WAVE PROPAGATION IN RANDOM MEDIA

equation. For the radiation problem, using the Bourret’s approximation (3.85), this
equation is

(PR)P)5 = {GE)) gLtk + (G (k)5 [ ek’ J Tk —K)(|P(K) ) dk
(3.99)

where (G(k))g is the Bourret’s approximation for the single propagator, and j(k)
is the FT of the source function. Equation (3.99) is an integral equation for the
mean spectral energy density. As follows from Reference [13], the Bourret’s
approximation for (G(k)) is only valid for K¢ < 1, but the integral term of (3.99)
relates the region of the spectrum that does satisfy this condition and the other one.
Even if we assume that j(k) is vanishing outside K¢ < 1, we do not know if some
energy will not be transferred to the other part of the spectrum. Thus, there is a
serious difficulty here, and it may be possible that the Bourret’s approximation is
never uniform for the mean double propagator. This question remains unanswered
till date.

Kraichnan’s Random Coupling Model. Given an equation of random variables,
Kraichnan [23] showed that he can construct another equation which is related to
it, but it can be reduced to a nonlinear nonrandom (e.g., deterministic) equation.
This was achieved through the introduction of an additional random coupling
between wave vectors, called by him the “‘random coupling model.” The remarkable
point is that its solution can be considered both as the exact solution of the model
equation, as well as the approximate solution of the original equation. This ensures
that if we can solve the model equation, the solution will be physically acceptable.
Kraichnan’s perturbation diagrams are somewhat different from what was presented
previously, but the connection is easy to establish. Using notations, according to
[31], the mean propagator of the random coupling model, which we denote by
(G(k))k, is the sum of all perturbation diagrams of the original problem such that
there are:

— there is no clusters of more than two points;
— there are no intersecting dotted lines.

We give the first diagrams as
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This expansion is easily found to be equivalent to a nonlinear but nonrandom
equation (we use the symbol ===== for (G)g)

(3.101)

The only difference with Bourret’s equation (3.84) is that the mean propagator and
not the unperturbed propagator appears under the dotted line. The equation for the
mean propagator of the random coupling model is

<G®G >, = + <G®G >, (3.102)

This linear equation can only be solved after the nonlinear Equation (3.101). All
Bourret’s diagrams are included in the random coupling model. Accordingly, we
expect that it will give a better approximation. But the main reason for studying this
model is that there is not a prior limitation to its validity such as K¢ < 1. The
solution of the random coupling model for the wave equation would give at least a
partial answer to important questions such as:

— is there a damping effect of the mean propagator always?
— how does the damping time vary with k?

— what is the spectral mean energy distribution corresponding to a given
excitation or a source function?

Let us write down the random coupling model equation for our 1D-model and the
scalar wave equation. The 1D-model gives:

¢ (Siz)z J / / 317
G(k; = G(k; I'(k — k' )(G(k; d’k’.
(6 D = 15 stk = ) (O D | Tl = KNG )
(3.103)
At the same time, the scalar wave equation is
2 27 X
/ / /
(G = =+ = gy (O Dl | Tk = KO )
(3.104)

If I'(k—k')=0d(k—k'), Equations (3.103) and (3.104) are ordinary nonlinear
equations which can be solved analytically. This case corresponds to a covariance
function in r-space that is constant.
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There are basically two possible iterations methods for the random coupling
model equation:

a) by using Equation (3.101)

e .

we can iterate it, considering the second term on the random homogeneous
space as a perturbation. This gives

Lo

(3.105)

which cannot be used for long times because of the singular form.
b) A more interesting method is to write Equation (3.101) as

G o 3.106
O = T GOL((Gly) (3.106)
where L is the linear operator
L
— L

Equation (3.106) is then iterated giving

GO
(G)x = (3.107)

GO '
1 -GOL| ————
(1 —GOL(.. .))

This is the operator analogue of a continued fraction. For the 1D-model and
the covariance function ~exp(—|x|/¢), it was possible to show that this
iteration process converges for |efz/c| < 1/2 and to find its analytic con-
tinuation. The proof is somewhat artificial because we used the fact that for
any function f(k) is bounded and analytic in the half plane Im(z) < 0

Jf(k — K)f(K)dK = f(k —i/0) (3.108)
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Hence we get a nonlinear finite difference equation, which is solved by means
of a continued fraction. Unfortunately, it is not possible to extend this method
to the scalar wave equation.

3.5. RANDOM TAYLOR EXPANSION AT SHORT WAVELENGTHS

In Section 3.4, we have found that in the limiting case ekof > 1, the random
refractive index behaves as a mere random value and not as a random function. This
is easily understood when ¢ is very large (¢ > 1), each realization (or sample) of the
random index is a very slowly varying function that can be approximated by a
constant. At an intermediate level, between the general random function and random
variable, we could try to approximate a random function by a linear function or a
quadratic function with random variables as coefficients. For example, constructing
a limited random Taylor expansion of the random function. The random equation for
this model is:

OV (x)
Ox

— iko[1 + eu(x)] P (x) = d(x) (3.109)

where u(x) is a random function, §(x) is Dirac’s distribution at the origin, and the
wave number ky = 21/ = 2xf /c is taken, as in Section 3.3, to be positive. Here 4 is
the wavelength, fis the radiated frequency, and c is the velocity of light. We want to
approximate the random function y(x) by its random Taylor expansion [7,22]

2

u(x) = u(0) + x(0) +%M(0) . (3.110)

where u(0), 1/ (0), 1 (0), . .. are not independent random variables. We cannot keep
the covariance function exp{—|x|/¢} because the corresponding random function is
not mean square differentiable (see Reference [31]). As we do not need to specify
the covariance I', we shall only assume that it has derivatives of all orders at x = 0
and that I'(0) = 1. That leads us to an approximation for ¥(x), that is,

X )C2
8'18’7)(6) — iky {1 + 8/1(0) + 3)5/1’(0) + 82/1//(0)} ‘P(x) = 5(x). (3.111)

It is solved for the mean wave function

(P(x)) = Y(x)e”‘”"<exp [ikosx (u(O) + exi' (0) + s%z u”(0)>] > (3.112)

As u(x) is a Gaussian random function, the multivariate distribution of 1(0), 1'(0),
1’(0) is also Gaussian; it is thus determined by its second order moment such as
((1(0))), (1 (0))?), ((0)/(0)), and so forth. They are easily calculated in terms
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of covariance function, for example

because I' is an even function.
The mean value in (3.112) is easily related to the characteristic function of u(0),
@ (0), u”(0), and can be calculated in terms of I'; this gives

282}62 x2
(¥(x)) = Y(x)e® exp {— K 5 (1 + EF”(O) + 0(%))} . (3.114)

Let us compare this Equation to the exact solution as in (3.60)

2.2
ke

(P(x)) = Y(x)e™ exp —TJJF(y —y)dydy'|. (3.115)
00

Expanding the covariance function in power of x and integrating it we get exactly the
same result as in (3.114). If the condition

2.2
ke

1
F// (0) >>

is satisfied, we can use the so-called “‘random variable’” approximation [31]

a2
0® X ] (3.116)

(P(3) = V(0 exp| - 25
An equivalent condition is that the damping length xq = 1/koe = /¢ corresponding
to this approximation should be much shorter than the range of random correlations
¢=|I"(0)]""?. If it is satisfied, the wave cannot escape the region where the
random index is properly approximated by a random variable. The “random
variable” approximation is easily applied to any propagation equation because we
only need to solve a partial differential equation with constant coefficients, and
average afterwards. If we want a higher order approximation we must solve a
partial differential equation with linear or quadratic coefficients. The case of linear
coefficients can, in principle, be solved by means of a generalized Laplace
transformation, but this is rather complicated. In Section 3.8 we shall apply the
“random variable” method to the coupled wave equations at short wavelength.

Now we derive the short wave approximation for the scalar wave equation with
point source:

AP (r) + K1+ e P (r) = 6(r). (3.117)
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We assume p to be a centered Gaussian random variable and () = 1. Solving
(3.117) we get

_exp{iko(1 + ep)R}
N —4nR ’

¥(r) R=1r. (3.118)

Taking the mean value of this wave function we find

_exp(ikoR) exp(—3e’k3R?)
N —47nR '

(¥(r)) (3.119)

The damping due to phase mixing is thus exponential with a damping length

Ry = (eko) ™" > A (3.120)
The condition Ry < £ can be written as
E,VC()M > 1.

It is thus a short wavelength condition (£ >> A). The result of (3.119) disagrees with
a result derived by Tatarskii [16-18] for |ko|¢ > 1. His mean wave function

_ exp(ikoR) 1
—4nR (1 + e2ZR0)'

(¥(r) (3.121)

has not an exponential decrease, but has a damping length of
Ra= (k30" < A

His result is expressed as a certain integral over the solution of the Bourret’s
equation (3.84), and this integral is calculated by the method of stationary phase.
The expansion of the solution of the Bourret’s equation used by Tatarskii is only
valid for |ko|¢ < 1. If the proper expansion is used, the result becomes identical with
the one mentioned previously. This can also be checked on the 1D-model for which
the calculation is easier.

3.6. AN EXACT SOLUTION OF THE SCALAR WAVE EQUATION

In References [1-4,16-18], it was suggested that functional space integration might
be used to solve these random variables equations. It suggested that it would be
necessary to generalize the Wiener measure to more general stochastic processes
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besides the Brownian motion. Nevertheless, it was shown in [31] that the reduced
scalar wave equation can be related to a complex version of the heat equation and
solved via a complex Wiener measure. The method indicated here can also be used
for the Schrodinger equation with a random potential. Let us show how by following
Reference [31] one can obtain the solution of the reduced scalar wave equation with
random refractive index

AY(r) + k31 + u(n)]P(r) = o(r) (3.122)

where, once more, 6(r) is Dirac’s distribution at the origin. Let us assume that the
wave number ko has a small positive imaginary part and p(r) is a centered Gaussian
random function with covariance I'(r,7’) that need not be stationary. In order to
relate this equation to the heat equation, we introduce a new unknown function
¥(r,0) such that

wn:—ijam%m@mmw. (3.123)
ko
0

Because of the positive imaginary part of ky, this integral is convergent if lf’(r7 0) is
not increasing very fast at infinity. Equation (3.122) is now multiplied by k% and
integrated by parts

%wﬁzfjﬂnmﬁam%mw:@mm+J@%ﬁ%m@wma
0 0

00
(3.124)
Using (3.123) and (3.124) we can write
AWﬁ+%Wﬂ+%M0MAE—%Jwﬁ%@%@+%ﬂﬂ@w+@mm
0 0
+ J%exp(ﬂml))dO =0(r). (3.125)
0
This is satisfied if we take
oP(r,0) i = , _

P(r,0) = 6(r).
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Let us compare (3.126) to the perturbed heat equation

% — AF(r,0) + V(1) T(r,0) (3.127)
and the Schrodinger equation
% — oAF(r,0) + V(1) T(r, 0). (3.128)

The first equation (3.127) can be solved by functional integration for all functions
V(r) continuous and bounded from above, using the Wiener measure of the
Brownian motion process. For the second equation (3.128) there is no Wiener
measure. It is wellknown that for the Schrodinger equation this solution through
functional integration, given first by Feynman [3,4], is only a formal extension of the
heat equation case. Fortunately, it can be shown that all equations such as (3.128),
where o has a positive real part can be rigorously solved with a complex
Wiener measure. This is the case here because Re(i/kg) > 0. Thus, the solution of
(3.128) is

0

@(r,e)iexp ikob[/x(p(‘c))d‘c dW(G,r,kio> (3.129)

where Q is the space of continuous function p(t) such that p(0) = 0 and p(6) = r,
and dW(0,r,i/ko) is the complex Wiener measure corresponding to the complex
heat equation

oY (r,0) RN

Expression (3.129) can also be written more explicitly as the limit of ordinary
multiple integrals

(r.0) = lim (472'&) ‘%”J' - Jexp{& P4 (r—r1)*+ (r—ro )2]}

n—oo 0

x exp{ikoAtu(r) + u(r)+...+ ,u(rn,l)]}d3r1d3r2 e dPr,y (3.131)

where At =60/n, (4miAz/ ko)%” is the 3n™ power of the square root of
4miAt/ky, which has a positive real part. A formal proof of (3.131) was presented
in [31].
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Now we calculate the mean value of ¥(r, 0) using (3.129) by interchanging the
functional integration. Finally, we get:

(#(r,0)) = J <exp liko j y(p(f))df] >dW (9, , k’()) (3.132)

We shall now make use of the fact that u(r) is a centered Gaussian random function.
However, the Gaussian assumption can be dropped because we actually only need to
know the characteristic function of pu(r):

Flo0) = (exwi [ otuner). (3.133)

The following calculations are almost the same as those in Section 3.3 for the 1D-
model. For a fixed curve p(t), a linear functional of u(r)

0 = o) (3.134)
is a centered Gaussian random value and (explikop]) is its characteristic

function
<exp [iko(p} > = exp{—;k3<(p2>} (3.135)

where

0 0t
(%) = j (p()u(p(t')))drde’ = ”np(r),p(r’»dr & (3.136)
0 0

0

O o

Turning back to the initial Equation (3.132), we get

(P(r)

= _I;Tdﬁexp(ikoﬁ) J <exp [—ékéjjr(p(f)m(g))df dr’] >dW(9, . klo)
0 e 00

(3.137)
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that solves the problem. This functional integral can also be approximated for
numerical purposes, for example, by multiple integrals:

47UAT> 3

J"'JGXP{A:ZOT[V% +(r—r) +(r— rnl)z]}

n—1
x exp{k2 (A7) ZF,J}d ndry--dro (3.138)

L

where I'; ;= 1I(r;,r;) and At =0/n. The extension to higher order moments
is straightforward, using characteristic functions of multivariate Gaussian distributions.

Approximate Evaluations of the Functional Integral (3.137)

a) Short Wavelength Approximation. If the range of the covariance function is
much longer than the wavelength, we use a functional saddle point method to
approximate the function

0t
exp —%kéjjf(p(f),p(r'))d‘cdf’ (3.139)
00

by a quadratic function of p(t) — p, (), where p, () is the function that makes the
exponent stationary. It is then possible to calculate exactly this approximate
functional integral.

b) Long Wavelength Expansion. The multiple integral (3.138) reminds us of the

formula for the partition function of a gas in thermodynamic equilibrium. We can
write

exp{ sz Ar) Zr,,}:H (I+Fy) =14 Fi+ > > FjFu+...
i,j=

(3.140)
with

1

The resulting integrals are then represented by the Mayer’s diagrams [3,4]. This
method can also be related to the perturbation method of Section 3.2.
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3.7. THE ELECTROMAGNETIC WAVE EQUATION

In this section we consider the full electromagnetic wave equation with a random
refractive index

AE(r) — V(V - E(r)) + K[1 + eu(r)]E(r) = j(r). (3.142)

where j(r) is related to the actual current density j*(r) by j(r) = —iwuyj*(r), o is
the angular frequency, @ = 2nf, and p, = 4 - 1077 is the permeability of free
space. This equation is not equivalent to the reduced scalar wave equation because of
the term V(V - E(r)), which is important when the refractive index changes much
over a wavelength. We shall therefore only consider the case of long wavelengths
such that |ko|¢ < 1, and use the Bourret’s approximation. This problem has already
been treated by Tatarskii [16—18] but the results presented here do not agree. Taking
the FT of (3.142) we get

(kg — k)0 + kikj]E;(K) + kg J w(k — K)E;(k'dk = j; (k). (3.143)
The unperturbed propagator Gl(j(]) (k) satisfies the following equation
(k3 — k)3 + kikj] G (k) = 8. (3.144)

This equation is easily solved as

(0) ! kik;
GYk) = 5 05 — 5 . 3.145
i) [ké—k2]< ! k%) (3143

The Bourret’s equation for the mean perturbed propagator (Gj(k)) is

(G)= — + (@) (3.1464)
(G(k)) = GO (k) + GO (k)e?k} Ur(k —K\G© (k’)d3k’} (G(k))  (3.146b)

where I'(k) is the FT of the covariance function. After a few transformations,
Equation (3.146b) becomes [31]:

I'k—FK) (. kik
=0y + kit~ ot | L) (o, - ) o Gutoy = . 3140
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Let us now denote the tensor 7;(k) as:

I'(k—k) kik;
T;(k) = | —2 (6, — =L | &K
/( ) J k% — k"2 ( Yy k(Z)

and assume that the covariance function is isotropic. Then the tensor Tj;(k) is the
convolution product of an isotropic tensor and an isotropic function; it is thus an
isotropic tensor and can be written as:

kik;
Ty(k) = (k)3 + p(k) 75" (3.148)
0
The Bourret’s equation for the mean propagator becomes now
(k5 — K2 — &2k 2(k))dy + (1 — ek p(k)kiky) | (Gp(k)) = D (3.149)
Let us now find the free oscillations that satisfy
[(k§ — k2 — &2k 2(Kk))dy + (1 — kg p(k)kiky) (E; (k) = 0. (3.150)

There are two kinds of oscillations:
a) Transverse oscillations. Here (&) and k are perpendicular. The dispersion equation is
kg — k* — e%kgy (k) = 0. (3.151)
b) Longitudinal oscillations. Here (¢) and k are parallel. The dispersion equation is
1 — (k2 (k) + Ku(k)) = 0. (3.152)

Let us also find the renormalized wave number K| for transverse waves. We take for
this purpose the correlation function exp(—R/{). After some straightforward
manipulations we find that for k¢ < 1(£ < 1)

2 1
2K, = —§£2(1 + 2iK () +W+O(€4Ki). (3.153)
0

The dispersion equation for transverse oscillations is solved for the renormalized
wave number

1, 1
K, = [K(1 — Ky (k)]"* ~ ko 1—682+§82k(2)€2(1+2ik0€) . (3.154)
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We compare this result to the corresponding formula for the scalar wave equation
obtained in References [16-18] or deduced from Keller’s result [14] with a
covariance function of exp(—R//)

1
K, =ko|l+ 5.ezkgzz(l + 2ikol) | . (3.155)

First of all, the imaginary part of K, in (3.155) has been reduced by factor ~(1/3)
with respect to that in (3.154), the damping length of the mean wave have thus
increased by 50%. Secondly, due to the additional negative term (~ %koaz) in (3.154)
compared with (3.155), the real part of K is less than the real part of ko if 2k3¢* < 1.
As we assumed that k¢ < 1(¢ < 1), this is satisfied.

We conclude that the effective phase velocity of transverse waves increases at
long wavelengths, instead of decreasing as is the case for the scalar wave equation.
This needs some explanation. There are two wave modes actually in this medium:
the transverse mode, whose phase velocity is approximately w/ko, and the longitudinal
wave mode, whose phase velocity is much longer (infinite in the nonrandom case). Due
to the term k;k;E; of (3.143), the wave modes are coupled and part of the mean
transverse wave has traveled part of its way as a longitudinal wave. The traveling time
being thus decreased, the phase velocity is increased. Without this coupling it would be
impossible to explain the increase of the phase velocity. As the additional term %kosz
does not depend on /, it is possible that it corresponds rather to a diffraction effect by
the scattering blobs (whose sizes are small compared to the wavelength), than to a
volume scattering effect.

3.8. PROPAGATION IN STATISTICALLY INHOMOGENEOUS MEDIA

In this section we assume that the mean refractive index is constant through space,
but that its random part is not strictly stationary with respect to space translations.
The correlation functions I'(x, x’) are functions of (x — x") and also of (x + x')/2. We
shall assume that this additional space dependence has a scale of variations # that is
large compared to the wavelength. As there is no homogeneous turbulence in nature,
this is a very common situation.

The FT u(k) of such a slowly varying random function does not satisfy the wave
vector conservation condition

(uk)pu(kz) - .. u(ky)) =0, if ki+k+--+k #0 (3.156)

and does not give rise to any singular terms in the perturbation series. All arguments
based upon the extraction of the leading singular terms seem to disappear suddenly.
We show however that if the condition e2K*¢3h > 1 is satisfied, in addition to the
usual condition K¢ < 1, nothing is changed, because we have pseudo singular
terms. We assume that the additional space variation of the correlation functions

X(r1,r2, ..., 1) is given by a factor exp {W}, where s is given vector. This
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is not of course the most general case, but it will be sufficient for our purpose. The
scale of variation of this additional factor is & = 1/|s| . The Fourier transform of

exp {W}X(n,m, ooy 1) is X(ky +2,ky +2,.. . 1, +2). The wave vector

conservation condition becomes thus
ki +ky+---+k,+s=0. (3.157)

If we apply this to a connected diagram in k-space, such as

k k k'
we find that
k—k =s. (3.158)

Because of the condition # > A, which can also be written |s| < K, the wave vectors
at the terminals of a connected diagram are almost equal. Instead of a squared
unperturbed propagator, the terminals of introduce a factor

c? c? _ c 1 1 1 1 1 1
2 —c2K272—c2K? 2(K2—K"?)|K\z—cK z+cK) K \z—cK z+cK')|

Let us find the corresponding contribution to the inverse LT. It is proportional to

1 —icKt __ Lic'Kt —icK't __ icK't
(e ) (e ) (3.160)
)

( K2 _K”2 K - K

then, using the fact that K — K’ is small compared to K, we approximate (3.160)
by

1 —icKt (1 _ ic(K—K')t —icKt(1 _ —ic(K—K')t
L Ll )_eize ) (3.161)
2K? K—-K K—-K
For ¢(K — K’) < 1, we can make a Taylor expansion of (3.161) and find
L (reiekt 4 geiekr) (3.162)
2K? ' '

This expression is not really singular, because it is only valid for c|[K — K'|t < 1;
this condition can also be written ¢ < h/c. If the damping time #4, corresponding
to the Bourret’s approximation in the stationary case is small compared to &/c,
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then because the expression behaves exactly as a singular term, we call it a
pseudo secular term. As tq ~ m, the condition 73 < h/c can be written as

K> 1 (3.163)

and because of K/ < 1 and &> <1, h must be very large compared to the
wavelength.

3.9. PROPAGATION IN HOMOGENEOUS ANISOTROPIC MEDIA

Waves in anisotropic media, such as ionospheric plasma in the presence of an
ambient magnetic field (called geomagnetic), obey some partial differential
equations that may be much more involved than the scalar wave equations. The
wave function may have several components corresponding to a perturbed density,
a perturbed velocity, a perturbed magnetic field, and so on (see Chapter 9). Instead
of a single dispersion equation we may have several equations corresponding to
different wave modes. The wave modes are defined to be the time harmonic
functions of the propagation equations, with the boundary conditions taken into
account. If we change the shape of the boundaries, we change also the nature of the
wave modes.

3.9.1. Coupling Between Wave Modes

Here we shall only consider waves in free space because the eigenfunctions are
easily found by means of a FT. Let us first consider the nonrandom case in order to
introduce some definitions and notations.

Nonrandom Case. If the medium has constant parameters the propagation equa-
tions have constant coefficients. We assume that they can be written as a system

of first order partial differential equations (this is the most frequent case) as:

0¥;(r;1)

at = jlmvll‘l’m(r;t)’ 12172737 j?m:]727""n (3164)

where n being the number of unknowns. Introducing now the FT
Vi(k;t) = Jexp(—ikr) ¥(r,t)dr (3.165)
Equation (3.164) becomes

Y. (k-
W = ibjuk; ¥ (k; 1) (3.166)
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or in matrix notation

SOPED ) wk (3.167)
ot
with
A(k) = bk (3.168)

We assume that A(k) is diagonalizable, that is, there exists a matrix S(k) such that

S~ (k)A(k)S(k) = D(k). (3.169)

D(k) being a diagonal matrix whose elements are the solution of the value equation
det[ow — A(k)] = 0.

This equation has n solutions (distinct or not)

We call Equation (3.169) the dispersion equation of the j™ mode in an anisotropic
medium. For mathematical convenience, we shall take » modes even if some of them
are not physically distinct such as the x and y polarization of an electromagnetic wave
~ Eexp(ikz) in an isotropic medium. We introduce the wave mode amplitude vector

O(k; 1) = $7 (k) ¥ (k; 1), (3.170)
which satisfies the following diagonal equation

00(k; 1)
ot

—i

= D(k)Q(k; 1). (3.171)

The j™ component of Q(k; 1) is called the complex amplitude of the 7™ wave mode; it
satisfies a separate propagation equation

00;(k; 1)

ot

—i

= w;(k)Q;(k; 1) (3.172)

without summation on j. We may conclude that in a nonrandom anisotropic medium
different wave modes are uncoupled. We also define the spectral energy density of
the j™ wave mode:

Ej(k; 1) = |Q;(k; ). (3.173)
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If the medium is lossless, the frequencies w;(k) are real and the spectral energy
densities remain constant. We shall see that in the random case there are energy
transfers from one mode to another.

Random Case. Let us assume now that the parameters of the medium are station-
ary random functions of position and the medium is statistically homogeneous.
Separating the mean values from the random part yields the random propagation
equation as

0¥;(r;1)

or = bﬂmvl 'I/m(r, [) + sébﬂm(r)vl 'I’m(r, t) (3174)

where ¢ is a small parameter; by, (r) are stationary centered random function of r.
Taking the FT of (3.174) and using matrix notations, we have

SOTED w4 e J OA(k — k)W (K')d’K' (3.175)

ot
A(k) is defined by (3.168) and
0Ajm (k) = Objik;. (3.176)

Expression (3.175) is a random integral equation, which could be used as the starting
point of a perturbation expansion. Following Reference [31], we first diagonalize
A(k) in order to obtain a set of coupled equations for the wave mode amplitudes. The
wave modes are defined in the same way as for the nonrandom case, that is, as for
& = 0. This is perhaps somewhat artificial but is well justified if the parameter
fluctuations are not too strong. The wave mode amplitude vector being defined by
(3.170), we obtain a set of coupled integral equations

.00(k; 1)
-t ot

— D(k)O(k: 1) + & J Clk, K)O(K: 1)dK (3.177)
with

C(k, k') = S (k)oA(k — K')S(k).
Using tensor notations, we get

- % = oi(k)3yQ; (ks 1) + SJCﬂU«, K)Qu(K'; 1)K (3.178)

The random integral operator Cj;(k, k') gives the coupling between wave modes for
J # I, and the scattering (or self coupling) for j = L
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Equations (3.177) and (3.178) are fundamental equations for wave mode coupling,
which we shall use as a starting point for the perturbation expansion and the random
variable approximation (lowest order of a random Taylor expansion) in energy transfer.

3.9.2. Energy Transfer Between Wave Modes

Let us begin with the perturbation method at long wavelengths (K¢ < 1). The LT of
Q(k; 1)

O(k;z) = J exp(izt)Q(k; 1)dt (3.179)
0

satisfies
[—iz — iD(k)|Q(k; z) — ie J C(k,K)O(K';z)d*k = Q(k,0). (3.180)

This equation is of the type
(Lo +eL)Q = (3.181)

considered in Section 3.2. As in this section, we introduce the unperturbed
propagator

GO =1;! = [~iz —iD(k)] ", (3.182)
which is a diagonal operator, and the perturbed propagator
G=(Lo+eL) " (3.183)

The diagram methods for the mean perturbed propagator and the mean double
propagator are easily extended to this problem. The only differences being that the
solid line and the dot are no more scalar operators but tensor (or matrix) operators.
The only new feature is the coupling between wave modes (see Reference [31]). As
we want to avoid unnecessary complications, we shall only take two wave modes
and assume that there are no self-coupling terms and no losses. Thus we look at the
following coupled wave equations:

—ianT(f;t) = i (k)Q1(k; 1) + ¢ J Cra(k, k)0 (K 1)K (3.184a)

_iaQZT(tk;t) = ims(k)Qa (ki 1) + 8JC21 (k, K)Q1 (K's 1)d*K'. (3.184b)



80 FUNDAMENTALS OF WAVE PROPAGATION IN RANDOM MEDIA

The medium being lossless, the total energy must be constant
[ 1000 + 1020 Ptk =0 (3.185)
This implies that w (k) and w, (k) are real and
Ci(k, k') = —C;, (k, k). (3.186)

We write now the Bourret’s equation (see Section 3.4) for the mean propagator of
Equation (3.181)

= v — (o). O

As there are only two modes, it is more convenient to have a scalar operator instead
of a matrix one. For the unperturbed propagator being a diagonal matrix, it is
sufficient to introduce, over the solid line, a superscript indicating the wave mode.
Using this convention we write (3.187) as

(G,),= 1+ 12 % (G,) . (3.188a)
<G22>B: 2 + 2 1 ...... <G22>B- (3.1881’))

As there are no self-coupling terms, (G2) and (Gy; ) vanish. The consequence of
the absence of self-coupling terms is thus the absence of coupling between the mean
propagators (this is due to the fact that any Bourret diagram has an even number of
vertices). But this will not prevent energy transfer between the wave modes, because
the energy densities are calculated from the mean double propagator.

Let us find the behavior of (Gy;)g for # >> tiy. It is determined by the scalar terms
of the Bourret series and thus by

lim & 2N\ = iB, (k). (3.189)

z=—aw (k)+i0

In explicit from Equation (3.188a) becomes

[—iz — ian (k) — iB, ()] (G11)g = 1. (3.190)

To derive this equation we have replaced _;~ ™, by if8; (k). Solving this equation
we obtain

(Gu(k; 1)) = exp{ifwi (k) + f (k)]t}. (3.191)
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The frequency w; (k) has thus been renormalized. For the second wave mode from
(3.188b) we find a similar result with f,(k) = —pf] (k).
Let us calculate 3, (k). Writing

(Bia(k, kK )Byy (K K")) = T'(k — K)o(k — k") (3.192)
we obtain
o I'(k,K) /
ﬂl (k) o ;7JB$1>08Jw1(k) — (l)z(k) — l?’]dBk ' (3193)

I'(k,k") is a positive measure (FT of a covariance function), accordingly the
imaginary part of f3;(k) is positive and (Gy;(k;t)) is damped. It is possible to
evaluate this imaginary part by a dimensional analysis of (3.188a)

Imﬁ1(k)’ 2223
PN L 2R <« 1. 3.194
‘ on (k) (3.194)

Now we turn our attention to the mean double propagator and calculate the mean
spectral energy densities (|Q; (k; 1) \2>~ (102(k; 1) *). They do not satisfy any propagation

equation but are deducible from (Q(k;z)Q%(k;2')) and (Q,(k;z)Q5(k;Z)), which
satisfy the following equations of the Bourret’s approximation

~ ~. | ~. 1 ~ ~ .
<Q1 (k"Z)Ql (k;z')>: 1 o) (k"O)Ql (k,'0)+% <Q2(k','Z)Q2 (k';z')>
(3.195a)
~ ~ % 2 ~ ~ % 2 ~ ~ %
<Q2(k"Z)Q2 (k;z')>=fQ2(k;O)Q2 (k,'0)+ 5 <Q1(k,"Z)Q1 (kl;zl)>
(3.195b)

(01(k;2) 0% (k; 7)) is the FT of (Q,(k;1)Qi(k;')) with respect to ¢ and 7. It is

interesting to solve (2.195a) with the following initial conditions:
01(k; 0)Q; (k; 0) = Egd(k — ko)
0>(k;0)Q5(k;0) = 0

for which the total initial energy of the wave is concentrated in the first wave mode

with a single spectral line. Eliminating (Q; (k;z)Q7 (k;Z')) between (3.195a) and
(3.195b) we obtain:

(3.196)

(00530 0:5) = ST B84+ 3T (0.0590, 52)

(3.197)
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This integral equation can be solved by successive approximations. This method

does not give singular terms because they have already been taken into account in
the mean (single) propagators

1 i 2 i

= —, = . 3.198
z+o,(k)+f (k) I 72+, (k) + B, (k) ( )
Let us calculate the lowest order approximation for (Q,(k; z)Q5(k; 7')):
2 lkEa@ka i i e’E,I'(k,k,) i U
2k T O @] Bl )
(3.199)
We denote vy (k) and v, (k) the renormalized frequencies:
vi(k) = w1 (k) + B, (k)
12(K) = (k) + B(k) = 02 (k) — B;(K), (3.200)

Taking the inverse LT of (3.199), we obtain the following expression for the spectral
energy density of the second mode as a function of time

exp(ivy (k)t) — exp(ivy (ko)1) |
Vz(k) — Vl(ko)

Es(k;t) = &*T'(k — ko) (3.201)

The Born approximation would give the same result with the frequencies w; and w,
instead of renormalized frequencies v, and v,. Accordingly, it would be secular for
any wave vector such that

COz(k) = wl(ko). (3202)

This is now prevented by the imaginary part of v(k). Let us assume that the real part
of 5, and f3, have been incorporated into w; and w,, and recall that the imaginary
part of 5, and f, are small compared to w; and w;,. It is then easily found that
E,(k;t) can only be important for wave vectors which satisfy the coupling
conditions:

| (k) — w1 (ko)| < [By (ko). (3.203)

and that the maximum of E,(k;t) occurs for t ~ 1/|f,(ko)| = ta, which is the
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damping time of the mean propagator. The maximum of E;(k;?)

Szr(k, k())

Ep(k;ta) = W'

(3.204)

If we want to obtain the total energy transfer from the first wave mode to the second
one, we must integrate (3.204) over all wave vectors satisfying the coupling
condition (3.203). As B, is proportional to &, the total energy transfer is found to be
independent of the strength of random fluctuations. A dimensional analysis of the
total energy transfer shows that it is of order unity (i.e., independent of e, ¢, K, ¢
etc.) for ¢ ~ t4. As 4 is proportional to £~2, the energy transfer may take a very long
time for small random fluctuations.

Next we study the other limiting approximation of short wavelengths satisfying
eK? > 1. As we have seen in Section 3.5, we may treat the random parameters as
mere random variables. The coupled wave Equations (3.184a and b) become now
ordinary differential equations with a random parameter

00 (1)

o = im0 (t) + iSbQQ(I) (32053)
aQazt(’) = i, 0 (1) + ieb Q1 (7). (3.205b)

We have dropped the wave vector dependence because there is no more coupling
between different wave vectors. We shall assume that b is a real centered random
variable. Equations (3.205a and b) describe a set of two randomly coupled
oscillators. We solve (3.205) with initial conditions such that the initial energy of the
wave is concentrated in the first mode, that is, Q;(0) = 1 and Q,(0) = 0. Using the
LT, we get the following solutions

0:(r) = fh\;-le exp{—iqit} — qQ\—/i—sz exp{—iqt} (3.206a)
0,(1) = \_/—g lexp{—iqit} — exp{—igat}] (3.206b)

with

A= ((,{)1 — w2)2 + 4b282

—(o1 —wy) £ VA
3 )

qip2 =
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The mean energy of the second wave mode at time 7 is thus

Bl = 1001 = <(w1 - j;)lf—’_ 4b2e? <1 — <t\/(wl -+ 4b282>) >

(3.207)
or in terms of the probability density P(b) of the random variable b
E(f) = T |05 (1) |*P(b)db. (3.208)
Let us first assume that w; = w», then
Ex(1) :% T (1 — cos2bt)P(b)db (3.209)

as t — oo and then E,(t) — % In the more general case w; # w,, we take the
probability density as

o 1
Pb)=————. 3.210
(b) 7 (b* 4 62) ( )
The asymptotic energy distribution is easily calculated by means of a LT.
1 2¢e0 1
lim (Ey(2)) == <- 3.211
tg?o< 2(1)) 2260 + |wy — 1] 2 ( )
The condition of effective energy transfer is thus
|w2 — w| < 2¢0. (3.212)

It is found that the time required to reach the equilibrium energy distribution is of the
order of magnitude of (80‘)71. The situation is the same as in the long wavelength
approximation, that is:

We have an important energy transfer in a medium with very small random fluctuations,
but this requires a very long time.

Also, we note that in the long time behavior of a random medium, energy transfer is
always an important process between waves whose frequencies are not very
different (see condition (3.203) at long wavelengths, and condition (3.212) at short
wavelengths).
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CHAPTER FOUR
|

Electromagnetic Aspects of
Wave Propagation over Terrain

When both antennas are far from the ground surface a free-space propagation
concept is usually used, which is based on the scalar (3.1) and (3.2) or vector (3.3)
wave equation description, valid for infinite source-free homogeneous media. In
Section 4.1, based on Green’s theorem and the Huygen’s principle, we introduce
the Fresnel zone presentation that will be used for the description of terrain and
other obstruction effects, such as reflection and diffraction on radio channels. In
Section 4.2, we present the main formulas for path loss prediction for a free-space
communication link. Next, in Section 4.3, the reflection phenomena due to a flat
terrain are described [1-4]. Here, on the basis of Huygen’s principle, Fresnel zone
concepts, and stationary phase methods, we analyze all the reflection phenomena
and give the main formulas for the resultant reflection coefficients. Section 4.4
deals with the electromagnetic aspects of radio wave propagation above a rough
terrain. Here, the three methods of mathematical derivation of the field strength are
presented to obtain the effects of radio wave scattering from ground surfaces with
various roughnesses (large, medium and small) with respect to the wavelength. In
Section 4.5, the effect of the ground curvature is considered by using Fock’s theory
of diffraction. Section 4.6 describes diffraction phenomena caused by a single
obstruction placed on a flat ground surface.

Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric
and Ionospheric, by Nathan Blaunstein and Christos Christodoulou
Copyright © 2007 John Wiley & Sons, Inc.
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88  ELECTROMAGNETIC ASPECTS OF WAVE PROPAGATION OVER TERRAIN
4.1. WAVES PROPAGATION IN FREE SPACE

Let us rewrite Equations (3.1)—(3.3) by introducing the wave number k instead of
refractive index n and the speed of light ¢, that is,

V2¥(r) — k*¥(r) = 0. (4.1)

Here ¥ represents each Cartesian component of the electric and magnetic fields of
the wave and k = 277, where /A is the wavelength.

4.1.1. A Plane, Cylindrical and Spherical Wave Presentation

The solution of Equation (4.1) is
¥Y(r) = exp{ik - r} (4.2)

The waves that satisfy the scalar equation (4.1) described by the solution (4.2) are
called plane waves. The wave vector k denotes the direction of propagation of the
plane wave in free space. For any desired direction in the Cartesian coordinate system,
the corresponding solution can be immediately obtained from (4.1) and (4.2). For
example, if the plane wave propagates along the x-axis, the solution of (4.1) is [1-3]

¥(x) = Aexp{ikx} + Bexp{—ikx} (4.3)

This solution describes the waves propagating in the positive direction (with the sign
“+7) and the negative direction (with sign “—"") along the x-axis with phase
velocity vp, = % = —=, where f is the radiated frequency. In free space, if the
c e _ Vo R el . _ _7H
permittivity is ¢ = & =~ 3¢ and the permeability is u = py ~ 4n - 107" %, then
the phase velocity in an ideal free space is simply the speed of light ¢ = 108 m/s.
In the cylindrical coordinate system {p, ¢, z}, the scalar wave equation, which
describes the propagation of cylindrical waves in free space, can be written as in

Reference [3]

1o o 10 &
(a0 i+ ) 70 =0 4

This equation has an approximate solution, which can be presented in the following
exponential form [2—4]:

2 N T |\n . .
PO~ % Se{ =i~y P{ [p (o) +ikop + "‘Zz] } “3)
p

Here, po is the arc length in the ¢ direction, k, = /k?> — k2, and n/p can be
considered as the component of vector k if one compares the cylindrical wave
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presentation as in (4.5) with that of a plane wave in (4.2). Consequently, (4.5) looks
like a plane wave in the direction k' = k.z + k,p, when p — cc.

In the spherical coordinate system {r, 0, ¢}, the scalar wave equation, which
describes propagation of spherical waves in free space, can be written as in
References [1-3]

—sinf— +

l2r22+ 1 0 9 G
r20r  Or  r2sin*000 90 r2sin® 0 ¢

+ k2> P(r) =0 (4.6)

As shown in [3], the spherical wave can be approximated by M. Thus, one can

represent the spherical wave as a plane wave, when r — oo.

4.1.2. Green’s Function Presentation

Green’s function is used in the description of any arbitrary source in an
unbounded homogeneous medium, taking into account that each source s(r) can
be represented as a linear superposition of point sources. Mathematically this
can be expressed as

s(r) = Jdr’s(r’)é(r —r') (4.7)
The scalar wave equation with the source in the right-hand side can be presented as
V2¥(r) — k*¥(r) = s(r) (4.8)

and the corresponding equation for the Green’s function in an unbounded
homogeneous medium can be presented as

V2G(r,¥) — K*G(r,x') = =6(r —1'). (4.9)

The solution of Equation (4.9) is [1-3]

1 exp{ikr}
G(r)=———"— 4.10
() =22 (4.10)
and the corresponding solution of (4.8) is
Y(r) = — Jdr'G(r, r')s(r'). (4.11)

14

The geometry of the source s(r) in a space with volume V is shown in Figure 4.1.
Using Equation (4.10) one can easily obtain a general solution for the inhomogeneous
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/s

v

FIGURE 4.1. Geometrical presentation of a source s(r) inside an arbitrary volume V
bounded by a surface S.

Equation (4.8) given by

=~ [ar e o

This presentation is valid for any component of an EM-wave, propagating in free
space, and it satisfies the principle of linear superposition of point sources (4.7) for
any real source of radiation.

4.1.3. Huygen’s Principle

This concept is based on presenting the wave field far from any sources as shown in
Figure 4.2. Here the point of observation A can be either outside the bounded surface
S, as shown in Figure 4.2a, or inside, as shown in Figure 4.2b. In other words,
according to Huygen’s principle, each point at the surface S can be presented as an
elementary source of a spherical wave, which can be observed at point A.
Mathematically, the Huygen’s concept can be explained by the use of Green’s
function. First, we multiply the homogeneous Equation (4.1) (without any source)
by G(r,r’) and the inhomogeneous Equation (4.9) by ¥(r). Substracting the
resulting equations from each other and integrating over a volume V containing

*0
°A

(b)
(@
FIGURE 4.2. Geometrical explanation of the Huygen’s principle in a bounded surface when
the receiver is located at point A outside and inside the bounded surface and when the
transmitter is located at point O.
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':,n

FIGURE 4.3. The geometry for derivation of Green’s theorem for the two different boundary
conditions at the bounded surface S; Neumann and Dirihlet.

vector r’ (see Fig. 4.3), yields

P(r) = JerG(r, r)\V2¥(r) — ¥(r)V>G(r,r')] (4.13)

from which we can obtain Green’s theorem or the second Green formula [1-3]:

Jdr[G(ra ¥)V2P(r) — P(£)V2G(r,1')] = %ds {G(r, r) 8'2’1(11‘) _ T(r)%ﬁ;ri)
(4.14)

This formula can be simplified using different boundary conditions on surface S. Using
the relation between arbitrary scalar functions fand g: fg-n = f g—ﬁ, we can write

Y(r') = f{;dsn- [G(r,x)V¥(r) — P(r)VG(r,1')] (4.15)
s

Next, if we assume that n - VG(r,r') = 0 at the boundary surface S, defined by the
radius vector r, Equation (4.15) becomes

Y(r') = #;dsG(r, r')n- V¥(r) (4.16)
s

If the boundary condition VG(r,r’) = 0 is applied at the surface S, then Equation
(4.15) becomes

Y(r')=— %ds‘[’(r)n -VG(r,r') (4.17)



92 ELECTROMAGNETIC ASPECTS OF WAVE PROPAGATION OVER TERRAIN
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FIGURE 4.4. Geometry of plane wave-ray presentation of Huygens principle in free space.

Equations (4.15)—(4.17) are various forms of the Huygen’s principle depending on
the definition of the Green’s function on the bounded surface S. Equations (4.16)
and (4.17) state that only n- V¥(r) or ¥(r) need to be known, respectively, on
the surface S in order to determine the solution of a wave function ¥ (r') at the
observation point r’.

In unbounded homogeneous media, as in free space, the Huygen’s principle has
a clear and physical explanation. Each spherical wave can be presented as a plane
wave in the far field. In this case, the elementary spherical waves called wavelets,
created by each virtual point source (the dimensions of which are smaller than the
wavelength) can be represented by the straight line called wave fronts, as shown in
Figure 4.4. Therefore, the phenomenon of straight-line radio wave propagation is
the same as that of the light ray propagation in optics. This is the reason why
sometimes in radio propagation the term ‘“‘ray’’ is usually used instead of the term
“waves.”

4.1.4. The Concept of Fresnel Zones for Free Space

The Fresnel-zone concept is used to describe diffraction phenomena from
obstructions in the path of two antennas based on the Huygen’s principle. As the
latter is useful both for free space and for various finite areas with obstructions, it is
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FIGURE 4.5. Fresnel-zone concept presentation in free space.

important to show both mathematically and physically the meaning of the Fresnel-
zone concept when both terminal antennas are high enough that the LOS conditions
are fully satisfied. In free space, on the basis Huygen’s principle, instead of virtual
point sources at an arbitrary surface S, as shown in Figures 4.2-4.4, we introduce
virtual sources along some virtual wave front DD’, as shown in Figure 4.5. In this
figure, points A and B denote the position of the terminal antennas. The virtual plane
S is the plane that covers each virtual source located at line DD’ through which
the plane S is passed. This imaginary plane is normal to the LOS path between
two terminals, A and B, and passes across the point O at the line AB, as shown in
Figure 4.5. For such geometry, the Green’s theorem (4.14) can be rewritten for any
vector namely, the Hertz-vector in [1-4] as

OTI(R') exp{ik|R — R'[}
II(R) = |d 4.18
®) = [a SRR (@.18)
s
where |R — R’| = r/ is the distance from any point O; i = 1,2, ..., at the imaginary

plane S and the observer at point B. If the radiation source located at point A is
assumed to be point one with Green’s function G ~ erk—]' then for any point O;(0; in
Fig. 4.5), we have according by

M(R) :Ist<l— ik) roexpiik(n + i)} (4.19)

J
2n ) r r rir

o _ _rng
on r

as .
All distances denoted inside the integral are shown in Figure 4.5.
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Because the wave in the far field (Fraunhofer zone) between the plane S and two
terminals A and B, that is in the case of r; > A and r’1 > 4, } < ik, we have one
term with fast oscillations ~ exp{ik(r; + r})}, even for small changes of variable r,
and a second term ~ ik %’ with very slow variations of variable r. In this case, the
well known method of stationary phase can be used to derive such an integral,
containing both slow and fast terms inside the integrand. Following Reference [4],
we can write

ik
TI(B) ~ — 5~ exp{ik(ro + 1})}
2nrory (4.20)
k1 1\ , k /1 1Y , ’
X ||dxdyexpqiz | —+— |x" pexpqiz | —+ |y ¢.
2\ro 1, 2\rg 1
Using
J exp{iox® }dx = ig,
we can rewrite equation (4.20) as [3]
2i / ik
I(B) ~ — ~exp{ik(ro + ry)} imroro _ exp{ikr} (4.21)

2nrory k(ro+1y) r
where r = ry + r6 is the distance between the source located at point A and the
observer located at point B. So, from Equation (4.21), if the source A at the plane
S creates a field ~<—, then the virtual pomt source, at the observed point B
uniformly distributed at S, will create a field NT The same is valid for the direct
wave from A to B. This is a main conclusion that results from the Huygen’s
principle. Moreover, additional analysis of Integral in (4.19) shows that the plane S
can be split into concentric circles of arbitrary radii. From Figure 4.5, one can see
that each wave path through any virtual point O%) is longer than the direct path
AOB, that is AOYB > AOB. While passing from one circle to another, the real and
the imaginary parts of the integrand in (4.19) change their sign. The boundaries of
these circles satisfy the conditions [4-6]

K+ ) = (ot )} =nl, n=1,2, (4.22)

These circles are usually called Fresnel zones. Their physical meaning is that only
in the first central circle, the virtual sources at the plane S, which lie within the
first zone, send to an observer B at point radiation with the same phase for each
original wave. Sources from two neighboring zones send respective radiation in
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anti-phase, that is, nulling each other. The radius of the corresponding circle
for each Fresnel zone shown at the plane S in Figure 4.5 can be expressed in terms
of a zone number n and the distance between points A and B and the imaginary
plane S as [4-6]

niror;
hy = ot +9 (4.23)
0 +7p)

from which the radius of the first Fresnel zone is

P L SN (4.24)
(ro + )

R is the minimal range from each ry and r(). The width of each circle, Ah, can be
easily obtained as in References [4-6]

Ah~—=n~ iy (4.25)

where h = \/x2 + y% . From (4.23) and (4.25), the width of the circles decreases with
an increase in the zone number n. At the same time, the area of these zones is not
dependent on zone number 7, that is,

2nhAh ~ ng. (4.26)

It is clear that the radius of each individual circle depends on the location of
the imaginary plane with respect to points A and B, becoming largest at some
point midway between A and B. Furthermore, from (4.22) the family of circles have
a spec1ﬁc property: The path length from point A to point B via each circle 1s
n#% longer than the direct path AOB. Thus, for n = 1 (first zone) AOYB — AOB =

the excess path length for the innermost circle is % Other zones will have an
excess proportional to § with a parameter of proportlonahty n=7273,4,.... The foci
of the points, for Wthh AOY'B — AOB = n#%, define a family of elhpsmds The
radii of ellipsoids are described by (4.23). Notlce that in free space, without any
obstructions, only the first ellipsoid is actual and determines the first Fresnel zone
with a radius proportional to v/AR according to (4.24). This ellipsoid covers an area
between two terminal points, the transmitter (7) and the receiver (R) as shown in
Figure 4.6. Therefore, despite the fact that in free space both reflection and
diffraction phenomena are absent, which causes interference between neighboring
zones, the concept of Fresnel zones based on Huygen’s principle is very important. It
describes the loss characteristics of radio wave passing along a channel of high

deviation terminal antennas. This concept allows us to estimate conditions of direct
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h =~AR

X R RX

FIGURE 4.6. A free-space pattern of the first Fresnel zone covering both terminals, the
transmitter T and the receiver Ry.

visibility or clearance of the propagation channel by using the right-hand term in
(4.24) to evaluate the radius of the first Fresnel zone on the basis of the knowledge of
the wavelength of the radiated wave and the range between the two terminal
antennas. This is very important for link budget design in atmospheric channels
where the terminal antennas are far from the Earth’s surface. This aspect will be
discussed in Chapter 6 when we deal with atmospheric communication links.

4.1.5. Polarization of Radio Waves

To understand the aspect of wave polarization, let us define this phenomenon.
The alignment of the electric field vector E of a plane wave relative to the
direction of propagation k defines the polarization of the wave (see Chapter 2). If E
is transverse to the direction of wave propagation k then the wave is said to be
TE-wave or vertically polarized. Conversely, when H is transverse to k the wave is
said to be TM-wave or horizontally polarized. Both of these waves are linearly
polarized, as the electric field vector E has a single direction along the entire
propagation axis (vector k). If two plane linearly polarized waves of equal
amplitude and orthogonal polarization (vertical and horizontal) are combined with
a 90° phase difference, the resulting wave will be a circularly polarized (CP) wave,
in which the motion of the electric field vector will describe a circle around the
propagation vector.

The field vector will rotate by 360° for every wavelength traveled. Circularly
polarized waves are most commonly used in land cellular and satellite com-
munications, as they can be generated and received using antennas that are oriented
in any direction around their axis without loss of power [1-3]. They may be
generated as either right-hand circularly polarized or left-hand circularly polarized,
depending on the direction of vector E rotation (see Fig. 4.7). In the most general
case, the components of the combining waves could be of unequal amplitude, or
their phase difference could be other than 90°. This combination result is an
elliptically polarized wave, where vector E still rotates at the same rate as for
circular polarized wave, but varies in amplitude with time. In the case of elliptical
polarization, the axial ratio, AR = Ep; /Emin, is usually introduced (see Fig. 4.7).
AR is defined to be positive for left-hand polarization and negative for right-hand
polarization. Now let us turn our attention to the wave field polarization in the case
of a free-space propagation channel.
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FIGURE 4.7. Different kinds of field polarization.

4.2. PATH LOSS IN FREE SPACE

Let us consider a non isotropic source placed in free space as a transmitter antenna
with Pr watts and a directivity gain Gp. At an arbitrary large distance r ( r > 4,
where 4 =cT = c¢/f is a wavelength) from the source, the radiated power is
uniformly distributed over a surface area of a sphere of radius . If Py is the power at
the receiving antenna, which is located at distance r from the transmitter antenna and
has a directivity gain Gg, then the path loss, in decibels, is given by

P 4mr\ 2
L =10log— = 101og [() /GTGR
PR A

1
=Ly+ 1010g(G
TGR

) (4.27)
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Here L is the path loss for an isotropic point source (with Gg = Gt = 1) in free
space and can be presented in decibels as

4rfr

2
4
Lo = 101log () =201log (nfr) = 32.44 +20logr + 20logf (4.28)
¢ c

where the value 32.44 is obtained from

47 - 103(m) - 10%(1/s 407
32.44 =20 log< 3 508)<m/s)( / )) = 201log (3>

Notice that all the above formulas are related to the well-known Friis’ formula
obtained in Chapter 2. In expression (4.28) the distance r is in kilometers (km), and
frequency f is in megahertz (MHz). As the result, the path loss between the two
directive antennas (receiver and transmitter) is given by

Lg = 34.44 + 20log djxy) + 2010g fimu,) — 101log Gt — 101log Gr (4.29)
It can be presented in a ““straight line” form as
Lg=Lo+ 10y log d (4.30)

where Ly = 34.44 4+ 201logf — 10log Gt — 10log Gg and y = 2.

4.3. RADIO PROPAGATION ABOVE FLAT TERRAIN

The simplest case of radio wave propagation over a terrain is one where the ground
surface can be assumed to be flat and perfectly conductive. The assumption of ““flat
terrain’ is valid for radio links between subscribers up to 10-20 km [4-8]. The
second condition of a “perfectly conductive” soil medium can be satisfied only for
some special cases, because the combination of conductivity ¢ and frequency w
such as 47g/w, that appears in total formula of permittivity ¢ = &, — i4no/w play
important role for high frequencies (VHF/L-band, usually used for terrain
communication channel design) and finite sub-soil conductivity, as well as for
small grazing angles of incident waves [1-8]. To introduce the reader to the subject
of reflection from the terrain, we start with the simplest case of a perfectly
conductive flat terrain.

4.3.1. Boundary Conditions at the Perfectly Conductive Surface

For a perfectly conductive ground surface the total tangential electric field vector is
equal to zero, that is, E, = 0. Consequently, from V x E(r) = iwH(r) the normal
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component of the magnetic field also vanishes, that is, H, = 0. At the same time, the
tangential component of magnetic field H, does not vanish because of its
compensation by the surface electric current. The normal component of electric
field E, is also compensated by the electrical charge on the ground surface [1-8].
Thus, for the flat perfectly conductive ground surface, we have, E; = 0 and H,, = 0,
which in the Cartesian coordinate system can be rewritten as

E(x,y,2=0) =Ey(x,y,2=0) = H,(x,y,2=0) =0 (4.31)

Here E; is the tangential component of the electric field and H,, is the normal
component of the electromagnetic wave with respect to the ground surface.

4.3.2. Areas Significant for Reflection

To obtain main Fresnel zones at the ground surface that are responsible for
reflection, we again return to the Huygen’s principle and the boundary conditions at
the ground surface.

We consider in this section three typical positions of the terminal antennas: a) two
antennas are higher than all terrain obstructions; b) one of the antenna is higher and
the other is lower compared to the terrain obstructions; c) both antennas are lower
than the terrain obstructions.

In the first case, the source is also placed above the ground surface at the point
O (xo, yo, 20)- Without any loss of generality, we choose the coordinate system to be
such that xg = 0, yg = ya = 0 (see Fig. 4.8). Using the main integral presentation of
the total field in (4.14) and (4.15), for the atmosphere;earth boundary surface, and
using the Hertz presentation of total field (that is, for ¥(r) = II(r)), one can obtain
the following result: According to this formula and the discussion presented above,
in the situation over a flat terrain, the total field I1(r) = |I1(r)| at the observed point
A is the superposition of the non disturbed field ITy(A) that describes the wave field
in the unbounded homogeneous atmosphere, and the disturbed field IT;(A) that
describes the reflection phenomenon caused by the virtual sources placed at the
ground surface S (the area of integration in (4.15) or (4.16)). The 1ntegral on the
surface S in (4.14)—(4.16) will always consist of products of the order of ~- iy (r)
for any selected Green’s function in the form of (4.10). Consequently, the ﬁeld II(r)
at the ground surface can also be considered as a product of the non disturbed field
Iy(p) = |p| - <" and some slowly changing attenuation function W(p). In this case
we can again return to the integral (4.19) from the product of a quickly oscillating
function and a slowly changing function, and use the method of stationary phase for
the description of zones at the surface S that gives minor contributions to wave the
reflection phenomena from a flat ground surface. Next, consider the integral in (4.19).
On the surface S {x,y,z =0} we find the point (xo,yo) at which this integral has

some extremes. As seen from Figure 4.8, r= /(x4 —x)*+y>+2> and
p = \/x*+y?>+ 75 means that the essential effect for the reflection phenomenon
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FIGURE 4.8. The Fresnel-zone reflected area presentation for one of the antenna located
near the ground surface.

arises from the area that lies near the point of the specular reflection (xg, yo, 0) [4-6].
Let us examine the behavior of the exponential function inside the integral in (4.20).
First, to simplify things, we introduce new variables:

C=x—Xx0, N=Y—Yo. (4.32)

Assuming ¢,n < r, p, and expanding r and p into series, according to [4,6], we can
obtain the phase function ¢ = k - (r + p) in the exponent of integrand within (4.20)
as:

2 aia2 2
Y11
(;S:k-(r—l—p)%k-{(ro-i-po)-i-gsm(pn(—i-)} (4.33)
2 o Po

where we define r{, in the integrand inside (4.20) and p, according to geometry
presented in Figure 4.8. The lines of equal phase ¢ (s, ) = const. have the form of
ellipses placed around the point of the specular reflection (see Fig. 4.8). The
following equation:

k 1 1 ) 2 T
=4+ = =m— =0,1, 2,... 4.34
5 <r0+p0>(g sin (p—H?) m2, m y Ly 4 ( )

or its strict mathematical presentation

+ =1 (4.35)
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is an equation of ellipses with semi-axes:

1 :
along the x-axis: Ay = — mm 7o Po
sing \| k (ro+ po)
(4.36)
and along the y-axis: b, = mm_To Po

These ellipses are the real boundaries of the zones of specular reflection from a
flat ground surface. For small grazing angles (¢ — 0°) a,, > b,,, all ellipses are
elongated along the x-axis, that is, along the direction of wave propagation. Earlier
these ellipses were defined as the Fresnel zones, but now they are described when the
specular reflection from the ground surface is taken into account. Approximate size
of the reflecting areas in [4] were also estimated from

4
along the x-axis: 2ap = ——VAR (4.37a)
sin ¢
and along the y-axis: 2br =4V R (4.37b)

where R is the minimal value between the two distances, ry and p,,.

So far we have considered the situation when the antennas, transmitter, and
receiver are above the earth surface. What happens if one of the points, for example,
point A, lies close to the ground plane, that is, at z = 0?

In this second case z4 ~ 0 as shown in Figure 4.9, the term (r+ p) in the
exponent of exp{i ¢ = exp{i- k- (r + p)} in integral (4.20) has a minimum at point
A, that is, when x = x4, y = ya. Also if we assume that y4, ~ 0 and introduce the
polar coordinate system (r, o) with a center at point A (see Fig. 4.9), then

X=2xy+r-cosa, y=r-sina (4.38)
The r and p can be related as:

~ +r-cosa-cos
PP ? (439)
ip ~ ikpy+i-k-r-(1+cosa-cosq)

Using these expressions, one can again obtain for the fast oscillating term in the
integral (4.19), the significant area where reflection occurs. The boundaries of this
area are described by the following equation:

k-r-(l+cos<x~cos<p):mg, m=0,1,2,... (4.40)
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or

po__ M2k (4.41)
(I 4 cosa-cosq)

Expression (4.41) describes a family of ellipses with their foci at the point r = 0
(point A). Their large semi-axis is elongated along the x-axis and is described by

m-Tm

apy = —— — 4.42a
2-k-sin’ ¢ ( )
and their small semi-axis is elongated along the y-axis and equals
m-m
by =——— 4.42b
2-k-sing ( )

These ellipses are strongly elongated in the direction of the source, as shown in
Figure 4.9. In this case the distance from point A to each successive ellipse is

m-m
d = > 4.43
( )c{:ﬂ: Zk(l—COS(()) ( )
and in the opposite direction to the source this value is
m-m
d = 4.44
( )1:0 2k(1+COS([)) ( )

In the case of a wave incident with a small grazing angle ¢(¢ ~ 0), several initial
Fresnel zones will embrace most of the radio path between points O and A (the

0(0,0,20)

R T

(x,0,0)

FIGURE 4.9. The Fresnel-zone reflected area presentation for both antennas located near the
ground surface.
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FIGURE 4.10. Specular reflection of the incident ray from a smooth flat terrain.

source and observer, respectively). Estimations carried out in Reference [4] showed
that the area in front of an observer placed at point A, located near the Earth’s
surface, is very important for propagation. At the same time, the area behind the
observer is not that significant. The conditions of propagation and hence of
communication between points O and A become more effective with an increase in
grazing angle ¢ or, of course, with a decrease of the range between the source and
the observation point.

In the third case, the source and the observation point occurs when both are
located near the earth’s surface (let us say, in the plane z = 0, as shown in Fig. 4.10).
In this case the position and the configuration of the Fresnel zones are determined by
the earlier introduced condition of equality of phase of field oscillations, that is,
k- (r+ p) = const. But from this condition we can once more obtain the equations
for the ellipses with their foci at points O (source) and A (observer). Because the
minimum value of such a constant can be achieved for (r + p) = x4, the boundaries
of the Fresnel zones are determined by the following conditions:

k~(r+p):k~xA+mg, m=0,1,2,... (4.45)
The large semi-axis of each ellipse is

r+p x4 m-m
aﬂl: =

2 2 4.k

(4.46)

Behind points O and A these ellipses are close to each other and are very elongated
along the x-axis. The small semiaxis is

r+ . m-m m-m m
by = 2p51n05:\/ X (XA+4.k>'NV\/8;L'XA (447)

for moderate values of m.
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Thus we conclude that the ellipses depicted in Figure 4.10 are not real because
by <K ay. If we now assume that x4, > A (for real radio paths designed above a flat
terrain), then x4 > b,, the specular reflection area is narrow enough. As shown in
References [4,6], in this case only a few ellipses embrace the source (O) and
observer (A) determine the significant area of specular reflection. The distances
between neighboring ellipses behind points O and A are very small.

Thus, we have found the significant area of specular reflection from a flat terrain
for various combinations of transmitter and receiver locations above the Earth’s
surface. We can combine all three cases of antenna positioning by analyzing more
general situations for various positions of points O and A, and by introducing a
system of rotating ellipsoids in space which have foci at these points. These
ellipsoids can be described by [4]:

k~(r+p):k~d+ng7 n=0,1,2,... (4.48)

where d is the range between points O and A, whereas r and p are the distances from
A and O to the current spatial point, respectively. Starting from any number n = n,
these ellipsoids are crossed by the Earth’s surface. The first point where the first
contact with the ground surface takes place is the point of specular reflection

v
k~(r0+p0):k~d+n1§ (449)
The following values of n = ny +m, m = 0,1,2,..., will give at the ground plane,

the contours of the Fresnel reflection zones, as shown by Figures 4.8—4.10 for
various elevations of the receiving and transmitting antennas.

4.3.3. Reflection Coefficients

Here, we present the expressions for the complex reflection coefficients (I") for
waves with vertical (denoted by index V) and horizontal (denoted by index H)
polarization [4-8].

For horizontal polarization:

sinyy — (& — cos 1/1)1/2

I'y = |[Tyle % = (4.50a)
siny + (& — cos? l//)l/2
For vertical polarization:
_ Lo 1/2
Iy = |yleiov = &50¥ = (& — cosy) (4.500)

&rsiny + (& — cos2y)'/?
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Air

Ground Surface

FIGURE 4.11. The Fresnel-zone reflected area presentation for two antennas placed above
the ground surface.

Here, |I'v|, |I'u| and ¢y, @y are the magnitude and phase of the reflection
coefficient for vertical and horizontal polarization, respectively. ¥ =7 — 0y is
the grazing angle and 0, is the angle of wave incidence (see Fig. 4.11). The
knowledge of the reflection coefficient amplitude and phase variations is a very
important factor in the prediction of propagation characteristics for different
situations in over-the-terrain propagation channels. In practice, for over-the-terrain
wave propagation the ground properties are determined by the conductivity and
the absolute permittivity of the sub-soil medium, ¢ = ¢ye,, where ¢y is the
dielectric constant of vacuum, ¢ is the relative permittivity of the ground surface,
and & = Re(e) + Im(e) = ege — j60A0. Here ere = &0 and &, = 6040 are the
real and imaginary parts of the relative permittivity of the sub-soil medium.
Because both coefficients presented by (4.50a)-(4.50b) are complex values, the
reflected wave will therefore differ in both magnitude and phase from the incident
wave. Moreover, both coefficients in (4.50) differ from each other.

Thus, in the case of horizontal polarization, for ¢ — oo, ¢ — oo (i.e., for a
conductive ground surface), the relative phase of the incident and reflected waves, is
nearly 180° for all angles of incidence. On the other hand, for very small grazing
angles (Y < 90°), as follows from (4.50a), the reflected and incident waves are
equal in magnitude but differ by 180° in phase for all actual values of ground
permittivity and conductivity, that is, I'y = —1, (¢ < §), and ¢y = 180°.

From (4.50b) the reflection coefficient for a wave with vertical polarization does
not change its properties compared to that of horizontal polarization in the case of a
real conductive ground surface (& > 1,0 > 1), and small grazing angles, that is,
foryy < 90° I'v = —1, and @y = 180°. At the same time, for &, — 0o, ¢ — 0o and
0 <y < 180°, we get I'v = 1 (see (4.50b)). However, with an increase of angle
substantial differences appear, that is, both a rapid decrease of magnitude and phase
of the reflected wave take place. For 6y — Og,(y — 90° — 0g,;), where
fg, = tan~! V% is the Brewster angle, the magnitude |I'v| becomes minimum and
the phase ¢y reaches —90°. At values of Y greater than the Brewster angle, |I'y|
increases again and the phase ¢y, approaches zero, that is, I'yv — 1.
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4.4. PROPAGATION ABOVE ROUGH TERRAIN
UNDER LOS CONDITIONS

Now we consider EM-wave propagation above a rough terrain. Both terminal
antennas, the transmitter and the receiver, are placed above the rough terrain in
LOS conditions. Here the multi-scattering effects, caused by the terrain roughness,
must be taken into account. The total field arrived at the receiving antenna is a
superposition of the direct wave, the wave specularly reflected from the quasi-flat
ground surface (which together with the direct wave form the coherent part of the
signal total intensity, I.,), and the waves scattered in all directions from the
irregularities of the terrain (which form the incoherent part of the signal total
intensity, finc ). In order to predict the propagation loss characteristics of the irregular
ground surface and to estimate the role of each kind of wave in the total field, we use
the Rayleigh rough-surface criteria and find the influence of each part in the signal
total intensity at the receiver [9-14].

Next, we present expressions for both part of the total signal intensity, the
coherent and incoherent, the reflected and scattered from the rough ground surface,
respectively. These expressions take into consideration the various relations between
the dimension of roughness, the wavelength of operation, and the angle of incidence.
The interested reader is referred to the original works [15-27] for more details. Here
we give recommendations on how to use these expressions for different frequency
bands, for different terrain irregularities, and various positions of the receiving and
transmitting antennas.

4.4.1. Scattering from a Rough Ground Surface

A rough terrain can be described, according to [9-14,16] by a “‘relief function™
z = S(x), as shown in Figure 4.12. If the roughness of arbitrary height z is distributed
according to Gauss’s law, with mean value 7z and a variance of a2, then the

z=S8(x)

, AN
W VA VARW

FIGURE 4.12. Relief function presentation for the rough terrain.
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FIGURE 4.13. Different patterns of the scattered wave from a rough terrain.

probability density function, (PDF) (see definitions in Chapter 1), of roughness
distribution is given by:

1 (z-2)°
PZmaexp{ 92 } (4.51)

where the standard deviation of the ground surface roughness around its mean
height Zis 0 = /(z?) — Z%. In Figure 4.13, the criterion of roughness of the terrain
is presented schematically for various values of ¢ for a better understanding of
the role of the reflected and scattered waves in the total field pattern. Thus, the
case g =0 or ¢ < 4 (4 is a wavelength) describes pure reflection from a flat
terrain; the case o < 4 describes weak scattering effects from a gently rough
surface, where the reflected wave is the dominant contributor to the total field
pattern, that is, I, >> [ic. In the cases of ¢ > 1 and ¢ >> 4, the terrain is rough and
irregular with an increased role in generating a significant scattered wave as a
component of the total field pattern. The last two illustrations in Figure 4.13, show
the 1., < [ cases.

There are several approximate methods for the total field evaluation in radio
propagation channels above a rough terrain. At present, there are three general
approaches to solve the wave scattering problem that arises from the rough terrain:

a) the perturbation technique that applies to a surface which is slightly rough
and whose surface slope is smaller than unity [4,9,21,25];

b) the Kirchhoff approximation that is applicable to a surface whose radius of
curvature is much greater than a wavelength [4,9,13-20];

c) the Rayleigh approximation that is applicable to a surface whose curvature is
at the same order as the wavelength [9-12].

We describe each approach briefly in the following section.

4.4.2. The Perturbation Solution

The perturbation method is applicable to a slightly rough surface that will be
described herein. Let us consider the height of a rough surface to be given by some
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n
z=0

FIGURE 4.14. Geometrical presentation of weaker rough terrain described by the
perturbation method.

X

function (see Fig. 4.14)
z2=5(x,) (4.52)

We choose z = 0 so that (4.52) represents the deviation from the average height
(s(x,y)) = 0. Moreover, the perturbation method is valid when the phase difference
due to the height variation is small, that is, when [4,9]

|k - s(x,y) - cos ;] < 1
2

Ox

S (4.53)

<1
8y<

< 1,

The boundary condition for the electric field at this surface requires that the
tangential components of E vanish at the surface z = ¢(x, y), that is,

Exn=0 (4.54)

where n is the vector normal to the surface z = ¢ at point (x,y). If the surface
profile (4.52) and the position of sources are known, then the problem is to
determine the field in semi-space z > 0, given that the boundary conditions are
known [9]. Let us consider the influence of roughness as a small perturbation, that
is, the total field is

E=E? +EW (4.55)

where E© is the field that could be derived for the condition ¢ = 0, which a
priory is well known using knowledge of specular reflection from smooth terrain
obtained from two-ray model. The second term E() that describes the field
perturbations can be obtained from the wave equation using boundary conditions
in (4.54). To present the solution of the perturbation term, let us consider two
special cases, which are practical with regard to over-the-terrain propagation
channels.

Let a vertical dipole be located at point O as shown in Figure 4.15. Its reflection
from a flat surface at z = 0 and at the point O; according to the reflection theorem
must also be directed vertically. By introducing the spherical coordinate systems
{R, 9, ¢} and {R;, V1, ¢, = ¢} for each dipole, we can present the components of
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FIGURE 4.15. The geometry of a vertical dipole field scattered from a rough terrain.

the non perturbed field E© as

el'(wlfk()R) e‘((otfkoRl)
E)EO) = {—k(z)p sin v cos ﬂT — I psind); cos ¥ R} cos @
1
i(wt—koR) ei(wtfkoRl)
E}(Q) = {k(z)p sin ¥ cos ﬂT — k(z]p sin; cos Y, Rl} sing  (4.56)
i(wt—koR) i(wt—koRy)
. € . €
E£0> = {k(z)p sin’ ﬂT + kg p sin® ¥, Rl}
Then, in the plane z = O(R = Ry, ¥ = n — )
EO_EO _o,  EO _2@psiny S 4.57
W =EY =0, ) = 2kg psin R (4.57)

Here p is the modulus of the momentum of the vertical dipole that is well known
from the literature (see, for example, [4,9,11]). Because in practical terrain
propagation case, the source and the observation point are far from the surface z = 0,
we can present simple formulas for the perturbed part of the total field due to the

terrain roughness in the case where the incident wave lies in the xy-plane (i.e., when
e kR __ e—ikgx’ sin®

o=0,p =4 , where ¢ is constant):
k2 o) o efiko(erx’ sin )
1 o O . 2 .
E;(() *E(ZQ) {lk()COS 19+51n196x/} a—zfdxldyl
k2 —iko(p+x'sin?d)
EW =20 24y [ { sin? 9 geidx'dy’
Y 2n oy'] 0z P
(4.58)
ED — k_(z’ (2q) | 4 ik ﬁ(cos2 ¥ — sin®¥) + i + i sin)
e T ogn 0 9x' ox2  Ox?

efiko(erx’ sin )

+ k§ cos? ¥ sin 19} fdx’dy’
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Here p = \/(x — X 4 (y—y)* + (z— 2)*, in which x, y, z are the coordinates of
the observed point. For small grazing angles (9 — 5 ), that is, in the case of slipped
incident waves, which is very actual in mobile and personal communication, these
formulas can be significantly simplified, for example,

00 O
1) ~ 2 —ik 9
E)<c ) ~ —ZkOqe Hoxsin a

oxsing O
E}<1> ~ _2k(2)qefzk0xsml987i (459)

K2 azg 82§ oc e~ tko(p+x'sin )
EW ~ 202 J —ikg— | ——————d¥'dy’
z 2n (24) Ox"? * ax? oy p Y

For a horizontal dipole located at the point O and oriented along the y-axis, its
reflection vector from the flat surface z = 0 and at the point O is oriented, in the
opposite direction. The same approach, as above, allows us to present the
perturbation part of the total field due to the terrain roughness for a horizontal dipole
oriented along the y-axis

EV =0
k2 b e—ik@(p+x’ sin )
(1) _ _ 20 . R BV A
E| o (29) J (ikos cos ) % 5 dx'dy (4.60)
k2 S e—iku(p+x’ sin )
1) _ 70 .
E§ ) = E (Zq) J (lk()aylc()s 19) fdxldy'

Then, in the case of slipped waves (i.e., for small grazing angles (¢ — %)) one can
easily obtain from (4.60) very simple formulas for the perturbed part of the total field

as

EV = —2ikjc gcos e or i 0 (4.61)
i3 ) —iko(p+x' sin9)
EW = 2i (2iq) J—gcos  p— N
m p

A comparison between expressions (4.58)—(4.59) and (4.60)—(4.61), for both kinds
of wave field polarizations, shows that the field of the horizontal dipole is less
affected by the roughness of the terrain than that of the vertical dipole. The formulas
presented here can predict the propagation characteristics over a rough terrain in
conditions of direct visibility between the source and the observer if the profile
¢(x,y) of the ground surface is known for each situation. Moreover, these formulas
allow us to obtain the coherent and incoherent parts of the total field energy. In fact,
the coherent power dominates in the case of a smooth surface and is determined
by the use of the non perturbed field E), the components of which are described
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by (4.56). The incoherent power is determined by the perturbed field E(") described
by (4.58)—(4.59) and (4.60)—(4.61) for both kinds of field polarizations.

The limitation of the perturbation method depends on the requirement of the
“smallness” not only for V¢ but also for the Earth’s surface deviations ¢(x,y). But
the last condition can be ignored, because, if we derive the second perturbation term
E® in Equation (4.55), we obtain for the case of vertical dipole the following
condition [9,11]:

(ko - < Ve])'/* < 1 (4.62)

from which, assuming that |V¢| ~ ¢/¢, where ¢ is the characteristic length of
roughness, we obtain

s< Vit (4.63)

Therefore, for sufficiently small slope angles, the described perturbation technique is
valid even for deviations ¢ close to or larger than the wavelength 1.

4.4.3. Kirchhoff’s Approximation

Now we consider the other limiting case when the characteristic size of the Earth’s
surface roughness significantly exceeds the wavelength size of the radiated field. In
this case, the Kirchhoff approximation may be used to obtain a reasonably simple
solution. What is very important to note is that this method requires the absence of
shadow zones between all roughnesses and/or multi-reflection and multi-scattering
between each part of the rough surface at z = 0. In other words, we assume that the
surface S is slowly varying so that the radius of curvature is much greater than the
wavelength (Fig. 4.16). At each point r on the quasi-smooth surface S, the wave field

FIGURE 4.16. Geometrical presentation of a quasi-smooth terrain described by Kirchhoff’s
approximation.
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is a superposition of the incident field E¢ and the field E reflected from the plane LL'.
This plane is tangential to the surface S at point r, as shown in Figure 4.16. The
scattered electromagnetic wave at the observation point R can be represented by the
values of E and H on the surface S and by using the well-known Green’s function

presentation for the point source, G = exp%m}, that is,
kR kR
E(res) = EOGXP;;&, Hi(reS) = Hoe)(p;;l} (4.64)
1 1

The final expression for the scattered filed is

E(R) {[n X (H — H())] + [Il . (E — Eo) . erz]

RiR, (4.65)
— [V:R2 x n x (E — Eg)]}ds

ik J eik(R1 JrRz)

T
S

Here, as follows from Figure 4.17, R; and R; are the distances from the current point
r(x,y,z = 0) at the flat surface z = 0 to the source point O and the observation point
R; R, and R, are the distances from the current point r(x, y, z) at the surface S over
which the integration in (4.65) takes place; ¢(r) is the height of the surface S at the
arbitrary point r(x,y, z). If the source and observations point are located in the far-
field zone relative to surface S, that is, kﬁl > 1 and k1~€2 > 1, the integral in (4.65)
for the scattered field in the direction K can be rewritten as

ik eik<R10+R20)

Ekky) = ——F7—7—
( ’ ) 4z R10R20

J{[n « (H—Hy)|+[n- (E—Eo) - V,R)]
kS (4.66)

—[V,R, xn x (E —Eo)]}exp{i[(k — k)r + (k; — ksz)g(r)]}%

Here Ry and Ry, are the distances between the arbitrary point r(x,y,z =0) on
the surface Sy, which is the projection of the rough surface § at the plane z = 0, and

z R R2

d

FIGURE 4.17. Reflection from a quasi-smooth terrain.
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the source O and observed point R, respectively. For future analysis of the integral in
(4.66), it is convenient to present the distances R; and R, through the vector
r(x,y,z = 0) that lies on the flat surface z = 0 and the value of surface height ¢(r) at
this current point (see Figure 4.17):

R, = r2+(zo—<)2%R1 + o<
Ro=/(d= 1 + (=P ~Ro+ Bis (4.67)
where Ry =V/r2+22, Ry=+\/(d—r)*+2

o, = — ,% and 5, = R% are the z-components of vectors a = V,R; and b= —-V,R,

(i.e., the projections of these vectors at the z-axis). We analyze the expression (4.66)
that describes the scattered field for two cases that are useful in practice for over-
the-terrain propagation by introducing some new variables according to References
[9-14]: q =k, —k, k=ka =kV,R|, k; = kb = —kV,R;.

In the case of a perfectly conducting Earth’s surface, the expression (4.66) can
be simplified taking into account that the electric and magnetic components of the
electromagnetic field are mutually perpendicular, Hy = k x Eq/k, and that we
concentrate only on the short-wave approximation (g,s > 1), that is,

E(k k) ~ ik e*Ro+Ro) [h x (Eg x q)]
7T 2m RioRay q:

[espl-ila: v aopar. (o8)

After statistical averaging of integral (4.68), the average scattered field can be
presented as

(E(k k) = EO(k, k)T () (4.69)
where
ik e*(RitRo) (b x (Ey x q)]
EO (k k) = ~ Jex —iq - r}dr 470
T TR (4:70)
0

is the field reflected from area Sy of the plane z =0, and I'f(y) is the effective
reflection coefficient from the rough terrain, which for the surface S with a Gaussian
distribution, can be presented as [21-27]

I'r() ~ exp{—2k*¢* sin’ y/} (4.71)

Here, i is the slip angle (see Fig. 4.17). One can see that the effective reflection
coefficient decreases exponentially with an increase of roughness height ¢(r).
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Now, by introducing the tensor coefficient of reflections I’ ﬁ = —0je + 2njn;, where
the double repeated index ¢ indicates the summation from 1 to 3, and J;, the
unit tensor, (which equal 1, if j = 1, and 0, if j # 1 ) one can finally obtain from
(4.68) the solution for the E;-component of the scattered field [9-14]:

elk(Rio+Rz) 6]2 E )
Ejf(k7 k) ~ mgrﬂ “Eor J exp{—i[q - r + g.(r)]}dr (4.72)

So

The same result can be obtained for the Hj-component of the scattered field by
introducing in (4.72) the following terms: Hj;, Ho; and I'jj = —I'};, respectively.

A generalization of the problem for this case of scattering from the impedance
rough surface for (k — o0), gives the same result, as expressed in (4.72) for the
perfectly conducting ground surface in terms of tensor:

1
FJE( =I'voj — m{(FH + I'ycos¥)nng + cos O(I'y + I'v)oyne}
(4.73)

1
F;} = Fvéjg — w{(rv + I'y cosﬂ)njng +cosI(I'y + Fv)ajng},

which are significantly simplified for the case of the perfectly conducting surface
and can be presented as

F}} = —rﬁ =Sy — 2mny (4.74)

Here I'y and I'y are the reflection coefficients presented, previously, by formulas
in (4.50) in Section 4.3 for the horizontal and vertical polarizations, respectively.
Let us note that the expression in (4.72), allows us to treat scattering phenomena
from a surface with arbitrary dielectric properties not only for the linearly
polarized waves but also for the elliptically polarized waves. Thus, a linearly
polarized wave, after undergoing scattering from the impedance rough surface,
becomes elliptically polarized. But what is more interesting is that the
depolarization phenomenon is not connected with the statistical properties of
the rough terrain. It is completely determined by the inclination of the tangential
plane G, to the surface S at the points of specular reflection. The direction of
vector ny normal to this plane (and, hence the polarization of reflected field)
is related to the direction of wave vector k of the incident wave and to the
direction of the observation point Kk, through the relation, np = H Therefore,
one can directly use the tensor presentation of the Fresnel reflection coefficients
defined in (4.73) with the following conditions, such as n =ngy and ¢ =9y =
cos~!(n-b), b= —V,R, for the evaluation of the scattered field for different
kinds of polarization.



PROPAGATION ABOVE ROUGH TERRAIN UNDER LOS CONDITIONS 115

4.4.4. The Rayleigh Approximation

The use of Rayleigh approximation depends, not on the dimensions of surface
roughness with respect to the wavelength, but mostly on the antenna elevation height.
For the cases where the coherence length L between two nearby reflected rays is
higher than 4, and the roughness is small compared to 4, that is, ¢ < A and ¢ < 4, the
phase difference between field components becomes larger than 7/2. Here the
Rayleigh approximation is not as accurate as the Kirchhoff approximation. Sometimes
the phase difference is close to 7 /4 and 7/8. In that case a scalar Rayleigh factor in the
coherent field can be introduced for such gently rough surfaces, which reduces the
energy of the specularly reflected wave. These “above-the-terrain” propagation cases
will be examined briefly below by using the effective Kirchhoff reflection coefficients
and their corresponding effective permittivity of the rough terrain.

For the high-elevated antennas, the roughness is small compared to the wavelength
(0 < A). In this case of gentle rough ground surface, the two-ray model usually
applied to smooth terrain and describes the coherent part of the signal, can be modified
by introducing the reflection coefficient for vertical, I'y, and horizontal, Iy,
polarization, as functions of the effective relative permittivity, &g [15-27]

Iy = Ereff S%Il lﬁ — \/ Ereff — cos? lﬁ (4753)
Ereff SINY + \/Eretr — COSZ 1

[y =30 V = Vet — 0S¥ (4.75b)
Siny + /&t — cosZ s

So, the modified coherent component of the total field intensity is

7jkl‘] 7jkr2 2
¢ ¢ } (4.76)

IcomodE(z){ ’ +FV,H r
1 2

where  is the grazing angle defined earlier, r; is the distance of the direct radio path
between the antennas, r; is the distance from the transmitter to the point of reflection
and from the point of reflection to the receiver, that is the radio path length of the

reflected wave. The equivalent surface impedance is 1 = g"—*ﬁ o slff, with the
“rel rel

relative permeability p, ~ 1, for all nonferromagnetic surfaces.
There are six distinct cases that can be considered here, three for each linear
polarization, vertical and horizontal. These three asymptotic cases are valid

a) for short correlation lengths L and all grazing angles ;
b) for long correlation length L and large grazing angles ;
¢) for long correlation length L and small grazing angles .

So, for vertical polarization, the effective surface impedance n has a real part
corresponding to a loss of power and an imaginary part corresponding to a reactive,
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stored energy near the surface. Furthermore, the change in effective surface
impedance for vertical polarization is strictly reactive for short correlation lengths
(A > L), resistive for large correlation lengths and large grazing angles (1 < L and
> -L), and a mixture of both for large correlation lengths and small grazing
angles (A < L and ¥ < %)' For the case of a horizontally polarized field the
surface impedance and the corresponding effective permittivity can be derived in a
similar fashion.

In the case of low antenna elevation with respect to roughness, the criteria of
o > J and ¢ > A are generally valid and the Rayleigh scalar factor can be used as
long as the criteria of the Kirchhoff approximation are fulfilled. In this case, instead
of the specular reflection coefficients, we introduce the following effective reflection
coefficients [9-16]

a) for vertical polarization
X 2
I = I'yexp [—2(2n:sm l//) ] (4.77)

where exp [—2(2n%sin ‘//)2} is the Rayleigh’s factor; the coefficient I'y is
defined by (4.50b) in Section 4.3 and can be reduced to

ér

I'v=—-14+2y (4.78)
& — 1
b) for horizontal polarization
ef g .. 2
I'fy = I'mexp 72(2nzsm !//) (4.79)

where [y is defined by (4.50a) in Section 4.3 and can be reduced to

1
I'y=-142y —— (4.80)
e — 1

So, the use of each approximation strongly depends not only on the dimensions of
rough structures with respect to the wavelength, but mostly on the terminal antenna
elevations as well.

4.5. PROPAGATION ABOVE A SMOOTH CURVED TERRAIN

Let us now consider the case when the terrain is smooth but curved (see Fig. 4.18). In
this case the degree of curvature and diffraction caused by the curved earth surface
must be taken into account for the evaluation of field characteristics. In practice, for
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FIGURE 4.18. Geometrical presentation of radio path above a curved terrain.

land communications, it is very important to note that the influence of the curvature
of the Earth’s surface must be taken into account only for radio paths longer than
20-30 km.

Fock’s Model. To take into account the terrain curvature and diffraction from the
curved terrain, Fock, by introducing two special scales: the range scale,
L= (AR?/n)'", and the height scale, H = 0.5 (2’R./n?)"?, respectively, has
determined the range of radio path, d, and the heights of both terminal antennas,
hr and hg, using the dimensionless parameters x = d/L, y; = ht/H, y, = hg /H.
The attenuation factor with respect to the flat terrain has a form [28]

o0

. p exp(ixtk) A(lk +y1)A(lk —l—y2>
F=WmD ) Al A (4.81)

where

p = i(nRe/2)"? /e — 16070 (4.82)

R. = 6375km is the actual earth’s radius. By A(w) we denote a special airy
function, which is related to the special Hankel’s function of the order 1/3 through

A(w) = \/n/3exp(—i2n/3)w'H, 5(2w*/?/3) (4.83)

Here t; are the roots of
A'(t)—pA(t) =0 (4.84)
It can be shown that the value of #; for finite values of p can be estimated as follows:
t(p) ~ t(0) +p/u(0),  |p/vVul <1 (4.852)

and

t(p) = t(c0) +1/p,  |p/Virl > 1 (4.85b)
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Let us introduce the parameter 7 = # - exp(—2n/3). Next, we can compute the first
set of roots f;(0) and f;(co) of Equation (4.84) as

71(0) =1.019, 7 (c0) =2.338
7(0) =3.248,  F(c0) = 4.088
73(0) = 4.820,  #3(00) = 5.521
74(0) =6.163,  iy(c0) = 6.787
75(0) = 7372,  7s(c0) = 7.994

For the UHF/X-frequency band, in the shadow zones due to ground surface
curvature, where |p| > 1, we can write the attenuation factor as:

F=UX)V(y)Viy) (4.86)
The first term depends on the normalized range x between the antennas

exp(ixt;)

t +p?

U(x) = 2v/7x (4.87)

but the second and the third terms are only functions of the antenna heights (height
parameters)

H(# +y12)

) (4.88)

Vyip) = ‘

We must note that according to the above definitions, if both antennas are close
to the ground surface (i.e., y;» = 0) then the ‘“height product” V(y;,) = 1.
Moreover, for y;» < 1, the “antenna height” factors V(y;,) (in decibels (dB))
are negative, otherwise they are positive. For y;, <1 these factors can be
approximated as

V(y12) =20 log(y12)[dB] (4.89)
For y;» > 1, some estimates give us:
V(1) 20dB; V(2)=10dB; V(4)=~20dB; V(7)=30dB; V(10)=40dB.

So, the above formulas allow us to compute, with great accuracy, the additional loss
due to diffraction at the spherical ground surface both in the geometrical shadow
zone and in zones of half shadowing. These formulas can be used to predict the
diffraction losses of the wave field caused by the Earth’s curvature. Once again, the
effect of the Earth’s curvature must be taken into account only for land radio cases
with ranges of more than 10-20 km. At the same time we must note that for the long
radio paths (more than 100 km) the real terrain profile of the path is obviously
beyond the capabilities of the Fock’s model.
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4.6. EFFECT OF A SINGLE OBSTACLE PLACED ON A FLAT TERRAIN

Existing obstructions along the radio path leads to additional losses called diffraction
losses, which are usually observed in rural areas where some arbitrary obstructions
(such a hill, mountain etc.) exist. When there is a single obstacle between the
transmitter and receiver, which can be modeled by a single “knife edge”, losses of
the wave energy take place. Such losses in the literature are called diffraction losses
[29-36]. They can be obtained analytically by using the Fresnel complex integral
based on the Huygen’s principle discussed in Section 4.2. The total field Eiy, after
diffraction from the obstruction can be presented in the following form:

Eul = Eo - D - exp{jA®} (4.90)

where E is the incident wave from the transmitter located in free space; D is the
diffraction coefficient or matrix [29-36], A® is the phase difference between the
diffracted and direct waves mentioned above. The main goal of diffraction theory is
to obtain parameters D and A by using an analytical deterministic approach based
on complex Fresnel integral presentation [3]:

F(v) = Jexp{—igv2}dv = —F(—v) (4.91)
0

To estimate the effect of diffraction around obstructions, we need a quantitative
measure of the required clearance over any terrain obstruction, and, as was shown in
Section 4.2, this may be obtained analytically in terms of Fresnel-zone ellipsoids
drawn around both ends of the radio link, the receiver, and the transmitter (see
Fig. 4.6). We discussed these zones when we presented free space propagation
concepts and reflections from a flat terrain. Now, let us introduce the Fresnel-zone
concept related to diffraction. We show this concept based on the illustration in
Figure 4.19, where the cross-section radius of any ellipsoid with number # from the
family at a distance ro and r, = r — ry was presented as a function of the parameters
n, ro, and r6 by (4.23) in Section 4.2, which we repeat for convenience

;7172
h, = M ! (4.92)
(ro + 1)

The Fresnel integral in (4.91) gives the cumulative effect from several first Fresnel
zones covered by the obstruction. In Figure 4.19, the Fresnel (also called diffraction)
parameter v in (4.91) is presented by the following formula [29-36]:

1/2
v=h,- {w] — (2n)'2 (4.93)
Aror()
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0"

FIGURE 4.19. Geometrical presentation of the Fresnel zones in terms of ellipsoids.

From (4.92) and (4.93) one can obtain the physical meaning of the Fresnel—
Kirchhoff diffraction parameter v. Thus, the diffraction parameter v increases with
the number 7 of ellipsoids. All the above formulas are corrected for h, < ry, ry, that
is, far from the terminal antennas. The volume enclosed by the ellipsoid and defined
by n = 1 is known as the first Fresnel zone. The volume between this ellipsoid and
the one that is defined by n = 2 is the second Fresnel zone. The contributions to the
total field at the receiving point, from successive Fresnel zones, interfere by giving a
very complicated interference picture at the receiver. If a virtual line OO’ is placed at
the middle of the radio path TO'R (i.e., TO’ = O'R, as shown in Fig. 4.19) then, if
the height of the virtual point O’ (the virtual source of diffraction) 4 increases from
h = hy (corresponding to the first Fresnel zone) to & = h, (e.g., to the point O”
defining the limit of the second Fresnel zone), then to & = h; (i.e., to the point O"”
defining the limit of the third Fresnel zone) and so on, the field at the receiver
R will oscillate. The amplitude of oscillations would essentially decrease as a
smaller amount of wave energy penetrates into the outer zone relative to the inner
zone.

If, for example, some obstacles that we may model by a simple knife edge (with
height above the line-of-sight line TOR, A, denoted in Fig. 4.20 as O0™"), lies
between the receiver and the transmitter at distances ry and rj, respectively, the
Fresnel parameter can be presented as [1-8]

2(ro + 1) 12 Ar]'?
=h|—————= =2|— 4.94
Y { Aror), A (4.94)

and the phase difference A® between the direct ray from the source placed at
the point O (denoted TOR) and the diffracted ray from the point O™ (denoted



EFFECT OF A SINGLE OBSTACLE PLACED ON A FLAT TERRAIN 121

FIGURE 4.20. Geometrical presentation of the knife-edge diffraction.

TO™ R) can be obtained in the standard manner by use of a simple presentation
of the path difference, Ar, and the phase difference, A®, between these rays.
From the geometry of the problem, shown in Figure 4.20, and using relationship
(4.94) between Ar and v, the phase difference, A®, can be presented as

2
AD = %Ar - gv2 (4.95)

From the above discussions, it is clear that any radio path in obstructive conditions
requires a certain amount of a clearance around the central ray if free-space
propagation is to occur. This effect can be understood by using the principle of
Fresnel clearance, which is important in the design of point-to-point radio links,
where communication is required along a single radio path. This clearance can be
explained in terms of Fresnel zones. Thus, the first Fresnel zone (for n = 1) encloses
all radio paths for which the additional path length Ar, defined in (4.94), does not
exceed %, and according to (4.95), a phase change is A®; = 7. The second Fresnel
zone (for n = 2 ) encloses all paths for which the additional path length Ar does not
exceed 2 - % =/, and correspondingly, A®, = 2z, and so on. The corresponding
radius of the first Fresnel zone 4 can be derived by setting Ar = % in (4.92). As a
result,

rory \'? (300 - ror\ 2
= () = (4.96)
0T Jr

where fis measured in gigahertz and r = ry + r, in kilometer. The shape of the first
Fresnel zone and the effect of the obstruction on the clearance are clearly illustrated
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n=1

Transmitter Receiver

FIGURE 4.21. The clearance effect in the presence of knife-edge obstruction.

by Figure 4.21. The clearance due to the diffraction effect from the obstruction is
about 60% of the first Fresnel zone, which normally in practice is considered an
adequate value for the land rural point-to-point radio links. To finish this analysis, we
must mention that the Fresnel-zone principle, as well as the clearance explanation is
correct for the case where r > ry, r(’) > h,, which is adequate for the most practical
cases of land radio link designs.
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CHAPTER FIVE
|

Terrestrial Radio
Communications

In this chapter, we consider wave propagation in various terrain environments based
on the description of propagation characteristics such as the propagation (or path)
loss, L, and the slope parameter y that describe the signal decay law. These main
parameters are very crucial in predicting land communication channels. First, in
Sections 5.1 and 5.2, we introduce the reader into a brief description of the terrain
features and various propagation situations in terrestrial communications related to
the terminal antenna positions with respect to building rooftops. In Section 5.3, we
continue the description of the propagation channel when the two antennas are
placed on a flat terrain and under LOS conditions, when a free-space propagation
concept can be used and is described by a two-ray model. In Section 5.4, we consider
radio propagation in “hilly terrain,” where we replace the hill by a “’knife edge” and
introduce Lee’s empirical model. Section 5.5 describes how a single obstruction
such as a building is placed above a flat terrain. In this case, on the basis of Keller’s
geometrical theory of diffraction (GTD), we present formulas that determine the
electromagnetic field pattern reradiated by the building walls, corners, and roof for
dipole transmitting antenna with vertical polarization. The electrical impedance
properties of the building walls are taken into account here. Next, in Section 5.6, we
present a unified approach on how to predict radio losses in rural forested links based
on a stochastic model that describes multiscattering effects from trees. This model is
compared with standard empirical, analytical, and statistical models. Section 5.7
describes radio propagation in mixed residential areas based on the same stochastic
approach, but taking into consideration only a single scattering from houses
and trees. Section 5.8 introduces the reader to the problems of radio propagation in
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urban and suburban areas, where we consider two typical situations in the urban
scene:

a) urban grid-plan buildings’ distribution with straight crossing rows of streets,
and

b) urban areas with randomly distributed buildings placed on a rough terrain.

Here, we present the unified stochastic approach that generalizes the stochastic
models presented in Sections 5.6 and 5.7 by accounting for the buildings overlay
profile and effects of diffraction from buildings’ roofs. We compare this general
model with those that are mostly used for predicting loss characteristics in such
terrestrial communication links.

5.1. CHARACTERIZATION OF THE TERRAIN

The process of classifying ferrain configurations is a very important stage in the
construction of propagation models above the ground surface and, finally, in
predicting the signal/wave attenuation (or “‘path loss”’, defined in Chapter 1) within
each specific propagation channel.

These terrain configurations can be categorized as:

e flat ground surface;

e curved, but smooth terrain;
e hilly terrain;

e mountains.

The built-up areas can also be simply classified as [1-4]:

e rural areas;

e mixed residential areas;
e suburban areas;

e urban areas.

Several experiments carried out in different built-up areas have shown that there are
many specific factors that must be taken into account to describe specific
propagation phenomena, such as [1-4]:

— buildings’ density or terrain coverage by buildings (in percentages);

— buildings’ contours or their individual dimensions;

— buildings’ average height;

— positions of buildings with respect to base station and mobile vehicles;

— positions of both antennas, receiver and transmitter, with respect to the
rooftops height;
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— density of vegetation, presence of gardens, parks, lakes, and so on;
— degree of “roughness” or ‘“hilliness™ of a terrain surface.

Recently, a new standard for terrain classification has been introduced for the
analysis of urban topographic maps [1-4]. This standard is based on the following
terrain characteristics:

(1) position and distribution of buildings regarding the observer;
(2) dimensions of buildings or useful built-up area;

(3) number of buildings at the tested area;

(4) height of ground surface and its degree of “‘roughness”; and
(5) presence of vegetation.

Using these specific characteristics and parameters of the terrain, we can easily
classify various kinds of terrain by examining the topographic maps for each
deployment of a radio communication system.

5.2. PROPAGATION SCENARIOS IN TERRESTRIAL
COMMUNICATION LINKS

As remarked earlier, a very important characteristic of the propagation channel is the
location/position of both antennas with respect to the obstacles placed around them.
Usually there are three possible situations:

A. Both antennas, receiver and transmitter, are placed above the tops of
obstacles (in a built-up area, this means that they are above the rooftop
level) (Fig. 5.1a).

B. One of the antennas is higher than the obstacles’ height (namely, the roofs),
but the second one is lower (Fig. 5.1b).

C. Both antennas are below the tops of the obstacles (Fig. 5.1c¢).

In the first situation they are in direct visibility or LOS conditions. In the last two
situations, one or both antennas are in clutter or obstructive conditions. In all these
cases the profile of terrain surface is very important and may vary from flat and
smooth to a curved surface and finally to a rough and hilly terrain.

5.3. PROPAGATION OVER A FLAT TERRAIN IN LOS CONDITIONS

Instead of using the complicated formulas in Section 4.2 to describe radio wave
propagation above the flat terrain, the “two-ray” model can be used. Let us briefly
describe this situation that widely occurs in land communication channels.



128 TERRESTRIAL RADIO COMMUNICATIONS

R

<

(a)

(b)

LT 17

(©)

FIGURE 5.1. The three possible locations of the terminal antennas with respect to building
height profile.

Two-Ray Model. The two-ray or two-slope model was first proposed in the early
1960s for describing the process of radio wave propagation over a flat terrain [1-6].
Let us briefly consider the two-ray model, which is based on the superposition of a
direct ray from the source and a ray reflected from the flat ground surface, as shown
in Figure 5.2. Earlier, in Chapters 2 and 3, the Friis’ formula for the direct wave in
free space was presented. We will rewrite it in the following form:

E = \ SOGTGRPT/rl (51)

where ry is the radio path of direct wave as presented in Figure 5.2. The total field at
the receiver is the sum of direct and received waves [7], that is,

d .
Er = Et (1 + dlrefkﬁd> (5.2)

here I'(y) is the reflection coefficient described by formulas (4.50a) and (4.50b) in
Chapter 4 for horizontal and vertical polarization, respectively. Ar = r, — ry (see
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FIGURE 5.2. Geometrical presentation of the two-ray model.

Fig. 5.2) is the difference in the radio paths of the two waves, and Ag = k - Aris the
phase difference between the reflected and direct waves, which can be presented
according to the geometry, in Figure 5.2, as:

2 he + b\ 2\ e — h\ 2\
r r

where hg and At are the receiver and transmitter antenna heights, respectively and r
is the distance between them. For r; > (hr & hr) and r, > (hr £ hg), using the
assumption that r; = r, = r, the phase difference in (5.3) can be written as:

4nhgh
st

(5.4)

Furthermore, if we now assume that Gr =~ Gt =1 (valid for isotropic or
omnidirectional antennas, see Chapter 2) and that I'(}) ~ —1 for the farthest
ranges from the transmitter (i.e. small grazing angles), we can obtain the magnitude
of the signal power at the receiver as [11]:

y) 2
|Pg| = |Pr (4d> |1 + cos® kAd — 2 cos kAd + sin® kAd|
T

= |Pq| A ZSinz—kAd
TN\ 4nd 2

(5.5)

From Equation (5.5) one can determine the distance between a receiver and
transmitter for which maximum power is received, taking into account the following
conditions:

kAr

kA
Tr , sinT ~ 1 (5.6)

(S

~
~



130 TERRESTRIAL RADIO COMMUNICATIONS

This distance is called the critical or break point range, denoted by r,, and is
determined approximately by the following formula:

4hgh
A

Iy =~

(5.7)
Then, following definition of the path loss introduced in Chapter 1, and using

L =20log |E;| +201log |1 + I'e /24| (5.8)

we can easily obtain the path loss over a flat terrain by making use of the definition of
break point range, ry,, and the mathematical description of the “straight line” (as
(4.30) in Chapter 4) [7]

for r <ny L =L, + 10ylog <r>’ y=2 (5.9a)
b
for r>r,  L=Ly+ 10ylog (r> y=4 (5.9b)
Ty
where Ly is the path loss in free space at the distance that equals the critical range
that is, » = r,, which can be calculated from the following formula [7]:

Ly, = 32.44 + 2010g ryxm) + 2010g fimu) (5.10)

From formulas (5.9a) and (5.9b), there are two modes of field intensity decay. One is
~r~9 g =72 for r <, and second is ~r~9, g = 4 for r > r,. From the free space
model, the range dependence between the two terminal antennas is ~ 2.

Also, for large distances between the antennas, that is r > r,, we get from
Equation (5.5) sinz%" ~ (’%’)2 with Ar = M (see formulas (5.3) and (5.4)).
After some straightforward manipulations, we obtain the formula that describes the

signal equation decay ~r~4, usually called the flat terrain model [1,2]:

Lr = 40log ry) — 201og At — 20 log hg. (5.11)

From the two-ray model, the break point is within the range of r, = 150-300 m from
the source; at that point the ~r~2 mode transforms into the ~#»~* mode. This
effect depends, according to (5.7), on both antennas’ heights and the wavelength.
Hence, the two-ray model covers both the free-space propagation model in close
proximity to the source and the flat terrain propagation model at far ranges from the
source. Most formulas above have been obtained for isotropic or omnidirectional
antennas. For more directive antennas, their gain has to be included, as was done in
Chapter 2 for Friis’ formula.
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5.4. PROPAGATION OVER A HILLY TERRAIN IN NLOS CONDITIONS

Formula (4.90) describes the effect of a hill, as a “‘knife-edge” obstruction, which
was introduced in Section 4.5 to estimate the effect of diffraction losses. To
accurately obtain the diffraction coefficient and the diffraction losses, the formula
with the complex Fresnel integral presentation in (4.91) should be used. However, it
is a very time consuming computational task [1-6], and so, empirical models are
usually used instead. We present below a Lee’s empirical model, on which most
empirical and semi empirical models are based [36—40].

Lee’s Model. A frequently used empirical model, developed by Lee [6], gives the
following expressions for the “knife-edge” diffraction losses in decibel:

L(v) = r = 0(dB), v < —-0.38, (5.12a)
L(v) = LY = 2010g(0.5 — 0.62 - v)(dB), —08<v <0, (5.12b)
L(v) = L) =2010g{0.5exp(—0.95v)}(dB), 0<v <1, (5.12¢)
L(v) = L = 2010g[0.4 — (0.1184 — (0.38 — 0.1v)})'/?](dB), 1< v <24,
(5.12d)
L(v) =LY =201og (02st) (dB), v>24. (5.12€)

These formulas are used for the cases where several knife edges are placed along the
radio path between the two terminal antennas. In this case a simple summation of the
loss from each individual edge is obtained, according to Equation (5.12). This
approach gives a sufficiently correct result (see results of corresponding empirical
models described in References [41-44]).

5.5. EFFECT OF A BUILDING ON THE RADIO
PROPAGATION CHANNEL

To design an effective radio communication link in a built-up environment with
obstructive NLOS conditions, information about the influence of buildings on radio
propagation is required. Knowledge of the total field distribution around a building,
including diffraction from the building corners and reflection from its walls, is very
important in order to predict the radio wave attenuation caused by the building.

In NLOS conditions, it is very important to examine the effects and contribution
of all rays arriving at the receiving antenna after interaction with building corners
and rooftops. To investigate the problem of radio wave diffraction from buildings,
many strict and approximate models have been developed [5,6,9,11-13]. All these
models are based on the assumption that all characteristic dimensions of buildings,
as well as the ranges between the subscriber antenna and the base station antenna,
are larger than the wavelength of the radiated signals. This fact allows us to use
Keller’s GTD [5,6,9] to describe the diffracted field caused by buildings.
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FIGURE 5.3. The transmitter and receiver locations near the building at the plane ground
surface. Here (xo, o, z0) and (x1,y1, z1) are the coordinates of the transmitting and receiving
points, respectively.

In the following section, we examine these effects in the case of a vertical
dipole.

5.5.1. The Electric Field of the Vertical Dipole

Let us consider a rectangular building illuminated by a vertical electric dipole placed
at the point {xo, y, 20} above a plane ground surface. A coordinate system is placed
at an arbitrary point {x, y, z}, and the point of observation is placed at point
{x1,y1,21} (see Fig. 5.3). The dipole field is represented by the electric Hertz’s
vector [7,14]

) — PEXPURAS epr{’kp } (5.13)

where p is the moment of the electric dipole.
Using the relations between electric and magnetic field components and the
Hertz’s vector components for the field of the vertical electric dipole, we get [7]

E. — —E, (x —xo)(y —yo)ﬂ
p? P
_ 2 _ 2 Likp
E, = —F X %) ;; (2= 2) 67 (5.14)
E. = —E, (y = yo)(z — Zo)%
) p? p
H. = Hy (z— Zo)ﬂ
p
Hy =0 (5.15)
H, =H, (x = x0) e
=
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In a spherical coordinate system, the source and observation coordinates can be
written, respectively, as:

Xp = posinOpsin @y;  yo = pocoslp; zo = pg sin Oy cos @y;
x| = p;sinf;sing;; y; =p,cosly; z3 =p;sinficosp,. (5.16)

We also introduce the coefficient of reflection R from the plane ground surface, the
formulation of which can be found in Chapter 4. The coordinate system is shown in
Figure 5.3.

We will analyze the field diffracted at the edge and roof of the building and the
loss of the diffracted field compared to the dipole field in free space, as well as
changes of field polarization for both waves reflected from the walls and ground and
those diffracted from the building edges.

5.5.2. Diffraction from the Edge of a Perfectly Conductive Building

To define the field diffracted from an ideal conductive edge of a building, we use
Keller’s method of GTD described in References [5,6,9,10]. The relationship
between the field diffracted from a wedge and the incident field is [5,6]

eikp’
v
where Eo(P) is an incident wave field at point P(x, y, z) on the edge of a building and
the diffraction matrix Dg has the form:

- | | -

Eq = —E,(P)Dg (5.17)

At 0 °
b 2| cosp [sin(tp—lko)+sin(¢+lﬁo)} cos { 1 _L}
o 67k sin cos ¥ A Ay cosyy [A1 A;
_ cosf [cos(w — ) N cos(y + lpo)} siny [L B L}
cos ¥, A As cosiyy [A1 Az

(5.18)
The main parameters in expressions (5.17)—(5.18) are as follows:

cos B = (y1 —y0)/[(vi — y0)* + (b +a)’]'?, ( )
cosyyg = (h —yo)/a,cosy = (y —h)/b, (5.19b)
.2 .2

A = l+2sm§(tp—1//0),A2 = 1—|—251n§(1//—|—gb0), (5.19¢)
y = (byo +ay1)/(a+b), ( )

a=[(l—x)+(d—2)1"%b=[x -0+ @ a7 (
Here, 21 is the building length, and 2d is its width. Let us take a cross-section of a
vertical wedge at the plane y = yp = y; = 0 and get the coordinates x and z to zero at
the vertical wedge. We do this to determine the diffracted field at an arbitrary point

{x1,¥1,21} as a function of the distance from the source {xo, yy, z0 }. The derivations
for the polar field components E4, and Ey, are

Egy = Egcsin g + Eg, cos @, Eqp = Eqccos ¢ + Eg sin @ (5.20)
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The detailed analysis of the relative diffracted field component E,, /Ey as a function
of angles ¢ and ¢,, and comparison with those parameters for the reflected field,
indicates that the diffracted field varies very smoothly in the azimuth domain. This
leads to an attenuation of 30-35 dB compared to a dipole field E, in a free space.
Recall that the attenuation for reflected waves is smaller and equals 10-15 dB
compared to the dipole field in free space.

5.5.3. Diffraction at an Impedance Edge of a Building

Let us consider the same geometry as presented in Figure 5.3. In this case, the normal
electric impedance Z, is introduced as a function of the dielectric parameters of the
walls, ¢; that is, Zy ~ £1/ Ve, the “+ sign is determined from boundary conditions
at the wedges: for angle ¢ = 0 we use “+” sign and for ¢ = /2 we use “—" sign.
The dipole is placed at point {xo, yo, 20} and is described by formulas (5.14)—(5.16).
Using Keller’s theory and the expression in (5.17), we obtain the diffraction matrix at
an arbitrary point {x, y, z} for the non zero impedance wedge:

x(y ; Yo) of 0 0
2ein/4 0 _ cosg gx2 +y? cos @ gZO(y—yo)
T 3Vank 2.cos o , p? . 2 sip ®o p?
0 sing - x*+y> sing  z(y — o)
2¢cos ¢q & p? 2sin @, 02
(5.22)
where

_cos3(pg —5) n(e =) _ n(e =%

n(go + %) [sini(e =) —sin3(po +3)  sini(¢ —5) —sin3(po +3)|’
_ cos3(gy —3) n(e —%) N (e —%)

n(eo +3)  [sin3(@ —%) —sin3(py +5)  sin3(e —7) —sin3(po +3)|’

< N > 1 cos%((po—0+—n)cosé( — 04 + m)cost(py+ 04 — 2m) cos} ((po-i-(Lr)H
%03 cos®Z cost(pg + 04 —m)cost(py —04)

cost(@g + 0_ — ) cost (py + 0 —3F) cos L (py — 0— —F)cost (¢, — 0 — %)
COoS¢ (% 0 — ) 05%(9"0 +0--1%)

( 771:)_ 1 cosi(p— 0, +2m)cost(p+ 04 +m)cost(p+ 0. —m)cost (o — 9+)
e " cosBZ cost(p— 0, —m)cosi(p+0,)

cosg(p+0- +F)cost(p—0_ —3E)cost(p+0- —F)cost(p—0_+5)
cosi(p+0- —3F)cosl(p—0_-%

9n 1 cosi(p—0, —2m)cosl(p+0, —3m)cosi(p+ 9+ —m)cosi(p—10,)
—— ) = —
A cos® Z cost (g — 0, —m)cost (¢ + 05 —2m)

cost(p+0- —F)cosl(p+0_ —2)cosi(p—0- 72”)cos (p—0--38)
cosg (¢ —0- —F)cosg (@ +0- —7) '
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Here, 0. are the grazing Brewster’s angles, which depend on the surface
impedances

Z
sin0, = Z—O (5.23)
+

where Z; is the wave impedance in free space. Let us now consider the wedge cross-
section at the plane y = yo = 0. In this case, using the relationships defined in (5.20)
between the field components, we can examine the relative E;/E; component
versus the direction of the source (which is determined by angle ¢,) and the
direction of the observer (which is determined by angle ¢). All other parameters are
the same as in the previous case of a perfectly conductive wedge. The ratio Zy/Z,. in
(5.23) was estimated as 0.05-0.1, which corresponds to brick building corners.
Detailed analysis of E,,/Ey shows that the diffracted field decay is about 35-40 dB
compared to the dipole field Ej in free space, that is, 5-10 dB higher than the field
diffracted from the perfectly conductive building corner. The spatial distribution of
the diffracted field from the impedance wedge is completely irregular compared to
that of perfectly conductive wedge. Moreover, the diffracted field pattern from a
brick corner decreases sharply with a decrease in angle ¢ between the direction of
the observer and the edge of the boundary. The field intensity decay for diffracted
waves from building corners is two to three times higher than that of the
corresponding reflected waves from the same building walls.

5.5.4. Diffraction from Roofs

Diffraction by a Flat Roof. Let us consider the wave from a vertical electric dipole
placed at an arbitrary point {xy, y,,zo} on the flat roof of a building with imperfectly
conducting (e.g., impedance) surface (see Fig. 5.4).

We have to find the secondary field diffracted by the edges of the roof, and
estimate the diffracted field and its degree of depolarization. The rays falling on the
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FIGURE 5.4. Diffraction from a flat roof.
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roof edge create at the edge a cone of primary diffracted rays, which then fall on the
next edge, creating a cone of secondary diffracted rays [10]. For the definition of
secondary diffracted rays we again use Keller’s theory [5,6], according to which the
n-time-diffracted rays from the wedges are defined by the following expression:

E = DD, ...D,exp(ikpy)/ | po(1+ p™ /py)"" | Eo. (5.24)

Applying this formula to our specific case and taking the -cross-section
y =y =y = 0 for the vertical walls, we can easily analyze the components of
the diffracted field. Then, using formulas (5.22)—(5.23), we can obtain the
components of the secondary diffracted field from the roof of the building.

The analysis of components, Eg4y, E4,, and Eg, of the diffracted field, for different
distances from the roof and different building height parameters of length and width
indicates that the field decay caused by secondary diffraction from the roof of a
building is of 60 to 80 dB compared to the field Ej in free space for wavelengths
between 10 to 30cm. Therefore, we can neglect the effects of the secondary
diffracted field in the total field distribution around a building in this frequency
range.

Diffraction by an Oblique Roof. Now we consider a vertical electric dipole
located at point {xp,yy,20} on an oblique, imperfectly conducting roof (see
Fig. 5.5). We again determine the field diffracted at the edge of the roof using
Keller’s theory [5,6] and estimate the decay of the diffracted field compared to
the field Ey in a free space. Using formulas (5.22)—(5.23) and taking the cross-
section y = yg = y; = 0 for the vertical walls, we can easily analyze the components
of the diffracted field.

The theoretical analysis shows that the field diffracted at the oblique roof varies
smoothly; its attenuation is about 30—45 dB compared to the dipole field Ej in a free
space, which is approximately half than that from a flat roof. At the same time, the
diffracted field decay for the concrete building’s roof is approximately 10-15 dB,
which is less than that for the brick building roof.
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FIGURE 5.5. Diffraction from an oblique roof.
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FIGURE 5.6. The complete scheme for the transmitter and receiver locations near a building
at the plane ground surface.

5.5.5. Field Distribution Around a Building

Let us consider a building with impedance walls at x =2, y=2h, z=2d
illuminated by a vertical electric dipole placed at point {xo, yy,z0} above the plane
ground surface. The coordinate system is considered to be located in the middle of
the building and the observation point is at {x,y;,z; } as shown in Figure 5.6.

The field components of a vertical electric dipole are given by expressions (5.14)—
(5.19). We must find the reflected, diffracted, and the total field at the observation
point for the electric dipole, as a transmitter, moving around the building. As all
expressions for the diffracted field from the horizontal and the vertical edges of a
building are the same, let us examine only one horizontal and one vertical edge of a
building. Using Keller’s theory and the formulas presented earlier, we can obtain the
following expression for the horizontal edge “1” (see Fig. 5.7):

2 ei[kprl +7_—”{] eikﬂl
V/6rkp] sin By py[1+ pt /py]'/2

Here D is the diffracted field matrix described by formula (5.22) and F(x) is defined
as:

Edl = —E()DEIF(X) (525)

0, x<-I
Fx)y=<¢1, —-l<x<l (5.26)
0, x>1
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FIGURE 5.7. Reflections from the front wall and from the ground surface may be replaced
by the image sources indicated by signs I, II, III, . . ..

since all horizontal edges have finite length. This formula is true for all horizontal
edges, but for every edge we must change the coordinates of the vector from the
observer to the receiver point and the values of their respective angles.

For the vertical edges we use (5.22)—(5.23). Now by introducing the function

0, y< —h
Fly)=41, —h<y<h (5.28)
0, y>h

which takes into account the finite height of building walls, we can obtain the
following expression for the vertical edge “4” (Fig. 5.8):

e [koi+7] eikps

Vomkplsin By p,[1+ pl/pa]2

E;, = —EoDg,F(y) (5.29)

Now, we turn our attention to the effects on ground reflection and building walls on
radio wave propagations.

5.5.6. Total Wave Field Reflected from the Walls and the Ground Surface

The real properties of a ground surface and building walls can be considered by
introducing the reflection coefficient R (see formulas (4.50) in Chapter 4). According
to ray theory, we can replace the field reflected from the ground by an image source
(II), symmetric to the real source (I) and illuminating the same area as the real source
(see Fig. 5.7). The coordinates of this image source are {xo, —(yo + 2%),20}. On
the contrary, as the building is an ideal conductor, the field reflected from the wall
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FIGURE 5.8. The same, as in Figure 5.7, but for reflections from the side wall.

with coordinates {(—1,1); (—h,h);d} can be replaced by that from image source
(1IT), symmetric to the real source (I) (see Fig. 5.7). Its coordinates are {xo, yo, —
(z0 + 2d)}, and the illuminated area can be determined from the coordinates of this
source and the wall plane.

Taking into account reflections from the ground (image source II), we introduce a
second reflection from the wall or image source (IV) symmetric to the source (I); its
coordinates are {xo, —(vo + 2h), —(z0 + 2d)}, and they define the illuminated area
on the wall. So, we end up having one real source (I) and three image sources (noted
in Fig. 5.7 by II, III and IV, respectively). Moreover, one can take into account rays
that undergo multiple reflections as shown in Figure 5.7.

Now we consider a real source that moves and illuminates not only the front wall
but also the side wall (see Fig. 5.8). As the field is symmetric in the right and left
directions, we can choose, for example, the side wall with coordinates {—1; (—h, h);
(—d,d)}. The same geometrical constructions enable us to describe the field
reflected from the side wall using the real source (I), the image source (II) (reflection
from the ground), source (VI) (reflection from the wall), and the additional sources
(VII 4 VIII) (second order reflection from the ground and the wall). All possible rays
are shown in Figure 5.8.

Finally, we can determine all light and shadow zones around the perfectly
conductive building. From the formulas introduced above, we note that the
diffracted field is attenuated faster than the incident and reflected fields by a factor
~zkp'[1 + p'/ p]l/ 2. This enables us to exclude the diffracted field in areas where
incident and reflected waves also exist.

After determining all illuminated areas around the building, we can derive the
total field intensity, taking into account the real and image sources mentioned above.
In all formulas we use yo = y; =y = 0 and 0y = 0, = n/2. Taking into account the
same form of field expressions in all illuminated areas, we describe, for example, the
field in areas II, V, and VII, which are illuminated by real (I) and image (II) sources
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(i.e., the first order reflection from the ground surface). Now to obtain the field
intensity, let us introduce the vector of the field power [7]:

S = ¢/87 - Re|E, H' (5.30)

where c is the speed of light. Using this formula, we can present all components of
vector S in the following form:

Sy = —EyHy {Rg} é [(Xl —x0)* + (21 — Zo)z} (x1 — x0) { 1 2cosky 1 }’

Ry PRy SERT
(5.31a)
B Ry ¢ 2h|(z1 —20)° + (x1 — x0)°| |cosky 1
Sy - E()H() |:RW:| % ﬁ3/2 o W 5 (531]3)
B Ry | ¢ ) ) 1 2cosky 1
Sx—_E0H0|:RW:|8n[(xl_x0) +(Z1_ZO) ](ZI_ZO){O‘3+(X3/2ﬁ3/2+ﬂ3 .

(5.31¢)

Here o= |(xi —x0) +(z1 —20)° s B=[(x1 —x0)* + 2h)° + (21 —20)°]s 7=
VB - Vo, k= 2n/A, A is a wavelength; R and Ry, are the reflection coefficients
from the ground and wall, respectively. In the above expressions, the coefficient R, is
for the first order reflection from the ground surface, and R,, is the first order
reflection from the building walls, defined by formula (4.50) from Chapter 4.
Expressions (5.31a)—(5.31c) describe the total field power in the direct illuminated
areas around the building. Using such an approach, we can determine the total field
distribution in all areas surrounding a building, taking into account the direct field,
multiple reflections from the ground, and the building walls, as well as the diffracted
field from building roof and corners.

5.6. PROPAGATION IN RURAL FOREST ENVIRONMENTS

Vegetation presents another significant effect on radio wave propagation, such as
scattering and absorption by trees with their irregular structure of branches and
leaves. Predictions of signal decay in the case of irregular terrain at frequencies less
than 500 MHz have been made by a number of authors [45—48] during the 1950s and
1960s. During the 1970s, vegetation and foliage losses have been reported [49-51] at
frequencies up to 3 GHz but for relatively few paths. For forested environments [52—
56], trees exhibit mainly absorbing and scattering effects and very little diffraction
effects.

5.6.1. A Model of Multiple Scattering in a Forested Area

In References [57-60], a stochastic approach was proposed to investigate the
absorbing and multiple scattering effects that accompany the process of radio wave
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FIGURE 5.9. The profile of a forested nonregular area.

propagation through forested areas. This is a combination of probabilistic and
deterministic approaches, which describe the random media scattering phenomenon.
The geometrical optics approximation is used to account for propagation over a
series of trees modeled as absorbing amplitude/phase screens with rough surfaces.
This stochastic approach allows the designer to obtain the absorption effects from
trees using their real physical parameters, such as permittivity and conductivity, as
well as the random distribution of their branches and leaves.

The Forest Terrain Description. Let us consider an array of trees as cylinders with
randomly distributed surfaces, all placed on a flat terrain (Fig. 5.9). Also assume that
the reflecting properties of the trees are randomly and independently distributed, but
they are statistically the same. The values of the reflection coefficient are complex
with uniformly distributed phase in the range of [0, 27]. Thus, the average value of
the reflection coefficients is zero, that is (I'(¢,, 5)) = 0. The geometry of the pro-
blem is shown in Figure 5.10, where A(r;) denotes the location of the transmitting
antenna at height z;, B(r) is the location of the receiving antenna at height z,.
Let us derive an average measure of field intensity for waves passing through the
layer of trees after multiple scattering. In this case, we consider each tree as a phase
amplitude cylindrical screen. Figure 5.9 shows an array of these (screens) placed at
z = 0 (a flat surface ). The trees have an average height h and width d [60]. These
trees are randomly and independently distributed and they are oriented in arbitrary
directions at the plane z = 0 with equal probability and with average density v (per
kilometer?). In the case where both antennas are placed within the forest environ-
ment and are lower than the average tree height A, that is 0 < z»,7z; < h, then the
multiscattering effects are predominant and must be taken into account. In this
case we can present the range of direct visibility (LOS under conditions) between
the two terminal antennas as p = 7, !, where 7, is tree density

Y0 = 2dv/m (5.32)
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B(0,0.z,)

FIGURE 5.10. Scattering from a cylinder with a rough surface which is used to model a tree.

The “roughness” of a tree’s surface is described by introducing a correlation
function for the reflection coefficient I'. We c_ieﬁne the correlation function for the
reflection coefficient I" for ¢, ¢y, £, < p, d, h as [59,60]

. - 228 — 2
K(r257r15) — <r25 . F15> . exp{_ |st 7 P15| . | 258 lS|} (5.33)

where r,s and r g are points at the surface of an arbitrary tree (see Fig. 5.10); I' is the
absolute value of the reflection coefficient, given by (4.50) in Chapter 4 for two kinds
of field polarization, I';s = I'(rys) and I'ig = I'(rs).

Average Field Intensity. Taking into account the wave field presentation and
Green’s theorem for our problem introduced in Chapter 4, we can present the field
over the rough terrain using Green’s theorem in integral form [57,58]

U(rs) = Ui(rs) + J {U(r_v) %ﬁ;r‘) — G(ra,ry) C()gr(:f)}ds (5.34)
S

where U;(r,) is the incident wave field, ny is the vector normal to the terrain surface
S at the scattering point ry, G(ra, 1) is the Green’s function of the semi-space
defined in Chapter 4, which we rewrite as [59,60]:

1 [explik|r, — 1] I explik|r; — lJlH} (5.35)

G(rr,r;) = —
(r2,11) 471{ Ity — 1y Ity — 1/
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Here r/ is the point symmetrical to r; relative to the Earth’s surface Sy; k = 2n/4,
and 4 is the wavelength. In integral (5.34), the random surface S (relief of the terrain
with obstructions) is treated as the superposition of an ideal flat ground surface §,
(z = 0) and rough surface S, is created by the tops of the obstructions (see Fig. 5.9).
We construct the Green’s function in the form of (5.35) to satisfy a general
electrodynamic approach; that is, to describe both the vertical (sign “+ in (5.35))
and horizontal (sign “—"" in (5.35)) polarizations with their corresponding boundary
conditions. In fact, by introducing the Green’s function (5.35) with the “+” sign in
(5.34) we satisfy the Dirihlet boundary conditions at the flat (non disturbed) Earth’s
surface S; (z = 0). That means, G,y = 2 and 577” = 0 (the same conditions were
stated by (4.16a) in Chapter 4). At the same time, using the sign “—" we satisfy the
Neumann boundary conditions at the plane z = 0: G,—o = 0 and u = 0 (the same
conditions were stated by (4.16b) in Chapter 4). Hence, if the source is described by
formula (5.35), we can exclude the integration over the non disturbed surface S,
assuming the surface S; is perfectly reflecting. Next, by using the well-known
Kirchhoff’s approximation described earlier, we can determine the scattered field
U, (ry) from the forested layer as a superposition of an incident wave U;(r;), the
reflection coefficient I'(¢,,r;), and the shadow function Z(r;,r;). The shadow
function equals one, if the scattered point r; inside the forested layer can be observed
from both points r; and r; of the transmitter and receiver locations (as shown in
Fig. 5.10), and equals zero in all other cases. Taking into account all these
assumptions, the (5.34) can be rewritten as

U(ry) = Z(r2,11)G(r2, 1) +2 J {Z(rs,v5, 0 (@, 1)G(rs,11) - (0 - V)G (12, 15)}
S
(5.36)

where V; = (52376(_1’6(1)’ Ps = sin”! (ns . ‘L::i‘) (see Fig. 5.10), and é(rz,rl) is
the normalized Green’s function.

To solve (5.36), instead of using the Feynman diagrams for multiscattering
problems (see Chapter 3, formula (3.44)), we present a solution in operator form
through a set of Green’s functions expansion as [60-62]

Us = 251Gy + (Zos MasT's)Zsi Gsi + (Zos MasTs) (Zss Mss s ) Zs1 Gt + -+ -
(5.37)

Here, M, is an integral-differential operator that describes the expression inside the
bracket in (5.37) and the variables Z,3, I',s are the corresponding shadow and
reflection coefficient functions denoted by indexes o and . We also apply Twersky’s
approximation [63] to (5.36) and (5.37), which does not take into account mutual
multiple scattering effects. Twersky’s approximation states that the contributions of
multiple scattered waves are additive and independent. This approximation together
with that of (I') = 0 makes it possible to obtain the coherent part of the total field
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by averaging (5.36) over the reflecting properties of each tree and over all tree
positions:

(Us) = (Z21) Gy (5.38)

75, is the “‘shadowing” function that describes the probability of existence of some
obstructions in the radio path of the two terminal antennas. As the contributions of
the multiscattered waves are independent [63], we can represent the incoherent part
of total field intensity (after averaging of (5.37)) as

() = Uy U3) = (Z21)Go1 - G5,

o~ (5.39)

+ ({Dys25 + Dag 25  Dysgist - Zs1 - Zgy - Gsi - Gy,)

where DS’S,S’S‘ =Zgs - Lyg - Mys ;MS/S K. -

For the conditions ¢,,¢, < d,h,p and kf,, k¢, > 1 for 0 < z; < h, we can

integrate (5.39) over all variables of the type Arsg=r; —rg at the surfaces of

scattering trees. By manipulating the expression in (5.39), according to References
[57,60], we obtain

(L) = (Zo)) |G |* + ({Qas1 + Oass - Qsist + -+ -} - Zst|Gsi ) (5.40)

~ 2 . .
where Qggs = Zsrs|Gsrg|“0s7ss. The cross-section area of scattering can be
presented as [57,60]

() = 2ol 2% . % — ] - (5.41)
4r 2 14 (kt,) (sin®’ —sin )" 1+ (kty)
Let us now average (5.40) over all tree (screen) positions. The integration must be
done over the surfaces of the screens as well as over their mirror surfaces
(—h < z,7,7",... < h). The averaging over the screen orientations for each
scattered point affects only the value of ¢ from (5.41). At the same time, the
averaging over the number and position of all screens affects the “shadow” function
Z. This approximation together with that of (I'(¢,,r;)) = 0 makes it possible to
obtain the coherent part of the total field by accounting (5.38) [60]

r

(Ieo) = ! Lp(—yor) {2 sinkzlzz]2 (542)

For the incoherent part of total field intensity the expansion (5.39) can be presented
in the operator form

(line(r2)) =2{0 + 0P+ 0+ ... JP(ra, r1)|(~}(r27 rl)\2 (5.43)
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where the effect of the integral operator on functions at the right-hand side of (5.43)
can be presented by the following expression:

(a(ry,1,11))

Of (ra,1y) = J(dr)P(rz,r) ity — 1] f(r,r) (5.44)
v

The product dr = dS - dn defines the element of volume Vof a plane parallel to the
tree layer with width 2d, over which the integration of the right-hand side of (5.44)
takes place. Using the same assumption for (5.44), as the one used in deriving (5.40),
and setting kz > 1,7, < h, we can integrate (5.43) over variable z to get

(47)*1ps — il - (ine(r2)) = 2{q + & + &’ + .. Jg(pr — p1) (5.45)
where

_ exp{—yolp2 — 011}
lp2 — pil

g(py — p1) (5.46)

If the integration is over p with infinite limits, the operator g becomes

.d-T - —
af (pa, p1) = VTJ(dp) [1 - \Zi — Z| : |Z - Zﬂg(pz —p)f(p,p1)- (5.47)

A detailed analysis of (5.45), taking into account (5.46) and (5.47), and using
Laplace’s method for y,p > 1 yields the incoherent part of the total field intensity
or

) ~ 0L [ T 3 exp(=yor) | I ((n\Zexp(=yor) | 1 exp(~yor)
MU (4n)? |48 32 \2y, Py
(5.48)
As
<[t0ta1> = <[co) + <[inc> (549)
we can evaluate the total path loss from
Liowat = 1010g[2%((Ieo) + (Iinc))] (5.50)

The third term in (5.48) is important for close ranges from the transmitter,

whereas 3

8
r=ry < 5~ 3-5km (5.51)
wyol

the first two terms are important only at long distances » > ry, from the transmitter.
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5.6.2. Comparison with Other Models

The stochastic model described in the previous section is compared with Tamir’s
model [48-50]. The total field intensity for the range 0 < r < 1-2km in [48-50] is
proportional to 23 — r~3, The same result can also be obtained from formulas
(5.48)—(5.50). In fact, for zones far from the transmitter, the two last terms in (5.48)
are the dominant terms and they predict a field intensity attenuation from M to
%}W) that can be expanded to »~!° — =33 [60]. Thus, the results obtained in
References [48,50] are predicted by results of the stochastic model presented here. A
good agreement was also with Weissberger’s empirical model [64], that is based on
numerous experiments in different forest environments. Comparisons with other
statistical models have also shown that the stochastic model described here is more
precise and covers the case of single scattering with a signal decay law of r—2
obtained in References [65-67] using the Born’s approximation.

5.7. PROPAGATION IN MIXED RESIDENTIAL AREAS

Let us consider an array of houses and trees as blocks and cylinders with randomly
distributed surfaces which are placed on a flat terrain. Such obstructions are mainly
present in mixed residential areas. The characterization of the propagation properties
of such environments has been thoroughly investigated in Reference [68] and briefly
discussed in Reference [59].

5.7.1. Statistical Description of Mixed Residential Area

We assume that the reflecting properties of houses and trees are randomly and
independently distributed, but they are statistically the same. The values of the
reflection coefficients are complex with a uniformly distributed phase in the range
[0,27]. Thus, we consider each house or tree as a phase-amplitude screen (see
Fig. 5.11). The reflection properties of these screens are described by the complex
reflection coefficient with a uniform distributed phase in the range [0, 27] and with
correlation scales in horizontal, ¢, and vertical, ¢,, directions, respectively. Both
scales characterize the correlation function of the reflection coefficient, which can be
presented as [68]:

Kr(rs.r}) = (o) -exp{ - 11} (5:52)
v h

I'(¢@y) is the amplitude distribution of the reflection coefficient over angles ¢g. The
absolute value of I'(¢y) is defined by (4.50) in Chapter 4. In (5.52), to obtain
Kr(rs,rs'), we introduce a new variable £ = |rg’ — rg| and construct, at the surface
of the reflected rough screen (Fig. 5.11), the local coordinate system {&, 7} with
origin at point rg and with axis 0f. The geometry of the problem is shown in
Figure 5.12, where A(r ) is the point of the transmitting antenna location at height z;
and B(r,) is the point of the receiving antenna location at height z,. As was shown in
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FIGURE 5.11. The profile of mixed residential area.

Reference [68], to derive an average measure of the field intensity for waves passing
through the mixed layers of houses and trees, one needs to use the single scattering
approach and take into account diffraction from building roofs. In this case, we
consider that one of the antennas is higher than the average mixed-layer height, 4,
that is z, > h > z;. The field component which passes through such a layer after
multiple-scattering is smaller than that of the single scattering case. Thus, only a
single-scattering problem with diffraction from the mixed layer tops should be
considered here. Moreover, because in residential areas the height of the trees and

houses are at the same level (i.e., uniformly distributed in the vertical plane), we can

B(0,0,z,)

C(xs,¥s:25)

FIGURE 5.12. Scattering from a nontransparent screen that models a house.
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exclude the influence of the terrain profile on propagation effects within such a
channel, as was done previously for the forest environment.

5.7.2. The Average Field Intensity

Taking into account the basic description of signal strength in Equation (5.36), we
determine the correlation function of the total field for the approximation of single
scattering, K(r2,r2’) = (U(r2)U * (r2')), in the following form [57,68]:

K(I‘z, 1'2/) = 4](2 J dS2 J dSz/ . <Z(1‘27 Ig, 1‘1) . Z(I‘Q/, l‘sl7 1'1) . Kr(l‘s, I‘S/)
S S (5.53)

X sinyg - sinyg' - G(rp, rs) - G(rs,ry) - G* (1), r) - G*(riry))

To derive the correlation function, we must average expression (5.53) over the
positions of the reflecting surfaces of the obstructions (houses and trees) and over
their number and their reflecting properties. First, let us average Equation (5.53) over
the reflection coefficient of each obstruction as a random screen over the phase
interval [0,27], and denote this result by Kj(r;,r5). Assuming that the correlation
scales introduced earlier are smaller than the obstructions sizes and the average
distances between obstructions, that is ¢, and ¢, < h, d, L, but kf, > 1, ké, > 1,
we can integrate (5.53) over variables ¢ and # and taking into account (5.52) we get

Kr(ry, 1) = 4k stzzzs - Zys - T(g) - sin* g - |Gas|* - |G |
S>
4kby 4kl,
1+ (kty)*(cosy, — cos @,)> 1+ (kb,)*(cos O — cos 0;)*
(5.54)

x exp{iklcos(¢p — @)}

where £ = |r;’ — 1,

r,—r  TI;—TIg , (rz—rl 1'2—1'2'>
Cos @ = . cos @ = . 5.55a
(|r2 -] |r;— FS|>’ Iry —1i| 12 — 17| (5-552)

sin 01 = (ZS — Zl)/|l‘s — 1'1‘, sin 02 = (22 — Zs)/|l'2 — rs‘ (555b)

; all angles, which are shown in Figure 5.11, can be defined as

Then, by averaging (5.54) over the ensemble of obstructions that are randomly
distributed at the ground surface for k¢, > 1, k¢, > 1 yields the expression for the
average intensity as [68]:

D —2

(I(r2)) = K(r2,12) = 4y, J (dr) exp{—yo <r+7h — Z> }F(;) sin2%

(5.56)
4kly |G (ra, 1) 4kly|G(r, 1))

1+ (ky)*(cos , — cos @,)* 1 + (kby)*(cos 0, — cos 0;)?
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All parameters and functions presented in (5.56) have been described earlier. Here,
the integration is over the layer volume V = {x,y € (—00,+0); z € (0, 4)}, and

r= \/(x - xl)z + (v *)’1)2, r= \/(Xz - X)z + (2 *y)2~ (5.57)

In formula (5.56), the Green’s functions were obtained according to the geometrical
optics approximation, for ¢, £, < h, d, L, and kf, > 1, kf, > 1:

1 1
G i ——— 5.58
| (r2ar)| 1672 |r2 — I'1| ( a)
1 1 . kzz,
G R p— 2 5.58b
| (I‘,l‘l)| 472 |I'—I'1|Sln ‘I‘—I'1| ( )

Finally, using (5.58a) and (5.58b) in (5.56), for (zo — h)/h >> y,d - e yields the
following expression for the incoherent part of the total field intensity (for single
scattering from each obstacle (Fig. 5.11)):

7£ )L‘gh ifv (Zz—il)
C 8 224 2rbLy]? A4 Rabyyo(h—z)) &P

(Line) (5.59)

This formula is more general than the ones obtained in References [57,58] because it
accounts for the dimensions of obstructions in both the vertical and horizontal
directions according to (5.52).

The average intensity of the field through the mixed layer is the sum of
the intensity of the scattering wave defined in Equation (5.59) (incoherent part) and
of the intensity of the coherent part () created by the wave coming from the
source. The straightforward evaluation of (5.56) allows us to obtain (I ,) as [68]:

- } {sin(kzﬂz/d)} ’ (5.60)

I.0) = —vod
{feo) exp{ Yo 22— 2 2nd

Finally, the corresponding path loss can be obtained by substituting expressions
(5.59) and (5.60) in formulas (5.49) and (5.50), respectively.

5.8. PROPAGATION IN URBAN ENVIRONMENTS

Here, we consider two specific urban propagation environments observed from the
topographic maps of most cities [69—-83]:

a) regularly distributed rows of buildings and streets, and;

b) nonregularly distributed buildings, placed on a rough terrain with various
orientations relative to the transmitting and receiving antennas.
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In Section 5.8.1, we start with the multislit waveguide model, which was found to be
in good agreement with experimental data for wave propagation in urban areas with
regular cross-street grid layouts [69—71]. In Section 5.8.2, we discuss the situation
when an array of buildings is randomly distributed at a rough terrain surface and we
present the 3D stochastic multiparametric model obtained in Reference [76,77].
Then, in Section 5.8.3, we compare the stochastic model with the frequently used
empirical, semi empirical and deterministic analytical models for predicting loss in
various built-up areas [72-75, 78-83].

In order to understand the effect of a built-up environment on radio propagation
in land communication links, researchers, first of all, have analyzed the role of
concrete buildings on radio wave propagation relative to LOS propagation above
both smooth and rough terrains. It was shown both theoretically and experimentally
that the total field distribution surrounding a single, non transparent building is
caused by rays diffracted and reflected from the building’s corners and walls, as well
as, by the waves bounced from the ground and then reflected from the walls [69-83]
(see also discussions in Section 5.5).

In this case, the number of rays caused by diffraction is larger than the number of
rays caused by reflection. The estimation of these diffracted rays has been carried out
using several approaches [32-40] based on Keller’s GTD [28-31] described in
Section 5.5 for diffraction from wedges with different shapes and material. Using the
results of these investigations, we can now tackle the problem of how an array of
buildings affects the radio propagation in urban communication channels.

5.8.1. Propagation in Urban Areas with Regularly Distributed
Rows of Buildings

Here, we consider several urban propagation environments. We start with the
simplest case of EM-wave propagation in the urban scene, where both antennas are
placed above a flat ground surface in conditions of LOS and below the rooftop level.
As was shown in Section 5.3, in LOS, all propagation characteristics, as path loss
and radio coverage, can be determined using the well known ‘“‘two-ray’”” model. We
will briefly discuss below the multislit waveguide model (for LOS propagation),
which was found to be in good agreement with experimental data of wave
propagation in urban areas with a regular cross-street grid layout [69—71].

Street Waveguide Model. As mentioned in References [59,69-71], the conditions
of LOS propagation along a straight street on which a base station is located is of
great importance in defining the coverage area for antennas located below because of
the low path loss as compared to propagation over the rooftops. At the same time, a
“multislit waveguide model has been introduced recently for describing the propa-
gation of EM-waves in a city scene with regularly planned streets, that is a model of
straight streets with buildings lined up on the sides [69—71]. The street is seen as a
planar multislit waveguide with a Poisson distribution of screens (building walls)
and slits (intervals between buildings). The dielectric properties of the buildings’
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FIGURE 5.13. 3D presentation of the street waveguide model.

walls are taken into account by introducing the electrical impedance as a function of
their surface permittivity and conductivity. In Figure 5.13, a 3D-waveguide model of
a city region with regularly planned buildings, and with a receiver and transmitter is
shown. We notice that the condition At, hg < hy, is the main condition for the valid-
ity of the proposed street waveguide model [69-71]. Here, Ay, is the height of the
buildings lining up the street, and sy and hg are the transmitter and receiver antenna
heights, respectively. The reflection from the ground surface is also considered using
an imaginary source. The projection of the waveguide on the zy-plane presents the
2D impedance parallel multislit waveguide with randomly distributed screens and
can be considered as a model of a city street (see Fig. 5.14). One waveguide plane
is placed at the waveguide (street) side z = 0, and the second one at z = a, where a is
a street width (Fig. 5.14). The screen length L, and slit length [, are distributed
according to Poisson’s distribution with the average values of (L) = L and (I) =,
respectively [59,69-71]
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I

FIGURE 5.14. 2D presentation of the multislit street model with the width a.

The dielectric properties of a building’s walls are usually described by the surface
impedance:
1

Zem ~ & 2, & = &0 — j60Ao (5.62)
In a real city scenario, the screen and the slit lengths are much greater than the
radiation wavelength /, that is, L, > 4, [, > A. In this case we can make use of
approximations provided to us from GTD. According to the GTD, the reflected and
diffracted waves have the same nature, and the total field can be presented as a
superposition of direct (incident) fields from the source and waves reflected and
diffracted from the screens.

Path Loss Along the Straight Streets. Following the previously constructed model
[69—71], we consider the resulting reflected and diffracted fields as a sum of fields
reaching the observer from the virtual image sources IIT (for the reflections from
plate z = a) and I, (for the reflections from plate z = 0), as shown in Figure 5.14.

Using some straightforward derivations presented in References [69—71], we can
obtain the approximate expression for the path loss of the radio wave intensity at
large ranges from the source (r > a):

I -y Rn :
L~ 32.1 +20logofo — 201og, l('d')z + 17.81og,o r — 401og;, | I
(1+ zIRal)
m—@,] r
+8.6{|1nXRn||{ } © } (5.63)
a on)a
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Here, R, :?;’éﬁx is the coefficient of reflection for normal modes in the

waveguide, ¢, is its phase, and |R,]| is its modulus

\/ [(ReK,) + (ImK,)* — (kZgm)*]* + 4(ImK,,) Z2,

R, = 3 3 (5.64a)
(Re K, + kZgy)” + (ImK,,)
0, = tan"! 2 ImK, KZem (5.64b)
" (ReK,)* + (ImK,,)* — (kZgwm )
where
p, = (k2 —K2)1/2
an In|yR,| o, .
K,=4—+4+i———-=ReK,+ilmK, n=1,23,... (5.65)
a a a

Here, y = L#H is the parameter of slit density. The expression for the ground
reflection coefficient I'y is presented by (4.50) in Chapter 4. For a perfectly
conductive waveguide, Zgy = 0, |[R,| = 1, ¢, = 0 and

1—y)°
L =~ 32.1 +20log,, fo — 201log, lglliz
—X

7l,l:| r

a pﬁl()) a

+17.8log;or + 8.6{ [1n y| {

—

(5.66)

Like classical waveguides, most of the energy is conveyed by the first mode. Hence,
taking n = 1 gives an accurate estimation of the resulting path loss along the street in
LOS conditions. Using the two-ray model (see Section 5.3), we can also obtain from
the proposed waveguide model the break point r,, which determines the attenuation
of the path loss as r=2, for r < rp, and varying as r4, for r > r, [69-71]. The
formula for the break point r, that depends on the geometry of the streets and their
structures, is given by:

o A (14 7R) /(1 = 7|RuDI[ = hy/a + hrhg /]

b= P (5.67)

In all the above formulas we assumed that the absolute values of the diffraction
coefficients D,,, from the buildings corners are close to unity. Analyzing formula
(5.67), one can see that for wide avenues, when a > hy > hr, hg, and y — 0, for
|R,| ~ 1, the break point is r, = %, that is, the same formula obtained from the
two-ray model. Beyond the break point the field intensity attenuates exponentially
[69-71]. This law of attenuation, obtained experimentally, states that the attenuation
mode of field intensity beyond the break point is ~r~9, g = 5-7. This result does not
follow from the two-ray model but can be explained using the waveguide model.
In the case of narrow streets, when a < ht, hg < hy and y — 1, the range of the
break point tends to go to infinity for the observed wavelength bandwidth
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A =00.1 — 0.3 m used in wireless communication [69-71]. So, in the case of narrow
streets the two-ray model cannot describe the absence of the break point and the two-
mode field intensity decay. In the case of narrow streets, the multislit waveguide
model predicts the exponential attenuation of the total field at the street level and
compares well with numerous experimental data obtained in microcellular
propagation channels (see detailed discussions in References [69-71]). Hence, the
waveguide model is more general than the two-ray model and covers all situations
occurred in the street scene.

5.8.2. Propagation Above Urban Irregular Terrain

In Sections 5.5-5.7, we dealt with propagation models that describe radio
propagation above the irregular terrain, typical for rural environments containing
obstructions such as hills, mountains, and trees. Some of these models adequately
describe the situation in the urban scene, mostly in the suburban areas, where the
effects of foliage, usually negligible in city centers, can be quite important. At the
same time, the effects of trees are similar to those of buildings, introducing
additional path losses and producing spatial signal variations.

In Section 5.8.1, we considered the case when both communicating antennas
were located in LOS conditions, but assumed that the streets and buildings were
uniformly distributed on a flat terrain. Now we will consider the situation where the
buildings are randomly distributed over an irregular terrain, as is the main case of a
city topography, and will present the 3D stochastic multiparametric model based on
the same approach proposed for the forested and mixed residential areas.

Statistical Description of Urban Terrain. Let us consider an array of buildings
randomly distributed on an irregular terrain. Using the approach in References
[57-59], the coordinate system {x, y, z} is placed at the plane z = O on the ground
surface. The heights of the rough ground surface are described by the generalized
function Z(x, y) according to Shwartz [S7-59] (see Fig. 5.15). The shadow function
Z(rp, 1), presented in integrals (5.36) and (5.53) for forested and mixed areas, will
also be used for the urban environments. However, the situation in built-up areas is
more complicated as we must also take into account the buildings’ overlay profile
and other specific features of the built-up terrain. In this case, the shadow function is
a product of different probability functions which will be briefly presented below
following the approach in References [76,77].

Probability of LOS between Subscribers. The next formula determines the prob-
ability that there is direct visible link between two arbitrary observers inside the
layer of city buildings. Thus, if (L) is the average length of screens (buildings) sur-
rounding points A(r;) and B(r;) (see Fig. 5.16), then the probability that there is no
intersection of the line AB with any of the building screens is equal to [57,58]

P(ry,rp) = Pip = exp{—2(L)vriy/n} (5.68)
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from which we can easily define the one-dimensional building density parameter 7y,
(in km™!) as

70 = 2{L)v/m. (5.69)

Here, v is the density of buildings in the investigated area of 1 km® Parameter 7,
determines the average minimal horizontal distance of LOS, p as p = 7, [57,58].

Influence of City Building Profile. The probability that the arbitrary subscriber
antenna location is inside a built-up layer is described by the complimentary cumu-
lative distribution function (CCDF) Py,(z)[CCDF = 1 — CDFJ, which was intro-
duced in References [76,77] as the probability that a point z is located below the
buildings’ roofs level.

Py(z) = J w(hy,)dh, (5.70)

Here, w(h,) is the probability density function which determines the probability that
each subscriber antenna, stationary or mobile, with a vertical coordinate z is located
inside the built-up layer, that is z < h,, where h, is the height of building with
number 7 (see Fig. 5.15). Let us now consider the influence of a city buildings profile
on the average field intensity. Here we use definitions introduced in References
[76,77] to obtain a more general description of the built-up relief functions. Taking
into account the fact that the real profiles of urban environments are randomly
distributed, as shown in Figure 5.15, we can present, according to References
[59,76,77], CCDF defined by (5.70) in the following form:

Ph(Z) :H(hl —Z) +H(Z—h1)H(/’12—Z) |:((hhzz—_l’lzl)):|n7 n>00<z<h

(5.71)

where the function H (x) is the Heaviside step function, which equals 1 for x > 0, and
0 for x < 0. Using this we can now introduce the built-up layer profile “between the
two terminal antennas’ that is described by the following function [77]:

F(zi,22) = JPh(z)dz (5.72)

21

To understand the influence of the built-up area relief on the signal intensity, let us
first examine the height distribution function Py(z). The graph of this function
versus height z of a built-up overlay is presented in Figure 5.17. For n > 1 Py(z)
describes the case where the buildings are higher than £, (this is a very rare case as
most buildings are at the level of a minimal height /). The case when all buildings



PROPAGATION IN URBAN ENVIRONMENTS 157
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FIGURE 5.17. Buildings height distribution function Py(z) versus the current height z for
various parameters n of built-up profile.

have heights close to h,, (i.e., most buildings are tall), is given by n < 1. For n close
to zero, or n approaching infinity, most buildings have approximately the same
height #, or hy, respectively. For n =1 we have the case of building heights
uniformly distributed in the range h; to h;.

The same result is obtained from analyzing the built-up layer profile F(z, z). For
the case when the minimum antenna height is above the rooftop level, that is,
Zp > hy > hy, then according to Reference [77] we get

(hz—hl)}
(n+1)

(/’lz _ Zl)n+1
n+1)(hy — )"

and for the case where the minimum antenna height is below the rooftop level, that is
2o < hy, we derived [77]

F(z1,22) = H(hy — z1) |:(hl —z1)+
(5.73a)

+ H(z1 — hy)H (hy *Zl)(

F(z1,22) =H(h —21) [U“ T = )’

(hy — h1)nJrl — (hy — Zz)n+1
(n+1)(hy — )"

From Equation (5.73) we can determine the average building height as

h=hy —n(hy —hy)/(n + 1) (5.74)

(h2 . hl)n+1 . (h2 . Zz)n+1‘|
(5.73b)

+H(Z1 - hl)H(hz - Zl)

which reduces to

h=(hy +hy)/2 (5.75)

for the case n =1 of a uniformly distributed profile investigated in References
[57,58].
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Point #4. Terrain Factor n = 1; Transmitter Antenna hy = 10, 40, 100 m
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FIGURE 5.18. Distribution of F(hg) versus the receiver antenna height hg for various
heights of the transmitter antenna: hy = 10, 40, and 100 m and /; and &, are the minimum
and maximum of built-up relief.

As there are many geometrical factors in the built-up layer profile: the antenna
heights z; and 2z, the minimum and maximum building heights 4; and h,, and the
building relief that appear in formulas (5.73a) and (5.73b), we consider their effects
on function F(z;,z,) separately.

In Figure 5.18, F(hr; hg,n) = F(z1,22), given by expressions (5.73a) or (5.73b)
for zp > hy > hy or zp < hy, respectively, is depicted as a family of curves versus
the receiving antenna height [77]. The discrete parameters are denoted by “‘;”.
These parameters are the transmitter antenna height, ranging between 10m
(bottom curve) to 100 m (top curve), and n. The minimum and maximum heights of
the buildings overlay profile are indicated by the dotted vertical lines. We have
chosen n = 1 which corresponds to a uniform distribution of building heights. By
inspection of the displayed curves, it is obvious that for a constant transmitter
antenna height, as the receiver antenna height increases, the value of F(zi,2,)
becomes smaller and the effect of the building layer on the path loss is reduced.
Thus, for a transmitter antenna height A1 = 40 m, as the receiver antenna height hg
increases from 40 m (at the bottom level of rooftops) to 50 m (some intermediate
building height value), F(hg) decreases sharply from 15 m to zero. A more gradual
decrease for F(hg) is evidenced for higher transmitter antennas, (e.g., see curve
for hy = 100 m).
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Point #51. Terrain Factor n = 0.1, 1, 10; Transmitter Antenna hT =93m
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FIGURE 5.19. Distribution of F(hg) versus the receiver antenna height g (for a transmitter
antenna st = 93 m), for various parameters n = 0.1, 1, 10.

In Figure 5.19, we examined the role of the parameter n on F(hr;hg,n) at a
constant transmitter antenna height 2t = 93 m. The values chosen were n = 0.1, 1,
10 that describe predominantly tall buildings, uniformly distributed heights, and
predominantly low building heights, respectively. This provides a transition of the
built-up area from that of typically residential area with predominantly small
buildings (the bottom curve in Fig. 5.19 corresponding to n = 10), to that of a dense
city center with predominantly tall buildings (the top curve in Fig. 5.19
corresponding to n = 0.1).

We therefore can state that the proposed method of characterizing the terrain and
its associated building overlay provide good information regarding the nature of the
profiles vis-a-vis the pertinent evaluation of terminal antennas, the transmitter, and
the receiver.

Dimensions of the Reflected Surface Sections. Let us consider the case when
LOS visibility exists between two points r; and r; (Fig. 5.16). Let us now determine
the probability that given a point A(r;), the horizontal segment inside the building
(as a nontransparent screen) can be observed (see Fig. 5.20). If a horizontal segment
with length / could be seen from point ry, a vertical segment with width / can be seen
from this point as well. The vertical screen forms an angle ¥ with line AB. After
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FIGURE 5.20. The screen at the building’s wall with horizontal and vertical segments of
length /, illuminated under the angle ¥ by the source located at the point A(ry).

some straightforward calculations we can obtain the probability of direct visibility of
segment cd, with length /, from point A at a range of ri, as [57,58]:

P.q = exp(—ypyiaFi2 — veiariz| sin ¥|) (5.76)

where

en=(n—2)" J (z—z21)(z2 — 21) " Pu(2)[1 — XPu(2)] 'dz (5.77)

21
Here, the multiplier X in the integrand of (5.77) determines the probability of the
event when the projection of the point r(x, y, z) on the plane z = 0 hits inside an
arbitrary building (as shown in Fig. 5.15). When X =1 and z > z;, 20, Equation
(5.77) becomes to:

22

en=(n—z)" JPh(Z)(Z — )z —21) dz (5.78)

21

The Spatial Distribution of Scattering Points. The role of the single scattering
case is very important when one of the antennas (mainly, the base station antenna)
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A1)

B(rz)

FIGURE 5.21. 2D-model of scattering from a nontransparent screen.

is above the roof level, and the other one is below it. This case is presented in
Figure 5.21, where the reflected point C is inside the building contour of height 4.
The building orientation is determined by the angle ¥ and the vector (rs — r;). The
receiver (or transmitter) is placed at point B(r,), and the transmitter (or receiver) is
placed at point A(r; ). If we now introduce the polar coordinate system (r, ¢) with point
B as a base point on the plane z = 0 (Fig. 5.21), then for discrete distributed sources,
the density of the scattered point distribution can be presented as follows [57-59]:

a) for z1,20 < h
u(r, @) = 0.5vpy sin(2/2) (r +7) exp{ —yo(r +7)} (5.79)
b) for z; < h,Zz > h

h
u(r,0) = (vior/20) sin®(/2) exp{—o(r + 7)) ﬁ(rm
0

—r((z2 — h)/(z2 = 2))*] - exp{por(z2 — h)/(z2 — 2) }dz

(5.80a)

or for yor > 1

u(r, ) = 0.5vsin® (/2){yohr(r +7) exp[—7o (F + hr/z]/z2}
+0.5vsin®(a/2){(z2 — h)Fexp[—yor]/h} = p, (r, @) + us(r, @)
(5.80b)

where 7 = (d* + r* — 2rd cos q))l/z; and h is the average building height.
Comparing formulas (5.79) and (5.80b), one can see that the first summand in
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(5.80b), u,(r, @), is the same as that described in expression (5.79) for the case of
7> = h. Both of these expressions describe rare scatterers which are distributed over
a large area of a city, far from the receiver. The addition of significant changes in the
scatterer distribution, for the case of z, > h, gives the second summand in (5.80b),
W (r, @). For z; = h, its value is zero, but even some small increase of z, above h
(i.e., when 7, > h), yields a significant influence on the total scatterer distribution
according to (5.70b). It describes the ““illumination” of a small area near the upper
boundary of a building layer, in the p-region of a moving transmitter.

The Distribution of Reflected Points. In built-up areas, reflections are the most
interesting single-scattering events described by geometrical optics. We can present
the density of reflection points within a building layer as [57,58]:

vod® (2 —1
ue ) = =7 vind)

mPh(Zc) exp{—7o7127d} (5.81)

where Pj(z.) is described by (5.70) with variable

(-1 (2-2a)
2(t—cosp) 1

e =22 — (5.82)

Here, t(t = (r +7)/d) is the relative time of single-scattered waves propagating
from the transmitter to the receiver through the built-up region using the function
presentation (5.80b). We also assume that the height of point B (receiver) is higher
than that of point A (transmitter) (i.e., zo > z1), and is also higher than the average
building height £, that is zo > 4. The contribution from each level in the building
layer, described by (5.81), is different than zero only for those values of 7 and ¢ for
which the coordinate z. lies inside the building layer (i.e., 0 < z. < k). To obtain the
average number of reflection points, we first integrate (5.81) over T and then over ¢.
In other words, we analyze the distribution of reflection points y(t, @) in the angle-
of-arrival (AOA) domain and in the time-of-arrival (TOA) domain assuming a
uniform building layer. This also assumes that within this layer, the distribution of
building heights is also uniform (i.e., h; = h = constant). Next we introduce the
nondimensional parameter ¢ = ((;22:;1‘)), which describes the effects of the difference
between the terminal antennas compared with that for BS antenna with respect to
average building height.

Let us now examine qualitatively how the distribution of these reflection points is
changed at plane (x, y) (at the real terrain surface). We construct the regions G at
which approximately 90% of reflected points are located. The boundaries of such a
region consist of the arcs of ellipses with T = 7¢ 9, where 79 is determined from the
following relation:

70.9 2n 00 2n
de J dou(t,9) =0.9 J de J dou(z, @) (5.83)
10 10
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and from the arcs of circles, the equation of which is
> — 1 = 2¢1(1 — cos @) (5.84)

Equation (5.84) can be presented by using the nondimensional coordinates ¢ = x/d
and # = y/d in the following form:

2 2 1—
<5—2§§_ 1) L = B€-ﬂ n>h>1z (5.85)

From Figure 5.22, we can see how the region G and its boundaries are changed with
changes in the height factor ¢ from O to 1. In Figure 5.22, the region G and its
boundaries (arcs of ellipses) are presented by the dotted curves, and the arcs of
circles are presented by the continuous curves. These curves were constructed for
the range of d ~ 500-600 m (between terminals), which is close to the conditions of
most experiments carried out in built-up areas (see Chapter 11).

Estimations show that the region G is limited by a single ellipse with two foci, A
and B, for z; = h (i.e., ¢ = 0). The distribution of the reflection points is maximum
near these points (Fig. 5.22). The distribution of the reflection points does not equal

£=02 (=05 ¢=07
£=03
c=1
B A

FIGURE 5.22. The region G and its boundaries change with changes in height factor ¢
from O to 1.
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zero at the segment [AB] because there are some intersections of this segment with
one of the arbitrary buildings (screens) that cross the path AB (see above Fig. 5.16).
When the height of point B increases with respect to the rooftop height (i.e., when
70 > iz), the region G, where these reflections are observed, is formed mainly around
the transmitting point A. That means there is no reflection in the neighborhood of the
receiving point B. Also, for ¢ = 0.2(71 =20m, z; = 25m), the region that is
“prohibited” for reflections has the shape of a circle, the center and the boundary of
which are determined by (5.84). Moreover, an increase in the height factor ¢(z, > h)
spreads this region (for ¢ = 0.4, 7 = 20 m, 2, = 33 m) to occupy the entire left half-
plane (for ¢ = 0.5, 7 = 20m, z; = 40 m). Any further increase in ¢(¢ — 1) limits the
reflections to the neighborhood of point A. (see in Fig. 5.22 the circles and arcs for
¢=0.6,72 =50m and ¢ = 0.8,z = 100 m).

Effects of Multiple Scattering form Obstructions. To analyze the multiple scat-
tering phenomena caused by the buildings (e.g., nontransparent screens), we assume,
as in References [76,77], that the distribution of all obstructions placed above the
rough terrain is satisfied by Poisson’s distribution law. Consequently, the probability
of the event for at least one ray being received after n-time scattering from the
randomly distributed screens is

Py =1 —exp{=(Na(r))})- (5.86)

Here, the average number of n-time scattered rays from the screens can be obtained
from the probability of the scattered points distribution g, (ro|r, 12, ... 1y):

(Ny(r,10)) = J...Jul(r0|r1,r2, cey ) o (o, 2, L1y drdr, g L dry
(5.87)

where

n n
wi(rolr1,r2, .. Ts) = CXP{—VO > i — l‘i|} [T0:500v{Irit = wil + ri — x| sin® (24/2) }.

i=0 i=1

Here, the angle o; is an angle between vectors (r;y; —r;) and (r; — r;_;) for all
i=1,2,...,n;(ro,ry,ry,...,r,) are the radius-vectors of points A, Cy, Cy, ..., Cy, B,
respectively (see Fig. 5.23). The examples of average values for once-, twice- and
three-times-scattered rays from the randomly distributed buildings can be presented
by using the MacDonald functions K, (w) of the order n = 1; 2; 3, respectively:

(N1 (r)) = 0.257vr* K (por) (5.88)
9

(Na(r)) = 9(mvr?) {K (yor) /8! + (0.5mp0r) 2 Kr 2 (9r) / 71} (5.89)
(N3(r)) = 8(nvr2)3{K5(yOr)/IO! + (0-57W07)71/2K11/2(“/0”)/11!} (5.90)
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FIGURE 5.23. Geometry of multiple scattering by n randomly distributed buildings, as
nontransparent screens.

The probability of occurrence for a single scattered wave (curve 1), a double
scattered wave (curve 2), and a three-time scattered wave, calculated according to
(5.86)—(5.90) and observed at the range of 1-2 km from the source, is presented in
Figure 5.24. In microcellular conditions (» < 1-2km) the probability of observing
these rays at the receiver for single-to-three-times scattered waves is equal to the
unity. For short ranges from the transmitter, only single scattered waves can be
observed. On the other hand, in the far field, the effect of multiscattering becomes
stronger than the single-scattering effect. All of the above mentioned probability
formulas were substituted in the corresponding integral (5.54) instead of the shadow
functions Z,p for the signal field intensity evaluation.
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FIGURE 5.24. Probability of single, double and triple scattering versus distance d between
the transmitting and receiving antennas.

3D Stochastic Model. The analysis used in Section 5.7 can be adopted to evaluate
the average signal intensity distribution in the space domain in an urban communi-
cation channel. Here, all functions and parameters that describe the statistical prop-
erties of the rough built-up terrain and buildings, as scatterers (see Figs. 5.15) will be
taken into account to derive Equation (5.54).

There is a difference between the mixed residential areas and the built-up
areas with buildings larger than the wavelength and a corresponding correlation
scale /5. It turns out that we can exclude the influence of the reflecting properties
of these buildings’ walls, in the horizontal directions, and describe the screens’
reflecting properties only in the vertical plane (one-dimensional case, analyzed
in Reference [57,58]) by rewriting (5.52) proportional to exp{—|&|/¢,}. Also, in
the case of the built-up terrain, as was mentioned above, we need to take into
account the building layer profiles according to formulas (5.72)—(5.73). From
Figures 5.18-5.19, one can see that this factor plays a significant role in signal
power decay.

The theory of the average field intensity has been derived for 3D model in
References [76,77], for the case of yyri2 = yod >> 1 and for the quasi-homogeneous
built-up profiles. Similar to our treatment of the mixed residential areas, the
expression for the incoherent part of the total field intensity can be presented, taking
into account single and double diffracted waves shown in Figure 5.25a and 5.25b.
Let us briefly examine the influence of diffraction phenomena caused by the
buildings’ rooftops on the field intensity attenuation. To account for this effect, we
use the Huygens—Kirchhoff approximation described earlier. For the derivation of
the diffraction field we introduce, according to Reference [57], the surface Sg of
virtual sources that is normal to the building layer S and the surface of an infinite
semi-sphere Sy that contains the source of radiation inside it, as shown in
Figure 5.25a. The effect of all virtual sources placed inside the semi-sphere Sy is
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(b)

FIGURE 5.25(a). Geometry of single scattering and diffraction over a built-up layer. (b)
Geometry of double scattering and diffraction over a built-up layer.

negligible, because it is limited to zero when the radius of this semi-sphere goes to
infinity. Thus, the field at the receiver, presented by the Green’s theorem (see
Chapter 4) can be rewritten as:

U(ry) = 2ik J {U(rs,) - G(ra.Ts5,) - cos s, }dSs (5.91)
S
where U(rg,) is the field at the surface Sp obtained by use of approximation (5.91)

for single diffraction (see Fig. 5.25a); cos Y/, = (ng, - (r2 — rs,)/|r2 — rs,|), g, is
the unit vector normal to surface.
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The average intensity of the received field (I(r;)) = (U(rz) - U*(rz)) can be
presented according to (5.91) as:

(I(ry)) = 4k> JdSB J dsy -K(rSB,rgB) - G(ry, r;B) - G(ry,1rs,) cos Yrg, COS(/I;B
S SB
(5.92)

where K (rs,, r:gB) is the correlation function of the total field at points rg, and rgB,
located at surface Sy, when the source is located at the point ry:

K(rsmr;) :4k2< JdSB JdS;S 'Z(I‘Q,I‘SB,I’]) 'Z(rlzvr,strl) 'F((PSBarSB)
S, S

x I*(@g, . Ts, ) - sinWg, - sinrg, - G(ra,rs,) - G(rs,,r1) - G (1,1, 'G*(I’;Byl’l)>

(5.93)

Here, the reflection coefficient I'(¢g,rs) = I exp{—%} and the shadow function
Z(rp,ry) are a superposition of all probability functions defined earlier. By
averaging (5.93) over the spatial distribution of the nontransparent screens, over
their number, and over the reflection properties of these screens, we obtain the
following formula for the single-scattered field (single diffraction from the buildings
rooftops) [76,77]:

I,
2+ (2nlyyoF (21, 22))7]d?

(1(r2)) = [(Ad/4m®) + (za — h)))'* (5.94)

The same result can be obtained for twice-diffracted waves as shown in
Figure 5.25b. Using the same presentation of average intensity of total field, as
(5.56), we get:

(I(ry)) = 4k> J dSg J dsj -K(I’SB,I"SB\RI'O .K(rSB,r’SB|r/,rl) cos g, COSlﬁ:gB
SB SB

(5.95)

where K(rs;, r'sB |r,ry) and K (rs,, r'SB Ir',r}) are the correlation functions of the total
field at the surface of the virtual sources of diffraction, which is determined by
(5.93). Next, by averaging over (5.95), over the distribution of the nontransparent
screens, over their number, and over the reflection properties of screens, we can
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derive the formula for the double-scattered field as:

e

Linc(r2)) = 9
ine(r2)) 24n2 (2 + 21l poF (21, 22)* Pl

L% + (22 — h)z} (5.96)

Using (5.71) for the distribution function Py(z), the coherent part of the total field
intensity can also be obtained as [76,77]:

F(z1,2) } sin’ (k212/d) (5.97)

Heolr2)) = exp{—yod (22 —21) 4m2d?
The difference between expressions (5.94) and (5.96), and those obtained for the
forested and mixed residential areas, presented by (5.48) and (5.59), respectively, is
that here we introduce single and double diffraction effects as well as a new relief
function F(z;,22), given by formulas (5.73). This relief function is better suited to
handle more realistic and more general cases of terrain and buildings overlay, as well
as for different configurations of transmitter and receiver antennas. A comparison of
formulas obtained in References [57,58] and Equations (5.94) and (5.96), shows that
in References [57,58] the restricted case n = 1 of a uniform distribution profile was
assumed, while Equations (5.94) and (5.96) give more latitude in describing more
general distributions. Finally, the total average field intensity is written as:

<It0tal> = <Iinc> + <Ic0> (598)

Hence, the path loss is presented as [76,77]:

Lot = 1010g{2*({Iinc) + (I.o))} (5.99)

Finally, the signal average intensity decay obtained in Sections 5.6-5.8, for various
environments, is valid only for the case of an irregular but not curved terrain, and
hence, they are only valid for radio links shorter than 10 km—20 km.

5.8.3. Comparison with Existing Models

Let us compare some results obtained from the stochastic, multiparametric model
and those obtained from other well-known and frequently used models. For
example, the empirical Okumura—-Hata model [78,79], based on numerous
measurements of the average power within the communication channel carried
out in and around Tokyo, gives the path loss attenuation as a function of distance
between ‘‘mobile-base station”, d, by:

L(W)xd™”, 7y=30-38 (5.100)
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The Walfisch-Ikegami semi-empirical model firstly discussed in Reference [80]
developed gives a good path loss prediction for dense built-up areas of medium and
large size cities. The model is based on the analytical approach, developed by
Bertoni with colleagues in References [81-83], to derive the path loss in obstructive
conditions. It was shown that the diffraction from the roofs and corners of buildings
plays a significant role and the total field depends not only on the reflected waves
but mainly on the diffracted waves. Following the work in Reference [5,81-83],
the semi-empirical model developed by Walfisch and Ikegami considered two
options for the base station locations: one above and one below the rooftops, in an
environment with regularly distributed nontransparent buildings with various
heights and different separation distances between them. Moreover, the semi-
empirical model takes into account important urban parameters such as building
density, average building height, and street width. The antenna height is generally
lower than the average buildings height, so that the waves are guided mainly along
the street. The path loss dependence on range is given as [5,80-83]:

LW)xd’, 7=26-38 (5.101)

The stochastic model presented here, and the corresponding formulas (5.94) and
(5.96), give the signal intensity decay law versus range between the terminal
antennas as

LW)xd?, 7y=25-3 (5.102)

This result is very close to those predicted by the two other models mentioned
above.
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CHAPTER SIX
L

Effects of the Troposphere
on Radio Propagation

Tropospheric effects involve interactions between radio waves and the lower layer of
the Earth’s atmosphere, covering altitudes from the ground surface up to several tens
of kilometers above the Earth. These include effects of the gases composed in the air
and hydrometeors such as rain, clouds, fog, pollutions, as well as various turbulent
structures created by the turbulent wind streams both in vertical and in horizontal
directions, gradient of temperature, moisture and pressure in layered atmosphere at
the near-the-earth altitudes.

6.1. MAIN PROPAGATION EFFECTS OF THE TROPOSPHERE
AS A SPHERICAL LAYERED GASEOUS CONTINUUM

6.1.1. Model of the Troposphere and Main Tropospheric Processes

Troposphere is the region of the Earth’s lower atmosphere that surrounds the Earth
from the ground surface up to 10-20 km above the terrain, where it continuously
spreads to the stratosphere (20-50 km), and then to the thermosphere, usually called
ionosphere (50—400 km). The effects of the latter on radio propagation will be
presented in the next chapter. Now let us focus on the effects of troposphere on radio
propagation starting with a definition of the troposphere as a natural layered air
medium consisting of different gaseous, liquid, and crystal structures.

The physical properties of the troposphere are characterized by the following
main parameters such as temperature T (in Kelvin), pressure p (in millibars or
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in millimeters of Mercury), and density p (in particles per cubic meter or cubic
centimeter). All these parameters significantly change with altitude and, seasonal
and latitudinal variability and strongly depend on weather [1-9].

Content of the Troposphere. The troposphere consists of different kinds of gas-
eous, liquid, and crystal structures, including effects of gas molecules (atoms), aero-
sol, cloud, fog, rain, hail, dew, rime, glaze, and snow. Except for the first two
components, the others are usually referred to as hydrometeors in past literature
[10-24]. Furthermore, due to irregular and sporadic air streams and motions, such
as irregular wind motions, the chaotic structures, defined as atmospheric turbu-
lences, are also present in the troposphere [25—40].

Below, we present a brief decription of the various components that make up the
troposphere [1-40].

Aerosol is a system of liquid or solid particles uniformly distributed in the
atmosphere. Aerosol particles play an important role in the precipitation process,
providing the nuclei upon which condensation and freezing take place. The particles
participate in chemical processes and influence the electrical properties of the
atmosphere. Actual aerosol particles range in diameter from a few nanometers to
about a few micrometers. When smaller particles are in suspension, the system
begins to acquire the properties of a real aerosol structure. For larger particles, the
settling rate is usually so rapid that the system cannot properly be called a real
aerosol. Nevertheless, the term is commonly employed, especially in the case of fog or
cloud droplets and dust particles, which can have diameters of over 100 pm. In general,
aerosols composed of particles larger than about 50 um are unstable unless the air
turbulence is extreme, as in a severe thunderstorm (see details in References [5,36]).

Hydrometeors are any water or ice particles that have formed in the atmosphere or
at the Earth’s surface as a result of condensation or sublimation. Water or ice
particles blown from the ground into the atmosphere are also classified as
hydrometeors. Some well-known hydrometeors are rain, fog, snow, clouds, hail,
dew, rime, glaze, blowing snow, and blowing spray.

(A) Rain is the precipitation of liquid water drops with diameters greater than
0.5 mm. When the drops are smaller, the precipitation is usually called drizzle. The
concentration of raindrops typically spreads from 100 to 1000 m . Drizzle droplets
usually are more numerous. Raindrops seldom have diameters larger than 4 mm,
because as they increase in size they break up. The concentration generally
decreases as diameters increase, except when the rain is heavy. It does not reduce
visibility as much as drizzle. Meteorologists classify rain according to its rate of
fall. The hourly rates relating to light, moderate, and heavy rain correspond to
dimensions less than 2.5 mm, between 2.8 mm and 7.6 mm, and more than 7.6 mm,
respectively. Less than 250 mm and more than 1500 mm per year represent
approximate extremes of rainfall for all of the continents. Rainfall intensities greater
than 30 mm in 5 min, 150 mm in 1 h, or 500 mm per day are quite rare, but these
intensities, on occasions, have been more than double for the respective duration
(see details in References [6,11-18,36]). Below we will discuss the effects of rain on
radio propagation.



MAIN PROPAGATION EFFECTS OF THE TROPOSPHERE 177

(B) Snow is the solid form of water that crystallizes in the atmosphere and falls to
the Earth covering permanently or temporarily about 23% of the Earth’s surface. At
sea level, snow falls usually at higher latitudes, that is, above latitude 35° N and
below 35° S. Close to the equator snowfall occurs exclusively in mountain regions,
at elevations of 4900 m or higher. The size and shape of the crystals depend mainly
on the temperature and the amount of water vapor available as they develop. In
colder and drier air, the particles remain smaller and compact. Frozen precipitation
has been classified into seven forms of snow crystals and three types of particles:
graupel, that is, granular snow pellets, (also called soft hail), sleet, (that is partly
frozen ice pellets), and hail, for example hard spheres of ice (see details in
References [3,36]).

(C) Fog is a cloud of small water droplets near ground level and sufficiently dense
to reduce horizontal visibility to less than 1000 m. The word “fog”” may also refer to
clouds of smoke particles, ice particles, or mixtures of these components. Under
similar conditions, but with visibility greater than 1000 m, the phenomenon is
termed a mist or haze, depending on whether the obscurity is caused by water drops
or solid particles. Fog is formed by the condensation of water vapor on condensation
nuclei that are always present in natural air. This happens as soon as the relative
humidity of the air exceeds saturation by a fraction of 1%. In highly polluted air the
nuclei may grow sufficiently to cause fog at humidities of 95% or less. Three
processes can increase the relative humidity of the air: (1) cooling of the air by
adiabatic expansion; (2) the mixing of two humid airstreams having different
temperatures; and (3) the direct cooling of the air by radiation. According to the
physical processes involved in the creation of fogs, there are different kinds of fogs
that are usually observed: advection, radiation, inversion, and frontal. We do not
enter deeply into the subject of their creation, because this is a subject of
meteorology, for which readers may refer to special literature [3,7,24,36]. Here we
will only analyze their influence on radio propagation.

(D) Clouds have the dimensions, shape, structure, and texture that are influenced
by the kind of air movements that result in their formation and growth and by the
properties of the cloud particles. In settled weather, clouds are small and well
scattered. Their horizontal and vertical dimensions are only a kilometer or two. In
disturbed weather they cover a large part of the sky, and individual clouds may tower
as high as 10 km or more. Clouds often cease their growth only upon reaching the
stable stratosphere, producing heavy showers, hail, and thunderstorms. Growing
clouds are sustained by upward air currents, which may vary in strength from a
few centimeters per second to several meters per second. Considerable growth of
the cloud droplets with falling speeds of only about 1 cm/s, leads to their fall through
the cloud, reaching the ground as drizzle or rain. Four principal classes are
recognized when clouds are classified according to the kind of air motions that
produce them: (1) layer clouds formed by the widespread regular ascent of air; (2)
layer clouds formed by widespread irregular stirring or turbulence; (3) cumuliform
clouds formed by penetrative convection; and (4) orographic clouds formed by
ascent of air over hills and mountains. The reader who is interested in delving deeper
into this subject can find information in References [7,21,24,36].
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FIGURE 6.1. Displacement of the ray due to refraction.

(E) Atmospheric Turbulence is a chaotic structure generated by the irregular air
movements in which the wind randomly varies in speed and direction. Turbulence is
important because it churns and mixes the atmosphere and causes water vapor,
smoke, and other substances, as well as energy, to become distributed at all
elevations. Atmospheric turbulence near the Earth’s surface differs from that at
higher levels. Within a few hundred meters of the surface, turbulence has a marked
diurnal variation, reaching a maximum about midday. When the sky is overcast, the
low-level air temperature varies much less between day and night and turbulence
remains nearly constant. At altitudes of several thousand meters or more, the frictional
effect of the Earth’s surface topography on the wind is greatly reduced and the small-
scale turbulence, which is usually observed in the lower atmosphere, is absent.

Tropospheric Radio Phenomena. From investigations carried out in References
[1,2,4,6], it follows that for clear gaseous atmosphere, even if hydrometeors are
absent, fading phenomena of radio waves can prevent an availability of 99.999%
at the paths of 5 km and more with the fade margin of 28 dB. However, there is a
refraction effect observed in the troposphere, which can significantly decrease the effi-
ciency of satellite communication links (see Fig. 6.1 according to References [25-30]).

Refraction occurs as a result of propagation effects of quasi homogeneous
layered structures of the troposphere, as a gaseous continuum, that cause radio
waves to propagate not along the straight radio paths but to curve slightly towards
the ground (see Fig. 6.2 according to References [1,2,8]). This phenomenon is
described below.

Moreover, the troposphere consists of a mixture of particles having a wide
range of sizes and characteristics, from the molecules in atmospheric gases to the
different kinds of hydrometeors such as raindrops, drops of snow, hail, drops
of fogs, clouds and so forth. The main processes that caused the total wave
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FIGURE 6.2. Refraction caused by the layered atmosphere.

loss (in decibels) are the absorption and the scattering, that is Lot = Laps + Lscat
[25-30].

Absorption (or attenuation) occurs as the result of conversion from radio wave
energy to thermal energy within an attenuating particle, such as a gas molecule and
different hydrometeors. We will consider this effect later for the gaseous layered
atmosphere, as an air continuum, and for different kinds of hydrometeors.

Scattering occurs from the redirection of the radio waves into various
directions so that only a fraction of the incident energy is transmitted onwards in
the direction of the receiver [25-30]. This process is frequency-dependent, since
wavelengths that are long compared to the particles’ size will be only weakly scattered.
The main influencing mechanisms in radio links passing through the troposphere are
hydrometeors, including raindrops, fog, snow, clouds, and so on. For such kinds of
obstructions of radio wave energy, the scattering effects are only significant to systems
operating below 10 GHz [35]. The absorption effects also rise with frequency of radio
waves, although not so rapidly. We will discuss the effect of scattering below.

To predict the effects of all such tropospheric structures on radio wave
propagation through the atmosphere, we need some background knowledge about
the concentration and size distribution of all kinds of structures, as well as their
spatial and altitudinal distribution. We will briefly describe these questions below
considering the effects of each kind of atmospheric content separately.

6.1.2. Tropospheric Refraction

As a first step we will consider the troposphere as a quasi-homogeneous gaseous
layered medium, consisting of aerosol and molecules and atoms of gas. In other
words, we consider the gaseous spherical medium around the Earth, the components
of which are homogeneously distributed within the virtual layers along the height
from the ground surface [32].
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Refractive Index or Refractivity. The radio properties of the quasi homogeneous
layered troposphere are characterized by the refractive index #, related to the dielec-
tric permittivity of the air, ¢,, as n = /¢,. The refractive index n of the Earth’s atmo-
sphere is slightly greater than 1, with a typical value at the Earth’s surface of around
1.0003. Since the value is so close to unity, it is common to express the refractive
index in N-units, usually called refractivity [1-3,30], which is the difference
between the actual value of the refractive index and unit in parts per million:

N=(n-1)-10° (6.1)

Thus, at the ground surface the refractivity equals N = Ng =~ 315 N-units. In a real
atmosphere, refractivity N varies with gas pressure and temperature and with water
vapor pressure in the atmosphere. The variations of temperature, pressure, and
humidity from point to point within the troposphere cause the variations of the
refractivity N, which can be calculated according to the semiempiric Debye formula
[1-9,30]

77.6

where T is the absolute temperature in Kelvin [K], p, is the atmospheric pressure in
millibars [mb], and p,, is the water vapor pressure in millibars [mb]. There are
seasonal and daily variations of the refractivity measured at the surface of the
ground, Nj.

More important is the decrease of the refractive index with height. Usually, we
can neglect the horizontal variations of N and consider the troposphere as a quasi-
homogeneous spherically layered medium. If so, the dominant variation of N is
vertical with height above the Earth’s surface: N reduces towards zero (n becomes
close to unity) as the height is increased. The variation is approximately exponential
within the first few tens of kilometers of the Earth’s atmosphere, that is, this region is
called the troposphere [1,2,30]:

N = Ny exp{— %} (6.3)

where £ is the height above sea level, and Ny ~ 315 and H = 7.35 km are standard
reference values; H is defined as the height scale of the standard atmosphere.
Equation (6.3) is called the standard exponential model of the troposphere.

Tropospheric Refraction. The refractive index variations with height cause the
phase velocity of radio waves to be slightly slower and closer to the Earth’s surface,
such that the ray paths are not straight but tend to curve slightly towards the ground.
In other words, the elevation angle o of the initial ray at any arbitrary point (see
Fig. 6.2) is changed after refraction at angle o,. The same situation will be at the
next virtual layer of atmosphere with other refractive index n. Finally, the ray launched



MAIN PROPAGATION EFFECTS OF THE TROPOSPHERE 181

from the Earth’s surface propagates over the curve, whose radius of curvature, p, at
any point, is given in terms of the rate of change of n with height [1,2,30]:

b <cos o dn>1 (6.4)

n dh

As aresult, a ray passing through the troposphere, instead of the apparent direction,
propagates in a direction far from that towards the satellite. The resulting ray
curvature is illustrated in Figure 6.1. The gradient of the refractivity is given by

g(h) = dN/dh

Usually it is assumed [1-9] that near the Earth’s surface this gradient varies
exponentially as

gs(h) = —0.04exp(—0.136 k), km ™! (6.5)

Linear approximation. According to (6.5), the gradient depends nonlinearly with
height. However, in the first approximation we can use the linear model, setting the
gradient as a constant equal to its value at 2 = 0: g = g(0). This occurs for small
heights, when the standard atmosphere in (6.3) can be approximated as linear, as
shown in Figure 6.3, and according to the following equation [1-9,30]:

N,
N ~ Ng — ﬁsh (6.6)
Linear - - -
Exponential
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FIGURE 6.3. Linear and exponential height dependence of the refractive index.
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The refractivity thus has nearly a constant gradient of about —43 N-units per km. If
so, the curvature of the ray trajectory is constant (this follows from (6.3) for
dn/dh = const.). A common way to take this factor into account is to introduce,
instead of the actual Earth’s radius, the effective Earth’s radius [1-9,30]:

Reff = KRe (67)

where R. = 6375 km, and « is the Earth radius factor. As was shown in References
[1,2], the large values of the x-factor facilitate the propagation over long paths and
small values may cause obstruction fading. In order to predict such fading, the
statistics of the low values of the k-factor have to be known. However, since the
instantaneous behavior of the x-factor differs at various points along a given path, an
effective k-factor for the path, x., should be considered. In general, k. represents a
spatial average and the distribution of x. shows less variability than that derived
from point-to-point meteorological measurements. The variability decreases with
increasing distance. The effective factor is given by [1,2,30]

1 R.
KC = dn = Re (6.8)
R—+1 1——
d p

h

As the variation of refractive index is mostly vertical, rays launched and received
with the relatively high elevation angles usually used in fixed satellite communica-
tion links (see Chapter 14) will be mostly unaffected. But for the near horizontal
rays, where

p~—10°/g (6.9)

we obtain

Reff = KeRe (610)
where now the effective earth-radius factor is
ke = (1 4+ 10 %gR.)™" (6.11a)

Another form of this relation reads

0.157
Ke ~ 0157+ ¢ (6.11b)
For the standard atmosphere and in limits of a linear model (g = —3.925 - 1072 1 /km)
one can immediately obtain from (6.11b) k. = 4/3, so the effective radius from
(6.10) is about 8500 km. Although the linear model leads to an excessive ray
bending at high altitudes, this is not that important in our calculations, because
the critical part of the trajectory is located near the ground antenna.
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Usually, it is assumed that for the radio path with length d greater than about
20 km, the standard deviation of the effective gradient, g., tends to the normal
distribution with the mean value g( as in standard atmosphere and rms deviation
(see definitions of statistical parameters and distribution functions in Chapter 1):

om0 (6.12)

*T 1+ dJdy

where dy ~ 13.5km for European climate conditions. Estimations show that for a
radio path of length d = 150 km we have g, ~ 0.3 gy, and for d = 350 km we have
0. ~ 0.2 6¢9. The reasonable estimate of g is o = 0.04.

In Chapter 1, the Gaussian probability density function (PDF) was introduced, the
cumulative distribution function F(x) of which can be presented by the error
function (erf) in the following manner [30,33,34]:

F(x) :% {1 + erf(xa\/%n)} (6.13)

where the error function is defined as

21 .
erf(x) = ﬁjdte*’
0

Then, the characteristic Q-function of the normal distribution is given by
Q = V2erfinv(2t — 1) (6.14)

where erfinv(x) is the inverse error function, and 7 is the time availability
expressed in relative units (if 7 is in percentage there is a need to divide this value
by 100%). Thus, for the 95% time availability we get Q = 1.64 (see References
[30,33,34]) and

g~ g0 + 1640, (6.15)

Therefore, g. =~ —0.020 (. =~ 1.14) ford = 150km, and g. ~ —0.027 (k. ~ 1.21)
for d = 350km. For the 99% time availability we get Q = 2.33 (see [30,33,34])
and

ge ~ go+2.33 0, (6.16)

That leads to a ge =~ —0.012 (k. = 1.08) for d = 150km, and a g. ~ —0.021
(ke = 1.15) for d = 350km. We can see that for the real model of the spherical
layered troposphere, the median value of k. differs from 4 /3, which follows from the
linear model of the reflectivity profile.
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Approximation Based on the Parabolic Equation Method. As shown above, the
real troposphere is characterized by a nonregular inhomogeneous structure of the
refractivity both in vertical and in horizontal directions. As a result, there are areas of
space in which both constructive and destructive interference occur between
multiple paths and other areas called “‘radio holes’’ through which no rays pass and
where the signal level is very low. The boundary between two such areas forms a
caustic along which the level of the signal may be very high.

As refraction conditions vary in time, a given point in space may be located
alternatively in “radio holes” or in illuminated areas, which result in the sharp
fluctuations of signal arriving at the receiver antenna. In many situations there are
rather fast changes in the refraction conditions during multipath activity, and the
characteristic time may reach only several seconds. In addition, the movement of
the air vehicle may transform the slow fading to the fast one, as we observed in mobile
terrestrial communication links (see Chapter 5). The combination of several rays that
have been subjected to different propagation delays causes frequency selective fast
fading (see definitions in Chapter 1), which may result in amplitude and phase
variations inside the bandwidth of the transmission channel. The frequency selective
fast fading in such cases may exceed £(0.25-0.5) dB/MHz. It is known that
the multipath mechanism exists mainly during periods of large negative values of the
refractive index gradient and strong tropospheric stratification [1,2,8]. The angle-of-
arrival deviations may be as large as 0.5-0.8° and even more in the vertical plane.

The usual technique, used for investigation of all these phenomena, is based on
the geometric optics approximation and on a multiray model, which is not capable of
describing radio holes and field behavior near caustics. For such purposes an exact
model based on a parabolic type equation was developed and numerically
investigated [39]. Why do we need to use such rigorous models? From the
literature, the simplified theories, such as multiray model, do not offer an adequate
description of the range-height structure of the field in the atmospheric radio
channel, which may lead to significant errors in the link budget design accounting
for the fading phenomena. On the contrary, the solution of the parabolic wave
equation exhibits excellent robustness and accuracy for complicated problems
involving vertically and horizontally varying refractive conditions [39].

Here, we do not concentrate on the details of numerical computations of path loss
based on the parabolic equation technique, referring the reader to Reference [39] and
to the bibliography mentioned there. We only point out that the two most popular
approaches to numerically solve parabolic wave equations are the implicit finite
differences and the Fourier split-step algorithms.

Derivations of the scalar Helmholtz equation, beginning with the Maxwell
equations for both horizontal and vertical polarizations, are well known. Here we
can use the so-called earth-flattening approximation to transform the spherical
coordinate representation to pseudorectangular coordinates (x, z). Next, the Helmholtz
equation is presented approximately in the form of a parabolic wave equation

Ou 0?
- .
— —I\/k Jr—zzu —ik(g—2u=0 (6.17)
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where x and z are horizontal (ground range) and vertical (altitude above the Earth’s
surface) coordinates, k is the free-space wave number, and ¢(x, z) is the modified
refractive index term defined as

¢ (x,2) = n*(x,z) + 2z/Resr (6.18)

In (6.18), n(x,z) is the usual refractive index, and R is the effective Earth’s
radius introduced above to take into account effects of a spherical layered
troposphere. For vertical electric polarization, the envelope function, u(x,z), is
related approximately to the transverse tangential magnetic field as follows:

Hy(x,2) ~ %u(x,z)eikx (6.19)

For horizontal electric polarization, the transverse tangential electric field
Ey(x,z) is related to u(x,z) in a similar way. Using these expressions, we can
evaluate total field solution for spherical-layered irregular atmosphere following
Reference [39].

6.1.3. Wave Attenuation by Atmospheric Gaseous Structures

Let us consider the wave attenuation caused by the atmospheric gas, as a continuum
of molecules of gases. Then, in the next sections we will consider all effects of
hydrometeors, as most important in determining communication system reliability.
The molecular absorption is due primarily to atmospheric water vapor and oxygen.
Although for frequencies around 1-20 GHz this kind of attenuation is not large, it
takes place as a permanent factor. The absorption in the atmosphere over a path
length r is given by [4,5,30]

A= Jdry(r) [dB] (6.20)
0

where y(r) is the specific attenuation consisting of two components:

V(r) = 7,(r) + 7,(r)  [dB/km] (6.21)

where v,(r) and v,,(r) are the contributions of oxygen and water vapor, respectively.
At the ground level (where pressure is of 1013 mb) and at a temperature of 15°C
they are approximated by [3-5,9]

6.09 4.81

o= 7.19-107% + +
! 240227 (F—57)* +1.50

f*x 107 [dB/km] (6.22)
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and

. 10.6
+
(f—222)*+8.5 (f—183.3)24+9.0

¥,, = |0.050+0.0021p + f*px107* [dB/km|

(6.23)

where f is the frequency [GHz], and p is the water vapor density [g/m*]. Other
temperatures are taken into account by correction factors of —1.0% per °C from
15°C for dry air, and —0.6% per °C from 15°C for water vapor (attenuation
increasing with decreasing temperature).

As in meteorology the measurable quantity is the relative humidity #(7'), we have
to relate p with 5(T). The relative humidity is given by

n(T) = p/E(T) (6.24)

where p is the water vapor partial pressure, [mb], and E(T) is the saturation pressure,
which is defined by the approximate formula [3-5,9]

E(T) = 24.19°10'0798340 (6.25)
where © = 300/T. Finally, the values of p and p are related by
p 22167 p/T (6.26)
The attenuation for a slant path can be estimated by using the exponential models
with height scales of h, = 6km and h, = 2km for the dry air and water vapor,
respectively. Such a model leads to
A, =7y,L,, A, =7y,L, [dB] (6.27)

where the effective path lengths are given by (n = o, w)

L= le:sffghﬂ [F(xn) — F(x) exp(—ha/hy)]  [km] (6.28)

Here, as above, R.ss = 8500km is the effective Earth’s radius,
0 ~ arctan hy /d (6.29)

is the elevation angle, and the values of x,; are given by

2 hi h12
Xpi =cos 0|z, tan” 0+ 4 [22 +2—+ (6.30a)

hn 2Reff hn

20 = sin O0y/Rege /by (6.30b)
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The function F(x) is approximated by the expression [3-5,9]

1
©0.661x +0.3394/5.51 + 2

F(x) (6.31)

Using these formulas, we find that the attenuation due to the water vapor
dominates, and for typical European or North American summer weather
conditions, the specific attenuation does not exceed 0.02 dB/km at sea level. This
corresponds to the maximal attenuation of 7 dB for the horizontal path length of
350 km. Under summer conditions, the absorption due to oxygen does not exceed
typically 8 - 10~ dB/km, which corresponds to 2.8 dB for the maximal distance.
In winter, the oxygen contribution to the specific attenuation does not exceed
1072 dB/km. The total attenuation at sea level due to atmospheric gases can be
estimated as 0.025 dB/km. However, for slant paths the total attenuation does not
exceed the value of 1 dB, but for the 99% level of probability it may be estimated
as 2dB.

As was mentioned above, gaseous molecules in atmosphere may absorb
energy from radio waves passing through them, thereby causing attenuation. This
attenuation is greatest for polar molecules such as water H,O [30]. As was
mentioned in Reference [30], the oppositely charged ends of such molecules cause
them to align with the ambient electric field. Since the electric field of radio waves
is changing in direction twice per cycle, realignment of such molecules occurs
continuously, so a significant loss may result. At higher frequencies this realignment
occurs faster, so the absorption loss has a general tendency to increase with
frequency.

Nonpolar molecules, such as oxygen O,, may also absorb wave energy due
to the existence of magnetic moments. Here also the increase of absorption is
observed with an increase of wave frequency [5,9,30]. But here several resonance
peaks of absorption, each corresponding to different modes of molecule vibra-
tion, the lateral, the longitudinal and so forth, are occurring. The main resonance
peaks of H,O are around 22.3, 183.3, and 323.8 GHz, and of O, are around 60 GHz
covering actually a complex set of closely spaced peaks that prevent the use of the
band 57-64 GHz for practical satellite communication. The specific attenuation
in decibels per kilometer for water vapor, v,,, and for oxygen, y,, is given in
Figure 6.4 according to References [5,9] for a standard set of atmospheric
conditions. The total atmospheric attenuation L, for a particular path is then found
by integrating the total specific attenuation over the total path length rr in the
atmosphere [3-5,9,30]:

T T

L= jm)cﬂ - j (D) + v, (D)l [dB] (632)
0 0

This integration calculated for the total zenith (6 = 90°) attenuation carried out in
References [5,9] is presented in Figure 6.5 by assuming an exponential decrease in
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gas density with height. The attenuation for inclined paths with an elevation angle
0 > 10° can then be found from the zenith attenuation L, as [5,9,30]

L
L, = SiIlZ (633)

We must note that atmospheric attenuation results in an effective upper frequency
limit for mobile satellite communications.

6.1.4. Scattering in the Troposphere by Gaseous Structures

Pure scattering occurs if there is no absorption of the radiation in the process, and
hence, no loss of energy but only a redistribution of it [5,9,30]. Most of the scattering
encountered in the atmosphere is essentially pure and is discussed in this section.

The attenuation due to scattering of the radio wave depends upon the pattern (or
main lobe) of the receiving antenna. If the antenna pattern is very large, some field
energy scattered at a very small forward angle will still be accepted and received. If
the antenna pattern is very small, all scattered radiation can be rejected and only
transmitted rays arrive at the receiver.

Theoretically, scattering can be treated using three separate approaches depen-
ding on the wavelength and the size of the particles causing the scattering. These
approaches are Rayleigh scattering, Mie scattering, and Nonselective scattering.

Rayleigh Scattering applies when the radiation wavelength is much larger than
the particle size. The volume scattering coefficient for Rayleigh scattering can be
expressed as [25,27]

o (eNV2 ) — )’ (6.34)
B (2 +2n3)? .

where N is a number of particles per unit volume, [cm °]; V is the volume of
scattering particles, [cm3]; A is a wavelength of radiation, [cm]; ng is the refractive
index of the atmosphere in which molecules (atoms) of gases are suspended as
particles; and n is a refractive index of scattering particles. For spherical water
droplets in air, (6.34) becomes

3
Noy

where g, is the cross-sectional area of the scattering droplet. The expression (6.35)
must be integrated over the range of 4 and ¢ encountered in any given circumstance.
As long as the particle diameter 21/0,/n is very small compared to A, the same
scattering can be experienced from a large number of small particles or a small
number of large particles, accounting the product No? to be the same.
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At the conditions of standard temperature and pressure the scattering coefficient
iso; =1.07 x 107327495 km ™! (4 in micrometers); o is the scattering coefficient
for wavelength, [cmfl].

Mie scattering is applicable when the particle size is comparable to the
radiation wavelength. The Mie scattering-area coefficient is defined as the ratio
of the incident wave front that is affected by the particle to the cross-sectional
area of the particle itself. The scattering coefficient ¢ can be obtained from
References [25,26]

o = NKna* (6.36)

where the value of K rises from O to nearly 4 and asymptotically approaches the
value 2 for large droplets. For the almost universal condition in which there is a
continuous size distribution in the particles, we have from Reference [25]

g, =7 JN(a)K(a,n)a2da (6.37)

ap

where N(a) is a number of particles per cubic centimeter in the interval da, [cm73];
K(a,n) is the scattering area coefficient; a is the radius of spherical particle, [Cmfl];
n is an index of refraction of particle. Many authors present a detailed treatment of
scattering theory [25-27] for a wide variety of particle composition, size, and shape.
The Mie scattering area coefficient is given in References [25-27].

Nonselective scattering occurs when the particle size is very much larger than the
radiation wavelength. Large-particle scattering is composed of contributions from
three processes involved in the interaction of the electromagnetic radiation with the
scattering particles:

— reflection from the surface of the particle with no penetration;
— passage through the particle with and without internal reflections;
— diffraction at the edge of the particle.

In References [25-27] the combined effect of all three processes, including the
interference encountered between the three components, is discussed. It is shown
that for particles larger than about twice the radiation wavelength (o > 20), the
scattering-area coefficient becomes 2, which is the asymptotic value of scattering
effect predicted by the Mie theory. Thus, the theoretical approach through
diffraction, refraction, and reflection appears to have little contribution to the more
general approach of Mie. Thus, for o < 20, the Mie theory is valid, and for o« > 20
the two predictions converge on the value 2.
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6.1.5. Propagation Clearance

The maximal distance ry of line-of-sight (LOS) propagation in a nonrefractive
atmosphere and a spherical earth surface is given by [31]

ro = 2Reff(\/hT+ \//’1—2) - 3.57(\/h_1—|— \/izZ) (6.38)

where h; and &, are the heights of the antennas, [m]. When refraction is taken into
account, we have [31]

ro = 357V (Vi +Viz) [k (6.39)

In practice, the term associated with the height of the ground-based terminal antenna
(m < 10m) can be neglected with respect to the height /4, of the air vehicle antenna.
Then, the latter formula may be easily inverted to obtain the minimal altitude of the
object (air vehicle antenna), which is visible for a given distance d,

By min = 0.0785 d° k. [m] (6.40)

Although this dependence looks like a parabolic function, its behavior differs from
pure parabolic because of the presence of x., which is a function of distance.

Let us now present some examples on how refraction affects the range of direct
visibility (LOS conditions) between two antennas within the tropospheric radio link.
Thus, for a vehicle antenna at height of #; = 2km, we have from (6.11) and (6.39)
that ry = 178 km for 95% availability, and ry = 173 km for 99% level. Similarly, for
h, = 6km, we have ryp = 312km (availability is 95%) and 304 km (availability is
99%). On the contrary, knowledge of the range between antennas allows us to obtain
the minimal height of air vehicle, from which LOS conditions are valid. Thus, the
range of 350 km will be covered, according to (6.40) and taking into account (6.11)
only for heights h, larger than 8 km.

Tropospheric radio paths are classified as open (correspond to the same LOS
conditions as in terrestrial links described in Chapter 5), semiopen, and closed
(correspond to the same NLOS conditions in terrestrial links). As was shown in Chapter
5, wave propagation takes place within the first Fresnel zone (ellipsoid) around the ray
connecting the terminal/vehicle antennas. We will state this concept also for
tropospheric radio links. Thus, the radius of the first Fresnel zone at a point between
the transmitter and the receiver antennas is determined by the following formula

lp(dl,dz) = /ldldz/(dl +d2) (641)

where d; and d, are the distances to the antennas at the point where the ellipsoid
radius is calculated. The maximum value is achieved in the middle of the path
(dy = dy = L/2) and is equal to (see Fig. 6.6)

Ip = \/AL/2 (6.42)
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FIGURE 6.6. The line-of-sight (LOS) conditions; S; is the area of cross section of Fresnel’s
zone with radius /r.

For example, for frequency 15 GHz and maximal distance of 150 km /g ~ 39 m, and
for frequency 13 GHz and distance of 350 km /r ~ 64 m.

Using the Fresnel zone concept, we can determine all kinds of tropospheric radio
links. Thus, we will state that for:

Open (or within the horizon) paths there are no obstacles located between the
antennas (see Fig. 6.6). In this case the propagation of the wave is similar to that in
free space (see Chapter 5), taking into account only the attenuation due to
atmospheric gases and hydrometeors.

For semiopen (near the radio horizon) paths, the obstacles cover a part of
the ellipsoidal cross section, and the effects of the obstacles can be important (see
Fig. 6.7). However, the size of the first Fresnel zone is very small compared to the
variability of the air vehicle antenna height, and this intermediate case is of much
less importance.

For closed paths, including the hilly or mountainous terrain described in
Chapter 5, the wave attenuation due to diffraction from such obstructions and due to
the effects in the troposphere may exceed 300 to 350 dB, and the propagation is
possible only by using the so-called troposcatter mechanism (this subject will be
discussed later in Section 6.3).

6.1.6. Depolarization of Radio Wave in the Atmosphere

The polarization of a wave changes when passing through an anisotropic medium
such as a cloud. As was shown by Saunders [30], a purely vertical polarized wave

Turbulences
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FIGURE 6.7. The non-line-of-sight (NLOS) conditions; S, is the area of cross section of the
part of the Fresnel’s zone with radius /.
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FIGURE 6.8. Depolarization of the transmitted wave caused by a cloud.
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may obtain an additional horizontal component, or the right-hand circularly
polarized (RHCP) wave may obtain an additional left-hand circularly polarized
(LHCP) component. The extent of this depolarization may be measured by the
cross-polar discrimination (XPD) and cross-polar isolation (XPI) terms, which can
be presented schematically in Figure 6.8 according to Reference [30]. Essentially,
the XPD term expresses how much of a signal in a given polarization is transformed
into the opposite polarization caused by the medium, while the XPI term shows how
much two signals of opposite polarizations, transmitted simultaneously, will
interfere with each other at the receiver. As was also shown in Reference [30],
depolarization is strongly correlated with rain attenuation and standard models of
depolarization use this fact to predict XPD directly from the attenuation. One of such
a model, described in Reference [30], gives

XPD=a—blogL (6.43)

where L is the rain attenuation (in watt), and a and b are constants a = 35.8 and
b = 13. This formula is an accurate empirical predictor for frequencies below
10 GHz. Hydrometeors and tropospheric scintillation can be the additional source
of signal depolarization in fixed satellite commu nication links (see Chapter 14).

6.2. EFFECTS OF THE HYDROMETEORS ON RADIO PROPAGATION
IN THE TROPOSPHERE

6.2.1. Effects of Rain

The attenuation of radio waves caused by rain increases with the number of
raindrops along the radio path, the size of the drops, and the length of the path
through the rain.

Statistical-Analytical Models. Tf such parameters of rain, as the density and size
of the drops are constant, then, according to Reference [30], the signal power P, at



194 EFFECTS OF THE TROPOSPHERE ON RADIO PROPAGATION

the receiver decreases exponentially with radio path r, through the rain, with the
parameter of power attenuation in e~! times, «, that is,

P, = P,(0)exp{—ar} (6.44)

Expressing (6.44) in logarithmic scale gives
P,
L= 1010gP— =4.3430r [dB] (6.45)

Another way to estimate the total loss via the specific attenuation in decibels per
meter was shown by Saunders in Reference [30]. He defined this factor as

L
y =—=4.3430¢ (6.46)
r
where now the power attenuation factor o can be expressed through the integral
effects of the one-dimensional (1D) distribution of diameter D of the drops, denoted
by N(D), and the effective cross-section of frequency-dependent signal power
attenuation by rain drops, C(D) [dB/m], that is,

o= J N(D) - C(D)dD (6.47)

As was mentioned in References [4,6,8,30], in real tropospheric situations, the
drop diameter distribution N(D) is not a constant value and one must account
for the range dependence of the specific attenuation that is, the range dependence,
y = y(r), and integrate it over the whole radio path length rg to find the total
path loss

L= J p(r)dr (6.48)
0

To resolve Equation (6.48), a special mathematical procedure was proposed in
Reference [11] that accounted for the drop size distribution. This procedure yields an
expression for N(D) as

N(D) = Ny exp{lin} (6.49)

where No=8-10°m>mm~' is a constant parameter [11], and D,, is the

parameter that depends on the rainfall rate R, measured above the ground surface
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in millimeters per hour, as
D,, = 0.122 - R**' mm (6.50)

As for the attenuation cross-section C(D) from (6.47), it can be found using the
Rayleigh approximation that is valid for lower frequencies, when the average drop
size is smaller compared to the radio wavelength. In this case only absorption inside
the drops occurs and the Rayleigh approximation is valid giving a very simple
expression for C(D)

C(D) o %3 (6.51)

Attenuation caused by rain increases more slowly with frequency approaching a
constant value known as the optical limit. Near this limit, scattering forms a
significant part of attenuation that can be described using the Mie scattering theory
described above.

In general, Equation (6.47) can be solved directly using expressions (6.48)—
(6.51). However, as the rainfall rate depend on the raindrop size distribution, on
several antenna parameters (elevation angle, height, polarization, etc.), as well as on
the geographical parameters (longitude and latitude) of the location of antennas it
cannot be predicted strictly using some unified approach. In practical situations, an
empirical model is used, where y(r) is assumed to depend only on rainfall R and
wave frequency. Then according to References [4,6,8,9] we can obtain

7 R) = a(f)R" (6.52)

where y has units dB/km; a(f) and b(f) depend on frequency [GHz]. For 15-70 GHz
frequency band, a(f) and b(f) can be approximated by [4,6,8,9]

a(f) = 101203 log(f) 2290

(6.53)

b(f) = 1.703 — 0.493 log(f)
In References [6,9,30], it was shown that for ground vehicle antenna elevation angles
0 smaller than 90°, it is necessary to account for the variation in the rain in the
horizontal direction. This allows us to focus on the finite size of rain clouds, that is,
on the areas called the rain areas (or cells) (see Fig. 6.9). In the case of finite rain
sizes, the path length is reduced by using a reduction factor s. If so, the rain
attenuation is [6,15]

L = ysrg = a(f)R*Vsrg (6.54)

Also, rain varies in time over various scales: seasonal, annual, and diurnal. All of
these temporal variations are usually estimated by using (6.52) to predict the rain
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FIGURE 6.9. A rain cell with respect to snow, ice, and storm phenomena.

attenuation, Ly o1, that must not exceed 0.01% of the time. In this case, the rainfall
rate, Ry 01, must not exceed 0.01% of the time during an average year. Using special
corrections of this attenuation, in Reference [30] another approximate formula than
(6.54) was presented by Saunders

L= aRg'Olso‘Ol rR (655)

where the following empirical expression for sy, was evaluated in References
[6,15,30]:

1
rr sin 0
1
+ 35 eXp(—0.0lRO.()l )

S0.01 = (656)

Here, it was also shown that the empirical Expression (6.55) for attenuation can be
corrected by introducing special relevant time percentage P, which is changed over
the wide range from 0.001% to 1%, that is,

LP _ L(l()l .0.12 - P7(0.546+0.O43 log P) (657)

As was shown and discussed in References [6,15,30], the reference rainfall rate
Roo1 is strongly dependent on the geographical location: from around 30 mm/h
in Northern Europe and countries at the same latitudes of USA, to 50 mm/h in
Southern Europe, around the Mediterranean zone, and up to 160 mm/h in the
equatorial zones.
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Now using the semiempirical approach proposed in References [6,11,15,30], we
can finally obtain the total path loss caused by rain as

Ltotal - LFS + L (6.58)
where Lgg is a path loss in free space (see Chapter 5):
Lps = 32.44 4 20 Log(r.) + 20 Log(f) (6.59)

and r, is the whole radio path between the ground surface and the frozen layer
[km], where rain evolve into snow (see Fig. 6.9), and fis the frequency [MHz]. The
loss parameter due to rain can be found either using the statistical approach with
the formula (6.48) and (6.49) or using the empirical formulas (6.54)—(6.57).
Formula (6.58) defines the link budget between the ground and the melting layer
and can be calculated by adding the total rain attenuation L and the free space
attenuation Lgs.

Empirical Models. There is another approach proposed by Crane [14] to estimate
the rain attenuation effects on radio propagation in the atmosphere for open radio
paths. The basic quantity, as before, is the rainfall rate R, the distribution of which
can be evaluated by using the model for the yearly percentage of time [3,14]

C
PR>r)= ﬁ 0.038e70% 4+ 0.2(1 — B)(e *P¥ 4+ 1.86¢75%)] [%] (6.60)

where
B = Cn/Co (6.61)

Cy is the general yearly rain capacity, and C,, is the yearly rain capacity due to heavy
rains with R > 50 mm/h. For typical European and the U.S. climatic conditions we
can predict R = 1.7 mm/h for time availability 99% and R = 10.7 mm/h for 99.9%
level.

The radius of the rain drops varies from 0.1 to 3.6 mm. For the range of
frequencies 5-30 GHz, the drops can be considered as rather small scatterers, and
the attenuation rate decreases generally with the wavelength. The distribution of the
drop scale in rain depends on the rainfall rate, type of cloud, wind velocity,
temperature, height, and many other factors. The size distribution of rain drops may
be modeled by Laws—Parsons, Marshall-Palmer, Best, Shifrin, or other distributions
[9-11]. The presented approach is based on the Marshall-Palmer distribution.
Specifically, in L/X-band frequency, the attenuation rate can be approximated by the
relation

9, ~ 0.175¢()R'2 /2> [dB/km| (6.62)
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where 2 is the wavelength [cm], and ¢(7) is the temperature correction factor, which
is equal to 1 at 20°C. For t = 0°C we have ¢(0) = 2, for = 10°C we have
¢(10) = 1.3 (the latter value is used for estimations presented below), and for
t = 30°C we have ¢(30) = 0.70. The strong effect of the temperature is related to the
temperature dependence of both real and imaginary parts of water permittivity.
Obviously, the coefficient 0.175 in (6.60) is closely related to the distribution used.
For other distributions, this coefficient may differ significantly up to 30% and even
more, but comparison with experimental studies for rain attenuation, for rather long
paths, shows that the value used in (6.60) may serve as a good approximation. At
frequencies near 15 GHz (/. = 2 cm), we have y = 0.076 dB /km for R = 1.7 mm/h
and y = 0.69 dB/km for R = 10.7 mm/h. At frequencies near 13 GHz (1 = 2.308 cm)
we have y =0.053dB/km for R=1.7mm/h and y =0.48dB/km for R =
10.7 mm/h.

The field of rainfall rate is inhomogeneous in space and time. Rain observations
by weather radars show short intervals of higher rain rate imbedded in longer
periods of lighter rain. Also, such observations show small areas of higher rain rate
imbedded in larger regions of lighter rain [12—18]. The geometrical characteristics of
rain cells depend on the rain intensity and climate conditions, seasonal, annual and
diurnal, which are related to the coordinates of the region.

The cell diameter appears to have an exponential probability distribution of the
form [12-18]

P(D) = exp(—D/Dy) (6.63)

where Dy is the mean diameter of the cell and is a function of the peak rainfall rate
Rpeax- For Europe and the United States, the mean diameter Dy decreases slightly
with increasing Rpeax When Rpeax > 10 mm /h. This relationship appears to obey the
power law

Do=aRly,  Rpea >10mm/h (6.64)
Values for the coefficient a ranging from 2 to 4, and the coefficient b from 0.08 to
0.25 have been reported. An example of the correlation between rainfall rate and the
typical cell scale is given in Table 6.1 following the results obtained in Reference
[30] according to the observations made in References [12—18].

The most difficult parameter in attenuation modeling is the spatial distribution of
rain. As the precipitations are characterized by variations in both the horizontal and
vertical directions, a correction factor is required in the modeling path lengths of rain
attenuation. Here we use a simple prediction method on the basis of the so-called

TABLE 6.1. Rain Rate R for Different Rain Cells

R, mm/h 100 50 25 20 10 5
Rain Area, km 3 4 6 7 10 20
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TABLE 6.2. Effective Path Length L, and the Rain Attenuation F, for Time
Aviability of 99.0% and 99.9% for f = 156 Hz and the Antenna Height h, = 2 km

Distance, km 50 100 150
L,, km (99.0% level) 22.6 26.6 28.2
L,, km (99.9% level) 18.5 21.1 22.1
F,, dB (99.0% level) 1.7 2.0 2.1
F,, dB (99.9% level) 12.8 14.6 15.3

effective path length to take into account the non uniform profile of rain intensity
along a given path. The effective path length L, is the length of a hypothetical path
obtained from radio data, dividing the total attenuation by the specific attenuation
exceeded for the same percentage of time. The transmission loss due to attenuation
by rain is then given by

A =7p,L, (6.65)

The effective path length L, can be estimated, instead of (6.50)—(6.52), according to
the empirical model [10,11]

L,
L =
1+ 0.0286 L, RO15

(6.66)

where, neglecting the ray bending,

L,=d, Ly = \/d*+ h3, hy < h, (6.67a)
Ly=dh,/hy,  Li=h/1+d*/h:,  ha>h, (6.67b)

d is the horizontal component of the distance between antennas, /4, is the average
rain height (approximately 3 km for European weather conditions), and #, is the
height of the air vehicle antenna. An example of the corresponding calculations of
rain attenuation (in dB) for the frequency 15 GHz and antenna height 4, = 2 km are
presented in Table 6.2, and for the frequency 13 GHz and antenna height 7, = 6 km
in Table 6.3.

TABLE 6.3. Effective Path Length L, and the Rain Attenuation F, for Time
Aviability of 99.0% and 99.9% for f = 136 Hz and the Antenna Height h, = 6 km

Distance, km 100 200 300
L,, km (99.0% level) 19.9 24.9 27.1
L,, km (99.9% level) 16.8 20.1 21.8
F,, dB (99.0% level) 1.3 1.6 1.8

F,, dB (99.9% level) 8.5 9.8 10.6
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Semi-Empirical Models. The first presented model used in satellite communica-
tions is a semi empirical model called “‘Lin-Chen” that was proposed in [17] to
evaluate the extinction cross section (ECS) of raindrops by using the modified
raindrop model for mean radius of drops calculation ranging from 0.25 to
3.5 mm. This wide-range model (from 0.6 to 100 GHz) is based on the compilation
of experimentally obtained factors, numerical data, and on the volume integral
equation formulation (VIEF) to obtain the empirical formula for calculating the
ECS of raindrops. To derive the corresponding empirical formula that charac-
terizes the ECS of raindrops, Q;, it was assumed in [17] that it must be a function
of such parameters, such as the radio frequency, f, the mean drops’ radius, ay, the
complex dielectric permittivity, &*, and on the type of polarization of radio wave.
Based on the VIEF evaluation of Q; for raindrops with 14 different radii (from 0.25
to 3.5 mm) and wave polarizations, horizontal and vertical, the following criteria
are formulated [17]:

1) for f < f,, the ESC is increased as a bell-shape function;

2) for f > f, the ESC is increased rapidly and then, reaching to the maximum
value, is increased slowly with an increase of radio frequency.

Here £, is the critical frequency obtained by the least-square curve fitting of 364 sets
on computed Oy, [m?], with empirical data available for 14 different radii of
raindrops using VIEF method (see details in [17]). A simple formula that satisfies
these two criteria is given by [17]

2
A (}{i) +A2

(£ +22[(5)-1]

where Ay,A,, A3, A4, and As are a function of type of polarization, the mean radius
ag and the radio frequency f; U(f — 0.5fp) is a unit step function defined by

0,=10"° S[1=U(f —0.5f0)]+[(Asf +As) (1 —e S INU(F —0.5f)]

(6.68)

U(f — 0.5f,) = { (1) J} i %,i—}:? (6.69)

fo is a function of mean radius ay determined by curve fitting a group of 14 data sets
expressed by

fo = 58.5866a, 4% (6.70)

Here, units of fy and ao are in gigahertz and millimeters, respectively. The
empirical formula (6.68) was proposed for frequency ranges from 0.6 to 100 GHz.
As f., the coefficients Ay, A,, Az, A4, and, As, were determined by a least-squares
curve fitting of 364 sets of O, with data available for 14 different raindrops using
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the VIEF. These coefficients were expressed empirically in terms of raindrop
parameters such as ay, f, and polarization in the following manner. For the critical
frequency

Jfo
(0.9076 + 0.2094)

f= (GHz) (6.71)

The coefficients Ay, Ay, Az, A4, and As are given by [17]:
for horizontal polarization:

A =20+7.0x%a

Ay =0.6 x 107° 4+3.245 x 107* x (ag x f)'¥

Az = 0.0087 4 0.0383 x a}%%° (6.72a)
Ay = —11.49 +45.97 x ay

As =0.43 x a)®

for vertical polarization:

A =2.0+55x%a
Ay =03 x 107° 4+3.245 x 107 x (ag x f)"!

Az = 0.0087 + 0.0236 x a7 (6.72b)
Ay = —8.79 +32.27 x a)**

As = 0.46 x aj®

As above, the units of fand ag in (6.71) and (6.72) are in gigahertz and millimeters,
respectively. Thus, (6.68) provides a frequency-dependent empirical formula for the
Q, for raindrops with the coefficients A, A,, A3, A4, and As, expressed in (6.72a) and
(6.72b) in terms of mean radius of raindrops and frequency.

Now, on the basis of the study of isotropic or anisotropic spherical wave
expansion, the specific rain attenuation A in dB/km can be expressed as [17]

A =4.343 x 10° J Q:(a)N(a)da (6.73)
0

where Q;(a) is the ECS defined above and N(a)da is the number of the density
of raindrops with equivalent radius a in the interval da. As was mentioned earlier,
analyzing the Saunder’s model [30], the raindrop size distribution function N(a)
may have a great difference in different regions. There are many raindrop size
distributions used in the calculation of possible specific attenuation values. As was
shown in Reference [17], the raindrop size distribution in most rain cases is
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described by a theoretical distribution having the negative exponential form
N(a) = Noe ™ [m™, A=oR? [mm] (6.74)

where Ny, o, and f§ are constants and R is the rain rate in millimeters per hour. For
example, in the model described in Reference [18], Ny = 1.6 X 10*m=3 - mm!,
o = 8.2, f =0.21, and a is the raindrop radius in millimeters.

The specific rain attenuation of (6.73) can be obtained by substituting the
empirical formula of O, and the negative exponential size distribution N(a) into
(6.73). Thus, an empirical formula for specific rain attenuation can be obtained by
numerical calculation as

K
A=4343x10°>" 0,(kAa)N(kAa)Aa  [dB /km] (6.75)
k=1

where K is an integer number of am,x/Ad; amax and Aa are the maximum mean
radius of a raindrop and the incremental radius respectively. It is clear that the
value of specific rain attenuation A in (6.75) depends on the choice of the
incremental radius Aa and the maximum mean radius ap,,. According to
Reference [15], the smallest raindrop may be equivalent to those found in clouds,
and the largest raindrops will not exceed 4 mm in radius, as raindrops with radius
greater than 4 mm are unstable and break up. Therefore, we chose K to be 4 mm.
The maximum mean radius of 4 mm will be adopted for the calculation of specific
rain attenuation.

Finally, the knowledge of specific rain attenuation A allows us to calculate the
total path loss introduced in (6.58), the LOS component in (6.59), and the rain loss
excess L, as the product of the specific parameter A and the length of radio path
through the layer containing rain, that is, L = Arg.

It is important to note that the International Telecommunication Union (ITU) has
proposed to use the Saunder’s model [30] as the most convenient rain attenuation
model for terrestrial systems and for space-to-land links [4,6,9] for the following
reasons:

— this model is a general model that does not depend on a particular place in the
world, making it suitable for all places around the globe;

— it is not frequency constrained, that is it is a general model suitable for all
communication frequencies used in land-satellite links, whereas most of the
models are frequency depended in the X/Ku-band;

— it has a good processing time and can be easily implemented.

Therefore, it is interesting to compare the Saunder’s model with the “Lin-Chen’” and
the Crane’s semi-empirical statistical-empirical models.

To compare the “Lin-Chen” model with Saunder’s model, both described above,
take the root-mean-square (rms) value of a specific rain attenuation for the vertical
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and horizontal polarizations expressed by

JAZ 4 A2
Arms = % [dB/km] (6.76)

It is quite reasonable to take the rms values for comparisons of rain attenuation, as
some measurements are not stated by polarization factors. Here, we use the
empirical formula that was given for the calculations of the ECS and three different
drop size distributions:

(1) The first one is the Singapore raindrop size distribution model with the
following parameters [15,16]:

No = 6256.64 [m™ -mm™'|, «=544 f=0.197775 (6.77a)

(2) The second one is the M-P raindrop size distribution model with the
following parameters [18]:

No=16000 m> -mm™'|, «=82 =021 (6.77b)

(3) The third one is the J-T raindrop size distribution model with the following
parameters [17]:

No=2800m™> -mm'|, a=6 f=02I (6.77¢)

Next, we use the empirical Formula (6.75), obtained from the “Lin-Chen” model,
and apply it to the three raindrop sizes mentioned above. Figures 6.10a and 6.10b
show a comparison between the emprirical formula in (6.75) and the Saunder’s
model for a macrocell area (rg > 10km). Figures 6.11a and 6.11b are for microcell
areas (rg <2-3km). From Figure 6.10a, it is clear that there is a better match
between the Saunder’s model and the “Lin-Chen’” model for the J-T and M-P drop
size distributions rather than the ““Singapore” raindrop size distribution at 12.5 GHz.
At 30 GHz, from Figure 6.10b, a good match between the Saunder’s and the “Lin-
Chen”” models is demonstrated for the M—P drop size distribution, but not for the J-T
drop size distribution case. The same tendency is observed for microcell areas (see
Figs. 6.11a,b). However, there is a significant difference in the achieved rain
attenuation between the macro- and microcells, if we compare the Saunder’s and the
“Lin-Chen”’ model for the M—P drop size distribution.

Equation (6.62) was used to compare the Saunder’s model to the Crane model,
where a knowledge of specific rain attenuation A, allows us to calculate the rain loss
excess L, as the product of the specific parameter A and the length of radio path
through the layer containing rain, that is, L = Arg.

Comparisons of path loss caused by specific rain attenuation versus the rain
intensity, [in mm/h], obtained from Saunder’s model and the Crane model at
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Macro Cell Link Budget Lin Chen Vs Saunders Model at 12.5 GHz
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FIGURE 6.10(a,b). Path loss versus rain intensity for a macrocell at 12.5 and 30 GHz.
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Micro Cell Link Budget- Lin Chen Vs Model at 12.5 GHz
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FIGURE 6.11(a,b). Path loss versus rain intensity for a microcell at 12.5 and 30 GHz.
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frequencies of 12.5 and 30 GHz are shown in Figures 6.12a and 6.12b for a
macrocell area (rg > 10km), and Figures 6.13a and 6.13b for microcell areas
(rr < 2-3km). From the comparisons shown in Figures 6.12a and 6.13a, it
follows that there is good matching between the Saunder’s and the Crane model
(with the average deviation of 2 dB for macrocell areas and the average devia-
tion of 5dB for microcell areas) for all rain intensities at 12.5 GHz. The same
tendency appears in the results shown in Figures 6.12b and 6.13b, with an average
deviation of 4 dB for macrocell areas and an average deviation of 7dB for
microcell areas for rain intensity in the range of 10-100 mm/h. On the other
hand, there is not a good match between the Saunder’s model and the Crane model,
from which we got the average deviation of 10 dB for macrocell areas and the
average deviation of 20 dB for microcell areas, for rain intensity in the range
of 100-150 mm/h. As the rain intensity increases this difference becomes even
more predominant.

There is a significant difference in rain attenuation between macro- and
microcells. The path loss caused by rain attenuation reaches 270 dB, at 30 GHz, for
micro cell areas versus the 200 dB attenuation that occurs in the macrocell areas. All
these results are very important for designers of land-satellite link performance,
because in the radio path through a microcell area containing intensive rain, there
is much more signal attenuation observed than in radio paths through macrocell
areas, where the areas of intensive rain cover only few percentages of the total
radio path.

6.2.2. Effects of Clouds and Fog

In the cloud models described below, a distinction between cloud cover and sky
cover must be explained. Sky cover is an observer’s view of the cover of the sky
dome, whereas cloud cover can be used to describe areas that are smaller or larger
than the floor space of the sky dome.

Cloud Models. There have been several proposed mathematical formulations
for the probability distribution of the sky cover. Each of them uses the variable x
ranging from zero (for clear conditions) to 1.0 (for overcast conditions). Each model
claims to have versatile statistical characteristics to simulate the U-shaped curves of
the sky cover.

The First Cloud Cover Model. The Beta distribution is an early cloud model [7,36]
whose density function is given by

X1 —x)""0<x<1l;a,b>0. (6.78a)

In this formula pairs of values of the two parameters (a,b) are given in some 29
regional types that cover the world, for the four midseason months, for two times of
the day.
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Macro Cell Link Budget Crane model Vs Saunders Model at 12.5 GHz
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FIGURE 6.12(a,b). Path loss versus rain intensity for a macrocell at 12.5 and 30 GHz.
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Micro Cell Link Budget Crane model Vs Saunders Model at 12.5 GHz
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FIGURE 6.13(a,b). Path loss versus rain intensity for a microcell at 12.5 and 30 GHz.
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The Second Cloud Cover Model. Somerville and Bean [36] have proposed a
model called the S-distribution, which is the cumulative probability distribution
function F(x) of sky cover x estimated as

F)=1-(1-x"; 0<x<1; ap>0. (6.78b)

Pairs of values of the two parameters (o, f§) have been determined to make the
distribution F(x) fit the data in the sky-cover summaries. These data have been
published for 23 stations around the world, for each of eight periods of the day in
each month of the year. The best pair of values for the sky cover were found to be in
January at noontime, being o = 0.1468, f = 0.1721.

The Third Cloud Cover Model. This model, which is also called the Model B, has
been described in References [7,36]. Like the previous models, it requires two
parameters for the description of the probability distribution of cloud cover. The
parameters in Model B have physical meaning. First parameter Py is the median
cloud cover as given in climatic summaries; it is taken to be the single-point
probability of a cloud intercept when looking up from the ground. The second
parameter 7, known as the scale distance, is the distance between two stations whose
correlation coefficient of cloud cover is 0.99.

Ceiling Cloud Model. 1t is one of the best models for ceiling height cumulative
distributions [36]

ay —b
F(h)1{1+(lz> } ; a,b,c>0 (6.78c¢)
where £ is the ceiling height and a, b, ¢ are parameters, determined below. Bean [36]
sets the values for a, b, and ¢, which have been determined for eight periods of the
day in each month at 23 stations around the world to make the estimated
distributions, F (h), fit the data for 30 ceiling heights. The best pair of values for the
sky cover were found to be in January at noontime and equal a = 1.1678,
b = 0.1927 when ¢ = 0.305 km.

It follows from numerous observations that in clouds and fog the drops are
always smaller than 0.1 mm, and the theory for the small size scatterers is applicable
[7,20-24,36]. This gives

9. ~ 0.438¢(1)q/ 72, [dB/km] (6.79)

where / is the wavelength measured in centimeters, and ¢ is the water content
measured in gram per cubic meter. For the visibility of 600 m, 120 m, and 30 m the
water content in fog or cloud is 0.032 g/m?, 0.32 g/m?, and 2.3 g/m?, respectively.
The calculations show that the attenuation, in a moderately strong fog or cloud does
not exceed the attenuation due to rain with a rainfall rate of 6 mm/h. Owing to the
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lack of data, a semi-heuristic approach is presented here. Specifically we assume that
the thickness of the cloud layer is w, = 1 km, and the lower boundary of the layer is
located at the i, = 2 km height. The water content of clouds has a yearly percentage
of [7]

P(q > x) = p.exp(—0.56y/x — 4.8x) [%] (6.80)

where p, is the probability of cloudy weather (%). Neglecting the ray bending, we
have for the length of the path within the cloud layer

L=0, h<h (6.81a)
Lo= /A + B0 —ho/hy),  he<hy<he+w, (6.81b)
L. = w./sin0, hy > he + w, (6.81c)
where
0 = arctan(h, /d) (6.82)

Here £, is the vehicle antenna height. Although the attenuation in clouds is less than
in rain, the percentage of clouds can be much more essential than that of the rain
events. Thus, the additional path loss due to clouds can be estimated as 2 dB and
5 dB, for 350 km path and &, = 6 km, and for the time availability of 95% and 99%,
respectively.

6.3. EFFECTS OF TROPOSPHERIC TURBULENCES
ON RADIO PROPAGATION

As a result of the turbulent flows caused by the turbulent structure (sometimes called
eddies) of the wind in the troposphere, the horizontal layers of equal refractive
indeces, mainly, in it become mixed, leading to rapid refractive index variations over
small distances. These are the small-scale variations that appear over short time
intervals, and yield rapid refractive index variations. Let us first consider the main
characteristics and parameters of atmospheric turbulence and then discuss briefly the
tropospheric scintillations mentioned above, as well as the effects of multiple
scattering due to the irregular structure of the troposphere.

6.3.1. Main Characteristics and Parameters
of Atmospheric Turbulence

Atmospheric turbulence is a chaotic phenomenon created by the random
temperature, wind magnitude variation, and direction variation in the propagation
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medium. This chaotic behavior results in index-of-refraction fluctuations. The
turbulence spectrum is divided into three regions by two scale sizes [42-45]

— the outer scale of turbulence, Ly;
— the inner scale (or micro scale) of turbulence, /.

These values vary according to atmospheric conditions, distance from the ground,
and other factors. The inner scale /) is assumed to lie in the range of 1 mm to
30 mm. Near ground it is typically observed to be around 3 to 10 mm, but generally
increases to several centimeters with increasing altitude h. A vertical profile for
the inner scale is not known. The outer scale Ly, near ground, is usually taken to
be roughly Kh, where K is a constant on the order of unity. Thus, Ly is usually
either equal to the height from the ground (when the turbulent cell is close to the
ground) or in the range of 10 m to 100 m or more. Vertical profile models for
the outer scale have been developed based on measurements, but different models
predict very different results. Let [ be the size of turbulence eddies, k < 27” is a
wave number, and A is a wavelength. Then one can divide turbulences at the
three regions

2n
Input range Ly <1, k< I
0

2 2
Inertial range Iy <1< Ly, L_n <k< l_n (6.83)
0 0

Dissipation range [ <y, ZTn <k
0
These three regions induce strong, moderate, and weak spatial and temporal
variations, respectively, of signal amplitude and phase, called in the literature
scintillations (see paragraph below).

Now, as the troposphere is a random medium, these variations of the index-of-
refraction (or turbulences) are random by nature and can be described only (with
means of stochastic processes) by the Probability Density Function (PDF) and
Cumulative Distributed Function (CDF), defined in Chapters 1, or by the corresponding
spectral distribution functions.

The main goal of studying radio wave propagation through turbulent
atmosphere is the identification of a tractable PDF and CDF or the corresponding
spectra of the irradiance under all irradiance fluctuation conditions. Obtaining an
accurate mathematical model for PDF and CDF of the randomly fading irradiance
signal will enable the link planner to predict the reliability of a radio
communication system operating in such an environment. In addition, it is
beneficial if the free parameters of that PDF and CDF can be tied directly to
atmospheric parameters.

Energy Cascade Theory of the Turbulence. The Kolmogorov energy cascade
theory of turbulence is based on the division of three types of processes defined
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in (6.83) by two scale sizes, inner [/, and outer Ly. As was mentioned above, the
value of Ly and [y may vary widely.

In the input range of (6.83), the large-scale atmospheric characteristic such as
wind forms the turbulence eddies. Here, the thermal and kinetic energy of the
atmosphere is the input to the turbulent system. The process is, in general,
anisotropic and varies, depending on climatic conditions.

In the inertial range of (6.83), the eddies formed in the input range are unstable
and fragmented into smaller regions. These break up as well, continuing in this
manner and causing energy to be distributed from the small to large turbulence
wave numbers. There is very little energy loss in this process. Most cases of
microwave propagation are affected predominantly by this region of the wave
number spectrum [23-26].

As for the dissipation range of (6.83), here the energy in the turbulence, which
was transferred through the inertial sub range, is dissipated through viscous friction
by very small eddies. The Kolmogorov’s cascade theory is presented schematically
in Figure 6.14 according to References [44,46—48].

Turbulence Power Spectrum. Results from theoretical models of scintillation
depend strongly on the assumed model for the spatial power spectrum of refractive-
index fluctuations. If we ignore the outer-scale effects, which are usually not
important in scintillation studies, the commonly used spectral models are all
special cases of

@, (k) = K (o) C2™*2f (ly) (6.84)
where « is the magnitude of the spatial wave number, « is a power-law index, K is a

dimensionless factor, C,% is the index-of-refraction structure parameter (will be
described below separately because of its importance in scintillation studies) and

FIGURE 6.14. Kolmogorov cascade theory of turbulence.
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lp is the inner scale (the reader can find all detailed information about such
parameters in References [42-50]). The normalization factor K is set so that the
index-of-refraction structure function is Cﬁr“ for r larger than /y. Kolmogorov
turbulence theory predicts that o is near 5/3, in which case K is ~1/30. The
information mentioned above allows us to rewrite (6.84) in the following manner:

D, (k) = 0.033C2 ™ V3f (il (6.85)

f(xlp) is a factor that describes inner-scale modifications of the basic power-law
form.

For example, the Kolmogorov spectrum in (6.85) is characterized by f(xly) = 1,
whereas f (ily) = exp[—(kly/5.92)°] in the case of the Tatarskii spectrum, the latter
is sometimes called the traditional spectrum [43,44]. However, neither of these
spectrum models can be used to describe the spectrum outside the inertial range.
They both show the correct behavior (in terms of fitting experimental results) only in
the inertial range. The Tatarskii spectrum has been shown to be inaccurate by as
much as 50% for predicting the irradiance variance for the strong-focusing regime in
optical propagation experiments and by as much as 40% for weak fluctuations. A
more accurate model for scintillation studies is provided by the Hill spectrum, or by
an analytic approximation that is given by the modified atmospheric spectrum. Let us
briefly discuss these models.

Kolmogorov Spectrum. For statistically homogeneous turbulences, the related
structure function exhibits the asymptotic behavior of the form [42-50]

Dy(R) =

C2R*/3 Iy <R <L
{ s s K< Lo (6.86)

C,PR.,  R<ly

where R is an eddy size.

On the basis of the above 2/3 power-law expression, it can be deduced, and the
associated power spectral density for refractive-index fluctuations can be described
by the following expression:

2 2
D) = 0033213, Lot (6.87)
. Loy lo
This is the well-known Kolmogorov spectrum, which was calculated and shown in
normalized form, @, (k) = @, (x)/0.033C2, in Figure 6.15 for the inertial and

dissipation ranges.

Tatarskii Spectrum. The Kolmogorov’s spectrum is theoretically valid only in the
inertial subrange. The use of this spectrum is justified only within that subrange or
over all wave numbers if the outer scale is assumed to be infinite and the inner scale
negligibly small. Other spectrum models have been proposed for calculations when
inner-scale and/or outer-scale effects cannot be ignored. In order to extend the
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FIGURE 6.15. Kolmogorov normalized spectrum, shown for the inertial and dissipation
ranges; the green vertical line indicates k = 2n/l.

power-low spectrum (6.87) into the dissipation range (where x > 27/ly), a trunca-
tion of the spectrum at high wave numbers is required. Tatarskii suggested doing that
by modulating the Kolmogorov spectrum model (6.87) by a Gaussian function,
which led to Tatarskii spectrum (or the traditional spectrum):

2
B, (1) = 0.033C2 13 exp(—1?/x2), K> L—n (6.88)
0

where x,, = %. This is used to express the composite spectrum, in the region other
than the input range. Figure 6.16 shows the Tatarskii model spectral behavior
calculated and presented in the same normalized form, as in Figure 6.15. It is clearly
seen from the graph how the power spectrum is “‘truncated’ in high wave numbers
relative to the Kolmogorov spectrum, specifically above k = 27/ly. Below this value
the two spectrums are almost identical.

Von Kdarman Spectrum. For mathematical convenience, we may assume that the
turbulence spectrum is statistically homogeneous and isotropic over all wave num-
bers. A spectral model that is often used in this case, one that combines the three
regions defined by (6.83), is the Von Karman spectrum:

1\ -1/
@, (x) = 0.033C2 <K2 + L2> exp(—x? /%), 0<Kk <o (6.89)
0
_ 59

where i, = == Note that even though the last equation describes the entire

spectrum, its value in the input range must be considered only approximate,
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FIGURE 6.16. Tatarskii normalized spectrum, shown with Kolmogorov spectrum for
inertial and dissipation range; the green vertical line indicates x = 2n/l.

because it is generally anisotropic and depends on how the energy is introduced
into the turbulence. This model, unlike the previous models, does not have a
singularity at k¥ = 0. Therefore, the Von Karman spectrum is almost identical to the
Tatarskii spectrum except for a difference in small values of wave numbers. The
Von Karman spectrum was calculated and shown in Figure 6.17. Figure 6.18
focuses on small wave numbers to emphasize the difference between the Tatarskii
and Von Karman models in that region. It is clear that although the Tatarskii
spectrum “‘explodes” near the origin, the Von Karman spectrum inclination is
suppressed in that region. For other regions, the two spectrums are almost
identical.

Modified Atmospheric Spectrum. The last models of turbulent spectra, defined
by (6.87)—(6.89), are commonly used in theoretical studies of radio wave pro-
pagation because they are relatively traceable models. Strictly speaking, however,
these spectrum models have the correct behavior only in the inertial range: that is,
the mathematical form that permits the use of these models outside the inertial
range is based on mathematical convenience, and not because of any physical
meaning. The Tatarskii spectrum has been shown to be inaccurate by as much as
50% for predicting the irradiance variance for the strong-focusing regime in
optical propagation experiments and by as much as 40% for weak fluctuations. Hill
(see details in References [46-48]) developed a numerical spectral model with a
high wave-number rise that accurately fits the experimental data. However, as it is
described in terms of a second-order differential equation that must be solved num-
erically, the Hill spectrum cannot be used in analytic developments. An analytic
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FIGURE 6.17. Von Karman normalized spectrum, shown for all ranges; the green vertical
line indicates k = 2 /ly.

approximation to the Hill spectrum, that offers the same tractability as the Von
Kérman model (6.89), was developed by Andrews with colleagues [46—48]. This
approximation, commonly called the modified atmospheric spectrum (or just modified
spectrum), is given by References [45—48], and it is valid for wave numbers in the

FIGURE 6.18. Comparison between Von Karman and Tatarskii normalized spectra, shown
for the input range; the green vertical line indicates k = 27 /ly.
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FIGURE 6.19. Comparison between the modified and Von Karman normalized spectra; the
green vertical line indicates k = 27/l.

range of 0 < k < oo:

®,(K) = 0.033C2[1 + 1.802(xc/1;) — 0.254(1c /1) "] m (6.90)

where x; = 3.3/ly. Numerical comparisons of results based on the above equation
and the Hill spectrum reveal differences not larger than 6% but generally within
1-2% of each other. A comparison between the normalized modified atmospheric
spectrum and the Von Karmdn spectrum, @, (k) = ®,(x)/0.033C?, can be seen
in Figure 6.19. The whole modified spectrum, on a log-log scale, is shown in
Figure 6.20 extracted from References [46—48]. The modified model, which is based
on Hill’s numerical spectral model, provides good agreement with experimental
results.

The Refractive Index Structure Parameter. As was mentioned above, any turbu-
lence in the atmosphere can be characterized by three parameters: the inner scale [y,
the outer scale Ly, and the structure parameter of refractive index fluctuation C,%. The
refractive-index structure parameter, as the measure of the ““strength” or “power”
of the turbulent structure, is considered the most critical parameter along the propa-
gation path in characterizing the effects of atmospheric turbulence. It was defined
above as a refractive-index structure parameter C2 (in radio propagation it is also
denoted by Cf, accounting relationship between the refractive index n and permit-
tivity €.) Values of Cﬁ near the ground, in warm climates, generally vary between
107" m~2/3 and 10~"?>m~%>. Various near-ground experiments carried out over
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FIGURE 6.20. The modified normalized spectrum, shown for all ranges at the logarithmic f
scale; the green vertical line indicates k = 27/ly.

different daytime hours during winter time showed that with increase of altitude h,
the structure parameter C2 decreases to an altitude of 3 to 5 km. It then increases to
some maximum near 10 km, after which it rapidly decreases with increasing alti-
tude. Usually, to obtain relationships between the structure parameter Cﬁ and the
atmospheric refractive index fluctuations on, we assume stationary, homogeneity,
and isotropism of atmospheric refractive index fluctuations. However, as was men-
tioned in previous sections, the refractive index »n is a complicated function of var-
ious meteorological parameters. For example, for above sea atmosphere, the value of
refractive index n can be presented as [42]

77T 7.53-10° g
ml P 22 933 6.91
el T T (6.91)

where, p is the air pressure, [mb]; T is the temperature [K]; g is a specific humidity,
[g/m g/m’]; / is a wavelength [m]. A simple approximation of the relationship
between the refractive index fluctuations and the structure parameter C2 is given
by [44]

2
C? ~ % (6.92)

where x represents the distance between antennas, the transmitter, and the
receiver. If so, the structure parameter C? also varies according to the variations of



EFFECTS OF TROPOSPHERIC TURBULENCES ON RADIO PROPAGATION 219

meteoro-logical parameters. So, for marine atmosphere [44]
6 P\?
2~ (79 -10 6ﬁ) (C7 +0.113Cy, +0.003C,) (6.93)

where C% and C; are the air temperature and water vapor structure coefficients,
respectively; Cr, is the combined temperature—water vapor structure coefficient or
covariance. The C term in (6.93), which is the mean-square statistical average of
the difference in temperature AT between two points along the radio path separated
by a distance x, is given by

Cr = (AT)*)x*/? (6.94)

The structure parameter can thus be written as [42,44]:
2 6 P\? 2
2= (79 % 10 ﬁ) c2 (6.95)

In daytime and near the ground surface (at the height of several meters) the value of
C? can range from 107'm~2/3 to 10~'> m~2/3 with changes of magnitude in only
one minute.

At the same time, the upper altitude profile of Cﬁ (for h > 5km) appears to be
more constant in time. There are several modes that describe the height profile of C2
in the upper troposphere. We will present here the Hufnagle model [31], according to
which the altitude profile of C? is

h z \10 h
200\ — 5 7. 10-16 _ 2 _
C,(h)=27-10 {exp( 1500) + 3w (IOOOO) exp( 1000)} (6.96)

where the height 4 is in meters, and w = L [[2=2°"™ ,2(2)dz is the root mean square

. : 15 Jiy=5km
of the horizontal wind v(z).

6.3.2. Tropospheric Scintillations

Waves traveling through tropospheric layers with rapid variations of index therefore,
vary fastly and randomly in amplitude and phase. This effect is called dry
tropospheric scintillation. Rain is another source of tropospheric scintillations,
which are called wet; it leads to a wet component of scintillation, which tends to be
slower than the dry effects. The scintillation is not an absorptive effect and leads to
signal amplitude and phase fluctuations, that is, to the essentially unchanged mean
level of the radio signal passing through the troposphere. The phase and amplitude
fluctuations occur both in the space and time domains. Moreover, this phenomenon
is strongly frequency-dependent: the shorter wavelengths lead to more severe
fluctuations of signal amplitude and phase resulting from a given scale size. The
scale size can be determined by experimentally monitoring the scintillation of a
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signal on two nearby paths and by examining the cross correlation between the
scintillation on those paths. If the effects are closely correlated, then the scale size is
large compared with the path spacing [45].

Additional investigations have shown that the distribution of the signal
fluctuations (in decibels) is approximately a Gaussian distribution, whose standard
deviation is the intensity [42—45].

Scintillation Index. A wave propagating through a random medium such as the
atmosphere will experience irradiance fluctuations, called scintillation, even over
relatively short propagation paths. Scintillation is defined as [42—45]

2\ /\2 2
af:<I><I>2<I>:g>z—l (6.97)

This is caused almost exclusively by small temperature variations in the random
medium, resulting in index-of-refraction fluctuations (i.e., turbulent structures). In
(6.97) the quantity / denotes irradiance or intensity of the radio wave and the angle
brackets denote an ensemble average or equivalently, a long-time average. In weak
fluctuation regimes, defined as those regimes for which the scintillation index is less
than unity [42—45], derived expressions for the scintillation index show that it is
proportional to the Rytov variance:

o2 = 1.23C2k™/0x11/6 (6.98)

Here, as above, Cﬁ is the index-of-refraction structure parameter, k is the radio wave
number, and x is the propagation path length between transmitter and receiver.
The Rytov variance represents the scintillation index of an unbounded plane wave
in the case of its weak fluctuations but is otherwise considered a measure of the
turbulence strength when extended to strong-fluctuation regimes by increasing
either C2 or the path length x or both. It is shown in References [42-45] that the
scintillation index increases with the increasing values of the Rytov variance until
it reaches a maximum value greater than unity in the regime characterized by
random focusing, because the focusing caused by large-scale inhomogeneities
achieves its strongest effect. With increasing path length or inhomogeneity strength,
multiple scattering weakens the focusing effect, and the fluctuations slowly begin
to decrease saturating at a level for which the scintillation index approaches unity
from above. Qualitatively, saturation occurs because multiple scattering causes the
wave to become increasingly less coherent in the process of wave propagation
through random media.

Signal Intensity Scintillations in the Turbulent Atmosphere. Early investiga-
tions concerning the propagation of unbounded plane waves and spherical waves
through random media obtained results limited by weak fluctuations [45]. To
explain weak-fluctuation theory, three new parameters must be introduced instead
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Turbulent structure

Model of disk

Detector

FIGURE 6.21. The coherency between two neighboring points, described by close-to-unit
correlation coefficient, i.e., 0 < p(ry, rz) < 1.

of the inner and outer scales of turbulences described earlier. They are (a) the
coherence scale, [} = I, ~ 1/p,, which describes the effect of coherence between
two neighboring points (see Fig. 6.21); (b) the first Fresnel zone scale,
bh=Ilg~ m as was mentioned in Chapter 5, which describes the clearance
of the propagation link (see Fig. 6.6a); (c) the scattering disk scale, I3 ~ x/pgk,
which models the turbulent structure (see Fig. 6.22).

On the basis of such definitions, Tatarskii [44] predicted that the correlation
length of the irradiance fluctuations is on the order of the first Fresnel zone
Ir = \/L/k (see Fig. 6.6(a)) . However, measurements of the irradiance covariance
function under strong fluctuation conditions showed that the correlation length
decreases with increasing values of the Rytov variance o7 and that a large residual
correlation tail emerges at large separation distances. That is, in the strong-
fluctuation regime, the spatial coherence radius p, of the wave determines the

Real turbulence

Model of disk

FIGURE 6.22. The area of scattering modeled by a disk.
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correlation length of irradiance fluctuations, and the scattering disk characterizes the
width of the residual tail: x/pyk. In References [46-48], the theory developed in
References [43,44] was modified for strong fluctuations and showed why the
smallest scales of irradiance fluctuations persist into the saturation regime. The basic
qualitative arguments presented in these works are still valid. Kolmogorov theory
assumes that turbulent eddies range in size from a macroscale to a microscale,
forming a continuum of decreasing eddy sizes.

The largest eddy-cell size, smaller than that at which turbulent energy is injected
into a region, defines an effective outer scale of turbulence Ly, which near the ground
is roughly comparable with the height of the observation point above ground. An
effective inner scale of turbulence [ is associated with the smallest cell size before
energy is dissipated into heat.

We will briefly present modifications of the Rytov method obtained in References
[46—48] to develop a relatively simple model for irradiance fluctuations, that is,
applicable in moderate-to-strong fluctuation regimes. In References [46—48], the
following basic observations and assumptions have been stated:

— atmospheric turbulence affects a propagating wave as statistically inhomoge-
neous structure;

— the received irradiance of a wave can be modeled as a modulation process in
which small-scale (diffractive) fluctuations are multiplicatively modulated by
large scale (refractive) fluctuations;

— small-scale processes and large-scale processes are statistically independent;

— the Rytov method for signal intensity scintillation is valid even into the
saturation regime with the introduction of a spatial frequency filter to account
properly for the loss of spatial coherence of the wave in strong-fluctuation
regimes;

— the geometrical-optics method can be applied to large-scale irradiance
fluctuations.

These observations and assumptions are based on recognizing that the distribu-
tion of refractive power among the turbulent eddy cells of a random medium is
described by an inverse power of the physical size of the cell. Thus, the large
turbulent cells act as refractive lenses with focal lengths typically on the order of
hundreds of meters or more, creating the so-called focusing effect or refractive
scattering (Fig. 6.23a). This kind of scattering is defined by the coherent
component of the total signal passing the troposphere. The smallest cells have the
weakest refractive power and the largest cells the strongest. As a coherent wave
begins to propagate into a random atmosphere, the wave is scattered by the
smallest of the turbulent cells (on the order of millimeters) creating the so-called
defocusing effect or diffractive scattering (see Fig. 6.23b). This kind of scattering
is defined by the incoherent component of the total signal. Thus, they act as
defocusing lenses, decreasing the amplitude of the wave by a significant amount,
even for short propagation distances. The diffractive scattering spreads the wave as
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Incident ray

FIGURE 6.23(a). The focusing effect.

Real turbulence

" Scattered rays

FIGURE 6.23(b). The defocusing effect.

it propagates. Refractive and diffractive scattering processes are compound
mechanisms, and the total scattering process acts like a modulation of small-scale
fluctuations by large-scale fluctuations. Schematically, such a situation is sketched
in Figure 6.24 containing both components of the total field.

Small-scale contributions to scintillation are associated with turbulent cells
smaller than the Fresnel zone \/m or the coherence radius p,,, whichever is smaller.
Large-scale fluctuations in the irradiance are generated by turbulent cells larger than
that of the first Fresnel zone or the scattering disk x/kp,, whichever is larger, and
can be described by the method of geometrical optics. Under strong-fluctuation
conditions, spatial cells having size between those of the coherence radius and the
scattering disk contribute little to scintillation. Hence, because of the loss of spatial
coherence, only the very largest cells near the transmitter have focusing effect on the
illumination of small diffractive cells near the receiver. Eventually, even these large
cells cannot focus or defocus. When this loss of coherence happens, the illumination
of the small cells is (statistically) evenly distributed and the fluctuations of the
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Incoherent part

"'--.,_Qqhgrent part

Incident ray

FIGURE 6.24. The total field pattern consisting of the coherent part (I.,) and incoherent part
Line)-

propagating wave are due to random interference of a large number of diffraction
scattering of the small eddy cells.

Zero-inner-scale Model for Plane Wave. For the case of [y — 0, Ly — 0o, and
C? = const, the plane-wave coherence radius is p, = (1.46C2k*x) />, in both
weak and strong fluctuation regimes, whereas the Fresnel zone \/)W defines the
correlation length in only weak irradiance fluctuations. Cell sizes smaller than the
Fresnel zone cause diffractive distortions of the wave, whereas those larger than
the Fresnel zone cause refractive distortions such as focus and tilt. At the onset of
strong fluctuations, the coherence radius approaches the size of the Fresnel zone, and
all three cell sizes are roughly equal (i.e., [ ~ I, ~ I3). This happens in the vicinity
of the focusing regime. For conditions of stronger fluctuations, the correlation length
is defined by the spatial coherence radius p, which is now smaller than the Fresnel
zone, and the scattering disk L/kp, is larger (i.e. [; < I, < I3). Let us consider the
scintillation index of a plane radio wave that has propagated a distance x through
unbounded turbulent atmosphere.

(A) Weak fluctuations. Under the weak-fluctuation theory and the Rytov method,
the scintillation index can be expressed in the form:

O-% = eXp(O'lan) -1= 0-121117 O-% <1 (699)

where 67, is the log-irradiance variance defined under the Rytov approximation by

oo

L 100

oh = Snzkzjj kP, (1c)[1 —cos (K2%>]dk dz= 1.066%J J n~ /01 —cosné)dn dé
00 00

(6.100)
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In the last step, we have assumed a conventional Kolmogorov spectrum and

XK

introduced the nondimensional quantities: # = 72 and ¢ = £ Performing the
integration above, we obtain the result:

o =d =0847x)"°, S <1

(6.101)
x/kpg = 1.22(0%)6/5

(B) Moderate fluctuations. At the other extreme, the asymptotic behavior of the
scintillation index in the saturation regime is described by

0.86 kp2\ '/
Gl f—m=1+0919(2) | g1 (6.102)
al/ X

The resulting log-irradiance scintillation is

L
op, = 8m*k? J J Kk®, ()G (Kk)[1 — cos (K2 %)]dm dz
00 (6.103)

14

N6 Y 2
1.06 0% (k) J & J s exp (— ;@) dndé =~ 0.150%11)76/6
0 X
where 17, = xK2 /k.
(C) Strong fluctuations. In the case of strong turbulence regime, the scintillation
index for a plane wave in the absence of inner scale is given by

0.540% 0.50957

2
_|_
(14+1.22617°)° (1 40.694]%/°)%/°

o] = exp

]—1, 0§G%<OO

(6.104)

An example of signal intensity scintillation index computation according to (6.104)
from 1 GHz to 50 GHz versus the refractive-index structure parameter varied from
107 B to0 10_11, for the distance x = 10 km and the inner scale /[, = O mm, is shown
in Figure 6.25. It is clearly seen that the scintillation index for any C? = const.
(denoted, e.g., for Cﬁ = 107'2 by the vertical line) becomes twice as strong as the
frequency increases from 20 GHz to 50 GHz. This result is very important for
predicting the fast fading of the signal within land—aircraft and land—satellite radio
communication links passing through the turbulent troposphere and operating at
frequencies in the L/X-band (i.e., more than 1 GHz).

Nonzero-inner-scale Model for Plane Wave. When inner-scale effects become
important ( [y # 0), the atmospheric power spectrum is more strictly described by
a modified spectrum with high wave-number rise, that is, the traditional Tatarskii
spectrum [44].
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FIGURE 6.25. Index of signal intensity scintillations versus the intensity of refractive index
scintillations for different frequencies from 1 GHz to 50 GHz.

Under weak irradiance fluctuations in the case of an unbounded plane wave, the
scintillation index based on the modified spectrum is described for o7 < 1 by

11 1.507 3
O'%(X) x~ 3860'%{(1 + Q;2)11/12 |:Sin (6tanl Ql) +Wsin <4tanl Q[)
!

0.273 (5 _
—W X Sin <4tan ! Ql>‘| — 35Ql 5/6} (6105)
[

Here, Q; = 10.89x/kl3 is a nondimensional inner-scale parameter. Asymptotic
expressions for the scintillation index in the saturation regime, which are based on
the modified atmospheric spectrum, are

2.39
(63,0,

a20]% > 100 (6.106)

Under general conditions, the size of the inner scale [, relative to the Fresnel zone
\/)% is an important consideration. For example, in weak irradiance fluctuations
associated with short propagation paths, the inner scale may be of similar size or
larger than the width of the Fresnel zone; hence, there will be little contribution to
scintillation from eddy cells smaller than the inner scale. On the contrary, over
longer propagation path lengths, the inner scale can be much smaller than
the Fresnel zone. In this latter situation, size of the cells is the same as the inner scale
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and smaller size contributes mostly to small-scale scintillation. Large-scale
scintillation is dominated by cells with size larger than x/kly.

Eventually, the coherence radius becomes smaller than the inner scale, and
small-scale scintillation depends less and less on cell size of about the same as
the inner scale in the saturation regime. Large-scale scintillation, which conti-
nues to depend on the inner scale, begins to diminish in the saturation regime, as
only those cells larger than the scattering disk are strong enough to still cause
focusing effects. The scintillation index for a plane wave in the presence of finite
inner-scale is

0.509¢?
5/6
(1+069*°)

o7 = exp | oy, (o) +

—1 (6.107)

where x/kp} = 1.020%Q,1/ % is in the presence of the inner scale. Results of the
scintillation index according to (6.107), versus the refractive-index parameter C;f
are shown in Figure 6.26a,b for f = 10 and 20 GHz, respectively. The results are

f=10GHz
0.06 7 mm
lo =1mm
0.05 - —3mm i
=5mm
- =7 mm
0.04
o;
0.03
0.02
0.01
0
10718 10712 10~
Cx

FIGURE 6.26(a). Index of signal intensity scintillations versus the intensity of refractive
index scintillations for frequency of 10 GHz and for different inner scales of turbulences
ranging from 1 mm to 7 mm.
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FIGURE 6.26(b). The same as in Fig. 6.22(a), but for frequency of 20 GHz.

for x = 10km and for the inner scale [y changed from 1 mm to 7 mm. It is seen
that for C? = const. (denoted, e.g., as C> = 10~!2 by the vertical dotted line), the
scintillation index does not vary significantly with an increase of the inner scale of
the initial turbulence, becoming in any way smaller than the values for the case
of zero-order inner-scale model, described by (6.104). These results are summarized
in Tables 6.4 and 6.5 for inner scale /) = 0mm and 1 mm and for frequencies of
25 GHz and 50 GHz, respectively.

6.3.3. Effects of Troposheric Turbulences on Signal Fading

The fast fading of the signal at open paths is caused mainly by multipath propagation
and turbulent fluctuations of the refractive index. Some very interesting ideas were
proposed by Samelsohn [49,50], which are presented briefly below. As it is known,

TABLE 6.4. Scintillation Index for Radiation Frequency of 25 GHz
C2

n

~0.0028 ~0.014 ~0.027 ~0.134 0 mm inner-scale
~0.0027 ~0.013 ~0.024 ~0.091 1 mm inner-scale
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TABLE 6.5. Scintillation Index for Radiated Frequency of 50 GHz

C,
~0.0093 ~0.046 ~0.092 ~0.404 0 mm inner-scale
~0.0088 ~0.038 ~0.068 ~0.241 1 mm inner-scale

the fluctuations of the signal intensity due to turbulence are distributed lognormally.
For the Kolmogorov model, the normalized standard deviation of this distribution
can be presented in terms of C? instead of Rytov’s formula (6.92) presented in terms
of C2:

o = 0.12C%k™/%q"V/¢ (6.108)

where k = 2n/A is the wave number, and Cs2 is the structure constant of the
turbulence averaged over the path. In the atmosphere, the structure constant C> may
vary within at least four orders of magnitude, from 10~ m=2/3 to 1071 m~2/3. As
the path-averaged statistics of these variations is unknown, the margin related to this
kind of fading may be estimated only heuristically. The normalized temporal
correlation function was obtained in [49,50]

11 21 3/3
1+ oc4/4)“/12 sin <;T2+6arctanoé) 3 (\%)

(6.109)

1

KO = G

_

where « = 7/, 19 =, and v is the projection of the vehicle velocity to the
plane that is perpendicular to the path. The correlation time t,. defined as
K(t.) = 0.5, can be estimated as 7, ~ 0.627p. The spectrum of the intensity
fluctuations is [49,50]

S(w) = fPw(w)/w (6.110)

is calculated by using the definition of the normalized spectral density

w(w) = 4w J dr cos(wt)K(7) (6.111)

which at high frequencies is given by
w(Q) =120Q73, Q>5 (6.112)
and at low frequencies can be approximated as

w(Q) = 3.47Qexp|—0.44Q°9 | Q<5 (6.113a)



230 EFFECTS OF THE TROPOSPHERE ON RADIO PROPAGATION

TABLE 6.6. Characteristic Time and Frequency
versus the Radio Path for f = 15 GHz and v =50 m/s

Distance, km 50 100 150
70, S 0.25 0.36 0.44
wy,, Hz 6.4 4.4 3.6
where
(p(Q) =1.47 - 0.054 Q (6.1 13b)

and Q = 7o is the dimensionless frequency. The normalized density w(€2) has the
maximal value of about 2.30 at Q,, = 1.60, and therefore w,, ~ 1.60/1¢ [49,50].
The typical values for both 7y and w,, are shown in Table 6.6 for the frequency
15 GHz and vehicle velocity v = 50 m/s, and in Table 6.7 for the frequency 13 GHz
and vehicle velocity v = 350 m/s, calculated according to the above formulas. The
phase fluctuations have normal distribution with dispersion

o2 = 0.075C2Kds, " (6.114)

where sg ~ 2m/Ly, and Ly is the outer scale of the turbulent spectrum depending on
the height which equals approximately to 10—100 m. Estimations according to
References [49,50] showed that the phase fluctuations caused by turbulence are negli-
gible under typical atmospheric conditions and even for extremely strong turbulence.

6.3.4. Radio Propagation Caused by Tropospheric Scattering

For radio paths through the troposphere, the dominant propagation mechanism is the
scattering from atmospheric turbulent inhomogeneities and discontinuities in the
refractive index of the atmosphere. For troposcattering propagation, the received
signals are generally 50 to 100 dB below free space values and are characterized
by short-term fluctuations superimposed on long-term variations. The statistical
distributions are Rayleigh for the short-term variations and are lognormal for the
long-term variations [51-53]. The average signal intensity of the scattered signal at
the receiving antenna is given by [49,50]

I = gk“CI)g(Ko, 0)Ve/r?r? (6.115)

TABLE 6.7. Characteristic Time and Frequency
versus the Radio Path for f = 13 GHzand v = 350 m/s

Distance, km 100 200 300

70, S 0.055 0.077 0.095
W, Hz 29.1 20.8 16.8
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where k = 27/ is the wave number; r; is the distance from the transmitting antenna
to the scattering volume; r, is the distance from the scattering volume to the
receiving antenna; V. is the effective volume of scattering; ®,(Ky, 0) is the spectrum
of locally homogeneous turbulent permittivity fluctuations at the center of the
turbulent zone; ®.(K,R) is the spectrum of locally homogeneous turbulent

permittivity fluctuations at the distance R from its center. The permittivity
fluctuations are characterized by the correlation function

B,(P,R) = (R )E(Ry) (6.116)

where
1
P=R; — Ry, RZE(Rl +Ry) (6.117)

and the angular brackets determine mean ensemble averaging. The spectrum
. (K, R) is given by the Fourier transform as

@Mﬁﬁ#%fﬁ&wﬂ#KPBﬂﬂ@ (6.118)

The expression for the effective scattering volume has the form [44,49,50]
Ve = JdRF(ni7 n;)®.(K,R)/®,(Ky,0) (6.119)

where

F(n;,n) = |fi(n;)f;(ny)|* (6.120)

fi(n;) and fi(n,) are the radiation patterns of the transmitting and receiving
antennas, respectively. In (6.115) and (6.119), the spatial frequency vector Ky is
defined as

Ko = k(njp — ny) (6.121)

where the unit vectors mjy = rjp/rip and nyg = ry/ry are related to the lines
connecting the transmitting and receiving antennas with the center of the scattering
volume.

By using (6.115) for the intensity of the scattered wave, we can calculate the
power received by the antenna as

P, = F.GyP, (6.122)
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where the scattering loss, denoted by F2, is given by References [44,49,50]
2
F2 = ?kzég(Ko, 0)V./rir (6.123)

There are two unknowns in (6.123). First is the spectrum ®,(Ko,0), which is
proportional to the structure parameter of the turbulence and is characterized by
a significant variability (see previous section). The anisotropic structure of the
permittivity fluctuations can also cause rather strong variations of the received
power. Second, the effective scattering volume depends essentially on the radiation
patterns of both antennas. Moreover, for antennas with relatively small gain, such as
those located at the air vehicle, Equation (6.119) for the effective scattering volume
is no longer valid and must be corrected.

What is very important is the frequency selectivity of the channels formed by the
tropospheric scattering from turbulences. As is known [30,40], for highly directive
antennas, the coherence bandwidth is of the order of several megahertz. For antennas
with poor directivity, the coherence bandwidth decreases significantly and may be
smaller than several hundreds kilohertz. Therefore, to complete the evaluation of
the link budget and frequency selectivity for the tropospheric radio paths, realistic
models of the atmospheric turbulence, including anisotropic layered structures, as
well as the real radiation patterns of the antennas must be taken into account.

6.4. LINK BUDGET DESIGN FOR TROPOSPHERIC
COMMUNICATION LINKS

Let us summarize the above by introducing some examples of link budget
calculations in decibel for the communication link between the ground-based
antenna, defined by its gain Gy, and the vehicle (helicopter, aircraft, or satellite)
antenna, defined by its gain G,. We do not present these parameters because they are
different for different types of antennas and can be easily computed using special
formulas. In the examples presented in Tables 6.8 and 6.9, we considered different

TABLE 6.8. f =15GHz, d = 150km, h; = 2km

Time availability, % 95 99
Basic transmission loss, dB 159 159
Tx antenna gain, dB G, G
Rx antenna gain, dB G, G,
Molecular absorption, dB 1 2
Rain attenuation, dB 0 2
Clouds and fog, dB 0 0
Fast fading (turbulence), dB 1 2
Fast fading (multipath), dB 3 5
Diffuse scattering, dB 2 4

Total, dB 166 — G| — G, 174 - G| — G
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TABLE 6.9. f = 15GHz, d = 150km, h, = 4km

Time availability, % 95 99
Basic transmission loss, dB 159 159
Tx antenna gain, dB Gy G,
Rx antenna gain, dB G, G,
Molecular absorption, dB 1 2
Rain attenuation, dB 0 2
Clouds and fog, dB 2 5
Fast fading (turbulence), dB 1 2
Fast fading (multipath), dB 3 5
Diffuse scattering, dB 2 4
Total, dB 168 — G| — G, 179 — G, — G,

conditions of radio propagation by introducing the time availability, which varied
from 95% to 99%, assuming that the existence of fast fading described by Rayleigh
statistics are from 1% to 5%. In these tables we summarize all effects of hydrometeors,
as well as fast fading caused by atmospheric turbulences and multipath phenomena
caused by diffuse scattering.
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CHAPTER SEVEN
|

lonospheric Radio Propagation

The effects of the ionosphere on radio propagation are very important in radio
communication between terrestrial antennas and air vehicles (stationary or
moving) or satellites. Ionospheric radio propagation is also important in the
inhomogeneous ionosphere that plays an important role in satellite-to-satellite
communications. The problem of wave propagation and scattering in the
ionosphere have become increasingly important in recent years: the ionosphere,
atmosphere, and the Earth’s background environment all play a significant role in
determining the service level and quality of the land-satellite or satellite—satellite
communication channel.

In recent decades, the increasing demand is observed on mobile-satellite
networks designed to provide global radio coverage using constellations of low
and medium Earth orbit satellites, which are now in operation. Such systems form
regions, called mega cells (see definitions in References [1-3]), consisting of a
group of co-channel cells, and clusters of spot beams from each satellite, which
move rapidly across the Earth’s surface. Signals are typically received by a
moving or stationary vehicle at very high elevation angles. Only the local
environmental features, ionospheric, atmospheric and terrestrial, which are very
close to the concrete radio path, contribute significantly to the propagation
process. Therefore, performance of predicting models of fading phenomena, slow
and fast, for ionospheric communication links has the same importance as for
terrestrial links (described in Chapter 5) and tropospheric links (described in
Chapter 6). This is because the same propagation effects, such as multiray
reflection, diffraction, and scattering of radio waves, occur in three types of over-
the-Earth communication links, land, atmospheric, and ionospheric. However, as
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in ionospheric links the slow fading tends to occur on similar distance scales as a
fast one, they cannot therefore be easily separated, as was done for the land
communication links described in Chapter 5. Unlike land communication
channels, the predictions of ionospheric communication channels tend to be
highly statistical in nature, because coverage across very wide areas must be
included in consideration, while still accounting for the large variations due to the
local environmental features. The reader can find more detailed information in
References [1-3].

In Section 7.1, we briefly present information about the ionosphere as a
continuous medium consisting of plasma and describe the common effects of
ionospheric plasma on radio propagation, following the description of ionospheric
effects in References [1-12]. Then, in Section 7.2, we discuss the effects of large-
scale and small-scale ionospheric plasma inhomogeneities [13-28] and illustrate the
main results of signal amplitude and phase variations, that is, the fast fading,
resulting by the inhomogeneous structure of the ionosphere, on the basis of numerical
computations carried out by the authors according to proposed ionospheric models
[29-43]. Finally, in Section 7.3, we consider effects of inhomogeneous ionosphere on
radio propagation at the long distances caused by back and forward scattering by the
inhomogeneities of ionospheric plasma [44-48].

7.1. MAIN IONOSPHERIC EFFECTS ON RADIO PROPAGATION

7.1.1. Parameters and Processes Affecting Radio Propagation
in the lonosphere

The ionosphere is a region of ionized plasma (i.e., ionized gas consisting of
neutral atoms and molecules on one side and charged particles, electrons and
ions on the other), which surrounds the Earth at a distance ranging from 50 km
to 500-600 km where it continuously extends to the magnetosphere (600-
2000 km) [4,5]. The ions and electrons are created in the ionosphere by the Sun’s
electromagnetic radiation, solar wind, and cosmic rays that are the sources of
atoms and molecules ionization. As the solar radiation penetrates deeper into the
Earth’s atmosphere at zenith, the ionosphere extends closest to the Earth around
the equator and is more intense on the daylight side. Figure 7.1 shows the
separation of the ionosphere into four distinct layers during the day: D-layer that
covers 50-80 km, E-layer that covers 80—130 km, F'1-layer and F2-layer, located at
the altitudes of 130-250 km and above 250 km, respectively. During the nighttime
these four layers are continuously transformed into the E and F layers, as the
D-layer does not exist in nighttime ionosphere because of the absence of solar
radiation.

The Content of the lonosphere. For the neutral component of the ionospheric
plasma, consisting in the conditions of hydrostatical equilibrium in the isothermical
case, when T, (z) = const, the change of neutral particle concentration can be
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FIGURE 7.1. Presentation of ionospheric layers around the Earth.

described by the following barometric formula [4]

o= g - =) o

where N,, is the total plasma concentration; N, is the same, but for the altitude
of z=2z0; Hy = T;n/M,g is the height of the homogeneous atmosphere; M, =
(1/Nw) >, myN, is the summary content of neutral particles in the higher
ionosphere; o is the specification of the neutral particles; g is the acceleration
of free falls; T}, is the gas temperature expressed in energetic units. Formula (7.1)
is valid in the ionosphere of the Earth at altitudes of z, =7y, where
Z. = 1000 — 2000 km (called exosphere) [4,6,7]. In such altitudes and higher, than
that all particles, components of neutral atmospheric gas with specification o, leave
the atmosphere as their kinetic energy exceeds the potential energy of the Earth’s
gravitation field and the free path length of neutral particles, 1,, exceeds the height
of the homogeneous atmosphere, H,, (see definitions above). Furthermore, in the
real ionosphere the temperature of the neutral molecules and atoms 7}, is increased
with the height. All these factors lead to deviations from the barometric formula
(7.1). As for the neutral content of the ionosphere, at altitudes less than 100 km, the
atmosphere is fully presented by molecules of nitrogen N, and oxygen O;. At such
heights, concentration of other components of the neutral gas (He, O, H,, NO etc.) is
very small and depends on the transport process due to turbulence in the neutral
atmosphere, as well as on circular and wind processes in the atmosphere (see also
definitions in Chapter 6).

At altitudes of more than 100km atmospheric turbulence is absent; the
corresponding limit of z > zy ~ 100 km is called the turbo pause [4,6,7]. In contrast
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FIGURE 7.2. Height distribution of the neutral content of the ionosphere.

to the fore mentioned, here, up to z, = 1000 — 2000 km, formula (7.1) is valid. In
this range, the main components are atoms of nitrogen and oxygen created by the
chemical processes of dissociations of the corresponding molecules: N, — N + N
and O, — O+ O. At altitudes of more than 500-600 km, in magnetosphere,
concentrations of helium, He, and hydrogen, H, increase quickly. Finally, at altitudes
of exosphere of more than 1000-1500 km, atoms of hydrogen become predominant
[4,6,7] (see Fig. 7.2, where the height distribution of all neutral components of the
ionosphere is summarized).

The ion content of ionospheric plasma is changed widely depending on latitude
@ of the Earth. Thus at the middle latitudes, |®| < 55°, it is not changed drastically,
but at the high latitudes, |@| > 55° — 60°, a full concentration of ions decreases
rapidly with height. In the middle latitude ionosphere, at the height of the D
layer, the main components of plasma are ions NO™ and O5, and at the heights
of the E and F layers are ions of oxygen O%. At altitudes of more than 300 km,
plasma also contains components of He™, H*, N, NJ, which with the main ions
mentioned above determine the total plasma content in the ionosphere. The
structure of the ion content of plasma in the polar (high-latitude) ionosphere is
more complicated. We do not enter deeply into this subject and refer the reader to
excellent books [4,6,7].

The key parameter that has an affect on radio communications is the total electron
and ions concentration N measured in free electrons number per cubic meter,
because the ionospheric plasma is quasi-neutral and in each of its region, with
dimensions larger than the Debye radius (definition can be found in References
[5,7-10]), the concentration of electrons, N, is equal to the total concentration of
various ions, N, that is, N. =& N; = N. The variations of N with height in the
ionosphere for a typical day and night is shown in Figure 7.3, extracted from
References [9,10]. It must be noted that the total content of charge particles, the
electrons and ions, depend on the processes that create the structure of the
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FIGURE 7.3. Ionospheric plasma density versus height for the ionosphere above the ground
surface.

ionosphere such as the solar and cosmic rays radiation, wave radiation, photo-
chemistry processes, which finally determine the ionization-recombination balance
in the ionosphere. The degree of ionization of the ionospheric plasma is determined
by the ratio of concentration of the plasma particles N and that of the neutral
molecules and atoms Ny,. In the lower ionosphere (z < 100-120 km), the degree of
plasma ionization is very small (N/Np, ~ 10~% — 107%) and increases with height
(for h > 300km N/Ny, ~ 10~* — 10~3). At the exospheric heights of 4 > 1000 km,
the degree of ionization N/N,, — 1, that is, plasma becomes fully ionized [4-10].
The temperature of electrons, 7., and ions, T, strongly depends on daytime and
increases with height. Thus, at lower ionospheric heights, temperature of electrons is
close to temperature of ions, that is, T, ~ T;j, whereas at the upper ionosphere
(z > 200-250km) the temperature of electrons can exceed 1.5-2 times the
temperature of ions [7,9]. More detailed information about the structure and
properties of the ionosphere, mid-latitude and high-latitude can be found in
References [4-7].

Main Characteristics of the lonospheric Plasma. The characteristics, which are
functions of the main parameters of the plasma such as concentration, content, and
temperature, are follow. They are the frequency of interactions (collisions) of
charged particles with neutral molecules and atoms, between charged particles,
the length of their free path between interactions, coefficients of diffusion and drift.
All these characteristics determine the dynamic processes, diffusion, and drift of
plasma in ambient electrical and magnetic field; they occurred in the ionosphere
and were caused on formation of large-scale and small-scale plasma irregularities,
which are the main “‘sources” of fading radio signals in the ionosphere. We will
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not enter further into the subject presented here; more important formulas that
can be used to evaluate effects of plasma inhomogeneities on radio signal ampli-
tude and phase oscillation are described in details below. First of all, we must
note that the main characteristics, which must be compared with radio wave fre-
quency, are the frequencies of collisions of electrons and ions with neutrals and
between charged particles. Approximate expressions for these characteristics are
fully presented in References [4,6—10], from which the frequency of electron-
neutral collisions is

Vem = 1.23 - 107N, T3/ (7.2)
where Ny, = Ny, + Nop,, all other parameters are defined above. The estimation of

frequency of electron—ion interactions for different ions N; and electron temperature
T, can be done using the following approximation [4,6-10]:

5.5 N, 220T,
Vei = 37/2111 1/63 (73)
1. (Nl)
Effective frequency of ion-neutral collisions can be presented as [4,6-8]
Vim = B0 Noo(Ti + Tin)'/? (7.4)

where the coefficient 9 accounts the difference of masses of different molecules,
effects of nonelastic interaction between particles, polarization, and recharge of
molecules (see details in References [4,6—8]). Furthermore, to analyze the effects of
ambient magnetic field on charged particles, hyromagnetic frequencies of electrons,
wy, and ions, Qy, are also introduced to estimate effects of charged particles
magnetization. As was investigated in References [9,10], at altitudes of the lower
ionosphere (z < 120-150km) wy > vem, but Qy < vy, that is electrons are
magnetized and ions are not. Hence, the degree of magnetization of ionospheric
plasma, which is defined by Qy @y > VimVem, 1S very small, whereas in the upper
ionosphere at altitudes more than 150 km, wy > v, and Qy > vy, that is, both
electrons and ions, and hence, ionospheric plasma are fully magnetized.

For actual ionospheric applications in radio communications and radars, another
parameter of ionization is usually used [8—12, 46—48], p = Vei/Vem, instead of the
earlier defined parameter N/N,,. As was mentioned in References [8,9], it can be
done in spite of the fact that the ionospheric plasma has mainly low temperature
(from 200 K at 80-90 km to 2500-2800 K at the 500-600 km). In such conditions
the cross-sections of collisions between electrons and ions are much greater than the
cross-sections of collisions of electrons with neutrals. So, the peculiarity of the real
ionospheric plasma consists of the fact that even N/N, < 1, the parameter
D = Vei/Vem becomes more than the unit. Therefore, electron-ion interactions are an
essential part of the transport processes in the ionospheric plasma. Figure 7.4
presents the parameter ionization p for diurnal and nocturnal middle latitude
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FIGURE 7.4. Parameter of plasma ionization versus height of the ionosphere above the
ground surface.

ionosphere at altitudes of 90-700 km. It is clearly seen that such parameters can
reach great values, though, in the ordinary sense the ionospheric plasma is weakly
ionized. Another argument to use this parameter as a degree of plasma ionization, is
based on the fact that at altitudes under consideration of 80—-500 km, which mostly
affects radio propagation, N, > N, and N, > N; provides the condition of stability
of a full plasma pressure necessary for the transport process of diffusion and drift.
Under such circumstances different disturbances of neutral molecules or atoms and
their movement do not influence the diffusion of electrons and ions in the
ionospheric plasma [8—10]. That is why, just as in References [8—10], we evaluated
the degree of ionization of the ionospheric plasma by a parameter of ionization p
shown in Figure 7.4 and presented in Table 7.1 for daily and nocturnal ionosphere.
The increase in the degree of ionization in the ionosphere, observed in Figure 7.4,
has a very simple physical explanation: with the increase of altitude the effective
values of the collision frequencies of charged particles with neutrals fall, defined by
Equations (7.3) and (7.5), whereas a frequency of electron—ion interactions increases,
as defined by Equation (7.4), because with the growth of the height, the number of
neutral plasma components quickly decreases, while the total number of ions in
the ionosphere increases. It must be noted that beginning from z > 500 km (even this
fact is not so important for radio communication), the growth of the parameter
p decelerates with the increase in height, while the degree of plasma magnetization
(as was mentioned above) is monotonically increasing with height.
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TABLE 7.1. Parameter of lonization p Altitudinal Dependence for Daily and Nocturnal lonosphere

The part The parameter of The part The parameter of The part The parameter of
Heigh km of day ionization, p Heigh km of day ionization, p Heigh km  of day ionization, p
90 Day 7.5 x 107 180 Day 1.78 350 Day 91.2
Night 6.9 x 1078 Night 3.1 x 1072 Night 121.3
100 Day 1.75 x 1072 190 Day 2.19 400 Day 168.5
Night 4.28 x 107 Night 4.44 x 1072 Night 300
110 Day 7.1 x 1072 200 Day 293 450 Day 256.6
Night 1.6 x 1073 Night 5.8 x 1072 Night 578.3
120 Day 9.35 x 1072 220 Day 4.72 500 Day 333
Night 2.42 x 1073 Night 1.8 x 107! Night 1000
130 Day 1.63 x 107! 240 Day 8.4 550 Day 384.5
Night 3.92 x 1073 Night 4.3 x 107! Night 2112
140 Day 2.8 x 107! 260 Day 18.1 600 Day 518.5
Night 5.75 x 1073 Night 1.01 Night 243.9
150 Day 5.3 x 107! 280 Day 334 650 Day 634.2
Night 8.37 x 1073 Night 2.87 Night 5001
160 Day 6.8 x 107! 300 Day 45 700 Day 704

Night 1.05 x 1072 Night 15.5 Night 8889
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lonization-Recombination Balance in the lonosphere. Changes of plasma com-
ponents, electrons and ions (plasma is quasi-neutral, see above), in real time is deter-
mined by the equation of ionization balance

%]:7 =gqi — oaN? (7.5)
This is actual if the processes of ionization and recombination are predominant with
respect to transport processes. The latter, diffusion, thermo-diffusion and drift, are
predominant beginning from 120-150km, that is, from the E-layer of the
ionosphere. So, Equation (7.5) is correct only in the D-layer and E-layer of the
ionosphere. In (7.5) ¢i = gio + gio, + gin, 1s a total intensity of ionization contained
from intensities for atom and molecule of oxygen, and molecule of nitrogen, « is a
coefficient of dissociative recombination. This kind of recombination is predomi-
nant in the ionosphere and is described in the interaction of molecular ion M ", with
electron e~ accompanied by dissociation of molecular ion on two excited neutral
atoms M* [4-9]. For example, for molecular ion of oxygen the dissociative
recombination gives [8,9]

0 +e — 0" +0° (7.6)

Therefore, during the process of dissociative recombination an amount of electrons,
involved in this process during one second in the area of one square centimeter, can
be presented as in Equation (7.5), that is, as aN?. The coefficient of dissociative
recombination can be presented as [8—10]:

NNO* N0+
4 op —2
N 2N

o= (7.7)

Here, «; and o, are coefficients of dissociative recombination of ions NO* and 02+ s
respectively, which can be presented in the following form [8,9]:

300 1.2
a ~5-1077 <T> (7.8a)
e
300 0.7
221077 <T> (7.8b)
€

According to (7.8), coefficients of dissociative recombination are decreased with the
growth of the temperature of electrons. So, in E-layer and above, the concentration
of electrons (i.e., plasma) is increased with the growth of their temperature. We must
note that a detailed investigation of ionization-recombination balance in the
ionosphere is fully described in References [1-9] and we refer the reader to these
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excellent books. We will only note here that all presented formulas characterize only
a local balance of ionization, because they were obtained without accounting for
transport processes, which are actual and important at altitudes above the E-layer
of the ionosphere. The transport processes, such as diffusion, thermo-diffusion
and drift, are predominant in the F-layer of the ionosphere, determining here
the maximum of plasma concentration. So, above this maximum, the transport
processes are predominant where as below this maximum both processes the actual
and at the lower E-layer and D-layer the recombination—ionization balance is
predominant.

Transport Processes in the lonosphere. During the investigation of the effects of
ionosphere on radio propagation, it is important to analyze transport processes in the
ionosphere, diffusion, thermo-diffusion, and drift of ionospheric irregularities, large-
scale and/or small-scale, connected with turbulent structure of the atmosphere at
lower ionospheric altitudes [27], as well as with numerous instabilities of iono-
spheric plasma at the upper ionosphere [8,9]. To understand the main mechanisms
of each process, it is important to compare the initial dimensions of the irregularities
created in plasma and the characteristic scales of charge particles in plasma, which
we briefly present following References [4-10]. Thus, according to the empirical
presentation of ionospheric models [4—-10], for noon ionospheric conditions and low
or mode- rate solar activity, the mean free path of charged particles can be estimated
as: for electrons A, is of about 30 cm to 10 km, for ions is about 0.5 cm to 2 km
for z =90-500 km. Radius of electron magnetization (called the Larmor radius
[4-10]), pye. is changed in the range of 1 to 5 cm, and that for ions, pyy;, is from
0.4 m to 7.5 m at altitudes of 90-500 km. At the same time, the Debye radius, which
defines the plasma quasi-neutrality (see definition above), is changed in the range of
0.5-1 cm at altitudes under consideration. The comparison of inhomogeneities of
scales from several meters to several tens of kilometers, which under our considera-
tion (see below) with above parameters allows us to state that below we can use the
theory of magnetic hydrodynamics for all components of the ionospheric plasma:
electrons, ions and neutral particles and estimate the influence of plasma irregulari-
ties of wide range of scales on radio propagation. This subject will be considered in
the next sections.

The qualitative analysis carried out above has shown that all characteristic
scales of plasma are less than the dimensions of plasma irregularities. Moreover,
at altitudes beyond E-layer (h > 160-200 km) the transfer processes, diffusion,
thermo-diffusion, and drift prevail compared with the chemical processes of
ionization and recombination. Therefore, for description of transfer processes
beyond altitudes of the upper E-layer, we can use a system of magneto-
hydrodynamic equations for all components of the ionospheric plasma, electrons
and ions, to describe the evolution of the irregular structures of ionospheric plasma
of various nature. Usually, in solving the problems of dynamics of inhomogeneous
ionospheric plasma at altitudes of upper E-layer and higher, the absence of the
processes of ionization, attachment, detachment, and recombination is assumed, as
well as the unifications between electrons and single-charge ions, and between the
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ions of plasma irregularities and the ions of the background ionospheric plasma, as
is usually done in References [8—10]. In this case a full system of transfer equation
of plasma components (denoted by indexes o = e,i) and neutral component
(denoted by index a = m) can be presented according to References [8—10] in the
following form:

ON,
a]Vm
— "4V -(UuN,) =0 (7.9b)
ot
L e[ A Dy e
.]e =T, {E + 7[Um; Bo]} B DeevNe - DTe *VTE + NeUm (79C)
e Cc T
. O 1 > h, Ni
Ji = - {E + E[Uma BO]} —D;;VN; — DTiTVTi + NiUp, (7.9d)
oU,, 0 1
MN,, |:at + (Um; V)U :| = —V(NmT)g— nU,, — gﬂV(VUm)

- m{)em(NeUm - -]e) - Mi‘A)im(NiUm _ji) (796)

In the ionosphere, when there is any plasma irregularity, the electrical field and then
the magnetic field closely related to this irregularity always arise. Therefore,
Equations (7.5)-(7.6) must be completed by Maxwell’s equations

V- E = 4re(N; — N.) (7.10a)
OB

E=—— 7.10b

V x o (7.10b)

V-B=0 (7.10¢)

VB =" ) (7.10d)

In the last Equation (7.10d) of the system, the displacement current LT is
omitted from consideration, as only quasi-stationary processes for the plasma
concentration and temperature are taken into account, as well as for the ambient
electrical E and magnetic B fields. In Equations (7.8)—(7.10) the additional

notations are introduced

- T; T, .
D,, = Dg(l —|—T) ———0, (7.11a)

. . T, T .
Di,‘_D;(1+T> — 50 (711b)
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De, D,-, DTe, DT,» and 6., 6; and j;, j, are the tensors of diffusion, thermo-diffusion,
and conductivity and the current densities for electron and ion components of the
plasma, respectively; U, is the vector of the hydrodynamic velocity of molecules
(atoms) of the atmospheric gas; 1 is the coefficient of viscosity; c is the speed of
light; V., 9; are the tensors of collisions of electrons and ions, respectively, with
molecules and atoms of the neutral gas. As was shown in References [8—10] for
ionospheric altitudes beyond 160-170 km, a degree of plasma ionization high
enough (v.; > v,,,,) and the charge particles, electrons and ions, are also magnetized
(0H > Vem, Q0 > Vim)-

With satisfactions of conditions of quasi-neutrality and ambipolar diffusion of
electrons and ions of the ionospheric plasma

N, ~N;=N (7.12a)
(Vi. = Vi. = Vi) (7.12b)
and accounting the temperature distribution of the charged particles during the

ambient heating, which leads to the creation of a nonuniform distribution of the
electron and ion concentration

oT, V(k.VT,) 20
E - T + 5elvet(Te Tt) 5emvem(Te Tm) + gﬁe (7133)
T, V(%VT) 20
L= Y 5 vin(Ty — Ty) + 5 — 1
% N, + 0eiVim(Ti — Ton) + 3N, (7.13b)

we finally obtain the self-matching system of three-dimensional equations of plasma
transfer: diffusion, thermo-diffusion and drift.

In conditions of arbitrary degree of ionization and magnetization of the iono-
spheric plasma, the tensors of collisions ¥ Vei = Ke,ve,, vem = KopVems Vim = KimVim
can be transformed, accounting that Ke,, Kem, K,m — 1 into the simple scalar
values. In this case called the elementary theory [8—10], in the accuracy of
magnitudes of order y = yrer < 1 (working from h>120km), we can, following
References [8—10], from equations of macroscopic movement of electrons and
ions

MmN,y V, = —eN,E — gNe V., Ho] — T,VN, + miuN,(V, — V;)  (7.14a)

MjNi\A)imVe = eN,-E — fNj[‘/i,[‘l()] — T,'VN,' + M,'\AJe,'Ni(V,' — Ve) (7]4b)
c

obtain the components of tensors of diffusion, thermo-diffusion and conducti-
vity, which in the case of nonisothermal plasma (7, # T;) can be written in the
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following form:

D ~ T.(1+T;/T.)(1 + yp) T +T/T)(1 +2p)
‘I MV (1 +p) , il M (1 +p) ’
7,01 +T;/T
Doy = TLETT) (4 2p) + Q1+ 20)),
mye,A
T;(1+T./Ti) >
Dy =t 142 1+ 29p)],
1 Mvd (14 p)(1 +2p) + g (1 + 2yp)]
Te(l + Ti/Te)qH 2
D,y = ~eA- T i) 3yp),
A VoA ( + QH + /p)
_ Ti(1 +T./T;)0u »
Dip = W(l +aqu+r/7),
A= (1+p)* +qi(1 +2yp + 0})
Dot — T.(1 +p) Do — T;
Tel| mvem(l +p) ) Til| M, )
b _LlU+p(+0)+9?] o Tilp?+ (1+7p) gk + %)
Tel — ngmB 9 Til — MjVimB 3
b _ _Tan|(0+ 00 +2p| TiOu[v(ah+2)]
TeN — ngmB ) Tin — M[VimB )
B =p*+ (g5 + 2p)(1 + Qf + 2yp)
2N, 2N,
Oe|l| = 77 > Oil| =77 77 >
L vem (1 + p) 1= Mo (1+p)
2 2
_ e Ne 5 - i >
et = (U Gt p). o =L+ g +p/7),
e’N.qy ) €*N;On 2
UeA**W(lJrQHJFVP)v O'iA**MivimA(lﬂLQHJFP/V)’
NeTe NiTi
KE - 7’ KI - b
H ”wem(1 +P) H Mivim(l +Vii/vim)
K, = Nng (1 +p) K = N[Ti (1 + V,’,‘/V,’m)
MVem [q%l + (1 +p)2} Mivim [Q%{ +1+(1+ vi,-/v,»m)z]
NT, qu NiT; Ou
Kep = Kin =

Mvip, [Q%I +14+(1+ Vii/vim)2]

Here, in (7.9) [V,, Hy] is the cross-product of two vectors V, and Hy for electrons
(o = e) and ions (a = i); in (7.12)—~(7.14) parameters o), Dy and Dry|, 651, Dyl



250 IONOSPHERIC RADIO PROPAGATION

and D7y, 040, Dy and Dy, are the longitudinal, perpendicular (Pedersen) and
crossing (Halls) components of coefficients of conductivity, diffusion, and thermo-
diffusion, respectively, relative to the electrical and magnetic fields, accounting that
E L H and E = E; + E, is a full electrical field in the ionosphere, where Eq is the
ambient electric field and E, = —V ¢ is the intrinsic potential field of polarization
(sometimes called the ambipolar field), where ¢ is the potential of this field.

In the Equations (7.132)—(7.13b) d, =~ 2m/M;, Jp ~ 1073, &, ~ 1 are,
respectively, the fractions of energy lost by electrons in collisions with ions and
neutrals and also by ions in collisions with neutrals; an external source of heating is
associated with high-energy photoelectrons forming in the ionosphere in the process
of ionization of the neutral component by solar ultra-violet radiation. As was shown
in References [21-26], the real coefficients of diffusion are changed with altitude of
the ionosphere nonmonotonically. Thus, for D, and D;, the wide maxima are
observed at the 200 km and 150 km, respectively; for D,; the wide minimum is
observed at altitudes of 200-250 km and the maximum at altitude of about 300 km.
As for the coefficient of ion diffusion along the magnetic field, Dy, it grows
monotonically with increase of ionospheric altitudes.

Additional evaluations carried out in References [21-26] have shown that
components of the tensor of conductivity, g., 7;,, oy and a,|, have the maxima at
altitudes of 100, 150, 250 and 300 km, respectively. The same tendency of
nonmonotonically height dependence with local maxima was observed for other
transport coefficients [21-26]. Hence, apart from the macro-scale regular
distribution of plasma in the ionosphere, there occur the naturally created nonregular
distributions of plasma concentration, the so-called macroscale plasma irregula-
rities, having dimensions from hundreds of kilometers (large-scale disturbances) to
tens and few meters (small-scale disturbances), evolution of which can be described
by the self-matching system of diffusion, thermo-diffusion, and drift (7.8)—(7.10). At
the same time, the peculiarities of the processes of relaxation of such plasma
irregularities are determined by the coefficients of transfer of electron and ion
components of inhomogeneous plasma according to (7.11)—(7.14).

So, during the analysis of the processes of formation and evolution of plasma
inhomogeneities in the ionosphere and their influence on radio propagation, it is
necessary to account the whole spectrum of physical-chemical processes which
form both large-scale regular and small-scale irregular structures in the ionospheric
plasma, the effects of which we will investigate in the following section.

7.1.2. Main Effects of Radio Propagation Through the lonosphere

Now we will discuss the common effects of the ionosphere as a continuous plasma
layered medium.

Refraction. The plasma content of the ionosphere changes the effective refractive
index encountered by radio waves transmitted from the Earth, changing their
direction by increasing wave velocity. Depending on special conditions, which are
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FIGURE 7.5. The reflection phenomenon in the ionosphere.

determined by wave frequency, elevation angle of ground-based or air-based vehicle
antenna, and electron/ion content, the radio wave may fail to escape from the Earth
and may appear to be reflected back to the Earth. This process is actually refraction
(see Fig. 7.5). The same effects are found in Chapter 6 for the troposphere as a gas-
eous quasi-homogeneous continuum. The refractive index n, of an ordinary radio
wave depends on both N and the wave frequency f according to References
[1-3,7,11]

2
n? =1 —f% (7.15)

where f, is the critical frequency of plasma at the given height, given by [1-3,7,11]:

f. = 8.9788V/N [Hz] (7.16)

Apparent reflection from the ionosphere back to the Earth, as shown in Figure 7.5
extracted from References [1-3], can occur whenever the wave frequency is
below this critical frequency f,, from which follows the “working’’ frequencies
for satellite communications must be above this critical frequency f,. The greatest
critical frequency usually observed in the real ionosphere does not exceed
12 MHz. This is the other extreme of an overall atmospheric ‘“window’” which is
bound at the high-frequency end by atmospheric absorption at hundreds of
gigahertz, as is shown in Chapter 6. A number of ionospheric effects for radio
waves with frequencies above 12 MHz, which are very important in land-satellite
communications, will be considered briefly according to the corresponding
references [1-3,7].

Faraday Rotation. A linearly polarized wave rotates during its passage through the
ionosphere because of the combined effects of the free electrons and the Earth’s
magnetic field. This phenomenon is called Faraday rotation. The angle associated
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with this rotation depends on the frequency and the total number of electrons
encountered along the radio path, according to References [1-3,7]

23610

¢ 7 (B)Ns, (7.17)

where fis in hertz and (B) = u(H) is the average induction of magnetic field of the
Earth (called geomagnetic [8—12,44—46]) at the ionospheric altitudes with a typical
value (B) =7-1072! Wb-m~2 and (H) is the average strength of the magnetic
field. Here we use average values of the magnetic field, as many satellite and rocket
observations of this parameter of the ionosphere have shown that it varies randomly
with daytime, latitude, and longitude of the Earth [4-7,9,10]. The parameter Ny, in
Equation (7.11) is the total number of electrons contained in a column of cross-
sectional area Im? and a length equal to the path length, that is, the total electron
content, Ny, [1-3,7]

rr
Niot = J Ndr [electrons - m 2] (7.18)
0

The total electron content for a zenith path varies over the range to electrons per
square meter, with the peak taking place during the daytime.

If linearly polarized waves are used, extra path loss will result, due to depolari-
zation consequence is that, between the satellite antennas and ground-based or
air-based antennas there is a polarization mismatch. There are some ways to
minimize this extra path loss. In fact, as was discussed in References [1-3,7,11], by
use of circular polarized waves one can exclude the depolarization effect. Moreover,
one can vary physically or electronically the receiving antenna polarization or align
the antennas to compensate for an average value of the rotation, provided that the
resulting mismatch loss is acceptable. All details about such methods can be found
by the reader in References [1-3,7,11].

Absorption of Radio Waves. In the absence of the local inhomogeneities of the
ionospheric plasma, the radio wave passing through the ionosphere as a homoge-
neous plasma continuum, is absorbed due to pair interactions between electron
and ion components of plasma. In such a situation, the intensity of radio wave is
determined as [7,11,46]

Izloexp{—ZwJde} (7.19)
C

where I is the intensity of the incident radio wave, « is the coefficient of absorption,
o is the angular frequency of the incident wave, w = 2xf, c is the velocity of light in
free space, ¢ = 3 - 108m/s, and integration in Equation (7.13) occurs along the wave
trajectory s.
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For weakly magnetized plasma, when o > wpg. (@g. is the hydro-frequency of
plasma electrons), and for high radiation frequencies, when w > wpe (wpe is the
plasma frequency, wp. = (e*N/ gome)l/ %, ¢ and m. are the charge and mass of
electron, respectively, and &) is the average dielectric parameter of the ambient
ionospheric plasma), the coefficient of absorption can be presented in the following
form:

_ 1 a)ge(vem + Vei) (7.20)
2w[w? 4 (Vem + Vei)*] '

Here, vem and v, are the frequencies of interactions of plasma electrons with neutral
molecules and atoms, and with ions, respectively, defined in References [8—10]. To
estimate losses due to absorption, that is, the part of energy of radio wave that is
absorbed in the quasi-regular layers of the ionosphere, from D to F, a special value of
absorption in decibels (dB) is usually introduced [7-12]

ds (7.21)

Iy N 43J wﬁe("em + Vei)
1 c

A(u = IOIOg* ~ [(,02 + (Vem + Vei)z]

The expected value of absorption at the ionospheric radio links is estimated usually
by using the measured radiometric absorption along radio traces at the fixed
frequency and by experimental knowledge of frequency dependence of absorption
determined by (7.15). We do not enter into details on how to measure these
parameters and address the reader to special literature [8—10].

Group Delay. Due to the effect of refraction of the radio wave passing through the
ionosphere, the resulting phase difference between waves expected in LOS direction
and that observed really in refracted direction is a function of the corresponding shift
in physical path length, Ar (in m) [1-3]:

40.3

Ar = —fz Ny,

(7.22)

The shift in physical path length leads to a corresponding time delay, t (in sec)
[1-3]

Ar 403
==Ly 72
T of? " (723)

We can use this formula as a definition of the time delay of radio waves passing
through the quasi-homogeneous ionospheric plasma.

Dispersion. As follows from (7.23), the time delay of waves arriving at the receiver
is frequency dependent. Thus, the dispersion properties of radio waves passing
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through a homogeneous plasma layer can be determined by a derivative of the time
delay t over the frequency (in s/Hz), or according to (7.23) [1-3],

dr 80.6

— = N: 7.24
dar of? (7.24)
For the purpose of satellite communication, using knowledge of radio channel
bandwidth Af, one can obtain the differential time delay as [1-3]

dr 80.6
At =—=Af = ——=Af - N, 7.25
T i f o \f - Ny (7.25)
This parameter describes the delay-spread of the signal total intensity due to the
effect of refraction of radio wave in the quasi-homogeneous layered ionosphere.

lonospheric Scintillation. There is a wind presented in the ionosphere, just as in
the troposphere considered in Chapter 6, which causes rapid variations in the local
electron density, particularly close to sunset. These density variations cause changes
in the refraction of the radio wave in the Earth—satellite channel and hence of
changes in signal levels. Portions of the ionosphere then act like lenses, cause focus-
ing, defocusing, and divergence of the wave and hence lead to signal level variations,
that is, the signal scintillation (see Section 7.2).

To summarize the main propagation effects through the ionosphere as a plasma
continuum we must follow the results presented above. As follows from the
literature [1-3], for frequencies beyond the range of 20 to 50 GHz, which are usually
used for construction of Earth—satellite communication links, the effects of Faraday
rotation are negligible (about a dozen of degrees), the propagation delay is very
small (a dozen nanoseconds), and the radio frequency dispersion is very weak (a dozen
picoseconds per one megahertz), so we can withdraw them from computations. As
for attenuation, signal amplitude, and phase scintillations (i.e. fading), these effects
are strongly dependent on nonregular features of the ionosphere, usually called
inhomogeneities or irregularities [1-12]. Accumulative effects of which created
inhomogeneous structure of the ionosphere, consisting of nonregular and sporadic
layers. This will be a subject of further discussions.

7.2. EFFECTS OF THE INHOMOGENEOUS IONOSPHERE
ON RADIO PROPAGATION

Let us now introduce the reader to some very important “thin” effects on radio
propagation that occur in the ionospheric inhomogeneous plasma medium consis-
ting of different kinds of irregularities in a wide range of scales: from small to large
[7-12].

The ionosphere varies randomly in time and space such that the amplitude and
phase of propagating waves may similarly fluctuate randomly in these domains. The
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inhomogeneity of the ionosphere is an important factor in determining VHF/X-band
wave propagation conditions (see References [1-3,7,11,12]). As a result, interest in
satellite communications has stimulated investigations of ionospheric properties, in
particular, the analysis of the spatial-temporal distribution of ionospheric irregu-
larities [8—10].

Many experiments are carried out using ground facilities (radars and ionosondes)
[13-20]. The methods of active modification of the ionosphere [21-27] and direct
satellite measurements [28,29] show that in the normal ionosphere there exists a
wide spectrum of irregular inhomogeneities, which cause a number of radio physical
effects, such as interference, scattering, diffraction, and refraction of radio waves
passing through the ionosphere, variations of the incident angles of reflected waves,
the “multirays effect,”” and so on [30-37]. When waves are propagated through an
irregular medium, small-angle scattering causes what is known as scintillation. We
must note that the same phenomenon was found in the troposphere (see Section 6.3).
All these effects result in amplitude and phase fluctuations of radio signals near the
ground surface, change in the duration and shape of radio waves, and finally a
decrease in the signal-to-noise ratio (SNR or S/N).

The influence of inhomogeneities with various scales (large-scale and small-
scale) on the effectiveness of the satellite-terrestrial communication will be discussed
in Sections 7.2.1 to 7.2.3. It should be emphasized that because of the nature of the
problem, it is necessary to employ various approximations to obtain useful results
and therefore approximation techniques applicable to a variety of different plasma
inhomogeneities are presented.

7.2.1. Propagation Effects of Large-Scale Inhomogeneities

In a spherical-symmetric homogeneous ionosphere, radio waves propagate in a
plane of a great circle [1-7]. In the presence of large-scale inhomogeneities (with
the horizontal scale L larger than the radius of the first Fresnel zone dp = (iR)l/ 2,
where /4 is the wavelength and R is the distance from the ground facilities to the
inhomogeneous area of the ionosphere, L > dp) the radio waves can change their
direction from this plane.

Main Equations. The wave equation (3.142), introduced in Chapter 3 for the
description of radio wave propagation in an isotropic medium, such as plasma, writ-
ten in Cartesian coordinate system with the origin in the center of the Earth and for
the radiation frequency exceeding plasma hydromantic frequency, wg > wye, can
be reduced to the following form:

AE + k2eE =0 (7.26)

where E is the component of electric field of the radio wave along the radius-vector
r, ko =2n/A, ¢ =¢(r) is the complex relative dielectric permittivity of the
ionospheric plasma, R = |r|, wy is the wave frequency, wy. is the electron hydro
frequency, and c is the speed of light. Neglecting absorption and taking the case
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when the frequency wp is more than the plasma frequency wy. the dielectric
permittivity can be presented as

e=1-—"1 (7.27)

Clearly the plasma frequency is a function of the spatial coordinates. Let us present
the field E as [7,11,12]

E = E(r) exp[i®(r)] (7.28)
where E is the amplitude and ®(r) is the phase of the radio wave. The wave vector is
k=Vo(r) (7.29)

For small variations of the amplitude at distances comparable with the wave length,
from (7.26)—(7.29) one obtains

K = kje(r) (7.30)

Method of Characteristics. After differentiating Equation (7.30) and knowing the
relationship Vk = VV®(r) = 0, the equation for the wave vector k was found to be
[11,12]

(kVK) = (1/2)koVe(r) (7.31)

The solution of Equation (7.31) can be defined using the method of characteristics
used in References [11,12]. This method transforms (7.31) into a characteristic
equation, which in the spherical coordinate system {r, 0, ¢} can be presented for all
the components of wave vector k = {k;, k,, ko} as

dr do <in 0 do dk, dky
—=r—=r — = =
k, ko kg L%@(rze) kj kg cos 0 kj@ k ko
2r2 Or r r 2r 00 r
(7.32)
_ dk,
k?) ﬁ _ koky cotf — kyk,
2rsin 0 0 r r
From expression (7.32) it follows that
0 k, 0 .k
— 9P _ sino~e (7.33)

dp ke 80 T ke
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After a differentiation of (7.32) over the 0, we finally get

o) dp 1 o9\’ K2 9e 1,000
——+2cotl—+=sin20( — | =—20 2 7.34
07 T2 e T2 (ae) 22sin>00¢ 200000 (7.34)

If inhomogeneities do not exist, that is, de/0p = 0¢/00 = 0, then from (7.34) the
integral becomes

tan 0sin(¢p — @) = Co (7.35)

where ¢, and Cj are the integration constants obtained. Equation (7.35) for the
selected Cy and ¢ describes a circle with its center at the origin of the coordinate
system. Hence in References [11,12] a rule followed that is: In the homogeneously-
layered ionosphere (independent of 0 and @) the ray trajectory lies in the plane of a
great circle.

However, in the presence of large-scale irregularities the derivative do/df = 0,
but de/df < 1. This enables terms proportional to (d¢/d6)® and (de/d6)(de/00)
to be neglected. Thus the ray trajectory in a weak inhomogeneous plasma is defined
by the equation:

o dp 1 ., 0O
W—l—ZCOt@%—Esm 9% (736)

As was shown in References [11,12], analyzing Equation (7.36), it results that: the
existence of large-scale inhomogeneities causes the ray trajectory to deviate from
the plane of the great circle.

The same effect, defined as refraction in the troposphere, is discussed in Section 6.2.

The Curved Smooth Screen Model. The problem of multi-mode reflection from
ionospheric layers can be resolved by using (7.31). However, there exists a simpler
method based on the model of a curved smooth screen moving with respect to the
observer. This model is correct if wpe > wo, where wy, is a critical frequency of
plasma for each ionospheric layer, and L >> dr. The geometric optic approximation
is applied in this method. The simplest model of a curved mirror is the smooth screen
with a sinusoidal shape, which moves with a constant speed without changing shape.
Let us consider a rectangular coordinate system {x,y, z} with z-axis in the vertical
direction and the base on the ground surface. The receiver and transmitter are at the
origin of the system, the altitude z is a function of time 7 and coordinate x, z = z(x, t),
as is shown in Figure 7.6, according to References [11,12]. The coordinates of the
reflected points are defined from the following condition:

dZ(X, 1)
oxX

Z(X, 1) - X (7.37)
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» X

X(t)

FIGURE 7.6. Modeling of the ionospheric layer by a sinusoidal layer.

If ionospheric inhomogeneities have the shape of a running wave with amplitude 9,
wavelength A, and period 7, then

Z(X,1) = Zo[1 + sin 2n(X /A — t/T)] (7.38)
and from (7.37) it follows that
(21Z25/A) cos 2n(X /A — t/T)[1 + §sin2n(X/A — t/T)] = —X (7.39)

Here, Zj is the average height of the reflected level. For relatively small oscillations
of the reflected level (6 < 1) ordinates X of the reflected points are found from the
solution of the transcendental equation [11,12]

(21Z35/A) cos2n(X /A —t/T) = —X (7.40)

From (7.40), it follows that the number of solutions depend on the position of the
screen and on the amplitude 6. As was shown in References [11,12], the solution is
unique if

2nZ25/A < 1 (7.41)

Inequality in (7.41) represents the condition of a single ray reflection from the
smooth surface. If the condition for (7.41) is not valid, there are several rays forming
the interference picture at the receiving point.

From formulas (7.37) and (7.38) we can calculate the incident angle 0’ of the
radio wave at the receiving point

cotl =X/Z = (2nZy6/\) cos2n(X/A — t/T) (7.42)
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The maximum ray reflection from the vertical axis, which is a half width of the angle
spectrum 7y, equals

y = 2nZy0/A (7.43)

Analysis of (7.40) presented in References [11,12] has shown that even very small
oscillations of the height of equal plasma density level lead to the multimode
reflection of radio signals, to the growth of the angular spectrum width of waves, and
to interference.

Amplitude and Phase of Reflected Waves. If A is the amplitude of the signal
reflected from the level of equal plasma density, then the amplitude A of a radio
wave reflected from the smooth surface at the point X is [11,12]

Ag

AXD = T 200)

(7.44a)

where p = [1 + (dZ/dX)**/? /(d?Z /dX?) is the radius of curvature of the screen at
the point (X, Z). Relationship (7.44a) describes the focusing and defocusing effects
of reflected radio waves caused by large-scale inhomogeneities. The phase at the
receiving point is

D(X,t) =2wR/c+ /4 (7.44b)

where R is the optical path length from the reflector to the receiving point, factor
7 /4 corresponds to the change of wave phase when reflection from the ionosphere
takes place. When oblique propagation of radio waves takes place for large
distances the ray is reflected from an ionospheric surface of about ten thousand
square kilometers. Such a surface contains many inhomogeneities, with about
20-100 km scales, on which radio wave scattering takes place. In the geometrical-
optics approximation, the wave scattering on the ionospheric density fluctuations
is the same as the scattering on the rough surface. If now the radio wave falls on
the bottom boundary of the ionosphere under the angle 6y, then the angle
0 =0(X,Y,Z) will be changed according to Snell’s law

[e(X,Y,Z)]"*sin0(X,Y,Z) = sin 6, (7.45)
during the field penetration to the upper altitudes. At the turning point

Z=27Z,(X,Y), the angle 0 = n/2 and reflection takes place. The height of a
turning point is defined as a minimum root Z = Z,, of Equation [11,12]

1 —¢(X,Y,Z) = cos® 0 (7.46a)
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If Ny(Z) is an average concentration in the ionospheric level and N, (Z) is a disturbed
density caused by the plasma inhomogeneities, then the left part of (7.46a) can be
rewritten as

1—e(X,Y,Z)=1—-3 — & (7.46b)
where

20 = €*No(Z) /me’eg (7.47a)
and

2 = €*Ny(Z) /me’eg (7.47b)

In the absence of inhomogeneities, the height of the reflection point (turning point)
Zom 1s a function of coordinates X and Y, and the thickness of the reflected layer is
defined from vertical oscillations of equal electron density level (from mean square
deviation of the turning point from the height Z,). Thus, even weak large-scale
inhomogeneities also increase the thickness of the reflecting layer. The radio wave
trajectory due to horizontal changes of the screen height has a complex oscillatory
character.

If the frequency of the ionospheric layer is fj, radio wave reflection can occur for
frequencies f > fy cosec 0y and radio wave penetration for frequencies f < fy
cosec 0y. The first condition shows the possibility of radio wave communication for
frequencies more than the maximum useful frequency. The second condition shows
the possibility to reflect and scatter radio waves with frequencies f < f; cosec 0.

Radio Waves with Frequency o > wpe. Now some effects of large-scale inhomo-
geneities for radio waves with frequency w > wy. are presented, where wp is a
plasma frequency of the ionospheric layer defined above.

Let us suppose, as in References [11,12], that the wave propagates vertically
down and passes through the layer with an inhomogeneous density. After passing the
layer at the height Z, the phase @ of the wave will be a function of the horizontal
coordinate X (see Fig. 7.7, according to References [11,12]).

w
P(X1) =~

R(X;) (7.48)

It can be seen that inhomogeneities are stretched along the Y-axis and N; does not
depend on Y. For radio frequencies with @ > @y, & ~ 1 and

62

R(X1) ~ Ni(X1) (7.49)

mem2gy
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radio wave

AT

» X

FIGURE 7.7. Penetration of radio waves through the sinusoidal ionospheric layer.

where

Ni(X)) = JNI (X1, Z)dz (7.50)

A ray passing through the layer at the point X; changes its trajectory from the
vertical axis by the angle 0

c 00 8R1
0=——=— 7.51
(0] 8X] 6X1 ( )
and comes to the Earth’s surface at the point
X=X, +Zytan (752)

If the wave amplitude at the height Z; is equal to A(Z), then from the law of energy
conservation in the ray tube with scale dX, it follows that

A(Zo)PdX, = |A(Z = 0)dx (7.53)

From Equations (7.52) and (7.53) the wave amplitude at the Earth’s surface is found
to be

ax | jaz)
A(Z =0)| = |A(Z = 7.54
4z = 0)| = @) G o lE (7.54
0
dx?




262 IONOSPHERIC RADIO PROPAGATION

If d’R, /dX? > 0, then A(0) < A(Zy), there is a defocusing effect; whereas, when
d’R;dX? < 0, then A(0) > A(Z) there is a focusing effect. The same effects occur
in the troposphere (see Chapter 6). The phase of the wave passing through the layer
in the point X and reaching the point X on the Earth’s surface (Fig. 7.7) is

B(X, X)) = Do + %Zg[sec 0(x,) — 1] (7.55)

where @ is the wave phase in the absence of inhomogeneities. The rays come from
different points to the point X on the layer boundary. The difference of ray phases
between the points X; and X observed at the point X of the Earth’s surface is
[11,12]

AD = &(X, X)) — B(X, X)) = %z(, [sec 0(X,) — sec O(x])] (7.56)

If rays coming to the point X at the Earth’s surface have the phase difference
A > 1/2, the essential interference picture is recorded. Calculations show that
inhomogeneities in the ionospheric F-region (Z = 200-300 km) cause an inter-
ference pattern for waves with frequency f < 40 MHz and only for the relative
changes of ionospheric plasma density N, /]% > 0.002. Where, according to
Reference [11], No = fzof NodZ is the plasma electrons content in the whole layer of
the ionosphere. Thus, the large-scale inhomogeneities exist when the horizontal
scale of the irregularity is larger than the width dp of the first Fresnel zone. The
phenomena of large-scale inhomogeneities are important for different and varied
ranges of radio wave frequencies during which radio waves are reflected from the
ionospheric layer with large-scale inhomogeneities. When radio waves are reflected
from the ionospheric layer with large-scale inhomogeneities, a number of radio
physical effects occur:

— deviation of the radio wave’s direction from a great circle plane.
— increase of the vertical size of the layer forming the reflected signal.
— the change of propagation of the radio wave to “multimode.”

— the complication of pattern and additional modulation of radio wave ampli-
tude, due to the arrival of several rays to the receiving point with different
phases.

7.2.2. Propagation Effects of Small-Scale Inhomogeneities

Radio wave diffraction effects due to small-scale inhomogeneities that are usually
contained in the ionospheric E- and F-layer are now examined. The influence of
small-scale inhomogeneities results mainly in phenomena like diffraction and
scattering.

Perturbation Method. For inhomogeneities with a characteristic scale of | < dp,
(where, as above, drp = ()»R)l/ 2 and I represents the scale of inhomogeneity), and
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with [ < 4, the geometrical optic approximation is not valid, and we must use the
method of disturbance (perturbation) for Equation (7.26), as it is described in Sec-
tions 3.2-3.4 (see Chapter 3). As before, the dielectric permeability ¢ in (7.26) is
presented as a sum of & + &, where & and &, can be defined from (7.47a) and
(7.47b), respectively. Below, we will summarize briefly the general results men-
tioned in Chapter 3 and also in References [11,12], and then will present the addi-
tional results obtained in References [29-41] as well as by the authors of this book
with the computational examples of the effects.

The height Z = Z is the height for which reflection takes place (¢y = 0). For the
heights Zy — D < Z < Zy a model of a linear layer with thickness D can be used. As
a result, the dielectric permittivity can be rewritten in the following form [11,12]:

zZ-7)

&(2) =— D

(7.57)

The field change E, in the horizontal homogeneous layer of the ionosphere with &
defined from (7.57) and for the normal wave incidence on the layer, can be described
by the equation [11,12]

PE [ ,Z—7,
555

This equation has an exact solution, which can be expressed by the Airy functions
Uand V

+o0

U(—1) :# J sin (x° /3—x7)dx (7.59a)
I
V(=) =75 J cos (x°/3 — x1)dx (7.59b)

0

where T = k§/3Z/D1/3.

Small-scale inhomogeneities have a weak influence on wave propagation. If
small-scale inhomogeneities of plasma density exist in the ionospheric layer, then
the field changes are described by the equation

AE + ko(80 +#)E =0 (7.60)
which is solved by the method of perturbations, that is, the Airy function V(—7) can

be assumed as a standard function for a strict solution of (7.60), which is described in
the following form:

E = Eyexp{ikog}V (k) &) (7.61)
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where Ej is the amplitude of the incident wave on the boundary of the layer;
g and @ are the logarithm of wave amplitude and the wave phase, res-
pectively. By putting expression (7.61) in (7.60), the following system is
obtained

2VeVP + k' V2 =0
(7.62)
—ky'Ag+ (Vg) — D(VD) +5 +3 =0

Let us suppose that kg‘ and ¢; are small, and present functions g and
as perturbation sums (see perturbation method description in Sections 3.2
and 3.4)

g=8 +t&+--, Q=&+ &+ (7.63)

Then for the first and second order approximation of (7.62) the wave phase can
be given as [11,12]

Z,
Dy = 2koXo = 2ko J (20)*dz (7.64a)

z

ERS

@) = 2koX, = 2ko | 71/ (50)*dZ (7.64b)

Ne— N

Parameter @, defines the phase of a nonperturbed wave and @; defines the
disturbance of phase in the ionospheric layer with small-scale inhomogeneities. The
function g; in expansion (7.63) can be expressed as [11,12]

N

g1 = (1/2ko) In[|E(Z)|/Eo] = —(1/2ko) | [A1X1/ (%) *1dZ (7.65)

z
and it describes the changes of the signal level in the process of scattering, and

o> D

A= tar

The Cross-correlation Function of Phase Disturbances. Using expressions
(7.63)—(7.64) we can find the cross-correlation function of phase disturbance @
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of the radio wave reflected from the layer with thickness D

ENS

7' Z,
To(&,n) = ko J dz, J dz, (e1(X1, Y1,21)e1(X2, Yo, Z2))
(7.66a)
D Zy—¢/2
—2 [rEnow | p/lE-z)-¢/aaz
Zy—D—(/2

where ¢ =X —Xp,n =Y, —Y,,( =7 —Z,. The second integral in formula
(7.66a) equals

2,~¢/2
D/((Z — 2) — ¢/41dZ = D{n[D — ¢/2 + (D* = */4)"* — In(¢/2)}
Zy—D—¢/2
~ DIn(4D/() (7.66b)

For the following calculations, as in References, [21-27], we consider that the
shape of the inhomogeneities of plasma density oN = N; < Ny, distributed
according to the Gaussian law inside inhomogeneous ionospheric layer at the
height Z, as

2
Fs(équ = Fs(éa ’7) exp{;} (767)

where [ is the characteristic scale of |N; \2 changing along the Z-axis. If

2> (7.68)

does not depend on Z, then the maximum of the cross-correlation function of the
phase fluctuations is

N
No

604
I(0,0,0) = (&) = w‘if<

8D C
I'4(0,0) = (®1) = n'/2K3ID(e}) In (z + 2) (7.69)

where C is the Euler constant [11]. Expression (7.69) takes into account that (N?) is
the same for all altitudes of the ionosphere. If relative fluctuations of plasma density
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(N1 /No|*) depend on the height, then

is the function of Z. In this case

2> (7.70)
N

2

8D 3
&) =n'22ID( [—| YIn[=—=+C—-Z 71
(#1) == kOl<No>n<l ¢ 2) 771)

From formula (7.71) it is seen that the main contribution to the phase fluctuations of
the radio wave are determined by the inhomogeneities placed near the reflected level
Zy, where ¢y ~ 0. If the following form of spectrum of plasma density fluctuations
Un(K) or of dielectric permeability fluctuations U,(K) is used, then

Uy(K) ~ Uy(K) = My[1 + (K3 + K2 + K2)L2 /4n?]) 7/ (7.72)

where L is an external (outer) scale of inhomogeneities and M, is determined by the
condition (2}) = [U,(K)dKx dKydKy, then the correlation function of phase
fluctuations can be presented as

/

Z, Zy—(/2
T'y(&,n) = 2ki DM, J dKy dKy dKz J dZ exp{i(¢Kx +nKy + CKz)}
Zy—D Zy—D—(/2
x { [1+ (K3 + K2+ K2) L2 /4n2] 7% )z - zgf42/41/2} (7.73)

In Reference [23] it was pointed out that the formula (7.73) could not be analytically
integrated. Moreover, for the case Ly < D calculations of the spectrum of phase
fluctuations @; have shown that spectrum Ug, does not reproduce spectrum Ul .

The Thin Screen (Kirchhoff) Approximation. Now, using the formulas presented
above, the question of phase and amplitude fluctuations for the case of low-orbit
satellite communication can be investigated in more detail, using the thin screen
approximation method [33,40—41] presented schematically in Fig. 7.8. Let us sup-
pose that the satellite trajectory and the receiving point on the Earth’s surface are in
the magnetic meridian plane. To simplify the problem, it is assumed that geometric
field lines are vertical at point O on the Earth’s surface (see Fig. 7.9). The z-axis is
directed along the magnetic field lines and the x-axis lies in the meridian plane. The
case wg > wpe, areal case in satellite mobile communication, is now discussed. Due
to diffraction and scattering effects at the small-scale inhomogeneities, radio waves
from a satellite located at point P have a stochastic modulation of phase after passing
through the ionospheric layer having thickness L.

For the case of waves from VHF to X-band, that is, for A < [, where [ is the scale of
inhomogeneity that is from a few meters up to a few centimeters and for weak
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Phase screen -
ionosphere

Reception plane -
Earth, I(k)

FIGURE 7.8. The 1D phase changing screen model.
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inhomogeneities ((#?) < 1), the angle of scattering of radio waves @, ~ (1/1)(®?) is
small. In the coordinate system {x',y’, 7’} with the z’-axis directed along the ray OP,
the phase fluctuations @; on the bottom boundary of the layer are (Fig. 7.9)

®,(x,y) = koLseci
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(7.74)

FIGURE 7.9. Geometry of a link LEO-satellite communication with the terminal antenna

placed at the Earth’s surface.
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Then a cross-correlation function I'g can be presented as

Lseci

Te(E) ) = kjLseci J r,(&,q,¢H)d¢ (7.75)

—Lseci

where &' = x| — x5, 0" =y] — 5, (' =2} — Z,. Using Kirchoff’s diffraction formu-
las, we can calculate the wave field strength at the receiving point following
Reference [33]

2

2
Jexp{i@l ()} exp{ —in)—%y}dx’dy/ (7.76)

exp[—iko(Ri + Ry)]

E = iEy JR\R,
1

where E is the amplitude of wave at a transmitting point P, R=R 1R/ (R1 + Ry).
If @ is distributed according to (exp(i®;)) = exp(—(®7)/2), we can obtain the
average field (|E,|) at the receiving point

Ey (1)
El|)=— —— 7.77
() = erp( 15 a.7)
The average field is attenuated because part of the wave energy is transformed into
the noncoherent component of the field. When the satellite moves from point P to
point P, with coordinates {x', ', z'} and R = R| + R} (Fig. 7.9), the received field
equals

—iko(R| + R’
Er _ lE() exp[ ll;z(lRlz+ 2)] JCXP{I¢1 (x",y”)}
R 2
(2,
X exp{ —in = dx"dy”

Here the difference between R and R’ is taken into account only in phase
multiplication. Thus the cross-correlation function of the received field can be
presented as

2
=15~ (BB ~ (B ) = 2 { s [ explion ()~ i (")

: R \2
X exp lj{% (x’z - <x” I;x’1> +y? y"2>1 dx'dy'dx"dy” — exp(—(@7)) }

(7.79)
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Using the relationship pg (&, 1) = g1 /(®?), we can calculate the cross-
correlation function of the wave field [36,37]

re = {esol-00 (1 -0 (od ) )| ~ewi-0in} 730

The parameter Ryx| /R = xj is the coordinate of ray OP along the x-axis at height Z,
(Fig. 7.9). It can be found from the speed V|, of point O when the satellite moves as

X, = |Volr (7.81)

Here, a coherent function that gives us the correlation function of the field in a
specific plane is defined. By using this function it is possible to obtain later the
intensity of field fluctuations, I(r).

Spectrum of Amplitude Fluctuations. Expression (7.80) enables the relationship
between the cross-correlation function of phase fluctuations on the bottom boundary
of the ionospheric layer and the correlation function of signal amplitude fluctuations,
I'g. The latter can be found for weak phase fluctuations ((®7) < 1) as

E2
I'e = F2<¢%>p¢1(x6) (7.82)
The time fluctuations of the field amplitude are found from the spatial phase
fluctuations on the bottom boundary of the ionospheric layer with small-scale
inhomogeneities. Taking into account relationship (7.82), we obtain

Lseci
T'e(é,n) = (E3/R*KLseci j Lo, ¢)dC’ (7.83)

—Lseci

The Fourier transform of Equation (7.83) gives the spectrum of amplitude
oscillations

Uult) ~ | UK K KoK (7.84)

Now, at point O, the angle i; is the angle between the magnetic field and ray OP (see
Fig. 7.9). In the coordinate system {xo,(}, with the (-axis along the geomagnetic
field and with the base at point O, there are two cases

(1) For the case i; = 0 when the ray is parallel to the magnetic field By lines,
the disturbance of plasma density is averaged and the field correlation
function I'g is determined [36,37] by the scales of the inhomogeneities
perpendicular to By.
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(2) In the other critical case when i; = 90°, the density oscillations are averaged
in the direction transverse to the magnetic field and the spectrum [y is
expressed from the spectrum of the scales of the inhomogeneities elongated
along By.

One should note that expressions (7.74) and (7.77) were obtained for the small-
scale inhomogeneities (I < dp). In real cases of satellite experiments a wide
spectrum of scales are observed — from centimeters up to kilometers. For a more
general two-dimensional (2D) case, the spectrum of plasma density Uy(K) of
inhomogeneities was calculated by Shkarofsky [38]. At the same time the spectrum
of amplitude scintillations, measured in satellite experiments, shows that for the
spatial frequencies L' < K| < I;! the spectrum of plasma density Uy(K) can be
presented in a simpler manner in one-dimensional (1D) case as [38]

whrsh o k7
nl(55%) (K3 +K3)P2P

Uy(KL) = ~K\ 7" (7.85)

where ly, Ly = 2n/Kj are the inner and outer scale of inhomogeneities, respectively;
K, =2n/l, is the scale of inhomogeneity perpendicular to the geomagnetic field
By, and I'(w) is the gamma-function.

It was also obtained from satellite experiments that in the direction parallel to By
for the longitudinal scales | > df, the spectrum of inhomogeneities Uy(K)|) is
Gaussian:

Un(K|) ~ exp{—Kﬁlﬁ} (7.86)

The transformation from spectrum (7.85) to spectrum (7.86) was observed in
satellite experiments at the angles /| between the radio ray and the geomagnetic
field BoZ

!
i\ ~ tan™! (;) (7.87)
[

In many experiments it was shown that ionospheric inhomogeneities of the F-region,
which give radio scintillations, are stretched along the geomagnetic field (/. /) < 1)
and the angle i; has a value of only several degrees. Thus, the spectrum of field
amplitude fluctuations is determined by the spectrum of transversal scales of
inhomogeneities.

It should also be noted that for the metric and decimetric wave band the case
lp < dp < 1) occurs and more general formulas than (7.85)—(7.86), such as (7.72),
must be used. But analytical calculation for the more general case of anisotropic
inhomogeneities and of oblique incidence of radio waves on the ionospheric layer is
a very complicated mathematical problem. The analytical result was obtained only
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for the case when the wave was incident on the ionospheric layer perpendicular to its
surface and when the magnetic field lines were also perpendicular to the ionosphere
surface. In this case, one can present the spectra of signal logarithmic amplitude g,
U, (K, ), and signal phase S, Us, (K ), fluctuations as

> ) (Kid:

Us, (K, ) = kjLU:(K ) cos — (7.88a)
K2 d2

U,(K,) = KLU,(K ) sin® (LZF> (7.88b)

Expressions (7.88) show that for a wide spectrum of inhomogeneities the amplitude
and phase spectra are determined by the spectra U, (K ) of inhomogeneities and by
“filter”” functions cos?(K2d2/2) and sin?(K>d2/2).

The Scintillation Index. In an observation of the fading of radio signals passing
the ionosphere, usually used a scintillation index [29-41], which is denoted by O’%,
in the same manner as in Chapter 6, because it also determines the ‘“‘strength or
“power” of inhomogeneities (how they are strong) inside the ionospheric layer,
and therefore can be defined by formula (6.97) from Section 6.3.2 as the dispersion
of the radio wave intensity / fluctuations. We will rewrite this formula for our future
discussions:

12
a2 :7EQ_ (7.89)
For weak scintillations this index was obtained in References [29,39-41]
o7 =4(g") =4 J U, (K, )dK,dK, (7.90)

Here again, g is the logarithm for the amplitude of the radio signal. The above
mentioned allows us to conclude that it the small-scale inhomogeneities exist, then
two conditions are followed (see also Section 6.3):

— The inhomogeneity scale, [, is smaller than the first Fresnel zone, dg.
— [ is larger than the wavelength A.

The influence of small-scale inhomogeneities was mainly manifested in phenomena
like diffraction and scattering [29-41]. However, the effect of small-scale
inhomogeneities on wave propagation in the ionosphere is not well recognized.
Although a lot of literature exists about large-scale inhomogeneities, the role of
small-scale inhomogeneities seems to be less well understood. As the spectrum of
small-scale inhomogeneities gives more complicated effects, in the next section we
will focus mainly on the effects of these phenomena, will analyze them according to
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the results obtained in References [29-41] and will generalize some theoretical
results. Calculations of phase fluctuations [(®7)] "> on the bottom boundary of the
ionospheric layer with inhomogeneities for various radio frequencies and for
different plasma density fluctuations [(N?/N})] 12 will be given in section 7.3.3. The
one-dimensional spectra of plasma density disturbances Uy(K,) ~ K 7% for
various extinction parameters in exponent, p’ = p — 2, will also be given. Further-
more, the index of scintillation o7 as a function of phase fluctuations [(®7)] "2 and
of parameter p’ will be analyzed, because it characterizes the power of ionospheric
inhomogeneities and is defined as dispersion of the radio wave intensity variations.

7.2.3. Scattering Phenomena Caused by Small-Scale Inhomogeneities

As was mentioned in the previous section, when radio waves are propagated through
an irregular ionosphere, small-angle scattering causes what is known as scintillation of
signal strength or intensity. In such phenomena, a distinction can be drawn between
diffractive scattering from small-scale irregularities and refractive scattering from
large-scale irregularities. The same phenomena are observed in troposphere, caused
by large-scale and small-scale turbulent gaseous structures (see Section 6.3). We put
the same question as was done in the previous chapter on how we can separate these
effects as well as the inhomogeneities that caused them. For a given location in the
medium of terminal antennas, the transmitter and receiver, a Fresnel scale, dF, is the
parameter which can give the corresponding separation. According to the definition
above, it depends on the wavelength and the coordinate locations of the source and the
observer. In such an assumption, diffractive scattering is caused by irregularities
whose scale is less than the Fresnel scale. Diffractive scattering of electromagnetic
waves by a scintillation medium is described in References [34,41]. Refractive scat-
tering involves irregularities whose scale is greater than the local Fresnel scale [31].

In order to present the effect of refractive and diffractive scattering, the thin phase
changing screen model (see Fig. 7.8) of the scintillation medium was introduced by
Booker [31,34,41]. Such a model replaces weak multiple scattering by strong single
scattering in a way that enables us to understand the relation between ““‘diffractive”
and “‘refractive” scattering in scintillation phenomena.

Main Parameters of the Problem. The phase changing screen model has the fol-
lowing characteristic parameters:

a) phase changing screen representing the ionospheric F-region. As tropospheric
gaseous turbulent structures (see Section 6.3), the ionospheric plasma
inhomogeneities are characterized by the following parameters:

— mean square fluctuation of phase [(A®)’] = (#?);
— outer scale Ly;
— inner scale /.

b) reception plane representing the surface of the Earth (see Fig. 7.8).
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The spectrum of intensity fluctuation is created and obtained in the reception plane.
At the same time, to determine physical processes that accompany radio wave
propagation through the inhomogeneous ionosphere we must compare the outer
scale of irregular ionospheric region with the Fresnel scale defined as dp =
(Az/ Zn)l/ ?, where Z is the distance from the screen to the reception plane and 4 is
the wavelength. In References [31,34,41] it was assumed that the RMS fluctuation
of phase [(®7)] '/2 i large compared with one radian. Moreover, in 1D-case of
ionospheric layer presented in Figure 7.8, as follows from (7.73), the power
spectrum of phase fluctuations S(k) is proportional to k7, when k >> (1/L¢) and p is
referred to as the spectral index.

For a practical scintillation medium, the latter parameter p is defined as the
spectral index that is observed in any measurements of phase fluctuations along a
straight line. For the ionosphere, it is also the spectral index that is observed when
the source is at the satellite moving above the ionosphere in a straight line. Usually,
in literature, the spectral index p is determined as one integer greater than that
observed when measurements of the average refractive index (n) are made along a
straight line in the medium with scintillations, that is, p = (n) + 1 [29-41].

At the same time, the spectral index p is one integer less than that obtained by
analyzing fluctuations of phase made over an area rather than along a line. Observed
values of the spectral index p range from about 2 to 4, with values between about 2.5
and 3.5 being most common [31,34-37,41]. The smaller values of p are found when
the scintillation phenomenon is strong.

Let us also define the expression [(A®)?]S(k) as the power spectrum of phase
fluctuations, where [(A®)?] is the mean square fluctuation of phase, and S(k) is the
phase spectra. The corresponding autocorrelation function p(x) is obtained by
inverse Fourier transformation of S(k) (see Section 7.2.2). Tables 7.2 to 7.3 present
the values of S(k) and the corresponding autocorrelation functions p(x) obtained in
Reference [41].

Now, to differentiate the effects of ‘“‘refractive” scattering from large-scale
irregularities and ‘“‘diffraction” scattering from small-scale irregularities and to
analyse the significant roles in the physical processes, in addition to the earlier
introduced outer scale Lo, the inner scale [y, and the Fresnel scale dg, additional
parameters following References [31,34,35] were introduced. They are: the lenses
scale I, the focal scale Iy, and the peak scale Ip.

The lens scale, i, is defined as the size of the inhomogeneity in the phase
changing screen [31,34,41]. An array of optical foci is produced in a plane parallel to
the screen at distance Z. These foci lie in the reception plane at a distance Z if

z i (7.91a)
(4/(2m)[2(A0)°] '

from which we get

Iz

L= (m)l/zp(M)zJ”“ (7.91b)
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TABLE 7.2. [41]: Phase spectra S(k) per unit mean square fluctuation of phase
together with the corresponding autocorrelation function p(x) (inner scale I, is zero
relative to outer scale L)

p S(k) p(x)
) _ Ao expf — X
L+ K213 UL
2nL, X (x>
3 0 iy o s
(1+Kk213)"? L '\Lo
(1) (-2)
4 _— 1+—)exp| ——
(1+K2L2) L) <P 0
37l X X 1x X
5 2 k(=) 422k (=
(1 + k212)°? Lo{ l(LO)JFZLO O(LO)}

Lens action occurs in the screen, producing focal action in the reception plane.
As follows from (7.88), the lens scale /; can be defined through the Fresnel
scale

I, = dg[2(Ad)H"/* (7.92)

TABLE 7.3(a). [41]: Autocorrelation function for an outer scale Ly and an inner scale /

P p(X)

2 4 2)\1/2
exp<(x + k) )
Ly

’ Ery
P\TL,
@+ ((E+B)
3 L() o Lo
bog (fo
Loy Lo
(o2 + )2 (2 4+ B)'?
14+5— 9 Jexp| ———2
\ < Lo P Lo
1+L0 exp( — -~
L) P\ "L,
@+B) (@B 1B (@B
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D2 Ok (2
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TABLE 7.3(b). [41]: Phase spectra per unit mean square fluctuation of phase for an
outer scale Ly and an inner scale [

P S(k)
K <l—°(1 +K2Lg)1/2>
l() LO
2 4ly exp<—>
Ly (14 k213)'?

I 27211/2
22 1+ (—(1 +k°Lg)

3 ] p L 3 exp<fé£(l Jrkng)l/z)
Lok, (L—D (50(1 +k2L(2,)1/2) 0
K <170(1 +k2L2)1/2> +£(170(1 +k2L2>1/2>K0(l£(1 +k2L2)1/2)
A 813 Lo 0 2 \Lo 0 Ly 0
l ly l 3
L‘(H—) ex <77> by 2
0 P I Io (1 +k°Lg)
lo IENVANR YA 2,2\1/2 :
37'Cd4 1+ fo(l+k LO) +§ LT)(] +K LO) [0 2
3 lo ?0 l /! > EX,D<—L—0(] +k2L6) / >
3 o
B(o(ze) () (™)

Hence, the irregularities with a scale of /;, defined by (7.91b)—(7.92) give a focusing
effect of a radio wave passing the ionosphere at the Earth’s surface. Therefore in
Reference [41] this scale was defined as a lens scale.

The focal scale, Ig, is defined as the width of the average focal spots at the
reception plane by the scattering of radio waves from the medium- and large-scale
ionospheric irregularities. It determines fluctuations of radio signal amplitude at the
Earth’s surface after such a scattering. The focal scale, which varies with the spectral
index, is associated with the arrival at the reception plane of an angular spectrum of
waves that are approximately co phased within an angle of about +4/(2xnlF) of the
norm. It is determined as [31,34,41]

Ir = I, 2(AP)H'? (7.93)

It is seen from (7.93) that for a given scale in the screen, the larger the mean square
fluctuation of phase, the closer is the focal plane to the screen and the sharper are
the foci.

The peak scale, lp, represents the peak in the intensity spectrum /(k), such that
the angular spatial frequency K = ;! gives the low frequency edge of the peak in
the intensity spectrum in the reception plane. When ‘refractive” scattering
dominates, the reciprocals of the scales /p and /r give the lower and upper roll-off
angular spatial frequencies K for the intensity spectrum in the reception plane,
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TABLE 7.4. [31,41]: The focal scale Ir and the peak scale /p for large Ly /dr and (A<I>)2

Spectral Index p’

2.5 3.0 35 4.0 4.5

Lo Lo Lo Lo Lo

{2(A<1>)2 o [ZWMWI/Z [4(A<I>)2 2 [2@ e 7S

dz 7123 d> 3 2 d 2 dx 2 da 571/2
Ip E[2(M>) i [(ae im(aa) 5{4(A<1>) 5{2(@) i-[@e)

Ir

whether this is a focal plane or not. The intensity spectrum therefore extends
roughly from the angular spatial frequency K =I,' to the angular spatial
frequency K = I;;!. The focal scale and the peak scale have a geometric mean equal
to the Fresnel scale

Ip = d2/Ig (7.94)

Table 7.4 represents the focal scale and the peak scale obtained in Reference [31] for
polynomial spectrum of irregularities with p’ = 2-5, as a function of the outer scale
Lo and the mean square fluctuation of phase (A®)?, for (A®)* > 1. As follows from
results presented in Table 7.4, for (A@)2 > 1 spectrum of amplitude fluctuations
of radio signals within a range of spatial frequencies, Iy ' < K < I3, is determined
by “diffractive” scattering from small-scale irregularities and can describe the
corresponding spectrum of ionospheric inhomogeneities. At the same time, at
frequencies K <[5! the scattering is related with scattering from medium and large
inhomogeneities with dimensions / > dfF, that is, it describes the focusing properties
of the ionospheric plasma. Therefore, determination of the spectrum of ionospheric
inhomogeneities using measurements of amplitude fluctuations can be done only
when g > [.

What does it mean in a practical point of view for satellite communications?
Results obtained above show that the effects of “diffractive” scattering occur mostly
for medium- and small-scale irregularities because they become significant for high
frequencies beyond the UHF/X-band, where, as have been shown earlier, effects of
large-scale irregularities are not so actual. Moreover, large-scale irregularities cause
the ‘‘refractive” scattering (such a definition was introduced in References
[31,34,41]). This effect was described earlier in Section 7.2.2. In Reference [41]
it was shown that the ‘“‘refractive” scattering at large-scale inhomogeneities is
predominant with respect to ‘“‘diffraction” scattering from small-scale inhomo-
geneities, if Ir < lp, which means it is actual only for waves of HF/VHF-frequency-
band. This effect is also stronger if the power spectrum parameter p’ is higher (see
Table 7.4). The same effect is observed with an increase of signal phase fluctuations.
Thus, for (A®)* = (#7) > 10°%, the spectrum of amplitude variations, U (K)
defined by (7.88b) for all p/, is determined by the “refractive” scattering, which
gives the so-called focusing effects.
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Signal Intensity Fluctuations. Using the selected appropriate autocorrelation
function p(x) (from Tables 7.2 and 7.3), two functions are formulated that each
depend on x and k. The first is f(x, k), which is obtained by substituting p(x) into
the following equation:

FK) = 20(x) = p(x = kd2) — p(x + kd) (7.95)

The second function is g(x, k), which is obtained by substituting f(x, k) into the
following equation:

gx,k) = exp{ ~[(A®)I[F(0,K) — £(x,K)] } — exp{~[(A@)f(0.6)}  (7.96)

The intensity spectrum in the reception plane is then [34,41]
o0
I(k)=4 J g(x, k) cos(kx)dx (7.97)
0

Using now the formula (7.97), we can obtain the square of the scintillation index, a;
1 o0

S J 1(k)dk (7.98)
0

For weak scattering ((A®)* = 10~!, 1) the general expression for the spectrum of
signal intensity fluctuation (7.97) can be reduced to [41]

1(k) = 4((A®)*)S(k) sin® <%k2d§> (7.99)

where S(k) has the value shown in Table 7.3 if the concrete inner scale [, was taken
into account and in Table 7.2 if [, = 0.

We mentioned that the Fresnel oscillation associated with the sin®(0.5k*d2) term
in the equation is depicted for the main lobe and the first side lobe. For the remaining
lobes only the average value is considered (corresponding to replacement of
sin®(0.5k>dZ) by 0.5). For spectral index of p’ = 2, and using Table 7.2, a substitute
of S(k) = 4Ly /(1 + k*L3) leads to the following equation for /(k)

L 1

_ 2 0 w2f12p

1(k) = 16{(A®) >1+k2L(2, sin <2k dF> (7.100a)
The same substitute of S(k) for p’ = 3 leads to an intensity fluctuation of

=8n Lo sin’ L
I(k) = 8n((AP) }(1 N k2L%)3/2 <2k dF> (7.100Db)
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Finally, for p’ = 4 we get
1
(k) = 32((A®)) (ILkOL) (2k2dg) (7.100¢)
+ 0

Therefore, substituting in (7.98) for different I(k) from (7.100) leads to the following
equations for a;:

—forp’ =2
2V2
2 — Ad)? 101
7t = e del(A0)) (7.101a)
—forp' =3
o = ;?d§<(m)2> (7.101b)
0
—forp =4
82
2 3 2

Computation of intensity spectrum have been performed in accordance with
Equations (7.97)-(7.98) for strong fluctuations and formulas (7.100)—(7.101) for
weak fluctuations for an outer scale Ly = 10dg and inner scale L; = 10~2dg and for
the spectral index p’ = 3, 4, 5. Figures 7.10-7.12 represent the scintillation index
calculated numerically according to (7.100)—(7.101) for weak signals and according to
(7.97)—(7.98) for strong signal phase fluctuations, respectively, versus square mean
deviations of signal phase for various parameters of 1D-spectrum p’ = p — 2 and
different scales of ionospheric irregularities, respectively. It is seen from Fig. 7.11 that
for p’ = 2 the scintillation index with an increase of phase fluctuations limits to the
unit. For higher spectral index (p’ > 2) g; exceeds the unit, which explain the focusing
properties of the ionospheric layer consisting of various irregularities for strong
variations of signal phase after passing the ionosphere.

Signal Phase Fluctuations. We once again model the ionospheric F-region as a
slab of ionization of mean ionization density N with a uniform mean square frac-
tional fluctuation of ionization density (AN/N)* (see Fig. 7.8) with the thickness
D and the outer scale L. We suppose that on the Earth’s plane we receive radiation
of wavelength A from a distant point source at zenith angle y.

In our computations, to illustrate results obtained in References [34,41], we
shall take the outer scale equal to the scale height H of the F-region, and we shall
also take the thickness of the F-region to be H. In such notations, the mean square
fluctuation of signal phase experienced on passage through the F-region may
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FIGURE 7.11. (a) Illustration for various values of the spectral index; the scintillation index
o7, as a function of the normalized outer scale Ly; 1.2dr < Ly < 50dg; ((Acb)z) =1. (b)
Illustration for various values of the spectral index; the scintillation index gy, as a function of
the normalized outer scale Lo; 1.2dp < Lo < 20dg; ((A®)*) = 1.
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FIGURE 7.12. (a) The RMS fluctuations of phase versus the fractional fluctuations of
ionization density for different frequencies at zenith angles of 10°,45°. The outer scale is
equal to a layer thickness of L = 10km. Mean ionization density is 10'>m~3. (b) The RMS
fluctuations of phase versus the fractional fluctuations of ionization density for different
frequencies at zenith angles of 60°,80°. The outer scale is equal to a layer thickness of
L = 10km. Mean ionization density is 10'2m™3.
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then be taken as

2
(AD)*) = (93) = 4r3N2< G‘) >A2H2 sec (7.102)
0

Here all parameters are defined above; r, is the radius of the electron. For
numerical computations we take H = 100km and Ny = 10'>m~3. The curves in
Figures 7.12a,b present the RMS fluctuation of a phase as a function of the RMS
fractional fluctuation of ionization density for a series of frequencies running
from 32 MHz to 60 GHz. The figures illustrate the ionospheric propagation of
various wave frequencies at zenith angles of 10, 45, 60, 80 degrees, respectively.
Both axes, vertical and horizontal, are plotted logarithmically.

We can see that for a given frequency, an increase of ionization density causes
an increase in phase fluctuations. Furthermore, for a given ionization density,
when we use high frequencies for the satellite communication channel (from UHF
to X-band and higher), we can see a decrease in phase fluctuations to values
appropriate for weak scattering. Finally, for a given ionization density, when the
zenith angle y becomes larger, the effect of phase fluctuations becomes stronger. In
fact, for a zenith angle of 60°, the phase fluctuation experienced in the passage of a
32 MHz wave through the F-region with a fractional ionization density <(§—(‘))2> of
1072 is about 750 radians. But when the zenith angle is 80°, and for the same
frequency and ionization density, we obtain phase fluctuations of ~1270 radians.
In order to obtain 750 radians, we need the ionization density <(E—[‘))2> to be
~3.5%x 1073 m™3,

To understand the role of satellite position with respect to the observer at the
Earth’s plane, additional analysis of the RMS fluctuation of a phase as a function
of the zenith angle was done and is shown for a series of frequencies running from
32MHz to 60GHz in Figures 7.13a,b. The figures illustrate the ionospheric
propagation of various wave frequencies at ionization densities of 100%, 80%, 30%,
and 1%. Again, both the vertical and horizontal axes are plotted logarithmically. As
we mentioned earlier, in the following figures we can see that for a given frequency,
an increase of zenith angle causes an increase in phase fluctuations. Furthermore, for
a given zenith angle, when we use high frequencies for the communication channel
(more than 1 GHz), we can see a decrease in phase fluctuations to values appropriate
for weak scattering. The same features, as in Figures 7.12, are clearly seen from
illustrations of Figures 7.13a,b.

Frequency Dependence of Signal Intensity Fluctuation Spectrum. Above, we
evaluated the expressions of the spectrum of the signal intensity fluctuations defined
by (7.97). On the basis of this expression, we present in Figures 7.10-7.11 the nor-
malized intensity fluctuation as a function of the wave frequency, for various values
of the spectral index, p'.

It was shown that for a given spectral index, the behavior of the intensity is an
exponential type. Furthermore, for a given frequency, when the spectral index
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FIGURE 7.13. (a) The RMS fluctuations of phase versus the zenith angle for different
frequencies at ionization densities of 80% and 100%. The outer scale is equal to a layer
thickness of L = 10km. Mean ionization density is 10'>m™3. (b) The RMS fluctuations of
phase versus the zenith angle for different frequencies at ionization densities of 10% and

20%. The outer scale is equal to a layer thickness of L = 10 km. Mean ionization density is
102 m=3.
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FIGURE 7.14. Deviations of the ambient electrical (top graph) and magnetic (middle graph)
fields. The ionospheric plasma content during magnetic storms is presented for short-term
period of 3 minutes (denoted along the horizontal axis).

increases, an increase in the intensity fluctuations is observed. Finally, for a given
frequency, when phase fluctuation becomes larger, the effect of the signal intensity
fluctuations becomes stronger.

To verify the proposed approach of how to estimate effects of ionosphere
on signal fading in land-satellite communication links regarding GPS applications,
special numerical computations were performed to investigate the role of magnetic
storms that usually occurred in the ionosphere due to solar activity, its influence on
the magnetosphere and changes to magnetosphere-ionosphere coupling, on iono-
spheric plasma perturbations [42,43] (see also literature referred therein). As was
found experimentally, the plasma density due to a magnetic storm falls at 100% and
higher. For example, in Figure 7.14 extracted from Reference [43], the changes of
ambient electric field (top graph), magnetic field (middle graph), and ionospheric
plasma content (bottom graph) are presented during magnetic storms registered by
satellites in special measurements, described in Reference [42]. It is clearly seen that
during the storm (the magnetic field strength is maximum) the ionospheric plasma
content was decreased significantly (more than twice). The decrease of plasma content
leads to the creation of strong plasma irregulaties caused by the corresponding strong
deviations of signal phase and amplitude, that is, the intensive signal scintillations at
the receiver. As was mentioned above, this effect depends on radiated frequency.
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To show this effect we performed a numerical virtual experiment in the ionosphere
above the USA territory. The following results are measurements carried out in
Reference [42] for low, mid, and high latitudes of the ionosphere, which we refer in
our experiment as the south of the USA, mid latitude of the USA, and Alaska. We
compared for these three regions a random mean square (RMS) of signal intensity
fluctuations as a function of normalized mean density of ionospheric plasma
(10"2 m’3), for the usually used frequencies of 10, 32, and 60 GHz, and for the
spectral index of p corresponding to each case of the perturbed region. Thus, for the
perturbed south ionosphere of the USA it was taken from the ionospheric data equal
p’ = 2, for the perturbed mid latitude ionosphere equal p’ = 3, and for the perturbed
polar ionosphere above Alaska equal p’ = 4. To understand the effects of a satellite
zenith angle to the ground based antenna, we changed it from 10 degrees to 80
degrees, modeling the case of low-elevation-orbit (LEO) satellite (see definitions in
Chapter 14). The outer scale (thickness) of ionospheric layer was chosen to be
constant, equal to 100 km and the ionospheric height was chosen to be 200 km.
Results of computations are shown in Figures 7.15a,c—7.17a,c for the three regions of
disturbed ionosphere corresponding to the south of USA, mid-latitude region of USA,
and the polar ionospheric region above Alaska, for a zenith angle of 10, 45 and
80 degrees, respectively. From presented illustrations, it is clearly seen that the
effects of plasma disturbances on signal intensity phase fluctuations become stronger
with the decrease of radiated frequency and the increase of zenith angle. It is obvious
that in the polar ionosphere the effect of magnetic storm on signal scintillations is
more significant compared with that for the mid latitude ionosphere and, of course,
for the ionosphere above the south regions of USA. Again, these effects strongly
depend on the radiated frequency within the land-satellite communication link and
the zenith angle of satellite with respect to ground based facilities.

Let us now summarize some important results obtained above concerning the
effects of the small-scale inhomogeneities of the ionospheric plasma on radio
wave propagation. Here, on the basis of the original works [29-41], we analyzed
the field intensity and phase fluctuations by the use of the perturbation method.
We examined and analyzed the fluctuation of the phase as a function of the
ionization density for different zenith angles (from the source). Then we analyzed
the fluctuation of phase as a function of the zenith angles for different ionization
densities of plasma irregularities. Using the perturbation method, we briefly
introduced an analysis of intensity fluctuation in the frequency domain. We have
answered questions on how the plasma irregularities of wide range dimensions
affect radio propagation in land-satellite communication channel, and in what
frequency band their effects are more actual. Finally, we get that the accumulation
of the analysis are:

— for a given frequency band, an increase of ionization density of iono-
spheric irregularities (“power’”) causes an increase in signal phase fluctua-
tions. Furthermore, for a given ionization density, using high frequencies for
the satellite communication channel (more than UHF-band), a decrease in
phase and amplitude fluctuations to values appropriate for weak scattering



FIGURE 7.15 (a) RMS of signal intensity phase fluctuations (in radians) versus mean square
fractional fluctuations of plasma density (normalized by the mean ionization density of
10'2 m~3) for frequencies of 10, 32 and 60 GHz, for a spectral index of p’ = 2 (corresponded
to perturbed ionosphere above the south of USA) and zenith angle of 10°. The outer scale
(thickness) of ionospheric layer is 100 km and the ionospheric height is 200 km. (b) The
same as in Fig. 7.15a, but for a satellite zenith angle of 45°. (c) The same as in Fig. 7.15a, but
for a satellite zenith angle of 80°.
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FIGURE 7.15. (Continued)
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FIGURE 7.16. (a) RMS of signal intensity phase fluctuations (in radians) versus mean square
fractional fluctuations of plasma density (normalized by the mean ionization density of 10'2 m~3)
for frequencies of 10, 32 and 60 GHz, for a spectral index of p’ = 3 (corresponded to perturbed
mid latitude ionosphere above USA) and zenith angle of 10°. The outer scale (thickness) of
ionospheric layer is 100 km, the ionospheric height is 200 km. (b) The same as in Fig. 7.16a, but
for satellite zenith angle of 45°. (c) The same as in Fig. 7.16a, but for satellite zenith angle of 80°.
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FIGURE 7.17 (a) RMS of signal intensity phase fluctuations (in radians) versus mean square
fractional fluctuations of plasma density for frequencies of 10, 32 and 60 GHz, for a spectral
index p’ =4 (corresponded to perturbed polar ionosphere above Alaska) and for satellite
zenith angle of 10°. The outer scale (i.e., thickness) of ionospheric layer is 100 km, and
the ionospheric height is 200 km. The mean ionization density is 10'>m~3, on which the
horizontal axis is normalized. (b) The same as in Fig. 7.17a, but for a satellite zenith angle of
45°. (c) The same as in Fig. 7.17a, but for a satellite zenith angle of 80°.
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FIGURE 7.17. (Continued)

from ionospheric irregularities is observed. Finally, for a given ionization
density, when the zenith angle y became larger, the effect of signal phase and
amplitude fluctuations became stronger.

the analysis of field intensity by use of the perturbation method, as well as the
scintillation index was done for various values of the spectral index. In
addition, a distinction was made between weak scattering, ~ <(A<15)2> =10"41,
and strong scattering, ~ ((A®)?) = 100, namely;

e For a given frequency, an increase in the spectral index causes an increase in
the intensity fluctuations.

e For a given frequency, an increase in phase fluctuation, causes an increase
in the intensity of fluctuations.

e The behavior of the spectrum of signal intensity fluctuations in the
frequency domain is of exponential type.

7.3. BACK AND FORWARD SCATTERING OF RADIO WAVES
BY SMALL-SCALE IONOSPHERIC INHOMOGENEITIES

In previous sections we considered effects of large- and small-scale ionospheric
inhomogeneities on radio propagation through the ionosphere mostly for the
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purpose of land satellite communication problems. As was shown in References
[44-49], scattering at large angles, up to 180°, occurs at the male-scale inhomo-
geneities oriented along the ambient geomagnetic field. This effect is actually for
HF/VHF-band radio propagation (1 MHz < f < 100 MHz), for which all char-
acteristic scales of plasma inhomogeneities are at the same order or smaller than the
wavelength, that is / < A. In other words, this effect is actual for over-horizon radar
applications due to reflections from the ionosphere, or for long-range radio
propagation due to scattering in the inhomogeneous ionosphere. All these effects
are very actual for an investigation of radar echoes caused by back and forward
scattering from small-scale ionospheric inhomogeneities [44,45] and for creation of
HF/VHF-radio wave communication channels due to forward scattering from
small-scale magnetic field oriented nonisotropic ionospheric inhomogeneities
(called the Hg-irregularities [46—48]).

7.3.1. Effects of Back and Forward Scattering

The theory of back scattering of radio waves by nonisotropic ionospheric
irregularities was created by Booker [44,45] for the purpose of radiolocation and
radar applications, which we briefly present below. The geometry of the problem is
presented in Figure 7.18. The coordinate system is located at the point O inside the
scattering volume V consisting of small-scale nonisotropic inhomogeneities. Let us
consider that the transmitter is located at the point P and the receiver is at the point
P,. Thus the field of the radio wave, Ey, in the point O; from the transmitter with

A #

FIGURE 7.18. The radio path of back and forward scattering by the ionospheric volume
consisting of small-scale plasma inhomogeneities.
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isotropic antenna and power W can be presented as [44,45]

ZW l/zeikrr
Ey=|— 7.103
0 21 ( )

rr

where Z is the impedance of the environment. Due to small-scale fluctuations of
plasma permittivity ¢; in the ionosphere within the volume of scattering defined by
(7.70), an additional electrical momentum, described by the vector Hertz II = ¢, E,
is created. Finally, the scattering wave arrives at the point P, of the receiver after
scattering from the elementary volume dv within the total volume V, which covers
point O and O;. This field can be presented in the following form [44,45]:

B k(z) sin y

dE — exp{—ika(Ry — 1)}
47

IRy — 1|

|| dv (7.104)

where y is the angle between the vector of the electric field Ey and the wave vector k,
of the scattered wave (see Fig. 7.18). Then the cumulative scattering effect from the
total volume V can be presented as

5 . 5N 172 ; _
£ kg sin (ZW) ng (r) exp{i(kirr — korg} dv (7.105)

4r 2n rTrR

All geometrical parameters are shown in Figure 7.18. Finally, the intensity of the
scattered signal at the receiver has the following form [44,45]:

k3 sin® A e{i(kll”rszerk,lr/T+k’2r;}
I: E2 = 0 bsz c r’é’ r/ - dvd‘/ 7'106
(E[) =550 @ () —— (7.106)

As was shown in Section 7.2.2, for the statistically homogeneous distribution of
fluctuations of plasma density within the volume V,

E(r)E () = J Us(K)e ®dK (7.107)

where r" =r —r’. We can simplify the integrand in formula (7.106) follow-
ing References [44,45] by saying that the maximum linear dimension of the volume
V, denoted by L, is smaller than the distances R; and R, between the scattered
volume and the transmitter and receiver, respectively, but it is larger than the
characteristic scales of plasma density fluctuations introduced in Section 7.2.2. In
such assumptions, the expression for the field intensity can be presented as
4 ;2
1=,k i;l LyU,(k; — ko) (7.108)
2

where I is the field intensity within the volume of scattering V.
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Let us now introduce the specific area of scattering (also called in the literature,
the radar cross section), 6(9,, x, ko), as a wave power scattered by the unit element
of the volume Vinside the unit spatial angle for the wave with an unit energy incident
at this volume.

402,
kg sin”

5(1921}{1 kO) = 42

Us(k; — k) (7.109)

For the case of forward scattering with given angle ¥, (see Fig. 7.18), the absolute
value of the difference k; — k;, equals

Ik] — k2| = ko(l — 005192) (7110)

For the case of back scattering, when the transmitter and receiver are at the same
point, that is, 9, = 7, we have |[k; — ky| = 2ko. Furthermore, because k¢ = w*/c*

and, as was shown in previous sections, (£7) = "° (R | ), the coefficient in (7.109)

before U;(k; — k;) does not depend on the frequency of the radio wave. The
frequency dependence of the radar cross section (1, y, ko) is determined by the
normalized spectrum of plasma density fluctuations, that is by U;(k; — kz)/ <§f>

For Gaussian distribution of plasma inhomogeneities, as was shown above, the
correlation coefficient in the Cartesian coordinate system with z-axis oriented along
the geomagnetic field lines are equal

(7.111)

)C2 _|_y2 Z2
pg(X,y,Z) = exXpy — 7

2 2
1 lH

In this case, the normalized spectrum of plasma density fluctuations equals
[44-46]

Us(ky — ka)/ (& >—l2l”(2n)3/2exp{ ZkS(Ii—&-lﬁsinzxﬁ} (7.112)

where y = /2 — f8, [ is the angle between the geomagnetic field lines and the
direction of scattered wave (determined by K;). For the spectral function of the form
(7.112), the frequency dependence of the radar cross section from the nonisotropy
small-scale inhomogeneities is

a(f) ~ eXp(—fz/fﬁo) (7.113)

where f,0 is the plasma frequency.
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In Reference [46], the exponential linear frequency dependence 6(f) ~ exp(—f/f,)
has been obtained experimentally, which can be obtained if instead of Gaussian
distribution (7.111), the polynomial distribution of €; is used

1 -2
pz(x,y,2) ~ {% + odx? + o3y + oc%zz} (7.114)

where o;, i = 1, 2, 3, are the coefficients of anisotropy of plasma inhomogeneities
along the corresponding coordinate axes.

7.3.2. Power of Hg-Scatter Signals

In References [46-48] the effective area of forward scattering by isotropic
inhomogeneities of the ionospheric E-layer, which is oriented along the geomagnetic
field, has been derived for determining the power of the quasi-continuous and burst-
like signals scattered from such plasma irregularities. Caused by the scattering from
these inhomogeneities, radio signals can propagate within the land-ionospheric
communication channel at long distances. It was shown both theoretically and
experimentally, that such plasma anisotropic inhomogeneities have a double nature.
First the nature, is created by meteor trails and the second by different kinds of
instabilities in plasma, called Hg—inhomogeneities [46—48], caused by the chaotic
motions of the atmospheric wind streams, gradients of ambient temperature, and
pressure.

Therefore, two kinds of scattered signals are usually observed. One, having a
burst-like form due to scattering by meteor trails and the second, a quasi-continuous
form due to scattering by Hg—inhomogeneities. Furthermore, as the processes of
diffusion and drift in ambient electric and magnetic fields are usually predominant in
the ionosphere, the same as in the troposphere, striation of large-scale plasma
turbulences (called irregularities) on an ensemble of small-scale turbulences is
constantly observed [47,48]. These irregularities are usually oriented along the
geomagnetic field lines generating an area with anisotropic plasma density
disturbances strongly aligned along the geomagnetic field. Investigations of such
kinds of scattering of metric waves (f = 44 —74 MHz), carried out both theoretically
and experimentally, have shown that at the altitudes of E- and F-layer of the middle
latitude ionosphere, the average longitudinal (along the magnetic field) scales of
field-aligned plasma irregularities, responsible for these types of scattering, range
from a few meters to hundreds of meters and their transverse scales (across to the
magnetic field) range from tenths of a meter to a few meters. These inhomogeneities
allow us to send HF/VHF-signals at long distances due to scattering from the
inhomogeneous ionosphere. Let us now describe the main features of such forward
scattering that covers scattering angles up to 180°.

Cross-section of Forward Scattering. We rewrite (7.109) to present the effective
area of scattering in the spatial wavelength domain through the unit vectors of
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FIGURE 7.19. Geometry of forward scattering.

incident and scattered waves instead of the corresponding angles

2 )
7T S1n
>)4 L Falko(la — 1y), ko(ma — my), ko(no — m1)] (7.115)

Here F; is the Fourier transform of the space correlation function U; of the
dielectric permittivity; e(l;,m;,n;) is the unit vector of the incident wave;
ey(l,my,ny) is the unit vector of the scattered wave; all other parameters
are described above in Section 7.3.1. A geometry of the problem is shown in
Figure 7.19, where TQ is the incident ray, OR is the reflected ray, and QS is the
direction of an inhomogeneity, that is, ey is the unit vector describing the
orientation of the inhomogeneity with respect to the direction of the incident
ray; and QC is the projection of the inhomogeneity onto a reference plane. Here,
we also assume that the z-axis coincides with the direction of the inhomogeneity
and suppose that QS forms an angle of 90° + ¥ (in the case of specular reflection
Y = 0). According to investigations carried out in References [44-48] it was
found that the autocorrelation function of signal-level fading has a Gaussian form
in most cases. This suggests that the normalized space correlation function of the
permittivity fluctuations within the scattering medium, U, is also Gaussian and its
Fourier transform can be presented in the following form:

Filko(l, — ), ko(ma — my), ko(na — ny)] = (27T)3/2abc

2 7.116
><exp{—kzo[az(lz—ll)2+b2(m2—ml)z-l-cz(nz—nl)z]} ( )
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where a, b, and ¢ are the correlation scales of the fluctuations of the dielectric
permittivity along the corresponding coordinate axes. From geometry shown in
Figures 7.18 and 7.19 we get

AB| = [(l — 1) + (my — my)* + (ny — my)?)'2
(7.117)
= ZSing(ng —n)’ = 4sin2§sin2 v

Assuming that the inhomogeneity is symmetric with respect to the longitudinal axis QS
(along z-axis), we seta =b =1, and ¢ = l”, where [, is the transverse and ZH is the
longitudinal correlation scales of the fluctuations of the plasma density (or plasma
permittivity). For the small angles i, that is, for the quasi-specular scattering, and for
strong anisotropy of inhomogeneities (/) >> ;) from (7.115)~(7.117) we get

- N 8’ v 8’ ¥
o= (2n )%/27r il:/l X<(N(l)) >112 exp{ il2 smzz} exp{—;lzlp2 sin22}

(7.118)

Here Ay is the plasma wavelength the above formula was obtained keeping in mind
that ([2°) =1 - (—) for an ionized medium and that (|2*) = (NA)4<(NO) i Ny

AN
is the density of the plasma disturbances with respect to the ambient ionospheric

plasma density Nj.

The Power of The Scattered Signal. The power of the forward scattered signal at
the receiving antenna input can be determined by the following formula [44-46]

2 ~
A Graod
Pr=Pr——; JL R (7.119)
(47‘[) v r'rrg

where Gr and Gy are the transmitting and receiving antenna gain factors, res-
pectively. For sufficiently long radio paths, when the working volume of scattering
is not too large w1th respect to radio path, that is, V'/3 < rr, rg, the product rary
can be replaced by *. Where r is the distance from the receiver and transmitter along
the straight line TOR (see Fig. 7.19), so that

;2
P PT JGTGRO'dV (7120)
(4m)’r )

The power of quasi-continuous scattered signals can be determined by numerical
integration of (7.120) where ¢ is determined from (7.118). Here, we note that the
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factor 13 exp {— Skizzlzl sin? 2} has a maximum for [ = 1/[2v/2msin(¢/2)]. As this
factor decreases fairly sharply for values [, other than lipt, we can assume that those

inhomogeneities are mainly involved in the scattering process for which [, = ljpt. In

8;52 P sin® %} = exp(—1). Taking the foregoing into account
and introducing notation o = [/, we finally get the power of scattered quasi-
continuous Hg-signals

12 2 -2
o N JGTGRsm x { 5 5,3 . 219}
Pr=Pr—————( |— —— " Zexpq -8t sin® = pd
i T3Ze(2n)l/2r4<(N0> >V it (9/2) PTGy

(7.121)

this case, factor exp {—

For the practical use of this formula, one must determine the parameters 9, y and
at the center of each element of volume of scattering using the geometry and
geophysical parameters of the radio trace and allow for the gain factors of the
transmitting and receiving antennas for the corresponding directions. This procedure
for the concrete middle-latitude radio trace is fully described in Reference [46].
We do not enter into details of the problem presented in Figure 7.20. To limit the
working volume in the numerical integration, it is convenient to plot the isolines of
the quantity of angle y = s sin(¥/2) given in Figure 7.20, at the left side of each
isoline. The numbers in decibel at the right side of each isoline in Figure 7.20
indicate the decrease of the power received due to the exponential factor
exp{—Snzoczyz}. Here, the first number is for o = IH//I = /10 ~ 3.16, the second
is for & = 10. We can see that for o = 3.16 integration can be confined to within the
volume of scattering between the isolines y = £3° and for « = 10 between the lines

T 75 0 75 150 225 300KM R

FIGURE 7.20. The active zone of forward scattering defined by the intersection of the
transmitting and receiving antenna patterns.
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y = £1°, because beyond this region the exponential factor gives a decrease in the
level of more than 10 dB. Figure 7.20 also shows the limitation of the working
scattered volume due to the spatial antenna radiation patterns. The ellipses E; and
Eg represent the intersection of the antenna diagrams by the horizontal plane plotted
at the center of the active scattering zone at the height of about 100 km above the
Earth’s surface. From the corresponding experiments carried out at the middle-
latitude radio traces, it follows that the height of Hg signals is ranged between 100
and 110 km. We can assume that the effective height of the working volume at the
vertical plane is about 5 km and therefore, can be regarded as a cylindrical body
aligned along the geomagnetic field lines.

The same derivations can be done for the burst-like signals, which are most likely
of meter origin. In this case, in formula (7.121) one should confine oneself to a
volume AVg, where half of the Fresnel zone forms

},rTrR
AVgp=S§-
: \/(VT + rR)(1 — cos? Bsin® @

(7.122)

Here, S is the effective area of scattering (cross section) of an inhomogeneity; f3 is
the angle between the direction of the inhomogeneity and the TQR-plane; and 2 is
the angle TQR (see Fig. 7.19). As the cross section S, it is reasonable to take the area
of the circle whose diameter equals the radius of the cross-correlation [7.
Considering that

_fg _9-10°
° 7808 0.8

one can represent the factor { (1%) 2> / J in the form 8 - 107! (N?). With allowance for

the foregoing, formula (7.121) takes the form:

> (N?)  GrGgsin®y

Pr =37.7-107%pP
: '32e(20) 24 sin(9)2)

exp{—8m%a?y*}AVE  (7.123)

This formula is more general with respect to the known power formula for radio
wave reflection from under dense meteor trails [50]. Experiments carried out during
the seventies [46] have shown a good agreement of experimental data with
theoretical predictions based on formula (7.123). Particularly, a good agreement was
obtained for o = 300, that is, for ZH = 3004, which for frequencies changed from 44
to 74 MHz approximately gives the width of the half Fresnel zone.

Hence, it can be concluded that the statistical character of quasi-continuous and
burst-like signals are properly described by the theory of forward scattering on local
plasma inhomogeneities described above.
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CHAPTER EIGHT
|

Indoor Radio Propagation

Indoor use of wireless systems poses one of the biggest design challenges, as indoor
radio propagation is essentially a Black Art. Personal communications systems
(PCS), wireless local area networks (WLANS), wireless private branch exchanger
(WPBXs5s), and Home Phoneline Network Alliance (HomePNA, IEEE 802.11x, etc.)
are the services that are being deployed in indoor areas on an increasing scale. The
latter application of indoor wireless networks is proving to have a large market as it
will be integrated to the emerging Digital Subscriber WLAN technologies. The
Present deployment of WLAN services is reaching out to offices, schools, hospitals,
and factories. The increasing demand for indoor radio applications, such as wireless
LAN, “Smart house”, and so on, develops a need to design and analyze those systems
wisely and efficiently. An important consideration in successful implementation of the
PCS is indoor radio communication. In the design process of those systems, the
designer is required to place the picocell antennas (at ranges not more than 100 m) in a
way that will provide an optimal coverage of the building area [1-4]. Indoor radio
communication covers a wide variety of situations ranging from communication with
individuals walking in residential or office buildings, supermarkets or shopping malls,
to fixed stations sending messages to robots in motion in assembly lines and factory
environments of the future. The indoor radio propagation modeling efforts can be
divided in two categories. In the first category, transmission occurs between a unit
located outside a building and a unit inside [5—7]. Expansion of current cellular mobile
services to indoor application of the two types of services has been the main thrust
behind most of the measurements in this category.

In the second category the transmitter and the receiver are located inside the
building [8-11]. Establishment of specialized indoor communication systems has
motivated most of the researchers in this category. Although the impulse response
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approach is compatible with both, it has been mainly used for measurements and
modeling effort reported in the second category.

There is a large variety of different models developed in recent decades to
describe the propagation of signals in indoor environments [12-23]. Their ability to
predict the behavior of signals in indoor communication channels is crucial, and the
confusion and lack of correlation between these models diminish their usefulness.
The thorough understanding of these models and their unification to a more
applicable one will allow a better behavioral prediction and better capabilities in the
design of indoor communication networks. The indoor radio propagation
environment is very complex and has many specific features and characteristics
[1,3,4]. Adding all these variables together produces a very complex problem that
has to be dealt with efficiently and elegantly. Every indoor communication system,
as well as wireless outdoor system (see Chapter 1), has a different structure and
requirements due to their various applications. Therefore, giving an accurate answer
to each indoor communication system using the same models is complex. Path loss
is difficult to calculate for an indoor environment. Because of the variety of physical
barriers and materials within the indoor structure, the signal does not predictably
lose energy. Walls, ceilings and other obstacles usually block the path between
receiver and transmitter. Depending on the building construction and layout, the
signal usually propagates along corridors and into other open areas. In some cases,
transmitted signals may have a direct path (Line-of-Site, LOS) to the receiver. LOS
examples of indoor spaces are warehouses, factory floors, auditoriums, and enclosed
stadiums. In most cases the signal path is obstructed (NLOS). Finally, those who are
involved in the wireless discipline whether as a designer or as a user, must be aware
of the different construction materials used for the interior and exterior walls, and of
the location of a building for the best position of WLAN radio equipment. For
optimal performance, the user should also consider work activities. Ultimately, the
WLAN user needs to understand the relationship between indoor propagation effects
and how WLAN performance is affected.

The indoor and the outdoor channels are similar in their basic features: they both
experience multipath dispersions caused by a large number of reflectors and
scatterers. As illustrated further in this book, they can be described using the same
mathematical models. However, there are also major differences, which we want to
describe here briefly.

The conventional outdoor mobile channel (with an elevated base antenna and
low-level mobile antennas) is stationary in time and nonstationary in space. The
temporal stationary picture is observed due to the fact that the signal dispersion is
usually caused by large fixed objects (such as buildings). In comparison, the effects
caused by people and vehicles in motion are negligible. The indoor channel, on the
contrary, is stationary neither in space nor in time. Temporal variations in the indoor
channel statistics are due to the motion of people and equipment around the low-
level portable antennas.

The indoor channel is characterized by higher path losses and sharper changes in
the mean signal level, as compared to the mobile channel [3,24,25]. Furthermore,
applicability of a simple negative-exponent distance-dependent path loss model,
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well established for the outdoor channels (see Chapter 5), is not universally accepted
for the indoor channel. Rapid motion and high velocities, typical of mobile users, are
absent in an indoor environment. The Doppler shift effects, that is the frequency-
selective fast fading effects (see Chapter 1), in the indoor channel are therefore
negligible.

Maximum excess delay for the mobile channel is typically several microseconds
if only the local environment of the mobile is considered, and more than 100 ps
without distant reflectors, and 10-20 ps with distant reflectors. The indoor channel,
on the contrary, is characterized by excess delays of less than 1 ps and an rms delay
spread in the range of several tens to several hundreds of nanoseconds (most often
less than 100 ns [3,26]).

As aresult, for the same level of inter-symbol interference (ISI), transmission rates
can be much higher, and the bit-error-rate (BER) can be much lower in indoor
environments [27]. Also, the relatively large outdoor mobile transceivers are powered
by the vehicle’s battery with an antenna located away from the mobile user. This is in
contrast with lightweight portables normally operated close to the user’s body. As a
result, much higher transmitted powers are feasible in a mobile environment.

Finally, the indoor radio channel differs from the outdoor mobile or personal
radio channel in two principal aspects: the distances covered, which are much
smaller, and the variability of the environment, which is much greater for smaller
transmitter—receiver separation distances.

8.1. MAIN PROPAGATION PROCESSES AND CHARACTERISTICS

The propagated electromagnetic signal in the indoor environment can undergo three
primary physical mechanisms. These are reflection, diffraction, and scattering. The
following definitions assume small signal wavelength, large distances (relative to
wavelength), and sharp edges.

Reflection occurs when the radio wave impinges on an obstacle whose dimensions
are considerably larger than the wavelength of the incident wave. A reflected wave can
either decrease or increase the signal level at the reception point. Reflections occur
from the ground surface and from buildings and walls. In practice, not only metallic
materials but also dielectrics (or electrical insulators) cause reflections. Other
materials will reflect part of the incident energy and transmit the rest. The exact
amount of transmission and reflection is also dependent on the angle of incidence,
material thickness, and dielectric properties. The actual signal levels reflected from
insulators depends, in a very complicated way, on many characteristics such as
geometry, different materials’ characteristics, and so on. Major contributors to reflec-
tion are walls, floors, ceilings, and furniture.

Diffraction occurs when direct visibility between the transmitter and the receiver
can be obstructed by sharp obstacles (edges, wedges, etc.), the dimensions of which
are considerably larger than the signal wavelength. The secondary waves resulting
from the obstructing surface are present throughout the space and even behind the
obstacle, giving rise to a bending of waves around the obstacle, even when a LOS
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path does not exist between the transmitter and receiver. At high frequencies of
UHF/X-bands, diffraction, like reflection, depends on the geometry of the object as
well as on the amplitude, phase, and polarization of the incident wave at the point of
diffraction. It is a deterministic process where the cumulative effect of rays arriving
at the receiver can be described by the Fresnel integrals introduced in Chapter 4.

Scattering occurs when the medium through which the wave travels contains the
obstacles whose dimensions are smaller than or comparable to the wavelength and
where the number of obstacles per unit volume is large. Scattered waves are
produced by rough surfaces, small objects, or by other irregularities in the channel.
The nature of this phenomenon is not similar to the reflection and diffraction because
radio waves are scattered in a greater number of directions with random phase and
amplitude deviations, and at the receiver a random cumulative effect is observed.
From all the above mentioned effects, scattering is most difficult to predict.

Multipath Phenomena. Figure 8.1 shows how a transmitted radio wave, in the
indoor environment, reaches the receiving antenna in more than one path. The phe-
nomena of reflection, diffraction, and scattering give rise to additional radio propa-
gation paths beyond the direct “line-of-sight” (LOS) path between the radio
transmitter and receiver. It is clear that in the indoor propagation situation it is
very difficult to design an “RF friendly”’ building that is free from multipath reflec-
tions, diffraction around sharp corners, or scattering from wall, ceiling, or floor sur-
faces. To describe all these phenomena, the following characteristics of the channel,
the same as for outdoor propagation, are usually used, for example, the attenuation
or path loss, the fast and slow fading described in detail in Chapter 1. Regarding the
indoor testing, fading effects are also caused by human activities inside buildings
and are usually defined as slow variations of the total signal. Sometimes oscillating

Multipath

/ Arrivals
Diffraction Rx

Line of Sight

FIGURE 8.1. Multipath effects.
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metal-bladed fans can cause rapid fading effects, which can be described using multi-
path time delay spreading. As the signal can take many paths before reaching the
receiver antenna, the signals will experience different arrival times. Thus, a spreading
in time (as well as frequency) can occur. Typical values for indoor spreading are less
than 100 ns. Different arrival times ultimately create further degradation of the signal.

At the same time, the indoor radio channel differs from the traditional outdoor
radio channel in two aspects: the distances covered, which are much smaller, and the
variability of the environment, which is much greater for a much smaller range of
T-R separation distance. It has been observed that propagation within buildings is
strongly influenced by specific features such as the construction materials of the
building and the building type. As explained previously, indoor radio propagation is
dominated by reflection, diffraction, and scattering. However, the conditions are
much more variable than in outdoor environments. For example, signal levels vary
greatly depending on whether the interior doors are open or closed inside a building.
The place where antennas are mounted also impacts large-scale propagation.
Antennas mounted at the desk level in a partitioned office receive vastly different
signals than those mounted on the ceiling. Also, the smaller propagation distances
make it more difficult to insure far-field radiation for all receiver locations and all
types of antennas. One of the main reason for indoor signal losses is the partitions.
Partitions losses can be divided into two kinds:

(1) Partition losses at the same floor. Buildings have a wide variety of partitions
and obstacles, which form the internal and external structure. Houses
typically use a wood frame partition with plastic board to form internal
walls and have also wood or nonreinforced concrete between floors. Office
buildings, on the contrary, often have large open areas (open plane), which
are constructed by using moveable office partitions so that the space may be
reconfigured easily, and use metal-reinforced concrete between floors.
Partitions that are formed as part of the building structure are called hard
partitions, and partitions that may be moved and which do not span to the
ceiling are called soft partitions. Partitions vary widely in their physical and
electrical characteristics, making it difficult to apply general models to
specific indoor installation.

(2) Partition losses between floors. The losses between floors of a building are
determined by its external dimensions and wall material, as well as by the
type of construction used to create the floors and the external surroundings.
Even the number of windows in a building and the presence of tinting (with
attenuated radio energy) can impact losses between floors.

8.2. MODELING OF LOSS CHARACTERISTICS IN VARIOUS
INDOOR ENVIRONMENTS

This section outlines models for path loss within buildings. As mentioned earlier,
there is not a single theoretical model for path loss and fading effects prediction in
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indoor communications. What we have is that for each separate situation (i.e.,
propagation along the corridor, inside the room, between floors and walls), a
corresponding model is employed. Here we focus the reader’s attention to the most
widely used propagation models in today’s practical applications.

8.2.1. Numerical Ray-Tracing UTD Model

Ray tracing and the unified theory of diffraction (UTD) have been used successfully
in predicting the behavior of indoor communication channels [1,28-30]. Here we
present an accurate UTD model for the analysis of complex indoor radio
environments in which microwave WLAN systems operate. The model employs a
heuristic UTD diffraction coefficient capable of taking into account not only the
effects of building walls, floors, and corners but also the presence of metallic and
penetrable furniture. A numerical tool based on an enhanced 3D beam-tracing
algorithm, which includes diffraction phenomena, has been developed to compute
the field distribution with a high degree of accuracy, providing description of the
scattered field and a physical insight into the mechanisms responsible for the
multipath phenomenon. The numerical results show that the electromagnetic field
distribution and the channel performance are significantly influenced by the
diffraction processes arising from the presence of furniture.

The Field Prediction. The electromagnetic field is represented in terms of dif-
fracted and ray-optical fields. The various elements of the environment are modeled
as junctions of thin flat multi-layered lossy or lossless structures. The geometric
optics (GO) field is computed by means of reflection R and transmission T matrices,
whereas the diffracted field is evaluated by means of a suitable UTD heuristics dif-
fraction coefficient D. The adopted diffraction coefficient accurately models the field
interaction with furniture edges and junctions between thin flat plates of different
materials so that all significant field processes, which take place in the indoor envir-
onment, are rigorously modeled. As in indoor environments the field contributions
arising from double diffraction are small [1,28-30], only a single diffraction process
is considered in this model. According to the high-frequency approximation, the
radio source is modeled using its vector-effective height to describe the gain pattern
and the polarization properties. The field prediction procedure described above is
outlined in Figure 8.2 [30]. The structure that is illuminated by an incident electric
field E' can be modeled by a thin flat penetrable plate located near a partially reflect-
ing plane. To simplify the graphical representation, only the rays that have experi-
enced up to two interactions are taken into account.

With reference to the field processes shown in Figure 8.2, the electric field at the
observation point r7 is given by the sum of the following contributions [30]:

a) direct ray-field

Eq(r7) = E'(r7); (8.1)
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FIGURE 8.2. A structure illuminated by an incident electric field; points 0 and 7 indicate the
source and the observation points, respectively [30].

b) reflected ray-field

; So1 ks
E =R, -E'(r) ——e7™",; 8.2
b(r1) =Ry (rl)Sol 5. ¢ (8.2)
c¢) transmitted and reflected ray-field
Ec(r7) = R3 . T2 . Ei(rz) —SOZ efjk(3‘23+537); (83)
So2 + S23 + 837
d) diffracted ray-field
Ed(r7) = D4 . Ei(l’4) Le—jk&;u and (84)
S47(So4 + Sa7)
e) diffracted and reflected ray-field
Ee(r7) = R6D5Ei(r5) Sos e_jk(s56+567) (85)
(Ss6 + S67)(Sos + Ss6 + Se7)

where £ is the wave number and S; is the optical length between the points r; and r;.

Let us now use the broadcast beam-tracing algorithm [30] used for the
computation of the electromagnetic field and the characteristics of the radio channel.
The broadcast technique has a computation burden that does not strongly depend on
the number of surfaces describing the environment, and it is particularly efficient
when the number of the field computation points is large.
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FIGURE 8.3(a). Beams emanating from the antenna towards all directions [30].

The Beam-Tracing Algorithm. This numerical algorithm consists of two parts.
The first, determines the ray optical paths, while the second evaluates the electro-
magnetic field distribution. The field radiated from the antenna is modeled by means
of beams shooting from the antenna location towards all space directions, indepen-
dently of the observation point (see Fig. 8.3a [30]). During the propagation, the
beam can impinge, totally or partially, on a surface describing the environment
(see Fig. 8.3b, extracted from Reference [30]), it can capture the observation point,

Incident beam
Source
]

Reflected beam

Thin plate

FIGURE 8.3(b). The beam impinges on a surface [30].
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Diffraction Beams

FIGURE 8.3(c). Division of the diffracted ray tube [30].

or finally it may not intercept any of the environment elements. In the first case,
using Snell’s law, the transmitted and the reflected beams are evaluated. If the
beam partially impinges on the surface, it is splitted in new beams in a way that
they totally intercept, or not, the surface under construction. Then, the ray optical
paths of the diffracted field are determined. To this end, a subdivision of the dif-
fracted ray tube, identified by the two Keller’s cones whose tips coincide with the
extremes of the segment excited by the incident ray beam, is performed (see
Fig. 8.3c [30]). If the beam does not intercept any obstructions, it does not produce
any secondary beams, and, consequently, it is removed from the field computation
procedure.

The same happens when the beam has a cross section less than a definite size area,
or it carries a field amplitude less than a specific threshold, or, finally, it exceeds a
maximum number of permissible bounces. For each observation point lighted by the
beam, the exact ray path is computed by means of the image method. In this way, the
computation technique does not suffer either from multipath count error or from the
error generated by the field approximation based on the computation of the beam
median ray. In the second part of the beam-tracing algorithm, the GO and diffracted
fields are evaluated using the reflection, transmission, and diffraction matrices at the
points where the incident field impinges. In the numerical procedure, only the edge
diffraction processes excited by the GO field have been taken into account.

To increase the numerical accuracy of the computation, one can take into account
the GO field contribution that has experienced up to five reflections/transmissions.
The diffracted field arising from any scattering object is considered to be excited
either by the line-of-sight GO field or by the GO contributions that have experienced
up to three reflections/transmissions. Finally, the diffracted field contribution is
taken into account whether it reaches the observation point directly or after three
reflections/transmissions processes. The complete analysis is carried out in
References [1,28-30], and on the basis of experimental data and numerical results
of the UTD ray model, it has been shown that the presence of furniture in the LOS
region gives rise to greater field diffusion and additional attenuation of the received
signal. This effect decreases efficiency of the channel performance in wireless
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indoor communication systems. In particular, it has been observed that the field
diffusion due to the edges of penetrable objects introduces an additional attenuation
of the echoes of the radio signal with respect to the empty environment. Because of
its numerical accuracy and limited computational requirements, the UTD ray-
tracing model can be successfully employed to estimate the channel performance
and the total field distribution (radio coverage) directly during the design phase of
indoor wireless communication.

8.2.2. Physical Waveguide Model of Radio Propagation
Along the Corridor

This model is an analytic model of radio wave propagation along an impedance
corridor as a waveguide. This model, which differs from other models [14,18],
allows us to analyze the electromagnetic field distribution inside a building corridor
to obtain an expression for the attenuation (extinction) length and the path loss.

The Geometry of the Problem. Below we briefly present the guiding effects of the
corridor on the basis of same theoretical approach that was followed for the outdoor
street scene [2], that is, we model the corridor by a two-dimensional impedance
parallel waveguide (Fig. 8.4).

As d > J, where d is the corridor’s width and / is the wavelength, we can use the
approximation of geometrical theory of diffraction (GTD). This approximation is
valid as long as the first Fresnel zone ~(Jx)1? equals or does not exceed the width
of corridor d. In this case, x <30-50m, A =3-10cm (L/X-band); d = 2-3 m;
(Jx)'* < d. The electrical properties of walls are defined by the surface impedance
Zrg ~ ¢ '% ¢ = gy — j(4no/w), where ¢ is the dielectric permittivity of the wall’s
surface, ¢ is the dielectric constant of the vacuum, ¢ is the conductivity, and
o = 2nf is the angular frequency of the radiated wave.

We consider the 2D problem of wave reflection without taking into account the
reflection from the corridor’s floor and ceiling because the corridor’s height H and the
position of the transmitter/receiver 4 = 2-3 m are usually larger values than A. Let us
also assume, according to the geometry presented in Figure 8.4, that a vertical electric
dipole is placed at the point (0, w, h) at the (y, z) plane, as it is shown in Figure 8.5.

To convert the problem to a 2D case, we must consider the dipole oriented along
the y-axis, that is, the horizontal dipole with respect to the (x, y) plane, which

<

4

!

X

<ol

FIGURE 8.4. The corridor waveguide model; a view from the top.
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FIGURE 8.5. The corridor in the 2D case.

corresponds to the well-known electromagnetic field equation described by the
Hertzian potential vector IT} (x,y) [2]:

; ; 47
VAT (5, 3) — BT (6,3) = — o p,3(1)3(y — w) (5.6)
The solution of such an equation can be presented using the Green’s function [2]:

; i eke
Hy(X,)’) = 51&7 (8.7)

Here, p, is the electric momentum of a point horizontal electric dipole,
p = \/Xx* + y? is the distance from the source.

Total Field in 2D Unbroken Impedance Waveguide. The reflected field in an
unbroken waveguide can be determined according to Reference [2] as the sum of
reflected modes replaced by the image sources (as shown in Fig. 8.6).

The straight computations made according to Reference [2] give the normal mode
expression inside the impedance wave guide (called the discrete spectrum of the
total field):

B in®x _ |]1‘1 |Rn || n
Hn(xay) - D1€ exp pﬁl())d (d)x (88>

where

and R, = &K, p, — %; K, =™ is the wave number of normal modes of
Ky +kZpy ipy d

number n that propagate afong the waveguide with width d, k :27“, D is the
parameter of electrical dipole including its momentum p [2].
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FIGURE 8.6. The waveguide modes created by the corresponding image sources.

Following Reference [2], we can also present the continuous spectrum of the total
field for x/d > 1 as:

(31 1 — |R |€ikx
I, ~ v2De!(¥) " 8.9
\/_ e e |Rn| P ( )

For the case of a perfectly conductive waveguide, when |R,| = 1, Zgm = 0, we
obtain that II. = 0, that is, in the case of the ideal conductive waveguide, the
continuous part 1. of the total field vanishes, and only the discrete spectrum of the
normal waves propagates along the ideal waveguide without attenuation according
to (8.8). Finally, the intensity of the total field can be approximately obtained as

I = [(IL, + 11, - (I, + I1.)"]

where (IT, + I1,.)" is the complex conjugate of (IT,, + IL.). The path loss of the radio
wave can be derived as [2]

1 - [Rn]z
L ~32.1-201lo R,| — 2010 _—
210 |Rnl 210 L T |Rn|2
+ 17.81log;ox + 8.64 —[In |R,]] (@) % (8.10)
d ond

where x is the distance between two terminals, receiver and transmitter, along the
corridor.

Analysis of the Waveguide Corridor Model. Let us present some examples of
simulation of the total path loss L in decibels (dB) according to (8.10) versus
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FIGURE 8.7(a). Path loss for n = 10 wave modes versus distance from the transmitter.

distance between the transmitter and receiver. For our numerical computation, we
considered the following parameters: the width of the corridor d = 3 m, the conduc-
tivity of walls ¢ = 0.0133 S/m, and the signal frequency f = 900 MHz [33]. The
results of these path loss computations, according to (8.10), are shown in
Figure 8.7a for the guiding modes with the number n varying from 1 to 10. For
n > 3, the effect of these modes is negligible at ranges beyond 20 m, and we just
have to subtract the attenuation from the first two main modes of the original signal
power in order to get the total power of a signal (in decibels) for each distance d
between the transmitter and the receiver located along the corridor waveguide.
This effect was also shown in Reference [2], where it was experimentally obtained
that only one to two main modes are important in the range of ten and more meters
from the transmitter. Therefore in Figure 8.7b, we present the total filed attenuation,
as a sum of the first two waveguide modes, that fully describes the total path loss
inside the corridor as a guiding structure versus the distance from the transmitter.
We will compare this theoretical prediction of the path loss with the real experiment
carried out in Reference [33] along the corridor.

8.2.3. Physical Model of Radio Propagation Between
Floors and Walls

Bertoni et al. [1,21,22] developed a theoretical model, based on the geometrical theory
of diffraction (GTD), which explains the propagation between a transmitter and a
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FIGURE 8.7(b). Path loss for the first modes versus distance from the transmitter.

receiver located on different floors of a building. Depending on the structure of the
building and the location of the antennas, either direct ray propagation through floors
or diffraction outside the building will determine the propagation characteristics and
the range dependence of the signal. There are two paths over which propagation can
take place:

(1) Paths that involve transmission through the floors;

(2) Paths having segments outside the building and involving diffraction at
window frames.

The paths through the floors include the direct ray, the multiple-reflected rays, and the
rays that are transmitted through semitransparent walls and floors. These rays are
contained entirely within the building perimeter. The diffracted ray paths involve
transmission outside the building through windows and diffraction into paths that run
alongside the face of the building and then reenter through another window at a
different floor. For propagation of the direct ray through semitrans-parent floors, as
indicated by path T in Figure 8.8, extracted according to Reference [1], the
electromagnetic field strength in general reaching a receiving site is given by [21,22]

ZyP
2 0L e
|E| = Anl2 Téoor,m H T\ial],n (81 1)
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FIGURE 8.8. The Bertoni’s model.

Here, Zy =120 n Q2 = 3772 is the free-space wave impedance, P, is the
effective transmitted power and L is the direct distance between the transmitter (7x)
and the receiver (Rx) antennas. Tpoo and Ty, are the loss coefficients of each floor
and wall, respectively, passed by the direct ray. Such a direct ray, passing through
three floors and two interior walls, is indicated in Figure 8.8. If one knows the
reflection coefficient I' of each wall and floor, then we can calculate Tfoor OF Ty as

[21,22]
T=/X(1—|T]) (8.12)

where X is a constant, obtained from the concrete experiment. The signal can also
reach other floors via paths that involve diffraction. Referring to paths D, and D, in
Figure 8.8 (in general denoted as D;), the field reaching the receiver via one such
diffracted path is given by [21,22]

H D2 (OC,) H nglass.j H T\iall,k
j k

_Z()Pe i

2 J
IE[" =— I;IZLm

(8.13)

where L,, is the length of D, diffracted path. In the geometry of the concrete
experiment carried out in the hotel schematically presented in Figure 8.8 according
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to References [21,22]; Ly, is the length of D; and D, where [], >, Luyn = (Li1+
Loy + L31)(Liz + Loz + L32); Tgtassm) and Tyqn(n) are the transmission coefficients
through glass and through interior walls crossed by path segments. In (8.13), D(«;) is
the diffraction coefficient for a propagating ray bending through angle «;.

Depending on the construction of the building and its window frames, different
choices may be made for the diffraction coefficient. For simplicity in investigating
the relative strength of the total field associated with the direct ray and the diffracted
ray, the coefficient for an absorbing wedge, obtained by Keller’s diffraction theory
[1] was used:

D(x;) 1{ ! 1] (8.14)

:ﬂ 2n+oci_oci

where k = 27/A is the wave number. Thus, when propagation takes place through
the floors, the signal will decrease rapidly with the number of floors separating the
transmitter and the receiver.

On the contrary, if propagation occurs via diffracted paths, the signal will be
small even for separation by a single floor but will decrease a bit slower with
increased separation. For testing the model, an experiment was made according to
Figure 8.8, in the frequency of 852 MHz, where according to presented geometry the
angle o; = m/2. Measurements have shown that in each floor the attenuation was
about 12-13 dB. From various experiments the coefficients for the walls, windows,
and floors are

Tran = 2.2dB;  Tigras = 0.25dB;  Tioor = 13.0dB (8.15)

The total received power in decibels at the Rx position can be calculated according to
(8.11) for the direct path through floors and walls as

P, = 1010819 2|EL et/ (Zo - 47)  [dB] (8.16)

Direct

where P, is the power gain from direct propagation wave; |E|* is calculated
according to (8.11), and A = ¢ is the wavelength; Z; = 1207n[ohm] is the impedance
in free space, and according to (8.13)

P, = 101og,o 12|E|3/(Zo - 4n)  [dB] (8.17)

where P, is the power gain from diffracted propagation wave and |E |2 is calculated
according to (8.13).
Then the total received power will be

P = PrDirect + Pl’l)iff [dB] (818)

T'total
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Additional numerical analysis of Bertoni’s model and comparison with numerous
experiments carried out by other researchers (see Section 8.3 below) have shown
that despite the fact that this model offers very precise physical calculations that are
suitable for different kinds of buildings, the attenuation effects due to shadowing
caused by diffraction from internal obstructions are not taken into consideration.
This type of attenuation must be accounted for, because it can decrease the total
strength of radio signal that reaches the receiver by 10 dB to 15 dB. However, the
shadow effect is actual only at the upper floors, that is, when the difference between
antenna locations is more than two to three floors.

Also another difficulty with the implementation of Bertoni’s model is that it
requires a priori knowledge of the precise building architecture and the
establishment of various propagation paths, which by all means is a very difficult
task to achieve. The estimation of path loss through walls and floors, according to
(8.11), is more precise compared to other existing empirical models (see formulas
(8.19) and (8.20) below). Therefore we will use (8.11) in future link budget design
of indoor communication links, taking into account shadow effects caused by the
internal obstructions located within the radio path between the two terminal
antennas, following Reference [33] or the receipt proposed in Chapter 5 for link
budget design.

8.2.4. Empirical Models

Such models are based mostly on numerous experiments carried out in various
indoor environments as the best-fit prediction to the corresponding measured data.
We start with a very simple model that modifies the well-known dual-slope model,
usually used in outdoor environments (so-called “two-ray’” model, see Chapter 5),
and then we introduce the most applicable empirical model that is currently used for
loss characteristics prediction in indoor communication links.

Modified Dual-Slope Model. The challenging problem in applying the well-
known dual-slope models from the outdoor environment to the indoor environment
is that we need to account for the wall and floor factors. In Reference [31], to char-
acterize indoor path loss a fixed path loss exponent y = 2, just as in free space (see
Chapter 5), was used, plus additional attenuation factors (in decibels) per floor, o,
and per wall, o,,,, timing on the number of floors, Ny, and walls, N,,, respectively, that
is,

L = Ly +20log r 4 Nyay + Ny, (8.19)

where r is the straight-line distance between the terminal antennas and Ly is a free-
space path loss at the referenced range of 1 m.

As no values for the wall and floor factors were reported in Reference [31], an
improved model was developed, which is called the ITU-R model [32]. According to
this dual-slope approach, only the floor loss is accounted for explicitly. The loss
between points located at the same floor is accounted by changing the path loss
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TABLE 8.1. Path Loss Exponent y for the ITU-R Model [32]

Environment
Frequency
[GHz] Residential Office Commercial
0.9 - 33 2.0
1.2-1.3 - 3.2 2.2
1.8-2.0 2.8 3.0 2.2
4.0 - 2.8 2.2

exponent ). The frequency effect is accounted in the same manner as in free space
(see Chapter 5), producing the following total path loss (in decibels):

L =10ylogr+20logf + Ls(Ny) — 28 (8.20)

where y is shown in Table 8.1 [32], and L (N f) is the floor attenuation factor, which
varies with the number of penetrated floors Ny, as shown in Table 8.2 [32].

Rappaport’s Path Loss Prediction Model. Rappaport and his associates
[3,11,13,20] made a lot of experiments in various indoor environments in different
locations and sites. The main goal of these experiments was to achieve unique para-
meters of attenuation and loss prediction on different kind of multifloored buildings.

Distance-Dependent Path Loss Model. In References [3,20] it was assumed that
the mean path loss L is an exponential function of distance d with the power n:

L(d) (Z))y (8.21)

where L(d) is the mean path loss; y is the mean path loss exponent that indicates how
fast path the loss increases with distance; dj is a reference distance, usually chosen
equal to 1 m in indoor communication links; and d is the transmitter—receiver
separation distance. Absolute mean path loss, in decibels, is defined as the path loss

TABLE 8.2. Floor Attenuation Factor L;(Ny) in dB for the ITU-R

Model [32]

Environment
Frequency
[GHz] Residential Office Commercial
0.9 9(1 floor)

- 19 (2 floors) -
24 (3 floors)
1.8-2.0 4Ny 15+4(Ny — 1) 6+3(Ny—1)
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from the transmitter to the reference distance dy, plus the additional path loss [3],
that is,
_ d
L(d) = L(dp) + 10y log (d) [dB] (8.22)
0
For these data, L(dy) is the reference path loss due to free-space propagation from
the transmitter to a 1 m reference distance, and calculated by

l(ab)::ZOlog(4be> (dB] (8.23)

This empirical model takes into account the effects of shadowing by introducing
in (8.22) a term X,;, which describes the statistical character of slow fading within the
indoor link and, as a random variable, satisfies the lognormal distribution with a
standard deviation of ¢ in decibels (see definitions in Chapter 1). Then the total path
loss within building equals, in decibels, [3]:

L(d) = L(do) + 10y1log (z)) +X, [dB] (8.24)

For this model, the exponent y and standard deviation ¢ were determined as
parameters that are functions of building type, building wing, and number of floors
between Tx and Rx. Thus, a model to predict the path loss for a given environment is
given by [3]

L(d) = L(d)+ X, [dB] (8.25)

where X, is a zero mean lognormally distributed random variable with standard
deviation ¢ and accounts for attenuation due to diffraction from the environment.
Table 8.3 [3] summarizes the mean path loss exponent 7, standard deviation ¢ about
the mean L for different indoor environments, and the number of measurement
locations used to compute the statistics for each building. From Table 8.3, it can be
seen that the parameters for path loss prediction for all antenna locations are y = 3.14
and o = 16.3 dB. This large value of ¢ is typical for data collected from different
building types and indicates that only 68% of actual measurements will be within
+16.3dB of the predicted mean path loss. As stated in References [3,20], these
parameters may be used in modeling the first-order prediction of mean signal strength
when only the Tx—Rx separation is known but not specifics about the building. In
multifloored environments, (8.22) is used to describe the mean path loss as a function
of distance. Equation (8.22) emphasizes that the mean path loss exponent is a function
of the number of floors between Tx and Rx. The values of y (multifloor) are given in
Table 8.3 for use in (8.22), and this equation can be rewritten as [3]

L(d) = L(dp) + 107y(multifloor) log (j) (8.26)
0
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TABLE 8.3. Path Loss Exponent and Standard Deviation for Various
Types of Buildings Based on Measurements at a Carrier Frequency

of 914 MHz
Place y o [dB] Number of Locations
All Buildings
All Locations 3.14 16.3 634
Same Floor 2.76 12.9 501
Through One Floor 4.19 5.1 73
Through Two Floors 5.04 6.5 30
Through Three Floors 5.22 6.7 30
Grocery Store 1.81 5.2 89
Retail Store 2.18 8.7 137
Office Building 1:
Entire Building 3.54 12.8 320
Same Floor 3.27 11.2 238
West Wing 5™ Floor 2.68 8.1 104
Central Wing 5™ Floor 4.01 4.3 118
West Wing 4™ Floor 3.18 4.4 120
Office Building 2:
Entire Building 4.33 133 100
Same Floor 3.25 52 37

Floor Attenuation Factor (FAF). In (8.26), 7 (multifloor) is a function of the
number of floors between Tx and Rx. Alternatively, a constant floor attenuation
factor FAF (in decibels), which is a function of the number of floors and building
type, was added in References [3,20] to the mean path loss predicted by (8.22),
which uses the “‘same floor” path loss exponent for a particular building type:

L(d) = L(dy) + 10 y(same floor) log (;) + FAF [dB] (8.27)
o

where d is in meters, and L(dp) is the free space path loss determined by (8.23).
Table 8.4 [3] gives the floor attenuation factors FAF (in decibels) and the standard
deviation o (in decibels) between the measured and predicted path loss and the
number of discrete measurement locations used to compute the statistics.

Soft Partition and Concrete Wall Attenuation Factor. The above formulas include
the effects of Tx—Rx separation, building type and the number of floors between the
Tx and Rx, and the first step for including site information to improve propagation
predictions. There are often obstructions between the transmitter and receiver even
when the terminals are on the same floor.

The model considers the path loss effects of soft partition and concrete walls
between the Tx and Rx. The model assumes that path loss increases with distance as
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TABLE 8.4. Average Floor Attenuation Factor in dB for One, Two,
Three and Four Floors in [3] Two Office Buildings

Building FAF o Number of Locations
Office Building 1:

Through One Floor 12.9 7.0 52

Through Two Floors 18.7 2.8 9

Through Three Floors 24.4 1.7 9

Through Four Floors 27.0 1.5 9
Office Building 2:

Through One Floor 16.2 2.9 21

Through Two Floors 27.5 54 21

Through Three Floors 31.6 7.2 21

in free space (y = 2), as long as there are no obstructions between the Tx and Rx.
Then, attenuation factors for each soft partition and concrete walls that lie directly
between Tx and Rx are included. Let p be the number of soft partitions, and g is the
number of concrete walls in the direct path between Tx and Rx. The mean path loss
predicted by this model is

_ 4nd
L(d) =201log, (j) + p - AF(soft partition) + ¢ - AF(concrete wall) [dB]
(8.28)

where AF(soft partition) is the attenuation factor per soft partition, and AF(concrete
wall) is the attenuation factor per concrete wall. Typical values for AF are 1.4 dB for
soft partition and 2.4 dB for concrete wall.

Numerical Simulations of Rappaport’s Model. To compare different approaches
described by formulas (8.26) and (8.27), let us introduce some typical parameters
obtained experimentally by Rappaport et al., as presented in Table 8.3 and 8.4.
Thus, for simulation purposes we used the following parameters: f = 915 MHz
(A =0.32m); y for the same floor = 3.27; y = 4.19 for the Ist floor; y =5 for
the 2nd floor; y = 5.22 for the 3rd floor; y = 5.35 for the 4th floor; y = 5.45 for
the 5th floor; FAF for the 1st floor = 12.9 dB; FAF for the 2nd floor = 18.7 dB;
FAF for the 3rd floor = 24.4 dB; FAF for the 4th floor = 26 dB; FAF for the 5th
floor = 27 dB.

In Figure 8.9, the path loss versus the number of floors is presented according to
(8.26) with y(multifloor), and in Figure 8.10 it is according to the FAF model (8.27)
with y(same floor). From Figure 8.9, the attenuation of radio wave penetrating
through the first three floors increases linearly and then according to the square root
curve dependence, which is in a good agreement with Bertoni’s model, taking into
account the diffraction path loss described by formula (8.23).
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Path Loss vs. Distance
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Additional analysis of Rappaport’s model has shown that there are some
difficulties in using this model in practical situations for indoor environments.
Rappaport’s model relies heavily on experimental data to determine the required
parameters that can be used for modeling purposes.

Let us now compare two approaches, Bertoni’s and Rappaport’s, through the
prism of experimental data. Rappaport’s model is based on experimental factors
(FAF and y), and it does not provide the radio wave propagation characteristic, such
as the attenuation inside buildings in the case when the transmitter and the receiver
are located at different floors.

Bertoni’s model states that when there is a several-floor separation between the
terminal antennas, the additional loss occurs due to the diffraction path through the
frames of the windows according to (8.13). The slow fading effect, called shadowing
(see definitions in Chapter 1), can easily be represented in Bertoni’s model as
the additional effect of the wave field that comes from the diffraction paths. In the
Rappaport model, the shadowing effect is accounted by the FAF factor and by the
path loss exponent y. Obviously, the slow fading factor must be added to Rappaport’s
model during the measurement phase, where parameters FAF and y are usually
determined. In general, Rappaport’s model is suitable for buildings with a low
number of floors (up to 4-5). The results are very similar to Bertoni’s model in the
lower floors when radio propagation mostly occurs through the direct path as
described by (8.11). When taller buildings are tested, Bertoni’s model is a more
appropriate model to use. In the following paragraph we indicate additional
improvements to Bertoni’s model by accounting for the shadow effects.

Suggested Model. As mentioned above, the models that predict link budgets for
the indoor environment are complex, sometimes using parameters without any phy-
sical meaning and explanation. Here we suggest a model, proposed in Reference
[33], for the radio propagation between floors that takes into consideration the phy-
sical media and parameters of the total path loss obtained from experiments. In
general, the suggested model will follow the formula:

Llotal =L + Xo [dB] (829)

which is similar to (8.25) as shown in the Rappaport’s model, but now L is the loss
achieved from a direct propagated ray with NLOS features, and X;; is a zero mean
lognormally distributed random variable with standard deviation ¢ in decibels and
accounts for attenuation from diffracted propagated waves. The parameter X, can be
easily obtained from experiments made in different building environments, and L
must be calculated according to the direct NLOS attenuation described by (8.11)
following Bertoni’s model. In other words, model (8.29) is a combination of
Bertoni’s physical model of direct propagation through floors (8.11) and
Rappaport’s empirical model by estimating the parameter X, from the approach
presented in Chapter 5 for link budget design or from experimental data. The
suggested path loss model is based on two essential aspects. First, it uses Bertoni’s
prediction to obtain the received power signal along the radio path of rays
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TABLE 8.5. Technical Specifications of the System

Transmission Method Spreading in spectrum and
skipping in frequency

Frequency Spectrum 2.4-2.4835 GHz
Brooding Time 32, 64, 128 ms
Transmission Power Up to 100 mV (20 dBm)
Sensitivity

@1 Mbps —81dBm

@2 Mbps —75dBm

@3 Mbps —67 dBm
Antenna Division 2 Antenna

penetrating through floors and described by (8.11), and secondly, it uses Rappaport’s
statistical measured ¢ and the method of fade margin estimation according to the
procedure of link budget design described in Chapter 5 (see also Reference [33]).

8.3. LINK BUDGET DESIGN VERIFICATION BY EXPERIMENTAL DATA

In order to investigate the accuracy of the well-known models and the suggested
above models of radio propagation along the corridor (8.10) and between floors and
walls as described by (8.29) with help of (8.11) and (8.16) for the average path loss
evaluation, we carried out some special experiments within several four-storied
buildings.

Path Loss Along the Corridor. The system consists of two main parts: the first is a
wireless accesses point (BreezeCom AP10) connected to a power supply, and the
second is a laptop with a wireless LAN card (BreezeCom SA-PCR). The laptop
was located on a portable surface in order to separate it from the floor. Table 8.5
presents several important technical specifications of the system. The signal was
measured at different locations 10 times in term of 2 to 3 min. This assures that local
interferences such as electrostatic waves, cellular communication, and moving
objects can be eliminated. In the building used for measurement, there was a
51 m corridor with glass and metal doors at the edges. The transmitting and receiv-
ing stations were placed on a portable laptop surface. The transmitting access points
were placed in the beginning and in the middle of the corridor. The results are pre-
sented in Figure 8.11, from which it follows that with an increase in distance
between the transmitter and receiver (more than 20-25 m), the saturation of the
effect of attenuation is observed. There are few spikes that are probably caused
by the variance in the architecture characteristics of the walls and by some local
obstructions such as people walking along corridor and interference from the addi-
tional cellular communication networks. Comparison of these results with those
obtained, theoretically, using the corridor waveguide model, are presented in
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Experimental Data - Straight Corridor
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FIGURE 8.11. Comparison of experimental data measured along the corridor and
theoretical prediction according to the corridor waveguide model (continuous curve).

Figure 8.11 by the continuous curve. It is clearly seen that the mean difference
between the theoretical prediction and experimental data does not exceed 2-3 dB
at the beginning of the corridor, becomes 4-5 dB in the middle sites, and reaches
maximum difference of 9.794 dB at the end of the corridor, where an intersection
with another crossing corridor exists. So, the corridor waveguide model is a good
predictor of radio coverage inside the straight corridor except for some intersections
with other crossing corridors within the tested building.

Link Budget for Indoor Links between the Floors and Walls. All experiments
have been carried out in different campuses of Ben-Gurion University, Israel,
each of which is a typical three-floor university campus, comprising long hallways
and contiguous enclosed classrooms with windows. All outside and inside walls are
made of concrete. There are large windows along the corridors (north wing) and
inside every classroom (south wing). Each classroom is furnished with chairs and
tables having the same size and height and made of metal and wood. During the
experiments, all windows were closed in each floor (both along the corridor and
inside each classroom). The receiver (Rx) and the transmitter (7x) were separated
with obstructions between them, that is, having both NLOS and LOS conditions.
The transmitter was located in a fixed position on the first floor. The receiver was
moved from one location to another within the measurement area from the third floor
to the second floor. On the basis of numerous experimental data and measurement
analysis, a preliminary suggestion was done that the proposed model, Lyt
[dB] = L[dB] + X,[dB], which is based on the combination of Bertoni’s formula
of direct penetration through floors and walls (8.11) and the additional attenuation
X5, which accounts the lognormal shadowing effects caused by internal structures
and obstructions, predicts the path loss measurements with the smallest deviation
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Path Loss vs. Distance
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FIGURE 8.12. Path loss versus distance for various scenarios inside a building, computed
according to Bertoni’s model.

from experiment results (see Figs. 8.12-8.13). According to receipt described in
Chapter 5 or in Reference [33], the probability for shadowing in the selected area
can also be found. Figure 8.12 presents the simulation according to Bertoni’s model
(8.18) for conditions of the experiment described above and the same simulation
according to the suggested model (8.29) shown by Figure 8.13.

Below we present the distinct difference between the suggested model for
predicting path loss between floors (8.29) and Bertoni’s path loss prediction model
(8.18), which takes into account diffraction by window corners for the receiver at the
third floor (Fig. 8.14) and then for the receiver at the second floor (Fig. 8.15).

From Figure 8.14a-b, the suggested model achieved better agreement with
measurements, with an average error of 4.76 dB, than with Bertoni’s model where
the average error exceeds 10dB. On the third floor where Rx was located, the
shadowing term was evaluated to be X; = 12.9dB. On the second floor (see
Fig. 8.15a-b), again, the suggested model achieved better results with error of

Path Loss vs. Distance
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FIGURE 8.13. Path loss versus distance for various scenarios inside a building, computed
according to suggested model.
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FIGURE 8.14(a). Error of suggested model compared to measurements.

8.00 dB compared to 9.58 dB obtained from Bertoni’s model. On the second floor
the term of shadowing was X, = 8.1 dB. In computations and comparison with
Bertoni’s model, the wall attenuation factor of 4 dB (for concrete wall) and the floor
attenuation factor of 13 dB (for mixed concrete walls) were accounted [33].
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FIGURE 8.14(b). Error of Bertoni’s simulation compared to measurements.
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FIGURE 8.15(@). Error of suggested model compared to measurements.

The cumulative effect of deviation from the theoretical prediction, based on
Equation (8.29) and measured data, for different three-story buildings is shown in
Figure 8.16.

According to these results, we can conclude that the suggested model is very
simple in terms of calculation and that it takes into account the slow fading

G Path-Loss Error - Bertoni Model - Second Floor
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0
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FIGURE 8.15(b). Error of Bertoni’s simulation compared to measurements.
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FIGURE 8.16. Standard deviation obtained from the statistical analysis of all scenarios.

(statistical approach) that other models omit. At the same time, the proposed model
and the corresponding simulation results do not take into account objects such as
furniture, people, and their movements. Therefore, some deviation error between
simulation and actual link test results should be expected. Again, we can state that
there is not one single, general enough model that takes into account all features and
processes that occur within an indoor environment.

Finally, we present some experimental results in the form of a straight-line model
as a best fit to the measured data to follow the same procedure used in outdoor
communication links (see Chapter 5). Thus, in Figures 8.17-8.19, the total path loss
versus distance, according to experimental data, are shown for the third, second, and
first floors, respectively. The path loss exponent y for each floor has been obtained
from the approximate equations of straight lines. In Figure 8.17, both antennas are at
the same, third, floor, that is, in LOS conditions. As was found for the LOS
conditions, between the transmitter and receiver, the attenuation parameter equals
y = 2.18. For the receiver located at the second floor, that is, one floor below the
transmitter, we found (see Fig. 8.18) that y = 3.45. Finally, for the receiver located
on the first floor having two floors difference with the transmitter location,
the attenuation parameter is y = 4.51 as a best fit to, the experimental data (see
Fig. 8.19).

These results are very close to those obtained by Rappaport in his numerous
experiments for different kinds of buildings (see Table 8.3), thus we can summarize
that the suggested model (8.29) can be successfully used for prediction of the total
path loss inside buildings for different antenna positions and different floors if we
take into account Bertoni’s formulas strictly (8.11) and (8.16) for the direct path loss
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FIGURE 8.17. Best fit obtained for an experiment carried out at the same third floor.

Path Loss vs. Distance - 2nd Floor Through 1 Floor
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FIGURE 8.18. Best fit obtained for an experiment carried out through one floor between
antennas.
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Path Loss vs. Distance - 1st Floor Through 2 Floors
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FIGURE 8.19. Best fit obtained for an experiment carried out through two floors between
antennas.

between floors and walls and the shadow margin, which can be obtained either from
experimental data or by using the method of shadow effect estimation described in
Chapter 5 for link budget design.
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CHAPTER NINE
|

Adaptive Antennas for Wireless
Networks

As was mentioned in previous chapters, the main problem in mobile or stationary
wireless communications, satellite and aircraft communications (megacell), outdoor
(macrocell and microcell), and indoor communications (picocell), is the addi-
tional noise factor (to the white or additive noise). This noise has two aspects to
it: (a) the multiplicative noise caused by multipath propagation fading, delay
spread, and Doppler spread (see definitions in Chapter 1), and (b) the co-channel
interference noise caused by interactions of information sent by different users
located in the area of service and involved in the multiple access communication
occurred in real time during servicing. Both of these physical phenomena
degrade the grade-of-service (GOS), the quality of service (QOS), the capacity of
the information data stream and, finally, the efficiency of wireless communication
networks.

Several methods have been developed during the last two-three decades to
eliminate these kinds of noise factors. These methods are based on filtering [1-5],
signal processing [6—12], and the so-called adaptive or smart antenna systems
[13-22]. The term ‘“‘smart antenna’ reflects the antenna’s ability to adapt to the
communication channel environment in which it operates. Because both terms
“adaptive antennas” and ‘“‘smart antennas” are interchangeable, from now on we
will be using the term “adaptive antennas’ as it is based on analog and digital
beamforming technology [24-30]. Adaptive antennas are not only used in cellular
communications, but also in many other applications such as aircraft and satellite
communications, radars, and remote sensing [31-37]. The increasing demands on
the operational efficiency of various wireless communication networks put a lot of

Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric
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technical and mathematical questions not only on how to eliminate noise within a
channel, but also on how to increase the capacity of the information data stream
inside a channel. One has to account for limitations in the bandwidth of the existing
communication networks, and increase the bit rate with small bit-error-rate (BER),
the parameters that determine the quality of service. According to Shannon’s
formula, channel capacity linearly increases with allocating new frequencies to the
service or with spreading the existing bandwidth. The latter is a very complicated
problem, and with a logarithmical increase of its signal-to-noise ratio (SNR), it
includes additive (white) noise, multiplicative noise, and noise caused by co-channel
interference in cellular networks.

From previous discussions, to predict the noise factors in environments with
strong ‘“‘clutter”” and hard obstructive (NLOS) conditions is a very complicated task.
During the last four decades, designers have proposed new strategies where they
combined adaptive antennas with advanced signal processing to obtain effective
filtering systems that can simultaneously operate in the space, time, and frequency
domains. Using such interdisciplinary mathematical and technical tools, a lot of
other problems in wireless communications have been effectively solved. Here, we
only point out the problems connected with multiple access communications, which
deal with simultaneous service of numerous subscribers and occurs in frequency,
time, code, and space domain. These multiple access communications are the
frequency division multiple access (FDMA), time division multiple access (TDMA),
code division multiple access (CDMA), and space division multiple access (SDMA).
The use of adaptive antennas can essentially improve the grade-of-service (GOS),
eliminate the influence of co-channel interference by increasing the carrier-to-
interference ratio (C/I) and, finally, to determine with great accuracy the position of
the desired subscriber, which must be serviced by a system. However, as will be
discussed later, in urban environments, a wide spread antenna pattern in both
azimuth and elevation domains, is observed, caused by the random distribution of
buildings both in the horizontal and vertical planes. Therefore, it is very complicated
to use more directive or adaptive antennas for urban communication links. These
problems are difficult to solve without knowledge, not only of the signal strength or
power distribution in the space domain, that is, along the radio path between the
terminal antennas, but also of the signal distribution in the separate and joint angle-
of-arrival (AOA), azimuth and elevation, time-of-arrival (TOA) or delay-spread
(DS) domains. All these aspects will be briefly presented in the next section. Next,
we start with the architecture of adaptive antennas for different array configurations
(linear, circular, and planar).

9.1. ANTENNA ARRAYS

The definition of “‘adaptive or smart” antenna has been used in [13] to describe
self-phasing antenna systems, which reradiate a radio signal in the direction from
which it was received. Figure 9.1 shows the architecture of two arrays used in a
communication system. The receiver array consists of N elements and the receiver
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FIGURE 9.1. The MIMO channel.

has M elements. Such multichannel system in literature is called the multiple-input-
multiple-output (MIMO) wireless channel [38].

The concept of using antenna arrays and innovative signal processing is not new to the
radar and aerospace technology. Until recent years, cost effectiveness has prevented their
use in commercial systems. The advent of very fast and low-cost digital signal processors
have begun to make adaptive antennas very smart and practical for cellular land- or
satellite-mobile communication systems. This trend is only the beginning and the use of
smart antennas is going to accelerate in the future. Main hurdles to overcome are the costs
and the technological issues relating to the manufacturing of a multi-antenna system.

Before we start explaining the principles of adaptive arrays and their operation, we
proceed with a review of some of the basics of antenna arrays.

9.1.1. Antenna Array Terminology

As was shown in Chapter 2, antennas in general may be classified as isotropic, omni-
directional, and directional. For antenna array there are some additional terms that
must be introduced such as array factor, phased arrays, steerable beams, and so on.
[12-14,39-44]. A phased array antenna uses an array of antennas, called “elements”
that combine their signals to achieve a more directive radiation pattern in some
direction than others. The direction where the maximum gain would appear is
controlled by adjusting the phase of the individual elements. So, in the direction where
maximum gain occurs, the signals from the elements are added in-phase and that is the
reason why an array is used to achieve more gain than a single antenna element.
An adaptive array antenna

utilizes sophisticated signal processing algorithms to continuously distinguish between
desired signals, multipath, and interfering signals as well as calculate their directions of
arrival. The adaptive approach continuously updates its beam pattern based on changes
in both the desired and interfering signal locations. The ability to smoothly track users
with main lobes and interferers with nulls guarantees that the link budget is constantly
maximized.
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FIGURE 9.2. Typical adaptive antenna. Several signals S’s are impinging on the antenna
elements. W’s are the weights that each signal is multiplied by before the summation point.

A block-scheme of the typical adaptive antenna is shown in Figure 9.2. The
signals received by the elements of the antenna are weighted and combined to
maximize the signal-to-interference ratio [18]. A typical adaptive antenna array is
shown in Figure 9.2.

The Array Factor. A plot of the array response as a function of angle is commonly
referred to as the array pattern, beam pattern or power pattern. To characterize this pat-
tern, a new parameter called the array factor and denoted by F(¢,0), is defined. It
represents the far-field radiation pattern of an array of isotropic radiating elements in
the 0 and ¢ angles. The process of combining signals from different elements is known
as beamforming. We will discuss several beamforming technologies later in this chapter.

Steering Process. For a given array, the main beam can be pointed in different
directions by mechanically moving the array. This process is known as mechanical
steering. In contrast, electronic steering uses the inherent delay of signals arriving at
each element of the array before combining them. For narrow-band signals in
Figure 9.3, phase shifters are used to change the phase of signals before combining
them at the output of the antenna where they arrive with their own time delay t,,(0) [42].

The steering locations, which result in maximum power, yield the direction-of-
arrival (DOA) estimates, that is, the steering vector contains the responses of all
elements of the array to a narrow-band source of unit power. Because the response of
the array is different in different directions, a steering vector is associated with each
directional source. The correlation between them depends upon the array geometry
[40]. Because each component of the steering vector denotes the phase delay caused
by the spatial position of the corresponding element of the array, this vector is also
called the space vector or array response vector. In multipath situations in wireless
communication channel, the space vector denotes the response of the array to all
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FIGURE 9.3. Summation of arriving signals with different time delays.

signals arising from the source [41,43,44]. The array response is steered by forming
a linear combination of the element outputs, as will be shown mathematically later.

The Pattern of the Antenna Array. In an antenna array, if the distance between
the elements-sensors is larger than the wavelength of radiation, several main lobes
will be formed in the visible space. Conversely, if the element spacing is less than
a wavelength, and all signals from elements are summed without any delay (see
Fig. 9.2), then the produced array output signal will have a symmetric pattern about
0 = 0° (see Fig. 9.4a). On the contrary, if in this case the output of each element is

i0°
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'Ne\/,
o //
d=)\/2 ‘—V/’

Antenna
Elements

o .
0 Signal

Array Output
Signal

FIGURE 9.4. Antenna array (a) All signals arrive without any delay: the main beam is
oriented normally to the sensors’ line; (b) each signal is delayed by its own delay that gives a
shift in the main beam by 15 degrees. (Source [14]: Reprinted with permission © 1967 IEEE)
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delayed in time before being summed (see Fig. 9.3), the resulting directivity pattern
will have its main lobe displaced at an angle / defined as

sin.pz%fz% (9.1)

where d is the spacing between antenna array elements, ¢ = /T = Af is the signal
propagation velocity, and 7 is the time-delay difference between neighboring-
element outputs. Figure 9.4b shows the direction of the main beam and nulls for an
array with 0 = 24°, d = 2/2, T = 0.12941/f, and y = sin~!(2zf) = 15°.

9.1.2. Architecture of the Antenna Array

Next we discuss the most common geometrical configurations used in adaptive array
antennas.

Linear Array. Let us consider a receiving antenna with a linear array of M — 1
elements from the origin, which is uniformly spaced along the horizontal axis as
shown in Figure 9.5 [24]. Let the spacing between elements be denoted by d. At
each element input there is a complex signal given by U,, = A,,e/’» (i.e., the signal
input at the element m with amplitude A,, and phase 8, = ma, m=0, 1, 2,...,
M — 1). Here, « is the constant phase difference between two adjacent elements.

We also assume that at the origin, the phase of the arriving ray is equal to zero,
and the differential distance of two rays at points m + 1 and m is Ad = md sin 0.
Then the array factor can be determined as [24]:

F(H) — UO + Ul ejkalsinf) + UzejdesinH 4.

M—1 M—1
_ U e/'mkd sinf __ A e/'(mkd sin O+mor)
= E m = E m

m=0 m=0

FIGURE 9.5. Linear antenna array to obtain the path difference between two neighboring
elements.
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FIGURE 9.6. Field pattern of an 8-element adaptive array antenna.

or in terms of vectors and an inner product:
F(0) =U"u (9.3)
where
U=[UU .. .Uy1]" (9.4)

is the array propagation vector that contains information about the angle-of-arrival
(AOA) of the signal. Also,

u= [1 ejkdsin@ e/‘2kdsin9 o ej(Mfl)kdsinH]T (95)

is the weigh vector with the corresponding component for each element of the array.
If now oo = —kd sin 6y, a maximum response of F(6) will result at the angle 6y, that is,
the antenna beam pattern will be steered towards the wave source. Figure 9.6 shows the
radiation pattern for an eight-element linear array with 4 spacing between elements.

Circular Array. The same situation can be said for a circular array of equally dis-

tributed M — 1 elements placed on a circle of radius R, as shown in Figure 9.7.
Here, we introduce the azimuth angle for each element m, ¢,, = 2mn/M. The

relative phase f3,, at each element m with respect to the center of the array is

B, = —kRcos(p — ¢@,,) sin 0 (9.6)

Again, for a main beam directed at angles 0y and ¢, in space, the phase of the
complex signal U,, = A,,e/* for the element m equals

o = kR cos(@y — @,,) sin Oy (9.7
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FIGURE 9.7. Geometry of a circular antenna array.

In this case, the array factor for the circular antenna can be presented in the
following form:

M-1
F((p, 0) — ZAWL ej[z,,,—chos((p—(pm)sin 0] (98)
m=0

Figure 9.8 shows the radiation pattern for an adaptive circular array of radius 0.84.
The array factor G(¢, ) can be found as

G(9,0) =f(,0) - F(e,0) 9.9)

where f(¢, 0) is the element factor. This equation is usually called the principle of
pattern multiplication, which allows us to determine the array factor of more

Signal at —25, interference at 55,5 Signal at 14, interference at —6,34
20 : : : 20 : : :
M=11 ! ! M=9 ! !
0 ;- T deeomef- oo 0 oo oo Lo\ onees
0 : m : : :
S h ! . ° | | |
E [ [ 1 E 1 1 1
c 20 }----- Fom—mn-- . e c —20 |--14- e e o Fo——--
g E E E 8 E E E
5 | | | 5 | | |
o ' ; | o ' | |
—40 F----- FTTTe ) e T =40 ---r- T PR Tt
~60 . . . _60 . . .
=50 0 50 -50 0 50
AOA in Degrees AOA in Degrees

FIGURE 9.8. Radiated pattern for an adaptive circular array radius 0.81. The desired signal
to be tracked and the interference signals are shown in degrees at the top.
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FIGURE 9.9. Geometry of a planar antenna array.

complicated arrays as a composition of simple subarrays, and account for their
mutual dependence.

Planar Array. An example of the planar array is shown in Figure 9.9 as a combina-
tion of two linear arrays, one is with M — 1 elements and the second is with N — 1
elements. Then, according to (9.2), the array factor for the first M-element array with

the complex signal at the element m of U,, = A m=0,1,2,.....,. M —1,is
given as
M—1 ‘ '
Fi (L{) — ZAW! e/(mkdx sin u+mor) (910)
m=0

where u = sin 0 cos ¢. The array factor for the N-element array with the complex

weight at the element n of U, = A,e™ n=0, 1,2,...., N—1, is given as [24]:
N-1 . ‘
FQ(V) _ ZA'! e/(mkdy sin v+nf3) (911)
n=0

where v = sin0sin ¢. According to the principle of pattern multiplication, the
overall array factor for the rectangular array is then given by

F =Fi(u) F>(v) (9.12)

The same procedure can be used for the more complicated antenna structures such as
the hexagon planar array and so on.

9.2. BEAMFORMING TECHNIQUES

The term beamforming relates to the capability of the antenna array to focus
energy along a specific direction in space [18,19,21,24]. Thus, in multiple access



344 ADAPTIVE ANTENNAS FOR WIRELESS NETWORKS

communications, a desired user must be serviced in “clutter’” conditions. In this
case, ‘“‘clutter” means the existence of other users located in the area of service.
Beamforming allows the antenna to focus energy only towards a desired user and
nulls in the undesired directions. For this reason, beamforming is often referred to as
spatial filtering. Spatial filtering or beamforming was the first approach to carry out
space-time processing of data sampled at antenna arrays [12].

The conventional (Bartlett) beamformer was the first to emerge during the
Second War [45]. It is a natural extension of the classical Fourier-based spectral
analysis for spatial-temporal sampled data. Later, adaptive beamformers [46—49]
and classical time-delay estimation techniques [49] were applied to enhance the
ability to resolve signal sources that are closely spaced. From a statistical point of
view, the classical techniques can be seen as spatial extensions of the spectral
Wiener (or matched) filtering method [50]. However, the conventional beamforming
approach has some fundamental limitations connected to the physical size of the
aperture or the array, to the available data collection time, and to signal-to-noise ratio
(SNR). For more details the reader is referred to [8,21,51,52]. Next, we present some
aspects of analog and digital beamforming.

9.2.1. Analog Beamforming

An analog beamforming system usually consists of devices that change the phase
and power of the signal emanating from its output. Figure 9.10 shows an example for
creating only one beam at the output of the RF beamformer [24]. Such simple, one-
beam antenna array systems can be constructed by using microwave waveguides,
microstrip structures, transmission lines, and printed microwave circuits.
Multiple-beam beamforming systems are more complex systems whose
operational characteristics are based mathematically on the beamforming matrix,
with the Butler matrix being the most known matrix [53]. In a beamforming matrix,
an array of hybrid junctions and fixed-phase shifters are used to achieve the desired
results. As an example, a Butler-beamforming matrix for a four-element antenna

Antenna
elements
H Phase !
! shifters !
i |
i :
1
i |
1
' Power i
1 dividers !
i :
! i
1
i |

FIGURE 9.10. A simple beamformer.
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FIGURE 9.11. (a) A Butler beamforming matrix for a four-element antenna array, and (b) Its
phasing scheme.

array is shown in Figure 9.11a. This matrix uses two 45° fixed-phase shifters and
four 90° phase-lag hybrid junctions with the corresponding computation links.
(see Fig. 9.11b).

By tracing the signal from the four ports to the array elements, one can verify that
the relative phase distribution at the antenna aperture corresponds to the individual
ports of the four-port Butler matrix, computed as shown in Figure 9.12 [24,53]. An

FIGURE 9.12. Computation of the antenna pattern corresponding to the beamformerin
Fig. 9.11. (Source [24]: Litva, J and T. Lo, Artech House, 1996)
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example of an array antenna pattern with elements spaced at 4/2 is shown in
Figure 9.12. Although, these four beams are overlapping and they are mutually
orthogonal.

Here, we must note that the Butler matrix was developed before the fast
Fourier transform (FFT) and that they are both completely equivalent. One (the
Butler matrix) is used for analog beamforming, and the other (FFT) is for digital
beamforming [19,21,24,51-53].

Conventional Beamforming is a simple beamformer, sometimes known as the
delay-and-sum beamformer, with all it weights of equal amplitude.

As was mentioned previously, the phases of the elements are selected to steer the
main beam of the array in a particular direction (¢, 0p), known as the look
direction. The system must be able to adapt its pattern to have lobes at M — 1 places.
This ability is known as a degree of freedom of the array. For an equally spaced
linear array this feature is similar to an M — 1 degree polynomial of M — 1
adjustable coefficients, with the first coefficients having the value of unity [see
formula (9.5)]. The concept of a delay beamformer or phase delay is shown in
Figure 9.13 [42].

Here, due to the delay of each arriving ray at an array element with respect to its
neighboring element, a corresponding shift in phase occurs with the amplitude
weights remaining fixed as the beam is steered. As mentioned before, this type of
array is commonly known as a phased array.

Null-Steering Beamformer is used to place nulls in the radiation pattern in
specified directions. Usually, the nulls are placed in the directions of interfering
signals or mobile users. In the earliest schemes [54-57], this was achieved by
estimating the signal arrived from a known direction by steering a conventional
beam in the direction of the desired source and then subtracting the output from each
element in this case the beam output y(f) is presented by a sum of the signals x,,,
m=0,1,...., M — 1, received from a given direction, defined by the angle 6, by

Incident
signals

"% N "%
*o X Xr-1
\ si?f?:fs

Adaptive algorithm (Signal processor)

|

output beam

FIGURE 9.13. A beamformer with phase shifters.
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each of the M elements. Each element has its own weight coefficient w,, and time
delay of arrival t,,(0). The output of the antenna is expressed as

M—1
Y(1,0) =Y wx[t — T (0)] (9.13)
m=0

By adjusting these weights, one can shape the beams. This process is very effective
for canceling strong interference between subscribers.

Frequency-Domain Beamforming. Here, by using the direct and inverse fast
Fourier transform (FFT), the broadband signals from each element of the array
are transformed into the frequency domain and then each frequency bin is processed
by a narrowband processor structure (see details in References [58—60]). The
weighted signals from all elements are summed to produce an output at each bin
(see Fig. 9.14). The weights are selected by independently minimizing the mean
output power at each frequency bin subject to steering-direction constraints. Thus,
the weight required for each frequency bin are selected independently, and this
selection may be performed in parallel, leading to a faster weight update. Various
aspects of frequency-domain beamforming are reported in References [58-60]
and other references.

Multiple Beamforming is used to generate several beams simultaneously. These
beams can be fixed in certain directions or adaptive with nulls steerable in desirable
directions. This can be achieved using very complex networks of phase shifters.

In beam-space processing [61-63], the beamformers can distribute the signal
energy to all the formed beams. One of the problems with multiple-beam
beamformers is that as the number of beams is increased, the SNR of channels
being carried by the individual beam decreases. This is due to additional noise
introduced from the additional number of radio frequency (RF) and intermediate
frequency (IF) components that must be used to increase the beamformer capacity.

0
x® | F— Vo)
O e m ) —>
T M- \
F1-0 |
x; (1) m D) | F y(@®
F F >
T T
@ | F Sy ()
F —
T
Broadband Time Domain Narrowband Processing Conversation to
Signals on each Frequency Bin Time Domain

FIGURE 9.14. Summation of weights. (Source [14]: Reprinted with permission © 1967 IEEE)
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9.2.2. Digital Beamforming

Earlier ideas to use digital beamforming come from foundations in sonar [27] and
radar systems [31] as a bridge between antenna technology and digital technology.
Using digital techniques, it is possible to capture RF information in the form of
digital streams. Digital beamforming is based on the conversion of the incident
RF signal at each antenna element into two streams of binary complex baseband
signals representing an in-phase component (I) and a 90° phase shifted or quadrature
component (Q). In digital beamforming technique, the weighted signals from
each element are sampled and stored, and beams are formed summing the
appropriate samples [64—70]. Despite the fact that digital beamforming does not
have the same direct physical meaning as analog beamforming, the same process of
adaptive beamformer is used by weighting digital signals and presenting the total
beam by the same array factor (9.8).

Next, a simple algorithm of beamforming without any phase delays will be
introduced.

Element-Space Beamforming. A simple structure that can be used for such
beamforming is shown in Figure 9.15 [14,42]. It is the same as the one sketched in
Figure 9.2, but here we introduce notations that correspond to digital processing jargon.

The output y,(6) at a discrete time r = nT is given by a linear combination of the
binary data at M sensors (also known as the array snapshot at the n'" instant of time
given by Reference [42]). We define a snapshot as one simultaneous sampling of all
array element signals.

yau(0) = Z_ W) Xm (1) (9.14)
m=0

or in inner vector form [42]:
yu(0) = wi -x(n) (9.15)

where the sampling time 7 was omitted to simplify our discussions. Here, x,, is the

signal from m'" element of the array, w, is the weight applied to x,,, sign *“*”

69 &

Processing unit (adaptive algorithm)

'

y

FIGURE 9.15. A simple digital beamformer.
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FIGURE 9.16. Obtaining the desired direction using a linear array of sensors. (Source [42]:
Reprinted with permission © 1997 IEEE)

represents a complex conjugate, and the superscript H represents the Hermitian
transpose. To relate these notations to the analog beamforming, we assume that
Xm(n) = U, and w?, = e/"dsin0 Then the total output signal y(?) is equal to F(0)
from (9.2), that is, y,(0) = F(0). In such a manner, (9.14) describes the process
that is referred to as the element-space beamforming, where the binary data
signals x,, are directly multiplied by a set of weights to form a beam in any
desired angle.

To consider the delayed adaptive beamforming using delays, we need touse
Equation (9.13) and represent each delay as an integer multiple of the sampling
interval A. The process is shown in Figure 9.16 for a linear array of uniformly spaced
elements, where it is desired that a beam is formed in the specific direction 0, [42].

The time delay along 0, is

Tn(0) =mA, m=0,1,... M—1 (9.16)

Thus, the signal from the m'™" element needs to be delayed by mA seconds. This may
be accomplished by selecting the samples for summing, as shown in Figure 9.16
by the line marked with symbol A. Similarly, a beam may be steered in a direction
03 by summing the samples connected by the line marked with symbol B in
Figure 9.16, where the signals from the m™ element need to be delayed by
(M — 1 —m)A seconds. At the same time, the beam formed in direction 0;, by
summing the samples connected by the line marked with symbol C, does not require
any delay. So, using such a process we can only form beams in those directions that
require delays equal to some integer multiple of the sampling interval, that is,
correspond to (9.16). The number of discrete directions where a beam can be pointed
exactly increases with increased sampling. This leads to the formation of additional
beams. For more information on how to form multiple beams simultaneously and
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FIGURE 9.17. A simple beamformer without time delays.

synchronize the digital beamforming process, the reader is referred to work reported
in References [26,66-71].

An example of a simple beamformer that generates an arbitrary number of
simultaneous beams from M antenna elements is shown in Figure 9.17. Each
beamformer creates an independent beam by applying independent weights to the
array signals, that is, [29]:

M-1
y(0) = i (9.17)

m=0

where y(0;) is the output of the beamformer, x,, is a sample from the m™ array
element, and w! are the weights for forming beam at angle 0;. By selecting
appropriate weight vectors, we can implement beam steering, adaptive nulling, and
beam shaping.

Space Beamforming. Instead of directly weighting the outputs from the array ele-
ments, they can be processed first by a multiple-beam beamformer to form a suite of
orthogonal beams. The output of each beam is then weighted and combined to pro-
duce a desired output. This process is often referred to as space beamforming. The
required multiple beamformer usually produces orthogonal beams namely, the
beamformer that can be implemented by using the fast Fourier transformation
(FFT). Thus, an M-element linear array with M overlapped orthogonal beams can
be used to give [29]

M—1
V(On) =Y e PNy = 0,1,2, M — 1 (9.18)
m=0
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FIGURE 9.18. An FFT-based beamformer. (Source [29]: Reprinted with permission © 1998
1IEEE)

where 0,, = sin~![m//(M — 1)d]. Because of the fixed discrete nature of v(0,,), the
individual beam control requires the following steps:

a) Interpolation between beams in order to precise-steer the resultant beam
precisely;

b) Linear combination of the output beams to synthesize a shaped beam or a low
sidelobe pattern;

¢) Linear combination of a selected set of beams to create nulls in the direction
of the interfering sources.

Thus for space beamforming, a set of beam-space combiners to generate weighted
outputs is required. In Figure 9.18 in the weighted FFT-based beam former, the
digital signal streams from the antenna elements are fed to the FFT processor, which
generates M simultaneous orthogonal beams.

The role of the beam select function in Figure 9.18 is to choose a subset of these
orthogonal beams that are to be weighted to form a desired signal. For example, the
i™ desired output may happen to be the combination of the weighted m™ and
(m + 2)th beams, that is,

M;—1
31 = Wi (0) + Wi (0i2) = 3 W (Om) (9.19)

m=0

where i(m) is the selected beam index (i.e., (1) =m and i(2) =m +2) and
(M; — 1) is the number of orthogonal beams that is required to form the i desired
beam.

Two-Dimensional Beamforming. Digital beamforming technologies for mobile-
satellite communications are usually based on two-dimensional planar antenna
arrays [72,73]. As was shown in Section 9.1, all algorithms, techniques, and methods
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for linear antenna arrays can be easily and naturally extended to two-dimensional
planar arrays. Thus, for a M x K rectangular planar array, the output of the
beamformer at the discrete time #, = n, y,(0, @), is given by [72,73]

K-1M-1

w(0,0) =D wixem(n (9.20)

k=0 m=0

or in the standard matrix form through inner product

ya(0,9) = wx(n) (9.21)

where the weight matrix is

W= (W00, Wi0s -y Wk—10, W0ls---, Wk_1m-1) (9.22)

and the output signal matrix at each element of the planar array is

x(n) = [xo0(n), xi0(n),..., xk_10(n), x01(n),..., xK,l_M,l(n)]T (9.23)

In a similar way, the output of the beamformer at time n can be constructed for any
planar array.

Adaptive Beamforming. Adaptive beamforming has been a subject of consider-
able interest for more than three decades, traditionally starting as other types of
beamforming to be employed in sonar and radar applications. There are numerous
technical papers and articles on the basic concept, special technologies, and applica-
tions of adaptive beamforming, from which more general are [9,14,16,19,29,74-80].

Adaptive beamforming started with the invention of the intermediate fre-
quency side lobe canceller (SLC), reported in References [13,15]. This was the
first adaptive antenna system that was capable of nulling interference signals
automatically at the antenna ouput. His antenna array had a typical configuration
of nondelayed beamformer presented in Figure 9.4a, but with one significant
difference: it contained one high-gain main-beam ‘“‘dish” antenna (with weight wy)
surrounded by a linear array of several low-gain antenna sensors (with weights
Wp,m=1,2,..., M —1).

Applebaum [47] developed a theoretical concept, commonly known as the
Howells-Applebaum algorithm, on how to control the weights of the adaptive
beamformer. The main goal of this algorithm was to maximize the SNR at the array
output. For the analog SLC multibeam antenna loop, Applebaum expressed a
differential adaptive processing equation given by

dw; . M-1
5 i G{Ki x> mem(t)} (9.24)
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From this equation, one can obtain the weights in a matrix form by using
w=uR 'K (9.25)

where R is the M x M covariance matrix R = E[x(¢)x ()] which is formed from the
expected values of the array signal correlation. In (9.24), w;, i =0,1,..., M — 1, is
the i" weight at the i element output, x;(¢) is a signal from the i antenna element,
K; is the component of cross-correlation matrix K of x;(¢) with the output of the main
high-gain antenna channel (with weight wy). T is the smoothing filter time constant,
and G is the amplifier gain. A positive scalar p (called the gradient step size) controls
the convergence characteristic of the algorithm, that is, how fast and how close the
estimated weights approach the optimal weights.

A different beamforming technique was proposed by Capon [46]. This approach
leads to an adaptive beamformer with a minimum-variance distortionless response
(MVDR), also known in literature as the maximum likelihood method (MLM),
because it maximizes the likelihood function of the input signal vector.

Then, Reed with coworkers showed that fast adaptivity is achieved by using the
sample-matrix inversion (SMI) technique [57]. This algorithm is more convenient
when fast convergence response is required in a SLC configuration [19,57,79].
Sometimes it is better to use an orthogonal lattice filter adaptive network, often
referred to as the Gram-Schmidt algorithm. According to this algorithm, each weight
wim represents the adaptive coefficient obtained from a one-stage Gram-Schmidt
orthogonal filter and can be expressed through the n™ time-sampled voltage Vi, (n)
of a set of N signal data samples from the i™ input as [21,22,79]

Wi = 25— (9.26)

Using this technique, the adaptive weights can be computed directly. A comparison
of the convergence speed performance obtained by the Gram-Schmidt algorithm and
that obtained by Howells-Applebaum algorithm made in Reference [22], has shown
that the first one converses in about 30 snapshot data samples, whereas the second one
achieves a signal at the level of 14 dB above the receiver noise after 180 snapshots.

The SMI algorithm can be sped up by using the direct inversion of the covariance
matrix Rin (9.25). If the desired and the interference signals are known a priori, then
the covariance matrix could be evaluated and the optimal solution for the weights
could be computed using (9.25). As in most cases the signals are not known, they can
be generated as a set of “pseudo” signals X,,(¢) that closely represent the real signals.
A general adaptive beamforming scheme is considered in Figure 9.19 below
[19,24,79].

The choice of the weight vector w is based on the statistics of the signal vector
x(t) received at the array. Basically, the objective is to optimize the beamforming
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FIGURE 9.19. General adaptive beamforming.

response according to a prescribed criterion of the adaptive processor operation, so
that the output y(#) will contain minimum contribution from noise and interference.
In such a situation, the adaptive processor must continually update the weight vector to
meet a new requirement imposed by the varying conditions of the signal environment.
Therefore, instead of the real covariance matrix R, the adaptive processor “deals”
with the approximate covariance matrix R = E[x*(7)x(¢)], and (9.25) becomes the
Wiener-Holf equation, which is also called the optimum Wiener solution [57]

Wopt = URT'R (9.27)

In this algorithm the weight vector is updated without a priori information and it
leads to estimates of R and R in a finite observation interval. These estimates are
then used in (9.27) to obtain the desired weight vector. The error, due to these
estimates, can be viewed as the least squares formulation of the problem. So, the
weight vector derived using the SMI method can be defined as the least squares
solution.

Another algorithm, the Least Squares or LMS algorithm, was developed by
Widrow and his colleagues [10,14]. Because of its simplicity, the LMS algorithm is
the most commonly used adaptive algorithm for continuous adaptation and it is
capable of achieving satisfactory performance under the right set of conditions. The
LMS algorithm was further developed with the introduction of constrains [76,77]
that are used to ensure that the desired signals are not filtered out against the
unwanted signals.

The LMS algorithm is based on the optimization method that recursively
computes and updates the weight vector. It is clear that the process of successive
corrections of the weight vector leads to the estimation of the mean-square error
(MSE), which finally allows to obtain an optimum value for the weight vector.
According to the optimization method [81], the weight vector is updated at time
n + 1 using the following relation:

w(n + 1) = w(n) + u[R — Rw(n)] (9.28)
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FIGURE 9.20. Schematical presentation of LMS algorithm.

As in the previous algorithms, a prior knowledge of both R and the approximate Ris
not possible. Again, their instantaneous estimates are used through the error matrix

E = Rw,, — R (9.29)
Then the estimated weights can be updated as
w(n+1) = w(n) + ux(n)E(n)] (9.30)

The gain constant p controls the convergence characteristics of the random vector
sequence w(n). This is a continuously adaptive approach that works well when the
signal environment is statistically stationary. A signal-flow scheme representing the
LMS algorithm is shown in Figure 9.20 [81].

It is clear that such an algorithm is very simple and therefore successfully used in
sonar, radar, and communication applications [82-90].

However, its convergence characteristics depend strongly on the eigenvalues of
the covariance matrix R, which has a tendency to change widely with a change in the
signal environment. When this occurs, convergence can be very slow. Furthermore,
unlike the Applebaum’s maximum SNR algorithm and the LMS algorithm, which
may suffer from slow convergence, the performance of the SMI algorithm is more
preferable in this situation because it is independent of the value of the eigenvalue
spread.

Despite the fact that the Applebaum’s maximum SNR algorithm and Widrow’s
LMS error algorithm were discovered independently and were developed using
different approaches, they are basically similar. For stationary signals, both
algorithms converge to the optimum Wiener solution [78].

Let us now present a simple example of an adaptive antenna processing for
steering and modifying an array’s beam in order to “work™ only with a desired
signal and to show how the complex weight coefficients are obtained to suppress the
interfering signals. Consider a base station with a simple array of two antennas
separated by a distance of d = 1/2, as shown in Figure 9.21. For simplicity, let us
assume that the desired signal arrives from the first mobile user at §; = 0° and the
interfering signal arrives from the second mobile user at 0, = 7/6. Both signals send
their information at the same frequency f. The first desired signal, s, = a,, e/>¥,
arrives at the first and second elements with the same phase. The output y,, for the
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FIGURE 9.21. An adaptive array of two elements.

wanted signal is a linear combination of the two corresponding weight coefficients,
wi at the first element antenna and w» at the second element antenna, that is,

Vi = ay e (wi + wy) (9.31)
At the same time, the interfering signal s;(f) = a; e/>”" arrives at the first and second

element antenna with a phase shift of ¢ = kdsin(n/6) = 2n(1/2)(1/2)/2 = /2.
Thus, the array output for the interfering signal at the two elements equals [24]

yi = as e’?™wy + a; /2y, (9.32)
To make sure that at the output of the array there is a desired signal, we must satisfy

{Re[wl] + Re[w) (9.33)

Wo| = 1
Im[w;] + Im[w,] =0

At the same time, to minimize the effect of the interfering signal leaving the desired
signal unaffected, one must state that the array output for the interference response
must be zero or as follows from (9.32)

RC[W]] + RCVWQ] =0
{ Im[w,] + Im[jw,] =0 (9:34)
Expressions (9.33) and (9.34) are then solved simultaneously to give us
wr =1/2—j(1/2)
{ wy = 172 +(1/2) (9:35)

With these weights, the array of two element antennas will accept the desired
signal while simultaneously eliminating the interfering signal. Of course, in this
simple example we assumed prior knowledge of the direction of arrivals for the
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interfering and desired signals, frequency, and so on. Nevertheless, this example
demonstrates that a system consisting of an array of antenna elements, which is
configured with complex weights, provides countless possibilities for realizing
array system objectives.

9.3 ADAPTIVE ANTENNA FOR WIRELESS
COMMUNICATION APPLICATIONS

The demand for mobile and fixed wireless communication continues to grow, making
subscriber capacity and reliability of wireless systems a critical issue. Efficient
temporal processing, such as advanced source coding, channel coding, modulation,
equalization, and detection techniques, can help alleviate this problem. However, more
dramatic improvements may be achieved by exploiting the spatial dimension using a
smart antenna system and multiple access techniques.

Multiple access refers to the simultaneous coverage of numerous users by
manipulating the transmission and reception process of signals in time, frequency,
code, and space domains. In time division multiple access (TDMA), each user
located in the area of service obtains or transmits information in a certain period of
time called a time slot. In frequency division multiple access (FDMA), the frequency
bandwidth is divided into segments, which are then portioned among different users
located in certain service area. In code division multiple access (CDMA), each user
obtains a unique random sequence of bits, that is, a unique code, generated by a
generator of special random sequences. The information waveform is spread after
modulation by this code over the entire frequency bandwidth, which is allocated
to all users serviced by the network. The receiver uses the same code to detect
the signal with information corresponding only to the desired user by rejecting
other users (having other codes) and noises (multiplicative, additive, and due to
interference) that exist in the communication channel. In cellular communications,
there is another access called space division multiple accesses (SDMA), which is
usually used by a division of each cell in sectors using directed antennas to serve each
user located in the corresponding sector. The latest form of SDMA usually employs
adaptive antenna arrays based on digital beamforming technology [19,24-31]. Here,
we will consider the applications of adaptive antennas in different networks on the
basis of these four types of multiple access communication [91-96]. Let us first start
with the applications of adaptive antenna in terrestrial communications.

9.3.1. Adaptive Antennas for Outdoor Wireless Communications

The important aim in using adaptive antenna arrays is to reject the multiplicative
noise caused by multipath fading, slow or fast, to decrease the time-delay effect
occurred because of the multipath phenomena, and finally to eliminate the co-
channel interference that occurs between subscribers allocated in the same
frequency band (in CDMA) or that share the same time frame [75]. To overcome
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FIGURE 9.22. Three typical antenna positions with respect to rooftops level.

these impairments, an array technology consisting of multiple input and multiple
output (MIMO) channel is usually used (see Fig. 9.1). Using M antenna elements, a
significant increase of antenna gain is achieved plus a diversity gain against
multipath fading, which depends on the correlation of the fading among the
antenna elements. To provide a low correlation (i.e., diversity gain) between
elements, there are several basic ways that can be considered: spatial, polarization,
time, frequency, and angle diversity [23,75].

For spatial diversity, the antenna elements are separated far enough for low fading
correlation among them. The required separation depends on the obstructions
surrounding the antenna such as buildings, trees, hills, and so on. There are three
typical situations in the urban environment scene: when the base station (BS)
antenna is higher than the overlay profile of the buildings (Fig. 9.22a); the BS
antenna is at the same level as the height of the buildings (Fig. 9.22b); and when the
BS antenna is lower than the overlay profile of the buildings (Fig. 9.22c). Depending
on the number of obstructions (scatterers) surrounding the terminal antennas, the
angle-of-arrival of the total signal at the receiver will spread dramatically. Thus, for
the BS antenna sketched in Figure 9.22a, when only few obstructions surround the
user antenna, the angular spread may be only few degrees [75], whereas for the
situation in urban areas sketched in Figure 9.22b, the angular spread can exceed ten
and more degrees. In these situations, a horizontal separation of antenna elements of
10-20 wavelengths is required. In the third situation shown in Figure 9.22c, the
angular spread can reach up to 360° and the antenna element spacing only of a
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FIGURE 9.23. Spatial diversity estimation.

quarter wavelength is sufficient (these phenomena will be considered more in detail
in the next chapter).

A simpler way to obtain spatial diversity is to use two antennas separated by a
distance d in space, as shown in Figure 9.23 [94]. The multipath fading is due to
waves from two scatterers, A and B, separated by distance r,, which is much smaller
than the distance between antennas and the scatterers, so both antennas view the
scatterer from the same direction. In such assumptions, we can present the phase
difference between waves incident on the antennas in the following form:
¢ = —kdsin 0.

Figure 9.24 shows the path from a single scatterer at an angle 0 to the
broadside direction in the horizontal plane (for the horizontal antenna spacing).
Assuming now that the amplitude after scattering is the same for both antennas,
we get [94]

si=a-&* and s =a- PP (9.36)

For the large number of scatterers N, these expressions can be generalized as

N N
N Zai ej2nft and Sy = Zai ej(27rft+¢,.) (937)
i=1 i=1

Scatterer

W

Antennai

Broadside direction

Antenna2

FIGURE 9.24. A single scatterer for the antenna elements separated by a distance d.
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where a; are the amplitudes associated with each of the scatterers. The correlation
between these two signals, assuming that amplitudes from each of the scatterers are
uncorrelated, is given by

2n
pild) = [ p(0) 57000 (9.38)
0

where p(0) is the PDF function of the random variable 6. This expression can be
used for a wide range of situations, provided a reasonable distribution for p(6) can be
found. Note that (9.38) is a Fourier transform relationship between p(6) and p,(d).
So, there is an inverse relationship between the widths of these two functions: A
narrow angular distribution after multiple scattering will produce a slow decrease in
the correlation with antenna spacing, which finally will limit the usefulness of space
diversity. Conversely, an environment with significant scatterers, around the antenna
with a wide angular distribution, will produce a decrease in the correlation with
antenna element spacing. In this situation, if d goes to zero, the correlation between
the antenna elements will be higher. In many cases of mobile-to-mobile (MO-MO)
communication (Fig. 9.22c), the angular distribution of the signal after multiple
scattering from obstructions can be described by a uniform PDF over [0, 2] with
p(0) = 1/2x. In this case from (9.38) we get, according to Reference [94], a solution
in terms of the modified Bessel function of zero order

p(d) = T (znd> (9.39)

A

From Figure 9.22, for the base-station-to-mobile (BS-MO) communication, the
angular distribution of scattering at the base station may be very different from that
of the low mobile antenna. In the case of Figures 9.22a and 9.22b, with scatterers
present at distance r from the base station on a ring centered around the mobile
station with radius, we use instead of (9.39), the following expression [96]

B 2nd rg nd (12 3.,
p(d) = Jo( T cos 0) Jo (2 (7> \/1-= 7 5in 9) (9.40)

where 0 is the scattering angle directed from the base station to the ring of scatterers.

Comparison between (9.39) obtained for the case of MO-MO communications
and (9.40) obtained for the case of BS-MO communications shows that in the second
case the spacing d between antenna elements required is much greater than that in
the mobile to mobile case.

If a more compact antenna structure is used (i.e., small spacing between
elements), the vertical space diversity becomes essential, as two neighboring
antenna elements can be packaged together into a single vertical structure. Now, if
we assume that all waves after scattering arrive at the horizontal plane, we have
p(0) = 6(0), that is, the Delta-function angular spread distribution. In this case, the
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signals will be perfectly correlated for all separations between antenna elements.
However, in more realistic conditions where waves arrive with some moderate
spreading relative to the horizontal plane, the angular spread PDF can be presented
according to Reference [97] as

T cos o, 10] < |0, <2
n n 2 (9.41)

0, elsewhere

where 0,, is half of the vertical angular spread.

We notice that expression (9.40) gives more conservative correlation values with
respect to (9.41), as it does not include the vertical spreading of the angle-of-arrival.
This is essential when we want to calculate the effect of vertical antenna element
spacing, which nevertheless requires even larger spacing than the horizontal case [98].

Despite the required large spacing of antenna elements, horizontal space diversity
is very commonly applied in cellular base stations to allow compensation for the low
transmit power obtained from handheld portables compared to the base stations.
Vertical spacing is rarely used [23,91-93,96-98]. This is because of the large
spacing required to obtain low cross-correlation and because the different heights of
the antennas within an array can lead to significant differences in path loss for each
antenna, which degrades the diversity effect. The example shown in Figure 9.22a is
more related to macrocell environments that have very narrow angular spread,
whereas those in Figures 9.22b and 9.22c are related to microcell environments,
where the angular spread is larger.

For polarization diversity, both horizontal and vertical polarization is used. These
orthogonal polarizations have low correlation, and the antenna elements can have
small spacing, creating a small profile for the total antenna. This effect has been
found experimentally in Reference [99] and it was shown that these two components
are almost uncorrelated, so, a pair of cross-polarized antennas can provide diversity
with no spacing between them. However, polarization diversity only doubles the
diversity of any antenna, and for high base station antennas, the horizontal
polarization can be 610 dB weaker than the vertical polarization, which reduces the
diversity gain [78]. Under the assumption that the vertical and horizontal
components of the signal field are independently Rayleigh-distributed (i.e., we
now consider the Rayleigh fading communication channel), the correlation
coefficient can be presented in the following form [99]:

B tan® ocos’ f — I’

= 9.42
P tan2occos? B+ I (942)

where the cross-polar ratio I" is defined as the ratio between the mean powers from
the horizontally, Ey, and vertically, Ev, polarized signal strengths

(|En|*
(|Ev]®)

~

I =

(9.43)
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Here, the fields are received by antennas inclined at an angle o with respect to the
vertical axis, and the mobile is situated at an angle § with respect to the antenna bore
sight.

In References [100,101], a new method to improve the performance of
polarization diversity was proposed by using a mixed scheme where the antenna
array elements were used simultaneously for both sp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>